

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.509
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2016)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

 Information technology – Open Systems
Interconnection – The Directory: Public-key and
attribute certificate frameworks

Recommendation ITU-T X.509

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES X.1300–X.1399

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599

CLOUD COMPUTING SECURITY X.1600–X.1699

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.509 (10/2016) i

INTERNATIONAL STANDARD ISO/IEC 9594-8

RECOMMENDATION ITU-T X.509

Information technology – Open Systems Interconnection –

The Directory: Public-key and attribute certificate frameworks

Summary

Recommendation ITU-T X.509 | ISO/IEC 9594-8 defines frameworks for public-key infrastructure (PKI) and privilege

management infrastructure (PMI). It introduces the basic concept of asymmetric cryptographic techniques. It specifies the

following data types: public-key certificate, attribute certificate, certificate revocation list (CRL) and attribute certificate

revocation list (ACRL). It also defines several certificates and CRL extensions, and it defines directory schema information

allowing PKI and PMI related data to be stored in a directory. In addition, it defines entity types, such as certification

authority (CA), attribute authority (AA), relying party, privilege verifier, trust broker and trust anchor. It specifies the

principles for certificate validation, validation path, certificate policy etc. It includes a specification for authorization

validation lists that allow for fast validation and restrictions on communications. It includes protocols necessary for

maintaining authorization validation lists and a protocol for accessing a trust broker.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.509 1988-11-25 11.1002/1000/2999

2.0 ITU-T X.509 1993-11-16 7 11.1002/1000/3000

3.0 ITU-T X.509 1997-08-09 7 11.1002/1000/4123

3.1 ITU-T X.509 (1997) Technical Cor. 1 2000-03-31 7 11.1002/1000/5033

3.2 ITU-T X.509 (1997) Technical Cor. 2 2001-02-02 7 11.1002/1000/5311

3.3 ITU-T X.509 (1997) Technical Cor. 3 2001-10-29 7 11.1002/1000/5559

3.4 ITU-T X.509 (1997) Technical Cor. 4 2002-04-13 17 11.1002/1000/6025

3.5 ITU-T X.509 (1997) Technical Cor. 5 2003-02-13 17 11.1002/1000/6236

3.6 ITU-T X.509 (1997) Technical Cor. 6 2004-04-29 17 11.1002/1000/7285

4.0 ITU-T X.509 2000-03-31 7 11.1002/1000/5034

4.1 ITU-T X.509 (2000) Technical Cor. 1 2001-10-29 7 11.1002/1000/5560

4.2 ITU-T X.509 (2000) Technical Cor. 2 2002-04-13 17 11.1002/1000/6026

4.3 ITU-T X.509 (2000) Technical Cor. 3 2004-04-29 17 11.1002/1000/7284

4.4 ITU-T X.509 (2000) Technical Cor. 4 2007-01-13 17 11.1002/1000/8637

5.0 ITU-T X.509 2005-08-29 17 11.1002/1000/8501

5.1 ITU-T X.509 (2005) Cor. 1 2007-01-13 17 11.1002/1000/9051

5.2 ITU-T X.509 (2005) Cor. 2 2008-11-13 17 11.1002/1000/9591

5.3 ITU-T X.509 (2005) Cor. 3 2011-02-13 17 11.1002/1000/11042

5.4 ITU-T X.509 (2005) Cor. 4 2012-04-13 17 11.1002/1000/11577

6.0 ITU-T X.509 2008-11-13 17 11.1002/1000/9590

6.1 ITU-T X.509 (2008) Cor. 1 2011-02-13 17 11.1002/1000/11043

6.2 ITU-T X.509 (2008) Cor. 2 2012-04-13 17 11.1002/1000/11578

6.3 ITU-T X.509 (2008) Cor. 3 2012-10-14 17 11.1002/1000/11736

7.0 ITU-T X.509 2012-10-14 17 11.1002/1000/11735

7.1 ITU-T X.509 (2012) Cor. 1 2015-05-29 17 11.1002/1000/12474

7.2 ITU-T X.509 (2012) Cor. 2 2016-04-29 17 11.1002/1000/12844

7.3 ITU-T X.509 (2012) Cor. 3 2016-10-14 17 11.1002/1000/13032

8.0 ITU-T X.509 2016-10-14 17 11.1002/1000/13031

Keywords

Attribute, attribute authority, certificate, certification authority, distinguished name, PKI, PMI, trust anchor, validation.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/2999
http://handle.itu.int/11.1002/1000/3000
http://handle.itu.int/11.1002/1000/4123
http://handle.itu.int/11.1002/1000/5033
http://handle.itu.int/11.1002/1000/5311
http://handle.itu.int/11.1002/1000/5559
http://handle.itu.int/11.1002/1000/6025
http://handle.itu.int/11.1002/1000/6236
http://handle.itu.int/11.1002/1000/7285
http://handle.itu.int/11.1002/1000/5034
http://handle.itu.int/11.1002/1000/5560
http://handle.itu.int/11.1002/1000/6026
http://handle.itu.int/11.1002/1000/7284
http://handle.itu.int/11.1002/1000/8637
http://handle.itu.int/11.1002/1000/8501
http://handle.itu.int/11.1002/1000/9051
http://handle.itu.int/11.1002/1000/9591
http://handle.itu.int/11.1002/1000/11042
http://handle.itu.int/11.1002/1000/11577
http://handle.itu.int/11.1002/1000/9590
http://handle.itu.int/11.1002/1000/11043
http://handle.itu.int/11.1002/1000/11578
http://handle.itu.int/11.1002/1000/11736
http://handle.itu.int/11.1002/1000/11735
http://handle.itu.int/11.1002/1000/12474
http://handle.itu.int/11.1002/1000/12844
http://handle.itu.int/11.1002/1000/13032
http://handle.itu.int/11.1002/1000/13031
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.509 (10/2016)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2016

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.509 (10/2016) iii

CONTENTS

 Page

1 Scope .. 1

2 Normative references.. 1
2.1 Identical Recommendations | International Standards .. 1
2.2 Paired Recommendations | International Standards equivalent in technical content 2
2.3 Recommendations ... 2
2.4 Other references .. 2

3 Definitions .. 2
3.1 OSI Reference Model security architecture definitions... 2
3.2 Baseline identity management terms and definitions .. 3
3.3 Directory model definitions .. 3
3.4 Access control framework definitions ... 3
3.5 Public-key and attribute certificate definitions .. 3

4 Abbreviations ... 7

5 Conventions .. 8

6 Frameworks overview .. 8
6.1 Digital signatures .. 9
6.2 Public-key cryptography and cryptographic algorithms.. 10
6.3 Distinguished encoding of basic encoding rules ... 11
6.4 Applying distinguished encoding .. 12
6.5 Using repositories .. 12

7 Public keys and public-key certificates .. 13
7.1 Introduction ... 13
7.2 Public-key certificate... 13
7.3 Public-key certificate extensions ... 15
7.4 Types of public-key certificates .. 16
7.5 Trust anchor .. 16
7.6 Entity relationship ... 17
7.7 Certification path ... 18
7.8 Generation of key pairs ... 19
7.9 Public-key certificate creation ... 19
7.10 Certificate revocation list .. 20
7.11 Uniqueness of names ... 22
7.12 Indirect CRLs .. 22
7.13 Repudiation of a digital signing .. 24

8 Trust models ... 24
8.1 Three-cornered trust model ... 24
8.2 Four cornered trust model ... 25

9 Public-key certificate and CRL extensions ... 26
9.1 Policy handling .. 26
9.2 Key and policy information extensions ... 29
9.3 Subject and issuer information extensions .. 35
9.4 Certification path constraint extensions .. 37
9.5 Basic CRL extensions ... 41
9.6 CRL distribution points and delta CRL extensions ... 49

10 Delta CRL relationship to base ... 53

11 Authorization and validation lists ... 55
11.1 Authorization and validation list concept .. 55
11.2 The authorizer ... 55
11.3 Authorization and validation list syntax .. 55
11.4 Authorization and validation restrictions .. 57

iv Rec. ITU-T X.509 (10/2016)

 Page

12 Certification path processing procedure ... 57
12.1 Path processing inputs ... 57
12.2 Path processing outputs ... 58
12.3 Path processing variables .. 59
12.4 Initialization step ... 59
12.5 Public-key certificate processing ... 59

13 PKI directory schema ... 62
13.1 PKI directory object classes and name forms .. 62
13.2 PKI directory attributes ... 63
13.3 PKI directory matching rules .. 66
13.4 PKI directory syntax definitions.. 71

14 Attribute certificates ... 73
14.1 Attribute certificate structure... 73
14.2 Delegation paths .. 76
14.3 Attribute certificate revocation lists .. 76

15 Attribute authority, source of authority and certification authority relationship .. 77
15.1 Privilege in attribute certificates .. 79
15.2 Privilege in public-key certificates .. 79

16 PMI models .. 79
16.1 General model ... 79
16.2 Control model.. 81
16.3 Delegation model .. 81
16.4 Group assignment model ... 82
16.5 Roles model ... 83
16.6 Recognition of Authority Model ... 84
16.7 XML privilege information attribute ... 88
16.8 Permission attribute and matching rule ... 89

17 Attribute certificate and attribute certificate revocation list extensions ... 89
17.1 Basic privilege management extensions .. 90
17.2 Privilege revocation extensions ... 93
17.3 Source of authority extensions .. 95
17.4 Role extensions ... 97
17.5 Delegation extensions ... 98
17.6 Recognition of authority extensions .. 103
17.7 Use of basic CRL extension for ACRLs ... 105

18 Delegation path processing procedure .. 109
18.1 Basic processing procedure ... 109
18.2 Role processing procedure .. 110
18.3 Delegation processing procedure .. 110

19 PMI directory schema... 112
19.1 PMI directory object classes ... 113
19.2 PMI directory attributes .. 114
19.3 PMI general directory matching rules ... 116

20 Protocol support for public-key and privilege management infrastructures ... 118
20.1 General syntax ... 118
20.2 Wrapping of non-encrypted protocol data units .. 118
20.3 Wrapping of encrypted protocol data unit ... 119
20.4 Check of PKI-PMI-Wrapper protocol elements .. 121
20.5 PKI-PMI-Wrapper error codes .. 122

21 Authorization and validation list management ... 123
21.1 General .. 123
21.2 Defined protocol data unit (PDU) types .. 123
21.3 Checking of received PDU .. 123

 Rec. ITU-T X.509 (10/2016) v

Page

21.4 Authorization and validation management protocol ... 124
21.5 Certification authority subscription protocol ... 130

22 Trust broker protocol .. 137

Annex A – Public-key and attribute certificate frameworks .. 140

Annex B – Reference definition of cryptographic algorithms ... 176

Annex C – Certificate extension attribute types .. 182
C.1 Certificate extension attribute concept .. 182
C.2 Formal specification for certificate extension attribute types .. 182

Annex D – External ASN.1 modules ... 190

Annex E – CRL generation and processing rules .. 199
E.1 Introduction ... 199
E.2 Determine parameters for CRLs .. 200
E.3 Determine CRLs required ... 201
E.4 Obtain CRLs.. 202
E.5 Process CRLs .. 202

Annex F – Examples of delta CRL issuance.. 206

Annex G – Privilege policy and privilege attribute definition examples ... 208
G.1 Introduction ... 208
G.2 Sample syntaxes .. 208
G.3 Privilege attribute example .. 212

Annex H – An introduction to public key cryptography2) ... 213

Annex I – Examples of use of certification path constraints ... 215
I.1 Example 1: Use of basic constraints .. 215
I.2 Example 2: Use of policy mapping and policy constraints ... 215
I.3 Use of name constraints extension .. 215

Annex J – Guidance on determining for which policies a certification path is valid ... 224
J.1 Certification path valid for a user-specified policy required ... 224
J.2 Certification path valid for any policy required .. 225
J.3 Certification path valid regardless of policy ... 225
J.4 Certification path valid for a user-specific policy desired, but not required 225

Annex K – Key usage certificate extension issues .. 226

Annex L – Deprecated extensions ... 227
L.1 CRL scope extension ... 227

Annex M – Directory concepts .. 230
M.1 Scope ... 230
M.2 Basic directory concepts .. 230
M.3 Directory schema .. 230
M.4 Directory distinguished names .. 231
M.5 Subtrees ... 231

Annex N – Considerations on strong authentication ... 232
N.1 Introduction ... 232
N.2 One-way authentication ... 233
N.3 Two-way authentication .. 233
N.4 Three-way authentication .. 234
N.5 Five-way authentication (initiated by A) ... 235
N.6 Five-way authentication (initiated by B) ... 236

Annex O – Alphabetical list of information item definitions .. 238

Annex P – Amendments and corrigenda ... 241

Bibliography .. 242

vi Rec. ITU-T X.509 (10/2016)

Introduction

Many applications have requirements for security to protect against threats to the communication of information. Virtually

all security services are dependent upon the identities of the communicating parties being reliably known, i.e.,

authenticated.

This Recommendation | International Standard defines a framework for public-key certificates. This framework includes

the specification of data objects used to represent the public-key certificates themselves, as well as revocation notices for

issued public-key certificates that should no longer be trusted. It defines some critical components of a public-key

infrastructure (PKI), but it does not define a PKI in its entirety. However, this Recommendation | International Standard

provides the foundation upon which full PKIs and their specifications can be built.

Similarly, this Recommendation | International Standard defines a framework for attribute certificates. This framework

includes the specification of data objects used to represent the attribute certificates themselves, as well as revocation

notices for issued attribute certificates that should no longer be trusted. It defines some critical components of a privilege

management infrastructure (PMI), but it does not define a PMI in its entirety. However, this Recommendation |

International Standard provides the foundation upon which full PMIs and their specifications can be built.

Schema definitions are defined for holding PKI and PMI information in a directory according to the specification found

in the ITU-T X.500 series of Recommendations | ISO/IEC 9594 (all parts) or according to the lightweight directory access

protocol (LDAP) specification.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be

defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks may

be mandated for use in certain environments through profiles. This eighth edition technically revises and enhances the

seventh edition of this Recommendation | International Standard.

This eighth edition specifies versions 1, 2 and 3 of public-key certificates, versions 1 and 2 of certificate revocation lists

and version 2 of attribute certificates.

The extensibility function was added in an earlier edition with version 3 of the public-key certificate and with version 2

of the certificate revocation list and was incorporated into the attribute certificate from its initial inception.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 modules which

contain all of the definitions associated with the frameworks.

Annex B, which is not an integral part of this Recommendation | International Standard, lists object identifiers assigned

to cryptographic algorithms defined by other specifications. It is provided for easy reference and import into other ASN.1

modules.

Annex C, which is an integral part of this Recommendation | International Standard, provides definitions for how

certificate extension types may be represented by directory attribute types.

Annex D, which is not an integral part of this Recommendation | International Standard, includes extracts of external

ASN.1 modules referenced by this Recommendation | International Standard.

Annex E, which is an integral part of this Recommendation | International Standard, provides rules for generating and

processing certificate revocation lists (CRLs).

Annex F, which is not an integral part of this Recommendation | International Standard, provides examples of delta

certificate revocation list (CRL) issuance.

Annex G, which is not an integral part of this Recommendation | International Standard, provides examples of privilege

policy syntaxes and privilege attributes.

Annex H, which is not an integral part of this Recommendation | International Standard, is an introduction to public-key

cryptography.

Annex I, which is not an integral part of this Recommendation | International Standard, contains examples of the use of

certification path constraints.

Annex J, which is not an integral part of this Recommendation | International Standard, provides guidance for public-key

infrastructure (PKI) enabled applications on the processing of certificate policy while in the certification path validation

process.

Annex K, which is not an integral part of this Recommendation | International Standard, provides guidance on the use of

the contentCommitment bit in the keyUsage certificate extension.

Annex L, which is not an integral part of this Recommendation | International Standard, includes public-key and attribute

certificate extensions that have been deprecated.

 Rec. ITU-T X.509 (10/2016) vii

Annex M, which is not an integral part of this Recommendation | International Standard, gives a short introduction to

directory and distinguished name concepts.

Annex N, which is not an integral part of this Recommendation | International Standard, provides some general

considerations on strong authentication.

Annex O, which is not an integral part of this Recommendation | International Standard, contains an alphabetical list of

information item definitions in this Recommendation | International Standard.

Annex P, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect

reports that have been incorporated to form this edition of this Recommendation | International Standard.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 1

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology – Open Systems Interconnection –

The Directory: Public-key and attribute certificate frameworks

1 Scope

This Recommendation | International Standard addresses some of the security requirements in the areas of authentication

and other security services through the provision of a set of frameworks upon which full services can be based. Specifically,

this Recommendation | International Standard defines frameworks for:

– public-key certificates; and

– attribute certificates.

The public-key certificate framework defined in this Recommendation | International Standard specifies the information

objects and data types for a public-key infrastructure (PKI), including public-key certificates, certificate revocation lists

(CRLs), trust broker and authorization and validation lists (AVLs). The attribute certificate framework specifies the

information objects and data types for a privilege management infrastructure (PMI), including attribute certificates, and

attribute certificate revocation lists (ACRLs). This Recommendation | International Standard also provides the framework

for issuing, managing, using and revoking certificates. An extensibility mechanism is included in the defined formats for

both certificate types and for all revocation list schemes. This Recommendation | International Standard also includes a set

of extensions, which is expected to be generally useful across a number of applications of PKI and PMI. The schema

components (including object classes, attribute types and matching rules) for storing PKI and PMI information in a

directory, are included in this Recommendation | International Standard.

This Recommendation | International Standard specifies the framework for strong authentication, involving credentials

formed using cryptographic techniques. It is not intended to establish this as a general framework for authentication, but it

can be of general use for applications which consider these techniques adequate.

Authentication (and other security services) can only be provided within the context of a defined security policy. It is a

matter for users of an application to define their own security policy.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid

ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– Recommendation ITU-T X.411 (1999) | ISO/IEC 10021-4:2003, Information technology – Message

Handling Systems (MHS) – Message Transfer System: Abstract Service Definition and Procedures.

– Recommendation ITU-T X.500 (2016) | ISO/IEC 9594-1:2017, Information technology – Open Systems

Interconnection – The Directory: Overview of concepts, models and services.

– Recommendation ITU-T X.501 (2016) | ISO/IEC 9594-2:2017, Information technology – Open Systems

Interconnection – The Directory: Models.

– Recommendation ITU-T X.511 (2016) | ISO/IEC 9594-3:2017, Information technology – Open Systems

Interconnection – The Directory: Abstract service definition.

– Recommendation ITU-T X.519 (2016) | ISO/IEC 9594-5:2017, Information technology – Open Systems

Interconnection – The Directory: Protocol specifications.

– Recommendation ITU-T X.520 (2016) | ISO/IEC 9594-6:2017, Information technology – Open Systems

Interconnection – The Directory: Selected attribute types.

– Recommendation ITU-T X.660 (2011) | ISO/IEC 9834-1:2012, Information technology – Open Systems

Interconnection – Procedures for the operation of OSI Registration Authorities: General procedures and

top arcs of the International Object Identifier tree.

ISO/IEC 9594-8:2017 (E)

2 Rec. ITU-T X.509 (10/2016)

– Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Information object specification.

– Recommendation ITU-T X.690 (2015) | ISO/IEC 8825-1:2015, Information technology – ASN.1 encoding

rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER).

– Recommendation ITU-T X.812 (1995) | ISO/IEC 10181-3:1996, Information technology – Open Systems

Interconnection – Security frameworks for open systems: Access control framework.

– Recommendation ITU-T X.813 (1996) | ISO/IEC 10181-4:1997, Information technology – Open Systems

Interconnection – Security frameworks for open systems: Non-repudiation framework.

– Recommendation ITU-T X.841 (2000) | ISO/IEC 15816:2002, Information technology – Security

techniques – Security information objects for access control.

2.2 Paired Recommendations | International Standards equivalent in technical content

– Recommendation ITU-T X.800 (1991), Security architecture for Open Systems Interconnection for CCITT

applications.

 ISO 7498-2:1989, Information processing systems – Open Systems Interconnection – Basic Reference

Model – Part 2: Security Architecture.

2.3 Recommendations

– Recommendation ITU-T X.1252 (2010), Baseline identity management terms and definitions.

2.4 Other references

– IETF RFC 791 (1981), Internet Protocol.

– IETF RFC 822 (1982), Standard for the Format of ARPA Internet Text Messages.

– IETF RFC 1630 (1994), Universal Resource Identifiers in WWW: A Unifying Syntax for the Expression of

Names and Addresses of Objects on the Network as used in the World-Wide Web.

– IETF RFC 3492 (2003), Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names

in Applications (IDNA).

– IETF RFC 4511 (2006), Lightweight Directory Access Protocol (LDAP): The Protocol.

– IETF RFC 4523 (2006), Lightweight Directory Access Protocol (LDAP) Schema Definitions for X.509

Certificates.

– IETF RFC 5280 (2008), Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile.

– IETF RFC 5890 (2010), Internationalized Domain Names for Applications (IDNA): Definitions and

Document Framework.

– IETF RFC 5914 (2010), Trust Anchor Format.

– IETF RFC 6960 (2013), X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 OSI Reference Model security architecture definitions

The following terms are defined in Rec. ITU-T X.800 | ISO 7498-2:

a) authentication exchange;

b) authentication information;

c) confidentiality;

d) credentials;

e) cryptography;

f) data origin authentication;

g) decipherment;

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 3

h) digital signature;

i) encipherment; and

j) key;

3.2 Baseline identity management terms and definitions

The following term is defined in Rec. ITU-T X.1252:

 a) trust.

3.3 Directory model definitions

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a) attribute;

c) directory information tree (DIT);

b) directory system agent;

c) directory user agent (DUA);

d) distinguished name;

e) entry;

f) relative distinguished name;

g) root.

3.4 Access control framework definitions

The following terms are defined in Rec. ITU-T X.812 | ISO/IEC 10181-3:

a) access control decision function (ADF);

b) access control enforcement function (AEF).

3.5 Public-key and attribute certificate definitions

The following terms are defined in this Recommendation | International Standard:

3.5.1 ACRL distribution point: A directory entry or another distribution source for attribute certificate revocation

lists (ACRLs); an ACRL distributed through an ACRL distribution point may contain revocation entries for only a subset

of the full set of attribute certificates issued by one attribute authority (AA) or may contain revocation entries for multiple

AAs.

3.5.2 attribute authority certificate: An attribute certificate for one attribute authority (AA) issued by another AA

or by the same AA.

3.5.3 attribute certificate: A data structure, digitally signed by an attribute authority that binds some attribute values

with identification information about its holder.

3.5.4 attribute authority (AA): An authority which assigns privileges by issuing attribute certificates or by including

them in public-key certificates.

3.5.5 attribute authority revocation list (AARL): A revocation list containing a list of references to attribute

certificates issued to attribute authorities (AAs) that are no longer considered valid by the issuing AA.

3.5.6 attribute certificate revocation list (ACRL): A revocation list containing a list of references to attribute

certificates that are no longer considered valid by the issuing attribute authority.

3.5.7 attribute certificate validation: The process of ensuring that an attribute certificate was valid at a given time,

including possibly the construction and processing of a delegation path, and ensuring that all attribute certificates in that

path were valid (e.g., were not expired or revoked) at that given time.

3.5.8 authority: An entity, responsible for the issuance of certificates or of revocation lists. Four types are defined in

this Recommendation | International Standard; a certification authority which issues public-key certificates, an attribute

authority which issues attribute certificates, a certificate revocation list (CRL) issuer which issues CRLs and an attribute

certificate revocation list (ACRL) issuer which issues ACRLs.

3.5.9 authorization and validation list (AVL): A signed list containing information to an AVL entity about potential

communications entities and possible restrictions on the communications with such entities.

ISO/IEC 9594-8:2017 (E)

4 Rec. ITU-T X.509 (10/2016)

3.5.10 authorization and validation list entity (AVL entity): An entity, when acting as a relying party, is dependent

on an AVL issued by a designated authorizer.

3.5.11 authorizer: An entity trusted by one or more entities operating as authorization and validation list (AVL) entities

to create, maintain and sign authorization and validation lists.

3.5.12 base attribute certificate revocation list (base ACRL): An attribute certificate revocation list (ACRL) that is

used as the foundation in the generation of a delta attribute certificate revocation list (dACRL).

3.5.13 base certificate revocation list (base CRL): A certificate revocation list (CRL) that is used as the foundation

in the generation of a delta certificate revocation list (dCRL).

3.5.14 CA certificate: A public-key certificate for one certification authority (CA) issued by another CA or by the same

CA.

3.5.15 certificate policy: A named set of rules that indicates the applicability of a public-key certificate to a particular

community and/or class of application with common security requirements. For example, a particular certificate policy

might indicate applicability of a type of certificate to the authentication of electronic data interchange transactions for the

trading of goods within a given price range.

3.5.16 certification practice statement (CPS): A statement of the practices that a certification authority (CA) employs

in issuing certificates.

3.5.17 certificate revocation list (CRL): A signed list indicating a set of public-key certificates that are no longer

considered valid by the issuing certification authority (CA). In addition to the generic term certificate revocation list (CRL),

some specific CRL types are defined for CRLs that cover particular scopes.

3.5.18 certificate serial number: An integer value, unique within the issuing authority, which is unambiguously

associated with a certificate issued by that authority.

3.5.19 certification authority (CA): An authority trusted by one or more entities to create and digital sign public-key

certificates. Optionally the certification authority may create the subjects' keys.

3.5.20 certification authority revocation list (CARL): A revocation list containing a list of certification authority

(CA) certificates issued to CAs that are no longer considered valid by the issuing CA.

3.5.21 certification path: An ordered list of one or more public-key certificates, starting with a public-key certificate

signed by the trust anchor, and ending with the end-entity public-key certificate to be validated. All intermediate public-

key certificates, if any, are certification authority (CA) certificates in which the subject of the preceding public-key

certificate is the issuer of the following public-key certificate.

3.5.22 CRL distribution point: A directory entry or other distribution source for certificate revocation lists (CRLs); a

CRL distributed through a CRL distribution point may contain revocation entries for only a subset of the full set of public-

key certificates issued by one certification authority (CA) or may contain revocation entries for multiple CAs.

3.3.23 cross-certificate: A certification authority (CA) certificate where the issuer and the subject are different CAs.

CAs issue cross-certificates to other CAs as a mechanism to authorize the subject CA's existence.

3.5.24 delegation: Conveyance of privilege from one entity that holds such privilege, to another entity.

3.5.25 delegation path: An ordered sequence of attribute certificates which, together with authentication of a privilege

asserter's identity can be processed to verify the authenticity of a privilege asserter's privilege.

3.5.26 delta attribute certificate revocation list (dACRL): A partial attribute certificate revocation list that only

contains entries for attribute certificates that have had their revocation status changed since the issuance of the referenced

base attribute certificate revocation list (base ACRL).

3.4.27 delta-CRL (dCRL): A partial revocation list that only contains entries for public-key certificates that have had

their revocation status changed since the issuance of the referenced base CRL.

3.5.28 end entity: Either a public-key certificate subject that uses its private key for purposes other than signing public-

key certificates, or an attribute certificate holder that cannot delegate privileges of the attribute certificate, but uses its

attributes only to gain access to a resource.

3.5.29 end-entity attribute certificate: An attribute certificate issued to an entity, which then acts as an end entity

within a privilege management infrastructure.

3.5.30 end-entity attribute certificate revocation list (EARL): A revocation list containing a list of attribute

certificates issued to holders that are not also attribute authorities (AAs) that are no longer considered valid by the

certificate issuer.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 5

3.5.31 end-entity public-key certificate: A public-key certificate issued to an entity, which then acts as an end entity

within a public-key infrastructure.

3.5.32 end-entity public-key certificate revocation list (EPRL): A revocation list containing a list of public-key

certificates issued to subjects that are not also certification authorities (CAs), that are no longer considered valid by the

certificate issuer.

3.5.33 environmental variables: Those aspects of policy required for an authorization decision, that are not contained

within static structures, but are available through some local means to a privilege verifier (e.g., time of day or current

account balance).

3.5.34 full attribute certificate revocation list (full ACRL): A complete revocation list that contains entries for all

attribute certificates that have been revoked for a given scope.

3.5.35 full CRL: A complete revocation list that contains entries for all public-key certificates that have been revoked

for the given scope.

3.5.36 hash function: A (mathematical) function which maps data of arbitrary size into data of a fixed size called a

digest.

3.5.37 holder: An entity to whom some privilege has been delegated either directly from the source of authority or

indirectly through another attribute authority.

3.5.38 indirect attribute certificate revocation list (iACRL): A revocation list whose scope includes attribute

certificates issued by one or more attribute authorities (AAs) other than the issuer of the revocation list. The same indirect

ACRL is also authoritative for the attribute certificates, if any, issued by the ACRL issuer.

3.5.39 indirect certificate revocation list (iCRL): A revocation list whose scope includes public-key certificates issued

by one or more certification authorities (CAs) other than the issuer of the revocation list. The same indirect certificate

revocation list (CRL) is also authoritative for the public-key certificates, if any, issued by the CRL issuer.

3.5.40 intermediate CA: A certification authority (CA) is acting as an intermediate CA within a certification path when

it is the issuer of the next public-key certificate on that certification path.

3.5.41 key agreement: A method for negotiating a symmetric key value on-line without transferring the key, even in

an encrypted form, e.g., the Diffie-Hellman technique (see ISO/IEC 11770-1 for more information on key agreement

mechanisms).

3.5.42 object method: An action that can be invoked on a resource (e.g., a file system may have read, write and execute

object methods).

3.5.43 one-way function: A (mathematical) function which is easy to compute, but which for a general value y in the

range, it is computationally difficult to find a value x in the domain such that f(x) = y. There may be a few values y for

which finding x is not computationally difficult.

3.5.44 PKI end entity: An entity that is acting as an end entity in a public-key infrastructure (PKI) environment, where

the subject uses it private key for other purposes than signing public-key certificates.

3.5.45 PMI end entity: An entity that is acting as an end entity in a privilege management infrastructure (PMI)

environment, where the holder uses its privilege attributes to gain access to a resource.

3.5.46 policy decision point (PDP): The point where policy decisions are made (synonymous with access control

decision function, ADF).

3.5.47 policy enforcement point (PEP): The point where the policy decisions are actually enforced (synonymous with

access control enforcement function, AEF).

3.5.48 policy mapping: Recognizing that, when a certification authority (CA) in one domain certifies a CA in another

domain, a particular certificate policy in the second domain may be considered by the authority of the first domain to be

equivalent (but not necessarily identical in all respects) to a particular certificate policy in the first domain.

3.5.49 private key: (In a public-key cryptosystem) that key of an entity's key pair which is known only by that entity.

3.5.50 privilege: An attribute or property assigned to an entity by an attribute authority.

3.5.51 privilege asserter: A privilege holder using the attributes of the attribute certificate or public-key certificate to

assert privilege.

3.5.52 privilege holder: An entity that has been assigned privilege. A privilege holder may assert its privilege for a

particular purpose.

ISO/IEC 9594-8:2017 (E)

6 Rec. ITU-T X.509 (10/2016)

3.5.53 privilege management infrastructure (PMI): The infrastructure able to support the management of privileges

in support of a comprehensive authorization service and in relationship with a public-key infrastructure.

3.5.54 privilege policy: The policy that outlines conditions for privilege verifiers to provide/perform sensitive services

to/for qualified privilege asserters. Privilege policy relates attributes associated with the service as well as attributes

associated with privilege asserters.

3.5.55 privilege verifier: An entity verifying attributes of a public-key certificate or attribute certificate against a

privilege policy.

3.5.56 public key: That key of an entity's key pair which is publicly known.

3.5.57 public-key certificate: The public key of an entity, together with some other information, rendered unforgeable

by digital signature with the private key of the certification authority (CA) that issued it.

3.5.58 public-key certificate validation: The process of ensuring that a public-key certificate was valid at a given time,

including possibly the construction and processing of a certification path, and ensuring that all public-key certificates in

that path were valid (e.g., were not expired or revoked) at that given time.

3.5.59 public-key infrastructure (PKI): The infrastructure able to support the management of public keys able to

support authentication, encryption, integrity or non-repudiation services.

3.5.60 registration authority (RA): Those aspects of the responsibilities of a certification authority that are related to

identification and authentication of the subject of a public-key certificate to be issued by that certification authority. An

RA may either be a separate entity or be an integrated part of the certification authority.

NOTE – This definition is different in scope from the one defined in Rec. ITU-T X.660 | ISO/IEC 9834-1.

3.5.61 relying party: An entity that relies on the data in a public-key certificate in making decisions.

3.5.62 role assignment certificate: A certificate that contains the role attribute, assigning one or more roles to the

certificate subject/holder.

3.5.63 role specification certificate: An attribute certificate that contains the assignment of privileges to a role.

3.5.64 sensitivity: Characteristic of a resource that implies its value or importance.

3.5.65 security policy: The set of rules laid down by the security authority governing the use and provision of security

services and facilities.

3.5.66 self-issued attribute certificate: An attribute certificate where the issuer and the holder are the same attribute

authority (AA). An AA might use a self-issued attribute certificate, for example, to publish policy information.

3.5.67 self-issued certificate: A certification authority (CA) certificate where the issuer and the subject are the same

CA. A CA might use self-issued certificates, for example, during a key rollover operation to provide trust from the old key

to the new key.

3.5.68 self-signed certificate: A special case of self-issued certificates where the private key used by the certification

authority (CA) to sign the CA certificate corresponds to the public key that is certified within the CA certificate. A CA

might use a self-signed certificate, for example, to advertise their public key or other information about their operations.

NOTE – Use of self-issued certificates and self-signed certificates issued by other than certification authorities (CAs) are outside

the scope of this Recommendation | International Standard.

3.5.69 source of authority (SOA): An attribute authority that a privilege verifier for a particular resource trusts as the

ultimate authority to assign a set of privileges for asserting that resource.

3.5.70 subject CA: A certification authority (CA) for which another CA has issued a CA certificate.

3.5.71 trust anchor: An entity that is trusted by a relying party and used for validating public-key certificates.

3.5.72 trust anchor information: Trust anchor information is at least the: distinguished name of the trust anchor,

associated public key, algorithm identifier, public key parameters (if applicable), and any constraints on its use, including

a validity period. The trust anchor information may be provided as a self-signed certification authority (CA) certificate or

as a normal CA certificate (i.e., cross-certificate).

3.5.73 trust anchor store: A trust anchor information collection at a relying party for one or more trust anchors.

3.5.74 trust broker: A third party trusted by relying parties to provide quantitative information about the

trustworthiness and qualitative information about the intended use of a public-key certificate based on information about

the certification authority. Trust brokers are independent of certification authorities and have direct trust relationships with

relying parties.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 7

3.5.75 trust in a CA: Belief that the certification authority (CA) will act reliability and truthfully in the management of

its public-key certificates and will comply with its published certification practise statement and relevant legislation.

3.5.76 trust in a public-key certificate: Belief that the public-key certificate belongs to the subject identified in the

public-key certificate.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

AA Attribute Authority

AARL Attribute Authority Revocation List

ACRL Attribute Certificate Revocation List

ADF Access control Decision Function

AEF Access control Enforcement Function

AIA Authority Information Access

AVL Authorization and Validation List

AVMP Authorization Validation Management Protocol

BER Basic Encoding Rules

CA Certification Authority

CARL Certification Authority Revocation List

CASP Certification Authority Subscription Protocol

CRL Certificate Revocation List

dACRL Delta Attribute Certificate Revocation List

DAP Directory Access Protocol

dCRL Delta Certificate Revocation List

DIT Directory Information Tree

DER Distinguished Encoding Rules

DS Delegation Service

DSA Digital Signature Algorithm

DUA Directory User Agent

EARL End-entity Attribute certificate Revocation List

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EPRL End-entity Public-key certificate Revocation List

FQDN Fully Qualified Domain Name

HSM Hardware Security Module

iACRL Indirect Attribute Certificate Revocation List

iCRL Indirect Certificate Revocation List

IDN Internationalized Domain Name

IDP Issuing Distribution Point

LDAP Lightweight Directory Access Protocol

LDH Letters, Digits, Hyphen

M2M Machine-to-Machine

OCSP Online Certificate Status Protocol

PDP Policy Decision Point

PEP Policy Enforcement Point

PIN Personal Identification Number

PKCS Public-Key Cryptography Standards

ISO/IEC 9594-8:2017 (E)

8 Rec. ITU-T X.509 (10/2016)

PKI Public-Key Infrastructure

PMI Privilege Management Infrastructure

RA Registration Authority

RDN Relative Distinguished Name

RoA Recognition of Authority

RSA Rivest-Shamir-Adelman

SOA Source Of Authority

TB Trust Broker

5 Conventions

The term "Specification" (as in "this Specification") shall be taken to mean Rec. ITU-T X.509 | ISO/IEC 9594-8.

The term "The Directory Specifications" shall be taken to mean the other parts of the ITU-T X.500 series of

Recommendations | ISO/IEC 9594 (all parts), excluding this Specification.

This Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values are referenced

in normal text, they are differentiated from normal text by presenting them in the bold Courier New typeface. When a

definition is referenced for the first time in normal text it is presented in italicized Times New Roman.

If the items in a list are numbered (as opposed to using "–" or letters), then the items shall be considered steps in a procedure.

6 Frameworks overview

This Specification defines a framework for obtaining and trusting a public key of an entity in order to verify the digital

signature of that entity. If the key pair is of a type that allows encryption and decryption, the public key may also be used

for encrypting information to be decrypted by the entity owning the private key. The framework includes the issuance of

a public-key certificate by a certification authority (CA) and the validation of that public-key certificate by the relying

party, i.e., the entity relying on the content of the public-key certificate. The validation includes:

– establishing a trusted path of public-key certificates between a trusted entity called a trust anchor (see clause

7.5) and the public-key certificate subject, i.e., the entity for which the public-key certificate has been issued;

– verifying the digital signatures on each public-key certificate in the path; and

– validating all the public-key certificates along that path (i.e., that they obey restrictions, were not expired or

not revoked at a given time); and

– optionally, asking a trust broker if the public-key certificate can be trusted for the intended purpose.

The public-key infrastructure (PKI) is the infrastructure established to support the issuing, revocation and validation of

public-key certificates.

This Specification defines a framework for obtaining and trusting privilege attributes of an entity in order to determine

whether they are authorized to access a particular resource. The framework includes the issuance of an attribute certificate

by an attribute authority (AA) and the validation of that attribute certificate by a privilege verifier. The validation includes:

– ensuring that the privileges in the attribute certificate are sufficient when compared against the privilege

policy;

– establishing a trusted delegation path of attribute certificates if necessary;

– verifying the digital signature on each attribute certificate in the path;

– ensuring that each issuer was authorized to delegate privileges; and

– validating that the attribute certificates have not expired or been revoked by their issuers.

Privileges are provided in directory attributes as defined by Rec. ITU-T X.501 | ISO/IEC 9594-2.

Public-key certificates may also include directory attributes for providing privileges. Such aspects of privileges carried by

public-key certificates are also covered by the attribute certificate framework within Section 3.

The privilege management infrastructure (PMI) is the infrastructure established to support the issuing, revocation and

validation of attribute-key certificates.

Although PKI and PMI are separate infrastructures and may be established independently from one another, they are

related. This Specification recommends that holders and issuers of attribute certificates be identified within attribute

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 9

certificates by pointers to their appropriate public-key certificates. Authentication of the attribute certificate issuers and

holders, to ensure that entities claiming privilege and issuing privilege are who they claim to be, is done using the normal

processes of the PKI to authenticate identities. This authentication process is not duplicated within the attribute certificate

framework.

An entity may take one more roles in a PKI and/or a PMI. It may act as a CA, as an AA, as an end entity in a PKI

environment (PKI end entity), as an end entity in a PMI environment (PMI end entity), as a relying party, etc.

A PKI end entity is an entity that has been assigned an end-entity public-key certificate, where the private key cannot be

used to sign other public-key certificates, but may be used for signing for other purposes. A PMI end entity is an entity

that uses its end-entity attribute certificate to assess privilege, but it cannot be used for delegating such privilege to other

entities.

This Specification makes extensive use of cryptographic algorithms, such as hashing algorithms, public-key algorithms

and digital signature algorithms. Annex H introduces these algorithms.

6.1 Digital signatures

This subclause describes digital signatures in general. Sections 2 and 3 of this Specification discuss the use of digital

signatures within PKI and PMI specifically. This subclause is not intended to specify a specification for digital signatures

in general, but to specify the means by which instances of the PKI and PMI specific data types are signed.

There are different types of digital signatures, such as Rivest-Shamir-Adelman (RSA) digital signatures, digital signature

algorithm (DSA) digital signatures and elliptic curve digital signature algorithm (ECDSA) digital signatures.

NOTE 1 – It is not within the scope of this Specification to describe these different techniques in detail, but Annex F gives a short

introduction with references to more detailed specifications.

Figure 1 illustrates how a signer of instances of PKI/PMI data types (public-key certificates, attribute certificates,

revocation lists, etc.) creates a digital signature and then adds that to the data before transmission. It also illustrates how

the recipient of the signed data (the validator) validates the digital signature.

Figure 1 – Digital signature generation and validation

The digital signature signer goes through the following procedure:

1) The signer creates a hash digest over the PKI/PMI data using a secure hashing algorithm (see annex F).

2) The hash digest is then supplemented by additional information in preparation for generation of the digital

signature for improved security and for padding the hash digest to a length required by the asymmetric

cryptographic function. For the RSA algorithms, that supplementation can be the addition of some

information to the hash digest and in some cases, to perform yet another hashing operation. For the DSA

and ECDSA signature algorithms, additional domain parameters are added.

ISO/IEC 9594-8:2017 (E)

10 Rec. ITU-T X.509 (10/2016)

3) The result from item 2) together with the private key of the signer and the use of a specific algorithm result

in a bit string that together with the used algorithm constitute the digital signature.

4) The signature is appended to data to be signed.

Having received the data, the recipient (validator) goes through a similar procedure:

1) The validator goes through the same procedure as in steps 1) and 2) above, and if the received data is

unmodified, the result will be the same as for the signer. If not, the next step will fail.

2) From the result from item 1) together with the public key of the signer, the bit string of the signature and

the use of an associated algorithm, the digital signature is evaluated as either valid or invalid.

If the digital signature proves valid, the validator has ensured that the data has not been modified and that the signer is in

the position of the private key that corresponds to the public key used by the validator, i.e., the digital signature provides

insurance of data integrity and authentication of the signer.

If the digital signature proves invalid, either the data has been modified or the signing private key does not corresponds to

the public key used by the validator.

NOTE 2 – Data to be stored in a database or a directory may also be appended a digital signature, which then can evaluated at the

retrieval of the data.

6.2 Public-key cryptography and cryptographic algorithms

6.2.1 Formal specification of public-key cryptography

The digital signature of a data item may expressed by the following ASN.1 data type, where the signature component

is a bit string resulting from using the appropriate signature algorithm.

SIGNATURE ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 signature BIT STRING,

 ... }

If a signature is appended to the data, the following ASN.1 may be used to define the data type resulting from applying a

signature to the given data type.

SIGNED{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 COMPONENTS OF SIGNATURE,

 ... }

The following data type is no longer used anymore by this Specification. It may be useful in other areas and is retained for

possible import by referencing specifications.

HASH{ToBeHashed} ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 hashValue BIT STRING (CONSTRAINED BY {

 -- shall be the result of applying a hashing procedure to the DER-encoded

 -- octets of a value of -- ToBeHashed }),

 ... }

The following data types are deprecated and are no longer used by this Specification. They are retained for possible import

by referencing specifications.

ENCRYPTED{ToBeEnciphered} ::= BIT STRING (CONSTRAINED BY {

 -- shall be the result of applying an encipherment procedure

 -- to the BER-encoded octets of a value of -- ToBeEnciphered })

ENCRYPTED-HASH{ToBeSigned} ::= BIT STRING (CONSTRAINED BY {

 -- shall be the result of applying a hashing procedure to the DER-encoded (see 6.2)

 -- octets of a value of -- ToBeSigned -- and then applying an encipherment procedure

 -- to those octets -- })

6.2.2 Formal definitions of cryptographic algorithms

The following ASN.1 information object class is used for specifying cryptographic algorithms.

ALGORITHM ::= CLASS {

 &Type OPTIONAL,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 11

 [PARMS &Type]

 IDENTIFIED BY &id }

The following general parameterized data type specifies the syntax of an algorithm specification:

AlgorithmIdentifier{ALGORITHM:SupportedAlgorithms} ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 ... }

The algorithm component shall be an object identifier that uniquely identifies the cryptographic algorithm being defined.

The parameters component, when present, shall specify the parameters associated with the algorithm. Some, but not all

algorithms require associated parameters.

/* The definitions of the following information object set is deferred to referencing

specifications having a requirement for specific information object sets.*/

SupportedAlgorithms ALGORITHM ::= {...}

The following parameterized data type specifies the syntax for fingerprint algorithms:

FingerPrint {ToBeFingerprinted} ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 fingerprint BIT STRING,

 ... }

Typically, the algorithm used for generating a fingerprint is a hash algorithm, but the above definition is open to other

types of algorithms.

The elliptic curve algorithms use the parameters component to specify the object identifier identifying a particular curve.

The following object gives a general specification for an elliptic curve cryptography (ECC) public key algorithm:

ecPublicKey ALGORITHM ::= {

 PARMS CURVE.&id({SupportedCurves})

 IDENTIFIED BY id-ecPublicKey }

/* The definitions of the following information value set is deferred to referencing

specifications having a requirement for specific value sets.*/

SupportedCurves OBJECT IDENTIFIER ::= {dummyCurv, ...}

dummyCurv OBJECT IDENTIFIER ::= {2 5 5}

Annex B lists some cryptographic algorithms specified in other specification for easy reference.

6.3 Distinguished encoding of basic encoding rules

In order to enable the validation of SIGNED and SIGNATURE types in a distributed environment, either the original signed

message or, in its absence, a canonical encoding is required. The canonical encoding that shall be used by this specification

is called the distinguished encoding of a SIGNED or SIGNATURE data value and shall be obtained by applying the basic

encoding rules defined in Rec. ITU-T X.690 | ISO/IEC 8825-1, with the following restrictions:

a) the definite form of length encoding shall be used, encoded in the minimum number of octets;

b) for string types, the constructed form of encoding shall not be used;

c) if the value of a type is its default value, it shall be absent;

d) the components of a Set type shall be encoded in ascending order of their tag values;

e) the components of a Set-of type shall be encoded in ascending order of their octet values;

f) if the value of a Boolean type is TRUE, the encoding shall have its contents octet set to "FF";

g) each unused bit in the final octet of the encoding of a Bit String value, if there are any, shall be set to zero;

h) the encoding of a Real type shall be such that bases 8, 10 and 16 shall not be used, and the binary scaling

factor shall be zero;

i) the encoding of a UTCTime shall be as specified in Rec. ITU-T X.690 | ISO/IEC 8825-1;

j) the encoding of a GeneralizedTime shall be as specified in Rec. ITU-T X.690 | ISO/IEC 8825-1.

NOTE – These restrictions are the same as the distinguished encoding rules specified in Rec. ITU-T X.690 | ISO/IEC 8825-1.

ISO/IEC 9594-8:2017 (E)

12 Rec. ITU-T X.509 (10/2016)

6.4 Applying distinguished encoding

Generating distinguished encoding requires the abstract syntax of the data to be encoded to be fully understood. An entity

may be required to sign data or check the signature of data that is already signed or contains unknown protocol extensions

or unknown attribute syntaxes. The entity shall follow these rules:

a) It shall preserve the encoding of received information whose abstract syntax it does not fully know and

which it expects to subsequently sign.

b) When signing data for sending, it shall send data whose syntax it fully knows with a distinguished encoding

and any other data with its preserved encoding, and shall sign the actual encoding it sends.

c) When checking signatures in received data, it shall check the signature against the actual data received

rather than its conversion of the received data to a distinguished encoding.

6.5 Using repositories

PKI and PMI data objects of different kind need to be made available in in some kind of repository. This Specification

does not mandate a specific repository technology, but describes repository requirements in term of directories as specified

by the Directory Specifications or by the lightweight directory access protocol (LDAP) as specified by IETF RFC 4511.

This Specification also uses directory related terms, like distinguished name and subtree.

A short introduction to directory concepts is given in Annex M.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 13

SECTION 2 – PUBLIC-KEY CERTIFICATE FRAMEWORK

7 Public keys and public-key certificates

7.1 Introduction

The public-key certificate framework defined here is for use by applications with requirements for authentication, integrity,

confidentiality and non-repudiation.

The binding of a public-key to an entity is provided by an authority through a digitally signed data structure called a public-

key certificate issued by an authority called a certification authority (CA). The format of public-key certificates is defined

here, including an extensibility mechanism and a set of specific public-key certificate extensions. If, for any reason, a CA

revokes a previously issued public-key certificate, entities need to be able to learn that revocation has occurred so they do

not use an untrustworthy public-key certificate. Revocation lists are one scheme that can be used to notify entities of

revocations. The format of revocation lists is defined here, including an extensibility mechanism and a set of revocation

list extensions. In both the public-key certificate and the revocation list case, other bodies may also define additional

extensions that are useful to their specific environments.

An entity that makes decisions based on the validity of a public-key certificates is called a relying party. A relying party

needs to validate a public-key certificate prior to using it for a particular transaction in an application. Procedures for

performing validation are also defined by this Specification, including verifying the integrity of the public-key certificate

itself, its revocation status, and its validity with respect to the intended use.

In order for a relying party to be able to trust a public-key of another entity, for instance to authenticate the identity of that

entity, the public key shall be obtained from a trusted source. Such a source, called a certification authority (CA), certifies

a public key by issuing a public-key certificate which binds the public-key to the entity which holds the corresponding

private key. The procedures used by a CA to ensure that an entity is in fact in possession of the private key and other

procedures related to the issuance of public-key certificates are outside the scope of this Specification. However, relying

parties should review these procedures and make trust decisions based upon them. The public-key certificate, the form of

which is specified later in this clause, has the following properties:

– any relying party with access to the public key of the CA can recover the public key which was certified;

– no party other than the CA can modify the public-key certificate without this being detected (public-key

certificates are unforgeable provided that secure cryptographic algorithms are being used in a secure way).

Because public-key certificates are intended to be unforgeable, they can be published by being placed in a directory,

without the need for the latter to make special efforts to protect them.

NOTE – Although the CAs are unambiguously defined by distinguished names having a hierarchical structure, this does not imply

that there is any relationship between these distinguished names and the hierarchy of the CAs.

7.2 Public-key certificate

A CA issues a public-key certificate of an entity by digital signing (see clause 6.1) a collection of information, including

its distinguished name, the entity's distinguished name, a validity period, the value of a public-key algorithm and public

key, as well as an optional additional information like for the permitted usage of the user's public key. The following

ASN.1 data type specifies the syntax of public-key certificates:

Certificate ::= SIGNED{TBSCertificate}

TBSCertificate ::= SEQUENCE {

 version [0] Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

 ...,

 [[2: -- if present, version shall be v2 or v3

 subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL]],

 [[3: -- if present, version shall be v2 or v3

 extensions [3] Extensions OPTIONAL]]

 -- If present, version shall be v3]]

}

ISO/IEC 9594-8:2017 (E)

14 Rec. ITU-T X.509 (10/2016)

Version ::= INTEGER {v1(0), v2(1), v3(2)}

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time,

 ... }

SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier{{SupportedAlgorithms}},

 subjectPublicKey BIT STRING,

 ... }

Time ::= CHOICE {

 utcTime UTCTime,

 generalizedTime GeneralizedTime }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

 extnId EXTENSION.&id({ExtensionSet}),

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING

 (CONTAINING EXTENSION.&ExtnType({ExtensionSet}{@extnId})

 ENCODED BY der),

 ... }

der OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

ExtensionSet EXTENSION ::= {...}

Before a value of Time is used in any comparison operation, e.g., as part of a matching rule in a search, and if the syntax

of Time has been chosen as the UTCTime type, the value of the two digit year component shall be rationalized into a four

digit year value as follows:

– If the 2-digit value is 00 through to 49 inclusive, the value shall have 2000 added to it.

– If the 2-digit value is 50 through to 99 inclusive, the value shall have 1900 added to it.

NOTE 1 – The use of GeneralizedTime may prevent interworking with implementations unaware of the possibility of choosing

either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains in which public-key certificates

defined in this Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shall

UTCTime be used for representing dates beyond 2049.

The TBSCertificate data type is the unsigned public-key certificate and is referred to as a to-be-signed public-key

certificate. It shall be encoded using the distinguished encoding rules (DER).

NOTE 2 – Some specifications may specify that a public-key certificate may be transmitted in a non-DER encoding, i.e., in basic

encoding rules (BER) encoding without the DER restrictions, but the signature then has to be generated over a DER encoded value

of the TBSCertificate data type. An otherwise valid signature will then fail the signature validation if the relying party does

not decode the public-key certificate and then DER encode it before validating the signature. It is a local policy decision whether in

that case to fail the validation or to re-encode the public-key certificate.

The version component shall hold the version of the encoded public-key certificate. If the extensions component is

present in the public-key certificate, version shall be v3. If the issuerUniqueIdentifier or

subjectUniqueIdentifier component is present version shall be v2 or v3.

The serialNumber component shall hold an integer assigned by the CA to the public-key certificate. The value of

serialNumber shall be unique for each public-key certificate issued by a given CA (i.e., the issuer name and serial

number together identify a unique public-key certificate).

NOTE 3 – Serial numbers do not have to be in numeric order.

The signature component shall contain the identifier for the signature algorithm used by the CA in signing the public-

key certificate (e.g., sha256WithRSAEncryption, sha384WithRSAEncryption, dsa-with-sha256, ecdsa-with-

SHA256, etc.). It shall be the same value as used in the algorithmIdentifier component of the SIGNATURE data type

when signing the public-key certificate.

NOTE 4 – By including this component, the signature algorithm is protected by the signature.

The issuer component shall hold the distinguished name of the CA that issued the public-key certificate. It shall hold a

non-empty distinguished name.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 15

The validity component shall hold the time interval during which the CA warrants that it will maintain information

about the status of this public-key certificate.

The subject component shall identify the entity associated with the public-key found in the subjectPublicKey

component of the subjectPublicKeyInfo component. If the public-key certificate is an end-entity public-key certificate

(see clause 7.4), then the distinguished name may be an empty sequence providing that the subjectAltName extension

is present and is flagged as critical (see clause 9.3.2.1). Otherwise, it shall be a non-empty distinguished name.

The subjectPublicKeyInfo component consists of two subcomponents:

– the algorithm subcomponent shall hold the algorithm which this public key is an instance of

(e.g., rsaEncryption, dhpublicnumber, id-dsa, id-ecPublicKey, etc.); and

– the subjectPublicKey subcomponent shall hold the public key being certified.

The issuerUniqueIdentifier component is used uniquely to identify an issuer in case of name reuse (deprecated).

The subjectUniqueIdentifier component is used uniquely to identify a subject in case of name reuse (deprecated).

NOTE 5 – The use of issuerUniqueIdentifier and the subjectUniqueIdentifier is deprecated. These components were

added because at one time there was some fear of the reuse of distinguished names. IETF RFC 5280 forbids the use of these

components.

The extensions component, when present, shall hold one or more extensions as defined in clause 7.3.

An entity may obtain one or more public-key certificates from one or more CAs.

7.3 Public-key certificate extensions

The extensions component of a public-key certificate allows for the addition of extensions to the structure without

modification to the basic ASN.1 data type. An extension consists of an extension identifier, a criticality flag, and an

encoding of a data value of an ASN.1 type associated with the identified extension. For those extensions where ordering

of individual extensions within the SEQUENCE OF is significant, the specification of those individual extensions shall

include the rules for the significance of the order therein. When a relying party processing a public-key certificate does not

recognize an extension and the criticality flag is FALSE, it may ignore that extension. If the criticality flag is TRUE,

unrecognized extensions shall cause the structure to be considered invalid, i.e., in a public-key certificate, an unrecognized

critical extension shall cause validation of a signature using that public-key certificate to fail. When a relying party

recognizes and is able to fully process an extension, then the relying party shall process the extension regardless of the

value of the criticality flag. When a relying party recognizes and is able to partially process an extension for which the

criticality flag is TRUE, then its behaviour in the presence of unrecognized elements is extension specific and may be

documented in each extension. However, the default behaviour, when not specified specifically for an extension, is to treat

the entire extension as unrecognized. If unrecognized elements appear within the extension, and the extension is not flagged

as critical, those unrecognized elements shall be ignored according to the rules of extensibility documented in clause 12.2.2

in Rec. ITU-T X.519 | ISO/IEC 9594-5.

Any extension that is flagged as non-critical will cause inconsistent behaviour among relying parties that will process the

extension and relying parties that do not recognize the extension and will ignore it. The same may be true for extensions

that are flagged as critical, between relying parties that can fully process the extension and those that can partially process

the extension, depending upon the extension.

A CA issuing a public-key certificate has three options with respect to an extension:

a) it can exclude the extension from the public-key certificate;

b) it can include the extension and flag it as non-critical;

c) it can include the extension and flag it as critical.

A relying party has three possible actions to take with respect to an extension:

a) if the extension is unrecognized and is flagged as non-critical, the relying party shall ignore the extension

and accept the public-key certificate (all other things being equal);

b) if the extension is unrecognized and flagged as critical, the relying party shall consider the public-key

certificate as invalid;

c) if the extension is recognized, the relying party shall process the extension and accept or consider the public-

key certificate invalid, depending on the content of the extension and the conditions under which processing

is occurring (e.g., the current values of the path processing variables).

Some extensions shall always be flagged as critical. In these cases, a relying party that understands the extension processes

it; the acceptance/rejection of the public-key certificate is dependent (at least in part) on the content of the extension. A

relying party that does not understand the extension shall consider the public-key certificate as invalid.

ISO/IEC 9594-8:2017 (E)

16 Rec. ITU-T X.509 (10/2016)

Some extensions shall always be flagged as non-critical. In these cases, a relying party that understands the extension shall

process it and acceptance/rejection of the public-key certificate is dependent (at least in part) on the content of the

extension. A relying party that does not understand the extension accepts the public-key certificate (unless factors other

than this extension cause it to be rejected).

Some extensions may be flagged either as critical or as non-critical. In these cases, a relying party that understands the

extension processes it: the acceptance/rejection of the public-key certificate is dependent (at least in part) on the content

of the extension, regardless of the criticality flag. A relying party that does not understand the extension accepts the public-

key certificate if the extension is flagged as non-critical (unless factors other than this extension cause it to be rejected)

and rejects the public-key certificate if the extension is flagged as critical.

When a CA considers including an extension in a public-key certificate it does so with the expectation that its intent will

be adhered to wherever possible. If it is necessary that the content of the extension be considered prior to any reliance on

the public-key certificate, a CA shall flag the extension as critical. This is done with the realization that any relying party

that does not process the extension will reject the public-key certificate (probably limiting the set of applications that can

verify the public-key certificate). The CA may mark certain extensions non-critical to achieve backward compatibility with

validation applications that cannot process the extensions. Where the need for backward compatibility and interoperability

with validation applications incapable of processing the extensions is more vital than the ability of the CA to reinforce the

extensions, then these optionally critical extensions would be flagged as non-critical. It is most likely that CAs would set

optionally critical extensions as non-critical during a transition period while the verifiers' public-key certificate processing

applications are upgraded to ones that can process the extensions.

Specific extensions may be defined in ITU-T Recommendations | International Standards or by any organization which

has a need. The object identifier which identifies an extension shall be defined in accordance with Rec. ITU-T X.660 |

ISO/IEC 9834-1. Some extensions for public-key certificates are defined in clause 9 of this Specification. Some extensions

related to privilege information as defined in clause 17 may also be included in public-key certificates.

The following information object class is used to define specific extensions.

EXTENSION ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &ExtnType }

WITH SYNTAX {

 SYNTAX &ExtnType

 IDENTIFIED BY &id }

7.4 Types of public-key certificates

There are two primary types of public-key certificates, end-entity public-key certificates and CA certificates.

An end-entity public-key certificate is a public-key certificate issued by a CA to an entity acting as a PKI end entity that

cannot use the corresponding private key to sign other public-key certificates.

A CA certificate is a public-key certificate issued by a CA to an entity that is also acting as a CA and therefore is capable

of issuing and signing public-key certificates. A CA certificate shall include the basicConstraints extension with the

cA components set to TRUE (see clause 9.4.2.1).

CA certificates can themselves be categorized by the following types:

– Self-issued certificate – This is a CA certificate where the issuer and the subject are the same CA. A CA

might use self-issued certificates, for example, during a key rollover operation to provide trust from the old

key to the new key.

– Self-signed certificate – This is a special case of self-issued certificates where the private key used by the

CA to sign the certificate corresponds to the public key that is certified within the CA certificate. A CA

might use a self-signed certificate, for example, to advertise their public key or other information about their

operations.

– Cross-certificate – This is a CA certificate where the issuer and the subject are different CAs. CAs issue

certificates to other CAs either as a mechanism to authorize the subject CA's existence (e.g., in a strict

hierarchy) or to recognize the existence of the subject CA (e.g., in a distributed trust model). The

cross-certificate structure is used for both of these.

7.5 Trust anchor

An entity is a trust anchor for a particular relying party for one or more purposes, typically including public-key certificate

validation. A trust anchor is identified by trust anchor information. Trust anchor information includes a public key and

some associated data. This trust anchor information is configured into the relying party in a trust anchor store. A relying

party may have configured information about multiple trust anchors into one or more trust anchor stores.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 17

A trust anchor may act as a CA that issues public-key certificates and certification revocation lists (CRLs) (see clause

7.10). The relying party may then use the trust anchor information for public-key certificate and CRL validation.

A trust anchor may also act as a PKI end entity by signing other types of information such as software packages, time

stamps, responses to online certificate status protocol (OCSP) requests (see IETF RFC 6960), AVLs, etc.

A CA may be a trust anchor for some entities with respect to particular public-key certificates, but may otherwise be an

ordinary CA.

NOTE 1 – As an example, entities within a company may trust all the public-key certificates issued by the company CA. This CA

is then the trust anchor for these local relying parties with respect to local issued public-key certificates. However, it might not be a

trust anchor with respect to public-key certificates issued outside the company. Likewise, relying parties outside the company may

not consider the company CA as the trust anchor for any public-key certificates.

NOTE 2 – The term trust anchor is seen as synonymous with the term root-CA. In a strict hierarchy, the CA at the top of the hierarchy

may be the root CA and it may also be a trust anchor. However, in more complex environments, it may not be possible to identify a

root CA. Even when it is possible to identify a root CA, a relying party may not necessarily consider it a trust anchor. An intermediate

CA may instead take that role. The term root CA is confusing and therefore not used by this Specification.

IETF RFC 5914 defines trust anchor information as a choice among three alternatives:

TrustAnchorChoice ::= CHOICE {

 certificate Certificate,

 tbsCert [1] EXPLICIT TBSCertificate,

 taInfo [2] EXPLICIT TrustAnchorInfo }

The certificate alternative specifies a public-key certificate that can be either a self-signed certificate or a public-key

certificate.

The tbsCert alternative specifies an unsigned public-key certificate as defined in clause 7.2.

NOTE 3 – This alternative is deprecated by this Specification and therefore not considered further.

The taInfo alternative specifies a special trust anchor information format defined by IETF RFC 5914.

If the trust anchor information is not used for signing public-key certificates, it shall be an end-entity public-key certificate.

7.6 Entity relationship

There may be several CAs between the trust anchor recognized by the relying party and an entity acting as an end entity.

Each CA has issued one or more cross-certificates for the next CA on the path between the trust anchor and the end entity.

The CA that issues a cross-certificate to another CA takes the role of intermediate CA. The CA that is the subject for a

cross-certificate takes the role of subject CA. This is illustrated in Figure 2. The same CA may take both the roles of an

intermediate CA and a subject CA.

X.509(12)_F02

Trust anchor for relying party

Intermediate
CA

Subject
CA

CA for
end-entity

PKI

End-entity

Relying
party

Certifies

Chain of CAs

Trust anchor certifies CA

Trust relationship

Figure 2 – Entity relationships

In some situations, conflicting or overlapping requirements for constraints, such as name constraints, may require a CA to

issue more than one cross-certificate to another CA. In this case, multiple, different paths of public-certificate certificates

are established between the trust anchor and the entity.

ISO/IEC 9594-8:2017 (E)

18 Rec. ITU-T X.509 (10/2016)

7.7 Certification path

Before a public-key certificate can be securely used by a relying party, it shall be validated. In order to validate such a

public-key certificate, a chain of public-key certificates, called a certification path, shall be established between the public-

key certificate signed by a trust anchor recognized by the relying party and the public-key certificate to be validated. Every

public-key certificate within that path shall be checked. A certification path is thus an ordered list of public-key certificates

starting with a public-key certificate signed by the trust anchor, and ending with the end-entity public-key certificate to be

validated. All intermediate public-key certificates, if any, are CA certificates in which the subject of the preceding public-

key certificate is the issuer of the following public-key certificate.

Each public-key certificate in a certification path shall be unique. A path that contains the same public-key certificate

multiple times is not a valid certification path.

The issuer and subject components of each public-key certificate are used, in part, to identify a valid path. For each

pair of adjacent public-key certificates in a valid certification path, the value of the subject component in one public-key

certificate shall match the value of the issuer component in the subsequent public-key certificate. In addition, the value

of the issuer component in the public-key certificate issued by the trust anchor shall match the distinguished name of the

trust anchor. Only the names in these components are used when checking the validity of a certification path. Names in

public-key certificate extensions are not used for this purpose. The distinguishedNameMatch matching rule, defined

in clause 13.5.2 of Rec. ITU-T X.501 | ISO/IEC 9594-2, shall be used to compare the distinguished name in the subject

component of one public-key certificate with the distinguished name in the issuer component of the subsequent public-

key certificate.

Figure 3 illustrates the situation where a relying party needs to check the validity of an end-entity public-key certificate

and the relying party is able to construct a certification path between one of its trust anchors and the end-entity public-key

certificate.

X.509(12)_F03

Trust anchor information

PKI

Relying
party

CA-certificates

End-entity
public-key
certificate

Certification path

Issued by trust anchor

CA signing

Chain of CA-certificates

Trust anchor signing

Trust relationship

Figure 3 – Certification path

Trust suffers dilution as certification paths grow in length. The basicConstraints extension (see clause 9.4.2.1) allows

restrictions to be put onto the length of the path. The validation of a public-key certificate may be affected by extensions

in the chain of a public-key certificate, such as the certificatePolicies extension (see clause 9.2.2.6) and

nameConstraints (see clause 9.4.2.2). It is the responsibility of the relying party to check that the restrictions are

observed.

The ASN.1 data type PkiPath is used to represent a certification path. Within the sequence, the order of public-key

certificates is such that the subject of the first public-key certificate is the issuer of the second public-key certificate, etc.

PkiPath ::= SEQUENCE OF Certificate

Each public-key certificate in a PKI path shall be unique.

The following data types are deprecated and should not be referenced by new specifications. They are retained here for

backward compatibility not to invalidate existing specifications referencing these types.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 19

NOTE – The CertificationPath data type was defined by the first edition of this Specification before the concept of

certification path was fully developed. The order of elements in a CertificationPath instance is the opposite of that of a

certification path. This data type is used, as an example, by the directory protocols for the support of strong authentication and digital

signature (see Rec. ITU-T X.511 | ISO/IEC 9594-3). It is recommended that new applications use the PkiPath data type.

Certificates ::= SEQUENCE {

 userCertificate Certificate,

 certificationPath ForwardCertificationPath OPTIONAL,

 ... }

The following ASN.1 data type can be used to represent the forward certification path. This component contains the

certification path that can point back to the originator.

ForwardCertificationPath ::= SEQUENCE OF CrossCertificates

CrossCertificates ::= SET OF Certificate

CertificationPath ::= SEQUENCE {

 userCertificate Certificate,

 theCACertificates SEQUENCE SIZE (1..MAX) OF CertificatePair OPTIONAL,

 ... }

The userCertificate component shall hold the end-entity public-key certificate.

The theCACertificates component may hold an element for each CA from the end entity up to and including the CA

which has been certified by the trust anchor. If the end-entity public-key certificate has been issued directly by the trust

anchor, this component shall be absent.

7.8 Generation of key pairs

The overall security management policy of an implementation shall define the lifecycle of key pairs, and is, thus, outside

the scope of this Specification. However, it is vital to the overall security that all private keys remain known only to the

entity (subject) to whom they belong.

Key data is not easy for a human user to remember, so a suitable method for storing it in a convenient transportable manner

shall be employed. One possible mechanism when an entity is associated with a human user would be to use a "Smart

Card". This would hold the private and (optionally) public keys of the user, the user's public-key certificate, and a copy of

the CA's public key. The use of this card shall additionally be secured by, e.g., at least the use of a personal identification

number (PIN), increasing the security of the system by requiring the user to possess the card and to know how to access it.

In other environments, e.g., in a machine-to-machine environment (M2M), a hardware security module (HSM) may be

used for storing critical data. The exact method chosen for storing such data, however, is beyond the scope of this

Specification.

Three ways in which a key pair of an entity may be produced are:

a) The entity generates its own key pair. This method has the advantage that the private key of an entity is

never released to another entity, but requires a certain level of competence by the entity.

b) The key pair is generated by a third party. The third party shall release the private key to the entity in a

physically secure manner, and then actively destroy all information relating to the creation of the key pair

plus the keys themselves. Suitable physical security measures shall be employed to ensure that the third

party and the data operations are free from tampering.

c) The key pair is generated by the CA. This is a special case of b), and the considerations there apply.

NOTE – The CA already exhibits trusted functionality with respect to the entity, and shall be protected by the necessary physical

security measures. This method has the advantage of not requiring secure data transfer to the CA for certification.

The cryptosystem in use imposes particular (technical) constraints on key generation.

7.9 Public-key certificate creation

A public-key certificate associates the public key and the unique name of the subject it describes. Thus:

a) a CA shall be satisfied of the identity of a subject before creating a public-key certificate for it;

b) a CA shall not issue public-key certificates for two different subjects with the same subject name.

It is important that the transfer of information to the CA is not compromised, and suitable physical security measures shall

be taken. In this regard:

ISO/IEC 9594-8:2017 (E)

20 Rec. ITU-T X.509 (10/2016)

a) It would be a serious breach of security if the CA issued a public-key certificate for a subject with a public

key that had been tampered with.

b) If the means of generation of key pairs of clause 7.8, item b) or item c) is employed, the subject's private

key shall be transferred to the entity in a secure manner.

c) If the means of generation of key pairs of clause 7.8, item a) or item b) is employed, the subject may use

different methods (online or offline) to communicate its public key to the CA in a secure manner. Online

methods may provide some additional flexibility for remote operations performed between the entity and

the CA.

A public-key certificate is a publicly available piece of information, and no specific security measures need to be employed

with respect to its transmission e.g., to a directory server (directory system agent) according to the Directory Specifications

or to the LDAP specification. As it is produced by an offline CA on behalf of a subject who shall be given a copy of it, the

subject needs only store this information in its directory entry on a subsequent directory access. Alternatively, the CA

could lodge the public-key certificate for the subject, in which case the CA shall be given suitable access rights to the

entity's directory entry.

7.10 Certificate revocation list

7.10.1 Certificate revocation list principles

The CA that issues public-key certificates also has the responsibility to indicate the validity of the public-key certificates

that it issues. Generally, public-key certificates are subject to possible subsequent revocation. This revocation and a

notification of the revocation may be done directly by the same CA that issued the public-key certificate, or indirectly by

another authority duly authorized by the CA that issued the public-key certificate. A CA that issues public-key certificates

is required to state, possibly through a published statement of their practices, through the public-key certificates themselves,

or through some other identified means, whether:

– the public-key certificates cannot be revoked;

– the public-key certificates may be revoked by the same CA directly; or

– the issuing CA authorizes a different entity to perform revocation.

CAs that do revoke public-key certificates are required to state, through similar means, what mechanism(s) can be used by

relying parties to obtain revocation status information about public-key certificates issued by that CA. This Specification

defines a certificate revocation list (CRL) mechanism and validation and authorization list (AVL) mechanism, but does

not preclude the use of alternative mechanisms. One such alternative mechanism is the online certificate status protocol

(OCSP) specified in IETF RFC 6960. Using this protocol, a relying party (client) requests the revocation status of a public-

key certificate from an OCSP server. The server may use CRLs, or other mechanisms to check the status of the public-key

certificate and respond to the client accordingly. If OCSP can be used by relying parties to check the status of a public-key

certificate, IETF RFC 5280 contains a certificate extension (Authority Info Access) that would be included in such public-

key certificates and would provide sufficient information to access an appropriate OCSP server. Relying parties check

revocation status information, as appropriate, for all public-key certificates considered during the path processing

procedure described in clause 12 to validate a public-key certificate.

Only a CA that is authorized to issue CRLs may choose to delegate that authority to another entity. If this delegation is

done, it shall be verifiable at the time of public-key certificate/CRL verification. The cRLDistributionPoints

extension (see clause 9.6.2.1) can be used for this purpose. The cRLIssuer component of this extension would be

populated with the name(s) of any entities, other than the CA itself, that have been authorized to issue CRLs concerning

the revocation status of the public-key certificate in question.

Public-key certificates shall have a lifetime associated with them, at the end of which they expire. In order to provide

continuity of service, the authority shall ensure timely availability of replacement public-key certificates to supersede

expired/expiring public-key certificates. Revocation notice date is the date/time that a revocation notice for a public-key

certificate first appears on a CRL, regardless of whether it is a base or dCRL. In the CRL, revocation notice date is the

value contained in the thisUpdate component. Revocation date is the date/time the CA actually revoked the public-key

certificate, which could be different from the first time it appears on a CRL. In the CRL, revocation date is the value

contained in the revocationDate component. Invalidity date is the date/time at which it is known or suspected that the

private key was compromised or that the public-key certificate should otherwise be considered invalid. This date may be

earlier that the revocation date. In the CRL, invalidity date is the value contained in the invalidityDate entry extension.

Two related points are:

– Validity of public-key certificates may be designed so that each becomes valid at the time of expiry of its

predecessor, or an overlap may be allowed. The latter prevents the CA from having to install and distribute

a large number of public-key certificates that may run out at the same expiration date.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 21

– Expired public-key certificates will normally be removed from a directory. It is a matter for the security

policy and responsibility of the CA to keep old public-key certificates for a period if a non-repudiation of

data service is provided.

Public-key certificates may be revoked prior to their expiration time, e.g., if the entity's private key is assumed to be

compromised, the entity is no longer to be certified by the CA, or if the CA's certificate is assumed to be compromised.

The revocation of an end-entity public-key certificate or a CA certificate shall be made known by the issuing CA, and a

new public-key certificate shall be made available, if appropriate. The CA may then inform the holder of the public-key

certificate about its revocation by an offline procedure.

A CA that issues and subsequently revokes public-key certificates:

a) may be required to maintain an audit record of its revocation events for all public-key certificate types issued

by that CA:

b) shall provide revocation status information to relying parties using CRLs, online certificate status protocol

(OCSP), AVLs or another mechanism for the publication of revocation status information;

c) if using CRLs, it shall maintain and publish CRLs even if the lists of revoked public-key certificates are

empty;

d) if using only partitioned CRLs, it shall issue a full set of partitioned CRLs covering the complete set of

public-key certificates whose revocation status will be reported using the CRL mechanism. Thus, the

complete set of partitioned CRLs shall be equivalent to a full CRL for the same set of public-key certificates,

if the CRL issuer was not using partitioned CRLs.

Relying parties may use a number of mechanisms to locate revocation status information provided by an authority. For

example, there may be a pointer in the public-key certificate itself that directs the relying party to a location where

revocation information is provided. There may be a pointer in a revocation list that redirects the relying party to a different

location. The relying party may locate revocation information in a repository (e.g., a directory) or through other means

outside the scope of this Specification (e.g., locally configured).

If revocation lists are published in a directory, they are held within directory entries as attributes of the following types:

– certificateRevocationList;

– authorityRevocationList; and

– deltaRevocationList.

7.10.2 Certificate revocation list syntax

The following ASN.1 data type specifies the syntax of a CRL.

CertificateList ::= SIGNED{CertificateListContent}

CertificateListContent ::= SEQUENCE {

 version Version OPTIONAL,

 -- if present, version shall be v2

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 issuer Name,

 thisUpdate Time,

 nextUpdate Time OPTIONAL,

 revokedCertificates SEQUENCE OF SEQUENCE {

 serialNumber CertificateSerialNumber,

 revocationDate Time,

 crlEntryExtensions Extensions OPTIONAL,

 ...} OPTIONAL,

 ...,

 ...,

 crlExtensions [0] Extensions OPTIONAL }

The version component shall indicate the version of the encoded revocation list. If the extensions component is present

in the revocation list, the version shall be v2. If the extensions component is not present, the version shall either be

absent or be present as v2.

NOTE 1 – In the first and the second editions of this specification, the version component was always absent. In the third, fourth,

fifth and sixth editions of this specification, the version shall be v2, if the extensions component flagged as critical is present in the

revocation list. Or the version may either be absent or present as v2, if no extensions component flagged as critical is present in the

revocation list.

ISO/IEC 9594-8:2017 (E)

22 Rec. ITU-T X.509 (10/2016)

The signature component shall contain the identifier for the algorithm used by the CA to sign the revocation list. It shall

be the same value as used in the algorithmIdentifier component of the SIGNATURE data type when signing the

revocation list.

NOTE 2 – By including this component, the signature algorithm is protected by the signature.

The issuer component shall identify the entity that signed and issued the revocation list.

The thisUpdate component shall indicate the date/time at which this revocation list was issued.

The nextUpdate component, when present, shall indicate the date/time by which the next revocation list in this series

will be issued. The next revocation list could be issued before the indicated date, but it shall not be issued any later than

the indicated time.

The revokedCertificates component shall identify public-key certificates that have been revoked. The revoked

public-key certificates are identified by their serial numbers. If none of the public-key certificates covered by this CRL has

been revoked, it is strongly recommended that the revokedCertificates parameter be omitted from the CRL, rather

than being included with an empty SEQUENCE.

The crlExtensions component, when present, shall contain one or more CRL extensions.

NOTE 3 – The checking of the entire list of public-key certificates is a local matter. The list shall not be assumed to be in any

particular order unless specific ordering rules have been specified by the issuing CA, e.g., in that CA's policy.

NOTE 4 – If a non-repudiation of data service is dependent on keys provided by the CA, the service should ensure that all relevant

keys of the CA (revoked or expired) and the time stamped revocation lists are archived and certified by a current authority.

When an implementation processing a CRL encounters the serial number of the public-key certificate of interest in a CRL

entry, but does not recognize a critical extension in the crlEntryExtensions component from that CRL entry, that CRL

cannot be used to determine the status of the public-key certificate. When an implementation does not recognize a critical

extension in the crlExtensions component, that CRL cannot be used to determine the status of the public-key certificate,

regardless of whether the serial number of the public-key certificate of interest appears in that CRL or not.

NOTE 5 – In these cases, local policy may dictate actions in addition to and/or stronger than those stated in this Specification, such

as seeking revocation status information from other sources.

Public-key certificates for which revocation status cannot be determined should not be considered valid public-key

certificates.

If an extension affects the treatment of the list (e.g., multiple CRLs need to be scanned to examine the entire list of revoked

public-key certificates, or an entry may represent a range of public-key certificates), then either that extension or a related

extension shall be indicated as critical in the crlExtensions component. Therefore, a critical extension in the

crlEntryExtensions component of an entry shall affect only the public-key certificate specified in that entry, unless

there is a related critical extension in the crlExtensions component that advertises a special treatment for it. The only

example of this situation defined in this Directory Specification is the certificateIssuer CRL entry extension and the

related issuingDistributionPoint CRL extension when the indirectCRL Boolean from that extension is set to

TRUE.

NOTE 6 – Extensions for CRLs are defined in clause 9 of this Specification.

If unknown components appear within an extension, and the extension is not flagged as critical, those unknown components

shall be ignored according to the rules of extensibility documented in clause 12.2.2 of Rec. ITU-T X.519 | ISO/IEC 9594-

5.

7.11 Uniqueness of names

A PKI requires that CAs are uniquely and unambiguously named. If CRL issuing authorities are not uniquely named, it

may result in incorrect use of revocation information.

It is outside the scope of this Specification to specify procedures that ensure unique and unambiguous names for CA and

CRL issuing authorities.

7.12 Indirect CRLs

7.12.1 Introduction

The only mechanism defined for CRL delegation by this Specification (and IETF RFC 5280) is for the public-key

certificate issuing CA to include a cRLDistributionPoint extension in a public-key certificate and include the

cRLIssuer component in this extension. The public-key certificate issuing CA will have do this for each public-key

certificate whose revocation status the CA wishes to delegate via CRL to a CRL issuing authority.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 23

There is no mechanism (i.e., public-key certificate or CRL extension) for a public-key certificate issuing CA to delegate

CRL issuance for all its public-key certificate to another authority using a mechanism (similar to the delegated OCSP

Responder public-key certificate as specified in IETF RFC 6960).

For example, if a CA has issued a large number of public-key certificates and its wishes to delegate CRL issuance for all

of these public-key certificate to a CRL issuing authority, the CA shall assert the cRLIssuer component in the

cRLDistributionPoint extension of each of the issued public-key certificates. If the CA wishes to delegate issuance

only for some of the issued public-key certificates, the CA shall assert the cRLIssuer component in the

cRLDistributionPoint extension of the delegated public-key certificates and shall not assert the cRLIssuer

component in the remaining public-key certificates that contain the cRLDistributionPoint extension.

The relationship of CRL delegation may be as follows:

a) A CA can delegate issuance of CRL for a given public-key certificate to multiple CRL issuance authorities.

The CA might delegate to multiple authorities for the sake of redundancy by asserting multiple CRL issuers

in a single distribution point in the cRLDistributionPoint extension or by asserting multiple distribution

points in the cRLDistributionPoint extension with each distribution point containing one or more CRL

issuer(s). Another example is a CA delegating CRL issuance to different authorities for different reason

codes. In this case, the CRL Distribution Point extension must contain two or more distribution points with

each distribution point containing applicable reason code(s) and CRL Issuer(s).

b) A CA can delegate issuance of CRL for different batch of public-key certificates to different CRL issuance

authorities. The CA could create these batches stochastically or using a deterministic algorithm such as

based on type of public-key certificate, reason code, issuance time, expiration time, subject organization,

etc.

c) A CRL issuance authority can be authoritative for revocation information for public-key certificates issued

by multiple CAs.

7.12.2 Indirect CRL contents

If a CRL issuance authority is a CA, the CRLs it issues are authoritative for the public-key certificates issued by the CRL

issuance authority as the CA and the public-key certificates whose revocation status is delegated to the CRL issuance

authority. Thus, a CRL issued by a CRL issuance authority which has been delegated CRL issuance by x CAs, is

authoritative for x + 1 or x CAs depending on whether the CRL issuance authority is a CA or not.

The CRL issued by the CRL issuance authority can be partitioned like any other CRLs using the distributionPoint

component of the cRLDistributionPoint extension (see clause 9.6.2.1). Furthermore, the CRL issuance authority may

or may not choose to partition the CRL based on the public-key certificate issuer. If it chooses the former, it creates a

partitioned CRL for each CA. But, the partitioned CRL discussion is outside the scope of this Specification.

Since the iCRL is authoritative for the CA(s) other that the CRL issuer, serial number alone in the CRL entry does not

uniquely identify a public-key certificate that has been revoked. You also need to identify the CA that issued the public-

key certificate placed on the iCRL. This is achieved by adding the certificateIssuer CRL entry extension (see clause

9.6.2.3). This extension shall always be flagged as critical to ensure that the relying parties process it and associate the

CRL entry with the appropriate CA.

If each entry on a CRL contained the certificateIssuer extension (which is a directory distinguished name), it would

make the CRL size large. Thus, in order to reduce the CRL size, the iCRL issuing authority should sort the CRL entries by

issuing CAs. Using this approach, only the first public-key certificate appearing on the CRL for a given CA needs to

contain the certificateIssuer extension. All subsequent entries are assumed to be for the same public-key certificate

issuing CA until another certificateIssuer CRL entry extension is encountered. To further reduce the size of the

CRL, if the iCRL issuing authority is a CA, it should contain its revoked public-key certificate first, obviating the need for

certificateIssuer extension for any of its certificates.

NOTE 1 – The following example illustrates the use of iCRLs. In the example, there is a single CRL issuing authority that issues

revocation lists for multiple CAs. The issuingDistributionPoint extension (see clause 9.6.2.2) is present in that CRL and

is flagged as critical. The indirectCRL component of this extension is set to TRUE. If the CRL issuing authority name is the

same as that of the CAs it serves, entries should then be placed first on the CRL without the certificateIssuer CRL entry

extension. Entries for other CAs are kept together and the first CRL entry for a particular CA includes the certificateIssuer

CRL entry extension flagged as critical.

NOTE 2 – A relying party needs to develop and validate the certification path for the iCRL issuance authority. This is no different

for building a certification path for a regular CRL with one difference. In the case of a regular CRL, there is a probability that the

CRL is signed using the same key as the public-key certificate, obviating the need for building a CRL certification path. However,

for the indirect CRL, the CRL certification path will always differ from the certification path for the public-key certificate whose

revocation status is being checked.

ISO/IEC 9594-8:2017 (E)

24 Rec. ITU-T X.509 (10/2016)

7.13 Repudiation of a digital signing

Participants in an event may subsequently decide to repudiate anything that they digitally signed in that event. For example,

one can dispute one's participation in a key establishment or being the originator of a signed email message as easily as

one can dispute one's signing of a document with the intent to be bound to the content of that document. The repudiation

may not be successful. The Non-repudiation Framework, Rec. ITU-T X.813 | ISO/IEC 10181-4, describes a dispute

resolution process as follows:

1) evidence generation;

2) evidence transfer, storage and retrieval;

3) evidence verification; and

4) dispute resolution.

The generated evidence may include, but is not limited to:

– audit records pertinent to the event and an assertion of intent;

– statements made by third party notaries;

– policy statements;

– digitally signed information, including audit records and notary statements;

– timestamps of the digitally signed information;

– the public-key certificates supporting the digital signature;

– the appropriate revocation information published and available at the time of the disputed event; and,

– any public-key certificate revocations subsequent to the time of the event which indicate a key compromise

occurred before the time of the event.

