International Telecommunication Union

ITU-T X.1277

TELECOMMUNICATION (11/2018)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Cyberspace security — Identity management

Universal authentication framework

Recommendation ITU-T X.1277

Intsrnational
Telsocommunication
Unilon

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS
OPEN SYSTEMS INTERCONNECTION
INTERWORKING BETWEEN NETWORKS
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
OSI MANAGEMENT
SECURITY
OSI APPLICATIONS
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
General security aspects
Network security
Security management
Telebiometrics
SECURE APPLICATIONS AND SERVICES (1)
Multicast security
Home network security
Mobile security
Web security
Security protocols (1)
Peer-to-peer security
Networked 1D security
IPTV security
CYBERSPACE SECURITY
Cybersecurity
Countering spam
Identity management
SECURE APPLICATIONS AND SERVICES (2)
Emergency communications
Ubiquitous sensor network security
Smart grid security
Certified mail
Internet of things (10T) security
Intelligent transportation system (ITS) security
Distributed ledger technology security
Distributed ledger technology security
Security protocols (2)
CYBERSECURITY INFORMATION EXCHANGE
Overview of cybersecurity
Vulnerability/state exchange
Event/incident/heuristics exchange
Exchange of policies
Heuristics and information request
Identification and discovery
Assured exchange
CLOUD COMPUTING SECURITY
Overview of cloud computing security
Cloud computing security design

Cloud computing security best practices and guidelines

Cloud computing security implementation
Other cloud computing security

X.1-X.199

X.200-X.299
X.300-X.399
X.400-X.499
X.500-X.599
X.600-X.699
X.700-X.799
X.800-X.849
X.850-X.899
X.900-X.999

X.1000-X.1029
X.1030-X.1049
X.1050-X.1069
X.1080-X.1099

X.1100-X.1109
X.1110-X.1119
X.1120-X.1139
X.1140-X.1149
X.1150-X.1159
X.1160-X.1169
X.1170-X.1179
X.1180-X.1199

X.1200-X.1229
X.1230-X.1249
X.1250-X.1279

X.1300-X.1309
X.1310-X.1319
X.1330-X.1339
X.1340-X.1349
X.1360-X.1369
X.1370-X.1389
X.1400-X.1429
X.1430-X.1449
X.1450-X.1459

X.1500-X.1519
X.1520-X.1539
X.1540-X.1549
X.1550-X.1559
X.1560-X.1569
X.1570-X.1579
X.1580-X.1589

X.1600-X.1601
X.1602-X.1639
X.1640-X.1659
X.1660-X.1679
X.1680-X.1699

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T X.1277

Universal authentication framework

Summary

Recommendation ITU-T X.1277 describes the FIDO universal authentication framework (UAF) that
enables online services and websites, whether on the open Internet or within enterprises, to
transparently leverage native security features of end-user computing devices for strong user
authentication and to reduce the problems associated with creating and remembering many online
credentials.

History

Edition Recommendation Approval Study Group Unique ID*
1.0 ITU-T X.1277 2018-11-29 17 11.1002/1000/13727

Keywords

Authentication, CTAP, identity, protocol, security, UAF, U2F.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web
browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.

Rec. ITU-T X.1277 (11/2018) i

http://handle.itu.int/11.1002/1000/13727
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1ISO and IEC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words “shall™ or some other
obligatory language such as "must™ and the negative equivalents are used to express requirements. The use of
such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB
patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of ITU.

ii Rec. ITU-T X.1277 (11/2018)

http://www.itu.int/ITU-T/ipr/

Table of Contents

Page

ST ol0] o[- PRSP UPRTPRRTPIN 1

2 RETEIBNCES. ... ettt ettt et e ste et re e re et 1
3 DETINITIONS ...t bbbttt ettt nbe b 2
3.1 Terms defined EISEWNEIE ... 2

3.2 Terms defined in this Recommendation............ccccoveiveiininniienine e 2

4 ADDreviations and ACIONYMScuiiiiieie et 8
000 11Y7=] o1 £] SRS PRRP PR 10

5.1 N0 -1 {0 ST URRTSTRR 10

5.2 CONTOIMANCE ...ttt st es 11

6 L 00 101 T o PSSR S 12
6.1 BaCKGIOUNG.........oiiiiiiieee e 12

6.2 FIDO UAF dOCUMENTALIONccvviieieiieieciiesieeie et snee e 13

6.3 FIDO UAF QOIS ...t 14

7 FIDO UAF high-level architeCture...........coviiiiiiiieeee s 15
7.1 FIDO UAF CHENT ...ttt ene s 15

7.2 FIDO UAFRF SEIVEN ...ttt sttt sttt sttt sbe e ne e 16

7.3 FIDO UAF PrOtOCOIS......oviiiiiiiiiiciiciieieieese st 16

7.4 FIDO UAF authenticator abstraction layerccccccoveieeiiiie i 17

7.5 FIDO UAF QUtNENTICALONeiiiiiiiiieiieiieieie ettt 17

7.6 FIDO UAF authenticator metadata validationccccoocevvneienicnieniiinnns 17

8 FIDO UAF usage scenarios and protocol message flowscccccooeviiiciiiiccien, 17
8.1 FIDO UAF authenticator acquisition and user enrollment.................ccccovene. 17

8.2 Authenticator regiStrationccccveieiieii s 17

8.3 AULNENTICALION ... eneas 18

8.4 Step-up AULhENTICATIONc.eeiiiecc e 19

8.5 Transaction CONTINMALION...........ccoveriiieiiere e 19

8.6 Authenticator deregiStrationcoovevereieiene s 20

8.7 Adoption of new types of FIDO UAF authenticatorscccceveveieeiieennns 20

9 PrIVaCy CONSIABIALIONSc.viiiiiieiiieiieie ettt bbb 20
10 Relationship to other teChNOIOGIES...........coveiiiiiiece e 21
10.1 OATH, TCG, PKCS#11 and ISO 24727cccocoeieiiiieieieeiesesie e 22
Annex A — FIDO UAF protocol SPecifiCationccoceveierieieieiiniseseeeee s 23
Al SUMMIBIY ..ttt 23

A2 N 01 1 - Uod SR 23

A3 L@ T VT SR 23

A4 ProtoCOl detailScoveieiieiice s 26

A5 (@004 0 (<7 LA 0] SR 68

A6 UAF supported assertion SCNEMES...........couierererinininieeeiee e 80

Rec. ITU-T X.1277 (11/2018) i

Annex B — UAF application API and transport binding specificationcc.ccccccevevvvernenne.

B.1 SUMMIBIY .ottt e et e e ssb e e bb e e e bt e e e bt e e s nbbeeenneeeans
B.2 (@] VT PSR
B.3 The AppID and FacetID aSSErtioNSccccecereriririiieieieee e
Annex C — FIDO UAF authenticator COMMANUS..........cceviierierenenesieseseseeie e
C1 SUMMIAIY ..ttt b e sab e e e st e e e bt e e e nbbe e e bt e e e nnreeens
C.2 (@] VT PSR
C.3 UAF QUENENTICALONeevieciieieeie ettt
C4 LI PP
C.5 SETUCTUIES ...
C.6 COMMEANGS ...ttt bbbt ene e
C.7 KeylIDs and Key handles............ccoveiieiiiieiiec e
C.8 AcCcess control for COMMANGScooveiieriie e
C.9 (000 4]0 [T LA 0] 3SR
C.10 Relationship to other Standardsccooeeeeieiereneneeeee e
C.11 SeCUrity QUIEIINESooviieiiciece et
Annex D — FIDO UAF authenticator-specific module API...........cccooiiiniiiinenee
D.1 SUMMEIY et
D.2 L@ T VT RS R
D.3 ASM requests and FESPONSESeciveeeeireeriesieieesreeee e esteeeeseesreesresreesreeeens
D.4 USING ASIM AP oo
D.5 Using the ASM API on various platformsccccevevieeiiiie v
D.6 Security and privacy gUIdEIINEScccooirieiiiiiere e
Annex E — UAF registry of predefined ValUEScccoeveiieiicii i
E.l OVEIVIBW .ttt ettt ettt e et st nbenbeene e
E.2 Authenticator CharaCteriStiCscuiviierieieiiie et
ANNEX F — UAF APDU ...ttt
F.1 SUMMIAIY oottt e et e et e e ssb e e e s s be e e nsb e e e nabeeennbeeenseeeans
F.2 INEFOAUCTION .o
F.3 SE-based authenticator implementation SS& CaSeSccccevveveeieereerieseene.
F.4 FIDO UAF applet and APDU COMMANGScccooiriiiiniiieienie e
F.5 SECUrity CONSIABTALIONScoviieieiiiiiiriesiee e
Annex G — FIDO AppID and facets SPecifiCationcccceviieiiiiiie s
G.1 SUMMIAIY .ottt e et e e s e e srb e e e s s be e e ss b e e e snbeeessbeeensneeans
G.2 L@ T VT SRS
G.3 The AppID and FacetID aSSErtioNSccccevveveriririeiieieie e
Annex H — FIDO metadata StatEMENTSccooiiiiiiiiieeiie e
H.1 SUMMIAIY .ottt e et e e s e e srb e e e s s be e e ss b e e e snbeeessbeeensneeans
H.2 OVEIVIBW .ttt sttt bbbt b bbb nne e
H.3 LD 15T PP U

iv

Rec. ITU-T X.1277 (11/2018)

82
82
82
84
89
89
89
89
92
98
104
117
119
119
120
121

126
126
126
127
145
145
148

151
151
151

159
159
159
159
162
168
169
169
169
171
176
176
176
178

H.4 MELAAALA KEYSvevieieeeic et 184

H.5 Metadata statement FOrmatcccoveiieiiieie s 189
H.6 Additional CONSIAEIATIONScoiiiiiiieiierie e 192
ANNEX | — FIDO MEtadata SEIVICEcveiveeieiie i eie st ste et sre e snae e 193
1.1 SUMMIBIY <.ttt b e sab e e e bt e e e bt e e e nbb e e e bt e e s nbreeans 193
1.2 L@ T T SRS 193
1.3 Metadata Service detailS ..o 194
1.4 (000 4]0 [T LA o] PR R 203
Annex J — FIDO ECDAA algorithmocoiiiiiee e 205
J.1 SUMMIBIY .ottt b e sab e e s st e e e bt e e e nbb e e e bt e e s nsreeans 205
J.2 (@Y= QY 1= SRR 205
J.3 FIDO ECDAA QtteSTALIONoovviivieieieie e 206
J.4 FIDO ECDAA object formats and algorithm detailsccccoceninininnnnnne 215
J.5 (@00 T4 0 (<] LA o] SRS 219
Annex K — FIDO registry of predefined ValUescccooeiiiiiiiiiiiceeec s 222
K.1 SUMMEIY .o 222
K.2 OVEIVIBW .ttt ettt et e e st e et e s e e e sbe e snbe e reeenaeeaneeenes 222
K.3 Authenticator charaCteristiCsccvvviiieiiiie i 222
ANNEX L — FIDO SECUNILY FETEIENCEocueeeiiieieieie et 231
L.1 SUMMEIY .o ns 231
L.2 T 0o ¥ Tox £ o] o ISP 231
L.3 ARtaCK ClaSSITICALIONceciviiiiiiccc e 232
L.4 UAF SECUFILY OIS ..vveeiiieieiecie ettt 233
L.5 FIDO SECUTILY MEBASUIEScveevveiuieireeiesteesieeteseesteese st e sre e esreesnesneesree e 235
L.6 UAF SECUNItY aSSUMPLIONSoviiiiiieiieieieie sttt 238
L.7 TRIeat ANAIYSIScviiiiiiie e 239
=T o] [ToTo =10)Y USR 251

Rec. ITU-T X.1277 (11/2018) v

Recommendation ITU-T X.1277

Universal authentication framework

1 Scope

This Recommendation on the FIDO universal authentication framework (UAF) describes the
components, protocols and interfaces that make up the FIDO UAF strong authentication ecosystem.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published. The reference to a document within this
Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.690] Recommendation ITU-T X.690 (2015) | ISO/IEC 8825-1:2015, Information
technology — ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER).

[ISO 7816-4] ISO 7816-4:2013, Identification cards — Integrated circuit cards — Part 4:
Organization, security and commands for interchange.
https://www.iso.org/standard/54550.html

[ISO 19795-1] ISO 19795-1:2006, Information technology — Biometric peformance testing
and reporting — Part 1: Principles and framework.
https://www.iso.org/standard/41447.html

[ISO 30107-1] ISO 30107-1:2016, Information technology — Biometric presentation attack
detection — Part 1: Framework.
https://www.iso.org/standard/53227.html

[IETF RFC 1321] IETF RFC 1321 (1992), The MD5 Message-Digest Algorithm.

https://www.ietf.org/rfc/rfc1321.txt

[IETF RFC 2049] IETF RFC 2049 (1996), Multipurpose Internet Mail Extensions (MIME) Part
Five: Conformance Criteria and Examples.
https://www.ietf.org/rfc/rfc2049.txt

[IETF RFC 2119] IETF RFC 2119 (1997), Key words for use in RFCs to Indicate Requirement
Levels.
https://tools.ietf.org/html/rfc2119

[IETF RFC 3447] IETF RFC 3447 (2003), Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1.
https://tools.ietf.org/html/rfc3447

[IETF RFC 3629] IETF RFC 3629 (2003), UTF-8, a transformation format of ISO 10646.

https://tools.ietf.org/html/rfc3629

[IETF RFC 4055] IETF RFC 4055 (2005), Additional Algorithms and Identifiers for RSA
Cryptography for use in the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile.
https://tools.ietf.org/html/rfc4055

[IETF RFC 4056] IETF RFC 4056 (2005), Use of the RSASSA-PSS Signature Algorithm in
Cryptographic Message Syntax (CMS).

https://tools.ietf.org/html/rfc4056

Rec. ITU-T X.1277 (11/2018) 1

https://www.iso.org/standard/54550.html
https://www.iso.org/standard/41447.html
https://www.iso.org/standard/53227.html
https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc4055
https://tools.ietf.org/html/rfc4056

[IETF RFC 4086]

[IETF RFC 4627]

[IETE RFC 4648]

[IETF RFC 5056]

[IETF RFC 5280]

[IETF RFC 5480]

[IETF RFC 5929]

[IETF RFC 6125]

[IETF RFC 6234]

[IETF RFC 6454]

[IETF RFC 6979]

[IETF RFC 7515]
[IETF RFC 7517]
[IETF RFC 7518]

[IETF RFC 7519]

3 Definitions

IETF RFC 4086 (2005), Randomness Requirements for Security.
https://www.ietf.org/rfc/rfc4086.txt

IETF RFC 4627 (2006), The application/json Media Type for JavaScript
Object Notation (JSON).

https://tools.ietf.org/html/rfc4627

IETF RFC 4648 (2006), The Basel6, Base32, and Base64 Data Encodings.
https://www.ietf.org/rfc/rfc4648.txt

IETF RFC 5056 (2007), On the Use of Channel Bindings to Secure
Channels.

https://www.ietf.org/rfc/rfc5056.txt

IETF RFC 5280 (2008), Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile.

https://www.ietf.org/rfc/rfc5280.txt

IETF RFC 5480 (2009), Elliptic Curve Cryptography Subject Public Key
Information.

https://tools.ietf.org/html/rfc5480

IETF RFC 5929 (2010), Channel Bindings for TLS.
https://www.ietf.org/rfc/rfc5929.txt

IETF RFC 6125 (2011), Representation and Verification of Domain-Based
Application Service ldentity within Internet Public Key Infrastructure Using
X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS).
https://www.ietf.org/rfc/rfc6125.txt

IETF RFC 6234 (2011), US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF).

https://www.ietf.org/rfc/rfc6234.txt

IETF RFC 6454 (2011), The Web Origin Concept.
https://www.ietf.org/rfc/rfc6454.txt

IETF RFC 6979 (2013), Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA).

https://www.ietf.org/rfc/rfc6979.txt

IETF RFC 7515 (2015), JSON Web Signature (JWS).

https://tools.ietf.org/html/rfc7515

IETF RFC 7517 (2015) JSON Web Key (JWK).

https://tools.ietf.org/html/rfc7517

IETF RFC 7518 (2015), JSON Web Algorithms (JWA).

https://tools.ietf.org/html/rfc7518

IETF, M. Jones; J. Bradley; N. Sakimura (2015), JSON Web Token (JWT).

https://tools.ietf.org/html/rfc7519

3.1 Terms defined elsewhere

None.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1

application: A set of functionalities provided by a common entity (the application owner

also known as the relying party) and perceived by the user as belonging together.

2 Rec. ITU-T X.1277 (11/2018)

https://www.ietf.org/rfc/rfc4086.txt
https://tools.ietf.org/html/rfc4627
https://www.ietf.org/rfc/rfc4648.txt
https://www.ietf.org/rfc/rfc5056.txt
https://www.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/html/rfc5480
https://www.ietf.org/rfc/rfc5929.txt
https://www.ietf.org/rfc/rfc6125.txt
https://www.ietf.org/rfc/rfc6234.txt
https://www.ietf.org/rfc/rfc6454.txt
https://www.ietf.org/rfc/rfc6979.txt
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519

3.2.2 application facet: An (application) facet is how an application is implemented on various
platforms. For example, the application MyBank may have an Android app, an iOS app and a
Web app. These are all facets of the MyBank application.

3.2.3 application facet ID: A platform-specific uniform resource identifier (URI) for an
application facet.

. For Web applications, the facet id is the RFC6454 origin [IETF RFC 6454].

. For Android applications, the facet id is the URI android:apk-key-hash:<hash-of-apk-
signing-cert>

. For iOS, the facet id is the URI ios:bundle-id:<ios-bundle-id-of-app>

3.2.4 ApplID: The ApplD is an identifier for a set of different facets of a relying party's application.
The ApplID is a URL pointing to the TrustedFacets, i.e., list of FacetIDs related to this AppID.

3.2.5 attestation: In the FIDO context, attestation is how authenticators make claims to a relying
party that the keys they generate and/or certain measurements they report, originate from genuine
devices with certified characteristics.

3.2.6 attestation certificate: A public key certificate related to an attestation key.

3.2.7 authenticator attestation ID (AAID): A unique identifier assigned to a model, class or batch
of FIDO authenticators that all share the same characteristics and which a relying party can use to
look up an attestation public key and authenticator metadata for the device.

3.2.8 attestation (public/private) key: A key used for FIDO authenticator attestation.

3.2.9 attestation root certificate: A root certificate explicitly trusted by the FIDO Alliance, to
which attestation certificates chain to.

3.2.10 authentication: Authentication is the process in which a user employs their FIDO
authenticator to prove possession of a registered key to a relying party.

3.2.11 authentication algorithm: The combination of signature and hash algorithms used for
authenticator-to-relying party authentication.

3.2.12 authentication scheme: The combination of an authentication algorithm with a message
syntax or framing that is used by an authenticator when constructing a response.

3.2.13 authenticator: Often abbreviated as "Authnr", see FIDO authenticator (clause 3.1.32).

3.2.14 authenticator, 1stF / first-factor: A FIDO authenticator that transactionally provides a
username and at least two authentication factors: cryptographic key material (something the user has)
plus user verification (something the user knows / something the user is) and so can be used by itself
to complete an authentication.

NOTE 1 — It is assumed that these authenticators have an internal matcher. The matcher is able to verify an
already enrolled user. If there is more than one user enrolled, the matcher is also able to identify the right user.

NOTE 2 — Examples of such an authenticator include a biometric sensor or a PIN based verification.
Authenticators which only verify presence, such as a physical button, or perform no verification at all, cannot
act as a first-factor authenticator.

3.2.15 authenticator, 2ndF / second-factor: A FIDO authenticator which acts only as a second
factor.

NOTE — Second-factor authenticators always require a single key handle to be provided before responding to
a sign command. They might or might not have a user verification method. It is assumed that these
authenticators may or may not have an internal matcher.

3.2.16 authenticator attestation: The process of communicating a cryptographic assertion to a
relying party that a key presented during authenticator registration was created and protected by a
genuine authenticator with verified characteristics.

Rec. ITU-T X.1277 (11/2018) 3

3.2.17 authenticator metadata: Verified information about the characteristics of a certified
authenticator, associated with an AAID and available from the FIDO Alliance. FIDO servers are
expected to have access to up-to-date metadata to be able to interact with a given authenticator.

3.2.18 authenticator policy: A JavaScript object notation (JSON) data structure that allows a
relying party to communicate to a FIDO client the capabilities or specific authenticators that are
allowed or disallowed for use in a given operation.

3.2.19 authenticator specific module (ASM): Software associated with a FIDO authenticator that
provides a uniform interface between the hardware and FIDO client software.

3.2.20 bound authenticator: A FIDO authenticator or combination of authenticator and ASM,
which uses an access control mechanism to restrict the use of registered keys to trusted FIDO clients
and/or trusted FIDO user devices. Compare to a 'roaming authenticator'.

3.2.21 certificate: An X.509v3 certificate defined by the profile specified in [IETF RFC 5280] and
its successors.

3.2.22 channel binding: See: [IETF RFC 5056], [IETF RFC 5929] and [b-ChannellD]. A channel
binding allows applications to establish that the two end-points of a secure channel at one network
layer are the same as at a higher layer by binding authentication to the higher layer to the channel at
the lower layer.

3.2.23 client: This term is used "in context” and may refer to a FIDO universal authentication
framework (UAF) client or some other type of client, e.g., a transport layer security (TLS) client. See
FIDO client (clause 3.1.33).

3.2.24 confused deputy problem: A confused deputy is a computer program that is innocently
fooled by some other party into misusing its authority. It is a specific type of privilege escalation.

3.2.25 correlation handle: Any piece of information that may allow, in the context of FIDO
protocols, implicit or explicit association and or attribution of multiple actions, believed by the user
to be distinct and unrelated, back to a single unique entity. An example of a correlation handle outside
of the FIDO context is a client certificate used in traditional TLS mutual authentication: because it
sends the same data to multiple relying parties, they can therefore collude to uniquely identify and
track the user across unrelated activities. [b-AnonTerminology]

3.2.26 deregistration: A phase of a FIDO protocol in which a relying party tells a FIDO
authenticator to forget a specified piece of (or all) locally managed key material associated with a
specific relying party account, in case such keys are no longer considered valid by the relying party.

3.2.27 discovery: A phase of a FIDO protocol in which a relying party is able to determine the
availability of FIDO capabilities at the client's device, including metadata about the available
authenticators.

3.2.28 ECDSA: Elliptic curve digital signature algorithm, as defined by ANSI X9.62 [b-ECDSA-
ANSI].

3.2.29 enrollment: The process of making a user known to an authenticator. This might be a
biometric enrollment as defined in [b-NSTCBiometrics] or involve processes such as taking
ownership of and setting a PIN or password for, a non-biometric cryptographic storage device.
Enrollment may happen as part of a FIDO protocol ceremony, or it may happen outside of the FIDO
context for multi-purpose authenticators.

3.2.30 Facet: See application facet (clause 3.2.2).
3.2.31 Facet ID: See application facet ID (clause 3.2.3).

4 Rec. ITU-T X.1277 (11/2018)

3.2.32 FIDO authenticator: An authentication entity that meets the FIDO Alliance’s requirements
and which has related metadata.

NOTE 1 - A FIDO authenticator is responsible for user verification and maintaining the cryptographic material
required for the relying party authentication.

NOTE 2 - It is important to note that a FIDO authenticator is only considered such for and in relation to, its
participation in FIDO Alliance protocols. Because the FIDO Alliance aims to utilize a diversity of existing and
future hardware, many devices used for FIDO may have other primary or secondary uses. To the extent that a
device is used for non-FIDO purposes such as local operating system login or network login with non-FIDO
protocols, it is not considered a FIDO authenticator and its operation in such modes is not subject to FIDO
Alliance guidelines or restrictions, including those related to security and privacy.

NOTE 3 — A FIDO authenticator may be referred to as simply an authenticator or abbreviated as "authnr".
Important distinctions in an authenticator's capabilities and user experience may be experienced depending on
whether it is a roaming or bound authenticator and whether it is a first-factor, or second-factor authenticator.

NOTE 4 - It is assumed by registration assertion schemes that the authenticator has exclusive control over the
data being signed by the attestation key.

NOTE 5 — Some authentication assertion schemes (e.g., TAG_UAFV1 _AUTH_ASSERTION) assume the
authenticator to have exclusive control over the data being signed by the vauth key.

3.2.33 FIDO client: This is the software entity processing the UAF or U2F protocol messages on
the FIDO user device.

NOTE — FIDO clients may take one of two forms:

. A software component implemented in a user agent (either web browser or native
application).
. A standalone piece of software shared by several user agents. (web browsers or native

applications).

3.2.34 FIDO data/FIDO information: Any information gathered or created as part of completing
a FIDO transaction. This includes but is not limited to, biometric measurements of or reference data
for the user and FIDO transaction history.

3.2.35 FIDO server: Server software typically deployed in the relying party's infrastructure that
meets UAF protocol server requirements.

3.2.36 FIDO UAF client: See FIDO client.

3.2.37 FIDO user device: The computing device where the FIDO client operates and from which
the user initiates an action that utilizes FIDO.

3.2.38 Key identifier (KeylD): The KeyID is an opaque identifier for a key registered by an
authenticator with a FIDO server, for first-factor authenticators.

NOTE 1 — It is used in concert with an AAID to identify a particular authenticator that holds the necessary
key. Thus key identifiers must be unique within the scope of an AAID.

NOTE 2 — One possible implementation is that the KeyID is the SHA256 hash of the : eyHand1le managed
by the ASM.

3.2.39 KeyHandle: A key container created by a FIDO authenticator, containing a private key and
(optionally) other data (such as Username).

NOTE — A key handle may be wrapped (encrypted with a key known only to the authenticator) or unwrapped.
In the unwrapped form it is referred to as a raw key handle. Second-factor authenticators must retrieve their
key handles from the relying party to function. First-factor authenticators manage the storage of their own key
handles, either internally (for roaming authenticators) or via the associated ASM (for bound authenticators).

3.2.40 Key registration: The process of securely establishing a key between FIDO server and FIDO
authenticator.

Rec. ITU-T X.1277 (11/2018) 5

3.2.41 KeyRegistrationData (KRD): An object created and returned by an authenticator as the
result of the authenticator's register command.

NOTE - The KRD object contains items such as the authenticator's AAID, the newly generated UAuth.pub
key, as well as other authenticator-specific information such as algorithms used by the authenticator for
performing cryptographic operations and counter values. The KRD object is signed using the authenticator's
attestation private key.

3.2.42 KHAccessToken: A secret value that acts as a guard for authenticator commands.
KHAccessTokens are generated and provided by an ASM.

3.2.43 matcher: A component of a FIDO authenticator which is able to perform (local) user
verification, e.g., biometric comparison [b-ISOBiometrics], PIN verification, etc.

3.2.44 matcher protections: The security mechanisms that an authenticator may use to protect the
matcher component.

3.2.45 persona: All relevant data stored in an authenticator (e.g., cryptographic keys) are related to
a single "persona” (e.g., "business" or "personal” persona). Some administrative interfaces (not
standardized by FIDO) provided by the authenticator may allow maintenance and switching of
personas.

NOTE 1 — The user can switch to the "Personal™ persona and register new accounts. After switching back to

the "Business" persona, these accounts will not be recognized by the authenticator (until the user switches back
to "Personal” persona again).

NOTE 2 — This mechanism may be used to provide an additional measure of privacy to the user, where the
user wishes to use the same authenticator in multiple contexts, without allowing correlation via the
authenticator across those contexts.

3.2.46 PersonalD: An identifier provided by an ASM, PersonalD is used to associate different
registrations.

NOTE - It can be used to create virtual identities on a single authenticator, for example to differentiate
"personal and "business™ accounts. PersonalDs can be used to manage privacy settings on the authenticator.

3.2.47 reference data: A (biometric) reference data (also called template) is a digital reference of
distinct characteristics that have been extracted from a biometric sample.

NOTE - Biometric reference data is used during the biometric user verification process [b-ISOBiometrics].
Non-biometric reference data is used in conjunction with PIN-based user verification.

3.2.48 registration: A FIDO protocol operation in which a user generates and associates new key
material with an account at the relying party, subject to policy set by the server and acceptable
attestation that the authenticator and registration matches that policy.

3.2.49 registration scheme: The registration scheme defines how the authentication key is being
exchanged between the FIDO server and the FIDO authenticator.

3.2.50 relying party: A web site or other entity that uses a FIDO protocol to directly authenticate
users (i.e., performs peer-entity authentication).

NOTE - If FIDO is composed with federated identity management protocols (e.g., SAML, OpenID Connect,
etc.), the identity provider will also be playing the role of a FIDO relying party.

3.2.51 roaming authenticator: A FIDO authenticator configured to move between different FIDO
clients and FIDO user devices lacking an established trust relationship by:

Using only its own internal storage for registrations

Allowing registered keys to be employed without access control mechanisms at the API layer.
Roaming authenticators still may perform user verification.

NOTE — Compare to bound authenticator.
3.2.52 server challenge: A random value provided by the FIDO server in the UAF protocol requests.

6 Rec. ITU-T X.1277 (11/2018)

3.2.53 sign counter: A monotonically increasing counter maintained by the authenticator that is
increased on every use of the UAuth.priv key.

NOTE - This value can be used by the FIDO server to detect cloned authenticators.

3.2.54 SignedData: An object created and returned by an authenticator as the result of the
authenticator's sign command.

NOTE - The to-be-signed data input to the signature operation is represented in the returned SignedData object
as intact values or as hashed values. The SignedData object also contains general information about the
authenticator and its mode, a nonce, information about authenticator-specific cryptographic algorithms and a
use counter. The signedbata object is signed using a relying party-specific UAuth.priv key.

3.2.55 silent authenticator: FIDO authenticator that does not prompt the user or perform any user
verification.

3.2.56 step-up authentication: An authentication which is performed on top of an already
authenticated session.

NOTE 1 — Example: The user authenticates the session initially using a username and password and the web
site later requests a FIDO authentication on top of this authenticated session.

NOTE 2 — One reason for requesting step-up authenication could be a request for a high value resource.

NOTE 3 — FIDO U2F is always used as a step-up authentication. FIDO UAF could be used as step-up
authentication, but it could also be used as an initial authentication mechanism.

NOTE 4 — In general, there is no implication that the step-up authentication method itself is "stronger"” than
the initial authentication. Since the step-up authentication is performed on top of an existing authentication,
the resulting combined authentication strength will most likely increase, but it will never decrease.

3.2.57 template: Biometric reference data (see 3.2.47 Reference data).

3.2.58 token: In FIDO U2F, the term "token" is often used to mean what is called an authenticator
in UAF.

NOTE - Other uses of "token", e.g., KHAccess token, user verification token, etc., are separately distinct. If
they are not explicitly defined, their meaning needs to be determined from context.

3.2.59 transaction confirmation: An operation in the FIDO protocol that allows a relying party to
request that a FIDO client and authenticator with the appropriate capabilities, display some
information to the user, request that the user authenticate locally to their FIDO authenticator to
confirm the information and provide proof-of-possession of previously registered key material and
an attestation of the confirmation back to the relying party.

3.2.60 transaction confirmation display: This is a feature of FIDO authenticators able to show
content of a message to a user and protect the integrity of this message. It could be implemented using
the GlobalPlatform specified TrustedUI [b-TEESecureDisplay].

3.2.61 TrustedFacets: The data structure holding a list of trusted FacetIDs. The AppID is used to
retrieve this data structure.

3.2.62 TTEXT: Transaction text, i.e., text to be confirmed in the case of transaction confirmation.

3.2.63 type-length-value/tag-length-value (TLV): A mechanism for encoding data such that the
type, length and value of the data are given. Typically, the type and length data fields are of a fixed
size. This format offers some advantages over other data encoding mechanisms, which make it
suitable for some of the FIDO UAF protocols.

3.2.64 universal second-factor (U2F): The FIDO protocol and family of authenticators that enable
a cloud service to offer its users the options of using an easy—to—use, strongly—secure open standards—
based second-factor device for authentication.

NOTE — The protocol relies on the server to know the (expected) user before triggering the authentication.

Rec. ITU-T X.1277 (11/2018) 7

3.2.65 universal authentication framework (UAF): The FIDO protocol and family of
authenticators which enable a service to offer its users flexible and interoperable authentication.

NOTE - This protocol allows triggering the authentication before the server knows the user.
3.2.66 UAF client: See FIDO client.

3.2.67 UAuth.pub / UAuth.priv / UAuth.key: User authentication keys generated by FIDO
authenticator. UAuth.pub is the public part of key pair. UAuth.priv is the private part of the key.
UAuth.key is the more generic notation to refer to UAuth.priv.

3.2.68 user: Relying party's user and owner of the FIDO authenticator.

3.2.69 user agent: The user agent is a client application that is acting on behalf of a user in a client-
server system. Examples of user agents include web browsers and mobile apps.

3.2.70 user verification: The process by which a FIDO authenticator locally authorizes use of key
material, for example through a touch, pin code, fingerprint match or other biometric.

3.2.71 user verification token: A token generated by the authenticator and handed to the ASM after
successful user verification.
NOTE 1 — Without having this token, the ASM cannot invoke special commands such as Register Or Sign.

NOTE 2 - The lifecycle of the user verification token is managed by the authenticator. The concrete techniques
for generating such a token and managing its lifecycle are vendor-specific and non-normative.

3.2.72 username: A human-readable string identifying a user's account at a relying party.

3.2.73 verification factor: The specific means by which local user verification is accomplished,
e.g., fingerprint, voiceprint, or PIN.

NOTE — This is also known as modality.

3.2.74 Web application, client-side: The portion of a relying party application built on the "Open
Web Platform” that executes in the context of the user agent.

NOTE — When the term "Web Application" appears unqualified or without specific context in FIDO
documents, it generally refers to either the client-side portion or the combination of both client-side and server-
side pieces of such an application.

3.2.75 Web application, server-side: The portion of a relying party application that executes on
the web server and responds to HTTP requests.

NOTE — When the term "Web Application" appears unqualified or without specific context in FIDO
documents, it generally refers to either the client-side portion or the combination of both client-side and server-
side pieces of such an application.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:
AAGUID Authenticator Attestation Globally Unique Identifier
AAID Authenticator Attestation 1D

AES Advanced Encryption Standard

AES-CCM Advanced Encryption Standard — Counter with CBC-MAC
AES-GCM Advanced Encryption Standard — Galois/Counter Mode

APDU Application Programming Data Units
API Application Programming Interface
ASM Application-Specific Module

8 Rec. ITU-T X.1277 (11/2018)

ASM
AV
BNF
BYOD
CA
CBC
CTR
DAA
DB
DER
DLL
DNS
DSA
ECDAA
ECDSA
EM
FAAR
FAR
FCH
FIM
FP
FPS
FRR
HMAC
120SP
dP
1S
JSON
IWT
KRD
LAN
MAC
MGF
MITB
MITM
NFC

Authenticator Specific Module
ASM Version

Backus—Naur Form

Bring Your Own Device
Certificate Authority

Cipher Block Chaining

Counter mode

Direct Anonymous Attestation
Database

Distinguished Encoding Rules
Dynamic Link Library

Domain Name Service

Digital Signature Algorithm
Elliptical Curve Direct Anonymous Attestation
Elliptic Curve Digital Signature Algorithm
Encoded Message

False Artefact Acceptance Rate
False Acceptance Rate

Final Challenge

Federated Identity Management
Fingerprint

Fingerprint Scanner

False Rejection Rate

Keyed-hash Message Authentication Code
Integer to Octet Stream Primitive
Identity Provider

JavaScript

JavaScript Object Notation
JSON Web Token

Key Registration Data

Local Area Network

Message Authentication Code
Mask Generation Function
Man-in-the-browser
Man-in-the-Middle

Near Field Communications

Rec. ITU-T X.1277 (11/2018)

9

OPT One-time Password

OTP One-Time Password

PAN Personal Area Network

Pl Personal Identifiable Information
PKCS Public-Key Cryptography Standards
PNG Portable Network Graphic

PS Padding String

ROC Receiver Operator Characteristic

RP Relying Party

SAML Secure Authentication Markup Language
SE Secure Element

SDO Standards Development Organization
SM Signed Message

SW Software

TCB Trusted Computing Base

TCG Trusted Computing Group

TEE Trusted Execution Environment

TLS Transport Layer Security

TLV Tag-Length-Value

TOC Table of Contents

TPM Trusted Platform Module

UAF Universal Authentication Framework
UPV UAF protocol version

URI Uniform Resource Identifier

USB Universal Serial Bus

WAN Wide Area Network

WYSIWYS What You See Is What You Sign

5 Conventions

51 Notation

Type names, attribute names and element names are written in red courier new font as code.
String literals are enclosed in ", e.g., "UAF-TLV".

In formulas, "|" is used to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [b-ECMA-262] bindings for WebIDL
[b-WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet"
[IETF RFC 4648] without padding.

10 Rec. ITU-T X.1277 (11/2018)

The notation vasec4url (byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64
Encoding with URL and Filename Safe Alphabet” [IETF RFC 4648] without padding.

In accordance with [b-WebIDL-ED], dictionary members are optional unless they are explicitly
marked as required.

WebIDL dictionary members MUST NOT have a value of null.
Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MUST NOT be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it MUST NOT be an empty
list.

WebIDL dictionary members MUST NOT have a value of null — i.e., there are no declarations of
nullable dictionary members in this Recommendation.

Unless otherwise specified all data described in this Recommendation MUST be encoded in little-
endian format.

All TLV structures can be parsed using a "recursive-descent” parsing approach. In some cases
multiple occurrences of a single tag MAY be allowed within a structure, in which case all values
MUST be preserved.

All fields in TLV structures are mandatory, unless explicitly mentioned as otherwise.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it MUST NOT be empty.
All TLV structures defined in this Recommendation MUST be encoded in little-endian format.

All APDU defined in this Recommendation MUST be encoded as defined in [ISO7816-4].

Unless otherwise specified, if a WebIDL dictionary member is a list, it MUST NOT be an empty list.
All diagrams, examples, notes in this Recommendation are non-normative.

Some entries are marked as "(optional)" in this Recommendation. The meaning of this is defined in
other FIDO specifications referring to this Recommendation.

E(K,D): Denotes the encryption of data D with key K

S(K, D): Signing of data D with key K.

(X = P*) denotes scalar multiplication (with scalar x) of a (elliptic) curve point P.
RAND(x) denotes generation of a random number between 0 and x-1.

RAND(G) denotes generation of a random number belonging to Group G.

UINTS: An 8 bit (1 byte) unsigned integer.

UINT16: A 16 bit (2 bytes) unsigned integer.

UINT32: A 32 bit (4 bytes) unsigned integer.

The type &ignumber denotes an arbitrary length integer value.

The type mcroint denotes an elliptic curve point with its affine coordinates x and y.

The type =croint2 denotes a point on the sextic twist of a BN elliptic curve over F(q?). The
ECPoint2 has two affine coordinates each having two components of type BigNumber

NOTE - Certain dictionary members need to be present in order to comply with FIDO requirements. Such
members are marked in the WebIDL definitions found in this Recommendation, as required. The keyword
required has been introduced by [b-WebIDL-ED], which is a work-in-progress. If you are using a WebIDL
parser which implements [b-WebIDL], then you may remove the keyword required from your WebIDL and
use other means to ensure those fields are present.

Rec. ITU-T X.1277 (11/2018) 11

5.2 Conformance

All authoring guidelines, diagrams, examples and notes in this Recommendation are non-normative.
Everything else in this Recommendation is hormative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this Recommendation are to
be interpreted as described in [IETF RFC 2119].

6 Introduction

This Recommendation describes the FIDO universal authentication framework (UAF) reference
architecture. The target audience for this Recommendation is decision makers and technical architects
who need a high-level understanding of the FIDO UAF strong authentication solution and its
relationship to other relevant industry standards.

6.1 Background
The FIDO Alliance mission is to change the nature of online strong authentication by:

. Developing technical specifications defining open, scalable, interoperable mechanisms that
supplant reliance on passwords to securely authenticate users of online services.

. Operating industry programs to help ensure successful worldwide adoption of the
specifications.

. Submitting mature technical specifications to recognized standards development

organizations (SDOs) for formal standardization.

The core ideas driving the FIDO Alliance's efforts are 1) ease of use, 2) privacy and security and
3) standardization. The primary objective is to enable online services and websites, whether on the
open Internet or within enterprises, to leverage native security features of end-user computing devices
for strong user authentication and to reduce the problems associated with creating and remembering
many online credentials.

There are two key protocols included in the FIDO architecture that cater to two basic options for user
experience when dealing with Internet services. The two protocols share many of underpinnings but
are tuned to the specific intended use cases.

Universal authentication framework (UAF) protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user
registers their device to the online service by selecting a local authentication mechanism such as
swiping a finger, looking at the camera, speaking into the mic, entering a PIN, etc. The UAF protocol
allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to
authenticate to the service. The user no longer needs to enter their password when authenticating from
that device. UAF also allows experiences that combine multiple authentication mechanisms such as
fingerprint + PIN.

This Recommendation describes the UAF reference architecture.

Universal 2nd Factor (U2F) protocol

The U2F protocol allows online services to augment the security of their existing password
infrastructure by adding a strong second factor to user login. The user logs in with a username and
password as before. The service can also prompt the user to present a second factor device at any time
it chooses. The strong second factor allows the service to simplify its passwords (e.g., 4-digit PIN)
without compromising security.

12 Rec. ITU-T X.1277 (11/2018)

During registration and authentication, the user presents the second factor by simply pressing a button
on a universal serial bus (USB) device or tapping over near field communications (NFC). The user
can use their FIDO U2F device across all online services that support the protocol leveraging built-
in support in web browsers.

NOTE - Please refer to the FIDO website for an overview and documentation set focused on the U2F protocol.

6.2 FIDO UAF documentation

To understand the FIDO UAF protocol, it is recommended that new audiences start by reading this
architecture overview document and become familiar with the technical terminology used in the
specifications (the glossary). Then they should proceed to the individual UAF documents in the
recommended order listed below:

. This Recommendation provides FIDO UAF overview: An introduction to the FIDO UAF
architecture, protocols and specifications.
. Universal authentication framework (UAF):

— Annex A: UAF protocol specification: Message formats and processing rules for all UAF
protocol messages.

— Annex B: UAF application APl and transport binding specification: APIs and
interoperability profile for client applications to utilize FIDO UAF.

— Annex C: UAF authenticator commands: Low-level functionality that UAF
authenticators should implement to support the UAF protocol.

— Annex D: UAF authenticator-specific module API: Authenticator-specific module API
provided by an ASM to the FIDO client.

— Annex E: UAF registry of predefined values: defines all the strings and constants
reserved by UAF protocols.

— Annex F: UAF APDU: Defines a mapping of FIDO UAF authenticator commands to
application protocol data units (APDU).

. Annex G: FIDO AppID and facet specification: Scope of user credentials and how a trusted
computing base which supports application isolation may make access control decisions
about which keys can be used by which applications and web origins.

. Annex H: FIDO metadata statements: Information describing form factors, characteristics
and capabilities of FIDO authenticators used to inform interactions with and make policy
decisions about the authenticators.

. Annex I: FIDO metadata service: Baseline method for relying parties to access the latest
metadata statements.

. Annex J: FIDO ECDAA algorithm: Defines the direct anonymous attestation algorithm for
FIDO authenticators.

. Annex K: FIDO registry of predefined values: Defines all the strings and constants reserved
by FIDO protocols with relevance to multiple FIDO protocol families.

. Annex L: FIDO security reference: Provides an analysis of FIDO security based on detailed

analysis of security threats pertinent to the FIDO protocols based on its goals, assumptions
and inherent security measures.

The remainder of this overview section of the reference architecture introduces the key drivers, goals
and principles which inform the design of FIDO UAF.

Following the overview, this Recommendation presents:
. A high-level look at the components, protocols and APIs defined by the architecture.

Rec. ITU-T X.1277 (11/2018) 13

. The main FIDO UAF use cases and the protocol message flows required to implement them.
The relationship of the FIDO protocols to other relevant industry standards.

6.3 FIDO UAF goals

In order to address today's strong authentication issues and develop a smoothly-functioning low-
friction ecosystem, a comprehensive, open, multi-vendor solution architecture is needed that
encompasses:

. User devices, whether personally acquired, enterprise-issued, or enterprise bring your own
device (BYOD) and the device's potential operating environment, e.g., home, office, in the
field, etc.

. Authenticators?

. Relying party applications and their deployment environments

. Meeting the needs of both end users and relying parties

. Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

. FIDO UAF authenticator discovery, attestation and provisioning

. Cross-platform strong authentication protocols leveraging FIDO UAF authenticators

. A uniform cross-platform authenticator API

. Simple mechanisms for relying party integration

The FIDO Alliance envisions an open, multi-vendor, cross-platform reference architecture with these
goals:

. Support strong, multi-factor authentication: Protect relying parties against unauthorized
access by supporting end user authentication using two or more strong authentication factors
("something you know", "something you have", "something you are").

. Build on, but not require, existing device capabilities: Facilitate user authentication using
built-in platform authenticators or capabilities (fingerprint sensors, cameras, microphones,
embedded TPM hardware), but do not preclude the use of discrete additional authenticators.

. Enable selection of the authentication mechanism: Facilitate relying party and user choice
amongst supported authentication mechanisms in order to mitigate risks for their particular
use cases.

. Simplify integration of new authentication capabilities: Enable organizations to expand their

use of strong authentication to address new use cases, leverage new device's capabilities and
address new risks with a single authentication approach.

. Incorporate extensibility for future refinements and innovations: Design extensible protocols
and APIs in order to support the future emergence of additional types of authenticators,
authentication methods and authentication protocols, while maintaining reasonable
backwards compatibility.

. Leverage existing open standards where possible, openly innovate and extend where not: An
open, standardized, royalty-free specification suite will enable the establishment of a
virtuous-circle ecosystem and decrease the risk, complexity and costs associated with
deploying strong authentication. Existing gaps, notably uniform authenticator provisioning
and attestation, a uniform cross-platform authenticator API, as well as a flexible strong
authentication challenge-response protocol leveraging the user's authenticators will be
addressed.

1 Also known as: authentication tokens, security tokens, etc.

14 Rec. ITU-T X.1277 (11/2018)

7

Complement existing single sign-on, federation initiatives: While industry initiatives (such
as OpenlID, OAuth, SAML and others) have created mechanisms to reduce the reliance on
passwords through single sign-on or federation technologies, they do not directly address the
need for an initial strong authentication interaction between end users and relying parties.

Preserve the privacy of the end user: Provide the user control over the sharing of device
capability information with relying parties and mitigate the potential for collusion amongst
relying parties.

Unify end-user experience: Create easy, fun and unified end-user experiences across all
platforms and across similar authenticators.

FIDO UAF high-level architecture

The FIDO UAF architecture is designed to meet the FIDO goals and yield the desired ecosystem
benefits. It accomplishes this by filling in the status-quo’s gaps using standardized protocols and APIs.
Figure 1 summarizes the reference architecture and how its components relate to typical user devices
and relying parties.

The FIDO-specific components of the reference architecture are described in this clause.

7.1

TLS TLS
protocol key

BROWSER/APP UAF protocol) WEB SERVER

Cryptographic
authentication key FIDO SERVER

FIDO CLIENT reference DB

ASM

FIDO AUTHENTICATOR

Authenticator
metadata and
attestation trust
store

Certify
T compliance

X.1277(18)_F01

FIDO METADATA SERVICE

Figure 1 — FIDO UAF high-level architecture

FIDO UAF client

A FIDO UAF client implements the client side of the FIDO UAF protocols and is responsible for:

Interacting with specific FIDO UAF authenticators using the FIDO UAF authenticator
abstraction layer via the FIDO UAF authenticator API.

Interacting with a user agent on the device (e.g., a mobile app, browser) using user agent-
specific interfaces to communicate with the FIDO UAF server. For example, a FIDO-specific
browser plugin would use existing browser plugin interfaces or a mobile app may use a
FIDO-specific SDK. The user agent is then responsible for communicating FIDO UAF
messages to a FIDO UAF server at a relying party.

Rec. ITU-T X.1277 (11/2018) 15

The FIDO UAF architecture ensures that FIDO client software can be implemented across a range of
system types, operating systems and Web browsers. While FIDO client software is typically platform-
specific, the interactions between the components should ensure a consistent user experience from
platform to platform.

1.2 FIDO UAF server
A FIDO UAF server implements the server side of the FIDO UAF protocols and is responsible for:

. Interacting with the relying party web server to communicate FIDO UAF protocol messages
to a FIDO UAF client via a device user agent.

. Validating FIDO UAF authenticator attestations against the configured authenticator
metadata to ensure only trusted authenticators are registered for use.

. Manage the association of registered FIDO UAF authenticators to user accounts at the relying
party.

. Evaluating user authentication and transaction confirmation responses to determine their
validity.

The FIDO UAF server is conceived as being deployable as an on-premise server by relying parties
or as being outsourced to a FIDO-enabled third-party service provider.

7.3 FIDO UAF protocols

The FIDO UAF protocols carry FIDO UAF messages between user devices and relying parties. There
are protocol messages addressing:

. Authenticator registration: The FIDO UAF registration protocol enables relying parties to:

— Discover the FIDO UAF authenticators available on a user's system or device. Discovery
will convey FIDO UAF authenticator attributes to the relying party thus enabling policy
decisions and enforcement to take place.

— Verify attestation assertions made by the FIDO UAF authenticators to ensure the
authenticator is authentic and trusted. Verification occurs using the attestation public key
certificates distributed via authenticator metadata.

— Register the authenticator and associate it with the user's account at the relying party.
Once an authenticator attestation has been validated, the relying party can provide a
unique secure identifier that is specific to the relying party and the FIDO UAF
authenticator. This identifier can be used in future interactions between the pair {RP,
Authenticator} and is not known to any other devices.

. User authentication: Authentication is typically based on cryptographic challenge-response
authentication protocols and will facilitate user choice regarding which FIDO UAF
authenticators are employed in an authentication event.

