

INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.509
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

(11/1988)

SERIES X: DATA COMMUNICATION NETWORKS:
DIRECTORY

THE DIRECTORY – AUTHENTICATION
FRAMEWORK

Reedition of CCITT Recommendation X.509 published in
the Blue Book, Fascicle VIII.8 (1988)

NOTES

1 CCITT Recommendation X.509 was published in Fascicle VIII.8 of the Blue Book. This file is an extract from
the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

 Fascicle VIII.8 – Rec. X.509 1

Recommendation X.509

THE DIRECTORY – AUTHENTICATION FRAMEWORK 1)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field of application

2 References

3 Definitions

4 Notation and abbreviations

SECTION 1 – Simple authentication

5 Simple authentication procedure

SECTION 2 – Strong authentication

6 Basis of strong authentication

7 Obtaining a user's public key

8 Digital signatures

9 Strong authentication procedures

10 Management of keys and certificates

Annex A – Security requirements

Annex B – An introduction to public key cryptography

Annex C – The RSA public key cryptosystem

Annex D – Hash functions

Annex E – Threats protected against by the strong authentication method

Annex F – Data confidentiality

Annex G – Authentication framework in ASN.1

Annex H – Reference definition of algorithm object identifiers

1) Recommendations X.509 and ISO 9594-8, Information Processing Systems – Open Systems Interconnection – The

Directory – Authentication Framework, were developed in close collaboration and are technically aligned.

2 Fascicle VIII.8 – Rec. X.509

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the interconnection of
information processing systems to provide directory services. The set of all such systems, together with the directory
information which they hold, can be viewed as an integrated whole, called the Directory. The information held by the
Directory, collectively known as the Directory Information Base (DIB), is typically used to facilitate communication
between, with or about objects such as OSI application-entities, people, terminals and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a
minimum of technical agreement outside of the interconnection standards themselves, the interconnection of information
processing systems:

 – from different manufacturers;

 – under different managements;

 – of different levels of complexity; and

 – of different ages.

0.3 Many applications have requirements for security to protect against threats to the communication of
information. Some commonly known threats, together with the security services and mechanisms that can be used to
protect against them, are briefly described in Annex A. Virtually all security services are dependent upon the identities of
the communicating parties being reliably known, i.e. authentication.

0.4 This Recommendation defines a framework for the provision of authentication services by the Directory to its
users. These users include the Directory itself, as well as other applications and services. The Directory can usefully be
involved in meeting their needs for authentication and other security services because it is a natural place from which
communicating parties can obtain authentication information of each other: knowledge which is the basis of
authentication. The Directory is a natural place because it holds other information which is required for communication
and obtained prior to communication taking place. Obtaining the authentication information of a potential
communication partner from the Directory is, with this approach, similar to obtaining an address. Owing to the wide
reach of the Directory for communications purposes, it is expected that this authentication framework will be widely
used by a range of applications.

1 Scope and field of application

1.1 This Recommendation:

 – specifies the form of authentication information held by the Directory;

 – describes how authentication information may be obtained from the Directory;

 – states the assumptions made about how this authentication information is formed and placed in the
Directory;

 – defines three ways in which applications may use this authentication information to perform
authentication and describes how other security services may be supported by authentication.

1.2 This Recommendation describes two levels of authentication: simple authentication, using a password as a
verification of claimed identity; and strong authentication, involving credentials formed using cryptographic techniques.
While simple authentication offers some limited protection against unauthorized access, only strong authentication
should be used as the basis for providing secure services. It is not intended to establish this as a general framework for
authentication, but it can be of general use for applications which consider these techniques adequate.

1.3 Authentication (and other security services) can only be provided within the context of a defined security
policy. It is a matter for users of an application to define their own security policy which may be constrained by the
services provided by a standard.

1.4 It is a matter for standards defining applications which use the authentication framework to specify the protocol
exchanges which need to be performed in order to achieve authentication based upon the authentication information
obtained from the Directory. The protocol used by applications to obtain credentials from the Directory is the Directory
Access Protocol (DAP), specified in Recommendation X.519.

1.5 The strong authentication method specified in this Recommendation is based upon public-key cryptosystems. It
is a major advantage of such systems that user certificates may be held within the Directory as attributes, and may be
freely communicated within the Directory System and obtained by users of the Directory in the same manner as other
Directory information. The user certificates are assumed to be formed by "off-line" means, and placed in the Directory
by their creator. The generation of user certificates is performed by some off-line Certification Authority which is

 Fascicle VIII.8 – Rec. X.509 3

completely separate from the DSAs in the Directory. In particular, no special requirements are placed upon Directory
providers to store or communicate user certificates in a secure manner.

 A brief introduction to public-key cryptography can be found in Annex B.

1.6 In general, the authentication framework is not dependent on the use of a particular cryptographic algorithm,
provided it has the properties described in § 6.1. Potentially a number of different algorithms may be used. However, two
users wishing to authenticate must support the same cryptographic algorithm for authentication to be performed
correctly. Thus, within the context of a set of related applications, the choice of a single algorithm will serve to maximize
the community of users able to authenticate and communicate securely. One example of a public key cryptographic
algorithm can be found in Annex C.

1.7 Similarly, two users wishing to authenticate must support the same hash function (see § 3.3 f)) (used in
forming credentials and authentication tokens). Again, in principle, a number of alternative hash functions could be used,
at the cost of narrowing the communities of users able to authenticate. A brief introduction to hash functions together
with one example hash function can be found in Annex D.

2 References

2.1 ISO 7498-2: Information Processing Systems – Open Systems Interconnection – Security Architecture.

3 Definitions

3.1 This Recommendation makes use of the following general security-related terms defined in Part 2 of the OSI
Reference Model on Security:

 a) asymmetric (encipherment);

 b) authentication exchange;

 c) authentication information;

 d) confidentiality;

 e) credentials;

 f) cryptography;

 g) data origin authentication;

 h) decipherment;

 i) encipherment;

 j) key;

 k) password;

 l) peer-entity authentication;

 m) symmetric (encipherment).

3.2 The following terms used in this Recommendation are defined in Recommendation X.501:

 a) attribute;

 b) Directory Information Base;

 c) Directory Information Tree;

 d) distinguished name;

 e) entry;

 f) object;

 g) root.

4 Fascicle VIII.8 – Rec. X.509

3.3 The following specific terms are defined and used in this Recommendation:

 a) authentication token (token): information conveyed during a strong authentication exchange, which can be
used to authenticate its sender;

 b) user certificate (certificate): the public keys of a user, together with some other information, rendered
unforgeable by encipherment with the secret key of the certification authority which issued it;

 c) certification authority: an authority trusted by one or more users to create and assign certificates.
Optionally the certification authority may create the user's keys;

 d) certification path: an ordered sequence of certificates of objects in the DIT which, together with the public
key of the initial object in the path, can be processed to obtain that of the final object in the path;

 e) cryptographic system, cryptosystem: a collection of transformations from plain text into ciphertext and
vice versa, the particular transformation(s) to be used being selected by keys. The transformations are
normally defined by a mathematical algorithm.

 f) hash function: a (mathematical) function which maps values from a large (possibly very large) domain
into a smaller range. A "good" hash function is such that the results of applying the function to a (large)
set of values in the domain will be evenly distributed (and apparently at random) over the range;

 g) one-way function: a (mathematical) function f which is easy to compute, but which for a general value y
in the range, it is computationally difficult to find a value x in the domain such that f(x) = y. There may be
a few values y for which finding x is not computationally difficult;

 h) public key: (in a public key cryptosystem) that key of a user's key pair which is publicly known;

 i) private key (secret key – deprecated): (in a public key cryptosystem) that key of a user's key pair which is
known only by that user;

 j) simple authentication: authentication by means of simple password arrangements;

 k) security policy: the set of rules laid down by the security authority governing the use and provision of
security services and facilities;

 l) strong authentication: authentication by means of cryptographically derived credentials;

 m) trust: generally, an entity can be said to "trust" a second entity when it (the first entity) makes the
assumption that the second entity will behave exactly as the first entity expects. This trust may apply only
for some specific function. The key role of trust in the authentication framework is to describe the
relationship between an authenticating entity and a certification authority; an authenticating entity must be
certain that it can trust the certification authority to create only valid and reliable certificates;

 n) certificate serial number: an integer value, unique within the issuing CA, which is unambiguously
associated with a certificate issued by that CA.