The integrity of stored data that might be presented as evidence may be maintained in a variety of ways, e.g., access control,

storage of hashes by a trusted third party, digital signature. It may also be necessary periodically to strengthen the protection

of that stored data to counteract improvements in computer processing and/or crypto-analysis.

NOTE – Neither the type and amount of evidence generated nor the level of integrity is specified by this Specification. However, it

is expected that the level of effort will be commensurate with the risk involved.

Evidence verification may require the revalidation of the digital signatures of data, e.g., messages, documents, certificates,

CRLs, and timestamps that were used in the initial validation process. The fact that a public-key certificate has expired

shall not preclude its use for revalidating signatures created during the validity period of that public-key certificate. A

public-key certificate that has been revoked may be used if it can be determined that the public-key certificate was valid at

the time of the disputed event.

Even if all the digital evidence described above is considered technically valid, other conditions, e.g., the intent,

understanding or competence of the signer, may allow the signer successfully to repudiate it.

8 Trust models

Procedures for determining the trustworthiness of a public-key certificate for a particular transaction are not defined here.

In the three cornered trust model described below, the relying party acts on its own behalf to determine both the validity

and trustworthiness of a public-key certificate. In the four-cornered trust model, the relying party engages the services of

a trust broker to determine the trustworthiness of a public-key certificate on its behalf.

8.1 Three-cornered trust model

The three-cornered trust model applies to an environment where the entity to which a public-key certificate has been issued

(the subject) and the relying party both have some relationship with the CAs within a closed environment.

This is illustrated by the simplified example shown in Figure 4, where the subject of the public-key certificate and the

relying party are associated with the same CA. In this environment, the trustworthiness of the issuing CA is relatively easy

to establish.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 25

Figure 4 – The three cornered trust model

In this three cornered trust model, the public-key certificate subject trusts the CA and has asked it to issue a public-key

certificate. Upon positive verification of the identity of the public-key certificate subject, the CA issues it with a public

key certificate containing the subject’s identifier. The relying party, being a public-key certificate subject of a CA within

the same closed environment, also knows the trustworthiness of the issuing CA. Consequently the relying party can

determine whether to trust the public-key certificate subject for the current transaction.

8.2 Four cornered trust model

The four cornered trust model may be used in open public-key infrastructures, where the relying party does not have a

close relationship with the CA that issued the public-key certificate under validation. See Figure 5.

Figure 5 – The four cornered trust model

In the four cornered model, the relying party trusts an entity called the trust broker. The relying party is still responsible

for validating public-key certificates and public-key certificate chains. However, the trust broker evaluates the

trustworthiness of the CA for all intended transactions and relays this to the relying party so that it can decide about the

trustworthiness of the public-key certificate subject for the current transaction. If the relying party's decision is positive,

this means that the relying party trusts the CA and its public-key certificate for this transaction. The CA trusts the identity

of the public-key certificate subject. Hence the relying party can indirectly trust the public-key certificate of the subject for

this particular transaction.

ISO/IEC 9594-8:2017 (E)

26 Rec. ITU-T X.509 (10/2016)

9 Public-key certificate and CRL extensions

Some extensions defined in this clause are for use with public-key certificates. Other extensions are defined for CRLs

(including CARLs and EPRLs). Extensions for use with attribute certificates and ACRLs (including AARLs and EARLs)

are defined in clause 17.

This clause specifies extensions in the following areas:

a) Key and policy information: These public-key certificate and CRL extensions convey additional

information about the keys involved, including key identifiers for subject and issuer keys, indicators of

intended or restricted key usage, and indicators of a certificate policy.

b) Subject and issuer attributes: These public-key certificate and CRL extensions support alternative names,

of various name forms, for a public-key certificate subject, a public-key certificate issuer, or a CRL issuer.

These extensions can also convey additional attribute information about the public-key certificate subject,

to assist a relying party in being confident that the public-key certificate subject is a particular person or

entity.

c) Certification path constraints: These public-key certificate extensions allow constraint specifications to be

included in CA certificates, i.e., CA certificates for CAs issued by other CAs, to facilitate the automated

processing of certification paths when multiple certificate policies are involved. Multiple certificate policies

arise when policies vary for different applications in an environment or when interoperation with external

environments occurs. The constraints may restrict the types of public-key certificates that can be issued by

the subject CA or that may occur subsequently in a certification path.

d) Basic CRL extensions: These CRL extensions allow a CRL to include indications of revocation reason, to

provide for temporary suspension of a public-key certificate, and to include CRL-issue sequence numbers

to allow relying parties to detect missing CRLs in a sequence from one CRL issuer.

e) CRL distribution points and delta CRLs: These public-key certificate and CRL extensions allow the

complete set of revocation information from one CA to be partitioned into separate CRLs and allow

revocation information from multiple CAs to be combined in one CRL. These extensions also support the

use of partial CRLs indicating only changes since an earlier CRL issue.

Inclusion of any extension in a public-key certificate or CRL is at the option of the CA issuing that public-key certificate

or the issuing authority for that CRL.

In a public-key certificate or CRL, an extension is flagged as being either critical or as non-critical. If an extension is

flagged as critical and a relying party does not recognize the extension type or does not implement the semantics of the

extension, then that relying party shall consider the public-key certificate as invalid. If an extension is flagged as non-

critical, a relying party that does not recognize or implement that extension type may process the remainder of the public-

key certificate ignoring the extension. If an extension is flagged as non-critical, a relying party that does recognize the

extension, shall process the extension. Extension type definitions in this Specification indicate whether the extension shall

always be flagged as critical, always be flagged as non-critical, or whether criticality can be decided by the public-key

certificate or CRL issuer. The reason for requiring some extensions to be always flagged as non-critical is to allow relying

parties which do not need to use such extensions to omit support for them without jeopardizing the ability to interoperate

with all CAs.

NOTE – A relying party may require certain non-critical extensions to be present in a public-key certificate in order for that public-

key certificate to be considered acceptable. The need for inclusion of such extensions may be implied by local policy rules of the

relying party or may be a CA policy rule indicated to the relying party by inclusion of a particular public-key certificate policy

identifier in the public-key certificate policies extension with that extension being flagged as critical.

For all public-key certificate extensions, CRL extensions, and CRL entry extensions defined in this Specification, there

shall be no more than one instance of each extension type in any public-key certificate, CRL, or CRL entry, respectively.

9.1 Policy handling

9.1.1 Certificate policy

This framework contains four types of entities: The relying party, the CA, the trust broker, and the public-key certificate

subject. Each entity operates under obligations to the other entities and, in return, enjoys limited warranties offered by

them. The obligations and warranties of a CA are defined in its certificate policy. A certificate policy is a document (usually

in plain-language, but it could be machine readable). It may be referenced by an object identifier and a URL, which may

be included in the certificate policies extension of the public-key certificate issued by the CA to the entity and upon which

the relying party relies. A public-key certificate may be issued in accordance with one or more policies. The definition of

the policy and assignment of the object identifier is performed by a policy authority. The set of policies administered by a

policy authority is called a policy domain. All public-key certificates are issued in accordance with a policy, even if the

policy is neither recorded anywhere nor referenced in the public-key certificate. This Specification does not prescribe the

style or contents of the certificate policy.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 27

The relying party may be bound to its obligations under the certificate policy by the act of importing a CA public key and

using it as trust anchor information, or by relying on a public-key certificate that includes the associated policy identifier.

The CA may be bound to its obligations under the policy by the act of issuing a public-key certificate that includes the

associated policy identifier. The public-key certificate subject and any relying party who is also a public-key certificate

subject may be bound to its obligations under the policy by the act of requesting and accepting a public-key certificate that

includes the associated policy identifier and by using the corresponding private key. Implementations that do not use the

certificate policies extension should achieve the required binding by other means.

The relying party and trust broker may be bound by any contractual agreement that they have or by any trust policy that

the trust broker issues.

For an entity simply to declare conformance to a policy does not generally satisfy the assurance requirements of the other

entities in the framework. They require some reason to believe that the other parties operate a reliable implementation of

their policy. However, if explicitly stated in the certificate policy, relying parties may accept the CA's assurances that its

subjects agree to be bound by their obligations under the policy, without having to confirm this directly with them. This

aspect of certificate policy is outside the scope of this Specification.

A CA may place limitations on the use of its public-key certificates, in order to control the risk that it assumes as a result

of issuing public-key certificates. For instance, it may restrict the community of relying parties, the purposes for which

they may use its public-key certificates and/or the type and extent of damages that it is prepared to make good in the event

of a failure on its part, or that of its entities acting as PKI end entities. These matters should be defined in the certificate

policy.

Additional information, to help affected entities understand the provisions of the certificate policy, may be included in the

certificate policies extension in the form of policy qualifiers.

9.1.2 Cross-certificates and policy handling

The warranties and obligations shared by the subject CA, the intermediate CA and the relying party are defined by the

certificate policy identified in the cross-certificate, in accordance with which the subject CA may act as, or on behalf of,

an end entity. The warranties and obligations shared by the public-key certificate subject, the subject CA and the

intermediate CA are defined by the certificate policy identified in the end-entity public-key certificate, in accordance with

which the intermediate CA may act as, or on behalf of, a relying party.

A certification path is said to be valid under the set of certificate policies that are common to all public-key certificates in

the path.

In addition to the situation described above, there are two special cases to be considered:

a) the CA does not use the certificate policies extension to convey its policy requirements to relying parties;

and

b) the relying party or intermediate CA delegates the job of controlling policy to the next CA in the path.

In the first case, the public-key certificate should not contain a certificate policies extension at all. As a result, the set of

policies under which the path is valid will be null. But, the path may be valid nonetheless. Relying parties shall still ensure

that they are using the public-key certificate in conformance with the policies of the CAs in the path.

In the second case, the relying party or intermediate CA should include the special value any-policy in the initial-policy-

set or cross-certificate. Where a public-key certificate includes the special value any-policy, it should not include any other

certificate policy identifiers. The identifier any-policy should not have any associated policy qualifiers.

The relying party can ensure that all its obligations are conveyed by setting the initial-explicit-policy indicator. In this way,

only authorities that use the certificate policies extension as their way of achieving binding are accepted in the path, and

relying parties have no additional obligations. Because CAs also attract obligations when they act as, or on behalf of, a

relying party, they can ensure that all their obligations are conveyed by setting the requireExplicitPolicy component

of the policyConstraints extension in the cross-certificate.

9.1.3 Policy mapping

Some certification paths may cross boundaries between policy domains. The warranties and obligations according to which

the cross-certificate is issued may be materially equivalent to some or all of the warranties and obligations according to

which the subject CA issues end-entity public-key certificates, even though the policy authorities under which the two CAs

operate may have selected different object identifiers for these materially equivalent policies. In this case, the intermediate

CA may include a policy mappings extension in the cross-certificate. In the policy mappings extension, the intermediate

CA assures the relying party that it will continue to enjoy the familiar warranties, and that it should continue to fulfil its

familiar obligations, even though subsequent entities in the certification path operate in a different policy domain. The

intermediate CA should include one or more mappings for each of a subset of the policies under which it issued the cross-

certificate, and it should not include mappings for any other policies. If one or more of the certificate policies according to

ISO/IEC 9594-8:2017 (E)

28 Rec. ITU-T X.509 (10/2016)

which the subject CA operates is identical to those according to which the intermediate CA operates (i.e., it has the same

unique identifier), then these identifiers should be excluded from the policy mapping extension, but included in the

certificate policies extension.

Policy mapping has the effect of converting all policy identifiers in public-key certificates further down the certification

path to the identifier of the equivalent policy, as recognized by the relying party.

Policies shall not be mapped either to or from the special value any-policy.

Relying parties may determine that public-key certificates issued in a policy domain other than its own should not be relied

upon, even though a trusted intermediate CA may determine its policy to be materially equivalent to its own. It can do this

by setting the initial-policy-mapping-inhibit input to the path validation procedure. Additionally, an intermediate CA may

make a similar determination on behalf of its relying parties. In order to ensure that relying parties correctly enforce this

requirement, it can set inhibitPolicyMapping in a policyConstraints extension.

9.1.4 Certification path processing

The relying party faces a choice between two strategies:

a) it can require that the certification path be valid under at least one of a set of policies pre-determined by the

relying party; or

b) it can ask the path validation module to report the set of policies for which the certification path is valid.

The first strategy may be most appropriate when the relying party knows, a priori, the set of policies that are acceptable

for its intended use.

The second strategy may be the most appropriate when the relying party does not know, a priori, the set of policies that

are acceptable for its intended use.

In the first instance, the certification path validation procedure will indicate the path to be valid only if it is valid under one

or more of the policies specified in the initial-policy-set, and it will return the sub-set of the initial-policy-set under which

the path is valid. In the second instance, the certification path validation procedure may indicate that the path is invalid

under the initial-policy-set, but valid under a disjoint set: the authorities-constrained-policy-set. Then the relying party

shall determine whether its intended use of the public-key certificate is consistent with one or more of the certificate

policies under which the path is valid. By setting the initial-policy-set to any-policy, the relying party can cause the

procedure to return a valid result if the path is valid under any (unspecified) policy.

9.1.5 Self-issued certificates

A CA may issue a certificate to itself under three circumstances:

a) as a convenient way of encoding the public key associated with the private key used to sign the public-key

certificate, so that it can be communicated to and stored as trust anchor information by relying parties;

b) for certifying additional public keys of the CA used for purposes other than those covered by category a)

(such as OCSP and possibly CRL signing); and

c) for replacing its own expired CA certificates.

These types of CA certificates are called self-issued certificates, and they can be recognized by the fact that the issuer and

subject names present in them are identical. For the purposes of path validation, self-issued certificates of category a) are

self-signed certificates and are therefore verified with the public key contained in them, and if they are encountered in the

path, they shall be ignored.

Self-issued certificates of type b) may only appear as end-entity public-key certificates in a path, and shall be processed as

end-entity public-key certificates.

Self-issued certificates of type c) (also known as self-issued intermediate certificates) may appear as intermediate

certificates in a path. As a matter of good practice, when replacing a key that is on the point of expiration, a CA should

request the issuance of any in-bound cross-certificates that it requires for its replacement public key before using the key.

Nevertheless, if self-issued certificates of this category are encountered in the path, they shall be processed as intermediate

certificates, with the following exception: they do not contribute to the path length for the purposes of processing the

pathLenConstraint component of the basicConstraints extension and the skip-certificates values associated with

the policy-mapping-inhibit-pending and explicit-policy-pending indicators.

If a CA uses the same key to sign public-key certificates and CRLs, a single self-issued certificate of category a) shall be

used. If a CA uses a different key to sign CRLs than that used to sign public-key certificates, the CA may choose to issue

two self-issued public-key certificates of category a), one for each of the keys. In this situation, relying parties would need

access to both self-issued public-key certificates to establish separate trust anchors for public-key certificates and CRLs

signed by that CA. Alternatively, a CA may issue one self-issued public-key certificate of category a) for public-key

certificate signing and one self-issued public-key certificate of category b) for CRL signing. In this situation, relying parties

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 29

use the key certified in the public-key certificate of category a) as their single trust anchor for both public-key certificates

and CRLs signed by that CA. In this case, if the self-issued public-key certificate of category b) were to be used to verify

signatures on CRLs, there is no means defined in this Specification to check the validity of that public-key certificate.

If self-issued certificates of category b) are encountered within a path, they shall be ignored.

NOTE – Other mechanisms for distributing CA public keys are outside the scope of this Specification.

9.2 Key and policy information extensions

9.2.1 Requirements

The following requirements relate to key and policy information:

a) CA key pair updating can occur at regular intervals or in special circumstances. There is a need for a

certificate extension to convey an identifier of the public key to be used to verify the public-key certificate

signature. A relying party can use such identifiers in finding the correct CA certificate for validating the

public-key certificate issuer's public key.

b) In general, a public-key certificate subject has different public keys and, correspondingly, different public-

key certificates for different purposes, e.g., digital signature and encipherment key agreement. A public-key

certificate extension is needed to assist a relying party in selecting the correct public-key certificate for a

given subject for a particular purpose or to allow a CA to stipulate that a certified key may only be used for

a particular purpose.

c) Subject key pair updating can occur at regular intervals or in special circumstances. There is a need for a

public-key certificate extension to convey an identifier to distinguish between different public keys for the

same subject used at different points in time. A relying party can use such identifiers in finding the correct

public-key certificate.

d) The private key corresponding to a certified public key is typically used over a different period from the

validity of the public key. With a key pair used for creating and validating signatures, the usage period for

the private key used for signing is typically shorter than that for the public key used to verify the signature.

The validity period of the public-key certificate indicates a period for which the public key may be used,

which is not necessarily the same as the usage period of the private key. In the event of a private key

compromise, the period of exposure can be limited if the relying party knows the legitimate use period for

the private key. There is therefore a requirement to be able to indicate the usage period of the private key in

a public-key certificate.

e) Because public-key certificates may be used in environments where multiple certificate policies apply,

provision needs to be made for including certificate policy information in public-key certificates.

f) When cross-certifying from one organization to another, it can sometimes be agreed that certain of the two

organizations' policies can be considered equivalent. A CA certificate needs to allow the issuing CA to

indicate that one of its own certificate policies is equivalent to another certificate policy in the subject CA's

domain. This is known as policy mapping.

g) A user of an encipherment or digital signature system which uses public-key certificates defined in this

Specification needs to be able to determine in advance the algorithms supported by other users.

h) There is a need to specify that an end-entity public-key certificate shall be validated using an authorization

and validation list.

9.2.2 Public-key certificate and CRL extensions

The following extensions are defined:

a) authority key identifier;

b) subject key identifier;

c) key usage;

d) extended key usage;

e) private key usage period;

f) certificate policies;

g) policy mappings

h) authorization and validation.

These extensions shall be used only as public-key certificate extensions, except for the authorityKeyIdentifier

extension which may also be used as a CRL extension. Unless otherwise noted, these extensions may be used in both CA

certificates and end-entity public-key certificates.

ISO/IEC 9594-8:2017 (E)

30 Rec. ITU-T X.509 (10/2016)

9.2.2.1 Authority key identifier extension

This extension, which may be used as either a public-key certificate extension or CRL extension, identifies the public key

to be used to verify the signature on this public-key certificate or CRL. It enables distinct keys used by the same CA to be

distinguished (e.g., as key updating occurs) and it enables distinct keys used by the same CRL issuer to be distinguished.

This extension is defined as follows:

authorityKeyIdentifier EXTENSION ::= {

 SYNTAX AuthorityKeyIdentifier

 IDENTIFIED BY id-ce-authorityKeyIdentifier }

AuthorityKeyIdentifier ::= SEQUENCE {

 keyIdentifier [0] KeyIdentifier OPTIONAL,

 authorityCertIssuer [1] GeneralNames OPTIONAL,

 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL,

 ... }

 (WITH COMPONENTS {..., authorityCertIssuer PRESENT,

 authorityCertSerialNumber PRESENT } |

 WITH COMPONENTS {..., authorityCertIssuer ABSENT,

 authorityCertSerialNumber ABSENT })

KeyIdentifier ::= OCTET STRING

The key may be identified by an explicit key identifier in the keyIdentifier component, by the identification of a public-

key certificate for the key (giving certificate issuer in the authorityCertIssuer component and public-key certificate

serial number in the authorityCertSerialNumber component), or by both explicit key identifier and identification of

a public-key certificate for the key. If both forms of identification are used then the public-key certificate or CRL issuer

shall ensure they are consistent. A key identifier shall be unique with respect to all key identifiers for the issuing authority

for the public-key certificate or CRL containing the extension. An implementation which supports this extension is not

required to be able to process all name forms in the authorityCertIssuer component (see clause 9.3.2.1 for details of

the GeneralNames data type).

CAs shall assign public-key certificate serial numbers such that every (issuer, public-key certificate serial number) pair

uniquely identifies a single public-key certificate. The keyIdentifier component can be used to select CA certificates

during path construction. The authorityCertIssuer, authoritySerialNumber pair can only be used to provide

preference to one public-key certificate over others during path construction.

This extension shall always be flagged as non-critical.

9.2.2.2 Subject key identifier extension

This extension identifies the public key being certified. It enables distinct keys used by the same subject to be differentiated

(e.g., as key updating occurs). This extension is defined as follows:

subjectKeyIdentifier EXTENSION ::= {

 SYNTAX SubjectKeyIdentifier

 IDENTIFIED BY id-ce-subjectKeyIdentifier }

SubjectKeyIdentifier ::= KeyIdentifier

A key identifier shall be unique with respect to all key identifiers for the subject with which it is used.

This extension shall always be flagged as non-critical.

9.2.2.3 Key usage extension

This extension identifies the intended usage for which the public-key certificate has been issued. The intended usage may

be further constrained by policy. This policy may be stated in a certificate policy definition, a contract, or other

specification. However, a policy shall not override the constraint indicated by a KeyUsage bit, e.g., a certificate policy

could not allow a public-key certificate to be used for digital signature if KeyUsage indicated that it could only be used

for key agreement.

Setting a specific value of KeyUsage in a public-key certificate does not in itself signal for an instance of communication

that the communicating parties are acting in accordance with this setting, e.g., when signing a document. The definition of

methods by which parties may signal their intent for a specific instance of communication (e.g., commitment to content

for that specific instance) is outside the scope of this Specification, but it is anticipated that multiple methods will exist.

Although not recommended, it is possible to use the content of the public-key certificate, e.g., certificate policy, to signal

the intent of the signing. However, since that signal was made when the public-key certificate was issued by the CA, such

use may not meet the requirement that declaring the intent is made at the time of signing by the signer.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 31

More than one bit may be set in an instance of the keyUsage extension. The setting of multiple bits shall not change the

meaning of each individual bit but shall indicate that the public-key certificate may be used for all of the purposes indicated

by the set bits. There may be risks incurred when setting multiple bits. A review of those risks is documented in Annex K.

This extension is defined as follows:

keyUsage EXTENSION ::= {

 SYNTAX KeyUsage

 IDENTIFIED BY id-ce-keyUsage }

KeyUsage ::= BIT STRING {

 digitalSignature (0),

 contentCommitment (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5),

 cRLSign (6),

 encipherOnly (7),

 decipherOnly (8) }

Bits in the KeyUsage type are as follows:

a) digitalSignature: for verifying digital signatures that are used with an entity authentication service, a

data origin authentication service and/or an integrity service;

b) contentCommitment: for verifying digital signatures which are intended to signal that the signer is

committing to the content being signed. The type of commitment the public-key certificate can be used to

support may be further constrained by the CA, e.g., through a certificate policy. The precise type of

commitment of the signer e.g., "reviewed and approved" or "with the intent to be bound", may be signalled

by the content being signed, e.g., the signed document itself or some additional signed information.

 Since a content commitment signing is considered a digitally signed transaction, the digitalSignature

bit need not be set in the certificate. If it is set, it does not affect the level of commitment the signer has

endowed in the signed content.

 It is not incorrect to refer to this keyUsage bit using the identifier nonRepudiation. However, the use of

this identifier has been deprecated. Regardless of the identifier used, the semantics of this bit are as specified

in this Specification;

c) keyEncipherment: for enciphering keys or other security information, e.g., for key transport;

d) dataEncipherment: for enciphering user data, but not keys or other security information as in c);

e) keyAgreement: for use as a public key agreement key, such an when an asymmetric Diffie-Hellman key

pair is used for key management.

f) keyCertSign: for verifying a CA's signature on public-key certificates.

 Since public-key certificate signing is considered a commitment to the content of the public-key certificate

by the CA, neither the digitalSignature bit nor the contentCommitment bit need be set in the CA

certificate. If either (or both) is set, it does not affect the level of commitment the signer has endowed in the

signed public-key certificate;

g) cRLSign: for verifying an authority's signature on CRLs.

 Since CRL signing is considered to be commitment to the content of the CRL by the CRL issuer, neither

the digitalSignature bit nor the contentCommitment bit need be set in the public-key certificate. If

either (or both) is set, it does not affect the level of commitment the signer has endowed in the signed CRL;

h) encipherOnly: public key agreement key for use only in enciphering data when used with keyAgreement

bit also set (meaning with other key usage bit set is undefined);

i) decipherOnly: public key agreement key for use only in deciphering data when used with keyAgreement

bit also set (meaning with other key usage bit set is undefined).

Application specifications should indicate which of the digitalSignature or contentCommitment bits are

appropriate for their use. If a signing application has no knowledge of the signer's intent regarding commitment to content,

the application shall sign and support that signing with a public-key certificate that has the digitalSignature bit set in

that public-key certificate's keyUsage extension.

Even though a digital signature was verified using a public-key certificate that has only the digitalSignature bit set,

other factors external to the verification of the digital signature may also play a role in determining the intent of the signing.

ISO/IEC 9594-8:2017 (E)

32 Rec. ITU-T X.509 (10/2016)

Conversely, even though a digital signature was verified using a public-key certificate that has only the

contentCommitment bit set, external factors may be used by the signer to disclaim commitment to the signed content.

The bit keyCertSign is for use in CA certificates only. If KeyUsage is set to keyCertSign, the value of the cA

component of the basicConstraints extension shall be set to TRUE. CAs may also use other defined key usage bits in

KeyUsage, e.g., digitalSignature for providing authentication and integrity of online administration transactions.

This extension may, at the option of the issuing CA be flagged as either critical or as non-critical.

If the extension is flagged as critical or if the extension is flagged as non-critical but the relying party recognizes it, then

the public-key certificate shall be used only for a purpose for which the corresponding key usage bit is set to one. If the

extension is flagged as non-critical and the relying party does not recognize it, then this extension shall be ignored.

A bit set to zero indicates that the key is not intended for that purpose. If the extension is present with all bits set to zero,

the key is intended for a purpose other than those listed above.

9.2.2.4 Extended key usage extension

This extension indicates one or more purposes for which the certified public key may be used, in addition to, or in place

of the basic purposes indicated in the key usage extension. This extension is defined as follows:

extKeyUsage EXTENSION ::= {

 SYNTAX SEQUENCE SIZE (1..MAX) OF KeyPurposeId

 IDENTIFIED BY id-ce-extKeyUsage }

KeyPurposeId ::= OBJECT IDENTIFIER

A CA may assert any-extended-key-usage by using the anyExtendedKeyUsage object identifier. This enables a CA to

issue a public-key certificate that contains KeyPurposeId object identifiers for extended key usages that may be required

by relying parties, without restricting the public-key certificate to only those key usages. If extended key usage would

restrict key usage, then the inclusion of this object identifier removes that restriction.

anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }

Key purposes may be defined by any organization with a need. Object identifiers used to identify key purposes shall be

assigned in accordance with Rec. ITU-T X.660 | ISO/IEC 9834-1.

This extension may, at the option of the issuing CA, be flagged either as critical or as non-critical.

If the extension is flagged as critical, then the public-key certificate shall be used only for one of the purposes indicated.

If the extension is flagged as non-critical, then it indicates the intended purpose or purposes of the key, and may be used

in finding the correct key/public-key certificate of an entity that has multiple keys/public-key certificates. If this extension

is present, and the relying party recognizes and processes the extendedKeyUsage extension type, then the relying party

shall ensure that the public-key certificate shall be used only for one of the purposes indicated. (A relying party may

nevertheless require that a particular purpose be indicated in order for the public-key certificate to be acceptable.)

If a public-key certificate contains both a critical key usage extension and a critical extended key usage extension, then

both extensions shall be processed independently and the public-key certificate shall only be used for a purpose consistent

with both extensions. If there is no purpose consistent with both extensions, then the public-key certificate shall not be

used for any purpose.

This Specification defines the following key purposes that can be included in the extended key usage extension:

keyPurposes OBJECT IDENTIFIER ::= {id-kp 1}

id-avlSign OBJECT IDENTIFIER ::= {id-kp 2}

The id-avlSign key purpose is used to indicate that the private key may be used for signing an AVL.

Other purposes that can also be included are defined in other specifications, such as IETF RFC 5280.

9.2.2.5 Private key usage period extension

This extension indicates the period of use of the private key corresponding to the certified public key. It is applicable only

for private key used for creating digital signatures. This extension is defined as follows:

privateKeyUsagePeriod EXTENSION ::= {

 SYNTAX PrivateKeyUsagePeriod

 IDENTIFIED BY id-ce-privateKeyUsagePeriod }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 33

PrivateKeyUsagePeriod ::= SEQUENCE {

 notBefore [0] GeneralizedTime OPTIONAL,

 notAfter [1] GeneralizedTime OPTIONAL,

 ... }

 (WITH COMPONENTS {..., notBefore PRESENT } |

 WITH COMPONENTS {..., notAfter PRESENT })

The notBefore component indicates the earliest date and time at which the private key may be used for signing. If the

notBefore component is not present, then no information is provided as to when the period of valid use of the private

key commences beyond that specified in the validity component of the public-key certificate. The notAfter component

indicates the latest date and time at which the private key may be used for signing. If the notAfter component is not

present then no information is provided as to when the period of valid use of the private key concludes beyond that specified

in the validity component of the public-key certificate.

This extension shall always be flagged as non-critical.

NOTE 1 – The period of valid use of the private key may be different from the certified validity of the public key as indicated by

the public-key certificate validity period. The usage period for the private key used for signing is typically shorter than that for the

public key used for verifying the signature.

NOTE 2 – The period of use of the private key corresponding to a public key can only be enforced if both the private key and the

corresponding public-key certificate are placed in a tamper-resistant hardware module that contains a reliable clock synchronized

with UTC. When this is not the case, a signer may avoid using a signing private key up to the very end of the validity period of the

public-key certificate. This is one possible use of this extension.

NOTE 3 – In general, this Specification does not associate any semantic with this extension. Any particular use of this extension

will have to specify the semantic associated with that usage.

9.2.2.6 Certificate policies extension

This extension lists certificate policies, recognized by the issuing CA, that apply to the public-key certificate, together with

optional qualifier information pertaining to these certificate policies. The list of certificate policies is used in determining

the validity of a certification path, as described in clause 12. The optional qualifiers are not used in the certification path

processing procedure, but relevant qualifiers are provided as an output of that process to the relying party to assist in

determining whether a valid path is appropriate for the particular transaction. Typically, different certificate policies will

relate to different applications which may use the certified key. The presence of this extension in an end-entity public-key

certificate indicates the certificate policies for which this public-key certificate is valid. The presence of this extension in

a CA certificate (cross-certificate) issued by one CA to another CA indicates the certificate policies for which certification

paths containing this public-key certificate may be valid. This extension is defined as follows:

certificatePolicies EXTENSION ::= {

 SYNTAX CertificatePoliciesSyntax

 IDENTIFIED BY id-ce-certificatePolicies }

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {

 policyIdentifier CertPolicyId,

 policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL,

 ... }

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {

 policyQualifierId CERT-POLICY-QUALIFIER.&id({SupportedPolicyQualifiers}),

 qualifier CERT-POLICY-QUALIFIER.&Qualifier

 ({SupportedPolicyQualifiers}{@policyQualifierId}) OPTIONAL,

 ... }

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= {...}

A value of the PolicyInformation data type identifies and conveys qualifier information for one certificate policy. The

policyIdentifier component contains an identifier of a certificate policy and the policyQualifiers component

contains policy qualifier values for that component.

This extension may, at the option of the issuing CA, be either flagged as critical or as non-critical.

If the extension is flagged as critical, it indicates that the public-key certificate shall only be used for the purpose, and in

accordance with the rules implied by one of the indicated certificate policies. The rules of a particular policy may require

the relying party to process the qualifier value in a particular way.

ISO/IEC 9594-8:2017 (E)

34 Rec. ITU-T X.509 (10/2016)

If the extension is flagged as non-critical, use of this extension does not necessarily constrain use of the public-key

certificate to the policies listed. However, a relying party may require a particular policy to be present in order to use the

public-key certificate (see clause 12). Policy qualifiers may, at the option of the relying party, be processed or ignored.

Certificate policies and certificate policy qualifier types may be defined by any organization with a need. Object identifiers

used to identify certificate policies and certificate policy qualifier types shall be assigned in accordance with Rec. ITU-T

X.660 | ISO/IEC 9834-1. A CA may assert any-policy by using the anyPolicy object identifier in order to trust a public-

key certificate for all possible policies. Because of the need for identification of this special value to apply regardless of

the application or environment, that object identifier is assigned in this Specification. No object identifiers will be assigned

in this Specification for specific certificate policies. That assignment is the responsibility of the entity that defines the

certificate policy.

anyPolicy OBJECT IDENTIFIER ::= {id-ce-certificatePolicies 0}

The identifier anyPolicy should not have any associated policy qualifiers.

The following ASN.1 information object class is used in defining certificate policy qualifier types:

CERT-POLICY-QUALIFIER ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Qualifier OPTIONAL }

WITH SYNTAX {

 POLICY-QUALIFIER-ID &id

 [QUALIFIER-TYPE &Qualifier] }

A definition of a policy qualifier type shall include:

– a statement of the semantics of the possible values; and

– an indication of whether the qualifier identifier may appear in a certificate policies extension without an

accompanying value and, if so, the implied semantics in such a case.

NOTE – A qualifier may be specified as having any ASN.1 type. When the qualifier is anticipated to be used primarily with

applications that do not have ASN.1 decoding functions, it is recommended that the type OCTET STRING be specified. The ASN.1

OCTET STRING value can then convey a qualifier value encoded according to any convention specified by the policy element

defining organization.

9.2.2.7 Policy mappings extension

This extension, which shall be used in CA certificates only, allows an issuing CA to indicate that, for the purposes of the

user of a certification path containing this CA certificate, one of the issuer’s certificate policies can be considered

equivalent to a different certificate policy used in the subject CA’s domain. This extension is defined as follows:

policyMappings EXTENSION ::= {

 SYNTAX PolicyMappingsSyntax

 IDENTIFIED BY id-ce-policyMappings }

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 issuerDomainPolicy CertPolicyId,

 subjectDomainPolicy CertPolicyId,

 ... }

The issuerDomainPolicy component indicates a certificate policy that is recognized in the issuing CA’s domain and

that can be considered equivalent to the certificate policy indicated in the subjectDomainPolicy component that is

recognized in the subject CA’s domain.

Policies shall not be mapped to or from the special value anyPolicy.

This extension may, at the option of the issuing CA, be either flagged as critical or as non-critical. It is recommended that

it be flagged as critical, otherwise a relying party may not correctly interpret the stipulation of the issuing CA.

NOTE 1 – An example of policy mapping is as follows. The U.S. government domain may have a policy called Canadian Trade and

the Canadian government may have a policy called U.S. Trade. While the two policies are distinctly identified and defined, there

may be an agreement between the two governments to accept certification paths extending cross-border within the rules implied by

these policies for relevant purposes.

NOTE 2 – Policy mapping implies significant administrative overheads and the involvement of suitably diligent and authorized

personnel in related decision-making. In general, it is preferable to agree upon a more global use of common policies than it is to

apply policy mapping. In the above example, it would be preferable for the U.S., Canada and Mexico to agree upon a common policy

for North American Trade.

NOTE 3 – It is anticipated that policy mapping will be practical only in limited environments in which policy statements are very

simple.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 35

9.2.2.8 Authorization and validation extension

This extension may only be present in end-entity public-key certificates. It indicates that this public-key certification shall

not be accepted if it cannot be checked against a particular authorization validation list (AVL).

authorizationValidation EXTENSION ::= {

 SYNTAX AvlId

 IDENTIFIED BY id-ce-authorizationValidation }

AvlId ::= SEQUENCE {

 issuer Name,

 serialNumber AvlSerialNumber OPTIONAL,

 ... }

The issuer component shall identify the issuer of the AVL against which this end-entity public-key certificate shall be

checked.

The serialNumber component shall be present if the AVL includes the serialNumber component. Otherwise, it shall

be absent.

This extension shall always be flagged as critical.

9.3 Subject and issuer information extensions

9.3.1 Requirements

The following requirements relate to public-key certificate subject component and public-key certificate and CRL

issuer component:

a) Public-key certificates need to be usable by applications that employ a variety of name forms, including

Internet electronic mail names, Internet domain names, Rec. ITU-T X.400 originator/recipient addresses,

and EDI party names. It is therefore necessary to be able securely to associate multiple names of a variety

of name forms with a public-key certificate subject or a public-key certificate or CRL issuer.

b) There may be a need for convoying identity and/or privilege information in a public-key certificate. Such

information is provided as directory attributes.

9.3.2 Certificate and CRL extensions

The following extensions are defined:

a) Subject alternative name;

b) Issuer alternative name;

c) Subject directory attributes.

These extensions shall be used only as public-key certificate extensions, except for issuer alternative name, which may

also be used as a CRL extension. As public-key certificate extensions, they may be present in CA certificates and end-

entity public-key certificates.

9.3.2.1 Subject alternative name extension

This extension contains one or more alternative names, using any of a variety of name forms, for the entity that is bound

by the issuing CA to the certified public key. This extension is defined as follows:

subjectAltName EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id-ce-subjectAltName }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

 otherName [0] INSTANCE OF OTHER-NAME,

 rfc822Name [1] IA5String,

 dNSName [2] IA5String,

 x400Address [3] ORAddress,

 directoryName [4] Name,

 ediPartyName [5] EDIPartyName,

 uniformResourceIdentifier [6] IA5String,

 iPAddress [7] OCTET STRING,

 registeredID [8] OBJECT IDENTIFIER,

 ... }

ISO/IEC 9594-8:2017 (E)

36 Rec. ITU-T X.509 (10/2016)

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {

 nameAssigner [0] UnboundedDirectoryString OPTIONAL,

 partyName [1] UnboundedDirectoryString,

 ... }

The values in the alternatives of the GeneralName type are names of various forms as follows:

– the otherName alternative shall be a name of any form whose type is defined as an instance of the OTHER-

NAME information object class;

– the rfc822Name alternative shall be an Internet electronic mail address defined in accordance with

IETF RFC 822;

– the dNSName alternative shall be a fully qualified domain name (FQDN). The domain name shall be in the

syntax as specified by section 2.3.1 of IETF RFC 5890 meaning that a domain name is a sequence of labels

in the letters, digits, hyphen (LDH) format separated by dots.

 A label may be in one of two formats:

a) All characters in the label are from the Basic Latin collection as defined by ISO/IEC 10646 (i.e., having

code points in the ranges 002D, 0030-0039, 0041-005A and 0061-007A) and it does not start with "xn-

-". The maximum length is 63 octets.

b) It is an A-label as defined in IETF RFC 5890, i.e., it starts with the "xn--" and is an U-label converted

to valid ASCII characters as in item a) using the Punycode algorithm defined by IETF RFC 3492. The

converted string shall be maximum 59 octets. To be valid, it shall be possible for an A-label to be

convert a valid U-label. The U-label is as also defined in IETF RFC 5890.

NOTE 1 – An A-label is normally not human readable.

– the x400Address alternative shall be an O/R address as defined by Rec. ITU-T X.411 | ISO/IEC 10021-4;

– the directoryName alternative shall be a distinguished name as defined by Rec. ITU-T X.501 | ISO/IEC

9594-2;

– the ediPartyName alternative shall be a name of a form agreed between communicating electronic data

interchange (EDI) partners; the nameAssigner component identifies an authority that assigns unique

values of names in the partyName component;

– the uniformResourceIdentifier alternative shall be a uniform resource identifier for the worldwide

web defined in accordance with IETF RFC 1630;

– the iPAddress alternative shall be an Internet Protocol address defined in accordance with IETF RFC 791

for IPv4 (four octets) or in accordance with IETF RFC 2460 for IPv6 (16 octets);

– the registeredID alternative shall be an object identifier of any registered object assigned in accordance

with Rec. ITU-T X.660 | ISO/IEC 9834-1.

For every name form used in an instance of the GeneralName data type, the issuing CA shall assure that it does not allocate

the same name to different entities. A name of a particular type together with the identity of the issuing CA shall uniquely

identify a particular entity.

This extension may, at the option of the issuing CA, be either flagged as critical or as non-critical. A relying party that

supports this extension is not required to be able to process all name forms. If the extension is flagged as critical, at least

one of the name forms that is present shall be recognized and processed, otherwise the public-key certificate shall be

considered invalid. Apart from the preceding restriction, a relying party is permitted to ignore any name with an

unrecognized or unsupported name form. It is recommended that, provided the subject component of the public-key

certificate contains a distinguished name that unambiguously identifies the subject, this extension be flagged as non-

critical.

NOTE 2 – Use of the TYPE-IDENTIFIER information object class is described in Rec. ITU-T X.681 | ISO/IEC 8824-2.

NOTE 3 – If this extension is present and is flagged as critical, the subject component of an end-entity public-key certificate may

contain a null name (e.g., a sequence of zero relative distinguished names) in which case the subject is identified only by the name

or names in this extension (see clause 7.2).

9.3.2.2 Issuer alternative name extension

This extension contains one or more alternative names, using any of a variety of name forms, for the CA or CRL issuer.

This extension is defined as follows:

issuerAltName EXTENSION ::= {

 SYNTAX GeneralNames

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 37

 IDENTIFIED BY id-ce-issuerAltName }

This extension may, at the option of the CA or the CRL issuer, be flagged either as critical or as non-critical. A relying

party that supports this extension is not required to be able to process all name forms. If the extension is flagged as critical,

at least one of the name forms that are present shall be recognized and processed, otherwise the public-key certificate or

CRL shall be considered invalid. Apart from the preceding restriction, a relying party is permitted to ignore any name with

an unrecognized or unsupported name form. It is recommended that, provided the issuer component of the public-key

certificate or CRL contains a distinguished name that unambiguously identifies the issuing authority, this extension be

flagged as non-critical.

9.3.2.3 Subject directory attributes extension

This extension conveys directory attributes associated with the subject of the public-key certificate. This extension is

defined as follows:

subjectDirectoryAttributes EXTENSION ::= {

 SYNTAX AttributesSyntax

 IDENTIFIED BY id-ce-subjectDirectoryAttributes }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}

This extension may, at the option of the issuing CA, be flagged either as critical or as non-critical. A relying party

processing this extension is not required to understand all attribute types included in the extension. If the extension is

flagged as critical, at least one of the attribute types contained in the extension shall be understood for the public-key

certificate to be considered valid. If the extension is flagged as critical and none of the contained attribute types is

understood, the public-key certificate shall be considered invalid.

A relying party may require that it understands all the attribute types to accept the public-key certificate.

This extension is intended to associate identity and/or privilege with the subject of the public-key certificate. When the

subject accesses an entity by including identity information, the accessed entity may, based on local rules, assign privilege

to the subject, e.g., assign privilege used for access control. Such identity information may be different from or a

supplement to the identity information supplied in the subject component and/or in the subjecatAltName extension

(if present).

If this extension is present in a public-key certificate and flagged as critical, some of the extensions defined in clause 17

may also be present as stated for the individual extensions.

9.4 Certification path constraint extensions

9.4.1 Requirements

For certification path processing:

a) End-entity public-key certificates need to be distinguishable from CA certificates to protect against entities

from using their end-entity public-key certificates to establish themselves as CAs. It also needs to be

possible for a CA to limit the length of a subsequent chain resulting from a certified subject CA, e.g., to no

more than one more CA certificate or no more than two more CA certificates.

b) A CA needs to be able to specify constraints which allow a relying party to check that less-trusted CAs in

a certification path (i.e., CAs further down the certification path from the CA with whose public key the

relying party starts) are not violating their trust by issuing public-key certificates to subjects in an

inappropriate name space. Adherence to these constraints needs to be automatically checkable by the relying

party.

c) Certification path processing needs to be implementable in an automated, self-contained module. This is

necessary to permit trusted hardware or software modules to be implemented which perform the certification

path processing functions.

d) It should be possible to implement certification path processing without depending upon real-time

interactions with a possible human user.

e) It should be possible to implement certification path processing without depending upon the use of trusted

local databases of policy-description information. (Some trusted local information – an initial public key,

at least – is needed for certification path processing but the amount of such information should be

minimized.)

f) Certification paths need to operate in environments in which multiple certificate policies are recognized. A

CA needs to be able to stipulate which CAs in other domains it trusts and for which purposes. Chaining

through multiple policy domains needs to be supported.

ISO/IEC 9594-8:2017 (E)

38 Rec. ITU-T X.509 (10/2016)

g) Naming structures should not be constrained by the need to use names in public-key certificates, i.e.,

distinguished name structures considered natural for organizations or geographical areas shall not need

adjustment in order to accommodate CA requirements.

h) Certificate extensions need to be backward-compatible with the unconstrained certification path approach

system as specified in earlier editions of this Specification.

i) A CA needs to be able to inhibit the use of policy mapping and to require explicit certificate policy

identifiers to be present in subsequent certificates in a certification path.

NOTE – In any relying party, the processing of a certification path requires an appropriate level of assurance. This

Specification defines functions that may be used in implementations that are required to conform to specific assurance

statements. For example, an assurance requirement could state that certification path processing shall be protected from

subversion of the process (such as software-tampering or data modification). The level of assurance should be

commensurate with business risk. For example:

– processing internal to an appropriate cryptographic module may be required for public keys used to validate

high value funds transfer; whereas

– processing in software may be appropriate for home banking balance inquiries.

Consequently, certification path processing functions should be suitable for implementation in hardware cryptographic

modules or cryptographic tokens as one option.

j) A CA needs to be able to prevent the special value anyPolicy from being considered a valid policy in

subsequent public-key certificates in a certification path.

9.4.2 Public-key certificate extensions

The following extensions are defined:

a) basicConstraints;

b) nameConstraints;

c) policyConstraints; and

d) inhibitAnyPolicy.

These extensions shall be used only as public-key certificate extensions. Name constraints and policy constraints shall be

used only in CA certificates; basic constraints may also be used in end-entity public-key certificates. Examples of the use

of these extensions are given in Annex I.

9.4.2.1 Basic constraints extension

This extension indicates if the subject may act as a CA, with the certified public key being used to verify public-key

certificate signatures. If so, a certification path length constraint may also be specified. This extension is defined as follows:

basicConstraints EXTENSION ::= {

 SYNTAX BasicConstraintsSyntax

 IDENTIFIED BY id-ce-basicConstraints }

BasicConstraintsSyntax ::= SEQUENCE {

 cA BOOLEAN DEFAULT FALSE,

 pathLenConstraint INTEGER(0..MAX) OPTIONAL,

 ... }

The cA component with the value TRUE indicates that the certified public key may be used to verify public-key certificate

signatures.

The pathLenConstraint component may be present if cA component is set to TRUE. Otherwise, it shall be absent. It

gives the maximum number of CA certificates that may follow this CA certificate in a certification path. Value 0 indicates

that the subject of this CA certificate may only issue end-entity public-key certificates, but shall not issue any CA

certificate. If no pathLenConstraint extension appears in any CA certificate of a certification path, there is no limit to

the allowed length of the certification path. The constraint takes effect beginning with the next CA certificate in the path.

The constraint restricts the length of the segment of the certification path between the CA certificate containing this

extension and the end-entity public-key certificate. It has no impact on the number of CA certificates in the certification

path between the trust anchor and the CA certificate containing this extension. Therefore, the length of a complete

certification path may exceed the maximum length of the segment constrained by this extension. The constraint controls

the number of non-self-issued CA certificates between the CA certificate containing the constraint and the end-entity

public-key certificate. Therefore, the total length of this segment of the path, excluding self-issued certificates, may exceed

the value of the constraint by as many as two certificates. (This includes the public-key certificates at the two endpoints of

the segment plus the CA certificates between the two endpoints that are constrained by the value of this extension.)

This extension shall be supported by a conformant relying party.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 39

This extension shall be present in a CA certificate with the cA component set to TRUE and flagged as critical (which requires

that a CA certificate shall be a version 3 public-key certificate).

This extension may, when included in an end-entity public-key certificate at the option of the issuing CA, be either flagged

as critical or as non-critical.

When this extension is present, then:

– if the value of the cA component is not set to TRUE then the certified public key shall not be used to verify

a public-key certificate signature;

– if the value of cA component is set to TRUE and pathLenConstraint is present then the relying party

shall check that the certification path being processed is consistent with the value of pathLenConstraint.

If this extension is not present, then the public-key certificate is to be considered an end-entity public-key certificate and

cannot be used to verify public-key certificate signatures.

NOTE – To constrain a public-key certificate subject to act only as an end entity, i.e., not as a CA, the issuer may include this

extension containing only an empty SEQUENCE value.

9.4.2.2 Name constraints extension

This extension, which shall be used only in a CA certificate, indicates one or more name forms which have constraints

placed upon their name spaces, and in which all subject names in the same name form in subsequent public-key certificates

in a certification path shall be located. If this extension is absent, then no constraints are placed on any name form. If this

extension is present but a name form is not included in the extension, then no constraints are imposed on that name form.

NOTE – Because there can be an unbounded set of otherName name forms, then in general it is not possible to constrain every

possible name form of subject names with this extension.

This extension is defined as follows:

nameConstraints EXTENSION ::= {

 SYNTAX NameConstraintsSyntax

 IDENTIFIED BY id-ce-nameConstraints }

NameConstraintsSyntax ::= SEQUENCE {

 permittedSubtrees [0] GeneralSubtrees OPTIONAL,

 excludedSubtrees [1] GeneralSubtrees OPTIONAL,

 ... }

 (WITH COMPONENTS {..., permittedSubtrees PRESENT } |

 WITH COMPONENTS {..., excludedSubtrees PRESENT })

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {

 base GeneralName,

 minimum [0] BaseDistance DEFAULT 0,

 maximum [1] BaseDistance OPTIONAL,

 ... }

BaseDistance ::= INTEGER(0..MAX)

At least one of permittedSubtrees and excludedSubtrees components shall be present.

NOTE – The subtree concept is briefly described in annex M.

The permittedSubtrees component, when present, shall specify one or more subtrees, for one or more name forms,

within which subject names in acceptable public-key certificates shall be contained. When present, the

excludedSubtrees component specifies one or more subtrees for one or more name forms within which subject names

in acceptable public-key certificates shall not be contained. Subject names that are compared against specified subtrees

include those present in both the subject component and the subjectAltNames extension of a public-key certificate.

Each subtree is defined by the name of the root of the subtree, the base component, and, optionally, within that subtree,

an area that is bounded by upper and/or lower levels.

The minimum component specifies the upper bound of the area within the subtree. All names whose final name component

is above the level specified are not contained within the area. A value of minimum equal to zero (the default) corresponds

to the base, i.e., the top node of the subtree. For example, if minimum is set to one, then the subtree excludes the base node

but includes subordinate nodes.

The maximum component specifies the lower bound of the area within the subtree. All names whose last component is

below the level specified are not contained within the area. A value of maximum of zero corresponds to the base, i.e., the

top of the subtree. An absent maximum component indicates that no lower limit should be imposed on the area within the

ISO/IEC 9594-8:2017 (E)

40 Rec. ITU-T X.509 (10/2016)

subtree. For example, if maximum is set to one, then the subtree excludes all nodes except the subtree base and its immediate

subordinates.

The set of all permittedSubtrees and excludedSubtrees for a name form together constitute the constrained name

space for the name form. All subject names, in public-key certificates issued by the subject CA and subsequent CAs in a

certification path, which are of a constrained name form, shall be located in the constrained name space for the public-key

certificate to be acceptable.

The permittedSubtrees component, when present, specifies the subtrees within which all the subject names that are of

a constrained name form shall lie, for the public-key certificate to be acceptable. If excludedSubtrees is present, any

public-key certificate issued by the subject CA or subsequent CAs in the certification path that has a subject name within

these subtrees is unacceptable. If both permittedSubtrees and excludedSubtrees are present for a name form and

the name spaces overlap, the exclusion statement takes precedence.

If none of the name forms of the subject name in the public-key certificate is constrained by this extension, the public-key

certificate is acceptable from a name constraints point of view.

In some situations, more than one public-key certificate may need to be issued to satisfy the name constraints requirements.

Annex I illustrates two of these situations. For example, if name constraints are defined for multiple name forms, but a

public-key certificate needs to meet the name constraints for only one of the name forms (logical OR on constraints), then

multiple public-key certificates should be issued, each constraining a single name form.

Of the name forms available through the GeneralName data type, only those name forms that have a well-defined

hierarchical structure may be used in these components.

The directoryName name form satisfies this requirement; when using this name form a naming subtree corresponds to

a directory information tree (DIT) subtree. A public-key certificate is considered subordinate to the base (and therefore a

candidate to be within the subtree) if the SEQUENCE of RDNs, which forms the full distinguished name in base, is

identical to the initial SEQUENCE of the same number of RDNs which forms the first part of the distinguished name of the

subject (in the subject component or directoryName of subjectAltNames extension) of the public-key

certificate. The distinguished name of the subject of the public-key certificate may have additional trailing RDNs in its

sequence that do not appear in the distinguished name in base. The distinguishedNameMatch matching rule is used

to compare the value of base with the initial sequence of RDNs in the distinguished name of the subject of the public-key

certificate.

Conformant relying parties are not required to recognize all possible name forms. If the extension is flagged as critical and

a relying party does not recognize a name form used in any base component, the public-key certificate shall be handled

as if an unrecognized critical extension had been encountered. If the extension is flagged as non-critical and a relying party

does not recognize a name form used in any base component, then that subtree may be ignored.

When testing public-key certificate subject names for consistency with a name constraint, names in non-critical subject

alternative name extensions shall be processed, not ignored.

This extension may, at the option of the issuing CA, be flagged either as critical or as non-critical. It is recommended that

it be flagged as critical; otherwise, a relying party may not check that subsequent public-key certificates in a certification

path are located in the constrained name spaces intended by the issuing CA.

If this extension is present and is flagged as critical, then a relying party shall check that the certification path being

processed is consistent with the value in this extension.

Annex I contains examples of the use of the nameConstraints extension.

9.4.2.3 Policy constraints extension

This extension specifies constraints which may require explicit certificate policy identification or inhibit policy mapping

for the remainder of the certification path. This extension is defined as follows:

policyConstraints EXTENSION ::= {

 SYNTAX PolicyConstraintsSyntax

 IDENTIFIED BY id-ce-policyConstraints }

PolicyConstraintsSyntax ::= SEQUENCE {

 requireExplicitPolicy [0] SkipCerts OPTIONAL,

 inhibitPolicyMapping [1] SkipCerts OPTIONAL,

 ... }

 (WITH COMPONENTS {..., requireExplicitPolicy PRESENT } |

 WITH COMPONENTS {..., inhibitPolicyMapping PRESENT })

SkipCerts ::= INTEGER(0..MAX)

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 41

At least one of the requireExplicitPolicy and the inhibitPolicyMapping components shall be present.

If the requireExplicitPolicy component is present, and the certification path includes a public-key certificate issued

by a nominated CA, it is necessary for all public-key certificates in the path to contain, in the certificate policies extension,

an acceptable policy identifier. An acceptable policy identifier is the identifier of a certificate policy required by the relying

party, the identifier of a policy which has been declared equivalent to one of these policies through policy mapping, or

anyPolicy. The nominated CA is either the issuer CA of the public-key certificate containing this extension (if the value

of requireExplicitPolicy is 0) or a CA which is the issuer of a subsequent public-key certificate in the certification

path (as indicated by a non-zero value).

If the inhibitPolicyMapping component is present, it indicates that, in all public-key certificates starting from a

nominated CA in the certification path until the end of the certification path, policy mapping is not permitted. The

nominated CA is either the subject CA of the public-key certificate containing this extension (if the value of

inhibitPolicyMapping is 0) or a CA which is the subject of a subsequent public-key certificate in the certification path

(as indicated by a non-zero value).

A value of type SkipCerts indicates the number of public-key certificates in the certification path to skip before a

constraint becomes effective.

This extension may, at the option of the issuing CA, be flagged either as critical or as non-critical. It is recommended that

it be flagged as critical; otherwise, a relying party may not correctly interpret the stipulation of the issuing CA.

9.4.2.4 Inhibit any policy extension

This extension specifies a constraint that indicates anyPolicy is not considered an explicit match for other certificate

policies for all non-self-issued public-key certificates in the certification path starting with a nominated CA. The nominated

CA is either the subject CA of the CA certificate containing this extension (if the value of inhibitAnyPolicy is 0) or a

CA which is the subject of a subsequent CA certificate in the certification path (as indicated by a non-zero value).

inhibitAnyPolicy EXTENSION ::= {

 SYNTAX SkipCerts

 IDENTIFIED BY id-ce-inhibitAnyPolicy }

This extension may, at the option of the issuing CA, be flagged as either critical or as non-critical. It is recommended that

it be flagged as critical, otherwise a relying party may not correctly interpret the stipulation of the issuing CA.

9.5 Basic CRL extensions

9.5.1 Requirements

The following requirements relate to CRLs:

a) Relying parties need to be able to track all CRLs issued from a CRL issuer or CRL distribution point (see

clause 9.6) and be able to detect a missing CRL in the sequence. CRL sequence numbers are therefore

required.

b) Some relying parties may wish to respond differently to a revocation, depending upon the reason for the

revocation. There is therefore a requirement for a CRL entry to indicate the reason for the revocation.

c) There is a requirement for an authority to be able to temporarily suspend validity of a public-key certificate

and subsequently either revoke or reinstate it. Possible reasons for such an action include:

– desire to reduce liability for erroneous revocation when a revocation request is unauthenticated and

there is inadequate information to determine whether it is valid;

– other business needs, such as temporarily disabling the public-key certificate of an entity pending an

audit or investigation.

d) A CRL contains, for each public-key revoked certificate, the date when the authority posted the revocation.

Further information may be known as to when an actual or suspected key compromise occurred, and this

information may be valuable to a relying party. The revocation date is insufficient to solve some disputes

because, assuming the worst, all signatures issued during the validity period of the public-key certificate

have to be considered invalid. However, it may be important for a user that a signed document be recognized

as valid even though the key used to sign the message was compromised after the signature was produced.

To assist in solving this problem, a CRL entry can include a second date which indicates when it was known

or suspected that the private key was compromised.

e) Relying parties need to be able to determine, from the CRL itself, additional information including the scope

of public-key certificates covered by this list, the ordering of revocation notices, and which stream of CRLs

the CRL number is unique within.

ISO/IEC 9594-8:2017 (E)

42 Rec. ITU-T X.509 (10/2016)

f) Issuers need the ability dynamically to change the partitioning of CRLs and to refer relying parties to the

new location for relevant CRLs if the partitioning changes.

g) Delta CRLs may also be available that update a given base CRL. Relying parties need to be able to

determine, from a given CRL, whether delta CRLs are available, where they are located and when the next

delta CRL will be issued.

h) In addition to CRLs publishing a notification that public-key certificates have been revoked, there is a

requirement to publish a notification that public-key certificates will be revoked as of a specified date and

time in the future.

i) There is a requirement to provide more efficient ways to indicate in a CRL that a set of public-key

certificates has been revoked.

9.5.2 CRL extensions

The following extensions are defined:

a) CRL number;

b) status referral;

c) CRL stream identifier;

d) ordered list;

e) delta information;

f) to be revoked;

g) revoked group of certificates; and

h) expired certificates on CRL.

9.5.2.1 CRL number extension

This CRL extension conveys a monotonically increasing sequence number for each CRL issued by a given CRL issuer

through a given CRL directory attribute (see clauses 13.2.4 to 13.2.7) or CRL distribution point. It allows a relying party

to detect whether CRLs issued prior to the one being processed were also seen and processed. This extension is defined as

follows:

cRLNumber EXTENSION ::= {

 SYNTAX CRLNumber

 IDENTIFIED BY id-ce-cRLNumber }

CRLNumber ::= INTEGER(0..MAX)

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.1.

This extension shall always be flagged as non-critical.

9.5.2.2 Status referral extension

This CRL extension is for use within the CRL structure as a means to convey information about revocation notices to

relying parties. As such, it would be present in a CRL structure that itself contains no certificate revocation notices. A CRL

structure containing this extension shall not be used by relying parties or relying parties as a source of revocation notices,

but rather as a tool to ensure that the appropriate revocation information is used. Any CRL containing this extension shall

not be used as the source for a relying party to check revocation status of any public-key certificate. Rather, a CRL

containing this extension may be used by a relying party as an additional tool to locate the appropriate CRLs for checking

revocation status.

This extension serves two primary functions:

– This extension provides a mechanism to publish a trusted "list of CRLs" including all the relevant

information to aid relying parties in determining whether they have sufficient revocation information for

their needs. For example, an authority may issue a new, authenticated CRL list periodically, typically with

a relatively high reissue frequency (in comparison with other CRL reissue frequencies). The list might

include a last-update time/date for every referenced CRL. A relying party, on obtaining this list, can quickly

determine if cached copies of CRLs are still up-to-date. This may eliminate the unnecessary retrieval of

CRLs. Furthermore, by using this mechanism, relying parties become aware of CRLs issued by the authority

between its usual update cycles, thereby improving the timeliness of the CRL system.

– This extension also provides a mechanism to redirect a relying party from a preliminary location (e.g., one

pointed to in a CRL distribution point extension, or the directory entry of the issuing authority) to a different

location for revocation information. This feature enables authorities to modify the CRL partitioning scheme

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 43

they use without impacting existing public-key certificates or relying parties. To achieve this, the authority

would include each new location and the scope of the CRL that would be found at that location. The relying

party would compare the public-key certificate of interest with the scope statements and follow the pointer

to the appropriate new location for revocation information relevant to that public-key certificate it is

validating.

The extension is itself extensible and in future other non-CRL based revocation schemes may also be referred to, using

this extension.

statusReferrals EXTENSION ::= {

 SYNTAX StatusReferrals

 IDENTIFIED BY id-ce-statusReferrals }

StatusReferrals ::= SEQUENCE SIZE (1..MAX) OF StatusReferral

StatusReferral ::= CHOICE {

 cRLReferral [0] CRLReferral,

 otherReferral [1] INSTANCE OF OTHER-REFERRAL,

 ... }

CRLReferral ::= SEQUENCE {

 issuer [0] GeneralName OPTIONAL,

 location [1] GeneralName OPTIONAL,

 deltaRefInfo [2] DeltaRefInfo OPTIONAL,

 cRLScope CRLScopeSyntax,

 lastUpdate [3] GeneralizedTime OPTIONAL,

 lastChangedCRL [4] GeneralizedTime OPTIONAL,

 ...

}

DeltaRefInfo ::= SEQUENCE {

 deltaLocation GeneralName,

 lastDelta GeneralizedTime OPTIONAL,

 ... }

OTHER-REFERRAL ::= TYPE-IDENTIFIER

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.2.

The issuer component identifies the entity that signed the CRL; this defaults to the issuer name of the encompassing

CRL.

The location component provides the location to which the referral is to be directed, and defaults to the same value as

the issuer name.

The deltaRefInfo component provides an optional alternative location from which a dCRL may be obtained and an

optional date of the previous delta.

The cRLScope component provides the scope of the CRL that will be found at the referenced location.

The lastUpdate component is the value of the thisUpdate component in the most recently issued referenced CRL.

The lastChangedCRL component is the value of the thisUpdate component in the most recently issued CRL that has

changed content.

The OTHER-REFERRAL provides extensibility to enable other non-CRL based revocation schemes to be accommodated in

future.

This extension shall always be flagged as critical to ensure that the CRL containing this extension is not inadvertently

relied on by relying parties as the source of revocation status information about public-key certificates.

If this extension is present and is recognized by a relying party, that system shall not use the CRL as a source of revocation

status information. The system should use either the information contained in this extension, or other means outside the

scope of this Specification, to locate appropriate revocation status information.

If this extension is present but is not recognized by a relying party, that system shall not use the CRL as a source of

revocation status information. The system should use other means, outside the scope of this Specification, to locate

appropriate revocation information.

ISO/IEC 9594-8:2017 (E)

44 Rec. ITU-T X.509 (10/2016)

9.5.2.3 CRL stream identifier extension

The CRL stream identifier extension is used to identify the context within which the CRL number is unique.

cRLStreamIdentifier EXTENSION ::= {

 SYNTAX CRLStreamIdentifier

 IDENTIFIED BY id-ce-cRLStreamIdentifier }

CRLStreamIdentifier ::= INTEGER (0..MAX)

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.3.

This extension shall always be flagged as non-critical.

Each value of this extension, per authority, shall be unique. The CRL stream identifier combined with a CRL number serve

as a unique identifier for each CRL issued by any given authority, regardless of the type of CRL.

9.5.2.4 Ordered list extension

The ordered list extension indicates that the sequence of revoked public-key certificates in the revokedCertificates

component of a CRL is in ascending order by either public-key certificate serial number or revocation date. This extension

is defined as follows:

orderedList EXTENSION ::= {

 SYNTAX OrderedListSyntax

 IDENTIFIED BY id-ce-orderedList }

OrderedListSyntax ::= ENUMERATED {

 ascSerialNum (0),

 ascRevDate (1),

 ...}

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.4.

This extension shall always be flagged as non-critical.

– ascSerialNum indicates that the sequence of revoked public-key certificates in a CRL is in ascending

order of public-key certificate serial number, based on the value of the serialNumber component of each

entry in the list.

– ascRevDate indicates that the sequence of revoked public-key certificates in a CRL is in ascending order

of revocation date, based on the value of the revocationDate component of each entry in the list.

If orderedList is not present, no information is provided as to the ordering, if any, of the list of revoked public-key

certificates in the CRL.

9.5.2.5 Delta Information extension

This CRL extension is for use in CRLs that are not dCRLs and is used to indicate to relying parties that dCRLs are also

available for the CRL containing this extension. The extension provides the location at which the related dCRLs can be

found and optionally the time at which the next dCRL is to be issued.

deltaInfo EXTENSION ::= {

 SYNTAX DeltaInformation

 IDENTIFIED BY id-ce-deltaInfo }

DeltaInformation ::= SEQUENCE {

 deltaLocation GeneralName,

 nextDelta GeneralizedTime OPTIONAL,

 ... }

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.5.

This extension shall always be flagged as non-critical.

9.5.2.6 To be revoked extension

This CRL extension allows for the notification that public-key certificates will be revoked as of a specified date and time

in the future. The toBeRevoked extension is used to specify the reason for the public-key certificate revocation, the date

and time at which the public-key certificate will be revoked, and the group of public-key certificates to be revoked. Each

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 45

list can contain a single public-key certificate serial number, a range of public-key certificate serial numbers or a named

subtree.

toBeRevoked EXTENSION ::= {

 SYNTAX ToBeRevokedSyntax

 IDENTIFIED BY id-ce-toBeRevoked }

ToBeRevokedSyntax ::= SEQUENCE SIZE (1..MAX) OF ToBeRevokedGroup

ToBeRevokedGroup ::= SEQUENCE {

 certificateIssuer [0] GeneralName OPTIONAL,

 reasonInfo [1] ReasonInfo OPTIONAL,

 revocationTime GeneralizedTime,

 certificateGroup ,

 ... }

ReasonInfo ::= SEQUENCE {

 reasonCode CRLReason,

 holdInstructionCode HoldInstruction OPTIONAL,

 ... }

CertificateGroup ::= CHOICE {

 serialNumbers [0] CertificateSerialNumbers,

 serialNumberRange [1] CertificateGroupNumberRange,

 nameSubtree [2] GeneralName,

 ... }

CertificateGroupNumberRange ::= SEQUENCE {

 startingNumber [0] INTEGER,

 endingNumber [1] INTEGER,

 ... }

CertificateSerialNumbers ::= SEQUENCE SIZE (1..MAX) OF CertificateSerialNumber

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.6

The certificateIssuer component, when present, identifies the CA that issued all the public-key certificates listed in

this ToBeRevokedGroup. If certificateIssuer is omitted, it defaults to the CRL issuer name.

The reasonInfo component, when present, identifies the reason for the public-key certificate revocations. When present,

this extension indicates that all public-key certificates identified in ToBeRevokedGroup will be revoked for the reason

indicated in this component. If reasonCode component contains the value certificateHold, the

holdInstructionCode component may also be present. When present, the holdInstructionCode component

indicates the action to be taken on encountering any of the public-key certificates identified in RevokedGroup. This action

should only be taken, after the revocation time indicated in the revocationTime component has passed.

The revocationTime component indicates the date and time at which this group of public-key certificates will be revoked

and should therefore be considered invalid. This date shall be later than the thisUpdate time of the CRL containing this

extension. If revocationTime is before the nextUpdate time of the CRL containing this extension, the public-key

certificates shall be considered revoked between the revocationTime and the nextUpdate time by a relying party using

a CRL containing this extension. Otherwise, this is a notice that at specified time in the future these public-key certificates

will be revoked. Once the revocation time has passed, either the CA has revoked the public-key certificate or not. If it has

revoked the public-key certificate, future CRLs shall include this on the list of revoked public-key certificates, at least until

the public-key certificate expires. If the CA has not revoked the public-key certificate, but still intends to revoke it in the

future, it may include the public-key certificate in this extension on subsequent CRLs with a revised revocationTime.

If the CA no longer intends to revoke the public-key certificate, it may be excluded from all subsequent CRLs and the

public-key certificate shall not be considered revoked.

The certificateGroup component lists the set of public-key certificates to be revoked. This component identifies the

public-key certificates issued by the CA identified in certificateIssuer to be revoked at the date/time identified in

revocationTime. This set of public-key certificates is not further refined by any outside controls (e.g.,

issuingDistributionPoint).

The serialNumbers component, when present, shall hold the serial number(s) of the public-key certificate(s) issued by

the identified issuing CA that will be revoked at the specified time.

ISO/IEC 9594-8:2017 (E)

46 Rec. ITU-T X.509 (10/2016)

The serialNumberRange component, when present, all public-key certificates in the range beginning with the starting

serial number and ending with the ending serial number and issued by the identified issuing CA will be revoked at the

specified time.

If the nameSubtree component is present, all public-key certificates with a subject name that is subordinate to the

specified name and issued by the identified issuing CA will be revoked at the specified time. If the nameSubtree contains

a distinguished name then all distinguished names associated with the subject of a public-key certificate (i.e., subject

component and subjectAltNames extension) need to be considered. For other name forms, the subjectAltNames

extension of public-key certificates need to be considered. If at least one of the names associated with the subject contained

in the public-key certificate is within the subtree specified in nameSubtree, that public-key certificate will be revoked at

the specified time. As with the nameConstraints extension, not all name forms are appropriate for subtree

specification. Only those that have recognized subordination rules should be used in this extension.

This extension may, at the option of the CRL issuer, be flagged as critical or as non-critical. As the information provided

in this extension applies to revocations, which will occur in the future, it is recommended that it be flagged as non-critical,

reducing the risk of problems with interoperability and backward compatibility.

9.5.2.7 Revoked group of certificates extension

A set of public-key certificates that have been revoked can be published using the following CRL extension. Each list of

public-key certificates to be revoked is associated with a specific public-key certificate issuing CA and revocation time.

Each list can contain a range of public-key certificate serial numbers or a named subtree.

revokedGroups EXTENSION ::= {

 SYNTAX RevokedGroupsSyntax

 IDENTIFIED BY id-ce-revokedGroups }

RevokedGroupsSyntax ::= SEQUENCE SIZE (1..MAX) OF RevokedGroup

RevokedGroup ::= SEQUENCE {

 certificateIssuer [0] GeneralName OPTIONAL,

 reasonInfo [1] ReasonInfo OPTIONAL,

 invalidityDate [2] GeneralizedTime OPTIONAL,

 revokedcertificateGroup [3] RevokedCertificateGroup,

 ... }

RevokedCertificateGroup ::= CHOICE {

 serialNumberRange NumberRange,

 nameSubtree GeneralName }

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.7.

The certificateIssuer component, when present, shall identify the CA that issued all the public-key certificates listed

in this RevokedGroup. If certificateIssuer is omitted, it defaults to the CRL issuer name.

The reasonInfo component, when present, shall identify the reason for the public-key certificate revocations. When

present, this component indicates that all public-key certificates identified in RevokedGroup component were revoked for

the reason indicated in this component. If reasonCode contains the value certificateHold, the

holdInstructionCode may also be present. When present, holdInstructionCode shall indicate the action to be

taken on encountering any of the public-key certificates identified in RevokedGroup.

The invalidityDate component, when present, indicates the time from which all public-key certificates identified in

RevokedGroup should be considered invalid. This date shall be earlier than the date contained in thisUpdate component

of the CRL. If omitted, all public-key certificates identified in RevokedGroup should be considered invalid at least from

the time indicated in the thisUpdate component of the CRL. If the status of the public-key certificate prior to the

thisUpdate time is critical to a relying party (e.g., to determine whether a digital signature that was created prior to this

CRL issuance occurred while the public-key certificate was still valid or after it had been revoked), additional revocation

status checking techniques will be required to determine the actual date/time from which a given public-key certificate

should be considered invalid.

The revokedCertificateGroup component shall list the set of public-key certificates that have been revoked. This

component identifies the public-key certificates issued by the CA identified in certificateIssuer revoked under the

specified conditions. This set of public-key certificates is not further refined by any outside controls (e.g.,

issuingDistributionPoint).

The serialNumberRange, when present, shall specify a specified range within which all public-key certificates

containing serial numbers and which are issued by the identified issuing CA are applicable.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 47

If nameSubtree is present, all public-key certificates with a subject name that is subordinate to the specified name and

issued by the identified issuing CA will be revoked at the specified time. If the nameSubtree contains a distinguished

name then all distinguished names associated with the subject of a public-key certificate (i.e., subject component and

subjectAltNames extension) need to be considered. For other name forms, the subjectAltNames extension of public-

key certificates need to be considered. If at least one of the names associated with the subject, contained in the public-key

certificate, is within the subtree specified in nameSubtree, that public-key certificate has been revoked. As with the

nameConstraints extension, not all name forms are appropriate for subtree specification. Only those that have

recognized subordination rules should be used in this extension.

This extension shall always be flagged as critical. Otherwise, a relying party may incorrectly assume that public-key

certificates, identified as revoked within this extension, are not revoked. When this extension is present it may be the only

indication of revoked public-key certificates in a CRL (i.e., the revokedCertificates may be empty) or it may list

revoked public-key certificates that are in addition to those indicated in the revokedCertificates component of this

CRL. A revoked public-key certificate shall not be listed both in the revokedCertificates component and in this

extension.

9.5.2.8 Expired certificates on CRL extension

This CRL extension indicates that the CRL includes revocation notices for expired public-key certificates.

expiredCertsOnCRL EXTENSION ::= {

 SYNTAX ExpiredCertsOnCRL

 IDENTIFIED BY id-ce-expiredCertsOnCRL }

ExpiredCertsOnCRL ::= GeneralizedTime

NOTE - The extension defined here is relevant for both CRLs and ACRLs. Only CRL aspects are considered here. For ACRL

aspects, see 17.7.2.8.

This extension shall always be flagged as non-critical.

The scope of a CRL containing this extension is extended to include the revocation status of revoked public-key certificates

that expired after the date specified in ExpiredCertsOnCRL or at that date. The revocation status of a public-key

certificate shall not be updated once the public-key certificate has expired.

9.5.3 CRL entry extension

The following extensions are defined:

a) reason code;

b) hold instruction code; and

c) invalidity date.

9.5.3.1 Reason code extension

This CRL entry extension identifies a reason for the public-key certificate revocation. The reason code may be used by

applications to decide, based on local policy, how to react to posted revocations. This extension is defined as follows:

reasonCode EXTENSION ::= {

 SYNTAX CRLReason

 IDENTIFIED BY id-ce-reasonCode }

CRLReason ::= ENUMERATED {

 unspecified (0),

 keyCompromise (1),

 cACompromise (2),

 affiliationChanged (3),

 superseded (4),

 cessationOfOperation (5),

 certificateHold (6),

 removeFromCRL (8),

 privilegeWithdrawn (9),

 aACompromise (10),

 ...,

 weakAlgorithmOrKey (11) }

NOTE - The extension defined here is relevant for both CRLs and ACRLs entries. Only CRL entry aspects are considered here. For

ACRL entry aspects, see 17.7.3.1.

The following reason code values indicate why a public-key certificate was revoked:

ISO/IEC 9594-8:2017 (E)

48 Rec. ITU-T X.509 (10/2016)

– unspecified can be used to revoke public-key certificates for reasons other than the specific codes.

– keyCompromise is used in revoking an end-entity public-key certificate; it indicates that it is known or

suspected that the subject's private key, or other aspects of the subject validated in the public-key certificate,

have been compromised.

– cACompromise is used in revoking a CA certificate; it indicates that it is known or suspected that the

subject's private key, or other aspects of the subject validated in the CA certificate, have been compromised.

– affiliationChanged indicates that the subject's name or other information in the public-key certificate

has been modified but there is no cause to suspect that the private key has been compromised.

– superseded indicates that the public-key certificate has been superseded but there is no cause to suspect

that the private key has been compromised.

– cessationOfOperation indicates that the public-key certificate is no longer needed for the purpose for

which it was issued but there is no cause to suspect that the private key has been compromised.

– privilegeWithdrawn indicates that a public-key certificate was revoked because a privilege contained

within that public-key certificate has been withdrawn.

– aACompromise is only relevant for ACRL entries (see 17.7.3.1).

– weekAlgorithm indicates that the public-key certificate was revoked due to a weak cryptographic

algorithm and/or key (e.g., due to short key length or unsafe key generation).

A public-key certificate may be placed on hold by issuing a CRL entry with a reason code of certificateHold. The

public-key certificate hold notice may include an optional hold instruction code to convey additional information to relying

parties (see clause 9.5.3.2). Once a hold has been issued, it may be handled in one of three ways:

a) it may remain on the CRL with no further action, causing relying parties to consider the public-key

certificate invalid during the hold period;

b) it may be replaced by a (final) revocation for the same public-key certificate, in which case the reason shall

be one of the standard reasons for revocation, the revocation date shall be the date the public-key certificate

was placed on hold, and the optional hold instruction code extension shall not appear;

c) it may be explicitly released and the entry removed from the CRL.

The removeFromCRL reason code is for use with delta CRLs (see clause 9.6) only and indicates that an existing CRL entry

should now be removed owing to public-key certificate expiration or hold release. An entry with this reason code shall be

used in delta CRLs for which the corresponding base CRL or any subsequent (delta or complete for scope) CRL contains

an entry for the same public-key certificate with reason code certificateHold.

This extension shall always be flagged as non-critical.

9.5.3.2 Hold instruction code extension

This CRL entry extension provides for the inclusion of a registered instruction identifier to indicate the action to be taken

on encountering a held public-key certificate. It is applicable only in a CRL entry having a certificateHold reason

code. This extension is defined as follows:

holdInstructionCode EXTENSION ::= {

 SYNTAX HoldInstruction

 IDENTIFIED BY id-ce-holdInstructionCode }

HoldInstruction ::= OBJECT IDENTIFIER

This extension shall be always flagged as non-critical. No hold instruction codes are defined in this Specification.

NOTE 1 – The extension defined here is relevant for both CRLs and ACRLs entries. Only CRL entry aspects are considered here.

For ACRL entry aspects (see 17.7.3.2).

NOTE 2 – Examples of hold instructions might be "please communicate with the CA" or "repossess the user's token".

9.5.3.3 Invalidity date extension

This CRL entry extension indicates the date at which it is known or suspected that the private key was compromised or

that the public-key certificate should otherwise be considered invalid. This date may be earlier than the revocation date in

the CRL entry, which is the date at which the authority processed the revocation. This extension is defined as follows:

invalidityDate EXTENSION ::= {

 SYNTAX GeneralizedTime

 IDENTIFIED BY id-ce-invalidityDate }

This extension shall always be flagged as non-critical.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 49

NOTE 1 – The date in this extension is not, by itself, sufficient for non-repudiation purposes. For example, this date may be a date

advised by the private key holder, and it is possible for such a person fraudulently to claim that a key was compromised sometime

in the past, in order to repudiate a validly generated signature.

NOTE 2 – When a revocation is first posted by an authority in a CRL, the invalidity date may precede the date of issue of earlier

CRLs. The revocation date should not precede the date of issue of earlier CRLs.

9.6 CRL distribution points and delta CRL extensions

9.6.1 Requirements

As it is possible for revocation lists to become large and unwieldy, the ability to represent partial CRLs is required.

Different solutions are needed for two different types of implementations that process CRLs.

The first type of implementation is in individual workstations, possibly in an attached cryptographic token. These

implementations are likely to have limited, if any, trusted storage capacity. Therefore the entire CRL would need to be

examined to determine if it is valid, and then to see if the public-key certificate is valid. This processing could be lengthy

if the CRL is long. Partitioning of CRLs is required to eliminate this problem for these implementations.

The second type of implementation is on high performance servers where a large volume of messages is processed, e.g., a

transaction processing server. In this environment, CRLs are typically processed as a background task where, after the

CRL is validated, the contents of the CRL are stored locally in a representation which expedites their examination, e.g.,

one bit for each public-key certificate indicating if it has been revoked. This representation is held in trusted storage. This

type of server will typically require up-to-date CRLs for a large number of CAs. Since it already has a list of previously

revoked public-key certificates, it only needs to retrieve a list of newly revoked public-key certificates. This list, called a

dCRL, will be smaller and require fewer resources to retrieve and process than a complete CRL.

The following requirements therefore relate to CRL distribution points and dCRLs:

a) In order to control CRL sizes, it needs to be possible to assign subsets of the set of all public-key certificates

issued by one CA to different CRLs. This can be achieved by associating every public-key certificate with

a CRL distribution point which is either:

– a directory entry whose CRL attribute will contain a revocation entry for that public-key certificate, if

it has been revoked; or

– a location such as an electronic mail address or Internet uniform resource identifier from which the

applicable CRL can be obtained.

b) For performance reasons, it is desirable to reduce the number of CRLs that need to be checked when

validating multiple public-key certificates, e.g., a certification path. This can be achieved by having one

CRL issuer sign and issue CRLs containing revocations from multiple CAs.

c) There is a requirement for separate CRLs covering revoked CA certificates and revoked end-entity public-

key certificates. This facilitates the processing of certification paths as the CRL for revoked CA certificates

can be expected to be very short (usually empty). The certificateRevocationList, the

eepkCertificateRevocationList and the authorityRevocationList attribute types have been

specified for this purpose. However, for this separation to be secure, it is necessary to have an indicator in

a CRL identifying which list it is. Otherwise, illegitimate substitution of one list for the other cannot be

detected.

d) Provision is needed for a different CRL to exist for potential compromise situations (when there is a

significant risk of private key misuse) than that including all routine binding terminations (when there is no

significant risk of private key misuse).

e) Provision is also needed for partial CRLs (known as dCRLs) which only contain entries for public-key

certificates that have been revoked since the issuance of a base CRL.

f) For dCRLs, provision is needed to indicate the date/time after which this list contains updates.

g) There is a requirement to indicate within a public-key certificate, where to find the freshest CRL (e.g., the

most recent dCRL).

9.6.2 CRL distribution point and delta CRL extensions

The following extensions are defined:

a) CRL distribution points;

b) issuing distribution point;

c) certificate issuer;

d) delta CRL indicator;

ISO/IEC 9594-8:2017 (E)

50 Rec. ITU-T X.509 (10/2016)

e) base update; and

f) freshest CRL.

CRL distribution points and freshest CRL shall be used only as a public-key certificate extension. Issuing distribution

point, delta CRL indicator and base update shall be used only as CRL extensions. Certificate issuer shall be used only as a

CRL entry extension.

9.6.2.1 CRL distribution points extension

The CRL distribution points extension shall be used only as a public-key certificate extension and may be used in CA

certificates and in end-entity public-key certificates. This extension identifies the CRL distribution point or points to which

a relying party should refer to ascertain if a public-key certificate has been revoked. A relying party can obtain a CRL from

an applicable distribution point or it may be able to obtain a current complete CRL from the CA directory entry.

This extension is defined as follows:

cRLDistributionPoints EXTENSION ::= {

 SYNTAX CRLDistPointsSyntax

 IDENTIFIED BY id-ce-cRLDistributionPoints }

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {

 distributionPoint [0] DistributionPointName OPTIONAL,

 reasons [1] ReasonFlags OPTIONAL,

 cRLIssuer [2] GeneralNames OPTIONAL,

 ... }

DistributionPointName ::= CHOICE {

 fullName [0] GeneralNames,

 nameRelativeToCRLIssuer [1] RelativeDistinguishedName,

 ... }

ReasonFlags ::= BIT STRING {

 unused (0),

 keyCompromise (1),

 cACompromise (2),

 affiliationChanged (3),

 superseded (4),

 cessationOfOperation (5),

 certificateHold (6),

 privilegeWithdrawn (7),

 aACompromise (8),

 weakAlgorithmOrKey (9) }

NOTE 1 - The extension defined here is relevant for both CRLs and ACRLs). Only CRL aspects are considered here. For ACRL

aspects, see 17.2.2.1.

The distributionPoint component, when present, shall identify the location from which the relevant CRL can be

obtained. If this component is absent, the distribution point name defaults to the CRL issuer name. This component has

the following two alternatives:

– When the fullName alternative is used or when the default applies, the distribution point name may have

multiple name forms. The same name, in at least one of its name forms, shall be present in the

distributionPoint component of the issuingDistributionPoint extension of the CRL. A relying

party is not required to be able to process all name forms. It may use a distribution point provided at least

one name form can be processed. If no name forms for a distribution point can be processed, a relying party

can still use the public-key certificate provided requisite revocation information can be obtained from

another source, e.g., another distribution point or the authority's directory entry.

– The nameRelativeToCRLIssuer alternative can be used only if the CRL distribution point is assigned a

distinguished name that is directly subordinate to the distinguished name of the CRL issuer. In this case, the

nameRelativeToCRLIssuer component conveys the relative distinguished name with respect to the CRL

issuer distinguished name.

The reasons component, when present, shall indicate the revocation reasons covered by this CRL. If the reasons

component is absent, the corresponding CRL distribution point distributes a CRL which will contain an entry for this

public-key certificate if this public-key certificate has been revoked, regardless of revocation reason. Otherwise, the

reasons component indicates which revocation reasons are covered by the corresponding CRL distribution point.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 51

NOTE 2 – While this components allows for shorter CRLs, it has the side-effect that a relying party has to search multiple CRLs to

ensure that a particular public-key certificate has not been revoked. This possibility for segmenting CRLs should be used with

caution.

The cRLIssuer component, when present, shall identify the authority that issued and signed the CRL. If this component

is absent, the CRL issuer name defaults to the public-key certificate issuer name.

This extension may, at the option of the CA, be either flagged as critical or as non-critical. In the interests of

interoperability, it is recommended that it be flagged as non-critical.

If this extension is flagged as critical, then a relying party shall not use the public-key certificate without first retrieving

and checking a CRL from one of the nominated distribution points covering the reason codes of interest. Where the

distribution points are used to distribute CRL information for all revocation reason codes and for all public-key certificates

issued by the CA include this extension as a critical extension, the CA is not required to also publish a full CRL at the CA

entry.