. Secure transaction confirmation: If the user authenticator includes the capability to do so, a
relying party can present the user with a secure message for confirmation. The message
content is determined by the relying party and could be used in a variety of contexts such as
confirming a financial transaction, a user agreement, or releasing patient records.

. Authenticator deregistration: Deregistration is typically required when the user account is
removed at the relying party. The relying party can trigger the deregistration by requesting
the authenticator to delete the associated UAF credential with the user account.

16 Rec. ITU-T X.1277 (11/2018)

7.4 FIDO UAF authenticator abstraction layer

The FIDO UAF authenticator abstraction layer provides a uniform API to FIDO clients enabling the
use of authenticator-based cryptographic services for FIDO-supported operations. It provides a
uniform lower-layer "authenticator plugin” API facilitating the deployment of multi-vendor FIDO
UAF authenticators and their requisite drivers.

75 FIDO UAF authenticator

A FIDO UAF authenticator is a secure entity, connected to or housed within FIDO user devices, that
can create key material associated to a relying party. The key can then be used to participate in FIDO
UAF strong authentication protocols. For example, the FIDO UAF authenticator can provide a
response to a cryptographic challenge using the key material thus authenticating itself to the relying
party.

In order to meet the goal of simplifying integration of trusted authentication capabilities, a FIDO UAF
authenticator will be able to attest to its particular type (e.g., biometric) and capabilities
(e.g., supported crypto algorithms), as well as to its provenance. This provides a relying party with a
high degree of confidence that the user being authenticated is indeed the user that originally registered
with the site.

7.6 FIDO UAF authenticator metadata validation

In the FIDO UAF context, attestation is how authenticators make claims to a relying party during
registration that the keys they generate and/or certain measurements they report, originate from
genuine devices with certified characteristics. An attestation signature, carried in a FIDO UAF
registration protocol message is validated by the FIDO UAF server. FIDO UAF authenticators are
created with attestation private keys used to create the signatures and the FIDO UAF server validates
the signature using that authenticator's attestation public key certificate located in the authenticator
metadata. The metadata holding attestation certificates is shared with FIDO UAF servers out of band.

8 FIDO UAF usage scenarios and protocol message flows
The FIDO UAF ecosystem supports the use cases briefly described in this clause.

8.1 FIDO UAF authenticator acquisition and user enrollment

It is expected that users will acquire FIDO UAF authenticators in various ways: they purchase a new
system that comes with embedded FIDO UAF authenticator capability; they purchase a device with
an embedded FIDO UAF authenticator, or they are given a FIDO authenticator by their employer or
some other institution such as their bank.

After receiving a FIDO UAF authenticator, the user must go through an authenticator-specific
enrollment process, which is outside the scope of the FIDO UAF protocols. For example, in the case
of a fingerprint sensing authenticator, the user must register their fingerprint(s) with the authenticator.
Once enrollment is complete, the FIDO UAF authenticator is ready for registration with FIDO UAF
enabled online services and websites.

8.2 Authenticator registration

Given the FIDO UAF architecture, a relying party is able to transparently detect when a user begins
interacting with them while possessing an initialized FIDO UAF authenticator. In this initial
introduction phase, the website will prompt the user regarding any detected FIDO UAF
authenticator(s), giving the user options regarding registering it with the website or not.

Figure 2 shows registration message flow.

Rec. ITU-T X.1277 (11/2018) 17

FIDO client User agent
(Windows, Mac, (App;,
i0S, Android, ...) browser, ...)

Initiate registration

1

Registration request
+ policy

Registration response +
attestation + user's public key

FIDO authenticators

Enroll user and
generate new key pair
(specific to RP WebApp)

Figure 2 — Registration message flow

8.3 Authentication

FIDO
server

Validate response
and attestation, store
user's public key

X.1277(18)_F02

Following registration, the FIDO UAF authenticator will be subsequently employed whenever the
user authenticates with the website (and the authenticator is present). The website can implement
various fallback strategies for those occasions when the FIDO authenticator is not present. These
might range from allowing conventional login with diminished privileges to disallowing login.

Figure 3 shows authentication message flow.

FIDO client User agent
(Windows, Mac, (App
i0S, Android, ...) browser, ...)

1 Initiate authentication

Authentication request
+ challenge + policy

Authentication response
signed by user's private key

FIDO authenticators

Verify user and unlock
private key (specific to
user + RP WebApp)

Figure 3 — Authentication message flow

18 Rec. ITU-T X.1277 (11/2018)

FIDO
server

Validate response
using user's public key

X.1277(18)_F03

This overall scenario will vary slightly depending upon the type of FIDO UAF authenticator being
employed. Some authenticators may sample biometric data such as a face image, fingerprint, or voice
print. Others will require a PIN or local authenticator-specific passphrase entry. Still others may
simply be a hardware bearer authenticator. Note that it is permissible for a FIDO client to interact
with external services as part of the authentication of the user to the authenticator as long as the FIDO
privacy principles are adhered to.

8.4 Step-up authentication

Step-up authentication is an embellishment to the basic website login use case. Often, online services
and websites allow unauthenticated and/or only nominally authenticated use — for informational
browsing, for example. However, once users request more valuable interactions, such as entering a
members-only area, the website may request further higher-assurance authentication. This could
proceed in several steps if the user then wishes to purchase something, with higher-assurance steps
with increasing transaction value.

FIDO UAF will smoothly facilitate this interaction style since the website will be able to discover
which FIDO UAF authenticators are available on FIDO-wielding users' systems and select
incorporation of the appropriate one(s) in any particular authentication interaction. Thus online
services and websites will be able to dynamically tailor initial, as well as step-up authentication
interactions according to what the user is able to wield and the needed inputs to website's risk analysis
engine given the interaction the user has requested.

8.5 Transaction confirmation

There are various innovative use cases possible given FIDO UAF-enabled relying parties with end-
users wielding FIDO UAF authenticators. Website login and step-up authentication are relatively
simple examples. A somewhat more advanced use case is secure transaction processing. Figure 4
shows transaction confirmation message flow.

User device Replying party

FIDO
server

FIDO client User agent
(Windows, Mac, (App,
i0S, Android, ...) browser, ...) Initiate transaction

Authentication request
+ transaction text

Authentication response +
text hash signed by
user's private key

Validate response
and text hash using
user's public key

Verify user display text
and unlock private key
(specific to user
+ RP WebApp)

X.1277(18)_F04

Figure 4 — Confirmation message flow

Rec. ITU-T X.1277 (11/2018) 19

Imagine a situation in which a relying party wants the end-user to confirm a transaction (e.g., financial
operation, privileged operation, etc) so that any tampering of a transaction message during its route
to the end device display and back can be detected. FIDO architecture has a concept of "secure
transaction™ which provides this capability. Basically if a FIDO UAF authenticator has a transaction
confirmation display capability, FIDO UAF architecture makes sure that the system supports what
tou see is what you sign mode (WYSIWYS). A number of different use cases can derive from this
capability, mainly related to authorization of transactions (send money, perform a context specific
privileged action, confirmation of email/address, etc.).

8.6 Authenticator deregistration

There are some situations where a relying party may need to remove the UAF credentials associated
with a specific user account in FIDO authenticator. For example, the user's account is cancelled or
deleted, the user's FIDO authenticator is lost or stolen, etc. In these situations, the RP may request the
FIDO authenticator to delete authentication keys that are bound to user account. Figure 5 shows
authenticator deregistration message flow.

User device Replying party

FIDO
server

FIDO client User agent
(Windows, Mac, (App,
iOS, Android, ...) browser, ...) Contact RP
1

Deregistration request

Delete local RP
key material

FIDO authenticators

X.1277(18)_F05

Figure 5 — Deregistration message flow

8.7 Adoption of new types of FIDO UAF authenticators

Authenticators will evolve and new types are expected to appear in the future. Their adoption on the
part of both users and relying parties is facilitated by the FIDO architecture. In order to support a new
FIDO UAF authenticator type, relying parties need only to add a new entry to their configuration
describing the new authenticator, along with its FIDO attestation certificate. Afterwards, end users
will be able to use the new FIDO UAF authenticator type with those relying parties.

9 Privacy considerations

User privacy is fundamental to FIDO and is supported in UAF by design. Some of the key
privacy-aware design elements are summarized here:

. A UAF device does not have a global identifier visible across relying parties and does not
have a global identifier within a particular relying party. If for example, a person looses their
UAF device, someone finding it cannot "point it at a relying party" and discover if the original
user had any accounts with that relying party. Similarly, if two users share a UAF device and
each has registered their account with the same relying party with this device, the relying
party will not be able to discern that the two accounts share a device, based on the UAF
protocol alone.

20 Rec. ITU-T X.1277 (11/2018)

10

The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device,
per-user account and per-relying party basis. Cryptographic keys used with different relying
parties will not allow any one party to link all the actions to the same user, hence the
unlinkability property of UAF.

The UAF protocol operations require minimal personal data collection: at most they
incorporate a user's relying party username. This personal data is only used for FIDO
purposes, for example to perform user registration, user verification, or authorization. This
personal data does not leave the user's computing environment and is only persisted locally
when necessary.

In UAF, user verification is performed locally. The UAF protocol does not convey biometric
data to relying parties, nor does it require the storage of such data at relying parties.

Users explicitly approve the use of a UAF device with a specific relying party. Unique
cryptographic keys are generated and bound to a relying party during registration only after
the user's consent.

UAF authenticators can only be identified by their attestation certificates on a production
batch-level or on manufacturer- and device model-level. They cannot be identified
individually. The UAF specifications require implementers to ship UAF authenticators with
the same attestation certificate and private key in batches of 100,000 or more in order to
provide unlinkability.

Relationship to other technologies

OpenlD, SAML and OAuth

FIDO protocols (both UAF and U2F) complement federated identity management (FIM) frameworks,
such as OpenID and SAML, as well as web authorization protocols, such as OAuth. FIM relying
parties can leverage an initial authentication event at an identity provider (1dP). However, OpenID
and SAML do not define specific mechanisms for direct user authentication at the IdP.

When an IdP is integrated with a FIDO-enabled authentication service, it can subsequently leverage
the attributes of the strong authentication with its relying parties. Figure 6 illustrates this relationship.
FIDO-based authentication (1) would logically occur first and the FIM protocols would then leverage
that authentication event into single sign-on events between the identity provider and its federated
relying parties (2).2

2 FIM protocols typically convey IdP <-> RP interactions through the browser via HTTP redirects and

POSTs.

Rec. ITU-T X.1277 (11/2018) 21

Federated relying party]
Federated relying party]

Federated relying party
Website

2) Federated identity
management protocols Identity provider services
(e.g., OpenlD, SAML) ‘

User agent (Mobile App, Web application
browser, ...)

FIDO client ‘ ‘
(Windows, Mac, 1) FIDO registration,

i0S, Android, ..) authentication, confirmation FIDO 0S8/ HaneEr
security
| Authenticator abstraction components

11 —y—1

FIDO Risk and
authenticator identity
metadata systems
validation

server

FIDO authenticators

X.1277(18)_F06

Figure 6 — FIDO UAF and federated identity frameworks

10.1 OATH, TCG, PKCS#11 and ISO 24727

These are either initiatives (OATH, trusted computing group (TCG)), or industry standards such as
PKCS#11 or ISO 24727). They all share an underlying focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator abstractions.

TCG produces specifications for the trusted platform module, as well as networked trusted
computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning
protocols and authentication algorithms for hardware one-time password (OTP) authenticators.

The FIDO framework shares several core notions with the foregoing efforts, such as an authentication
abstraction interface, authenticator attestation, key provisioning and authentication algorithms.
FIDO's work will leverage and extend some of these specifications.

Specifically, FIDO will complement them by addressing:

. Authenticator discovery
. User experience
. Harmonization of various authenticator types, such as biometric, OTP, simple presence,

smart card, TPM, etc.

22 Rec. ITU-T X.1277 (11/2018)

Annex A

FIDO UAF protocol specification
(This annex forms an integral part of this Recommendation.)

Al Summary

The goal of the universal authentication framework (UAF) is to provide a unified and extensible
authentication mechanism that supplants passwords while avoiding the shortcomings of current
alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication
mechanism for a particular end user or interaction, while preserving the option to leverage emerging
device security capabilities in the future without requiring additional integration effort.

This annex describes the FIDO architecture in detail, it defines the flow and content of all UAF
protocol messages and presents the rationale behind the design choices.
A2 Abstract

This annex describes FIDO architecture in detail and defines the UAF protocol as a network protocol.
It defines the flow and content of all UAF messages and presents the rationale behind the design
choices.

Particular application-level bindings are outside the scope of this annex. This annex is not intended
to answer questions such as:

. What does an HTTP binding look like for UAF?
. How can a web application communicate to FIDO UAF client?
. How can FIDO UAF client communicate to FIDO enabled authenticators?

A3 Overview

The goal of this universal authentication framework (UAF) is to provide a unified and extensible
authentication mechanism that supplants passwords while avoiding the shortcomings of current
alternative authentication approaches.

The design goal of the protocol is to enable relying parties to leverage the diverse and heterogeneous
set of security capabilities available on end users' devices via a single, unified protocol.

This approach is designed to allow the FIDO relying parties to choose the best available
authentication mechanism for a particular end user or interaction, while preserving the option for a
relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

This annex describes FIDO architecture in detail and defines the UAF protocol as a network protocol.
It defines the flow and content of all UAF messages and presents the rationale behind the design
choices.

Particular application-level bindings are outside the scope of this annex. This annex is not intended
to answer questions such as:

. What does an HTTP binding look like for UAF?
. How can a web application communicate to FIDO UAF Client?
. How can FIDO UAF Client communicate to FIDO enabled authenticators?

Rec. ITU-T X.1277 (11/2018) 23

A.3.1 Architecture
Figure A.1 depicts the entities involved in UAF protocol.

TLS TLS
protocol key

BROWSER/APP & AF protocol . WEB SERVER

Cryptographic
authentication key FIDO SERVER
reference DB

FIDO CLIENT

ASM

FIDO AUTHENTICATOR

Authenticator
metadata and
attestation trust
store

Certify
? compliance

X.1277(18)_FA.1

FIDO METADATA SERVICE

Figure A.1 — The UAF architecture

Of these entities, only the following directly create and/or process UAF protocol messages:

. FIDO server, running on the relying party's infrastructure
. FIDO UAF client, part of the user agent and running on the FIDO user device
. FIDO authenticator, integrated into the FIDO user device

It is assumed in this annex that a FIDO server has access to the UAF authenticator metadata
(see Annex H) describing all the authenticators it will interact with.

A.3.2 Protocol conversation

The core UAF protocol consists of four conceptual conversations between a FIDO UAF client and
FIDO server.

Registration: UAF allows the relying party to register a FIDO authenticator with the user's account
at the relying party. The relying party can specify a policy for supporting various FIDO authenticator
types. A FIDO UAF Client will only register existing authenticators in accordance with that policy.

Authentication: UAF allows the relying party to prompt the end user to authenticate using a
previously registered FIDO authenticator. This authentication can be invoked any time, at the relying
party's discretion.

Transaction Confirmation: In addition to providing a general authentication prompt, UAF offers
support for prompting the user to confirm a specific transaction.

This prompt includes the ability to communicate additional information to the client for display to
the end user, using the client's transaction confirmation display. The goal of this additional
authentication operation is to enable relying parties to ensure that the user is confirming a specified
set of the transaction details (instead of authenticating a session to the user agent).

24 Rec. ITU-T X.1277 (11/2018)

Deregistration: The relying party can trigger the deletion of the account-related authentication key
material.

Although this annex defines the FIDO server as the initiator of requests, in a real world deployment
the first UAF operation will always follow a user agent's (e.g., HTTP) request to a relying party.

The following clauses give a brief overview of the protocol conversation for individual operations.
More detailed descriptions can be found in clauses A.4.4 (Registration operation), A.4.5
(Authentication operation) and A.4.6 (Deregistration operation).

A.3.2.1 Registration
Figure A.2 shows the message flows for registration.

FIDO client

Login to relying party application

v

If you have these authenticators — register them

Here is a proof of possession of this
authenticator type and a new key generated
for this account on FIDO server

Fingerprint Face
authentication authentication
H Voice
i ‘ TPM ‘ { authentication
—
i Select an
i authenticator
1

»!
>

]
1
L
1
1
i
[
[l
1
1
1
1
1
1
User !
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L
1
1
1

X.1277(18)_FA2

Figure A.2 — UAF registration message flow

NOTE — The client application should use the appropriate API to inform the FIDO UAF client of the results
of the operation (see clause B.2.3.1) in order to allow the FIDO UAF client to do some "housekeeping" tasks.

A.3.2.2 Authentication
Figure A.3 depicts the message flows for the authentication operation.

FIDO client FIDO server

Initiate an authentication to relying party

»
>

If you have any of these authenticators —
authenticate with them

A

Fingerprint Face
authentication authentication
1 V .

H oice

1

i ‘ TPM ‘ (authentication
1

H—'
! Authenticate to
i authenticator(s)

——

Authentication response from each authenticator

4

»
1
X.1277(18)_FA.3

Figure A.3 — Authentication message flow

NOTE — The client application should use the appropriate API to inform the FIDO UAF client of the results
of the operation (see clause B.2.3.1) in order to allow FIDO UAF client to do some "housekeeping™ tasks.

Rec. ITU-T X.1277 (11/2018) 25

A.3.2.3 Transaction confirmation
Figure A.4 depicts the transaction confirmation message flow.

FIDO client FIDO server

Initiate a transaction with relying party

»
>

If you have any of these authenticators —
authenticate with them

A

Fingerprint } [Face J

authentication authentication
1
! . Voice
1
i Dlsplay ‘ IPM ‘ authentication
1 transaction text
I
' Authenticate to

i authenticator(s
—

Authentication response from each authenticator

I
I
|
1
1
1
I
[
]
1
1
1
1
1
1
|
1
1
1
I
I
I
|
1
I
1
1
I
1
1
1
1
1
»
f »
1
1

1
X.1277(18)_FA.4

Figure A.4 — Transaction confirmation message flow

NOTE — The client application should use the appropriate API to inform the FIDO UAF client of the results
of the operation (see clause B.2.3.1) in order to allow the FIDO UAF client to do some "housekeeping™ tasks.

A.3.2.4 Deregistration
Figure A.5 depicts the deregistration message flow.

FIDO client FIDO server

Login to relying party application

Delete local Deregister this authenticator

registration data

A

JRONPRPERIURIY R JEPIP

X.1277(18)_FA.5
Figure A.5 — Deregistration message flow

NOTE — The client application should use the appropriate API to inform the FIDO UAF client of the results
of the operation (see clause B.2.3.1) in order to allow the FIDO UAF client to do some "housekeeping™ tasks.
A4 Protocol details

This clause provides a detailed description of operations supported by the UAF protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this annex are constructed from unicode codepoints within the set
U+0000..U+007F.
Unless otherwise specified, protocol messages are transferred with a UTF-8 content encoding.

NOTE - All data used in this protocol must be exchanged using a secure transport protocol (such as
TLS/HTTPS) established between the FIDO UAF client and the relying party in order to follow the
assumptions made in Annex L; details are specified in clause A.5.1.7 (TLS protected communication).

26 Rec. ITU-T X.1277 (11/2018)

The notation vasec4url (byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64
Encoding with URL and Filename Safe Alphabet” [IETF RFC 4648] without padding.

The notation st ring[5] reads as five unicode characters, represented as a UTF-8 [IETF RFC 3629]
encoded string of the type indicated in the declaration, typically a WebIDL [b-WebIDL-ED]
DOMString.

As the UTF-8 representation has variable length, the maximum byte length of st ring (5] IS string[4*5].
All strings are case-sensitive unless stated otherwise.
This annex uses WebIDL [b-WebIDL-ED] to define UAF protocol messages.

Implementations MUST serialize the UAF protocol messages for transmission using UTF-8 encoded
JSON [IETF RFC 4627].

A.4.1 Shared structures and types

This clause defines types and structures shared by various operations.
A.4.1.1 Version interface

Represents a generic version with major and minor fields.

interface Version {
readonly attribute unsigned short major;

readonly attribute unsigned short minor;

A.4.1.1.1 Attributes
major Of type unsigned short, readonly
Major version.

minor Of type unsigned short, readonly

Minor version.

A.4.1.2 Operation enumeration
Describes the operation type of a UAF message or request for a message, see Table A.1.

enum Operation ({
"Reg" ,
"Auth" ,
"Dereg"

Table A.1 — Operation types

Enumeration description

Reg Registration
Auth Authentication or Transaction Confirmation
Dereg Deregistration

Rec. ITU-T X.1277 (11/2018) 27

A.4.1.3 OperationHeader dictionary
Represents a UAF message request and response header.

dictionary OperationHeader ({
required Version upv;
required Operation op;

DOMString applD;
DOMString serverData;
Extension|] exts;

}i

A.4.1.3.1 Dictionary operationHeader members
upv Of type required Version
UAF protocol version (upv). To conform with this version of the UAF spec set, the major
value MUST be 1 and the minor value MUST be 1.
op Of type required Operation
Name of FIDO operation (op) this message relates to.

NOTE — "Auth" is used for both authentication and transaction confirmation.
app1D Of type poMstring

string[0..512].

The application identifier that the relying party would like to assert.
There are three ways to set the 2pp 1o (Annex G):

1) If the element is missing or empty in the request, the FIDO UAF client MUST set it to the
racet1D Of the caller.

2) If the zpp 1D present in the message is identical to the rzcet 10 of the caller, the FIDO UAF
client MUST accept it.

3) If it is an URI with HTTPS protocol scheme, the FIDO UAF client MUST use it to load the

list of trusted facet identifiers from the specified URI. The FIDO UAF client MUST only
accept the request, if the facet identifier of the caller matches one of the trusted facet
identifiers in the list returned from dereferencing this URI.

NOTE 1 - The new key pair that the authenticator generates will be associated with this application identifier.

NOTE 2 — Security Relevance: The application identifier is used by the FIDO UAF client to verify the

eligibility of an application to trigger the use of a specific UAuth .Key. See Annex G.
ServerDataOftypeDOMString

string[l..1536].

A session identifier created by the relying party.

NOTE 1 — The relying party can opaquely store things like expiration times for the registration session, protocol
version used and other useful information in serverData. This data is opaque to FIDO UAF Clients.
FIDO servers may reject a response that is lacking this data or is containing unauthorized modifications to it.

28 Rec. ITU-T X.1277 (11/2018)

NOTE 2 — Servers that depend on the integrity of serverData should apply appropriate security measures,
as described in clause A.4.4.6.1 (Registration request generation rules for FIDO server) and clause A.5.3.7
(ServerData and KeyHandle).

exts Of type array of Extension
List of UAF message extensions.

A.4.1.4 Authenticator attestation ID (AAID) typedef

typedef DOMString AAID;

string[9]

Each authenticator MUST have an 221D to identify UAF enabled authenticator models globally. The
antp MUST uniquely identify a specific authenticator model within the range of all UAF-enabled
authenticator models made by all authenticator vendors, where authenticators of a specific model
must share identical security characteristics within the model, see clause A.5.3 (Security
considerations).

The 2~1p is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.
"M" indicates the authenticator model code. This code consists of 4 hexadecimal digits.
The augmented BNF [b-ABNF] for the 2~ 1D is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)
NOTE — HEXDIG is case insensitive, i.e., "03EF" and "03ef" are identical.
The FIDO Alliance is responsible for assigning authenticator vendor codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators.
Authenticator vendors MUST assign unique ~21ps to authenticators with different security
characteristics.

AAIDs are unigue and each of them must relate to a distinct authentication metadata file (Annex H)

NOTE — Adding new firmware/software features, or changing the underlying hardware protection mechanisms
will typically change the security characteristics of an authenticator and hence would require a new 227D to
be used. Refer to Annex H for more details.

A4.15 KeylD typedef

typedef DOMString KeyID;

base6durl (byte[32...2048])

KeyTD IS @ unique identifier (within the scope of an 2~ 10) used to refer to a specific vauth.key. Itis
generated by the authenticator and registered with a FIDO server.

The (21D, key1D) tuple MUST uniquely identify an authenticator's registration for a relying party.
Whenever a FIDO server wants to provide specific information to a particular authenticator it MUST
use the (210, key1D) tuple.

rey1D MUST be base64url encoded within the UAF message (see above).

Rec. ITU-T X.1277 (11/2018) 29

During step-up authentication and deregistration operations, the FIDO server SHOULD provide the
rey1D back to the authenticator for the latter to locate the appropriate user authentication key and
perform the necessary operation with it.

Roaming authenticators which do not have internal storage for and cannot rely on any ASM to store,
generated key handles SHOULD provide the key handle as part of the ruthenticator
RegistrationAssertion.assertion.KeyID during the registration operation (see also section
ServerData and KeyHandle) and get the key handle back from the FIDO server during the step-up
authentication (in the vatchcriteria dictionary which is part of the policy dictionary presented in
clause A.4.1.8 Policy dictionary) or deregistration operations (see Annex C for more details).

NOTE — The exact structure and content of a Ke vy D is specific to the authenticator implementation.

A.4.1.6 ServerChallenge typedef

typedef DOMString ServerChallenge;

base6durl (byte[8...64])

serverChallenge IS a server-provided random challenge. Security Relevance: The challenge is used
by the FIDO server to verify whether an incoming response is new, or has already been processed.
See clause A.5.3.10 (Replay Attack Protection) for more details.

The serverchallenge SHOULD be mixed into the entropy pool of the authenticator. Security
Relevance: The FIDO server SHOULD provide a challenge containing strong cryptographic
randomness whenever possible. See clause A.5.2.1 (Server challenge and random numbers).

NOTE 1 - The minimum challenge length of 8 bytes follows the requirement in [b-SP800-63] and is equivalent
to the 20 decimal digits as required in [b-IETF RFC 6287].

NOTE 2 — The maximum length has been defined such that SHA-512 output can be used without truncation.
NOTE 3 - The mixing of multiple sources of randomness is recommended to improve the quality of the random
numbers generated by the authenticator, as described in [IETF RFC 4086].

A.4.1.7 FinalChallengeParams dictionary

dictionary FinalChallengeParams ({
required DOMString applID;
required ServerChallenge challenge;
required DOMString facetID;
required ChannelBinding channelBinding;

A.4.1.7.1 Dictionary FinalChallengeParams members

appID Of type required DOMString
string[l..512]

The value MUST be taken from the applID field of the OperationHeader
challengeOftyperequired ServerChallenge

The value MUST be taken from the challenge field of the request (e.g., RegistrationRequest
dictionary, AuthenticationRequest dictionary).

facet1D Of type required DOMString
string[l..512]

30 Rec. ITU-T X.1277 (11/2018)

The value is determined by the FIDO UAF client and it depends on the calling application. See
Annex B for more details. Security Relevance: The rzcet 1D is determined by the FIDO UAF client
and verified against the list of trusted facets retrieved by dereferencing the =pp10 of the calling
application.

channelBindingOftyperequired ChannelBinding

Contains the TLS information to be sent by the FIDO client to the FIDO server, binding the TLS
channel to the FIDO operation.

A.4.1.8 TLS ChannelBinding dictionary
ChannelBinding contains channel binding information [IETF RFC 5056].

NOTE 1 - Security Relevance: The channel binding may be verified by the FIDO server in order to detect and
prevent man-in-the-middle (MITM) attacks.

NOTE 2 — At this time, the following channel binding methods are supported:

. TLS ChannellD (cid pubkey) [b-ChannellD]
. serverEndPoint [IETF RFC 5929]

. tlsServerCertificate

. tlsUnique [IETF RFC 5929]

Further requirements:

1) If data related to any of the channel binding methods, described here, is available to the FIDO
UAF client (i.e., included in this dictionary), it MUST be used according to the relevant
specification.

2) All channel binding methods described here MUST be supported by the FIDO server. The
FIDO server MAY reject operations if the channel binding cannot be verified successfully.

NOTE 1 - If channel binding data is accessible to the web browser or client application, it must be relayed to
the FIDO UAF client in order to follow the assumptions made in Annex L.

NOTE 2 - If channel binding data is accessible to the web server, it must be relayed to the FIDO server in
order to follow the assumptions made in Annex L. The FIDO server relies on the web server to provide accurate
channel binding information.

dictionary ChannelBinding ({
DOMString serverEndPoint;
DOMString tlsServerCertificate;
DOMString tlsUnique;
DOMString cid pubkey;

A.4.1.8.1 Dictionary channelBinding members
serverEndPoint Of type poMString

The field serverendroint MUST be set to the base64url-encoded hash of the TLS server certificate
if this is available. The hash function MUST be selected as follows:

. if the certificate's signatureAlgorithm uses a single hash function and that hash function is
either MD5 [IETF RFC 1321] or SHA-1 [IETF RFC 6234], then use SHA-256;

Rec. ITU-T X.1277 (11/2018) 31

. if the certificate's signaturerlgorithm Uses a single hash function and that hash function is
neither MD5 nor SHA-1, then wuse the hash function associated with the
certificate'ssignaturerlgorithm,

. if the certificate's signaturerligorithm uses no hash functions, or uses multiple hash
functions, then this channel binding type's channel bindings are undefined at this time
(updates to this channel binding type may occur to address this issue if it ever arises)

This field MUST be absent if the TLS server certificate is not available to the processing entity
(e.g., the FIDO UAF client) or the hash function cannot be determined as described.

tlsServerCertificate Of type poMstring
This field MUST be absent if the TLS server certificate is not available to the FIDO UAF Client.

This field MUST be set to the base64url-encoded, DER-encoded TLS server certificate, if this data
is available to the FIDO UAF client.

tlsUnique of type poMstring

MUST be set to the base64url-encoded TLS channel rinished structure. It MUST, however, be
absent, if this data is not available to the FIDO UAF client [IETF RFC 5929].

The use of the tlsUnique is deprecated as the security of the + 1s-unqgiue channel binding type [IETF
RFC 5929] is broken, see [b-TLSAUTH].

cid pubkey Of type poMstring

MUST be absent if the client TLS stack does not provide TLS ChannelID [b-ChannelID] information
to the processing entity (e.g., the web browser or client application).

MUST be set to "unused™ if TLS ChannellD information is supported by the client-side TLS stack
but has not been signaled by the TLS (web) server.

Otherwise, it MUST be set to the base64url-encoded serialized [IETF RFC 4627] Jwkkey Structure
using UTF-8 encoding.
A4.19 JwkKey dictionary

Jwkrey 1S a dictionary representing a JSON Web Key encoding of an elliptic curve public key
[IETF RFC 7517].

This public key is the ChannellD public key minted by the client TLS stack for the particular relying
party. [b-ChannellD] stipulates using only a particular elliptic curve and the particular coordinate

type.

dictionary JwkKey ({

required DOMString kty "EC";
required DOMString crv = "P-256";
required DOMString x;

required DOMString vy;

A.4.1.9.1 Dictionary Jwkxey members
kty Of type required DOMString, defaultingto "zcr

Denotes the key type used for channel ID. At this time only elliptic curve is supported by
[b-ChannellD], so it MUST be set to "EC" [IETF RFC 7518].

crv of type required DOMString, defaulting to "p-256"

32 Rec. ITU-T X.1277 (11/2018)

Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve
secp256r1 is supported by [b-ChannellD], so the crv parameter MUST be set to "P-256".

x Of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).
yOftyperequired DOMString

Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

A.4.1.10 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator
commands, or in the assertion signed by the authenticator.

Each extension has an identifier and the namespace for extension identifiers is FIDO UAF global
(i.e., does not depend on the message where the extension is present).

Extensions can be defined in a way such that a processing entity which does not understand the
meaning of a specific extension MUST abort processing, or they can be specified in a way that
unknown extension can (safely) be ignored.

Extension processing rules are defined in each section where extensions are allowed.
Generic extensions used in various operations.

dictionary Extension {
required DOMString id;
required DOMString data;
required boolean fail if unknown;

A.4.1.10.1 Dictionary Extension members
id of type required DOMString

string[l..32].

Identifies the extension.
data Of type required DOMString

Contains arbitrary data with a semantics agreed between server and client. Binary data is
base64url-encoded.

This field MAY be empty.
fail if unknown Of type required boolean

Indicates whether unknown extensions must be ignored (fz1s<) or must lead to an error

(true)
. A value of ra1se indicates that unknown extensions MUST be ignored
. A value of t rue indicates that unknown extensions MUST result in an error.

NOTE 1 - The FIDO UAF client might (a) process an extension or (b) pass the extension through to the ASM.
Unknown extensions must be passed through.

Rec. ITU-T X.1277 (11/2018) 33

NOTE 2 — The ASM might (a) process an extension or (b) pass the extension through to the FIDO
authenticator. Unknown extensions must be passed through.

NOTE 3 — The FIDO authenticator must handle the extension or ignore it (only if it does not know how to
handle itand fail if unknown is not set). If the FIDO authenticator does not understand the meaning of
the extension and £ai1 if unknown IS Set, it must generate an error (see definition of fail if unknown
above).

NOTE 4 — When passing through an extension to the next entity, the fail if unknown flag must be
preserved (see Annex D and Annex C).

NOTE 5 - FIDO protocol messages are not signed. If the security depends on an extension being known or
processed, then such extension should be accompanied by a related (and signed) extension in the authenticator
assertion (e.g., TAG UAFV1 REG ASSERTION, TAG UAFV1 AUTH ASSERTION). If the security has been
increased (e.g., the FIDO authenticator according to the description in the metadata statement accepts multiple
fingers but in this specific case indicates that the finger used at registration was also used for authentication)
there is no need to mark the extension as fai1 if unknown (i.e., tag 0x3E12 should be used Annex C). If
the security has been degraded (e.g., the FIDO authenticator according to the description in the metadata
statement accepts only the finger used at registration for authentication but in this specific case indicates
that a different finger was used for authentication) the extension must be marked as fail if unknown
(i.e., tag OX3E11l must be used Annex C).

A.4.1.11 MatchCriteria dictionary
Represents the matching criteria to be used in the server policy.

The mMatchcriteria object is considered to match an authenticator, if all fields in the object are
considered to match (as indicated in the particular fields).

dictionary MatchCriteria ({

AATD[] aaid;

DOMString[] vendorID;

KeyID[] keyIDs;

unsigned long userVerification;

unsigned short keyProtection;
unsigned short matcherProtection;

unsigned long attachmentHint;

unsigned short tcDisplay;

unsigned short[] authenticationAlgorithms;
DOMString[] assertionSchemes;
unsigned short[] attestationTypes;

unsigned short authenticatorVersion;
Extension/[] exts;

A.4.1.11.1 Dictionary MatchCriteria members
aaid of type array of r21D
List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.z221a MAY be combined with (one or more of) m. keyTDs, m.attachmentHint,
m.authenticatorversionaNdm.exts, butm.aaid MUST NOT be combined with any other
match criteria field.

If m.azid IS not pnnﬁded — at least m.authenticationAlgorithms and
m.assertionschemes MUST be provided.

34 Rec. ITU-T X.1277 (11/2018)

The match succeeds if at least one AAID entry in this array matches
AuthenticatorInfo.aaid (AI’]I’]GX D).

NOTE — This field corresponds to MetadataStatement .aaid Annex H.

vendor1D Of type array of boMstring

The vendorID causing matching to be restricted to authenticator models of the given vendor. The first
4 characters of the AAID are the vendorID (see ~21D)).

The match succeeds if at least one entry in this array matches the first 4 characters of the
AuthenticatorInfo.aaid Annex D.

NOTE — This field corresponds to the first 4 characters of Metadatastatement.aaid Annex H.

key1Ds Of type array of key1D

A list of authenticator KeyIDs causing matching to be restricted to a given set of xey1D
instances. (see TAG_KEYID in Annex E).

This match succeeds if at least one entry in this array matches.
NOTE - This field corresponds to AppRegistration.keyIDs Annex D.

userVerification Of type unsigned long

A set of 32 bit flags which may be set if matching should be restricted by the user verification
method (see Annex J).

NOTE 1 — The match with AuthenticatorInfo.userverification (Annex D) succeeds, if the
following condition holds (written in Java):

if (
// They are equal
(AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||

// USER_VERIFY ALL is not set in both of them and they have at least one common bit
set
(
((AuthenticatorInfo.userVerification & USER VERIFY ALL) == 0) &&
((MatchCriteria.userVerification & USER VERIFY ALL) == 0) &&
((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)

)

NOTE 2 — This field value can be derived from MetadataStatement .userVerificationDetails as
follows:

1. If Metadatastatement . userverificationDetails contains multiple entries, then:

1. if one or more entries MetadataStatement.userVerificationDetails[i] contain
multiple entries, then: stop, direct derivation is not possible. Must generate
MatchCriteria Object by providing a list of matching AAIDs.

2. ifallentriesvetadatastatement . userverificationDetails[i] onlycontainasingle
entry, then: combine all entries Metadatastatement.userVerification
Details[0][0] .userVerification t0 MetadataStatement.userVerification
Details[N-1][0].userVerification intoasingle value using a bitwise OR operation.

Rec. ITU-T X.1277 (11/2018) 35

2. if vetadatastatement.uservVerificationDetails contains a single entry, then: combine
all entries MetadataStatement.userVerificationDetails [0]1[0].userVerification
10 MetadataStatement.userVerificationDetails[0] [N-1] .userVerification into a
single value using a bitwise OR operation and (if multiple bit flags have been set) additionally
set the flag user veErRIFY ALL,

NOTE 3 — This method does not allow matching authenticators implementing complex combinations of user
verification methods, suchas PIN AND (Fingerprint OR Speaker Recognition) (Seeabove derivation
rules). If such specific match rules are required, they need to be specified by providing the AAIDs of the
matching authenticators.

keyProtection of type unsigned short

A set of 16 bit flags which may be set if matching should be restricted by the key protections used
(see Annex J).

This match succeeds, if at least one of the bit flags matches the value of
AuthenticatorInfo.keyProtection Annex D.

NOTE — This field corresponds to MetadataStatement . keyProtection Annex H.

matcherProtection Of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the matcher
protection (see Annex J).

The match succeeds if at least one of the bit flags matches the value of
AuthenticatorInfo.matcherProtection Annex D.

NOTE - This field corresponds to the MetadataStatement .matcherProtection metadata statement. See
Annex H.
attachmentHint Of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the authenticator
attachment mechanism (see Annex J).

This field is considered to match, if at least one of the bit flags matches the value of
AuthenticatorInfo.attachmentHint Annex D.

NOTE — This field corresponds to the MetadataStatement .attachmentHint metadata statement.

tchisplay Of type unsigned short

A set of 16 bit flags which may be set if matching should be restricted by the transaction confirmation
display availability and type. (see Annex J).

This match succeeds if at least one of the bit flags matches the value of
AuthenticatorInfo.tcDisplay Annex D.

NOTE — This field corresponds to the MetadataStatement . tcDisplay metadata statement. See Annex H.

authenticationAlgorithms of type array of unsigned short

An array containing values of supported authentication algorithm TAG values (see Annex J, prefix
~1c ston) if matching should be restricted by the supported authentication algorithms. This field
MUST be present, if field 2214 is missing.

36 Rec. ITU-T X.1277 (11/2018)

This match succeeds if at least one entry in this array matches the authenticator
Info.authenticationAlgorithm Annex D.

NOTE - This field corresponds to the MetadataStatement.authenticationAlgorithm metadata
statement. See Annex H.
assertionSchemes Of type array of DOMString

A list of supported assertion schemes if matching should be restricted by the supported schemes. This
field MUST be present, if field 2z 14 is missing.

See clause A.6 (UAF supported assertion schemes) for details.
This match succeeds if at least one entry in this array matches ruthenticatorinfo.

assertionScheme Annex D.

NOTE — This field corresponds to the MetadatasStatement . assertionScheme metadata statement. See
Annex H.
attestationTypes Of type array of unsigned short

An array containing the preferred attestation TAG values (see Annex E, prefix Tac atrTesTATION).
The order of items MUST be preserved. The most-preferred attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in
AuthenticatorInfo.attestationTypes Annex D.

NOTE — This field corresponds to the MetadataStatement.attestationTypes metadata statement. See
Annex H.
authenticatorvVersion Of type unsigned short

Contains an authenticator version number, if matching should be restricted by the authenticator
version in use.

This match succeeds if the value is lower or equal to the field ruthenticatorversion included in
TAG UAFV1 REG ASSERTION OF TAG UAFV1 AUTH ASSERTION OF @ corresponding value in the case
of a different assertion scheme.

NOTE 1 — Since the semantic of the authenticatorversion depends on the AAID, the field
authenticatorvVersion should always be combined with asingle azid in MatchCriteria.

NOTE 2 — This field corresponds to the MetadataStatement.authenticatorVersion metadata
statement. See Annex H.

The use of authenticatorVVersion in the policy is deprecated since there is no standardized way for the
FIDO client to learn the authenticatorVersion. The authenticatorVersion is included in the
auhentication assertion and hence can still be evaluated in the FIDO server.

exts Of type array of extension
Extensions for matching policy.

Rec. ITU-T X.1277 (11/2018) 37

A.4.1.12 Policy dictionary
Contains a specification of accepted authenticators and a specification of disallowed authenticators.

dictionary Policy ({
required MatchCriterial[] [] accepted;
MatchCriterial] disallowed;

A.4.1.12.1 Dictionary rolicy members
accepted Of type array of array of required MatchCriteria

This field is a two-dimensional array describing the required authenticator characteristics for the
server to accept either a FIDO registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e., the sets) are alternatives
(OR condition).

All elements within a set MUST be combined:

The first array index indicates OR conditions (i.e., the list). Any set of authenticator(s) satisfying
these matchcriteria in the first index is acceptable to the server for this operation.

Sub-arrays of MatchCriteria dictionaryin the second index (i.e., the set) indicate that multiple
authenticators (i.e., each set element) MUST be registered or authenticated to be accepted by the
server.

The MatchCriteria dictionary array represents ordered preferences by the server. Servers MUST put
their preferred authenticators first and FIDO UAF clients SHOULD respect those preferences, either
by presenting authenticator options to the user in the same order, or by offering to perform the
operation using only the highest-preference authenticator(s).

NOTE — This list MUST NOT be empty. If the FIDO server accepts any authenticator, it can follow the
example below.

EXAMPLE 1: EXAMPLE FOR AN 'ANY' POLICY

{

"accepted":

[

[{ "userVerification": 1023 }]
1
}

NOTE - 1023 = Ox3ff = USER _VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... |
USER_VERIFY_NONE
disallowedOftypea”ayOhotchCriteria

Any authenticator that matches any of MatchCriteria dictionary contained in the field disallowed
MUST be excluded from eligibility for the operation, regardless of whether it matches any
MatchCriteria dictionary present in the accepted list, or not.

38 Rec. ITU-T X.1277 (11/2018)

A.4.2 Processing rules for the server policy
The FIDO UAF client MUST follow the following rules while parsing server policy:
1. During registration:

1. rpolicy.acceptedisa list of combinations. Each combination indicates a list of criteria
for authenticators that the server wants the user to register.

2. Follow the priority of items in policy.accepted(] [1. The lists are ordered with highest
priority first.

3. Choose the combination whose criteria best match the features of the currently available
authenticators

Collect information about available authenticators
5. Ignore authenticators which match the ro1icy.disallowed criteria

6. Match collected information with the matching criteria imposed in the policy (see
MatchCriteria dictionary for more details on matching)

7. Guide the user to register the authenticators specified in the chosen combination
2. During authentication and transaction confirmation:

NOTE — policy.accepted is a list of combinations. Each combination indicates a set of criteria which is
enough to completely authenticate the current pending operation

1. Follow the priority of itemsin rolicy.accepted(] []. The lists are ordered with highest
priority first.

2. Choose the combination whose criteria best match the features of the currently available
authenticators

Collect information about available authenticators

Ignore authenticators which meet the ro1icy.disallowed Criteria

Match collected information with the matching criteria described in the policy

Guide the user to authenticate with the authenticators specified in the chosen combination
A pending operation will be approved by the server only after all criteria of a single
combination are entirely met

A.4.21 Examples

EXAMPLE 2: POLICY MATCHING EITHER A FPS-, OR FACE RECOGNITION-BASED
AUTHENTICATOR

{

N o g bk w

"accepted":
[
[{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6],
"assertionSchemes": ["UAFVITLV"]}],
[{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6],
"assertionSchemes": ["UAFV1ITLV"]}]

]
}
EXAMPLE 3: POLICY MATCHING AUTHENTICATORS IMPLEMENTING FPS AND FACE

RECOGNITION AS ALTERNATIVE COMBINATION OF USER VERIFICATION METHODS.
{

"accepted":
[
[{ "userVerification": 18, "authenticationAlgorithms": 1, 2, 5, 6],
"assertionSchemes": ["UAFVITLV"]}]

]
}

Rec. ITU-T X.1277 (11/2018) 39

Combining these two bit-flags and the flag vser vertry a1 (USER_VERIFY_ALL = 1024) into
a single userverification value would match authenticators implementing fingerprint scanner
(FPS) and face recognition as a mandatory combination of user verification methods.

EXAMPLE 4: POLICY MATCHING AUTHENTICATORS IMPLEMENTING FPS AND FACE
RECOGNITION AS MANDATORY COMBINATION OF USER VERIFICATION METHODS.

{

"accepted": [[{ "userVerification": 1042, "authenticationAlgorithms": [1, 2, 5, 6],
"assertionSchemes": ["UAFVITLV"]}]]
}

The next example requires two authenticators to be used:

EXAMPLE 5: POLICY MATCHING THE COMBINATION OF A FPS BASED AND A FACE
RECOGNITION BASED AUTHENTICATOR

{

"accepted":
[
[
{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6],
"assertionSchemes": ["UAFV1TLV"]},
{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6],
"assertionSchemes": ["UAFVITLV"]}

]
]
}

Other criteria can be specified in addition to the userverification:
EXAMPLE 6: POLICY REQUIRING THE COMBINATION OF A BOUND FPS BASED AND A
BOUND FACE RECOGNITION BASED AUTHENTICATOR

{

"accepted":
[
[
{ "userVerification": 2, "attachmentHint": 1, "authenticationAlgorithms": [1, 2,
5, 6], "assertionSchemes": ["UAFVITLV"]},
{ "userVerification": 16, "attachmentHint": 1, "authenticationAlgorithms": [1,
2, 5, 6], "assertionSchemes": ["UAFVITLV"]}

]
]
}

The policy for accepting authenticators of vendor with ID 1234 only is as follows:

EXAMPLE 7: POLICY ACCEPTING ALL AUTHENTICATORS FROM VENDOR WITH
ID 1234

{

"accepted":

[[{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6],
"assertionSchemes": ["UAFVITLV"]}]]
}

40 Rec. ITU-T X.1277 (11/2018)

A.4.3 Version negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of key
registration data and signed data objects (identified by their respective tags, see Annex E) and the
ASM version, see Annex D.

NOTE - The Key Registration Data and SignedData objects have to be parsed and verified by the FIDO server.
This verification is only possible if the FIDO server understands their encoding and the content. Each UAF
protocol version supports a set of Key Registration Data and SignedData object versions (called Assertion
Schemes). Similarly each of the ASM versions supports a set of assertion scheme versions.

As a consequence the FIDO UAF client MUST select the authenticators which will generate the
appropriately versioned constructs.

For version negotiation the FIDO UAF client MUST perform the following steps:

1. Create a set (rc version set) of version pairs, ASM version (asnversion) and UAF
Protocol version (upv) and add all pairs supported by the FIDO UAF Client into

FC Version Set

— €.0., [{upvl, asmVersionl}, {upv2, asmVersionl}, ...]

NOTE - The ASM versions are retrieved from the AuthenticatorInfo.asmversion field. The UAF
protocol version is derived from the related Authenticatorinfo.assertionScheme field.

2. Intersect rc version set with the set of upv included in UAF Message (i.e., keep only
those pairs where the upv value is also contained in the UAF Message).
3. Select authenticators which are allowed by the UAF message policy. For each authenticator:

— Construct a set (ruthnr version set) of version pairs including authenticator
supported asmversion and the compatible upv (s).

. €.0.,, [{upvl, asmVersionl}, {upv2, asmVersionl}, ...]

— Intersect ruthnr version set With rc version set and select highest version pair
from it.

» Take the pair where the upv is highest. In all these pairs leave only the one with
highest asnversion.

— Use the remaining version pair with this authenticator

NOTE 1 - Each version consists of major and minor fields. In order to compare two versions, compare the
major fields and if they are equal compare the minor fields.

NOTE 2 — Each UAF message contains a version field upv. UAF protocol version negotiation is always
between FIDO UAF client and FIDO server.

NOTE 3 — A possible implementation optimization is to have the RP web application itself preemptively
convey to the FIDO server the UAF protocol version(s) (UPV) supported by the FIDO client. This allows the
FIDO server to craft its UAF messages using the UAF version most preferred by both the FIDO client and
server.

A.4.4 Registration operation

Figure A.6 shows the UAF registration sequence.

NOTE 1 — The registration operation allows the FIDO server and the FIDO authenticator to agree on an
authentication key.

Rec. ITU-T X.1277 (11/2018) 41

ASM

User

Authenticator
(AAID, attestation key pair:
att.priv, Cert[att.pub.]

1. User clicks on or enters URL: https//webapp

FIDO client

A 4

User agent

R

3a. Render,

legacy login form

and Web

RP Web App

FIDO server

server

2a, HTTP GET https://webapp

2b. HTTP OK + legacy login form

3b. User enters
usename + legacy
password and
clicks [Submit]

18a. Trigger local
user verification

10. UAF Reg. request

+ AppID + TLS bindi
bx pp inding

11a. Fetch list of F

4. HTTP POST legacy login form

A

W

5. Verify usename
+ legacy password

6. Signal initiation of UAF

registration operation
7. Generate

9. HTTP OK + UAF Reg. request +

<_,vcbapp IS + webapp session binding

acetIDs identified by AppID (URI)

12a, GetInfo req.

12a. Getlnfo cmd.
€

13a. GetInfo resp. |

13b. GetInfo resp. |

11b. return FacetID list

L

15. Register req.

A

19. User verified

for this AppID
17. Register emd.

v]

18b. User interacts
with authenticator:
swipes finger, or
speaks, or enters
PIN, etc.