4 Notation and abbreviations

4.1 The notation used in this Recommendation is defined in Table 1/X.509 below.

 Note – In the table, the symbols X, X1, X2 etc. occur in place of the names of users, while the symbol I occurs
in place of arbitrary information.

4.2 The following abbreviations are used in this Recommendation:

 CA Certification Authority

 DIB Directory Information Base

 DIT Directory Information Tree

 PKCS Public key cryptosystem.

 Fascicle VIII.8 – Rec. X.509 5

TABLE 1/X.509

Notation

6 Fascicle VIII.8 – Rec. X.509

SECTION 1 – Simple authentication

5 Simple authentication procedure

5.1 Simple authentication is intended to provide local authorization based upon a Distinguished Name of a user,
bilaterally agreed (optional) password and a bilateral understanding of the means of using and handling this password
within a single domain. Utilization of Simple Authentication is primarily intended for local use only, i.e. for peer entity
authentication between one DUA and one DSA or between one DSA and one DSA. Simple authentication may be
achieved by several means:

 a) the transfer of the user's distinguished name and (optional) password in the clear (non- protected) to the
recipient for evaluation;

 b) the transfer of the user's distinguished name, password, and a random number and/or a timestamp, all of
which are protected by applying a one-way function;

 c) the transfer of the protected information described in b) together with a random number and/or timestamp,
all of which is protected by applying a one-way function.

 Note 1 – There is no requirement that the one-way functions applied be different.

 Note 2 – The signalling of procedures for protecting passwords may be a matter for extension to the Document.

5.2 Where passwords are not protected, a minimal degree of security is provided for preventing unauthorized
access. It should not be considered a basis for secure services. Protecting the user's distinguished name and password
provides greater degrees of security. The algorithms to be used for the protection mechanism are typically non-
enciphering one-way functions that are very simple to implement.

5.3 The general procedure for achieving simple authentication is shown in Figure 1/X.509.

FIGURE 1/X.509

The unprotected simple authentication procedure

5.3.1 The following steps are involved:

 1) an originating user A sends its distinguished name and password to a recipient user B;

 2) B sends the purported distinguished name and password of A to the Directory, where the password is
checked against that held as the User Password attribute within the directory entry for A (using the
Compare operation of the Directory);

 3) the Directory confirms (or denies) to B that the credentials are valid;

 4) the success (or failure) of authentication may be conveyed to A.

5.3.2 The most basic form of simple authentication involves only step 1) and after B has checked the distinguished
name and password, may include step 4).

 Fascicle VIII.8 – Rec. X.509 7

5.4 Figure 2/X.509 illustrates two approaches by which protected identifying information may be generated. f1
and f2 are one-way functions (either identical or different) and the timestamps and random numbers are optional and
subject to bilateral agreements.

 A = user's distinguished name
 tA = timestamps
 passwA = password of A
 qA = random numbers, optionally with a counter included

FIGURE 2/X.509

Protected simple authentication

5.4.1 Figure 3/X.509 illustrates the procedure for protected simple authentication.

FIGURE 3/X.509

The protected simple authentication procedure

 The following steps are involved (initially using f1 only):

 1) An originating user, User A, sends its protected identifying information (Authenticator1) to User B.
 Protection is achieved by applying the one-way function (f1) of Figure 2/X.509, where the timestamp
 and/or random number (when used) is to minimize replay and to conceal the password.

 The protection of A's password is of the form:

 Protected1 = f1 (t1A, q1A, passwA).

 The information conveyed to B is of the form:

 Authenticator1 = t1A, q1A, A, Protected1.

 B verifies the protected identifying information offered by A by generating (using the timestamp, distinguished
name and, optionally, additional timestamp and/or random number provided by A, together with a local copy
of A's password) a local protected copy of A's password (of the form of Protected1). B compares (for equality)
the purported identifying information (Protected1) with the locally generated value).

 2) B confirms (or denies) to A the verification of the protected identifying information.

8 Fascicle VIII.8 – Rec. X.509

5.4.2 The procedure of § 5.4.1 can be modified to afford greater protection (using f1 and f2).

 The main differences are as follows:

 1) A sends its (additionally) protected identifying information (Authenticator2) to B. Additional protection is
achieved by applying a further one-way function, f2, as illustrated in Figure 2/X.509. The further
protection is of the form:

 Protected2 = f2 (t2A, q2A, Protected1).

 The information conveyed to B is of the form:

 Authenticator2 = t1A, t2A, q1A, q2A, A, Protected2.

 For comparison, B generates a local value of A's additionally protected password and compares it (for equality)
with that of Protected2. (Similar in principle to step 1) of § 5.4.1.)

 2) B confirms (or denies) to A the verification of the protected identifying information.

 Note – The procedures defined in this are specified in terms of A and B. As applied to the Directory (specified
in Recommendation X.511 and X.518), A could be a DUA binding to a DSA, B; alternatively A could be a DSA binding
to another DSA, B.

5.5 A User Password attribute type contains the password of an object. An attribute value for the user password is
a string specified by the object.

 UserPassword ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 OCTET STRING (SIZE (0..ub-user-password))
 MATCHES FOR EQUALITY

5.6 The following ASN.1 macro may be used to define the data type arising from applying a one-way function to a
given other data type.

 PROTECTED MACRO ::= SIGNATURE

SECTION 2 – Strong authentication

6 Basis of strong authentication

6.1 The approach to strong authentication taken in this Recommendation makes use of the properties of a family of
cryptographic systems, known as public-key cryptosystems (PKCS). These cryptosystems, also described as asymmetric,
involve a pair of keys, one secret and one public, rather than a single key as in conventional cryptographic systems.
Annex B gives a brief introduction to these cryptosystems and the properties which make them useful in authentication.
For a PKCS to be usable in this authentication framework, at the present time, it must have the property that both keys in
the key pair can be used for encipherment with the secret key being used to decipher if the public key was used, and the
public key being used to decipher if the secret key was used. In other words Xp . Xs = Xs . Xp where Xp/Xs are
encipherment/decipherment functions using the public/secret keys of user X.

 Note – Alternative types of PKCS, i.e., ones which do not require the property of permutability and that can be
supported without great modification to this Recommendation, are a possible future extension.

6.2 This authentication framework does not mandate a particular cryptosystem for use. It is intended that the
framework will be applicable to any suitable public key cryptosystem, and will thus support changes to the methods used
as a result of future advances in cryptography, mathematical techniques or computational capabilities. However, two
users wishing to authenticate must support the same cryptographic algorithm for authentication to be performed
correctly. Thus, within the context of a set of related applications, the choice of a single algorithm will serve to maximize
the community of users able to authenticate and communicate securely. One example of a cryptographic algorithm can
be found in Annex C.

6.3 Authentication relies on each user possessing a unique distinguished name. The allocation of distinguished
names is the responsibility of the Naming Authorities. Each user must therefore trust the Naming Authorities not to issue
duplicate distinguished names.

6.4 Each user is identified by its possession of its secret key. A second user is able to determine if a
communication partner is in possession of the secret key, and can use this to corroborate that the communication partner
is in fact the user. The validity of this corroboration depends on the secret key remaining confidential to the user.

 Fascicle VIII.8 – Rec. X.509 9

6.5 For a user to determine that a communication partner is in possession of another user's secret key, it must itself
be in possession of that user's public key. Whilst obtaining the value of this public key from the user's entry in the
Directory is straightforward, verifying its correctness is more problematic. There are many possible ways for doing this:
7 describes a process whereby a user's public key can be checked by reference to the Directory. This process can only
operate if there is an unbroken chain of trusted points in the Directory between the users requiring to authenticate. Such a
chain can be constructed by identifying a common point of trust. This common point of trust must be linked to each user
by an unbroken chain of trusted points.