If this extension is flagged as non-critical and a relying party does not recognize the extension type, then that relying party

should only consider the public-key certificate valid if:

– it can acquire and check a complete CRL from the authority (that the latter CRL is complete is indicated by

the absence of an issuing distribution point extension in the CRL);

– revocation checking is not required under local policy; or

– revocation checking is accomplished by other means.

NOTE 3 – It is possible to have CRLs issued by more than one CRL issuer for the one public-key certificate. Coordination of these

CRL issuers and the issuing authority is an aspect of authority policy.

NOTE 4 – The meaning of each reason code is as defined in the Reason Code extension in clause 9.5.3.1.

9.6.2.2 Issuing distribution point extension

This CRL extension identifies the CRL distribution point for public-key certificates for this particular CRL, and indicates

if the CRL is indirect, or if it is limited to covering only a subset of the revocation information. If using only partitioned

CRLs, the full set of partitioned CRLs shall cover the complete set of public-key certificates whose revocation status will

be reported using the CRL mechanism. Thus, the complete set of partitioned CRLs shall be equivalent to a full CRL for

the same set of public-key certificates, if the CRL issuer was not using partitioned CRLs. The limitation may be based on

a subset of the public-key certificate population or on a subset of revocation reasons. The CRL is signed by the CRL issuer's

private key. For a CRL distributed via a directory, the CRL is stored in the entry of the CRL distribution point, which may

not be the directory entry of the CRL issuer. If the issuingDistributionPoint extension and the crlScope extension

(deprecated) are both absent, the CRL shall contain entries for all revoked, unexpired public-key certificates.

After a public-key certificate appears on a CRL, it may be deleted from a subsequent CRL after the public-key certificate's

expiry. This extension is defined as follows:

issuingDistributionPoint EXTENSION ::= {

 SYNTAX IssuingDistPointSyntax

 IDENTIFIED BY id-ce-issuingDistributionPoint }

IssuingDistPointSyntax ::= SEQUENCE {

 -- If onlyContainsUserPublicKeyCerts and onlyContainsCACerts are both FALSE,

 -- the CRL covers both certificate types

 distributionPoint [0] DistributionPointName OPTIONAL,

 onlyContainsUserPublicKeyCerts [1] BOOLEAN DEFAULT FALSE,

 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,

 onlySomeReasons [3] ReasonFlags OPTIONAL,

 indirectCRL [4] BOOLEAN DEFAULT FALSE,

 onlyContainsAttributeCerts [5] BOOLEAN OPTIONAL, -- Use is strongly deprecated

 ... }

The distributionPoint component contains the name of the distribution point in one or more name forms. If

onlyContainsUserPublicKeyCerts is TRUE, the CRL only contains revocations for end-entity public-key certificates.

If onlyContainsCACerts is TRUE, the CRL only contains revocations for CA certificates. If

onlyContainsUserPublicKeyCerts and onlyContainsCACerts are both FALSE, the CRL contains revocations for

both end-entity public-key certificates and CA certificates. A CRL shall not contain this extension where both

onlyContainsUserPublicKeyCerts and onlyContainsCACerts are set to TRUE. If onlySomeReasons is present,

the CRL only contains revocations of public-key certificates for the identified reason or reasons; otherwise, the CRL

contains revocations for all reasons. If indirectCRL is TRUE, then the CRL may contain revocation notifications for

public-key certificates issued by CAs that have a name different from the name of the issuer of the CRL. The particular

CA responsible for each entry is as indicated by the certificateIssuer CRL entry extension in that entry or in

accordance with the defaulting rules described in clause 9.6.2.3. Consequently, a relying party that is capable of processing

ISO/IEC 9594-8:2017 (E)

52 Rec. ITU-T X.509 (10/2016)

a CRL in which indirectCRL is set to TRUE shall also be capable of processing the certificateIssuer CRL entry

extension. In such a CRL, it is the responsibility of the CRL issuer to ensure that the CRL is complete in that it contains

all revocation entries, consistent with onlyContainsUserPublicKeyCerts, onlyContainsCACerts, and

onlySomeReasons indicators, from all authorities that identify this CRL issuer in their public-key certificates.

If onlyContainsAttributeCerts is TRUE, the CRL only contains revocations for attribute certificates. This component

is deprecated and should not be included. Instead, the aAissuingDistributionPoint extension should be used.

NOTE 1 – This component was introduced into the fourth edition of this Specification and removed again in the fifth edition. Each

of these two actions has caused compatibility problems. This component has been re-introduced into the sixth edition in a way to

remove any compatibility issues.

If CRLs are partitioned by reason code, and the reason code changes for a revoked public-key certificate (causing the

public-key certificate to move from one CRL stream to another), it is necessary to continue to include the public-key

certificate on the CRL stream for the old revocation reason until the nextUpdate times of all CRLs, that do not list the

public-key certificate, on the CRL stream for the new reason code have been reached.

If the CRL contains an issuingDistributionPoint extension with the distributionPoint component present, at

least one name for the distribution point in the public-key certificate (e.g., cRLDistributionPoints, freshestCRL,

issuer) shall match a name for the distribution point in the CRL. Also, it may be the case that only the

nameRelativeToCRLIssuer component is present. In that case, a name comparison would be done on the full

distinguished name, constructed by appending the value of the nameRelativeToCRLIssuer to the distinguished name

found in the issuer component of the CRL. If the names being compared are distinguished names (as opposed to names

of other forms within the GeneralNames construct), the distinguishedNameMatch matching rule is used to compare

the two DNs for equality.

For CRLs distributed via a directory, the following rules apply. If the CRL is a dCRL it shall be distributed via the

deltaRevocationList attribute of the associated distribution point or, if no distribution point is identified, via the

deltaRevocationList attribute of the CRL issuer entry, regardless of the settings for public-key certificate types

covered by the CRL. Unless the CRL is a dCRL:

– a CRL which has onlyContainsCACerts set to TRUE and does not contain an

aAissuingDistributionPoint extension shall be distributed via the authorityRevocationList

attribute of the associated distribution point or, if no distribution point is identified, via the

authorityRevocationList attribute of the CRL issuer entry;

– a CRL which has onlyContainsCACerts set to TRUE and contains an aAissuingDistributionPoint

extension with containsUserAttributeCerts set to FALSE shall be distributed via the

authorityRevocationList attribute of the associated distribution point or, if no distribution point is

identified, via the authorityRevocationList attribute of the CRL issuer entry;

– a CRL which has only onlyContainsCACerts set to FALSE shall be distributed via the

certificateRevocationList attribute of the associated distribution point or, if no distribution point is

identified, via the certificateRevocationList attribute of the CRL issuer entry.

This extension shall always be flagged as critical. A relying party that does not understand this extension cannot assume

that the CRL contains a complete list of revoked public-key certificates of the identified CA. CRLs not containing critical

extensions shall contain all current CRL entries for the issuing authority, including entries for all revoked end-entity

certificates and authority certificates.

NOTE 2 – The means by which revocation information is communicated by CAs to CRL issuers is beyond the scope of this

Specification.

If an authority publishes a CRL with onlyContainsUserPublicKeyCerts or onlyContainsCACerts set to TRUE,

then the authority shall ensure that all CA certificates covered by this CRL contain the basicConstraints extension.

9.6.2.3 Certificate issuer extension

This CRL entry extension identifies the CA associated with an entry in an indirect CRL, i.e., a CRL that has the

indirectCRL indicator set in its issuing distribution point extension. If this extension is not present on the first entry in

an indirect CRL, the CA defaults to the CRL issuer. On subsequent entries in an indirect CRL, if this extension is not

present, the CA for the entry is the same as that for the preceding entry.

This extension is defined as follows:

certificateIssuer EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id-ce-certificateIssuer }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 53

This extension shall always be flagged as critical. If an implementation ignores this extension, it cannot correctly pair CRL

entries to CAs.

NOTE – This extension may also be included in ACRL entries as specified in clause 17.2.2.3.

9.6.2.4 Delta CRL indicator extension

The delta CRL indicator extension identifies a CRL as being a delta CRL (dCRL) that provides updates to a referenced

base CRL. The referenced base CRL is a CRL that was explicitly issued as a CRL that is complete for a given scope. The

CRL containing the delta CRL indicator extension contains updates to the public-key certificate revocation status for that

same scope. This scope does not necessarily include all revocation reasons or all public-key certificates issued by a CA,

especially in the case where the CRL is a CRL distribution point. However, the combination of a CRL containing the delta

CRL indicator extension plus the CRL referenced in the BaseCRLNumber component of this extension is equivalent to a

full CRL, for the applicable scope, at the time of publication of the dCRL.

This extension is defined as follows:

deltaCRLIndicator EXTENSION ::= {

 SYNTAX BaseCRLNumber

 IDENTIFIED BY id-ce-deltaCRLIndicator }

BaseCRLNumber ::= CRLNumber

The value of type BaseCRLNumber identifies the CRL number of the base CRL that was used as the foundation in the

generation of this dCRL. The referenced CRL shall be a CRL that is complete for the applicable scope.

This extension shall always be flagged as critical. A relying party that does not understand the use of dCRLs should not

use a CRL containing this extension, as the CRL may not be as complete as the user expects.

NOTE – This extension may also be included in dACRL entries as specified in clause 17.2.2.4.

9.6.2.5 Base update time extension

The base update extension is for use in dCRLs and is used to identify the date/time after which this delta provides updates

to the revocation status. This extension should only be used in dCRLs that contain the deltaCRLIndicator extension.

A dCRL that instead contains the crlScope extension (deprecated) does not require this extension as the

baseThisUpdate component of the crlScope extension can be used for the same purpose.

baseUpdateTime EXTENSION ::= {

 SYNTAX GeneralizedTime

 IDENTIFIED BY id-ce-baseUpdateTime }

This extension shall always be flagged as non-critical.

NOTE – This extension may also be included in dACRL as specified in clause 17.2.2.5.

9.6.2.6 Freshest CRL extension

The freshest CRL extension may be used as either a public-key certificate or CRL extension. Within public-key certificates,

this extension may be used in CA certificates, as well as end-entity public-key certificates. This extension identifies the

CRL to which a relying party should refer to obtain the freshest revocation information (e.g., latest dCRL). This extension

is defined as follows:

freshestCRL EXTENSION ::= {

 SYNTAX CRLDistPointsSyntax

 IDENTIFIED BY id-ce-freshestCRL }

The CRLDistPointsSyntax data type is as defined in the CRL distribution points extension in clause 9.6.2.1.

This extension may, at the option of the CA, be either be flagged as critical or as non-critical. If the freshest CRL extension

is flagged as critical, a relying party shall not use the public-key certificate without first retrieving and checking the freshest

CRL. If the extension is flagged as non-critical, the relying party may use local means to determine whether the freshest

CRL is required to be checked.

NOTE – This extension may also be included in attribute certificates and ACRLs as specified in clause 17.2.2.6.

10 Delta CRL relationship to base

A dCRL includes a deltaCRLIndicator extension (or a deprecated crlScope extension) to indicate the base revocation

information that is being updated with this dCRL.

ISO/IEC 9594-8:2017 (E)

54 Rec. ITU-T X.509 (10/2016)

If the deltaCRLIndicator is present in a dCRL, the base revocation information that is being updated is the base CRL

referenced in that extension. The base CRL referenced by a deltaCRLIndicator extension shall be a CRL that is issued

as complete for its scope (i.e., it is not itself a dCRL).

If the deprecated crlScope extension is present and contains the baseRevocationInfo component to reference the base

revocation information that is being updated, this is a reference to a particular point in time from which this dCRL provides

updates. The baseRevocationInfo component references a CRL that may or may not have been issued as one that is

complete for that scope (i.e., the referenced CRL may only have been issued as a dCRL). However, the dCRL containing

the baseRevocationInfo component updates the revocation information that is complete for the scope of the referenced

CRL at the time that the referenced CRL was issued. The relying party may apply the dCRL to a CRL that is complete for

the given scope and that was issued at the same time as or after the CRL referenced in the dCRL containing the

baseRevocationInfo component was issued.

Because of the potential for conflicting information, a CRL shall not contain both the deltaCRLIndicator extension

and a crlScope extension with the baseRevocationInfo component. A CRL may contain both the

deltaCRLIndicator extension and crlScope extension only if the baseRevocationInfo component is not present

in the crlScope extension.

A dCRL may also be an indirect CRL in that it may contain updated revocation information related to base CRLs issued

by one or more than one CAs (see clause 7.12).

Application of a dCRL to the referenced base revocation information shall accurately reflect the current status of

revocation.

– A public-key certificate's revocation notice, with revocation reason certificateHold, may appear on

either a dCRL or a CRL that is complete for a given scope. This reason code is intended to indicate a

temporary revocation of the public-key certificate pending a further decision on whether to permanently

revoke the public-key certificate or reinstate it as one that is not revoked.

a) If a public-key certificate was listed as revoked with revocation reason certificateHold on a CRL

(either a dCRL or a CRL that is complete for a given scope), whose cRLNumber is n, and the hold is

subsequently released, the public-key certificate shall be included in all dCRLs issued after the hold is

released where the cRLNumber of the referenced base CRL is less than or equal to n. Depending on

the extension used to indicate that this CRL is a dCRL, the CRL number of a referenced base CRL is

either the value of the BaseCRLNumber data type of the deltaCRLIndicator extension or the

cRLNumber element of the BaseRevocationInfo data type of the cRLScope extension. The public-

key certificate shall be listed with revocation reason removeFromCRL unless the public-key certificate

is subsequently revoked again for one of the revocation reasons covered by the dCRL, in which case

the public-key certificate shall be listed with the revocation reason appropriate for the subsequent

revocation.

b) If the certificate was not removed from hold, but was permanently revoked, then it shall be listed on

all subsequent dCRLs where the cRLNumber of the referenced base CRL is less than the cRLNumber

of the CRL (either a dCRL or a CRL that is complete for the given scope) on which the permanent

revocation notice first appeared. Depending on the extension used to indicate that this CRL is a dCRL,

the CRL number of a referenced base CRL is either the value of the BaseCRLNumber data type of the

deltaCRLIndicator extension or the cRLNumber element of the BaseRevocationInfo data type

of the cRLScope extension.

– A public-key certificate's revocation notice may first appear on dCRL and it is possible that the public-key

certificate's validity period might expire before the next CRL that is complete for the applicable scope is

issued. In this situation, that revocation notice shall be included in all subsequent dCRLs until that

revocation notice is included on at least one issued CRL that is complete for the scope of that public-key

certificate.

A CRL that is complete for a given scope, at the current time, can be constructed locally in either of the following ways:

– by retrieving the current dCRL for that scope, and combining it with an issued CRL that is complete for that

scope and that has a cRLNumber greater than or equal to the cRLNumber of the base CRL referenced in the

dCRL; or

– by retrieving the current dCRL for that scope and combining it with a locally constructed CRL that is

complete for that scope and that was constructed with a dCRL that has a cRLNumber greater than or equal

to the cRLNumber of the base CRL referenced in the current dCRL.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 55

11 Authorization and validation lists

11.1 Authorization and validation list concept

An authorization and validation list (AVL) is a list providing authorization and validation information to a relying party,

called an AVL entity. Such an AVL entity may also act as an end entity been equipped with an end-entity public-key

certificate. An AVL provides information to an AVL entity about potential communications partner and possible

restrictions on how and what to communicate with such partners.

In some environments, entities may have a requirement only to communicate with a few selected entities and may not

accept PDUs from any other entity. Validation may be optimized in such environments by use of AVLs. If a PDU is

received from an entity not represented in the AVL or the constraints on the communication are violated, the PDU may be

discarded, subject to local policies. An AVL is created, maintained and signed by an entity called the authorizer, which is

an outside entity to which responsibility for all or part of public-key certificate validation has been outsourced. An

authorizer is typically closely related to the AVL entities it serves, e.g., being part of the same organization. It may then

act as a trust anchor for the AVL entities it serves. These AVL entities may hold trust anchor information of the authorizer.

For some AVL entities, this may be the only trust anchor information needed.

Three scenarios are recognized here:

a) An AVL is placed in an AVL entity with no or minor constraints allowing the AVL entity to perform much

of the validation on its own. In this case, the AVL is mainly used to restrict communications to selected

entities and possibly to put restriction on such communications. An AVL may in this scenario have

information representing each public-key certificates allocated to potential communication partners and/or

it may have information representing a group of communication partners having the same distinguished

naming prefix.

b) An AVL is placed in an AVL entity that is constrained with respect to processing power, storage,

communications capabilities and/or response time to a degree where it cannot afford to go to a third party

when doing validation, meaning that the entity locally needs to have sufficient updated information

available to do the validation. In this scenario, the authorizer is using a subscription service to get revocation

information from relevant CAs and updates the AVLs at AVL entities as required.

c) An AVL entity may not have continuously online access to revocation information, such as OCSP, and at

the same time not be able to hold long CRLs. In this case, it is also relevant to have reasonable updated

validation information available locally. Also in this scenario, the authorizer is using a subscription service

to get revocation information from relevant CAs and updates the AVLs at AVL entities as required when

communication is possible.

d) A relying party, not being an AVL entity, may not have one continuously online access to revocation

information. Such a relying party does not use the service of an authorizer, but uses the same subscription

type as an authorizer to keep status information about a set public-key certificates for potential

communication partners.

11.2 The authorizer

The behaviour of the authorizer is dependent on whether it maintains AVLs for AVL entities in a non-constrained

environment or for AVL entities in a constrained environment.

If the AVL is to be placed in a non-constrained AVL entity, the AVL shall only contain rather stable information not

affected by state changes of associated public-key certificates.

If the AVL is to be placed in a constrained AVL entity, the authorizer shall locally maintain a list of complete certification

paths required for each of the peer entities with which the AVL entity communicates. The authorizer shall continuously

ensure that the certification paths validate positively. This included checking for restrictions and expired or revoked public-

key certificates. When a certification path can no longer validate positively, affected AVLs may be renewed at affected

AVL entities. It is a local policy as to whether or when such an update occurs.

NOTE – An invalid certification path may cause critical entities to be put out of operation. It is outside the scope of this Specification

to provide recommendations as to how or when a certification path is failing to a degree where an affected AVL entity should stop

communication with some other entity.

11.3 Authorization and validation list syntax

The CertAVL ASN.1 data type specifies the syntax of an AVL.

CertAVL ::= SIGNED {TBSCertAVL}

ISO/IEC 9594-8:2017 (E)

56 Rec. ITU-T X.509 (10/2016)

TBSCertAVL ::= SEQUENCE {

 version [0] IMPLICIT Version DEFAULT v1,

 serialNumber AvlSerialNumber OPTIONAL,

 signature AlgorithmIdentifier {{SupportedAlgorithms}},

 issuer Name,

 constrained BOOLEAN,

 entries SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 idType CHOICE {

 certIdentifier [0] PKCertIdentifier,

 entityGroup DistinguishedName, -- only for constrained = FALSE

 ... },

 scope [0] IMPLICIT ScopeRestrictions OPTIONAL,

 entryExtensions [1] IMPLICIT Extensions OPTIONAL,

 ... },

 ...,

 ...,

 avlExtensions Extensions OPTIONAL }

AvlSerialNumber ::= INTEGER (0..MAX)

PKCertIdentifier ::= CHOICE {

 issuerSerialNumber IssuerSerialNumber,

 fingerprintPKC [0] IMPLICIT FINGERPRINT {Certificate},

 fingerprintPK [1] IMPLICIT FINGERPRINT {PublicKey},

 ... }

IssuerSerialNumber ::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... }

ScopeRestrictions ::= SEQUENCE OF ScopeRestriction

SCOPE-RESTRICTION ::= TYPE-IDENTIFIER

ScopeRestriction ::= SEQUENCE {

 id SCOPE-RESTRICTION.&id,

 restriction SCOPE-RESTRICTION.&Type,

 ... }

The TBSCertAVL components are specified in the following.

The version component shall hold the version of the AVL. This component shall either be absent or have the value v1.

The serialNumber component, when present, shall contain a serial number that is unique for a specific authorizer within

the AVL entity where the AVL is placed. This component shall be present if the authorizer places more than one AVL in

a particular entity. Otherwise, it is optional.

NOTE 1 – Multiple authorizers may in principle each place multiple AVLs in a particular entity. This capability is included to cope

with more complex environments and should be used with great care. In a typical environment, only a single AVL from a single

authorizer will be place in a particular AVL entity.

The signature component shall contain the algorithm identifier for the signature algorithm used by the authorizer when

signing the AVL. This component shall have the same value as used in the algorithmIdentifier component of the

SIGNATURE data type when signing the AVL.

NOTE 2 – By including this component, the signature algorithm is protected by the signature on the AVL.

The issuer component shall be the distinguished name of the authorizer issuing the AVL. It shall be the same name as

the subject name of the public-key certificate used for evaluating the signature on the AVL.

The constrained component shall take the value TRUE if the AVL is to be placed in a constrained AVL entity, and it

shall take the value FALSE if the AVL is to be placed in a non-constrained AVL entity.

The entries component shall consist of a number of elements each representing an AVL entry. Each element shall have

the following components:

a) The idType component has the following two alternatives:

– The certIdentifier alternative shall hold an identifier of the public-key certificate represented by

this element. This alternative shall always be taken if the constrained component takes the value

TRUE. It has the following three alternatives:

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 57

i) the issuerSerialnumber alternative, which is a sequence of the distinguished name of the

public-key certificate issuer and the public-key certificate serial number;

ii) the fingerprintPKC alternative, which is a fingerprint of the public-key certificate; or

iii) the fingerprintPK alternative, which is a fingerprint of the public key within the public-key

certificate.

– The entityGroup alternative shall be taken when the entry represents an entity group with which the

entity may accept communications. An entity group is characterized by having a distinguished name

prefix in common within the name of the subject component for public-key certificates issued to the

members of the group. This alternative shall not be taken if the constrained component takes the

value TRUE.

b) The scope component, when present, specifies one or more restrictions to be observed by the entity. A

scope restriction is identified by an object identifier. The SCOPE-RESTRICTION information object class

is used to bind the syntax of the restriction to an identifying object identifier. A defined restriction shall

state to what degree a violation of the restriction will cause a received PDU to be discarded. This

Specification defines some general usable restrictions in clause 11.4. Other organizations may define

additional restrictions relevant for their organizations.

c) The entryExtensions component, when present, shall contain one or more AVL entry extensions.

The avlExtensions component, when present, shall contain one or more AVL extensions.

11.4 Authorization and validation restrictions

11.4.3 Protocol restrictions

The protRestrict restriction may be added to an AVL entry to limit the protocols acceptable to the AVL entity holding

the AVL.

protRestrict SCOPE-RESTRICTION ::= {

 ProtRestriction

IDENTIFIED BY id-protRestrict }

ProtRestriction ::= SEQUENCE (SIZE (1..MAX)) OF OBJECT IDENTIFIER

A value of the ProtRestriction data type shall hold one or more object identifiers identifying communications

protocols. When a peer entity attempts to establish a communication with an AVL entity having an AVL with this

restriction using a protocol not reflected by a listed object identifier, the communications shall be rejected.

12 Certification path processing procedure

Certification path processing is carried out by a relying party, a trust broker or authorizer, which needs to verify that a

particular end-entity public-key certificate is trustworthy. The extensions for certificate policies, basic constraints, name

constraints and policy constraints have been designed to facilitate automated, self-contained implementation of

certification path processing logic.

The following is an outline of a procedure for validating certification paths. An implementation shall be functionally

equivalent to the external behaviour resulting from this procedure. The algorithm used by a particular implementation to

derive the correct output(s) from the given inputs is not standardized.

12.1 Path processing inputs

The inputs to the certification path processing procedure are:

a) a set of public-key certificates comprising a certification path;

b) trust anchor information with a public-key for use in verifying the first public-key certificate in the

certification path;

c) an initial-policy-set comprising one or more certificate policy identifiers, indicating that any one of these

policies would be acceptable to the relying party for the purposes of certification path processing; this input

can also take the special value any-policy, but it cannot be null;

d) an initial-explicit-policy indicator value, which indicates if an acceptable policy identifier needs to explicitly

appear in the certificate policies extension of all public-key certificates in the path;

ISO/IEC 9594-8:2017 (E)

58 Rec. ITU-T X.509 (10/2016)

e) an initial-policy-mapping-inhibit indicator value, which indicates if policy mapping is forbidden in the

certification path;

f) an initial-inhibit-policy indicator value, which indicates if the special value anyPolicy, if present in a

certificate policies extension, is considered a match for any specific certificate policy value in a constrained

set;

g) the current date/time (if not available internally to the relying party);

h) an initial-permitted-subtrees-set containing an initial set of subtree specifications defining subtrees within

which subject names (of the name form used to specify the subtrees) are permitted. In the public-key

certificates in the certification path all subject names of a given name form, for which initial permitted

subtrees are defined, shall fall within the permitted subtrees set for that given name form. This input may

also contain the special value unbounded to indicate that initially all subject names are acceptable. Subject

names are those name values appearing in the subject component or the subjectAltName extension;

i) an initial-excluded-subtrees-set containing an initial set of subtree specifications defining subtrees within

which the subject names in the public-key certificates in the certification path cannot fall. This input may

also be an empty set to indicate that initially no subtree exclusions are in effect;

j) an initial-required-name-forms containing an initial set of name forms indicating that all public-key

certificates in the path must include a subject name of at least one of the specified name forms. This input

may also be an empty set to indicate that no specific name forms are required for subject names in the

certificates.

The values of c), d), e) and f) will depend upon the policy requirements of the user-application combination that needs to

use the certified end-entity public key.

Because these are individual inputs to the path validation process, a relying party may limit the trust it places in any given

trusted public key to a given set of certificate policies. This can be achieved by ensuring that a given public key is the input

to the process only when initial-policy-set input includes policies for which the relying party trusts that public key. Since

another input to the process is the certification path itself, this control could be exercised on a transaction by transaction

basis.

12.2 Path processing outputs

The outputs of the procedure are:

a) an indication of success or failure of certification path validation;

b) if validation failed, a diagnostic code indicating the reason for failure;

c) the set of authorities-constrained policies and their associated qualifiers in accordance with which the

certification path is valid, or the special value any-policy;

d) the set of user-constrained policies, formed from the intersection of the authorities-constrained-policy-set

and the initial-policy-set;

e) explicit-policy-indicator, indicating whether the relying party or an authority in the path requires that an

acceptable policy be identified in every public-key certificate in the path; and

f) details of any policy mapping that occurred in processing the certification path;

g) if the evaluation was performed by a trust broker, the requesting entity is informed about the outcome (see

clause 22);

h) if the evaluation was performed by an authorizer, then:

– if the authorizer is using the information for generating an AVL, then:

i) if the procedure yielded success, the appropriate entry may be added to the AVL

ii) if the procedure yielded failure, depending on type of failure, it is a local policy issue whether to

add the entry to the AVL or to leave it out,

– if the authorizer is using the information for possible update of one or more AVLs, then:

i) if the procedure yielded success, the affected AVLs do not need to be replaced based on the

validation of the public-key certificate in question

ii) if the procedure yielded failure, depending on type of failure, it is a local policy issue whether to

replace affected AVLs.

NOTE – If validation is successful, the relying party may still choose not to use the public-key certificate as a result of values of

policy qualifiers or other information in the public-key certificate.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 59

12.3 Path processing variables

The procedure makes use of the following set of state variables:

a) authorities-constrained-policy-set: A table of policy identifiers and qualifiers from the public-key

certificates of the certification path (rows represent policies, their qualifiers and mapping history, and

columns represent public-key certificates in the certification path).

b) permitted-subtrees: A set of subtree specifications defining subtrees within which all subject names in

subsequent public-key certificates in the certification path need to fall, or may take the special value

unbounded.

c) excluded-subtrees: A (possibly empty) set of subtree specifications (each comprising a subtree base name

and maximum and minimum level indicators) defining subtrees within which no subject name in a

subsequent public-key certificate in the certification path may fall.

d) required-name-forms: A (possibly empty) set of sets of name forms. For each set of name forms, every

subsequent public-key certificate must contain a name of one of the name forms in the set.

e) explicit-policy-indicator: Indicates whether an acceptable policy needs to be explicitly identified in every

public-key certificate in the path.

f) path depth: An integer equal to one more than the number of public-key certificates in the certification path

for which processing has been completed.

g) policy-mapping-inhibit-indicator: Indicates whether policy mapping is inhibited.

h) inhibit-any-policy-indicator: Indicates whether the special value anyPolicy is considered a match for any

specific certificate policy.

i) pending-constraints: Details of explicit-policy inhibit-policy-mapping and/or inhibit-any-policy constraints

which have been stipulated but have yet to take effect. There are three one-bit indicators called explicit-

policy-pending, policy-mapping-inhibit-pending and inhibit-any-policy-pending together with, for each, an

integer called skip-certificates which gives the number of public-key certificates yet to skip before the

constraint takes effect.

12.4 Initialization step

The procedure involves an initialization step, followed by a series of public-key certificate-processing steps. The

initialization step comprises:

1) Write any-policy in the zeroth and first columns of the zeroth row of the authorities-constrained-policy-set

table.

2) Initialize the permitted-subtrees variable to the initial-permitted-subtrees-set value.

3) Initialize the excluded-subtrees variable to the initial-excluded-subtrees-set value.

4) Initialize the required-name-forms variable to the initial-required-name-forms value.

5) Initialize the explicit-policy-indicator to the initial-explicit-policy value.

6) Initialize path-depth to one.

7) Initialize the policy-mapping-inhibit-indicator to the initial-policy-mapping-inhibit value.

8) Initialize the inhibit-any-policy-indicator to the initial-inhibit-policy value.

9) Initialize the three pending-constraints indicators to unset.

12.5 Public-key certificate processing

Each public-key certificate is then processed in turn, starting with the public-key certificate signed using the trust anchor

public key. The last public-key certificate is considered to be the end-entity public-key certificate; any other public-key

certificates are considered to be intermediate CA certificates.

12.5.1 Basic public-key certificate checks

The following checks are applied to a public-key certificate. Self-signed certificates, if encountered in the path, are ignored.

a) Check that the signature verifies, that dates are valid, that the public-key certificate subject and public-key

certificate issuer names chain correctly, and that the public-key certificate has not been revoked.

b) For an intermediate version 3 CA certificate, check that basicConstraints is present and that the cA

component in the basicConstraints extension is TRUE. If the pathLenConstraint component is

ISO/IEC 9594-8:2017 (E)

60 Rec. ITU-T X.509 (10/2016)

present, check that the current certification path does not violate that constraint (ignoring intermediate self-

issued certificates).

c) If the public-key certificate policies extension is not present, then set the authorities-constrained-policy-set

to null by deleting all rows from the authorities-constrained-policy-set table.

d) If the public-key certificate policies extension is present, then for each policy, P, in the extension other than

anyPolicy, attach the policy qualifiers associated with P to each row in the authorities-constrained-policy-

set table whose [path-depth] column entry contains the value P. If no row in the authorities-constrained-

policy-set table contains P in its [path-depth] column entry but the value in authorities-constrained-policy-

set[0, path-depth] is any-policy, then add a new row to the table by duplicating the zeroth row and writing

the policy identifier P along with its qualifiers in the [path-depth] column entry of the new row.

e) If the public-key certificate policies extension is present and does not include the value anyPolicy or if

the inhibit-any-policy-indicator is set and the certificate is not a self-issued intermediate certificate, then

delete any row for which the [path-depth] column entry contains the value any-policy along with any row

for which the [path-depth] column entry does not contain one of the values in the certificate policies

extension.

f) If the public-key certificate policies extension is present and includes the value anyPolicy and the inhibit-

any-policy-indicator is not set, then attach the policy qualifiers associated with anyPolicy to each row in

the authorities-constrained-policy-set table whose [path-depth] column entry contains the value any-policy

or contains a value that does not appear in the certificate policies extension.

g) If the public-key certificate is not an intermediate self-issued certificate, check that the subject name is

within the name-space given by the value of permitted-subtrees and is not within the name-space given by

the value of excluded-subtrees.

h) If the public-key certificate is not an intermediate self-issued certificate, and if required-name-forms is not

an empty set, for each set of name forms in required-name-forms check that there is a subject name in the

public-key certificate of one of the name forms in the set.

12.5.2 Processing intermediate certificates

For an intermediate CA certificate, the following constraint recording actions are then performed, in order to correctly set

up the state variables for the processing of the next certificate. Self-signed certificates, if encountered in the path, are

ignored.

1) If the nameConstraints extension with a permittedSubtrees component is present in the certificate,

set the permitted-subtrees state variable to the intersection of its previous value and the value indicated in

the certificate extension.

2) If the nameConstraints extension with an excludedSubtrees component is present in the certificate,

set the excluded-subtrees state variable to the union of its previous value and the value indicated in the

certificate extension.

3) If policy-mapping-inhibit-indicator is set:

– process any policy mappings extension by, for each mapping identified in the extension, locating all

rows in the authorities-constrained-policy-set table whose [path-depth] column entry is equal to the

issuer domain policy value in the extension and delete the row.

4) If policy-mapping-inhibit-indicator is not set:

– process any policy mappings extension by, for each mapping identified in the extension, locating all

rows in the authorities-constrained-policy-set table whose [path-depth] column entry is equal to the

issuer domain policy value in the extension, and write the subject domain policy value from the

extension in the [path-depth+1] column entry of the same row. If the extension maps an issuer domain

policy to more than one subject domain policy, then the affected row is copied and the new entry added

to each row. If the value in authorities-constrained-policy-set[0, path-depth] is any-policy, then write

each issuer domain policy identifier from the policy mappings extension in the [path-depth] column,

making duplicate rows as necessary and retaining qualifiers if they are present, and write the subject

domain policy value from the extension in the [path-depth+1] column entry of the same row;

– if the policy-mapping-inhibit-pending indicator is set and the certificate is not self-issued, decrement

the corresponding skip-certificates value and, if this value becomes zero, set the policy-mapping-

inhibit-indicator;

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 61

– if the inhibitPolicyMapping component of the policyConstraints extension is present in the

certificate, perform the following. For a SkipCerts value of 0, set the policy-mapping-inhibit-

indicator. For any other SkipCerts value, set the policy-mapping-inhibit-pending indicator, and set

the corresponding skip-certificates value to the lesser of the SkipCerts value and the previous skip-

certificates value (if the policy-mapping-inhibit-pending indicator was already set).

5) For any row not modified in step 3) (and every row in the case that there is no mapping extension present

in the certificate), write the policy identifier from [path-depth] column in the [path-depth+1] column of the

row.

6) If inhibit-any-policy-indicator is not set:

– If the inhibit-any-policy-pending indicator is set and the certificate is not self-issued, decrement the

corresponding skip-certificates value and, if this value becomes zero, set the inhibit-any-policy-

indicator.

– If the inhibitAnyPolicy extension is present in the certificate, perform the following. For a

SkipCerts value of 0, set the inhibit-any-policy-indicator. For any other SkipCerts value, set the

inhibit-any-policy-pending indicator, and set the corresponding skip-certificates value to the lesser of

the SkipCerts value and the previous skip-certificates value (if the inhibit-any-policy-pending

indicator was already set).

7) Increment [path-depth].

12.5.3 Explicit policy indicator processing

For all certificates, the following actions are then performed:

1) If explicit-policy-indicator is not set:

– if the explicit-policy-pending indicator is set and the certificate is not a self-issued intermediate CA

certificate, decrement the corresponding skip-certificates value and, if this value becomes zero, set

explicit-policy-indicator.

– If the requireExplicitPolicy component of the policyConstraints extension is present

in the certificate, perform the following. For a SkipCerts value of 0, set the explicit-policy-indicator.

For any other SkipCerts value, set the explicit-policy-pending indicator, and set the corresponding

skip-certificates value to the lesser of the SkipCerts value and the previous skip-certificates value

(if the explicit-policy-pending indicator was already set).

– If the requireExplicitPolicy component of the policyConstraints is present, and the

certification path includes a certificate issued by a nominated CA, it is necessary for all certificates in

the path to contain, in the certificate policies extension, an acceptable policy identifier. An acceptable

policy identifier is the identifier of the certificate policy required by the user of the certification path,

the identifier of a policy which has been declared equivalent to it through policy mapping, or any-

policy. The nominated CA is either the issuer CA of the certificate containing this extension (if the

value of requireExplicitPolicy is 0) or a CA which is the subject of a subsequent certificate in

the certification path (as indicated by a non-zero value).

12.5.4 Final processing

Once all certificates in the path have been processed, the following actions are then performed:

1) Determine the authorities-constrained-policy-set from the authorities-constrained-policy-set table. If the

table is empty, then the authorities-constrained-policy-set is the empty or null set. If the authorities-

constrained-policy-set[0, path-depth] is any-policy, then the authorities-constrained-policy-set is any-

policy. Otherwise, the authorities-constrained-policy-set is, for each row in the table, the value in the left-

most cell which does not contain the identifier any-policy.

2) Calculate the user-constrained-policy-set by forming the intersection of the authorities-constrained-policy-

set and the initial-policy-set.

3) If the explicit-policy-indicator is set, check that neither the authorities-constrained-policy-set nor the user-

constrained-policy-set is empty.

If any of the above checks were to fail, then the procedure shall terminate, returning a failure indication, an appropriate

reason code, the explicit-policy-indicator, the authorities-constrained-policy-set and the user-constrained-policy-set. If the

failure is due to an empty user-constrained-policy-set, then the path is valid under the authority-constrained policy(s), but

none is acceptable to the user.

ISO/IEC 9594-8:2017 (E)

62 Rec. ITU-T X.509 (10/2016)

If none of the above checks were to fail on the end certificate, then the procedure shall terminate, returning a success

indication together with the explicit-policy-indicator, the authorities-constrained-policy-set and the user-constrained-

policy-set.

13 PKI directory schema

This clause defines the directory schema elements used to represent PKI information in a directory. It includes

specifications of relevant object classes, attribute types and attribute value matching rules.

13.1 PKI directory object classes and name forms

This subclause includes the definition of object classes used to represent PKI objects in a directory.

13.1.1 PKI user object class

The PKI user object class is used in defining entries for objects that may be the subject of end-entity public-key certificates.

pkiUser OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {userCertificate}

 LDAP-NAME {"pkiUser"}

 LDAP-DESC "X.509 PKI User"

 ID id-oc-pkiUser }

13.1.2 PKI CA object class

The PKI CA object class is used in defining entries for objects (entities) that act as CAs.

pkiCA OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {cACertificate |

 certificateRevocationList |

 eepkCertificateRevocationList |

 authorityRevocationList |

 crossCertificatePair}

 LDAP-NAME {"pkiCA"}

 LDAP-DESC "X.509 PKI Certificate Authority"

 ID id-oc-pkiCA }

13.1.3 CRL distribution points object class and name form

The CRL distribution point object class is used in defining entries for objects which act as CRL distribution points.

cRLDistributionPoint OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND structural

 MUST CONTAIN {commonName}

 MAY CONTAIN {certificateRevocationList |

 eepkCertificateRevocationList |

 authorityRevocationList |

 deltaRevocationList}

 LDAP-NAME {"cRLDistributionPoint"}

 LDAP-DESC "X.509 CRL distribution point"

 ID id-oc-cRLDistributionPoint }

The CRL distribution point name form specifies how entries of object class cRLDistributionPoint may be named.

cRLDistPtNameForm NAME-FORM ::= {

 NAMES cRLDistributionPoint

 WITH ATTRIBUTES {commonName}

 ID id-nf-cRLDistPtNameForm }

13.1.4 Delta CRL object class

The delta CRL object class is used in defining entries for objects that hold delta revocation lists (e.g., CAs, AAs etc.).

deltaCRL OBJECT-CLASS ::= {

 SUBCLASS OF {top}

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 63

 KIND auxiliary

 MAY CONTAIN {deltaRevocationList}

 LDAP-NAME {"deltaCRL"}

 LDAP-DESC "X.509 delta CRL"

 ID id-oc-deltaCRL }

13.1.5 Certificate Policy and CPS object class

The CP CPS object class is used in defining entries for objects that contain certificate policy and/or certification practice

information.

cpCps OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {certificatePolicy |

 certificationPracticeStmt}

 LDAP-NAME {"cpCps"}

 LDAP-DESC "Certificate Policy and Certification Practice Statement"

 ID id-oc-cpCps }

13.1.6 PKI certification path object class

The PKI cert path object class is used in defining entries for objects that contain PKI paths. It will generally be used in

conjunction with entries that include auxiliary object class pkiCA or pkiUser.

pkiCertPath OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {pkiPath}

 LDAP-NAME {"pkiCertPath"}

 LDAP-DESC "PKI Certification Path"

 ID id-oc-pkiCertPath }

13.2 PKI directory attributes

This subclause includes the definition of directory attributes to store PKI information elements in a directory.

13.2.1 User certificate attribute

An attribute value of type userCertificate holds an end-entity public-key certificate.

An entity may obtain one or more end-entity public-key certificates from one or more CAs.

userCertificate ATTRIBUTE ::= {

 WITH SYNTAX Certificate

 EQUALITY MATCHING RULE certificateExactMatch

 LDAP-SYNTAX x509Certificate.&id

 LDAP-NAME {"userCertificate"}

 LDAP-DESC "X.509 user certificate"

 ID id-at-userCertificate }

13.2.2 CA certificate attribute

The cACertificate attribute of a CA's directory entry shall be used to store self-issued certificates (if any) and CA

certificates issued to this CA by CAs in the same realm as this CA. The definition of realm is purely a matter of local

policy.

cACertificate ATTRIBUTE ::= {

 WITH SYNTAX Certificate

 EQUALITY MATCHING RULE certificateExactMatch

 LDAP-SYNTAX x509Certificate.&id

 LDAP-NAME {"cACertificate"}

 LDAP-DESC "X.509 CA certificate"

 ID id-at-cAcertificate }

13.2.3 Cross-certificate pair attribute type

The issuedToThisCA component of the crossCertificatePair attribute of a CA's directory entry shall be used to

store all, except self-issued certificates issued to this CA. Optionally, the issuedByThisCA component of the

crossCertificatePair attribute, of a CA's directory entry may contain a subset of CA certificates issued by this CA

to other CAs. If a CA issues a certificate to another CA, and the subject CA is not a subordinate to the issuer CA in a

ISO/IEC 9594-8:2017 (E)

64 Rec. ITU-T X.509 (10/2016)

hierarchy, then the issuer CA shall place that certificate in the issuedByThisCA element of the crossCertificatePair

attribute of its own directory entry. When both the issuedToThisCA and the issuedByThisCA elements are present in

a single attribute value, the issuer name in one CA certificate shall match the subject name in the other and vice versa, and

the subject public key in one CA certificate shall be capable of verifying the digital signature on the other CA certificate

and vice versa. The term forward was used in previous editions for issuedToThisCA and the term reverse was used

in previous editions for issuedByThisCA.

When an issuedByThisCA element is present, the issuedToThisCA element value and the issuedByThisCA element

value need not be stored in the same attribute value; in other words, they can be stored in either a single attribute value or

two attribute values.

crossCertificatePair ATTRIBUTE ::= {

 WITH SYNTAX CertificatePair

 EQUALITY MATCHING RULE certificatePairExactMatch

 LDAP-SYNTAX x509CertificatePair.&id

 LDAP-NAME {"crossCertificatePair"}

 LDAP-DESC "X.509 cross certificate pair"

 ID id-at-crossCertificatePair }

CertificatePair ::= SEQUENCE {

 issuedToThisCA [0] Certificate OPTIONAL,

 issuedByThisCA [1] Certificate OPTIONAL,

 ... }

 (WITH COMPONENTS { ..., issuedToThisCA PRESENT} |

 WITH COMPONENTS { ..., issuedByThisCA PRESENT})

13.2.4 Public-key certificate revocation list attribute type

A value of this attribute type holds a CRL providing information about revoked public-key certificates.

certificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"certificateRevocationList"}

 LDAP-DESC "X.509 certificate revocation list"

 ID id-at-certificateRevocationList }

13.2.5 End-entity public-key certificate revocation list attribute type

A value of the following attribute type holds a CRL providing information about revoked end-entity public-key certificates.

eepkCertificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"eepkCertificateRevocationList"}

 LDAP-DESC "X.509 EEPK certificate revocation list"

 ID id-at-eepkCertificateRevocationList }

13.2.6 CA revocation list attribute type

A value of the following attribute type contains a list of revoked CA certificates.

authorityRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"authorityRevocationList"}

 LDAP-DESC "X.509 CA revocation list"

 ID id-at-authorityRevocationList }

13.2.7 Delta revocation list attribute

The following attribute type is defined for holding a dCRL in a directory entry:

deltaRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"deltaRevocationList"}

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 65

 LDAP-DESC "X.509 delta revocation list"

 ID id-at-deltaRevocationList }

13.2.7 Supported algorithms attribute

A directory attribute is defined to support the selection of an algorithm for use when communicating with a remote end

entity using end-entity public-key certificates as defined in this Specification. The following ASN.1 defines this (multi-

valued) attribute type:

supportedAlgorithms ATTRIBUTE ::= {

 WITH SYNTAX SupportedAlgorithm

 EQUALITY MATCHING RULE algorithmIdentifierMatch

 LDAP-SYNTAX x509SupportedAlgorithm.&id

 LDAP-NAME {"supportedAlgorithms"}

 LDAP-DESC "X.509 support algorithms"

 ID id-at-supportedAlgorithms }

SupportedAlgorithm ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 intendedUsage [0] KeyUsage OPTIONAL,

 intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL,

 ... }

Each value of the multi-valued attribute shall have a distinct algorithmIdentifier value. The value of the

intendedUsage component provides an indication of the intended usage of the algorithm (see clause 9.2.2.3 for

recognized uses). The value of the intendedCertificatePolicies component identifies the certificate policies and,

optionally, certificate policy qualifiers with which the identified algorithm may be used.

13.2.8 Certification practice statement attribute

The certificationPracticeStmt attribute is used to store information about a CA's certification practice statement.

certificationPracticeStmt ATTRIBUTE ::= {

 WITH SYNTAX InfoSyntax

 ID id-at-certificationPracticeStmt }

InfoSyntax ::= CHOICE {

 content UnboundedDirectoryString,

 pointer SEQUENCE {

 name GeneralNames,

 hash HASH{HashedPolicyInfo} OPTIONAL,

 ... },

 ... }

POLICY ::= TYPE-IDENTIFIER

HashedPolicyInfo ::= POLICY.&Type({Policies})

Policies POLICY ::= {...} -- Defined by implementers

If content is present, the complete content of the authority's certification practice statement is included.

If pointer is present, the name component references one or more locations where a copy of the authority's certification

practice statement can be located. If the hash component is present, it contains a HASH of the content of the certification

practice statement that should be found at a referenced location. This hash can be used to perform an integrity check of the

referenced document.

13.2.9 Certificate policy attribute

The certificatePolicy attribute is used to store information about a certificate policy.

certificatePolicy ATTRIBUTE ::= {

 WITH SYNTAX PolicySyntax

 ID id-at-certificatePolicy }

PolicySyntax ::= SEQUENCE {

 policyIdentifier PolicyID,

 policySyntax InfoSyntax,

 ... }

PolicyID ::= CertPolicyId

ISO/IEC 9594-8:2017 (E)

66 Rec. ITU-T X.509 (10/2016)

The policyIdentifier component includes the object identifier registered for the particular certificate policy.

The policySyntax component (see clause 13.2.8) has the following two alternatives:

a) If the content alternative is taken, the complete content of the certificate policy is included.

b) If the pointer alternative is taken, then

– the name component references one or more locations where a copy of the certificate policy can be

located.

– If the hash component is present, it contains a HASH of the content of the certificate policy that should

be found at a referenced location. This hash can be used to perform an integrity check of the referenced

document.

NOTE – The option to include a hash in this attribute is purely to perform an integrity check against data located

from a source other than a directory. The HASH stored in a directory needs to be protected. Directory security

services, including strong authentication, access control and/or signed attributes could be used for this purpose. In

addition, even if the HASH matches the original CP/CPS document, there are additional security requirements to

ensure that the original specification itself is the correct document (e.g., the document is signed by an appropriate

authority).

13.2.10 PKI path attribute

The PKI path attribute is used to store certification paths, each consisting of a sequence of public-key certificates.

pkiPath ATTRIBUTE ::= {

 WITH SYNTAX PkiPath

 ID id-at-pkiPath }

An attribute of this type may be stored in a directory entry of object class pkiCA or pkiUser.

When stored in pkiCA entries, values of this attribute type contain certification paths excluding end-entity public-key

certificates. As such, the attribute is used to store certification paths that are frequently used by relying parties associated

with that CA. A value of this attribute can be used in conjunction with any end-entity public-key certificate issued by the

last certificate subject in the attribute value.

When stored in pkiUser entries, values of this attribute contain certification paths that include the end-entity public-key

certificate. In this case, the end entity is the entity whose entry holds this attribute. The values of the attribute represent

complete certification paths for public-key certificates issued to this user.

13.3 PKI directory matching rules

This subclause defines matching rules for use with values of attribute types with syntax Certificate,

CertificatePair, CertificateList, CertificatePolicy, and SupportedAlgorithm, respectively. This

subclause also defines matching rules to facilitate the selection of ´public-key certificates or CRLs with specific

characteristics from multi-valued attributes holding multiple public-key certificates or CRLs. The enhanced certificate

matching rule provides the ability to perform more sophisticated matching against public-key certificates held in directory

entries.

13.3.1 Certificate exact match

The certificate exact match rule compares for equality a presented value with an attribute value with syntax Certificate.

It uniquely selects a single certificate.

certificateExactMatch MATCHING-RULE ::= {

 SYNTAX CertificateExactAssertion

 ID id-mr-certificateExactMatch }

CertificateExactAssertion ::= SEQUENCE {

 serialNumber CertificateSerialNumber,

 issuer Name,

 ... }

This matching rule returns TRUE if the components in the attribute value match those in the presented value.

13.3.2 Certificate match

The certificate match rule compares a presented value with an attribute value with syntax Certificate. It selects one or

more certificates on the basis of various characteristics.

certificateMatch MATCHING-RULE ::= {

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 67

 SYNTAX CertificateAssertion

 ID id-mr-certificateMatch }

CertificateAssertion ::= SEQUENCE {

 serialNumber [0] CertificateSerialNumber OPTIONAL,

 issuer [1] Name OPTIONAL,

 subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,

 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

 certificateValid [4] Time OPTIONAL,

 privateKeyValid [5] GeneralizedTime OPTIONAL,

 subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,

 keyUsage [7] KeyUsage OPTIONAL,

 subjectAltName [8] AltNameType OPTIONAL,

 policy [9] CertPolicySet OPTIONAL,

 pathToName [10] Name OPTIONAL,

 subject [11] Name OPTIONAL,

 nameConstraints [12] NameConstraintsSyntax OPTIONAL,

 ... }

AltNameType ::= CHOICE {

 builtinNameForm ENUMERATED {

 rfc822Name (1),

 dNSName (2),

 x400Address (3),

 directoryName (4),

 ediPartyName (5),

 uniformResourceIdentifier (6),

 iPAddress (7),

 registeredId (8),

 ...},

 otherNameForm OBJECT IDENTIFIER,

 ... }

CertPolicySet ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

This matching rule returns TRUE if all of the components that are present in the presented value match the corresponding

components of the attribute value, as follows:

serialNumber matches if the value of this component in the attribute value equals that in the presented value;

issuer matches if the value of this component in the attribute value equals that in the presented value;

subjectKeyIdentifier matches if the value of this component in the stored attribute value equals that in the presented

value; there is no match if the stored attribute value contains no subject key identifier extension;

authorityKeyIdentifier matches if the value of this component in the stored attribute value equals that in the

presented value; there is no match if the stored attribute value contains no authority key identifier extension or if not all

components in the presented value are present in the stored attribute value;

certificateValid matches if the presented value falls within the validity period of the stored attribute value;

privateKeyValid matches if the presented value falls within the period indicated by the private key usage period

extension of the stored attribute value, or if there is no private key usage period extension in the stored attribute value;

subjectPublicKeyAlgID matches if it is equal to the algorithm component of the algorithmIdentifier of the

subjectPublicKeyInformation component of the stored attribute value;

keyUsage matches if all of the bits set in the presented value are also set in the key usage extension in the stored attribute

value, or if there is no key usage extension in the stored attribute value;

subjectAltName matches if the stored attribute value contains the subject alternative name extension with an AltNames

component of the same name type as indicated in the presented value;

policy matches if at least one member of the CertPolicySet presented appears in the certificate policies extension in

the stored attribute value or if either the presented or stored public-key certificate contains the special value anyPolicy

in the policy component. There is no match if there is no certificate policies extension in the stored attribute value;

pathToName matches unless the public-key certificate has a name constraints extension which inhibits the construction of

a certification path to the presented name value;

subject matches if the value of this component in the attribute value equals that in the presented value;

ISO/IEC 9594-8:2017 (E)

68 Rec. ITU-T X.509 (10/2016)

nameConstraints matches if the subject names in the stored attribute value are within the name space given by the value

of the permitted-subtrees component of the presented value and are not within the name space given by the value of the

excluded-subtrees component of the presented value.

13.3.3 Certificate pair exact match

The certificate pair exact match rule compares for equality a presented value with an attribute value of type

CertificatePair. It uniquely selects a single cross-certificate pair.

certificatePairExactMatch MATCHING-RULE ::= {

 SYNTAX CertificatePairExactAssertion

 ID id-mr-certificatePairExactMatch }

CertificatePairExactAssertion ::= SEQUENCE {

 issuedToThisCAAssertion [0] CertificateExactAssertion OPTIONAL,

 issuedByThisCAAssertion [1] CertificateExactAssertion OPTIONAL,

 ... }

 (WITH COMPONENTS { ..., issuedToThisCAAssertion PRESENT } |

 WITH COMPONENTS { ..., issuedByThisCAAssertion PRESENT })

This matching rule returns TRUE if the components that are present in the issuedToThisCAAssertion and

issuedByThisCAAssertion components of the presented value match the corresponding components of the

issuedToThisCA and issuedByThisCA components, respectively, in the stored attribute value.

13.3.4 Certificate pair match

The certificate pair match rule compares a presented value with an attribute value of type CertificatePair. It selects

one or more cross-certificate pairs on the basis of various characteristics of either the issuedToThisCA or

issuedByThisCA certificate of the pair.

certificatePairMatch MATCHING-RULE ::= {

 SYNTAX CertificatePairAssertion

 ID id-mr-certificatePairMatch }

CertificatePairAssertion ::= SEQUENCE {

 issuedToThisCAAssertion [0] CertificateAssertion OPTIONAL,

 issuedByThisCAAssertion [1] CertificateAssertion OPTIONAL,

 ... }

 (WITH COMPONENTS {..., issuedToThisCAAssertion PRESENT } |

 WITH COMPONENTS {..., issuedByThisCAAssertion PRESENT })

This matching rule returns TRUE if all of the components that are present in the issuedToThisCAAssertion and

issuedByThisCAAssertion components of the presented value match the corresponding components of the

issuedToThisCA and issuedByThisCA components, respectively, in the stored attribute value.

13.3.5 Certificate list exact match

The certificate list exact match rule compares for equality a presented value with an attribute value of type

CertificateList. It uniquely selects a single CRL.

certificateListExactMatch MATCHING-RULE ::= {

 SYNTAX CertificateListExactAssertion

 ID id-mr-certificateListExactMatch }

CertificateListExactAssertion ::= SEQUENCE {

 issuer Name,

 thisUpdate Time,

 distributionPoint DistributionPointName OPTIONAL }

The distributionPoint component, when present, matches if the stored attribute value contains an issuing distribution

point extension and the value of this component in the presented value equals the corresponding value, in at least one name

form, in that extension.

The rule returns TRUE if the components in the stored attribute value match those in the presented value.

13.3.6 Certificate list match

The certificate list match rule compares a presented value with an attribute value of type CertificateList. It selects

one or more CRLs based on various characteristics.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 69

certificateListMatch MATCHING-RULE ::= {

 SYNTAX CertificateListAssertion

 ID id-mr-certificateListMatch }

CertificateListAssertion ::= SEQUENCE {

 issuer Name OPTIONAL,

 minCRLNumber [0] CRLNumber OPTIONAL,

 maxCRLNumber [1] CRLNumber OPTIONAL,

 reasonFlags ReasonFlags OPTIONAL,

 dateAndTime Time OPTIONAL,

 distributionPoint [2] DistributionPointName OPTIONAL,

 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

 ... }

The matching rule returns TRUE if all of the components that are present in the presented value match the corresponding

components of the stored attribute value, as follows:

issuer matches if the value of this component in the attribute value equals that in the presented value;

minCRLNumber matches if its value is less than or equal to the value in the CRL number extension of the stored attribute

value; there is no match if the stored attribute value contains no CRL number extension;

maxCRLNumber matches if its value is greater than or equal to the value in the CRL number extension of the stored attribute

value; there is no match if the stored attribute value contains no CRL number extension;

reasonFlags matches if any of the bits that are set in the presented value are also set in the onlySomeReasons

components of the issuing distribution point extension of the stored attribute value; there is also a match if the stored

attribute value contains no reasonFlags in the issuing distribution point extension, or if the stored attribute value contains

no issuing distribution point extension;

NOTE – Even though a CRL matches on a particular value of reasonFlags, the CRL may not contain any revocation notices

with that reason code.

dateAndTime matches if the value is equal to or later than the value in the thisUpdate component of the stored attribute

value and is earlier than the value in the nextUpdate component of the stored attribute value; there is no match if the

stored attribute value contains no nextUpdate component;

distributionPoint matches if the stored attribute value contains an issuing distribution point extension and the value

of this component in the presented value equals the corresponding value, in at least one name form, in that extension;

authorityKeyIdentifier matches if the value of this component in the stored attribute value equals that in the

presented value; there is no match if the stored attribute value contains no authority key identifier extension or if not all

components in the presented value are present in the stored attribute value.

13.3.7 Algorithm identifier match

The algorithm identifier match rule compares for equality a presented value with an attribute value of type

SupportedAlgorithms.

algorithmIdentifierMatch MATCHING-RULE ::= {

 SYNTAX AlgorithmIdentifier {{SupportedAlgorithms}}

 ID id-mr-algorithmIdentifierMatch }

The rule returns TRUE if the presented value is equal to the algorithmIdentifier component of the stored attribute

value.

13.3.8 Policy match

The policy match rule compares for equality a presented value with an attribute value of type CertificatePolicy or

an attribute value of type privPolicy.

policyMatch MATCHING-RULE ::= {

 SYNTAX PolicyID

 ID id-mr-policyMatch }

The rule returns TRUE if the presented value is equal to the policyIdentifier component of the stored attribute value.

13.3.9 PKI path match

The pkiPathMatch match rule compares for equality a presented value with an attribute value of type pkiPath. A relying

party may use this matching rule to select a path beginning with a public-key certificate issued by a CA which it trusts and

ending with a public-key certificate issued to the specified subject.

ISO/IEC 9594-8:2017 (E)

70 Rec. ITU-T X.509 (10/2016)

pkiPathMatch MATCHING-RULE ::= {

 SYNTAX PkiPathMatchSyntax

 ID id-mr-pkiPathMatch }

PkiPathMatchSyntax ::= SEQUENCE {

 firstIssuer Name,

 lastSubject Name,

 ... }

This matching rule returns TRUE if the presented value in the firstIssuer component matches the corresponding

elements of the issuer component of the first public-key certificate in the SEQUENCE in the stored value and the presented

value in the lastSubject component matches the corresponding elements of the subject component of the last public-

key certificate in the SEQUENCE in the stored value. This matching rule returns FALSE if either match fails.

13.3.10 Enhanced certificate match

The enhanced certificate match rule compares a presented value with an attribute value of type Certificate. It selects

one or more public-key certificates based on various characteristics.

enhancedCertificateMatch MATCHING-RULE ::= {

 SYNTAX EnhancedCertificateAssertion

 ID id-mr-enhancedCertificateMatch }

EnhancedCertificateAssertion ::= SEQUENCE {

 serialNumber [0] CertificateSerialNumber OPTIONAL,

 issuer [1] Name OPTIONAL,

 subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,

 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

 certificateValid [4] Time OPTIONAL,

 privateKeyValid [5] GeneralizedTime OPTIONAL,

 subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,

 keyUsage [7] KeyUsage OPTIONAL,

 subjectAltName [8] AltName OPTIONAL,

 policy [9] CertPolicySet OPTIONAL,

 pathToName [10] GeneralNames OPTIONAL,

 subject [11] Name OPTIONAL,

 nameConstraints [12] NameConstraintsSyntax OPTIONAL,

 ... }

 (ALL EXCEPT ({ -- none; at least one component shall be present --}))

AltName ::= SEQUENCE {

 altnameType AltNameType,

 altNameValue GeneralName OPTIONAL }

The directory search operation allows for multiple values of EnhancedCertificateAssertion to be combined in filter

specifications, including and/or logic. This matching rule returns TRUE if all of the components that are present in the

presented value match the corresponding components of the attribute value, as follows:

Matching for serialNumber; issuer; subjectKeyIdentifier; authorityKeyIdentifier; certificateValid,

privateKeyValid, policy, subject, and nameConstraints components is as defined for the same components in

the certificateMatch matching rule.

subjectAltName component contains an altNameType and optional altNameValue components. If altNameValue

is present, the value shall be of the same name form as indicated in altNameType.

subjectAltName matches if at least one of the following conditions is true:

– The presented value contains only the altNameType component and the stored attribute value contains the

subject alternative name extension with an AltNames component of the same type as indicated in the

presented value.

– The presented value contains both the altNameType and altNameValue components and the stored

attribute value contains the subject alternative name extension with an AltNames component of the same

type and value indicated in the presented value.

subjectAltName match fails if at least one of the following conditions is true:

– The stored attribute value does not contain the subject alternative name extension.

– The stored attribute value contains the subject alternative name extension but the AltNames component

does not include the same type as identified in the presented value.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 71

– The presented value contains both the altNameType and altNameValue components and the stored

attribute value contains the subject alternative name extension with an AltNames component of the same

type indicated in the presented value, but the stored value does not contain the same value of that type as in

the presented value.

subjectAltName match is undefined if the presented value contains both the altNameType and altNameValue

components and the stored attribute value contains the subject alternative name extension with an AltNames component

of the same type indicated in the presented value, but the type is one for which the directory is unable to compare values

for the purposes of determining a match. This may be because the name form is not appropriate for matching or because

the directory is unable to perform the required comparisons.

pathToName matches unless the public-key certificate has a name constraints extension which inhibits the construction of

a certification path to any of the presented name values. For example, if attempting to retrieve public-key certificates that

form a path to an end-entity public-key certificate which has a subject value of "dc=com; dc=corporate; cn=john.smith", it

may be useful to include an assertion in the search operation containing this distinguished name in the pathToName

component. A stored public-key certificate that contained a name constraints extension that excluded the complete subtree

below base "dc=com; dc=company A" would fail in certification path validation to that end-entity public-key certificate

and would therefore not be a matched value for this sample assertion.

13.4 PKI directory syntax definitions

13.4.1 X.509 Certificate syntax

x509Certificate SYNTAX-NAME ::= {

 DESC "X.509 Certificate"

 DIRECTORY SYNTAX Certificate

 ID id-lsx-x509Certificate }

A value which has LDAP x509Certificate syntax is the specification of a public-key certificate expressed in a binary

encoding as specified in IETF RFC 4523.

13.4.2 X.509 Certificate List syntax

x509CertificateList SYNTAX-NAME ::= {

 DESC "X.509 Certificate List"

 DIRECTORY SYNTAX CertificateList

 ID id-lsx-x509CertificateList }

A value which has LDAP x509CertificateList syntax is the specification of a public-key certificate list expressed in

a binary encoding as specified in IETF RFC 4523.

13.4.3 X.509 Certificate Pair syntax

x509CertificatePair SYNTAX-NAME ::= {

 DESC "X.509 Certificate Pair"

 DIRECTORY SYNTAX CertificatePair

 ID id-lsx-x509CertificatePair }

A value which has LDAP x509CertificatePair syntax is the specification of a public-key certificate pair expressed in

a binary encoding as specified in IETF RFC 4523.

13.4.4 X.509 Supported Algorithm

x509SupportedAlgorithm SYNTAX-NAME ::= {

 DESC "X.509 Supported Algorithm"

 DIRECTORY SYNTAX SupportedAlgorithm

 ID id-lsx-x509SupportedAlgorithm }

A value which has LDAP x509SupportedAlgorithm syntax is the specification of supported algorithms expressed in a

binary encoding as specified in IETF RFC 4523.

13.4.5 X.509 Certificate Exact Assertion

x509CertificateExactAssertion SYNTAX-NAME ::= {

 DESC "X.509 Certificate Exact Assertion"

 DIRECTORY SYNTAX CertificateExactAssertion

 ID id-ldx-x509CertificateExactAssertion }

ISO/IEC 9594-8:2017 (E)

72 Rec. ITU-T X.509 (10/2016)

A value which has LDAP x509CertificateExactAssertion syntax is the specification of public-key exact assertion

expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

13.4.6 X.509 Certificate Assertion

x509CertificateAssertion SYNTAX-NAME ::= {

 DESC "X.509 Certificate Assertion"

 DIRECTORY SYNTAX CertificateAssertion

 ID id-ldx-x509CertificateAssertion }

A value which has LDAP x509CertificateAssertion syntax is the specification of public-key assertion expressed in

a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

13.4.7 X.509 Certificate Pair Exact Assertion

x509CertificatePairExactAssertion SYNTAX-NAME ::= {

 DESC "X.509 Certificate Pair Exact Assertion"

 DIRECTORY SYNTAX CertificatePairExactAssertion

 ID id-ldx-x509CertificatePairExactAssertion }

A value which has LDAP x509CertificatePairExactAssertion syntax is the specification of public-key certificate

pair exact assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

13.4.8 X.509 Certificate Pair Assertion

x509CertificatePairAssertion SYNTAX-NAME ::= {

 DESC "X.509 Certificate Pair Assertion"

 DIRECTORY SYNTAX CertificatePairAssertion

 ID id-ldx-x509CertificatePairAssertion }

A value which has LDAP x509CertificatePairAssertion syntax is the specification of a public-key certificate pair

assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

13.4.9 X.509 Certificate List Exact Assertion syntax

x509CertificateListExactAssertion SYNTAX-NAME ::= {

 DESC "X.509 Certificate List Exact Assertion"

 DIRECTORY SYNTAX CertificateListExactAssertion

 ID id-ldx-x509CertListExactAssertion }

A value which has LDAP x509CertificateListExactAssertion syntax is the specification of a public-key

certificate list exact assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

13.4.10 X.509 Certificate List Assertion syntax

x509CertificateListAssertion SYNTAX-NAME ::= {

 DESC "X.509 Certificate List Assertion"

 DIRECTORY SYNTAX CertificateListAssertion

 ID id-ldx-x509CertificateListAssertion }

A value which has LDAP x509CertificateListAssertion syntax is the specification of a public-key certificate list

assertion expressed in a Generic String Encoding Rules encoding as specified in IETF RFC 4523.

13.4.11 X.509 Algorithm Identifier syntax

x509AlgorithmIdentifier SYNTAX-NAME ::= {

 DESC "X.509 Algorithm Identifier"

 DIRECTORY SYNTAX AlgorithmIdentifier{{SupportedAlgorithms}}

 ID id-ldx-x509AlgorithmIdentifier }

A value which has LDAP x509AlgorithmIdentifie syntax is the specification of an algorithm identifier expressed in

a binary encoding as specified in IETF RFC 4523.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 73

SECTION 3 – ATTRIBUTE CERTIFICATE FRAMEWORK

The attribute certificate framework defined here provides a foundation upon which privilege management infrastructures

(PMI) can be built. These infrastructures can support applications such as access control.

The binding of a privilege to an entity is provided by an authority through a digitally signed data structure called an attribute

certificate or through a public-key certificate containing the subjectDirectoryAttributes extension defined

explicitly for this purpose. The format of attribute certificates is defined here, including an extensibility mechanism and a

set of specific attribute certificate extensions. Some of these extensions defined in Section 2 are also relevant for attribute

certificates. Revocation of attribute certificates may or may not be needed. For example, in some environments, the

attribute certificate validity periods may be very short (e.g., minutes), negating the need for a revocation scheme. If, for

any reason, an authority revokes a previously issued attribute certificate, users relying on the content of an attribute

certificate (privilege verifier) need to be able to learn that revocation has occurred so they do not use an untrustworthy

attribute certificate. Revocation lists are one scheme that can be used to notify privilege verifiers of revocations. The format

of revocation lists is defined in Section 2 of this Specification, including an extensibility mechanism and a set of revocation

list extensions. Some of these extensions are also relevant for attribute certificate revocation lists. Additional extensions

are defined here. In both the attribute certificate and revocation list case, other bodies may also define additional extensions

that are useful to their specific environments.

An entity relying on an attribute certificate to verify some asserted privilege is called a privilege verifier. A privilege

verifier needs to validate an attribute certificate prior to using that attribute certificate for an application. Procedures for

performing that validation are also defined here, including verifying the integrity of the attribute certificate itself, its

revocation status, and its validity with respect to the intended use.

This framework includes a number of optional elements that are appropriate only in some environments. Although the

models are defined as complete, this framework can be used in environments where not all components of the defined

models are used. For example, there are environments where the revocation of attribute certificates is not required. Privilege

delegation and the use of roles are also aspects of this framework that are not universally applicable. However, these are

included in this Specification so that those environments that do have requirements for them can also be supported.

14 Attribute certificates

Public-key certificates are principally intended to provide an identity service upon which other security services, such as

data integrity, entity authentication, confidentiality and authorization, may be built. There are two distinct mechanisms

provided in this Specification for binding a privilege attribute to a holder.

Public-key certificates, used in combination with the entity authentication service, can provide an authorization service

directly, if privileges are associated with the subject. Public-key certificates may contain a

subjectDirectoryAttributes extension that contains privileges associated with the subject of the public-key

certificate (see clause 9.3.2.3). This mechanism is appropriate in situations where the CA issuing the public-key certificate

has an associated authority for delegating the privilege (i.e., an AA) and the validity period of the privilege corresponds to

the validity period of the public-key certificate. If any of the extensions defined in clause 17 are included in a public-key

certificate, those extensions apply equally to all privileges assigned in the subjectDirectoryAttributes extension of

that public-key certificate.

In the more general case, entity privileges will have lifetimes that do not match the validity period for a public-key

certificate. Privileges will often have a much shorter lifetime. The authority for the assignment of privilege will frequently

be one other than the authority issuing that same entity a public-key certificate and different privileges may be assigned by

different attribute authorities (AA). Privileges may also be assigned based on a temporal context and the 'turn on/turn off'

aspect of privileges may well be asynchronous with the lifetime of the public-key certificate and/or asynchronous with

entity privileges issued from a different AA. The use of attribute certificates issued by an AA provides a flexible privilege

management infrastructure (PMI) which can be established and managed independently from a PKI. At the same time,

there is a relationship between the two whereby the PKI is used to authenticate identities of issuers and holders in attribute

certificates.

14.1 Attribute certificate structure

An attribute certificate is a separate structure from a subject's public-key certificate. A subject may have multiple attribute

certificates associated with each of its public-key certificates. There is no requirement that the same authority create both

the public-key certificate and attribute certificate(s) for an entity; in fact, a separation of duties will frequently dictate

otherwise. In environments where different authorities have responsibility for issuing public key and attribute certificates,

the public-key certificate(s) issued by a CA and the attribute certificate(s) issued by an attribute authority (AA) would be

signed using different private signing keys. In environments where a single entity is both the CA, issuing public-key

ISO/IEC 9594-8:2017 (E)

74 Rec. ITU-T X.509 (10/2016)

certificates, and the AA, issuing attribute certificates, it is strongly recommended that a different key be used to sign

attribute certificates than the key used to sign public-key certificates. Exchanges between the issuing authority and the

entity receiving an attribute certificate are outside the scope of this Specification.

The attribute certificate syntax is defined as follows.

AttributeCertificate ::= SIGNED{TBSAttributeCertificate}

TBSAttributeCertificate ::= SEQUENCE {

 version AttCertVersion, -- version is v2

 holder Holder,

 issuer AttCertIssuer,

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 serialNumber CertificateSerialNumber,

 attrCertValidityPeriod AttCertValidityPeriod,

 attributes SEQUENCE OF Attribute{{SupportedAttributes}},

 issuerUniqueID UniqueIdentifier OPTIONAL,

 ...,

 ...,

 extensions OPTIONAL }

AttCertVersion ::= INTEGER {v2(1)}

Holder ::= SEQUENCE {

 baseCertificateID [0] IssuerSerial OPTIONAL,

 entityName [1] GeneralNames OPTIONAL,

 objectDigestInfo [2] ObjectDigestInfo OPTIONAL }

 (WITH COMPONENTS {..., baseCertificateID PRESENT } |

 WITH COMPONENTS {..., entityName PRESENT } |

 WITH COMPONENTS {..., objectDigestInfo PRESENT })

IssuerSerial ::= SEQUENCE {

 issuer GeneralNames,

 serial CertificateSerialNumber,

 issuerUID UniqueIdentifier OPTIONAL,

 ... }

ObjectDigestInfo ::= SEQUENCE {

 digestedObjectType ENUMERATED {

 publicKey (0),

 publicKeyCert (1),

 otherObjectTypes (2)},

 otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,

 digestAlgorithm AlgorithmIdentifier{{SupportedAlgorithms}},

 objectDigest BIT STRING,

 ... }

AttCertIssuer ::= [0] SEQUENCE {

 issuerName GeneralNames OPTIONAL,

 baseCertificateID [0] IssuerSerial OPTIONAL,

 objectDigestInfo [1] ObjectDigestInfo OPTIONAL,

 ... }

 (WITH COMPONENTS {..., issuerName PRESENT } |

 WITH COMPONENTS {..., baseCertificateID PRESENT } |

 WITH COMPONENTS {..., objectDigestInfo PRESENT })

AttCertValidityPeriod ::= SEQUENCE {

 notBeforeTime GeneralizedTime,

 notAfterTime GeneralizedTime,

 ... }

The TBSAttributeCertificate data type is the unsigned attribute certificate and is referred to as a to-be-signed

attribute certificate. It shall be encoded using the DER.

The version component shall specify the version of the attribute certificate. For attribute certificates issued in accordance

with the syntax in this Specification, version shall be v2.

The holder component shall convey the identity of the holder of the attribute certificate by the following components:

a) The baseCertificateID component, if present, shall identify a particular public-key certificate that is to

be used to authenticate the identity of this holder when asserting privileges with this attribute certificate.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 75

b) The entityName component, if present, shall hold one or more names for the holder. If entityName is

the only component present in holder, any public-key certificate that has one of these names as its subject

can be used to authenticate the identity of this holder when asserting privileges with this attribute certificate.

If the baseCertificateID and entityName components are both present, only the public-key certificate

specified by baseCertificateID may be used. In this case, the entityName component is included only

as a tool to help the privilege verifier locate the identified public-key certificate.

NOTE 1 – There is a risk with the sole use of GeneralNames to identify the holder in that this points only to a name for

the holder. This is generally insufficient to enable the authentication of a holder's identity for the purposes of issuing

privileges to that holder. Use of the issuer name and serial number of a specific public-key certificate, however, enables

the issuer of attribute certificates to rely on the authentication process performed by the CA when issuing that particular

public-key certificate. Also, some of the options in GeneralNames (e.g., IPAddress) are inappropriate for use in naming

an attribute certificate holder, especially when the holder is a role and not an individual entity. Another problem with

GeneralNames alone as an identifier for a holder is that many name forms within that construct do not have strict

registration authorities or processes for the assignment of names.

c) The objectDigestInfo component, if present, is used directly to authenticate the identity of a holder,

including an executable holder (e.g., an applet). The holder is authenticated by comparing a digest of the

corresponding information, created by the privilege verifier with the same algorithm identified in

objectDigestInfo with the content of objectDigest. If the two are identical, the holder is

authenticated for the purposes of asserting privileges with this attribute certificate.

– publicKey shall be indicated when a hash of an entity's public key is included. Hashing a public key

may not uniquely identify one public-key certificate (i.e., the identical key value may appear in

multiple public-key certificates). In order to link an attribute certificate to a public key, the hash is

calculated over the representation of that public key which would be present in a public-key certificate.

Specifically, the input for the hash algorithm shall be the DER encoding of a

SubjectPublicKeyInfo representation of the key. Note that this includes the

AlgorithmIdentifier, as well as the BIT STRING. Also, note that if the public key value used as

input to the hash function has been extracted from a public-key certificate, then it is possible (e.g., if

parameters for the digital signature algorithm were inherited) that this may not be sufficient input for

the HASH. The correct input for hashing in this context will include the value of the inherited

parameters and thus may differ from the SubjectPublicKeyInfo present in the public-key

certificate.

– publicKeyCert shall be indicated when a public-key certificate is hashed; the hash is over the entire

DER encoding of the public-key certificate, including the signature bits.

– otherObjectTypes shall be indicated when objects other than public-keys or public-key certificates

are hashed (e.g., software objects). The identity of the type of object may optionally be supplied. The

portion of the object to be hashed can be determined either by the explicitly stated identifier of the type

or, if the identifier is not supplied, by the context in which the object is used.

The issuer component shall convey the identity of the AA that issued the attribute certificate.

a) The issuerName component, if present, shall identify one or more names for the issuer.

b) The baseCertificateID component, if present, shall identify the issuer by reference to a specific public-

key certificate for which this issuer is the subject.

c) The objectDigestInfo component, if present, shall identify the issuer by providing a hash of identifying

information for the issuer.

The signature component shall identify the cryptographic algorithm used to digitally sign the attribute certificate.

NOTE 2 – By including this component, the signature algorithm is protected by the signature.

The serialNumber component shall be a serial number that uniquely identifies the attribute certificate within the scope

of its issuer.

The attrCertValidityPeriod component shall convey the time period during which the attribute certificate is

considered valid, expressed in GeneralizedTime format.

The attributes component shall contain the attributes associated with the holder that are being certified (e.g., the

privileges).

NOTE 3 – In the case of attribute descriptor attribute certificates, this sequence of attributes can be empty.

The issuerUniqueID component may be used to identify the issuer of the attribute certificate in instances where the

issuer component is not sufficient.

NOTE 4 – The use of the issuerUniqueID component is deprecated. This component was added because at one time there was

some fear of the reuse of distinguished names.

ISO/IEC 9594-8:2017 (E)

76 Rec. ITU-T X.509 (10/2016)

The extensions component, when present, shall hold one or more extensions as defined in clause 17.

If unknown elements appear within the extension, and the extension is not flagged as critical, those unknown elements

shall be ignored according to the rules of extensibility documented in clause 12.2.2 of Rec. ITU-T X.519 | ISO/IEC 9594-5.

The framework for attribute certificates described in this section is primarily focused on the model in which privilege is

placed within attribute certificates. Some of the attribute certificate extensions defined in in clause 17 can also be placed

in a public-key certificate when including the subjectDirectoryAttributes extension.

14.2 Delegation paths

Just as with public-key certificates, there may be a requirement to convey a delegation path (e.g., within an application

protocol to assert privileges). The following ASN.1 data type can be used to represent a delegation path:

AttributeCertificationPath ::= SEQUENCE {

 attributeCertificate AttributeCertificate,

 acPath SEQUENCE OF ACPathData OPTIONAL,

 ... }

ACPathData ::= SEQUENCE {

 certificate [0] Certificate OPTIONAL,

 attributeCertificate [1] AttributeCertificate OPTIONAL,

 ... }

14.3 Attribute certificate revocation lists

14.3.1 Attribute certificate revocation list principles

The AA that issues attribute certificates also has the responsibility to indicate the validity of the attribute certificates that

it issues. Generally, attribute certificates are subject to possible subsequent revocation. This revocation and a notification

of the revocation may be done directly by the same AA that issued the attribute certificate, or indirectly by another authority

duly authorized by the AA that issued the attribute certificate. An AA that issues attribute certificates is required to state,

possibly through a published statement of their practices, through the attribute certificates themselves, or through some

other identified means, whether:

– the attribute certificates cannot be revoked;

– the attribute certificates may be revoked by the same issuing AA directly; or

– the issuing AA authorizes a different entity to perform revocation.

AAs that do revoke attribute certificates are required to state, through similar means, what mechanism(s) can be used by

privilege verifiers to obtain revocation status information about attribute certificates issued by that AA. This Specification

defines an attribute certificate revocation list (ACRL) mechanism but does not preclude the use of alternative mechanisms.

Privilege verifiers check revocation status information, as appropriate, for all attribute certificates considered during the

delegation path processing procedure described in clause 18 to validate an attribute certificate.

Only an AA that is authorized to issue ACRLs may choose to delegate that authority to another entity. If this delegation is

done, it shall be verifiable at the time of attribute certificate/ACRL verification. The cRLDistributionPoints extension

(see clause 17.2.2.1) may be used for this purpose. The cRLIssuer component of this extension is populated with the

name(s) of any entities, other than the issuing AA itself, that have been authorized to issue CRLs concerning the revocation

status of the attribute certificate in question.

Attribute certificates shall have a lifetime associated with them, at the end of which they expire. In order to provide

continuity of service, the AA shall ensure timely availability of replacement attribute certificates to supersede

expired/expiring attribute certificates. Revocation notice date is the date/time that a revocation notice for an attribute

certificate first appears on an ACRL, regardless of whether it is a base or dACRL. In the ACRL, revocation notice date is

the value contained in the thisUpdate component. Revocation date is the date/time the AA actually revoked the attribute

certificate, which could be different from the first time it appears on an ACRL. In the ACRL, revocation date is the value

contained in the revocationDate component. Invalidity date is the date/time at which it is known or suspected that the

attribute certificate should be considered invalid. This date may be earlier than the revocation date. In the ACRL, invalidity

date is the value contained in the invalidityDate entry extension.

Two related points are:

– Validity of attribute certificates may be designed so that each becomes valid at the time of expiry of its

predecessor, or an overlap may be allowed. The latter prevents the AA from having to install and distribute

a large number of attribute certificates that may run out at the same expiration date.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 77

– Expired attribute certificates will normally be removed from a directory. It is a matter for the security policy

and responsibility of the AA to keep old attribute certificates for a period if needed for later verification.

Attribute certificates may be revoked prior to their expiration time, e.g., if the entity no longer holds the privilege delegated

to it by the AA, or if the AA's public-key certificate is assumed to be compromised.

An AA that issues and subsequently revokes attribute certificates:

a) may be required to maintain an audit record of its revocation events for all attribute certificate types issued

by that AA (e.g., end-entity attribute certificates, as well as attribute certificates to other AAs);

b) shall provide revocation status information to privilege verifiers using ACRLs or another mechanism for

the publication of revocation status information;

c) if using ACRLs, it shall maintain and publish ACRLs even if the lists of revoked attribute certificates are

empty;

d) if using only partitioned ACRLs, it shall issue a full set of partitioned ACRLs covering the complete set of

attribute certificates whose revocation status will be reported using the ACRL mechanism. Thus, the

complete set of partitioned ACRLs shall be equivalent to a full ACRL for the same set of attribute

certificates, if the ACRL issuer was not using partitioned ACRLs.

Privilege verifiers may use a number of mechanisms to locate revocation status information provided by an AA. For

example, there may be a pointer in the attribute certificate itself that directs the privilege verifier to a location where

revocation information is provided. There may be a pointer in a revocation list that redirects the privilege verifier to a

different location. The privilege verifier may locate revocation information in a repository (e.g., a directory) or through

other means outside the scope of this Specification (e.g., locally configured).

The maintenance of directory entries affected by the AA's revocation lists is the responsibility of the directory and its users,

acting in accordance with the security policy. For example, the user may modify its object entry by replacing the old

attribute certificate with a new one.

If revocation lists are published in a directory, they are held within entries as attributes of the following types:

– attributeCertificateRevocationList;

– eeAttrCertificateRevocationList;

– attributeAuthorityRevocationList; and

– deltaRevocationList.

14.3.2 Attribute certificate revocation list syntax

The syntax for ACRLs is the same as for CRLs as defined in clause 7.10.2.

The associated text is the same with the following exceptions:

– CA shall be replaced with AA;

– public-key certificate shall be replaced with attribute certificate;

– CRL shall be replaced with ACRL;

– NOTE 3 is not relevant for attribute certificates; and

– extensions for ACRLs are defined in clause 17.

15 Attribute authority, source of authority and certification authority relationship

The attribute authority (AA) and certification authority (CA) are logically completely independent. The creation and

maintenance of "identity" can (and often should) be separated from the PMI. Thus the entire PKI, including CAs, may be

existing and operational prior to the establishment of the PMI. The CA, although it is the source of authority (SOA) for

identity within its domain, is not automatically the SOA for privilege. The CA, therefore, will not necessarily itself be an

AA and, by logical implication, will not necessarily be responsible for the decision as to what other entities will be able to

function as AAs.

The SOA is the entity that is trusted by a privilege verifier as the entity with ultimate responsibility for the assignment of

a set of privileges. A resource may limit the SOA authority by trusting certain SOAs for specific functions (e.g., one for

read privileges and a different one for write privileges). An SOA is itself an AA as it issues attribute certificates to other

entities in which privileges are assigned to those entities. An SOA is analogous to a trust anchor in the PKI, in that a

privilege verifier trusts attribute certificates signed by the SOA. In some environments there is a need for CAs to have tight

control over the entities that can act as SOAs. This framework provides a mechanism for supporting that requirement. In

ISO/IEC 9594-8:2017 (E)

78 Rec. ITU-T X.509 (10/2016)

other environments, that control is not needed and mechanisms for determining the entities that can act as SOAs in such

environments may be outside the scope of this Specification.

This framework is flexible and can satisfy the requirements of many types of environments.

a) In many environments, all privileges will be assigned directly to individual entities by a single AA, namely

the SOA.

b) Other environments may require support for the optional roles feature, whereby entities are issued attribute

or public-key certificates that assign various roles to them. The privileges associated with the role are

implicitly assigned to such entities. The role privileges may themselves be assigned in an attribute certificate

issued to the role itself or through other means (e.g., locally configured).

c) In some scenarios it might be required for an AA to issue privileges to a group of entities that share a

common property, for example, a set of web servers or a team of people, rather than to a single entity.

d) Another optional feature of this framework is the support of privilege delegation. If delegation is done, the

SOA assigns privilege to an entity that is permitted to also act as an AA and further delegate the privilege.