42

Generate both a' U auth key pair

KRD object: [C

AAID, etc.] signed by Att. priv.

20a. Register resp.
»| 20b. Register resp.

i

16. Generate KH AccessToken

(specific to AppID and Usename), and a
ert[Att.pub], U auth,pub,

A

according to policy

21. return UAF Reg.

response (contains KRD
-

14. Select authenticator(s)

»

22. return UAF Reg. response

|4

authenticator
policy

8. UAF Reg. request
(+authnr policy)

23. send UAF Reg.
response

24, Verify KRD
signature, verify

26. send content for completed
registration

Figure A.6 — UAF registration sequence

NOTE 2 — The steps 11a and 11b and 12 to 13 are not always necessary as the related data could be cached.
NOTE 3 — Figure A.7 depicts the cryptographic data flow for the registration sequence.

Rec. ITU-T X.1277 (11/2018)

result
€

attestation,

and store new
Uauth.pub key
on behalf of user

25. return verification

1

X.1277(18)_FAB

Authentication

ASM + FIDO client Relying party
1stF eAuthnr + browser (mycorp.com)
select Authenticator according fo policy, < policy, ApplD, challenge
check ApplD, get tlsData (i.e., channel id, etc.); T
lookup key handle h and access key ak;
Jfep :={a, challenge, facetID, tisData}
check: ak h, ak; hash(fcp)
retrieve: <
key kpriv f
from h; ¢
chntrt++
generate \ fe, n, cntr, signature(fc, n, cntr) -
Authnr ™ W » fep, n, cntr, s lookup k,,,
Nonce n S > from DB
check:
policy +
signature
using
k@_}) kpnh

X.1277(18)_FA7

Figure A.7 — UAF registration cryptographic data flow

NOTE 4 — The FIDO server sends the 2pp1D (see section ApplID and FacetlD Assertion), the authenticator
Policy dictionary, the serverchallenge and the Username to the FIDO UAF client.

NOTE 5 — The FIDO UAF Client computes the FinalChallengeParams (FCH) from the
ServerChallenge and some other values and sends the 2pp 1D, the FcH and the Username to the
authenticator.

NOTE 6 — The authenticator creates a Key Registration Data object (e.g., TAG UAFvV1 KRD, see Annex C)
containing the hash of rcH, the newly generated user public key (UAuth.pub) and some other values and signs
it, see clause A.5.1.2 (Authenticator Attestation) for more details. This key registration data (KRD) object is
then cryptographically verified by the FIDO server.

Ad41l

UAF registration request message is represented as an array of dictionaries. The array MUST contain
exactly one dictionary. The request is defined as RegistrationRequest dictionary.

EXAMPLE 8: UAF REGISTRATION REQUEST

Registration request message

[{
"header": ({
"upv": {
"major": 1,
"minor": 1
by
"op": "Reg",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",

"serverData": "IjycjPZYiWMaQltKLrJROiXQHmYGOtSSYG]jP5mgjsDaM1l7RQgq0
d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12567v5VmQH]j4eWVseLulHdpk2v hHtKSvv_ DFqL4n
2IiUY6XZWVbOnvg"

b
"challenge": "H9iW9yAQaAXF lelQoi DhUk514Ad8Tqv0zCnCgKDpo",
"username": "apa",
"policy": {
"accepted": [

[
{
"userVerification":
"keyProtection": 1,
"tcDisplay": 1,

512,

Rec. ITU-T X.1277 (11/2018) 43

by
{

"authenticationAlgorithms":
1
1,

"assertionSchemes": [
"UAFV1ITLV"

]

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,
"authenticationAlgorithms":
1

I

"assertionSchemes": [
"UAFV1ITLV"

1

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,
"authenticationAlgorithms":
2

]

"userVerification": 2,

"keyProtection": 4,

"tcDisplay": 1,

"authenticationAlgorithms":
2

]

"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms":
1,
3

"userVerification": 2,

"keyProtection": 2,

"authenticationAlgorithms":
2

]

"userVerification": 32,

"keyProtection": 2,

"assertionSchemes": [
"UAFV1TLV"

1

"userVerification": 2,

44 Rec. ITU-T X.1277 (11/2018)

[

[

[

[

[

[

"authenticationAlgorithms": [

1,
3
1,
"assertionSchemes": [
"UAFV1ITLV"
1
b
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1ITLV"
1
o
{
"userVerification": 4,
"keyProtection": 1,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1ITLV"

]

]
1
"disallowed": [

{

"userVerification": 512,
"keyProtection": 16,
"assertionSchemes": [
"UAFV1ITLV"

1

I

{
"userVerification": 256,

"keyProtection": 16

"aaid": [
"ABCD#ABCD"
1,
"keyIDs": [
"RfY RDhsf4z5PCOhnZzExMeV1ozZmKOhxaSil0tkY c4"
]

H

A.4.4.2 RegistrationRequest dictionary
RegistrationRequest contains a single, versioned, registration request.

dictionary RegistrationRequest {

required OperationHeader header;
required ServerChallenge challenge;
required DOMString username;
required Policy policy;

}i

Rec. ITU-T X.1277 (11/2018) 45

A.4.4.2.1 Dictionary registrationRequest members
headerOftyperequired OperationHeader

Operation header. reader.op MUST be "Reg”

challenge Of type required ServerChallenge
Server-provided challenge value
usernameOftyperequired DOMString

string[1l..128]

A human-readable user name intended to allow the user to distinguish and select from among
different accounts at the same relying party.

policy Of type required Policy
Describes which types of authenticators are acceptable for this registration operation

A.4.4.3 AuthenticatorRegistrationAssertion dictionary
Contains the authenticator's response to a RegistrationRequest message:

dictionary AuthenticatorRegistrationAssertion {
required DOMString assertionScheme;
required DOMString assertion;
Displayb-PNGCharacteristicsDescriptor[] tcDisplayb-PNGCharacteristics;
Extension]|] exts;

}i

A4d443.1 Dictionary AuthenticatorRegistrationAssertion members
assertionScheme Of type required DOMString
The name of the Assertion Scheme used to encode the assertion. See clause A.6 (UAF
supported assertion schemes) for details.

NOTE - This assertionScheme is not part of a signed object and hence considered the suspected
assertionScheme.
assertion Of type required DOMString

base6durl (byte[1..4096]) Contains the Tac varvi rEG AsserTTION Object containing
the assertion scheme specific KeyRegistrationData (KRD) object which in turn contains the
newly generated uruth.pub and is signed by the attestation private key.

This assertion MUST be generated by the authenticator and it MUST be used only in this
registration operation. The format of this assertion can vary from one assertion scheme to
another (e.g., for "UAFV1TLV" assertion scheme it MUST be 72c uarvi krD).

tcDisplayb-PNGCharacteristics Of type array of Displayb-PNGCharacteristics
Descriptor

Supported transaction b-PNG type Annex H. For the definition of the Displayb-
PNGCharacteristicsDescriptor structure, see Annex H.

exts Of type array of extension
Contains extensions prepared by the authenticator

46 Rec. ITU-T X.1277 (11/2018)

A.4.4.4 Registration response message

A UAF registration response message is represented as an array of dictionaries. Each dictionary
contains a registration response for a specific protocol version. The array MUST NOT contain two
dictionaries of the same protocol version. The response is defined as RegistrationResponse dictionary.

EXAMPLE 9: REGISTRATION RESPONSE

[{
"assertions": [
{

"assertion": "AT7uAgM-sQALLgkAQUJDRCNBQkNEDi4HAAABAQEAAAEKLiAASt
BzZC64ecgVQBGSQb50Q0tEIPC8-Vav4HsHLZDf1LaugJLiAAZMCPn92yHv1Ip-iCiBb614ADg6
ZOv569KFQCVYSJEfNgNLggAAQAAAAEAAAAMLKEABISVELUSVKh7tmYHhJ2FBm3kHU-OCAWiUY
VijgYa81MfkjQlz6UiHbKPS nRzINSanprHgDGcR6q7020q yctZAHPJUCBi5AACVELT7Y1RM
x10gPnszGO6rLFGZFmmRkhtVOTIWuWgYxd1ljOOwxam7i5qdEal Qud4sfpHFZ9RGI WHxINkKHS8
FfvAWFLUOBMIIB6TCCAY8CAQEWCQYHK0ZIZzjO0EATB7MQswCQYDVQQGEwWIVUZELMAKGA1UECA
wCQOExCzAJBgNVBACMA1BBMRAWDgYDVQQOKDAJOTkwsSW5jMQOwCwYDVQQLDAREQU4xMRMwEQ
YDVQODDAPpOTkwsSW5j IENBMRwwGgYJKoZIhveNAQkBFglubmxAZ21haWwuY29tMB4XDTEOMD
gyODIxMzUOMFoXDTE3MDUyNDIxMzUOMFowgYYxCzAJBgNVBAYTAIVTMQOswCQYDVQQIDAJDQT
EWMBQGA1UEBWWNU2FUIEZyYW5jaXNjbzEQMA4GA1UECgwHTKkS5MLE1uYZzENMASGA1UECWWERE
FOMTETMBEGA1UEAwWWKTkS5MLE1uYyBDQTECMBOGCSgGSIb3DQEJARYNbmSsQGAt YW1l sLmNvbT
BZMBMGByqGSM4 9AgEGCCgGSM4 9AWEHAOIABCGBt3CIjnDowzSiF68C2aErYXnDUsSWXOYxgIP
imOOWg9FFdUYCabAgKjnlRI99Ek2d803sGKROivnavmdVH-SnEwWCQYHKoZIzj0EAQNJADBGAL
EAZAQUIXnSS9ATAN61Gz6ydypLVTsTnBzgGJI4ypIqy qUCIQCFSUOEGCRV-04GHPBph VMrG
3NpYh2GKPjsAim cSNmQ",

"assertionScheme": "UAFV1ITLV"

}
I
"fcParams": "eyJhcHBJRCI6ImhOdHBzO18vdWFmLXR1c3QtMS5ub2tub2t0ZXNOLmN
vbTo4NDQzLINhbXBsZUFwcCOlYWYVZmEjZXRzIiwiY2hhbGx1lbmdlIjoiSD1lpVzl15QT1hQVh
GX2x1bFFvaVI9EaFVrNTEOQWQ4VHF2MHpDbkNxSORwbyIsImNoYW5uzZWxCaWSkaWSnIjp7£Sw
1ZmFjZXRIRCIGImMNvbS5ub2tub2suYW5kem9pZC5zYWlwbGVhcHALI £Q",

"header": {
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",

"op": "Reg",

"serverData": "IjycjPZYiWMaQltKLrJROiXQHmYGOtSSYGIP5mgjsbDaMl7RQgq0
d13NNDDTx9d-aSR_6hGgclrU2F2Yj-12567v5VmQH]j4eWVseLulHdpk2v hHtKSvv DFgL4n
2IiUY6XZWVbOnvg",

"upv": |

"major": 1,
"minor": 1

H

NOTE — Line breaks in fcParams have been inserted for improving readability.

A.4.45 RegistrationResponse dictionary
Contains all fields related to the registration response.

dictionary RegistrationResponse {

required OperationHeader header;
required DOMString fcParams;
required AuthenticatorRegistrationAssertion[] assertions;

i

A445.1 Dictionary RegistrationResponse members

header Of type required OperationHeader
Header.op MUST be "Reg".

Rec. ITU-T X.1277 (11/2018) 47

fcParams Of type required DOMString

The base64url-encoded serialized [IETF RFC 4627] rinalchallengeprarams using UTF8
encoding see clause A.4.1.7 (FinalChallengeParams dictionary) which contains all parameters
required for the server to verify the Final Challenge.

assertions Of type array of required AuthenticatorRegistrationAssertion

Response data for each Authenticator being registered.

A.4.46 Registration processing rules

A.4.4.6.1 Registration request generation rules for FIDO server

The policy contains a two-dimensional array of allowed vz tchcriteria (See Policy dictionary). This
array can be considered a list (first dimension) of sets (second dimension) of authenticators (identified
by Matcheriteria). All authenticators in a specific set MUST be registered simultaneously in order
to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

The FIDO server MUST follow the following steps:
1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to be
registered simultaneously that need to be identified by separate MatchCriteria
objects m.

1. For each collection of authenticators = to be registered simultaneously that can
be identified by the same rule, create a MatchCriteria object m, where

*m.aaid MAY be combined with (one or more of) m.keyips,
m.attachmentHint, m.authenticatorVersion and m.exts, but m.zaid

MUST NOT be combined with any other match criteria field.

e If m.aaid IS not provided — at least m.authenticationalgorithms and
m.assertionschemes MUST be provided

2. Addntov,e.qg., vii+1]=m.
2. Addvtop.allowed, €.0., p.allowed[i+]]=v
2. Create MatchCriteria objects m [for all disallowed authenticators.
1. For each already registered AAID for the current user

1. Create a MatchCriteria object m and add AAID and corresponding KeyIDs to
m.aaid and m. KeyIDs.

The FIDO server MUST include already registered AAIDs and KeylIDs into field
p.disallowed to hint that the client should not register these again.

2. Create a MatchCriteria object » and add the AAIDs of all disallowed
authenticators to m.azid.

The status (as provided in the metadata TOC (Table-of-Contents file), see
Annex I, of some authenticators might be unacceptable. Such authenticators
SHOULD be included in p.disallowed.

3. If needed - create MatchCriteria = for other disallowed criteria (e.g.,
unsupported authenticationAlgs)

4, Addall ntop.disallowed.

48 Rec. ITU-T X.1277 (11/2018)

Create a registrationRequest Object » with appropriate r.neader for each supported
version and

1. FIDO servers SHOULD NOT assume any implicit integrity protection of

r.header.serverData.

FIDO servers that depend on the integrity of r.header.serverbata SHOULD apply
and verify a cryptographically secure message authentication code (MAC) to serverData
and they SHOULD also cryptographically bind serverData to the related message, e.g.,
by re-including r.challenge, see also clause A.5.3.7 ServerData and KeyHandle.

NOTE — All other FIDO components (except the FIDO server) will treat r.header.serverbData as an
opaque value. As a consequence the FIDO server can implement any suitable cryptographic protection method.

3.

2. Generate a random challenge and assign it to r.challenge

3. Assign the username of the user to be registered to r . username

4. Assignpto r.policy.

5. Append - to the array o of message with various versions (registrationRequest)
Send o to the FIDO UAF client

A.4.4.6.2 Registration request processing rules for FIDO UAF clients
The FIDO UAF client MUST perform the following steps:

1.
2.
3.

Choose the message = with upv set to the appropriate version number.
Parse the message m

If a mandatory field in UAF message is not present or a field does not correspond to its type
and value — reject the operation

Filter the available authenticators with the given policy and present the filtered authenticators

to User. Make sure to not include already registered authenticators for this user specified in
RegRequest.policy.disallowed[] .keyIDs

Obtain racet 10 of the requesting Application. If the ~pp 1D is missing or empty, setthe 2pp 1D
to the Facet1D.

Verify that the racet 1D is authorized for the 2o 10 according to the algorithms in Annex G.
« If the racet 1D Of the requesting Application is not authorized, reject the operation
Obtain TLS data if it is available

Create a FinalChallengeParams Structure fcp and Set fcp.appID, fcp.challenge,
fep. facetipand fep. channelBinding appropriately. Serialize [IETF RFC 4627] fcp using
UTF8 encoding and base64url encode it.

. FinalChallenge = base64url (serialize (utf8encode (fcp)))

For each authenticator that matches UAF protocol version (see clause A.4.3) and user agrees
to register:

1. Add AppID, Username, FinalChallenge, AttestationType and all other YEQUWEd
fields to the ASMRequest (Annex D).

The FIDO UAF Client MUST follow the server policy and find the single preferred
attestation type. A single attestation type MUST be provided to the ASM.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error
appropriately. The status code returned by the ASM (Annex D) must be mapped to a
status code defined in Annex B as specified in clause A.4.4.6.2.1.

Rec. ITU-T X.1277 (11/2018) 49

A446.21

Mapping ASM status codes to ErrorCode

ASMs are returning a status code in their responses to the FIDO client. The FIDO client needs to act
on those responses and also map the status code returned the ASM (Annex D) to an ErrorCode

specified in Annex B.

The mapping of ASM status codes to ErrorCode is specified in Table A.2.

Table A.2 — ASM status codes to ErrorCode

ASM status code ErrorCode Comment
UAF ASM STATUS OK NO_ERROR Pass-through success
status.
UAF ASM STATUS ERROR UNKNOWN Map to UNKNOWN,

UAF_ASM STATUS ACCESS DENIED

AUTHENTICATOR ACCESS
DENIED

Map to
AUTHENTICATOR AC
CESS_DENIED

UAF_ASM STATUS USER_CANCELLED

USER CANCELLED

Pass-through status code.

UAF_ASM STATUS CANNOT RENDER
TRANSACTION CONTENT

INVALID TRANSACTION
CONTENT

Map to

INVALID TRANSACT
ION CONTENT. This
code indicates a problem
to be resolved by the
entity providing the
transaction text.

UAF ASM STATUS KEY DISAPPEARE
D PERMANENTLY

KEY DISAPPEARED PERMA
NENTLY

Pass-through status code.
It indicates that the
Uauth key disappeared
permanently and the RP
App might want to
trigger re-registration of
the authenticator.

UAF ASM STATUS AUTHENTICATOR
DISCONNECTED

NO SUITABLE AUTHENTIC
ATOR Of
WAIT USER ACTION

Retry operation with
other suitable
authenticators and map
to

NO SUITABLE AUTH
ENTTICATOR if the
problem persists. Return
WAIT USER ACTION
if being called while
retrying.

UAF ASM STATUS USER NOT RESPO
NSIVE

USER NOT RESPONSIVE

Pass-through status code.
The RP App might want
to retry the operation
once the user pays
attention to the
application again.

UAF ASM STATUS INSUFFICIENT AUTH
ENTICATOR RESOURCES

INSUFFICIENT AUTHENTICA
TOR_RESOURCES

The FIDO Client
SHALL try other
authenticators matching
the policy. If none exist,
pass-through status code.

50 Rec. ITU-T X.1277 (11/2018)

Table A.2 — ASM status codes to ErrorCode

ASM status code ‘ ErrorCode Comment
UAF ASM STATUS USER LOCKOUT USER_LOCKOUT Pass-through status code.
UAF ASM STATUS USER NOT ENROLLED USER NOT ENROLLED Pass-through status code.
Any other status code UNKNOWN Map any unknown error

code to unknownN. This
might happen when a
FIDO Client
communicates with an
ASM implementing a
newer UAF specification
than the FIDO Client.

A.4.4.6.3 Registration request processing rules for FIDO authenticator
See Annex C, clause C.6.2 (Register command).

A.4.4.6.4 Registration response generation rules for FIDO UAF client
The FIDO UAF client MUST follow these steps:

1. Create a RegistrationResponse message

2. Copy RegistrationRequest.header into RegistrationResponse.header

NOTE — When the zpp1D provided in the request was empty, the FIDO Client must set the app1D in this
header to the facetID (see Annex G).

3. Set RegistrationResponse. fecParams t0 FinalChallenge (base64url encoded serialized
and utf8 encoded FinalChallengeParams)

4. Append the response from each authenticator into registrationResponse.assertions

5. Send registrationResponse message to FIDO server

A.4.4.6.5 Registration response processing rules for FIDO server

NOTE — The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme.
Currently "UAFV1TLV" is the only defined and supported assertion scheme. When a new assertion scheme
is added to UAF protocol, this clause will be extended with corresponding processing rules.

The FIDO server MUST follow these steps:
1. Parse the message

1. If protocol version (Regi strationResponse.header.upv) is not SUppOftEd, reject the
operation

2. If amandatory field in UAF message is not present or a field does not correspond to its
type and value, reject the operation

2. Verify that registrationResponse.header.serverbata, If used, passes any
implementation-specific checks against its validity. See also clause A.5.3.7.

3. base64url decode registrationResponse. fecParams and convert it into an object (fcp)

4, Verify each field in fcp and make sure it is valid:

1. Make sure fcp.app1D corresponds to the one stored by the FIDO server

Rec. ITU-T X.1277 (11/2018) 51

NOTE — When the app1D provided in the request was empty, the FIDO client must set the app1D to the
facetID (see Annex G). In this case, the Uauth key cannot be used by other application facets.

2.
3.

Make sure fcp. facet 1D IS in the list of trusted FacetIDs (Annex G)
Make sure fcp.channelBinding IS as expected (see clause A.4.1.8)

NOTE - There might be legitimate situations in which some methods of channel binding fail, see
clause A.5.3.4 (TLS binding).

4.
S.

Reject the response if any of these checks fails

Make sure fcp.challenge has really been generated by the FIDO server for this
operation and it is not expired

For each assertion = in RegistrationResponse.assertions

1.

2.

Parse TLV data from a.assertion assuming it is encoded according to the suspected
assertion scheme = .assertionscheme and make sure it contains all mandatory fields
(indicated in authenticator metadata) it is supposed to have and has a valid syntax.

« If it does not — continue with next assertion
Retrieve the AAID from the assertion.

NOTE — The AAID in TAG Uarv1 KrD is contained in
a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.TAG AAID.

3.

4.

Verify that = . assertionscheme matches vetadata (AATD) LassertionSchene
» If it does not match — continue with next assertion
Verify that the AAID indeed matches the policy specified in the registration request.

NOTE — Depending on the policy (e.g., in the case of AND combinations), it might be required to evaluate
other assertions included in this RegistrationResponse in order to determine whether this AAID
matches the policy.

52

« If it does not match the policy — continue with next assertion

Locate authenticator-specific authentication algorithms from the authenticator metadata
Annex H using the AAID.

Hash RegistrationResponse.fcParams using hashing algorithm suitable for this
authenticator type. Look up the hash algorithm in authenticator metadata, field
ruthenticationAlgs. Itisthe hash algorithm associated with the first entry related to a
constant with prefix ALG_SIGN.

. FCHash = hash (RegistrationResponse.fcParams)
if 2. assertion contains an object of type Tac varv1 REG AssErTION, then

1. if a.assertion.TAG UAFV1 REG ASSERTION contains Tac uarvi xrD as first
element:

1. Obtain Metadata (AATID) .AttestationType for the AAID and make sure that
a.assertion.TAG UAFV1 REG ASSERTION contains the most preferred
attestation tag specified in field matchcriteria.attestationTypes IN
RegistrationRequest.policy (if this field is present).

e If a.assertion.TAG UAFVI REG ASseErTION does not contain the
preferred attestation — it is RECOMMENDED to skip this assertion and
continue with next one

Rec. ITU-T X.1277 (11/2018)

2. Make sure that 2.zssertion.TAG UAFVI REG ASSERTION.TAG UAFVI KRD.
FinalChallengeHash == FCHash

« If comparison fails — continue with next assertion

3. ObtainvMetadata (AAID) .AuthenticatorVersion for the AAID and make sure
that it is lower or equal t0 =.assertion.TAG UAFVI REG ASSERTION.TAG
UAFV1 KRD.AuthenticatorVersion.

. If Metadata (AAID) .AuthenticatorVersion is higher (i.e., the
authenticator firmware is outdated), it is RECOMMENDED to assume
increased risk. See sections "StatusReport dictionary" and "Metadata TOC
object Processing Rules™ in Annex | for more details on this.

4. Check whether z.zssertion.TAG UAFVI REG ASSERTION.TAG UAFVI KRD.
rRegCounter IS acceptable, i.e., it is either not supported (value is O or the field
iIsKeyRestricted is set to ‘false’ in the related metadata statement) or it is not
exceedingly high
e If a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.RegCoun

ter is exceedingly high, this assertion might be skipped and processing will
continue with next one

5. If a.assertion.TAG UAFV1 REG ASSERTION CONtainS TAG ATTESTATION
BASIC FULL tag

1. If entry AttestationRootCertificates for the AAID in the metadata
(Annex H) contains at least one element:
1. Obtain contents of all 7ac arTEsTATION cErRT tags from
a.assertion.TAGiUAF\/liREGiASSERTION.TAGiATTESTATIONiBASI
c ruLL object. The occurrences are ordered (see Annex C) and
represent the attestation certificate followed by the related certificate
chain.

2. Obtain all entries of At testationrRootCertificates forthe AAID in
authenticator metadata, field At testationrRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to
the attestation root certificate using certificate path validation as
specified in [IETF RFC 5280]

. If verification fails — continue with next assertion

4. Verify a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.
TAG ATTESTATION BASIC FULL.Signature using the attestation
certificate (obtained before).

. If verification fails — continue with next assertion

2. If Metadata (AAID) .AttestationRootCertificates for this AAID is
empty — continue with next assertion

3. Mark assertion as positively verified

6. If 2.assertion.TAG UAFVI REG ASSERTION contains an object of type
TAG_ATTESTATION BASIC SURROGATE

0. There is no real attestation for the AAID, so it is just assumed the AAID is
the real one.

1. Ifentry rttestationrootCertificates for the AAID in the metadata is
empty

Rec. ITU-T X.1277 (11/2018) 53

* Verify a.assertion.TAG UAFV1 REG_ASSERTION.TAG ATTESTA

TION BASIC SURROGATE.Signature using a.assertion.TAG UAFV1
_REG ASSERTION.TAG UAFV1 KRD.TAG PUB KEY

. If verification fails — continue with next assertion

2. Ifentry rttestationRootCertificates for the AAID in the metadata is
not empty — continue with next assertion (as the AAID obviously is
expecting a different attestation method).

3. Mark assertion as positively verified

7. If z.assertion.TAG UAFV1 REG ASSERTION coOntains an object of type
TAG ATTESTATION ECDAA

0. |If entry ecdaaTrustanchors for the AAID in the metadata Annex H
contains at least one element:

0. For each of the ecdaaTrustanchors entries, perform the ECDAA
Verify operation as specified in Annex K.

. If verification fails — continue with next ecdzaTrustinchors
entry
1. If no ECDAA Verify operation succeeded — continue with next
assertion

1. If Metadata (AATID) .ecdaaTrustanchors for this AAID is empty —
continue with next assertion

2. Mark assertion as positively verified and the authenticator indeed is of
model as indicated by the AAID.

8. If a.assertion.TAG UAFVI REG ASSERTION contains another tac
aTTESTATTON tag — verify the attestation by following appropriate processing
rules applicable to that attestation. Currently this Annex defines the processing
rules for Basic Attestation and direct anonymous attestation (ECDAA).

2. if a.assertion.TAG UAFVI REG ASSERTTON contains a different object than
Tac varvl krD as first element, then follow the rules specific to that object.

3. Extract a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1 KRD.PublicKey
into PublicKey, a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1
KRD.KeyID INt0 KeylD, a.assertion.TAG UAFV1 REG ASSERTION.TAG UAFV1
KRD.SignCounter INtO SignCounter, a.assertion.TAG UAFV] REG ASSERTTON.
TAG _UAFV1 KRD.TAG ASSERTION INFO.authenticatorVersion into
AuthenticatorVersion, z.assertion.TAG UAFVI REG ASSERTION.TAG UAFVI
KrD.TAG AATD Into AAID.

8. if a.assertion does not contain an object of type Tac Uarvi REG AssErTTON, then
skip this assertion (as in this UAF vl only T2c varvi rec asserTION IS defined).

6. For each positively verified assertion =

» Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID and 2. tcbisplayb
-PNGCharacteristics INto a record associated with the user's identity. If an entry with
the same pair of AAID and KeyID already exists then fail (should never occur).

54 Rec. ITU-T X.1277 (11/2018)

A.45 Authentication operation

Figure A.8 shows the UAF authentication sequence.

Iisﬂ Authenticaitl)(r . bSM FIDO client User agent FIDO server
(AAID, attestation key pair: RP Web App

att.priv, Cert[att.pub], user's and Web server
private keys: Uauth.priv i
la. User is interacting with a web application, clicks on "purchase": https//webapp Ib. HTTP GET https://webapp/?
»
> purchase 2. Generate UAF
Authn request 3. Generate
challenge
4, return UAF Authn req. | guthenticator
6. UAF Authn request (incl. policy, challcngcl policy.
(incl. App]D, challenge, 5. HTTP OK + UAF Authn request TranTxt Transaction
policy, TranTxt) (incl. ApplD, challenge, policy, TranTxt) oo text
+ TLS binding (- m oo
Ta. Fetch list of FacetIDs identified by AppID (URI) N
7b. return FacetID list
8a. Getlnforeq. [T T T TTTTTTTTTTTTTTTTTTTTTTTT
8a. Getlnfo emd. [~ 77T
- =]
9a. Getlnfo resp.
9b. Getlnfo resp. |
L
10. Select authenticator(s)
according to policy
11. Authenticate req.
+ ApplD + challenge
+ TranTxT
12. Look up KHAIccessToken
for this FIDO client
13. Sign emd.
(incl. KHAccessToken,
challenge, TranTxT)
14a. Trigger [V~~~ 77777
user verification
K N 15. User verlﬁeld'_)
g d Unlock Uauth.priv (specific to ApplDl
/ l and Usemame]_,l generate both a nonce and the
|4b. User interacts AS‘_rgnData object: [nc'mce, challenge, TranTxt, etc.]
with authenticator: signed by Uauth.priv.
swipes finger, or)
speaks, or enters 16a. Sign cmd resp.| 16b. Authenticate | 17. return UAF
PIN. etc resp. Authenticate response
M ™ (contains SignData) 18. return UAF Authn response 19. send UAF Authn
» (contuins SignDﬂta) o | response (contains 20. Verify
"] SignData) y| SignData
21. return verification contents and
signature
res l_Jll __________ (using
22 send content ¥ session binding _ | Uauth.pub.)

X.1277(18)_FA.8

Figure A.8 — UAF authentication sequence

The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The transactiontext (TranTxt) is only required in the case of transaction confirmation
(see clause A.4.5.1 Transaction dictionary), it is absent in the case of a pure authenticate operation.

During this operation, the FIDO server asks the FIDO UAF client to authenticate user with
server-specified authenticators and return an authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously
shared registration.

Rec. ITU-T X.1277 (11/2018) 55

Registration

ASM + FIDO client Relying party
1stF eAuthnr + browser (mycorp.com)
select Authenticator according to policy, _ usename, policy, AppID, challenge
check AppID, get tisData (i.e., channel id, etc.); - —_—
generate APIKey random, compute access key 4

ak:=hash(AppID|APIKey|PersonalD|CallerID)
Jep :={a, challenge, facetID, tlsData}

usename u, ak; hash(fcp)

F 3

Generate: ‘—F—’
key kpub . . ¢
ke k aaid, kpw.,, fc, h, attestation cert, reg-cntr, cntr,
y priv . .
handie h __ signature(aaid, fc, reg-cntr, entr, &) | aaid, k. fc, h, attestation cert,
" . " reg-cntr, cntr, s -
" Store:
key kpm’)
handle h
X.1277(18)_FA.9

Figure A.9 — UAF authentication cryptographic data flow

Figure A.9 shows a UAF authentication cryptographic data flow:

The FIDO server sends the ~pp 1D (see Annex G), the authenticator policy and the serverchallenge
to the FIDO UAF client.

The FIDO UAF client computes the hash of the Finalchallengerarams, produced from the
serverChallenge and other values, as described in this Annex and sends the 2pp1D and hashed
FinalChallengeParams t0 the Authenticator.

The authenticator creates the signedpata object (see Tac varvi steNeD paTa in Annex C)
containing the hash of the final challenge parameters and some other values and signs it using the
vauth.priv Key. This assertion is then cryptographically verified by the FIDO server.

A.451 Transaction dictionary

Contains the transaction content provided by the FIDO server:

dictionary Transaction {
required DOMString contentType;
required DOMString content;
Displayb-PNGCharacteristicsDescriptor tcDisplayb-PNGCharacteristics;
Vi

A.4.5.1.1 Dictionary Transaction members
contentType Of type required DOMString

Contains the MIME Content-Type supported by the authenticator according its metadata
statement (see Annex H).

This version of the specification only supports the values text /plain OF image/pnag.

content Of type required DOMString
basebdurl (byte[l...])

56 Rec. ITU-T X.1277 (11/2018)

Contains the base64-url encoded transaction content according to the contentType to be shown to
the user.

If contentType is "text/plain” then the content MUST be the base64-url encoding of the ASCII
encoded text with a maximum of 200 characters.

thisplayb—PNGCharacteriSticsOftypeDiSplayb—PNGCharacteristicsDescriptor

Transaction content b-PNG characteristics. For the definition of the Displayb-
PNGCharacteristicsDescriptor structure, see Annex H. This field MUST be present if the
contentType is "image/png".

A.45.2 Authentication request message

UAF authentication request message is represented as an array of dictionaries. The array MUST
contain exactly one dictionary. The request is defined as AuthenticationRequest dictionary.

EXAMPLE 10: UAF AUTHENTICATION REQUEST

[{
"header": {
"upv": |
"major": 1,
"minor": 1
by
"op": "Auth",
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"serverData": "5s7n8-7 LDAtRIKKYgbAtTTOezVKCjl2mPorYzbpxRrZ- 3wWro
MXsF pLYjNVm 17bplAx4bkEwK6ibil9EHGEdfKOQ1gO0tyEkKkNIJFOggdjVmLioroxgThlj8Is
tpt7g"
by
"challenge": "HQ1VkKkTUQCLINJDOo600Wdxewrb9i5WthjfKIehFxpeul",
"policy": {
"accepted": [
[
{
"userVerification": 512,
"keyProtection": 1,
"tcDisplay": 1,
"authenticationAlgorithms": [
1
I
"assertionSchemes": [
"UAFV1ITLV"
1

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
1

1,

"assertionSchemes": [
"UAFV1ITLV"

1

"userVerification": 4,

"keyProtection": 1,

"tcDisplay": 1,

"authenticationAlgorithms": [
2

]

Rec. ITU-T X.1277 (11/2018) 57

"userVerification": 2,

"keyProtection": 4,
"tcDisplay": 1,
"authenticationAlgorithms": [
2
]
}
1,
[
{
"userVerification": 4,
"keyProtection": 2,
"tcDisplay": 1,
"authenticationAlgorithms": [
1,
3
1
}
1,
[
{
"userVerification": 2,
"keyProtection": 2,
"authenticationAlgorithms": [
2
1
}
1,
[
{
"userVerification": 32,
"keyProtection": 2,
"assertionSchemes": [
"UAFV1ITLV"
1
by
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
I
"assertionSchemes": [
"UAFV1ITLV"
1
by
{
"userVerification": 2,
"authenticationAlgorithms": [
1,
3
1,
"assertionSchemes": [
"UAFV1ITLV"
1
by
{
"userVerification": 4,
"keyProtection": 1,
"authenticationAlgorithms": [
1,
3
I
"assertionSchemes": [
"UAFV1TLV"

58 Rec. ITU-T X.1277 (11/2018)

]
1,
"disallowed": [

{

"userVerification": 512,
"keyProtection": 16,
"assertionSchemes": [
"UAFV1ITLV"

1

b

{
"userVerification": 256,

"keyProtection": 16
}
1
}
H]

A.45.3 AuthenticationRequest dictionary
Contains the UAF authentication request message:

dictionary AuthenticationRequest {
required OperationHeader header;
required ServerChallenge challenge;
Transaction|] transaction;
required Policy policy;

}i

A.45.3.1 Dictionary ruthenticationRequest Mmembers

header Of type required OperationHeader
Header.op MUST be "Auth"

challenge Of type required ServerChallenge

Server-provided challenge value

transaction(ﬁtypea”ayOfTransaction
Transaction data to be explicitly confirmed by the user.
The list contains the same transaction content in various content types and various image sizes. Refer
to Annex H for more information about transaction confirmation display characteristics.
policy Of type required Policy
Server-provided policy defining what types of authenticators are acceptable for this
authentication operation.
A.45.4 AuthenticatorSignAssertion dictionary
Represents a response generated by a specific authenticator:

dictionary AuthenticatorSignAssertion {
required DOMString assertionScheme;
required DOMString assertion;
Extension][] exts;

}i

Rec. ITU-T X.1277 (11/2018) 59

A.45.4.1 Dictionary AuthenticatorSignAssertion members
assertionScheme Of type required DOMString

The name of the sssertion scheme used to encode zssertion. See clause A.6 (UAF supported
assertion schemes) for details.

NOTE - This assertionScheme is not part of a signed object and hence considered the suspected
assertionScheme.

assertion Of type required DOMString

base6durl (byte[1..4096]) Contains the assertion containing a signature generated by
UAuth.priv, i.6., TAG_UAFV1 AUTH ASSERTION.

exts of type array of xtension

Any extensions prepared by the authenticator

A.455 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered
authenticators.

dictionary AuthenticationResponse {

required OperationHeader header;
required DOMString fcParams;
required AuthenticatorSignAssertion[] assertions;

b

A.45.5.1 Dictionary ruthenticationResponse members

header Of type required OperationHeader
Header.op MUST be "Auth"

feparams Of type required DOMString

The field fcParams is the base64url-encoded serialized [IETF RFC 4627]
FinalChallengeParams in UTF8 encoding (see clause A.4.1.7 FinalChallengeParams
dictionary) which contains all parameters required for the server to verify the Final Challenge.

assertions Of type array of required AuthenticatorSignAssertion

The list of authenticator responses related to this operation.

A.45.6 Authentication response message

UAF authentication response message is represented as an array of dictionaries. The array MUST
contain exactly one dictionary. The response is defined as AuthenticationResponse dictionary.

EXAMPLE 11: UAF AUTHENTICATION RESPONSE

[{
"assertions": [

{

"assertion”: "Aj7WAAQ-JgALLgkAQUJIDRCNBQKNEDI4FAAABAQEADY4gAHWYJA
EX8t1b2wOxbaKOC5ZL7ACgbLo TtiQfK3DzDsHCi4gAFwCUz-dOuafXKXJLbkUrIzjAU60Db
P8BOiLQORMCE58fEC4AAAKUIABkwI-f3bIle Uin6IKIFvgLgAOrpk6 nrOoVAKShI182A0uBA

60 Rec. ITU-T X.1277 (11/2018)

ACAAAABi5AADWDOCBVPs1X2bRNy4SvEFhAwWhEA0OBSGU1tgMUNChgUSMxss3K3ukekglpaG7FEv
1v5mBmDCZVPt2NCTnjUxrjTp4d",
"assertionScheme": "UAFV1ITLV"
}

1,

"fcParams": "eyJhcHBJRCI6ImhOdHBzO18vdWFmLXR1c3QtMS5ub2tub2t0ZXNOLmN
vbTo4NDQzLINhbXBsZUFwcCIO1lYWYVZmEFjZXRzIiwiY2hhbGx1lbmdlIjoiSFEXVmtUVVEDMUS
KREOVNkIOPV2R4ZXdyYj1lpNVd0aGpmS011aEZ4cGV1IVSIsImNoYWS5uZWxCaWbkaWsnIjp7£Sw
1ZmFjZXRIRCIGImNvbSS5ub2tub2suYWSkem9pZC5zYWlwbGVhcHALIEQ",

"header": {
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
"Op": "Auth",
"serverData": "5s7n8-7 LDAtRIKKYgbAtTTOezVKCjl2mPorYzbpxRrZz- 3wWro

MXsF pLYjNVm 17bplAx4bkEwK6ibil9EHGEdfKOQ1qO0tyEKNJFOggdjVmLioroxgThlj8Is
tpt7g",

"upv": {
"major": 1,
"minor": 1

H

NOTE — Line breaks in fcParams have been inserted for improving readability.

A.45.7 Authentication processing rules

A.4.5.7.1 Authentication request generation rules for FIDO server

Construct appropriate authentication policy p
1. for each set of alternative authenticators do

The policy contains a 2-dimensional array of allowed MatchCriteria (see clause A.4.1.12). This array
can be considered a list (first dimension) of sets (second dimension) of authenticators (identified by
MatchCriteria). All authenticators in a specific set MUST be used for authentication simultaneously
in order to match the policy. But any of those sets in the list are valid, i.e., the list elements are
alternatives.

The FIDO server MUST follow the steps:

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of
authenticators to be used for authentication simultaneously that need to be identified

by separate MatchCriteria objects .

1. For each collection of authenticators = to be used for authentication
simultaneously that can be identified by the same rule, create a MatchCriteria

object m, where

* m.aaid MAY be combined with (one or more of)

m. keyIDs,

m.attachmentHint, m.authenticatorVersion and m.exts, but m.aaid

MUST NOT be combined with any other match criteria field.

e If m.2aid is not provided — at least m.authenticationAlgorithms and

m.assertionschemes MUST be provided

* In case of step-up authentication (i.e., in the case where it is expected the user
is already known due to a previous authentication step) every item in
policy.accepted MUST include the 2210 and ey 1D of the authenticator
registered for this account in order to avoid ambiguities when having multiple

accounts at this relying party.
2. Addmtov,eq., vij+1]=m.
2. Addvto p.allowed, .0, p.allowed[i+1]=V

Rec. ITU-T X.1277 (11/2018)

61

2.

Create MatchCriteria objects m] for all disallowed authenticators.
1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators to

m.aaid.

The status (as provided in the metadata TOC Annex | of some authenticators might
be unacceptable. Such authenticators SHOULD be included in p.disallowed.

2. If needed — create MatchCriteria m for other disallowed criteria (e.g., unsupported
authenticationAlgs)

3. Addall mntop.disallowed.

Create an AuthenticationRequest object r with appropriate r.neader for the supported
version and

1.

FIDO servers SHOULD NOT assume any implicit integrity protection of
r.header.serverbata. FIDO servers that depend on the integrity of
r.header.serverbata SHOULD apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they SHOULD also cryptographically
bind serverData to the related message, e.g., by re-including r.challenge, See also
clause A.5.3.7 (ServerData and KeyHandle).

NOTE — All other FIDO components (except the FIDO server) will treat r.header.serverbData as an
opaque value. As a consequence the FIDO server can implement any suitable cryptographic protection method.

3.

2.

4.
S.

Generate a random challenge and assign it to . challenge

If this is a transaction confirmation operation — look up TransactionConfirmation
DisplayContentTypes/ TransactionConfirmationDisplayb-PNGCharacteristics from
authenticator metadata of every participating AAID, generate a list of corresponding
transaction content and insert the list into r. transaction.

« If the authenticator reported (a dynamic) ~ruthenticatorRegistration
Assertion.tcDisplayb-PNGCharacteristics during Registration — it MUST be
preferred over the (static) value specified in the authenticator Metadata.

Set r.policy to our new policy object o created above, e.g., r.policy = p.
Add the authentication request message the array

Send the array of authentication request messages to the FIDO UAF client

A.4.5.7.2 Authentication request processing rules for FIDO UAF client
The FIDO UAF client MUST follow these steps:

1.
2.

Choose the message n with upv set to the appropriate version number.
Parse the message m

If a mandatory field in the UAF message is not present or a field does not correspond to
its type and value then reject the operation

Obtain racet 10 Of the requesting Application. If the ~pp 10 is missing or empty, set the 2pp 1D
to the racet1D.

Verify that the racet 1D is authorized for the ~op 1D according to the algorithms in Annex G.

62

If the racet 1D Of the requesting application is not authorized, reject the operation

Filter available authenticators with the given policy and present the filtered list to User.
Let the user select the preferred Authenticator.
Obtain TLS data if its available

Rec. ITU-T X.1277 (11/2018)

7. Create a FinalChallengeParams structure fcp and set fcp.2ppiD, fep.challenge,
fcp.facetID and fcp.channelBinding appropriately. Serialize [|ETF RFC 4627] fcp
using UTF8 encoding and base64url encode it.

4 FinalChallenge = base64url (serialize (utf8encode (fcp)))

8. For each authenticator that supports an Authenticator Interface Version AV compatible with
message Version AuthenticationRequest.header.upv (See clause A.4.3) and user agrees
to authenticate with:

1. Add 2pp1Dp, FinalChallenge, Transactions (if present) and all other fields to the
ASMRequest.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error
appropriately. The status code returned by the ASM (Annex D) must be mapped to a
status code defined in Annex B.

A.4.5.7.3 Authentication request processing rules for FIDO authenticator
See Annex C, clause "Sign Command".

A.4.5.7.4 Authentication response generation rules for FIDO UAF client

The FIDO UAF client MUST follow the steps:
1. Create an AuthenticationResponse message

2. Copy AuthenticationRequest.header INO AuthenticationResponse.header

NOTE — When the app1D provided in the request was empty, the FIDO client must set the app1D in this
header to the facetID, see Annex G).

3. Fill out ruthenticationResponse.FinalChallengeParams WIith appropriate fields and
then stringify it

4. Append the response from each authenticator into ruthenticationResponse.assertions

5. Send AuthenticationResponse message to the FIDO server

A.4.5.7.5 Authentication response processing rules for FIDO server

NOTE — The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme.
Currently "UAFV1TLV" is the only defined and supported assertion scheme. When a new assertion scheme
is added to UAF protocol — this section will be extended with corresponding processing rules.

The FIDO server MUST follow the steps:
1. Parse the message

1. If protocol version (ruthenticationResponse.header.upv) IS NOt supported — reject
the operation

2. If amandatory field in UAF message is not present or a field does not correspond to its
type and value — reject the operation

2. Verify that ruthenticationResponse.header.serverbData, If used, passes any
implementation-specific checks against its validity. See also clause A.5.3.7 (ServerData and
KeyHandle).

3. base64url decode ruthenticationResponse. fecparams and convert into an object (fcp)

4. Verify each field in fcp and make sure it's valid:

1. Make sure fcp.app1D corresponds to the one stored by the FIDO server

Rec. ITU-T X.1277 (11/2018) 63

NOTE — When the app1D provided in the request was empty, the FIDO client must set the app1D to the
facetID (see Annex G). In this case, the Uauth key cannot be used by other application facets.

2. Make sure fcp. facet1D IS in the list of trusted FacetIDs (Annex G)

3. Make sure channelBinding IS as expected, see clause A.8.1.8 (ChannelBinding
dictionary)

NOTE - There might be legitimate situations in which some methods of channel binding fail,
see clause A.5.3.4 (TLS Binding).

4. Make sure fcp.challenge has really been generated by the FIDO server for this
operation and it is not expired

5. Reject the response if any of the above checks fails
5. For each assertion = in AuthenticationResponse.assertions

1. Parse TLV data from a.assertion assuming it is encoded according to the suspected
assertion scheme = .assertionscheme and make sure it contains all mandatory fields
(indicated in authenticator metadata) it is supposed to have and has a valid syntax.

» |f it does not — continue with next assertion
2. Retrieve the AAID from the assertion.

NOTE — The AAID in TAG UAFV1 SIGNED DATA is contained in
a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.TAG AAID.

3. Verify that . assertionscheme matches vetadata (AATD) .assertionScheme
» If it does not match — continue with next assertion

4. Make sure that the AAID indeed matches the policy of the Authentication Request
« If it does not meet the policy — continue with next assertion

5. if a.assertion contains an object of type Tac varvl AUTH AsserTTON, then

1. if a.assertion.TAG UAFV1 AUTH ASSERTION CONtains TAG UAFV1 SIGNED DATA
as first element:

1. Obtain Metadata (AAID) .AuthenticatorVersion for this AAID and make

sure that it is lower or equal to a.assertion.TAG UAFVI AUTH
_ASSERTION.TAG UAFV1 SIGNED DATA.TAG ASSERTION INFO.Authenticat

orVersion.

e If wmetadata(AATD).Authenticatorversion IS higher (i.e., the
authenticator firmware is outdated), it is RECOMMENDED to assume
increased authentication risk. See "StatusReport dictionary” and "Metadata
TOC object Processing Rules™ in Annex | for more details on this.

2. Retrieve a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED
DATA.TAG KEYID as KeylD

3. Locate vruth.pub public key associated with (AAID, KeyID) in the user's
record.

« |f such record does not exist — continue with next assertion

4. Verify the AAID against the AAID stored in the user's record at time of
Registration.

I « fcomparison fails — continue with next assertion

5. Locate authenticator specific authentication algorithms from authenticator
metadata (field ruthenticationnlgs)

64 Rec. ITU-T X.1277 (11/2018)

6. Check the Signature Counter =.assertion.TAG UAFVI AUTH ASSERTION.

TAG UAFV1 SIGNED DATA.SignCounter and make sure it is either not
supported by the authenticator (i.e., the value provided and the value stored in
the user's record are both 0 or the value is KeyRestricted is set to 'false’ in the
related Metadata Statement) or it has been incremented (compared to the value
stored in the user's record)

« Ifitis greater than O, but didn't increment — continue with next assertion (as
this is a cloned authenticator or a cloned authenticator has been used
previously).

7. Hash authenticationResponse.FinalChallengeParams uﬁng the haﬁﬂng

algorithm suitable for this authenticator type. Look up the hash algorithm in
authenticator Metadata, field ruthenticationalgs. It is the hash algorithm
associated with the first entry related to a constant with prefix ALG_SIGN.

° FCHash = hash (AuthenticationResponse.FinalChallengeParams)

8. Make sure that =z.assertion.TAG UAFVI AUTH ASSERTION.TAG UAFVI

SIGNED DATA.TAG FINAL CHALLENGE HASH == FCHash
» If comparison fails — continue with next assertion

9. If a.assertion.TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.

TAG_ASSERTION INFO.authenticationMode == 2

NOTE — The transaction hash included in this AuthenticationResponse must match the transaction
content specified in the related Authenticationrequest. As FIDO does not mandate any specific FIDO
server API, the transaction content could be cached by any relying party software component, e.g., the FIDO
server or the relying party Web Application.

1. Make sure there is a transaction cached on relying party side.
 If not — continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple
cached b-PNGs for the same transaction) and calculate their hashes using
hashing algorithm suitable for this authenticator (same hash algorithm as
used for FinalChallenge).