7 Obtaining a user's public key

7.1 In order for a user to trust the authentication procedure, it must obtain the other user's public key from a source
that it trusts. Such a source, called a certification authority (CA), uses the public key algorithm to certify the public key,
producing a certificate. The certificate, the form of which is specified in § 7.2 has the following properties:

 – any user with access to the public key of the certification authority can recover the public key which was
certified;

 – no party other than the certification authority can modify the certificate without this being detected
(certificates are unforgeable).

 Because certificates are unforgeable, they can be published by being placed in the Directory, without the need
for the latter to make special efforts to protect them.

 Note – Although the CAs are unambiguously defined by a distinguished name in the DIT, this does not imply
that there is any relationship between the organization of the CAs and the DIT.

7.2 A certification authority produces the certificate of a user by signing (see § 8) a collection of information,
including the user's distinguished name and public key. Specifically, the certificate of a user with distinguished name A,
produced by the certification authority CA, has the following form:

 CA<<A>> = CA {SN, AI, CA, A, Ap, TA}

where SN is the serial number of the certificate, AI is the identifier of the algorithm used to sign the certificate, and TA
indicates the period of validity of the certificate, and consists of two dates, the first and last on which the certificate is
valid. Since TA is assumed to be changed in periods not less than 24 hours, it is expected that systems would use
Coordinated Universal Time as a reference time base. The signature in the certificate can be checked for validity by any
user with knowledge of CAP. The following ASN.1 data type can be used to represent certificates.

 Certificate ::= SIGNED SEQUENCE{
 version [0]Version DEFAULT 1988,
 serialNumber SerialNumber,
 signature Algorithmidentifier
 issuer Name
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo}

 Version ::= INTEGER { 1988(0)}
 SerialNumber ::= INTEGER

 Validity ::=
 SEQUENCE{
 notBefore UTCTime,
 notAfter UTCTime}

 SubjectPublicKeyInfo ::=
 SEQUENCE{
 algorithm AlgorithmIdentifier
 subjectKey BIT STRING}

 AlgorithmIdentifier ::=
 SEQUENCE{
 algorithm OBJECT IDENTIFIER
 parameters ANY DEFINED BY algorithm
 OPTIONAL}

10 Fascicle VIII.8 – Rec. X.509

7.3 The directory entry of each user, A, who is participating in strong authentication, contains the certificate(s) of
A. Such a certificate is generated by a Certification Authority of A which is an entity in the DIT. A Certification
Authority of A, which may not be unique, is denoted CA(A), or simply CA if A is understood. The public key of A can
thus be discovered by any user knowing the public key of CA. Discovering public keys is thus recursive.

7.4 If user A, trying to obtain the public key of user B, has already obtained the public key of CA(B), then the
process is complete. In order to enable A to obtain the public key of CA(B), the directory entry of each Certification
Authority, X, contains a number of certificates. These certificates are of two types. First there are forward certificates of
X generated by other Certification Authorities. Second there are reverse certificates generated by X itself which are the
certified public keys of other certification authorities. The existence of these certificates enables users to construct
certification paths from one point to another.

7.5 A list of certificates needed to allow a particular user to obtain the public key of another, is known as a
certification path. Each item in the list is a certificate of the certification authority of the next item in the list. A
certification path from A to B (denoted A → B):

 – starts with a certificate produced by CA(A), namely CA(A)<<X1>> for some entity X1;

 – continues with further certificates Xi<<Xi+1>>;

 – ends with the certificate of B.

 A certification path logically forms an unbroken chain of trusted points in the Directory Information Tree
between two users wishing to authenticate. The precise method employed by users A and B to obtain certification paths
A → B and B → A may vary. One way to facilitate this is to arrange a hierarchy of CAs, which may or may not coincide
with all or part of the DIT hierarchy. The benefit of this is that users who have CAs in the hierarchy may establish a
certification path between them using the Directory without any prior information. In order to allow for this each CA
may store one certificate and one reverse certificate designated as corresponding to its superior CA.

7.6 Certificates are held within directory entries as attributes of type UserCertificate, CACertificate and
CrossCertificatePair. These attribute types are known to the Directory. These attributes can be operated on using the
same protocol operations as other attributes. The definition of these types may be found in § 3.3 of this
Recommendation, the specification of these attribute types is as follows:

 UserCertificate ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Certificate

 CACertificate ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Certificate

 CrossCertificatePair ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX CertificatePair

 CertificatePair ::=
 SEQUENCE{
 forward [o] Certificate OPTIONAL
 reverse [1] Certificate OPTIONAL
 -- at least one must be present --}

 A user may obtain one ore more certificates from one or more Certification Authorities. Each certificate bears
the name of the Certification Authority which issued it.

7.7 In the general case, before users can mutually authenticate, the Directory must supply the complete
certification and return certification paths. However, in practice, the amount of information which must be obtained from
the Directory can be reduced for a particular instance of authentication by:

 a) if the two users that want to authenticate are served by the same certification authority, then the
certification path becomes trivial, and the users unwrap each other's certificates directly;

 b) if the CAs of the users are arranged in a hierarchy, a user could store the public keys, certificates and
reverse certificates of all certification authorities between the user and the root of the DIT. Typically, this
would involve the user in knowing the public keys and certificates of only three or four certification
authorities. The user would then only require to obtain the certification paths from the common point of
trust;

 c) if a user frequently communicates with users certified by a particular other CA, that user could learn the
certification path to that CA and the return certification path from that CA, making it necessary only to
obtain the certificate of the other user itself from the directory;

 Fascicle VIII.8 – Rec. X.509 11

 d) certification authorities can cross-certify one another by bilateral agreement. The result is to shorten the
certification path;

 e) if two users have communicated before and have learned one another's certificates, they are able to
authenticate without any recourse to the Directory.

 In any case, having learned each other's certificates from the certification path, the users must check the
validity of the received certificates.

7.8 (Example). Figure 4/X.509 illustrates a hypothetical example of a DIT fragment, where the CAs form a
hierarchy. Besides the information shown at the CAs, we assume that each user knows the public key of its certification
authority, and its own public and secret keys.

7.8.1 If the CAs of the users are arranged in a hierarchy, A can acquire the following certificates from the directory
to establish a certification path to B:

 X<<W>>, W<<V>>, V<<Y>>, Y<<Z>>, Z<>

 When A has obtained these certificates, it can unwrap the certification path in sequence to yield the contents of
the certificate of B, including Bp:

 Bp = Xp . X<<W>> W<<V>> V<<Y>> Y<<Z>> Z<>

 In general, A also has to acquire the following certificates from the directory to establish the return certification
path from B to A:

 Z<<Y>>, Y<<V>>, V<<W>>, W<<X>>, X<<A>>.

 When B receives these certificates from A, it can unwrap the return certification path in sequence to yield the
contents of the certificate of A, including Ap:

 Ap = Zp . Z<<Y>> Y<<V>> V<<W>> W<<X>> X<<A>>.

FIGURE 4/X.509

CA hierarchy – a hypothetical example

7.8.2 Applying the optimizations of § 7.7:

 a) taking A and C, for example: both know Xp, so that A simply has to directly acquire the certificate of C.
Unwrapping the certification path reduces to:

 Cp = Xp . X<<C>>

 and unwrapping the return certification Path reduces to:

 Ap = Xp . X<<A>>

12 Fascicle VIII.8 – Rec. X.509

 b) assuming that A would thus know W<<X>>, Wp, V<<W>>, Vp, U<<V>>, Up, etc., reduces the
information which A has to obtain from the directory to form the certification path to:

 V<<Y>>, Y<<Z>>, Z<>

 and the information which A has to obtain from the directory to form the return certification path to:

 Z<<Y>>, Y<<V>>

 c) assuming that A frequently communicates with users certified by Z, it can learn (in addition to the public
keys learned in b) above) V<<Y>>, Y<<V>>, Y<<Z>>, and Z<<Y>>. To communicate with B, it need
therefore only obtain Z<> from the directory;

 d) assuming that users certified by X and Z frequently communicate, then X<<Z>> would be held in the
directory entry for X, and vice versa (this is shown in Figure 4/X.509). If A wants to authenticate to B, A
need only obtain:

 X<<Z>>, Z<>

 to form the certification path, and

 Z<<X>>

 to form the return certification path;

 e) assuming users A and C have communicated before and have learned one another's certificates, they may
use each other's public key directly, i.e.