Delegation may continue through several intermediary AAs until it is ultimately assigned to an entity acting

as an PMI end entity that cannot further delegate that privilege. The intermediary AAs may or may not also

be able to act as privilege asserters for the privileges they delegate.

e) When identity and/or privilege information is conveyed within the subjectDirectoryAttributes

extension of a public-key certificate, the AA is then responsible for those aspects of the CA that relate to

assigning identity and/or privilege information. The AA may either be a separate entity or and integrated

part of the CA.

f) Some environments, such as virtual organizations, may need to link together their individual PMIs to form

a federated PMI. This requirement is known as recognition of authority in this Specification since one PMI

(the local PMI) recognizes the authority of the SOA (and optionally the AAs) in the other PMI (the remote

PMI) to have some control over the privilege management in the local PMI. Such recognition of authority

may or may not be mutual between PMIs.

When attribute certificates point to public-key certificates for their issuers and holders, the PKI is used to authenticate

holders (privilege asserters) and verify the digital signatures of the issuers.

Two delegation models are described in this Specification. The first delegation model is one where the privilege delegator

is an AA that can issue attribute certificates delegating that privilege to others. The second model allows for an independent

delegation service (DS) in which the entity issues attribute certificates on behalf of another AA (that may or may not be

able to issue attribute certificates itself). This DS cannot itself act as a claimant for that privilege. The DS model is

particularly relevant to environments that wish to maintain some central management over the set of privileges delegated

within their domain. For example, a set of one or more DS servers performing delegation, rather than individual privilege

holders, allows the total set of privileges delegated within an environment to be determined from a centralized facility and

enables policy and management decisions to be modified accordingly. Two distinct deployment models are possible for

DS servers. In one model, a privilege is assigned by an SOA to privilege holders and those holders are authorized to

delegate that privilege to others. However, rather than issue the attribute certificates that delegate the privilege themselves,

the privilege holder requests the DS to delegate that privilege on their behalf. The DS does not itself hold that privilege

and therefore cannot act as a claimant for that privilege; however, the DS is authorized by the SOA to issue attribute

certificates on behalf of other privilege holders. The second deployment model is similar to the first with the following

exception. The DS is actually a holder that is assigned the privilege to be delegated, but the DS is not authorized to act as

a claimant for the privilege, only as a delegator. In this case, the noAssertion extension must be set in the attribute

certificate issued to the DS by the SOA. The DS is termed an indirect issuer.

In both deployment models, the SOA issues attributes/privileges to subordinate AAs. The AAs then request the DS to issue

a subset of these privilege attributes to other holders. In the second deployment model, the DS can check that an AA is

delegating within the overall scope set by the SOA; in the first deployment model, the DS cannot check and the privilege

verifier will have to check that delegation was performed correctly.

Two recognition of authority (RoA) models are described in this Specification, static RoA and dynamic RoA. With static

RoA, extra information is added into the local PMI policy that is loaded into the local policy decision point (PDP) prior to

them making access control decisions for users who originate from the remote domain. No support for static RoA is

provided in this Specification. With dynamic RoA, the local SOA issues new supplementary policy attribute certificates

that add additional information to the current policy. Remote SOAs may also be recognized to issue supplementary policy

attribute certificates for the local PDPs. In both cases, these new supplementary policy attribute certificates need to be read

in by the local PDPs prior to them making access control decisions for requests from a user of the remote domain.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 79

15.1 Privilege in attribute certificates

Entities may acquire privilege in two ways:

– An AA may unilaterally assign privilege to an entity through the creation of an attribute certificate (perhaps

totally on its own initiative, or at the request of a third party). This attribute certificate may be stored in a

publicly accessible repository and may subsequently be processed by one or more privilege verifiers to

make an authorization decision. All of this may occur without the entity's knowledge or explicit action.

– Alternatively, an entity may request a privilege of an AA. Once created, this attribute certificate may be

returned (only) to the requesting entity, which explicitly supplies it when requesting access to a protected

resource.

Note that in both procedures the AA needs to perform its due diligence to ensure that the entity should really be assigned

this privilege. This may involve some out-of-band mechanisms, analogous to the certification of an identity/key-pair

binding by a CA.

The attribute certificate based PMI is suitable in environments where any one of the following is true:

– A different entity is responsible for assigning a particular privilege to a holder than for issuing public-key

certificates to the same subject;

– there are a number of privilege attributes to be assigned to a holder, from a variety of authorities;

– the lifetime of a privilege differs from that of the holder's public-key certificate validity (generally the

lifetime of privileges is much shorter); or

– the privilege is valid only during certain intervals of time which are asynchronous with that user's public-

key validity or validity of other privileges.

15.2 Privilege in public-key certificates

In some environments, privilege may be put directly into public-key certificates (thereby reusing much of an already-

established infrastructure), rather than issuing attribute certificates. In such cases, the privilege is included in the

subjectDirectoryAttributes extension of the public-key certificate.

This mechanism is suitable in environments where one or more of the following are true:

– the lifetime of the privilege is aligned with that of the public-key included in the certificate;

– delegation of privilege is not permitted; or

– delegation is permitted, but for any one delegation, all privileges in the public-key certificate (in the

subjectDirectoryAttributes extension) have the same delegation parameters and all extensions

relevant to delegation apply equally to all privileges in the public-key certificate.

16 PMI models

16.1 General model

The general privilege management model consists of three entities: the object, the privilege asserter and the privilege

verifier.

The object may be a resource being protected, for example, in an access control application. The resource being protected

is referred to as the object. This type of object has methods which may be invoked (for example, the object may be a

firewall which has an "Allow Entry" object method, or the object may be a file in a file system which has Read, Write, and

Execute object methods). Another type of object in this model may be an object that was signed in a non-repudiation

application.

The privilege asserter is the entity that holds a particular privilege and asserts its privileges for a particular context of use.

The privilege verifier is the entity that makes the determination as to whether or not asserted privileges are sufficient for

the given context of use.

The pass/fail determination made by the privilege verifier is dependent upon four things:

– privilege of the privilege asserter;

– privilege policy in place;

– current environment variables, if relevant; and

– sensitivity of the object method, if relevant.

ISO/IEC 9594-8:2017 (E)

80 Rec. ITU-T X.509 (10/2016)

The privilege of a privilege holder reflects the degree of trust placed in that holder, by the certificate issuer, that the privilege

holder will adhere to those aspects of policy which are not enforced by technical means. This privilege is encapsulated in

the privilege holder's attribute certificate(s) (or subjectDirectoryAttributes extension of its public-key certificate),

which may be presented to the privilege verifier in the invocation request, or may be distributed by other means, such as

via a directory. Codifying privilege is done through the use of the Attribute construct, containing an AttributeType

and a SET OF AttributeValue. Some attribute types used to specify privilege may have very simple syntax, such as a

single INTEGER or an OCTET STRING. Others may have more complex syntaxes. This Specification defines one simple

privilege attribute type. Other examples are provided in Annex G.

The privilege policy specifies the degree of privilege which is considered sufficient for a given object method's sensitivity

or context of use. The privilege policy needs to be protected for integrity and authenticity. A number of possibilities exist

for conveying policy. At one extreme is the idea that policy is not really conveyed at all, but is simply defined and only

ever kept locally in the privilege verifier's environment. At the other extreme is the idea that some policies are "universal"

and should be conveyed to, and known by, every entity in the infrastructure. Between these extremes are many shades of

variation. Schema elements for storing privilege policy information in a directory are defined in this Specification.

Privilege policy specifies the threshold for acceptance for a given set of privileges. That is, it defines precisely when a

privilege verifier should conclude that a presented set of privileges is "sufficient" in order that it may grant access (to the

requested object, resource, application, etc.) to the privilege asserter.

Syntax for the definition of privilege policy is not standardized in this Specification. Annex G contains a couple of

examples of syntaxes that could be used for this purpose. However, these are examples only. Any syntax may be used for

this purpose, including clear text. Regardless of the syntax used to define the privilege policy, each instance of privilege

policy shall be uniquely identified. Object identifiers are used for this purpose.

PrivilegePolicy ::= OBJECT IDENTIFIER

The environment variables, if relevant, capture those aspects of policy required for the pass/fail determination (e.g., time

of day or current account balance) which are available through local means to the privilege verifier. Representation of

environment variables is entirely a local matter.

The object method sensitivity, if relevant, may reflect attributes of the document or request to be processed, such as the

monetary value of a funds transfer that it purports to authorize, or the confidentiality of a document's content. The object

method's sensitivity may be explicitly encoded in an associated security label or in an attribute certificate held by the object

method, or it may be implicitly encapsulated in the structure and contents of the associated data object. It may be encoded

in one of a number of different ways. For instance, it may be encoded outside the scope of the PMI in the ITU-T X.411

label associated with a document, in the components of an EDIFACT interchange, or hard-coded in the privilege verifier's

application. Alternatively, it may be done within the PMI, in an attribute certificate associated with the object method. For

some contexts of use, no object method sensitivity is used.

There is not necessarily any binding relationship between a privilege verifier and any particular AA. Just as privilege

holders may have attribute certificates issued to them by many different AAs, privilege verifiers may accept attribute

certificates issued by numerous AAs, which need not be hierarchically related to one another, to grant access to a particular

resource.

The attribute certificate framework can be used to manage privileges of various types and for a number of purposes. The

terms used in this Specification, such as privilege asserter, privilege verifier, etc., are independent of the particular

application or use.

16.1.1 PMI in access control context

There is a standard framework for access control (Rec. ITU-T X.812 | ISO/IEC 10181-3) that defines a corresponding set

of terms that are specific to the access control application. A mapping of the generic terms used in this Specification to

those in the access control framework is provided here, to clarify the relationship between this model and this Specification.

Service request in this Specification corresponds to the 'access request' defined in the access control framework.

Privilege asserter in this Specification would be acting in the role of an 'initiator' in the access control framework.

Privilege verifier in this Specification would be acting in the role of an 'access control decision function (ADF)' in the

access control framework.

Object method for which privilege is being asserted in this Specification would correspond to the 'target' defined in the

access control framework.

Environmental variables in this Specification would correspond to the 'contextual information' in the access control

framework.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 81

Privilege policy discussed in this Specification could include 'access control policy', and 'access control policy rules' as

defined in the access control framework.

This model allows a PMI to be overlaid fairly seamlessly on an existing network of resources to be protected. In particular,

having the privilege verifier act as a gateway to a sensitive object method, granting or denying requests for invocation of

that object method, enables the object to be protected with little or no impact to the object itself. The privilege verifier

screens all requests and only those that are properly authorized are passed on to the appropriate object methods.

16.1.2 PMI in a non-repudiation context

There is a standard framework for non-repudiation (Rec. ITU-T X.813 | ISO/IEC 10181-4) which defines a corresponding

set of terms that are specific to non-repudiation. A mapping of the generic terms used in this Specification to those in the

non-repudiation framework is provided here, to clarify the relationship between this model and that Specification.

Privilege asserter in this Specification would be acting in the role of an 'evidence subject' or an 'originator' in the non-

repudiation framework.

Privilege verifier in this Specification would be acting in the role of an 'evidence user' or a 'recipient' in the non-repudiation

framework.

Object method for which privilege is being asserted in this Specification would correspond to the 'target' defined in the

non-repudiation framework.

Environmental variables in this Specification would correspond to the date and time the evidence was generated or verified'

in the non-repudiation framework.

Privilege policy discussed in this Specification could include 'non-repudiation security policy' in the non-repudiation

framework.

16.2 Control model

The control model illustrates how control is exerted over access to the sensitive object method. There are five components

of the model: the privilege asserter, the privilege verifier, the object method, the privilege policy, and environmental

variables (see Figure 6). The privilege asserter has privilege; the object method has sensitivity. The techniques described

here enable the privilege verifier to control access to the object method by the privilege asserter, in accordance with the

privilege policy. Both the privilege and the sensitivity may be multi-valued parameters.

Figure 6 – Control model

The privilege asserter may be an entity identified by a public-key certificate, or an executable object identified by the digest

of its disk image, etc.

16.3 Delegation model

In some environments there may be a need to delegate privilege; however, this is an optional aspect of the framework and

is not required in all environments. There are four components of the delegation model: the privilege verifier, the SOA,

other AAs and the privilege asserter (see Figure 7).

ISO/IEC 9594-8:2017 (E)

82 Rec. ITU-T X.509 (10/2016)

Figure 7 – Delegation model

As with environments where delegation is not used, the SOA is the initial issuer of attribute certificates that assign privilege

to privilege holders. However, in this case the SOA authorizes the privilege holder to act as AA and further delegate that

privilege to other entities through the issuance of attribute certificates that contain the same privilege (or a subset thereof).

The SOA may impose constraints on the delegation that can be done (e.g., limit the path length, limit the name space within

delegation can be done). Each of these intermediary AAs may, in attribute certificates that it issues to further privilege

holders, authorize further delegation to be done by those holders also acting as AAs. A universal restriction on delegation

is that no AA can delegate more privilege than it holds. A delegator may also further restrict the ability of downstream

AAs.

When delegation is used, the privilege verifier trusts the SOA to delegate some or all of those privileges to holders, some

of which may further delegate some or all of those privileges to other holders.

The privilege verifier trusts the SOA as the authority for a given set of privileges for the resource. If the privilege asserter's

certificate is not issued by that SOA, then the privilege verifier shall locate a delegation path of certificates from that of

the privilege asserter to one issued by the SOA. The validation of that delegation path includes checking that each AA had

sufficient privileges and was duly authorized to delegate those privileges.

For the case in which privileges are conveyed by means of attribute certificates, the delegation path is distinct from the

certification path used to validate the public-key certificates of the entities involved in the delegation process. However,

the quality of authenticity offered by the public-key certificate validation process shall be commensurate with the

sensitivity of the object method that is being protected.

A delegation path shall either consist completely of attribute certificates or completely of public-key certificates. A

delegator that obtains its privilege in an attribute certificate may only delegate, if authorized, by issuance of subsequent

attribute certificates. Similarly, a delegator that obtains its privilege in a public-key certificate, if authorized, may only

delegate by issuance of subsequent public-key certificates. Only entities acting as AAs may delegate privilege. Entities

acting as PMI end entities cannot.

16.4 Group assignment model

In some scenarios it might be required for an AA to issue privileges to a group of entities that share a common property,

for example, a set of web servers or a team of people, rather than to a single entity. This is achieved by assigning a group

attribute certificate to the group.

There are two ways of identifying the members of a group who are assigned a group attribute certificate. These methods

are called direct group naming and group role naming.

16.4.1 Direct group naming

In direct group naming, the holder component of the group attribute certificate shall take the entityName option, and

the directoryName of GeneralName shall name a subtree in the DIT. Each entry in the subtree is assigned the attribute(s)

in this group attribute certificate.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 83

16.4.2 Group role naming

In group role naming, the members of the group are identified by the attributes that they hold, such attributes being assigned

to them in role assignment attribute certificates. In group role naming, the holder component of the group attribute

certificate takes the entityName option and holds the role(s) of the group members who are being assigned the

attributes in this group attribute certificate. The GeneralNames should contain a single GeneralName containing a

directoryName with a single relative distinguished name (RDN), whose attribute type is the role attribute defined in

clause 16.5.1. If roleAuthority in the role attribute is present, this identifies the attribute authorities who are

responsible for issuing the role assignment certificates to holders who are members of this group. If roleAuthority is

absent from the role attribute, the identity of the responsible AAs to issue the role assignment certificates shall be

determined through means outside this Specification. The roleName component of the role attribute identifies the role(s)

of the group who are being assigned the attributes in this group attribute certificate.

NOTE 1 – Group role naming allows attribute based role assignments, role mappings and role hierarchies to be defined, by

specifying that members of other (more powerful) roles are assigned the roles of this group attribute certificate.

NOTE 2 – Where the role in the holder component is the same as the role in the attributes component of this group attribute

certificate, this is delegation of authority from the issuer of the group attribute certificate to the roleAuthority in the role

attribute. However, a much simpler way of achieving the same effect is to use the roleAuthority as the holder.

16.5 Roles model

Roles provide a means to indirectly assign privileges to individuals. Individuals are issued role assignment certificates that

assign one or more roles to them through an instance the role attribute type contained in the certificate. Specific privileges

are assigned to a role name through role specification certificates, rather than to individual privilege holders through

attribute certificates. This level of indirection enables, for example, the privileges assigned to a role to be updated, without

impacting the certificates that assign roles to individuals. Role assignment certificates may be attribute certificates or

public-key certificates. Role specification certificates may be attribute certificates, but not public-key certificates. If role

specification certificates are not used, the assignment of privileges to a role may be done through other means (e.g., may

be locally configured at a privilege verifier).

The following are all possible:

– any number of roles can be defined by any AA;

– the role itself and the members of a role can be defined and administered separately, by different AAs;

– role membership, just as any other privilege, may be delegated; and

– roles and membership may be assigned any suitable lifetime.

If the role assignment certificate is an attribute certificate, the role attribute is contained in the attributes component

of the attribute certificate. If the role assignment certificate is a public-key certificate, the role attribute is contained in

the subjectDirectoryAttributes extension. In the latter case, any additional privileges contained in the public-key

certificate are privileges that are directly assigned to the public-key certificate subject, not privileges assigned to the role.

Thus, a privilege asserter may present a role assignment certificate to the privilege verifier demonstrating only that the

privilege asserter has a particular role (e.g., "manager", or "purchaser"). The privilege verifier may know a priori, or may

have to discover by other means, the privileges associated with the asserted role in order to make a pass/fail authorization

decision. The role specification attribute certificate can be used for this purpose.

A privilege verifier needs to have an understanding of the privileges specified for the role. The assignment of those

privileges to the role may be done within the PMI in a role specification attribute certificate or outside the PMI (e.g., locally

configured). If the role privileges are asserted in a role specification attribute certificate, mechanisms for linking that

certificate with the relevant role assignment attribute certificate for the privilege asserter are provided in this Specification.

A role specification attribute certificate cannot be delegated to any other entity. The issuer of the role assignment certificate

may be independent of the issuer of the role specification certificate and these may be administered (expired, revoked, and

so on) entirely separately. The same certificate (attribute certificate or public-key certificate) can be a role assignment

certificate, as well as contain assignment of other privileges directly to the same individual. However, a role specification

attribute certificate shall be a separate certificate.

NOTE – The use of roles within an authorization framework can increase the complexity of path processing, because such

functionality essentially defines another delegation path which needs to be followed. The delegation path for the role assignment

certificate may involve different AAs and may be independent of the AA that issued the role specification certificate.

16.5.1 Role attribute type

The specification of privilege attribute types is generally an application-specific issue that is outside the scope of this

Specification. The single exception to this is an attribute defined here for the assignment of a holder to a role. The

specification of values for the role attribute is outside the scope of this Specification.

ISO/IEC 9594-8:2017 (E)

84 Rec. ITU-T X.509 (10/2016)

role ATTRIBUTE ::= {

 WITH SYNTAX RoleSyntax

 ID id-at-role }

RoleSyntax ::= SEQUENCE {

 roleAuthority [0] GeneralNames OPTIONAL,

 roleName [1] GeneralName,

 ... }

An attribute of this privilege attribute type may be used to populate the attributes component of a role assignment

certificate or to populate the holder component of a role specification or group attribute certificate, or both.

If the role assignment certificate is a public-key certificate rather than an attribute certificate, the role attribute may be

used to populate the subjectDirectoryAttributes extension of that public-key certificate.

When the role attribute is used to populate the attributes component of a role assignment attribute certificate, the

roleAuthority, if present, identifies the recognized authority that is responsible for issuing the role specification

attribute certificate. If there are multiple occurrences of GeneralName, they shall all be alternative names for the same

authority.

If roleAuthority is present, and a privilege verifier uses a role specification certificate to determine the privileges

assigned to the role, at least one of the names in roleAuthority shall be present in the issuer component of that role

specification attribute certificate. If the privilege verifier has used means other than a role specification attribute certificate

to determine the privileges assigned to the role, mechanisms to ensure that those privileges were assigned by an authority

named in this component are outside the scope of this Specification.

If roleAuthority is absent, the identity of the responsible authority shall be determined through other means. The

roleSpecCertIdentifier extension in a role assignment certificate is one way to achieve this binding, in the case

where a role specification certificate was used to assign privileges to the role.

The roleName component identifies the role to which the holder of this role assignment attribute certificate is assigned.

If a privilege verifier uses a role specification certificate to determine the privileges assigned to that role, this role name

shall also appear in the holder component of the role specification attribute certificate.

When the role attribute is used to populate the holder component of a group attribute certificate, the roleAuthority,

if present, identifies the recognized authorities that are responsible for issuing role assignment certificates to holders who

are members of the group being assigned the attributes in this group attribute certificate. If roleAuthority is absent, the

identity of the responsible authorities to issue the role assignment certificates shall be determined through other means.

The roleName component identifies the role(s) of the group of holders who are being assigned the attributes in this group

attribute certificate. This roleName shall also appear in the attributes component of the role assignment certificates of

the group of holders who are being assigned the attributes in this group attribute certificate. Where more than one role

value is present in roleName, a group member must be assigned all the role values (in one or more role assignment

certificates) in order to be assigned the attributes in this group attribute certificate.

When the role attribute is used to populate both the holder component and the attributes component, this is a role

mapping attribute certificate.

16.6 Recognition of Authority Model

Figure 8 shows the control model for a single domain PMI.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 85

Figure 8 – The control model for a single domain PMI

The PMI policy contains information that directs the PDP in making its access control decisions. This information typically

includes data about the trusted SOA, the delegation rules, which attributes are known and used, and which privileges are

needed to gain access to which resources, etc. The policy information may be statically configured into the PDP, or may

be dynamically obtained, for example, by passing a protected privilege policy attribute certificate to the PDP.

In order to support federations between organizations, and the construction of dynamic virtual organizations, it is essential

that PMIs can be plugged together, so that attribute certificates issued in one domain can be used effectively in another

PMI domain to gain access to its resources. Otherwise, the second PMI domain will have to issue another set of attribute

certificates to the users of the first domain. This is both inefficient and cumbersome for the users to manage.

Recognition of Authority is the feature that will facilitate the rapid integration of PMIs from different domains into a single

federated PMI.

In Figure 9, the user, who is a member of the TopLeft domain, wishes to access the resources of the BottomRight domain.

He or she might contact the BottomRight domain directly, or his or her request may be relayed by the gatekeeper

(AEF/PEP) in the TopLeft domain. Either way, the PDP in the BottomRight domain needs to understand the attribute

certificates issued by the TopLeft domain, and the BottomRight policy needs to tell the BottomRight PDP whether they

are sufficient to grant access to the requested resource or not.

ISO/IEC 9594-8:2017 (E)

86 Rec. ITU-T X.509 (10/2016)

Figure 9 – Two federated PMI domains

The SOA in the trusting (local) domain (e.g., the BottomRight domain) needs to update its policy so that the SOA of the

remote domain (e.g., the TopLeft domain) becomes trusted or recognized. The local policy can be updated in (at least) one

of two ways:

a) statically, by adding extra information into the policy that is loaded into the local PDP prior to it making

access control decisions;

b) dynamically, by issuing a new supplementary policy that adds additional information to the current policy.

This dynamic addition to the local policy could be by the local SOA issuing a policy attribute certificate to

the remote SOA or by the local SOA issuing an administrative role attribute certificate to the remote SOA

so that the remote SOA may issue its own policy attribute certificate. In both cases, these need to be read in

by the local PDP prior to validating a request from a user of the remote domain.

When the local SOA issues a policy attribute certificate to the remote SOA, it may be as follows:

– the holder component identifies the SOA of the remote domain;

– the issuer component identifies the local SOA;

– the attributes of the attribute certificate are the union of all the privilege attributes that the remote SOA is

trusted to issue. If any of these privilege attributes are newly defined roles, then new role specification

attribute certificates may also need to be issued;

– basicAttConstraints extension is included with authority set to TRUE to indicate that the remote

SOA is an AA. Path length constraint (pathLenConstraint) is set as appropriate to indicate the length of

the delegation chain that is allowed in the remote domain;

– holderNameConstraints may be set to limit the name forms and namespaces in which the remote SOA

can assign privilege attributes to users;

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 87

– allowedAttributeAssignments may be set to further constrain which groups of remote holders can be

assigned which sets of privilege attributes;

– attributeMappings may be set to inform the local PDPs which remotely assigned attributes should be

considered equal to which locally assigned attributes.

When the local SOA issues an administrative role attribute certificate to the remote SOA, it may work as follows:

1) The local SOA defines an administrative role for the local domain and the permissions that may be

administered by this administrative role. This may be defined in a role specification attribute certificate in

which the holder is the administrative role and the attribute is the permission attribute (defined in clause

16.8.1 below). The set of permissions for an administrative role is called the administrative scope of an

administrative role. These permissions may also be assigned to local roles, so that users with these local

roles will inherit these permissions. Issuing an administrative role specification attribute certificate allows

remote administrators to learn their administrative scope.

2) The local SOA delegates this administrative role to the remote SOA by issuing a role-assignment attribute

certificate to the remote SOA containing the assigned administrative role. The remote SOA may also be

allowed to delegate the administrative role to other administrators in the remote domain, as determined by

pathLenConstraint in the basicAttConstraints extension in the role-assignment attribute

certificate.

3) The remote SOA (or subordinate AA) that has been assigned this administrative role is now recognized as

an entity able to issue two types of delegated-policy attribute certificate, either a delegated-role specification

attribute certificate or a delegated attribute mapping attribute certificate. In a delegated-role-specification

attribute certificate, the remote SOA (or AA) directly assigns the permissions from the administrative scope

to new remotely defined attributes as described below. In a delegated attribute mapping attribute certificate,

new remotely defined attributes are mapped into existing local roles as described below.

4) In order to ensure that the remote SOA (or AA) cannot overstep its delegated authority, the authorization

system has to validate that the privileges stated or implied by a delegated policy attribute certificate lie

within the administrative scope defined for the administrative role. If they do, the delegated policy attribute

certificate is accepted, and its policy rules become dynamically incorporated into the local SOA's policy. If

they do not, the delegated policy attribute certificate is rejected, and its policy rules will be ignored.

A delegated role specification attribute certificate comprises:

– the holder is the newly specified remote role;

– the issuer component identifies the remote SOA (or AA) of the remote domain that issued this attribute

certificate;

– the attributes of the attribute certificate are the privileges that will be assigned to users in the remote domain

who are assigned the remote role;

– holderNameConstraints may be set to limit the name forms and namespaces of the users which may be

assigned these privilege attributes;

– allowedAttributeAssignments may be set to further constrain which groups of remote holders can be

assigned which sets of remotely defined privilege attributes.

A delegated attribute mapping policy attribute certificate comprises:

– the holder and the issuer components identify the remote SOA (or AA) of the remote domain that issued

this attribute certificate;

– the attributes component is null;

– holderNameConstraints may be set to limit the name forms and namespaces of the users which may be

assigned these privilege attributes;

– allowedAttributeAssignments may be set to further constrain which groups of remote holders can be

assigned which sets of privilege attributes;

– attributeMappings is set to inform the PDP which remotely assigned attributes should be considered

equal to which locally assigned attributes.

The remote SOA will subsequently issue privilege attribute within attribute certificates to end users and/or to AAs in its

domain. Whether the remote AAs are trusted or not, and if trusted, the number of AAs that are allowed in a delegation

chain, may be set by the pathLenConstraint in the attribute certificate issued to the remote SOA. The privilege

attributes in the attribute certificates issued by the remote SOA may contain either:

– permissions that are understood by the PDPs in the local domain; or

– roles which may or may not be understood by the PDPs in the local domain.

ISO/IEC 9594-8:2017 (E)

88 Rec. ITU-T X.509 (10/2016)

When an attribute certificate contains roles that are not understood by the local PDPs, the latter must know how to map

these unknown roles into local permissions. This can be achieved in at least one of four ways. If the local SOA knows what

these roles are likely to be prior to recognizing the remote SOA, then if it issues a policy attribute certificate to the remote

SOA an attribute mapping extension can be placed in the policy attribute certificate issued to the remote SOA, or

alternatively attribute mapping rules can be added into the policy loaded by the local PDP. If the remote roles are not

known prior to recognizing the remote SOA, the remote SOA will need to either issue an attribute mapping policy attribute

certificate or place the attribute mapping extension in the attribute certificates that it issues to its users.

If the remote SOA issues an attribute mapping policy attribute certificate, this should contain:

– a holder and issuer name which is that of the remote SOA;

– the attributes component shall be an empty sequence;

– attributeMappings extension set to describe the attribute mappings.

NOTE – A remote SOA should not issue an attribute mapping attribute certificate in which both the holder and attributes are roles,

since this type of attribute mapping should be issued by the local SOA only.

This attribute mapping policy attribute certificate needs to be made available to the local PDPs at decision time. This can

be done by either storing the policy attribute certificate in the directory entry of the remote SOA and giving the local PDPs

read access to it (the pull model) or by including the policy attribute certificate in the set of attribute certificates presented

by the remote user when accessing the local resource (the push model).

16.7 XML privilege information attribute

The specification of privileges is generally an application-specific issue that is outside the scope of this Specification.

While this attribute does not define any specific privilege information, it provides a container attribute in which XML-

encoded privileges can be conveyed in attribute certificates.

xmlPrivilegeInfo ATTRIBUTE ::= {

 WITH SYNTAX UTF8String --contains XML-encoded privilege information

 ID id-at-xMLPrivilegeInfo }

The XML schema for the role attribute type can be defined either with ASN.1 or with XML Schema Definition (XSD).

The XML contained within the UTF8String needs to be self-identifying.

The following is an ASN.1 schema defining an XML role attribute type. It is followed by an XSD specification for the

same attribute type, and by an example XML instance. The example instance is a valid instance for both the ASN.1 and

the XSD schema instances, and can be validated by either ASN.1 or XSD tools.

The example schema defines a role attribute with an ID, an issuing authority and the name of the role.

CERTIFICATE-ATTRIBUTE DEFINITIONS ::=

BEGIN

Role ::= [UNCAPITALIZED] SEQUENCE {

 id [ATTRIBUTE] XML-ID,

 authorities SEQUENCE (1..MAX) OF

 authority UTF8String,

 name UTF8String }

XML-ID ::= UTF8String

END

The following XSD schema is an alternative (exactly equivalent) definition:

<schema xmlns="http://www.w3.org/2000/08/XMLSchema">

 <element name="role">

 <attribute name="id" type="ID"/>

 complexType>

 <sequence>

 <element name="authorities">

 <complexType>

 <sequence>

 <element name="authority" type="string" minOccurs="1" maxOccurs="*"/>

 </sequence>

 </complexType>

 </element>

 <element name="name" type="string"/>

 </sequence>

 </complexType>

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 89

 </element>

</schema>

An example of an instance conforming to the above schema definitions, that would be a value of the xMLPrivilegeInfo

attribute type would be:

<role id="123" xmlns="http://www.example.org/certificates/attribute">

 <authorities>

 <authority>Fictitious Organization</authority>

 </authorities>

 <name>manager</name>

</role>

16.8 Permission attribute and matching rule

16.8.1 Permission attribute

This attribute defines a general permission, which is an operation on an object, e.g., a read operation on a file object. The

specification of values for the operations or objects is outside the scope of this Specification. Note that the names of both

operations and objects are case sensitive.

permission ATTRIBUTE ::= {

 WITH SYNTAX DualStringSyntax

 EQUALITY MATCHING RULE dualStringMatch

 ID id-at-permission }

DualStringSyntax ::= SEQUENCE {

 operation [0] UnboundedDirectoryString,

 object [1] UnboundedDirectoryString,

 ... }

An attribute of the permission attribute type is intended to be used to populate the attributes component of an

attribute certificate and is not intended for storing as an attribute of a directory entry.

16.8.2 Dual string matching rule

The dualStringMatch matching rule is a case sensitive matching rule and is defined as follows:

dualStringMatch MATCHING-RULE ::= {

 SYNTAX DualStringSyntax

 ID id-mr-dualStringMatch }

The dualStringMatch matching rule performs a case sensitive comparison for equality between a pair of presented

strings and an attribute value of type DualStringSyntax, in which the first presented string is the operation and the

second presented string is the object.

17 Attribute certificate and attribute certificate revocation list extensions

The following certificate extensions may be included in certificates for the purposes of privilege management. Along with

the definition of the extensions themselves, the rules for certificate types in which the extension may be present are also

provided.

With the exception of the SOA identifier extension, any of the extensions that may be included in a public-key certificate

shall only be included if that public-key certificate is one that assigns privilege to its subject (i.e., the

subjectDirectoryAttributes extension shall be present). If any of these extensions is present in a public-key

certificate, that extension applies to all privileges present in the subjectDirectoryAttributes extension.

Revocation lists used to publish revocation notices for attribute certificates may contain any CRL or CRL entry extension

as defined for use in CRLs in Section 2 of this Specification. There are also public-key certificate extensions that are

applicable for attribute certificates. How such extensions are to be included in attribute certificates and ACRLs, is specified

in this clause.

This clause specifies extensions in the following areas:

a) Basic privilege management: These certificate extensions convey information relevant to the assertion of a

privilege.

b) Privilege revocation: These certificate extensions convey information regarding the location of revocation

status information.

ISO/IEC 9594-8:2017 (E)

90 Rec. ITU-T X.509 (10/2016)

c) Source of authority (SOA): These certificate extensions relate to the trusted source of privilege assignment

by a verifier for a given resource.

d) Roles: These certificate extensions convey information regarding the location of related role specification

certificates.

e) Delegation: These certificate extensions allow constraints to be set on the subsequent delegation of assigned

privileges.

f) Recognition of authority: These certificate extensions allow PMIs to be federated together.

17.1 Basic privilege management extensions

17.1.1 Requirements

The following requirements relate to basic privilege management:

a) Issuers need to be able to place constraints on the time during which a privilege can be asserted.

b) Issuers need to be able to target attribute certificates to specific servers/services.

c) It may be necessary for issuers to convey information intended for display to privilege asserters and/or

privilege verifiers using the certificate.

d) Issuers may need to be able to place constraints on the privilege policies with which the assigned privilege

can be used.

e) Issuers may need to be able to issue an attribute certificate that can only be asserted once within its lifetime.

f) Issuers may need to be able to issue privilege attributes to a group of entities that share a common property.

17.1.2 Basic privilege management extension

The following extensions are defined:

a) Time specification;

b) Targeting information;

c) User notice;

d) Acceptable privilege policies;

e) Indirect issuer;

f) Single use;

g) Group attribute certificate.

17.1.2.1 Time specification extension

17.1.2.1.1 Time specification extension definition

The time specification extension can be used by an AA to restrict the specific periods of time during which the privilege,

assigned in the certificate containing this extension, can be asserted by the privilege holder. For example, an AA may issue

a certificate assigning privileges which can only be asserted between Monday and Friday and between the hours of 9:00

a.m. and 5:00 p.m.. Another example, in the case of delegation, might be a manager delegating the signing authority to a

subordinate for the time that the manager will be away on vacation.

This extension is defined as follows:

timeSpecification EXTENSION ::= {

 SYNTAX TimeSpecification

 IDENTIFIED BY id-ce-timeSpecification }

This extension may be present in attribute certificates or in public-key certificates with the

subjectDirectoryAttributes extension issued to entities that may act as privilege asserters. This extension shall not

be included in public-key certificates that contain the sOAIdentifier extension or in attribute certificates issued to

entities acting as AAs that may not also act as privilege asserters.

If this extension is present in an attribute certificate issued to an entity acting as an AA, it applies only to that entity's

assertion of the privileges contained in the attribute certificate. It does not impact the time period during which the AA is

able to issue attribute certificates.

Because this extension is effectively specifying a refinement on the validity period of the certificate that contains it, this

extension shall be flagged as critical (i.e., the issuer, by including this extension, is explicitly defining the privilege

assignment to be invalid outside the time specified).

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 91

If this extension is present, but not understood by the privilege verifier, the certificate shall be considered invalid.

17.1.2.1.2 Time specification matching rule

The time specification matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

timeSpecificationMatch MATCHING-RULE ::= {

 SYNTAX TimeSpecification

 ID id-mr-timeSpecMatch }

This matching rule returns TRUE if the attribute/public-key certificate as stored in a directory contains the

timeSpecification extension and if components that are present in the presented value match the corresponding

components of the stored attribute/public-key certificate timeSpecification extension.

17.1.2.2 Targeting information extension

The targeting information extension enables the targeting of an attribute certificate to a specific set of servers/services. An

attribute certificate that contains this extension should only be usable at the specified servers/services.

This extension is defined as follows.

targetingInformation EXTENSION ::= {

 SYNTAX SEQUENCE SIZE (1..MAX) OF Targets

 IDENTIFIED BY id-ce-targetingInformation }

Targets ::= SEQUENCE SIZE (1..MAX) OF Target

Target ::= CHOICE {

 targetName [0] GeneralName,

 targetGroup [1] GeneralName,

 targetCert [2] TargetCert,

 ... }

TargetCert ::= SEQUENCE {

 targetCertificate IssuerSerial,

 targetName GeneralName OPTIONAL,

 certDigestInfo ObjectDigestInfo OPTIONAL }

The Target data type has the following three alternatives:

a) The targetName alternative shall provide the name of target servers/services for which the containing

attribute certificate is targeted.

b) The targetGroup alternative shall provide the name of a target group for which the containing attribute

certificate is targeted. How the membership of a target within a targetGroup is determined is outside the

scope of this Specification.

c) The targetCert alternative shall identify target servers/services by reference to their certificate.

This extension may be present in attribute certificates issued by AAs, including SOAs, to entities that may act as privilege

asserters, including other AAs and end entities. This extension shall not be included in public-key certificates or in attribute

certificates issued to AAs that may not also act as privilege asserters.

If this extension is present in an attribute certificate issued to an entity that is an AA, it applies only to that entity's assertion

of the privileges contained in the attribute certificate. It does not impact the AA ability to issue certificates.

This extension shall always be flagged as critical.

If this extension is present, but the privilege verifier is not among those specified, the attribute certificate should be

considered invalid.

If this extension is not present, then the attribute certificate is not targeted and may be accepted by any server.

17.1.2.3 User notice extension

The user notice extension enables an AA to include a notice that should be displayed to the holder, when asserting their

privilege, and/or to a privilege verifier when making use of the attribute certificate containing this extension.

This extension is defined as follows:

userNotice EXTENSION ::= {

 SYNTAX SEQUENCE SIZE (1..MAX) OF UserNotice

ISO/IEC 9594-8:2017 (E)

92 Rec. ITU-T X.509 (10/2016)

 IDENTIFIED BY id-ce-userNotice }

This extension may be present in attribute certificates or in public-key certificates with the

subjectDirectoryAttributes extension issued to entities that may act as privilege asserters. This extension shall not

be included in public-key certificates that contain the sOAIdentifier extension or in attribute certificates issued to

entities acting as AAs that may not also act as privilege asserters.

If this extension is present in a certificate issued to an entity that is an AA, it applies only to that entity's assertion of the

privileges contained in the certificate. It does not impact the AA ability to issue attribute certificates.

This extension may, at the option of the certificate issuer, be either flagged as critical or as non-critical.

If this extension is flagged as critical, the user notices shall be displayed to a privilege verifier each time a privilege is

asserted. If the privilege asserter supplies the attribute certificate to the privilege verifier (i.e., the privilege verifier does

not retrieve it directly from a repository), the user notices shall also be displayed to the privilege asserter.

If this extension is flagged as non-critical, the privilege asserted in the certificate may be granted by a privilege verifier

regardless of whether or not the user notices were displayed to the privilege asserter and/or privilege verifier.

The UserNotice data type is defined in IETF RFC 5280 and provided here for easy reference:

UserNotice ::= SEQUENCE {

 noticeRef NoticeReference OPTIONAL,

 explicitText DisplayText OPTIONAL }

NoticeReference ::= SEQUENCE {

 organization DisplayText,

 noticeNumbers SEQUENCE OF INTEGER }

DisplayText ::= CHOICE {

 visibleString VisibleString(SIZE (1..200)),

 bmpString BMPString(SIZE (1..200)),

 utf8String UTF8String(SIZE (1..200)) }

17.1.2.4 Acceptable privilege policies extension

The acceptable privilege policies extension is used to constrain the assertion of the assigned privileges for use with a

specific set of privilege policies.

This extension is defined as follows:

acceptablePrivilegePolicies EXTENSION ::= {

 SYNTAX AcceptablePrivilegePoliciesSyntax

 IDENTIFIED BY id-ce-acceptablePrivilegePolicies }

AcceptablePrivilegePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PrivilegePolicy

This extension may be present in attribute certificates or in public-key certificates with the

subjectDirectoryAttributes extension issued to entities that may act as privilege asserters. If this extension is

contained in a public-key certificate it relates only to the subject's ability to act as a privilege asserter for the privileges

contained in the subjectDirectoryAttributes extension.

If present, this extension shall be flagged as critical.

If this extension is present and the privilege verifier understands it, the privilege verifier shall ensure that the privilege

policy that these privileges are being compared to is one of those identified in this extension.

If this extension is present, but not understood by the privilege verifier, the certificate shall be considered invalid.

17.1.2.5 Single use extension

In some scenarios, an AA may wish to issue an attribute certificate that can only be asserted once to a privilege verifier

within the lifetime of the attribute certificate. The singleUse extension is defined as follows:

singleUse EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-singleUse }

This extension may be present in end-entity attribute certificates issued by AAs and SOAs. This extension shall not be

included in public-key certificates or in attribute certificates issued to AAs.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 93

This extension shall always be flagged as critical.

Any privilege verifier that accepts a singleUse attribute certificate should keep a record of at least the issuer and serial

number of the attribute certificate, until after the expiry date of the attribute certificate in order to ensure that the holder

cannot use the attribute certificate again. Ideally, all privilege verifiers for which the attribute certificate is valid should

have a coordination capability to ensure that the holder is not able to use the singleUse certificate with multiple privilege

verifiers. Alternatively, the issuer of the singleUse attribute certificate should include a targetingInformation

extension in the attribute certificate to limit the privilege verifier at which the attribute certificate is valid.

17.1.2.6 Group attribute certificate extension

In some scenarios it might be required for an AA to issue an attribute certificate to a group of entities that share a common

property, for example, a set of web servers or a team of people, rather than to a single entity. Each group attribute certificate

may be flagged as such by adding the group attribute certificate extension into the attribute certificate.

groupAC EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-groupAC }

This extension may be flagged as critical or as non-critical. This extension shall only be added to end-entity attribute

certificates, and not to AA attribute certificates or to public-key certificates.

17.1.2.7 Authority key identifier extension

17.2 Privilege revocation extensions

17.2.1 Requirements

The following requirements relate to the revocation of attribute certificates:

a) In order to control CRL sizes, it may be necessary to assign subsets of the set of all certificates issued by

one AA to different CRLs.

b) Attribute certificate issuers need to be able to indicate, in an attribute certificate, that no revocation

information is available for that certificate.

17.2.2 Privilege revocation extensions

The following extensions are defined or referenced:

a) CRL distribution points;

b) No revocation information.

17.2.2.1 Use of CRL distribution points extension

The CRL distribution points extension is defined in clause 9.6.2.1 for use in public-key certificates. This extension may

also be included in an attribute certificate. It may be present in attribute certificates issued to entities acting as AAs,

including SOAs, as well as attribute certificates issued to entities acting ad PMI end entities.

If present in an attribute certificate, a privilege verifier shall process this extension in exactly the same manner as described

for a relying party in clause 9.6.2.1 for public-key certificates by substituting public-key certificate, CA and CRL by

attribute certificate, AA and ACRL, respectively.

17.2.2.2 AA issuing distribution point extension

This ACRL extension identifies the ACRL distribution point for attribute certificates for this particular ACRL, and

indicates if the ACRL is indirect or if it is limited to covering only a subset of the revocation information. The limitation

may be based on a subset of the attribute certificate population or on a subset of revocation reasons. The ACRL is signed

by the ACRL issuer's private key – ACRL distribution points do not have their own key pairs. However, for an ACRL

distributed via a directory, the ACRL is stored in the entry of the CRL distribution point, which may not be the directory

entry of the ACRL issuer. If the issuing distribution point extension, the AA issuing distribution point extension, and the

CRL scope extension are all absent, the ACRL shall contain entries for all revoked unexpired attribute certificates issued

by the ACRL issuer.

After an attribute certificate appears on an ACRL, it may be deleted from a subsequent ACRL after the attribute certificate's

expiry.

This extension is defined as follows:

aAissuingDistributionPoint EXTENSION ::= {

ISO/IEC 9594-8:2017 (E)

94 Rec. ITU-T X.509 (10/2016)

 SYNTAX AAIssuingDistPointSyntax

 IDENTIFIED BY id-ce-aAissuingDistributionPoint }

AAIssuingDistPointSyntax ::= SEQUENCE {

 distributionPoint [0] DistributionPointName OPTIONAL,

 onlySomeReasons [1] ReasonFlags OPTIONAL,

 indirectCRL [2] BOOLEAN DEFAULT FALSE,

 containsUserAttributeCerts [3] BOOLEAN DEFAULT TRUE,

 containsAACerts [4] BOOLEAN DEFAULT TRUE,

 containsSOAPublicKeyCerts [5] BOOLEAN DEFAULT TRUE,

 ... }

The distributionPoint component contains the name of the distribution point in one or more name forms. If

onlySomeReasons is present, the ACRL only contains revocations for attribute certificates for the identified reason or

reasons; otherwise, the ACRL contains revocations for all reasons.

If indirectCRL is TRUE, then the ACRL may contain revocation notifications for attribute certificates from AAs other

than the issuer of the ACRL. The particular AA responsible for each entry is as indicated by the certificate issuer ACRL

entry extension in that entry or in accordance with the defaulting rules described in clause 17.2.2.3. In such an ACRL, it is

the responsibility of the ACRL issuer to ensure that the ACRL is complete in that it contains all revocation entries,

consistent with containsUserAttributeCerts, containsAACerts, containsSOAPublicKeyCerts and

onlySomeReasons indicators, from all AAs that identify this ACRL issuer in their attribute certificates.

If containsUserAttributeCerts is TRUE, the ACRL contains revocations for end-entity attribute certificates. If

containsAACerts is TRUE, the ACRL contains revocations for attribute certificates issued to subjects that are themselves

AAs.

If containsSOAPublicKeyCerts is TRUE, the ACRL contains revocations for public-key certificates issued to an entity

that is an SOA for the purposes of privilege management (i.e., attribute certificates that contain the SOAIdentifier

extension). For ACRLs distributed via a directory, the following rules apply. If the ACRL is a dACRL, it shall be

distributed via the deltaRevocationList attribute of the associated distribution point or, if no distribution point is

identified, via an attribute of type aDeltaRevocationList of the ACRL issuer entry, regardless of the settings for

certificate types covered by the ACRL. Unless the ACRL is a dACRL:

– an ACRL that does not contain an issuingDistributionPoint extension which has only

containsAACerts and/or containsSOAPublicKeyCerts set to TRUE shall be distributed via the

attributeAuthorityRevocationList attribute of the associated distribution point or, if no distribution

point is identified, via the attributeAuthorityRevocationList attribute of the CRL issuer entry;

– an ACRL that does not contain an issuingDistributionPoint extension which has

containsUserAttributeCerts set to TRUE (with or without containsAACerts and/or

containsSOAPublicKeyCerts also set) shall be distributed via the

attributeCertificateRevocationList attribute of the associated distribution point or, if no

distribution point is identified, via the attributeCertificateRevocationList attribute of the ACRL

issuer entry;

– an ACRL which contains an issuingDistributionPoint extension shall be distributed as specified in

clause 9.6.2.2.

This extension shall always be flagged as critical. A privilege verifier that does not understand this extension cannot assume

that the ACRL contains a complete list of revoked certificates of the identified authority. CRLs not containing critical

extensions shall contain all current CRL entries for the issuing authority, including entries for all revoked end-entity

certificates and authority certificates.

NOTE – The means by which revocation information is communicated by authorities to ACRL issuers is beyond the scope of this

Specification.

If an authority publishes a ACRL with the containsAACerts component set to TRUE and the

containsUserAttributeCerts not set to TRUE, then the authority shall ensure that all AA certificates covered by this

CRL contain the basicAttConstraints extension.

If an authority publishes an ACRL with contains SOAPublicKeyCerts set to TRUE, then the authority shall ensure that

all SOA certificates covered by this ACRL contain the SOAIdentifier extension.

17.2.2.3 Use of certificate issuer extension

The certificate issuer extension is defined in clause 9.6.2.3 for use in indirect CRLs. This extension may also be included

in indirect ACRLs.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 95

The procedure in clause 9.6.2.3 applies by replacing issuing distribution point extension, CRL and CA with AA issuing

distribution point extension, ACRL and AA, respectively.

17.2.2.4 Use of delta CRL indicator extension

The delta CRL indicator extension is defined in clause 9.6.2.4 for use in a dCRL to an CRL and may also be used in a

dACRL to an ACRL.

The procedure specified in clause 9.6.2.4 shall be followed by replacing public-key certificate, CA, CRL and dCRL with

attribute certificate, AA, ACRL and dACRL, respectively.

17.2.2.5 Use of base update extension

This extension shall be used as specified in clause 9.6.2.5 by replacing dCRLs with dACRLs.

17.2.2.6 Use of freshest CRL extension

The freshest CRL extension is defined in clause 9.6.2.6 for use in a dCRL. It may also be used for a dACRL.

The procedure specified in clause 9.6.2.6 shall be followed by replacing public-key certificate, CA, CRL, dCRL and relying

party with attribute certificate, AA, ACRL, dACRL and privilege verifier, respectively.

17.2.2.7 No revocation information available extension

In some environments (e.g., where attribute certificates are issued with very short validity periods), there may not be a

need to revoke attribute certificates. An AA may use this extension to indicate that revocation status information is not

provided for this attribute certificate. This extension is defined as follows:

noRevAvail EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-noRevAvail }

This extension may be present in attribute certificates issued by AAs, including SOAs, to entities acting as PMI end entities.

This extension shall not be included in public-key certificates or in attribute certificates issued to AAs.

This extension shall always be flagged as non-critical.

If this extension is present in an attribute certificate, a privilege verifier need not seek revocation status information.

17.3 Source of authority extensions

17.3.1 Requirements

The following requirements relate to SOAs:

a) In some environments there is a need for tight control by a CA, of the entities that can act as SOAs.

b) There is a need to make the valid syntax definitions and domination rules for privilege attributes available

by the responsible SOAs.

17.3.2 SOA extensions

The following extensions are defined:

a) SOA identifier;

b) Attribute descriptor.

17.3.2.1 SOA identifier extension

17.3.2.1.1 SOA identifier extension definition

This extension may only be present in a public-key certificate issued to an SOA. It shall not be included in attribute

certificates or public-key certificates issued to other AAs.

The SOA identifier extension indicates that the public-key certificate subject may act as an SOA for the purposes of

privilege management. As such, the public-key certificate subject may define attributes that assign privilege, issue attribute

descriptor certificates for those attributes and use the private key corresponding to the certified public key to issue attribute

certificates that assign privileges to holders. If the public key certificate is a CA certificate, the subject of that CA certificate

may also issue public-key certificates with a subjectDirectoryAttributes extension containing the privileges.

ISO/IEC 9594-8:2017 (E)

96 Rec. ITU-T X.509 (10/2016)

In some environments, this extension is not required and other mechanisms may be used to determine the entities that may

act as SOAs. This extension is required only in environments where tight centralized control by a CA is required to manage

the entities that act as SOAs.

This extension is defined as follows:

sOAIdentifier EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-sOAIdentifier }

If this extension is not present in a certificate, the subject/holder ability to act as an SOA shall be determined by other

means.

Cross-certification applies only to public-key certificates and not to attribute certificates. Therefore, a cross-certificate

issued to the CA that is the issuer of a certificate containing the SOA identifier extension does not provide transitive trust

to the SOA identified in this extension.

This extension shall always be flagged as non-critical.

17.3.2.1.2 SOA identifier matching rule

The SOA identifier matching rule compares a presented value with an attribute value of type Certificate.

sOAIdentifierMatch MATCHING-RULE ::= {

 SYNTAX NULL

 ID id-mr-sOAIdentifierMatch }

This matching rule returns TRUE if the stored public-key certificate contains a sOAIdentifier extension.

17.3.2.2 Attribute descriptor extension

17.3.2.2.1 Attribute descriptor extension definition

The definition of a privilege attribute, and the domination rules governing the subsequent delegation of that privilege, are

needed by privilege verifiers to ensure that authorization is done correctly. These definitions and rules may be provided to

privilege verifiers in a variety of ways outside the scope of this Specification (e.g., they may be locally configured at the

privilege verifier).

This extension provides one mechanism that can be used by an SOA to make privilege attribute definitions and associated

domination rules available to privilege verifiers. An attribute certificate that contains this extension is called an attribute

descriptor certificate and is a special type of attribute certificate. Although syntactically identical to an

AttributeCertificate, an attribute descriptor certificate:

– contains an empty SEQUENCE in its attributes component;

– is a self-issued certificate (i.e., the issuer and holder are the same entity); and

– includes the attribute descriptor extension.

This extension is defined as follows:

attributeDescriptor EXTENSION ::= {

 SYNTAX AttributeDescriptorSyntax

 IDENTIFIED BY {id-ce-attributeDescriptor} }

AttributeDescriptorSyntax ::= SEQUENCE {

 identifier AttributeIdentifier,

 attributeSyntax OCTET STRING(SIZE (1..MAX)),

 name [0] AttributeName OPTIONAL,

 description [1] AttributeDescription OPTIONAL,

 dominationRule PrivilegePolicyIdentifier,

 ... }

AttributeIdentifier ::= ATTRIBUTE.&id({AttributeIDs})

AttributeIDs ATTRIBUTE ::= {...}

AttributeName ::= UTF8String(SIZE (1..MAX))

AttributeDescription ::= UTF8String(SIZE (1..MAX))

PrivilegePolicyIdentifier ::= SEQUENCE {

 privilegePolicy PrivilegePolicy,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 97

 privPolSyntax InfoSyntax,

 ... }

The identifier component of a value of the attributeDescriptor extension is the object identifier identifying the

attribute type.

The attributeSyntax component contains the ASN.1 definition of the attribute's syntax. Such an ASN.1 definition shall

be given as specified for the information component of the Matching Rules operational attribute defined in Rec. ITU-

T X.501 | ISO/IEC 9594-2.

The name component optionally contains a user-friendly name by which the attribute may be recognized.

The description component optionally contains a user-friendly description of the attribute.

The dominationRule component specifies, for the attribute, what it means for a delegated privilege to be "less than" the

corresponding privilege held by the delegator.

– The privilegePolicy component identifies the instance of privilege policy that contains the rules, by its

object identifier.

– The privPolSyntax component contains either the privilege policy itself or a pointer to a location where

it can be located. If a pointer is included, an optional hash of the privilege policy can also be included to

allow an integrity check on the referenced privilege policy.

This extension may only be present in attribute descriptor certificates. This extension shall not be present in public-key

certificates or in attribute certificates other than self-issued certificates of SOAs.

This extension shall always be flagged as non-critical.

The attribute descriptor certificate, created by the SOA at the time of creation/definition of the corresponding attribute

type, is a means by which the universal constraint of delegating "down" can be understood and enforced in the

infrastructure. In a directory, attribute certificates that contain this extension would be stored in the

attributeDescriptorCertificate attribute of the SOA's directory entry.

17.3.2.2.2 Attribute descriptor matching rule

The attribute descriptor matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

attDescriptor MATCHING-RULE ::= {

 SYNTAX AttributeDescriptorSyntax

 ID id-mr-attDescriptorMatch }

This matching rule returns TRUE if the stored value contains the attributeDescriptor extension and if components

that are present in the presented value match the corresponding components of the stored value.

17.4 Role extensions

17.4.1 Requirements

The following requirement relates to roles:

– If a certificate is a role assignment certificate, a privilege verifier needs to be able to locate the corresponding

role specification certificate that contains the specific privileges assigned to the role itself.

17.4.2 Role extensions

The following extension is defined:

– Role specification certificate identifier.

17.4.2.1 Role specification certificate identifier extension

17.4.2.1.1 Role specification certificate identifier extension definition

This extension may be used by an AA as a pointer to a role specification certificate that contains the assignment of

privileges to a role. It may be present in a role assignment certificate (i.e., a certificate that contains the role attribute).

A privilege verifier, when dealing with a role assignment certificate, needs to obtain the set of privileges of that role in

order to determine whether to pass or fail the verification. If the privileges were assigned to the role in a role specification

certificate, this extension may be used to locate that certificate.

ISO/IEC 9594-8:2017 (E)

98 Rec. ITU-T X.509 (10/2016)

This extension is defined as follows:

roleSpecCertIdentifier EXTENSION ::= {

 SYNTAX RoleSpecCertIdentifierSyntax

 IDENTIFIED BY {id-ce-roleSpecCertIdentifier} }

RoleSpecCertIdentifierSyntax ::=

 SEQUENCE SIZE (1..MAX) OF RoleSpecCertIdentifier

RoleSpecCertIdentifier ::= SEQUENCE {

 roleName [0] GeneralName,

 roleCertIssuer [1] GeneralName,

 roleCertSerialNumber [2] CertificateSerialNumber OPTIONAL,

 roleCertLocator [3] GeneralNames OPTIONAL,

 ... }

The roleName identifies the role. This name would be the same as that in the holder component of the role specification

certificate being referenced by this extension.

The roleCertIssuer identifies the AA that issued the referenced role specification certificate.

The roleCertSerialNumber, if present, contains the serial number of the role specification certificate. Note that if the

privileges assigned to the role itself change, then a new role specification certificate would be issued to the role. Any

certificates that contain this extension, including the roleCertSerialNumber component, would then need to be

replaced by certificates that referenced the new serial number. Although this behaviour is required in some environments,

it is undesirable in many others. Typically, this component would be absent, enabling automatic updating of the privileges

assigned to the role itself, without impacting the role assignment certificates.

The roleCertLocator, if present, contains information that can be used to locate the role specification certificate.

This extension may be present in role assignment certificates that are attribute certificates or public-key certificates issued

by AAs, including SOAs, to other AAs or to end-entity privilege holders. This extension shall not be included in certificates

that contain the SOA identifier extension.

If present, this extension can be used by a privilege verifier to locate the role specification certificate.

If this extension is not present, either:

a) other means will be used to locate the role specification certificate; or

b) mechanisms other than a role specification certificate were used to assign privileges to the role (e.g., role

privileges may be locally configured at the privilege verifier).

This extension shall always be flagged as non-critical.

17.4.2.1.2 Role specification certificate ID matching rule

The role specification certificate identifier matching rule compares for equality a presented value with an attribute value

of type AttributeCertificate.

roleSpecCertIdMatch MATCHING-RULE ::= {

 SYNTAX RoleSpecCertIdentifierSyntax

 ID id-mr-roleSpecCertIdMatch }

This matching rule returns TRUE if the stored value contains the roleSpecCertIdentifier extension and if

components that are present in the presented value match the corresponding components of the stored value.

17.5 Delegation extensions

17.5.1 Requirements

The following requirements relate to the delegation of privileges:

a) End-entity privilege certificates need to be distinguishable from AA certificates, to protect against end-

entities establishing themselves as AAs without authorization. It also needs to be possible for an AA to limit

the length of a subsequent delegation path.

b) An AA needs to be able to specify the appropriate name space within which the delegation of privilege can

occur. Adherence to these constraints needs to be checkable by the privilege verifier.

c) An AA needs to be able to specify the acceptable certificate policies that privilege asserters further down a

delegation path shall use to authenticate themselves when asserting a privilege delegation by this AA.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 99

d) A privilege verifier needs to be able to locate the corresponding attribute certificate for an issuer to ensure

that the issuer had sufficient privilege to delegate the privilege in the current certificate.

e) There is a requirement for an independent Delegation Service (DS) to issue certificates that delegate

privileges, whilst the DS server cannot itself act as a claimant for those privileges.

f) An independent Delegation Service may wish to insert the name of the authority that requested the privilege

assertion to be issued.

17.5.2 Delegation extensions

The following extensions are defined:

a) basic attribute constraints;

b) delegated name constraints;

c) acceptable certificate policies;

d) authority attribute identifier;

e) indirect issuer;

f) issued on behalf of; and

g) no assertion.

17.5.2.1 Basic attribute constraints extension

17.5.2.1.1 Basic attribute constraints extension definition

This extension indicates whether the subsequent delegation of the privileges assigned in the certificate containing this

extension is permitted. If so, a delegation path length constraint may also be specified.

This extension is defined as follows:

basicAttConstraints EXTENSION ::= {

 SYNTAX BasicAttConstraintsSyntax

 IDENTIFIED BY {id-ce-basicAttConstraints} }

BasicAttConstraintsSyntax ::= SEQUENCE {

 authority BOOLEAN DEFAULT FALSE,

 pathLenConstraint INTEGER(0..MAX) OPTIONAL,

 ... }

The authority component indicates whether or not the holder is authorized to further delegate privilege. If authority

is TRUE the holder is also an AA and is authorized to further delegate privilege, dependent on relevant constraints. If

authority is FALSE, the holder is an end entity and is not authorized to delegate the privilege.

The pathLenConstraint component is meaningful only if authority is set to TRUE. It gives the maximum number of

AA certificates that may follow this certificate in a delegation path. Value 0 indicates that the holder/subject of this

certificate may issue certificates only to end entities and not to AAs. If no pathLenConstraint component appears in

any certificate of a delegation path, there is no limit to the allowed length of the delegation path. Note that the constraint

takes effect beginning with the next certificate in the path. The constraint controls the number of AA certificates between

the AA certificate containing the constraint and end-entity certificate. The constraint restricts the length of the segment of

the delegation path between the certificate containing this extension and the end-entity certificate. It has no impact on the

number of AA certificates in the delegation path between the SOA/trust anchor and the certificate containing this extension.

Therefore, the length of a complete delegation path may exceed the maximum length of the segment constrained by this

extension. The constraint controls the number of AA certificates between the AA certificate containing the constraint and

the end-entity certificate. Therefore, the total length of this segment of the path may exceed the value of the constraint by

as many as two certificates. (This includes the certificates at the two endpoints of the segment plus the AA certificates

between the two endpoints that are constrained by the value of this extension.)

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAs, to other

AAs or to end entities. This extension shall not be included in certificates that contain the SOA identifier extension.

If this extension is present in an attribute certificate, and authority is TRUE, the holder is authorized to issue subsequent

attribute certificates delegating the contained privileges to other entities, but not public-key certificates.

If this extension is present in a public-key certificate, and if the basicConstraints extension indicates that the subject

is also a CA, the subject is authorized to issue subsequent public-key certificates that delegate these privileges to other

entities, but not attribute certificates. If a path length constraint is included, the subject may only delegate within the

intersection of the constraint specified in this extension and any specified in the basicConstraints extension. If this

ISO/IEC 9594-8:2017 (E)

100 Rec. ITU-T X.509 (10/2016)

extension is present in a public-key certificate but the basicConstraints extension is absent, or indicates that the subject

is an end entity, the subject is not authorized to delegate the privileges.

This extension may, at the option of the certificate issuer, be either flagged as critical or as non-critical. It is recommended

that it be flagged critical, otherwise a holder that is not authorized to be an AA may issue certificates and the privilege

verifier may unwittingly use such a certificate.

If this extension is present and is flagged as critical, then:

– if the value of authority is not set to TRUE, then the delegated attribute shall not be used to further

delegate;

– if the value of authority is set to TRUE and pathLenConstraint is present, then the privilege verifier

shall check that the delegation path being processed is consistent with the value of pathLenConstraint.

If this extension is present, flagged as non-critical, and is not recognized by the privilege verifier, then that entity should

use other means to determine if the delegated attributes may be used to further delegate.

If this extension is not present, or if the extension is present with an empty SEQUENCE value, the holder is constrained to

being only an end entity and not an attribute authority and no delegation of the privileges contained in the attribute

certificate is permitted by the holder.

17.5.2.1.2 Basic attribute constraints matching rule

The basic attribute constraints matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

basicAttConstraintsMatch MATCHING-RULE ::= {

 SYNTAX BasicAttConstraintsSyntax

 ID id-mr-basicAttConstraintsMatch }

This matching rule returns TRUE if the stored value contains the basicAttConstraints extension and if components

that are present in the presented value match the corresponding components of the stored value.

17.5.2.2 Delegated name constraints extension

17.5.2.2.1 Delegated name constraints extension definition

The delegated name constraints extension indicates a name space within which all holder names in subsequent certificates

in a delegation path need to be located.

This extension is defined as follows:

delegatedNameConstraints EXTENSION ::= {

 SYNTAX NameConstraintsSyntax

 IDENTIFIED BY id-ce-delegatedNameConstraints }

This extension is processed in the same manner as the nameConstraints extension for public-key certificates. If

permittedSubtrees is present, of all the attribute certificates issued by the holder AA and subsequent AAs in the

delegation path, only those attribute certificates with holder names within these subtrees are acceptable. If

excludedSubtrees is present, any attribute certificate issued by the holder AA or subsequent AAs in the delegation path

that has a holder name within these subtrees is unacceptable. If both permittedSubtrees and excludedSubtrees are

present and the name spaces overlap, the exclusion statement takes precedence.

This extension may be present in attribute certificates or public-key certificates issued by AAs, including SOAs, to other

AAs. This extension shall not be included in certificates issued to end-entities or certificates that contain the SOA identifier

extension.

If this extension is present in a public-key certificate, and if the nameConstraints extension is also present, the subject

may only delegate within the intersection of the constraint specified in this extension and that specified in the

nameConstraints extension.

This extension may, at the option of the attribute certificate issuer, be either flagged as critical or as non-critical. It is

recommended that it be flagged as critical, otherwise an attribute relying party may not check that subsequent attribute

certificates in a delegation path are located in the name space intended by the issuing AA.

17.5.2.2.2 Delegated name constraints matching rule

The delegated name constraints matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 101

delegatedNameConstraintsMatch MATCHING-RULE ::= {

 SYNTAX NameConstraintsSyntax

 ID id-mr-delegatedNameConstraintsMatch }

This matching rule returns TRUE if the stored value contains the attributeNameConstraints extension and if

components that are present in the presented value match the corresponding components of the stored value.

17.5.2.3 Acceptable certificate policies extension

17.5.2.3.1 Acceptable certificate policies extension definition

The acceptable certificate policies extension is used, in delegation with attribute certificates, to control the acceptable

certificate policies under which the public-key certificates for subsequent holders in a delegation path need to have been

issued. By enumerating a set of policies in this extension, an AA is requiring that subsequent issuers in a delegation path

only delegate the contained privileges to holders that have public-key certificates issued under one or more of the

enumerated certificate policies. The policies listed here are not policies under which the attribute certificate was issued,

but policies under which acceptable public-key certificates for subsequent holders need to have been issued.

This extension is defined as follows:

acceptableCertPolicies EXTENSION ::= {

 SYNTAX AcceptableCertPoliciesSyntax

 IDENTIFIED BY id-ce-acceptableCertPolicies }

AcceptableCertPoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

CertPolicyId ::= OBJECT IDENTIFIER

This extension may only be present in attribute certificates issued by AAs, including SOAs, to other AAs. This extension

shall not be included in end-entity attribute certificates or in any public-key certificates. In the case of delegation using

public-key certificates, this same functionality is provided by the certificatePolicies and other related extensions.

If present, this extension shall be flagged as critical.

If this extension is present and the privilege verifier understands it, the verifier shall ensure that all subsequent privilege

asserters in the delegation path are authenticated with a public-key certificate under one or more of the enumerated

certificate policies.

If this extension is present, but not understood by the privilege verifier, the attribute certificate shall be considered invalid.

17.5.2.3.2 Acceptable certificate policies matching rule

The acceptable certificate policies matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

acceptableCertPoliciesMatch MATCHING-RULE ::= {

 SYNTAX AcceptableCertPoliciesSyntax

 ID id-mr-acceptableCertPoliciesMatch }

This matching rule returns TRUE if the stored value contains the acceptableCertPolicies extension and if

components that are present in the presented value match the corresponding components of the stored value.

17.5.2.4 Authority attribute identifier extension

17.5.2.4.1 Authority attribute identifier extension definition

In privilege delegation, an AA that delegates privileges shall itself have at least the same privilege and the authority to

delegate that privilege. An AA that is delegating privilege to another AA or to an end entity may place this extension in

the AA or end-entity certificate that it issues. The extension is a back pointer to the certificate in which the issuer of the

certificate containing the extension was assigned its corresponding privilege. The extension can be used by a privilege

verifier to ensure that the issuing AA had sufficient privilege to be able to delegate to the holder of the certificate containing

this extension.

This extension is defined as follows:

authorityAttributeIdentifier EXTENSION ::= {

 SYNTAX AuthorityAttributeIdentifierSyntax

 IDENTIFIED BY {id-ce-authorityAttributeIdentifier} }

AuthorityAttributeIdentifierSyntax ::= SEQUENCE SIZE (1..MAX) OF AuthAttId

ISO/IEC 9594-8:2017 (E)

102 Rec. ITU-T X.509 (10/2016)

AuthAttId ::= IssuerSerial

A certificate that contains this extension may include the delegation of multiple privileges to the certificate holder. If the

assignment of those privileges to the AA that issued this certificate was done in more than one certificate, then this

extension would include more than one pointer.

This extension may be present in attribute certificates or public-key certificates issued by AAs to other AAs or to end-

entity privilege holders. This extension shall not be included in certificates issued by an SOA or in public-key certificates

that contain the SOA identifier extension.

This extension shall always be flagged as non-critical.

17.5.2.4.2 AA identifier matching rule

The authority attribute identifier matching rule compares for equality a presented value with an attribute value of type
AttributeCertificate.

authAttIdMatch MATCHING-RULE ::= {

 SYNTAX AuthorityAttributeIdentifierSyntax

 ID id-mr-authAttIdMatch }

This matching rule returns TRUE if the stored value contains the authorityAttributeIdentifier extension and if

components that are present in the presented value match the corresponding components of the stored value.

17.5.2.5 Indirect issuer extension

In some environments, privilege may be delegated indirectly. In such cases, the delegator requests that a DS server issue a

certificate delegating privilege on their behalf to another entity. The indirect issuer extension is used in either an attribute

certificate or a public-key certificate issued to a DS server by an SOA. Presence of this extension means that the subject

AA (the DS server) is authorized by that SOA to act as a proxy and issue certificates that delegate privilege, on behalf of

other delegators.

indirectIssuer EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-indirectIssuer }

This extension shall always be flagged as non-critical.

17.5.2.6 Issued on behalf of extension

This extension is inserted into an attribute certificate by an indirect issuer (DS server). It indicates the AA that has requested

the DS server to issue the attribute certificate, and allows the delegation chain to be constructed and validated.

issuedOnBehalfOf EXTENSION ::= {

 SYNTAX GeneralName

 IDENTIFIED BY id-ce-issuedOnBehalfOf }

The GeneralName is the name of the AA who has asked the indirect issuer (DS server) to issue this attribute certificate.

The issuer of this attribute certificate must have been granted the privilege to issue ACs on behalf of other AAs by an SOA,

through the IndirectIssuer extension in its attribute certificate.

This extension may be flagged as critical or as non-critical as necessary to ensure delegation path validation.

17.5.2.7 No assertion extension

If present, this extension indicates that the attribute certificate holder cannot assert the privileges indicated in the attributes

of the attribute certificate. This extension can only be inserted into AA attribute certificates, and not into end-entity attribute

certificates. If present, this extension shall always be flagged as critical.

noAssertion EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-noAssertion }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 103

17.6 Recognition of authority extensions

17.6.1 Requirements

The following requirements relate to recognition of authority:

a) the local SOA may wish to specify how attributes assigned in a remote domain are mapped into roles known

to relying parties in the local domain;

b) the local SOA may want to constrain which privilege attributes a remote SOA is trusted to assign to which

entities;

c) the local SOA may need to be able to constrain the name forms and name spaces within which a remote

SOA can assign privilege attributes to users.

17.6.2 RoA extensions

The following extensions are defined:

a) Allowed attribute assignments;

b) Attribute mappings;

c) Holder name constraints.

17.6.2.1 Allowed attribute assignments extension

This extension says which privilege attributes a remote domain SOA is trusted to issue to whom.

allowedAttributeAssignments EXTENSION ::= {

 SYNTAX AllowedAttributeAssignments

 IDENTIFIED BY id-ce-allowedAttributeAssignments }

AllowedAttributeAssignments ::= SET OF SEQUENCE {

 attributes [0] SET OF CHOICE {

 attributeType [0] AttributeType,

 attributeTypeandValues [1] Attribute{{SupportedAttributes}},

 ... },

 holderDomain [1] GeneralName,

 ... }

Each allowed attribute assignment comprises a set of attribute types and/or values, together with the name space which

defines the holder domain. Of the name forms available through the GeneralName type, only those name forms that have

a well-defined hierarchical structure may be used for the holder domain. The value that is specified for the holder domain

forms the superior node of a subtree within which all the holder names must fall.

All the allowed attributes specified in this extension should also be specified in the attributes component of the attribute

certificate. If an attribute is specified in this extension, but it is not in the attributes component, then it is ignored (i.e., it is

not trusted). If an attribute is in the attributes component, but not in this extension, then it is trusted and has no further

constraints on the holders to which it can be issued (other than that which might optionally be specified in the name

constraints extension).

If this extension is present, it shall be flagged as critical.

17.6.2.2 Attribute mappings extension

This extension says how the attributes in the remote, trusted domain map into attributes in the local domain.

attributeMappings EXTENSION ::= {

 SYNTAX AttributeMappings

 IDENTIFIED BY id-ce-attributeMappings }

AttributeMappings ::= SET OF CHOICE {

 typeMappings [0] SEQUENCE {

 local [0] AttributeType,

 remote [1] AttributeType,

 ... },

 typeValueMappings [1] SEQUENCE {

 local [0] AttributeTypeAndValue,

 remote [1] AttributeTypeAndValue,

 ... } }

An attribute mapping can be at the type or value level.

ISO/IEC 9594-8:2017 (E)

104 Rec. ITU-T X.509 (10/2016)

When attribute mapping is at the attribute value level, each attribute value in the remote domain is mapped into an

equivalent attribute value in the local domain.

NOTE 1 – Attribute value mappings may have a many-to-many relationship.

When attribute mapping is at the attribute type level, all the values assigned in the remote domain must already be

understood by, and have an equal value in, the local domain.

NOTE 2 – This attribute mapping is a one-to-one mapping.

17.6.2.3 Holder name constraints extension

This extension constrains the name forms and name spaces in which a subordinate AA or a remote SOA and its subordinate

AAs can issue attribute certificates.

This extension indicates that constraints are being placed on the name forms and name spaces of all name forms in attribute

certificates issued by this AA and all subsequent AAs in the attribute certificate chain. If this extension is absent from all

attribute certificates in an attribute certificate chain, then no constraints are placed on any name spaces in the attribute

certificate chain. If this extension is present in an attribute certificate, then constraints are automatically placed on the name

spaces of every name form in the attribute certificate chain from this point onwards, regardless of whether the name form

is explicitly included in the extension or not, i.e., the default constraint on each name form excludes the entire name space.

NOTE – Because there can be an unbounded set of registeredID name forms, then it is not possible for new name forms to be

unconstrained once this extension is present, without the name form being explicitly included in this extension via a permitted

subtree.

This extension is defined as follows:

holderNameConstraints EXTENSION ::= {

 SYNTAX HolderNameConstraintsSyntax

 IDENTIFIED BY id-ce-holderNameConstraints }

HolderNameConstraintsSyntax ::= SEQUENCE {

 permittedSubtrees [0] GeneralSubtrees,

 excludedSubtrees [1] GeneralSubtrees OPTIONAL,

 ... }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {

 base GeneralName,

 minimum [0] BaseDistance DEFAULT 0,

 maximum [1] BaseDistance OPTIONAL,

 ... }

BaseDistance ::= INTEGER(0..MAX)

The permittedSubtrees and excludedSubtrees components each specify one or more naming subtrees of one or

more name forms. Each subtree is defined by the name of the root of the subtree, i.e., the base component, and, optionally,

within that subtree, an area that is bounded by upper and/or lower levels.

An empty distinguished name sequence is equivalent to a wildcard and means that all DNs fall within the subtree.

The minimum component specifies the upper bound of the area within the subtree. All names whose final name component

is above the level specified are not contained within the area. A value of minimum equal to zero (the default) corresponds

to the base, i.e., the top node of the subtree. For example, if minimum is set to one, then the naming subtree excludes the

base node but includes subordinate nodes.

The maximum component specifies the lower bound of the area within the subtree. All names whose last component is

below the level specified are not contained within the area. A value of maximum of zero corresponds to the base, i.e., the

top of the subtree. An absent maximum component indicates that no lower limit should be imposed on the area within the

subtree. For example, if maximum is set to one, then the naming subtree excludes all nodes except the subtree base and its

immediate subordinates.

The permittedSubtrees component is used to reduce the constraints placed on the name spaces of one or more name

forms. Since the entire name space of each form is automatically fully excluded when this extension appears in an AA

certificate, the permittedSubtrees component describes the name space(s) that is(are) permitted. If an entire name

space of a particular name form is to be permitted, this is achieved by setting the base component to the root of the name

space.

The optional excludedSubtrees component is used to exclude one or more subordinate subtrees from the

permittedSubtrees. For example, if in the ITU-T X.500 distinguished name space, the subtree C=GB is permitted, but

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 105

the subtrees C=GB, O=XYZ and C=GB, O=ABC are not permitted, then the permittedSubtrees will be set to C=GB

and the excludedSubtrees will be set to C=GB, O=XYZ and C=GB, O=ABC. If the excludedSubtrees is present

and its name spaces overlap with the permittedSubtrees, the excludedSubtrees statement takes precedence.

All holder names in subsequent attribute certificates in a delegation path shall be located in the permitted name spaces for

the attribute certificates to be acceptable. When a certificate holder has multiple names of the same name form then all

such names shall be located in the permitted name space of that name form for the certificate to be acceptable. When a

certificate holder has multiple names in different name forms, each name shall be located in the permitted name space of

that name form for the certificate to be acceptable.

Of the name forms available through the GeneralName type, only those name forms that have a well-defined hierarchical

structure may be used in these components.

The directoryName name form satisfies this requirement; when using this name form, a naming subtree corresponds to

a DIT subtree. An attribute certificate is considered subordinate to the base (and therefore a candidate to be within the

subtree) if the sequence of RDNs, which forms the full distinguished name in base, matches the initial sequence of the

same number of RDNs which forms the first part of the distinguished name of the holder of the attribute certificate. The

distinguished name of the holder of the certificate may have additional trailing RDNs in its sequence that do not appear

in the distinguished name in base. The distinguishedNameMatch matching rule is used to compare the value of base

with the initial sequence of RDNs in the distinguished name of the subject of the certificate.

Conformant implementations are not required to recognize all possible name forms. If a privilege verifier does not

recognize a name form used in any base component, and

– that name form also occurs in the holder component of a subsequent attribute certificate in the chain, then

that attribute certificate shall be handled as if an unrecognized critical extension had been encountered; or

– that name form does not occur in the holder component of a subsequent attribute certificate in the chain,

then this name form can be ignored.

If a privilege verifier does not recognize a name form that occurs in the holder component of a subsequent attribute

certificate in the chain from that in which this extension appeared, but that name form does not occur in any base

component of this extension, then that attribute certificate shall be rejected.

This extension shall always be flagged as critical.

A privilege verifier shall check that the attribute certification path being processed is within the constraints specified by

the value in this extension.

17.6.2.4 Relationship of delegated name constraints to holder name constraints

The delegatedNameConstraints extension described in clause 17.5.2.2 has the same semantics as the

nameConstraints extension of public-key certificates, which is that every name form is allowed unless specifically

constrained. The holderNameConstraints extension on the other hand, whilst having the same syntax, has the opposite

semantics; which is that, once the extension is present, every name form is denied unless specifically permitted. If both the

delegatedNameConstraints extension and the holderNameConstraints extension appear in the same attribute

certificate, then the excluded name spaces are the union of the excluded name spaces from both extensions, whilst the

included name spaces are the intersection of the name spaces from both extensions.

17.7 Use of basic CRL extension for ACRLs

17.7.1 Requirements

17.7.2 Use of CRL extensions

17.7.2.1 Use of CRL number extension for ACRL

This ACRL extension conveys a monotonically increasing sequence number for each ACRL issued by a given ACRL

issuer through a given ACRL directory attribute (see clauses 19.2.4 to 19.2.6) or ACRL distribution point. It allows a

privilege verifier to detect whether ACRLs issued prior to the one being processed were also seen and processed. This

extension syntax is as defined in clause 9.5.2.1.

This extension shall always be flagged as non-critical.

NOTE - The extension defined here is relevant for both CRLs and ACRLs). Only ACRL aspects are considered here. For ARL

aspects, see clause 9.5.2.1.

17.7.2.2 Use of status referral extension for ACRL

The status referral extension is defined in 9.5.2.2 for use in CRLs. This extension may also be used in ACRLs.

ISO/IEC 9594-8:2017 (E)

106 Rec. ITU-T X.509 (10/2016)

The procedure specified in 9.5.2.2 also applies here by replacing public-key certificate, CRL and relying party with

attribute certificate, ACRL and privilege verifier, respectively.

17.7.2.3 Use of CRL stream identifier for ACRL

The CRL stream identifier extension is defined in 9.5.2.3 for use in CRLs. This extension may also be used in ACRLs.

The procedure specified in 9.5.2.3 also applies here by replacing CRL with ACRL.

17.7.2.4 Use of order list extension for ACRL

The CRL stream identifier extension is defined in 9.5.2.4 for use in CRLs. This extension may also be used in ACRLs.

The procedure specified in 9.5.2.4 also applies here by replacing public-key certificate and CRL with attribute certificate

and ACRL, respectively.

17.7.2.5 Use of delta information extension for ACRL

The delta information extension is defined in 9.5.2.5 for use in CRLs. This extension may also be used in ACRLs.

The procedure specified in 9.5.2.5 also applies here by replacing CRL, dCRL and relying party with ACRL, dACRL and

privilege verifier, respectively.

17.7.2.6 Use of to be revoked extension for ACRL

This ACRL extension allows for the notification that attribute certificates will be revoked as of a specified date and time

in the future. The toBeRevoked extension is used to specify the reason for the attribute certificate revocation, the date and

time at which the attribute certificate will be revoked, and the group of attribute certificates to be revoked. Each list can

contain a single attribute certificate serial number, a range of attribute certificate serial numbers or a named subtree.

NOTE – The following ASN.1 is copied from 9.5.2.6 for easy reference.

toBeRevoked EXTENSION ::= {

 SYNTAX ToBeRevokedSyntax

 IDENTIFIED BY id-ce-toBeRevoked }

ToBeRevokedSyntax ::= SEQUENCE SIZE (1..MAX) OF ToBeRevokedGroup

ToBeRevokedGroup ::= SEQUENCE {

 certificateIssuer [0] GeneralName OPTIONAL,

 reasonInfo [1] ReasonInfo OPTIONAL,

 revocationTime GeneralizedTime,

 certificateGroup CertificateGroup,

 ... }

ReasonInfo ::= SEQUENCE {

 reasonCode CRLReason,

 holdInstructionCode HoldInstruction OPTIONAL,

 ... }

CertificateGroup ::= CHOICE {

 serialNumbers [0] CertificateSerialNumbers,

 serialNumberRange [1] CertificateGroupNumberRange,

 nameSubtree [2] GeneralName,

 ... }

CertificateGroupNumberRange ::= SEQUENCE {

 startingNumber [0] INTEGER,

 endingNumber [1] INTEGER,

 ... }

CertificateSerialNumbers ::= SEQUENCE SIZE (1..MAX) OF CertificateSerialNumber

The certificateIssuer component, if present, identifies the AA that issued all the attribute certificates listed in this

ToBeRevokedGroup. If certificateIssuer is omitted, it defaults to the ACRL issuer name.

The reasonInfo component, if present, identifies the reason for the attribute certificate revocations. If present, this

extension indicates that all attribute certificates identified in ToBeRevokedGroup will be revoked for the reason indicated

in this component. If the reasonCode component contains the value certificateHold, the holdInstructionCode

component may also be present. If present, the holdInstructionCode component indicates the action to be taken on

encountering any of the attribute certificates identified in RevokedGroup. This action should only be taken, after the

revocation time indicated in the revocationTime component has passed.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 107

The revocationTime component indicates the date and time at which this group of attribute certificates will be revoked

and should therefore be considered invalid. This date shall be later than the thisUpdate time of the ACRL containing

this extension. If revocationTime is before the nextUpdate time of the ACRL containing this extension, the attribute

certificates shall be considered revoked between the revocationTime and the nextUpdate time by a relying party using

an ACRL containing this extension. Otherwise, this is a notice that at a specified time in the future these attribute

certificates will be revoked. Once the revocation time has passed, either the AA has revoked the attribute certificate or not.

If it has revoked the attribute certificate, future ACRLs shall include this on the list of revoked certificates, at least until

the attribute certificate expires. If the AA has not revoked the attribute certificate, but still intends to revoke it in the future,

it may include the attribute certificate in this extension on subsequent ACRLs with a revised revocationTime. If the AA

no longer intends to revoke the attribute certificate, it may be excluded from all subsequent ACRLs and the attribute

certificate shall not be considered revoked.

The certificateGroup component lists the set of public-key certificates to be revoked. This component identifies the

attribute certificates issued by the AA identified in the certificateIssuer to be revoked at the date/time identified in

revocationTime. This set of public-key certificates is not further refined by any outside controls (e.g.,

issuingDistributionPoint).

The serialNumbers component, if present, shall hold the serial number(s) of the attribute certificate(s) issued by the

identified issuing AA that will be revoked at the specified time.

If the serialNumberRange component is present, all attribute certificates in the range beginning with the starting serial

number and ending with the ending serial number and issued by the identified issuing AA will be revoked at the specified

time.

If the nameSubtree component is present, all attribute certificates with a holder name that is subordinate to the specified

name and issued by the identified issuing AA will be revoked at the specified time. If the nameSubtree contains a

distinguished name then all distinguished names associated with the subject of an attribute certificate (i.e., holder

component of an attribute certificate) need to be considered. For other name forms, the holder component of attribute

certificates need to be considered. If at least one of the names associated with the holder, contained in the attribute

certificate, is within the subtree specified in nameSubtree, that attribute certificate will be revoked at the specified time.

As with the nameConstraints extension, not all name forms are appropriate for subtree specification. Only those that

have recognized subordination rules should be used in this extension.

This extension may, at the option of the ACRL issuer, be flagged as critical or as non-critical. As the information provided

in this extension applies to revocations that will occur in the future, it is recommended that it be flagged as non-critical,

reducing the risk of problems with interoperability and backward compatibility.