 For each cachedTransaction add hash (cachedTransaction) INto
cachedTransactionHashList

3. Make sure that 2. TransactionHdash IS iN cachedTransactionHashlList
e Ifit's not in the list — continue with next assertion

10. Use uvauth.pub key and appropriate authentication algorithm to verify
a.assertion.TAGiUAFvliAUTHiASSERTION.TAGiSIGNATURE

0. If signature verification fails — continue with next assertion

1. Update signCounter in user's record with a.assertion.
TAG UAFV1 AUTH ASSERTION.TAG UAFV1 SIGNED DATA.SignCounter
if 2. assertion.TAG UAFVI AUTH AsseErRTION contains a different object than
Tac UAFVI steNED DATA as first element, then follow the rules specific to that
object.

6. if 2.assertion does not contain an object of type Tac Uarvi auTH AssErTION, then
skip this assertion (as in this UAF vl only T2c varvi auTe asserTTON IS defined).
7. Treat this assertion = as positively verified.
6. Process all positively verified authentication assertions .

Rec. ITU-T X.1277 (11/2018) 65

A.4.6 Deregistration operation

This operation allows FIDO server to ask the FIDO Authenticator to delete keys related to the
particular relying party.

The FIDO server MAY explicitly enumerate the keys to be deleted, or the FIDO server MAY signal
deregistration of all keys on all authenticators managed by the FIDO UAF client and relating to a
given appID.

NOTE - There are various deregistration use cases that both FIDO server and FIDO client implementations
should allow for. Two in particular are:

1. FIDO servers should trigger this operation in the event a user removes their account at the
relying party.
2. FIDO clients should ensure that relying party application facets — e.g., mobile apps, web

pages — have means to initiate a deregistration operation without having necessarily received
a UAF protocol message with an op value of "Dereg™. This allows the relying party app facet
to remove a user's keys from authenticators during events such as relying party app removal
or installation.

A.4.6.1 Deregistration request message

The FIDO UAF deregistration request message is represented as an array of dictionaries. The array
MUST contain exactly one dictionary. The request is defined as DeregistrationRequest dictionary.

EXAMPLE 12: UAF DEREGISTRATION REQUEST

[{

"header": {
"op" : "Dereg",
"upv": {
"major": 1,
"minor": 1
by
"appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets"
by
"authenticators": [
{
"aaid": "ABCD#ABCD",
"keyID": mwn

}
]
H

The example above contains a version 1.1 deregistration request. This request will deregister all keys
registered in authenticator with =214 "ABCD#ABCD" for the given app1p.

NOTE — There is no deregistration response object.

A.4.6.2 DeregisterAuthenticator dictionary

dictionary DeregisterAuthenticator ({
required AAID aaid;
required KeyID keyID;

}i

66 Rec. ITU-T X.1277 (11/2018)

A.4.6.2.1 Dictionary peregisterAuthenticator members
aaia of type required AAID
AAID of the authenticator housing the vauth.priv key to deregister, or an empty string if all
keys related to the specified =pp 10 are to be de-registered.
key1D Of type required KeyID

The unique KeylID related to vauth.priv. KeylD is assumed to be unique within the scope
of an AAID only. If 2214 is not an empty string, then:

1. key1p MAY contain a value of type KeylD, or,

2. kxey1D MAY be an empty string.
(1) signals deletion of a particular uruth.priv key mapped to the (r21p, key1D) tuple.
(2) signals deletion of all KeyIDs associated with the specified == d.

If 22ia is an empty string, then xey1o MUST also be an empty string. This signals
deregistration of all keys on all authenticators that are mapped to the specified app1D.

A.4.6.3 DeregistrationRequest dictionary

dictionary DeregistrationRequest {

required OperationHeader header;

required DeregisterAuthenticator[] authenticators;
bi

A.4.6.3.1 Dictionary DeregistrationRequest members
header Of type required OperationHeader

Header.op MUST be "Dereg".

authenticators Of type array of required DeregisterAuthenticator

List of authenticators to be deregistered.

A.4.6.4 Deregistration processing rules

A.4.6.4.1 Deregistration request generation rules for FIDO server
The FIDO server MUST follow the steps:

1. Create a DeregistrationRequest message m With m.nheader.upv Set to the appropriate
version number.
2. If the FIDO server intends to deregister all keys on all authenticators managed by the FIDO

UAF client for this zpp1D, then:

1. create one and only one peregisterauthenticator Object o
2. Seto.aaidando.keyrD to be empty string values

3. Append o to m.authenticators and go to step 5

3. If the FIDO server intends to deregister all keys on all authenticators with a given AAID
managed by the FIDO UAF client for this app 1D, then:

1. create one and only one peregisterAuthenticator Object o
2. Seto.aaidtothe intended AAID and set . key 1D to be an empty string.

Rec. ITU-T X.1277 (11/2018) 67

3. Append o to m.authenticators and go to step 5

4. Otherwise, if the FIDO server intends to deregister specific (r21D, key1D) tuples, then for
each tuple to be deregistered:

1. create a eregisterAuthenticator Object o

2. Seto.aaidand o.key1D appropriately

3. Append o to m.authenticators
5. delete related entry (or entries) in FIDO server's account database
6. Send message to FIDO UAF client

A.4.6.4.2 Deregistration request processing rules for FIDO UAF client

The FIDO UAF client MUST follow the steps:
1. Choose the message n with upv set to the appropriate version number.
2. Parse the message

+ If amandatory field in peregistrationrRequest message is not present or a field does
not correspond to its type and value — reject the operation

* Empty string values for o.zzid and o.kxey1p MUST occur in the first and only
DeregisterAuthenticator object o, otherwise reject the operation

3. Obtain racet 10 of the requesting Application. If the ~pp 1D is missing or empty, setthe rpp1D
to the racet 1D,

Verify that the racet 1D is authorized for the ~pp 1D according to the algorithms in Annex G.
« If the racet 1D Of the requesting Application is not authorized, reject the operation

4. For each authenticator compatible with the message version bperegistration
Request .header.upv and having an AAID matching one of the provided ~~1ps (an AAID
of an authenticator matches if it is either (a) equal to one of the »ar1ps in the
DeregistrationRequest Or If (D) the A21D In the DeregistrationrRequest IS an empty
string):

1. Create appropriate rsurequest for Deregister function and send it to the ASM. If the
ASM returns an error, handle that error appropriately. The status code returned by the
ASM (Annex D) must be mapped to a status code defined in Annex B.

A.4.6.4.3 Deregistration request processing rules for FIDO authenticator
See Annex D clause D.3.8 (Deregister request).

A5 Considerations

A.5.1 Protocol core design considerations
This clause describes the important design elements used in the protocol.

A5.1.1 Authenticator metadata

It is assumed that FIDO server has access to a list of all supported authenticators and their
corresponding metadata. Authenticator metadata Annex H contains information such as:

. Supported registration and authentication schemes.

. Authentication factor, installation type, supported content-types and other supplementary
information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction,
FIDO server looks up the list of authenticator metadata by AAID and retrieves the required
information from it.

68 Rec. ITU-T X.1277 (11/2018)

Each entry in the authenticator metadata repository MUST be identified with a unique authenticator
attestation 1D (AAID).

A5.1.2 Authenticator attestation

Authenticator attestation is the process of validating authenticator model identity during registration.
It allows relying parties to cryptographically verify that the authenticator reported by FIDO UAF
client is really what it claims to be.

Using authenticator attestation, a relying party "example-rp.com™ will be able to verify that the
authenticator model of the "example-Authenticator”, reported with AAID "1234#5678", is not
malware running on the FIDO user device but is really a authenticator of model "1234#5678".

FIDO authenticators SHOULD support "Basic Attestation” or "ECDAA" described below. New
attestation mechanisms may be added to the protocol over time.

FIDO authenticators not providing sufficient protection for attestation keys (non-attested
authenticators) MUST use the UAuth.priv key in order to formally generate the same
KeyRegistrationData object as attested authenticators. This behavior MUST be properly declared in
the authenticator metadata.

A.5.1.2.1 Basic attestation
There are two different flavors of basic attestation:

Full basic attestation
Based on an attestation private key shared among a class of authenticators (e.g., same model).

Surrogate basic attestation

Just syntactically a basic attestation. The attestation object self-signed, i.e., it is signed using the
UAuth.priv key, i.e., the key corresponding to the UAuth.pub key included in the attestation object.
As a consequence it does not provide a cryptographic proof of the security characteristics. But it is
the best thing that can be done if the authenticator is not able to have an attestation private key.

A.5.1.2.1.1 Full basic attestation

NOTE 1 - FIDO servers must have access to a trust anchor for verifying attestation public keys (i.e., attestation
certificate trust store) in order to follow the assumptions made in Annex L.

NOTE 2 — Authenticators must provide its attestation signature during the registration process for the same
reason. The attestation trust anchor is shared with FIDO servers out of band (as part of the metadata). This
sharing process shouldt be done according to Annex I.

NOTE 3 — The protection measures of the authenticator's attestation private key depend on the specific
authenticator model's implementation.

NOTE 4 — The FIDO server must load the appropriate authenticator attestation root certificate from its trust
store based on the AAID provided in KeyRegistrationData object.

In this full basic attestation model, a large number of authenticators must share the same attestation
certificate and attestation private key in order to provide non-linkability, see clause A.5.1 (Protocol
core design considerations). Authenticators can only be identified on a production batch level or an
AAID level by their attestation certificate and not individually. A large number of authenticators
sharing the same attestation certificate provides better privacy, but also makes the related private key
a more attractive attack target.

NOTE — When using full basic attestation: A given set of authenticators sharing the same manufacturer and

essential characteristics must not be issued a new attestation key before at least 100,000 devices are issued the
previous shared key.

Rec. ITU-T X.1277 (11/2018) 69

Figure A.10 shows the attestation certificate chain.

l Manufacturer attestation root

i Intermediate attestation certificates

7_

_-~" Intermediate attestation certificates

j Attestation certificate XAZ7T(18)_ FA10

Figure A.10 — Attestation certificate chain

A.5.1.2.1.2 Surrogate basic attestation

In this attestation method, the UAuth.priv key MUST be used to sign the registration data object. This
behavior MUST be properly declared in the authenticator metadata.

NOTE - FIDO authenticators not providing sufficient protection for attestation keys (hon-attested
authenticators) must use this attestation method.

A.5.1.2.2 Direct anonymous attestation (ECDAA)

The FIDO basic attestation scheme uses attestation "group” keys shared across a set of authenticators
with identical characteristics in order to preserve privacy by avoiding the introduction of global
correlation handles. If such an attestation key is extracted from one single authenticator, it is possible
to create a "fake" authenticator using the same key and hence indistinguishable from the original
authenticators by the relying party. Removing trust for registering new authenticators with the related
key would affect the entire set of authenticators sharing the same "group” key. Depending on the
number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as
opposed to targeted physical attacks.

An alternative approach to "group” keys is the use of individual keys combined with a Privacy-CA
[b-TPMv1-2-Partl]. Translated to FIDO, this approach would require one Privacy-CA interaction for
each Uauth key. This means relatively high load and high availability requirements for the Privacy-
CA. Additionally the Privacy-CA aggregates sensitive information (i.e., knowing the relying parties
the user interacts with). This might make the Privacy-CA an interesting attack target.

Another alternative is the direct anonymous attestation [b-BriCamChe2004-DAA]. Direct
anonymous attestation is a cryptographic scheme combining privacy with security. It uses the
authenticator specific secret once to communicate with a single DAA issuer (either at manufacturing
time or after being sold before first use) and uses the resulting DAA credential in the DAA-Sign
protocol with each relying party. The (original) DAA scheme has been adopted by the Trusted
Computing Group for TPM v1.2 [b-TPMv1-2-Partl].

ECDAA, see Annex K for details, is an improved DAA scheme based on elliptic curves and bilinear
pairings [b-CheLi2013-ECDAA]. This scheme provides significantly improved performance
compared with the original DAA and it is part of the TPMv2 specification [b-TPMv2-Partl].

The ECDAA attestation algorithm is used as specified in Annex K.

A.5.1.3 Error handling

NOTE - FIDO servers must inform the calling relying party Web Application server, see clause A.5.4 (FIDO
Interoperability Overview) about any error conditions encountered when generating or processing UAF
messages through their proprietary API.

70 Rec. ITU-T X.1277 (11/2018)

FIDO authenticators MUST inform the FIDO UAF client, see clause A.5.4 (FIDO Interoperability
Overview) about any error conditions encountered when processing commands through the
authenticator specific module (ASM). See Annex D and Annex C for details.

A5.1.4 Assertion schemes

UAF protocol is designed to be compatible with a variety of existing authenticators (TPMs,
fingerprint sensors, secure elements, etc.) and also future authenticators designed for FIDO. Therefore
extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

. Cryptographic key provisioning (KeyRegistrationData)

. Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an assertion scheme.
The UAF protocol allows plugging in new assertion schemes. See also clause A.6.

The registration assertion defines how and in which format a cryptographic key is exchanged between
the authenticator and the FIDO server.

The authentication assertion defines how and in which format the authenticator generates a
cryptographic signature.

The generally-supported assertion schemes are defined in Annex E.

A.5.1.5 Username in authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e., replacing username and
password). As part of the FIDO UAF registration, the Uauth key is registered (linked) to the related
user account at the RP. The authenticator stores the username (allowing the user to select a specific
account at the RP in the case he has multiple ones), see Annex C, clause C.6.3 (Sign command) for
details.

A.5.1.6 Silent authenticators

FIDO UAF supports authenticators not requiring any types of user verification or user presence check.
Such authenticators are called silent authenticators.

In order to meet user's expectations, such silent authenticators need specific properties:

. It must be possible for a user to effectively remove a Uauth key maintained by a Silent
Authenticator (in order to avoid being tracked) at the user's discretion, see Annex C. This is
not compatible with statelesss implementations storing the Uauth private key wrapped inside
a KeyHandle on the FIDO server.

. TransactionConfirmation is not supported (as it would require user input which is not
intended), see Annex C.

. They might not operate in first factor mode, see Annex C, as this might violate the privacy
principles.

The MetadataStatement has to truthfully reflect the silent authenticator, i.e., field userVerification
needs to be set to USER_VERIFY_NONE.

A5.1.7 TLS protected communication

NOTE — In order to protect the data communication between FIDO UAF client and FIDO server a protected
TLS channel must be used by FIDO UAF client (or user agent) and the relying party for all protocol elements.

1. The server endpoint of the TLS connection must be at the relying party.

Rec. ITU-T X.1277 (11/2018) 71

2. The client endpoint of the TLS connection must be either the FIDO UAF client or the user
agent / App.

3. TLS client and server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS
v1.2 or higher are not available. The "anon" and "null" TLS crypto suites are not allowed and
must be rejected; insecure crypto-algorithms in TLS (e.g., MD5, RC4, SHAL) should be
avoided [b-SP800-131A], [b-IETF RFC 7525].

4. TLS extended master secret extension [b-IETF RFC 7627] and TLS renegotiation indication
extension [b-IETF RFC 5746] should be used to protect against MITM attacks.
5. The use of the tls-unique method is deprecated as its security is broken, see [b-TLSAUTH].

It is recommend, that the

1. TLS client verifies and validates the server certificate chain according to [IETF RFC 5280],
clause 6 (Certificate Path Validation). The certificate revocation status should be checked
(e.g., using OCSP [b-IETF RFC 2560] or CRL based validation [IETF RFC 5280]) and the
TLS server identity should be checked as well [IETF RFC 6125].

2. TLS client's trusted certificate root store is properly maintained and at least requires the CAs
included in the root store to annually pass Web Trust or ETSI (ETSI TS 101 456, or
ETSI TS 102 042) audits for SSL CAs.

See [b-TR-03116-4] and [b-SHEFFER-TLS] for more recommendations on how to use TLS.
A.5.2 Implementation considerations

A5.2.1 Server challenge and random numbers

NOTE - A serverChallenge heeds appropriate random sources in order to be effective
(see [IETF RFC 4086] for more details). The (pseudo-)random numbers used for generating the server
Challenge should successfully pass the randomness test specified in [b-Coron99] and they should follow the
guideline given in [b-SP800-90B].

A.5.3 Security considerations

There is no "one size fits all" authentication method. The FIDO goal is to decouple the user
verification method from the authentication protocol and the authentication server and to support a
broad range of user verification methods and a broad range of assurance levels. FIDO authenticators
should be able to leverage capabilities of existing computing hardware, e.g., mobile devices or smart
cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and
integrity of the user's equipment involved and (b) on the authentication method being used to
authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of
authentication methods. The relying party needs reliable information about the security relevant parts
of the equipment and the authentication method itself in order to determine whether the overall risk
of an electronic authentication is acceptable in a particular business context. The FIDO metadata
service (Annex 1) is intended to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security
relevant parts of the equipment and the authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO,
the underlying UAF protocol needs to provide a very high conceptual security level, so that the
protocol is not the weakest link.

72 Rec. ITU-T X.1277 (11/2018)

Relying parties define acceptable assurance levels. The FIDO Alliance envisions a broad range of
FIDO UAF clients, FIDO Authenticators and FIDO servers to be offered by various vendors. Relying
parties should be able to select a FIDO server providing the appropriate level of security. They should
also be in a position to accept FIDO authenticators meeting the security needs of the given business
context, to compensate assurance level deficits by adding appropriate implicit authentication
measures and to reject authenticators not meeting their requirements. FIDO does not mandate a very
high assurance level for FIDO authenticators, instead it provides the basis for authenticator and user
verification method competition.

Authentication vs. Transaction confirmation. Existing cloud services are typically based on
authentication. The user launches an application (i.e., user agent) assumed to be trusted and
authenticates to the cloud service in order to establish an authenticated communication channel
between the application and the cloud service. After this authentication, the application can perform
any actions to the cloud service using the authenticated channel. The service provider will attribute
all those actions to the user. Essentially the user authenticates all actions performed by the application
in advance until the service connection or authentication times out. This is a very convenient way as
the user does not get distracted by manual actions required for the authentication. It is suitable for
actions with low risk consequences.

However, in some situations it is important for the relying party to know that a user really has seen
and accepted a particular content before he authenticates it. This method is typically being used when
non-repudiation is required. The resulting requirement for this scenario is called what you see is what
you sign (WYSIWYS).

UAF supports both methods; they are called "Authentication™ and "Transaction Confirmation™. The
technical difference is, that with authentication the user confirms a random challenge, where in the
case of transaction confirmation the user also confirms a human readable content, i.e., the contract.
From a security point, in the case of authentication the application needs to be trusted as it performs
any action once the authenticated communication channel has been established. In the case of
transaction confirmation only the transaction confirmation display component implementing
WYSIWYS needs to be trusted, not the entire application.

Distinct attestable security components. For the relying party in order to determine the risk
associated with an authentication, it is important to know details about some components of the user's
environment. Web browsers typically send a "user agent" string to the web server. Unfortunately any
application could send any string as "user agent" to the relying party. So this method does not provide
strong security. FIDO UAF is based on a concept of cryptographic attestation. With this concept, the
component to be attested owns a cryptographic secret and authenticates its identity with this
cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation
Key". The relying party gets access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an
authentication, all components performing significant security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the "FIDO Authenticators". Security
functions are:

1. Protecting the attestation key.

2. Generating and protecting the authentication key(s), typically one per relying party and user
account on relying party.

3. Verifying the user.

4. Providing the WYSIWY'S capability ("Transaction Confirmation Display"” component).

Rec. ITU-T X.1277 (11/2018) 73

Some FIDO authenticators might implement these functions in software running on the FIDO user
device, others might implement these functions in "hardware", i.e., software running on a hardware
segregated from the FIDO user device. Some FIDO authenticators might even be formally evaluated
and accredited to some national or international scheme. Each FIDO authenticator model has an
attestation ID (AAID), uniquely identifying the related security characteristics. Relying parties get
access to these security properties of the FIDO authenticators and the reference data required for
verifying the attestation.

Resilience to leaks from other verifiers. One of the important issues with existing authentication
solutions is a weak server side implementation, affecting the security of authentication of typical users
to other relying parties. It is the goal of the FIDO UAF protocol to decouple the security of different
relying parties.

Decoupling user verification method from authentication protocol. In order to decouple the user
verification method from the authentication protocol, FIDO UAF is based on an extensible set of
cryptographic authentication algorithms. The cryptographic secret will be unlocked after user
verification by the authenticator. This secret is then used for the authenticator-to-relying party
authentication. The set of cryptographic algorithms is chosen according to the capabilities of existing
cryptographic hardware and computing devices. It can be extended in order to support new
cryptographic hardware.

Privacy protection. Different regions in the world have different privacy regulations. The FIDO
UAF protocol should be acceptable in all regions and hence must support the highest level of data
protection. As a consequence, FIDO UAF does not require transmission of biometric data to the
relying party nor does it require the storage of biometric reference data [b-ISOBiometrics] at the
relying party. Additionally, cryptographic secrets used for different relying parties shall not allow the
parties to link actions to the same user entity. UAF supports this concept, known as non-linkability.
Consequently, the UAF protocol does not require a trusted third party to be involved in every
transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO authenticators on the FIDO
user device using the discovery interface (Annex B). The combination of AAIDs adds to the
entropy provided by the client to relying parties. Based on such information, relying parties
can fingerprint clients on the Internet (see Browser Uniqueness at eff.org and
https://wiki.mozilla.org/Fingerprinting). In order to minimize the entropy added by FIDO, the
user can enable/disable individual authenticators — even when they are embedded in the device,
see Annex B).

A5.3.1 FIDO authenticator security
See Annex C.

A5.3.2 Cryptographic algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it
is suggested that implementers prefer ECDSA [b-ECDSA-ANSI] in combination with SHA-256 /
SHA-512 hash algorithms. However, the RSA algorithm is also supported. See Annex K
"Authentication Algorithms” and "Public Key Representation Formats” for a list of generally
supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random
value. For effective security, this value must be chosen randomly and uniformly from a set of modular
integers, using a cryptographically secure process. Even slight biases in that process may be turned
into attacks on the signature schemes.

NOTE — If such random values cannot be provided under all possible environmental conditions, then a
deterministic version of ECDSA should be used (see [IETF RFC 6979]).

74 Rec. ITU-T X.1277 (11/2018)

A.5.3.3 FIDO client trust model
The FIDO environment on a FIDO user device comprises 4 entities:

. User agents (a native app or a browser)

. FIDO UAF clients (a shared service potentially used by multiple user agents)
. Authenticator specific modules (ASMs)

. Authenticators

Figure A.11 shows the UAF client trust model.

TLS with server

‘___,_—I—”_’ authentication

Platform specific

determination of i—___i“‘_“
FacetID

. FIDO user device
Platform specific FIDO client

determination of e
CallerID

KHAccessToken
—_

FIDO authenticator

Authenticator specific

‘__,_—‘—”_” user verification

L X.1277(18)_FA.11

Figure A.11 — UAF client trust model

The security and privacy principles that underpin mobile operating systems require certain behaviours
from apps. FIDO must uphold those principles wherever possible. This means that each of these
components has to enforce specific trust relationships with the others to avoid the risk of rogue
components subverting the integrity of the solution.

One specific requirement on handsets is that apps originating from different vendors must not be
allowed directly to view or edit each other's data (e.g., FIDO UAF credentials).

Given that FIDO UAF clients are intended to provide a shared service, the principle of siloed app
data has been applied to the FIDO UAF client, rather than individual apps. This means that if two or
more FIDO UAF clients are present on a device, then each FIDO UAF client is unable to access
authentication keys created by another FIDO UAF client. A given FIDO UAF client may however
provide services to multiple user agents, so that the same authentication key can authenticate to
different facets of the same relying party, even if one facet is a third-party browser.

This exclusive access restriction is enforced through the KHAccessToken. When a FIDO UAF client
communicates with an ASM, the ASM reads the identity of the FIDO UAF client callerl and includes
that client ID in the KHAccessToken that it sends to the authenticator. Subsequent calls to the

Rec. ITU-T X.1277 (11/2018) 75

authenticator must include the same client ID in the KHAccessToken. Each authentication key is also
bound to the ASM that created it, by means of an ASMToken (a random unique ID for the ASM) that
is also included in the KHAccessToken.

Finally, the user agents that a FIDO UAF client will recognise are determined by the relying party
itself. The FIDO UAF client requests a list of Trusted Apps from the RP as part of the registration
and authentication protocols. This prevents user agents that have not been explicitly authorized by
the relying party from using the FIDO credentials.

In this manner, in a compliant FIDO installation, UAF credentials can only be accessed via apps that
the relying party explicitly trusts and through the same client and ASM that performed the original
registration.

It should be noted that the specification allows for FIDO UAF clients to be built directly into user
agents. However, such implementations will restrict the ability to support multiple facets for relying
party applications unless they also expose the UAF client API for other user agents to consume.

A.5.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify
the calling software entity (i.e., the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to
the intended ASM. It is based on a Trust On First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e., the
ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally
registered them. A malicious App on a mobile platform won't be able to access keys by bypassing the
related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the ApplID, PersonalD, ASMToken and the CallerID.
See Annex D for more details.

NOTE — On some platforms, the ASM additionally might need special permissions in order to communicate
with the FIDO Authenticator. Some platforms do not provide means to reliably enforce access control among
applications.

A5.3.4 TLS binding
Various channel binding methods have been proposed (e.g., [IETF RFC 5929] and [b-ChannellD]).
UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for the same ApplD as the relying
party and they might be able to manipulate the DNS system.
2. Attackers might be able to steal the relying party's TLS server private key and certificate and

they might be able to manipulate the DNS system.
And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique"
defined in [IETF RFC 5929] might be difficult to implement.

2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS

certificates. As a consequence, "tls-server-end-point™” defined in [IETF RFC 5929], i.e., the
hash of the TLS server certificate might be inappropriate.

76 Rec. ITU-T X.1277 (11/2018)

4. Unfortunately, hashing of the TLS server certificate (as in "tls-server-end-point™) also limits
the usefulness of the channel binding in a particular, but quite common circumstance. If the
client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-middle,
your client will see a different certificate than the one the server is using. This is actually
quite common on corporate or military networks with a high security posture that want to
inspect all incoming and outgoing traffic. If the FIDO server just gets a hash value, there's no
way to distinguish this from an attack. If sending the entire certificate is acceptable from a
performance perspective, the server can examine it and determine if it is a certificate for a
valid name from a non-standard issuer (likely administratively trusted) or a certificate for a
different name (which almost certainly indicates a forwarding attack).

See clause A.8.1.8 (ChannelBinding dictionary) for more details.

A.5.3.,5 Session management

FIDO does not define any specific session management methods. However, several FIDO functions
rely on a robust session management being implemented by the relying party's web application:

FIDO registration

A web application might trigger FIDO Registration after authenticating an existing user via
legacy credentials. So the session is used to maintain the authentication state until the FIDO
registration is completed.

FIDO authentication

After success FIDO authentication, the session is used to maintain the authentication state
during the operations performed by the user agent or mobile app.

Best practices should be followed to implement robust session management e.g., [b-OWASP2013].

A5.3.6 Personas

FIDO supports unlinkability [b-AnonTerminology] of accounts at different relying parties by using
relying party specific keys.

Sometimes users have multiple accounts at a particular relying party and even want to maintain
unlinkability between these accounts.

Today, this is difficult and requires certain measures to be strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a
relying party.
In the case of roaming authenticators, it is recommended to use different authenticators for the various

personas (e.g., "business”, "personal™). This is possible as roaming authenticators typically are small
and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona™ concept for
this situation.

All relevant data in an authenticator are related to one persona (e.g., "business™ or "personal™). Some
administrative interface (not standardized by FIDO) of the authenticator may allow maintaining and
switching personas.

The authenticator MUST only "know" / "recognize" data (e.g., authentication keys, usernames,
KeyIDs, etc.) related to the persona being active at that time.

With this concept, the User can switch to the "Personal” persona and register new accounts. After
switching back to "Business" persona, these accounts will not be recognized by the authenticator
(until the user switches back to "Personal” persona again).

Rec. ITU-T X.1277 (11/2018) 77

In order to support the persona feature, the FIDO Authenticator-specific module APl (Annex D)
supports the use of a 'PersonalD' to identify the persona in use by the authenticator. How personas
are managed or communicated with the user is out of scope for FIDO.

A.5.3.7 ServerData and KeyHandle

Data contained in the field serverData, see clause A.4.1.3, of UAF requests is sent to the FIDO UAF
client and will be echoed back to the FIDO server as part of the related UAF response message.

NOTE 1 — The FIDO server should not assume any kind of implicit integrity protection of such data nor any
implicit session binding. The FIDO server must explicitly bind the serverData to an active session.

NOTE 2 — In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary
places (e.g., in serverData or in the KeyHandle). In such situations, the confidentiality and integrity of such
sensitive data must be protected. This can be achieved by using a suitable encryption algorithm, e.g., AES with
a suitable cipher mode, e.g., CBC or CTR [b-CTRMode]. This cipher mode needs to be used correctly. For
CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first
in order to obtain an integral number of blocks in length. The integrity protection can be achieved by adding a
MAC or a digital signature on the ciphertext, using a different key than for the encryption, e.g., using HMAC
[b-FIPS198-1]. Alternatively, an authenticated encryption scheme such as AES-GCM [b-SP800-38D] or AES-
CCM [b-SP800-38C] could be used. Such a scheme provides both integrity and confidentiality in a single
algorithm and using a single key.

NOTE 3 — When protecting serverData, the MAC or digital signature computation should include some data
that binds the data to its associated message, for example by re-including the challenge value in the
authenticated serverData.

A.5.3.8 Authenticator information retrieved through UAF application API vs. metadata

Several authenticator properties (e.g., UserVerificationMethods, KeyProtection, Transaction
ConfirmationDisplay, etc.) are available in the metadata (Annex H) and through the FIDO UAF
Application API. The properties included in the metadata are authoritative and are provided by a
trusted source. When in doubt, decisions should be based on the properties retrieved from the
metadata as opposed to the data retrieved through the FIDO UAF application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint"
what to expect from the authenticator. Such "hints" are well suited to drive and optimize the user
experience.

A.5.3.9 Policy verification

FIDO UAF response messages do not include all parameters received in the related FIDO UAF
request message into the to-be-signed object. As a consequence, any MITM could modify such
entries.

FIDO server will detect such changes if the modified value is unacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible
FIDO Authenticator. Such a change will be detected by FIDO server if the weakest possible FIDO
authenticator does not match the initial policy, see clause A.4.4.6.5 (Registration Response
Processing Rules) and clause A.4.5.7.5 (Authentication Response Processing Rules).

A.5.3.10 Replay attack protection

The FIDO UAF protocol specifies two different methods for replay-attack protection:
1. Secure transport protocol (TLS)
2. Server challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [b-TLS].

78 Rec. ITU-T X.1277 (11/2018)

Additionally, each protocol message contains some random bytes in the serverchalienge field. The
FIDO server should only accept incoming FIDO UAF messages which contain a valid
serverChallenge value. This is done by verifying that the serverchalienge value, sent by the
client, was previously generated by the FIDO server. See FinalChallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated
by the FIDO server may not be unique and in such cases, the same serverchallenge may be
presented more than once, making a replay attack harder to detect.

A.5.3.11 Protection against cloned authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the
security characteristics specified for the model (identified by the AAID). The security is better when
only a single authenticator with that specific UAuth.Key instance exists. Consequently FIDO UAF
specifies some protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard
as such keys cannot be extracted easily.

Secondly, UAF specifies a signature counter, see clause A.4.5.7.5 (Authentication Response
Processing Rules) and Annex C. This counter is increased by every signature operation. If a cloned
authenticator is used, then the subsequent use of the original authenticator would include a signature
counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by
the FIDO server.

A.5.3.12 Anti-fraud signals

There is the potential that some attacker misuses a FIDO authenticator for committing fraud, more
specifically they would:

Register the authenticator to some relying party for one account
Commit fraud

Deregister the authenticator

Register the authenticator to some relying party for another account
Commit fraud

Deregister the authenticator, etc.

2

NOTE — Authenticators might support a registration counter (RegCounter). The RegCounter will be
incremented on each registration and hence might become exceedingly high in such fraud scenarios. See
Annex C for more details.

A.5.4 Interoperability considerations

FIDO supports web applications, mobile applications and native PC applications. Such applications
are referred to as FIDO enabled applications. Figure A.12 shows an overview of FIDO
interoperability.

Rec. ITU-T X.1277 (11/2018) 79

UAF client API

/

—

F N

Iy

p————

UAF 1
protocol
specification

FIDO client
—— UAF ASM API

UAF authenticator

' — commands
FIDO server
FIDO authenticator

X.1277(18)_FA.12

A 4

Figure A.12 — FIDO interoperability overview

Web applications typically consist of the web application server and the related Web App. The Web
App code (e.g., HTML and JavaScript) is rendered and executed on the client side by the user agent.
The Web App code talks to the user agent via a set of JavaScript APIs, e.g., HTML DOM. The FIDO
DOM API is defined in Annex B. The protocol between the Web App and the relying party Web
Application server is typically proprietary.

Mobile Apps play the role of the user agent and the Web App (client). The protocol between the
Mobile App and the relying party Web application server is typically proprietary.

Native PC applications play the role of the user agent, the Web App (client). Those applications are
typically expected to be independent from any particular relying party Web Application server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format
specified in this Annex.

It is recommended for FIDO enabled application to use the UAF HTTP binding defined in Annex B.
NOTE 1 - The KeyRegistrationData and SignedData objects (Annex C) are generated and signed by the FIDO

authenticators and have to be verified by the FIDO server. Verification will fail if the values are modified
during transport.

NOTE 2 — The ASM API (Annex D) specifies the standardized API to access authenticator specific modules
(ASMs) on desktop PCs and mobile devices.

NOTE 3 — The document Annex C does not specify a particular protocol or API. Instead it lists the minimum
data set and a specific message format which needs to be transferred to and from the FIDO authenticator.

A6 UAF supported assertion schemes

A.6.1 Assertion scheme "UAFV1TLV"

This scheme is mandatory to implement for FIDO servers. This scheme is mandatory to implement
for FIDO authenticators.

This assertion scheme allows the authenticator and the FIDO server to exchange an asymmetric
authentication key generated by the authenticator.

80 Rec. ITU-T X.1277 (11/2018)

This assertion scheme is using tag length value (TLV) compact encoding to encode registration and
authentication assertions generated by authenticators. This is the default assertion scheme for UAF
protocol.

TAGs and algorithms are defined in Annex E.

The authenticator MUST use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the
authentication algorithm specified in the metadata statement (Annex H) for each relying party. This
key pair SHOULD be generated as part of the registration operation.

Conforming FIDO servers MUST implement all authentication algorithms and key formats listed in
document (Annex J) unless they are explicitly marked as optional in Annex J.

Conforming FIDO servers MUST implement all attestation types (t2c atrtesTaTtron +) listed in
document (Annex E) unless they are explicitly marked as optional in Annex E.

Conforming authenticators MUST implement (at least) one attestation type defined in Annex E, as
well as one authentication algorithm and one key format listed in Annex J.

A.6.1.1 KeyRegistrationData
See Annex C, clause C.4.3 (TAG_UAFV1_KRD).

A.6.1.2 SignedData
See Annex C, clause C.4.3 (TAG_UAFV1_SIGNED_DATA).

Rec. ITU-T X.1277 (11/2018) 81

Annex B

UAF application API and transport binding specification
(This annex forms an integral part of this Recommendation.)

B.1 Summary

The FIDO family of protocols introduce a new security concept, application facets, to describe the
scope of user credentials and how a trusted computing base which supports application isolation may
make access control decisions about which keys can be used by which applications and web origins.

This annex describes the motivations for and requirements for implementing the application facet
concept and how it applies to the FIDO protocols.

B.2 Overview

Modern networked applications typically present several ways that a user can interact with them. This
annex introduces the concept of an application facet to describe the identities of a single logical
application across various platforms. For example, the application MyBank may have an Android app,
an b-iOS app and a Web app accessible from a browser. These are all facets of the MyBank application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and
password approaches while avoiding many of the shortfalls of alternative authentication schemes. At
the core of the FIDO protocols are challenge and response operations performed with a public/private
keypair that serves as a user's credential.

To minimize frequently-encountered issues around privacy, entanglements with concepts of
"identity" and the necessity for trusted third parties, keys in FIDO are tightly scoped and dynamically
provisioned between the user and each relying party and only optionally associated with a
server-assigned username. This approach contrasts with, for example, traditional PKIX client
certificates as used in TLS, which introduce a trusted third party, mix in their implementation details
identity assertions with holder-of-key cryptographic proofs, lack audience restrictions and may even
be sent in the cleartext portion of a protocol handshake without the user's notification or consent.

While the FIDO approach is preferable for many reasons, it introduces several challenges:

. What set of Web origins and native applications (facets) make up a single logical application
and how can they be reliably identified?

. How can one avoid making the user register a new key for each web browser or application
on their device that accesses services controlled by the same target entity?

. How can access to registered keys be shared without violating the security guarantees around
application isolation and protection from malicious code that users expect on their devices?

. How can a user roam credentials between multiple devices, each with a user-friendly trusted

computing base for FIDO?

This annex describes how FIDO addresses these goals (where adequate platform mechanisms exist
for enforcement) by allowing an application to declare a credential scope that crosses all the various
facets it presents to the user.

B.2.1 Motivation

FIDO conceptually sets a scope for registered keys to the tuple of (username, authenticator, relying
party). But what constitutes a relying party? It is quite common for a user to access the same set of
services from a relying party, on the same device, in one or more web browsers as well as one or
more dedicated apps. As the relying party may require the user to perform a costly ceremony in order
to prove her identity and register a new FIDO key, it is undesirable that the user should have to repeat
this ceremony multiple times on the same device, once for each browser or app.

82 Rec. ITU-T X.1277 (11/2018)

B.2.2 Avoiding app-phishing

FIDO provides for user-friendly verification ceremonies to allow access to registered keys, such as
entering a simple PIN code and touching a device, or scanning a finger. It should not matter for
security purposes if the user re-uses the same verification inputs across relying parties and in the case
of a biometric, she may have no choice.

Modern operating systems that use an "app store" distribution model often make a promise to the user
that it is "safe to try" any app. They do this by providing strong isolation between applications, so
that they may not read each others' data or mutually interfere and by requiring explicit user permission
to access shared system resources.

If a user were to download a maliciously constructed game that instructs her to activate her FIDO
authenticator in order to "save your progress” but actually unlocks her banking credential and takes
over her account, FIDO has failed, because the risk of phishing has only been moved from the
password to an app download. FIDO must not violate a platform's promise that any app is "safe to
try" by keeping good custody of the high-value shared state that a registered key represents.

B.2.3 Comparison to OAuth and OAuth2

The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the
assumption that each application instance can be issued and keep, an "application secret". This
approach is ill-suited to the "app store™ security model. Although it is common for services to
provision an OAuth-style application secret into their apps in an attempt to allow only
authorized/official apps to connect, any such "secret™ is in fact shared among everyone with access
to the app store and can be trivially recovered thorough basic reverse engineering.

In contrast, FIDQO's facet concept is designed for the "app store” model from the start. It relies on
client-side platform isolation features to make sure that a key registered by a user with a member of
a well-behaved "trusted club" stays within that trusted club, even if the user later installs a malicious
app and does not require any secrets hard-coded into a shared package to do so. The user must, however,
still make good decisions about which apps and browsers they are willing to preform a registration
ceremony with. App store policing can assist here by removing applications which solicit users to
register FIDO keys to for relying parties in order to make illegitmate or fraudulent use of them.

B.2.4 Non-goals

The application facet concept does not attempt to strongly identify the calling application to a service
across a network. Remote attestation of an application identity is an explicit non-goal.

If an unauthorized app can convince a user to provide all the information to it required to register a
new FIDO key, the relying party cannot use FIDO protocols or the Facet concept to recognize as
unauthorized, or deny such an application from performing FIDO operations and an application that
a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms
described in this annex.

The facet mechanism provides a way for registered keys to maintain their proper scope when created
and accessed from a trusted computing base (TCB) that provides isolation of malicious apps. A user
can also roam their credentials between multiple devices with user-friendly TCBs and credentials will
retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees
can be made in environments where the TCB is user-hostile, such as a device with malicious code
operating with "root" level permissions. On environments that do not provide application isolation
but run all code with the privileges of the user, (e.g., traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only,
but cannot meaningfully enforce application scoping.

Rec. ITU-T X.1277 (11/2018) 83

B.3 The AppID and FacetlID assertions

When a user performs a registration operation a new private key is created by their authenticator and
the public key is sent to the relying party. As part of this process, each key is associated with an
~rppID. The 2pp1D is @ URL carried as part of the protocol message sent by the server and indicates
the target for this credential. By default, the audience of the credential is restricted to the same origin
of the ~pp1D. In some circumstances, a relying party may desire to apply a larger scope to a key. If
that ~pp1o URL has the n+-tps scheme, a FIDO client may be able to dereference and process it as a
TrustedracetList that designates a scope or audience restriction that includes multiple facets, such
as other web origins within the same DNS zone of control of the AppID's origin, or URLS indicating
the identity of other types of trusted facets such as mobile apps.

NOTE — Users may also register multiple keys on a single authenticator for an 2pp1D, such as for cases where
they have multiple accounts. Such registrations may have a relying party assigned username or local nicknames
associated to allow them to be distinguished by the user, or they may not (e.g., for 2nd factor use cases, the
user account associated with a key may be communicated out-of-band to what is specified by FIDO protocols).
All registrations that share an 2pp 1D, also share these same audience restriction.

B.3.1 Processing rules for AppID and FacetID assertions

B.3.1.1 Determining the FacetID of a calling application

In the Web case, the FacetlD MUST be the Web Origin [IETF RFC 6454] of the web page triggering
the FIDO operation, written as a URI with an empty path. Default ports are omitted and any path
component is ignored.

An example FacetlID is shown below:

https://login.mycorp.com/

In the Android [b-ANDROID] case, the FacetID MUST be a URI derived from the Base64 encoding
SHA-1 hash of the APK signing certificate [b-APK-Signing]:

android:apk-key-hash:<base64 encoded shal hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:
EXAMPLE 1: COMPUTING AN APK SIGNING CERTIFICATE HASH

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
-alias <alias-of-entry> \
-keystore <path-to-apk-signing-keystore> &>2 /dev/null | \
openssl shal -binary | \
openssl base64d | \
sed 's/=//g'

The Base64 encoding is the the "Base 64 Encoding™ from clause 4 in [IETF RFC 4648], with padding
characters removed.

In the i0OS [b-iOS] case, the FacetlD MUST be the BundlelD [b-BundlelD] URI of the application:

ios:bundle-id:<ios-bundle-id-of-app>

B.3.1.2 Determining if a caller's FacetID is authorized for an AppID

1. If the AppID is not an HTTPS URL and matches the FacetID of the caller, no additional
processing is necessary and the operation may proceed.
2. If the ApplID is null or empty, the client MUST set the AppID to be the FacetID of the caller

and the operation may proceed without additional processing.

84 Rec. ITU-T X.1277 (11/2018)

https://login.mycorp.com/

10.

11.

12.

13.

14.

15.

16.

If the caller's FacetID is an nttps:// Origin sharing the same host as the ApplID, (e.g., if an
application hosted at nttps://fido.example.com/myApp Set an ApplD of
https://fido.example.com/myAppId), NO additional processing is necessary and the
operation may proceed. This algorithm MAY be continued asynchronously for purposes of
caching the trusted facet list, if desired.

Begin to fetch the trusted facet list using the HTTP GET method. The location MUST be
identified with an HTTPS URL.

The URL MUST be dereferenced with an anonymous fetch. That is, the HTTP GET MUST
include no cookies, authentication, Origin or Referer headers and present no TLS certificates
or other forms of credentials.

The response MUST set a MIME Content-Type of "application/fido.trusted-apps+json™.

The caching related HTTP header fields in the HTTP response (e.g., "Expires') SHOULD be
respected when fetching a trusted facets list.

The server hosting the trusted facets list MUST respond uniformly to all clients. That is, it
MUST NOT vary the contents of the response body based on any credential material,
including ambient authority such as originating IP address, supplied with the request.

IF the server returns an HTTP redirect (status code 3xx) the server MUST also send the HTTP
header F1pDo-AppTD-Redirect-Authorized: trueandtheclient MUST verify the presence
of such a header before following the redirect. This protects against abuse of open redirectors
within the target domain by unauthorized parties. If this check has passed, restart this
algorithm from step 4.

A trusted facet list MAY contain an unlimited number of entries, but clients MAY truncate
or decline to process large responses.

From among the objects in the trustedracet array, select the one with the version
matching that of the protocol message version.

The scheme of URLs in ids MUST identify either an application identity (e.g., using the
apk:, ios: or similar scheme) or an nttps: Web Origin [IETF RFC 6454].

Entries in ids using the nttps:// scheme MUST contain only scheme, host and port
components, with an optional trailing /. Any path, query string, username/password, or
fragment information MUST be discarded.

All Web Origins listed MUST have host names under the scope of the same least-specific
private label in the DNS, using the following algorithm:

1. Obtain the list of public DNS suffixes from https://publicsuffix.org/list/effective
tld_names.dat (the client MAY cache such data), or equivalent functionality as available
on the platform.

2. Extract the host portion of the original AppID URL, before following any redirects.

The least-specific private label is the portion of the host portion of the AppID URL that
matches a public suffix plus one additional label to the left.

4. For each Web Origin in the TrustedFacets list, the calculation of the least-specific private
label in the DNS MUST be a case-insensitive match of that of the AppID URL itself.
Entries that do not match MUST be discarded.

If the TrustedFacets list cannot be retrieved and successfully parsed according to these rules,
the client MUST abort processing of the requested FIDO operation.

After processing the « rustedracets entry of the correct version and removing any invalid
entries, if the caller's FacetID matches one listed in i ds, the operation is allowed.

Rec. ITU-T X.1277 (11/2018) 85

https://publicsuffix.org/list/effective

B.3.1.3 TrustedFacets structure

The JSON resource hosted at the AppID URL consists of a dictionary containing a single member,
trustedracets Which isan array of Trustedracets dictionaries.

dictionary TrustedFacets ({
Version version;
DOMString[] ids;

i

B.3.1.3.1 Dictionary TrustedFacets members
version Of type version
The protocol version to which this set of trusted facets applies. See Annex A for the definition
of the version structure.
ids of type array of poMstring

An array of URLs identifying authorized facets for this AppID.

B.3.1.4 AppID example 1

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. The body of
the resource at this location contains:

EXAMPLE 2
{
"trustedFacets" : [{

"version": { "major": 1, "minor" : 0 },

"ids": [
"https://register.example.com", // VALID, shares "example.com" label
"https://fido.example.com", // VALID, shares "example.com" label
"http://www.example.com", // DISCARD, scheme is not https:
"http://www.example-test.com", // DISCARD, "example-test.com" does not match
"https://www.example.com:444" // VALID, port is not significant

For this policy, "https://www.example.com™ and "https://register.example.com" would have access
to the keys registered for this AppID and "https://userl.example.com™ would not.

B.3.1.5 ApplD example 2:

"hosting.example.com" is a public suffix, operated under "example.com" and used to provide hosted
cloud services for many companies. "https://companyA.hosting.example.com/appID™ is provided as
an ApplID. The body of the resource at this location contains:

EXAMPLE 3
{
"trustedFacets" : [{

"version": { "major": 1, "minor"™ : 0 },

"ids": [
"https://register.example.com", // DISCARD, does not share "companyA.hosting.example.com" label
"https://fido.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
"https://xyz.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
"https://companyB.hosting.example.com" // DISCARD, "companyB.hosting.example.com" does not match

1
H
}

86 Rec. ITU-T X.1277 (11/2018)

For this policy, "https://fido.companyA.hosting.example.com” would have access to the keys
registered for this AppID and "https://register.example.com” and "https://companyB.hosting.
example.com™ would not as a public-suffix exists between these DNS names and the AppID's.

B.3.1.6 Obtaining FacetlD of Android native app

The following code demonstrates how a FIDO client can obtain and construct the FacetID of a calling
Android native application.

EXAMPLE 4: ANDROIDFACETID

private String getFacetID(Context aContext, int callingUid) {
String packageNames[] = aContext.getPackageManager ().getPackagesForUid(callingUid) ;
if (packageNames == null) {
return null;

}

try {
PackageInfo info = aContext.getPackageManager ().getPackagelnfo (packageNames[0], PackageManager.GET_SIGNATURES) ;

byte[] cert = info.signatures[0].toByteArray();
InputStream input = new ByteArrayInputStream(cert);

CertificateFactory cf = CertificateFactory.getInstance ("X509");
X509Certificate ¢ = (X509Certificate) cf.generateCertificate (input);

MessageDigest md = MessageDigest.getInstance ("SHAL");
return "android:apk-key-hash:" +

Base64.encodeToString (md.digest (c.getEncoded()), Base64.DEFAULT | Base64.NO _WRAP | Base64.NO_PADDING) ;
}

catch (PackageManager.NameNotFoundException e) {
e.printStackTrace () ;

}

catch (CertificateException e) {
e.printStackTrace () ;

}

catch (NoSuchAlgorithmException e) {
e.printStackTrace () ;

}

catch (CertificateEncodingException e) {
e.printStackTrace () ;

}

return null;

}
B.3.1.7 Additional security considerations

The UAF protocol supports passing FacetlD to the FIDO server and including the FacetID in the
computation of the authentication response.

Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user
agents do not provide a security barrier between such origins. So, in AppID Example 1, although not
explicitly listed, "https://foobar.register.example.com" would still have effective access to credentials
registered for the ApplID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com”.

The component implementing the controls described here must reliably identify callers to securely
enforce the mechanisms. Platform inter-process communication mechanisms which allow such
identification SHOULD be used when available.

It is unlikely that the component implementing the controls described here can verify the integrity
and intent of the entries on a Trustedracetnist. If a trusted facet can be compromised or enlisted
as a confused deputy by a malicious party, it may be possible to trick a user into completing an
authentication ceremony under the control of that malicious party.

Rec. ITU-T X.1277 (11/2018) 87

B.3.1.7.1 Wildcards in TrustedFacet identifiers

Wildcards are not supported in TrustedFacet identifiers. This follows the advice of RFC6125
[IETF RFC 6125], clause 7.2.