 Cp = Xp . X<<C>>

 and

 Ap = Xp . X<<A>>.

7.8.3 In the more general case the Certification Authorities do not relate in a hierarchical manner. Referring to the
hypothetical example in Figure 5/X.509, suppose a user D, certified by U, wishes to authenticate to user E, certified
by W. The directory entry of user D will hold the certificate U<<D>> and the entry of user E will hold the
certificate W<<E>>.

 Let V be a CA with whom CAs U and W have at some previous time exchanged public keys in a trusted way.
As a result, certificates U<<V>>, V<<U>>, W<<V>> and V<<W>> have been generated and stored in the Directory.
Assume U<<V>> and W<<V>> are stored in the entry of V, V<<U>> is stored in U's entry, and V<<W>> is stored
in W's entry.

 User D must find a certification path to E. Various strategies could be used. One such strategy would be to
regard the users and CAs as nodes, and the certificates as arcs in a directed graph, in these terms, D has to perform a
search in the graph to find a path from U to E, one such being U<<V>>, V<<W>>, W<<E>>. When this path has been
discovered, the reverse path W<<V>>, V<<U>>, U<<D>> can also be constructed.

FIGURE 5/X.509

Non-hierarchical certification path – an example

 Fascicle VIII.8 – Rec. X.509 13

8 Digital signatures

 This section is not intended to specify a standard for digital signatures in general, but to specify the means by
which the tokens are signed in the Directory.

8.1 Information (info) is signed by appending to it an enciphered summary of the information. The summary is
produced by means of a one-way hash function, while the enciphering is carried out using the secret key of the signer
(see Figure 6/X.509). Thus

 X{Info} = Info,Xs[h (Info)]

 Note – The encipherment using the secret key ensures that the signature cannot be forged. The one-way nature
of the hash function ensures that false information, generated so as to have the same hash result (and thus signature),
cannot be substituted.

8.2 The recipient of signed information verifies the signature by:
 – applying the one-way hash function to the information;
 – comparing the result with that obtained by deciphering the signature using the public key of the signer.

FIGURE 6/X.509

Digital signatures

8.3 This authentication framework does not mandate a single one-way hash function for use in signing. It is
intended that the framework will be applicable to any suitable hash function, and will thus support changes to the
methods used as a result of future advances in cryptography, mathematical techniques or computational capabilities.
However, two users wishing to authenticate must support the same hash function for authentication to be performed
correctly. Thus, within the context of a set of related applications, the choice of a single function will serve to maximize
the community of users able to authenticate and communicate securely. An example hash function is specified in
Annex D.

 The signed information includes indicators that identify the hashing algorithm and the encryption algorithm
used to compute the digital signature.

8.4 The encipherment of some data items may be described using the following ASN.1 MACRO:

 ENCRYPTED MACRO ::=
 BEGIN

 TYPE NOTATION ::= type (ToBeEnciphered)
 VALUE NOTATION ::= value (VALUE BIT STRING)
 END

 The value of the bit string is generated by taking the octets which form the complete encoding (using the
ASN.1 Basic Encoding Rules) of the value of the ToBeEnciphered type and applying an encipherment procedure to
those octets.

 Note 1 – The encryption procedure requires agreement on the algorithm to be applied, including any
parameters of the algorithm, such as any necessary keys, initialization values, and padding instructions. It is the
responsibility of the encryption procedures to specify the means by which synchronization of the sender and receiver of
data is achieved, which may include information in the bits to be transmitted.

14 Fascicle VIII.8 – Rec. X.509

 Note 2 – The encryption procedure is required to take as input a string of octets and to generate a single string
of bits as its result.

 Note 3 – Mechanisms for secure agreement on the encryption algorithm and its parameters by the sender and
receiver of data are outside the scope of this Recommendation.

8.5 In the case where a signature must be appended to a data type, the following ASN.1 macro may be used to
define the data type resulting from applying a signature to the given data type.

 SIGNED MACRO ::=
 BEGIN

 TYPE NOTATION ::= type (ToBeSigned)

 VALUE NOTATION ::= value (VALUE

 SEQUENCE{
 ToBeSigned,
 AlgorithmIdentifier,
 -- of the algorithm used to compute
 -- the signature
 ENCRYPTED OCTET STRING
 -- where the octet string is the result
 -- of the hashing of the value of
 -- 'ToBeSigned' --}

 END -- of SIGNED.)

8.6 In the case where only the signature is required, the following ASN.1 macro may be used to define the data
type resulting from applying a signature to the given data type.

 SIGNATURE MACRO ::=
 BEGIN

 TYPE NOTATION ::= type (OfSignature)

 VALUE NOTATION ::= value (VALUE

 SEQUENCE{
 AlgorithmIdentifier,
 -- of the algorithm used to compute
 -- the signature
 ENCRYPTED OCTET STRING
 -- where the octet string is a function (e.g. a
 -- compressed or hashed version) of the
 -- value 'OfSignature', which may include
 -- the identifier of the algorithm used to
 -- compute the signature --}

 END -- of SIGNATURE.)

8.7 In order to enable the validation of SIGNED and SIGNATURE types in a distributed environment, a
distinguished encoding is required. A distinguished encoding of a SIGNED or SIGNATURE data value shall be
obtained by applying the Basic Encoding Rules defined in Recommendation X.209 with the following restrictions:

 a) the definite form of length encoding shall be used, encoded in the minimum number of octets;

 b) for string types, the constructed form of encoding shall not be used;

 c) if the value of a type is its default value, it shall be absent;

 d) the components of a Set type shall be encoded in ascending order of their tag value;

 e) the components of a Set-of type shall be encoded in ascending order of their octet value;

 f) if the value of a Boolean type is true, the encoding shall have its contents octet set to 'FF'16 ;

 g) each unused bits in the final octet of the encoding of a BitString value, if there are any, shall be set to
zero;

 h) the encoding of a Real type shall be such that bases 8, 10 and 16 shall not be used, and the binary scaling
factor shall be zero.

 Fascicle VIII.8 – Rec. X.509 15

9 Strong authentication procedures

9.1 Overview

9.1.1 The basic approach to authentication has been outlined above, namely the corroboration of identity by
demonstrating possession of a secret key. However, many authentication procedures employing this approach are
possible. In general it is the business of a specific application to determine the appropriate procedures, so as to meet the
security policy of the application. This clause describes three particular authentication procedures, which may be found
useful across a range of applications.

 Note – This Recommendation does not specify the procedures to the detail required for implementation.
However, additional standards could be envisaged which would do so, either in an application-specific or in a general-
purpose way.

9.1.2 The three procedures involve different numbers of exchanges of authentication information, and consequently
provide different types of assurance to their participants. Specifically,

 a) one way authentication, described in § 9.2, involves a single transfer of information from one user (A)
 intended for another (B), and establishes the following:

 – the identity of A, and that the authentication token actually was generated by A;

 – the identity of B, and that the authentication token actually was intended to be sent to B;

 – the integrity and "originality" (the property of not having been sent two or more times) of the
 authentication token being transferred.

 The latter properties can also be established for arbitrary additional data accompanying the transfer;

 b) two-way authentication, described in § 9.3, involves, in addition, a reply from B to A.

 It establishes, in addition, the following:

 – that the authentication token generated in the reply actually was generated by B and was intended to
 be sent to A;

 – the integrity and originality of the authentication token sent in the reply;

 – (optionally) the mutual secrecy of part of the tokens;

 c) three-way authentication, described in § 9.4, involves, in addition, a further transfer from A to B. It
establishes the same properties as the two-way authentication, but does so without the need for association
time stamp checking.