17.7.2.7 Use of revoked group of certificates extension

A set of attribute certificates that have been revoked can be published using the following CRL extension. Each list of

attribute certificates to be revoked is associated with a specific attribute certificate issuer and revocation time. Each list

can contain a range of attribute certificate serial numbers or a named subtree.

NOTE – The following ASN.1 is copied from 9.5.2.7 for easy reference.

revokedGroups EXTENSION ::= {

 SYNTAX RevokedGroupsSyntax

 IDENTIFIED BY id-ce-revokedGroups }

RevokedGroupsSyntax ::= SEQUENCE SIZE (1..MAX) OF RevokedGroup

RevokedGroup ::= SEQUENCE {

 certificateIssuer [0] GeneralName OPTIONAL,

 reasonInfo [1] ReasonInfo OPTIONAL,

 invalidityDate [2] GeneralizedTime OPTIONAL,

 revokedcertificateGroup [3] RevokedCertificateGroup,

 ... }

RevokedCertificateGroup ::= CHOICE {

 serialNumberRange NumberRange,

 nameSubtree GeneralName }

The certificateIssuer component, if present, identifies the AA that issued all the attribute certificates listed in this

RevokedGroup. If certificateIssuer is omitted, it defaults to the ACRL issuer name.

The reasonInfo component, if present, identifies the reason for the attribute certificate revocations. If present, this

component indicates that all attribute certificates identified in RevokedGroup component were revoked for the reason

indicated in this component. If the reasonCode contains the value certificateHold, the holdInstructionCode

ISO/IEC 9594-8:2017 (E)

108 Rec. ITU-T X.509 (10/2016)

may also be present. If present, holdInstructionCode indicates the action to be taken on encountering any of the

attribute certificates identified in the value of the RevokedGroup data type.

The invalidityDate component, if present, indicates the time from which all attribute certificates identified in

RevokedGroup should be considered invalid. This date shall be earlier than the date contained in thisUpdate component

of the ACRL. If omitted, all attribute certificates identified in RevokedGroup should be considered invalid at least from

the time indicated in the thisUpdate component of the ACRL. If the status of the attribute certificate prior to the

thisUpdate time is critical to a privilege verifier (e.g., to determine whether a digital signature that was created prior to

this ACRL issuance occurred while the attribute certificate was still valid or after it had been revoked), additional

revocation status checking techniques will be required to determine the actual date/time from which a given attribute

certificate should be considered invalid.

The revokedCertificateGroup component lists the set of attribute certificates that have been revoked. This component

identifies the attribute certificates issued by the AA identified in certificateIssuer revoked under the specified

conditions. This set of attribute certificates is not further refined by any outside controls (e.g.,

issuingDistributionPoint).

If the serialNumberRange is present, all attribute certificates containing certificate serial numbers within the specified

range, issued by the identified AA are applicable.

If the nameSubtree component is present, all certificates with a holder name that is subordinate to the specified name and

issued by the identified AA will be revoked at the specified time. If the nameSubtree contains a distinguished name then

all distinguished names associated with the holder component of an attribute certificate need to be considered. For other

name forms, the holder component of attribute certificates needs to be considered. If at least one of the names associated

with the holder, contained in the certificate, is within the subtree specified in nameSubtree, that attribute certificate has

been revoked. As with the nameConstraints extension, not all name forms are appropriate for subtree specification.

Only those that have recognized subordination rules should be used in this extension.

This extension is always flagged as critical. Otherwise, a privilege verifier may incorrectly assume that attribute

certificates, identified as revoked within this extension, are not revoked. When this extension is present it may be the only

indication of revoked attribute certificates in an ACRL (i.e., the revokedCertificates component of the ACRL may

be empty) or it may list revoked attribute certificates that are in addition to those indicated in the revokedCertificates

component. A revoked attribute certificate shall not be listed both in the revokedCertificates component and in this

extension.

17.7.2.8 Use of expired certificates on ACRL extension

The use of expired certificates extension is defined in 9.5.2.8 for use in CRLs. This extension may also be used in ACRLs.

The procedure specified in 9.5.2.8 also applies here by replacing public-key certificate and CRL with attribute certificate

and ACRL, respectively.

17.7.3 Use of CRL entry extensions

17.7.3.1 Use of reason code extension

The reason code extension is specified in clause 9.5.3.1 for use in CRL entries. This extension may also be used in ACRL

entries

The meaning of the reason codes defined in clause 9.5.3.1 as they relate to ACRL entries are as follows:

– unspecified can be used to revoke attribute certificates for reasons other than the specific codes.

– keyCompromise is not relevant for ACRLs.

– cACompromise is not relevant for ACRLs.

– affiliationChanged indicates that information in the attribute certificate has been modified.

– superseded indicates that the attribute certificate has been superseded.

– cessationOfOperation indicates that the attribute certificate is no longer needed for the purpose for

which it was issued.

– privilegeWithdrawn indicates that the attribute certificate was revoked because a privilege contained

within that attribute certificate has been withdrawn.

– aACompromise indicates that it is known or suspected that aspects of the AA validated in the attribute

certificate have been compromised.

The procedure specified in clause 9.5.3.1 also applies here by substituting public-key certificate and CRL entry with

attribute certificate and ACRL entry, respectively.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 109

17.7.3.2 Use of hold instruction code extension

The use of hold instruction code extension is defined in 9.5.3.2 for use in CRL entries. This extension may also be used in

ACRL entries.

The procedure specified in 9.5.3.2 also applies here by replacing public-key certificate and CRL with attribute certificate

and ACRL, respectively.

18 Delegation path processing procedure

Delegation path processing is carried out by a privilege verifier. The path processing rules for attribute certificates are

somewhat analogous to those for public-key certificates.

Other components of the path processing that are not addressed in this clause include verification of certificate signatures,

validation of certificate validity periods, etc.

For delegation paths consisting of a single certificate (i.e., the privileges were assigned directly to the privilege asserter by

the SOA), only the basic procedure, as described in clause 18.1 below is required, unless the privilege is assigned to a role.

In that case, if the privilege verifier is not configured with the specific privileges of the role, it may need to obtain the role

specification certificate that assigns the specific privileges to the role as described in clause 18.2 below. If the privilege

asserter was delegated its privilege by an intermediary AA, then the delegation path procedure in clause 18.3 is also

required. These procedures are not performed sequentially. The role processing procedure and delegation processing

procedure are done prior to the determination of whether or not the asserted privileges are sufficient for the context of use

within the basic procedure.

18.1 Basic processing procedure

The signature on every certificate in the path shall be verified. Procedures related to validating signatures and public-key

certificates are not repeated in this clause. The privilege verifier shall verify the identity of every entity in the path, using

the procedures of clause 12. Note that checking the signature on an attribute certificate necessarily involves checking the

referenced public-key certificate for its validity. Where privileges are assigned using attribute certificates, path processing

engines will need to consider elements of both the PMI and the PKI in the course of determining the ultimate validity of a

privilege asserter's attribute certificate. Not all attribute certificate issuers need have public-key certificates issued by the

same trust anchor CA (or one of its subordinate CAs), in which case multiple PKI certification paths will need to be

followed. Once that validity has been confirmed, the privileges contained in that certificate may be used depending on a

comparison with the relevant privilege policy and other information associated with the context in which the certificate is

being used.

The context of use shall determine if the privilege holder actually intended to assert the contained privilege for use with

that context. The fact that a chain of certificates to a trusted SOA exists is not in itself enough upon which to make this

determination. The willingness of the privilege holder to use that certificate has to be clearly indicated and verified.

However, mechanisms to ensure that such a privilege assertion has been adequately demonstrated by the privilege holder

are outside the scope of this Specification. As an example, such a privilege assertion may be verifiable if the privilege

holder signed a reference to that certificate, thereby indicating their willingness to use that certificate for that context.

For each attribute certificate in the path that does not contain the noRevAvail extension, the privilege verifier shall ensure

that the attribute certificate has not been revoked.

The privilege verifier shall ensure that the asserted privilege is valid for the time called "time of evaluation" which can be

done for any time, i.e., the current time of checking or any time in the past. In the context of an access control service, the

checking is always done for the present time. However, in the context of non-repudiation, the checking can be done for a

time in the past or the current time. When certificates are validated, the privilege verifier shall ensure that the time of

evaluation falls within all the validity periods of all the certificates used in the path. Also, if any of the certificates in the

path contain the timeSpecification extension, the constraints placed over the times the privilege can be asserted need

to also allow the privilege assertion to be valid at the time of evaluation.

If the targetingInformation extension is present in the certificate used to assert a privilege, the privilege verifier shall

check that the server/service for which it is verifying is included in the list of targets.

If the singleUse extension that is present in the attribute certificate is used to assert a privilege, the privilege verifier shall

check that the attribute certificate has not been asserted prior to the current use.

If the attribute certificate is a role assignment certificate, the processing procedure described in clause 18.2 is needed to

ensure that the appropriate privileges are identified. If the privilege was delegated to the entity rather than assigned directly

by the SOA trusted by the privilege verifier, the processing procedure described in clause 18.3 is needed to ensure that

delegation was done properly.

ISO/IEC 9594-8:2017 (E)

110 Rec. ITU-T X.509 (10/2016)

The privilege verifier shall also determine whether or not the privileges being asserted are sufficient for the context of use.

The privilege policy establishes the rules for making this determination and includes the specification of any environmental

variables that need to be considered. The privileges asserted, including those resulting from the role procedure in clause

18.2 and the delegation procedure in clause 18.3 and any relevant environmental variables (e.g., time of day or current

account balance) are compared against the privilege policy to determine whether or not they are sufficient for the context

of use. If the acceptablePrivilegePolicies extension is present, the privilege assertion can only succeed if the

privilege policy the privilege verifier is comparing against is one of those contained in this extension.

If the comparison succeeds, any relevant user notices are provided to the privilege verifier.

18.2 Role processing procedure

If the asserted certificate is a role assignment certificate, the privilege verifier shall obtain the specific privileges assigned

to that role. The name of the role to which the privilege asserter is assigned is contained in the role attribute of the

certificate. The privilege verifier, if not already configured with the privileges of the named role, may need to locate the

role specification certificate that assigns the privileges to that role. Information in the role attribute and in the

roleSpecCertIdentifier extension may be used to locate that certificate.

The privileges assigned to the role are implicitly assigned to the privilege asserter and are therefore included among the

asserted privileges that are compared against the privilege policy in the basic procedure in clause 18.1 to determine whether

or not the asserted privileges are sufficient for the context of use.

18.3 Delegation processing procedure

If the privileges asserted are delegated to the privilege asserter by an intermediary AA, the privilege verifier shall ensure

that the path is a valid delegation path, by ensuring that:

– each AA that issued a certificate in the delegation path was authorized to do so;

– each certificate in the delegation path is valid with respect to path and name constraints imposed on it;

– each entity in the delegation path is authenticated with a public-key certificate that is valid according to any

imposed policy constraints;

– no AA delegation privilege is greater than the privilege held by that AA.

In complex delegation-of-authority scenarios, where the delegations form a directed graph, with multiple trusted root

SOAs, it is possible for an AA to combine the privilege attributes it holds in two or more ACs and to delegate a combination

of these attributes to a subordinate in a single, delegated attribute certificate. Validating these split delegation paths in

directed graphs is much more complex than validating a simple path through a hierarchical tree of ACs that lead from a

single root SOA. Implementations need to consider carefully whether to allow directed graph type delegations or to limit

delegations to a simple tree structure.

Prior to commencing delegation path validation, the privilege verifier shall obtain the following. Any of these may be

provided by the privilege asserter, or obtained by the privilege verifier from another source, such as the Directory. The

attributes of the service may be provided to the privilege verifier in a structured document or by other means.

– Established trust in the public verification key used to validate the trusted SOA's signature. This trust can

either be established through out-of-band means or through a public-key certificate issued to the SOA by a

CA in which the privilege verifier already has established trust. Such a certificate would contain the

sOAIdentifier extension.

– The privilege asserter's privilege, encoded in their attribute certificate or subject directory attributes

extension of their public-key certificate.

– Delegation path of certificates from the privilege asserter to the trusted SOA.

– Domination rule for the privilege being asserted; this may be obtained from the attribute descriptor issued

by the SOA responsible for the attribute in question or it may be obtained through out-of-band means.

– Privilege policy; this may be obtained from a directory or from some out-of-band means.

– Environmental variables, including for example, current date/time, current account balance, etc.

An implementation shall be functionally equivalent to the external behaviour resulting from this procedure; however, the

algorithm used by a particular implementation to derive the correct output(s) from the given inputs is not standardized.

In the case where attribute certificates are issued by an indirect issuer (DS), which does not have a full set of privileges

directly assigned to it, the privilege verifier should fully validate the delegation chain as follows:

i) Starting with the end-entity attribute certificate, the privilege verifier extracts the issuer name and the

issuedOnBehalfOf name.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 111

ii) The privilege verifier retrieves the attribute certificate of the issuer and validates that the issuer is an indirect

issuer of the SOA (i.e., has the indirectIssuer extension).

iii) The privilege verifier retrieves the attribute certificate of the issuedOnBehalfOf AA and validates that

the AA has a superset of the privilege attributes issued to the end entity.

However, in order to aid path determination and validation, certificates may contain the authority information access and

authority key identifier extensions, whose usage is described in clause 18.3.1 below.

The privilege verifier recurses to step ii) using the attribute certificate of the AA, and thereby moves up the chain until it

arrives at the attribute certificate of an AA that is issued by the SOA.

18.3.1 Verify integrity of domination rule

The domination rule is associated with the privilege being delegated. The syntax and method for obtaining the domination

rule is not standardized. However, the integrity of the retrieved domination rule can be verified. The attribute descriptor

certificate issued by the SOA responsible for the attribute being delegated may contain a HASH of the domination rule.

The privilege verifier may reproduce the HASH function on the retrieved copy of the domination rule and compare the

two hashes. If they are identical, the privilege verifier has the accurate domination rule.

18.3.2 Establish valid delegation path

The privilege verifier shall find the delegation path and obtain certificates for every entity in the path. The delegation path

extends from the direct privilege asserter to the SOA. Each intermediary certificate in the delegation path shall contain the

basicAttConstraints extension with the authority component set to TRUE. The issuer of each certificate shall be the

same as the holder/subject of the certificate which is adjacent to it in the delegation path. The

authorityAttributeIdentifier extension is used to identify the certificate(s) of the issuer of the current certificate

in the delegation path. The authorityInformationAccess extension may be used to locate the appropriate certificates

of the issuer of the current certificate in the delegation path, as described in clause 18.3.2.1 below. The

authorityKeyIdentifier extension may be used to locate and identify the public key of the issuer of the current

certificate in the delegation path, as described in clause 18.3.2.2 below. The number of certificates in the path from each

entity to the direct privilege asserter (inclusive) shall not exceed the value of the pathLenConstraint value in the entity's

basicAttConstraints extension by more than 2. This is because the pathLenConstraint limits the number of

intermediary certificates between the two endpoints (i.e., the certificate containing the constraint and the end-entity

certificate) so the maximum length is the value of that constraint plus the certificates that are the endpoints.

If delegatedNameConstraints extension is present in any of the certificates in the delegation path, the constraints are

processed in the same way as the nameConstraints extension is processed in the certification path processing procedure

in clause 12.

If the acceptableCertPolicies extension is present in any of the certificates in the delegation path, the privilege

verifier shall ensure that the authentication of each subsequent entity in the delegation path is done with a public-key

certificate that contains at least one of the acceptable policies.

18.3.2.1 Use of authority information access extension

The authority information access (AIA) extension is defined in IETF RFC 5280.

The AIA extension indicates how to access information and services for the issuer of the certificate in which the extension

appears. In the context of attribute certificates, it is used to point to information about the AA that issued the attribute

certificate in which it appears. This information may include online validation services and AA policy data. (Note that the

location of ACRLs is not specified in this extension.) This extension may be included in end-entity or AA ACs, and it

MUST be non-critical.

Each entry in the sequence AuthorityInfoAccessSyntax describes the format and location of additional information

provided by the AA that issued the attribute certificate in which this extension appears. The type and format of the

additional information is specified by the AccessMethod component; the accessLocation component specifies the

location of this additional information. The retrieval mechanism may be implied by the accessMethod or specified by

accessLocation.

In an attribute certificate, the id-ad-caIssuers OID is used when the additional information lists ACs that were issued

to and used by the AA to issue the attribute certificate containing this extension. The referenced attribute certificate(s)

is/are intended to aid relying parties in the selection of an attribute certification path that terminates at a point (SOA or

AA) trusted by the relying party.

When the id-ad-caIssuers OID appears as an accessMethod component, the accessLocation component

describes the referenced description server and the access protocol to obtain the referenced ACs. The accessLocation

ISO/IEC 9594-8:2017 (E)

112 Rec. ITU-T X.509 (10/2016)

component is defined as a GeneralName, which can take several forms. Where the information is available via HTTP,

FTP, or LDAP, accessLocation should be a uniformResourceIdentifier.

The LDAP URI should specify a distinguishedName and an attribute and may specify a host name, for example:

 ldap://ldap.example.com/cn=Some%20Manager,dc=example,dc=com?attributeCertificateAttribute;binary

Omitting the host name (e.g., ldap:///cn=Some%20Manager,dc=example,dc=com?attributeCertificateAttribute;binary) has

the effect of specifying the use of whatever LDAP server is locally configured. The URI should list the appropriate attribute

description for the attribute holding DER encoded ACs. Note that in LDAP it is generally not possible to specify the exact

set of ACs that were used to issue the attribute certificate containing this extension, but rather the accessLocation points

to all the ACs belonging to the issuer of the attribute certificate containing this extension.

The ftp and http URIs should specify either the single DER encoded attribute certificate that was used to issue the attribute

certificate containing this extension, or a filestore directory containing the set of ACs belonging to the issuer of the attribute

certificate containing this extension. Individual DER encoded attribute certificates should have a file name ending in .ace,

for example:

 http://www.example.com/ACs/dc=com/dc=example/cn=Some%20Manager/leader.ace

The filestore directory containing the complete set of ACs for the same entity might be:

 ftp://www.example.com/ACs/dc=com/dc=example/cn=Some%20Manager/

Where the information is available via the Directory Access Protocol (DAP), accessLocation should be a

directoryName. The entry for that directoryName contains AA ACs in the attributeCertificateAttribute

attribute. When the information is available via electronic mail accessLocation should be an rfc822Name. The

semantics of other caIssuers accessLocation name forms are not defined.

18.3.2.2 Use of authority key identifier

The AKI is used to identify the public key to be used to verify the signature on the attribute certificate in which this

extension occurs. It is recommended that the authorityCertIssuer component and the

authorityCertSerialNumber component are used together to identify and optionally locate the public-key certificate

of the attribute certificate issuer as follows. The GeneralNames of the authorityCertIssuer component should be

used to name the CA which issued the public-key certificate and also to optionally identify where the public-key certificate

can be found when it is available via http, ftp, or ldap. In the latter case, one of the GeneralNames should be a

uniformResourceIdentifier as specified in clause 18.3.2.1, and should point to either the LDAP entry holding the

public key-certificate or the filestore directory holding the public-key certificate or the actual file containing the public-

key certificate of the attribute certificate issuer. The authorityCertSerialNumber component is used to specify the

serial number of the specific public-key certificate to be used, from the possible set of public-key certificates issued to the

attribute certificate issuer.

18.3.3 Verify privilege delegation

No delegator can delegate privilege that is greater than the privilege they own. The domination rule in the attribute

descriptor attribute provides the rules for when a given value is 'less than' another value for the attribute being delegated.

For each certificate in the delegation path, including the direct privilege asserter's certificate, the privilege verifier shall

ensure that the delegator was authorized to delegate the privilege they own and that the privilege delegated was not greater

than the privilege owned.

For each of these certificates, the privilege verifier shall compare the delegated privilege with the privilege owned by that

delegator, in accordance with the domination rule for the privilege. The privilege owned by the delegator is obtained from

the adjacent certificate in the delegation path, as described in clause 18.2. The comparison of the two privileges is done

based on the domination rule discussed in clause 18.3.1.

18.3.4 Pass/fail determination

Assuming that a valid delegation path is established, the privileges of the direct privilege asserter are provided as input for

the comparison against the privilege policy as discussed in clause 18.1 to determine whether or not the direct privilege

asserter has sufficient privilege for the context of use.

19 PMI directory schema

This clause defines the directory schema elements used to represent PMI information in the Directory. It includes

specification of relevant object classes, attributes and attribute value matching rules.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 113

19.1 PMI directory object classes

This subclause defines object class definitions for representing PMI objects in the Directory.

19.1.1 PMI user object class

The PMI user object class is used in defining entries for objects that may be the holder of attribute certificates.

pmiUser OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {attributeCertificateAttribute}

 ID id-oc-pmiUser }

19.1.2 PMI AA object class

The PMI AA object class is used in defining entries for objects that act as attribute authorities.

pmiAA OBJECT-CLASS ::= { -- a PMI AA

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {aACertificate |

 attributeCertificateRevocationList |

 eeAttrCertificateRevocationList |

 attributeAuthorityRevocationList}

 ID id-oc-pmiAA }

19.1.3 PMI SOA object class

The PMI SOA object class is used in defining entries for objects that act as sources of authority. Note that if the object was

authorized to act as an SOA through issuance of a public-key certificate containing the sOAIdentifier extension, a

directory entry representing that object would also contain the pkiCA object class.

pmiSOA OBJECT-CLASS ::= { -- a PMI Source of Authority

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {attributeCertificateRevocationList |

 eeAttrCertificateRevocationList |

 attributeAuthorityRevocationList |

 attributeDescriptorCertificate}

 ID id-oc-pmiSOA }

19.1.4 Attribute certificate CRL distribution point object class

The attribute certificate CRL distribution point object class is used in defining entries for objects that contain attribute

certificate and/or attribute authority revocation list segments. This auxiliary class is intended to be combined with the

crlDistributionPoint structural object class when instantiating entries. Since the certificateRevocationList

and authorityRevocationList attributes are optional in that class, it is possible to create entries which contain, for

example, only an attribute authority revocation list or entries which contain revocation lists of multiple types, depending

on the requirements.

attCertCRLDistributionPt OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {attributeCertificateRevocationList |

 eeAttrCertificateRevocationList |

 attributeAuthorityRevocationList}

 ID id-oc-attCertCRLDistributionPts }

19.1.5 PMI delegation path object class

The PMI delegation path object class is used in defining entries for objects that may contain delegation paths. It will

generally be used in conjunction with entries of structural object class pmiAA.

pmiDelegationPath OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {delegationPath}

 ID id-oc-pmiDelegationPath }

ISO/IEC 9594-8:2017 (E)

114 Rec. ITU-T X.509 (10/2016)

19.1.6 Privilege policy object class

The privilege policy object class is used in defining entries for objects that contain privilege policy information.

privilegePolicy OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {privPolicy}

 ID id-oc-privilegePolicy }

19.1.7 Protected privilege policy object class

The protected privilege policy object class is used in defining entries for objects that contain privilege policies protected

within attribute certificates.

protectedPrivilegePolicy OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {protPrivPolicy}

 ID id-oc-protectedPrivilegePolicy }

19.2 PMI directory attributes

This subclause defines directory attributes used to store PMI data in directory entries.

19.2.1 Attribute certificate attribute

The following attribute contains end-entity attribute certificates issued to a specific holder and is stored in the directory

entry of that holder.

attributeCertificateAttribute ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-attributeCertificate }

19.2.2 AA certificate attribute

The following attribute contains attribute certificates issued to an AA and is stored in the directory entry of the holder AA.

aACertificate ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-aACertificate }

19.2.3 Attribute descriptor certificate attribute

The following attribute contains attribute certificates issued by an SOA that contain the attributeDescriptor

extension. These attribute certificates contain the valid syntax and domination rule specification of privilege attributes and

is stored in the directory entry of the issuing SOA.

attributeDescriptorCertificate ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-attributeDescriptorCertificate }

19.2.4 Attribute certificate revocation list attribute

The following attribute contains a list of revoked attribute certificates. These lists may be stored in the directory entry of

the issuing authority, or other directory entry (e.g., a distribution point).

attributeCertificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"AttrCertificateRevocationList"}

 LDAP-DESC "X.509 Attr certificate revocation list"

 ID id-at-attributeCertificateRevocationList }

19.2.5 End-entity attribute certificate revocation list attribute type

A value of the following attribute type contains a list of revoked end-entity attribute certificates.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 115

eeAttrCertificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"EEAttrCertificateRevocationList"}

 LDAP-DESC "X.509 EEAttr certificate revocation list"

 ID id-at-eeAttrCertificateRevocationList }

19.2.6 AA certificate revocation list attribute

The following attribute contains a list of revoked attribute certificates issued to AAs. These lists may be stored in the

directory entry of the issuing authority or other directory entry (e.g., a distribution point).

attributeAuthorityRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"AACertificateRevocationList"}

 LDAP-DESC "X.509 AA certificate revocation list"

 ID id-at-attributeAuthorityRevocationList }

19.2.7 Delegation path attribute

The delegation path attribute contains delegation paths, each consisting of a sequence of attribute certificates.

delegationPath ATTRIBUTE ::= {

 WITH SYNTAX AttCertPath

 ID id-at-delegationPath }

AttCertPath ::= SEQUENCE OF AttributeCertificate

This attribute can be stored in the AA directory entry and would contain some delegation paths from that AA to other AAs.

This attribute, if used, enables a more efficient retrieval of delegated attribute certificates that form frequently used

delegation paths. As such, there are no specific requirements for this attribute to be used and the set of values that are

stored in the attribute is unlikely to represent the complete set of delegation paths for any given AA.

19.2.8 Privilege policy attribute

The privilege policy attribute contains information about privilege policies.

privPolicy ATTRIBUTE ::= {

 WITH SYNTAX PolicySyntax

 ID id-at-privPolicy }

The policyIdentifier component includes the object identifier registered for the particular privilege policy.

If content is present, the complete content of the privilege policy is included.

If pointer is present, the name component references one or more locations where a copy of the privilege policy can be

located. If the hash component is present, it contains a HASH of the content of the privilege policy that should be found

at a referenced location. This hash can be used to perform an integrity check of the referenced document.

19.2.9 Protected privilege policy attribute

The protected privilege policy attribute contains privilege policies, protected within attribute certificates.

protPrivPolicy ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-protPrivPolicy }

Note that unlike typical attribute certificates, those within the protPrivPolicy attribute contain privilege policies, not

privileges. The issuer and holder components of these attribute certificates identify the same entity. The attribute that is

included in the attribute certificate contained within the protPrivPolicy attribute is either the privPolicy attribute or

the xmlPrivPolicy attribute.

19.2.10 XML Protected privilege policy attribute

The XML protected privilege policy attribute contains XML encoded privilege policy information.

xmlPrivPolicy ATTRIBUTE ::= {

ISO/IEC 9594-8:2017 (E)

116 Rec. ITU-T X.509 (10/2016)

 WITH SYNTAX UTF8String -- XML-encoded privilege policy information

 ID id-at-xmlPrivPolicy }

19.3 PMI general directory matching rules

This subclause defines matching rules for PMI directory attributes.

19.3.1 Attribute certificate exact match

The attribute certificate exact match rule compares for equality a presented value with an attribute value of type

AttributeCertificate.

attributeCertificateExactMatch MATCHING-RULE ::= {

 SYNTAX AttributeCertificateExactAssertion

 ID id-mr-attributeCertificateExactMatch }

AttributeCertificateExactAssertion ::= SEQUENCE {

 serialNumber CertificateSerialNumber,

 issuer AttCertIssuer,

 ... }

This matching rule returns TRUE if the components in the attribute value match those in the presented value.

19.3.2 Attribute certificate match

The attribute certificate matching rule compares a presented value with an attribute value of type

AttributeCertificate. This matching rule allows more complex matching than the certificateExactMatch.

attributeCertificateMatch MATCHING-RULE ::= {

 SYNTAX AttributeCertificateAssertion

 ID id-mr-attributeCertificateMatch }

AttributeCertificateAssertion ::= SEQUENCE {

 holder [0] CHOICE {

 baseCertificateID [0] IssuerSerial,

 holderName [1] GeneralNames,

 ...} OPTIONAL,

 issuer [1] GeneralNames OPTIONAL,

 attCertValidity [2] GeneralizedTime OPTIONAL,

 attType [3] SET OF AttributeType OPTIONAL,

 ... }

-- At least one component of the sequence shall be present

The matching rule returns TRUE if all of the components that are present in the presented value match the corresponding

components of the attribute value, as follows:

– baseCertificateID matches if it is equal to the IssuerSerial component of the stored attribute value;

– holderName matches if the stored attribute value contains the name extension with the same name type as

indicated in the presented value;

– issuer matches if the stored attribute value contains the name component of the same name type as

indicated in the presented value;

– attCertValidity matches if it falls within the specified validity period of the stored attribute value; and

– for each attType in the presented value, there is an attribute of that type present in the attributes

component of the stored value.

19.3.3 Holder issuer match

The attribute certificate holder issuer match rule compares for equality a presented value of the holder and/or issuer

components of a presented value with an attribute value of type AttributeCertificate.

holderIssuerMatch MATCHING-RULE ::= {

 SYNTAX HolderIssuerAssertion

 ID id-mr-holderIssuerMatch }

HolderIssuerAssertion ::= SEQUENCE {

 holder [0] Holder OPTIONAL,

 issuer [1] AttCertIssuer OPTIONAL,

 ... }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 117

This matching rule returns TRUE if all the components that are present in the presented value match the corresponding

components of the attribute value.

19.3.4 Delegation path match

The delegationPathMatch match rule compares for equality a presented value with an attribute value of type

delegationPath. A privilege verifier may use this matching rule to select a path beginning with a certificate issued by

its SOA and ending with a certificate issued to the AA that issued the end-entity holder certificate being validated.

delegationPathMatch MATCHING-RULE ::= {

 SYNTAX DelMatchSyntax

 ID id-mr-delegationPathMatch }

DelMatchSyntax ::= SEQUENCE {

 firstIssuer AttCertIssuer,

 lastHolder Holder,

 ... }

This matching rule returns TRUE if the presented value in the firstIssuer component matches the corresponding

elements of the issuer component of the first certificate in the SEQUENCE in the stored value and the presented value in

the lastHolder component matches the corresponding elements of the holder component of the last certificate in the

SEQUENCE in the stored value. This matching rule returns FALSE if either match fails.

19.3.5 Extension presence match

The extension presence match rule compares for equality a presented object identifier value, identifying a particular

extension, with the extensions component of a certificate.

extensionPresenceMatch MATCHING-RULE ::= {

 SYNTAX EXTENSION.&id

 ID id-mr-extensionPresenceMatch }

This matching rule returns TRUE if the certificate contains the particular extension.

ISO/IEC 9594-8:2017 (E)

118 Rec. ITU-T X.509 (10/2016)

SECTION 4 – COMMUNICATIONS CAPABILITIES

20 Protocol support for public-key and privilege management infrastructures

The purpose of this clause to provide a specification for the transport a general wrapper protocol for the transport of PKI

and/or PMI data.

20.1 General syntax

The PKI-PMI-Wrapper protocol adds authentication, integrity and optionally confidentiality to protocol data units (PDUs)

used for supporting a PKI and/or a PMI. The wrapping protocol allows inclusion of any type of PDU.

A wrapped PDU is identified by an instance of the following information object class:

WRAPPED-PDU ::= TYPE-IDENTIFIER

The WRAPPED-PDU information object class is equivalent to the ASN.1 built information object class TYPE-IDENTIFIER.

This information object is used to bind the type of wrapped PDU identified by an object identifier to the abstract syntax of

that PDU.

The syntax of the PKI-PMI-Wrapper protocol is given by the following data type

PDU-wrapper ::= SIGNED{TBSPDU-wrapper}

TBSPDU-wrapper ::= SEQUENCE {

 version Version DEFAULT v1,

 signatureAlgorithm AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 certPath [0] IMPLICIT PkiPath,

 signedAttrs [1] IMPLICIT SignedAttributes OPTIONAL,

 conf CHOICE {

 clear WrappedPDUInfo,

 protected EncryptedInfo,

 ... },

 ... }

SupportedSignatureAlgorithms ALGORITHM ::= {...}

SignedAttributes ::= SET SIZE (2..MAX) OF Attribute{{SupportedSignedAttributes}}

SupportedSignedAttributes ATTRIBUTE ::= { contentType | messageDigest, ... }

The version component shall take the value v1 or be omitted.

The signatureAlgorithm component shall specify the signature algorithm used for the digital signing from the set of

applicable signature algorithms as defined by the SupportedSignatureAlgorithms information object set.

NOTE 1 – This Specification does not mandate a specific set of signature algorithms. Reference specifications or implementers'

agreements may replace the dots with a set of signature algorithms to be supported for a specific environment.

NOTE 2 – By including this component, the signature algorithm is protected by the signature. In addition, the hashing by the recipient

may be performed in a single pass, as the hashing algorithm is known at an early stage.

The certPath component shall hold the certification path necessary to verify the digital signature given in the signature

component.

The signedAttrs component shall hold a list of signed attributes as defined by an instance of the SignedAttributes

data type. Attributes of the contentType and messageDigest attribute types shall be included.

The conf component has two alternatives:

a) The clear alternative shall be taken if confidentiality (encryption) is not required and shall then include an

instance of the WrappedPDUInfo data type (see clause 20.2).

b) The protected alternative shall be taken if confidentiality is required and shall then include an instance

of the EncryptedInfo data type (see clause 20.3).

20.2 Wrapping of non-encrypted protocol data units

The syntax of the wrapped PDU information is specified using the following data type:

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 119

WrappedPDUInfo ::= SEQUENCE {

 pduType WRAPPED-PDU.&id ({SupportedPduSet}),

 pduInfo WRAPPED-PDU.&Type ({SupportedPduSet}{@pduType}),

 ... }

SupportedPduSet WRAPPED-PDU ::= {...}

The pduType component shall specify the type of PDU being wrapped.

The pduInfo components shall hold an instance of the wrapped PDU type.

20.3 Wrapping of encrypted protocol data unit

20.3.1 Use of the Diffie-Hellman key agreement method

To encrypt a wrapped PDU requires the establishment of shared symmetric keys. Two types of symmetric keys are defined.

One type, called the content encryption key and the other type is used to encrypt (wrap) the content encryption key and is

called the key-encryption key. The key agreement technique, known as the Diffie-Hellman (DH) key agreement method

is used by this Specification to establish the key encryption key. This method results in a shared secret that may be used

for keying material that allows generation of shared, symmetric keys. The DH method has two modes of operation relevant

for this Specification. These modes are the ephemeral-static mode and the static-static mode.

The ephemeral-static mode requires that the recipient have a public-key certificate with a DH public key as certified by

the issuing CA. This public-key certificate for the recipient shall be available to the sender. The sender creates a new DH

key pair for each wrapped PDU it sends. In the way, the shared secret becomes different for each message.

The static-static mode requires each of the communicating entities to have a certified DH public-key certificate. In this

mode, the same-shared secret number is created for each wrapped PDU. Therefore, some random user keying material has

to be supplied by the sender to make different keying material for each PDU.

Both methods require both entities in a communication to have the certified end-entity public-key certificate of its partner,

as communication goes in both directions.

From the shared secret, key material may be generated as specified by IETF RFC 2631. This key material is then used to

create a so-called key encryption key. This key is used to encrypt a content encryption key (key wrapping). This content

encryption key is generated by the sender. The key wrapping uses a different algorithm than the one used for ordinary

encryption.

NOTE – The key wrapping algorithms used for AES key encryption may be found in IETF RFC 3394. These key wrapping

algorithms are also listed in Annex B.

20.3.2 Encryption information syntax

The encryption information syntax is defined as:

EncryptedInfo ::= SEQUENCE {

 keyAgreement KeyAgreement OPTIONAL,

 encryptedPduInfo EncryptedPduInfo,

 ... }

The keyAgreement component, when present, shall provide the necessary information to perform the Diffie-Hellman

exchange followed by the generation of the key encryption key for wrapping the content encryption key. This is detailed

in clause 20.3.3. This component may be absent, if the key encryption key is not required to be renewed. Otherwise, this

component shall be present.

The encryptedPduInfo component shall hold an instance of the EncryptedPduInfo data type as detailed in clause

20.3.5.

20.3.3 Key agreement specification

KeyAgreement ::= SEQUENCE {

 senderDhInfo [0] SenderDhInfo,

 keyEncryptionAlgorithm SEQUENCE {

 algorithm ALGORITHM.&id ({SupportedKeyEncryptionAlgorithm}),

 parameters ALGORITHM.&Type({SupportedKeyEncryptionAlgorithm}{@.algorithm}),

 ... },

 ... }

SupportedKeyEncryptionAlgorithm ALGORITHM ::= {...}

SenderDhInfo ::= CHOICE {

ISO/IEC 9594-8:2017 (E)

120 Rec. ITU-T X.509 (10/2016)

 senderStaticInfo [0] SenderStaticInfo,

 senderDhPublicKey [1] SenderDhPublicKey,

 ... }

SenderStaticInfo::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 partyAinfo UserKeyingMaterial,

 ... }

SenderDhPublicKey ::= SEQUENCE {

 algorithm AlgorithmIdentifier {{SupportedDHPublicKeyAlgorithms}},

 publicKey BIT STRING,

 ... }

EncryptedKey ::= OCTET STRING

SupportedDHPublicKeyAlgorithms ALGORITHM ::= {...}

An instance of the KeyAgreement data type has the following components:

The senderDhInfo components shall hold an instance of the SenderDhInfo data type, which has two alternatives:

a) The SenderStaticInfo alternative shall be taken if the Diffie-Hellman static-static mode is used. It shall

identify the sender's DH public-key certificate and additional keying material. It shall have the following

components:

– the issuer component shall hold the value of the issuer component of the sender's DH public-key

certificate;

– the serialNumber component shall hold the value of the serialNumber component of the sender's

DH public-key certificate; and

– the partyAinfo component shall hold a random octet-string of additional keying material to ensure

different key encryption keys for each generation.

b) The senderDhPublicKey alternative shall be taken if the Diffie-Hellman ephemeral-static mode is used.

It shall have the following components:

– the algorithm component shall identify the DH agreement algorithm;

_ the publicKey components shall hold the generated DH public-key of the sender.

20.3.4 Generation of keying material

IETF RFC 2631 specifies how keying material is generated from the developed shared secret. It is repeated here for easy

reference.

The keying material is produced by providing a hash using the SHA-1 algorithms of the shared secret concatenated with

the DER encoding of an instance of the OtherInfo data type below. The SHA-1 produces 160 bits of keying material. If

that is insufficient, the hash operation has to be repeated until sufficient keying material has been produced. The leftmost

part (most significant bits) of the keying material is then used as the key-encryption key.

OtherInfo ::= SEQUENCE {

 keyInfo KeySpecificInfo,

 partyAInfo [0] EXPLICIT OCTET STRING OPTIONAL,

 suppPubInfo [2] EXPLICIT OCTET STRING }

KeySpecificInfo ::= SEQUENCE {

 algorithm ALGORITHM.&id ({SupportedKeyEncryptionAlgorithm}),

 counter OCTET STRING SIZE (4) }

The OtherInfo data type has the following components:

a) The keyInfo component shall hold an instance of the KeySpecificInfo data type with the following the

components:

– The algorithm component shall specify the object identifier for the key encryption algorithm, i.e., it

shall have the same value as specified for the KeyAgreement data type above.

– The counter component shall have the hex value 00 00 00 01 for the first pass for generating keying

material for a specific key and incremented by one for each additional path.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 121

b) The partyAInfo component shall be present if the senderStaticInfo alternative was taken for the

SenderDhInfo data type above. Otherwise, this component shall be absent. If present, it shall have the

value supplied in the instance of the SenderStaticInfo data type.

c) The suppPubInfo shall the length of the generated key encryption key expressed as a 4 octet hex number.

NOTE – If an AES-256 key is generated, the value is then 00 01 00'H.

20.3.5 Encryption encoding

The encryption information syntax is defined as:

EncryptedPduInfo ::= SEQUENCE {

 pduType WRAPPED-PDU.&id ({SupportedPduSet}),

 encryptedKey EncryptedKey OPTIONAL,

 pduEncryptionAlgorithm SEQUENCE {

 algorithm ALGORITHM.&id ({SymmetricEncryptionAlgorithms}),

 parameter ALGORITHM.&Type

 ({SymmetricEncryptionAlgorithms}{@.algorithm})} OPTIONAL,

 encryptedPdu [0] EncryptedPdu,

 ... }

EncryptedKey ::= OCTET STRING

SymmetricEncryptionAlgorithms ALGORITHM ::= {...}

EncryptedPdu ::= OCTET STRING

The EncryptedPduInfo data type has the following components:

a) The encryptedKey component shall hold the encrypted content encryption key.

b) The pduType component shall specify the type of PDU to be encrypted and transmitted.

c) The pduEncryptionAlgorithm component has the following components:

– the algorithm component shall specify the identity of the symmetric encryption algorithm; and

– the parameter component shall include the parameters associated with the symmetric encryption

algorithm, if any.

d) The EncryptedPdu component shall hold the encrypted PDU.

20.4 Check of PKI-PMI-Wrapper protocol elements

Several checks are independent of the wrapped PDUs. Error codes are defined for different exception conditions for the

PKI-PMI-Wrapper protocol elements. Such error information shall be returned by the wrapped protocol as part of its

exception handling.

20.4.1 General checking

It should be checked:

a) whether the version component is specifying an unsupported version and if so, return a

unsupportedWrapperVersion error code;

b) whether the signature algorithm is supported and if not, return an unsupportedSignatureAlgorithm

error code;

c) whether the certificates component contains public-key certificates sufficient to create a certification path

and if not return an incompleteCertPath error code;

d) whether the certification path validates and if not, return a certificationPathFailure error code;

e) whether the digital signature is valid and if not, return an invalidSignature error code;

f) whether mandatory attributes for the wrapped PDU are included in the signedAttrs component and if

not, return a missingMandatoryAttributes error code;

g) whether unwanted attributes for the wrapped PDU are included in the signedAttrs component and if so,

return a unwantedAttribute error code;

20.4.2 Specific checking when not encrypting the wrapped PDU

If the clear alternative of the TBSPDU-wrapper data type is taken for the conf component, then for the

WrappedPDUInfo data type check:

ISO/IEC 9594-8:2017 (E)

122 Rec. ITU-T X.509 (10/2016)

a) whether the pduType component specifies a supported type and if not, return an unsupportedPduType

error code;

b) whether the pduType component specifies a PDU out of sequence and if so, return an

unexpectedPduType error code.

20.4.3 Specific checking when encrypting the wrapped PDU

If the protected alternative of the TBSPDU-wrapper data type is taken for the conf component, then the actions

specified in 20.4.3.1 shall be taken and if encryption is selected, then the actions specified in 20.4.3.2 shall also be taken.

20.4.3.1 Checking of the key agreement specification

The senderDhInfo component of the value of the KeyAgreement data type shall be checked as follows:

a) if the senderStaticInfo component is taken, then:

– check whether the issuer and serialNumber components together identify an available DH public-

key certificate for the sender and if not, return an unknownDHpkCetificate error code,

– check whether the partyAinfo component holds 64 octets of random keying material and if not,

return an invalidKeyingMaterial error code;

b) if the senderDhPublicKey alternative is taken, then:

– check whether the algorithm component identifies a DH public-key algorithm that is equal to the

one specified by the DH public-key certificate held by the recipient and if not, return

dhAlgorithmMismatch error code,

– check whether the publicKey component holds a valid DH public-key and if not, return an

invalideDhPublickey error code;

The keyEncryptionAlgorithm component of the value of the KeyAgreement data type shall be checked as follows:

a) check whether the algorithm component identifies a supported key wrapping algorithm and if not, return

an unsupportedKeyWrappingAlgorithm error code;

b) check whether the presence or absent of the parameters component is as according to the type of algorithm

and if not, return a keyEncAlgorithmParametersMissing error code or

keyEncAlgorithmParametersNotAllowed error code, as appropriate.

20.4.3.2 Checking of the encrypted PDU information

The value of the EncryptedPduInfo data type shall be checked

a) whether the pduType component specifies a supported PDU type and if not, returns an

unsupportedPduType error code;

b) whether the pduType component specifies a PDU out of sequence and if so, returns an

unexpectedPduType error code;

c) whether the pduEncryptionAlgorithm components identify a supported symmetric encryption

algorithm and if not, return an unsupportedSymmetricKeyAlgorithm error code;

d) whether the presence or absence of the parameter component of the pduEncryptionAlgorithm

component is as according to the type of algorithm and if not, returns a

keySymAlgorithmParametersMissing error code or keyEncAlgorithmParametersNotAllowed

error code, as appropriate.

e) whether the parameter component of the pduEncryptionAlgorithm component, if present, has the right

content and if not, returns the invalidParmsForSymEncryptAlgorithms error code;

f) whether the encryptedPdu component holds a valid PDU after decryption by the decrypted content

encryption key and if not, returns decryptionFailed error code;

g) whether the decrypted PDU is of a type corresponding the type specification in the pduType component

and if not, returns an invalidPduSyntax error code.

20.5 PKI-PMI-Wrapper error codes

The following error codes are defined the PKI-PMI-Wrapper:

PkiWaError ::= ENUMERATED {

 unsupportedWrapperVersion (0),

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 123

 unsupportedSignatureAlgorithm (1),

 incompleteCertPath (2),

 certificationPathFailure (3),

 invalidSignature (4),

 missingMandatoryAttributes (5),

 unwantedAttribute (6),

 unsupportedPduType (7),

 unexpectedPduType (8),

 invalidPduSyntax (9),

 unknownDHpkCetificate (10),

 invalidKeyingMaterial (11),

 dhAlgorithmMismatch (12),

 invalideDhPublickey (13),

 unsupportedKeyWrappingAlgorithm (14),

 keyEncAlgorithmParametersMissing (15),

 keyEncAlgorithmParametersNotAllowed (16),

 invalidParmsForSymEncryptAlgorithms (17),

 decryptionFailed (18),

 ... }

21 Authorization and validation list management

21.1 General

To support the creation and maintenance of authorization and validation lists (AVLs), communications between involved

entities is required.

AVL management may involve entities constrained with respect to processing power, storage, bandwidth, etc. In this

environment, protocol overhead should be kept to a minimum.

This specification provides specification for two protocols for AVL management. The authorization and validation

management protocol (AVMP) is used between an authorizer and an AVL entity for AVL management. The CA

subscription protocol (CASP) is used between an authorizer and a CA at which the authorizer subscribes to public-key

certificate status. The CASP protocol may also be used by a relying party that requires revocation information through a

subscription service with appropriate CAs. Each of these protocols comprises a number of PDU types.

21.2 Defined protocol data unit (PDU) types

The following PDU types are defined for the AVMP and the CASP:

AvlPduSet WRAPPED-PDU ::= {

 certReq |

 certRsp |

 addAvlReq |

 addAvlRsp |

 replaceAvlReq |

 replaceAvlRsp |

 deleteAvlReq |

 deleteAvlRsp |

 rejectAVL |

 certSubscribeReq |

 certSubscribeRsp |

 certUnsubscribeReq |

 certUnsubscribeRsp |

 certReplaceReq |

 certReplaceRsp |

 rejectCAsubscribe,

 ... }

21.3 Checking of received PDU

When a message is received, the wrapping part of the message shall be checked as specified in clause 20.4. If an exception

condition is encountered, the resulting error code shall be returned to the sender. If the checks specified in clause 20.4 have

been completed without detecting an exception condition, the recipient shall perform a number of validation steps on the

wrapped PDU. If this e validation fails at any step, no further validation is necessary and the recipient shall return an

appropriate error code. Error codes for the WLMP and CASP are specified in clauses 21.4.7 and 21.5.8.

ISO/IEC 9594-8:2017 (E)

124 Rec. ITU-T X.509 (10/2016)

A number of checks are common across different PDU types. It shall be checked:

a) whether the version component of the PDU is supported and if not, returns an

unsupportedAVMPversion or unsupportedCASPversion error code, as appropriate;

b) whether the sequence component holds a valid sequence number and if not, returns a sequenceError

error code as specified in clause 21.4.7 for the WLMP and in clause 21.5.8 for CASP.

21.4 Authorization and validation management protocol

21.4.1 Authorization validation management introduction

The authorization and validation management is concerned with how the authorizer maintains AVL information within

the AVL entities it supports. It comprises a set of PDU exchanges as detailed in the following.

It shall be the same trusted CA that has certified the end-entity public-key certificates for the authorizer and the AVL

entities it serves. Each AVL entity shall be supplied with:

– its own end-entity public-key certificate and corresponding private key to be used for digital signature

generation;

– if encryption is required for some types of communications with that AVL entity, its DH end-entity public-

key certificate and corresponding private key used for key agreement according to the Diffie-Hellman

method; and

– the CA certificate of the issuing CA for above two end-entity public-key certificates.

21.4.2 Authorization and validation management protocol common components

Some components are common across different content types. The WLMPcommonComponents data type comprises these

components.

AVMPcommonComponents ::= SEQUENCE {

 version AVMPversion DEFAULT v1,

 timeStamp GeneralizedTime,

 sequence AVMPsequence,

 ... }

AVMPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

AVMPsequence ::= INTEGER (1..MAX)

The AVMPcommonComponents data type has the following components.

a) The version component shall hold the version of the AVMP. The current version is version v1.

b) The timeStamp component shall be the GMT (UTC) generalized time at which the content was created.

c) The sequence component shall take the value 0 for the first message sent for a given value of the

timeStamp component and be incremented by one for each message sent for the same value of the time

component. When the time component change from sending one message to sending the next, the sequence

number shall restart at the value 0. The purpose is:

– to allow detecting of replay of messages caused by an error or by an adversary;

– to pair requests and responses; and

– to detect missing messages.

21.4.3 Public-key certificate management

certReq WRAPPED-PDU ::= {

 CertReq

 IDENTIFIED BY id-certReq }

CertReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 ... }

The certReq PDU type is used by an AVL entity to initialization information allowing that AVL entity to participate in

communication with the authorizer.

Instances of this PDU type shall be sent without encryption. The signature shall be generated using the private key of the

AVL entity.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 125

CertReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 ... }

The CertReq data type specifies the syntax of the wrapped PDU content and has the following components:

a) The components of the AVMPcommonComponents data type is specified in clause 21.5.2. The sequence

component shall take the value 0.

The authorizer shall check the validity of the request:

a) by checking as specified in clause 21.4;

b) by checking whether the sender is a recognized AVL entity and if not return an unknownAVLentity error

code.

certRsp WRAPPED-PDU ::= {

 CertRsp

 IDENTIFIED BY id-certRsp }

The authorizer shall use the certRsp PDU type to respond to the certificate request.

CertRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] CertOK,

 failure [1] CertErr,

 ... },

 ... }

CertOK ::= SEQUENCE {

 dhCert Certificate,

 ... }

CertErr ::= SEQUENCE {

 notOK CHOICE {

 wrErr PkiWrErr,

 avmpErr AVMP-error,

 ... },

 note Notification OPTIONAL,

 ... }

The CertRsp data type specifies the syntax of the wrapped PDU and has the following components:

a) The components of the AVMPcommonComponents data type is specified in clause 21.5.2. The sequence

component shall take the value 0.

b) The result component has the following two alternatives:

– The success alternative shall be taken if the request was accepted. The dhCert component shall hold

the DH end-entity public-key certificate owned by the authorizer.

– The failure alternative shall be taken if the request fails. It shall have the following component:

The AVMP-error data type as specified in clause 21.4.7.

21.4.4 Add authorization and validation list

addAvlReq CONTENT-TYPE ::= {

 AddAvlReq

 IDENTIFIED BY id-addAvlReq }

The authorizer uses the addAvlReq content type to initiate the addition of an AVL to an AVL entity.

AddAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 certlist CertAVL,

 ... }

The AddAvlReq data type specifies the syntax of the actual content and has the following components:

a) The components of the AVMPcommonComponents data type are specified in clause 21.5.2. The sequence

component shall take the value 1.

b) The certList component shall hold the AVL to be added to the AVL entity.

ISO/IEC 9594-8:2017 (E)

126 Rec. ITU-T X.509 (10/2016)

The recipient AVL entity shall check the validity of the request:

a) by checking as specified in clause 21.4;

b) by checking the validity of the signature on the received AVL and if invalid, return an

invalidAvlSignature error code;

c) by checking whether all the AVL mandatory components are present and if not, return a

missingAvlComponent error code;

d) by checking whether the version component on the received AVL validation list specifies a supported

version and if not, return an invalidAvlVersion error code;

e) if the serialNumber component is present in the received AVL, then check whether an AVL with the

same value already exists and if so, return a duplicateAVL error code;

f) if the serialNumber component is absent in the received AVL, then check whether an AVL with absent

serialNumber component already exists and if so, return a duplicateAVL error code;

g) by checking whether the constrained component of the received AVL corresponds to the capabilities of

the AVL entity and if not, return a constrainedRequired error code or a nonConstrainedRequired

error code, as appropriate;

h) for each element of the entries component of the received AVL:

– by checking whether the idType component contains a valid alternative and if not, return a

protocolError error code;

– if the certIdentifier alternative is chosen, then:

i) by checking whether the certIdentifier component contains a valid alternative and if not ,

return a protocolError,

ii) if the entityGroup alternative is taken and the constrained component has the value TRUE,

return a notAllowedForConstrainedAVLEntity error code;

– by checking whether the scope component holds some unsupported scope restrictions, an if so, return

an unsupportedScopeRestriction error code;

– by checking whether the entryExtensions component contains an unsupported critical extension

and if so, return an unsupportedCriticalEntryExtension error code;

j) by checking whether the AVL contains an unsupported critical extension and if so, return an

unsupportedCriticalExtension error code;

k) by checking whether the maximum number of AVLs has been exceeded by the new AVL and if so, return

a maxAVLsExceeded error code.

NOTE – Maximum limit might be just a single AVL.

addAvlRsp CONTENT-TYPE ::= {

 AddAvlRsp

 IDENTIFIED BY id-addAvlRsp }

The recipient AVL entity shall use the addAvlRsp content type to report the outcome of an add AVL

AddAvlRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] AddAvlOK,

 failure [1] AddAvlErr,

 ... },

 ... }

AddAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

AddAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

The AddAvlRsp data type specifies the actual content and has the following components:

a) The components of the AVMPcommonComponents data type is specified in clause 21.5.2.

b) The result component has the following two alternatives:

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 127

– The success alternative shall be taken if the addition of an AVL was performed successfully;

– The failure alternative shall be taken if the addition of an AVL failed. The AVMP-error data type

is specified in clause 21.5.7.

21.4.4 Replace authorization and validation list

replaceAvlReq CONTENT-TYPE ::= {

 ReplaceAvlReq

 IDENTIFIED BY id-replaceAvlReq }

The authorizer uses the replaceAvlReq content type to initiate the replacement of an AVL at an AVL entity. It shall be

used when changes to the AVL have occurred.

ReplaceAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 old AvlSerialNumber OPTIONAL,

 new CertAVL,

 ... }

The ReplaceAvlReq data type specifies the actual content and has the following components:

a) the components of AVMPcommonComponents data type as specified in clause 21.5.2;

b) the old component, when present, shall hold the serial number of the old AVL and it shall be absent if the

authorizer expects that an AVL with no sequence number exits; and

c) the new component shall hold the replacement AVL.

The AVL entity shall verify the validity of the request by checking:

a) as specified in 21.5.3 items a) to j);

b) if the old component was present in the request, then check whether the AvlSerialNumber value specified

in that component matches the AvlSerialNumber of a local authorization validation list and if not, return

an unknownAvl error code;

c) if the old component was absent in the request, then check whether there locally is just a single AVL and

that AVL is without the serialNumber component and if not, return an unknownAvl error code.

replaceAvlRsp CONTENT-TYPE ::= {

 ReplaceAvlRsp

 IDENTIFIED BY id-replaceAvlRsp }

The AVL entity shall use the replaceAvlRsp content type to report the outcome of an AVL replace request.

ReplaceAvlRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] RepAvlOK,

 failure [1] RepAvlErr,

 ... },

 ... }

RepAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

RepAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

The ReplaceAvlRsp data type specifies the syntax of the actual content and has the following components:

– The components of the AVMPcommonComponents data type as specified in clause 21.5.2.

– The result component has the following two alternatives:

a) The success alternative shall be taken if the replacement of an AVL was performed successfully,

b) The failure alternative shall be taken if the replacement of an AVL failed. The AVMP-error data

type is specified in clause 21.5.7.

21.4.5 Delete authorization and validation list

ISO/IEC 9594-8:2017 (E)

128 Rec. ITU-T X.509 (10/2016)

deleteAvlReq CONTENT-TYPE ::= {

 DeleteAvlReq

 IDENTIFIED BY id-deleteAvlReq }

The authorizer uses the deleteAvlReq content type to initiate deletion of an AVL at an AVL entity.

DeleteAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 avl-Id AVLSerialNumber OPTIONAL,

 ... }

The DeleteAvlReq data type specifies the syntax of the actual content and has the following components:

a) The components of AVMPcommonComponents data type as specified in clause 21.5.2.

b) The avl-Id component, when present, shall identify the AVL to be deleted.

The recipient AVL entity shall verify the validity of the request by checking

a) as specified in clause 21.4;

b) if the avl-id component was present in the request, then check whether the AlvSerialNumber value

specified in that component matches the AvlSerialNumber of a local AVL and if not, return an

unknownAVL error code;

c) if the avl-id component was absent in the request, then check whether there locally is just a single AVL

and that AVL is without the serialNumber component and if not, return an unknownAVL error code.

deleteAvlRsp CONTENT-TYPE ::= {

 DeleteAvlRsp

 IDENTIFIED BY id-deleteAvlRsp }

The recipient AVL entity shall use the deleteAvlRsp content type to report the outcome of a delete AVL request.

DeleteAvlRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] DelAvlOK,

 failure [1] DelAvlErr,

 ... },

 ... }

DelAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

DelAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

The DeleteAvlRsp data type specifies the syntax of the actual content. It has the following components:

The components of the AVMPcommonComponents data type as specified in clause 21.5.2.

The result component has the following two alternatives:

a) The success alternative shall be taken if the deletion of an AVL was performed successfully.

b) The failure alternative shall be taken if the deletion of an AVL failed. The AVMP-error data type is

specified in clause 21.5.7.

21.4.6 Authorization and validation list reject

rejectAVL CONTENT-TYPE ::= {

 RejectAVL

 IDENTIFIED BY id-rejectAVL }

The rejectAVL content type is used by the authorizer to report problems with a response from the AVL entity.

RejectAVL ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 reason AVMP-error,

 ... }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 129

The RejectAVL data type specifies the syntax of the actual content and has the following components:

a) The sequence component of the AVMPcommonComponents data type shall take the same value as in the

response on which it is reporting.

b) The AVMP-error as specified in clause 21.5.7.

The authorizer shall verify the validity of a received response by checking

a) as specified in clause 21.4.

21.4.7 Authorization and validation list error codes

A value of the AVMP-error data type is used by an AVL entity to report an error when processing a request from the

authorizer. It is also used by an authorizer to reject a faulty response from an AVL entity.

AVMP-error ::= ENUMERATED {

 noReason (0),

 unknownAvlEntity (1),

 unknownContentType (2),

 unsupportedAVMPversion (3),

 missingContent (4),

 missingContentComponent (5),

 invalidContentComponent (6),

 sequenceError (7),

 protocolError (8),

 invalidAvlSignature (9),

 duplicateAVL (10),

 missingAvlComponent (11),

 invalidAvlVersion (12),

 notAllowedForConstrainedAVLEntity (13),

 constrainedRequired (14),

 nonConstrainedRequired (15),

 unsupportedCriticalEntryExtension (16),

 unsupportedCriticalExtension (17),

 maxAVLsExceeded (18),

 unknownCert (19),

 unknownAVL (20),

 unsupportedScopeRestriction (21),

 ... }

The following authorization and validation list error codes are defined:

a) the noReason value shall be selected when no other error code is applicable;

b) the unknownContentType value shall be selected if the content type is not known by the receiver;

c) the unsupportedAVMPversion value shall be selected if a request or response content specified an AVMP

version not supported;

d) the missingContent value shall be selected when the request or response did not include a content;

e) the missingContentComponent value shall be selected when a request or response did not include a

mandatory component;

f) the invalidContentComponent value shall be selected when an unexpected component was included in

a request or response;

g) the sequenceError value shall be selected when:

– an end entity receives a request content of the addAvlReq content type that did not have the sequence

component set to 1;

– an end entity receives a request content not of the addAvlReq content type that did not have the

sequence component set to one more than for the previous request; or

– an authorizer receives a response content with a sequence component value different from the one in

the corresponding request content;

h) the protocolError value shall be selected when a protocol error is encountered;

i) the invalidSignature value shall be selected when the signature on an AVL is invalid;

j) the duplicateAVL value shall be selected when the authorizer attempts to add an already existing AVL to

an end entity;

ISO/IEC 9594-8:2017 (E)

130 Rec. ITU-T X.509 (10/2016)

k) the missingAvlComponent value shall be selected when a received AVL is missing a mandatory

component;

l) the invalidAvlVersion value shall be selected when an unsupported authorization validation list version

is received;

m) the notAllowedForConstrainedAVLEntity shall be selected if a component is included that is not

allowed by a constrained AVL entity;

n) the constraintRequired value shall be selected when the end entity requires an AVL with the

constraint component set to FALSE;

o) the nonConstraintRequired value shall be selected when the end entity requires an AVL with the

constraint component set to TRUE;

p) the unsupportedCriticalEntryExtension value shall be selected when a received AVL contains an

unsupported critical entry extension;

q) the unsupportedCriticalExtension value shall be selected when a received AVL contains an

unsupported critical extension;

r) the maxAVLsExceeded value shall be selected when the addition of an AVL would bring the number of

AVLs beyond a locally determined value;

s) the unknownCert value shall be selected when an unknown public-key certificate was referenced in an

update request;

t) the unknownAVL value shall be selected when an end entity receives a content including a value of the

AvlSerialNumber data type that did not match any local AVL;

u) the unsupportedScopeRestriction value shall be selected when an unsupported scope restriction was

included in an AVL.

21.5 Certification authority subscription protocol

21.5.1 Certification authority subscription introduction

The CA subscription is concerned with how the authorizer maintains AVL status information by subscribing to the

necessary information from relevant CAs. It is only relevant for authorizer supporting authorization validation lists for

constraint end entities.

Before subscribing to maintenance information, the authorizer needs to know the exact certification configuration for the

end entities it supports. The following information is necessary to establish:

a) The end-entity public-key certificates for the AVL entities for which AVL support is to be provided.

b) For each AVL entity from a), the end-entity public-key certificates for the AVL entities to which

communications are possible.

c) The CA-certificates and trust anchor information necessary to establish any necessary certification path.

This Specification does not gives details on how an authorizer obtains this information. It could be by local configuration

or by abstract of a centralized database.

The CASP comprises a set of CMS exchange types as detailed in the following.

21.5.2 Certification authority subscription common components

Some components are common across different content types. The CASPcommonComponents data type comprises these

components.

CASPcommonComponents ::= SEQUENCE {

 version CASPversion DEFAULT v1,

 sequence CASPsequence,

 ... }

CASPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

CASPsequence ::= INTEGER (1..MAX)

The CASPcommonComponents data type has the following components.

The version component shall hold the version of the CASP. The current version is version v1.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 131

The sequence component shall hold a sequence number of a message being sent. The sequence number is used:

a) to allow detection replay of messages caused by an error or by an adversary;

b) to pair requests and responses; and

c) to detect missing messages.

21.5.3 Public-key certificate subscription

certSubscribeReq CONTENT-TYPE ::= {

 CertSubscribeReq

 IDENTIFIED BY id-certSubscribeReq }

The authorizer uses the certSubscribeReq content type to request a specific CA to supply status information about

public-key certificates issued by this CA relevant for the AVLs supported by the authorizer.

CertSubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

The CertSubscribeReq data type specifies the syntax of the actual content and has the following components:

a) The components of the CASPcommonComponents data type as specified in clause 22.6.2.

b) The certs component shall identify a list of end-entity public-key certificates, for which the authorizer

requests information about status changes. It has the following subcomponents for each element:

– the subject subcomponent shall be the name of the entity for which the end-entity public-key

certificate has been issued;

– the serialNumber subcomponent shall be the serial number for the end-entity public-key certificate

in question.

The CA shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity, i.e., whether it identifies an end-entity public-key

certificate issued by the CA. If not, an unknownCert status code shall be returned in the corresponding

element of the response.

certSubscribeRsp CONTENT-TYPE ::= {

 CertSubscribeRsp

 IDENTIFIED BY id-certSubscribeRsp }

The CA shall use the certSubscribeRsp content type to report the outcome of the subscription request.

CertSubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertSubscribeOK,

 failure [1] CertSubscribeErr,

 ... },

 ... }

CertSubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 cert Certificate,

 status CertStatus,

 revokeReason CRLReason OPTIONAL,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CASP-CertStatusCode ::= ENUMERATED {

 noReason (1),

 unknownCert (2),

 ... }

ISO/IEC 9594-8:2017 (E)

132 Rec. ITU-T X.509 (10/2016)

CertStatus ::= ENUMERATED {

 good (0),

 revoked (1),

 on-hold (2),

 expired (3),

 ... }

CertSubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertSubscribeRsp data type specifies the actual content and has the following components:

The components of the CASPcommonComponents data type as specified in clause 21.6.2.

The result component has the following two alternatives:

a) The success alternative shall be taken if the subscription was accepted for at least one public-key

certificate. It shall then hold a value of the CertSubscribeOK data type.

b) The failure alternative shall be taken if the evaluation of the request failed to a degree where no results

could be returned. It shall then hold a value of the CertSubscribeErr data type. The CASP-error data

type is specified in clause 21.6.8.

The CertSubScribeOK shall include an element for each public-key certificate specified in the request in the same order.

Each element has two alternatives:

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It has

the following components:

– the cert component shall hold the public-key certificate for the requested subject;

– the status component shall hold the status of the public-key certificate and shall take one the

following values:

i) the good value signals that the represented public-key certificate can be trusted,

ii) the revoked value signals that the represented public-key certificate has been revoked and can

no longer be trusted,

iii) the on-hold value signals that the represented public-key certificate has been put on hold status

and should not be trusted for the time being,

iv) the expired value signals that the represented public-key certificate has expired and cannot

longer be trusted;

– the revokeReason component may be present when the status component is set to revoked, and

shall otherwise be absent. When present, it shall indicate the reason for the revocation as defined in

clause 9.5.3.1.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified:

– the no-reason status code shall be returned when no other code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did not

identify a public-key certificate issued by the CA.

21.5.4 Public-key certificate un-subscription

certUnsubscribeReq CONTENT-TYPE ::= {

 CertUnsubscribeReq

 IDENTIFIED BY {id-cmsct 10} }

The authorizer uses the certUnsubscribeReq content type to request a specific CA to stop supplying status information

about public-key certificates issued by that CA.

CertUnsubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

The CertUnsubscribeReq data type specifies the actual content and has the following components:

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 133

a) The components of CASPcommonComponents data type as specified in clause 22.6.2.

b) The certs component shall identify a list of public-key certificates for which, the authorizer requests stop

for information about status changes. It has the following subcomponents for each public-key certificate:

– The subject subcomponent shall be the name of the entity to which the public-key certificate has

been issued.

– The serialNumber subcomponent shall be the serial number for the public-key certificate in question.

The CA shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued by

the CA. If not, an unknownCert status code shall be returned in the corresponding element of the response.

certUnsubscribeRsp CONTENT-TYPE ::= {

 CertUnsubscribeRsp

 IDENTIFIED BY id-certUnsubscribeReq } }

The CA shall use the certUnsubscribeRsp content type to report the outcome of the un-subscription request.

certUnsubscribeRsp CONTENT-TYPE ::= {

 CertUnsubscribeRsp

 IDENTIFIED BY id-certUnsubscribeRsp }

CertUnsubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertUnsubscribeOK,

 failure [1] CertUnsubscribeErr,

 ... },

 ... }

CertUnsubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUnsubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertSubscribeRsp data type specifies the actual content and has the following components:

The components of the CASPcommonComponents data type as specified in clause 21.6.2.

The result component has the following two alternatives:

a) The success alternative shall be taken if the subscription was accepted for at least one public-key

certificate. It shall then hold a value of the CertUnsubscribeOK data type.

b) The failure alternative shall be taken if the evaluation of the request failed to a degree where no results

could be returned. It shall then hold a value of the CertUnsubscribeErr data type. The CASP-error

data type is specified in clause 21.6.8.

The CertUnsubScribeOK includes an element for each public-key certificate specified in the request in the same order.

Each element has two alternatives:

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It has

the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had been

issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified.

– the no-reason status code shall be returned when no other status code is applicable;

ISO/IEC 9594-8:2017 (E)

134 Rec. ITU-T X.509 (10/2016)

– the unknownCert status code shall be selected when the corresponding element in the request did not

identify a public-key certificate issued by the CA.

The error alternative shall be taken if the evaluation of the request failed to a degree where no results could be returned.

The CASP-error data type is specified in clause 21.6.8.

21.5.5 Public-key certificate replacements

certReplaceReq CONTENT-TYPE ::= {

 CertReplaceReq

 IDENTIFIED BY id-certReplaceReq }

The CA shall use the certReplacementReq content type to submit replaced end-entity public-key certificates to the

authorizer.

CertReplaceReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE OF SEQUENCE {

 old CertificateSerialNumber,

 new Certificate,

 ... },

 ... }

The CertReplacementReq data type specifies the actual content and has the following components:

a) The components of the CASPcommonComponents data type as specified in clause 21.6.2.

b) The certs component shall identify a list of public-key certificate replacements. It has the following

subcomponents for each public-key certificate:

– The old subcomponent shall hold the identification of the public-key certificate to be replaced.

– The new subcomponent shall hold the replacement public-key certificate.

The authorizer shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity:

– whether the old subcomponent identifies a public-key certificate at the authorizer and if not, an

unknownCert status code shall be returned in the corresponding element of the response;

b) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued

by the CA. If not, an unknownCert status code shall be returned in the corresponding element of the

response.

certReplaceRsp CONTENT-TYPE ::= {

 CertReplaceRsp

 IDENTIFIED BY id-certReplaceRsp }

The authorizer shall use the certReplacementRsp content type to report the outcome of the subscription request.

CertReplaceRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertReplaceOK,

 failure [1] CertReplaceErr,

 ... },

 ... }

CertReplaceOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertReplaceErr ::= SEQUENCE {

 code CASP-error,

 ... }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 135

The CertReplaceRsp data type specifies the actual content and has the following components:

The components of the CASPcommonComponents data type as specified in clause 21.6.2.

The result component has the following two alternatives:

a) The success alternative shall be taken if the subscription was accepted for at least one public-key

certificate. It shall then hold a value of the CertReplaceOK data type.

b) The failure alternative shall be taken if the evaluation of the request failed to a degree where no results

could be returned. It shall then hold a value of the CertReplaceErr data type. The CASP-error data type

is specified in clause 21.6.8.

The CertReplace data type includes an element for each public-key certificate specified in the request in the same order.

Each element has two alternatives:

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It has

the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had been

issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified.

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did not

identify a public-key certificate issued by the CA.

21.5.6 End-entity public-key certificate updates

certUpdateReq CONTENT-TYPE ::= {

 CertUpdateReq

 IDENTIFIED BY id-certUpdateReq }

The CA shall use the certUpdateReq content type to submit to the authorizer updated status information on public-key

certificates.

CertUpdateReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 certStatus CertStatus,

 ... },

 ... }

The CertUpdateReq data type specifies the actual content and has the following components:

a) The components of the CASPcommonComponents data type as specified in clause 21.6.2.

b) The certs component shall identify a list of updates to public-key certificate. It has the following

subcomponents for each element:

– The subject subcomponent shall hold the identification of the end-entity public-key certificate to be

replaced.

– The serialNumber subcomponent shall identify the end-entity public-key certificate or which new

status information is available.

– The certStatus shall hold the updated status information for the end-entity public-key certificate in

question.

The authorizer shall verify the validity of the request by checking:

a) as specified in clause 21.4;

b) each element of the certs component for validity by checking–:

– whether the subject subcomponent identifies a new entity and if not, return an unknownSubject

error code;

– whether the serialNumber subcomponent identifies a known public-key certificate and if not, return

an unknownCert error code;

ISO/IEC 9594-8:2017 (E)

136 Rec. ITU-T X.509 (10/2016)

– whether the certStatus subcomponent has a valid value and if not, return an unknownCertStatus

error code.

certUpdateRsp CONTENT-TYPE ::= {

 CertUpdateRsp

 IDENTIFIED BY id-certUpdateRsp }

The authorizer shall use the certUpdateRsp content type to report the outcome of the updates to status information on

public-key certificates.

CertUpdateRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertUpdateOK,

 failure [1] CertUpdateErr,

 ... },

 ... }

CertUpdateOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUpdateErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertUpdateRsp data type specifies the actual content and has the following components:

The CASPcommonComponents data type as specified in clause 21.6.2.

The result component has the following two alternatives:

a) The success alternative shall be taken if the subscription was accepted for at least one public-key

certificate. It shall then hold a value of the CertUpdateOK data type.

b) The failure alternative shall be taken if the evaluation of the request failed to a degree where no results

could be returned. It shall then hold a value of the CertUpdateErr data type. The CASP-error data type is

specified in clause 21.6.8.

The CertUpdateOK includes an element for each public-key certificate specified in the request in the same order. Each

element has two alternatives:

a) The ok alternative shall be taken when the update to the public-key certificate information was successfully

processed. It has the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had been

issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified.

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did not

identify a public-key certificate issued by the CA.

21.5.7 Certification authority subscription reject

rejectCAsubscribe CONTENT-TYPE ::= {

 RejectCAsubscribe

 IDENTIFIED BY id-rejectCAsubscribe }

The rejectCAsubscribe content type is used by receiver of a response content to report problems with the response.

RejectCAsubscribe ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 reason CASP-error,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 137

 ... }

The RejectCAsubscribe data type specifies the actual content and has the following component:

The sequence component of the CASPcommonComponents data type shall take the same value as in the response on

which it is reporting.

The CASP-error is specified in clause 21.6.8.

The authorizer shall verify the validity of a received response by checking

a) as specified in clause 21.4.

21.5.8 Certification authority subscription error codes

CASP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedCASPversion (2),

 missingContent (3),

 missingContentComponent (4),

 invalidContentComponent (5),

 sequenceError (6),

 unknownCertStatus (7),

 ... }

A value of the CASP-error data type indicates the result of an issued request.

a) the noReason value shall be selected when no other error code is applicable;

b) the unknownContentType value shall be selected if the content type is not known by the receiver;

c) the unsupportedCASPversion value shall be selected if a request or response content specified a CASP

version that is not supported;

d) the unsupportedContentVersion value shall be selected when a request or response includes an

unsupported content type;

e) the missingContent value shall be selected when the request or response did not include a content;

f) the missingContentComponent value shall be selected when a request or response does not includes a

mandatory component;

g) the invalidContentComponent value shall be selected when an unexpected component was included in a

request or response;

h) the sequenceError value shall be selected by when:

– an authorizer or a CA receives a request content for the first time that did not have the sequence

component set to 1;

– an authorizer or a CA receives a request content that did not have the sequence component set to one

higher than for a previous request content in the same direction; or

– an authorizer or a CA receives a response content with a sequence component value different from

the one in the corresponding request content;

22 Trust broker protocol

The TB protocol allows the relying party to query the TB about the trustworthiness of the certificate issued to the subject

it is communicating with. The relying party may send the certificate of either the issuing CA or the subject, and receive

information about the trustworthiness of the subject’s certificate.

There are two issues involved in determining the trustworthiness of a PKI certificate:

– Is the certificate still valid?

– How trustworthy is the CA that issued it?

The relying party may use a local client to answer the first question, in which case the TB will only answer the second one.

Alternatively the relying party may ask the TB to answer both questions. The format of a TB request message is as follows:

TBrequest ::= CHOICE {

 caCert [0] PKCertIdentifier,

 subjectCert [1] PKCertIdentifier,

ISO/IEC 9594-8:2017 (E)

138 Rec. ITU-T X.509 (10/2016)

 ... }

If the relying party sends the certificate of the CA, then only the second question above is to be answered. The TB does

not know which of the CA’s subjects the relying party is communicating with, and therefore can only return information

that relates to all the certificates issued by this CA’s certificate. This method protects the privacy of the relying party by

not divulging the subjects that the relying party communicates with. The TB shall check that the CA’s certificate is still

valid and then return information about the trustworthiness of all the subject certificates issued by this CA.

If the relying party sends the certificate of the subject, then the TB shall check that the subject’s certificate is still valid and

then check that the CA’s certificate is still valid and return information about the trustworthiness of all the subject

certificates issued by this CA.

TBresponse ::= CHOICE {

 success [0] TBOK,

 failure [1] TBerror,

 ... }

TBOK ::= SEQUENCE {

 levelOfAssurance [0] INTEGER (0..100),

 confidenceLevel [1] INTEGER (0..100),

 validationTime [2] UTCTime,

 info UTF8String OPTIONAL,

 ... }

TBerror ::= SEQUENCE {

 code ENUMERATED {

 caCertInvalid (1),

 unknownCert (2),

 unknownCertStatus (3),

 subjectCertRevoked (4),

 incorrectCert (5),

 contractExpired (6),

 pathValidationFailed (7),

 timeOut (8),

 other (99),

 ... },

 diagnostic UTF8String OPTIONAL,

 ... }

If the TB successfully validates the presented certificate, it returns the following information to the relying party:

levelOfAssurance - indicates the level of assurance that the relying party can have in the subject’s certificate,

as determined by the responding TB. This assurance is asserted by the TB as a result of its

careful analysis of many factors. Different TBs may therefore return different LoA values

for the same presented certificate due to their different validation procedures. The LoA

value will be in the range 0 to 100, where 0 indicates zero assurance and 100 indicates full

assurance.

confidenceLevel - indicates the confidence that the TB has in the LoA value that it has returned, where 0

indicates zero confidence and 100 indicates full confidence.

validationTime – the date and time at which the TB last checked the revocation information for the presented

certificate.

info - contains an optional free form display string that the TB would like the client software to

display to the user.

If the TB fails to validate the presented certificate, it returns an error code and diagnostic string. Note that if the TB validates

the certificate but does not trust it or the issuer, it should return TBOK with a LoA of zero. The error code can be one of

the following:

caCertInvalid – either the presented CA certificate is not valid, or the certificate of a CA superior to the

presented subject certificate is not valid

unknownCert – the certificate submitted to the TB by the relying party is unknown and cannot be validated

unknownCertStatus – the TB cannot determine the status of the (known) certificate submitted by the relying party

subjectCertRevoked – the presented subject certificate has been revoked

incorrectCert – the presented certificate is incorrectly formatted

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 139

contractExpired – the relying party’s contract with the TB has expired and should be renewed before service

can be restored

pathValidationFailed – one or more of the CA certificates in the chain from the subject’s certificate to the root CA

could not be validated. Another attempt at a later time may succeed

timeOut – the presented certificate could not be validated because one or more services timed out.

Retrying again later may rectify this error

other – the presented certificate could not be validated for some reason other than one of the above.

If this error code is used, then it is mandatory for the TB to complete the diagnostic string

The diagnostic string is an optional parameter that the TB may wish to be recorded in the client logs and displayed to the

relying party. It is mandatory if the error code other is returned.

ISO/IEC 9594-8:2017 (E)

140 Rec. ITU-T X.509 (10/2016)

Annex A

Public-key and attribute certificate frameworks

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type, value, and information object class definitions contained in this Specification

in the form of three ASN.1 modules: AuthenticationFramework, CertificateExtensions and

AttributeCertificateDefinitions.