FacetIDs are URIs that uniquely identify specific security principals that are trusted to interact with
a given registered credential. Wildcards introduce undesirable ambiguitiy in the defintion of the
principal, as there is no consensus syntax for what wildcards mean, how they are expanded and where
they can occur across different applications and protocols in common use. For schemes indicating
application identities, it is not clear that wildcarding is appropriate in any fashion. For Web Origins,
it broadly increases the scope of the credential to potentially include rogue or buggy hosts.

Taken together, these ambiguities might introduce exploitable differences in identity checking
behavior among client implementations and would necessitate overly complex and inefficient identity
checking algorithms.

88 Rec. ITU-T X.1277 (11/2018)

Annex C

FIDO UAF authenticator commands
(This annex forms an integral part of this Recommendation.)

Cl Summary

UAF authenticators may take different forms. Implementations may range from a secure application
running inside tamper-resistant hardware to software-only solutions on consumer devices.

This annex defines normative aspects of UAF authenticators and offers security and implementation
guidelines for authenticator implementors.
C.2 Overview

This annex specifies low-level functionality which UAF authenticators should implement in order to
support the UAF protocol. It has the following goals:

. Define normative aspects of UAF authenticator implementations

. Define a set of commands implementing UAF functionality that may be implemented by
different types of authenticators

. Define uarviTrv assertion scheme-specific structures which will be parsed by a FIDO server.

NOTE — The UAF protocol supports various assertion schemes. Commands and structures defined in this
Annex assume that an authenticator supports the uarv1T1,v assertion scheme. Authenticators implementing a
different assertion scheme do not have to follow requirements specified in this annex.

Figure C.1 shows UAF authenticator commands.

The overall architecture of the UAF protocol and its various operations is described in Annex A. The
following simplified architecture diagram illustrates the interactions and actors this annex is
concerned with:

UAF
client

UAF
authenticator

X.1277(18)_FCA
Figure C.1 — UAF authenticator commands

C.3 UAF authenticator

The UAF authenticator is an authentication component that meets the UAF protocol requirements as
described in Annex A. The main functions to be provided by UAF authenticators are:

1. [Mandatory] Verifying the user with the verification mechanism built into the authenticator.
The verification technology can vary, from biometric verification to simply verifying
physical presence, or no user verification at all (the so-called Silent Authenticator).

2. [Mandatory] Performing the cryptographic operations defined in Annex A.

Rec. ITU-T X.1277 (11/2018) 89

3. [Mandatory] Creating data structures that can be parsed by FIDO server.
[Mandatory] Attesting itself to the FIDO server if there is a built-in support for attestation.
5. [Optional] Displaying the transaction content to the user using the transaction confirmation
display.
Figure C.2 shows FIDO authenticator logical sub-components.

, FIDO authenticator il N
Interface
‘l{scr‘ Attestation key
verification
i Transaction !
<«— confirmation | Authentication
! display | keys
b e e e e e e ——— 1
User o J

X.1277(18)_FC.2

Figure C.2 — FIDO authenticator logical sub-components

Some examples of UAF authenticators:

. A fingerprint sensor built into a mobile device

. PIN authenticator implemented inside a secure element

. A mobile phone acting as an authenticator to a different device
. A USB token with built-in user presence verification

. A voice or face verification technology built into a device.

C.3.1 Types of authenticators

There are four types of authenticators defined in this annex. These definitions are not normative
(unless otherwise stated) and are provided merely for simplifying some of the descriptions.

NOTE - The following is the rationale for considering only these 4 types of authenticators:

. Bound authenticators are typically embedded into a user's computing device and thus can
utilize the host's storage for their needs. It makes more sense from an economic perspective
to utilize the host's storage rather than have embedded storage. trusted execution
environments (TEE), secure elements and trusted platform modules (TPM) are typically
designed in this manner.

. First-factor roaming authenticators must have an internal storage for key handles.

. Second-factor roaming authenticators can store their key handles on an associated server, in
order to avoid the need for internal storage.

. Defining such constraints makes the specification simpler and clearer for defining the

mainstream use-cases.

Vendors, however, are not limited to these constraints. For example a bound authenticator which has
internal storage for storing key handles is possible. VVendors are free to design and implement such
authenticators as long as their design follows the normative requirements described in this Annex.

90 Rec. ITU-T X.1277 (11/2018)

First-factor bound authenticator

o These authenticators have an internal matcher. The matcher is able to verify an already
enrolled user. If there is more than one user enrolled — the matcher can also identify a
user.

o There is a logical binding between this authenticator and the device it is attached to (the
binding is expressed through a concept called KeyHandleAccessToken). This
authenticator cannot be bound with more than one device.

o These authenticators do not store key handles in their own internal storage. They always
return the key handle to the ASM and the latter stores it in its local database.

o Authenticators of this type may also work as a second factor.
o Examples
— Afingerprint sensor built into a laptop, phone or tablet.
— Embedded secure element in a mobile device.
— Voice verification built into a device.
Second-factor (2ndF) bound authenticator

o This type of authenticator is similar to first-factor bound authenticators, except that it can
operate only as the second-factor in a multi-factor authentication.

o Examples
— USB dongle with a built-in capacitive touch device for verifying user presence.

— A "Trustlet" application running on the trusted execution environment of a mobile
phone and leveraging a secure keyboard to verify user presence.

First factor (1stF) roaming authenticator

o These authenticators are not bound to any device. User can use them with any number of
devices.

o Itis assumed that these authenticators have an internal matcher. The matcher is able to
verify an already enrolled user. If there is more than one user enrolled — the matcher can
also identify a user.

o It is assumed that these authenticators are designed to store key handles in their own
internal secure storage and not expose externally.

o These authenticators may also work as a second factor.

o Examples
— A Bluetooth LE based hardware token with built-in fingerprint sensor.
— PIN protected USB hardware token.

— A first-factor bound authenticator acting as a roaming authenticator for a different
device on the user's behalf.

Second-factor roaming authenticator

o These authenticators are not bound to any device. A user may use them with any number
of devices.

o These authenticators may have an internal matcher. The matcher is able to verify an
already enrolled user. If there is more than one user enrolled then the matcher can also
identify a particular specific user.

o It is assumed that these authenticators do not store key handles in their own internal
storage. Instead they push key handles to the FIDO server and receive them back during
the authentication operation.

Rec. ITU-T X.1277 (11/2018) 91

o These authenticators can only work as second factors.
o Examples
— USB dongle with a built-in capacitive touch device for verifying user presence.

— A "Trustlet" application running on the trusted execution environment of a mobile
phone and leveraging a secure keyboard to verify user presence.

Throughout the document there will be special conditions applying to these types of authenticators.

In some deployments, the combination of ASM and a bound authenticator can act as a roaming
authenticator (for example when an ASM with an embedded authenticator on a mobile device acts as
a roaming authenticator for another device). When this happens such an authenticator MUST follow
the requirements applying to bound authenticators within the boundary of the system the authenticator
is bound to and follow the requirements that apply to roaming authenticators in any other system it
connects to externally.

Conforming authenticators MUST implement at least one attestation type defined in Annex E, as well
as one authentication algorithm and one key format listed in Annex J.

NOTE — As stated above, the bound authenticator does not store key handles and roaming authenticators do
store them. In the example above the ASM would store the key handles of the bound authenticator and hence
meets these assumptions.

CA4 Tags

In this annex UAF authenticators use "Tag-Length-Value" (TLV) format to communicate with the
outside world. All requests and response data MUST be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by appending other TLV tags (custom
or predefined).

Refer to Annex E for information about predefined TLV tags.
TLV formatted data has the following simple structure shown in Table C.1.

Table C.1 - Tags

2 bytes 2 bytes Length bytes
Tag Length in bytes Data
All lengths are in bytes. e.g., a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used
to accommodate the limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted
and in these cases, if same tag appears more than once, all values are signifanct and should be treated
as an array.

For convenience in decoding TLV-formatted messages, all composite tags — those with values that
must be parsed by recursive descent — have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver MUST abort
processing the entire message if it cannot process that tag.

Since UAF authenticators may have extremely constrained processing environments, an ASM MUST
follow a normative ordering of structures when sending commands.

It is assumed that ASM and server have sufficient resources to handle parsing tags in any order so
structures send from authenticator MAY use tags in any order.

92 Rec. ITU-T X.1277 (11/2018)

C.4.1 Command tags

Table C.2 — UAF Authenticator Command TLYV tags (0x3400 — 0x34FF, 0x3600-0x36FF)

Name ‘ Value ‘ Description
TAG_UAFV1 GETINFO_CMD 0x3401 | Tag for GetInfo command.
TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 | Tag for Getlnfo command response.
TAG_UAFV1 REGISTER_CMD 0x3402 | Tag for Register command.
TAG_UAFV1 _REGISTER_CMD_RESPONSE 0x3602 | Tag for Register command response.
TAG_UAFV1 SIGN_CMD 0x3403 | Tag for Sign command.
TAG_UAFV1 SIGN_CMD_RESPONSE 0x3603 | Tag for Sign command response.
TAG_UAFV1 _DEREGISTER_CMD 0x3404 | Tag for Deregister command.
TAG_UAFV1 DEREGISTER_CMD_RESPONSE 0x3604 | Tag for Deregister command
response.
TAG_UAFV1 OPEN _SETTINGS CMD 0x3406 | Tag for OpenSettings command.
TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE | 0x3606 | Tag for OpenSettings command
response.

C4.2 Tags used only in Authenticator Commands

Table C.3 — Non-Command Tags (0x2800 — 0x28FF, 0x3800 — 0x38FF)

NEINE Value Description

Represents key handle.
TAG_KEYHANDLE 0x2801 | Refer to clause C.3.1 for more
information about key handle.

Represents an associated Username and
key handle.

This is a composite tag that contains a

TAG_USERNAME and
TAG_USERNAME_AND_KEYHANDLE 0x3802 | TAG_KEYHANDLE that identify a

registration valid oin the authenticator.

Refer to clause C.3.1 for more
information about username.

Represents a User Verification Token.

Refer to clause C.3.1 for more
TAG_USERVERIFY_TOKEN 0x2803 | information about user verification
tokens.

A full ApplD as a UINT8[] encoding
of a UTF-8 string.

TAG_APPID 0x2804

Refer to clause C.3.1 for more
information about AppID.

TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 | Represents a key handle Access Token.
A Username as a UINT8[] encoding of

TAG_USERNAME 0x2806 a UTF-8 string.
TAG_ATTESTATION_TYPE 0x2807 | Represents an Attestation Type.
TAG_STATUS_CODE 0x2808 | Represents a Status Code.

Rec. ITU-T X.1277 (11/2018) 93

Table C.3 — Non-Command Tags (0x2800 — 0x28FF, 0x3800 — 0x38FF)

Name

TAG_AUTHENTICATOR_METADATA

Value

0x2809

Description

Represents a more detailed set of
authenticator information.

TAG_ASSERTION_SCHEME

0x280A

A UINTS[] containing the UTF8-
encoded Assertion Scheme as defined
in Annex E. ("UAFV1TLV")

TAG_TC_DISPLAY b-
PNG_CHARACTERISTICS

0x280B

If an authenticator contains a b-PNG-
capable transaction confirmation
display that is not implemented by a
higher-level layer, this tag is describing
this display. See Annex H for
additional information on the format of
this field.

TAG_TC_DISPLAY_CONTENT_TYPE

0x280C

A UINTSJ] containing the UTF-8-
encoded transaction display content
type as defined in Annex H.

("image/png")

TAG_AUTHENTICATOR_INDEX

0x280D

Authenticator Index

TAG_API_VERSION

0x280E

API Version

TAG_AUTHENTICATOR_ASSERTION

0x280F

The content of this TLV tag is an
assertion generated by the
authenticator. Since authenticators may
generate assertions in different formats
— the content format may vary from
authenticator to authenticator.

TAG_TRANSACTION_CONTENT

0x2810

Represents transaction content sent to
the authenticator.

TAG_AUTHENTICATOR_INFO

0x3811

Includes detailed information about
authenticator's capabilities.

TAG_SUPPORTED_EXTENSION_ID

0x2812

Represents extension ID supported by
authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN

0x2813

Represents a token for transaction
confirmation. It might be returned by
the authenticator to the ASM and given
back to the authenticator at a later
stage. The meaning of it is similar to
TAG_USERVERIFY_TOKEN, except
that it is used for the user's approval of
a displayed transaction text.

94 Rec. ITU-T X.1277 (11/2018)

C4.3 Tags used in UAF protocol

Table C.4 — Tags used in the UAF protocol (0x2E00 — 0x2EFF, Ox3E00 — OX3EFF).
Normatively defined in Annex E

Name LIS Description
TAG UAEV1 REG ASSERTION OX3E01 Authenticator response to Register
- - = command.
TAG_UAFV1 AUTH_ASSERTION 0x3E02 | Authenticator response to Sign command.
TAG_UAFV1 KRD 0x3E03 | Key Registration Data
TAG UAEV1 SIGNED DATA 0X3E04 Data S|gnc_ad by authenticator with the
- - - UAuth.priv key
Each entry contains a single X.509
DER-encoded [ITU-T X.690] certificate.
Multiple occurrences are allowed and form
the attestation certificate chain. Multiple
TAG_ATTESTATION_CERT 0x2E05 | occurrences must be ordered. The
attestation certificate itself MUST occur
first. Each subsequent occurrence (if exists)
MUST be the issuing certificate of the
previous occurrence.
TAG_SIGNATURE 0x2E06 | A cryptographic signature
TAG ATTESTATION BASIC FULL 0X3E07 Full Basic Attestation as defined in
= - - Annex A
TAG_ATTESTATION_BASIC_SURROGATE | 0x3E08 | Sorode e Basic Atiestation as defined in
Elliptic curve based direct anonymous
attestation as defined in Annex A. In this
TAG_ATTESTATION_ECDAA 0x3EQ9 | case the signature in TAG_SIGNATURE is
a ECDAA signature as specified in
Annex K.
TAG_KEYID 0x2E09 | Represents a KeylID.
Represents a Final Challenge Hash.
TAG_FINAL_CHALLENGE_HASH O0x2EOA) i
- - - Refer to Annex A for more information
about the Final Challenge.
Represents an authenticator Attestation ID.
TAG_AAID 0x2E0B . .
- Refer to Annex A for more information
about the AAID.
TAG_PUB_KEY Ox2EOC | Represents a Public Key.
TAG COUNTERS 0X2EOD Represe:\nts a use counters for the
- authenticator.
TAG ASSERTION INEO OX2EOE Represents assertion information necessary
= - for message processing.
TAG AUTHENTICATOR NONCE OX2EOF Represgnts a nonce value generated by the
= - authenticator.
TAG_TRANSACTION_CONTENT_HASH 0x2E10 | Represents a hash of transaction content.

Rec. ITU-T X.1277 (11/2018) 95

Table C.4 — Tags used in the UAF protocol (0x2E00 — 0x2EFF, 0x3E00 — OX3EFF).

NETE

TAG_EXTENSION

Value

0x3E11,
O0x3E12

Normatively defined in Annex E

Description

This is a composite tag indicating that the
content is an extension.

If the tag is Ox3E11 —it's a critical
extension and if the recipient does not
understand the contents of this tag, it
MUST abort processing of the entire
message.

This tag has two embedded tags —
TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more
information about UAF extensions refer to
Annex A

NOTE — This tag can be appended to any
command and response.

Using tag Ox3E11 (as opposed to tag
0x3E12) has the same meaning as the flag
fail if unknown in Annex A.

TAG_EXTENSION_ID

0x2E13

Represents extension ID. Content of this tag
is a UINT8[] encoding of a UTF-8 string.

TAG_EXTENSION_DATA

0x2E14

Represents extension data. Content of this
tag is a UINT8J] byte array.

C.4.4 Status codes

Table C.5 — UAF authenticator status codes (0x00 — OxFF)

AF_CMD_STATUS_OK

‘ Value Description

0x00 Success.

UAF_CMD_STATUS_ERR_UNKNOWN

0x01 An unknown error.

UAF_CMD_STATUS_ACCESS_DENIED

Access to this operation is

0x02 denied.

UAF_CMD_STATUS_USER_NOT_ENROLLED

User is not enrolled with
the authenticator and the
0x03 authenticator cannot
automatically trigger

enrollment.
UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_ | o, | Transaction content
CONTENT cannot be rendered.
UAF_CMD_STATUS_USER_CANCELLED oxo5 | User has cancelled the

operation.

96 Rec. ITU-T X.1277 (11/2018)

Table C.5 — UAF authenticator status codes (0x00 — OXFF)

Name

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

‘ Value

0x06

Description

Command not
supported.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

0x07

Required attestation
not supported.

UAF_CMD_STATUS_PARAMS_INVALID

0x08

The parameters for
the command
received by the
authenticator are
malformed/invalid.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

0x09

The UAuth key
which is relevant
for this command
disappeared from
the authenticator
and cannot be
restored. On some
authenticators this
error occurs when
the user verification
reference data set
was modified (e.g.,
new fingerprint
template added).

UAF_CMD_STATUS_TIMEOUT

Ox0a

The operation in

the authenticator
took longer than

expected (due to

technical issues)

and it was finally
aborted.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

0x0e

The user took too
long to follow an
instruction, e.g.,
didn't swipe the
finger within the
accepted time.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

oxof

Insufficient
resources in the
authenticator to
perform the
requested task.

UAF_CMD_STATUS_USER_LOCKOUT

0x10

The operation
failed because the
user is locked out
and the
authenticator
cannot
automatically

Rec. ITU-T X.1277 (11/2018) 97

Table C.5 — UAF authenticator status codes (0x00 — OXFF)

Name ‘ Value Description

trigger an action to
change that.
Typically the user
would have to enter
an alternative

password
(formally: undergo
some other
alternative user
verification
method) to
re-enable the use of
the main user
verification
method.

NOTE - Any
method the user can
use to (re-) enable
the main user
verification method
is considered an
alternative user
verification method
and must be
properly declared
as such. For
example, if the user
can enter an
alternative
password to
re-enable the use of
fingerprints or to
add additional
fingers, the
authenticator
obviously supports
fingerprint or
password based
user verification.

C5 Structures

C.5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators MAY define
RawKeyHandle in different ways and the internal structure is relevant only to the specific
authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

98 Rec. ITU-T X.1277 (11/2018)

Table C.6 — RawKeyHandle Structure

Depends on hashing Depends on key type. Username Size
algorithm (e.g., 32 bytes) (6.9, 32 bytes) (1 byte) UEBCIAS e
KHAccessToken UAuth.priv Size Username

First factor authenticators MUST store Usernames in the authenticator and they MUST link the
Username to the related key. This MAY be achieved by storing the Username inside the
RawKeyHandle. Second factor authenticators MUST NOT store the Username.

The ability to support Usernames is a key difference between first- and second-factor authenticators.

The RawKeyHandle MUST be cryptographically wrapped before leaving the authenticator boundary
since it typically contains sensitive information, e.g., the user authentication private key (UAuth.priv).

C.5.2 Structures to be parsed by FIDO server
The structures defined in this clause are created by UAF Authenticators and parsed by FIDO servers.

Authenticators MUST generate these structures if they implement "UAFV1TLV" assertion scheme.

NOTE — "UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data
included inside TAG_UAFV1 KRD and TAG_UAFV1 SIGNED DATA.

The nesting structure MUST be preserved, but the order of tags within a composite tag is not
normative. FIDO servers MUST be prepared to handle tags appearing in any order.

C521 TAG_UAFV1 REG _ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register
command. It is then delivered to FIDO server intact and parsed by the server. The structure embeds
a TAG_UAFV1 KRD tag which among other data contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with
Attestation Key) - this data MUST be included as TAG_EXTENSION _DATA in a
TAG_EXTENSION object inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to FIDO server without signing it — this data MUST
be included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside
TAG_UAFV1_REG_ASSERTION and not inside TAG_UAFV1_KRD.

Currently this annex only specifies TAG_ATTESTATION_BASIC _FULL, TAG_ATTESTATION_
BASIC_SURROGATE and TAG_ATTESTATION_ECDAA. In case if the authenticator is required
to perform "Some_Other_Attestation” on TAG_UAFV1 KRD - it MUST use the TLV tag and
content defined for "Some_Other_Attestation™ (defined in Annex E).

Table C.7
e o]i[e

1 UINT16 Tag TAG_UAFV1 _REG_ASSERTION
1.1 UINT16 Length Length of the structure
1.2 UINT16 Tag TAG_UAFV1_KRD
121 UINT16 Length Length of the structure
1.2.2 UINT16 Tag TAG_AAID
1221 UINT16 Length Length of AAID

Rec. ITU-T X.1277 (11/2018) 99

Table C.7

TLV Structure Description

1.2.2.2 UINT8[] AAID Authenticator Attestation ID
1.2.3 UINT16 Tag TAG_ASSERTION_INFO
1231 UINT16 Length Length of Assertion Information
1.2.3.2 UINT16 AuthenticatorVersion | Vendor assigned authenticator version
1233 UINT8 AuthenticationMode For Registration this must be 0x01 indicating
e that the user has explicitly verified the action.
Signature Algorithm and Encoding of the
attestation signature.
1234 UINT16
"' SignatureAlgAndEncoding . .
Refer to Annex J for information on supported
algorithms and their values.
Public Key algorithm and encoding of the
newly generated uAuth . pub key.
1235 UINT16
o PublicKeyAlgAndEncoding . .
Refer to Annex J for information on supported
algorithms and their values.
1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.24.1 UINT16 Length Final Challenge Hash length
12.4.2 UINTS[] FinalChallengeHash | (0inary value of) Final Challenge Hash
provided in the Command
1.25 UINT16 Tag TAG_KEYID
1251 UINT16 Length Length of KeylD
(binary value of) KeylID generated by
1.25.2 UINTS8[] KeyID Authenticator
1.2.6 UINT16 Tag TAG_COUNTERS
1.2.6.1 UINT16 Length Length of Counters
Signature Counter.
1.2.6.2 UINT32 SignCounter) .))
Indicates how many times this authenticator has
performed signatures in the past.
Registration Counter.
1.2.6.3 UINT32 RegCounter i . . .
Indicates how many times this authenticator has
performed registrations in the past.
1.2.7 UINT16 Tag TAG_PUB_KEY
1271 UINT16 Length Length of UAuth.pub
1279 UINTS[] PublicKey User authentication public k_ey (UAuth.pub)
newly generated by authenticator
1.3 (choice 1) UINT16 Tag TAG_ATTESTATION_BASIC_FULL
13.1 UINT16 Length Length of structure
1.3.2 UINT16 Tag TAG_SIGNATURE
1321 UINT16 Length Length of signature

100 Rec. ITU-T X.1277 (11/2018)

Table C.7

TLV Structure Description

1322

UINTS]J] Signature

Signature calculated with Basic Attestation
Private Key over TAG_UAFV1_KRD content.

The entire TAG_UAFV1 KRD content,
including the tag and it's length field, MUST
be included during signature computation.

1.3.3

UINT16 Tag

TAG_ATTESTATION_CERT (multiple
occurrences possible)

Multiple occurrences must be ordered. The
attestation certificate MUST occur first. Each
subsequent occurrence (if exists) MUST be the
issuing certificate of the previous occurrence.

The last occurence MUST be chained to one of
the certificates included in field
attestationRootCertificate inthe
related Metadata Statement Annex H.

1.33.1

UINT16 Length

Length of Attestation Cert

1.3.3.2

UINTS]J] Certificate

Single X.509 DER-encoded [ITU-T X.690]
Attestation Certificate or a single certificate
from the attestation certificate chain (see
description above).

1.3 (choice 2) UINT16 Tag TAG_ATTESTATION_BASIC_SURROGATE

131 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1321 UINT16 Length Length of signature
Signature calculated with newly generated
UAuth.priv key over TAG_UAFV1 KRD
content.

13.2.2 UINTSJ] Signature

The entire TAG_UAFV1_KRD content,
including the tag and it's length field, MUST
be included during signature computation.

1.3 (choice 3) UINT16 Tag TAG_ATTESTATION_ECDAA

131 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1321 UINT16 Length Length of signature

1329 UINTS[] Signature The binary ECDAA signature as specified in

Annex K.

C521 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an authenticator during processing of a Sign command.
It is then delivered to FIDO server intact and parsed by the server. The structure embeds a
TAG_UAFV1_SIGNED_DATA tag.

Rec. ITU-T X.1277 (11/2018) 101

If the authenticator wants to append custom data to TAG_UAFV1 SIGNED_DATA structure (and
thus sign with Attestation Key) — this data MUST be included as an additional tag inside
TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to FIDO server without signing it — this data MUST
be included as anadditional tag inside TAG_UAFV1 AUTH_ASSERTION and not inside
TAG_UAFV1_SIGNED DATA.

Table C.8 — TLV Structure

‘ TLV Structure ‘ Description
1 UINT16 Tag TAG_UAFV1 AUTH_ASSERTION
11 UINT16 Length Length of the structure.
1.2 UINT16 Tag TAG_UAFV1 SIGNED_DATA
121 UINT16 Length Length of the structure.
1.2.2 UINT16 Tag TAG_AAID
1221 UINT16 Length Length of AAID
1222 UINTS8[] AAID Authenticator Attestation ID
1.2.3 UINT16 Tag TAG_ASSERTION_INFO
1231 UINT16 Length Length of Assertion Information
1.2.3.2 UINT16 AuthenticatorVersion | Vendor assigned authenticator version.

Authentication Mode indicating whether user
explicitly verified or not and indicating if
there is a transaction content or not.

» 0x01 means that user has been explicitly
1233 UINT8 AuthenticationMode verified

» 0x02 means that transaction content has
been shown on the display and user
confirmed it by explicitly verifying with
authenticator

Signature algorithm and encoding format.

1234 UINT16
o SignatureAlgAndEncoding Refer to Annex J for information on
supported algorithms and their values.
124 UINT16 Tag TAG_AUTHENTICATOR_NONCE
1241 UINT16 Length Length of authenticator Nonce — MUST be at
least 8 bytes
(binary value of) A nonce randomly
1.24.2 UINT8[] AuthnrNonce generated by Authenticator
1.25 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1251 UINT16 Length Length of Final Challenge Hash
1252 UINTS(] FinalChallengeHash | (Pinary value of) Final Challenge Hash

provided in the Command
1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH

Length of Transaction Content Hash. This
length is O if AuthenticationMode == 0x01,
i.e., authentication, not transaction
confirmation.

1261 UINT16 Length

102 Rec. ITU-T X.1277 (11/2018)

Table C.8 — TLV Structure

‘ TLV Structure ‘ Description

1.2.6.2 UINT8[] TCHash (binary value of) Transaction Content Hash

1.2.7 UINT16 Tag TAG_KEYID

1271 UINT16 Length Length of KeylD

1272 UINT8J] KeyID (binary value of) KeylD

1.2.8 UINT16 Tag TAG_COUNTERS

1.28.1 UINT16 Length Length of Counters
Signature Counter.

1.2.8.2 UINT32 SignCounter i i . .
Indicates how many times this authenticator
has performed signatures in the past.

1.3 UINT16 Tag TAG_SIGNATURE

131 UINT16 Length Length of Signature
Signature calculated using UAuth.priv over
TAG_UAFV1 SIGNED_DATA structure.

13.2 UINTS[] Signature The entire TAG_UAFV1_SIGNED_DATA

content, including the tag and it's length field,
MUST be included during signature
computation.

C.5.3 UserVerificationToken

This annex does not specify how exactly user verification must be performed inside the authenticator.
Verification is considered to be an authenticator and vendor, specific operation.

This annex provides an example on how the "vendor_specific_UserVerify" command (a command
which verifies the user using Authenticator's built-in technology) could be securely bound to UAF
Register and Sign commands. This binding is done through a concept called
UservVerificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and
"UAF Register/Sign"™ commands from each other.

Here is how it is defined:

. The ASM invokes the "vendor_specific_UserVerify" command. The authenticator verifies
the user and returns a userverificationToken back.
. The ASM invokes UAF.Register/Sign command and passes UserverificationToken tO it.

The authenticator verifies the validity of vserverificationToken and performs the FIDO
operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement
this binding in a very different way. For example an authenticator vendor may decide to append a
UAF Register request directly to their "vendor_specific_UserVerify" command and process both as
a single command.

If UserverificationToken binding is implemented, it should either meet one of the following
criteria or implement a mechanism providing similar, or better security:

. UserVerificationToken must allow performing only a single UAF Register or UAF Sign
operation.

Rec. ITU-T X.1277 (11/2018) 103

. UserVerificationToken must be time bound and allow performing multiple UAF
operations within the specified time.
C.6 Commands

UAF Authenticators which are designed to be interoperable with ASMs from different vendors
MUST implement the command interface defined in this clause. Examples of such authenticators:

. Bound authenticators in which the core authenticator functionality is developed by one
vendor and the ASM is developed by another vendor
. Roaming authenticators

UAF authenticators which are tightly integrated with a custom ASM (typically bound authenticators)
MAY implement a different command interface.

All UAF authenticator commands and responses are semantically similar — they are all represented
as TLV-encoded blobs. The first 2 bytes of each command is the command code. After receiving a
command, the authenticator must parse the first TLV tag and figure out which command is being
issued.

C.6.1 Getlnfocommand

C.6.1.1 Command description

This command returns information about the connected authenticators. It may return O or more
authenticators. Each authenticator has an assigned zuthenticatorindex Which is used in other
commands as an authenticator reference.

C.6.1.2 Command structure

Table C.9 — Command structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1 _GETINFO_CMD
11 UINT16 Length Entire Command Length — must be 0 for this command

C.6.1.3 Command response

Table C.10 — Command response

‘ TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

121 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

13 UINT16 Tag TAG_API_VERSION

131 UINT16 Length Length of API Version (must be 0x0001)
Authenticator API Version (must be 0x01). This version indicates

1.3.2 UINTS8 Version the types of commands and formatting associated with them, that
are supported by the authenticator.

14 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)

14.1 UINT16 Length Length of Authenticator Info

104 Rec. ITU-T X.1277 (11/2018)

Table C.10 — Command response

TLV Structure Description

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)

1.4.2.2 | UINT8 Authenticatorindex | Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 | UINT16 Length Length of AAID

1.4.3.2 | UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

1.4.4.1 | UINT16 Length Length of Authenticator Metadata
Indicates whether the authenticator is bound or roaming and
whether it is first-, or second-factor only. The ASM must use this
information to understand how to work with the authenticator.
Predefined values:
0x0001 — Indicates second-factor authenticator (first-factor when
the flag is not set)
0x0002 — Indicates roaming authenticator (bound authenticator
when the flag is not set)
0x0004 — Key handles will be stored inside authenticator and
won't be returned to ASM
0x0008 — Authenticator has a built-in Ul for enroliment and
verification. ASM should not show its custom Ul

) 0x0010 — Authenticator has a built-in Ul for settings and supports

1.4.4.2 | UINT16 AuthentlcatorType OpenSettings command.
0x0020 — Authenticator expects TAG_APPID to be passed as an
argument to commands where it is defined as an optional
argument
0x0040 — At least one user is enrolled in the authenticator.
Authenticators which do not support the concept of user
enrollment (e.g., USER_VERIFY_NONE,
USER_VERIFY_PRESENCE) must always have this bit set.
0x0080 — Authenticator supports user verification tokens (UVTS)
as described in this Annex. See clause C.5.3
UserVerificationToken.
0x0100 — Authenticator only accepts
TAG_TRANSACTION_TEXT_HASH in Sign command. This
flag MAY ONLY be set if TransactionConfirmationDisplay is set
to 0x0003 (see clause C.6.3 Sign Command).
Indicates maximum number of key handles this authenticator can
receive and process in a single command. This information will be

14.4.3 | UINT8 MaxKeyHandles used by the ASM when invoking SIGN command with multiple
key handles.

1.4.4.4 | UINT32 UserVerification User Verification method (as defined in Annex J)

1.4.4.5 | UINT16 KeyProtection Key Protection type (as defined in Annex J).

1.4.4.6 | UINT16 MatcherProtection | Matcher Protection type (as defined in Annex J).

Rec. ITU-T X.1277 (11/2018) 105

Table C.10 — Command response

‘ TLV Structure Description
Transaction Confirmation type (as defined in Annex J).
UINT16
1.4.4.7 | TransactionConfirmationDis) .
play NOTE — If Authenticator does not support Transaction

Confirmation — this value must be set to 0.

1.4.4.8 | UINT16 AuthenticationAlg | Authentication Algorithm (as defined in Annex J).

1.45 | UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.45.1 | UINT16 Length Length of content type.

Transaction Confirmation Display Content Type. See Annex H for

1.4.5.2 | UINT8[] ContentType additional information on the format of this field.

TAG_TC_DISPLAY_b-PNG_CHARACTERISTICS

L RIS 1EE (optional,multiple occurrences permitted)

1.4.6.1 | UINT16 Length Length of display characteristics information.
1.4.6.2 | UINT32 Width See Annex H for additional information.
1.4.6.3 | UINT32 Height See Annex H for additional information.
1.4.6.4 | UINT8 BitDepth See Annex H for additional information.
1.4.6.5 | UINT8 ColorType See Annex H for additional information.
1.4.6.6 | UINT8 Compression See Annex H for additional information.
1.4.6.7 | UINT8 Filter See Annex H for additional information.
1.4.6.8 | UINT8 Interlace See Annex H for additional information.
1.4.6.9 | UINT8[] PLTE See Annex H for additional information.
1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 | UINT16 Length Length of Assertion Scheme

1.4.7.2 | UINTB8[] AssertionScheme | Assertion Scheme (as defined in Annex E)
1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)
1.4.8.1 | UINT16 Length Length of AttestationType

Attestation Type values are defined in Annex E by the constants

1482 | UINT16 AttestationType with the prefix TAG ATTESTATION.

TAG_SUPPORTED_EXTENSION_ID (optional, multiple

St CUNIE I occurrences possible)

1.49.1 | UINT16 Length Length of SupportedExtensionID

UINTS[] SupportedExtensionlID as a UINT8][] encoding of a UTF-8 string

14.9.2 SupportedExtensionlD

C.6.1.4 Status codes

. UAF_CMD STATUS OK
. UAF _CMD STATUS ERR_UNKNOWN
. UAF _CMD STATUS PARAMS INVALID

C.6.2 Register command

This command generates a UAF registration assertion. This assertion can be used to register the
authenticator with a FIDO server.

106 Rec. ITU-T X.1277 (11/2018)

Cb6.21

Command structure

Table C.11 - Command structure

TLV Structure

Description

1 UINT16 Tag TAG_UAFV1 REGISTER_CMD
11 UINT16 Length Command Length
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.2.2 | UINT8 AuthenticatorIndex Authenticator Index
1.3 UINT16 Tag TAG_APPID (optional)
1.3.1 | UINT16 Length Length of AppID
1.3.2 | UINT8[] AppID ApplID (max 512 bytes)
14 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.4.1 | UINT16 Length Final Challenge Hash Length
1.4.2 | UINTS8[] FinalChallengeHash Final Challenge Hash provided by ASM (max 32 bytes)
15 UINT16 Tag TAG_USERNAME
1.5.1 | UINT16 Length Length of Username
1.5.2 | UINT8J[] Username Username provided by ASM (max 128 bytes)
1.6 UINT16 Tag TAG_ATTESTATION_TYPE
1.6.1 | UINT16 Length Length of AttestationType
1.6.2 | UINT16 AttestationType Attestation Type to be used
1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN
1.7.1 | UINT16 Length Length of KHAccessToken
1.7.2 | UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)
1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)
1.8.1 | UINT16 Length Length of VerificationToken
1.8.2 | UINTS8J] VerificationToken User verification token
C.6.2.2 Command response
Table C.12 — Command response
TLV Structure ‘ Description
1 UINT16 Tag TAG_UAFV1 _REGISTER_CMD_RESPONSE
11 UINT16 Length Command Length
1.2 UINT16 Tag TAG_STATUS_CODE
1.2.1 | UINT16 Length Status Code Length
1.2.2 | UINT16 Value Status code returned by Authenticator
13 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION
1.3.1 | UINT16 Length Length of Assertion
1.3.2 | UINTB8[] Assertion | Registration Assertion (see section TAG_UAFV1_REG_ASSERTION).
14 UINT16 Tag TAG_KEYHANDLE (optional)
1.4.1 | UINT16 Length Length of key handle
1.4.2 | UINT8[] Value (binary value of) key handle

Rec. ITU-T X.1277 (11/2018)

107

C.6.2.3 Status codes

. UAF_CMD STATUS OK
. UAF_CMD STATUS ERR UNKNOWN

. UAF_CMD STATUS ACCESS DENIED

. UAF _CMD STATUS USER_NOT ENROLLED

. UAF _CMD STATUS USER_CANCELLED

. UAF _CMD STATUS ATTESTATION NOT SUPPORTED
. UAF _CMD STATUS PARAMS INVALID

. UAF_CMD STATUS TIMEOUT

. UAF_CMD STATUS USER NOT RESPONSIVE

. UAF_CMD STATUS INSUFFICIENT RESOURCES

. UAF_CMD STATUS USER_LOCKOUT

C.6.2.4 Command description

The authenticator must perform the following steps (see Table C.13 for command structure):

If the command structure is invalid (e.g., cannot be parsed correctly), return var cvp sSTATUS
PARAMS INVALID.

1. If this authenticator has a transaction confirmation display and is able to display AppID, then
make sure command.TAG APp1D IS provided and show its content on the display when
verifying the user. Return uar cvp status paraMs TNVALID if command.TAG APPTD IS NOt
provided in such case. Update command . KHAccessToken With TAG AppTD:

o Update Command.KHAccessToken by mixing it with Command. TAG_APPID. An
example of such mixing function is a cryptographic hash function.

NOTE - This method allows us to avoid storing the ApplD separately in the RawKeyHandle.

« For example: Command.KHAccessToken=hash(Command.KHAccessToken |
Command. TAG_APPID)

2. If the user is already enrolled with this authenticator (via biometric enrollment, PIN setup or
similar mechanism) — verify the user. If the verification has been already done in a previous
command — make sure that Command. TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator
cannot automatically trigger unblocking, return uar cvp STATUS USER LOCKOUT.

1. If the wuser does not respond to the request to get verified — return
UAF CMD STATUS USER NOT RESPONSIVE

2. If verification fails — return var cvMD STATUS ACCESS DENTED
3. If user explicitly cancels the operation — return ua® cvMD STATUS USER CANCELLED

3. If the user is not enrolled with the authenticator then take the user through the enrollment
process. If the enrollment process cannot be triggered by the authenticator, return
UAF CMD STATUS USER NOT ENROLLED

1. If the authenticator can trigger enroliment, but the user does not respond to the request
to enroll — return uAr cMD STATUS USER NOT RESPONSIVE

2. If the authenticator can trigger enrollment, but enrollment fails — return
UAF CMD STATUS ACCESS DENIED

3. If the authenticator can trigger enrollment, but the user explicitly cancels the enrollment
operation — return UAF CMD STATUS USER CANCELLED

108 Rec. ITU-T X.1277 (11/2018)

4. Make sure that Command. TAG_ATTESTATION_TYPE is supported. If not — return
UAF CMD STATUS ATTESTATION NOT SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv) If the process takes longer than accepted
—return UAr CMD STATUS TIMEOUT
6. Create a RawKeyHandle, for example as follows

1. Add UAuth.priv to RawKeyHandle
2. Add Command.KHAccessToken to RawKeyHandle
3. If afirst-factor authenticator, then add Command.Username to RawKeyHandle

If there are not enough resources in the authenticator to perform this task — return
UAF CMD STATUS INSUFFICIENT RESOURCES.

7. Wrap RawKeyHandle with Wrap.sym key
8. Create TAG_UAFV1 _KRD structure

1. If this is a second-factor roaming authenticator — place key handle inside TAG_KEYID.
Otherwise generate a random KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section TAG_UAFV1 REG_ASSERTION)
9. Perform attestation on TAG_UAFV1 KRD based on provided Command.AttestationType.
10. Create TAG_AUTHENTICATOR_ASSERTION
1. Create TAG_UAFV1 REG_ASSERTION
1. Copy all the mandatory fields (see section TAG_UAFV1 REG_ASSERTION)

2. Ifthisis afirst-factor roaming authenticator —add KeyID and key handle into internal
storage

3. If this is a bound authenticator — return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1 REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1 REGISTER_CMD_RESPONSE
1. Useuvar cvp sTATUS OK as status code
2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

The authenticator MUST NOT process a regi ster command without verifying the user (or enrolling
the user, if this is the first time the user has used the authenticator).

The authenticator MUST generate a unique UAuth key pair each time the Register command is called.

The authenticator SHOULD either store key handle in its internal secure storage or cryptographically
wrap it and export it to the ASM.

For silent authenticators, the key handle MUST never be stored on a FIDO server, otherwise this
would enable tracking of users without providing the ability for users to clear key handles from the
local device.

If KeyID is not the key handle itself (e.g., such as in case of a second-factor roaming authenticator)
— it MUST be a unique and unguessable byte array with a maximum length of 32 bytes. It MUST be
unique within the scope of the AAID.

NOTE - If the KeyID is generated randomly (instead of, for example, being derived from a key handle) — it

should be stored inside RawKeyHandle so that it can be accessed by the authenticator while processing the
Sign command.

Rec. ITU-T X.1277 (11/2018) 109

If the authenticator does not support signCounter OF RegCounter it MUST set these to 0 in
TAG_UAFV1 KRD. The regcounter MUST be set to 0 when a factory reset for the authenticator
is performed. The signcounter MUST be set to 0 when a factory reset for the authenticator is
performed.

C.6.3 Sign command

This command generates a UAF assertion. This assertion can be further verified by a FIDO server
which has a prior registration with this authenticator.

C.6.3.1 Command structure

Table C.13 — Command structure

TLV Structure Description
1 UINT16 Tag TAG_UAFV1 SIGN_CMD
1.1 UINT16 Length Length of Command
1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX
1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
129 UINT8 Authenticator Index
- AuthenticatorIndex
1.3 UINT16 Tag TAG_APPID (optional)
1.3.1 | UINT16 Length Length of AppID
1.3.2 UINTS8[] AppID ApplID (max 512 bytes)
14 UINT16 Tag TAG_FINAL_CHALLENGE_HASH
1.4.1 | UINT16 Length Length of Final Challenge Hash
142 UINTS[] (binary value of) Final Challenge Hash provided by ASM (max
o FinalChallengeHash 32 bytes)
1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)
1.5.1 | UINT16 Length Length of Transaction Content
152 UINTS[] (binary value of) Transaction Content provided by the ASM
e TransactionContent
TAG_TRANSACTION_CONTENT_HASH (optional and
mutually exclusive with TAG_TRANSACTION_CONTENT). This
TAG is only allowed for authenticators not able to display the
15 UINT16 Tag transaction text, i.e., authenticator with tcpDisplay=0x0003
(i.e., flags TRANSACTION CONFIRMATION DISPLAY ANY and
TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTW
ARE are set).
1.5.1 | UINT16 Length Length of Transaction Content Hash
UINTS[] (binary value of) Transaction Content Hash provided by the ASM
152 .
TransactionContentHash
1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN
1.6.1 | UINT16 Length Length of KHAccessToken
16.2 UINTS[] KHAccessToken (binary value of) KHAccessToken provided by ASM (max
32 bytes)
1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)
1.7.1 | UINT16 Length Length of the User Verification Token
110 Rec. ITU-T X.1277 (11/2018)

Table C.13 — Command structure

‘ TLV Structure Description
1.7.2 | UINT8[] User Verification Token
VerificationToken
1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)
1.8.1 | UINT16 Length Length of KeyHandle
1.8.2 | UINT8[] KeyHandle (binary value of) key handle
C.6.3.2 Command response
Table C.14 — Command response
e e ptIo
1 UINT16 Tag TAG_UAFV1 SIGN_CMD_RESPONSE
11 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
121 UINT16 Length Status Code Length
1.2.2 UINT16 Value Status code returned by authenticator
TAG_USERNAME_AND_KEYHANDLE (optional, multiple
occurances)
This TLV tag can be used to convey multiple (>=1)
1.3 (choice 1) UINT16 Tag {Username, Keyhandle} entries. Each occurance of

TAG_USERNAME_AND_KEYHANDLE contains one pair.

If this tag is present, TAG_AUTHENTICATOR _
ASSERTION must not be present

13.1 UINT16 Length Length of the structure

13.2 UINT16 Tag TAG_USERNAME

1321 UINT16 Length Length of Username

1322 UINT8[] Username Username

1.3.3 UINT16 Tag TAG_KEYHANDLE

1.3.3.1 UINT16 Length Length of keyHandle

1.3.3.2 UINT8[] KeyHandle | (binary value of) key handle
TAG_AUTHENTICATOR_ASSERTION (optional)

1.3 (choice 2) | UINT16 Tag If this tag is present,
TAG_USERNAME_AND_KEYHANDLE must not be
present

131 UINT16 Length Assertion Length

132 UINTS[] Assertion Authentication assertion generated by the authenticator (see

section TAG_UAFV1 _AUTH_ASSERTION).

Rec. ITU-T X.1277 (11/2018) 111

C.6.3.3 Status codes

UAF_CMD STATUS OK
UAF_CMD STATUS ERR UNKNOWN

UAF_CMD STATUS ACCESS DENIED

UAF _CMD STATUS USER_NOT ENROLLED

UAF _CMD STATUS USER_CANCELLED

UAF_CMD STATUS CANNOT RENDER TRANSACTION CONTENT
UAF _CMD STATUS PARAMS INVALID

UAF CMD STATUS KEY DISAPPEARED PERMANENTLY
UAF_CMD STATUS TIMEOUT

UAF_CMD STATUS USER NOT RESPONSIVE

UAF_CMD STATUS USER_LOCKOUT

C.6.3.4 Command description
NOTE - First-factor authenticators should implement this command in two stages.

1.

The first stage will be executed only if the authenticator finds out that there are multiple key
handles after filtering with the KHAccessToken. In this stage, the authenticator must return
a list of usernames along with corresponding key handles

In the second stage, after the user selects a username, this command will be called with a
single key handle and will return a UAF assertion based on this key handle

If a second-factor authenticator is presented with more than one valid key handles, it must exercise
only the first one and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for
each command invocation.

Authenticators must take the following steps:

If the command structure is invalid (e.g., cannot be parsed correctly), return var cwp
STATUS PARAMS INVALID.

1.

112

If this authenticator has a transaction confirmation display and is able to display the AppID
— make sure Command. TAG_APPID is provided and show it on the display when verifying
the user. Return uar cvp sTATUS PARAMS TNVALID If Command.Tac App1D IS not provided
in such case.

o Update Command.KHAccessToken by mixing it with Command. TAG_APPID. An
example of such a mixing function is a cryptographic hash function.

» Command.KHAccessToken=hash(Command.KHAccessToken |
Command. TAG_APPID)

If the user is already enrolled with the authenticator (such as biometric enroliment, PIN setup,
etc.) then verify the user. If the verification has already been done in one of the previous
commands, make sure that command. Tac UservERTEY TOKEN IS a valid token.

If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator
cannot automatically trigger unblocking, return uAr cvMp STATUS USER LOCKOUT.

1. If the wuser does not respond to the request to get verified — return
UAF CMD STATUS USER NOT RESPONSIVE

2. If verification fails — return uAr cvD STATUS ACCESS DENIED

3. If the user explicitly cancels the operation — return uAr cvp STATUS USER CANCELLED

Rec. ITU-T X.1277 (11/2018)

3.

If the user is not enrolled then return uar cMD STATUS USER NOT ENROLLED

NOTE — This should not occur as the Uauth key must be protected by the authenticator's user verification
method. If the authenticator supports alternative user verification methods (e.g., alternative password and
finger print verification and the alternative password must be provided before enrolling a finger and only the
finger print is verified as part of the Register or Sign operation, then the authenticator should automatically
and implicitly ask the user to enroll the modality required in the operation (instead of just returning an error).

4.

Unwrap all provided key handles from Command. TAG_KEYHANDLE values using
Wrap.sym

0. If this is a first-factor roaming authenticator:

« If Command. TAG_KEYHANDLE are provided, then the items in this list are
KeyIDs. Use these KeylIDs to locate key handles stored in internal storage.

* If no Command. TAG_KEYHANDLE are provided — unwrap all key handles stored
in internal storage.

If no RawKeyHandles are found — return uUAr cMD STATUS KEY DISAPPEARED
PERMANENTLY.

Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken
== Command.KHAccessToken)

If the number of remaining RawKeyHandles is 0, then fail with
UAF_CMD STATUS ACCESS DENIED

If number of remaining RawKeyHandles is > 1

O. If this authenticator has a user interface and wants to use it for this purpose: Ask the user
which of the usernames he wants to use for this operation. Select the related
RawKeyHandle and jump to step #8.

1. If this is a second-factor authenticator, then choose the first RawKeyHandle only and
jump to step #8.

2. Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining
RawKeyHandles into TAG_USERNAME_AND_KEYHANDLE tag.

« If this is a first-factor roaming authenticator, then the returned
TAG_USERNAME_AND_KEYHANDLEs must be ordered by the key handle
registration date (the latest-registered key handle must come the latest).

NOTE — If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having unusable (old)
private key in the authenticator which (surprisingly) might become active after deregistering the newly
generated one.

8.

3. Copy TAG_USERNAME_AND_KEYHANDLE into
TAG_UAFV1_SIGN_CMD_RESPONSE and return

If number of remaining RawKeyHandles is 1

0. Ifthe Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot
be restored — return Uar cMD STATUS KEY DISAPPEARED PERMANENTLY,

1. Create TAG_UAFV1 SIGNED_DATA and set
TAG_UAFV1 SIGNED_DATA AuthenticationMode to 0x01

2. If rransactionContent isNOt empty
« If this is a silent authenticator, then return uAr cMD STATUS ACCESS DENIED

« If the authenticator does not support transaction confirmation (it has set
TransactionConfirmationDisplay to 0 in the response to a cet1nfo Command),
then return uAr cMD STATUS ACCESS DENIED

Rec. ITU-T X.1277 (11/2018) 113

« If the authenticator has a built-in transaction confirmation display, then show
Command.TransactionContent and Command.TAG_APPID (optional) on dlsplay and
wait for the user to confirm it:

* Returnuvar cvp sTATUS USER nNOT ReEspoNsTVE if the user does not respond.
* Returnuar cvp sTaTUs User canceLLED If the user cancels the transaction.