 In each case where Strong Authentication is to take place, A must obtain the public key of B, and the return
certification path from B to A, prior to any exchange of information. This may involve access to the Directory, as
described in § 7 above. Any such access is not mentioned again in the description of the procedures below.

 The checking of timestamps as mentioned in the following sections only applies when either synchronized
clocks are used in a local environment, or if clocks are logically synchronized by bilateral agreements. In any case, it is
recommended that Coordinated Universal Time be used.

 For each of the three authentication procedures described below, it is assumed that party A has checked the
validity of all of the certificates in the certification path.

9.2 One-way authentication

 The following steps are involved, as depicted in Figure 7/X.509.

FIGURE 7/X.509

One-way authentication

16 Fascicle VIII.8 – Rec. X.509

 1) A generates rA, a non-repeating number, which is used to detect replay attacks and to prevent forgery.

 2) A sends the following message to B:

 B → A, A{tA, rA, B}

 where tA is a timestamp. tA consists of one or two dates: the generation time of the token (which is
optional) and the expire date. Alternatively, if data origin authentication of "sgnData" is to be provided by
the digital signature:

 B → A, A{tA, rA, B, sgnData}

 In cases where information is to be conveyed which will subsequently be used as a secret key (this
information is referred to as "encData"):

 B → A, A{tA, rA, B, sgnData, Bp[encData]}.

 The use of "encData" as a secret key implies that it must be chosen carefully, e.g. to be a strong key for
whatever cryptosystem is used as indicated in the "sgnData" field of the token.

 3) B carries out the following actions:

 a) obtains Ap from B → A, checking that A's certificate has not expired;

 b) verifies the signature, and thus the integrity of the signed information;

 c) checks that B itself is the intended recipient;

 d) checks that the timestamp is "current";

 e) optionally, checks that rA has not been replayed. This could, for example, be achieved by having rA
include a sequential part that is checked by a local implementation for its value uniqueness.

 rA is valid until the expire date indicated by tA, rA is always accompanied by a sequential part, which indicates
that A will not repeat the token during the timerange tA and therefore that checking of the value of rA itself is not
required.

 In any case it is reasonable for party B to store the sequential part together with timestamp tA in the clear and
together with the hashed part of the token during timerange tA.

9.3 Two-way authentication

 The following steps are involved, as depicted in Figure 8/X.509.

FIGURE 8/X.509

Two-way authentication

 1) as for § 9.2.

 2) as for § 9.2.

 3) as for § 9.2.

 4) B generates rB, a non-repeating number, used for similar purpose(s) to rA.

 5) B sends the following authentication token to A:

 B {tB, rB, A, rA}

 where tB is a timestamp defined in the same way as tA.

 Alternatively, if data origin authentication of "sgnData" is to be provided by the digital signature:

 B {tB, rB, A, rA, sgnData}

 Fascicle VIII.8 – Rec. X.509 17

 In cases where information is to be conveyed which will subsequently be used as a secret key (this
 information is referred to as "encData"):

 B {tB, rB, A, rA, sgnData, Ap[encData]}.

 The use of "encData" as a secret key implies that it must be chosen carefully, e.g. to be a strong key for
whatever cryptosystem is used as indicated in the "sgnData" field of the token.

 6) A carries out the following actions:

 a) verifies the signature, and thus the integrity of the signed information;

 b) checks that A is the intended recipient;

 c) checks that the timestamp tB is "current";

 d) optionally, checks that rB has not been replayed [see § 9.2 step 3) e)].

9.4 Three-way authentication

 The following steps are involved, as depicted in Figure 9/X.509.

FIGURE 9/X.509

Three-way authentication

 1) as for § 9.3.

 2) as for § 9.3. Timestamp tA may be zero.

 3) as for § 9.3, except that the timestamp need not be checked.

 4) as for § 9.3.

 5) as for § 9.3. Timestamp tB may be zero.

 6) as for § 9.3, except that the timestamp need not be checked.

 7) A checks that the received rA is identical to the rA which was sent.

 8) A sends the following authentication token to B:

 A{rB}.

 9) B carries out the following actions:

 a) checks the signature and thus the integrity of the signed information;

 b) checks that the received rB is identical to the rB which was sent by B.

10 Management of keys and certificates

10.1 Generation of key pairs

10.1.1 The overall security management policy of an implementation will define the lifecycle of key pairs, and is thus
outstide the scope of the authentication framework. However, it is vital to the overall security that all secret keys remain
known only to the user to whom they belong.

 Key data is not easy for a human user to remember, so a suitable method for storing it in a convenient
transportable manner must be employed. One possible mechanism would be to use a "Smart Card". This would hold the
secret and (optionally) public keys of the user, the user's certificate, and a copy of the certification authority's public key.
The use of this card must additionally be secured by e.g. at least use of a PIN (Personal Identification Number),

18 Fascicle VIII.8 – Rec. X.509

increasing the security of the system by requiring the user to possess the card and to know how to access it. The exact
method chosen for storing such data, however, is beyond the scope of this Recommendation.

10.1.2 There are three ways in which a user's key pair may be produced, as described in § 10.1.2.1 to § 10.1.2.3.

10.1.2.1 The user generates its own key pair. This method has the advantage that a user's secret key is never released to
another entity, but requires a certain level of competence by the user as described in Annex C.

10.1.2.2 The key pair is generated by a third party. The third party must release the secret key to the user in a physically
secure manner, then actively destroy all information relating to the creation of the key pair plus the keys themselves.
Suitable physical security measures must be employed to ensure that the third party and the data operations are free from
tampering.

10.1.2.3 The key pair is generated by the CA. This is a special case of § 10.1.2.2, and the considerations there apply.

 Note – The certification authority already exhibits trusted functionality with respect to the user, and will be
subject to the necessary physical security measures. This method has the advantage of not requiring secure data transfer
to the CA for certification.

10.1.2.4 The cryptosystem in use imposes particular (technical) constraints on key generation.

10.2 Management of certificates

10.2.1 A certificate associates the public key and unique distinguished name of the user it describes. Thus:

 a) a certification authority must be satisfied of the identity of a user before creating a certificate for it;

 b) a certification authority must not issue certificates for two users with the same name.

10.2.2 The production of a certificate occurs off-line and must not be performed with an automatic query/response
mechanism. The advantage of this certification is that because the secret key of the certification authority, CAs, is never
known except in the isolated and physically secure CA, the CA secret key may then only be learnt by an attack on CA
itself, making compromise unlikely.

10.2.3 It is important that the transfer of information to the certification authority is not compromised, and suitable
physical security measures must be taken. In this regard:

 a) it would be a serious breach of security if the CA issued a certificate for a user with a public key that had
been tampered with;

 b) if the means of generation of key pairs of § 10.1.2.3 is employed, no secure transfer is needed;

 c) if the means of generation of key pairs of § 10.1.2.1 or of § 10.1.2.2 is employed, the user may use
different methods (on-line or off-line) to communicate its public key to the CA in a secure manner. On-
line methods may provide some additional flexibility for remote operations performed between the user
and the CA.

10.2.4 A certificate is a publicly available piece of information, and no specific security measures need to be
employed with respect to its transportation to the Directory. As it is produced by an off- line certification authority on
behalf of a user who will be given a copy of it, the user need only store this information in its directory entry on a
subsequent access to the Directory. Alternatively the CA could lodge the certificate for the user, in which case this agent
must be given suitable access rights.

10.2.5 Certificates will have a lifetime associated with them, at the end of which they expire. In order to provide
continuity of service, the CA shall ensure timely availability of replacement certificates to supersede expired/expiring
certificates. This has a number of aspects, as described in §§ 10.2.5.1 and 10.2.5.2.

10.2.5.1 Validity of certificates may be designed so that each becomes valid at the time of expiry of its predecessor, or
an overlap may be allowed. The latter prevents the CA from having to install and distribute a large number of certificates
that may run out at the same expiration date.