-- A.1 - Authentication framework module

AuthenticationFramework {joint-iso-itu-t ds(5) module(1) authenticationFramework(7) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1

-- modules contained within the Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may

-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS

 basicAccessControl, certificateExtensions, id-asx, id-at, id-avr, id-ldx, id-lsx,

 id-mr, id-nf, id-oa, id-oc, id-sc, informationFramework, selectedAttributeTypes

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 ATTRIBUTE, DistinguishedName, MATCHING-RULE, Name, NAME-FORM, OBJECT-CLASS,

 RelativeDistinguishedName, SYNTAX-NAME, top

 FROM InformationFramework informationFramework

 bitStringMatch, boolean, booleanMatch, caseExactMatch, commonName,

 directoryString, distinguishedNameMatch, generalizedTime,

 generalizedTimeMatch, generalizedTimeOrderingMatch, integer, integerMatch,

 integerOrderingMatch, objectIdentifierMatch, octetString, octetStringMatch,

 UnboundedDirectoryString, UniqueIdentifier, uri

 FROM SelectedAttributeTypes selectedAttributeTypes

 algorithmIdentifierMatch, certificateExactMatch, certificateListExactMatch,

 certificatePairExactMatch, CertificatePoliciesSyntax, CertPolicyId, GeneralNames,

 KeyUsage,

 CertificateAssertion, CertificateExactAssertion, CertificateListAssertion,

 CertificateListExactAssertion, CertificatePairAssertion,

 CertificatePairExactAssertion

 FROM CertificateExtensions certificateExtensions ;

-- parameterized types

SIGNATURE ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 signature BIT STRING,

 ... }

SIGNED{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 COMPONENTS OF SIGNATURE,

 ... }

HASH{ToBeHashed} ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 hashValue BIT STRING (CONSTRAINED BY {

 -- shall be the result of applying a hashing procedure to the DER-encoded

 -- octets of a value of -- ToBeHashed }),

 ... }

ENCRYPTED{ToBeEnciphered} ::= BIT STRING (CONSTRAINED BY {

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 141

 -- shall be the result of applying an encipherment procedure

 -- to the BER-encoded octets of a value of -- ToBeEnciphered })

ENCRYPTED-HASH{ToBeSigned} ::= BIT STRING (CONSTRAINED BY {

 -- shall be the result of applying a hashing procedure to the DER-encoded (see 6.2)

 -- octets of a value of -- ToBeSigned -- and then applying an encipherment procedure

 -- to those octets -- })

FINGERPRINT {ToBeFingerprinted} ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 fingerprint BIT STRING,

 ... }

ALGORITHM ::= CLASS {

 &Type OPTIONAL,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 [PARMS &Type]

 IDENTIFIED BY &id }

AlgorithmIdentifier{ALGORITHM:SupportedAlgorithms} ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 ... }

/* The definitions of the following information object set is deferred to referencing

specifications having a requirement for specific information object sets.*/

SupportedAlgorithms ALGORITHM ::= {...}

/* The definitions of the following information value set is deferred to referencing

specifications having a requirement for specific value sets.*/

SupportedCurves OBJECT IDENTIFIER ::= {dummyCurv, ...}

dummyCurv OBJECT IDENTIFIER ::= {2 5 5}

-- public-key certificate definition

Certificate ::= SIGNED{TBSCertificate}

TBSCertificate ::= SEQUENCE {

 version [0] Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

 ...,

 [[2: -- if present, version shall be v2 or v3

 subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL]],

 [[3: -- if present, version shall be v2 or v3

 extensions [3] Extensions OPTIONAL]]

 -- If present, version shall be v3]]

 } (CONSTRAINED BY { -- shall be DER encoded -- })

Version ::= INTEGER {v1(0), v2(1), v3(2)}

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time,

 ... }

SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier{{SupportedAlgorithms}},

 subjectPublicKey PublicKey,

 ... }

ISO/IEC 9594-8:2017 (E)

142 Rec. ITU-T X.509 (10/2016)

PublicKey ::= BIT STRING

Time ::= CHOICE {

 utcTime UTCTime,

 generalizedTime GeneralizedTime }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

-- For those extensions where ordering of individual extensions within the SEQUENCE is

-- significant, the specification of those individual extensions shall include the

-- rules for the significance of the order therein

Extension ::= SEQUENCE {

 extnId EXTENSION.&id({ExtensionSet}),

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING

 (CONTAINING EXTENSION.&ExtnType({ExtensionSet}{@extnId})

 ENCODED BY der),

 ... }

der OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

ExtensionSet EXTENSION ::= {...}

EXTENSION ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &ExtnType }

WITH SYNTAX {

 SYNTAX &ExtnType

 IDENTIFIED BY &id }

-- other PKI certificate constructs

Certificates ::= SEQUENCE {

 userCertificate Certificate,

 certificationPath ForwardCertificationPath OPTIONAL,

 ... }

ForwardCertificationPath ::= SEQUENCE SIZE (1..MAX) OF CrossCertificates

CrossCertificates ::= SET SIZE (1..MAX) OF Certificate

CertificationPath ::= SEQUENCE {

 userCertificate Certificate,

 theCACertificates SEQUENCE SIZE (1..MAX) OF CertificatePair OPTIONAL,

 ... }

PkiPath ::= SEQUENCE SIZE (1..MAX) OF Certificate

-- certificate revocation list (CRL)

CertificateList ::= SIGNED{CertificateListContent}

CertificateListContent ::= SEQUENCE {

 version Version OPTIONAL,

 -- if present, version shall be v2

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 issuer Name,

 thisUpdate Time,

 nextUpdate Time OPTIONAL,

 revokedCertificates SEQUENCE OF SEQUENCE {

 serialNumber CertificateSerialNumber,

 revocationDate Time,

 crlEntryExtensions Extensions OPTIONAL,

 ...} OPTIONAL,

 ...,

 ...,

 crlExtensions [0] Extensions OPTIONAL }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 143

CertAVL ::= SIGNED {TBSCertAVL}

TBSCertAVL ::= SEQUENCE {

 version [0] IMPLICIT Version DEFAULT v1,

 serialNumber AvlSerialNumber OPTIONAL,

 signature AlgorithmIdentifier {{SupportedAlgorithms}},

 issuer Name,

 constrained BOOLEAN,

 entries SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 idType CHOICE {

 certIdentifier [0] PKCertIdentifier,

 entityGroup DistinguishedName, -- only for constrained = FALSE

 ... },

 scope [0] IMPLICIT ScopeRestrictions OPTIONAL,

 entryExtensions [1] IMPLICIT Extensions OPTIONAL,

 ... },

 ...,

 ...,

 avlExtensions Extensions OPTIONAL }

AvlSerialNumber ::= INTEGER (0..MAX)

PKCertIdentifier ::= CHOICE {

 issuerSerialNumber IssuerSerialNumber,

 fingerprintPKC [0] IMPLICIT FINGERPRINT {Certificate},

 fingerprintPK [1] IMPLICIT FINGERPRINT {PublicKey},

 ... }

IssuerSerialNumber ::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... }

ScopeRestrictions ::= SEQUENCE OF ScopeRestriction

SCOPE-RESTRICTION ::= TYPE-IDENTIFIER

ScopeRestriction ::= SEQUENCE {

 id SCOPE-RESTRICTION.&id,

 restriction SCOPE-RESTRICTION.&Type,

 ... }

protRestrict EXTENSION ::= {

 SYNTAX ProtRestriction

 IDENTIFIED BY id-protRestrict }

ProtRestriction ::= SEQUENCE (SIZE (1..MAX)) OF OBJECT IDENTIFIER

-- PKI object classes

pkiUser OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {userCertificate}

 LDAP-NAME {"pkiUser"}

 LDAP-DESC "X.509 PKI User"

 ID id-oc-pkiUser }

pkiCA OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {cACertificate |

 certificateRevocationList |

 eepkCertificateRevocationList |

 authorityRevocationList |

 crossCertificatePair}

 LDAP-NAME {"pkiCA"}

 LDAP-DESC "X.509 PKI Certificate Authority"

 ID id-oc-pkiCA }

cRLDistributionPoint OBJECT-CLASS ::= {

ISO/IEC 9594-8:2017 (E)

144 Rec. ITU-T X.509 (10/2016)

 SUBCLASS OF {top}

 KIND structural

 MUST CONTAIN {commonName}

 MAY CONTAIN {certificateRevocationList |

 eepkCertificateRevocationList |

 authorityRevocationList |

 deltaRevocationList}

 LDAP-NAME {"cRLDistributionPoint"}

 LDAP-DESC "X.509 CRL distribution point"

 ID id-oc-cRLDistributionPoint }

cRLDistPtNameForm NAME-FORM ::= {

 NAMES cRLDistributionPoint

 WITH ATTRIBUTES {commonName}

 ID id-nf-cRLDistPtNameForm }

deltaCRL OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {deltaRevocationList}

 LDAP-NAME {"deltaCRL"}

 LDAP-DESC "X.509 delta CRL"

 ID id-oc-deltaCRL }

cpCps OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {certificatePolicy |

 certificationPracticeStmt}

 LDAP-NAME {"cpCps"}

 LDAP-DESC "Certificate Policy and Certification Practice Statement"

 ID id-oc-cpCps }

pkiCertPath OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {pkiPath}

 LDAP-NAME {"pkiCertPath"}

 LDAP-DESC "PKI Certification Path"

 ID id-oc-pkiCertPath }

-- PKI directory attributes

userCertificate ATTRIBUTE ::= {

 WITH SYNTAX Certificate

 EQUALITY MATCHING RULE certificateExactMatch

 LDAP-SYNTAX x509Certificate.&id

 LDAP-NAME {"userCertificate"}

 LDAP-DESC "X.509 user certificate"

 ID id-at-userCertificate }

cACertificate ATTRIBUTE ::= {

 WITH SYNTAX Certificate

 EQUALITY MATCHING RULE certificateExactMatch

 LDAP-SYNTAX x509Certificate.&id

 LDAP-NAME {"cACertificate"}

 LDAP-DESC "X.509 CA certificate"

 ID id-at-cAcertificate }

crossCertificatePair ATTRIBUTE ::= {

 WITH SYNTAX CertificatePair

 EQUALITY MATCHING RULE certificatePairExactMatch

 LDAP-SYNTAX x509CertificatePair.&id

 LDAP-NAME {"crossCertificatePair"}

 LDAP-DESC "X.509 cross certificate pair"

 ID id-at-crossCertificatePair }

CertificatePair ::= SEQUENCE {

 issuedToThisCA [0] Certificate OPTIONAL,

 issuedByThisCA [1] Certificate OPTIONAL,

 ... }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 145

 (WITH COMPONENTS { ..., issuedToThisCA PRESENT} |

 WITH COMPONENTS { ..., issuedByThisCA PRESENT})

certificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"certificateRevocationList"}

 LDAP-DESC "X.509 certificate revocation list"

 ID id-at-certificateRevocationList }

eepkCertificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"certificateRevocationList"}

 LDAP-DESC "X.509 EEPK certificate revocation list"

 ID id-at-eepkCertificateRevocationList }

authorityRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"authorityRevocationList"}

 LDAP-DESC "X.509 authority revocation list"

 ID id-at-authorityRevocationList }

deltaRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"deltaRevocationList"}

 LDAP-DESC "X.509 delta revocation list"

 ID id-at-deltaRevocationList }

supportedAlgorithms ATTRIBUTE ::= {

 WITH SYNTAX SupportedAlgorithm

 EQUALITY MATCHING RULE algorithmIdentifierMatch

 LDAP-SYNTAX x509SupportedAlgorithm.&id

 LDAP-NAME {"supportedAlgorithms"}

 LDAP-DESC "X.509 support algorithms"

 ID id-at-supportedAlgorithms }

SupportedAlgorithm ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 intendedUsage [0] KeyUsage OPTIONAL,

 intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL,

 ... }

certificationPracticeStmt ATTRIBUTE ::= {

 WITH SYNTAX InfoSyntax

 ID id-at-certificationPracticeStmt }

InfoSyntax ::= CHOICE {

 content UnboundedDirectoryString,

 pointer SEQUENCE {

 name GeneralNames,

 hash HASH{HashedPolicyInfo} OPTIONAL,

 ... },

 ... }

POLICY ::= TYPE-IDENTIFIER

HashedPolicyInfo ::= POLICY.&Type({Policies})

Policies POLICY ::= {...} -- Defined by implementors

certificatePolicy ATTRIBUTE ::= {

 WITH SYNTAX PolicySyntax

 ID id-at-certificatePolicy }

ISO/IEC 9594-8:2017 (E)

146 Rec. ITU-T X.509 (10/2016)

PolicySyntax ::= SEQUENCE {

 policyIdentifier PolicyID,

 policySyntax InfoSyntax,

 ... }

PolicyID ::= CertPolicyId

pkiPath ATTRIBUTE ::= {

 WITH SYNTAX PkiPath

 ID id-at-pkiPath }

userPassword ATTRIBUTE ::= {

 WITH SYNTAX OCTET STRING(SIZE (0..MAX))

 EQUALITY MATCHING RULE octetStringMatch

 LDAP-SYNTAX octetString.&id

 LDAP-NAME {"userPassword"}

 ID id-at-userPassword }

-- LDAP syntaxes defined by IETF RFC 4523

x509Certificate SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate"

 DIRECTORY SYNTAX Certificate

 ID id-lsx-x509Certificate }

x509CertificateList SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate List"

 DIRECTORY SYNTAX CertificateList

 ID id-lsx-x509CertificateList }

x509CertificatePair SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate Pair"

 DIRECTORY SYNTAX CertificatePair

 ID id-lsx-x509CertificatePair }

x509SupportedAlgorithm SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Supported Algorithm"

 DIRECTORY SYNTAX SupportedAlgorithm

 ID id-lsx-x509SupportedAlgorithm }

-- object identifier assignments

-- object classes

id-oc-cRLDistributionPoint OBJECT IDENTIFIER ::= {id-oc 19}

id-oc-pkiUser OBJECT IDENTIFIER ::= {id-oc 21}

id-oc-pkiCA OBJECT IDENTIFIER ::= {id-oc 22}

id-oc-deltaCRL OBJECT IDENTIFIER ::= {id-oc 23}

id-oc-cpCps OBJECT IDENTIFIER ::= {id-oc 30}

id-oc-pkiCertPath OBJECT IDENTIFIER ::= {id-oc 31}

-- name forms

id-nf-cRLDistPtNameForm OBJECT IDENTIFIER ::= {id-nf 14}

-- directory attributes

id-at-userPassword OBJECT IDENTIFIER ::= {id-at 35}

id-at-userCertificate OBJECT IDENTIFIER ::= {id-at 36}

id-at-cAcertificate OBJECT IDENTIFIER ::= {id-at 37}

id-at-authorityRevocationList OBJECT IDENTIFIER ::= {id-at 38}

id-at-certificateRevocationList OBJECT IDENTIFIER ::= {id-at 39}

id-at-crossCertificatePair OBJECT IDENTIFIER ::= {id-at 40}

id-at-supportedAlgorithms OBJECT IDENTIFIER ::= {id-at 52}

id-at-deltaRevocationList OBJECT IDENTIFIER ::= {id-at 53}

id-at-certificationPracticeStmt OBJECT IDENTIFIER ::= {id-at 68}

id-at-certificatePolicy OBJECT IDENTIFIER ::= {id-at 69}

id-at-pkiPath OBJECT IDENTIFIER ::= {id-at 70}

id-at-eepkCertificateRevocationList OBJECT IDENTIFIER ::= {id-at 101}

-- syntaxes

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 147

id-lsx-x509Certificate OBJECT IDENTIFIER ::= {id-lsx 8}

id-lsx-x509CertificateList OBJECT IDENTIFIER ::= {id-lsx 9}

id-lsx-x509CertificatePair OBJECT IDENTIFIER ::= {id-lsx 10}

id-lsx-x509SupportedAlgorithm OBJECT IDENTIFIER ::= {id-lsx 49}

-- Authorization validation restrictions

id-protRestrict OBJECT IDENTIFIER ::= {id-avr 1}

END -- AuthenticationFramework

-- A.2 - Certificate extensions module

CertificateExtensions {joint-iso-itu-t ds(5) module(1) certificateExtensions(26) 8}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL

IMPORTS

 id-at, id-ce, id-ldx, id-mr, informationFramework, authenticationFramework,

 pkiPmiExternalDataTypes, selectedAttributeTypes

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 Name, RelativeDistinguishedName, Attribute{}, MATCHING-RULE,

 SupportedAttributes, SYNTAX-NAME

 FROM InformationFramework informationFramework

 AvlSerialNumber, CertificateSerialNumber, CertificateList, AlgorithmIdentifier{},

 EXTENSION, Time, PolicyID, SupportedAlgorithms

 FROM AuthenticationFramework authenticationFramework

 UnboundedDirectoryString

 FROM SelectedAttributeTypes selectedAttributeTypes

 ORAddress

 FROM PkiPmiExternalDataTypes pkiPmiExternalDataTypes;

-- Unless explicitly noted otherwise, there is no significance to the ordering

-- of components of a SEQUENCE OF construct in this Specification.

-- public-key certificate and CRL extensions

authorityKeyIdentifier EXTENSION ::= {

 SYNTAX AuthorityKeyIdentifier

 IDENTIFIED BY id-ce-authorityKeyIdentifier }

AuthorityKeyIdentifier ::= SEQUENCE {

 keyIdentifier [0] KeyIdentifier OPTIONAL,

 authorityCertIssuer [1] GeneralNames OPTIONAL,

 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL,

 ... }

 (WITH COMPONENTS {..., authorityCertIssuer PRESENT,

 authorityCertSerialNumber PRESENT } |

 WITH COMPONENTS {..., authorityCertIssuer ABSENT,

 authorityCertSerialNumber ABSENT })

KeyIdentifier ::= OCTET STRING

subjectKeyIdentifier EXTENSION ::= {

 SYNTAX SubjectKeyIdentifier

 IDENTIFIED BY id-ce-subjectKeyIdentifier }

SubjectKeyIdentifier ::= KeyIdentifier

keyUsage EXTENSION ::= {

 SYNTAX KeyUsage

 IDENTIFIED BY id-ce-keyUsage }

ISO/IEC 9594-8:2017 (E)

148 Rec. ITU-T X.509 (10/2016)

KeyUsage ::= BIT STRING {

 digitalSignature (0),

 contentCommitment (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5),

 cRLSign (6),

 encipherOnly (7),

 decipherOnly (8) }

extKeyUsage EXTENSION ::= {

 SYNTAX SEQUENCE SIZE (1..MAX) OF KeyPurposeId

 IDENTIFIED BY id-ce-extKeyUsage }

KeyPurposeId ::= OBJECT IDENTIFIER

privateKeyUsagePeriod EXTENSION ::= {

 SYNTAX PrivateKeyUsagePeriod

 IDENTIFIED BY id-ce-privateKeyUsagePeriod }

PrivateKeyUsagePeriod ::= SEQUENCE {

 notBefore [0] GeneralizedTime OPTIONAL,

 notAfter [1] GeneralizedTime OPTIONAL,

 ... }

 (WITH COMPONENTS {..., notBefore PRESENT } |

 WITH COMPONENTS {..., notAfter PRESENT })

certificatePolicies EXTENSION ::= {

 SYNTAX CertificatePoliciesSyntax

 IDENTIFIED BY id-ce-certificatePolicies }

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {

 policyIdentifier CertPolicyId,

 policyQualifiers SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL,

 ... }

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {

 policyQualifierId CERT-POLICY-QUALIFIER.&id({SupportedPolicyQualifiers}),

 qualifier CERT-POLICY-QUALIFIER.&Qualifier

 ({SupportedPolicyQualifiers}{@policyQualifierId}) OPTIONAL,

 ... }

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= {...}

anyPolicy OBJECT IDENTIFIER ::= {id-ce-certificatePolicies 0}

CERT-POLICY-QUALIFIER ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Qualifier OPTIONAL }

WITH SYNTAX {

 POLICY-QUALIFIER-ID &id

 [QUALIFIER-TYPE &Qualifier] }

policyMappings EXTENSION ::= {

 SYNTAX PolicyMappingsSyntax

 IDENTIFIED BY id-ce-policyMappings }

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 issuerDomainPolicy CertPolicyId,

 subjectDomainPolicy CertPolicyId,

 ... }

authorizationValidation EXTENSION ::= {

 SYNTAX AvlId

 IDENTIFIED BY id-ce-authorizationValidation }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 149

AvlId ::= SEQUENCE {

 issuer Name,

 serialNumber AvlSerialNumber OPTIONAL,

 ... }

subjectAltName EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id-ce-subjectAltName }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

 otherName [0] INSTANCE OF OTHER-NAME,

 rfc822Name [1] IA5String,

 dNSName [2] IA5String,

 x400Address [3] ORAddress,

 directoryName [4] Name,

 ediPartyName [5] EDIPartyName,

 uniformResourceIdentifier [6] IA5String,

 iPAddress [7] OCTET STRING,

 registeredID [8] OBJECT IDENTIFIER,

 ... }

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {

 nameAssigner [0] UnboundedDirectoryString OPTIONAL,

 partyName [1] UnboundedDirectoryString,

 ... }

issuerAltName EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id-ce-issuerAltName }

subjectDirectoryAttributes EXTENSION ::= {

 SYNTAX AttributesSyntax

 IDENTIFIED BY id-ce-subjectDirectoryAttributes }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}

basicConstraints EXTENSION ::= {

 SYNTAX BasicConstraintsSyntax

 IDENTIFIED BY id-ce-basicConstraints }

BasicConstraintsSyntax ::= SEQUENCE {

 cA BOOLEAN DEFAULT FALSE,

 pathLenConstraint INTEGER(0..MAX) OPTIONAL,

 ... }

nameConstraints EXTENSION ::= {

 SYNTAX NameConstraintsSyntax

 IDENTIFIED BY id-ce-nameConstraints }

NameConstraintsSyntax ::= SEQUENCE {

 permittedSubtrees [0] GeneralSubtrees OPTIONAL,

 excludedSubtrees [1] GeneralSubtrees OPTIONAL,

 ... }

 (WITH COMPONENTS {..., permittedSubtrees PRESENT } |

 WITH COMPONENTS {..., excludedSubtrees PRESENT })

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {

 base GeneralName,

 minimum [0] BaseDistance DEFAULT 0,

 maximum [1] BaseDistance OPTIONAL,

 ... }

BaseDistance ::= INTEGER(0..MAX)

policyConstraints EXTENSION ::= {

ISO/IEC 9594-8:2017 (E)

150 Rec. ITU-T X.509 (10/2016)

 SYNTAX PolicyConstraintsSyntax

 IDENTIFIED BY id-ce-policyConstraints }

PolicyConstraintsSyntax ::= SEQUENCE {

 requireExplicitPolicy [0] SkipCerts OPTIONAL,

 inhibitPolicyMapping [1] SkipCerts OPTIONAL,

 ... }

 (WITH COMPONENTS {..., requireExplicitPolicy PRESENT } |

 WITH COMPONENTS {..., inhibitPolicyMapping PRESENT })

SkipCerts ::= INTEGER(0..MAX)

inhibitAnyPolicy EXTENSION ::= {

 SYNTAX SkipCerts

 IDENTIFIED BY id-ce-inhibitAnyPolicy }

cRLNumber EXTENSION ::= {

 SYNTAX CRLNumber

 IDENTIFIED BY id-ce-cRLNumber }

CRLNumber ::= INTEGER(0..MAX)

crlScope EXTENSION ::= {

 SYNTAX CRLScopeSyntax

 IDENTIFIED BY id-ce-cRLScope }

CRLScopeSyntax ::= SEQUENCE SIZE (1..MAX) OF PerAuthorityScope

PerAuthorityScope ::= SEQUENCE {

 authorityName [0] GeneralName OPTIONAL,

 distributionPoint [1] DistributionPointName OPTIONAL,

 onlyContains [2] OnlyCertificateTypes OPTIONAL,

 onlySomeReasons [4] ReasonFlags OPTIONAL,

 serialNumberRange [5] NumberRange OPTIONAL,

 subjectKeyIdRange [6] NumberRange OPTIONAL,

 nameSubtrees [7] GeneralNames OPTIONAL,

 baseRevocationInfo [9] BaseRevocationInfo OPTIONAL,

 ... }

OnlyCertificateTypes ::= BIT STRING {

 user (0),

 authority (1),

 attribute (2)}

NumberRange ::= SEQUENCE {

 startingNumber [0] INTEGER OPTIONAL,

 endingNumber [1] INTEGER OPTIONAL,

 modulus INTEGER OPTIONAL,

 ... }

BaseRevocationInfo ::= SEQUENCE {

 cRLStreamIdentifier [0] CRLStreamIdentifier OPTIONAL,

 cRLNumber [1] CRLNumber,

 baseThisUpdate [2] GeneralizedTime,

 ... }

statusReferrals EXTENSION ::= {

 SYNTAX StatusReferrals

 IDENTIFIED BY id-ce-statusReferrals }

StatusReferrals ::= SEQUENCE SIZE (1..MAX) OF StatusReferral

StatusReferral ::= CHOICE {

 cRLReferral [0] CRLReferral,

 otherReferral [1] INSTANCE OF OTHER-REFERRAL,

 ... }

CRLReferral ::= SEQUENCE {

 issuer [0] GeneralName OPTIONAL,

 location [1] GeneralName OPTIONAL,

 deltaRefInfo [2] DeltaRefInfo OPTIONAL,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 151

 cRLScope CRLScopeSyntax,

 lastUpdate [3] GeneralizedTime OPTIONAL,

 lastChangedCRL [4] GeneralizedTime OPTIONAL,

 ...

}

DeltaRefInfo ::= SEQUENCE {

 deltaLocation GeneralName,

 lastDelta GeneralizedTime OPTIONAL,

 ... }

OTHER-REFERRAL ::= TYPE-IDENTIFIER

cRLStreamIdentifier EXTENSION ::= {

 SYNTAX CRLStreamIdentifier

 IDENTIFIED BY id-ce-cRLStreamIdentifier }

CRLStreamIdentifier ::= INTEGER (0..MAX)

orderedList EXTENSION ::= {

 SYNTAX OrderedListSyntax

 IDENTIFIED BY id-ce-orderedList }

OrderedListSyntax ::= ENUMERATED {

 ascSerialNum (0),

 ascRevDate (1),

 ...}

deltaInfo EXTENSION ::= {

 SYNTAX DeltaInformation

 IDENTIFIED BY id-ce-deltaInfo }

DeltaInformation ::= SEQUENCE {

 deltaLocation GeneralName,

 nextDelta GeneralizedTime OPTIONAL,

 ... }

toBeRevoked EXTENSION ::= {

 SYNTAX ToBeRevokedSyntax

 IDENTIFIED BY id-ce-toBeRevoked }

ToBeRevokedSyntax ::= SEQUENCE SIZE (1..MAX) OF ToBeRevokedGroup

ToBeRevokedGroup ::= SEQUENCE {

 certificateIssuer [0] GeneralName OPTIONAL,

 reasonInfo [1] ReasonInfo OPTIONAL,

 revocationTime GeneralizedTime,

 certificateGroup CertificateGroup,

 ... }

ReasonInfo ::= SEQUENCE {

 reasonCode CRLReason,

 holdInstructionCode HoldInstruction OPTIONAL,

 ... }

CertificateGroup ::= CHOICE {

 serialNumbers [0] CertificateSerialNumbers,

 serialNumberRange [1] CertificateGroupNumberRange,

 nameSubtree [2] GeneralName,

 ... }

CertificateGroupNumberRange ::= SEQUENCE {

 startingNumber [0] INTEGER,

 endingNumber [1] INTEGER,

 ... }

CertificateSerialNumbers ::= SEQUENCE SIZE (1..MAX) OF CertificateSerialNumber

revokedGroups EXTENSION ::= {

 SYNTAX RevokedGroupsSyntax

 IDENTIFIED BY id-ce-revokedGroups }

ISO/IEC 9594-8:2017 (E)

152 Rec. ITU-T X.509 (10/2016)

RevokedGroupsSyntax ::= SEQUENCE SIZE (1..MAX) OF RevokedGroup

RevokedGroup ::= SEQUENCE {

 certificateIssuer [0] GeneralName OPTIONAL,

 reasonInfo [1] ReasonInfo OPTIONAL,

 invalidityDate [2] GeneralizedTime OPTIONAL,

 revokedcertificateGroup [3] RevokedCertificateGroup,

 ... }

RevokedCertificateGroup ::= CHOICE {

 serialNumberRange NumberRange,

 nameSubtree GeneralName }

expiredCertsOnCRL EXTENSION ::= {

 SYNTAX ExpiredCertsOnCRL

 IDENTIFIED BY id-ce-expiredCertsOnCRL }

ExpiredCertsOnCRL ::= GeneralizedTime

reasonCode EXTENSION ::= {

 SYNTAX CRLReason

 IDENTIFIED BY id-ce-reasonCode }

CRLReason ::= ENUMERATED {

 unspecified (0),

 keyCompromise (1),

 cACompromise (2),

 affiliationChanged (3),

 superseded (4),

 cessationOfOperation (5),

 certificateHold (6),

 removeFromCRL (8),

 privilegeWithdrawn (9),

 aACompromise (10),

 ...,

 weakAlgorithmOrKey (11) }

holdInstructionCode EXTENSION ::= {

 SYNTAX HoldInstruction

 IDENTIFIED BY id-ce-holdInstructionCode }

HoldInstruction ::= OBJECT IDENTIFIER

invalidityDate EXTENSION ::= {

 SYNTAX GeneralizedTime

 IDENTIFIED BY id-ce-invalidityDate }

cRLDistributionPoints EXTENSION ::= {

 SYNTAX CRLDistPointsSyntax

 IDENTIFIED BY id-ce-cRLDistributionPoints }

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {

 distributionPoint [0] DistributionPointName OPTIONAL,

 reasons [1] ReasonFlags OPTIONAL,

 cRLIssuer [2] GeneralNames OPTIONAL,

 ... }

DistributionPointName ::= CHOICE {

 fullName [0] GeneralNames,

 nameRelativeToCRLIssuer [1] RelativeDistinguishedName,

 ... }

ReasonFlags ::= BIT STRING {

 unused (0),

 keyCompromise (1),

 cACompromise (2),

 affiliationChanged (3),

 superseded (4),

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 153

 cessationOfOperation (5),

 certificateHold (6),

 privilegeWithdrawn (7),

 aACompromise (8),

 weakAlgorithmOrKey (9) }

issuingDistributionPoint EXTENSION ::= {

 SYNTAX IssuingDistPointSyntax

 IDENTIFIED BY id-ce-issuingDistributionPoint }

IssuingDistPointSyntax ::= SEQUENCE {

 -- If onlyContainsUserPublicKeyCerts and onlyContainsCACerts are both FALSE,

 -- the CRL covers both public-key certificate types

 distributionPoint [0] DistributionPointName OPTIONAL,

 onlyContainsUserPublicKeyCerts [1] BOOLEAN DEFAULT FALSE,

 onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,

 onlySomeReasons [3] ReasonFlags OPTIONAL,

 indirectCRL [4] BOOLEAN DEFAULT FALSE,

 onlyContainsAttributeCerts [5] BOOLEAN OPTIONAL, -- Use is strongly deprecated

 ... }

certificateIssuer EXTENSION ::= {

 SYNTAX GeneralNames

 IDENTIFIED BY id-ce-certificateIssuer }

deltaCRLIndicator EXTENSION ::= {

 SYNTAX BaseCRLNumber

 IDENTIFIED BY id-ce-deltaCRLIndicator }

BaseCRLNumber ::= CRLNumber

baseUpdateTime EXTENSION ::= {

 SYNTAX GeneralizedTime

 IDENTIFIED BY id-ce-baseUpdateTime }

freshestCRL EXTENSION ::= {

 SYNTAX CRLDistPointsSyntax

 IDENTIFIED BY id-ce-freshestCRL }

aAissuingDistributionPoint EXTENSION ::= {

 SYNTAX AAIssuingDistPointSyntax

 IDENTIFIED BY id-ce-aAissuingDistributionPoint }

AAIssuingDistPointSyntax ::= SEQUENCE {

 distributionPoint [0] DistributionPointName OPTIONAL,

 onlySomeReasons [1] ReasonFlags OPTIONAL,

 indirectCRL [2] BOOLEAN DEFAULT FALSE,

 containsUserAttributeCerts [3] BOOLEAN DEFAULT TRUE,

 containsAACerts [4] BOOLEAN DEFAULT TRUE,

 containsSOAPublicKeyCerts [5] BOOLEAN DEFAULT TRUE,

 ... }

-- PKI matching rules

certificateExactMatch MATCHING-RULE ::= {

 SYNTAX CertificateExactAssertion

 LDAP-SYNTAX certExactAssertion.&id

 LDAP-NAME {"certificateExactMatch"}

 LDAP-DESC "X.509 Certificate Exact Match"

 ID id-mr-certificateExactMatch }

CertificateExactAssertion ::= SEQUENCE {

 serialNumber CertificateSerialNumber,

 issuer Name,

 ... }

certificateMatch MATCHING-RULE ::= {

 SYNTAX CertificateAssertion

 LDAP-SYNTAX certAssertion.&id

 LDAP-NAME {"certificateMatch"}

 LDAP-DESC "X.509 Certificate Match"

ISO/IEC 9594-8:2017 (E)

154 Rec. ITU-T X.509 (10/2016)

 ID id-mr-certificateMatch }

CertificateAssertion ::= SEQUENCE {

 serialNumber [0] CertificateSerialNumber OPTIONAL,

 issuer [1] Name OPTIONAL,

 subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,

 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

 certificateValid [4] Time OPTIONAL,

 privateKeyValid [5] GeneralizedTime OPTIONAL,

 subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,

 keyUsage [7] KeyUsage OPTIONAL,

 subjectAltName [8] AltNameType OPTIONAL,

 policy [9] CertPolicySet OPTIONAL,

 pathToName [10] Name OPTIONAL,

 subject [11] Name OPTIONAL,

 nameConstraints [12] NameConstraintsSyntax OPTIONAL,

 ... }

AltNameType ::= CHOICE {

 builtinNameForm ENUMERATED {

 rfc822Name (1),

 dNSName (2),

 x400Address (3),

 directoryName (4),

 ediPartyName (5),

 uniformResourceIdentifier (6),

 iPAddress (7),

 registeredId (8),

 ...},

 otherNameForm OBJECT IDENTIFIER,

 ... }

CertPolicySet ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

certificatePairExactMatch MATCHING-RULE ::= {

 SYNTAX CertificatePairExactAssertion

 LDAP-SYNTAX certPairExactAssertion.&id

 LDAP-NAME {"certificatePairExactMatch"}

 LDAP-DESC "X.509 Certificate Pair Exact Match"

 ID id-mr-certificatePairExactMatch }

CertificatePairExactAssertion ::= SEQUENCE {

 issuedToThisCAAssertion [0] CertificateExactAssertion OPTIONAL,

 issuedByThisCAAssertion [1] CertificateExactAssertion OPTIONAL,

 ... }

 (WITH COMPONENTS { ..., issuedToThisCAAssertion PRESENT } |

 WITH COMPONENTS { ..., issuedByThisCAAssertion PRESENT })

certificatePairMatch MATCHING-RULE ::= {

 SYNTAX CertificatePairAssertion

 LDAP-SYNTAX certPairAssertion.&id

 LDAP-NAME {"certificatePairMatch"}

 LDAP-DESC "X.509 Certificate Pair Match"

 ID id-mr-certificatePairMatch }

CertificatePairAssertion ::= SEQUENCE {

 issuedToThisCAAssertion [0] CertificateAssertion OPTIONAL,

 issuedByThisCAAssertion [1] CertificateAssertion OPTIONAL,

 ... }

 (WITH COMPONENTS {..., issuedToThisCAAssertion PRESENT } |

 WITH COMPONENTS {..., issuedByThisCAAssertion PRESENT })

certificateListExactMatch MATCHING-RULE ::= {

 SYNTAX CertificateListExactAssertion

 LDAP-SYNTAX certListExactAssertion.&id

 LDAP-NAME {"certificateListExactMatch"}

 LDAP-DESC "X.509 Certificate List Exact Match"

 ID id-mr-certificateListExactMatch }

CertificateListExactAssertion ::= SEQUENCE {

 issuer Name,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 155

 thisUpdate Time,

 distributionPoint DistributionPointName OPTIONAL }

certificateListMatch MATCHING-RULE ::= {

 SYNTAX CertificateListAssertion

 LDAP-SYNTAX certListAssertion.&id

 LDAP-NAME {"certificateListMatch"}

 LDAP-DESC "X.509 Certificate List Match"

 ID id-mr-certificateListMatch }

CertificateListAssertion ::= SEQUENCE {

 issuer Name OPTIONAL,

 minCRLNumber [0] CRLNumber OPTIONAL,

 maxCRLNumber [1] CRLNumber OPTIONAL,

 reasonFlags ReasonFlags OPTIONAL,

 dateAndTime Time OPTIONAL,

 distributionPoint [2] DistributionPointName OPTIONAL,

 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

 ... }

algorithmIdentifierMatch MATCHING-RULE ::= {

 SYNTAX AlgorithmIdentifier {{SupportedAlgorithms}}

 LDAP-SYNTAX algorithmIdentifier.&id

 LDAP-NAME {"algorithmIdentifierMatch"}

 LDAP-DESC "X.509 Algorithm Identifier Match"

 ID id-mr-algorithmIdentifierMatch }

policyMatch MATCHING-RULE ::= {

 SYNTAX PolicyID

 ID id-mr-policyMatch }

pkiPathMatch MATCHING-RULE ::= {

 SYNTAX PkiPathMatchSyntax

 ID id-mr-pkiPathMatch }

PkiPathMatchSyntax ::= SEQUENCE {

 firstIssuer Name,

 lastSubject Name,

 ... }

enhancedCertificateMatch MATCHING-RULE ::= {

 SYNTAX EnhancedCertificateAssertion

 ID id-mr-enhancedCertificateMatch }

EnhancedCertificateAssertion ::= SEQUENCE {

 serialNumber [0] CertificateSerialNumber OPTIONAL,

 issuer [1] Name OPTIONAL,

 subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,

 authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,

 certificateValid [4] Time OPTIONAL,

 privateKeyValid [5] GeneralizedTime OPTIONAL,

 subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,

 keyUsage [7] KeyUsage OPTIONAL,

 subjectAltName [8] AltName OPTIONAL,

 policy [9] CertPolicySet OPTIONAL,

 pathToName [10] GeneralNames OPTIONAL,

 subject [11] Name OPTIONAL,

 nameConstraints [12] NameConstraintsSyntax OPTIONAL,

 ... }

 (ALL EXCEPT ({ -- none; at least one component shall be present --}))

AltName ::= SEQUENCE {

 altnameType AltNameType,

 altNameValue GeneralName OPTIONAL }

certExactAssertion SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate Exact Assertion"

 DIRECTORY SYNTAX CertificateExactAssertion

 ID id-ldx-certExactAssertion }

certAssertion SYNTAX-NAME ::= {

ISO/IEC 9594-8:2017 (E)

156 Rec. ITU-T X.509 (10/2016)

 LDAP-DESC "X.509 Certificate Assertion"

 DIRECTORY SYNTAX CertificateAssertion

 ID id-ldx-certAssertion }

certPairExactAssertion SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate Pair Exact Assertion"

 DIRECTORY SYNTAX CertificatePairExactAssertion

 ID id-ldx-certPairExactAssertion }

certPairAssertion SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate Pair Assertion"

 DIRECTORY SYNTAX CertificatePairAssertion

 ID id-ldx-certPairAssertion }

certListExactAssertion SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate List Exact Assertion"

 DIRECTORY SYNTAX CertificateListExactAssertion

 ID id-ldx-certListExactAssertion }

certListAssertion SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Certificate List Assertion"

 DIRECTORY SYNTAX CertificateListAssertion

 ID id-ldx-certListAssertion }

algorithmIdentifier SYNTAX-NAME ::= {

 LDAP-DESC "X.509 Algorithm Identifier"

 DIRECTORY SYNTAX AlgorithmIdentifier{{SupportedAlgorithms}}

 ID id-ldx-algorithmIdentifier }

-- Object identifier assignments

-- {id-ce 2} not used

-- {id-ce 3} not used

-- {id-ce 4} not used

-- {id-ce 5} not used

-- {id-ce 6} not used

-- {id-ce 7} not used

-- {id-ce 8} not used

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce 9}

-- {id-ce 10} not used

-- {id-ce 11} not used

-- {id-ce 12} not used

-- {id-ce 13} not used

id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 14}

id-ce-keyUsage OBJECT IDENTIFIER ::= {id-ce 15}

id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce 16}

id-ce-subjectAltName OBJECT IDENTIFIER ::= {id-ce 17}

id-ce-issuerAltName OBJECT IDENTIFIER ::= {id-ce 18}

id-ce-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19}

id-ce-cRLNumber OBJECT IDENTIFIER ::= {id-ce 20}

id-ce-reasonCode OBJECT IDENTIFIER ::= {id-ce 21}

-- {id-ce 22} not used

id-ce-holdInstructionCode OBJECT IDENTIFIER ::= {id-ce 23}

id-ce-invalidityDate OBJECT IDENTIFIER ::= {id-ce 24}

-- {id-ce 25} not used

-- {id-ce 26} not used

id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27}

id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28}

id-ce-certificateIssuer OBJECT IDENTIFIER ::= {id-ce 29}

id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30}

id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}

id-ce-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32}

id-ce-policyMappings OBJECT IDENTIFIER ::= {id-ce 33}

-- deprecated OBJECT IDENTIFIER ::= {id-ce 34}

id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 35}

id-ce-policyConstraints OBJECT IDENTIFIER ::= {id-ce 36}

id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

-- id-ce-authorityAttributeIdentifier OBJECT IDENTIFIER ::= {id-ce 38}

-- id-ce-roleSpecCertIdentifier OBJECT IDENTIFIER ::= {id-ce 39}

id-ce-cRLStreamIdentifier OBJECT IDENTIFIER ::= {id-ce 40}

-- id-ce-basicAttConstraints OBJECT IDENTIFIER ::= {id-ce 41}

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 157

-- id-ce-delegatedNameConstraints OBJECT IDENTIFIER ::= {id-ce 42}

-- id-ce-timeSpecification OBJECT IDENTIFIER ::= {id-ce 43}

id-ce-cRLScope OBJECT IDENTIFIER ::= {id-ce 44}

id-ce-statusReferrals OBJECT IDENTIFIER ::= {id-ce 45}

id-ce-freshestCRL OBJECT IDENTIFIER ::= {id-ce 46}

id-ce-orderedList OBJECT IDENTIFIER ::= {id-ce 47}

-- id-ce-attributeDescriptor OBJECT IDENTIFIER ::= {id-ce 48}

-- id-ce-userNotice OBJECT IDENTIFIER ::= {id-ce 49}

-- id-ce-sOAIdentifier OBJECT IDENTIFIER ::= {id-ce 50}

id-ce-baseUpdateTime OBJECT IDENTIFIER ::= {id-ce 51}

-- id-ce-acceptableCertPolicies OBJECT IDENTIFIER ::= {id-ce 52}

id-ce-deltaInfo OBJECT IDENTIFIER ::= {id-ce 53}

id-ce-inhibitAnyPolicy OBJECT IDENTIFIER ::= {id-ce 54}

-- id-ce-targetingInformation OBJECT IDENTIFIER ::= {id-ce 55}

-- id-ce-noRevAvail OBJECT IDENTIFIER ::= {id-ce 56}

-- id-ce-acceptablePrivilegePolicies OBJECT IDENTIFIER ::= {id-ce 57}

id-ce-toBeRevoked OBJECT IDENTIFIER ::= {id-ce 58}

id-ce-revokedGroups OBJECT IDENTIFIER ::= {id-ce 59}

id-ce-expiredCertsOnCRL OBJECT IDENTIFIER ::= {id-ce 60}

-- id-ce-indirectIssuer OBJECT IDENTIFIER ::= {id-ce 61}

-- id-ce-noAssertion OBJECT IDENTIFIER ::= {id-ce 62}

id-ce-aAissuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 63}

-- id-ce-issuedOnBehalfOf OBJECT IDENTIFIER ::= {id-ce 64}

-- id-ce-singleUse OBJECT IDENTIFIER ::= {id-ce 65}

-- id-ce-groupAC OBJECT IDENTIFIER ::= {id-ce 66}

-- id-ce-allowedAttAss OBJECT IDENTIFIER ::= {id-ce 67}

-- id-ce-attributeMappings OBJECT IDENTIFIER ::= {id-ce 68}

-- id-ce-holderNameConstraints OBJECT IDENTIFIER ::= {id-ce 69}

id-ce-authorizationValidation OBJECT IDENTIFIER ::= {id-ce 70}

-- matching rule OIDs

id-mr-certificateExactMatch OBJECT IDENTIFIER ::= {id-mr 34}

id-mr-certificateMatch OBJECT IDENTIFIER ::= {id-mr 35}

id-mr-certificatePairExactMatch OBJECT IDENTIFIER ::= {id-mr 36}

id-mr-certificatePairMatch OBJECT IDENTIFIER ::= {id-mr 37}

id-mr-certificateListExactMatch OBJECT IDENTIFIER ::= {id-mr 38}

id-mr-certificateListMatch OBJECT IDENTIFIER ::= {id-mr 39}

id-mr-algorithmIdentifierMatch OBJECT IDENTIFIER ::= {id-mr 40}

id-mr-policyMatch OBJECT IDENTIFIER ::= {id-mr 60}

id-mr-pkiPathMatch OBJECT IDENTIFIER ::= {id-mr 62}

id-mr-enhancedCertificateMatch OBJECT IDENTIFIER ::= {id-mr 65}

-- Object identifiers for LDAP X.509 assertion syntaxes

id-ldx-certExactAssertion OBJECT IDENTIFIER ::= {id-ldx 1}

id-ldx-certAssertion OBJECT IDENTIFIER ::= {id-ldx 2}

id-ldx-certPairExactAssertion OBJECT IDENTIFIER ::= {id-ldx 3}

id-ldx-certPairAssertion OBJECT IDENTIFIER ::= {id-ldx 4}

id-ldx-certListExactAssertion OBJECT IDENTIFIER ::= {id-ldx 5}

id-ldx-certListAssertion OBJECT IDENTIFIER ::= {id-ldx 6}

id-ldx-algorithmIdentifier OBJECT IDENTIFIER ::= {id-ldx 7}

END -- CertificateExtensions

-- A.3 - Attribute Certificate Framework module

AttributeCertificateDefinitions {joint-iso-itu-t ds(5) module(1)

 attributeCertificateDefinitions(32) 8}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL

IMPORTS

 basicAccessControl, id-at, id-ce, id-mr, informationFramework,

 authenticationFramework, selectedAttributeTypes, id-oc, certificateExtensions,

 pkiPmiExternalDataTypes

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

ISO/IEC 9594-8:2017 (E)

158 Rec. ITU-T X.509 (10/2016)

 ATTRIBUTE, Attribute{}, AttributeType, MATCHING-RULE, Name, OBJECT-CLASS,

 RelativeDistinguishedName, SupportedAttributes, SYNTAX-NAME, top

 FROM InformationFramework informationFramework

 AttributeTypeAndValue

 FROM BasicAccessControl basicAccessControl

 AlgorithmIdentifier, Certificate, CertificateList, CertificateSerialNumber,

 EXTENSION, Extensions, InfoSyntax, PolicySyntax, SIGNED{}, SupportedAlgorithms,

 x509CertificateList

 FROM AuthenticationFramework authenticationFramework

 TimeSpecification, UnboundedDirectoryString, UniqueIdentifier

 FROM SelectedAttributeTypes selectedAttributeTypes

 certificateListExactMatch, GeneralName, GeneralNames, NameConstraintsSyntax

 FROM CertificateExtensions certificateExtensions

 UserNotice

 FROM PkiPmiExternalDataTypes pkiPmiExternalDataTypes;

-- Unless explicitly noted otherwise, there is no significance to the ordering

-- of components of a SEQUENCE OF construct in this Specification.

-- attribute certificate constructs

AttributeCertificate ::= SIGNED{TBSAttributeCertificate}

TBSAttributeCertificate ::= SEQUENCE {

 version AttCertVersion, -- version is v2

 holder Holder,

 issuer AttCertIssuer,

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 serialNumber CertificateSerialNumber,

 attrCertValidityPeriod AttCertValidityPeriod,

 attributes SEQUENCE OF Attribute{{SupportedAttributes}},

 issuerUniqueID UniqueIdentifier OPTIONAL,

 ...,

 ...,

 extensions Extensions OPTIONAL

 } (CONSTRAINED BY { -- shall be DER encoded -- })

AttCertVersion ::= INTEGER {v2(1)}

Holder ::= SEQUENCE {

 baseCertificateID [0] IssuerSerial OPTIONAL,

 entityName [1] GeneralNames OPTIONAL,

 objectDigestInfo [2] ObjectDigestInfo OPTIONAL }

 (WITH COMPONENTS {..., baseCertificateID PRESENT } |

 WITH COMPONENTS {..., entityName PRESENT } |

 WITH COMPONENTS {..., objectDigestInfo PRESENT })

IssuerSerial ::= SEQUENCE {

 issuer GeneralNames,

 serial CertificateSerialNumber,

 issuerUID UniqueIdentifier OPTIONAL,

 ... }

ObjectDigestInfo ::= SEQUENCE {

 digestedObjectType ENUMERATED {

 publicKey (0),

 publicKeyCert (1),

 otherObjectTypes (2)},

 otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,

 digestAlgorithm AlgorithmIdentifier{{SupportedAlgorithms}},

 objectDigest BIT STRING,

 ... }

AttCertIssuer ::= [0] SEQUENCE {

 issuerName GeneralNames OPTIONAL,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 159

 baseCertificateID [0] IssuerSerial OPTIONAL,

 objectDigestInfo [1] ObjectDigestInfo OPTIONAL,

 ... }

 (WITH COMPONENTS {..., issuerName PRESENT } |

 WITH COMPONENTS {..., baseCertificateID PRESENT } |

 WITH COMPONENTS {..., objectDigestInfo PRESENT })

AttCertValidityPeriod ::= SEQUENCE {

 notBeforeTime GeneralizedTime,

 notAfterTime GeneralizedTime,

 ... }

AttributeCertificationPath ::= SEQUENCE {

 attributeCertificate AttributeCertificate,

 acPath SEQUENCE OF ACPathData OPTIONAL,

 ... }

ACPathData ::= SEQUENCE {

 certificate [0] Certificate OPTIONAL,

 attributeCertificate [1] AttributeCertificate OPTIONAL,

 ... }

PrivilegePolicy ::= OBJECT IDENTIFIER

-- privilege attributes

role ATTRIBUTE ::= {

 WITH SYNTAX RoleSyntax

 ID id-at-role }

RoleSyntax ::= SEQUENCE {

 roleAuthority [0] GeneralNames OPTIONAL,

 roleName [1] GeneralName,

 ... }

xmlPrivilegeInfo ATTRIBUTE ::= {

 WITH SYNTAX UTF8String --contains XML-encoded privilege information

 ID id-at-xMLPrivilegeInfo }

permission ATTRIBUTE ::= {

 WITH SYNTAX DualStringSyntax

 EQUALITY MATCHING RULE dualStringMatch

 ID id-at-permission }

DualStringSyntax ::= SEQUENCE {

 operation [0] UnboundedDirectoryString,

 object [1] UnboundedDirectoryString,

 ... }

dualStringMatch MATCHING-RULE ::= {

 SYNTAX DualStringSyntax

 ID id-mr-dualStringMatch }

timeSpecification EXTENSION ::= {

 SYNTAX TimeSpecification

 IDENTIFIED BY id-ce-timeSpecification }

timeSpecificationMatch MATCHING-RULE ::= {

 SYNTAX TimeSpecification

 ID id-mr-timeSpecMatch }

targetingInformation EXTENSION ::= {

 SYNTAX SEQUENCE SIZE (1..MAX) OF Targets

 IDENTIFIED BY id-ce-targetingInformation }

Targets ::= SEQUENCE SIZE (1..MAX) OF Target

Target ::= CHOICE {

 targetName [0] GeneralName,

 targetGroup [1] GeneralName,

 targetCert [2] TargetCert,

ISO/IEC 9594-8:2017 (E)

160 Rec. ITU-T X.509 (10/2016)

 ... }

TargetCert ::= SEQUENCE {

 targetCertificate IssuerSerial,

 targetName GeneralName OPTIONAL,

 certDigestInfo ObjectDigestInfo OPTIONAL }

userNotice EXTENSION ::= {

 SYNTAX SEQUENCE SIZE (1..MAX) OF UserNotice

 IDENTIFIED BY id-ce-userNotice }

acceptablePrivilegePolicies EXTENSION ::= {

 SYNTAX AcceptablePrivilegePoliciesSyntax

 IDENTIFIED BY id-ce-acceptablePrivilegePolicies }

AcceptablePrivilegePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PrivilegePolicy

singleUse EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-singleUse }

groupAC EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-groupAC }

noRevAvail EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-noRevAvail }

sOAIdentifier EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-sOAIdentifier }

sOAIdentifierMatch MATCHING-RULE ::= {

 SYNTAX NULL

 ID id-mr-sOAIdentifierMatch }

attributeDescriptor EXTENSION ::= {

 SYNTAX AttributeDescriptorSyntax

 IDENTIFIED BY {id-ce-attributeDescriptor} }

AttributeDescriptorSyntax ::= SEQUENCE {

 identifier AttributeIdentifier,

 attributeSyntax OCTET STRING(SIZE (1..MAX)),

 name [0] AttributeName OPTIONAL,

 description [1] AttributeDescription OPTIONAL,

 dominationRule PrivilegePolicyIdentifier,

 ... }

AttributeIdentifier ::= ATTRIBUTE.&id({AttributeIDs})

AttributeIDs ATTRIBUTE ::= {...}

AttributeName ::= UTF8String(SIZE (1..MAX))

AttributeDescription ::= UTF8String(SIZE (1..MAX))

PrivilegePolicyIdentifier ::= SEQUENCE {

 privilegePolicy PrivilegePolicy,

 privPolSyntax InfoSyntax,

 ... }

attDescriptor MATCHING-RULE ::= {

 SYNTAX AttributeDescriptorSyntax

 ID id-mr-attDescriptorMatch }

roleSpecCertIdentifier EXTENSION ::= {

 SYNTAX RoleSpecCertIdentifierSyntax

 IDENTIFIED BY {id-ce-roleSpecCertIdentifier} }

RoleSpecCertIdentifierSyntax ::=

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 161

 SEQUENCE SIZE (1..MAX) OF RoleSpecCertIdentifier

RoleSpecCertIdentifier ::= SEQUENCE {

 roleName [0] GeneralName,

 roleCertIssuer [1] GeneralName,

 roleCertSerialNumber [2] CertificateSerialNumber OPTIONAL,

 roleCertLocator [3] GeneralNames OPTIONAL,

 ... }

roleSpecCertIdMatch MATCHING-RULE ::= {

 SYNTAX RoleSpecCertIdentifierSyntax

 ID id-mr-roleSpecCertIdMatch }

basicAttConstraints EXTENSION ::= {

 SYNTAX BasicAttConstraintsSyntax

 IDENTIFIED BY {id-ce-basicAttConstraints} }

BasicAttConstraintsSyntax ::= SEQUENCE {

 authority BOOLEAN DEFAULT FALSE,

 pathLenConstraint INTEGER(0..MAX) OPTIONAL,

 ... }

basicAttConstraintsMatch MATCHING-RULE ::= {

 SYNTAX BasicAttConstraintsSyntax

 ID id-mr-basicAttConstraintsMatch }

delegatedNameConstraints EXTENSION ::= {

 SYNTAX NameConstraintsSyntax

 IDENTIFIED BY id-ce-delegatedNameConstraints }

delegatedNameConstraintsMatch MATCHING-RULE ::= {

 SYNTAX NameConstraintsSyntax

 ID id-mr-delegatedNameConstraintsMatch }

acceptableCertPolicies EXTENSION ::= {

 SYNTAX AcceptableCertPoliciesSyntax

 IDENTIFIED BY id-ce-acceptableCertPolicies }

AcceptableCertPoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

CertPolicyId ::= OBJECT IDENTIFIER

acceptableCertPoliciesMatch MATCHING-RULE ::= {

 SYNTAX AcceptableCertPoliciesSyntax

 ID id-mr-acceptableCertPoliciesMatch }

authorityAttributeIdentifier EXTENSION ::= {

 SYNTAX AuthorityAttributeIdentifierSyntax

 IDENTIFIED BY {id-ce-authorityAttributeIdentifier} }

AuthorityAttributeIdentifierSyntax ::= SEQUENCE SIZE (1..MAX) OF AuthAttId

AuthAttId ::= IssuerSerial

authAttIdMatch MATCHING-RULE ::= {

 SYNTAX AuthorityAttributeIdentifierSyntax

 ID id-mr-authAttIdMatch }

indirectIssuer EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-indirectIssuer }

issuedOnBehalfOf EXTENSION ::= {

 SYNTAX GeneralName

 IDENTIFIED BY id-ce-issuedOnBehalfOf }

noAssertion EXTENSION ::= {

 SYNTAX NULL

 IDENTIFIED BY id-ce-noAssertion }

allowedAttributeAssignments EXTENSION ::= {

ISO/IEC 9594-8:2017 (E)

162 Rec. ITU-T X.509 (10/2016)

 SYNTAX AllowedAttributeAssignments

 IDENTIFIED BY id-ce-allowedAttributeAssignments }

AllowedAttributeAssignments ::= SET OF SEQUENCE {

 attributes [0] SET OF CHOICE {

 attributeType [0] AttributeType,

 attributeTypeandValues [1] Attribute{{SupportedAttributes}},

 ... },

 holderDomain [1] GeneralName,

 ... }

attributeMappings EXTENSION ::= {

 SYNTAX AttributeMappings

 IDENTIFIED BY id-ce-attributeMappings }

AttributeMappings ::= SET OF CHOICE {

 typeMappings [0] SEQUENCE {

 local [0] AttributeType,

 remote [1] AttributeType,

 ... },

 typeValueMappings [1] SEQUENCE {

 local [0] AttributeTypeAndValue,

 remote [1] AttributeTypeAndValue,

 ... } }

holderNameConstraints EXTENSION ::= {

 SYNTAX HolderNameConstraintsSyntax

 IDENTIFIED BY id-ce-holderNameConstraints }

HolderNameConstraintsSyntax ::= SEQUENCE {

 permittedSubtrees [0] GeneralSubtrees,

 excludedSubtrees [1] GeneralSubtrees OPTIONAL,

 ... }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {

 base GeneralName,

 minimum [0] BaseDistance DEFAULT 0,

 maximum [1] BaseDistance OPTIONAL,

 ... }

BaseDistance ::= INTEGER(0..MAX)

-- PMI object classes

pmiUser OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {attributeCertificateAttribute}

 ID id-oc-pmiUser }

pmiAA OBJECT-CLASS ::= { -- a PMI AA

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {aACertificate |

 attributeCertificateRevocationList |

 attributeAuthorityRevocationList}

 ID id-oc-pmiAA }

pmiSOA OBJECT-CLASS ::= { -- a PMI Source of Authority

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {attributeCertificateRevocationList |

 attributeAuthorityRevocationList |

 attributeDescriptorCertificate}

 ID id-oc-pmiSOA }

attCertCRLDistributionPt OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 163

 MAY CONTAIN {attributeCertificateRevocationList |

 attributeAuthorityRevocationList}

 ID id-oc-attCertCRLDistributionPts }

pmiDelegationPath OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {delegationPath}

 ID id-oc-pmiDelegationPath }

privilegePolicy OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {privPolicy}

 ID id-oc-privilegePolicy }

protectedPrivilegePolicy OBJECT-CLASS ::= {

 SUBCLASS OF {top}

 KIND auxiliary

 MAY CONTAIN {protPrivPolicy}

 ID id-oc-protectedPrivilegePolicy }

-- PMI directory attributes

attributeCertificateAttribute ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-attributeCertificate }

aACertificate ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-aACertificate }

attributeDescriptorCertificate ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-attributeDescriptorCertificate }

attributeCertificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"AttrCertificateRevocationList"}

 LDAP-DESC "X.509 Attr certificate revocation list"

 ID id-at-attributeCertificateRevocationList }

eeAttrCertificateRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"EEAttrCertificateRevocationList"}

 LDAP-DESC "X.509 EEAttr certificate revocation list"

 ID id-at-eeAttrCertificateRevocationList }

attributeAuthorityRevocationList ATTRIBUTE ::= {

 WITH SYNTAX CertificateList

 EQUALITY MATCHING RULE certificateListExactMatch

 LDAP-SYNTAX x509CertificateList.&id

 LDAP-NAME {"AACertificateRevocationList"}

 LDAP-DESC "X.509 AA certificate revocation list"

 ID id-at-attributeAuthorityRevocationList }

delegationPath ATTRIBUTE ::= {

 WITH SYNTAX AttCertPath

 ID id-at-delegationPath }

AttCertPath ::= SEQUENCE OF AttributeCertificate

privPolicy ATTRIBUTE ::= {

 WITH SYNTAX PolicySyntax

ISO/IEC 9594-8:2017 (E)

164 Rec. ITU-T X.509 (10/2016)

 ID id-at-privPolicy }

protPrivPolicy ATTRIBUTE ::= {

 WITH SYNTAX AttributeCertificate

 EQUALITY MATCHING RULE attributeCertificateExactMatch

 ID id-at-protPrivPolicy }

xmlPrivPolicy ATTRIBUTE ::= {

 WITH SYNTAX UTF8String -- XML-encoded privilege policy information

 ID id-at-xmlPrivPolicy }

-- Attribute certificate extensions and matching rules

attributeCertificateExactMatch MATCHING-RULE ::= {

 SYNTAX AttributeCertificateExactAssertion

 ID id-mr-attributeCertificateExactMatch }

AttributeCertificateExactAssertion ::= SEQUENCE {

 serialNumber CertificateSerialNumber,

 issuer AttCertIssuer,

 ... }

attributeCertificateMatch MATCHING-RULE ::= {

 SYNTAX AttributeCertificateAssertion

 ID id-mr-attributeCertificateMatch }

AttributeCertificateAssertion ::= SEQUENCE {

 holder [0] CHOICE {

 baseCertificateID [0] IssuerSerial,

 holderName [1] GeneralNames,

 ...} OPTIONAL,

 issuer [1] GeneralNames OPTIONAL,

 attCertValidity [2] GeneralizedTime OPTIONAL,

 attType [3] SET OF AttributeType OPTIONAL,

 ... }

-- At least one component of the sequence shall be present

holderIssuerMatch MATCHING-RULE ::= {

 SYNTAX HolderIssuerAssertion

 ID id-mr-holderIssuerMatch }

HolderIssuerAssertion ::= SEQUENCE {

 holder [0] Holder OPTIONAL,

 issuer [1] AttCertIssuer OPTIONAL,

 ... }

delegationPathMatch MATCHING-RULE ::= {

 SYNTAX DelMatchSyntax

 ID id-mr-delegationPathMatch }

DelMatchSyntax ::= SEQUENCE {

 firstIssuer AttCertIssuer,

 lastHolder Holder,

 ... }

extensionPresenceMatch MATCHING-RULE ::= {

 SYNTAX EXTENSION.&id

 ID id-mr-extensionPresenceMatch }

-- object identifier assignments

-- object classes

id-oc-pmiUser OBJECT IDENTIFIER ::= {id-oc 24}

id-oc-pmiAA OBJECT IDENTIFIER ::= {id-oc 25}

id-oc-pmiSOA OBJECT IDENTIFIER ::= {id-oc 26}

id-oc-attCertCRLDistributionPts OBJECT IDENTIFIER ::= {id-oc 27}

id-oc-privilegePolicy OBJECT IDENTIFIER ::= {id-oc 32}

id-oc-pmiDelegationPath OBJECT IDENTIFIER ::= {id-oc 33}

id-oc-protectedPrivilegePolicy OBJECT IDENTIFIER ::= {id-oc 34}

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 165

-- directory attributes

id-at-attributeCertificate OBJECT IDENTIFIER ::= {id-at 58}

id-at-attributeCertificateRevocationList OBJECT IDENTIFIER ::= {id-at 59}

id-at-aACertificate OBJECT IDENTIFIER ::= {id-at 61}

id-at-attributeDescriptorCertificate OBJECT IDENTIFIER ::= {id-at 62}

id-at-attributeAuthorityRevocationList OBJECT IDENTIFIER ::= {id-at 63}

id-at-privPolicy OBJECT IDENTIFIER ::= {id-at 71}

id-at-role OBJECT IDENTIFIER ::= {id-at 72}

id-at-delegationPath OBJECT IDENTIFIER ::= {id-at 73}

id-at-protPrivPolicy OBJECT IDENTIFIER ::= {id-at 74}

id-at-xMLPrivilegeInfo OBJECT IDENTIFIER ::= {id-at 75}

id-at-xmlPrivPolicy OBJECT IDENTIFIER ::= {id-at 76}

id-at-permission OBJECT IDENTIFIER ::= {id-at 82}

id-at-eeAttrCertificateRevocationList OBJECT IDENTIFIER ::= {id-at 102}

-- attribute certificate extensions

id-ce-authorityAttributeIdentifier OBJECT IDENTIFIER ::= {id-ce 38}

id-ce-roleSpecCertIdentifier OBJECT IDENTIFIER ::= {id-ce 39}

id-ce-basicAttConstraints OBJECT IDENTIFIER ::= {id-ce 41}

id-ce-delegatedNameConstraints OBJECT IDENTIFIER ::= {id-ce 42}

id-ce-timeSpecification OBJECT IDENTIFIER ::= {id-ce 43}

id-ce-attributeDescriptor OBJECT IDENTIFIER ::= {id-ce 48}

id-ce-userNotice OBJECT IDENTIFIER ::= {id-ce 49}

id-ce-sOAIdentifier OBJECT IDENTIFIER ::= {id-ce 50}

id-ce-acceptableCertPolicies OBJECT IDENTIFIER ::= {id-ce 52}

id-ce-targetingInformation OBJECT IDENTIFIER ::= {id-ce 55}

id-ce-noRevAvail OBJECT IDENTIFIER ::= {id-ce 56}

id-ce-acceptablePrivilegePolicies OBJECT IDENTIFIER ::= {id-ce 57}

id-ce-indirectIssuer OBJECT IDENTIFIER ::= {id-ce 61}

id-ce-noAssertion OBJECT IDENTIFIER ::= {id-ce 62}

id-ce-issuedOnBehalfOf OBJECT IDENTIFIER ::= {id-ce 64}

id-ce-singleUse OBJECT IDENTIFIER ::= {id-ce 65}

id-ce-groupAC OBJECT IDENTIFIER ::= {id-ce 66}

id-ce-allowedAttributeAssignments OBJECT IDENTIFIER ::= {id-ce 67}

id-ce-attributeMappings OBJECT IDENTIFIER ::= {id-ce 68}

id-ce-holderNameConstraints OBJECT IDENTIFIER ::= {id-ce 69}

-- PMI matching rules

id-mr-attributeCertificateMatch OBJECT IDENTIFIER ::= {id-mr 42}

id-mr-attributeCertificateExactMatch OBJECT IDENTIFIER ::= {id-mr 45}

id-mr-holderIssuerMatch OBJECT IDENTIFIER ::= {id-mr 46}

id-mr-authAttIdMatch OBJECT IDENTIFIER ::= {id-mr 53}

id-mr-roleSpecCertIdMatch OBJECT IDENTIFIER ::= {id-mr 54}

id-mr-basicAttConstraintsMatch OBJECT IDENTIFIER ::= {id-mr 55}

id-mr-delegatedNameConstraintsMatch OBJECT IDENTIFIER ::= {id-mr 56}

id-mr-timeSpecMatch OBJECT IDENTIFIER ::= {id-mr 57}

id-mr-attDescriptorMatch OBJECT IDENTIFIER ::= {id-mr 58}

id-mr-acceptableCertPoliciesMatch OBJECT IDENTIFIER ::= {id-mr 59}

id-mr-delegationPathMatch OBJECT IDENTIFIER ::= {id-mr 61}

id-mr-sOAIdentifierMatch OBJECT IDENTIFIER ::= {id-mr 66}

id-mr-extensionPresenceMatch OBJECT IDENTIFIER ::= {id-mr 67}

id-mr-dualStringMatch OBJECT IDENTIFIER ::= {id-mr 69}

END -- AttributeCertificateDefinitions

-- A.4 - PKI Protocol specifications module

PkiPmiWrapper {joint-iso-itu-t ds(5) module(1) pkiPmiWrapper(42) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

ISO/IEC 9594-8:2017 (E)

166 Rec. ITU-T X.509 (10/2016)

 attributeCertificateDefinitions, authenticationFramework, certificateExtensions, id-

cmsct, informationFramework, selectedAttributeTypes

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 Attribute{}, ATTRIBUTE, Name

 FROM InformationFramework informationFramework

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 ALGORITHM, AlgorithmIdentifier{}, Certificate, CertificateList, CertificateSerialNumber,

CertAVL,

 ENCRYPTED-HASH{}, PKCertIdentifier, SIGNATURE{}, TBSCertAVL,

 Version, AvlSerialNumber, PkiPath, SIGNED

 FROM AuthenticationFramework authenticationFramework

 CRLReason, SubjectKeyIdentifier

 FROM CertificateExtensions certificateExtensions

 AttributeCertificate

 FROM AttributeCertificateDefinitions attributeCertificateDefinitions

 -- from Rec. ITU-T X.520 | ISO/IEC 9594-6

 objectIdentifierMatch, octetStringMatch

 FROM SelectedAttributeTypes selectedAttributeTypes ;

WRAPPED-PDU ::= TYPE-IDENTIFIER

PDU-wrapper ::= SIGNED{TBSPDU-wrapper}

TBSPDU-wrapper ::= SEQUENCE {

 version Version DEFAULT v1,

 signatureAlgorithm AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 certPath [0] IMPLICIT PkiPath,

 signedAttrs [1] IMPLICIT SignedAttributes OPTIONAL,

 conf CHOICE {

 clear [2] WrappedPDUInfo,

 protected [3] EncryptedInfo,

 ... },

 ... }

SupportedSignatureAlgorithms ALGORITHM ::= {...}

SignedAttributes ::= SET SIZE (1..MAX) OF Attribute{{SupportedSignedAttributes}}

SupportedSignedAttributes ATTRIBUTE ::= { contentType | messageDigest }

WrappedPDUInfo ::= SEQUENCE {

 pduType WRAPPED-PDU.&id ({SupportedPduSet}),

 pduInfo WRAPPED-PDU.&Type ({SupportedPduSet}{@pduType}),

 ... }

SupportedPduSet WRAPPED-PDU ::= {...}

EncryptedInfo ::= SEQUENCE {

 keyAgreement KeyAgreement,

 encryptedPduInfo EncryptedPduInfo,

 ... }

KeyAgreement ::= SEQUENCE {

 senderDhInfo [0] SenderDhInfo,

 keyEncryptionAlgorithm SEQUENCE {

 algorithm ALGORITHM.&id ({SupportedKeyEncryptionAlgorithm}),

 parameters ALGORITHM.&Type({SupportedKeyEncryptionAlgorithm}{@.algorithm}),

 ... },

 ... }

SupportedKeyEncryptionAlgorithm ALGORITHM ::= {...}

SenderDhInfo ::= CHOICE {

 senderStaticInfo [0] SenderStaticInfo,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 167

 senderDhPublicKey [1] SenderDhPublicKey,

 ... }

SenderStaticInfo::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 partyAinfo UserKeyingMaterial,

 ... }

SenderDhPublicKey ::= SEQUENCE {

 algorithm AlgorithmIdentifier {{SupportedDHPublicKeyAlgorithms}},

 publicKey BIT STRING,

 ... }

SupportedDHPublicKeyAlgorithms ALGORITHM ::= {...}

UserKeyingMaterial ::= OCTET STRING (SIZE (64))

EncryptedPduInfo ::= SEQUENCE {

 pduType WRAPPED-PDU.&id ({SupportedPduSet}),

 encryptedKey EncryptedKey OPTIONAL,

 pduEncryptionAlgorithm SEQUENCE {

 algorithm ALGORITHM.&id ({SymmetricEncryptionAlgorithms}),

 parameter ALGORITHM.&Type

 ({SymmetricEncryptionAlgorithms}{@.algorithm})} OPTIONAL,

 encryptedPdu [0] EncryptedPdu,

 ... }

EncryptedKey ::= OCTET STRING

SymmetricEncryptionAlgorithms ALGORITHM ::= {...}

EncryptedPdu ::= OCTET STRING

SupportedAttributes ATTRIBUTE ::= {...}

AttributeCertificateV2 ::= AttributeCertificate

-- Attribute type specification as defined by IETF RFC 5652

contentType ATTRIBUTE ::= {

 WITH SYNTAX WRAPPED-PDU.&id({SupportedPduSet})

 EQUALITY MATCHING RULE objectIdentifierMatch

 SINGLE VALUE TRUE

 ID id-contentType }

id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549)

pkcs(1) pkcs9(9) 3 }

messageDigest ATTRIBUTE ::= {

 WITH SYNTAX OCTET STRING

 EQUALITY MATCHING RULE octetStringMatch

 SINGLE VALUE TRUE

 ID id-messageDigest }

id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549)

pkcs(1) pkcs9(9) 4 }

PkiWaError ::= ENUMERATED {

 unsupportedWrapperVersion (0),

 unsupportedSignatureAlgorithm (1),

 incompleteCertPath (2),

 certificationPathFailure (3),

 invalidSignature (4),

 missingMandatoryAttributes (5),

 unwantedAttribute (6),

 unsupportedPduType (7),

 unexpectedPduType (8),

 invalidPduSyntax (9),

 unknownDHpkCetificate (10),

 invalidKeyingMaterial (11),

ISO/IEC 9594-8:2017 (E)

168 Rec. ITU-T X.509 (10/2016)

 dhAlgorithmMismatch (12),

 invalideDhPublickey (13),

 unsupportedKeyWrappingAlgorithm (14),

 keyEncAlgorithmParametersMissing (15),

 keyEncAlgorithmParametersNotAllowed (16),

 invalidParmsForSymEncryptAlgorithms (17),

 decryptionFailed (18),

 ... }

END -- PkiPmiWrapper

-- A.5 - PKI-PMI protocol specifications

PkiPMIProtocolSpecifications {joint-iso-itu-t ds(5) module(1)

 pkiPMIProtocolSpecifications(43) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 attributeCertificateDefinitions, authenticationFramework, certificateExtensions,

 id-cmsct, informationFramework, pkiPmiWrapper, selectedAttributeTypes

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 Attribute{}, ATTRIBUTE, Name, SupportedAttributes

 FROM InformationFramework informationFramework

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 ALGORITHM, AlgorithmIdentifier{}, Certificate, CertificateList, CertificateSerialNumber,

CertAVL,

 ENCRYPTED-HASH{}, PKCertIdentifier, SIGNATURE{}, TBSCertAVL,

 Version, AvlSerialNumber, PkiPath

 FROM AuthenticationFramework authenticationFramework

 CRLReason, SubjectKeyIdentifier

 FROM CertificateExtensions certificateExtensions

 AttributeCertificate

 FROM AttributeCertificateDefinitions attributeCertificateDefinitions

 PkiWaError, WRAPPED-PDU

 FROM PkiPmiWrapper pkiPmiWrapper

 -- from Rec. ITU-T X.520 | ISO/IEC 9594-6

 objectIdentifierMatch, octetStringMatch

 FROM SelectedAttributeTypes selectedAttributeTypes ;

-- PDU types

AvlPduSet WRAPPED-PDU ::= {

 certReq |

 certRsp |

 addAvlReq |

 addAvlRsp |

 replaceAvlReq |

 replaceAvlRsp |

 deleteAvlReq |

 deleteAvlRsp |

 rejectAVL |

 certSubscribeReq |

 certSubscribeRsp |

 certUnsubscribeReq |

 certUnsubscribeRsp |

 certReplaceReq |

 certReplaceRsp |

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 169

 rejectCAsubscribe,

 ... }

-- Authorization validation list management

AVMPcommonComponents ::= SEQUENCE {

 version AVMPversion DEFAULT v1,

 timeStamp GeneralizedTime,

 sequence AVMPsequence,

 ... }

AVMPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

AVMPsequence ::= INTEGER (1..MAX)

certReq WRAPPED-PDU ::= {

 CertReq

 IDENTIFIED BY id-certReq }

CertReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 ... }

certRsp WRAPPED-PDU ::= {

 CertRsp

 IDENTIFIED BY id-certRsp }

CertRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] CertOK,

 failure [1] CertErr,

 ... },

 ... }

CertOK ::= SEQUENCE {

 dhCert Certificate,

 ... }

CertErr ::= SEQUENCE {

 notOK CHOICE {

 wrErr [0] PkiWaError,

 avmpErr [1] AVMP-error,

 ... },

 note Notifications OPTIONAL,

 ... }

Notifications ::= SEQUENCE SIZE (1..MAX) OF Attribute {{SupportedAttributes}}

addAvlReq WRAPPED-PDU ::= {

 AddAvlReq

 IDENTIFIED BY id-addAvlReq }

AddAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 certlist CertAVL,

 ... }

addAvlRsp WRAPPED-PDU ::= {

 AddAvlRsp

 IDENTIFIED BY id-addAvlRsp }

AddAvlRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] AddAvlOK,

 failure [1] AddAvlErr,

 ... },

 ... }

AddAvlOK ::= SEQUENCE {

ISO/IEC 9594-8:2017 (E)

170 Rec. ITU-T X.509 (10/2016)

 ok NULL,

 ... }

AddAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

replaceAvlReq WRAPPED-PDU ::= {

 ReplaceAvlReq

 IDENTIFIED BY id-replaceAvlReq }

ReplaceAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 old AvlSerialNumber OPTIONAL,

 new CertAVL,

 ... }

replaceAvlRsp WRAPPED-PDU ::= {

 ReplaceAvlRsp

 IDENTIFIED BY id-replaceAvlRsp }

ReplaceAvlRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] RepAvlOK,

 failure [1] RepAvlErr,

 ... },

 ... }

RepAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

RepAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

deleteAvlReq WRAPPED-PDU ::= {

 DeleteAvlReq

 IDENTIFIED BY id-deleteAvlReq }

DeleteAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 avl-Id AvlSerialNumber OPTIONAL,

 ... }

deleteAvlRsp WRAPPED-PDU ::= {

 DeleteAvlRsp

 IDENTIFIED BY id-deleteAvlRsp }

DeleteAvlRsp ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 result CHOICE {

 success [0] DelAvlOK,

 failure [1] DelAvlErr,

 ... },

 ... }

DelAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

DelAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

rejectAVL WRAPPED-PDU ::= {

 RejectAVL

 IDENTIFIED BY id-rejectAVL }

RejectAVL ::= SEQUENCE {

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 171

 COMPONENTS OF AVMPcommonComponents,

 reason AVMP-error,

 ... }

-- CA subscription

CASPcommonComponents ::= SEQUENCE {

 version CASPversion DEFAULT v1,

 sequence CASPsequence,

 ... }

CASPversion ::= ENUMERATED { v1(1), v2(2), v3(3), ... }

CASPsequence ::= INTEGER (1..MAX)

certSubscribeReq WRAPPED-PDU ::= {

 CertSubscribeReq

 IDENTIFIED BY id-certSubscribeReq }

CertSubscribeReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

certSubscribeRsp WRAPPED-PDU ::= {

 CertSubscribeRsp

 IDENTIFIED BY id-certSubscribeRsp }

CertSubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertSubscribeOK,

 failure [1] CertSubscribeErr,

 ... },

 ... }

CertSubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 cert Certificate,

 status CertStatus,

 revokeReason CRLReason OPTIONAL,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertStatus ::= ENUMERATED {

 good (0),

 revoked (1),

 on-hold (2),

 expired (3),

 ... }

CASP-CertStatusCode ::= ENUMERATED {

 noReason (1),

 unknownCert (2),

 ... }

CertSubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

certUnsubscribeReq WRAPPED-PDU ::= {

 CertUnsubscribeReq

 IDENTIFIED BY id-certUnsubscribeReq }

CertUnsubscribeReq ::= SEQUENCE {

ISO/IEC 9594-8:2017 (E)

172 Rec. ITU-T X.509 (10/2016)

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

certUnsubscribeRsp WRAPPED-PDU ::= {

 CertUnsubscribeRsp

 IDENTIFIED BY id-certUnsubscribeRsp }

CertUnsubscribeRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertUnsubscribeOK,

 failure [1] CertUnsubscribeErr,

 ... },

 ... }

CertUnsubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUnsubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

certReplaceReq WRAPPED-PDU ::= {

 CertReplaceReq

 IDENTIFIED BY id-certReplaceReq }

CertReplaceReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 old CertificateSerialNumber,

 new Certificate,

 ... },

 ... }

certReplaceRsp WRAPPED-PDU ::= {

 CertReplaceRsp

 IDENTIFIED BY id-certReplaceRsp }

CertReplaceRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertReplaceOK,

 failure [1] CertReplaceErr,

 ... },

 ... }

CertReplaceOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertReplaceErr ::= SEQUENCE {

 code CHOICE {

 signedData [0] SignedData-error,

 envelopedData [1] EnvelopedData-error,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 173

 casp [2] CASP-error,

 ... },

 ... }

certUpdateReq WRAPPED-PDU ::= {

 CertUpdateReq

 IDENTIFIED BY id-certUpdateReq }

CertUpdateReq ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 certStatus CertStatus,

 ... },

 ... }

certUpdateRsp WRAPPED-PDU ::= {

 CertUpdateRsp

 IDENTIFIED BY id-certUpdateRsp }

CertUpdateRsp ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 result CHOICE {

 success [0] CertUpdateOK,

 failure [1] CertUpdateErr,

 ... },

 ... }

CertUpdateOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUpdateErr ::= SEQUENCE {

 code CASP-error,

 ... }

rejectCAsubscribe WRAPPED-PDU ::= {

 RejectCAsubscribe

 IDENTIFIED BY id-rejectCAsubscribe }

RejectCAsubscribe ::= SEQUENCE {

 COMPONENTS OF CASPcommonComponents,

 reason CASP-error,

 ... }

SignedData-error ::= ENUMERATED {

 noReason (0),

 signedDataContectTypeExpected (1),

 wrongSignedDataVersion (2),

 missingContent (3),

 missingContentComponent (4),

 invalidContentComponent (5),

 unsupportedHashAlgorithm (6),

 ... }

EnvelopedData-error ::= ENUMERATED {

 noReason (0),

 ... }

AVMP-error ::= ENUMERATED {

 noReason (0),

 unknownAvlEntity (1),

 unknownContentType (2),

 unsupportedAVMPversion (3),

ISO/IEC 9594-8:2017 (E)

174 Rec. ITU-T X.509 (10/2016)

 missingContent (4),

 missingContentComponent (5),

 invalidContentComponent (6),

 sequenceError (7),

 protocolError (8),

 invalidAvlSignature (9),

 duplicateAVL (10),

 missingAvlComponent (11),

 invalidAvlVersion (12),

 notAllowedForConstrainedAVLEntity (13),

 constrainedRequired (14),

 nonConstrainedRequired (15),

 unsupportedCriticalEntryExtension (16),

 unsupportedCriticalExtension (17),

 maxAVLsExceeded (18),

 unknownCert (19),

 unknownAVL (20),

 unsupportedScopeRestriction (21),

 ... }

CASP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedWLMPversion (2),

 missingContent (3),

 missingContentComponent (4),

 invalidContentComponent (5),

 sequenceError (6),

 unknownSubject (7),

 unknownCert (8),

 ... }

id-signedData OBJECT IDENTIFIER ::= {iso(1) member-body(2)

us(840)rsadsi(113549) pkcs(1) pkcs7(7) 2}

id-envelopedData OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)

rsadsi(113549) pkcs(1) pkcs7(7) 3}

id-certReq OBJECT IDENTIFIER ::= {id-cmsct 0}

id-certRsp OBJECT IDENTIFIER ::= {id-cmsct 1}

id-addAvlReq OBJECT IDENTIFIER ::= {id-cmsct 2}

id-addAvlRsp OBJECT IDENTIFIER ::= {id-cmsct 3}

id-replaceAvlReq OBJECT IDENTIFIER ::= {id-cmsct 4}

id-replaceAvlRsp OBJECT IDENTIFIER ::= {id-cmsct 5}

id-updateAvlReq OBJECT IDENTIFIER ::= {id-cmsct 6}

id-updateAvlRsp OBJECT IDENTIFIER ::= {id-cmsct 7}

id-deleteAvlReq OBJECT IDENTIFIER ::= {id-cmsct 8}

id-deleteAvlRsp OBJECT IDENTIFIER ::= {id-cmsct 9}

id-rejectAVL OBJECT IDENTIFIER ::= {id-cmsct 10}

id-certSubscribeReq OBJECT IDENTIFIER ::= {id-cmsct 11}

id-certSubscribeRsp OBJECT IDENTIFIER ::= {id-cmsct 12}

id-certUnsubscribeReq OBJECT IDENTIFIER ::= {id-cmsct 13}

id-certUnsubscribeRsp OBJECT IDENTIFIER ::= {id-cmsct 14}

id-certReplaceReq OBJECT IDENTIFIER ::= {id-cmsct 15}

id-certReplaceRsp OBJECT IDENTIFIER ::= {id-cmsct 16}

id-certUpdateReq OBJECT IDENTIFIER ::= {id-cmsct 17}

id-certUpdateRsp OBJECT IDENTIFIER ::= {id-cmsct 18}

id-rejectCAsubscribe OBJECT IDENTIFIER ::= {id-cmsct 19}

-- Trust broker protocol

TBrequest ::= CHOICE {

 caCert [0] PKCertIdentifier,

 subjectCert [1] PKCertIdentifier,

 ... }

TBresponse ::= CHOICE {

 success [0] TBOK,

 failure [1] TBerror,

 ... }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 175

TBOK ::= SEQUENCE {

 levelOfAssurance [0] INTEGER (0..100),

 confidenceLevel [1] INTEGER (0..100),

 validationTime [2] UTCTime,

 info UTF8String OPTIONAL,

 ... }

TBerror ::= SEQUENCE {

 code ENUMERATED {

 caCertInvalid (1),

 unknownCert (2),

 unknownCertStatus (3),

 subjectCertRevoked (4),

 incorrectCert (5),

 contractExpired (6),

 pathValidationFailed (7),

 timeOut (8),

 other (99),

 ... },

 diagnostic UTF8String OPTIONAL,

 ... }

END -- PkiPMIProtocolSpecifications

ISO/IEC 9594-8:2017 (E)

176 Rec. ITU-T X.509 (10/2016)

Annex B

Reference definition of cryptographic algorithms

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex lists cryptographic algorithms defined in other specifications, by firstly listing the allocated object identifiers

for the cryptographic algorithms followed by the actual algorithm definitions. The definitions take the form of the ASN.1

module, AlgorithmObjectIdentifiers.

AlgorithmObjectIdentifiers {joint-iso-itu-t ds(5) module(1)

 algorithmObjectIdentifiers(8) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The values defined in this module are primarily taking from various specifications and

collected here for easy reference by other specifcations.

Wen values are copied form an IETF RFC, the IETF RFC number is shown.

When values are copied from the NIST Computer Security Objects Register (CSOR),

the label CSOR is used.