 Return UAF CMD STATUS CANNOT RENDER TRANSACTION CONTENT If the
provided transaction content cannot be rendered.

« Compute hash of TransactionContent

« TAG_UAFV1 _SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH
= hash(Command. TransactionContent)

 Set TAG_UAFV1 SIGNED_DATA. AuthenticationMode to 0x02
3. IfrransactionContent iSNotset, but TransactionContentHash isNOt empty
» If this is a silent authenticator, then return uAr cvD STATUS ACCESS DENIED

» If the conditions for receiving TransactionContentHash are not satisfied, i.e., if the
authenticator's TransactionConfirmationDisplay is NOT set to 0x0003 in the
response to a cet 1nfo Command), then return uAr cvMD STATUS PARAMS INVALID

« TAG_UAFV1 SIGNED DATA.TAG_TRANSACTION_CONTENT_HASH
= Command.TransactionContentHash

 Set TAG_UAFV1 SIGNED_DATA. AuthenticationMode to 0x02
4. Create TAG_UAFV1 AUTH_ASSERTION
« Fill in the rest of TAG_UAFV1 SIGNED_DATA fields
» Increment SignCounter and put into TAG_UAFV1 SIGNED_DATA

« Copy all the mandatory fields (see section TAG_UAFV1 AUTH_
ASSERTION)

« If TAG_UAFV1 _SIGNED_DATA AuthenticationMode == 0x01 — set TAG_
UAFV1 _SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Lengt
htoO

- Sign TAG_UAFV1 SIGNED DATA with UAuth.priv

If these steps take longer than expected by the authenticator — return var cwp
STATUS TIMEOUT.

5. Put the entire TLV structure for TAG_UAFV1 AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

6. Copy TAG_AUTHENTICATOR_ASSERTION into TAG_UAFV1 SIGN _CMD
RESPONSE and return

Authenticator MUST NOT process Sign command without verifying the user first.
Authenticator MUST NOT reveal Username without verifying the user first.
Bound authenticators MUST NOT process Sign command without validating KHAccessToken first.

UAuth.priv keys MUST never leave Authenticator's security boundary in plaintext form. UAuth.priv
protection boundary is specified in vetadata. keyProtection field in Metadata (Annex H).

If authenticator's metadata indicates that it does support Transaction Confirmation Display, it MUST
display provided transaction content in this display and include the hash of content inside
TAG_UAFV1_SIGNED_DATA structure.

Silent Authenticators MUST NOT operate in first-factor mode in order to follow the assumptions
made in Annex L.

114 Rec. ITU-T X.1277 (11/2018)

If Authenticator does not support signcounter, then it MUST set it to 0 in
TAG_UAFV1 SIGNED_DATA. The signcounter MUST be set to O when a factory reset for the
Authenticator is performed, in order to follow the assumptions made in Annex L.

Some authenticators might support transaction confirmation display functionality not inside the
authenticator but within the boundaries of ASM. Typically these are software based transaction
confirmation displays. When processing the Sign command with a given transaction such
authenticators should assume that they do have a builtin transaction confirmation display and should
include the hash of transaction content in the final assertion without displaying anything to the user.
Also, such authenticator's metadata file MUST clearly indicate the type of transaction
confirmation display. Typically the flag of transaction confirmation display will be
TRANSACTION_CONFIRMATION_DISPLAY_ANY or TRANSACTION_CONFIRMATION _
DISPLAY_PRIVILEGED_SOFTWARE. See Annex J for flags describing Transaction Confirmation
Display type.

C.6.4 Deregister command

This command deletes a registered UAF credential from authenticator.

C.6.4.1 Command structure

Table C.15 — Command structure

‘ TLV Structure Description

1 UINT16 Tag TAG_UAFV1 DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

121 UINT16 Length Length of Authenticatorindex (must be 0x0001)

1.2.2 UINT8 Authenticatorindex | Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

13.1 UINT16 Length Length of AppID

1.3.2 UINTS[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

141 UINT16 Length Length of KeylD

142 UINTS[] KeyID (binary value of) KeyID provided by ASM

15 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

151 UINT16 Length Length of KeyHandle Access Token

152 UINT8[] KHAccessToken | (binary value of) KeyHandle Access Token provided by ASM
(max 32 bytes)

C.6.4.2 Command response

Table C.16 — Command response

TLV Structure ‘ Description
1 UINT16 Tag TAG_UAFV1 DEREGISTER_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response
1.2 UINT16 Tag TAG_STATUS_CODE
121 UINT16 Length Status Code Length
1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

Rec. ITU-T X.1277 (11/2018) 115

C.6.4.3 Status codes

UAF_CMD_STATUS OK
UAF_CMD_STATUS ERR_UNKNOWN
UAF_CMD STATUS ACCESS DENIED

UAF _CMD STATUS CMD NOT SUPPORTED

UAF _CMD STATUS PARAMS INVALID

C.6.44 Command description

Authenticator must take the following steps:

If the command structure is invalid (e.g., cannot be parsed correctly), return var cvp STATUS
PARAMS INVALID.

1.

5.

If this authenticator has a transaction confirmation display and is able to display AppID, then
make sure Command. TAG_APPID is provided. Return uar cup STATUS PARAMS INVALID
If command.Tac APP1D IS not provided in such case.

o Update Command.KHAccessToken by mixing it with Command. TAG_APPID. An
example of such mixing function is a cryptographic hash function.

» Command.KHAccessToken=hash(Command.KHAccessToken |
Command. TAG_APPID)

If this authenticator does not store key handles internally, then return var cvp
STATUS CMD NOT SUPPORTED

If the length of T2c xev1D is zero (i.e., 0000 Hex), then
o if rac app1D is provided, then
» for each KeyHandle that maps to T2c 2rr1p do

» if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete
KeyHandle from internal storage, otherwise, note an error occured

= if an error occured, then return UAF_CMD_STATUS_ACCESS _DENIED

o if Tac app1D IS not provided, then delete all KeyHandles from internal storage where
RawKeyHandle.KHAccessToken == Command.KHAccessToken

o Gotostep5

If the length of Tac xevip is NOT zero, then

o Find KeyHandle that matches Command.KeyID

o Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken
» If not, then return var CMD STATUS ACCESS DENTED

o Delete this KeyHandle from internal storage

Return var cvp sTATUS OK

NOTE — The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

Bound authenticators MUST NOT process deregister command without validating KHAccessToken

first.

Deregister command SHOULD NOT explicitly reveal whether the provided keyID was registered or

not.

NOTE — This command never returns UAF CMD STATUS KEY DISAPPEARED PERMANENTLY as this could
reveal the keyID registration status.

116

Rec. ITU-T X.1277 (11/2018)

C.6.5. OpenSettings command

This command instructs the authenticator to open its built-in settings Ul (e.g., change PIN, enroll new
fingerprint, etc).

The authenticator must return uvar cuvp status cvp NoT supporTED If it does not support such
functionality.

If the command structure is invalid (e.g., cannot be parsed correctly), the authenticator must return
UAF CMD STATUS PARAMS INVALID

C.6.5.1 Command structure

Table C.17 — Command structure

‘ TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS _CMD

11 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 | UINT16 Length Length of Authenticatorindex (must be 0x0001)
1.2.2 | UINT8 Authenticatorindex Authenticator Index

C.6.5.2 Command response

Table C.18 — Command response

‘ TLV Structure Description

1 UINT16 Tag TAG_UAFV1 OPEN_SETTINGS_CMD_RESPONSE
1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS _CODE

1.2.1 | UINT16 Length Status Code Length

1.2.2 | UINT16 StatusCode StatusCode returned by Authenticator

C.6.5.3 Status codes

. UAF_CMD STATUS OK

. UAF_CMD STATUS ERR UNKNOWN

. UAF_CMD STATUS CMD NOT SUPPORTED
. UAF _CMD STATUS PARAMS INVALID

C.7 KeylIDs and key handles

There are 4 types of Authenticators defined in this Annex and due to their specifics they behave
differently while processing commands. One of the main differences between them is how they store
and process key handles. This clause tries to clarify it by describing the behavior of every type of
Authenticator during the processing of relevant command.

Rec. ITU-T X.1277 (11/2018) 117

C.7.1 first-factor bound authenticator

Table C.19 — first-factor bound authenticator

Register Authenticator does not store key handles. Instead KeyHandle is always returned to ASM
Command and stored in ASM database.
KeylD is a randomly generated 32 bytes number (or simply the hash of KeyHandle).
Sign When there is no user session (no cookies, a clear machine) the server does not provide
Command any KeylID (since it does not know which KeyIDs to provide). In this scenario the ASM
selects all key handles and passes them to Authenticator.
During step-up authentication (when there is a user session) server provides relevant
KeylDs. ASM selects key handles that correspond to provided KeyIDs and pass to
Authenticator.
Deregister Since Authenticator does not store key handles, then there is nothing to delete inside
Command Authenticator.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

C.7.2 2ndF bound authenticator

Table C.20 — 2ndF bound authenticator

Register Authenticator does not store key handles. Instead KeyHandle is always returned to ASM
Command and stored in ASM database.
KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle).
Sign This Authenticator cannot operate without server providing KeylDs. Thus it can't be
Command used when there is no user session (no cookies, a clear machine).
During step-up authentication (when there is a user session) server provides relevant
KeylDs. ASM selects key handles that correspond to provided KeylDs and pass to
Authenticator.
Deregister Since Authenticator does not store key handles, then there is nothing to delete inside it.
Command

ASM finds the KeyHandle corresponding to provided KeylID and deletes it.

C.7.3 first-factor roaming authenticator

Table C.21 —first-factor roaming authenticator

Register Authenticator stores key handles inside its internal storage. KeyHandle is never returned
Command back to ASM.
KeylD is a randomly generated 32 bytes number (or simply the hash of KeyHandle)
Sign When there is no user session (no cookies, a clear machine) server does not provide any
Command KeyID (since it does not know which KeylIDs to provide). In this scenario Authenticator
uses all key handles that correspond to the provided ApplID.
During step-up authentication (when there is a user session) server provides relevant
KeylIDs. Authenticator selects key handles that correspond to provided KeylIDs and uses
them.
Deregister Authenticator finds the right KeyHandle and deletes it from its storage.
Command

118 Rec. ITU-T X.1277 (11/2018)

C.7.4 2ndF roaming authenticator

Table C.22 — 2ntdF roaming authenticator

Register Neither Authenticator nor ASM store key handles. Instead KeyHandle is sent to the

Command server (in place of KeylID) and stored in User's record. From server's perspective it's a
KeylID. In fact KeylID is the KeyHandle.

Sign This Authenticator cannot operate without server providing KeylIDs. Thus it can't be used

Command when there is no user session (no cookies, a clear machine).

During step-up authentication server provides KeylDs which are in fact key handles.
Authenticator finds the right KeyHandle and uses it.

Deregister Since Authenticator and ASM do not store key handles, then there is nothing to delete on
Command client side.

C.8 Access control for commands

FIDO authenticators may implement various mechanisms to guard access to privileged commands.
Table C.23 summarizes the access control requirements for each command.

All UAF authenticators MUST satisfy the access control requirements defined below.
Authenticator vendors MAY offer additional security mechanisms.

Terms used in the table:

. NoAuth — no access control

. UserVerify — explicit user verification

. KHAccessToken — must be known to the caller
. KeyHandleList — must be known to the caller

. KeyID — must be known to the caller

Table C.23 — Access control for commands

Command First-factor Bound 2ndF Bound First-factor 2ndF Roaming
Authenticator Authenticator Roaming Authenticator
Authenticator
Getlnfo NoAuth NoAuth NoAuth NoAuth
OpenSettings | NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify
Sign UserVerify UserVerify UserVerify UserVerify
KHAccessToken KHAccessToken KHAccessToken KHAccessToken
KeyHandleList KeyHandleList KeyHandleList
Deregister KHAccessToken KHAccessToken KHAccessToken KHAccessToken
KeylD KeylD KeylD KeylD

C.9 Considerations

C.9.1 Algorithms and key sizes
The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

Rec. ITU-T X.1277 (11/2018) 119

C.9.2 Indicating the authenticator model

Some authenticators (e.g., TPMv2) do not have the ability to include their model identifier
(i.e., vendor ID and model name) in attested messages (i.e., the to-be-signed part of the registration
assertion). The TPM's endorsement key certificate typically contains that information directly or at
least it allows the model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model
(i.e., AAID).

If the authenticator cannot securely include its model (i.e., AAID) in the registration assertion (i.e., in
the KRD object), the ECDAA-Issuers public key (ipkk) is required to be dedicated to one single
authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement
and can be used by the FIDO server to get a cryptographic proof of the Authenticator model.
C.10 Relationship to other standards

The existing standard specifications most relevant to UAF authenticator are [b-TPM], [b-TEE] and
[b-SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF functionality
through their extensibility mechanisms such as by loading secure applications (trustlets, applets, etc)
into them. Modules which do not support such extensibility mechanisms cannot be fully leveraged
within UAF framework.

C.10.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may
be designed which implements UAF authenticator functionality specified in this annex and also
implements some kind of user verification technology (biometric verification, PIN or anything else).

An additional ASM must be created which knows how to work with the Trustlet.

C.10.2 Secure elements

In order to support UAF inside secure element (SE) a special Applet (trusted application running
inside SE) may be designed which implements UAF authenticator functionality specified in this
Annex and also implements some kind of user verification technology (biometric verification, PIN
or similar mechanisms).

An additional ASM must be created which knows how to work the Applet.

C.10.3 TPM

TPMs typically have a built-in attestation capability however the attestation model supported in TPMs
is currently incompatible with UAF's basic attestation model. The future enhancements of UAF may
include compatible attestation schemes.

Typically TPMs also have a built-in PIN verification functionality which may be leveraged for UAF.
In order to support UAF with an existing TPM module, the vendor should write an ASM which:

. Translates UAF data to TPM data by calling TPM APIs
. Creates assertions using TPMs API
. Reports itself as a valid UAF authenticator to FIDO UAF client

A special AssertionScheme, designed for TPMs, must be also created (see Annex H) and published
by FIDO Alliance. When FIDO server receives an assertion with this AssertionScheme it will treat
the received data as TPM-generated data and will parse/validate it accordingly.

120 Rec. ITU-T X.1277 (11/2018)

C.10.4 Unreliable transports

The command structures described in this Annex assume a reliable transport and provide no support
at the application-layer to detect or correct for issues such as unreliable ordering, duplication,
dropping or modification of messages. If the transport layer(s) between the ASM and Authenticator
are not reliable, the non-normative private contract between the ASM and Authenticator may need to
provide a means to detect and correct such errors.

C.11 Security guidelines

Table C.24 — Security guidelines

Category Guidelines

Registered ApplDs and KeylDs must not be returned by an authenticator in
plaintext, without first performing user verification.

If an attacker gets physical access to a roaming authenticator, then it should not
be easy to read out ApplIDs and KeyIDs.

ApplDs and KeylDs

Authenticators must protect the attestation private key as a very sensitive asset.
The overall security of the authenticator depends on the protection level of this
key.

It is highly recommended to store and operate this key inside a tamper-resistant
hardware module, e.g., [b-SecureElement].

It is assumed by registration assertion schemes, that the authenticator has
exclusive control over the data being signed with the attestation key.

FIDO Authenticators must ensure that the attestation private key:

1. is only used to attest authentication keys generated and protected by the
authenticator, using the FIDO-defined data structures, KeyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties
cannot link registrations, authentications or other transactions (see Annex A).

Attestation Private
Key

Vendors should strive to pass common security standard certifications with
Certifications authenticators, such as [b_FIPS140-2], [b-CommonCiriteria] and similar. Passing such
certifications will positively impact the UAF implementation of the authenticator.

The crypto kernel is a module of the authenticator implementing cryptographic
functions (key generation, signing, wrapping, etc.) necessary for UAF and having
access to UAuth.priv, Attestation Private Key and Wrap.sym.

For optimal security, this module should reside within the same security
boundary as the UAuth.priv, Att.priv and Wrap.sym keys. If it resides within a
different security boundary, then the implementation must guarantee the same
level of security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted
execution environment [b-TEE].

Cryptographic In situations where physical attacks and side channel attacks are considered in
(Crypto) Kernel the threat model, it is highly recommended to use a tamper-resistant hardware
module.

Software-based authenticators must make sure to use state of the art code
protection and obfuscation techniques to protect this module and whitebox
encryption techniques to protect the associated keys.

Authenticators need good random number generators using a high quality
entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

Rec. ITU-T X.1277 (11/2018) 121

Table C.24 — Security guidelines

Category Guidelines

The authenticator's random number generator (RNG) should be such that it
cannot be disabled or controlled in a way that may cause it to generate
predictable outputs.

If the authenticator does not have sufficient entropy for generating strong random
numbers, it should fail safely.

See the section of this table regarding random numbers

It is highly recommended to use authenticated encryption while wrapping key
KeyHandle handles with Wrap.sym. Algorithms such as AES-GCM and AES-CCM are most
suitable for this operation.

The user verification method should include liveness detection [b-

Liveness Detection / NSTCBiometrics], i.e., a technique to ensure that the sample submitted is
Presentation Attack actually from a (live) user.

Detection In the case of PIN-based matching, this could be implemented using
[b-TEESecureDisplay] in order to ensure that malware can't emulate PIN entry.

By definition, the matcher component is part of the authenticator. This does not
impose any restrictions on the authenticator implementation, but implementers
need to make sure that there is a proper security boundary binding the matcher
and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences.
It is highly recommended for this module to reside within the integrity
boundaries of the authenticator and be capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution
environment [b-TEE] or inside a secure element [b-SecureElement].
Authenticators which have separated matcher and CryptoKernel modules should
implement mechanisms which would allow the CryptoKernel to securely receive
assertions from the matcher module indicating the user's local verification status.

Software based Authenticators (if not in trusted execution environment) must
make sure to use state of the art code protection and obfuscation techniques to
protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat
this as an attack and invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not exceeding 10 seconds.
Authenticators must implement anti-hammering protections for their matchers.
Biometrics based authenticators must protect the captured biometrics data (such
as fingerprints) as well as the reference data (templates) and make sure that the
biometric data never leaves the security boundaries of authenticators.

Matchers must only accept verification reference data enrolled by the user, i.e.,
they must not include any default PINs or default biometric reference data.

Matcher

This Annex requires (a) the attestation key to be used for attestation purposes
only and (b) the authentication keys to be used for FIDO authentication purposes
only. The related to-be-signed objects (i.e., Key Registration Data and SignData)
Private Keys are designed to reduce the likelihood of such attacks:

(UAuth.priv and 1. They start with a tag marking them as specific FIDO objects

Attestation Private 2. They include an authenticator-generated random value. As a consequence all

Key) to-be-signed objects are unique with a very high probability.

3. They have a structure allowing only very few fields containing uncontrolled
values, i.e., values which are neither generated nor verified by the
authenticator

122 Rec. ITU-T X.1277 (11/2018)

Table C.24 — Security guidelines

Category Guidelines

The FIDO Authenticator uses its random number generator to generate
authentication key pairs, client side challenges and potentially for creating
ECDSA signatures. Weak random numbers will make FIDO vulnerable to certain
attacks. It is important for the FIDO Authenticator to work with good random
numbers only.

The (pseudo-)random numbers used by authenticators should successfully pass
the randomness test specified in [b-Coron99] and they should follow the
guidelines given in [b-SP800-90B].

Additionally, authenticators may choose to incorporate entropy provided by the
FIDO server via the serverchallenge Sentin requests (see Annex A).

When mixing multiple entropy sources, a suitable mixing function should be
used, such as those described in [IETF RFC 4086].

The RegCounter provides an anti-fraud signal to the relying parties. Using the
RegCounter, the relying party can detect authenticators which have been
excessively registered.

If the RegCounter is implemented: ensure that

1. itisincreased by any registration operation and

2. it cannot be manipulated/modified otherwise (e.g., via API calls, etc.)

A registration counter should be implemented as a global counter, i.e., one
covering registrations to all ApplDs. This global counter should be increased by
1 upon any registration operation.

Random Numbers

RegCounter

NOTE — The RegCounter value should not be decreased by Deregistration
operations.

When an attacker is able to extract a Uauth.priv key from a registered
authenticator, this key can be used independently from the original authenticator.
This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent
cloning authenticators. In some situations the protection measures might not be
sufficient.

If the Authenticator maintains a signature counter signCounter, then the FIDO
server would have an additional method to detect cloned authenticators.

If the signCounter is implemented: ensure that
1. itis increased by any authentication / transaction confirmation operation and
2. it cannot be manipulated/modified otherwise (e.g., API calls, etc.)

Signature counters should be implemented that are dedicated for each private key
in order to preserve the user's privacy.

SignCounter

A per-key signCounter should be increased by 1, whenever the corresponding
UAuth.priv key signs an assertion.

A per-key signcounter should be deleted whenever the corresponding UAuth
key is deleted.

If the authenticator is not able to handle many different signature counters, then a
global signature counter covering all private keys should be implemented. A
global signcounter should be increased by a random positive integer value
whenever any of the UAuth.priv keys is used to sign an assertion.

Rec. ITU-T X.1277 (11/2018) 123

Table C.24 — Security guidelines

Category Guidelines

NOTE — There are multiple reasons why the signcounter value could be 0 in a
registration response. A signcounter value of 0 in an authentication response
indicates that the authenticator does not support the signcounter concept.

A transaction confirmation display must ensure that the user is presented with the
provided transaction content, e.g., not overlaid by other display elements and
clearly recognizable. See [b-Clickjacking] for some examples of threats and
potential counter-measures

For more guidelines refer to [b-TEESecureDisplay].

An authenticator must protect all UAuth.priv keys as its most sensitive assets.
The overall security of the authenticator depends significantly on the protection
level of these keys.

It is highly recommended that this key is generated, stored and operated inside a

trusted execution environment.

In situations where physical attacks and side channel attacks are considered

within the threat model, it is highly recommended to use a tamper-resistant

hardware module.

FIDO Authenticators must ensure that UAuth.priv keys:

1. are specific to the particular account at one relying party (relying party is
identified by an AppID)

2. are generated based on good random numbers with sufficient entropy. The
challenge provided by the FIDO server during registration and authentication
operations should be mixed into the entropy pool in order to provide
additional entropy.

3. are never directly revealed, i.e., always remain in exclusive control of the
FIDO Authenticator

4. are only being used for the defined authentication modes, i.e.,

1. authenticating to the application (as identified by the AppID) they have
been generated for, or

2. confirming transactions to the application (as identified by AppID) they
have been generated for, or

3. are only being used to create the FIDO defined data structures, i.e.,
KRD, SignData.

A username must not be returned in plaintext in any condition other than the
Username conditions described for the SIGN command. In all other conditions usernames
must be stored within a KeyHandle.

Transaction
Confirmation Display

UAuth.priv

The verification reference data, such as fingerprint templates or the reference
value of a PIN, are by definition part of the authenticator. This does not impose
any particular restrictions on the authenticator implementation, but implementers
need to make sure that there is a proper security boundary binding all parts of the
authenticator together.

Verification
Reference Data

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must
protect this key as its most sensitive asset. The overall security of the
authenticator depends on the protection of this key.

Wrap.sym Wrap.sym key strength must be equal or higher than the strength of secrets stored
in a RawKeyHandle. Refer to [b-SP800-57] and [b-SP800-38F] publications for
more information about choosing the right wrapping algorithm and implementing
it correctly.

124 Rec. ITU-T X.1277 (11/2018)

Table C.24 — Security guidelines

Category Guidelines

It is highly recommended to generate, store and operate this key inside a trusted
execution environment.

In situations where physical attacks and side channel attacks are considered in the
threat model, it is highly recommended to use a tamper-resistant hardware
module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted
KeyHandle and unwrapping data which has invalid contents (e.g., KeyHandle
from invalid origin) are indistinguishable to the caller.

Rec. ITU-T X.1277 (11/2018) 125

Annex D
FIDO UAF authenticator-specific module API

(This annex forms an integral part of this Recommendation.)

D.1 Summary

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB,
Bluetooth, etc.). The UAF authenticator-specific module (ASM) is a software interface on top of UAF
authenticators which gives a standardized way for FIDO UAF clients to detect and access the
functionality of UAF authenticators and hides internal communication complexity from FIDO UAF
client.

This annex's intended audience is FIDO authenticator and FIDO FIDO UAF client vendors.

This annex describes the internal functionality of ASMs, defines the UAF ASM API and explains
how FIDO UAF clients should use the API.

D.2 Overview

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB,
Bluetooth, etc). The UAF authenticator-specific module (ASM) is a software interface on top of UAF
authenticators which gives a standardized way for FIDO UAF clients to detect and access the
functionality of UAF authenticators and hides internal communication complexity from clients.

The ASM is a platform-specific software component offering an API to FIDO UAF clients, enabling
them to discover and communicate with one or more available authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this Annex is FIDO UAF authenticator and FIDO UAF client vendors.

NOTE - Platform vendors might choose to not expose the ASM API defined in this annex to applications.
They might instead choose to expose ASM functionality through some other API (such as, for example, the
Android KeyStore API, or b-iOS KeyChain API). In these cases it's important to make sure that the underlying
ASM communicates with the FIDO UAF authenticator in a manner defined in this annex.

The FIDO UAF protocol and its various operations is described in the FIDO UAF protocol
specification (Annex A). The following simplified architecture diagram shown in Figure D.1
illustrates the interactions and actors this annex is concerned with:

UAF
client

UAF
authenticator

X.1277(18)_FDA

Figure D.1 — UAF ASM API architecture

D.2.1 Code example format
ASM requests and responses are presented in WebIDL format.

126 Rec. ITU-T X.1277 (11/2018)

D.3 ASM requests and responses

The ASM API is defined in terms of JSON-formatted [b-ECMA-404] request and reply messages. In
order to send a request to an ASM, a FIDO UAF client creates an appropriate object (e.g., in
ECMASscript), "stringifies” it (also known as serialization) into a JSON-formated string and sends it
to the ASM. The ASM de-serializes the JSON-formatted string, processes the request, constructs a
response, stringifies it, returning it as a JSON-formatted string.

NOTE — The ASM request processing rules in this Annex explicitly assume that the underlying authenticator
implements the "UAFV1TLV" assertion scheme (e.g., references to TLVs and tags) as described in Annex A.
If an authenticator supports a different assertion scheme then the corresponding processing rules must be
replaced with appropriate assertion scheme-specific rules.

Authenticator implementers MAY create custom authenticator command interfaces other than the
one defined in Annex C. Such implementations are not required to implement the exact
message-specific processing steps described in this clause. However,

1. the command interfaces MUST present the ASM with external behavior equivalent to that
described below in order for the ASM to properly respond to the client request messages
(e.g., returning appropriate UAF status codes for specific conditions).

2. all authenticator implementations MUST support an assertion scheme as defined Annex E
and MUST return the related objects, i.e., TAGc UAFV1 REG ASSERTION and
TAG UAFV1 AUTH AsserTION as defined in Annex C.

D.3.1 Request enum

enum Request ({
"GetInfo",
"Register",
"Authenticate",
"Deregister",
"GetRegistrations",
"OpenSettings"

bi

Enumeration description

GetInfo Getlinfo
Register Register
Authenticate Authenticate
Deregister Deregister
GetRegistrations GetRegistrations
OpenSettings OpensSettings

D.3.2 StatusCode interface

If the ASM needs to return an error received from the authenticator, it SHALL map the status code
received from the authenticator to the appropriate ASM status code as specified here.

If the ASM does not understand the authenticator's status code, it SHALL treat it as
UAF CMD STATUS ERR UNKNOWN and map it to uar asv sTaTus error if it cannot be handled
otherwise.

Rec. ITU-T X.1277 (11/2018) 127

If the caller of the ASM interface (i.e., the FIDO client) does not understand a status code returned
by the ASM, it SHALL treat it as uar asv sTATUS ErRROR. This might occur when new error codes
are introduced.

interface StatusCode ({
const short UAF ASM STATUS OK = 0x00;
const short UAF ASM STATUS ERROR = 0x01;
const short UAF ASM STATUS ACCESS DENIED = 0x02;
const short UAF ASM STATUS USER CANCELLED = 0x03;
const short UAF ASM STATUS CANNOT RENDER TRANSACTION CONTENT = 0x04;
const short UAF ASM STATUS KEY DISAPPEARED PERMANENTLY = 0x09;
const short UAF ASM STATUS AUTHENTICATOR DISCONNECTED = 0xOb;
const short UAF ASM STATUS USER NOT RESPONSIVE = 0x0e;
const short UAF ASM STATUS INSUFFICIENT AUTHENTICATOR RESOURCES = 0x0f;
const short UAF ASM STATUS USER LOCKOUT = 0x10;
const short UAF ASM STATUS USER NOT ENROLLED = 0x11;

D.3.2.1 Constants

128

UAF_ASM STATUS OK Of type short

No error condition encountered.

UAF ASM STATUS ERROR Of type short

An unknown error has been encountered during the processing.

UAF ASM STATUS ACCESS DENIED Of type short

Access to this request is denied.

UAF ASM STATUS USER CANCELLED Of type short

Indicates that user explicitly canceled the request.

UAF _ASM STATUS_ CANNOT RENDER TRANSACTION CONTENT Of type short

Transaction content cannot be rendered, e.g., format does not fit authenticator's need.

UAF ASM STATUS KEY DISAPPEARED PERMANENTLY Of type short

Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF ASM STATUS AUTHENTICATOR DISCONNECTED Of type short

Indicates that the authenticator is no longer connected to the ASM.

UAF ASM STATUS USER NOT RESPONSIVE Of type short

The user took too long to follow an instruction, e.g., didn't swipe the finger within the accepted
time.

UAF ASM STATUS INSUFFICIENT AUTHENTICATOR RESOURCES Of type short

Insufficient resources in the authenticator to perform the requested task.

UAF ASM STATUS USER LOCKOUT Of type short

Rec. ITU-T X.1277 (11/2018)

The operation failed because the user is locked out and the authenticator cannot automatically
trigger an action to change that. Typically the user would have to enter an alternative password
(formally: undergo some other alternative user verification method) to re-enable the use of
the main user verification method.

NOTE — Any method the user can use to (re-) enable the main user verification method is considered
an alternative user verification method and must be properly declared as such. For example, if the
user can enter an alternative password to re-enable the use of fingerprints or to add additional fingers,
the authenticator obviously supports fingerprint or password based user verification.

UAF ASM STATUS USER NOT ENROLLED Of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator
cannot automatically trigger user enrollment.
D.3.2.2 Mapping authenticator status codes to ASM status codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on
those responses and also map the status code returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified in Table D.1:

Table D.1
Authenticator Status Code ASM Status Code Comment
UAF CMD STATUS OK UAF ASM STATUS OK Pass-through success
status.
UAF CMD STATUS ERR UNKNOWN | UAF ASM STATUS ERROR Pass-through unspecific

error status.

UAF_CMD_STATUS ACCESS DENT | UAF ASM STATUS ACCESS DENIED | Pass-through status code.
ED
UAF CMD_STATUS USER NOT EN | UAF ASM STATUS USER NOT ENROL | According to Annex C,
ROLLED LED (or this might occur at the
UAF ASM STATUS ACCESS DENTED | gjgn command of at the
in some situations) Register command if the
authenticator cannot
automatically trigger user
enrollment. The mapping
depends on the command
as follows.
In the case of "Register"
command, the error is
mapped to
UAF_ASM_STATUS U
SER_NOT_ENROLLED
in order to tell the calling
FIDO client the there is
an authenticator present
but the user enrollment
needs to be triggered
outside the authenticator.

Rec. ITU-T X.1277 (11/2018) 129

Authenticator Status Code

Table D.1

ASM Status Code

Comment

In the case of the "Sign"
command, the Uauth key
needs to be protected by
one of the authenticator's
user verification methods
at all times. So if this
error occurs it is
considered an internal
error and hence mapped
to UAF_ASM_STATUS
ACCESS _DENIED.

UAF_CMD_STATUS_CANNOT REND
ER_TRANSACTION CONTENT

UAF_ASM STATUS_ CANNOT RENDER

TRANSACTION CONTENT

Pass-through status code
as it indicates a problem
to be resolved by the
entity providing the
transaction text.

UAF_CMD_STATUS_ USER_CANCEL
LED

UAF_ASM STATUS USER CANCELLED

Map to
UAF ASM STATUS USER

_ CANCELLED.

UAF_CMD_STATUS_CMD_NOT_ SUP
PORTED

UAF_ASM STATUS_OK Of
UAF ASM STATUS ERROR

If the ASM is able to
handle that command on
behalf of the authenticator
(e.g., removing the key
handle in the case of
Dereg command for a
bound authenticator), the
UAF _ASM STATUS OK
must be returned. Map the
status code to UAE ASM
STATUS ERROR
otherwise.

UAF CMD STATUS ATTESTATION
NOT SUPPORTED

UAF_ASM STATUS_ ERROR

Indicates an ASM issue as
the ASM has obviously
not requested one of the
supported attestation
types indicated in the
authenticator's response to
the GetInfo command.

UAF_CMD STATUS PARAMS INVA
LID

UAF ASM STATUS ERROR

Indicates an ASM issue as
the ASM has obviously
not provided the correct
parameters to the
authenticator when
sending the command.

130 Rec. ITU-T X.1277 (11/2018)

Table D.1

Authenticator Status Code ASM Status Code Comment
UAF_CMD_STATUS KEY DISAPPE | UAF ASM STATUS KEY DISAPPEARE | Pass-through status code.
ARED PERMANENTLY D PERMANENTLY It indicates that the Uauth

key disappeared
permanently and the RP
App might want to trigger
re-registration of the
authenticator.

UAF_STATUS CMD TIMEOUT UAF_ASM STATUS ERROR Retry operation and map
t0O UAF_ASM STATUS
ERROR if the problem

persists.
UAF _CMD_STATUS USER _NOT RE | UAF ASM STATUS USER _NOT RESPO | Pass-through status code.
SPONSIVE NSIVE The RP App might want

to retry the operation once
the user pays attention to
the application again.

UAF CMD STATUS INSUFFICIEN | UAF ASM STATUS INSUFFICIENT A Pas&ﬂnoughs&ﬂuscode

T RESOURCES UTHENTICATOR RESOURCES

UAF CMD STATUS USER LOCKOU | UAF ASM STATUS USER LOCKOUT PaS&ﬂHDUQhSEHUSCOd&
T

Any other status code UAF_ASM_STATUS_ERROR Map any unknown error

code to

UAF ASM STATUS
ERROR. This might
happen when an ASM
communicates with an
authenticator
implementing a newer
UAF specification than
the ASM.

D.3.3 ASMRequest dictionary
All ASM requests are represented as rsvrequest objects.

dictionary ASMRequest {
required Request requestType;
Version asmVersion;
unsigned short authenticatorIndex;
object args;

Extension/|] exts;

D.3.3.1 Dictionary asMrequest members
requestType Of type required Request

Request type

asmVersion Of type version

Rec. ITU-T X.1277 (11/2018) 131

ASM message version to be used with this request. For the definition of the version
dictionary see Annex A. The asmVersion MUST be 1.1 (i.e., major version is 1 and minor
version is 1) for this version of the specification.

authenticatorlndexOftypeunsigned short

Refer to the cet1nfo request for more details. Field zuthenticatorindex MUST NOT be
set for cet 1nfo request.

args Of type object
Request-specific arguments. If set, this attribute MAY take one of the following types:

e Registerln
e Authenticateln
e DeregisterIn
exts of type array of Extension
List of UAF extensions. For the definition of the extension dictionary see Annex A.

D.3.4 ASMResponse dictionary
All ASM responses are represented as 2svresponse objects.

dictionary ASMResponse {
required short statusCode;
object responseData;

Extension|] exts;

D.3.4.1 Dictionary asMresponse members
statusCode Of type required short
MUST contain one of the values defined in the stztuscode interface

responseData Of type object
Request-specific response data. This attribute MUST have one of the following types:

GetInfoOut
RegisterOut
AuthenticateOut
GetRegistrationOut

exts Of type array of Extension
List of UAF extensions. For the definition of the ex+cnsion dictionary see Annex A.

D.3.5 GetlInfo request

Return information about available authenticators.
1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them

132 Rec. ITU-T X.1277 (11/2018)

3. Assign indices to them (zuthenticatorindex)

4. Return the information to the caller

NOTE 1 —Where possible, an authenticatorIndex should be a persistent identifier that uniquely identifies
an authenticator over time, even if it is repeatedly disconnected and reconnected. This avoids possible
confusion if the set of available authenticators changes between a GetTnfo request and subsequent ASM
requests and allows a FIDO client to perform caching of information about removable authenticators for a

better user experience.

NOTE 2 — It is up to the ASM to decide whether authenticators which are disconnected temporarily will be
reported or not. However, if disconnected authenticators are reported, the FIDO client might trigger an
operation via the ASM on those. The ASM will have to notify the user to connect the authenticator and report
an appropriate error if the authenticator is not connected in time.

For a GetlInfo request, the following ~svrequest+ member(s) MUST have the following value(s). The
remaining ~svrequest members SHOULD be omitted:

° ASMRequest . requestType MUST be setto cet1nfo

For a GetInfo response, the following 2svresponse member(s) MUST have the following value(s).
The remaining 2svresponse members SHOULD be omitted:

. ASMResponse. statusCode MUST have one of the following values

O UAF ASM STATUS OK

O UAF_ASM STATUS ERROR

o ASMResponse . responsebata MUST be an ObjECt of type cetinfoout. In the case of an
error the values of the fields might be empty (e.g., array with no members).

See clause D.3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details on the
mapping of authenticator status codes to ASM status codes.

D.3.5.1 GetInfoOut dictionary

dictionary GetInfoOut ({

required AuthenticatorInfol]

}i

Authenticators;

D.3.5.1.1 Dictionary GetinfoOut members

Authenticators Of type array of required AuthenticatorInfo

List of authenticators reported by the current ASM. MAY be empty an empty list.

D.3.5.2 Authenticatorinfo dictionary

dictionary AuthenticatorInfo {

required
required
required
required
required
required
required
required
required
required

required

unsigned short
Version/[]
boolean
boolean

AAID

DOMString
unsigned short
unsigned short|[]
unsigned long
unsigned short
unsigned short

authenticatorIndex;
asmVersions;
isUserEnrolled;
hasSettings;
aaid;
assertionScheme;
authenticationAlgorithm;
attestationTypes;
userVerification;
keyProtection;

matcherProtection;

Rec. ITU-T X.1277 (11/2018)

133

required unsigned long attachmentHint;

required boolean isSecondFactorOnly;

required boolean isRoamingAuthenticator;

required DOMString[] supportedExtensionIDs;

required unsigned short tcDisplay;

DOMString tcDisplayContentType;
Displayb-PNGCharacteristicsDescriptor[] tcDisplayb-PNGCharacteristics;
DOMString title;

DOMString description;

DOMString icon;

}i

D.3.5.2.1 Dictionary AuthenticatorInfo members

134

authenticatorlndexOftyperequired unsigned short

Authenticator index. Unique, within the scope of all authenticators reported by the ASM,
index referring to an authenticator. This index is used by the UAF client to refer to the
appropriate authenticator in further requests.

asmVersions Of type array of required version
A list of ASM Versions that this authenticator can be used with. For the definition of the
version dictionary see Annex A.

isUserEnrolled Of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators which do not have
user verification technology MUST always return true. Bound authenticators which support
different profiles per operating system (OS) user MUST report enrollment status for the
current OS user.
hassettings Of type required boolean
A boolean value indicating whether the authenticator has its own settings. If so, then a FIDO
UAF client can launch these settings by sending a opensettings request.
aaidOftyperequired AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and batch of the
authenticator. See Annex A for the definition of the AAID structure.
assertionSchemeOftyperequired DOMString

The assertion scheme the authenticator uses for attested data and signatures.

AssertionScheme identifiers are defined in the UAF protocol specification (Annex A).
authenticationAlgorithm Of type required unsigned short

Indicates the authentication algorithm that the authenticator uses. Authentication algorithm

identifiers are defined in are defined in Annex J with 21.c prefix.
attestationTypes Of type array of required unsigned short

Indicates attestation types supported by the authenticator. Attestation type TAGs are defined
in Annex E with 7ac atresTaTTOoN prefix

Rec. ITU-T X.1277 (11/2018)

userVerification Of type required unsigned long

A set of bit flags indicating the user verification method(s) supported by the authenticator.
The values are defined by the user ver1ry constants in Annex J.

keyProtection Of type required unsigned short

A set of bit flags indicating the key protections used by the authenticator. The values are
defined by the x=v proTECTTON cOnstants in Annex J.

matcherProtection Of type required unsigned short

A set of bit flags indicating the matcher protections used by the authenticator. The values are
defined by the maTcreEr PrOTECTTON constants in Annex J.

attachmentHint Of type required unsigned long

A set of bit flags indicating how the authenticator is currently connected to the system hosting
the FIDO UAF client software. The values are defined by the rrtacavEnT HINT constants
defined in Annex J.

NOTE — Because the connection state and topology of an authenticator may be transient, these values are only
hints that can be used by server-supplied policy to guide the user experience, e.g., to prefer a device that is
connected and ready for authenticating or confirming a low-value transaction, rather than one that is more
secure but requires more user effort. These values are not reflected in authenticator metadata and cannot be
relied on by the relying party, although some models of authenticator may provide attested measurements with
similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type required boolean

Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator Of type required boolean

Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs Of type array of required DOMString

List of supported UAF extension Ids. MAY be an empty list.

tcDisplay Of type required unsigned short
A set of bit flags indicating the availability and type of the authenticator's transaction
confirmation display. The values are defined by the TRANSACTTON CONFIRMATION DISPLAY
constants in Annex J.
This value MUST be 0 if transaction confirmation is not supported by the authenticator.
tcDisplayContentType of type poMString
Supported transaction content type Annex H.
This value MUST be present if transaction confirmation is supported, i.e., tcbisplay IS non-
zero.

tcDisplayb-PNGCharacteristics of type array of Displayb-PNGCharacteristics
Descriptor

Supported transaction Portable Network Graphic (b-PNG) type Annex H. For the definition
of the Displayb-PNGCharacteristicsDescriptor Structure see Annex H.

Rec. ITU-T X.1277 (11/2018) 135

This list MUST be present if b-PNG-image based transaction confirmation is supported, i.e.,
tcDisplay is non-zero and tcDisplayContentType is image/png.

title of type poMstring

A human-readable short title for the authenticator. It should be localized for the current locale.

NOTE — If the ASM does not return a title, the FIDO UAF client must provide a title to the calling App. See
section "Authenticator interface” in Annex B.

description Of type poMstring

Human-readable longer description of what the authenticator represents.

NOTE 1 — This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from the description specified
in the metadata statement for the authenticator (Annex H).

NOTE 2 — If the ASM does not return a description, the FIDO UAF client will provide a description to the
calling application. See "Authenticator interface" in Annex B.

icon of type DOMString
Portable Network Graphic (b-PNG) format image file representing the icon encoded as a data:
url [b-IETF RFC 2397].

NOTE - If the ASM does not return an icon, the FIDO UAF client will provide a default icon to the calling
application. See section "Authenticator interface” in Annex B.

D.3.6 Register request
Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following ~svrequest member(s) MUST have the following value(s).
The remaining 2svrequest members SHOULD be omitted:

. ASMRequest . requestType MUST be setto register

. ASMRequest.asmversion MUST be set to the desired version

. ASMRequest.authenticatorindex MUST be set to the target authenticator index
. asMrequest.args MUST be set to an object of type registerin

For a Register response, the following 2suresponse member(s) MUST have the following value(s).
The remaining 2sMresponse members SHOULD be omitted:

. ASMResponse.statusCode MUST have one of the following values:
O UAF ASM STATUS OK
O UAFiASMisTATUsiERROR
O UAF ASM STATUS ACCESS DENIED
O UAF ASM STATUS USER CANCELLED
O UAFiASMisTATUsiAUTHENTICATORiDISCONNECTED
O UAF ASM STATUS USER NOT RESPONSIVE
@) UAFﬁASMisTATUsiINSUFFICIENTiAUTHENTICATORiRESOURCES
O UAF ASM STATUS USER LOCKOUT
O UAF_ASM_STATUS_USER_NOT_ENROLLED

o ASMResponse. responseData MUST be an object of type registerout. In the case of an
error the values of the fields might be empty (e.g., empty strings).

136 Rec. ITU-T X.1277 (11/2018)

D.3.6.1 Registerin object

dictionary RegisterIn ({

required DOMString applID;
required DOMString username;
required DOMString finalChallenge;

required unsigned short attestationType;
}i

D.3.6.1.1 Dictionary registerIn members
appIDOftyperequired DOMString

The FIDO server Application Identity.

usernameOftyDErequired DOMString

Human-readable user account name

finalChallenge Of type required DOMString
base64url-encoded challenge data [IETF RFC 4648]

attestationTypeOftyperequired unsigned short

Single requested attestation type

D.3.6.2 RegisterOut object

dictionary RegisterOut ({
required DOMString assertion;
required DOMString assertionScheme;

D.3.6.2.1 Dictionary registerout members
assertion Of type required DOMString

FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme Of type required DOMString

Assertion scheme.
AssertionScheme identifiers are defined in the UAF protocol specification (Annex A).

D.3.6.3 Detailed description for processing the register request
Refer to (Annex C) for more information about the TAGs and structure mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then
fail with uaAF AsM STATUS AUTHENTICATOR DISCONNECTED.
2. If a user is already enrolled with this authenticator (such as biometric enrollment, PIN setup,

etc. for example) then the ASM MUST request that the authenticator verifies the user.

NOTE - If the authenticator supports UserverificationToken (see Annex C), then the ASM must obtain
this token in order to later include it with the Register command.

Rec. ITU-T X.1277 (11/2018) 137

If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator
cannot automatically trigger unblocking, return uAr Asv STATUS USER LOCKOUT.

o If verification fails, return uAr AsM STATUS ACCESS DENIED

If the user is not enrolled with the authenticator then take the user through the enrollment
process.

o If neither the ASM nor the authenticator can trigger the enrollment process, return
UAF ASM STATUS USER NOT ENROLLED.

o If enrollment fails, return uAr Asv STATUS ACCESS DENIED
Construct kaaccessToken (See section KHAccessToken for more details)

Hash the provided registerin.finalChallenge using the authenticator-specific hash
fUﬂCﬁOﬂ(FinalChallengeHash)

An authenticator's preferred hash function information MUST meet the algorithm defined in
theAuthenticatorlnfo.authenticationAlgorithmfmki

Create a Tac UAFvV1 REGISTER CMD Structure and pass it to the authenticator

1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username, User
VerificationToken, RegisterIn.AppID, RegisterIn.AttestationType

1. Depending on ruthenticatorType SOMe arguments may be optional. Refer to
Annex C for more information on authenticator types and their required arguments.

Invoke the command and receive the response. If the authenticator returns an error, handle
that error appropriately. If the connection to the authenticator gets lost and cannot be restored,
return Uar AsM STATUS AUTHENTICATOR DIsconnecTeD. If the operation finally fails, map
the authenticator error code to the the appropriate ASM error code (see clause D.3.2.2
Mapping Authenticator Status Codes to ASM Status Codes for details).

Parse TAG UAFV1 REGISTER CMD RESP

0. Parse the content of 7TAG AUTHENTICATOR ASSERTION (€.0., TAG UAFV1 REG
AssERTION) and extract TAG KEYID

If the authenticator is a bound authenticator

0. Store callerID, AppID, TAG KEYHANDLE, TAG KEYID and CurrentTimestamp in the
ASM's database.

NOTE — What data an ASM will store at this stage depends on underlying authenticator's architecture. For
example some authenticators might store ApplD, KeyHandle, KeyID inside their own secure storage. In this
case ASM does not have to store these data in its database.

10.

Create a registerout oObject

0. Set RegisterOut.assertionScheme according t0 AuthenticatorInfo.assertion
Scheme

1. Encode the content of 7TAG AUTHENTICATOR ASSERTION (€.9., TAG UAFVI1 REG
assErRTION) in base64url format and set as registerout.assertion.

2. Return registerout object

D.3.7 Authenticate request

Verify the user and return authenticator-generated UAF authentication assertion.

For an authenticate request, the following zsvrequest member(s) MUST have the following
value(s). The remaining 2svrequest members SHOULD be omitted:

138

Rec. ITU-T X.1277 (11/2018)

ASMRequest . requestType MUST be setto ruthenticate.
ASMRequest.asmversion MUST be set to the desired version.
ASMRequest.authenticatorindex MUST be set to the target authenticator index.

rsMrequest.args MUST be set to an object of type ruthenticatein

For an authenticate response, the following 2svresponse member(s) MUST have the following
value(s). The remaining 2svresponse members SHOULD be omitted:

D.3.7.1

ASMResponse. statusCode MUST have one of the following values:

o

o

o

o

o

UAF_ASM_STATUS OK

UAF_ASM_STATUS ERROR
UAF_ASM STATUS ACCESS DENIED

UAF_ASM STATUS USER CANCELLED

UAF_ASM STATUS CANNOT RENDER TRANSACTION CONTENT
UAF ASM STATUS KEY DISAPPEARED PERMANENTLY
UAF_ASM STATUS AUTHENTICATOR DISCONNECTED
UAF_ASM STATUS USER NOT RESPONSIVE
UAF_ASM STATUS USER_LOCKOUT

UAF ASM STATUS USER NOT ENROLLED

ASMResponse. responseData MUST be an ObjECt of type ruthenticateout. In the case of
an error the values of the fields might be empty (e.g., empty strings).