10.2.5.2 Expired certificates will normally be removed from the Directory. It is a matter for the security policy and
responsibility of the CA to keep old certificates for a period of time if a non repudiation of data service is provided.

10.2.6 Certificates may be revoked prior to their expiration time, e.g. if the user's secret key is assumed to be
compromised, or the user is no longer to be certified by the CA, or if the CA's certificate is assumed to be compromised.
This has a number of aspects, as described in §§ 10.2.6.1-10.2.6.4.

10.2.6.1 The revocation of a user certificate or CA certificate shall be made known by the CA, and a new certificate
shall be made available, if appropriate. The CA may then inform the owner of the certificate about its revocation by
some off-line procedure.

 Fascicle VIII.8 – Rec. X.509 19

10.2.6.2 The CA shall maintain:

 a) a time-stamped list of the certificates it issued which have been revoked;

 b) a time-stamped list of revoked certificates of all CAs known to the CA, certified by the CA.

 Both certified lists shall exist, even if empty.

10.2.6.3 The maintenance of Directory entries affected by the CA's revocation lists is the responsibility of the Directory
and its users, acting in accordance with the security policy. For example, the user may modify its object entry by
replacing the old certificate with a new one. The latter will then be used to authenticate the user to the Directory.

10.2.6.4 The revocation lists ("black-lists") are held within entries as attributes of types "CertificateRevocationList"
and "AuthorityRevocationList". These attributes can be operated on using the same operations as other attributes.
These attribute types are defined as follows:

 CertificateRevocationList ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX CertificateList
 AuthorityRevocationList ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX CertificateList
 CertificateList ::= SIGNED SEQUENCE{
 signature AlgorithmIdentifier,
 issuer Name,
 lastUpdate UTCTime,
 revokedCertificates
 SIGNED SEQUENCE OF SEQUENCE{
 signature AlgorithmIdentifier,
 issuer Name, CertificateSerialNumber subject,
 revocationDate UTCTime}
 OPTIONAL}

 Note 1 – The checking of the entire list of certificates is a local matter.

 Note 2 – If a non-repudiation of data service is dependent on keys provided by the CA the service must ensure
that all relevant keys of the CA (revoked or expired) and the timestamped revocation lists are archived and certified by a
current authority.

ANNEX A
(to Recommendation X.509)

Security requirements

 This Annex does not form an integral part of this Recommendation.

 [Additional material relevant to this topic can be found in OSI 7498 – Information Processing Systems – OSI
Reference Model – Part 2, Security Architecture.]

 Many OSI applications, CCITT-defined services and non-CCITT-defined services will have requirements for
security. Such requirements derive from the need to protect the transfer of information from a range of potential threats.

A.1 Threats

 Some commonly known threats are:

 a) identity interception: the identity of one or more of the users involved in a communication is observed for
misuse;

 b) masquerade: the pretense by a user to be a different user in order to gain access to information or to
acquire additional privileges;

 c) replay: the recording and subsequent replay of a communication at some later date;

 d) data interception: the observation of user data during a communication by an unauthorized user;

 e) manipulation: the replacement, insertion, deletion or misordering of user data during a communication by
an unauthorized user;

 f) repudiation: the denial by a user of having participated in part or all of a communication;

20 Fascicle VIII.8 – Rec. X.509

 g) denial of service: the prevention or interruption of a communication or the delay of time-critical
operations;

 Note – This security threat is a more general one and depends on the individual application or on the
intention of the unauthorized disruption and is therefore not explicitly within the scope of the
authentication framework.

 h) mis-routing: the mis-routing of a communication path intended for one user to another;

 Note – Mis-routing will naturally occur in OSI layers 1 – 3. Therefore mis-routing is outside of the scope
of the authentication framework. However, it may be possible to avoid the consequences of mis-routing
by using appropriate security services as provided within the authentication framework.

 i) traffic analysis: the observation of information about a communication between users
(e.g. absence/presence, frequency, direction, sequence, type, amount, etc.).

 Note – Traffic analysis threats are naturally not restricted to a certain OSI layer. Therefore traffic analysis
is generally outside the scope of the authentication framework. However, traffic analysis can be partially
protected against by generating additional unintelligible traffic (traffic padding), using enciphered or
random data.

A.2 Security services

 In order to protect against perceived threats, various security services need to be provided. Security services as
provided by the authentication framework are performed by means of the security mechanisms described in A.3 of this
Annex.

 a) peer entity authentication: this service provides corroboration that a user in a certain instance of
communication is the one claimed. Two different peer entity authentication services may be requested:

 – single entity authentication (either data origin entity authentication or data recipient entity
authentication);

 – mutual authentication, where both users communicating authenticate each other.

 When requesting a peer entity authentication service, the two users agree whether their identities will be
 protected or not.

 The peer entity authentication service is supported by the authentication framework. It can be used to
protect against masquerade and replay, concerning the user's identities;

 b) access control: this service can be used to protect against the unauthorized use of resources. The access
control service is provided by the Directory or another application and is therefore not a concern of the
authentication framework;

 c) data confidentiality: this service can be used to provide for protection of data from unauthorized
disclosure. The data confidentiality service is supported by the authentication framework. It can be used to
protect against data interception;

 d) data integrity: this service provides proof of the integrity of data in a communication. The data integrity
service is supported by the authentication framework. It can be used to detect and protect against
manipulation;

 e) non-repudiation: this service provides proof of the integrity and origin of data – both in an unforgeable
relationship – which can be verified by any third party at any time.

A.3 Security mechanisms

 The security mechanisms outlined here perform the security services described in A.2.

 a) authentication exchange: there are two grades of authentication framework:

 – simple authentication: relies on the originator supplying its name and password, which are checked
by the recipient;

 – strong authentication: relies on the use of cryptographic techniques to protect the exchange of
validating information. In the authentication framework, strong authentication is based upon an
asymmetric scheme.

 The authentication exchange mechanism is used to support the peer entity authentication service;

 Fascicle VIII.8 – Rec. X.509 21

 b) encipherment: the authentication framework envisages the encipherment of data during transfer. Either
asymmetric or symmetric schemes may be used. The necessary key exchange for either case is performed
either within a preceding authentication exchange or off-line any time before the intended communication.
The latter case is outside the scope of the authentication framework. The encipherment mechanism
supports the data confidentiality service;

 c) data integrity: this mechanism involves the encipherment of a compressed string of the relevant data to be
transferred. Together with the plain data, this message is sent to the recipient. The recipient repeats the
compressing and subsequent encipherment of the plain data and compares the results with that created by
the originator to prove integrity.

 The data integrity mechanism can be provided by encipherment of the compressed plain data by either an
asymmetric scheme or a symmetric scheme. (With the symmetric scheme, compression and encipherment
of data might be processed simultaneously.) The mechanism is not explicitely provided by the
authentication framework. However it is fully provided as a part of the digital signature mechanism (see
below) using an asymmetric scheme.

 The data integrity mechanism supports the data integrity service. It also partially supports the non-
repudiation service (that service also needs the digital signature mechanism for its requirement to be fully
met);

 d) digital signature: this mechanism involves the encipherment, by the originator's secret key, of a
compressed string of the relevant data to be transferred. The digital signature together with the plain data
is sent to the recipient. Similarly to the case of the data integrity mechanism, this message is processed by
the recipient to prove integrity. The digital signature mechanism also proves the authenticity of the
originator and the unambiguous relationship between the originator and the data that was transferred.

 The authentication framework supports the digital signature mechanism using an asymmetric scheme.

 The digital signature mechanism supports the data integrity service and also supports the non-repudiation
service.

A.4 Threats protected against by the security services

 The table at the end of this Annex indicates the security threats which each security service can protect against.
The presence of an asterisk (*) indicates that a certain security service affords protection against a certain threat.

A.5 Negotiation of security services and mechanisms

 The provision of security features during an instance of communication requires the negotiation of the context
in which security services are required. This entails agreement on the type of security mechanisms and security
parameters that are necessary to provide such security services. The procedures required for negotiating mechanisms and
parameters can either be carried out as an integral part of the normal connection establishment procedure or as a separate
process. The precise details of these procedures for negotiation are not specified in this Annex.