*/

IMPORTS

 algorithm, authenticationFramework

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 ALGORITHM, AlgorithmIdentifier{}, SupportedAlgorithms, SupportedCurves

 FROM AuthenticationFramework authenticationFramework;

ID ::= OBJECT IDENTIFIER

-- Object identifier allocations

-- Object identifiers allocated by this Specification (but not used)

nullAlgorithm ID ::= {algorithm 0}

encryptionAlgorithm ID ::= {algorithm 1}

hashAlgorithm ID ::= {algorithm 2}

signatureAlgorithm ID ::= {algorithm 3}

-- synonyms

id-ea ID ::= encryptionAlgorithm

id-ha ID ::= hashAlgorithm

id-sa ID ::= signatureAlgorithm

-- the following object identifier assignments reserve values assigned to deprecated

functions

id-ea-rsa ID ::= {id-ea 1}

id-ha-sqMod-n ID ::= {id-ha 1}

id-sa-sqMod-nWithRSA ID ::= {id-sa 1}

-- object identifiers allocated by other organization

us-iso ID ::= { iso(1) member-body(2) us(840) }

ansi-x9-57 ID ::= { us-iso ansi-x9-57(10040) }

ansi-x9-62 ID ::= { us-iso ansi-x962(10045) }

ansi-x9-42 ID ::= { us-iso ansi-x942(10046) }

iso-standard ID ::= { iso(1) standard(0) }

iso9797 ID ::= { iso-standard message-authentication-codes(9797) }

iso-organization ID ::= { iso(1) identified-organization(3) }

certicom ID ::= { iso-organization certicom(132) }

certicom-curve ID ::= { certicom curve(0) }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 177

teletrust ID ::= { iso-organization teletrust(36) }

ecStdCurvesAndGen ID ::= { teletrust algorithm(3) signaturealgorithm(3) ecSign(2) 8}

versionOne ID ::= { ecStdCurvesAndGen ellipticCurve(1) versionOne(1) }

us-joint ID ::= { joint-iso-itu-t(2) country(16) us(840) }

usgov ID ::= { us-joint organization(1) gov(101) }

dodAlgorithms ID ::= { usgov dod(2) infosec(1) algorithms(1) }

csor ID ::= { usgov csor(3) }

nistAlgorithms ID ::= { csor nistAlgorithm(4) } -- CSOR

aes ID ::= { nistAlgorithms 1 } -- CSOR

hashAlgs ID ::= { nistAlgorithms 2 } -- CSOR

sigAlgs ID ::= { nistAlgorithms 3 } -- CSOR

rsadsi ID ::= { iso(1) member-body(2) us(840) rsadsi(113549) }

pkcs-1 ID ::= { rsadsi pkcs(1) pkcs-1(1) }

digestAlgorithm ID ::= { rsadsi digestAlgorithm(2) }

-- Symmetric key algorithm object identifiers

id-aes128-CBC ID ::= { aes 2 } -- CSOR

id-aes192-CBC ID ::= { aes 22 } -- CSOR

id-aes256-CBC ID ::= { aes 42 } -- CSOR

-- AES key wrap algorithms from IETF RFC 3394

id-aes128-wrap ID ::= { aes 5 }

id-aes192-wrap ID ::= { aes 25 }

id-aes256-wrap ID ::= { aes 45 }

-- Pubkic key algorithm object identifiers

rsaEncryption ID ::= { pkcs-1 rsaEncryption(1)} -- IETF RFC 4055

id-keyExchangeAlgorithm ID ::= { dodAlgorithms id-keyExchangeAlgorithm(22)}

 -- IETF RFC 3279

id-dsa ID ::= { ansi-x9-57 x9algorithm(4) 1 } -- IETF RFC 5480

id-ecPublicKey ID ::= { ansi-x9-62 keyType(2) 1 } -- IETF RFC 5480

id-ecDH ID ::= { certicom schemes(1) ecdh(12) } -- IETF RFC 5480

id-ecMQV ID ::= { certicom schemes(1) ecmqv(13) } -- IETF RFC 5480

dh-public-number ID ::= { ansi-x9-42 number-type(2) dh-public-number(1) } --IETF

RFC 2631

-- Hash algorithms object identifiers

-- The OID for SHA hash algorithms are specified in NIST FIPS PUB 180-4

id-sha1 ID ::= {iso(1) identified-organization(3) oiw(14) secsig(3)

 algorithms(2) 26} -- IETF RFC 3279

id-sha256 ID ::= { hashAlgs 1 } -- CSOR

id-sha384 ID ::= { hashAlgs 2 } -- CSOR

id-sha512 ID ::= { hashAlgs 3 } -- CSOR

id-sha224 ID ::= { hashAlgs 4 } -- CSOR

id-sha512-224 ID ::= { hashAlgs 5 } -- CSOR

id-sha512-256 ID ::= { hashAlgs 6 } -- CSOR

hashAlg ID ::= { iso(1) identified-organization(3) dod(6) internet(1)

 private(4) enterprise(1) kudelski(1722)

 cryptography(12) 2 } -- BLAKE2, RFC 7693

-- SIGNATURE ALGORITHM IDS

-- RSASSA-PKCS1-v1_5 signature algorithm object identifiers (From IETF RFC 3447)

sha1WithRSAEncryption ID ::= { pkcs-1 sha1WithRSAEncryption(5) }

sha256WithRSAEncryption ID ::= { pkcs-1 sha256WithRSAEncryption(11) }

sha384WithRSAEncryption ID ::= { pkcs-1 sha384WithRSAEncryption(12) }

sha512WithRSAEncryption ID ::= { pkcs-1 sha512WithRSAEncryption(13) }

sha224WithRSAEncryption ID ::= { pkcs-1 sha224WithRSAEncryption(14) }

-- RSASSA-PSS signature algorithm object identifiers (From IETF RFC 4055)

ISO/IEC 9594-8:2017 (E)

178 Rec. ITU-T X.509 (10/2016)

id-RSASSA-PSS ID ::= { pkcs-1 10 }

id-mgf1 ID ::= { pkcs-1 8 }

-- DSA algorithms object identifiers

id-dsa-with-sha1 ID ::= {iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4)

 dsa-with-sha1(3)}

id-dsa-with-sha224 ID ::= { sigAlgs 1 } -- CSOR

id-dsa-with-sha256 ID ::= { sigAlgs 2 } -- CSOR

-- From IETF RFC 5758

ecdsa-with-SHA224 ID ::= { ansi-x9-62 signatures(4)

 ecdsa-with-SHA2(3) 1 }

ecdsa-with-SHA256 ID ::= { ansi-x9-62 signatures(4)

 ecdsa-with-SHA2(3) 2 }

ecdsa-with-SHA384 ID ::= { ansi-x9-62 signatures(4)

 ecdsa-with-SHA2(3) 3 }

ecdsa-with-SHA512 ID ::= { ansi-x9-62 signatures(4) ecdsa-with-SHA2(3) 4 }

-- Object identifier for curves

-- From IETF RFC 5480

secp192r1 ID ::= { ansi-x9-62 curves(3) prime(1) 1 }

sect163k1 ID ::= { certicom-curve 1 }

sect163r2 ID ::= { certicom-curve 15 }

secp224r1 ID ::= { certicom-curve 33 }

sect233k1 ID ::= { certicom-curve 26 }

sect233r1 ID ::= { certicom-curve 27 }

secp256r1 ID ::= { ansi-x9-62 curves(3) prime(1) 7 }

sect283k1 ID ::= { certicom-curve 16 }

sect283r1 ID ::= { certicom-curve 17 }

secp384r1 ID ::= { certicom-curve 34 }

sect409k1 ID ::= { certicom-curve 36 }

sect409r1 ID ::= { certicom-curve 37 }

secp521r1 ID ::= { certicom-curve 35 }

sect571k1 ID ::= { certicom-curve 38 }

sect571r1 ID ::= { certicom-curve 39 }

-- From IETF RFC 5639

brainpoolP160r1 ID ::= { versionOne 1 }

brainpoolP160t1 ID ::= { versionOne 2 }

brainpoolP192r1 ID ::= { versionOne 3 }

brainpoolP192t1 ID ::= { versionOne 4 }

brainpoolP224r1 ID ::= { versionOne 5 }

brainpoolP224t1 ID ::= { versionOne 6 }

brainpoolP256r1 ID ::= { versionOne 7 }

brainpoolP256t1 ID ::= { versionOne 8 }

brainpoolP320r1 ID ::= { versionOne 9 }

brainpoolP320t1 ID ::= { versionOne 10 }

brainpoolP384r1 ID ::= { versionOne 11 }

brainpoolP384t1 ID ::= { versionOne 12 }

brainpoolP512r1 ID ::= { versionOne 13 }

brainpoolP512t1 ID ::= { versionOne 14 }

X509Curves OBJECT IDENTIFIER ::= { secp192r1 | sect163k1 | sect163r2 | secp224r1 |

sect233k1 |

 sect233r1 | secp256r1 | sect283k1 | sect283r1 |

secp384r1 |

 sect409k1 | sect409r1 | secp521r1 | sect571k1 |

sect571r1 }

-- Object identifiers for Integrity Check Value (ICV) algorithms

id-hmacWithSHA224 ID ::= { digestAlgorithm 8 } -- IETF RFC 4231

id-hmacWithSHA256 ID ::= { digestAlgorithm 9 } -- IETF RFC 4231

id-hmacWithSHA384 ID ::= { digestAlgorithm 10 } -- IETF RFC 4231

id-hmacWithSHA512 ID ::= { digestAlgorithm 11 } -- IETF RFC 4231

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 179

id-gmac ID ::= { iso9797 part3(3) gmac(4) } -- ISO/IEC 9797-3

-- =============== ALGORITHMS ==

-- Hashing alogorithms

mD5Algorithm ALGORITHM ::= {

 PARMS NULL

 IDENTIFIED BY {iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) md5(5)}}

-- Note that the MD5 algorithm is not considered secure

sha1Algorithm ALGORITHM ::= {

 PARMS NULL

 IDENTIFIED BY id-sha1 }

-- Note that the SHA1 algorithm may not be considered secure

sha224 ALGORITHM ::= { -- IETF RFC 5754

 IDENTIFIED BY id-sha224 }

sha256 ALGORITHM ::= { -- IETF RFC 5754

 IDENTIFIED BY id-sha256 }

sha384 ALGORITHM ::= { -- IETF RFC 5754

 IDENTIFIED BY id-sha384 }

sha512 ALGORITHM ::= { -- IETF RFC 5754

 IDENTIFIED BY id-sha512 }

HashAlgorithms ALGORITHM ::= {sha1Algorithm |

 sha224 |

 sha256 |

 sha384 |

 sha512 }

-- Symmetric encryption algorithms

aes128-CBC ALGORITHM ::= { -- CSOR

 PARMS AES-InitializationVector

 IDENTIFIED BY id-aes128-CBC }

aes192-CBC ALGORITHM ::= { -- CSOR

 PARMS AES-InitializationVector

 IDENTIFIED BY id-aes192-CBC }

aes256-CBC ALGORITHM ::= { -- CSOR

 PARMS AES-InitializationVector

 IDENTIFIED BY id-aes256-CBC }

AES-InitializationVector ::= OCTET STRING (SIZE (16))

-- Public key algorithms

rsaEncryptionAlgorithm ALGORITHM ::= { -- IETF RFC 4055

 PARMS NULL

 IDENTIFIED BY rsaEncryption }

keyExchangeAlgorithm ALGORITHM ::= { -- IETF RFC 3279

 PARMS KEA-Parms-Id

 IDENTIFIED BY id-keyExchangeAlgorithm }

KEA-Parms-Id ::= OCTET STRING (SIZE (10))

dsa ALGORITHM ::= { -- IETF RFC 5480

 PARMS DSS-Parms

 IDENTIFIED BY id-dsa }

DSS-Parms ::= SEQUENCE {

 p INTEGER,

 q INTEGER,

ISO/IEC 9594-8:2017 (E)

180 Rec. ITU-T X.509 (10/2016)

 g INTEGER,

 ... }

ecPublicKey ALGORITHM ::= { -- IETF RFC 5480

 PARMS X509Curves

 IDENTIFIED BY id-ecPublicKey }

ecDH ALGORITHM ::= { -- IETF RFC 5480

 PARMS X509Curves

 IDENTIFIED BY id-ecDH }

ecMQV ALGORITHM ::= { -- IETF RFC 5480

 PARMS X509Curves

 IDENTIFIED BY id-ecMQV }

dh-public-numberAlgorithm ALGORITHM ::= {

 PARMS DomainParameters

 IDENTIFIED BY dh-public-number }

DomainParameters ::= SEQUENCE {

 p INTEGER, -- odd prime, p=jq+1

 g INTEGER, -- generator, g

 q INTEGER, -- factor of p-1

 j INTEGER OPTIONAL, -- subgroup factor

 validationParms ValidationParms OPTIONAL,

 ... }

ValidationParms ::= SEQUENCE {

 seed BIT STRING,

 pgenCounter INTEGER,

 ... }

-- SIGNATURE ALGORITHMS

-- RSASSA-PKCS1-v1_5 signature algorithms

sha1WithRSAEncryptionAlgorithm ALGORITHM ::= { -- IETF 7427

 PARMS NULL

 IDENTIFIED BY sha1WithRSAEncryption }

sha224WithRSAEncryptionAlgorithm ALGORITHM ::= { -- IETF RFC 5754

 PARMS NULL

 IDENTIFIED BY sha224WithRSAEncryption }

sha256WithRSAEncryptionAlgorithm ALGORITHM ::= { -- IETF RFC 7427

 PARMS NULL

 IDENTIFIED BY sha256WithRSAEncryption }

sha384WithRSAEncryptionAlgorithm ALGORITHM ::= { -- IETF RFC 7427

 PARMS NULL

 IDENTIFIED BY sha384WithRSAEncryption }

sha512WithRSAEncryptionAlgorithm ALGORITHM ::= { -- IETF RFC 7427

 PARMS NULL

 IDENTIFIED BY sha512WithRSAEncryption }

-- RSASA-PSS algorithms

rSASSA-PSS ALGORITHM ::= {

 PARMS SEQUENCE {

 hashAlgorithm [0] AlgorithmIdentifier {{HashAlgorithms}},

 -- maskGenAlgorithm [1] AlgorithmIdentifier {{MaskGenAlgorithms}},

 saltLength [2] INTEGER DEFAULT 20,

 trailerField [3] INTEGER DEFAULT 1 }

 IDENTIFIED BY id-RSASSA-PSS }

--

-- DSA signature algorithms

dsa-with-sha224 ALGORITHM ::= { -- IETF RFC 5754

 IDENTIFIED BY id-dsa-with-sha224 }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 181

dsa-with-sha256 ALGORITHM ::= { -- IETF RFC 5754

 IDENTIFIED BY id-dsa-with-sha256 }

-- ECDSA signature algorithms

ecdsa-with-SHA224-Algorithm ALGORITHM ::= { -- IETF RFC

 IDENTIFIED BY ecdsa-with-SHA224 }

ecdsa-with-SHA256-Algorithm ALGORITHM ::= { -- IETF RFC 5758

 IDENTIFIED BY ecdsa-with-SHA256 }

ecdsa-with-SHA384-Algorithm ALGORITHM ::= { -- IETF RFC 5758

 IDENTIFIED BY ecdsa-with-SHA384 }

ecdsa-with-SHA512-Algorithm ALGORITHM ::= { -- IETF RFC 5758

 IDENTIFIED BY ecdsa-with-SHA512 }

-- HMAC algorithms

hmacWithSHA224 ALGORITHM ::= { -- IETF RFC 4231

 PARMS NULL

 IDENTIFIED BY id-hmacWithSHA224 }

hmacWithSHA256 ALGORITHM ::= { -- IETF RFC 4231

 PARMS NULL

 IDENTIFIED BY id-hmacWithSHA256 }

hmacWithSHA384 ALGORITHM ::= { -- IETF RFC 4231

 PARMS NULL

 IDENTIFIED BY id-hmacWithSHA384 }

hmacWithSHA512 ALGORITHM ::= { -- IETF RFC 4231

 PARMS NULL

 IDENTIFIED BY id-hmacWithSHA512 }

END -- AlgorithmObjectIdentifiers

ISO/IEC 9594-8:2017 (E)

182 Rec. ITU-T X.509 (10/2016)

Annex C

Certificate extension attribute types

(This annex forms an integral part of this Recommendation | International Standard.)

C.1 Certificate extension attribute concept

This annex includes attribute types representing certificate extension defined by this Specification and IETF RFC 5280.

Such attributes will allow detailed certificate extension request to be included in a certification request as defined in IETF

RFC 2986 and it allows extension information to be stored in a directory.

ExtensionAttribute ::= SEQUENCE {

 type ATTRIBUTE.&id,

 value SET SIZE (0..1) OF SEQUENCE {

 mandatory [0] BOOLEAN DEFAULT FALSE,

 critical [1] BOOLEAN DEFAULT FALSE,

 ext [2] EXTENSION.&ExtnType,

 ... },

 ... }

The ExtensionAttribute data type specifies the general structure of an attribute representing a certificate extension.

The syntax of an attribute is a sequence with the following components:

– The mandatory component is a Boolean that indicates whether this extension shall be present. This

component may not be relevant in certain contexts and shall then be absent.

– The critical component indicates whether the particular certificate extension is labelled critical or not.

– The ext component shall hold the actual extension syntax specification.

An extension attribute is always single-valued and it has no associated context specification.

extensionSyntax {EXTENSION:extension-attribute} SYNTAX-NAME ::= {

 LDAP-DESC extension-attribute.&ldap-description

 DIRECTORY SYNTAX SEQUENCE {

 mandatory [0] BOOLEAN DEFAULT FALSE,

 critical [1] BOOLEAN DEFAULT FALSE,

 ext [2] extension-attribute.&ExtnType,

 ... }

 ID extension-attribute.&id }

The extensionSyntax parameterized information object is to be used as a model for binding an LDAP syntax to an

object identifier:

– The LDAP-DESC specifies the LDAP syntax for the attribute type.

– The DIRECTORY SYNTAX specifies the actual syntax for the attribute.

– The ID specifies the object identifier used to identify the LDAP syntax.

C.2 Formal specification for certificate extension attribute types

The formal specification is provided in the form of the ASN.1 module ExtensionAttributes.

ExtensionAttributes {joint-iso-itu-t ds(5) module(1) extensionAttributes(41) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 attributeCertificateDefinitions, authenticationFramework, certificateExtensions,

 extensionAttributes, id-ce, informationFramework

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 ATTRIBUTE, SYNTAX-NAME

 FROM InformationFramework informationFramework

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 183

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 EXTENSION

 FROM AuthenticationFramework authenticationFramework

 aAissuingDistributionPoint, authorityKeyIdentifier, authorizationValidation,

 baseUpdateTime, basicConstraints, certificateIssuer, certificatePolicies,

 cRLDistributionPoints, cRLNumber, cRLStreamIdentifier, deltaCRLIndicator, deltaInfo,

 expiredCertsOnCRL, extKeyUsage, freshestCRL, holdInstructionCode, invalidityDate,

 issuerAltName, issuingDistributionPoint, keyUsage, nameConstraints, orderedList,

 policyConstraints, policyMappings, privateKeyUsagePeriod, reasonCode, revokedGroups,

 statusReferrals, subjectAltName, subjectDirectoryAttributes, subjectKeyIdentifier,

 toBeRevoked

 FROM CertificateExtensions certificateExtensions

 acceptableCertPolicies, acceptablePrivilegePolicies, allowedAttributeAssignments,

 attributeDescriptor, attributeMappings, authorityAttributeIdentifier,

 basicAttConstraints, delegatedNameConstraints, groupAC, holderNameConstraints,

 issuedOnBehalfOf, noAssertion, noRevAvail, roleSpecCertIdentifier, singleUse,

 sOAIdentifier, targetingInformation, timeSpecification, userNotice

 FROM AttributeCertificateDefinitions attributeCertificateDefinitions ;

ExtensionAttribute ::= SEQUENCE {

 type ATTRIBUTE.&id,

 value SET SIZE (0..1) OF SEQUENCE {

 mandatory [0] BOOLEAN DEFAULT FALSE,

 critical [1] BOOLEAN DEFAULT FALSE,

 ext [2] EXTENSION.&ExtnType,

 ... },

 ... }

extensionSyntax {EXTENSION:extension-attribute} SYNTAX-NAME ::= {

 LDAP-DESC extension-attribute.&ldap-description

 DIRECTORY SYNTAX SEQUENCE {

 mandatory [0] BOOLEAN DEFAULT FALSE,

 critical [1] BOOLEAN DEFAULT FALSE,

 ext [2] extension-attribute.&ExtnType,

 ... }

 ID extension-attribute.&id }

-- The list of extension attribute types

a-authorityKeyIdentifier ATTRIBUTE ::= {

 WITH SYNTAX authorityKeyIdentifier.&ExtnType

 LDAP-SYNTAX id-asx-authorityKeyIdentifier

 LDAP-NAME {"Authority Key Identifier"}

 ID id-ce-a-authorityKeyIdentifier }

a-keyUsage ATTRIBUTE ::= {

 WITH SYNTAX keyUsage.&ExtnType

 LDAP-SYNTAX id-asx-keyUsage

 LDAP-NAME {"Key Usage"}

 ID id-ce-a-keyUsage }

a-extKeyUsage ATTRIBUTE ::= {

 WITH SYNTAX extKeyUsage.&ExtnType

 LDAP-SYNTAX id-asx-extKeyUsage

 LDAP-NAME {"Extended Key Usage"}

 ID id-ce-a-extKeyUsage }

a-privateKeyUsagePeriod ATTRIBUTE ::= {

 WITH SYNTAX privateKeyUsagePeriod.&ExtnType

 LDAP-SYNTAX id-asx-privateKeyUsagePeriod

 LDAP-NAME {"Private Key Usage Period"}

 ID id-ce-a-privateKeyUsagePeriod }

a-certificatePolicies ATTRIBUTE ::= {

 WITH SYNTAX certificatePolicies.&ExtnType

 LDAP-SYNTAX id-asx-certificatePolicies

 LDAP-NAME {"Certificate Policies"}

ISO/IEC 9594-8:2017 (E)

184 Rec. ITU-T X.509 (10/2016)

 ID id-ce-a-certificatePolicies }

a-policyMappings ATTRIBUTE ::= {

 WITH SYNTAX policyMappings.&ExtnType

 LDAP-SYNTAX id-asx-policyMappings

 LDAP-NAME {"Policy Mappings"}

 ID id-ce-a-policyMappings }

a-authorizationValidation ATTRIBUTE ::= {

 WITH SYNTAX authorizationValidation.&ExtnType

 LDAP-SYNTAX id-asx-authorizationValidation

 LDAP-NAME {"Authorization Validation"}

 ID id-ce-a-authorizationValidation }

a-subjectAltName ATTRIBUTE ::= {

 WITH SYNTAX subjectAltName.&ExtnType

 LDAP-SYNTAX id-asx-subjectAltName

 LDAP-NAME {"Subject Alternative Name"}

 ID id-ce-a-subjectAltName }

a-issuerAltName ATTRIBUTE ::= {

 WITH SYNTAX issuerAltName.&ExtnType

 LDAP-SYNTAX id-asx-issuerAltName

 LDAP-NAME {"Issuer Alternative Name"}

 ID id-ce-a-issuerAltName }

a-subjectDirectoryAttributes ATTRIBUTE ::= {

 WITH SYNTAX subjectDirectoryAttributes.&ExtnType

 LDAP-SYNTAX id-asx-subjectDirectoryAttributes

 LDAP-NAME {"Subject Directory Attributes"}

 ID id-ce-a-subjectDirectoryAttributes }

a-basicConstraints ATTRIBUTE ::= {

 WITH SYNTAX basicConstraints.&ExtnType

 LDAP-SYNTAX id-asx-basicConstraints

 LDAP-NAME {"Basic Constraints"}

 ID id-ce-a-basicConstraints }

a-nameConstraints ATTRIBUTE ::= {

 WITH SYNTAX policyConstraints.&ExtnType

 LDAP-SYNTAX id-asx-nameConstraints

 LDAP-NAME {"Name Constraints"}

 ID id-ce-a-nameConstraints }

a-policyConstraints ATTRIBUTE ::= {

 WITH SYNTAX policyConstraints.&ExtnType

 LDAP-SYNTAX id-asx-policyConstraints

 LDAP-NAME {"Policy Constraints"}

 ID id-ce-a-policyConstraints }

a-cRLNumber ATTRIBUTE ::= {

 WITH SYNTAX cRLNumber.&ExtnType

 LDAP-SYNTAX id-asx-cRLNumber

 LDAP-NAME {"CRL Number"}

 ID id-ce-a-cRLNumber}

a-statusReferrals ATTRIBUTE ::= {

 WITH SYNTAX statusReferrals.&ExtnType

 LDAP-SYNTAX id-asx-statusReferrals

 LDAP-NAME {"Status Referrals"}

 ID id-ce-a-statusReferrals}

a-cRLStreamIdentifier ATTRIBUTE ::= {

 WITH SYNTAX cRLStreamIdentifier.&ExtnType

 LDAP-SYNTAX id-asx-cRLStreamIdentifier

 LDAP-NAME {"CRL stream identifier"}

 ID id-ce-a-cRLStreamIdentifier}

a-orderedList ATTRIBUTE ::= {

 WITH SYNTAX orderedList.&ExtnType

 LDAP-SYNTAX id-asx-orderedList

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 185

 LDAP-NAME {"Ordered list"}

 ID id-ce-a-orderedList}

a-deltaInfo ATTRIBUTE ::= {

 WITH SYNTAX deltaInfo.&ExtnType

 LDAP-SYNTAX id-asx-deltaInfo

 LDAP-NAME {"Delta information"}

 ID id-ce-a-deltaInfo}

a-toBeRevoked ATTRIBUTE ::= {

 WITH SYNTAX toBeRevoked.&ExtnType

 LDAP-SYNTAX id-asx-toBeRevoked

 LDAP-NAME {"To be revoked"}

 ID id-ce-a-toBeRevoked}

a-revokedGroups ATTRIBUTE ::= {

 WITH SYNTAX revokedGroups.&ExtnType

 LDAP-SYNTAX id-asx-revokedGroups

 LDAP-NAME {"Revoked group of certificates"}

 ID id-ce-a-revokedGroups}

a-expiredCertsOnCRL ATTRIBUTE ::= {

 WITH SYNTAX expiredCertsOnCRL.&ExtnType

 LDAP-SYNTAX id-asx-expiredCertsOnCRL

 LDAP-NAME {"Expired certificates on CRL"}

 ID id-ce-a-expiredCertsOnCRL}

a-reasonCode ATTRIBUTE ::= {

 WITH SYNTAX reasonCode.&ExtnType

 LDAP-SYNTAX id-asx-reasonCode

 LDAP-NAME {"Reason code"}

 ID id-ce-a-reasonCode}

a-holdInstructionCode ATTRIBUTE ::= {

 WITH SYNTAX holdInstructionCode.&ExtnType

 LDAP-SYNTAX id-asx-holdInstructionCode

 LDAP-NAME {"Hold instruction code"}

 ID id-ce-a-holdInstructionCode}

a-invalidityDate ATTRIBUTE ::= {

 WITH SYNTAX invalidityDate.&ExtnType

 LDAP-SYNTAX id-asx-invalidityDate

 LDAP-NAME {"Invalidity date"}

 ID id-ce-a-invalidityDate}

a-cRLDistributionPoints ATTRIBUTE ::= {

 WITH SYNTAX cRLDistributionPoints.&ExtnType

 LDAP-SYNTAX id-asx-cRLDistributionPoints

 LDAP-NAME {"CRL distribution points"}

 ID id-ce-a-cRLDistributionPoints}

a-issuingDistributionPoint ATTRIBUTE ::= {

 WITH SYNTAX issuingDistributionPoint.&ExtnType

 LDAP-SYNTAX id-asx-issuingDistributionPoint

 LDAP-NAME {"Issuing distribution point"}

 ID id-ce-a-issuingDistributionPoint}

a-certificateIssuer ATTRIBUTE ::= {

 WITH SYNTAX certificateIssuer.&ExtnType

 LDAP-SYNTAX id-asx-certificateIssuer

 LDAP-NAME {"Certificate issuer"}

 ID id-ce-a-certificateIssuer}

a-deltaCRLIndicator ATTRIBUTE ::= {

 WITH SYNTAX deltaCRLIndicator.&ExtnType

 LDAP-SYNTAX id-asx-deltaCRLIndicator

 LDAP-NAME {"Delta CRL indicator"}

 ID id-ce-a-deltaCRLIndicator}

a-baseUpdateTime ATTRIBUTE ::= {

 WITH SYNTAX baseUpdateTime.&ExtnType

ISO/IEC 9594-8:2017 (E)

186 Rec. ITU-T X.509 (10/2016)

 LDAP-SYNTAX id-asx-baseUpdateTime

 LDAP-NAME {"Base update time"}

 ID id-ce-a-baseUpdateTime}

a-freshestCRL ATTRIBUTE ::= {

 WITH SYNTAX freshestCRL.&ExtnType

 LDAP-SYNTAX id-asx-freshestCRL

 LDAP-NAME {"Freshest CRL"}

 ID id-ce-a-freshestCRL}

a-timeSpecification ATTRIBUTE ::= {

 WITH SYNTAX timeSpecification.&ExtnType

 LDAP-SYNTAX id-asx-timeSpecification

 LDAP-NAME {"Time specification"}

 ID id-ce-a-timeSpecification}

a-targetingInformation ATTRIBUTE ::= {

 WITH SYNTAX targetingInformation.&ExtnType

 LDAP-SYNTAX id-asx-targetingInformation

 LDAP-NAME {"Targeting information"}

 ID id-ce-a-targetingInformation}

a-userNotice ATTRIBUTE ::= {

 WITH SYNTAX userNotice.&ExtnType

 LDAP-SYNTAX id-asx-userNotice

 LDAP-NAME {"User notice"}

 ID id-ce-a-userNotice}

a-acceptablePrivilegePolicies ATTRIBUTE ::= {

 WITH SYNTAX acceptablePrivilegePolicies.&ExtnType

 LDAP-SYNTAX id-asx-acceptablePrivilegePolicies

 LDAP-NAME {"Acceptable Privilege Policies"}

 ID id-ce-a-acceptablePrivilegePolicies}

a-singleUse ATTRIBUTE ::= {

 WITH SYNTAX singleUse.&ExtnType

 LDAP-SYNTAX id-asx-singleUse

 LDAP-NAME {"Single use"}

 ID id-ce-a-singleUse}

a-groupAC ATTRIBUTE ::= {

 WITH SYNTAX groupAC.&ExtnType

 LDAP-SYNTAX id-asx-groupAC

 LDAP-NAME {"Group attribute certificate"}

 ID id-ce-a-groupAC}

a-noRevAvail ATTRIBUTE ::= {

 WITH SYNTAX noRevAvail.&ExtnType

 LDAP-SYNTAX id-asx-noRevAvail

 LDAP-NAME {"No revocation information available"}

 ID id-ce-a-noRevAvail}

a-sOAIdentifier ATTRIBUTE ::= {

 WITH SYNTAX sOAIdentifier.&ExtnType

 LDAP-SYNTAX id-asx-sOAIdentifier

 LDAP-NAME {"SOA identifier"}

 ID id-ce-a-sOAIdentifier}

a-attributeDescriptor ATTRIBUTE ::= {

 WITH SYNTAX attributeDescriptor.&ExtnType

 LDAP-SYNTAX id-asx-attributeDescriptor

 LDAP-NAME {"Attribute descriptor"}

 ID id-ce-a-attributeDescriptor}

a-roleSpecCertIdentifier ATTRIBUTE ::= {

 WITH SYNTAX roleSpecCertIdentifier.&ExtnType

 LDAP-SYNTAX id-asx-roleSpecCertIdentifier

 LDAP-NAME {"Role specification certificate identifier"}

 ID id-ce-a-roleSpecCertIdentifier}

a-basicAttConstraints ATTRIBUTE ::= {

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 187

 WITH SYNTAX basicAttConstraints.&ExtnType

 LDAP-SYNTAX id-asx-basicAttConstraints

 LDAP-NAME {"Basic attribute constraints"}

 ID id-ce-a-basicAttConstraints}

a-delegatedNameConstraints ATTRIBUTE ::= {

 WITH SYNTAX delegatedNameConstraints.&ExtnType

 LDAP-SYNTAX id-asx-delegatedNameConstraints

 LDAP-NAME {"Delegated name constraints"}

 ID id-ce-a-delegatedNameConstraints}

a-acceptableCertPolicies ATTRIBUTE ::= {

 WITH SYNTAX acceptableCertPolicies.&ExtnType

 LDAP-SYNTAX id-asx-acceptableCertPolicies

 LDAP-NAME {"Acceptable certificate policiesGroup attribute certificate"}

 ID id-ce-a-acceptableCertPolicies}

a-authorityAttributeIdentifier ATTRIBUTE ::= {

 WITH SYNTAX authorityAttributeIdentifier.&ExtnType

 LDAP-SYNTAX id-asx-authorityAttributeIdentifier

 LDAP-NAME {"Authority attribute identifier"}

 ID id-ce-a-authorityAttributeIdentifier}

a-indirectIssuer ATTRIBUTE ::= {

 WITH SYNTAX indirectIssuer.&ExtnType

 LDAP-SYNTAX id-asx-indirectIssuer

 LDAP-NAME {"Indirect issuer"}

 ID id-ce-a-indirectIssuer}

a-issuedOnBehalfOf ATTRIBUTE ::= {

 WITH SYNTAX issuedOnBehalfOf.&ExtnType

 LDAP-SYNTAX id-asx-issuedOnBehalfOf

 LDAP-NAME {"Issued on behalf of"}

 ID id-ce-a-issuedOnBehalfOf}

a-noAssertion ATTRIBUTE ::= {

 WITH SYNTAX noAssertion.&ExtnType

 LDAP-SYNTAX id-asx-noAssertion

 LDAP-NAME {"No assertion"}

 ID id-ce-a-noAssertion}

a-allowedAttributeAssignments ATTRIBUTE ::= {

 WITH SYNTAX allowedAttributeAssignments.&ExtnType

 LDAP-SYNTAX id-asx-allowedAttributeAssignments

 LDAP-NAME {"Allowed attribute assignments"}

 ID id-ce-a-allowedAttributeAssignments}

a-attributeMappings ATTRIBUTE ::= {

 WITH SYNTAX attributeMappings.&ExtnType

 LDAP-SYNTAX id-asx-attributeMappings

 LDAP-NAME {"Attribute mappings"}

 ID id-ce-a-attributeMappings}

a-holderNameConstraints ATTRIBUTE ::= {

 WITH SYNTAX holderNameConstraints.&ExtnType

 LDAP-SYNTAX id-asx-holderNameConstraints

 LDAP-NAME {"Holder name constraints"}

 ID id-ce-a-holderNameConstraints}

a-aAissuingDistributionPoint ATTRIBUTE ::= {

 WITH SYNTAX aAissuingDistributionPoint.&ExtnType

 LDAP-SYNTAX id-asx-aAissuingDistributionPoint

 LDAP-NAME {"AA issuing distribution point"}

 ID id-ce-a-aAissuingDistributionPoint}

-- Object identifier for attribute types

id-ce-a-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce 9 1}

id-ce-a-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 14 1}

id-ce-a-keyUsage OBJECT IDENTIFIER ::= {id-ce 15 1}

id-ce-a-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce 16 1}

ISO/IEC 9594-8:2017 (E)

188 Rec. ITU-T X.509 (10/2016)

id-ce-a-subjectAltName OBJECT IDENTIFIER ::= {id-ce 17 1}

id-ce-a-issuerAltName OBJECT IDENTIFIER ::= {id-ce 18 1}

id-ce-a-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19 1}

id-ce-a-cRLNumber OBJECT IDENTIFIER ::= {id-ce 20 1}

id-ce-a-reasonCode OBJECT IDENTIFIER ::= {id-ce 21 1}

id-ce-a-holdInstructionCode OBJECT IDENTIFIER ::= {id-ce 23 1}

id-ce-a-invalidityDate OBJECT IDENTIFIER ::= {id-ce 24 1}

id-ce-a-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27 1}

id-ce-a-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28 1}

id-ce-a-certificateIssuer OBJECT IDENTIFIER ::= {id-ce 29 1}

id-ce-a-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30 1}

id-ce-a-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31 1}

id-ce-a-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32 1}

id-ce-a-policyMappings OBJECT IDENTIFIER ::= {id-ce 33 1}

id-ce-a-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 35 1}

id-ce-a-policyConstraints OBJECT IDENTIFIER ::= {id-ce 36 1}

id-ce-a-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37 1}

id-ce-a-authorityAttributeIdentifier OBJECT IDENTIFIER ::= {id-ce 38 1}

id-ce-a-roleSpecCertIdentifier OBJECT IDENTIFIER ::= {id-ce 39 1}

id-ce-a-cRLStreamIdentifier OBJECT IDENTIFIER ::= {id-ce 40 1}

id-ce-a-basicAttConstraints OBJECT IDENTIFIER ::= {id-ce 41 1}

id-ce-a-delegatedNameConstraints OBJECT IDENTIFIER ::= {id-ce 42 1}

id-ce-a-timeSpecification OBJECT IDENTIFIER ::= {id-ce 43 1}

id-ce-a-cRLScope OBJECT IDENTIFIER ::= {id-ce 44 1}

id-ce-a-statusReferrals OBJECT IDENTIFIER ::= {id-ce 45 1}

id-ce-a-freshestCRL OBJECT IDENTIFIER ::= {id-ce 46 1}

id-ce-a-orderedList OBJECT IDENTIFIER ::= {id-ce 47 1}

id-ce-a-attributeDescriptor OBJECT IDENTIFIER ::= {id-ce 48 1}

id-ce-a-userNotice OBJECT IDENTIFIER ::= {id-ce 49 1}

id-ce-a-sOAIdentifier OBJECT IDENTIFIER ::= {id-ce 50 1}

id-ce-a-baseUpdateTime OBJECT IDENTIFIER ::= {id-ce 51 1}

id-ce-a-acceptableCertPolicies OBJECT IDENTIFIER ::= {id-ce 52 1}

id-ce-a-deltaInfo OBJECT IDENTIFIER ::= {id-ce 53 1}

id-ce-a-inhibitAnyPolicy OBJECT IDENTIFIER ::= {id-ce 54 1}

id-ce-a-targetingInformation OBJECT IDENTIFIER ::= {id-ce 55 1}

id-ce-a-noRevAvail OBJECT IDENTIFIER ::= {id-ce 56 1}

id-ce-a-acceptablePrivilegePolicies OBJECT IDENTIFIER ::= {id-ce 57 1}

id-ce-a-toBeRevoked OBJECT IDENTIFIER ::= {id-ce 58 1}

id-ce-a-revokedGroups OBJECT IDENTIFIER ::= {id-ce 59 1}

id-ce-a-expiredCertsOnCRL OBJECT IDENTIFIER ::= {id-ce 60 1}

id-ce-a-indirectIssuer OBJECT IDENTIFIER ::= {id-ce 61 1}

id-ce-a-noAssertion OBJECT IDENTIFIER ::= {id-ce 62 1}

id-ce-a-aAissuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 63 1}

id-ce-a-issuedOnBehalfOf OBJECT IDENTIFIER ::= {id-ce 64 1}

id-ce-a-singleUse OBJECT IDENTIFIER ::= {id-ce 65 1}

id-ce-a-groupAC OBJECT IDENTIFIER ::= {id-ce 66 1}

id-ce-a-allowedAttributeAssignments OBJECT IDENTIFIER ::= {id-ce 67 1}

id-ce-a-attributeMappings OBJECT IDENTIFIER ::= {id-ce 68 1}

id-ce-a-holderNameConstraints OBJECT IDENTIFIER ::= {id-ce 69 1}

id-ce-a-authorizationValidation OBJECT IDENTIFIER ::= {id-ce 70 1}

-- The list of object identifiers for LDAP syntaxes

id-asx-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce 9 2}

id-asx-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 14 2}

id-asx-keyUsage OBJECT IDENTIFIER ::= {id-ce 15 2}

id-asx-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce 16 2}

id-asx-subjectAltName OBJECT IDENTIFIER ::= {id-ce 17 2}

id-asx-issuerAltName OBJECT IDENTIFIER ::= {id-ce 18 2}

id-asx-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19 2}

id-asx-cRLNumber OBJECT IDENTIFIER ::= {id-ce 20 2}

id-asx-reasonCode OBJECT IDENTIFIER ::= {id-ce 21 2}

id-asx-holdInstructionCode OBJECT IDENTIFIER ::= {id-ce 23 2}

id-asx-invalidityDate OBJECT IDENTIFIER ::= {id-ce 24 2}

id-asx-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27 2}

id-asx-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28 2}

id-asx-certificateIssuer OBJECT IDENTIFIER ::= {id-ce 29 2}

id-asx-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30 2}

id-asx-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31 2}

id-asx-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32 2}

id-asx-policyMappings OBJECT IDENTIFIER ::= {id-ce 33 2}

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 189

id-asx-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 35 2}

id-asx-policyConstraints OBJECT IDENTIFIER ::= {id-ce 36 2}

id-asx-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37 2}

id-asx-authorityAttributeIdentifier OBJECT IDENTIFIER ::= {id-ce 38 2}

id-asx-roleSpecCertIdentifier OBJECT IDENTIFIER ::= {id-ce 39 2}

id-asx-cRLStreamIdentifier OBJECT IDENTIFIER ::= {id-ce 40 2}

id-asx-basicAttConstraints OBJECT IDENTIFIER ::= {id-ce 41 2}

id-asx-delegatedNameConstraints OBJECT IDENTIFIER ::= {id-ce 42 2}

id-asx-timeSpecification OBJECT IDENTIFIER ::= {id-ce 43 2}

id-asx-cRLScope OBJECT IDENTIFIER ::= {id-ce 44 2}

id-asx-statusReferrals OBJECT IDENTIFIER ::= {id-ce 45 2}

id-asx-freshestCRL OBJECT IDENTIFIER ::= {id-ce 46 2}

id-asx-orderedList OBJECT IDENTIFIER ::= {id-ce 47 2}

id-asx-attributeDescriptor OBJECT IDENTIFIER ::= {id-ce 48 2}

id-asx-userNotice OBJECT IDENTIFIER ::= {id-ce 49 2}

id-asx-sOAIdentifier OBJECT IDENTIFIER ::= {id-ce 50 2}

id-asx-baseUpdateTime OBJECT IDENTIFIER ::= {id-ce 51 2}

id-asx-acceptableCertPolicies OBJECT IDENTIFIER ::= {id-ce 52 2}

id-asx-deltaInfo OBJECT IDENTIFIER ::= {id-ce 53 2}

id-asx-inhibitAnyPolicy OBJECT IDENTIFIER ::= {id-ce 54 2}

id-asx-targetingInformation OBJECT IDENTIFIER ::= {id-ce 55 2}

id-asx-noRevAvail OBJECT IDENTIFIER ::= {id-ce 56 2}

id-asx-acceptablePrivilegePolicies OBJECT IDENTIFIER ::= {id-ce 57 2}

id-asx-toBeRevoked OBJECT IDENTIFIER ::= {id-ce 58 2}

id-asx-revokedGroups OBJECT IDENTIFIER ::= {id-ce 59 2}

id-asx-expiredCertsOnCRL OBJECT IDENTIFIER ::= {id-ce 60 2}

id-asx-indirectIssuer OBJECT IDENTIFIER ::= {id-ce 61 2}

id-asx-noAssertion OBJECT IDENTIFIER ::= {id-ce 62 2}

id-asx-aAissuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 63 2}

id-asx-issuedOnBehalfOf OBJECT IDENTIFIER ::= {id-ce 64 2}

id-asx-singleUse OBJECT IDENTIFIER ::= {id-ce 65 2}

id-asx-groupAC OBJECT IDENTIFIER ::= {id-ce 66 2}

id-asx-allowedAttributeAssignments OBJECT IDENTIFIER ::= {id-ce 67 2}

id-asx-attributeMappings OBJECT IDENTIFIER ::= {id-ce 68 2}

id-asx-holderNameConstraints OBJECT IDENTIFIER ::= {id-ce 69 2}

id-asx-authorizationValidation OBJECT IDENTIFIER ::= {id-ce 70 2}

END -- ExtensionAttributes

ISO/IEC 9594-8:2017 (E)

190 Rec. ITU-T X.509 (10/2016)

Annex D

External ASN.1 modules

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex provides external ASN.1 modules referenced by this Specification and the Directory Specifications. These

modules shall not be considered part of this Specification, but are only provided for easy compilation of the ASN.1 modules

defined by this Specification and the Directory Specifications.

PkiPmiExternalDataTypes {joint-iso-itu-t ds(5) module(1) pkiPmiExternalDataTypes(40) 8}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

IMPORTS

 authenticationFramework, certificateExtensions, intSecurity, selectedAttributeTypes

 FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 8}

 EXTENSION

 FROM AuthenticationFramework authenticationFramework

 GeneralName

FROM CertificateExtensions certificateExtensions

 PresentationAddress

 FROM SelectedAttributeTypes selectedAttributeTypes;

/* The UserNotice data type is referenced by the userNotice extension. It is copied from

IETF RFC 5280 */

UserNotice ::= SEQUENCE {

 noticeRef NoticeReference OPTIONAL,

 explicitText DisplayText OPTIONAL }

NoticeReference ::= SEQUENCE {

 organization DisplayText,

 noticeNumbers SEQUENCE OF INTEGER }

DisplayText ::= CHOICE {

 visibleString VisibleString(SIZE (1..200)),

 bmpString BMPString(SIZE (1..200)),

 utf8String UTF8String(SIZE (1..200)) }

/* IETF RFC 5280 defines some extensions not copied from this Specification. The formal

specification of these extensions are included here for easy reference, e.g., when using

ASN.1 tools. For detailed description, see IETF 5280.*/

/* Authority information access extension*/

authorityInfoAccess EXTENSION ::= {

 SYNTAX AuthorityInfoAccessSyntax

 IDENTIFIED BY id-pe-authorityInfoAccess }

AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription

AccessDescription ::= SEQUENCE {

 accessMethod OBJECT IDENTIFIER,

 accessLocation GeneralName }

/* Subject information access extension*/

subjectInfoAccess EXTENSION ::= {

 SYNTAX SubjectInfoAccessSyntax

 IDENTIFIED BY id-pe-subjectInfoAccess }

SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF AccessDescription

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 191

/* IETF RFC 5280 (PKIX) object identifier allocation*/

id-pkix OBJECT IDENTIFIER ::= { intSecurity mechanisms(5) pkix(7) }

id-pe OBJECT IDENTIFIER ::= { id-pkix 1 }

id-ad OBJECT IDENTIFIER ::= { id-pkix 48 }

id-pe-authorityInfoAccess OBJECT IDENTIFIER ::= { id-pe 1 }

id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= { id-pe 11 }

id-ad-caIssuers OBJECT IDENTIFIER ::= { id-ad 2 }

id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 }

/* The following is an abstract of the MTSAbstractService module specified by

Rec. ITU-T X.411 | ISO/IEC 10021-4.*/

G3FacsimileNonBasicParameters ::= BIT STRING {

 two-dimensional(8), -- As defined in ITU-T Recommendation T.30

 fine-resolution(9),

 unlimited-length(20), -- These bit values are chosen such that when

 b4-length(21), -- encoded using ASN.1 Basic Encoding Rules

 a3-width(22), -- the resulting octets have the same values

 b4-width(23), -- as for T.30 encoding

 t6-coding(25),

 uncompressed(30), -- Trailing zero bits are not significant

 width-middle-864-of-1728(37), -- It is recommended that implementations

 width-middle-1216-of-1728(38), -- should not encode more than 32 bits unless

 resolution-type(44), -- higher numbered bits are non-zero

 resolution-400x400(45), resolution-300x300(46), resolution-8x15(47),

 edi(49), dtm(50), bft(51), mixed-mode(58), character-mode(60),

 twelve-bits(65), preferred-huffmann(66), full-colour(67), jpeg(68),

 processable-mode-26(71)}

ORAddress ::= SEQUENCE {

 built-in-standard-attributes BuiltInStandardAttributes,

 built-in-domain-defined-attributes BuiltInDomainDefinedAttributes OPTIONAL,

 -- see also teletex-domain-defined-attributes

 extension-attributes ExtensionAttributes OPTIONAL }

-- The OR-address is semantically absent from the OR-name if the built-in-standard-

attribute

-- sequence is empty and the built-in-domain-defined-attributes and extension-

attributes are both omitted.

-- Built-in Standard Attributes

BuiltInStandardAttributes ::= SEQUENCE {

 country-name CountryName OPTIONAL,

 administration-domain-name AdministrationDomainName OPTIONAL,

 network-address [0] NetworkAddress OPTIONAL,

 -- see also extended-network-address

 terminal-identifier [1] TerminalIdentifier OPTIONAL,

 private-domain-name [2] PrivateDomainName OPTIONAL,

 organization-name [3] OrganizationName OPTIONAL,

 -- see also teletex-organization-name

 numeric-user-identifier [4] NumericUserIdentifier OPTIONAL,

 personal-name [5] PersonalName OPTIONAL,

 -- see also teletex-personal-name

 organizational-unit-names [6] OrganizationalUnitNames OPTIONAL

 -- see also teletex-organizational-unit-names --}

CountryName ::= [APPLICATION 1] CHOICE {

 x121-dcc-code NumericString(SIZE (ub-country-name-numeric-length)),

 iso-3166-alpha2-code PrintableString(SIZE (ub-country-name-alpha-length)) }

AdministrationDomainName ::= [APPLICATION 2] CHOICE {

 numeric NumericString(SIZE (0..ub-domain-name-length)),

 printable PrintableString(SIZE (0..ub-domain-name-length)) }

NetworkAddress ::= X121Address

-- see also extended-network-address

ISO/IEC 9594-8:2017 (E)

192 Rec. ITU-T X.509 (10/2016)

X121Address ::= NumericString(SIZE (1..ub-x121-address-length))

TerminalIdentifier ::= PrintableString(SIZE (1..ub-terminal-id-length))

PrivateDomainName ::= CHOICE {

 numeric NumericString(SIZE (1..ub-domain-name-length)),

 printable PrintableString(SIZE (1..ub-domain-name-length)) }

OrganizationName ::= PrintableString(SIZE (1..ub-organization-name-length))

-- see also teletex-organization-name

NumericUserIdentifier ::= NumericString(SIZE (1..ub-numeric-user-id-length))

PersonalName ::= SET {

 surname [0] PrintableString(SIZE (1..ub-surname-length)),

 given-name

 [1] PrintableString(SIZE (1..ub-given-name-length)) OPTIONAL,

 initials

 [2] PrintableString(SIZE (1..ub-initials-length)) OPTIONAL,

 generation-qualifier

 [3] PrintableString(SIZE (1..ub-generation-qualifier-length)) OPTIONAL }

-- see also teletex-personal-name

OrganizationalUnitNames ::=

 SEQUENCE SIZE (1..ub-organizational-units) OF OrganizationalUnitName

-- see also teletex-organizational-unit-names

OrganizationalUnitName ::=

 PrintableString(SIZE (1..ub-organizational-unit-name-length))

-- Built-in Domain-defined Attributes

BuiltInDomainDefinedAttributes ::=

 SEQUENCE SIZE (1..ub-domain-defined-attributes) OF

 BuiltInDomainDefinedAttribute

BuiltInDomainDefinedAttribute ::= SEQUENCE {

 type PrintableString(SIZE (1..ub-domain-defined-attribute-type-length)),

 value PrintableString(SIZE (1..ub-domain-defined-attribute-value-length)) }

-- Extension Attributes

ExtensionAttributes ::=

 SET SIZE (1..ub-extension-attributes) OF ExtensionAttribute

ExtensionAttribute ::= SEQUENCE {

 extension-attribute-type

 [0] EXTENSION-ATTRIBUTE.&id({ExtensionAttributeTable}),

 extension-attribute-value

 [1] EXTENSION-ATTRIBUTE.&Type

 ({ExtensionAttributeTable}{@extension-attribute-type}) }

EXTENSION-ATTRIBUTE ::= CLASS {

 &id INTEGER(0..ub-extension-attributes) UNIQUE,

 &Type }

WITH SYNTAX {

 &Type

 IDENTIFIED BY &id }

ExtensionAttributeTable EXTENSION-ATTRIBUTE ::=

 {common-name | teletex-common-name | universal-common-name |

 teletex-organization-name | universal-organization-name |

 teletex-personal-name | universal-personal-name |

 teletex-organizational-unit-names | universal-organizational-unit-names |

 teletex-domain-defined-attributes | universal-domain-defined-attributes |

 pds-name | physical-delivery-country-name | postal-code |

 physical-delivery-office-name | universal-physical-delivery-office-name |

 physical-delivery-office-number | universal-physical-delivery-office-number

 | extension-OR-address-components |

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 193

 universal-extension-OR-address-components | physical-delivery-personal-name

 | universal-physical-delivery-personal-name |

 physical-delivery-organization-name |

 universal-physical-delivery-organization-name |

 extension-physical-delivery-address-components |

 universal-extension-physical-delivery-address-components |

 unformatted-postal-address | universal-unformatted-postal-address |

 street-address | universal-street-address | post-office-box-address |

 universal-post-office-box-address | poste-restante-address |

 universal-poste-restante-address | unique-postal-name |

 universal-unique-postal-name | local-postal-attributes |

 universal-local-postal-attributes | extended-network-address | terminal-type }

-- Extension Standard Attributes

common-name EXTENSION-ATTRIBUTE ::= {

 CommonName

 IDENTIFIED BY 1 }

CommonName ::= PrintableString(SIZE (1..ub-common-name-length))

teletex-common-name EXTENSION-ATTRIBUTE ::= {

 TeletexCommonName

 IDENTIFIED BY 2 }

TeletexCommonName ::= TeletexString(SIZE (1..ub-common-name-length))

universal-common-name EXTENSION-ATTRIBUTE ::= {

 UniversalCommonName

 IDENTIFIED BY 24 }

UniversalCommonName ::= UniversalOrBMPString{ub-common-name-length}

teletex-organization-name EXTENSION-ATTRIBUTE ::= {

 TeletexOrganizationName

 IDENTIFIED BY 3 }

TeletexOrganizationName ::=

 TeletexString(SIZE (1..ub-organization-name-length))

universal-organization-name EXTENSION-ATTRIBUTE ::= {

 UniversalOrganizationName

 IDENTIFIED BY 25 }

UniversalOrganizationName ::= UniversalOrBMPString{ub-organization-name-length}

teletex-personal-name EXTENSION-ATTRIBUTE ::= {

 TeletexPersonalName

 IDENTIFIED BY 4 }

TeletexPersonalName ::= SET {

 surname [0] TeletexString(SIZE (1..ub-surname-length)),

 given-name

 [1] TeletexString(SIZE (1..ub-given-name-length)) OPTIONAL,

 initials

 [2] TeletexString(SIZE (1..ub-initials-length)) OPTIONAL,

 generation-qualifier

 [3] TeletexString(SIZE (1..ub-generation-qualifier-length)) OPTIONAL }

universal-personal-name EXTENSION-ATTRIBUTE ::= {

 UniversalPersonalName

 IDENTIFIED BY 26 }

UniversalPersonalName ::= SET {

 surname

 [0] UniversalOrBMPString{ub-universal-surname-length},

 -- If a language is specified within surname, then that language applies to each of the

 -- following optional components unless the component specifies another language.

 given-name

 [1] UniversalOrBMPString{ub-universal-given-name-length} OPTIONAL,

 initials

ISO/IEC 9594-8:2017 (E)

194 Rec. ITU-T X.509 (10/2016)

 [2] UniversalOrBMPString{ub-universal-initials-length} OPTIONAL,

 generation-qualifier

 [3] UniversalOrBMPString{ub-universal-generation-qualifier-length} OPTIONAL }

teletex-organizational-unit-names EXTENSION-ATTRIBUTE ::= {

 TeletexOrganizationalUnitNames

 IDENTIFIED BY 5 }

TeletexOrganizationalUnitNames ::=

 SEQUENCE SIZE (1..ub-organizational-units) OF TeletexOrganizationalUnitName

TeletexOrganizationalUnitName ::=

 TeletexString(SIZE (1..ub-organizational-unit-name-length))

universal-organizational-unit-names EXTENSION-ATTRIBUTE ::= {

 UniversalOrganizationalUnitNames

 IDENTIFIED BY 27 }

UniversalOrganizationalUnitNames ::=

 SEQUENCE SIZE (1..ub-organizational-units) OF UniversalOrganizationalUnitName

-- If a unit name specifies a language, then that language applies to subordinate unit

-- names unless the subordinate specifies another language.

UniversalOrganizationalUnitName ::=

 UniversalOrBMPString{ub-organizational-unit-name-length}

UniversalOrBMPString{INTEGER:ub-string-length} ::= SET {

 character-encoding CHOICE {

 two-octets BMPString(SIZE (1..ub-string-length)),

 four-octets UniversalString(SIZE (1..ub-string-length))},

 iso-639-language-code PrintableString(SIZE (2 | 5)) OPTIONAL }

pds-name EXTENSION-ATTRIBUTE ::= {

 PDSName

 IDENTIFIED BY 7 }

PDSName ::= PrintableString(SIZE (1..ub-pds-name-length))

physical-delivery-country-name EXTENSION-ATTRIBUTE ::= {

 PhysicalDeliveryCountryName

 IDENTIFIED BY 8 }

PhysicalDeliveryCountryName ::= CHOICE {

 x121-dcc-code NumericString(SIZE (ub-country-name-numeric-length)),

 iso-3166-alpha2-code PrintableString(SIZE (ub-country-name-alpha-length)) }

postal-code EXTENSION-ATTRIBUTE ::= {

 PostalCode

 IDENTIFIED BY 9 }

PostalCode ::= CHOICE {

 numeric-code NumericString(SIZE (1..ub-postal-code-length)),

 printable-code PrintableString(SIZE (1..ub-postal-code-length))

}

physical-delivery-office-name EXTENSION-ATTRIBUTE ::= {

 PhysicalDeliveryOfficeName

 IDENTIFIED BY 10 }

PhysicalDeliveryOfficeName ::= PDSParameter

universal-physical-delivery-office-name EXTENSION-ATTRIBUTE ::= {

 UniversalPhysicalDeliveryOfficeName

 IDENTIFIED BY 29 }

UniversalPhysicalDeliveryOfficeName ::= UniversalPDSParameter

physical-delivery-office-number EXTENSION-ATTRIBUTE ::= {

 PhysicalDeliveryOfficeNumber

 IDENTIFIED BY 11 }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 195

PhysicalDeliveryOfficeNumber ::= PDSParameter

universal-physical-delivery-office-number EXTENSION-ATTRIBUTE ::= {

 UniversalPhysicalDeliveryOfficeNumber

 IDENTIFIED BY 30 }

UniversalPhysicalDeliveryOfficeNumber ::= UniversalPDSParameter

extension-OR-address-components EXTENSION-ATTRIBUTE ::= {

 ExtensionORAddressComponents

 IDENTIFIED BY 12 }

ExtensionORAddressComponents ::= PDSParameter

universal-extension-OR-address-components EXTENSION-ATTRIBUTE ::= {

 UniversalExtensionORAddressComponents

 IDENTIFIED BY 31 }

UniversalExtensionORAddressComponents ::= UniversalPDSParameter

physical-delivery-personal-name EXTENSION-ATTRIBUTE ::= {

 PhysicalDeliveryPersonalName

 IDENTIFIED BY 13 }

PhysicalDeliveryPersonalName ::= PDSParameter

universal-physical-delivery-personal-name EXTENSION-ATTRIBUTE ::= {

 UniversalPhysicalDeliveryPersonalName

 IDENTIFIED BY 32 }

UniversalPhysicalDeliveryPersonalName ::= UniversalPDSParameter

physical-delivery-organization-name EXTENSION-ATTRIBUTE ::= {

 PhysicalDeliveryOrganizationName

 IDENTIFIED BY 14 }

PhysicalDeliveryOrganizationName ::= PDSParameter

universal-physical-delivery-organization-name EXTENSION-ATTRIBUTE ::= {

 UniversalPhysicalDeliveryOrganizationName

 IDENTIFIED BY 33 }

UniversalPhysicalDeliveryOrganizationName ::= UniversalPDSParameter

extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::= {

 ExtensionPhysicalDeliveryAddressComponents

 IDENTIFIED BY 15 }

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

universal-extension-physical-delivery-address-components EXTENSION-ATTRIBUTE ::= {

 UniversalExtensionPhysicalDeliveryAddressComponents

 IDENTIFIED BY 34 }

UniversalExtensionPhysicalDeliveryAddressComponents ::= UniversalPDSParameter

unformatted-postal-address EXTENSION-ATTRIBUTE ::= {

 UnformattedPostalAddress

 IDENTIFIED BY 16 }

UnformattedPostalAddress ::= SET {

 printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines) OF

 PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,

 teletex-string TeletexString(SIZE (1..ub-unformatted-address-length)) OPTIONAL }

universal-unformatted-postal-address EXTENSION-ATTRIBUTE ::= {

 UniversalUnformattedPostalAddress

 IDENTIFIED BY 35 }

UniversalUnformattedPostalAddress ::=

 UniversalOrBMPString{ub-unformatted-address-length}

ISO/IEC 9594-8:2017 (E)

196 Rec. ITU-T X.509 (10/2016)

street-address EXTENSION-ATTRIBUTE ::= {

 StreetAddress

 IDENTIFIED BY 17 }

StreetAddress ::= PDSParameter

universal-street-address EXTENSION-ATTRIBUTE ::= {

 UniversalStreetAddress

 IDENTIFIED BY 36 }

UniversalStreetAddress ::= UniversalPDSParameter

post-office-box-address EXTENSION-ATTRIBUTE ::= {

 PostOfficeBoxAddress

 IDENTIFIED BY 18 }

PostOfficeBoxAddress ::= PDSParameter

universal-post-office-box-address EXTENSION-ATTRIBUTE ::= {

 UniversalPostOfficeBoxAddress

 IDENTIFIED BY 37 }

UniversalPostOfficeBoxAddress ::= UniversalPDSParameter

poste-restante-address EXTENSION-ATTRIBUTE ::= {

 PosteRestanteAddress

 IDENTIFIED BY 19 }

PosteRestanteAddress ::= PDSParameter

universal-poste-restante-address EXTENSION-ATTRIBUTE ::= {

 UniversalPosteRestanteAddress

 IDENTIFIED BY 38 }

UniversalPosteRestanteAddress ::= UniversalPDSParameter

unique-postal-name EXTENSION-ATTRIBUTE ::= {

 UniquePostalName

 IDENTIFIED BY 20 }

UniquePostalName ::= PDSParameter

universal-unique-postal-name EXTENSION-ATTRIBUTE ::= {

 UniversalUniquePostalName

 IDENTIFIED BY 39 }

UniversalUniquePostalName ::= UniversalPDSParameter

local-postal-attributes EXTENSION-ATTRIBUTE ::= {

 LocalPostalAttributes

 IDENTIFIED BY 21 }

LocalPostalAttributes ::= PDSParameter

universal-local-postal-attributes EXTENSION-ATTRIBUTE ::= {

 UniversalLocalPostalAttributes

 IDENTIFIED BY 40 }

UniversalLocalPostalAttributes ::= UniversalPDSParameter

PDSParameter ::= SET {

 printable-string PrintableString(SIZE (1..ub-pds-parameter-length)) OPTIONAL,

 teletex-string TeletexString(SIZE (1..ub-pds-parameter-length)) OPTIONAL }

UniversalPDSParameter ::= UniversalOrBMPString{ub-pds-parameter-length}

extended-network-address EXTENSION-ATTRIBUTE ::= {

 ExtendedNetworkAddress

 IDENTIFIED BY 22 }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 197

ExtendedNetworkAddress ::= CHOICE {

 e163-4-address SEQUENCE {

 number [0] NumericString(SIZE (1..ub-e163-4-number-length)),

 sub-address [1] NumericString(SIZE (1..ub-e163-4-sub-address-length))

 OPTIONAL},

 psap-address [0] PresentationAddress }

terminal-type EXTENSION-ATTRIBUTE ::= {

 TerminalType

 IDENTIFIED BY 23 }

TerminalType ::= INTEGER {

 telex(3), teletex(4), g3-facsimile(5), g4-facsimile(6), ia5-terminal(7),

 videotex(8)}(0..ub-integer-options)

-- Extension Domain-defined Attributes

teletex-domain-defined-attributes EXTENSION-ATTRIBUTE ::= {

 TeletexDomainDefinedAttributes

 IDENTIFIED BY 6 }

TeletexDomainDefinedAttributes ::=

 SEQUENCE SIZE (1..ub-domain-defined-attributes) OF

 TeletexDomainDefinedAttribute

TeletexDomainDefinedAttribute ::= SEQUENCE {

 type TeletexString(SIZE (1..ub-domain-defined-attribute-type-length)),

 value TeletexString(SIZE (1..ub-domain-defined-attribute-value-length)) }

universal-domain-defined-attributes EXTENSION-ATTRIBUTE ::= {

 UniversalDomainDefinedAttributes

 IDENTIFIED BY 28 }

UniversalDomainDefinedAttributes ::=

 SEQUENCE SIZE (1..ub-domain-defined-attributes) OF

 UniversalDomainDefinedAttribute

UniversalDomainDefinedAttribute ::= SEQUENCE {

 type UniversalOrBMPString{ub-domain-defined-attribute-type-length},

 value UniversalOrBMPString{ub-domain-defined-attribute-value-length} }

ub-integer-options INTEGER ::= 256

ub-e163-4-number-length INTEGER ::= 15

ub-e163-4-sub-address-length INTEGER ::= 40

ub-unformatted-address-length INTEGER ::= 180

ub-pds-parameter-length INTEGER ::= 30

ub-pds-physical-address-lines INTEGER ::= 6

ub-postal-code-length INTEGER ::= 16

ub-pds-name-length INTEGER ::= 16

ub-universal-surname-length INTEGER ::= 64

ub-universal-given-name-length INTEGER ::= 40

ub-universal-initials-length INTEGER ::= 16

ub-universal-generation-qualifier-length INTEGER ::= 16

ub-common-name-length INTEGER ::= 64

ub-extension-attributes INTEGER ::= 256

ub-domain-defined-attribute-type-length INTEGER ::= 8

ub-domain-defined-attribute-value-length INTEGER ::= 128

ub-domain-defined-attributes INTEGER ::= 4

ub-organizational-unit-name-length INTEGER ::= 32

ub-organizational-units INTEGER ::= 4

ub-generation-qualifier-length INTEGER ::= 3

ub-initials-length INTEGER ::= 5

ub-given-name-length INTEGER ::= 16

ub-surname-length INTEGER ::= 40

ub-numeric-user-id-length INTEGER ::= 32

ub-organization-name-length INTEGER ::= 64

ub-terminal-id-length INTEGER ::= 24

ub-x121-address-length INTEGER ::= 16

ISO/IEC 9594-8:2017 (E)

198 Rec. ITU-T X.509 (10/2016)

ub-domain-name-length INTEGER ::= 16

ub-country-name-alpha-length INTEGER ::= 2

ub-country-name-numeric-length INTEGER ::= 3

END -- PkiPmiExternalDataTypes

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 199

Annex E

CRL generation and processing rules

(This annex forms an integral part of this Recommendation | International Standard.)

E.1 Introduction

A relying party needs the ability to check the revocation status of a public-key certificate in order to determine whether or

not to trust that public-key certificate. Certificate revocation lists (CRLs) are one mechanism for relying parties to obtain

the revocation information. Other mechanisms may also be used, but are outside the scope of this Specification.

This annex addresses the use of CRLs for public-key certificate revocation status checking by relying parties. Various

authorities may have different policies regarding their issuance of revocation lists. For instance, in some cases the public-

key certificate issuing authority may authorize a different authority to issue a certificate revocation list for the public-key

certificates it issues. Some authorities may combine the revocation of end-entity and CA certificates into a single list while

other authorities may split these into separate lists. Some authorities may partition their public-key certificate population

on to CRL fragments and some authorities may issue delta updates to a revocation list between regular CRL intervals. As

a result, relying parties need to be able to determine the scope of the CRLs they retrieve to enable them to ensure they have

the complete set of revocation information covering the scope of the public-key certificate in question for the revocation

reasons of interest, given the policy under which they are working. This annex provides a mechanism for the relying parties

to determine the scope of retrieved CRLs.

This annex is written for revocation status checking of public-key certificates using CRLs, full and complete end-entity

certificate revocation lists (EPRLs) and certification authority revocation lists (CARLs). However, this description may

also be applied to revocation status checking of attribute certificates. For the purposes of this annex, privilege verifier may

be considered in place of relying party, attribute certificate revocation lists (ACRLs) may be considered in place of CRLs,

full and complete end-entity attribute certifications lists (ACRLs) in place of EPRLs, and AARLs in place of CARLs.

Similarly, the directory attributes types certificateRevocationList and authorityRevocationList identified in

clause E.4 may be mapped into attributeCertificaateRevocationList and

attributeAuathorityRevocationList and the issuingDistributionPoint extension may be mapped into the

aAissuingDistributionPoint extension.

E.1.1 CRL types

CRLs of one or more of the following types may be available to a relying party, based on the revocation aspects of the

policy of the certificate issuing authority:

– Full and complete CRL;

– Full and complete end-entity public-key certificate revocation list (EPRL);

– Full and complete certification authority revocation list (CARL);

– Indirect CRL, EPRL or CARL (ICRL);

– Delta CRL, EPRL or CARL;

– Indirect dCRL, EPRL or CARL.

A full and complete CRL is a list of all revoked end-entity and CA certificates issued by an authority for any and all

reasons.

A full and complete EPRL is a list of all revoked end-entity public-key certificates issued by an authority for any and all

reasons.

A full and complete CARL is a list of revoked CA certificates issued by an authority for any and all reasons.

A distribution point CRL, EPRL or CARL is one that covers all or a subset of certificates issued by an authority. The

subset could be based on a variety of criteria.

An indirect CRL, EPRL or CARL (ICRL) is a CRL that contains a list of revoked certificates, in which some or all of

those certificates were not issued by the authority signing and issuing the CRL.

A delta CRL, EPRL or CARL is a CRL that only contains changes to a CRL that is complete for the given scope at the

time of the CRL referenced in the dCRL. Note that the referenced CRL might be one that is complete for the given scope

or it might be a dCRL that is used to locally construct a CRL that is complete for the given scope.

All of the above CRL types (except for the dCRL) are CRL types that are complete for their given scope. A dCRL shall be

used in conjunction with an associated CRL that is complete for the same scope in order to form a complete picture of the

revocation status of certificates.

ISO/IEC 9594-8:2017 (E)

200 Rec. ITU-T X.509 (10/2016)

An indirect delta CRL, EPRL or CARL is a CRL that only contains changes to a set of one or more CRLs, which are

complete for their given scopes and in which some or all of those certificates may not have been issued by the authority

signing and issuing this CRL.

Within this annex, as well as this Specification, "Scope of a CRL" is defined by two independent dimensions. One

dimension is the set of certificates covered by the CRL. Another dimension is the set of reason codes covered by the CRL.

The scope of a CRL can be determined in one or more of the following ways:

– issuing distribution point (IDP) extension in the CRL; or

– other means, outside the scope of this Specification.

E.1.2 CRL processing

If a relying party is using CRLs as the mechanism to determine if a certificate is revoked, they shall use the appropriate

CRL(s) for that certificate. This annex describes a procedure for obtaining and processing appropriate CRLs by walking

through a number of specific steps. An implementation functionally equivalent to the external behaviour resulting from

this procedure shall also be considered compliant with this annex and the associated specification. The algorithm used by

a particular implementation to derive the correct output (i.e., revocation status for a certificate) from the given inputs (the

certificate itself and input from local policy) is not standardized. For example, although this procedure is described as a

sequence of steps to be processed in order, an implementation may use CRLs which are in its local cache rather than

retrieving CRLs each time it processes a certificate, provided those CRLs are complete for the scope of the certificate and

do not violate any of the parameters of the certificate or policy.

The following general steps are described in clauses E.2 to E.5:

1) determine parameters for CRLs;

2) determine CRLs required;

3) obtain the CRLs;

4) process the CRLs.

Step 1) identifies the parameters from the certificate and elsewhere that will be used to determine which types of CRLs are

required.

Step 2) applies the values of the parameters to make the determination.

Step 3) identifies the directory attributes from which the CRL types can be retrieved.

Step 4) describes the processing of appropriate CRLs.

E.2 Determine parameters for CRLs

Information located in the certificate itself, as well information from the policy under which the relying party is operating,

provide the parameters for determining the appropriateness of candidate CRLs. The following information is required to

determine which CRL types are appropriate:

– certificate type (i.e., end entity or CA);

– critical CRL distribution point;

– critical freshest CRL;

– reason codes of interest.

The certificate type can be determined from the basic constraints extension in the certificate. If the extension is present, it

indicates whether the certificate is a CA certificate or an end-entity public-key certificate. If the extension is absent, the

public-key certificate type is considered to be an end-entity public-key certificate. This information is required to determine

whether a CRL, EPRL or CARL can be used to check the public-key certificate for revocation.

If the public-key certificate contains a critical CRL distribution point extension, the relying party certificate processing

system shall understand this extension and obtain and use the CRL(s) pointed to by the CRL Distribution Point extension

for the reason codes of interest in order to determine revocation status of the public-key certificate. Reliance on a full CRL,

for instance, would not be sufficient.

If the public-key certificate contains a critical freshest CRL extension, the relying party cannot use the public-key certificate

without first retrieving and checking the freshest CRL.

The reason codes of interest are determined by policy and are generally supplied by the application. It is recommended

that these should include all reason codes. This information is required to determine which CRLs are sufficient in terms of

reason codes.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 201

Note that policy may also dictate whether or not a relying party is expected to check dCRLs for revocation status, when

the freshestCRL extension is flagged as non-critical or is absent from the certificate. Though excluded from this step,

the processing of these optional dCRLs is described in step 4).

E.3 Determine CRLs required

The values of the parameters described in clause E.2 determine the criteria upon which the CRL types required to check

revocation status of a given certificate is determined. The determination of CRL types can be done based on the following

sets of criteria as described in clauses E.3.1 to E.3.4.

– end-entity certificate with critical CRL DP asserted;

– end-entity certificate with no critical CRL DP asserted;

– CA certificate with critical CRL DP asserted;

– CA certificate with no critical CRL DP asserted.

Handling of the remaining parameters (critical freshest CRL extension and set of reason codes of interest) is done within

each of the subclauses.

Note that in each case, more than one CRL type can satisfy the requirements. Where there is a choice of CRL types, the

relying party may select any of the appropriate types to use.

E.3.1 End-entity public-key certificate with critical CRL distribution point extension

If the certificate is an end-entity certificate and cRLDistributionPoints extension is present in the certificate and

flagged critical, the following CRLs shall be obtained:

– A CRL from one of the nominated distribution point CRLs that covers one or more of the reason codes of

interest.

– If all the reason codes of interest are not covered by that CRL, revocation status for the remaining reason

codes may be satisfied by any combination of the following CRLs:

• additional distribution point CRLs;

• additional complete CRLs;

• additional complete EPRLs.

If the freshest CRL extension is also present in the certificate and is flagged critical, one or more CRLs shall also be

obtained from one or more of the nominated distribution points in that extension, ensuring that the freshest revocation

information for all reason codes of interest is checked.

E.3.2 End-entity public-key certificate with no critical CRL distribution point extension

If the certificate is an end-entity certificate and the cRLDistributionPoints extension is absent from the certificate or

is present and not flagged critical, the revocation status for the reason codes of interest may be satisfied by any combination

of the following CRLs:

– distribution point CRLs (if present);

– complete CRLs;

– complete EPRLs.

If the freshest CRL extension is present in the certificate and is flagged critical, one or more CRLs shall also be obtained

from one or more of the nominated distribution points in that extension, ensuring that the freshest revocation information

for all reason codes of interest is checked.

E.3.3 CA with critical CRL DP

If the certificate is a CA and the cRLDistributionPoints extension is present in the certificate and is flagged critical,

the following CRLs/CARLs shall be obtained:

a) A CRL or CARL from one of the nominated distribution points that covers one or more of the reason codes

of interest.

b) If all the reason codes of interest are not covered by that CRL/CARL, the revocation status for the remaining

reason codes may be satisfied by any combination of the following CRLs/CARLs:

– additional distribution point CRLs/CARLs;

– additional complete CRLs;

– additional complete CARLs.

ISO/IEC 9594-8:2017 (E)

202 Rec. ITU-T X.509 (10/2016)

If the freshest CRL extension is also present in the certificate and is flagged critical, one or more CRLs/CARLs shall also

be obtained from one or more of the nominated distribution points in that extension, ensuring that the freshest revocation

information for all reason codes of interest is checked.

E.3.4 CA with no critical CRL DP

If the certificate is a CA certificate and the cRLDistributionPoints extension is absent from the certificate or is present

and not flagged critical, the revocation status for the reason codes of interest may be satisfied by any combination of the

following CRLs:

– distribution point CRLs/CARLs (if present);

– complete CRLs;

– complete CARLs.

If the freshest CRL extension is also present in the certificate and is flagged critical, one or more CRLs/CARLs shall also

be obtained from one or more of the nominated distribution points in that extension, ensuring that the freshest revocation

information for all reason codes of interest is checked.

E.4 Obtain CRLs

If the relying party is retrieving appropriate CRLs from the Directory, these CRLs are obtained from the CRL DP or

certificate issuer directory entry by retrieving the appropriate attributes, i.e., one or more of the following attributes:

– certificateRevocationList;

– authorityRevocationList;

– deltaRevocationList.

E.5 Process CRLs

After considering the parameters discussed in clause E.2, identifying appropriate CRL types as described in clause E.3 and

retrieving an appropriate set of CRLs as described in clause E.4, a relying party is ready to process the CRLs. The set of

CRLs will contain at least one base CRL and may also contain one or more dCRLs. For each CRL being processed, the

relying party shall ensure that the CRL is accurate with respect to its scope. The relying party has already determined that

the CRL is appropriate for the scope of the certificate of interest, through the process of clauses E.2 and E.3. In addition,

validity checks shall be conducted on the CRLs and they shall be checked to determine whether or not the certificate has

been revoked. These checks are described in clauses E.5.1 to E.5.4.

E.5.1 Validate base CRL scope

As described in clause E.3, there can be more than one type of CRL that can be used as the base CRL for checking the

revocation status of a certificate. Depending on the policy of issuing authority with respect to CRL issuance, the relying

party may have one or more of the following base CRL types available to them.

– complete CRL for all entities;

– complete EPRL;

– complete CARL;

– distribution point based CRL/EPRL/CARL.

Clauses E.5.1.1 to E.5.1.4 provide the set of conditions that shall be true in order for a relying party to use a CRL of each

type as the base CRL for certificate revocation status checking for reason codes of interest.

Indirect base CRLs are addressed within each of the subclauses.

E.5.1.1 Complete CRL

In order to determine that a CRL is a complete CRL for end-entity public-key cerificates and CA certificates for which the

CRL issuer is responsible, for all reason codes of interest, the following shall be true:

– the delta CRL indicator extension shall be absent; and

– the IDP extension may be present; and

– either the IDP extension shall not contain a distribution point component or one of the names in the

distribution point component shall match the issuer component in the CRL; and

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 203

– the IDP extension shall either not contain any of the following components or if it contains any of the

following components, none of the components present shall be set to TRUE:

containsUserPublicKeyCerts, containsCACerts, containsUserAttributeCerts,

containsAACerts, and/or containsSOAPublicKeyCerts; and

– if the reasonCodes component is present in the IDP extension, the reasons code component shall include

all the reasons of interest to the application; and

– the IDP extension may or may not contain the indirectCRL component (hence, this component need not

be checked).

E.5.1.2 Complete EPRL

In order to determine that a CRL is a complete EPRL for reason codes of interest, all of the following shall be true:

– the delta CRL indicator extension shall be absent;

– the IDP extension shall be present;

– either the IDP extension shall not contain a distribution point component or one of the names in the

distribution point component shall match the issuer component in the CRL;

– the IDP extension shall contain a containsUserPublicKeyCerts component, which shall be set to

TRUE;

– if the reasonCodes component is present in the IDP extension, the reasons code component shall include

all the reasons of interest to the application; and

– the IDP extension may or may not contain the indirectCRL component (hence, this component need not

be checked).

This CRL may be only used if the relying party has determined the subject certificate to be an end-entity certificate. Thus,

if the subject certificate contains the basicConstraints extension, its value shall be cA=FALSE.

E.5.1.3 Complete CARL

In order to determine that a CRL is a complete CARL for reason codes of interest, all of the following conditions shall be

true:

– the delta CRL indicator extension shall be absent;

– the issuing point distribution shall be present;

– either the IDP extension shall not contain a distribution point component or one of the names in the

distribution point component shall match the issuer component in the CRL;

– the IDP shall contain the containsCACerts component, which shall be set to TRUE;

– if the reasonCodes component is present in the IDP extension, the reasons code component shall include

all the reasons of interest to the application; and

– the IDP may or may not contain the indirectCRL component (hence, this component need not be

checked).

This CARL may be only used if the subject certificate is a CA certificate. Thus, the subject certificate shall contain the

basicConstraints extension with cA set to TRUE.

E.5.1.4 Distribution point based CRL/EPRL/CARL

In order to determine that a CRL is one of the CRLs indicated by a CRL distribution point extension or the freshest CRL

extension in the certificate, all of the following conditions shall be true.

– Either the distribution point component in the CRL's IDP extension shall be absent (only when not looking

for a critical CRL DP), or one of the names in the distribution point component in the CRL distribution

point extension or the freshest CRL extension of the certificate shall match one of the names in the

distribution point component in the IDP extension of the CRL. Alternatively, one of the names in the

cRLIssuer component of the certificate's CRL DP or the freshest CRL extension can match one of the

names in the DP of the IDP.

– The IDP extension shall either not contain any of the following components, or if it contains any of the

following components, none of the components present shall be set to TRUE:

containsUserPublicKeyCerts, containsCACerts, containsUserAttributeCerts,

containsAACerts, and/or containsSOAPublicKeyCerts, or the component appropriate for the

certificate type shall be set to TRUE (See Table E.1 for component type for each certificate type).

ISO/IEC 9594-8:2017 (E)

204 Rec. ITU-T X.509 (10/2016)

– If the reasons code component is present in the CRL distribution point extension or the freshest CRL

extension of the certificate, this component shall be either absent from the IDP extension of the CRL or

contain at least one of the reason codes asserted in the CRL distribution point extension of the certificate.

– If the cRLIssuer component is absent from the CRL distribution point extension of the certificate, the

CRL shall be signed by the same CA that signed the certificate; and

– if the cRLIssuer component is present in the relative extension (CRL distribution point or freshest CRL

extension) of the certificate, the CRL shall be signed by the CRL issuer identified in the CRL distribution

point extension or the freshest CRL extension of the certificate and the CRL shall contain the indirectCRL

component in the IDP extension.

NOTE – When testing the reasons and cRLIssuer component for presence, the test succeeds only if the field is present in the

same DistributionPoint value of the CRL DP or the freshest CRL extension for which there is a name match in the distribution point

field of the IDP extension in the corresponding CRL.

Table E.1 – Certificate type and issuing distribution point extension

Certificate type Issuing distribution point extension

End Entity (public key) containsUserPublicKeyCerts

CA containsCACerts

End Entity (attribute) containsUserAttributeCerts

AA containsAACerts

SOA containsSOAPublicKeyCerts

E.5.2 Validate delta CRL scope

The relying party may also be checking dCRLs, either because they are required to do so through a critical freshestCRL

extension in the certificate or CRL, or because the policy under which the relying party is operating requires dCRL

checking.

A relying party can always be sure that it has the appropriate CRL information for a certificate if all of the following

conditions are met:

– the base CRL the relying party is using is appropriate for the certificate (in terms of the scope);

– the delta CRL the relying party is using is appropriate for the certificate (in terms of the scope); and

– the base CRL was issued at the time or later than the base CRL referenced by the dCRL.

In order to determine that the dCRL is appropriate for the certificate, all of the following conditions shall be true.

– The delta CRL indicator extension shall be present.

– The dCRL shall be issued after the base CRL. One way to ensure this is to check that the CRL number in

the crlNumber extension of the dCRL is greater than the CRL number in the crlNumber extension of the

base CRL the relying party is using and the cRLStreamIdentifier extensions in the base and the dCRL

match. This approach may require additional logic to account for number wrapping. Another way is to

compare the thisUpdate components in the base and dCRLs that the relying party has.

– The base CRL the relying party is using shall be the one the dCRL is issued for or a later one. One way to

ensure this is to check that the CRL number in the deltaCRLIndicator extension of the dCRL is less

than or equal to the CRL number in the crlNumber extension of the base CRL the relying party is using

and the cRLStreamIdentifier extensions in the base and the dCRL match. This approach may require

additional logic to account for number wrapping. Another way is to compare the thisUpdate components

of the base CRL the relying party has and the base CRL pointed to by the dCRL. Yet another way is to

compare the thisUpdate component in the base CRL the relying party has and the baseUpdateTime

extension in the dCRL the relying party has.

NOTE – A relying party can always construct a base CRL by applying a dCRL to a base CRL, as long as the above two rules are

satisfied using the crlNumber and cRLStreamIdentifier checks. In this case, the new base CRL's crlNumber extension and thisUpdate

component are those of the dCRL. The relying party does not know the nextUpdate fcomponent of the new base CRL and does not

need to know for the purpose of associating it with another dCRL.

– If the dCRL contains an IDP extension, then the scope of the IDP shall be consistent with the certificate as

described in clause E.5.1.4; and

– If the dCRL does not contain any of the following extensions: streamIdentifier and

issuingDistributionPoint, it shall be used only in conjunction with a full and complete base CRL.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 205

E.5.3 Validity and currency checks on the base CRL

In order to verify that a base CRL is accurate and has not been modified since its issuance, all of the following conditions

shall be satisfied:

– The relying party shall be able to obtain the public key of the issuer identified in the CRL using authenticated

means; and

– the signature on the base CRL shall be verified using this authenticated public key; and

– if the nextUpdate component is present, the current time should be prior to the nextUpdate component;

and

– the issuer name in the CRL shall match the issuer name in the certificate that is being checked for revocation,

unless the CRL is retrieved from the CRL DP in the certificate and the CRL DP extension contains the CRL

issuer component. In this case, one of the names in the CRL issuer component in the CRL DP extension

shall match the issuer name in the CRL.

E.5.4 Validity and checks on the delta CRL

In order to verify that a dCRL is accurate and has not been modified since its issuance, all of the following conditions shall

be satisfied:

– The relying party shall be able to obtain the public key of the issuer identified in the CRL using authenticated

means; and

– the signature on the dCRL shall be verified using this authenticated public key; and

– if the nextUpdate component is present, the current time should be prior to the nextUpdate component;

and

– the issuer name in the dCRL shall match the issuer name in the certificate which is being checked for

revocation, unless the delta CRL is retrieved from the CRL DP in the certificate and the CRL DP extension

contains the CRL issuer component. In this case, one of the names in the CRL issuer component in the CRL

DP extension shall match the issuer name in the CRL.

ISO/IEC 9594-8:2017 (E)

206 Rec. ITU-T X.509 (10/2016)

Annex F

Examples of delta CRL issuance

(This annex does not form an integral part of this Recommendation | International Standard.)

There are two models for issuing CRLs involving the use of dCRLs for a given set of certificates.

In the first model, each dCRL references the most recent CRL that is complete for the given scope. Several dCRLs may

be issued for that same scope before a new CRL that is complete for that scope is issued. The new CRL that is complete

for that scope is used as the foundation for the next sequence of dCRLs and is the CRL that is referenced in the relevant

extension in the dCRL. When the new CRL that is complete for the scope is issued, a final dCRL for the previous CRL

that is complete for the scope is also issued.

The second model, while very similar, differs in that the CRL referenced by a dCRL is not necessarily the one that is

complete for a given scope (i.e., the referenced CRL may only have been issued as a dCRL). If the referenced CRL is one

that is complete for the given scope, it may not necessarily be the most recent one that is complete for that scope.

A certificate-using system that is processing a dCRL shall also have a CRL that is complete for the given scope and that is

at least as current as the CRL referenced in the dCRL. This CRL that is complete for the given scope may be one that was

issued as such by the responsible authority or it may be one constructed locally by the certificate-using system. Note that

in some situations there may be duplicate information in the dCRL and a CRL that is complete for the given scope if, for

example, the certificate-using system has a CRL that was issued after the one referenced in the dCRL.

Table F.1 illustrates three examples of the use of dCRLs. Example 1 is the traditional scheme described as the first model

above. Examples 2 and 3 are variants of the second model described above.

In example 2, the authority issues CRLs, that are complete for the given scope, every second day and the dCRLs reference

the second to last complete for scope CRL. This scheme may be useful in environments where there is a need to reduce

the number of users accessing a repository at the same time to retrieve a CRL that is complete for a given scope. In example

2, users that have the most recent CRL that is complete for the scope, as well as users who have the second most recent

complete for scope CRL can use the same dCRL. Both sets of users have complete revocation information about the

certificates for that given scope at the time of issuance of the dCRL being used.

In example 3, CRLs that are complete for the given scope are issued once a week as in example 1, but every dCRL

references a base of revocation information seven days prior to that dCRL.

An example of the use of indirect CRLs is not provided here, but is a superset of those examples.

These are examples only and other variants are also possible, depending on local policy. Some factors which might be

considered when establishing that policy include: number of users and frequency accessing CRLs, replication of CRLs,

load balancing for directory systems holding CRLs, performance, latency requirements, etc.

Table F.1 – Examples of the use of dCRLs

Day

Example 1 – Delta references most

recent CRL that is complete

for given scope

Example 2 – Delta references second most

recent CRL that is complete

for given scope

Example 3 – Delta references

7-day-old revocation

information

CRL complete for

given scope
Delta CRL

CRL complete for

given scope
Delta CRL

CRL complete for

given scope
Delta CRL

8 thisUpdate=day 8

nextUpdate=day 15

crlNumber=8

thisUpdate=day 8

nextUpdate=day 9

crlNumber=8

BaseCRLNumber=1

thisUpdate=day 8

nextUpdate=day 10

crlNumber=8

thisUpdate=day 8

nextUpdate=day 9

crlNumber=8

BaseCRLNumber=6

thisUpdate=day 8

nextUpdate=day 15

cRLNumber=8

thisUpdate=day 8

nextUpdate=day 9

cRLNumber=8

BaseCRLNumber= 1

9 not issued thisUpdate=day 9

nextUpdate=day 10

crlNumber=9

BaseCRLNumber=8

not issued thisUpdate=day 9

nextUpdate=day 10

crlNumber=9

BaseCRLNumber=6

not issued thisUpdate=day 9

nextUpdate=day 10

cRLNumber=9

BaseCRLNumber= 2

10 not issued thisUpdate=day 10

nextUpdate=day 11

crlNumber=10

BaseCRLNumber=8

thisUpdate=day 10

nextUpdate=day 12

crlNumber=10

thisUpdate=day 10

nextUpdate=day 11

crlNumber=10

BaseCRLNumber=8

not issued thisUpdate=day 10

nextUpdate=day 11

cRLNumber=10

BaseCRLNumber= 3

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 207

Table F.1 (concluded)

Day

Example 1 – Delta references most

recent CRL that is complete

for given scope

Example 2 – Delta references second most

recent CRL that is complete

for given scope

Example 3 – Delta references

7-day-old revocation

information

CRL complete for

given scope
Delta CRL

CRL complete for

given scope
Delta CRL

CRL complete for

given scope
Delta CRL

11-14 Patterns continue as for previous days

15 thisUpdate=day 15

nextUpdate=day 22

crlNumber=15

thisUpdate=day 15

nextUpdate=day 16

crlNumber=15

BaseCRLNumber=8

not issued thisUpdate=day 15

nextUpdate=day 16

crlNumber=15

BaseCRLNumber=12

thisUpdate=day 15

nextUpdate=day 22

cRLNumber=15

thisUpdate=day 15

nextUpdate=day 16

cRLNumber=15

BaseCRLNumber= 8

16 not issued thisUpdate=day 16

nextUpdate=day 17

crlNumber=16

BaseCRLNumber=15

thisUpdate=day 16

nextUpdate=day 18

crlNumber=16

thisUpdate=day 16

nextUpdate=day 17

crlNumber=16

BaseCRLNumber=14

not issued thisUpdate=day 16

nextUpdate=day 17

cRLNumber=16

BaseCRLNumber= 9

ISO/IEC 9594-8:2017 (E)

208 Rec. ITU-T X.509 (10/2016)

Annex G

Privilege policy and privilege attribute definition examples

(This annex does not form an integral part of this Recommendation | International Standard.)