Authenticateln object

dictionary AuthenticateIn {

}i

required DOMString applD;
DOMString[] keyIDs;
required DOMString finalChallenge;

Transaction[] transaction;

D.3.7.1.1 Dictionary authenticateIn members

app1D Of type required DOMString

applD string

key1Ds Of type array of poMstring

base64url [IETF RFC 4648] encoded keyIDs

finalChallenge Of type required DOMString

base64url [IETF RFC 4648] encoded final challenge

transaction Of type array of Transaction

An array of transaction data to be confirmed by user. If multiple transactions are provided,
then the ASM MUST select the one that best matches the current display characteristics.

NOTE — This may, for example, depend on whether user's device is positioned horizontally or vertically at the
moment of transaction.

Rec. ITU-T X.1277 (11/2018) 139

D.3.7.2 Transaction object

dictionary Transaction {
required DOMString contentType;
required DOMString content;
Displayb-PNGCharacteristicsDescriptor tcDisplayb-PNGCharacteristics;
}i

D.3.7.2.1 Dictionary Transaction members

contentType Of type required DOMString

Contains the MIME Content-Type supported by the authenticator according to its metadata
statement (see Annex H)

content Of type required DOMString

Contains the base64url-encoded [IETF RFC 4648] transaction content according to the
contentType to be shown to the user.

thisplaybfPNGCharacteristicsOftypeDisplayb—PNGCharacteristicsDescriptor

Transaction content b-PNG characteristics. For the definition of the Dpisplayb-
PNGCharacteristicsDescriptor Structure, see Annex H.

D.3.7.3 AuthenticateOut object

dictionary AuthenticateOut {
required DOMString assertion;
required DOMString assertionScheme;
}i

D.3.7.3.1 Dictionary ruthenticateout members

assertion Of type required DOMString

Authenticator UAF authentication assertion.

assertionScheme Of type required DOMString

Assertion scheme

D.3.7.4 Detailed description for processing the authenticate request
Refer to the Annex C for more information about the TAGs and structure mentioned in this paragraph.

1. Locate the authenticator using authenticatorindex. If the authenticator cannot be located,
then fail with uar Asv STATUS AUTHENTTICATOR DISCONNECTED,

2. If no user is enrolled with this authenticator (such as biometric enrollment, PIN setup, etc.),
return UAr AsM STATUS ACCESS DENIED

3. The ASM MUST request the authenticator to verify the user.

o If the user is locked out (e.g., too many failed attempts to get verified) and the
authenticator cannot automatically trigger unblocking, return var asv sTATUS
USER LOCKOUT.

o If verification fails, return uar Asv STATUS ACCESS DENIED

140 Rec. ITU-T X.1277 (11/2018)

NOTE — If the authenticator supports UserverificationToken (See Annex C), the ASM must obtain this
token in order to later pass to sign command.

4.
S.

Construct keaccessToken (See section KHAccessToken for more details)

Hash the provided ruthenticateTn. finalChallenge USinG an authenticator-specific hash
fUﬂCﬂOﬂ(FinalChallengeHash)

The authenticator's preferred hash function information MUST meet the algorithm defined
intheAuthenticatorlnfo.authenticationAlgorithmfmki

If this is a Second Factor authenticator and ruthenticatein.keyIDs IS empty, then return
UAF ASM STATUS ACCESS DENIED

If Authenticateln.keylIDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with
AuthenticateIn.applD and AuthenticateIn.keyIDs and obtain the KeyHandbs
associated with it.

* Return uvar asv sTATUS KEY DIsAPPEARED pERMANENTLY If the related key
disappeared permanently from the authenticator.

* Returnuar asv sTaTUS AcceEss peENTED If no entry has been found.
2. If this is a roaming authenticator, then treat AuthenticateTn. keyTDs as KeyHandles
Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.

1. Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (” not
enuny) FinalChallengeHash, KHAccessToken, UserVerificationToken,
KeyHandles
« Depending on AuthenticatorType some arguments may be optional. Refer to Annex

C for more information on authenticator types and their required arguments.

« If multiple transactions are provided, select the one that best matches the current
display characteristics.

NOTE - This may, for example, depend on whether user's device is positioned horizontally or vertically at the
moment of transaction.

10.

i Decode the base64url encoded ruthenticatein.Transaction.content before
passing it to the authenticator
Invoke the command and receive the response. If the authenticator returns an error, handle
that error appropriately. If the connection to the authenticator gets lost and cannot be restored,
return uar AsM STATUS AUTHENTICATOR DIsconnecTED. If the operation finally fails, map
the authenticator error code to the appropriate ASM error code (see clause D.3.2.2 Mapping
Authenticator Status Codes to ASM Status Codes for details).

Parse TAG UAFV1 SIGN CMD RESP

o If it's a first-factor authenticator and the response includes T2c UseErnAME
AND KEYHANDLE, then

1. Extract usernames from T2c UsernaME AND KEvHANDLE fields

2. If two or more equal usernames are found, then choose the one which has registered
most recently

NOTE - After this step, a first-factor bound authenticator which stores KeyHandles inside
the ASM's database may delete the redundant KeyHandles from the ASM's database. This
avoids having unusable (old) private key in the authenticator which (surprisingly) might
become active after deregistering the newly generated one.

3. Show remaining distinct usernames and ask the user to choose a single username

Rec. ITU-T X.1277 (11/2018) 141

4. SetTac UAFVI STGN CMD.KeyHandles t0 the single KeyHandle associated with the
selected username.

5. Gotostep#8 and send a new TAG UAFV1 SIGN CMD command
11. Create the AuthenticateOut object

1. Set AuthenticateOut.assertionScheme as AuthenticatorInfo.assertion
Scheme

2. Encode the content of TAc AUTHENTICATOR ASSERTION (€.0., TAG UAFVI AUTH
asserTTON) In base64url format and set as ruthenticateout . .assertion

3. Returnthe ruthenticateout object

NOTE 1 — Some authenticators might support "Transaction Confirmation Display" functionality not inside the
authenticator but within the boundaries of the ASM. Typically these are software based Transaction
Confirmation Displays. When processing the s i gn command with a given transaction such ASM should show
transaction content in its own Ul and after user confirms it — pass the content to authenticator so that the
authenticator includes it in the final assertion.

NOTE 2 — See Annex J for flags describing Transaction Confirmation Display type.

The authenticator metadata statement MUST truly indicate the type of transaction confirmation
display implementation. Typically the "Transaction Confirmation Display" flag will be set to
TRANSACTION CONFIRMATION DISPLAY ANY (bitwiSe) Or TRANSACTION CONFIRMATION DISPLAY
PRIVILEGED SOFTWARE.

D.3.8 Deregister request
Delete registered UAF record from the authenticator.

For a Deregister request, the following 2svrequest member(s) MUST have the following value(s).
The remaining 2svrequest members SHOULD be omitted:

. ASMRequest . requestType MUST be setto peregister

. AsMRequest.asmversion MUST be set to the desired version

. ASMRequest.authenticatorindex MUST be set to the target authenticator index
. AsMrequest .args MUST be set to an object of type peregisterin

For a Deregister response, the following ~svresponse member(s) MUST have the following
value(s). The remaining 2svresponse members SHOULD be omitted:

° ASMResponse.statusCode MUST have one of the following values:
UAF ASM STATUS OK

O UAF_ASM STATUS ERROR
O UAF _ASM STATUS ACCESS_ DENIED
O UAF_ASM STATUS AUTHENTICATOR DISCONNECTED

D.3.8.1 Deregisterln object

dictionary DeregisterIn ({
required DOMString applD;
required DOMString keyID;

D.3.8.1.1 Dictionary peregisterin members
appID Of type required DOMString

FIDO server application identity

142 Rec. ITU-T X.1277 (11/2018)

keyID Of type required DOMString

Base64url-encoded [IETF RFC 4648] key identifier of the authenticator to be de-registered.
The xey1D can be an empty string. In this case all xey1os related to this zppto MUST be
deregistered.

D.3.8.2 Detailed description for processing the deregister request

Refer to Annex C for more information about the TAGs and structures mentioned in this paragraph.

1. Locate the authenticator using authenticatorindex
2. Construct kaaccessToken (See section KHAccessToken for more details).
3. If this is a bound authenticator, then

o If the value of peregisterin.keyID IS an empty string, then lookup all pairs of this
app1D and any key1p mapped to this authenticatorindex and delete them. Go to
step 4.

o Otherwise, lookup the authenticator related data in the ASM database and delete the
record associated with peregisterin.appidand Deregisterin.keyin. GO to Step 4.

4, Create the TAc UAFV1 DEREGISTER CMD Structure, COpY KiiccessToken and Deregister
In.key1D and pass it to the authenticator.

NOTE — In the case of roaming authenticators, the ke 1D passed to the authenticator might be an empty string.
The authenticator is supposed to deregister all keys related to this 2pp 1D in this case.

5. Invoke the command and receive the response. If the authenticator returns an error, handle
that error appropriately. If the connection to the authenticator gets lost and cannot be restored,
return uar asv STATUS AUTHENTTICATOR DIsconnecTED. If the operation finally fails, map
the authenticator error code to the appropriate ASM error code (see clause D.3.2.2 Mapping
Authenticator Status Codes to ASM Status Codes for details). Return proper ASMResponse.

D.3.9 GetRegistrations request
Return all registrations made for the calling FIDO UAF client.

For a GetRegistrations request, the following ~svrequest member(s) MUST have the following
value(s). The remaining 2svrequest members SHOULD be omitted:

. ASMRequest . requestType MUST be setto Getregistrations
° ASMRequest .asmVersion MUST be set to the desired version
° ASMRequest.authenticatorIndex MUST be set to corresponding 1D

For a GetRegistrations response, the following ~svresponse member(s) MUST have the following
value(s). The remaining 2svresponse members SHOULD be omitted:

° ASMResponse.statusCode MUST have one of the following values:
O UAF ASM STATUS OK
O UAF ASM STATUS ERROR
O UAF ASM STATUS AUTHENTICATOR DISCONNECTED
o The rsMRresponse. responsepata MUST be an object of type cetregistrationsout. In
the case of an error the values of the fields might be empty (e.g., empty strings).

D.3.9.1 GetRegistrationsOut object

dictionary GetRegistrationsOut {
required AppRegistration[] appRegs;

Rec. ITU-T X.1277 (11/2018) 143

}i

D.3.9.1.1 Dictionary cetRegistrationsout members
appregs Of type array of required AppRegistration
List of registrations associated with an zpp1D (See rppregistration below). MAY be an
empty list.

D.3.9.2 AppRegistration object

dictionary AppRegistration {
required DOMString applID;
required DOMString[] keyIDs;
}i

D.3.9.2.1 Dictionary appRegistration members
app1D Of type required DOMString

FIDO server Application Identity.

keyIDs of type array of required DOMString

List of key identifiers associated with the app1D

D.3.9.3 Detailed description for processing the GetRegistrations request
1. Locate the authenticator using authenticatorindex
2. If this is bound authenticator, then

o Lookup the registrations associated with CallerID and AppID in the ASM database and
construct a list of 2ppregistration objects

NOTE - Some ASMs might not store this information inside their own database. Instead it might
have been stored inside the authenticator's secure storage area. In this case the ASM must send a
proprietary command to obtain the necessary data.

3. Create Getregistrationsout objectand return
D.3.10 OpenSettings request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user
interface, then the ASM MUST invoke T2c uarvl opeN seETTINGS cMmD to display it.

For an OpenSettings request, the following zsvrequest member(s) MUST have the following
value(s). The remaining 2svrequest members SHOULD be omitted:

. ASMRequest . requestType MUST be setto opensettings
° ASMRequest .asmVersion MUST be set to the desired version
° ASMRequest.authenticatorIndex MUST be set to the target authenticator index

For an OpenSettings response, the following 2svresponse member(s) MUST have the following
value(s). The remaining 2svresponse members SHOULD be omitted:

. ASMResponse.statusCode MUST have one of the following values:

O UAF_ASM STATUS OK

144 Rec. ITU-T X.1277 (11/2018)

D.4 Using ASM API

In a typical implementation, the FIDO UAF client will call cet1nfo during initialization and obtain
information about the authenticators. Once the information is obtained it will typically be used during
FIDO UAF message processing to find a match for given FIDO UAF policy. Once a match is found
the FIDO UAF client will send the appropriate request (Register/Authenticate/Deregister...) to this
ASM.

The FIDO UAF client may use the information obtained from a ce+ 1n o response to display relevant
information about an authenticator to the user.

D.5 Using the ASM API on various platforms

D.5.1 Android ASM Intent API

On Android systems FIDO UAF ASMs MAY be implemented as a separate APK-packaged
application.

The FIDO UAF client invokes ASM operations via Android Intents. All interactions between the
FIDO UAF client and an ASM on Android takes place through the following intent identifier:

org.fidoalliance.intent.FIDO OPERATION

To carry messages described in this Annex, an intent MUST also have its type attribute set to
application/fido.uaf asm+json.

ASMs MUST register that intent in their manifest file and implement a handler for it.

FIDO UAF clients MUST append an extra, message, containing a string representation of a
rsMrequest, before invoking the intent.

FIDO UAF clients MUST invoke ASMs by calling startactivityForResult ()

FIDO UAF clients SHOULD assume that ASMs will display an interface to the user in order to handle
this intent, e.g., prompting the user to complete the verification ceremony. However, the ASM
SHOULD NOT display any user interface when processing a cetnfo request.

After processing is complete the ASM will return the response intent as an argument to
onActivityresult (). The response intent will have an extra, message, containing a string
representation of a AsMResponse.

D.5.1.1 Discovering ASMs

FIDO UAF clients can discover the ASMs available on the system by using
PackageManager.querylIntentActivities(Intent intent, int flags) with the FIDO Intent described above
to see if any activities are available.

A typical FIDO UAF client will enumerate all ASM applications using this function and will invoke
the cet1nfo operation for each one discovered.

D.5.1.2 Alternate Android AIDL service ASM implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative
transport mechanism to Android Intents. Please see Android Intent API clause in Annex B for
differences between the Android AIDL service and Android Intent implementation.

D.5.2 Windows ASM API

On Windows, an ASM is implemented in the form of a dynamic link library (DLL). The following is
an example asmplugin.n header file defining a Windows ASM API:

Rec. ITU-T X.1277 (11/2018) 145

EXAMPLE 1

146

/*! @file asm.h
*/

#ifndef ASMH

#define ASMH

#ifdef WIN32

#define ASM API declspec(dllexport)
#endif

#ifdef WIN32
#pragma warning (disable : 4251)
#endif

#define ASM FUNC extern "C" ASM API
#define ASM NULL 0

/*! \brief Error codes returned by ASM Plugin API.
* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.

*/

enum asmResult t

{
Success = 0, /**< Success */
Failure /**< Generic failure */

b

/*! \brief Generic structure containing JSON string in UTF-8

* format.

* This structure is used throughout functions to pass and receives
* JSON data.

*/

struct asmJSONData t

{
int length; /**< JSON data length */
char pbData,; /*< JSON data */

}i

/*! \brief Enumeration event types for authenticators.

These events will be fired when an authenticator becomes
available (plugged) or unavailable (unplugged).

*/

enum asmEnumerationType t
{
Plugged = 0, /**< Indicates that authenticator Plugged to system */
Unplugged /**< Indicates that authenticator Unplugged from system */
}i

namespace ASM
{
/*! \brief Callback listener.
FIDO UAF Client must pass an object implementating this interface to
Authenticator::Process function. This interface is used to provide
ASM JSON based response data.*/
class ICallback
{
public
virtual ~ICallback() {}
/**
This function is called when ASM's response is ready.
*
@param response JSON based event data
@param exchangeData must be provided by ASM if it needs some
data back right after calling the callback function.
The lifecycle of this parameter must be managed by ASM. ASM must
allocate enough memory for getting the data back.
*/

Rec. ITU-T X.1277 (11/2018)

virtual void Callback(const asmJSONData t &response,
asmJSONData t &exchangeData) = 0O;
b

/*! \brief Authenticator Enumerator.

FIDO UAF Client must provide an object implementing this

interface. It will be invoked when a new authenticator is plugged or
when an authenticator has been unplugged. */

class IEnumerator

{

public
virtual ~IEnumerator () {}
/**
This function is called when an authenticator is plugged or
unplugged.

* @param eventType event type (plugged/unplugged)
@param AuthenticatorInfo JSON based GetInfoResponse object

*/
virtual void Notify(const asmEnumerationType t eventType, const
asmJSONData t &AuthenticatorInfo) = 0;
}i

}

/**

Initializes ASM plugin. This is the first function to be
called.

*

@param pEnumerationListener caller provided Enumerator

*/

ASM FUNC asmResult t asmInit (ASM::IEnumerator
*pEnumerationlListener) ;
/**

Process given JSON request and returns JSON response.
*

If the caller wants to execute a function defined in ASM JSON

schema then this is the function that must be called.
*

@param pInData input JSON data

@param pListener event listener for receiving events from ASM

*/

ASM FUNC asmResult t asmProcess (const asmJSONData t *pInData,
ASM: :ICallback *pListener);

/**

Unitializes ASM plugin.

*

*/
ASM FUNC asmResult t asmUninit();
#endif // _ ASMPLUGINH

A Windows-based FIDO UAF client MUST look for ASM DLLs in the following registry paths:
HKCU\Software\FIDO\UAF\ASM

HKLM\ Software\FIDO\UAF\ASM

The FIDO UAF client iterates over all keys under this path and looks for "path™ field:
[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE PATH TO ASM>.dll"

path MUST point to the absolute location of the ASM DLL.

Rec. ITU-T X.1277 (11/2018) 147

D.6 Security and privacy guidelines

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs must
follow these security guidelines:

. ASMs MUST implement a mechanism for isolating UAF credentials registered by two
different FIDO UAF clients from one another. One FIDO UAF client MUST NOT have
access to FIDO UAF credentials that have been registered via a different FIDO UAF client.
This prevents malware from exercising credentials associated with a legitimate FIDO client.

NOTE 1 — ASMs must properly protect their sensitive data against malware using platform-provided isolation

capabilities in order to follow the assumptions made in Annex L. Malware with root access to the system or

direct physical attack on the device are out of scope for this requirement.

NOTE 2 — The following are examples for achieving this:

o Ifan ASM is bundled with a FIDO UAF client, this isolation mechanism is already built-
in.

o If the ASM and FIDO UAF client are implemented by the same vendor, the vendor may
implement proprietary mechanisms to bind its ASM exclusively to its own FIDO UAF
client.

o On some platforms ASMs and the FIDO UAF clients may be assigned with a special
privilege or permissions which regular applications do not have. ASMs built for such
platforms may avoid supporting isolation of UAF credentials per FIDO UAF clients since
all FIDO UAF clients will be considered equally trusted.

. An ASM designed specifically for bound authenticators MUST ensure that FIDO UAF
credentials registered with one ASM cannot be accessed by another ASM. This is to prevent
an application pretending to be an ASM from exercising legitimate UAF credentials.

o Using a KHAccessToken offers such a mechanism.

. An ASMs must implement platform-provided security best practices for protecting UAF
related stored data.

. ASMs MUST NOT store any sensitive FIDO UAF data in its local storage, except the
following:

O CallerID, ASMToken, PersonalD, KeyID, KeyHandle, AppID

NOTE — An ASM, for example, must never store a username provided by a FIDO server in its local storage in
a form other than being decryptable exclusively by the authenticator.

. ASMs SHOULD ensure that applications cannot use silent authenticators for tracking
purposes. ASMs implementing support for a silent authenticator MUST show, during every
registration, a user interface which explains what a silent authenticator is, asking for the users
consent for the registration. Also, it is RECOMMENDED that ASMs designed to support
roaming silent authenticators either

o Run with a special permission/privilege on the system, or
o Have a built-in binding with the authenticator which ensures that other applications
cannot directly communicate with the authenticator by bypassing this ASM.

D.6.1 KHAccessToken

KHAccessToken IS an access control mechanism for protecting an authenticator's FIDO UAF
credentials from unauthorized use. It is created by the ASM by mixing various sources of information
together. Typically, a kirccessToken contains the following four data items in it: 2zpp1D, Personatn,
ASMToken and callerID.

rpp1D is provided by the FIDO server and is contained in every FIDO UAF message.

148 Rec. ITU-T X.1277 (11/2018)

rersonaID IS obtained by the ASM from the operational environment. Typically a different
rersonalD IS assigned to every operating system user account.
asMToken IS a randomly generated secret which is maintained and protected by the ASM.

NOTE - In a typical implementation an ASM will randomly generate an ASMToken when it is launched the
first time and will maintain this secret until the ASM is uninstalled.

caller1D IS the ID the platform has assigned to the calling FIDO UAF client (e.g., "bundle ID" for
b-iOS). On different platforms the CallerID can be obtained differently.
NOTE — For example on Android platform ASM can use the hash of the caller's apk-signing-cert.

The ASM uses the krAccessToken to establish a link between the ASM and the key handle that is
created by authenticator on behalf of this ASM.

The ASM provides the xiaccessToken to the authenticator with every command which works with
key handles.

NOTE - The following example describes how the ASM constructs and uses KHAccessToken.

. During a register request

o Set kHAccessToken t0 a secret value only known to the ASM. This value will always be
the same for this ASM.

o Append 2pp1D
— KHAccessToken = AppID

o If a bound authenticator, append ~svToken, Personatpand calleriD
— KHAccessToken |= ASMToken | PersonalID | CallerID

o Hash kiaccessToken

— Hash xraccessToken using the authenticator's hashing algorithm. The reason of
using authenticator specific hash function is to make sure of interoperability between
ASMs. If interoperability is not required, an ASM can use any other secure hash
function it wants.

— KHAccessToken=hash (KHAccessToken)
o Provide xiaccessToken to the authenticator.

o The authenticator puts the kiaccessToken INtO RawkeyHandle (See Annex C for more
details).

. During other commands which require xraccessToken as input argument

o The ASM computes xHirccessToken the same way as during the register request and
provides it to the authenticator along with other arguments.

o The authenticator unwraps the provided key handle(s) and proceeds with the command
0I’]|y if RawKeyHandle .KHAccessToken IS equal to the provided KHAccessToken.

Bound authenticators MUST support a mechanism for binding generated key handles to ASMs. The
binding mechanism MUST have at least the same security characteristics as mechanism for protcting
KHAccessToken described above. As a consequence it is RECOMMENDED to securely derive
KHAccessToken from AppID, ASMToken, PersonalD and the caller1D.

NOTE 1 - It is recommended for roaming authenticators that the kHAccessToken contains only the rpp1D
since otherwise users won't be able to use them on different machines (Persona1b, AsMToken and callerID

are platform specific). If the authenticator vendor decides to do that in order to address a specific use case,
however, it is allowed.

NOTE 2 — Including Persona1D in the kKHAccessToken is optional for all types of authenticators. However
an authenticator designed for multi-user systems will likely have to support it.

Rec. ITU-T X.1277 (11/2018) 149

If an ASM for roaming authenticators does not use a xHaccessToken Which is different for each
app1D, the ASM MUST include the ~pp 1o in the command for a deregister request containing an

empty Key1D.

D.6.2 Access control for ASM APIs

The following table summarizes the access control requirements for each API call.

ASMs MUST implement the access control requirements defined below. ASM vendors MAY

implement additional security mechanisms.

Terms used are listed in Table D.2:

. NoAuth — NO access control

. callertp— FIDO UAF client's platform-assigned ID is verified
. Userverify — User must be explicitly verified

. KeyIDList —must be known to the caller

Table D.2 — Access control requirements

First-factor

Second-factor

First-factor

Second-factor

Commands bound bound roaming roaming
authenticator authenticator authenticator authenticator
GetInfo NoAuth NoAuth NoAuth NoAuth
OpensSettings NoAuth NoAuth NoAuth NoAuth
Register UserVerify UserVerify UserVerify UserVerify
. UserVerify
UserVerify AppID . UserVerify
. ApplID . UserVerify .
Authenticate KeyIDList AppiD
CallerID ApplID .
PersonalD CallerID KeylDList
PersonalD
. . CallerID CallerID
*
GetRegistrations PersonalD PersonalD X X
ApplID ApplD
. KeylD KeylD ApplID AppID
Deregister PersonalD PersonalD KeyID KeylD
CallerID CallerID

150 Rec. ITU-T X.1277 (11/2018)

Annex E

UAF registry of predefined values
(This annex forms an integral part of this Recommendation.)

E.1 Overview

This annex defines the registry of FIDO-specific constants common to multiple FIDO protocol
families. It is expected that, over time, new constants will be added to this registry. For example new
authentication algorithms and new types of authenticator characteristics will require new constants to
be defined for use within the specifications.

E.2 Authenticator characteristics

E.2.1 User verification methods

The user verTFY constants are flags in a bitfield represented as a 32 bit long integer. They describe
the methods and capabilities of an UAF authenticator for locally verifying a user. The operational
details of these methods are opaque to the server. These constants are used in the authoritative
metadata for an authenticator, reported and queried through the UAF discovery APIs and used to
form authenticator policies in UAF protocol messages.

All user verification methods must be performed locally by the authenticator in order to meet FIDO
privacy principles.

USER _VERIFY PRESENCE 0x00000001

This flag MUST be set if the authenticator is able to confirm user presence in any fashion.
If this flag and no other is set for user verification, the guarantee is only that the authenticator
cannot be operated without some human intervention, not necessarily that the presence
verification provides any level of authentication of the human's identity. (e.g., a device that
requires a touch to activate)

USER VERIFY FINGERPRINT 0x00000002

This flag MUST be set if the authenticator uses any type of measurement of a fingerprint for
user verification.

USER _VERIFY PASSCODE 0x00000004

This flag MUST be set if the authenticator uses a local-only passcode (i.e., a passcode not
known by the server) for user verification.

USER VERIFY VOICEPRINT 0x00000008

This flag MUST be set if the authenticator uses a voiceprint (also known as speaker
recognition) for user verification.

USER VERIFY FACEPRINT 0x00000010

This flag MUST be set if the authenticator uses any manner of face recognition to verify the
user.

USER _VERIFY LOCATION 0x00000020

This flag MUST be set if the authenticator uses any form of location sensor or measurement
for user verification.

USER _VERIFY EYEPRINT 0x00000040

This flag MUST be set if the authenticator uses any form of eye biometrics for user
verification.

Rec. ITU-T X.1277 (11/2018) 151

USER _VERIFY PATTERN 0x00000080

This flag MUST be set if the authenticator uses a drawn pattern for user verification.

USER_VERIFY HANDPRINT 0x00000100

This flag MUST be set if the authenticator uses any measurement of a full hand (including
palm-print, hand geometry or vein geometry) for user verification.

USER_VERIFY NONE 0x00000200

This flag MUST be set if the authenticator will respond without any user interaction (e.g.,
Silent Authenticator).

USER_VERIFY ALL 0x00000400

If an authenticator sets multiple flags for user verification types, it MAY also set this flag to
indicate that all verification methods will be enforced (e.g., faceprint AND voiceprint). If flags
for multiple user verification methods are set and this flag is not set, verification with only
one is necessary (e.g., fingerprint OR passcode).

E.2.2 Key protection types

The xev proTECTTON constants are flags in a bit field represented as a 16 bit long integer. They
describe the method an authenticator uses to protect the private key material for FIDO registrations.
Refer to Annex C for more details on the relevance of keys and key protection. These constants are
used in the authoritative metadata for an authenticator, reported and queried through the UAF
discovery APIs and used to form authenticator policies in UAF protocol messages.

When used in metadata describing an authenticator, several of these flags are exclusive of others (i.e.,
can not be combined) — the certified metadata may have at most one of the mutually exclusive bits
set to 1. When used in authenticator policy, any bit may be set to 1, e.g., to indicate that a server is
willing to accept authenticators using either xev PROTECTTON SOFTWARE OF KEY PROTECTTION
HARDWARE.

NOTE - These flags must be set according to the effective security of the keys, in order to follow the
assumptions made in Annex L. For example, if a key is stored in a secure element but software running on the
FIDO user device could call a function in the secure element to export the key either in the clear or using an
arbitrary wrapping key, then the effective security is kKevy PROTECTION SOFTWARE and not
KEY PROTECTION SECURE ELEMENT.

KEY PROTECTION SOFTWARE 0x0001

This flag MUST be set if the authenticator uses software-based key management. Exclusive

in authenticator metadata with x&Ev PROTECTION HARDWARE, KEY PROTECTION TEE,
KEY PROTECTION SECURE ELEMENT

KEY PROTECTION HARDWARE 0x0002
This flag SHOULD be set if the authenticator uses hardware-based key management.
Exclusive in authenticator metadata with x=v PROTECTTION SOFTWARE

KEY PROTECTION TEE 0x0004
This flag SHOULD be set if the authenticator uses the trusted execution environment [b-TEE]
for key management. In authenticator metadata, this flag should be set in conjunction with

kKEy PROTECTTON HARDWARE. Mutually exclusive in authenticator metadata with
KEY PROTECTION SOFTWARE, KEY PROTECTION SECURE ELEMENT

KEY PROTECTION SECURE ELEMENT 0x0008
This flag SHOULD be set if the authenticator uses a Secure Element [b-SecureElement] for
key management. In authenticator metadata, this flag should be set in conjunction with

kKey PROTECTION HARDWARE. Mutually exclusive in authenticator metadata with
KEY PROTECTION TEE, KEY PROTECTION SOFTWARE

152 Rec. ITU-T X.1277 (11/2018)

KEY PROTECTION_ REMOTE HANDLE 0x0010

This flag MUST be set if the authenticator does not store (wrapped) UAuth keys at the client,
but relies on a server-provided key handle. This flag MUST be set in conjunction with one of
the other xev rproTEcTTON flags to indicate how the local key handle wrapping key and
operations are protected. servers MAY unset this flag in authenticator policy if they are not
prepared to store and return key handles, for example, if they have a requirement to respond
indistinguishably to authentication attempts against userIDs that do and do not exist. Refer to
Annex A for more details.

E.2.3 Matcher protection types

The vaTcrEr PrOTECTTON CcONStants are flags in a bit field represented as a 16 bit long integer. They
describe the method an authenticator uses to protect the matcher that performs user verification. These
constants are used in the authoritative metadata for an authenticator, reported and queried through the
UAF Discovery APIs and used to form authenticator policies in UAF protocol messages. Refer to
Annex C for more details on the matcher component.

NOTE — These flags must be set according to the effective security of the matcher, in order to follow the
assumptions made in Annex L. For example, if a passcode based matcher is implemented in a secure element,
but the passcode is expected to be provided as unauthenticated parameter, then the effective security is
MATCHER PROTECTION SOFTWARE and not MATCHER PROTECTION ON CHIP.

MATCHER PROTECTION SOFTWARE 0x0001

This flag MUST be set if the authenticator's matcher is running in software. Exclusive in
authenticator metadata with MATCHER PROTECTION TEE, MATCHER PROTECTION ON CHIP

MATCHER PROTECTION TEE 0x0002

This flag SHOULD be set if the authenticator's matcher is running inside the trusted execution
environment [b-TEE]. Mutually exclusive in authenticator metadata with vaTcuErR
PROTECTION SOFTWARE, MATCHER PROTECTION ON CHIP

MATCHER PROTECTION ON CHIP 0x0004

This flag SHOULD be set if the authenticator's matcher is running on the chip. Mutually

exclusive in authenticator metadata with vATCHER PROTECTION TEE, MATCHER PROTECTION
SOFTWARE

E.2.4 Authenticator attachment hints

The arracuvenT HinT constants are flags in a bit field represented as a 32 bit long. They describe
the method an authenticator uses to communicate with the FIDO user device. These constants are
reported and queried through the UAF Discovery APIs Annex B and used to form authenticator
policies in UAF protocol messages. Because the connection state and topology of an authenticator
may be transient, these values are only hints that can be used by server-supplied policy to guide the
user experience, e.g., to prefer a device that is connected and ready for authenticating or confirming
a low-value transaction, rather than one that is more secure but requires more user effort.

NOTE — These flags are not a mandatory part of authenticator metadata and, when present, only indicate
possible states that may be reported during authenticator discovery.

ATTACHMENT HINT INTERNAL 0x0001

This flag MAY be set to indicate that the authenticator is permanently attached to the FIDO
user device.

A device such as a smartphone may have authenticator functionality that is able to be used
both locally and remotely. In such a case, the FIDO client MUST filter and exclusively report
only the relevant bit during discovery and when performing policy matching.

This flag cannot be combined with any other arracuvenT HinT flags.

Rec. ITU-T X.1277 (11/2018) 153

ATTACHMENT HINT EXTERNAL 0x0002

This flag MAY be set to indicate, for a hardware-based authenticator, that it is removable or
remote from the FIDO user device.

A device such as a smartphone may have authenticator functionality that is able to be used
both locally and remotely. In such a case, the FIDO UAF client MUST filter and exclusively
report only the relevant bit during discovery and when performing policy matching.

ATTACHMENT HINT WIRED 0x0004

This flag MAY be set to indicate that an external authenticator currently has an exclusive
wired connection, e.g., through USB, Firewire or similar, to the FIDO user device.

ATTACHMENT HINT WIRELESS 0x0008

This flag MAY be set to indicate that an external authenticator communicates with the FIDO
user device through a personal area or otherwise non-routed wireless protocol, such as
Bluetooth or NFC.

ATTACHMENT HINT NFC 0x0010

This flag MAY be set to indicate that an external authenticator is able to communicate by
NFC to the FIDO user device. As part of authenticator metadata, or when reporting
characteristics through discovery, if this flag is set, the rArTacuvenT HinT WireLEss flag
SHOULD also be set as well.

ATTACHMENT HINT BLUETOOTH 0x0020

This flag MAY be set to indicate that an external authenticator is able to communicate using
Bluetooth with the FIDO user device. As part of authenticator metadata, or when reporting
characteristics through discovery, if this flag is set, the rArTacuvenT HinT WwireLess flag
SHOULD also be set.

ATTACHMENT HINT NETWORK 0x0040

This flag MAY be set to indicate that the authenticator is connected to the FIDO user device
over a non-exclusive network (e.g., over a TCP/IP LAN or WAN, as opposed to a PAN or
point-to-point connection).

ATTACHMENT HINT READY 0x0080

This flag MAY be set to indicate that an external authenticator is in a "ready" state. This flag
is set by the ASM at its discretion.
NOTE — Generally this should indicate that the device is immediately available to perform user verification
without additional actions such as connecting the device or creating a new biometric profile enrollment, but
the exact meaning may vary for different types of devices. For example, a USB authenticator may only report
itself as ready when it is plugged in, or a Bluetooth authenticator when it is paired and connected, but an NFC-
based authenticator may always report itself as ready.

ATTACHMENT HINT WIFI DIRECT 0x0100

This flag MAY be set to indicate that an external authenticator is able to communicate using
WiFi Direct with the FIDO user device. As part of authenticator metadata and when reporting
characteristics through discovery, if this flag is set, the rArTacuvenT HinT WwireLess flag
SHOULD also be set.

E.2.5 Transaction confirmation display types

The TrRANSACTION CONFIRMATION DISPLAY constants are flags in a bit field represented as a 16 bit
long integer. They describe the availability and implementation of a transaction confirmation display
capability required for the transaction confirmation operation. These constants are used in the
authoritative metadata for an authenticator, reported and queried through the UAF Discovery APIs

154 Rec. ITU-T X.1277 (11/2018)

and used to form authenticator policies in UAF protocol messages. Refer to Annex C for more details
on the security aspects of TransactionConfirmation display.

TRANSACTION CONFIRMATION DISPLAY ANY 0x0001
This flag MUST be set to indicate that a transaction confirmation display, of any type, is
available on this authenticator. Other TransacTIoN conrirMaTION DIspLAY flags MAY

also be set if this flag is set. If the authenticator does not support a transaction confirmation
display, then the value of TransacTTON conrTrMaTTON DTspr.ay MUST be set to 0.

TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE 0x0002

This flag MUST be set to indicate, that a software-based transaction confirmation display
operating in a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability MAY set this bit (in conjunction
with TransacTTON conrTrMAaTTON DIsPLaY any) for all authenticators of type
ATTACHMENT HINT INTERNAL, even if the authoritative metadata for the authenticator does
not indicate this capability.

NOTE - Software based transaction confirmation displays might be implemented within the boundaries of the
ASM rather than by the authenticator itself (Annex D).

This flag is mutually exclusive with TrANSACTTON CONFIRMATION DISPLAY TEE and
TRANSACTION CONFIRMATION DISPLAY HARDWARE.

TRANSACTION CONFIRMATION DISPLAY TEE 0x0004
This flag SHOULD be set to indicate that the authenticator implements a transaction
confirmation display in a trusted execution environment ([b-TEE], [b-TEESecureDisplay]).

This flag is mutually exclusive with TRANSACTION CONFIRMATION DISPLAY
PRIVILEGED SOFTWARE and TRANSACTION CONFIRMATION DISPLAY HARDWARE.

TRANSACTION CONFIRMATION DISPLAY HARDWARE 0x0008

This flag SHOULD be set to indicate that a transaction confirmation display based on
hardware assisted capabilities is available on this authenticator. This flag is mutually exclusive
VWth TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE and TRANSACTION
CONFIRMATION DISPLAY TEE.

TRANSACTION CONFIRMATION DISPLAY REMOTE 0x0010

This flag SHOULD be set to indicate that the transaction confirmation display is provided on
a distinct device from the FIDO user device. This flag can be combined with any other flag.
E.2.6 Tags used for crypto algorithms and types
These tags indicate the specific authentication algorithms, public key formats and other crypto
relevant data.
E.2.6.1 Authentication algorithms

The ~1.c stcn constants are 16 bit long integers indicating the specific signature algorithm and
encoding.

NOTE — FIDO UAF supports RAW and DER signature encodings in order to allow small footprint
authenticator implementations.

ALG_SIGN SECP256R1_ECDSA SHA256 RAW 0x0001

An ECDSA signature on the NIST secp256r1 curve which MUST have raw R and S buffers,
encoded in big-endian order. This is the signature encoding as specified in [b-ECDSA-ANSI].

I.e.,, [R (32 bytes), S (32 bytes)]

Rec. ITU-T X.1277 (11/2018) 155

This algorithm is suitable for authenticators using the following key representation formats:

« ALG_KEY_ECC_X962_ RAW
« ALG_KEY_ECC_X962_DER
ALG SIGN SECP256R1_ECDSA SHA256 DER 0x0002

DER [ITU-T X.690] encoded ECDSA signature [IETF RFC 5480] on the NIST secp256r1
curve.

i.e., a DER encoded sEQuENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

+ALG_KEY_ECC_X962_RAW
«ALG_KEY_ECC_X962_DER
ALG SIGN RSASSA PSS SHA256 RAW 0x0003

RSASSA-PSS [IETF RFC 3447] signature MUST have raw S buffers, encoded in big-endian
order [IETF RFC 4055] [IETF RFC 4056]. The default parameters as specified in [IETF RFC
4055] MUST be assumed, i.e.,

«Mask generation algorithm MGF1 with SHA256
«Salt Length of 32 bytes, i.e., the length of a SHA256 hash value.
e Trailer field value of 1, which represents the trailer field with hexadecimal value oxzc.

i.e., [S (256 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
+ALG_KEY_RSA 2048 DER

ALG _SIGN RSASSA PSS SHA256 DER 0x0004

DER [ITU-T X.690] encoded OCTET STRING (not BIT STRING!) containing the RSASSA-
PSS [IETF RFC 3447] signature [IETF RFC 4055] [IETF RFC 4056]. The default parameters
as specified in [IETF RFC 4055] MUST be assumed, i.e.,

«Mask generation algorithm MGF1 with SHA256
«Salt Length of 32 bytes, i.e., the length of a SHA256 hash value.
e Trailer Field value of 1, which represents the trailer field with hexadecimal value oxzc.

i.e., a DER encoded octeT strING (including its tag and length bytes).
This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
«ALG_KEY_RSA 2048 DER

ALG_SIGN SECP256K1 ECDSA SHA256 RAW 0x0005

An ECDSA signature on the secp256kl curve which MUST have raw R and S buffers,
encoded in big-endian order.

i.e.[R (32 bytes), S (32 bytes)]

156 Rec. ITU-T X.1277 (11/2018)

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_ECC_X962_RAW
«ALG_KEY_ECC_X962_DER

ALG SIGN SECP256K1 ECDSA SHA256 DER 0x0006
DER [ITU-T X.690] encoded ECDSA signature [IETF RFC 5480] on the secp256k1 curve.
i.e., a DER encoded sEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

+ALG_KEY_ECC_X962_RAW
«ALG_KEY_ECC_X962 DER

ALG SIGN sM2 sM3 rRAW 0x0007 (optional)

Chinese SM2 elliptic curve based signature algorithm combined with SM3 hash algorithm [b-
OSCCA-SM2][b-OSCCA-SM3]. The 256bit curve [b-OSCCA-SM2-curve-param] is used.

This algorithm is suitable for authenticators using the following key representation format:
ALG_KEY_ECC_X962_RAW.

ALG_SIGN RSA EMSA PKCS1 SHA256 RAW 0x0008

This is the EMSA-PKCS1-v1 5 signature as defined in [IETF RFC 3447]. This means that
the encoded message EM will be the input to the cryptographic signing algorithm RSASP1 as
defined in [IETF RFC 3447]. The result s of RSASP1 is then encoded using function 120SP
to produce the raw signature octets.

®EM = 0x00 | 0x01 | PS | 0x00 | T

ewith the padding string PS with length=emLen — tLen — 3 octets having the value Oxff
for each octet, e.qg., (0x) ©f £f £f ff ff £f ff £f

«with the DER [ITU-T X.690] encoded DigestInfo value T: (0x) 30 31 30 0d 06 09 60
86 48 01 65 03 04 02 01 05 00 04 20 | H,where H denotes the bytes of the
SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
«ALG_KEY_RSA 2048 DER

NOTE — Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows the
recommendations in [b-IETF RFC 3218] to protect against adaptive chosen-ciphertext attacks such as
Bleichenbacher.

ALG SIGN RSA EMSA PKCS1 SHA256 DER 0x0009

DER [ITU-T X.690] encoded OCTET STRING (not BIT STRING!) containing the
EMSA-PKCS1-v1_5 signature as defined in [IETF RFC 3447]. This means that the encoded
message EM will be the input to the cryptographic signing algorithm RSASP1 as defined in
[IETF RFC 3447]. The result s of RSASP1 is then encoded using function 120SP to produce
the raw signature. The raw signature is DER [ITU-T X.690] encoded as an OCTET STRING
to produce the final signature octets.

Rec. ITU-T X.1277 (11/2018) 157

®EM = 0x00 | 0x01 | PS | 0x00 | T

ewith the padding string PS with length=emLen — tLen — 3 octets having the value Oxff
for each octet, e.qg., (0x) ©f £f £f £f £f £f £f £f

«with the DER encoded DigestInfo value T: (0x)30 31 30 0d 06 09 60 86 48 01 65
03 04 02 01 05 00 04 20 | =, where H denotes the bytes of the SHA256 hash
value.

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
+ALG_KEY_RSA 2048 DER

NOTE — Implementers should verify that their implementation of the PKCS#1 V1.5 signature
follows the recommendations in [b-IETF RFC 3218] to protect against adaptive chosen-
ciphertext attacks such as Bleichenbacher.

E.2.6.2 Public key representation formats
The ~1.c xevy constants are 16 bit long integers indicating the specific Public Key algorithm and
encoding.

NOTE — FIDO UAF supports RAW and DER encodings in order to allow small footprint authenticator
implementations. By definition, the authenticator must encode the public key as part of the registration
assertion.

ALG KEY ECC X962 RAW 0x0100
Raw ANSI X9.62 formatted elliptic curve public key [b-SEC1].

I.e., [0x04, X (32 bytes), ¥ (32 bytes)]. Where the byte 0x04 denotes the uncompressed
point compression method.

ALG_KEY ECC X962 DER 0x0101

DER [ITU-T X.690] encoded ANSI X.9.62 formatted subijectrublickeyinfo [IETF RFC
5480] specifying an elliptic curve public key.

i.e., a DER encoded subjectrublickeyinfo as defined in [IETF RFC 5480].

Authenticator implementations MUST generate namedcurve in the ecrarameters object
which is included in the rigorithmidentifier. A FIDO UAF server MUST accept
namedCurve INthe Ecrarameters object which is included inthe r1gorithmTdentifier.,

ALG_KEY RSA 2048 RAW 0x0102
Raw encoded 2048-bit RSA public key [IETF RFC 3447].
Thatis, (n (256 bytes), e (N-256 bytes)]. Where w is the total length of the field.

This total length should be taken from the object containing this key, e.g., the TLV encoded
field.

ALG KEY RSA 2048 DER 0x0103

ASN.1 DER [ITU-T X.690] encoded 2048-bit RSA [IETF RFC 3447] public key [IETF RFC
4055].

That is a DER encoded sEQUENCE { n INTEGER, e INTEGER }.

158 Rec. ITU-T X.1277 (11/2018)

Annex F

UAF APDU
(This annex forms an integral part of this Recommendation.)

F.1 Summary

This annex defines a mapping of FIDO UAF authenticator commands to application protocol data
units (APDUs) thus facilitating UAF authenticators based on secure elements.

F.2 Introduction

This annex defines the interface between the FIDO UAF authenticator specific module (ASM) Annex
D and authenticators based upon "secure element" technology. The applicable secure element form
factors are UICC (SIM card), embedded secure element (eSE), uSD, NFC card and USB token. Their
common characteristic is they communicate using application programming data units (APDU) in
compliance with [ISO7816-4].

Implementation of this annex is optional in the UAF framework, however, products claiming to
implement the transport of UAF messages over APDUs should implement it.

This annex first describes the various fashions in which secure elements can be incorporated into
UAF authenticator implementations — known as SE-based authenticators or just SE authenticators —
and which components are responsible for handling user verification as well as cryptographic
operations. The specification then describes the overall architecture of an SE-based authenticator
stack from the ASM down to the secure element, the role of the "UAF applet"” running in the secure
element and outlines the nominal communication flow between the ASM and the SE. It then defines
the mapping of UAF authenticator commands to APDUSs, as well as the FIDO-specific variants of the
VERIFY APDU command.

NOTE - This annex does not define how an SE-based authenticator stack may be implemented, e.g., its
integration with TEE or biometric sensors. However, SE-based authenticator vendors should reflect such
implementation characteristics in the authenticator metadata such that FIDO relying parties wishing to be
informed of said characteristics may have access to it.

F.3 SE-based authenticator implementation sse cases

Secure elements can be leveraged in different scenarios in the UAF technology. It can support user
gestures (used to unlock access to FIDO credentials) or it can be involved in the actual cryptographic
operations related to FIDO authentication. This annex considers the following SE-based authenticator
implementation use cases:

1. The secure element (SE) is the (silent) authenticator.

2. The SE is part of the authenticator which is composed of a trusted application (TEE) based
user verification component, potentially a TEE based transaction confirmation display and
the crypto kernel inside the SE (Hybrid SE authenticator).

3. The authenticator (Hybrid SE authenticator) consists of
o the SE implementing the matcher and the crypto kernel
o and a specific software module (e.g., running on the FIDO user device) to capture the
user verification data (e.g., PIN, face, fingerprint).

F.3.1 Hybrid SE authenticator

In FIDO UAF, the access to credentials for performing the actual authentication can be protected by
a user verification step. This user verification step can be based on a PIN, a biometric or other
methods. The authenticator functionality might be implemented in different components, including

Rec. ITU-T X.1277 (11/2018) 159

combinations such as TEE and SE, or fingerprint sensor and SE. In that case the SE implements only
a part of the authenticator functionality.

NOTE 1 - The reason for using such hybrid configuration is that secure elements do not have any user interface
and hence cannot directly distinguish physical user interaction from programmatic communication (e.g., by
malware). The ability to require a physical user interaction that cannot be emulated by malware is essential for
protecting against scalable attacks, see Annex L. On the other hand, TEESs (or biometric sensors implemented
in separate hardware) which can provide a trusted user interface typically do not offer the same level of key
protection as secure elements.

NOTE 2 - Strictly speaking, a hybrid SE authenticator (voluntarily) uses the authenticator command interface
(Annex C) inside the authenticator, e.g., between the crypto kernel and the user verification component.

Examples of hybrid SE authenticators are:

1. User PIN code capture and verification are implemented entirely in a TEE relying on Trusted
User Interface and secure storage capabilities of the TEE and, once the PIN code is verified,
the FIDO UAF crypto operations are performed in the SE.

2. User fingerprint is captured via a fingerprint sensor, the fingerprint match is performed in the
TEE, relying on matching algorithms. Once the fingerprint has been positively checked, the
cryptographic operations are executed in the secure element.

3. The user verification is implemented as match-on-chip in separate hardware and FIDO UAF
cryptographic operations are implemented in the SE.

In all those cases, the hybrid nature of the authenticator will be managed by the software-based host,
regardless of its nature (TEE, SW, biometric sensor,etc.). There are a number of possible interactions
between the ASM and the SE actually implementing the verification and the cryptographic operations
to consider within those use cases.

1. PIN user verification where the user interaction for the PIN entry is performed externally to
the SE. The PIN may then be passed within a VERIFY command to the SE, followed by the
actual cryptographic operations (such as the register and Sign UAF authenticator commands).

2. Biometric user verification where the sample capture and matching is performed externally
to the SE (e.g., in TEE or in a match-on-chip FP sensor). This would then only need to send
to the SE the actual cryptographic operation needed in this session (such as the register and
Sign UAF authenticator commands).

3. User verification sample (Faceprint, Fingerprint, etc.) capture is performed externally to the
SE. The sample is then sent to a match-on-card applet in the SE that behaves as a global PIN
to enable access to the cryptographic operation required within this session.

F.3.1.1 Architecture of the hybrid SE authenticator

In order to support an hybrid SE authenticator, a dedicated software-based host must be created which
knows how the SE applet works. The communication between the SE applet and the host is defined
based on [ISO7816-4]. Whether a PC or mobile device the architecture is still the same, as defined
below:

. Application Layer: This component is responsible for acquiring the user verification
sample and mapping UAF commands to APDU commands.