SERVICES

22 Fascicle VIII.8 – Rec. X.509

ANNEX B
(to Recommendation X.509)

An introduction to public key cryptography

 This Annex does not form an integral part of this Recommendation.

 In conventional cryptographic systems, the key used to encipher information by the originator of a secret
message is the same as that used to decipher the message by the legitimate recipient.

 In public key cryptosystems (PKCS), however, keys come in pairs, one key of which is used for enciphering
and the other for deciphering. Each key pair is associated with a particular user X. One of the keys, known as the public
key (Xp) is publicly known, and can be used by any user to encipher data. Only X, who possesses the complementary
secret key (Xs) may decipher the data. (This is represented notationally by D = Xs[Xp[D]].) It is computationally
infeasible to derive the secret key from knowledge of the public key. Any user can thus communicate a piece of
information which only X can find out, by enciphering it under Xp. By extension, two users can communicate in secret,
by using each other's public key to encipher the data, as shown in Figure B-1/X.509.

FIGURE B-1/X.509

Use of a PKCS to exchange secret information

 User A has public key Ap and secret key As, and user B has another set of keys, Bp and Bs. A and B both
know the public keys of each other, but are unaware of the secret key of the other party. A and B may therefore exchange
secret information with one another using the following steps (illustrated in Figure B-1/X.509):

 1) A wishes to send some secret information x to B. A therefore enciphers x under B's enciphering key and
 sends the enciphered information e to B. This is represented by:

 e = Bp[x].

 2) B may now decipher this encipherment e to obtain the information x by using the secret decipherment
key Bs. Note that B is the only possessor of Bs, and because this key may never be disclosed or sent, it is
impossible for any other party to obtain the information x. The possession of Bs determines the identity
of B. The decipherment operation is represented by:

 x = Bs[e], or x = Bs[Bp[x]].

 3) B may now similarly send some secret information, x', to A, under A's enciphering key, Ap:

 E' = Ap[x'].

 4) A obtains x' by deciphering e':
 x' = As[e'], or x' = As[Ap[x']].

 By this means, A and B have exchanged secret information x and x'. This information may not be obtained by
anyone other than A and B, providing that their secret keys are not revealed.

 Such an exchange can, as well as transferring secret information between the parties, serve to verify their
identities. Specifically, A and B are identified by their possession of the secret deciphering keys, As and Bs respectively.
A may determine if B is in possession of the secret deciphering key, Bs, by having returned part of his information x in
B's message x'. This indicates to A that communication is taking place with the possessor of Bs. B may similarly test the
identity of A.

 Fascicle VIII.8 – Rec. X.509 23

 It is a property of some PKCS that the steps of decipherment and encipherment can be reversed, as in
D = Xp[Xs[D]]. This allows a piece of information which could only have been originated by X, to be readable by any
user (who has possession of Xp). This can therefore be used in the certifying of the source of information, and is the
basis for digital signatures. Only PKCS which have this (permutability) property are suitable for use in this
authentication framework. One such algorithm is described in Annex C.

 For further information, see:

DIFFIE, W. and HELLMAN, M. E. (November 1976) – New Directions in Cryptography, IEEE Transactions on
Information Theory, IT-22, No. 6.

ANNEX C
(to Recommendation X.509)

The RSA public key cryptosystem

 This Annex does not form an integral part of this Recommendation.

 Note – The cryptosystem specified in this Annex, which was invented by R. L. Rivest, A. Shamir and
L. Adleman, is widely known as "RSA".

C.1 Scope and field of application

 It is beyond the scope of this paper to discuss RSA fully. However, a brief description is given on the method,
which relies on the use of modular exponentiation.

C.2 References

 For further information, see:

 1) General

 RIVEST, R. L., SHAMIR, A. and ADLEMAN, L. (February 1978) – A Method for Obtaining Digital
Signatures and Public-key Cryptosystems, Communications of the ACM, 21, 2, 120-126.

 2) Key Generation Reference

 GORDON, J. – Strong RSA Keys, Electronics Letters, 20, 5, 514-516.

 3) Decipherment Reference

 QUISQUATER, J. J. and COUVREUR, C. (October 14, 1982) – Fast Decipherment Algorithm for RSA
 Public-key Cryptosystems, Electronics Letters, 18, 21, 905-907.

C.3 Definitions

 a) public key: the pair of parameters consisting of the Public Exponent and the Arithmetic Modulus;

 Note – The ASN.1 data element subjectPublicKey defined as BIT STRING (see Annex G), should be
interpreted in the case of RSA as being of type:

 SEQUENCE {INTEGER,INTEGER}

 where the first integer is the Arithmetic Modulus and the second is the Public Exponent. The sequence is
represented by means of the ASN.1 Basic Encoding Rules.

 b) secret key: the pair of parameters consisting of the Secret Exponent and the Arithmetic Modulus.

24 Fascicle VIII.8 – Rec. X.509

C.4 Symbols and abbreviations

 X,Y data blocks which are arithmetically less than the modulus

 n the Arithmetic Modulus

 e the Public Exponent

 d the Secret Exponent

 p,q the prime numbers whose product forms the Arithmetic Modulus (n).

 Note – While the prime numbers are preferably two in number, the use of a Modulus with three- or more prime
factors is not precluded.

 mod n arithmetic modulo n.

C.5 Description

 This asymmetric algorithm uses the power function for transformation of data blocks such that:

 Y = Xemod n with 0 < X < n

 X = Ydmod n 0 < Y < n

which may be satisfied, for example, by

 ed mod lcm(p–1,q–1=1,

 ed mod (p–1)(q–1)=1

 To effect this process, a data block must be interpreted as an integer. This is accomplished by considering the
entire data block to be an ordered sequence of bits (of length l, say). The integer is then formed as the sum of the bits
after giving a weight of 2l-1 to the first bit and dividing the weight by 2 for each subsequent bit (the last bit has a weight
of 1).

 The data block length should be the largest number of octets containing fewer bits than the modulus.
Incomplete blocks should be padded in any way desired. Any number of blocks of additional padding may be added.

C.6 Security requirements

C.6.1 Key lengths

 It is recognized that the acceptable key length is likely to change with time, subject to the cost and availability
of hardware, the time taken, advances in techniques and the level of security required. It is recommended that a value for
the length of n of 512 bits be adopted initially, but subject to further study.

C.6.2 Key generation

 The security of RSA relies on the difficulty of factorizing n. There are many algorithms for performing this
operation, and in order to thwart the use of any currently known technique, the values p and q must be chosen carefully,
according to the following rules [e.g. see Reference 2), Section C.2]:

 a) they should be chosen randomly;

 b) they should be large;

 c) they should be prime;

 d) |p-q| should be large;

 e) (p+1) must possess a large prime factor;

 f) (q+1) must possess a large prime factor;

 g) (p–1) must possess a large prime factor, say r;

 h) (q–1) must possess a large prime factor, say s;

 i) (r–1) must possess a large prime factor;

 j) (s–1) must possess a large prime factor.

 Fascicle VIII.8 – Rec. X.509 25

 After generating the public and secret keys, e.g. "Xp" and "Xs" as defined in § 3.3 and § 4.1 of this
Recommendation which consist of d, e and n, the values p and q together with all other data produced such as the
product (p–1) (q–1) and the large prime factors should preferably be destroyed. However, keeping p and q locally can
improve throughput in decryption by two to four times. The decision to keep p and q is considered to be a local matter
[Reference 3)].

 It must be ensured that e > log2(n) in order to prevent attack by taking the e'th root mod n to disclose the
plaintext.

C.7 Public exponent

 The Public Exponent (e) could be common to the whole environment, in order to minimize the length of that
part of the public key that actually has to be distributed, in order to reduce transmission capacity and complexity of
transformation (see Note 1).

 Exponent e should be large enough but such that exponentiation can be performed efficiently with regard to
processing time and storage capacity. If a fixed public exponent e is desired, there are notable merits for the use of the
Fermat Number F4 (see Note 2).