G.1 Introduction

Privilege policy defines for privilege management, precisely when a privilege verifier should conclude that a presented set

of privileges is sufficient in order that it may grant access (to the requested object, resource, application, etc.) to the

privilege asserter. Formal specification of privilege policy can aid a privilege verifier with the automated assessment of a

privilege asserter's privileges against the sensitivity of the requested resource, since it includes the rules for determining

the pass/fail of a privilege asserter's request, given their privilege and the sensitivity of the resource.

Because there are requirements to ensure the integrity of the privilege policy being used in those determinations, an

identifier of the privilege policy, in the form of an object identifier, and a HASH of the entire privilege policy can be

carried in signed objects, stored in directory entries, etc. However, no specific syntax used to define an instance of privilege

policy is standardized in this Specification.

G.2 Sample syntaxes

Privilege policy may be defined using any syntax, including plain text. In order to assist those defining privilege policies

in understanding various options for the definitions, two sample syntaxes, which could be used for this purpose, are

provided in this annex. It needs to be stressed that these are examples only and the implementation of privilege management

through the use of attribute certificates or the subjectDirectoryAttributes extension of public-key certificates are

NOT required to support these or any other specific syntaxes.

G.2.1 First example

The following ASN.1 syntax is one example of a comprehensive and flexible tool for the definition of privilege policy.

PrivilegePolicySyntax ::= SEQUENCE {

 version Version,

 ppe PrivPolicyExpression }

PrivPolicyExpression ::= CHOICE {

 ppPredicate [0] PrivPolicyPredicate,

 and [1] SET SIZE (2..MAX) OF PrivPolicyExpression,

 or [2] SET SIZE (2..MAX) OF PrivPolicyExpression,

 not [3] PrivPolicyExpression,

 orderedPPE [4] SEQUENCE OF PrivPolicyExpression }

 -- Note: "sequence" defines the temporal order in which the

 -- privilege shall be examined

PrivPolicyPredicate ::= CHOICE {

 present [0] PrivilegeIdentifier,

 equality [1] PrivilegeComparison, -- single/set-valued priv.

 greaterOrEqual [2] PrivilegeComparison, -- single-valued priv.

 lessOrEqual [3] PrivilegeComparison, -- single-valued priv.

subordinate [4] PrivilegeComparison, -- single-valued priv.

substrings [5] SEQUENCE { -- single-valued priv.

 type PrivilegeType,

 initial [0] PrivilegeValue OPTIONAL,

 any [1] SEQUENCE OF PrivilegeValue,

 final [2] PrivilegeValue OPTIONAL },

 subsetOf [6] PrivilegeComparison, -- set-valued priv.

 supersetOf [7] PrivilegeComparison, -- set-valued priv.

 nonNullSetInter [8] PrivilegeComparison, -- set-valued priv.

 approxMatch [9] PrivilegeComparison,

 -- single/set-valued priv. (approximation defined by application)

 extensibleMatch [10] SEQUENCE {

 matchingRule OBJECT IDENTIFIER,

 inputs PrivilegeComparison } }

PrivilegeComparison ::= CHOICE {

 explicit [0] Privilege,

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 209

 -- the value(s) of an external privilege identified by

 -- Privilege.privilegeId is(are) compared with the value(s)

 -- explicitly provided in Privilege.privilegeValueSet
 byReference [1] PrivilegeIdPair }

 -- the value(s) of an external privilege identified by

 -- PrivilegeIdPair.firstPrivilege is(are) compared with

 -- the value(s) of a second external privilege identified by

 -- PrivilegeIdPair.secondPrivilege

Privilege ::= SEQUENCE {

 type PRIVILEGE.&id ({SupportedPrivileges}),

 values SET SIZE (0..MAX) OF PRIVILEGE.&Type ({SupportedPrivileges} {@type}) }

SupportedPrivileges PRIVILEGE ::= { ... }

PRIVILEGE ::= ATTRIBUTE

-- Privilege is analogous to Attribute

PrivilegeIdPair ::= SEQUENCE {

 firstPrivilege PrivilegeIdentifier,

 secondPrivilege PrivilegeIdentifier }

PrivilegeIdentifier ::= CHOICE {

 privilegeType [0] PRIVILEGE.&id ({SupportedPrivileges}),

 xmlTag [1] OCTET STRING,

 edifactField [2] OCTET STRING }

 -- PrivilegeIdentifier extends the concept of AttributeType to other

 -- (e.g., tagged) environments, such as XML and EDIFACT

Version ::= INTEGER { v1(0) }

A concrete example may help to clarify the creation and use of the above PrivilegePolicy construct.

Consider the privilege to approve a salary increase. For simplicity, assume that the policy to be enforced states that only

senior managers and above can approve increases, and that an approval can only be given for a position lower than your

own (e.g., a Director can approve an increase for a Senior Manager, but not for a Vice-President). For this example, assume

that there are six possible ranks ("TechnicalStaff" = 0, "Manager" = 1, "Senior Manager" = 2, "Director" = 3, "Vice-

President" = 4, "President" = 5).

Assume, furthermore, that the Attribute Type (the "privilege") identifying rank in an Attribute Certificate is OBJECT ID

OID-C and that the Attribute Type (the "sensitivity") identifying rank in the database record whose salary field is to be

modified is OBJECT ID OID-D (these would of course be replaced by real object identifiers in an actual implementation).

The following Boolean expression denotes the desired "salary approval" policy (codifying this in a PrivilegePolicy

expression is a relatively straightforward task):

AND (NOT (lessOrEqual (value corresponding to OID-C, value corresponding to OID-D))

subsetOf (value corresponding to OID-C, { 2, 3, 4, 5 }))

This policy encoding says that the rank of the approver shall be greater than (expressed as "NOT less-than-or-equal-to")

the rank of the approvee AND that the rank of the approver shall be one of {Senior Manager, ..., President} in order for

this Boolean expression to evaluate to TRUE. The first privilege comparison is "by reference", comparing the values

corresponding to the Attribute Type "rank" for both entities involved. The second privilege comparison is "explicit"; here

the value corresponding to the privilege "rank" for the approver is compared with an explicitly included list of values. The

privilege verifier in this situation, therefore, needs a construct codifying this policy along with two Attributes, one

associated with the approver and one associated with the approvee. The approver's Attribute (which would be contained in

an Attribute Certificate) may have the value {OID-C 3} and the approvee's Attribute (which may be contained in a database

record) may have the value {OID-D 3}. Comparing the AttributeValue corresponding to the approver's Attribute Type (in

this example, 3) with the Attribute Value corresponding to the approvee's Attribute Type (in this example, also 3) results

in a FALSE for the "NOT lessOrEqual" expression, and so the first Director is denied the ability to approve a salary

increase for the second Director. On the other hand, if the approvee's Attribute was {OID-D 1}, the Director would be

granted the ability to approve the Manager's increase.

mailto:%7b@type%7d

ISO/IEC 9594-8:2017 (E)

210 Rec. ITU-T X.509 (10/2016)

It is not difficult to conceive of useful additions to the above expression. For example, a third component of the 'and' could

be added saying that the environment variable "currentTime", read from the local clock and then encoded as an attribute

of type OBJECT ID OID-E, shall be within a particular span specified explicitly in the expression as an attribute of type

OBJECT ID OID-F. Thus, for example, salary updates may be permitted only if the above conditions are satisfied and the

request takes place during business hours.

G.2.2 Second example

A security policy in its simplest form is a set of criteria for the provision of security services. With regard to access control,

security policy is a subset of a higher system-level security policy that defines the means for enforcing access control

policies between initiators and targets. The access control mechanisms need to permit communication where a specific

policy permits; deny communication where a specific policy does not explicitly permit.

A security policy is the basis for the decisions made by the access control mechanisms. Domain-specific security policy

information is conveyed via the Security Policy Information File (SPIF).

The SPIF is a signed object to protect it from unauthorized changes. The SPIF contains information used to interpret the

access control parameters contained in the security label and the clearance attribute. The security policy identifier that

appears in the clearance attribute needs to be associated with a specific implementation syntax and semantics as defined

by the security policy. This implementation syntax associated with a specific security policy is maintained in a SPIF.

The SPIF conveys equivalencies between authorizations and sensitivities across security policy domains as determined by

security policies, provides a printable representation of security labels, and maps displayable strings to security levels and

categories for presentation to end users when selecting a data object's security attributes. Equivalency mappings are

expressed so that a label generated under one security policy domain may be correctly interpreted by an application

operating in another security policy domain. The SPIF also maps the clearance attribute to the message security label fields

and the presentation labels that should be displayed to the user. This mapping, if successful, verifies that the intended

recipient has the proper authorizations to accept the data object.

A SPIF contains a sequence of the following:

– versionInformation – indicates the version of the ASN.1 syntax.

– updateInformation – indicates the version of the syntax and semantics of the SPIF specification.

– securityPolicyIdData – identifies the security policy to which the SPIF applies.

– privilegeId – indicates the OID that identifies the syntax that is included in the clearance attribute

security category.

– rbacId – object identifier which identifies the syntax of the security category that is used in conjunction

with the SPIF.

– securityClassifications – maps the classification of the security label to a classification in the

clearance attribute, and also provides equivalency mappings.

– securityCategoryTagSets – maps the security categories of the security label to the security categories

in the clearance attribute, and also provides equivalency mappings.

– equivalentPolicies – consolidates all equivalent policies in the SPIF.

– defaultSecurityPolicyIdData – identifies the security policy which will apply if data is received

without a security label.

– extensions – provides a mechanism to include additional capabilities as future requirements are

identified.

The Security Policy Information File is defined in the following syntax:

SecurityPolicyInformationFile ::= SIGNED {SPIF}

SPIF ::= SEQUENCE {

 versionInformation VersionInformationData DEFAULT v1,

 updateInformation UpdateInformationData,

 securityPolicyIdData ObjectIdData,

 privilegeId OBJECT IDENTIFIER,

 rbacId OBJECT IDENTIFIER,

 securityClassifications [0] SEQUENCE OF SecurityClassification OPTIONAL,

 securityCategories [1] SEQUENCE OF SecurityCategory OPTIONAL,

 equivalentPolicies [2] SEQUENCE OF EquivalentPolicy OPTIONAL,

 defaultSecurityPolicyIdData [3] ObjectIdData OPTIONAL,

 extensions [4] Extensions OPTIONAL }

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 211

VersionInformationData ::= INTEGER { v1(0) }

UpdateInformationData ::= SEQUENCE {

 sPIFVersionNumber INTEGER,

 creationDate GeneralizedTime,

 originatorDistinguishedName Name,

 keyIdentifier OCTET STRING OPTIONAL }

ObjectIdData ::= SEQUENCE {

 objectId OBJECT IDENTIFIER,

 objectIdName UnboundDirectoryString }

SecurityClassification ::= SEQUENCE {

 labelAndCertValue INTEGER,

 classificationName DirectoryString {ubClassificationNameLength},

 equivalentClassifications [0] SEQUENCE OF EquivalentClassification OPTIONAL,

 hierarchyValue INTEGER,

 markingData [1] SEQUENCE OF MarkingData OPTIONAL,

 requiredCategory [2] SEQUENCE OF OptionalCategoryGroup OPTIONAL,

 obsolete BOOLEAN DEFAULT FALSE }

EquivalentClassification ::= SEQUENCE {

 securityPolicyId OBJECT IDENTIFIER,

 labelAndCertValue INTEGER,

..applied INTEGER {

 encrypt (0),

 decrypt (1),

 both (2) } }

MarkingData ::= SEQUENCE {

 markingPhrase DirectoryString {ubMarkingPhraseLength} OPTIONAL,

..markingCodes SEQUENCE OF MarkingCode OPTIONAL }

MarkingCode ::= INTEGER {

 pageTop (1),

 pageBottom (2),

 pageTopBottom (3),

 documentEnd (4),

 noNameDisplay (5),

 noMarkingDisplay (6),

 unused (7),

 documentStart (8),

 suppressClassName (9)}

OptionalCategoryGroup ::= SEQUENCE {

 operation INTEGER {

 onlyOne (1),

 oneOrMore (2),

 all (3) },

 categoryGroup SEQUENCE OF OptionalCategoryData }

OptionalCategoryData ::= SEQUENCE {

 optCatDataId OC-DATA.&id({CatData}),

 categorydata OC-DATA.&Type({CatData}{@optCatDataId }) }

OC-DATA ::= TYPE-IDENTIFIER

CatData OC-DATA ::= { ... }

EquivalentPolicy ::= SEQUENCE {

 securityPolicyId OBJECT IDENTIFIER,

 securityPolicyName UnboundedDirectoryString OPTIONAL }

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {

 extensionId EXTENSION.&objId ({ExtensionSet}),

 critical BOOLEAN DEFAULT FALSE,

 extensionValue OCTET STRING }

ISO/IEC 9594-8:2017 (E)

212 Rec. ITU-T X.509 (10/2016)

Note that the SPIF example is an evolving syntax and the full definition and description of each element can be found in

Rec. ITU-T X.841 | ISO/IEC 15816.

G.3 Privilege attribute example

The following example of an attribute to convey a particular privilege is provided purely as an illustration only. The actual

specification of this syntax and associated attribute is contained in Rec. ITU-T X.501 | ISO/IEC 9594-2 clause 19.5. This

particular attribute conveys clearance that can be associated with a named entity.

A clearance attribute associates a clearance with a named entity.

clearance ATTRIBUTE ::= {

 WITH SYNTAX Clearance

 ID id-at-clearance }

Clearance ::= SEQUENCE {

 policyId OBJECT IDENTIFIER,

 classList ClassList DEFAULT {unclassified},

 securityCategories SET SIZE (1..MAX) OF SecurityCategory OPTIONAL}

ClassList ::= BIT STRING {

 unmarked (0),

 unclassified (1),

 restricted (2),

 confidential (3),

 secret (4),

 topSecret (5) }

The individual components are described with the actual specification of this privilege in the referenced document.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 213

Annex H

An introduction to public key cryptography2)

(This annex does not form an integral part of this Recommendation | International Standard.)

In conventional cryptographic systems, the key used to encipher information by the originator of a secret message is the

same as that used to decipher the message by the legitimate recipient.

In public key cryptosystems (PKCS), however, keys come in pairs, one key of which is used for enciphering and the other

for deciphering. Each key pair is associated with a particular user X. One of the keys, known as the public key (Xp) is

publicly known, and can be used by any user to encipher data. Only X, who possesses the complementary private key (Xs)

may decipher the data. (This is represented notationally by D = Xs[Xp[D]].) It is computationally unfeasible to derive the

private key from knowledge of the public key. Any user can thus communicate a piece of information which only X can

find out, by enciphering it under Xp. By extension, two users can communicate in secret, by using each other's public key

to encipher the data, as shown in Figure H.1.

Figure H.1 – Use of a PKCS to exchange secret information

User A has public key Ap and private key As, and user B has another set of keys, Bp and Bs. A and B both know the public

keys of each other, but are unaware of the private key of the other party. A and B may therefore exchange secret information

with one another using the following steps (illustrated in Figure H.1).

1) A wishes to send some secret information x to B. A therefore enciphers x under B's enciphering key and

sends the enciphered information e to B. This is represented by:

 e = Bp[x]

2) B may now decipher this encipherment e to obtain the information x by using the secret decipherment

key Bs. Note that B is the only possessor of Bs, and because this key may never be disclosed or sent, it is

impossible for any other party to obtain the information x. The possession of Bs determines the identity

of B. The decipherment operation is represented by:

 x = Bs[e], or x = Bs[Bp[x]]

3) B may now similarly send some secret information, x', to A, under A's enciphering key, Ap:

 e' = Ap[x']

4) A obtains x' by deciphering e':

 x' = As[e'], or x' = As[Ap[x']]

By the above means, A and B have exchanged secret information x and x'. This information may not be obtained by anyone

other than A and B, providing that their private keys are not revealed.

Such an exchange can, as well as transferring secret information between the parties, serve to verify their identities.

Specifically, A and B are identified by their possession of the secret deciphering keys, As and Bs respectively. A may

determine if B is in possession of the secret deciphering key, Bs, by having returned part of his information x in B's message

x'. This indicates to A that communication is taking place with the possessor of Bs. B may similarly test the identity of A.

2) For further information, see Diffie and Hellman (1976) in the bibliography.

ISO/IEC 9594-8:2017 (E)

214 Rec. ITU-T X.509 (10/2016)

It is a property of some PKCS that the steps of decipherment and encipherment can be reversed, as in D = Xp[Xs[D]]. This

allows a piece of information which could only have been originated by X, to be readable by any user (who has possession

of Xp). This can, therefore, be used in the certifying of the source of information, and is the basis for digital signatures.

Only PKCS which have this (permutability) property are suitable for use in this authentication framework. One such

algorithm is described in Annex E.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 215

Annex I

Examples of use of certification path constraints

(This annex does not form an integral part of this Recommendation | International Standard.)

I.1 Example 1: Use of basic constraints

Suppose the Widget Corporation wants to cross-certify the central CA of the Acme Corporate Group, but only wants the

Widget community to use end-entity public-key certificates issued by that CA, not public-key certificates issued by other

CAs certified by that CA.

The Widget Corporation could satisfy this requirement by issuing a public-key certificate for Acme's central CA, including

the following value in the Basic Constraints extension:

 { cA TRUE, pathLenConstraint 0 }

I.2 Example 2: Use of policy mapping and policy constraints

Suppose the following cross-certification scenario is required between the Canadian and U.S. governments:

a) a Canadian government CA wishes to certify use of U.S. government signatures with respect to a Canadian

policy called Can/US-Trade;

b) the U.S. government has a policy called US/Can-Trade, which the Canadian government is prepared to

consider equivalent to its Can/US-Trade policy;

c) the Canadian government wants to apply safeguards that require all U.S. certificates to explicitly state

support for the policy and which inhibit mapping to other policies within the U.S. domain.

A Canadian government CA could issue a certificate for a U.S. government CA with the following extension values:

Value of Certificate Policies extension:

{{ policyIdentifier -- object identifier for Can/US-Trade -- }}

Value of Policy Mappings extension:

{{ issuerDomainPolicy -- object identifier for Can/US-Trade -- ,

 subjectDomainPolicy -- object identifier for US/Can-Trade -- }}

Value of PolicyConstraints extension:

{{ policySet { -- object identifier for Can/US-Trade -- }, requireExplicitPolicy (0),

 inhibitPolicyMapping (0)}}

I.3 Use of name constraints extension

I.3.1 Examples of public-key certificate format with name constraints extension

CAs can impose various restrictions on the subject names (in the subject component or subjectAltName extension) of

subsequent public-key certificates in the certification path, by including the name constraints extension in CA certificates

they issue. This clause describes examples of CA certificates including the name constraints extension, along with an

indication of the requirements for subsequent public-key certificates to be acceptable in a related certification path.

To simplify these examples, only the directory name form is used in the name constraints extension.

ISO/IEC 9594-8:2017 (E)

216 Rec. ITU-T X.509 (10/2016)

I.3.1.1 Examples of permittedsubtrees

(1-1) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

sistinguished name form, if it exists, shall be equal to or subordinate to the Acme Inc. in U.S. (i.e., {C=US,

O=Acme Inc}) for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)

{C=US, O=Acme Inc}}}
(void)

(1-2) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall be equal to or immediately subordinate to the Acme Inc. in U.S. (i.e.,

{C=US, O=Acme Inc}) for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)

{C=US, O=Acme Inc},

maximum 1}}

(void)

(1-3) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall be subordinate to the Acme Inc. in U.S. (i.e., {C=US, O=Acme Inc})

for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)

{C=US, O=Acme Inc},

minimum 1}}

(void)

(1-4) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall be equal to or subordinate to the Acme Inc. in U.S. (i.e., {C=US,

O=Acme Inc}), or equal to or subordinate to the Acme Ltd. in U.K. (i.e., {C=UK, O=Acme Ltd}) for that public-

key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)

{C=US, O=Acme Inc}},

{base(directoryName)

{C=UK, O=Acme Ltd}}}

(void)

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 217

I.3.1.2 Examples of excludedsubtrees

(2-1) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall not be equal to nor subordinate to the Acme Corp. in Canada. (i.e.,

{C=CA, O=Acme Corp}) for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

(void)
{{base(directoryName)

{C=CA, O=Acme Corp}}}

(2-2) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall not be subordinate to each immediately subordinate of the Acme Corp.

in Canada (i.e., {C=CA, O=Acme Corp}) for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

(void)

{{base(directoryName)

{C=CA, O=Acme Corp},

minimum 2}}

(2-3) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall not be equal to the Acme Corp. in Canada (i.e., {C=CA, O=Acme

Corp}) for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

(void)

{{base(directoryName)

{C=CA, O=Acme Corp},

maximum 0}}

(2-4) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall not be equal to nor subordinate to the Acme Corp. in Canada (i.e.,

{C=CA, O=Acme Corp}), nor equal to nor subordinate to the Asia Acme in Japan (i.e., {C=JP, O=Asia Acme})

for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

(void)

{{base(directoryName)

{C=CA, O=Acme Corp}},

{base(directoryName)

{C=JP, O=Asia Acme}}}

ISO/IEC 9594-8:2017 (E)

218 Rec. ITU-T X.509 (10/2016)

I.3.1.3 Examples of permittedsubtrees and excludedsubtrees

(3-1) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall be equal to or subordinate to the Acme Inc. in U.S. (i.e., {C=US,

O=Acme Inc}) except the R&D organization unit of Acme Inc. and the R&D organization's subordinates for that

public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)

{C=US, O=Acme Inc}}}

{{base(directoryName)

{C=US, O=Acme Inc,

OU=R&D}}}

(3-2) If the CA certificate contains the following name constraints extension, for all subsequent public-key certificates

in the certification path, each subject name (in the subject component or subjectAltName extension) in

distinguished name form, if it exists, shall be equal to one of immediately subordinates to the Acme Inc. in U.S.

(i.e., {C=US, O=Acme Inc}) except the Purchasing organization unit (i.e., {C=US, O=Acme Inc,

OU=Purchasing}) for that public-key certificate to be acceptable.

nameConstraints extension

permittedSubtrees excludedSubtrees

{{base(directoryName)

{C=US, O=Acme Inc},

minimum 1, maximum 1}}

{{base(directoryName)

{C=US, O=Acme Inc,

OU=Purchasing}}}

I.3.2 Examples of certificate handling with name constraints extension

This clause describes examples of how subject names (in the subject component or subjectAltName extension) are

validated during public-key certificate processing with the path processing state variables, namely permitted-subtrees and

excluded-subtrees.

To simplify these examples, only the distinguished name form and rfc822 name form are used in the name constraints

extension.

I.3.2.1 Name spaces constraints by permitted-subtrees indistinguished name form

In this case, for the public-key certificate to be acceptable, each subject name (in the subject component or

subjectAltName extension) in distinguished name form appearing in the certificate in question shall satisfy the constraint

imposed by path processing state variable permitted-subtrees.

(1-1) One permitted subtree for distinguished name is present.

Path processing state variables

permitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acme Inc}}}

NONE

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 219

Acceptable public-key certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

2
subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

3
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName (rfc822Name) = manager@purchasing.acme.com

4

subject = {}

subjectAltName (directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName (rfc822Name) = manager@purchasing.acme.com

5
subject = {}

subjectAltName (rfc822Name) = manager@purchasing.acme.com

6
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName (directoryName) = {C=US, O=Acme Inc, OU=Accounting}

Unacceptable public-key certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

2
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName (directoryName) = {C=US, O=Acme Ltd, OU=Purchasing}

3
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName (directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

4
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName (directoryName) = {C=US, O=Acme Ltd, OU=Accounting}

(1-2) Two permitted subtrees for distinguished name are present.

Path processing state variables

permitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acme Inc}},

{base(directoryName)
{C=US, O=Acme Ltd}}}

NONE

Acceptable public-key certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

2
subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU=Purchasing}

3
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme-ltd.com

4

subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

5
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU= Accounting}

6
subject = {}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

mailto:manager@purchasing.acme.com
mailto:manager@purchasing.acme.com
mailto:manager@purchasing.acme.com

ISO/IEC 9594-8:2017 (E)

220 Rec. ITU-T X.509 (10/2016)

Unacceptable public-key certificate examples

1 subject = {C=US, O=Acme International, OU=Accounting}

2
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Accounting}

3
subject = {C=US, O=Acme International, OU=Accounting}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

4
subject = {C=US, O=Acme International, OU=Accounting}

subjectAltName(directoryName) = {C=US, O=Acme Corp, OU=Accounting}

5

subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Accounting}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

I.3.2.2 Name spaces constraints by excluded-subtrees in distinguished name form

In this case, for the certificate to be acceptable, each subject name (in the subject component or subjectAltName

extension) in distinguished name form appearing in the public-key certificate in question shall satisfy the constraint by the

path processing state variable excluded-subtrees.

(2-1) One excluded subtree for distinguished is present.

Path processing state variables

permitted-subtrees excluded-subtrees

NONE
{{base(directoryName)

{C=US, O=Acme Ltd}}}

Acceptable public-key certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

2
subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

3
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

4

subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

5
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Accounting}

6
subject = {}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

Unacceptable public-key certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

2
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme Ltd, OU=Accounting}

(2-2) Two excluded subtrees for distinguished name are present.

Path processing state variables

permitted-subtrees excluded-subtrees

NONE

{{base(directoryName)
{C=US, O=Acme Inc}},

{base(directoryName)
{C=US, O=Acme Ltd}}}

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 221

Acceptable public-key certificate examples

1 subject = {C=US, O=Acme International, OU=Purchasing}

2
subject = {}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Purchasing}

3
subject = {C=US, O=Acme International, OU=Purchasing}

subjectAltName(rfc822Name) = purchasing@acme-international.com

4

subject = {}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme N.Y, OU=Purchasing}

subjectAltName(rfc822Name) = purchasing@acme-international.com

5
subject = {}

subjectAltName(rfc822Name) = purchasing@acme-international.com

Unacceptable public-key certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

2 subject = {C=US, O=Acme Ltd, OU=Purchasing}

3
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Accounting}

4

subject = {}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme International, OU=Purchasing}

subjectAltName(rfc822Name) = purchasing@acme-international.com

I.3.2.3 Name spaces constraints by permitted-subtrees in multiple name forms

In this case, for the certificate to be acceptable, each subject name (in the subject component or subjectAltName

extension) in distinguished name form or rfc822 name form appearing in the public-key certificate in question shall satisfy

the constraint by path processing state variable permitted-subtrees.

One permitted subtree for distinguished name and another permitted subtree rfc822Name are present.

Path processing state variables

permitted-subtrees excluded-subtrees

{{base(directoryName)
{C=US, O=Acme Inc}},
{base(rfc822Name)

{.acme.com}}}

NONE

Acceptable public-key certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

2
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

3
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Accounting}

4
subject = {}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

5
subject = {}

subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-inc.com

6
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-inc.com

ISO/IEC 9594-8:2017 (E)

222 Rec. ITU-T X.509 (10/2016)

Unacceptable public-key certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

2
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

3
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme-inc.com

4
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme-ltd.com

I.3.2.4 Name spaces constraints by excluded-subtrees in multiple name forms

In this case, for the certificate to be acceptable, each subject name (in the subject component or subjectAltName

extension) in distinguished name form or rfc822 name form appearing in the public-key certificate in question shall satisfy

the constraint by path processing state variable excluded-subtrees.

Path processing state variables

permitted-subtrees excluded-subtrees

NONE

{{base(directoryName)
{C=US, O=Acme Inc}},
{base(rfc822Name)

{.acme.com}}}

Acceptable public-key certificate examples

1 subject = {C=US, O=Acme Ltd, OU=Purchasing}

2
subject = {}

subjectAltName(rfc822Name) = manager@purchasing.acme-ltd.com

3
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme-ltd.com

4
subject = {}

subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-inc.com

5
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(uniformResourceIdentifier) = http://purchasing.www.acme-ltd.com

Unacceptable public-key certificate examples

1 subject = {C=US, O=Acme Inc, OU=Purchasing}

2
subject = {}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

3
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

4
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme-inc.com

5
subject = {C=US, O=Acme Inc, OU=Purchasing}

subjectAltName(rfc822Name) = manager@purchasing.acme.com

6
subject = {C=US, O=Acme Ltd, OU=Purchasing}

subjectAltName(directoryName) = {C=US, O=Acme Inc, OU=Accounting}

I.3.3 Examples where multiple cross-certificates with name constraints extension are needed

In some cases, it may be required that more than one CA certificate be issued from a CA to another CA in order to achieve

the desired results. This might be the case if some of the name constraints requirements conflict, or if the disjunctive

evaluation of different name forms is required.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 223

I.3.3.1 Conflicting name space constraints requirements

Assume the Acme Corporation has 20 branches in the U.S.

The Widget Corporation wants to cross-certify the central CA of Acme Corporation, but only wants the Widget community

to use Acme certificates for subjects that meet the following criteria:

– Branch1 to Branch19 of Acme Corporation, all sections are acceptable as subjects;

– Branch20 of Acme Corporation, all sections are unacceptable as subjects except for subjects in the

purchasing section.

This could be achieved by issuing two certificates as follows: the first certificate would have a permittedSubtrees of

{base: C=US, O=Acme} and an excludedSubtrees of {base: C=US, O=Acme, OU=branch20}. The second certificate

would have a permittedSubtrees of {base: C=US, O=Acme, OU=branch20, OU=Purchasing}.

I.3.3.2 Disjunctive evaluation of name space constraints

Assume that the CA of organization X issues public-key certificates containing Internet domain names under the subtree

x.com, whilst another CA of organization Y issues certificates containing distinguished names under the subtree o=y,

c=US. Assume further that the CA of organization A has cross-certified the CAs of both organizations X and Y and that

the CA of organization B wishes to cross-certify CA A and, in addition, to trust the public-key certificates that are issued

by CAs X and Y. If CA B issues one cross-certificate to CA A containing a name constraints extension, with permitted

subtrees of x.com and o=y,c=US (in addition to the name space of CA A), then, if either CA X or CA Y add additional

name forms to their certificates that contain either distinguished names or domain names (respectively), then their public-

key certificates will no longer be valid for relying parties who have CA B as their trust anchor. One solution to this problem

is that CA B should issue two cross-certificates to CA A, one containing a name constraints extension with the permitted

subtree of x.com, and the other containing the permitted subtree of o=y,c=US.

ISO/IEC 9594-8:2017 (E)

224 Rec. ITU-T X.509 (10/2016)

Annex J

Guidance on determining for which policies a certification path is valid

(This annex does not form an integral part of this Recommendation | International Standard.)

The purpose of this annex is to provide guidance for PKI-enabled applications with respect to control of the certificate

policy-related processing of certification path validation. Control of certificate policy-related processing by the PKI

through the contents of certificates is described in the "Certification path processing procedure" clause of this Specification.

This annex addresses the initialization of two of the policy-related inputs in the path processing procedure: initial-policy-

set and initial-explicit-policy. In addition to these, the initial-policy-mapping-inhibit and initial-inhibit-any-policy inputs to

the procedure, which can also be initialized by the user, impact the processing of policy-related information during path

processing; however, these are outside the scope of this annex. Setting the initial-policy-mapping-inhibit to TRUE prevents

policy mappings from being used in successful path validations. Setting the initial-inhibit-any-policy to TRUE prevents the

special OID for anyPolicy, if present in a certificate, from being an acceptable match for a specific policy OID.

The term "user" in this annex can be used to mean a "human user" or a PKI-enabled "application".

The following scenarios are envisioned:

1) The user requires that the certification path be valid for one of the policies of interest to the user.

2) The user requires that the certification path be valid for at least a policy, but the user does not care which

policy it is. This scenario should (can) be used when the user intends to do additional policy processing

using other contextual information and information content, to determine if one of the policies the

certification path is valid for is acceptable to the user for the particular transaction.

3) The user has no policy-related requirements on the certification path. In other words, the user is willing to

accept a certification path that is not valid for any policy, but is otherwise valid.

4) The user desires that the certification path be valid for one of the policies of interest to the user, but failing

that, the user wants the opportunity to reconsider paths that are not valid for the policies of interest to them.

This scenario should (can) be used when the user generally requires the certification path to be valid for a

policy acceptable to the user, but based on other contextual information and information content, the user

may wish to override policy failure.

The following clauses describe how the user should go about obtaining the desired information from a compliant path

relying party.

J.1 Certification path valid for a user-specified policy required

In this scenario, the user requires that the certification path be valid for one of the policies of interest to the user. In order

to obtain the desired information, the user should set the policy processing related certification path validation inputs as

follows:

initial-policy-set = {set of policies of interest to the user}

initial-explicit-policy = TRUE

If the path validation is successful, the certification path is valid for at least one of the policies of interest to the user. The

certification path is valid for the policies listed in the user-constrained-policy-set output variable.

Under this scenario, applications should not use a certification path if it is rejected by a path relying party for certificate

policy-related failures3).

3) A path validation failure is a certificate policy-related failure when failure is caused by the certificate policy-related extension(s) or

certificate policy-related state variable(s). The certificate policy-related extensions are: certificatePolicies, policyMappings,

policyConstraints, and inhibitAnyPolicy. Certificate policy-related state variables are: authorities-constrained-policy-set, explicit-

policy-indicator, policy-mapping-inhibit-indicator, and inhibit-any-policy-indicator.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 225

J.2 Certification path valid for any policy required

In this scenario, the user requires that the certification path be valid for at least a policy, but the user does not care which

policy it is. In order to obtain the desired information, the user should set the policy processing related certification path

validation inputs as follows:

initial-policy-set = {anyPolicy}

initial-explicit-policy = TRUE

If the path validation is successful, the certification path is valid for at least a policy. The certification path is valid for the

policies listed in the user-constrained-policy-set output variable.

Under this scenario, applications should not use a certification path if it is rejected by a path relying party for certificate

policy-related failures.

J.3 Certification path valid regardless of policy

In this scenario, the user has no policy-related requirements on the certification path. In order to obtain the desired

information, the user should set the policy processing related certification path validation inputs as follows:

initial-policy-set = {anyPolicy}

initial-explicit-policy = FALSE

If the path validation is successful, the certification path is valid for the policies listed in the user-constrained-policy-set

output variable.

Under this scenario, applications should not use a certification path if it is rejected by a path relying party for certificate

policy-related failures.

It should be noted that in this scenario, the certification path can have policy-related failure. An example is if the

infrastructure (i.e., a CA certificate in the certification path) causes the setting of explicit-policy-indicator. In this case, if

the path is not valid for any policy, i.e., authorities-constrained-policy-set is empty, a compliant path relying party will

return a failure. Applications should reject the certification path for failure of this type.

J.4 Certification path valid for a user-specific policy desired, but not required

In this scenario, the user desires that the certification path be valid for one of the policies of interest to the user, but does

not want to reject paths that are not valid for any of the policies of interest to the user. In order to obtain the desired

information, the user should set the policy processing related certification path validation inputs as follows:

initial-policy-set = {set of policies of interest to the user}

initial-explicit-policy = FALSE

If the path validation is successful, the certification path is valid for the policies listed in the user-constrained-policy-set

output variable. The user-constrained-policy-set is a subset of the initial-policy-set. Please note that user-constrained-

policy-set could be NULL in this case when explicit-policy-indicator is not set. The application should examine the returned

user-constrained-policy-set to determine if the path is acceptable to the user.

Applications should reject the certification path for policy-related failure caused by the infrastructure in this scenario, (i.e.,

when the authorities-constrained-policy-set is empty and the explicit-policy-indicator is set).

It should be noted that in this scenario, the certification path can have policy-related failure. An example is if the

infrastructure (i.e., a CA certificate in the certification path) causes the setting of explicit-policy-indicator. In this case, if

the path is not valid for any policy, i.e., authorities-constrained-policy-set is empty, a compliant path relying party will

return a failure. Applications should reject the certification path for failure of this type.

Another example is the combination of the user input and infrastructure causes policy-related failure. This occurs when a

CA certificate in the certification path causes the setting of explicit-policy-indicator, authorities-constrained-policy-set is

not empty, and user-constrained-policy-set is empty. A compliant path relying party will return a failure. Under these

conditions, if the only reason for the path relying party returning a failure is that the user-constrained-policy-set is empty,

applications may choose to override that failure and accept the certification path. Authority imposed constraints are still

respected, by virtue of the authorities-constrained-policy-set not being empty. Acceptance of this path by an application is

equivalent to the application re-submitting the path to the relying party with initial-policy-set equal to anyPolicy initial-

explicit-policy equal to FALSE, and examining the returned user-constrained-policy-set to determine if the path is

acceptable.

ISO/IEC 9594-8:2017 (E)

226 Rec. ITU-T X.509 (10/2016)

Annex K

Key usage certificate extension issues

(This annex does not form an integral part of this Recommendation | International Standard.)

Combining the contentCommitment bit in the keyUsage certificate extension with other keyUsage bits may have

security implications depending on the security environment in which the public-key certificate is to be used. If the subject's

environment can be fully controlled and trusted, then there are no specific security implications. For example, in cases

where the subject is fully confident about exactly which data is signed or cases where the subject is fully confident about

the security characteristics of the authentication protocol being used. If the subject's environment is not fully controlled or

not fully trusted, then unintentional signing of commitments is possible. Examples include the use of badly formed

authentication exchanges and the use of a rogue software component. If untrusted environments are used by a subject,

these security implications can be limited through use of the following measures:

– to not combine the contentCommitment key usage setting in public-key certificates with any other key

usage setting and to use the corresponding private key only with this certificate;

– to limit the use of private keys associated with public-key certificates that have the contentCommitment

key usage bit set, to environments which are considered adequately controlled and trustworthy.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 227

Annex L

Deprecated extensions

(This annex does not form an integral part of this Recommendation | International Standard.)

This Annex includes extensions that have been deprecated.

L.1 CRL scope extension

The scope of a CRL is indicated within that CRL using the following CRL extension. In order to prevent a CRL substitution

attack against an relying party application that does not support the scope extension, the scope extension, if present, shall

be flagged as critical.

This extension may be used to provide scope statements of various CRL types including:

– simple CRLs that provide revocation information about public-key certificates issued by a single authority;

– indirect CRLs that provide revocation information about public-key certificates issued by multiple

authorities;

– delta -CRLs that update previously issued revocation information;

– indirect delta- CRLs that provide revocation information that updates multiple base CRLs issued by a single

authority or by multiple authorities.

crlScope EXTENSION ::= {

 SYNTAX CRLScopeSyntax

 IDENTIFIED BY id-ce-cRLScope }

CRLScopeSyntax ::= SEQUENCE SIZE (1..MAX) OF PerAuthorityScope

PerAuthorityScope ::= SEQUENCE {

 authorityName [0] GeneralName OPTIONAL,

 distributionPoint [1] DistributionPointName OPTIONAL,

 onlyContains [2] OnlyCertificateTypes OPTIONAL,

 onlySomeReasons [4] ReasonFlags OPTIONAL,

 serialNumberRange [5] NumberRange OPTIONAL,

 subjectKeyIdRange [6] NumberRange OPTIONAL,

 nameSubtrees [7] GeneralNames OPTIONAL,

 baseRevocationInfo [9] BaseRevocationInfo OPTIONAL,

 ... }

OnlyCertificateTypes ::= BIT STRING {

 user (0),

 authority (1),

 attribute (2)}

NumberRange ::= SEQUENCE {

 startingNumber [0] INTEGER OPTIONAL,

 endingNumber [1] INTEGER OPTIONAL,

 modulus INTEGER OPTIONAL,

 ... }

BaseRevocationInfo ::= SEQUENCE {

 cRLStreamIdentifier [0] CRLStreamIdentifier OPTIONAL,

 cRLNumber [1] CRLNumber,

 baseThisUpdate [2] GeneralizedTime,

 ... }

If the CRL is an indirect CRL that provides revocation status information for multiple authorities, the extension will include

multiple PerAuthorityScope constructs, one or more for each of the authorities for which revocation information is

included. Each instance of PerAuthorityScope that relates to an authority other than that issuing this CRL shall contain

the authorityName component. If the CRL is a dCRL that provides delta revocation status information for multiple base

CRLs issued by a single authority, the extension will include multiple PerAuthorityScope constructs, one for each of

the base CRLs for which this dCRL provides updates. Even though there would be multiple instances of the

PerAuthorityScope construct, the value of the authorityName component, if present, would be the same for all

instances.

If the CRL is an indirect dCRL that provides delta revocation status information for multiple base CRLs issued by multiple

authorities, the extension will include multiple PerAuthorityScope constructs, one for each of the base CRLs for which

ISO/IEC 9594-8:2017 (E)

228 Rec. ITU-T X.509 (10/2016)

this dCRL provides updates. Each instance of PerAuthorityScope that relates to an authority other than that issuing this

indirect dCRL shall include the authorityName component.

For each instance of PerAuthorityScope present in the extension, the component fields are used as follows. Note that

in the case of indirect CRLs and indirect dCRLs, each instance of PerAuthorityScope may contain different

combinations of these fields and different values.

The authorityName component field, if present, identifies the authority that issued the certificates for which revocation

information is provided. If authorityName is omitted, it defaults to the CRL issuer name.

The distributionPoint component field, if present, is used as described in the issuingDistributionPoint

extension.

The onlyContains component field, if present, indicates the type(s) of certificates for which the CRL contains revocation

status information. If this field is absent, the CRL contains information about all certificate types.

The onlySomeReasons component field, if present, is used as described in the issuingDistributionPoint extension.

The serialNumberRange component element, if present, is used as follows. When a modulus value is present, the serial

number is reduced modulo the given value before checking for presence in the range. Then, a certificate with a (reduced)

serial number is considered to be within the scope of the CRL if it is:

– equal to or greater than startingNumber, and less than endingNumber, where both are present; or

– equal to or greater than startingNumber, when endingNumber is not present; or

– less than endingNumber when startingNumber is not present.

The subjectKeyIdRange component element, if present, is interpreted in the same way as the serialNumberRange,

except that the number used is the value in the certificate's subjectKeyIdentifier extension. The DER encoding of

the BIT STRING (omitting the tag, length and unused bits octet) is to be regarded as the value of the DER encoding of an

INTEGER. If bit 0 of the BIT STRING is set, then an additional zero octet should be prepended to ensure the resulting

encoding represents a positive INTEGER. e.g.:

03 02 01 f 7 (represents bits 0-6 set)

maps to

02 02 00 f 7 (i.e., decimal 247)

The nameSubtrees component field, if present, uses the same conventions for name forms as specified in the

nameConstraints extension.

The baseRevocationInfo component field, if present, indicates that the CRL is a dCRL with respect to the certificates

covered by that PerAuthorityScope construct. Use of the crlScope extension to identify a CRL as a dCRL differs

from use of the deltaCRLIdentifier extension in the following way. In the crlScope case, the information in the

baseRevocationInfo component indicates the point in time from which the CRL containing this extension provides

updates. Although this is done by referencing a CRL, the referenced CRL may or may not be one that is complete for the

applicable scope, whereas the deltaCRLIdentifier extension references an issued CRL that is complete for the

applicable scope. However, the updated information provided in a dCRL containing the crlScope extension are updates

to the revocation information that is complete for the applicable scope regardless of whether or not the CRL referenced in

baseRevocationInfo was actually issued as one that is complete for that same scope. This mechanism provides more

flexibility than the deltaCRLIndicator extension since users can be constructing full CRLs locally and be constructing

based on time rather than issuance of base CRLs that are complete for the applicable scope. In both cases, a dCRL always

provides updates to revocation status for certificates within a given scope since a specific point in time. However, in the

deltaCRLIndicator case, that point in time shall be one for which a CRL that is complete for that scope was issued and

referenced. In the crlScope case, that point in time may be one for which the referenced CRL that was issued may or

may not be one that is complete for that scope.

Depending on the policy of the responsible authority, several dCRLs may be published before a new base CRL is published.

dCRLs containing the crlScope extension to reference their building point need not necessarily reference the cRLNumber

of the most recently issued base CRL in the BaseRevocationInfo field. However, the cRLNumber referenced in the

BaseRevocationInfo field of a dCRL shall be less than or equal to the cRLNumber of the most recently issued CRL

that is complete for the applicable scope.

Note that the issuingDistributionPoint extension and crlScope extension can conflict with each other and are not

intended to be used together. However, if the CRL contains both an issuingDistributionPoint extension and a

crlScope extension, then a public-key certificate falls within the scope of the CRL if and only if it meets the criteria of

both extensions. If the CRL contains an AAissuingDistributionPoint extension, but does not contain an

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 229

issuingDistributionPoint or crlScope extension, then the scope does not include public-key certificates. If the

CRL does not contain an issuingDistributionPoint, AAissuingDistributionPoint, or crlScope extension,

then the scope is the entire scope of the authority, and the CRL may be used for any certificate from that authority.

Similarly, the AAissuingDistributionPoint extension and crlScope extension can conflict with each other and are

not intended to be used together. However, if the CRL 45tmv contains both an AAissuingDistributionPoint

extension and a crlScope extension, then an attribute certificate falls within the scope of the CRL if and only if it meets

the criteria of both extensions. If the CRL contains an issuingDistributionPoint extension, but does not contain an

AAissuingDistributionPoint or crlScope extension, then the scope does not include attribute certificates. If the

CRL does not contain an issuingDistributionPoint, AAissuingDistributionPoint, or crlScope extension,

then the scope is the entire scope of the authority, and the CRL may be used for any certificate from that authority. (mixed

public-key and attribute)

When a relying party uses a CRL that contains a crlScope extension to check the status of a certificate, it should check

that the certificate and reason codes of interest fall within the scope of the CRL as defined by the crlScope extension, as

follows:

a) The relying party shall check that the certificate falls within the scope indicated by the intersection of the

serialNumberRange, subjectKeyIdRange, and nameSubtrees scopes, and is consistent with

distributionPoint, and onlyContains if present, for the relevant PerAuthorityScope construct.

b) If the CRL contains an onlySomeReasons component in the crlScope extension, then the relying party

shall check that the reason codes covered by this CRL are adequate for the purposes of the application. If

not, additional CRLs may be required. Note that if the CRL contains both a crlScope extension and an

issuingDistributionPoint extension, and both contain an onlySomeReasons component, then only

those reason codes included in the onlySomeReasons components of both extensions are covered by this

CRL.

ISO/IEC 9594-8:2017 (E)

230 Rec. ITU-T X.509 (10/2016)

Annex M

Directory concepts

(This annex does not form an integral part of this Recommendation | International Standard.)

M.1 Scope

This Specification makes use of several directory concepts that are defined in other part of the of the ITU-T X.500 series

of Recommendations | ISO/IEC 9594 (all parts). As this Specification should as far as possible be self-contained

minimizing references to other parts of the Directory Specifications, a short introduction to directory concepts in provided

in this annex.

M.2 Basic directory concepts

Objects to be represented in a directory typically have a hierarchical relationship, e.g., country, town, street, house number

and person. Object can be almost anything. It can be a physical object or an abstract objects, like passwords. Objects are

in a directory represented by directory entries, where the entries have the same hierarchical relationships as the objects

themselves.

Information about an object is stored as attributes in its corresponding entry. Figure M.1 is a simple example of a

hierarchical structure of entries representing information about objects. The set of entries within a directory form a tree.

This tree is referred to as the directory information tree (DIT).

Figure M.1 – Simple directory structure example

Naming of entries reflecting this hierarchy is further discussed in clause M.4. The concept of DIT is also used outside a

strict directory context.

M.3 Directory schema

To ensure consistency in a directory, the structure of directory information is controlled by a so-called directory schema.

Objects having common characteristics form an object class. An object class is identified by an object identifier and as part

of its definition, it is specified what type of information shall and which information may be included in an entry for an

object of this object class.

Information about an object is modelled as attributes. Attributes with common characteristics form an attribute type.

Examples of attribute types are country name, given name, organization name, etc. An attribute type is identified by an

object identifier. The specification of an attribute type includes the syntax for a value of that attribute type. Some attribute

types allow multiple values to be included in an attribute of that type, while other types only allow a single value.

This Specification defines in clauses 13 and 19 schema elements for storing PKI and PMI related information in a directory.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 231

M.4 Directory distinguished names

An object and its corresponding entry has a (directory) distinguished name that identifies its position withtn the DIT as

described above. Such a distinguished name consists of sequence name components called relative distinguished names

(RDNs).

The distinguished name of the root of the DIT is an empty sequence. Distinguished names just below the root consist of a

single RDN. At the next level, the distinguished names consist of two RDNs, etc.

A distinguished name is supposed to be globally unique and unambiguous.

NOTE 1 – It cannot be assumed, as there is a naming authority that can assure such uniqueness.

NOTE 2 – In a directory context distinguished names are associated with directory entries holding information about the represented

entities.

M.5 Subtrees

A subtree is a part of a DIT that has its root, also called the base, somewhere within the DIT. The subtree then consists of

the base plus all distinguished names subordinates to the base. This concept is used to identify a group of entities that might

have the same characteristics or interests. In a PKI context it is used to restrict the name used in public-key certificates.

ISO/IEC 9594-8:2017 (E)

232 Rec. ITU-T X.509 (10/2016)

Annex N

Considerations on strong authentication

(This annex does not form an integral part of this Recommendation | International Standard.)

N.1 Introduction

Strong authentication makes use of PKI as specified by this Specification, which provides the basic approach to

authentication. However, many authentication procedures employing this approach are possible. In general, it is the

business of a specific application to determine the appropriate procedures, so as to meet the security policy of the

application. This annex describes five particular authentication procedures that may be found useful across a range of

applications (see ISO/IEC 9798-3 for more information on entity authentication mechanisms using PKI techniques).

NOTE – This Specification does not specify the procedures in the detail required for implementation. However, additional standards

could be envisaged that would do so, either in an application-specific or in a general-purpose way.

The five procedures involve different numbers of entities and exchanges of authentication information, and consequently

provide different types of assurance to their participants. Specifically:

a) One-way authentication, described in clause N.2, involves a single transfer of information from one user

(A) intended for another (B), and establishes the following:

– the identity of A, and that the authentication token actually was generated by A;

– the identity of B, and that the authentication token actually was intended to be sent to B;

– the origin, integrity and timeliness (the property of not having been sent two or more times) of the

authentication token being transferred.

 The latter properties can also be established for arbitrary additional data accompanying the transfer.

b) Two-way authentication, described in clause N.3, involves, in addition, a reply from B to A. It establishes,

in addition, the following:

– that the authentication token generated in the reply actually was generated by B and was intended to

be sent to A;

– the origin, integrity and timeliness of the authentication token sent in the reply;

– (optionally) the mutual confidentiality of part of the tokens.

c) Three-way authentication, described in clause N.4, involves, in addition, a further transfer from A to B. It

establishes the same properties as the two-way authentication, but does so without the need for association

timestamp checking.

d) five-way authentication initiated by A, described in clause N.5, involves five transfers of information among

the trust broker, A and B. It establishes the following without the need for association timestamp checking:

– the identity of A, and the authentication token originating from A addressing B;

– the identity of B, and the authentication token originating from B addressing A;

– the identity of the trust broker, and that the authentication tokens originating from the trust broker

addressing A and B, respectively;

– the origin, integrity and timeliness of the authentication tokens being transferred.

e) five-way authentication initiated by B, described in clause N.6, also involves five transfers of information

among the trust broker, A and B. It establishes the same properties without the need for association

timestamp checking as the five-way authentication initiated by A, but initiates the authentication procedure

by B.

In each case of a), b) and c), where strong authentication is to take place, A shall obtain the public key of B, and the return

certification path from B to A, prior to any exchange of information. In cases d) and e), A and B shall possess a reliable

copy of the public key of the trust broker. A’s public-key certificate PKC-A and B’s public-key certificate PKC-B will be

contained in the information exchange.

The checking of timestamps as mentioned in clauses N.2 to N.6 only applies when either synchronized clocks are used in

a local environment or if clocks are logically synchronized by bilateral agreements. In any case, it is recommended that

Coordinated Universal Time be used. In five-way authentication procedures, timeliness is controlled by generating and

checking a random number (see Annex B of ISO/IEC 9798-1).

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 233

For each of the first three authentication procedures described below, it is assumed that party A has checked the validity

of all of the certificates in the certification path. In five-way authentication procedures, there is no such assumption and

the trust broker acts on behalf of the relying party in validating certificates and certificate chains.

Note - Some relying parties may not have enough resources to check the validity of a public-key certificate, or evaluate the certificate

policy or the trust broker policy in a certain security domain. Then, in order to decrease the implementation complexity of the end

entities, the trust broker may be deployed to provide a central validation service of public-key certificates for relying parties in both

open and closed public-key infrastructures.

N.2 One-way authentication

The following steps are involved, as depicted in Figure N.1:

1) A generates rA, a non-repeating number, which is used to detect replay attacks and to prevent forgery.

2) A sends the following message to B:

 BA, A{tA, rA, B}

 where tA is a timestamp. tA consists of one or two dates: the generation time of the token (which is optional)

and the expiry date. Alternatively, if data origin authentication of "sgnData" is to be provided by the digital

signature:

 BA, A{tA, rA, B, sgnData}

 In cases where information is to be conveyed which will subsequently be used as a private key (this

information is referred to as "encData"):

 BA, A{tA, rA, B, sgnData, Bp[encData]}

 The use of "encData" as a private key implies that it shall be chosen carefully, e.g., to be a strong key for

whatever cryptosystem is used as indicated in the "sgnData" field of the token.

3) B carries out the following actions:

a) obtains Ap from BA, checking that A's public-key certificate has not expired;

b) verifies the digital signature, and thus the integrity of the signed information;

c) checks that B itself is the intended recipient;

d) checks that the timestamp is "current";

e) optionally, checks that rA has not been replayed. This could, for example, be achieved by having rA

include a sequential part that is checked by a local implementation for its value uniqueness.

 rA is valid until the expiry date indicated by tA. rA is always accompanied by a sequential part, which

indicates that A shall not repeat the token during the timerange tA and therefore that checking of the

value of rA itself is not required.

 In any case, it is reasonable for party B to store the sequential part together with timestamp tA in the

clear and together with the hashed part of the token during timerange tA.

Figure N.1 – One-way authentication

N.3 Two-way authentication

The following steps are involved, as depicted in Figure N.2:

1) as for clause N.2;

2) as for clause N.2;

3) as for clause N.2;

4) B generates rB, a non-repeating number, used for similar purpose(s) to rA;

ISO/IEC 9594-8:2017 (E)

234 Rec. ITU-T X.509 (10/2016)

5) B sends the following authentication token to A:

 B{tB, rB, A, rA}

where tB is a timestamp defined in the same way as tA.

Alternatively, if data origin authentication of "sgnData" is to be provided by the digital signature:

 B{tB, rB, A, rA, sgnData}

 In cases where information is to be conveyed which will subsequently be used as a private key (this

information is referred to as "encData"):

 B{tB, rB, A, rA, sgnData, Ap[encData]}

 The use of "encData" as a private key implies that it shall be chosen carefully, e.g., to be a strong key for

whatever cryptosystem is used as indicated in the "sgnData" field of the token.

6) A carries out the following actions:

a) verifies the signature, and thus the integrity of the signed information;

b) checks that A is the intended recipient;

c) checks that the timestamp tB is "current";

d) optionally, checks that rB has not been replayed [see clause N.2, step 3), d)].

Figure N.2 – Two-way authentication

N.4 Three-way authentication

The following steps are involved, as depicted in Figure N.3:

1) as for clause N.3;

2) as for clause N.3, timestamp tA may be zero;

3) as for clause N.3, except that the timestamp need not be checked;

4) as for clause N.3;

5) as for clause N.3, timestamp tB may be zero;

6) as for clause N.3, except that the timestamp need not be checked;

7) A checks that the received rA is identical to the rA which was sent;

8) A sends the following authentication token to B:

 A{rB,B}

9) B carries out the following actions:

a) checks the signature and thus, the integrity of the signed information;

b) checks that the received rB is identical to the rB which was sent by B.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 235

Figure N.3 – Three-way authentication

N.5 Five-way authentication (initiated by A)

The following steps are involved, as depicted in Figure N.4:

Figure N.4 –Five-way authentication (initiated by A)

1) A generates rA, a non-repeating random number, which is used to detect replay attacks and to prevent

forgery.

2) A sends the following message to B:

A{ rA, PKC-A}

3) B generates rB, a non-repeating random number, used for similar purpose(s) to rA.

4) B sends the following authentication token to A:

B{ rA, rB, PKC-B, sgnData1}

Where, "sgnData1" is to be provided by the digital signature of B for data origin authentication and the data

shall contain rA, rB , PKC-A and PKC-B.

5) A sends the following authentication token to the trust broker:

A{ rA, rB, PKC-A, PKC-B}

6) the trust broker carries out the following actions:

a) checks the validity of PKC-A and PKC-B.

b) optionally, checks the CRL extensions.

c) optionally, checks the applicability of certificate policy.

7) the trust broker sends the following authentication token to A:

Trust Broker { ResA, ResB, sgnData2 }

Where, "sgnData2" is to be provided by the digital signature of the trust broker for data origin authentication

and the data shall contain rA, rB, ResA and ResB. Moreover, "ResA" and "ResB" are (PKC-A, Status) and

ISO/IEC 9594-8:2017 (E)

236 Rec. ITU-T X.509 (10/2016)

(PKC-B, Status), respectively. According to the result of the certificate validation checked by the trust broker,

the "Status" shall be set to True or False or Error.

8) A carries out the following actions:

a) Verify the authentication token from the trust broker by checking the signature of "sgnData2"

contained in the token and checking that the rA, rB, PKC-A and PKC-B contained in "sgnData2" are

equal to the rA, rB, PKC-A and PKC-B sent to the trust broker in Step 5).

b) Obtain the public-key certificate validation result of B from ResB.

c) Obtain Bp from PKC-B in Step 2), verify the authentication token received in Step 4) by checking the

signature of "sgnData1" contained in the token and checking that the random number rA, sent to B in

Step 2), is the same as the random number rA contained in Step 4).

9) A sends the following authentication token to B:

A{ rA, ResA, ResB, sgnData2, sgnData3 }

Where, "sgnData3" is to be provided by the digital signature of A for data origin authentication and the data

shall contain rB, rA, PKC-B and PKC-A.

10) B carries out the following actions:

a) Verify the authentication token from the trust broker by checking the signature of "sgnData2"

contained in the token and checking that the rA, rB, PKC-A and PKC-B contained in "sgnData2" are

equal to the rA, rB, PKC-A and PKC-B in Step 2) and Step 4), respectively.

b) Obtain the certificate validation result of A from ResA.

c) Obtain Ap from PKC-A in Step 2) , verify the authentication token by checking the signature of

"sgnData3" in the token and checking that the random number rB contained in "sgnData3" is equal to

the random number rB sent to A in Step 4).

In addition, addition texts such as the certificate path, special information for the transaction can be included into the

exchange message and the digital signature.

N.6 Five-way authentication (initiated by B)

The following steps are involved, as depicted in Figure N.5.

Figure N.5 –Five-way authentication (initiated by B)

1) as for step 3) in N.5.

2) B sends the following message to A:

A{ rB, PKC-B}

3) as for step 1) in N.5.

4) as for step 5) in N.5.

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 237

5) as for step 6) in N.5.

6) as for step 7) in N.5.

7) as for step 9) in N.5, PKC-A shall also be included.

8) B carries out the following actions:

a) Verify the authentication token from the trust broker by checking the signature of "sgnData2"

contained in the token and checking that the rA, rB, PKC-A and PKC-B contained in "sgnData2" are

equal to the rA, rB, PKC-A and PKC-B in Step 2) and Step 7), respectively.

b) Obtain the certificate validation result of A from ResA.

c) Obtain Ap from PKC-A in step 7) , verify the authentication token by checking the signature of

"sgnData3" in the token and checking that the random number rB contained in "sgnData3" is equal to

the random number rB sent to A in step 2).

9) as for step 4) in N.5, except that PKC-B shall not included.

10) A carries out the following actions:

a) Verify the authentication token from the trust broker by checking the signature of "sgnData2"

contained in the token and checking that the rA, rB, PKC-A and PKC-B contained in "sgnData2" are

equal to the rA, rB, PKC-A and PKC-B sent to the trust broker in step 2).

b) Obtain the certificate validation result of B from ResB.

c) Obtain Bp from PKC-B in Step 2), verify the authentication token received in step 9) by checking the

signature of "sgnData1" contained in the token and checking that the random number rA, sent to B in

step 7), is the same as the random number rA contained in step 9).

In addition, addition texts such as the certificate path, special information for the transaction can be included into the

exchange message and the digital signature.

ISO/IEC 9594-8:2017 (E)

238 Rec. ITU-T X.509 (10/2016)

Annex O

Alphabetical list of information item definitions

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex provides an alphabetical index to the definitions of certificate and CRL formats, certificate extensions, object

classes, name forms, attribute types and matching rules defined in this Specification.

Item Clause

Basic data types

Attribute certificate format 14.1

Authorization and validation list format 11.3

Certificate revocation list format 7.10

Public-key certificate format 7.2

Certificate, CRL & CRL entry extensions

AA issuing distribution point extension 17.2.2.2

Acceptable certificate policies extension 17.5.2.3

Acceptable privilege policies extension 17.1.2.4

Allowed attribute assignments extension 17.6.2.1

Attribute descriptor extension 17.3.2.2.2

Attribute mappings extension 17.6.2.2

Authority attribute identifier extension 17.5.2.4.1

Authority key identifier extension 9.2.2.1

Authorization and validation extension 9.2.2.8

Base update time extension 9.6.2.5 & 17.2.2.4

Basic attribute constraints extension 17.5.2.1.1

Basic constraints extension 9.4.2.1

Certificate issuer extension 9.6.2.3 & 17.2.2.3

Certificate policies extension 9.2.2.6

CRL distribution points extension 9.6.2.1 & 17.2.2.1

CRL number extension 9.5.2.1 & 17.7.2.1

CRL scope extension Annex L

CRL stream identifier extension 9.5.2.3 & 17.7.2.3

Delegated name constraints extension 17.5.2.2.1

Delta CRL indicator extension 96.2.4 & 17.2.2.4

Delta information extension 9.5.2.5 & 17.7.2.5

Expired certificates on CRL extension 9.5.2.8 & 17.7.2.8

Extended key usage extension 9.2.2.4

Freshest CRL extension 9.6.2.6 & 17.2.2.6

Group attribute certificate extension 17.1.2.6

Holder name constraints extension 17.6.2.3

Hold instruction code extension 9.5.3.2 & 17.7.3.2

Indirect issuer extension 17.5.2.5

Inhibit any policy extension 9.4.2.4

Invalidity date extension 9.5.3.3

Issued on behalf of extension 17.5.2.6

Issuer alternative name extension 9.3.2.2

Issuing distribution point extension 9.6.2.2

Key usage extension 9.2.2.3

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 239

Item Clause

Name constraints extension 9.4.2.2

No assertion extension 17.5.2.7

No revocation information available extension 17.2.2.7

Ordered list extension 9.5.2.4 & 17.7.2.4

Policy constraints extension 9.4.2.3

Policy mappings extension 9.2.2.7

Private key usage period extension 9.2.2.5

Reason code extension 9.5.3.1 & 17.7.3.1

Revoked group of certificates extension 9.5.2.7 & 17.7.2.7

Role specification certificate identifier extension 17.4.2.1.1

Single use extension 17.1.2.5

SOA identifier extension 17.3.2.1.1

Status referral extension 9.5.2.2 & 17.7.2.2

Subject alternative name extension 9.3.2.1

Subject key identifier extension 9.2.2.2

Subject directory attributes extension 9.3.2.3

Targeting information extension 17.1.2.2

Time specification extension 17.1.2.1.1

To be revoked extension 9.5.2.6 & 17.7.2.6

User notice extension 17.1.2.3

Object classes and name forms

Attribute certificate CRL distribution point object class 19.1.4

Certificate policy and CPS object class 13.1.5

CRL distribution points object class and name form 13.1.3

Delta CRL object class 13.1.4

PKI CA object class 13.1.2

PKI certification path object class 13.1.6

PKI user object class 13.1.1

PMI AA object class 19.1.2

PMI delegation path 19.1.5

PMI SOA object class 19.1.3

PMI user object class 19.1.1

Privilege policy object class 19.1.6

Protected privilege policy object class 19.1.7

Directory attributes

AA certificate attribute 19.2.2

AA certificate revocation list attribute 19.2.6

Attribute certificate attribute 19.2.1

Attribute certificate revocation list attribute 19.2.4

Attribute descriptor certificate attribute 19.2.3

CA certificate attribute 13.2.2

CA revocation list attribute 13.2.6

Certification practice statement attribute 13.2.8

Certificate policy attribute 13.2.9

Public-key certificate revocation list attribute 13.2.4

Cross-certificate pair attribute 13.2.3

Delegation path attribute 19.2.7

ISO/IEC 9594-8:2017 (E)

240 Rec. ITU-T X.509 (10/2016)

Item Clause

Delta revocation list attribute 13.2.7

End-entity attribute certificate revocation list attribute 19.2.5

End-entity public-key certificate revocation list attribute 13.2.5

Permission attribute 16.8.1

PKI path attribute 13.2.10

Privilege policy attribute 19.2.8

Protected privilege policy attribute 19.2.9

Role attribute 16.5.1

Supported algorithms attribute 13.2.7

User certificate attribute 13.2.1

XML privilege information attribute 16.7

XML Protected privilege policy attribute 19.2.10

Matching rules

AA identifier match 17.5.2.4.2

Acceptable certificate policies match 17.5.2.3.2

Algorithm identifier match 13.3.7

Attribute certificate exact match 19.3.1

Attribute certificate match 19.3.2

Attribute descriptor match 17.3.2.2.2

Basic attribute constraints match 17.5.2.1.2

Certificate exact match 13.3.1

Certificate list exact match 13.3.5

Certificate list match 13.3.6

Certificate match 13.3.2

Certificate pair exact match 13.3.3

Certificate pair match 13.3.4

Delegated name constraints match 17.5.2.2.2

Delegation path match 19.3.4

Dual string match 16.8.2

Enhanced certificate match 13.3.10

Extension presence match 19.3.5

Holder issuer match 19.3.3

PKI Path match 13.3.9

Policy match 13.3.8

Role specification certificate ID match 17.4.2.1.2

SOA identifier match 17.3.2.1.2

Time specification match 17.1.2.1.2

PKI directory syntax definitions

X.509 Algorithm Identifier syntax 13.4.11

X.509 Certificate Assertion 13.4.6

X.509 Certificate Exact Assertion 13.4.5

X.509 Certificate List Assertion syntax 13.4.10

X.509 Certificate List Exact Assertion syntax 13.4.9

X.509 Certificate List syntax 13.4.2

X.509 Certificate Pair Assertion 13.4.8

X.509 Certificate Pair Exact Assertion 13.4.7

X.509 Certificate Pair syntax 13.4.3

X.509 Certificate syntax 13.4.1

X.509 Supported Algorithm 13.4.4

ISO/IEC 9594-8:2017 (E)

 Rec. ITU-T X.509 (10/2016) 241

Annex P

Amendments and corrigenda

(This annex does not form an integral part of this Recommendation | International Standard.)

This edition of this Specification includes the following amendments that were balloted and approved by ISO/IEC:

– Amendment 2 on Directory support for Identity Management.

This edition of this Specification includes the following technical corrigenda correcting the defects documented in Defect

Reports against the seventh edition of this Specification:

– Technical Corrigendum 1 (covering Defect Reports 389, 390, 393, 394, 395, 397, 398, 399, 400, 401, 402,

403, 404 and 405);

– Technical Corrigendum 2 (covering Defect Reports 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,

417, 418, 419 and 420); and

– Technical Corrigendum 3 (covering Defect Reports 421, 422, 423, 424 and 425).

ISO/IEC 9594-8:2017 (E)

242 Rec. ITU-T X.509 (10/2016)

Bibliography

– Recommendation ITU-T X.518 (2016) | ISO/IEC 9594-4:2017, Information technology – Open Systems

Interconnection – The Directory: Procedures for distributed operation.

– Recommendation ITU-T X.521 (2016) | ISO/IEC 9594-7:2017, Information technology – Open Systems

Interconnection – The Directory: Selected object classes.

– Recommendation ITU-T X.525 (2016) | ISO/IEC 9594-9:2017, Information technology – Open Systems

Interconnection – The Directory: Replication.

– Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

– Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Constraint specification.

– Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

– Recommendation ITU-T X.691 (2015) | ISO/IEC 8825-2:2015, Information technology – ASN.1 encoding

rules: Specification of Packed Encoding Rules (PER).

– ISO 4217:2015, Currency codes.

– ISO/IEC 9798-1;2010, Information technology – Security techniques – Entity authentication – Part 1:

General.

– ISO/IEC 9798-3:1998, Information technology – Security techniques – Entity authentication – Part 3:

Mechanisms using digital signature techniques.

– ISO/IEC 10646:2012, Information technology – Universal Coded Character Set (UCS).

– ISO/IEC 11770-1:2010, Information technology – Security techniques – Key management – Part 1:

Framework.

– IETF RFC 2460, Internet Protocol, Version 6 (IPv6) – Specification.

– Diffie, W., Hellman, M.E. (1976). New directions in cryptography, IEEE Transactions on Information

Theory, IT-22, No. 6.

Printed in Switzerland
Geneva, 2016

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Recommendations
	2.4 Other references

	3 Definitions
	3.1 OSI Reference Model security architecture definitions
	3.2 Baseline identity management terms and definitions
	3.3 Directory model definitions
	3.4 Access control framework definitions
	3.5 Public-key and attribute certificate definitions

	4 Abbreviations
	5 Conventions
	6 Frameworks overview
	6.1 Digital signatures
	6.2 Public-key cryptography and cryptographic algorithms
	6.2.1 Formal specification of public-key cryptography
	6.2.2 Formal definitions of cryptographic algorithms

	6.3 Distinguished encoding of basic encoding rules
	6.4 Applying distinguished encoding
	6.5 Using repositories

	7 Public keys and public-key certificates
	7.1 Introduction
	7.2 Public-key certificate
	7.3 Public-key certificate extensions
	7.4 Types of public-key certificates
	7.5 Trust anchor
	7.6 Entity relationship
	7.7 Certification path
	7.8 Generation of key pairs
	7.9 Public-key certificate creation
	7.10 Certificate revocation list
	7.10.1 Certificate revocation list principles
	7.10.2 Certificate revocation list syntax

	7.11 Uniqueness of names
	7.12 Indirect CRLs
	7.12.1 Introduction
	7.12.2 Indirect CRL contents

	7.13 Repudiation of a digital signing

	8 Trust models
	8.1 Three-cornered trust model
	8.2 Four cornered trust model

	9 Public-key certificate and CRL extensions
	9.1 Policy handling
	9.1.1 Certificate policy
	9.1.2 Cross-certificates and policy handling
	9.1.3 Policy mapping
	9.1.4 Certification path processing
	9.1.5 Self-issued certificates

	9.2 Key and policy information extensions
	9.2.1 Requirements
	9.2.2 Public-key certificate and CRL extensions
	9.2.2.1 Authority key identifier extension
	9.2.2.2 Subject key identifier extension
	9.2.2.3 Key usage extension
	9.2.2.4 Extended key usage extension
	9.2.2.5 Private key usage period extension
	9.2.2.6 Certificate policies extension
	9.2.2.7 Policy mappings extension
	9.2.2.8 Authorization and validation extension

	9.3 Subject and issuer information extensions
	9.3.1 Requirements
	9.3.2 Certificate and CRL extensions
	9.3.2.1 Subject alternative name extension
	9.3.2.2 Issuer alternative name extension
	9.3.2.3 Subject directory attributes extension

	9.4 Certification path constraint extensions
	9.4.1 Requirements
	9.4.2 Public-key certificate extensions
	9.4.2.1 Basic constraints extension
	9.4.2.2 Name constraints extension
	9.4.2.3 Policy constraints extension
	9.4.2.4 Inhibit any policy extension

	9.5 Basic CRL extensions
	9.5.1 Requirements
	9.5.2 CRL extensions
	9.5.2.1 CRL number extension
	9.5.2.2 Status referral extension
	9.5.2.3 CRL stream identifier extension
	9.5.2.4 Ordered list extension
	9.5.2.5 Delta Information extension
	9.5.2.6 To be revoked extension
	9.5.2.7 Revoked group of certificates extension
	9.5.2.8 Expired certificates on CRL extension

	9.5.3 CRL entry extension
	9.5.3.1 Reason code extension
	9.5.3.2 Hold instruction code extension
	9.5.3.3 Invalidity date extension

	9.6 CRL distribution points and delta CRL extensions
	9.6.1 Requirements
	9.6.2 CRL distribution point and delta CRL extensions
	9.6.2.1 CRL distribution points extension
	9.6.2.2 Issuing distribution point extension
	9.6.2.3 Certificate issuer extension
	9.6.2.4 Delta CRL indicator extension
	9.6.2.5 Base update time extension
	9.6.2.6 Freshest CRL extension

	10 Delta CRL relationship to base
	11 Authorization and validation lists
	11.1 Authorization and validation list concept
	11.2 The authorizer
	11.3 Authorization and validation list syntax
	11.4 Authorization and validation restrictions
	11.4.3 Protocol restrictions

	12 Certification path processing procedure
	12.1 Path processing inputs
	12.2 Path processing outputs
	12.3 Path processing variables
	12.4 Initialization step
	12.5 Public-key certificate processing
	12.5.1 Basic public-key certificate checks
	12.5.2 Processing intermediate certificates
	12.5.3 Explicit policy indicator processing
	12.5.4 Final processing

	13 PKI directory schema
	13.1 PKI directory object classes and name forms
	13.1.1 PKI user object class
	13.1.2 PKI CA object class
	13.1.3 CRL distribution points object class and name form
	13.1.4 Delta CRL object class
	13.1.5 Certificate Policy and CPS object class
	13.1.6 PKI certification path object class

	13.2 PKI directory attributes
	13.2.1 User certificate attribute
	13.2.2 CA certificate attribute
	13.2.3 Cross-certificate pair attribute type
	13.2.4 Public-key certificate revocation list attribute type
	13.2.5 End-entity public-key certificate revocation list attribute type
	13.2.6 CA revocation list attribute type
	13.2.7 Delta revocation list attribute
	13.2.7 Supported algorithms attribute
	13.2.8 Certification practice statement attribute
	13.2.9 Certificate policy attribute
	13.2.10 PKI path attribute

	13.3 PKI directory matching rules
	13.3.1 Certificate exact match
	13.3.2 Certificate match
	13.3.3 Certificate pair exact match
	13.3.4 Certificate pair match
	13.3.5 Certificate list exact match
	13.3.6 Certificate list match
	13.3.7 Algorithm identifier match
	13.3.8 Policy match
	13.3.9 PKI path match
	13.3.10 Enhanced certificate match

	13.4 PKI directory syntax definitions
	13.4.1 X.509 Certificate syntax
	13.4.2 X.509 Certificate List syntax
	13.4.3 X.509 Certificate Pair syntax
	13.4.4 X.509 Supported Algorithm
	13.4.5 X.509 Certificate Exact Assertion
	13.4.6 X.509 Certificate Assertion
	13.4.7 X.509 Certificate Pair Exact Assertion
	13.4.8 X.509 Certificate Pair Assertion
	13.4.9 X.509 Certificate List Exact Assertion syntax
	13.4.10 X.509 Certificate List Assertion syntax
	13.4.11 X.509 Algorithm Identifier syntax

	14 Attribute certificates
	14.1 Attribute certificate structure
	14.2 Delegation paths
	14.3 Attribute certificate revocation lists
	14.3.1 Attribute certificate revocation list principles
	14.3.2 Attribute certificate revocation list syntax

	15 Attribute authority, source of authority and certification authority relationship
	15.1 Privilege in attribute certificates
	15.2 Privilege in public-key certificates

	16 PMI models
	16.1 General model
	16.1.1 PMI in access control context
	16.1.2 PMI in a non-repudiation context

	16.2 Control model
	16.3 Delegation model
	16.4 Group assignment model
	16.4.1 Direct group naming
	16.4.2 Group role naming

	16.5 Roles model
	16.5.1 Role attribute type

	16.6 Recognition of Authority Model
	16.7 XML privilege information attribute
	16.8 Permission attribute and matching rule
	16.8.1 Permission attribute
	16.8.2 Dual string matching rule

	17 Attribute certificate and attribute certificate revocation list extensions
	17.1 Basic privilege management extensions
	17.1.1 Requirements
	17.1.2 Basic privilege management extension
	17.1.2.1 Time specification extension
	17.1.2.1.1 Time specification extension definition
	17.1.2.1.2 Time specification matching rule

	17.1.2.2 Targeting information extension
	17.1.2.3 User notice extension
	17.1.2.4 Acceptable privilege policies extension
	17.1.2.5 Single use extension
	17.1.2.6 Group attribute certificate extension
	17.1.2.7 Authority key identifier extension

	17.2 Privilege revocation extensions
	17.2.1 Requirements
	17.2.2 Privilege revocation extensions
	17.2.2.1 Use of CRL distribution points extension
	17.2.2.2 AA issuing distribution point extension
	17.2.2.3 Use of certificate issuer extension
	17.2.2.4 Use of delta CRL indicator extension
	17.2.2.5 Use of base update extension
	17.2.2.6 Use of freshest CRL extension
	17.2.2.7 No revocation information available extension

	17.3 Source of authority extensions
	17.3.1 Requirements
	17.3.2 SOA extensions
	17.3.2.1 SOA identifier extension
	17.3.2.1.1 SOA identifier extension definition
	17.3.2.1.2 SOA identifier matching rule

	17.3.2.2 Attribute descriptor extension
	17.3.2.2.1 Attribute descriptor extension definition
	17.3.2.2.2 Attribute descriptor matching rule

	17.4 Role extensions
	17.4.1 Requirements
	17.4.2 Role extensions
	17.4.2.1 Role specification certificate identifier extension
	17.4.2.1.1 Role specification certificate identifier extension definition
	17.4.2.1.2 Role specification certificate ID matching rule

	17.5 Delegation extensions
	17.5.1 Requirements
	17.5.2 Delegation extensions
	17.5.2.1 Basic attribute constraints extension
	17.5.2.1.1 Basic attribute constraints extension definition
	17.5.2.1.2 Basic attribute constraints matching rule

	17.5.2.2 Delegated name constraints extension
	17.5.2.2.1 Delegated name constraints extension definition
	17.5.2.2.2 Delegated name constraints matching rule

	17.5.2.3 Acceptable certificate policies extension
	17.5.2.3.1 Acceptable certificate policies extension definition
	17.5.2.3.2 Acceptable certificate policies matching rule

	17.5.2.4 Authority attribute identifier extension
	17.5.2.4.1 Authority attribute identifier extension definition
	17.5.2.4.2 AA identifier matching rule

	17.5.2.5 Indirect issuer extension
	17.5.2.6 Issued on behalf of extension
	17.5.2.7 No assertion extension

	17.6 Recognition of authority extensions
	17.6.1 Requirements
	17.6.2 RoA extensions
	17.6.2.1 Allowed attribute assignments extension
	17.6.2.2 Attribute mappings extension
	17.6.2.3 Holder name constraints extension
	17.6.2.4 Relationship of delegated name constraints to holder name constraints

	17.7 Use of basic CRL extension for ACRLs
	17.7.1 Requirements
	17.7.2 Use of CRL extensions
	17.7.2.1 Use of CRL number extension for ACRL
	17.7.2.2 Use of status referral extension for ACRL
	17.7.2.3 Use of CRL stream identifier for ACRL
	17.7.2.4 Use of order list extension for ACRL
	17.7.2.5 Use of delta information extension for ACRL
	17.7.2.6 Use of to be revoked extension for ACRL
	17.7.2.7 Use of revoked group of certificates extension
	17.7.2.8 Use of expired certificates on ACRL extension

	17.7.3 Use of CRL entry extensions
	17.7.3.1 Use of reason code extension
	17.7.3.2 Use of hold instruction code extension

	18 Delegation path processing procedure
	18.1 Basic processing procedure
	18.2 Role processing procedure
	18.3 Delegation processing procedure
	18.3.1 Verify integrity of domination rule
	18.3.2 Establish valid delegation path
	18.3.2.1 Use of authority information access extension
	18.3.2.2 Use of authority key identifier

	18.3.3 Verify privilege delegation
	18.3.4 Pass/fail determination

	19 PMI directory schema
	19.1 PMI directory object classes
	19.1.1 PMI user object class
	19.1.2 PMI AA object class
	19.1.3 PMI SOA object class
	19.1.4 Attribute certificate CRL distribution point object class
	19.1.5 PMI delegation path object class
	19.1.6 Privilege policy object class
	19.1.7 Protected privilege policy object class

	19.2 PMI directory attributes
	19.2.1 Attribute certificate attribute
	19.2.2 AA certificate attribute
	19.2.3 Attribute descriptor certificate attribute
	19.2.4 Attribute certificate revocation list attribute
	19.2.5 End-entity attribute certificate revocation list attribute type
	19.2.6 AA certificate revocation list attribute
	19.2.7 Delegation path attribute
	19.2.8 Privilege policy attribute
	19.2.9 Protected privilege policy attribute
	19.2.10 XML Protected privilege policy attribute

	19.3 PMI general directory matching rules
	19.3.1 Attribute certificate exact match
	19.3.2 Attribute certificate match
	19.3.3 Holder issuer match
	19.3.4 Delegation path match
	19.3.5 Extension presence match

	20 Protocol support for public-key and privilege management infrastructures
	20.1 General syntax
	20.2 Wrapping of non-encrypted protocol data units
	20.3 Wrapping of encrypted protocol data unit
	20.3.1 Use of the Diffie-Hellman key agreement method
	20.3.2 Encryption information syntax
	20.3.3 Key agreement specification
	20.3.4 Generation of keying material
	20.3.5 Encryption encoding

	20.4 Check of PKI-PMI-Wrapper protocol elements
	20.4.1 General checking
	20.4.2 Specific checking when not encrypting the wrapped PDU
	20.4.3 Specific checking when encrypting the wrapped PDU
	20.4.3.1 Checking of the key agreement specification
	20.4.3.2 Checking of the encrypted PDU information

	20.5 PKI-PMI-Wrapper error codes

	21 Authorization and validation list management
	21.1 General
	21.2 Defined protocol data unit (PDU) types
	21.3 Checking of received PDU
	21.4 Authorization and validation management protocol
	21.4.1 Authorization validation management introduction
	21.4.2 Authorization and validation management protocol common components
	21.4.3 Public-key certificate management
	21.4.4 Add authorization and validation list
	21.4.4 Replace authorization and validation list
	21.4.5 Delete authorization and validation list
	21.4.6 Authorization and validation list reject
	21.4.7 Authorization and validation list error codes

	21.5 Certification authority subscription protocol
	21.5.1 Certification authority subscription introduction
	21.5.2 Certification authority subscription common components
	21.5.3 Public-key certificate subscription
	21.5.4 Public-key certificate un-subscription
	21.5.5 Public-key certificate replacements
	21.5.6 End-entity public-key certificate updates
	21.5.7 Certification authority subscription reject
	21.5.8 Certification authority subscription error codes

	22 Trust broker protocol
	C.1 Certificate extension attribute concept
	C.2 Formal specification for certificate extension attribute types
	E.1 Introduction
	E.1.1 CRL types
	E.1.2 CRL processing

	E.2 Determine parameters for CRLs
	E.3 Determine CRLs required
	E.3.1 End-entity public-key certificate with critical CRL distribution point extension
	E.3.2 End-entity public-key certificate with no critical CRL distribution point extension
	E.3.3 CA with critical CRL DP
	E.3.4 CA with no critical CRL DP

	E.4 Obtain CRLs
	E.5 Process CRLs
	E.5.1 Validate base CRL scope
	E.5.1.1 Complete CRL
	E.5.1.2 Complete EPRL
	E.5.1.3 Complete CARL
	E.5.1.4 Distribution point based CRL/EPRL/CARL

	E.5.2 Validate delta CRL scope
	E.5.3 Validity and currency checks on the base CRL
	E.5.4 Validity and checks on the delta CRL

	G.1 Introduction
	G.2 Sample syntaxes
	G.2.1 First example
	G.2.2 Second example

	G.3 Privilege attribute example
	I.1 Example 1: Use of basic constraints
	I.2 Example 2: Use of policy mapping and policy constraints
	I.3 Use of name constraints extension
	I.3.1 Examples of public-key certificate format with name constraints extension
	I.3.1.1 Examples of permittedsubtrees
	I.3.1.2 Examples of excludedsubtrees
	I.3.1.3 Examples of permittedsubtrees and excludedsubtrees

	I.3.2 Examples of certificate handling with name constraints extension
	I.3.2.1 Name spaces constraints by permitted-subtrees indistinguished name form
	I.3.2.2 Name spaces constraints by excluded-subtrees in distinguished name form
	I.3.2.3 Name spaces constraints by permitted-subtrees in multiple name forms
	I.3.2.4 Name spaces constraints by excluded-subtrees in multiple name forms

	I.3.3 Examples where multiple cross-certificates with name constraints extension are needed
	I.3.3.1 Conflicting name space constraints requirements
	I.3.3.2 Disjunctive evaluation of name space constraints

	J.1 Certification path valid for a user-specified policy required
	J.2 Certification path valid for any policy required
	J.3 Certification path valid regardless of policy
	J.4 Certification path valid for a user-specific policy desired, but not required
	L.1 CRL scope extension
	M.1 Scope
	M.2 Basic directory concepts
	M.3 Directory schema
	M.4 Directory distinguished names
	M.5 Subtrees
	N.1 Introduction
	N.2 One-way authentication
	N.3 Two-way authentication
	N.4 Three-way authentication
	N.5 Five-way authentication (initiated by A)
	N.6 Five-way authentication (initiated by B)