 F4 = 22 + 1

 = 65537 decimal, and

 = 1 0000 0000 0000 0001 binary.

 Note 1 – Although both Modulus n and Exponent e are public, the Modulus should not be the part which is
common to a group of users. Knowledge of Modulus "n", Public Exponent "e" and Secret Exponent "d" is sufficient to
determine the factorization of "n". Therefore if the modulus was common, everyone could deduce its factors, thereby
finding everyone else's secret exponent.

 Note 2 – The fixed exponent should be large and prime but it should also provide efficient processing. Fermat
Number F4 meets these requirements, e.g. authentication takes only 17 multiplications and is on the average 30 times
faster than decipherment.

C.8 Conformance

 Whilst this Annex specifies an algorithm for the public and secret functions, it does not define the method
whereby the calculations are carried out; therefore there may be different products which comply with this Annex and
are mutually compatible.

ANNEX D

(to Recommendation X.509)

Hash functions

 This Annex does not form an integral part of this Recommendation.

D.1 Requirements for hash functions

 To use a hash function as a secure one-way function, it must not be possible to obtain easily the same hash
result from different combinations of the input message.

 A strong hash function will meet the following requirements:

 a) the hash function must be one-way, i.e. given any possible hash result it must be computationally
infeasible to construct an input message which hashes to this result;

 b) the hash function must be collision-free, i.e. it must be computationally infeasible to construct two distinct
input messages which hash to the same result.

D.2 Description of a hash function

 The following hash function ("square-mod n") performs the compression of the data on a block by block basis.

26 Fascicle VIII.8 – Rec. X.509

 Hashing is done in three major steps:

 1) The string of data to be hashed is divided into blocks B of equal length. This length is determined by the
characteristics of the asymmetric cryptosystem used for signing. With the RSA cryptosystem, this length
(in octets) is the largest integer, l, such that, with modulus n, 16 l < log2 n.

 2) For non-invertibility reasons each octet of the block is split in half. Each of the halves is headed
("padded") by binary ones. By this zoning, stiffness or redundancy is introduced that increases the non-
invertibility property of the hash function considerably. Each block generated in step 1 is spread to the
length of the modulus n.

 3) Each block resulting from step 2 is added to the previous block modulo 2, squared, and reduced modulo n,
until all m blocks are processed.

 The result is thus the value Hm, where

 H0 = 0

 Hi = (Hi-1 ⊕ Bi)2 mod n, for 1 < i < m

 If the last block of the data to be hashed is incomplete, it is padded with "l"s.

ANNEX E
(to Recommendation X.509)

Threats protected against by the strong authentication method

 This Annex does not form an integral part of this Recommendation.

 The strong authentication method described in this Recommendation offers protection against the threats as
described in Annex A for strong authentication.

 In addition, there is a range of potential threats that are specific to the strong authentication method itself.
These are:

 Compromise of the user's secret key – one of the basic principles of strong authentication is that the user's
secret key remain secure. A number of practical methods are available for the user to hold his secret key in a manner that
provides adequate security. The consequences of the compromise are limited to subversion of communication involving
that user.

 Compromise of the CA's secret key – that the secret key of a CA remain secure is also a basic principle of
strong authentication. Physical security and "need to know" methods apply. The consequences of the compromise are
limited to subversion of communication involving any user certified by that CA.

 Misleading CA into producing an invalid certificate – the fact that CAs are off-line affords some protection.
The onus is on the CA to check that purported strong credentials are valid before creating a certificate. The consequences
of the compromise are limited to subversion of communication involving the user for whom the certificate was created,
and anyone impacted by the invalid certificate.

 Collusion between a rogue CA and user – such a collusive attack will defeat the method. This would constitute
a betrayal of the trust placed in the CA. The consequences of a rogue CA are limited to subversion of communication
involving any user certified by that CA.

 Forging of a certificate – the strong authentication method protects against the forging of a certificate by
having the CA sign it. The method depends on maintaining the secrecy of the CA's secret key.

 Forging of a token – the strong authentication method protects against the forging of a token by having the
sender sign it. The method depends on maintaining the secrecy of the sender's secret key.

 Replay of a token – the one- and two-way authentication methods protect against the replay of a token by the
inclusion of a timestamp in the token. The three-way method does so by checking the random numbers.

 Attack on the cryptographic system – the likelihood of effective cryptanalysis of the system, based on advances
in computational number theory and leading to the need for a greater key length are reasonably predictable.

 Fascicle VIII.8 – Rec. X.509 27

ANNEX F
(to Recommendation X.509)

Data confidentiality

 This Annex does not form an integral part of this Recommendation.

F.1 Introduction

 The process of data confidentiality can be initiated after the necessary keys for encipherment have been
exchanged. This might be provided by a preceding authentication exchange as described in § 9 or by some other key
exchange process, the latter being outside the scope of this document.

 Data confidentiality can be provided either by the application of an asymmetric or symmetric enciphering
scheme.

F.2 Data confidentiality by asymmetric encipherment

 In this case Data Confidentiality is performed by means of an originator enciphering the data to be sent using
the intended recipient's public key: the recipient will then decipher it using its secret key.

F.3 Data confidentiality by symmetric encipherment

 In this case Data Confidentiality is achieved by the use of a symmetric enciphering algorithm. Its choice is
outside the scope of the authentication framework.

 Where an authentication exchange according to § 9 has been carried out by the two parties involved, then a key
for the usage of a symmetric algorithm can be derived. Choosing secret keys depends on the transformation to be used.
The parties must be sure that they are strong keys. This Recommendation does not specify how this choice is made,
although clearly this would need to be agreed by the parties concerned, or specified in other standards.

ANNEX G
(to Recommendation X.509)

Authentication framework in ASN.1

 This Annex is part of the Recommendation.

 This Annex includes all of the ASN.1 type, macro and value definitions contained in this Recommendation in
the form of the ASN.1 module, "AuthenticationFramework".

28 Fascicle VIII.8 – Rec. X.509

 Fascicle VIII.8 – Rec. X.509 29

30 Fascicle VIII.8 – Rec. X.509

ANNEX H
(to Recommendation X.509)

Reference Definition of algorithm object identifiers

 This Annex is not an integral part of the Recommendation.

 This Annex defines object identifiers assigned to authentication and encryption algorithms, in the absence of a
formal register. It is intended to make use of such a register as it becomes available. The definitions take the form of the
ASN.1 module, AlgorithmObjectIdentifiers.

Printed in Switzerland

Geneva, 2008

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.509 (11/1988) – THE DIRECTORY – AUTHENTICATION FRAMEWORK
	CONTENTS
	0 Introduction
	1 Scope and field of application
	2 References
	3 Definitions
	4 Notation and abbreviations
	5 Simple authentication procedure
	6 Basis of strong authentication
	7 Obtaining a user's public key
	8 Digital signatures
	9 Strong authentication procedures
	9.1 Overview
	9.2 One-way authentication
	9.3 Two-way authentication
	9.4 Three-way authentication

	10 Management of keys and certificates
	10.1 Generation of key pairs
	10.2 Management of certificates

	ANNEX A – Security requirements
	A.1 Threats
	A.2 Security services
	A.3 Security mechanisms
	A.4 Threats protected against by the security services
	A.5 Negotiation of security services and mechanisms
	ANNEX B – An introduction to public key cryptography
	ANNEX C – The RSA public key cryptosystem
	C.1 Scope and field of application
	C.2 References
	C.3 Definitions
	C.4 Symbols and abbreviations
	C.5 Description
	C.6 Security requirements
	C.7 Public exponent
	C.8 Conformance
	ANNEX D – Hash functions
	D.1 Requirements for hash functions
	D.2 Description of a hash function
	ANNEX E – Threats protected against by the strong authentication method
	ANNEX F – Data confidentiality
	F.1 Introduction
	F.2 Data confidentiality by asymmetric encipherment
	F.3 Data confidentiality by symmetric encipherment
	ANNEX G – Authentication framework in ASN.1
	ANNEX H – Reference Definition of algorithm object identifiers