. Communication layer: Thisisthe [ISO7816-4] APDUs interface, which provides methods
to list and select readers, connect to a secure element and interact with it.

. SE nccess 05 ApTs i OMA, PC/SC, NFC API, CCID, etc.

. secure Element : UICC, micro SD, eSE, Dual Interface card, etc.

Figure F.1 shows the architecture of a hybrid SE authenticator.

160 Rec. ITU-T X.1277 (11/2018)

ASM

L]

Authenticator

Software based host

I Secure element] [Access OS APIsI

Secure
element

X.1277(18)_FF.1

Figure F.1 — Architecture of hybrid SE authenticator

APDU command-response paire are handled as indicated in [ISO7816-4].

F.3.1.2 Communication flow between the ASM and the hybrid SE authenticator

The host is the entity communicating with the SE and which knows how the SE and the applet running
in the SE can be accessed. The host could be a trusted application (TA) which runs inside a TEE or
simply an application which runs in the normal world.

Figure F.2 illustrates how the host of the hybrid SE authenticator MAY map the UAF commands to
APDU commands. In this figure, the user verification module is considered inside the SE applet.

NOTE — If the user verification module is inside the host, for example in the context of the TEE, the
UserVerificationToken Shall be generated in the host and not in the SE. As a result step 6 (Figure F.2)
should be executed in the host instead of the SE.

Rec. ITU-T X.1277 (11/2018) 161

| User l [I SE | Authenticator l Host l] ASM

o UAF TLV command

1

9 — Parses and identifies the UAF TLV
command using TAG_UAFVI1..

If th¢ command does NOT require user verification

o UAF APDU command (see section UAF APDU command) | - Includes UAF TLV command on
N the payload of an APDU command

o UAF APDU response (see section UAF APDU command)

[e e f f]

: o Displays thg verification interface, and retrieves the user mean. I
|

I O vecr e | I

| I

: P o VERIFY APDU command (see VERIFY section below) |

h |

: 0 — Verify user |

| — Generates UserVerificationToken I
|

P |

I o User verification token N User verification token A

L L l

| o — Includes UAF TLV command on |

: the payload of an APDU command |

| . o UAF APDU command I

| M]

: @ UAF APDU response }

o UAF TLV response

A 4

XA1277(18)_FF.2

Figure F.2 — Communication flow between the ASM and
the hybrid SE authenticator

F.4 FIDO UAF applet and APDU commands
F.4.1 UAF applet in the authenticator

F.4.1.1 Application identifier
The FIDO UAF AID is defined in Annex E.

F.4.1.2 User verification

The User verification is based on the submission of a PIN/password (i.e., knowledge based) or a
biometric template (i.e., biometric based).

In this annex, the envisaged user verification methods are PIN and biometric based.

F.4.1.3 Cryptographic operations

The SE applet must be able to perform a set of cryptographic operations, such as key generation and
signature computation. The cryptographic operations are defined in Annex C. The SE applet must be
able also to create data structures that can be parsed by FIDO server. The SE applet SHALL use the
cryptographic algorithms indicated in Annex E.

162 Rec. ITU-T X.1277 (11/2018)

F.4.2 APDU commands for FIDO UAF

F.4.2.1 Class byte coding
CLA indicates the class of the command.

Table F.1 — Class byte coding

Commands CLA
SELECT, VERIFY (ISO Version), GET RESPONSE (ISO Version) 0x00
VERIFY, UAF, GET RESPONSE 0x80

NOTE - If the payload of an APDU command is longer than 255 bytes, command chaining as described in
[1ISO7816-4] should be used, even though CLA is proprietary.

F.4.2.2 APDU command "UAF"

F.4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

This clause describes the mapping between FIDO UAF authenticator commands and APDU
commands.

The mapping consists of encapsulating the entire UAF authenticator command in the payload of the
APDU command and the UAF authenticator Command response in the payload of the APDU
response.

The host SHALL set the INS byte to "0x36" for all UAF commands The SE SHALL read the UAF
command number and data from the payload in the data part of the command.

The payload of the APDU command is encoded according to Annex C, the first 2 bytes of each
command are the UAF command number. Upon command reception, the SE applet MUST parse the
first TLV tag (2 bytes) and figure out which UAF command is being issued. The SE applet SHALL
parse the rest of the FIDO authenticator command payload according to Annex C.

The mapping of UAF authenticator commands to APDU commands is defined in Table F.2.

Table F.2 - UAF APDU command

Data In Le

UAF
Proprietary . Authenticator
(See Table 2) 0x36 0x00 0x00 Variable Command None
structure

The UAF authenticator command structures are defined in part C.6.2 of Annex C.

NOTE — If the UserverificationToken is supported, The ASM must set the TAG USERVERIEY TOKEN
flag in the value of the UserverificationToken, received previously contained in either a Register or
Sign command. Please refer to the Figure F.1 in use case clause.

F.4.2.2.2 Response message and status conditions of an ""UAF" APDU command

The status word of an "UAF" APDU response is handled at the host level; the host must interpret and
map the status word based on Table F.3.

If the status word is equals to "9000", the host shall return back to the ASM the entire data field of
the APDU response. It the status word is "61xx", the host shall issue ceT resronse (see below) until
no more data is available, concatenate these response parts and then return the entire response.

Rec. ITU-T X.1277 (11/2018) 163

Otherwise, the host has to build an UAF TLV response with the mapped status codes
TAG STATUS CODE, Using Table F.3.

For example, if the status word returned by the Applet is "6A88", the host shall put
UAF CMD STATUS USER NOT ENROLLED IN the status codes of the UAF TLV response.

Table F.3 — Mapping between APDU status codes and FIDO status codes Annex C

APDU FIDO UAF
STATUS

CODE

STATUS
CODE

DESCRIPTION

9000

0x00

UAF_CMD_STATUS_OK

Success.

61xx

0x00

UAF_CMD_STATUS_OK

Success, xXx bytes
available for GET
RESPONSE.

6982

0x02

UAF_CMD_STATUS_ACCESS_DENIED

Access to this
operation is
denied.

6A88

0x03

UAF_CMD_STATUS_USER_NOT_ENROLLED

User is not
enrolled with the
authenticator.

N/A

0x04

UAF_CMD_STATUS_CANNOT_RENDER_
TRANSACTION_CONTENT

Transaction
content cannot be
rendered.

N/A

0x05

UAF_CMD_STATUS_USER_CANCELLED

User has
cancelled the
operation.

6400

0x06

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

Command not
supported.

6A81

0x07

UAF_CMD_STATUS_ATTESTATION_NOT _
SUPPORTED

Required
attestation not
supported.

6A80

0x08

UAF_CMD_STATUS_PARAMS_INVALID

The request was
rejected due to an
incorrect data
field.

6983

0x09

UAF_CMD_STATUS_KEY_DISAPPEARED _
PERMANENTLY

The UAuth key
which is relevant
for this command
disappeared from
the authenticator
and cannot be
restored.

N/A

0x0a

UAF_CMD_STATUS_TIMEOUT

The operation in
the authenticator
took longer than
expected.

N/A

0x0e

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

The user took too
long to follow an
instruction.

164

Rec.

ITU-T X.1277 (11/2018)

Table F.3 — Mapping between APDU status codes and FIDO status codes Annex C

APDU FIDO UAF

STATUS STATUS DESCRIPTION
CODE CODE
Insufficient
resources in the
6A84 0xOf UAF CMD_STATUS_INSUFFICIENT RESOURCES | authenticator to

perform the
requested task.

The operation
failed because the
user is locked out
and the

63C0 0x10 UAF_CMD_STATUS_USER_LOCKOUT authenticator
cannot
automatically
trigger an action
to change that.

All other

codes 0x01 UAF_CMD_STATUS_ERR_UNKNOWN An unknown error

The response message of an UAF APDU command is defined in Table F.4:

Table F.4 — Response message of an ""UAF'" APDU command

Data field SW1 - SW?2

"6982" — The request was rejected due to user verification
being required.

"6A80" — The request was rejected due to an incorrect data
field.

not present "6A81" — Required attestation not supported

"6A88" — The user is not enrolled with the SE

"6400" — Execution error, undefined UAF command

"6983" — Authentication data not usable, Auth key
disappeared

UAF Authenticator Command response "61xx" — Success, xx bytes available for GET RESPONSE.
Annex C "9000" — Success

F.4.2.3 APDU command "SELECT"

A successful SELECT AID allows the host to know that the applet is active in the SE and to open a
logical channel with this end.

In Android smartphones apps are not allowed to use the basic channel to the SIM because this channel
is reserved for the baseband processor and the GSM/UMTS/LTE activities. In this case the app must
select the applet in a logical channel.

The host must send a serecT 2pou command to the SE applet before any others commands.

Rec. ITU-T X.1277 (11/2018) 165

As a result, the command for selecting the applet using the FIDO UAF AID is shown in Table F.5.

Table F.5 - SELECT AID command

No response data is
requested if the SELECT
command's "Le" field is
0x00 0xA4 0x04 0x0C 0x08 0xA000000647AF0001 | absent. Otherwise, if the
"Le" field is present,
vendor-proprietary data is
being requested.

F.424 APDU command "VERIFY"

This command is used to request access rights using a PIN or biometric sample. The SE applet shall
verify the sample data given by the Host against the reference PIN or Biometric held in the SE.

Please refer to [ISO7816-4] and [b-ISOIEC-19794] for personal verification through biometric
methods.

If the verification is successful and UserverificationToken IS supported by the SE applet, a token
SHALL be generated and sent to the host. Without having this token, the host cannot invoke special
UAF commands such as Register or Sign.

The support of userverificationToken can be checked by examining the contents of the cetnfo
response in the ruthenticatortype TAG or the response of serect appu command (Annex C).

Refer to clause F.3.1 for more information about userverificationToken.

F.4.2.4.1 Command structure

Table F.6 — VERIFY command encoding for PIN verification

1SO or 0x20 (for
Proprietary: see gIN) or 0x00 | 0x00 | Variable Verification None or expgcted ILe for
x21 (for data UserVerificationToken
[1SO7816-4] bi
iometry)

F.4.2.4.2 Response message and status conditions

Table F.7 — Response message and status conditions

Data Out SW1 - SwW2

Absent (ISO-Variant) or UserverificationToken (proprietary) See [1ISO7816-4]

NOTE — An SE applet that does not support UserverificationToken, may use the [ISO7816-4] VERIFY
command. In this case, the VERIFY command must be securely bound to Register and sign commands, so
a secure bound method shall be implemented in the SE applet, such as secure messaging.

166 Rec. ITU-T X.1277 (11/2018)

F.4.3 Managing long APDU commands and responses

If a secure element is able to send a complete response (e.g., extended length APDU, block chaining),
ceT reEsronseE APDU command SHALL be used, as defined in 1so variant section. Otherwise,
the proprietary solution SHALL be used, as defined in section proprietary variant.

F.4.3.1 1SO variant

The [1ISO7816-4] GET RESPONSE command is used in order to retrieve big data returned by APDU
command "UAF".

F.4.3.2 Proprietary variant

In order to avoid using Get Response APDU command which is not supported by all devices and
terminals, a propriatry method is defined for managing the long data answers at application level.

When using the proprietary variant, the response to the UAF APDU command SHALL include the
Tag "0x2813", that specifies the length of the response.

Response Data Out description
Tag
0x2813
Length
variable (2 bytes)
Value
Expected data length (2 bytes)

In the case where the data does not fit into a single Data Out message, the host SHALL repeat the
"UAF" command with P2 = 1 value mentioning this is a repetition of the incoming APDU to get all
the data. This process SHALL be repeated until the entire data are collected by the host.

Figure F.3 shows an example of an APDU Response which contains more than 255 bytes in the
payload.

Rec. ITU-T X.1277 (11/2018) 167

(l SE I Authenticator | Host IJ ASM

o UAF TLV command

l

‘ — Parses and identifies the UAF TLV
command using TAG_UAFVI1..

— Includes UAF TLV command on the
payload of an APDU command

© UAF APDU command (80 36 00 00 LC UAF_TLV)

4

o UAF APDU response (1328 0200 0003 SW1 SW2)

@ UAT APDU command (80 36 00 01 00 FF)

4

o UAF APDU response (255_BYTES_DATA SW1 SW2)

© UAF APDU command (80 36 00 01 00 03)

<

© UAF APDU response (3_BYTES DATA SW1 SW2)

@ — Builds TLYV response

@ UAF TLV response

>

X.1277(18)_FF.3
Figure F.3 — Long APDU management using the defined proprietary method

NOTE — The host shall support both versions of Get Response APDU command and figure out which
command must be sent to the Applet by parsing the response of the UAF APDU command. If the UAF APDU
command response contains the Tag "0x2813", the host must send a proprietary Get Response APDU
command, otherwise the host must send the ISO variant of Get Response APDU command.

F.5 Security considerations

Guaranteeing trust and security in a fragmented architecture such as the one levering on SE is a
challenge that the host has to address regardless of its nature (TEE or software based), which results
in different challenges from a security and architecture perspective. One could list the following ones:

. use of a trusted user interface to enter a PIN on the device,
. secure transmission of PIN or fingerprint minutiae,

. minutiae extraction format,

. integrity of data transmitted between a Host and a SE.

Hence, only security challenges affecting the interface between the host and the SE are considered here.

A possible way to maintain the integrity and confidentiality when APDUs commands are exchanged
is to enable a secure channel between the host and the SE. While this is left to implementation, there
are several technologies that allow a secure channel to be built between a SE and devices, that may
be implemented.

. Secure channel between a trusted application in a TEE and an applet in a SE [b-
GlobalPlatform-TEE-SE].

. Secure channel between a device and an applet in a secure element [b-GlobalPlatform-Card].

. Secure channel between a device and a SE [b-ETSI-Secure-Channel].

168 Rec. ITU-T X.1277 (11/2018)

Annex G

FIDO AppID and facets specification
(This annex forms an integral part of this Recommendation.)

Summary

The FIDO family of protocols introduce a new security concept, Application Facets, to describe the
scope of user credentials and how a trusted computing base which supports application isolation may
make access control decisions about which keys can be used by which applications and web origins.

G.1 Summary

This annex describes the motivations for and requirements for implementing the application facet
concept and how it applies to the FIDO protocols.

G.2 Overview

Modern networked applications typically present several ways that a user can interact with them. This
annex introduces the concept of an Application Facet to describe the identities of a single logical
application across various platforms. For example, the application MyBank may have an Android
app, an b-iOS app and a Web app accessible from a browser. These are all facets of the MyBank
application.

The FIDO architecture provides for simpler and stronger authentication than traditional username and
password approaches while avoiding many of the shortfalls of alternative authentication schemes. At
the core of the FIDO protocols are challenge and response operations performed with a public/private
keypair that serves as a user's credential.

To minimize frequently-encountered issues around privacy, entanglements with concepts of
"identity" and the necessity for trusted third parties, keys in FIDO are tightly scoped and dynamically
provisioned between the user and each relying party and only optionally associated with a
server-assigned username. This approach contrasts with, for example, traditional PKIX client
certificates as used in TLS, which introduce a trusted third party, mix in their implementation details
identity assertions with holder-of-key cryptographic proofs, lack audience restrictions and may even
be sent in the cleartext portion of a protocol handshake without the user's notification or consent.

While the FIDO approach is preferable for many reasons, it introduces several challenges:

. What set of Web origins and native applications (facets) make up a single logical application
and how can they be reliably identified?

. How can one avoid making the user register a new key for each web browser or application
on their device that accesses services controlled by the same target entity?

. How can access to registered keys be shared without violating the security guarantees around
application isolation and protection from malicious code that users expect on their devices?

. How can a user roam credentials between multiple devices, each with a user-friendly trusted

computing base for FIDO?

This annex describes how FIDO addresses these goals (where adequate platform mechanisms exist
for enforcement) by allowing an application to declare a credential scope that crosses all the various
facets it presents to the user.

G.2.1 Motivation

FIDO conceptually sets a scope for registered keys to the tuple of (username, authenticator, relying
party). But what constitutes a relying party? It is quite common for a user to access the same set of
services from a relying party, on the same device, in one or more web browsers as well as one or

Rec. ITU-T X.1277 (11/2018) 169

more dedicated apps. As the relying party may require the user to perform a costly ceremony in order
to prove her identity and register a new FIDO key, it is undesirable that the user should have to repeat
this ceremony multiple times on the same device, once for each browser or app.

G.2.2 Avoiding app-phishing

FIDO provides for user-friendly verification ceremonies to allow access to registered keys, such as
entering a simple PIN code and touching a device, or scanning a finger. It should not matter for
security purposes if the user re-uses the same verification inputs across relying parties and in the case
of a biometric, she may have no choice.

Modern operating systems that use an "app store" distribution model often make a promise to the user
that it is "safe to try" any app. They do this by providing strong isolation between applications, so
that they may not read each others' data or mutually interfere and by requiring explicit user permission
to access shared system resources.

If a user were to download a maliciously constructed game that instructs her to activate her FIDO
authenticator in order to "save your progress” but actually unlocks her banking credential and takes
over her account, FIDO has failed, because the risk of phishing has only been moved from the
password to an app download. FIDO must not violate a platform's promise that any app is "safe to
try" by keeping good custody of the high-value shared state that a registered key represents.

G.2.3 Comparison to OAuth and OAuth2

The OAuth and OAuth2 of protocols were designed for a server-to-server security model with the
assumption that each application instance can be issued and keep, an "application secret”. This
approach is ill-suited to the "app store™ security model. Although it is common for services to
provision an OAuth-style application secret into their apps in an attempt to allow only
authorized/official apps to connect, any such "secret™ is in fact shared among everyone with access
to the app store and can be trivially recovered thorough basic reverse engineering.

In contrast, FIDO's facet concept is designed for the "app store” model from the start. It relies on
client-side platform isolation features to make sure that a key registered by a user with a member of
a well-behaved "trusted club” stays within that trusted club, even if the user later installs a malicious
app and does not require any secrets hard-coded into a shared package to do so. The user must,
however, still make good decisions about which apps and browsers they are willing to preform a
registration ceremony with. App store policing can assist here by removing applications which solicit
users to register FIDO keys to for relying parties in order to make illegitmate or fraudulent use of them.

G.2.4 Non-goals

The Application Facet concept does not attempt to strongly identify the calling application to a service
across a network. Remote attestation of an application identity is an explicit non-goal.

If an unauthorized app can convince a user to provide all the information to it required to register a
new FIDO key, the relying party cannot use FIDO protocols or the Facet concept to recognize as
unauthorized, or deny such an application from performing FIDO operations and an application that
a user has chosen to trust in such a manner can also share access to a key outside of the mechanisms
described in this annex.

The facet mechanism provides a way for registered keys to maintain their proper scope when created
and accessed from a trusted computing base (TCB) that provides isolation of malicious apps. A user
can also roam their credentials between multiple devices with user-friendly TCBs and credentials will
retain their proper scope if this mechanism is correctly implemented by each. However, no guarantees
can be made in environments where the TCB is user-hostile, such as a device with malicious code
operating with "root" level permissions. On environments that do not provide application isolation
but run all code with the privileges of the user, (e.g., traditional desktop operating systems) an intact
TCB, including web browsers, may successfully enforce scoping of credentials for web origins only,
but cannot meaningfully enforce application scoping.

170 Rec. ITU-T X.1277 (11/2018)

G.3 The AppID and FacetlID assertions

When a user performs a Registration operation a new private key is created by their authenticator and
the public key is sent to the relying party. As part of this process, each key is associated with an
~rppID. The 2pp1D is @ URL carried as part of the protocol message sent by the server and indicates
the target for this credential. By default, the audience of the credential is restricted to the Same Origin
of the ~pp1D. In some circumstances, a relying party may desire to apply a larger scope to a key. If
that ~pp1o URL has the n-tps scheme, a FIDO client may be able to dereference and process it as a
TrustedracetList that designates a scope or audience restriction that includes multiple facets, such
as other web origins within the same DNS zone of control of the AppID's origin, or URLS indicating
the identity of other types of trusted facets such as mobile apps.

NOTE — Users may also register multiple keys on a single authenticator for an 2pp1D, such as for cases where
they have multiple accounts. Such registrations may have a relying party assigned username or local nicknames
associated to allow them to be distinguished by the user, or they may not (e.g., for 2nd factor use cases, the
user account associated with a key may be communicated out-of-band to what is specified by FIDO protocols).
All registrations that share an 2pp 1D, also share these same audience restriction.

G.3.1 Processing rules for AppID and FacetlD assertions

G.3.1.1 Determining the FacetlID of a calling application

In the Web case, the FacetlD MUST be the Web Origin [IETF RFC 6454] of the web page triggering
the FIDO operation, written as a URI with an empty path. Default ports are omitted and any path
component is ignored.

An example FacetlID is shown below:

https://login.mycorp.com/

In the Android [b-ANDROID] case, the FacetID MUST be a URI derived from the Base64 encoding
SHA-1 hash of the APK signing certificate [b-APK-Signing:

android:apk-key-hash:<base64 encoded shal hash-of-apk-signing-cert>

The SHA-1 hash can be computed as follows:
EXAMPLE 1: COMPUTING AN APK SIGNING CERTIFICATE HASH

Export the signing certificate in DER format, hash, base64 encode and trim '='

keytool -exportcert \
-alias <alias-of-entry> \
-keystore <path-to-apk-signing-keystore> &>2 /dev/null | \

openssl shal -binary | \
openssl base64d | \
sed 's/=//g"

The Base64 encoding is the the "Base 64 Encoding™ from Section 4 in [IETF RFC 4648], with
padding characters removed.

In the b-iOS [b-iOS] case, the FacetID MUST be the b-BundleID [b-BundlelD] URI of the
application:

ios:bundle-id:<ios-bundle-id-of-app>
G.3.1.2 Determining if a caller's FacetlD is authorized for an AppID

1. If the AppID is not an HTTPS URL and matches the FacetID of the caller, no additional
processing is necessary and the operation may proceed.

Rec. ITU-T X.1277 (11/2018) 171

10.

11.

12.

13.

14.

15.

16.

172

If the ApplID is null or empty, the client MUST set the AppID to be the FacetID of the caller
and the operation may proceed without additional processing.

If the caller's FacetID is an nttps:// Origin sharing the same host as the ApplID, (e.g., if an
application hosted at nttps://fido.example.com/my2pp Set an ApplD of
https://fido.example.com/myAppTd), NO additional processing is necessary and the
operation may proceed. This algorithm MAY be continued asynchronously for purposes of
caching the Trusted Facet List, if desired.

Begin to fetch the trusted facet list using the HTTP GET method. The location MUST be
identified with an HTTPS URL.

The URL MUST be dereferenced with an anonymous fetch. That is, the HTTP GET MUST
include no cookies, authentication, Origin or Referer headers and present no TLS certificates
or other forms of credentials.

The response MUST set a MIME Content-Type of "application/fido.trusted-apps+json™.

The caching related HTTP header fields in the HTTP response (e.g., "Expires") SHOULD be
respected when fetching a Trusted Facets List.

The server hosting the Trusted Facets List MUST respond uniformly to all clients. That is, it
MUST NOT vary the contents of the response body based on any credential material,
including ambient authority such as originating IP address, supplied with the request.

If the server returns an HTTP redirect (status code 3xx) the server MUST also send the HTTP
header F1D0O-AppID-Redirect-Authorized: trueandthe client MUST verify the presence
of such a header before following the redirect. This protects against abuse of open redirectors
within the target domain by unauthorized parties. If this check has passed, restart this
algorithm from step 4.

A trusted facet list MAY contain an unlimited number of entries, but clients MAY truncate
or decline to process large responses.

From among the objects in the trustedracet array, select the one with the version
matching that of the protocol message version.

The scheme of URLs in ias MUST identify either an application identity (e.g., using the
apk:, ios: or similar scheme) or an nttps: Web Origin [IETF RFC 6454].

Entries in ids using the nttps:// scheme MUST contain only scheme, host and port
components, with an optional trailing /. Any path, query string, username/password, or
fragment information MUST be discarded.

All Web Origins listed MUST have host names under the scope of the same least-specific
private label in the DNS, using the following algorithm:

1. Obtain the list of public DNS suffixes from
https://publicsuffix.org/list/effective_tld_names.dat (the client MAY cache such data),
or equivalent functionality as available on the platform.

2. Extract the host portion of the original AppID URL, before following any redirects.

The least-specific private label is the portion of the host portion of the AppID URL that
matches a public suffix plus one additional label to the left.

4. Foreach Web Origin in the TrustedFacets list, the calculation of the least-specific private
label in the DNS MUST be a case-insensitive match of that of the AppID URL itself.
Entries that do not match MUST be discarded.

If the TrustedFacets list cannot be retrieved and successfully parsed according to these rules,
the client MUST abort processing of the requested FIDO operation.

After processing the « rustedracets entry of the correct version and removing any invalid
entries, if the caller's FacetID matches one listed in i 4s, the operation is allowed.

Rec. ITU-T X.1277 (11/2018)

G.3.1.3 TrustedFacets structure

The JSON resource hosted at the AppID URL consists of a dictionary containing a single member,
trustedracets Which isan array of Trustedracets dictionaries.

dictionary TrustedFacets ({
Version version;
DOMString[] ids;

i

G.3.1.3.1 Dictionary TrustedrFacets members
version Of type version
The protocol version to which this set of trusted facets applies. See Annex A for the definition
of the version structure.
ids of type array of poMstring

An array of URLs identifying authorized facets for this AppID.

G.3.1.4 ApplD example 1:

".com" is a public suffix. "https://www.example.com/appID" is provided as an AppID. The body of
the resource at this location contains:

EXAMPLE
{
"trustedFacets" : [{

"version": { "major": 1, "minor" : 0 },

"ids": [
"https://register.example.com", // VALID, shares "example.com" label
"https://fido.example.com", // VALID, shares "example.com" label
"http://www.example.com", // DISCARD, scheme is not https:
"http://www.example-test.com", // DISCARD, "example-test.com" does not match
"https://www.example.com:444" // VALID, port is not significant

]
H
}
For this policy, "https://www.example.com™ and "https://register.example.com" would have access
to the keys registered for this AppID and "https://userl.example.com™ would not.

G.3.1.5 ApplD example 2:

"hosting.example.com” is a public suffix, operated under "example.com™ and used to provide hosted
cloud services for many companies. "https://companyA.hosting.example.com/applID™" is provided as
an AppID. The body of the resource at this location contains:

EXAMPLE
{
"trustedFacets" : [{

"version": { "major": 1, "minor"™ : 0 },

"ids": [
"https://register.example.com", // DISCARD, does not share "companyA.hosting.example.com" label
"https://fido.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
"https://xyz.companyA.hosting.example.com", // VALID, shares "companyA.hosting.example.com" label
"https://companyB.hosting.example.com" // DISCARD, "companyB.hosting.example.com" does not match

]
H
}

Rec. ITU-T X.1277 (11/2018) 173

For this policy, "https://fido.companyA.hosting.example.com” would have access to the keys
registered for this AppID and “https://register.example.com” and "https://companyB.hosting.
example.com™ would not as a public-suffix exists between these DNS names and the AppID's.

G.3.1.6 Obtaining FacetlD of Android native app

The following code demonstrates how a FIDO client can obtain and construct the FacetID of a calling
Android native application.

EXAMPLE: ANDROIDFACETID

private String getFacetID(Context aContext, int callingUid) {
String packageNames[] = aContext.getPackageManager ().getPackagesForUid(callingUid) ;
if (packageNames == null) {
return null;

}

try {
PackageInfo info = aContext.getPackageManager ().getPackagelnfo (packageNames[0], PackageManager.GET_SIGNATURES) ;

byte[] cert = info.signatures[0].toByteArray();
InputStream input = new ByteArrayInputStream(cert);

CertificateFactory cf = CertificateFactory.getInstance ("X509");
X509Certificate ¢ = (X509Certificate) cf.generateCertificate (input);

MessageDigest md = MessageDigest.getInstance ("SHAL");
return "android:apk-key-hash:" +

Base64.encodeToString (md.digest (c.getEncoded()), Base64.DEFAULT | Base64.NO _WRAP | Base64.NO_PADDING) ;

}

catch (PackageManager.NameNotFoundException e) {
e.printStackTrace () ;

}

catch (CertificateException e) {
e.printStackTrace () ;

}

catch (NoSuchAlgorithmException e) {
e.printStackTrace () ;

}

catch (CertificateEncodingException e) {
e.printStackTrace () ;

}

return null;

}
G.3.1.7 Additional security considerations

The UAF protocol supports passing FacetlD to the FIDO server and including the FacetID in the
computation of the authentication response.

Trusting a web origin facet implicitly trusts all subdomains under the named entity because web user
agents do not provide a security barrier between such origins. So, in AppID Example 1, although not
explicitly listed, "https://foobar.register.example.com" would still have effective access to credentials
registered for the ApplID "https://www.example.com/appID" because it can effectively act as
"https://register.example.com”.

The component implementing the controls described here must reliably identify callers to securely
enforce the mechanisms. Platform inter-process communication mechanisms which allow such
identification SHOULD be used when available.

It is unlikely that the component implementing the controls described here can verify the integrity
and intent of the entries on a Trustedracetnist. If a trusted facet can be compromised or enlisted
as a confused deputy (see clause 3.2.4) by a malicious party, it may be possible to trick a user into
completing an authentication ceremony under the control of that malicious party.

G.3.1.7.1 Wildcards in TrustedFacet identifiers

Wildcards are not supported in TrustedFacet identifiers. This follows the advice of RFC6125
[IETF RFC 6125], clause 7.2.

FacetIDs are URIs that uniquely identify specific security principals that are trusted to interact with
a given registered credential. Wildcards introduce undesirable ambiguitiy in the defintion of the
principal, as there is no consensus syntax for what wildcards mean, how they are expanded and where

174 Rec. ITU-T X.1277 (11/2018)

they can occur across different applications and protocols in common use. For schemes indicating
application identities, it is not clear that wildcarding is appropriate in any fashion. For Web origins,
it broadly increases the scope of the credential to potentially include rogue or buggy hosts.

Taken together, these ambiguities might introduce exploitable differences in identity checking
behavior among client implementations and would necessitate overly complex and inefficient identity
checking algorithms.

Rec. ITU-T X.1277 (11/2018) 175

Annex H

FIDO metadata statements
(This annex forms an integral part of this Recommendation.)

H.1 Summary

FIDO authenticators may have many different form factors, characteristics and capabilities. This
annex defines a standard means to describe the relevant pieces of information about an authenticator
in order to interoperate with it, or to make risk-based policy decisions about transactions involving a
particular authenticator.

H.2 Overview

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide
variety of different devices in a competitive marketplace. Much of the complexity behind this variety
is hidden from relying party applications, but in order to accomplish the goals of FIDO, relying parties
must have some means of discovering and verifying various characteristics of authenticators. Relying
parties can learn a subset of verifiable information for authenticators certified by the FIDO Alliance
with an authenticator metadata statement. The URL to access that metadata statement is provided by
the Metadata TOC file accessible through the metadata service Annex I.

For definitions of terms, please refer to clause 3.2 (FIDO glossary).

H.2.1 Scope

This annex describes the format of and information contained in Authenticator Metadata statements.
For a definitive list of possible values for the various types of information, refer to the FIDO registry
of predefined values Annex J.

The description of the processes and methods by which authenticator metadata statements are
distributed and the methods how these statements can be verified are described in the Metadata
service specification Annex I.

H.2.2 Audience

The intended audience for this annex includes:
. FIDO authenticator vendors who wish to produce metadata statements for their products.

. FIDO server implementers who need to consume metadata statements to verify
characteristics of authenticators and attestation statements, make proper algorithm choices
for protocol messages, create policy statements or tailor various other modes of operation to
authenticator-specific characteristics.

. FIDO relying parties who wish to
o create custom policy statements about which authenticators they will accept
o risk score authenticators based on their characteristics
o verify attested authenticator I1Ds for cross-referencing with third party metadata

H.2.3 Architecture
Figure H.1 shows the FIDO architecture.

176 Rec. ITU-T X.1277 (11/2018)

FIDO server Metadata
statement incl.
attestation trust

FIDO anchor
authenticator
4
Other metadata

sources
FIDO FIDO metadata
authenticator service

X.1277(18)_FH.1

Figure H.1 — FIDO architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the
information contained in the authoritative statement is used in several other places. How a server
obtains these metadata statements is described in Annex I.

The workflow around an authenticator metadata statement is as follows:

1.

The authenticator vendor produces a metadata statement describing the characteristics of an
authenticator.

The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification
process. The FIDO Alliance distributes the metadata as described in Annex 1.

A FIDO relying party configures its registration policy to allow authenticators matching
certain characteristics to be registered.

The FIDO server sends a registration challenge message. This message can contain such
policy statement.

Depending on the FIDO protocol being used, either the relying party application or the FIDO
UAF client receives the policy statement as part of the challenge message and processes it. It
queries available authenticators for their self-reported characteristics and (with the user's
input) selects an authenticator that matches the policy, to be registered.

The client processes and sends a registration response message to the server. This message
contains a reference to the authenticator model and, optionally, a signature made with the
private key corresponding to the public key in the authenticator's attestation certificate.

The FIDO server looks up the metadata statement for the particular authenticator model.
If the metadata statement lists an attestation certificate(s), it verifies that an attestation
signature is present and made with the private key corresponding to either (a) one of the
certificates listed in this metadata statement or (b) corrsponding to the public key in a
certificate that chains to one of the issuer certificates listed in the authenticator's metadata
statement.

Rec. ITU-T X.1277 (11/2018) 177

10.

H.3

The FIDO server next verifies that the authenticator meets the originally supplied registration
policy based on its authoritative metadata statement. This prevents the registration of
unexpected authenticator models.

Optionally, a FIDO server may, with input from the relying party, assign a risk or trust score
to the authenticator, based on its metadata, including elements not selected for by the stated
policy.

Optionally, a FIDO server may cross-reference the attested authenticator model with other
metadata databases published by third parties. Such third-party metadata might, for example,
inform the FIDO server if an authenticator has achieved certifications relevant to certain
markets or industry verticals, or whether it meets application-specific regulatory
requirements.

Types

H.3.1 CodeAccuracyDescriptor dictionary

The codenrccuracypescriptor describes the relevant accuracy/complexity aspects of passcode user
verification methods.

NOTE 1 — One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

NOTE 2 — The numeral system base (radix) and minLen is used instead of the number of potential
combinations since there is sufficient evidence [b-iPhonePasscodes] [b-MoreTopWorstPasswords] that users
do not select their code evenly distributed at random. So software might take into account the various
probability distributions for different bases. This essentially means that in practice, passcodes are not as secure
as they could be if randomly chosen.

H3.11

178

dictionary CodeAccuracyDescriptor {

i

required unsigned short base;
required unsigned short minLength;
unsigned short maxRetries;

unsigned short blockSlowdown;

Dictionary CodeAccuracyDescriptor members

base Of type required unsigned short

The numeric system base (radix) of the code, e.g., 10 in the case of decimal digits.

minLength Of type required unsigned short

The minimum number of digits of the given base required for that code, e.g., 4 in the case of
4 digits.

maxRetries Of type unsigned short

Maximum number of false attempts before the authenticator will block this method (at least
for some time). 0 means it will never block.

blockSlowdown Of type unsigned short

Enforced minimum number of seconds wait time after blocking (e.g., due to forced reboot or
similar). 0 means this user verification method will be blocked, either permanently or until an
alternative user verification method method succeeded. All alternative user verification
methods MUST be specified appropriately in the Metadata in userverificationbetails.

Rec. ITU-T X.1277 (11/2018)

H.3.2 BiometricAccuracyDescriptor dictionary
The riometricaccuracybescriptor describes relevant accuracy/complexity aspects in the case of
a biometric user verification method.

NOTE 1 — The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are
interdependent via the Receiver Operator Characteristic (ROC) curve.

NOTE 2 — The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentation
attacks, such as the detection of rubber finger presentation.

NOTE 3 — The FAR, FRR and FAAR values given here MUST reflect the actual configuration of the
authenticators (as opposed to being theoretical best case values).

At least one of the values MUST be set. If the vendor does not want to specify such values, then
VerificationMethodDescriptor.babesc MUST be omitted.

NOTE - Typical fingerprint sensor characteristics can be found in Google Android 6.0 Compatibility
Definition and Apple b-iOS Security Guide.

dictionary BiometricAccuracyDescriptor {

double FAR;
double FRR;
double EER;
double FAAR;

unsigned short maxReferenceDataSets;
unsigned short maxRetries;
unsigned short blockSlowdown;

bi

H.3.2.1 Dictionary BiometricAccuracyDescriptor members
rar Of type double

The false acceptance rate [ISO 19795-1] for a single reference data set, i.e., the percentage of
non-matching data sets that are accepted as valid ones. For example a FAR of 0.002% would
be encoded as 0.00002.

NOTE 1 — The resulting FAR when all reference data sets are used is maxReferenceDataSets * FAR.

NOTE 2 — The false acceptance rate is relevant for the security. Lower false acceptance rates mean better
security.

NOTE 3 — Only the live captured subjects are covered by this value — not the presentation of artefacts.
rrr Of type double

The false rejection rate for a single reference data set, i.e., the percentage of presented valid
data sets that lead to a (false) non-acceptance. For example a FRR of 102 would be encoded
aso.1.

NOTE — The false rejection rate is relevant for the convenience. Lower false acceptance rates mean better
convenience.

rER Of type double
The equal error rate for a single reference data set.
ranr Of type double

The false artefact acceptance rate [ISO 30107-1], i.e., the percentage of artefacts that are
incorrectly accepted by the system. For example a FAAR of 0. 1= would be encoded as 0. 001.

Rec. ITU-T X.1277 (11/2018) 179

NOTE — The false artefact acceptance rate is relevant for the security of the system. Lower false artefact
acceptance rates imply better security.

maxReferenceDataSetsOftypeunsigned short

Maximum number of alternative reference data sets, e.g., 3 if the user is allowed to enroll 3
different fingers to a fingerprint based authenticator.

maxRetries Of type unsigned short

Maximum number of false attempts before the authenticator will block this method (at least
for some time). 0 means it will never block.

blockslowdown Of type unsigned short

Enforced minimum number of seconds wait time after blocking (e.g., due to forced reboot or
similar). 0 means that this user verification method will be blocked either permanently or until
an alternative user verification method succeeded. All alternative user verification methods
MUST be specified appropriately in the metadata in userverificationbetails.

H.3.3 PatternAccuracyDescriptor dictionary

The patternaccuracybescriptor describes relevant accuracy/complexity aspects in the case that a
pattern is used as the user verification method.
NOTE - One example of such a pattern is the 3x3 dot matrix as used in Android [b-AndroidUnlockPattern]

screen unlock. The minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN,
the minimum allowed for this mechanism.

dictionary PatternAccuracyDescriptor {
required unsigned long minComplexity;
unsigned short maxRetries;
unsigned short blockSlowdown;

H.3.3.1 Dictionary patterniccuracyDescriptor members

minComplexity Of type required unsigned long

Number of possible patterns (having the minimum length) out of which exactly one would be
the right one, i.e., 1/probability in the case of equal distribution.

maxRetries Of type unsigned short

Maximum number of false attempts before the authenticator will block authentication using
this method (at least temporarily). 0 means it will never block.

blockSlowdown Of type unsigned short

Enforced minimum number of seconds wait time after blocking (due to forced reboot or
similar mechanism). 0 means this user verification method will be blocked, either permanently
or until an alternative user verification method method succeeded. All alternative user
verification methods MUST be specified appropriately in the metadata under

userVerificationDetails.

180 Rec. ITU-T X.1277 (11/2018)

H.3.4 VerificationMethodDescriptor dictionary
A descriptor for a specific base user verification method as implemented by the authenticator

A base user verification method must be chosen from the list of those described in Annex J.

NOTE - In reality, several of the methods described above might be combined. For example, a fingerprint
based user verification can be combined with an alternative password.

The specification of the related AccuracyDescriptor is optional, but recommended.

dictionary VerificationMethodDescriptor {
required unsigned long userVerification;
CodeAccuracyDescriptor caDesc;
BiometricAccuracyDescriptor baDesc;
PatternAccuracyDescriptor paDesc;

b

H.3.4.1 Dictionary VerificationMethodDescriptor members
userVerificationOftyperequired unsigned long
asingle vser verTEY constant (see Annex J), not a bit flag combination. This value MUST
be non-zero.
caDesc Of type codeAccuracyDescriptor

May optionally be used in the case of method user veERTFY PASSCODE.

baDescOftypeBiometricAccuracyDescriptor

May optionally be used in the case of method UsEr VERTFY FINGERPRINT, USER VERIFY
VOICEPRINT, USER VERIFY FACEPRINT, USER VERIFY EYEPRINT, Of USER VERIFY
HANDPRINT.

paDescOftypePatternAccuracyDescriptor

May optionally be used in case of method user vErRTFY PATTERN.

H.3.5 verificationMethodANDCombinations typedef

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations MUST be non-empty. It is a list containing the base user
verification methods which must be passed as part of a successful user verification.

This list will contain only a single entry if using a single user verification method is sufficient.

If this list contains multiple entries, then all of the listed user verification methods MUST be passed
as part of the user verification process.

H.3.6 rgbPaletteEntry dictionary
The rgbraletterntry is an RGB three-sample tuple palette entry

dictionary rgbPaletteEntry ({
required unsigned short r;
required unsigned short g;

Rec. ITU-T X.1277 (11/2018) 181

required unsigned short b;
}i

H.3.6.1 Dictionary rgbraletteEntry members
rOftyperequired unsigned short
Red channel sample value

gOftyperequired unsigned short
Green channel sample value

b Of type required unsigned short
Blue channel sample value

H.3.7 Displayb-PNGCharacteristicsDescriptor dictionary

The Displayb-PNGCharacteristicsDescriptor describes a b-PNG image characteristics as defined in
the PNG [b-PNG] spec for IHDR (image header) and PLTE (palette table).

dictionary Displayb-PNGCharacteristicsDescriptor {
required unsigned long width;

required unsigned long height;

required octet bitDepth;
required octet colorType;
required octet compression;
required octet filter;
required octet interlace;
rgbPaletteEntry[] plte;

b

H.3.7.1 Dictionary Displayb-PNGCharacteristicsDescriptor members
width Of type required unsigned long
image width

height Of type required unsigned long
image height

bitbDepth Of type required octet

Bit depth — bits per sample or per palette index.

colorType oftype required octet

Color type defines the b-PNG image type.

compressionOftyperequired octet

Compression method used to compress the image data.

filter Of type required octet

182 Rec. ITU-T X.1277 (11/2018)

Filter method is the preprocessing method applied to the image data before compression.

interlaceOftyperequired octet

Interlace method is the transmission order of the image data.

plte(ﬁtypea”ayOfrngaletteEntry

1 to 256 palette entries

H.3.8 EcdaaTrustAnchor dictionary
In the case of ECDAA attestation, the ECDAA-Issuer's trust anchor MUST be specified in this field.

dictionary EcdaaTrustAnchor ({
required DOMString X;
required DOMString Y;
required DOMString c;
required DOMString sx;
required DOMString svy;
required DOMString GlCurve;

H.3.8.1 Dictionary EcdaaTrustAnchor members
XOftyperequired DOMString

base64url encoding of the result of ECPoint2ToB of the ECPoint2 X = P}. See Annex K for
the definition of ECPoint2ToB.

YOftyperequired DOMString

base64url encoding of the result of ECPoint2ToB of the ECPoint2 Y = Pyz. See Annex K for
the definition of ECPoint2ToB.

c of type required DOMString

base64url encoding of the result of BigNumberToB(c). See section "Issuer Specific ECDAA
Parameters™ in Annex K for an explanation of c. See Annex K for the definition of
BigNumberToB.

sx Of type required DOMString

base64url encoding of the result of BigNumberToB(sx). See section "Issuer Specific ECDAA
Parameters™ in Annex K for an explanation of sx. See Annex K for the definition of
BigNumberToB.

sy of type required DOMString

base64url encoding of the result of BigNumberToB(sy). See section "Issuer Specific ECDAA
Parameters™ in Annex K for an explanation of sy. See Annex K for the definition of
BigNumberToB.

Glcurve Of type required DOMString

Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256"
and "BN_ISOP512" are supported. See clause J.4.1 "Supported curves for ECDAA"™ in Annex
J for details.

Rec. ITU-T X.1277 (11/2018) 183

NOTE — Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly

generated by verifying s, sx, sy. See Annex J for details.

H.3.9 ExtensionDescriptor dictionary

This descriptor contains an extension supported by the authenticator.

dictionary ExtensionDescriptor ({
required DOMString id;
DOMString data;
required boolean fail if unknown;
}i

H.3.9.1 Dictionary ExtensionDescriptor members

LdOftyDErequired DOMString

Identifies the extension.

data Of type poMstring

Contains arbitrary data further describing the extension and/or data needed to correctly

process the extension.
This field MAY be missing or it MAY be empty.

failiifiunkDOWDOftyperequired boolean

Indicates whether unknown extensions must be ignored (ra1s<) or must lead to an error
(t rue) when the extension is to be processed by the FIDO server, FIDO client, ASM, or FIDO

authenticator.

«A value of ra1se indicates that unknown extensions MUST be ignored
¢ A value of - rue indicates that unknown extensions MUST result in an error.

H.4 Metadata keys

dictionary MetadataStatement {
AAID
AAGUID
DOMStringl[]
required DOMString
required unsigned short
DOMString
required Version|]
required DOMString
required unsigned short
required unsigned short
required unsigned short/[]
required VerificationMethodANDCombinations/[]
required unsigned short
boolean
boolean
required unsigned short
required unsigned long
required boolean
required unsigned short
DOMString
Displayb-PNGCharacteristicsDescriptor[]

required DOMStringl]

aaid;

aaguid;

attestationCertificateKeyIdentifiers;

description;

authenticatorVersion;

protocolFamily;

upv;

assertionScheme;

authenticationAlgorithm;

publicKeyAlgAndEncoding;

attestationTypes;

userVerificationDetails;

keyProtection;

isKeyRestricted;

isFreshUserVerificationRequired;

matcherProtection;

attachmentHint;

isSecondFactorOnly;

tcDisplay;

tcDisplayContentType;
tcDisplayb-PNGCharacteristics;

attestationRootCertificates;

184 Rec. ITU-T X.1277 (11/2018)

EcdaaTrustAnchor([] ecdaaTrustAnchors;
DOMString icon;

ExtensionDescriptor supportedExtensions([];

H.4.1 Dictionary MetadataStatement members
aaid of type 2a1D

The authenticator attestation ID. See Annex A for the definition of the AAID structure. This
field MUST be set if the authenticator implements FIDO UAF.

NOTE — FIDO UAF authenticators support AAID, but they do not support AAGUID.
aaguid of type AacuID

The authenticator attestation GUID. See [b-FIDOKeyAttestation] for the definition of the
AAGUID structure. This field MUST be set if the authenticator implements FIDO 2.

NOTE — FIDO 2 authenticators support AAGUID, but they do not support AAID.
attestationCertificateKeyIdentifiers Of type array of boMstring

A list of the attestation certificate public key identifiers encoded as hex string. This value
MUST be calculated according to method 1 for computing the keyldentifier as defined in
clause 4.2.1.2 of [IETF RFC 5280]. The hex string MUST NOT contain any non-hex
characters (e.g., spaces). All hex letters MUST be lower case. This field MUST be set if
neither 2= 1id nor aaguid are set. Setting this field implies that the attestation certificate(s) are
dedicated to a single authenticator model.

All attestationCertificateKeyldentifier values should be unique within the scope of the
Metadata Service.

NOTE - FIDO U2F authenticators typically do not support AAID nor AAGUID, but they use attestation
certificates dedicated to a single authenticator model.

description Of type required DOMString

A human-readable short description of the authenticator.

NOTE 1 — This description should help an administrator configuring authenticator policies. This description
might deviate from the description returned by the ASM for that authenticator.

NOTE 2 — This description should contain the public authenticator trade name and the publicly known vendor
name.

authenticatorvVersion Of type required unsigned short

Earliest (i.e., lowest) trustworthy authenticatorversion meeting the requirements
specified in this metadata statement.

Adding new statusreport entries with status vroate avatrARLE to the metadata Toc object
(Annex I) MUST also change this authenticatorversion if the update fixes severe security
issues, e.g., the ones reported by preceding statusreport entries with status code
USER VERIFICATION BYPASS, ATTESTATION KEY COMPROMISE, USER _KEY REMOTE
COMPROMISE, USER _KEY PHYSICAL COMPROMISE, REVOKED.

It is RECOMMENDED to assume increased risk if this version is higher (newer) than the
firmware version present in an authenticator. For example, if a statusreport entry with
status USER VERIFICATION BYPASS OF USER KEY REMOTE COMPROMISE precedes the

Rec. ITU-T X.1277 (11/2018) 185

186

UPDATE AVATLABRLE entry, than any firmware version lower (older) than the one specified in
the metadata statement is assumed to be vulnerable.

protocolFamily Of type poMstring

The FIDO protocol family. The values "uaf”, "u2f" and "fido2" are supported. If this field is
missing, the assumed protocol family is "uaf". Metadata Statements for U2F authenticators
MUST set the value of protocolFamily to "u2f" and FIDO 2.0 authenticators implementations
MUST set the value of protocolFamily to "fido2".

upv Of type array of required version

The FIDO unified protocol version(s) (related to the specific protocol family) supported by
this authenticator. See Annex A for the definition of the version structure.

assertionScheme Of type required DOMString

The assertion scheme supported by the authenticator. Must be set to one of the enumerated
strings defined in the FIDO UAF registry of predefined values (Annex E) or to "FIDOV2" in
the case of the FIDO 2 assertion scheme.

authenticationAlgorithﬂOftyperequired unsigned short

The authentication algorithm supported by the authenticator. Must be set to one of the ~1.c
constants defined in the FIDO registry of predefined values in Annex J. This value MUST be
non-zero.

publicKeyAlgAndEncodimgOftyperequired unsigned short

The public key format used by the authenticator during registration operations. Must be set to
one of the ~1.c rev constants defined in the FIDO registry of predefined values in Annex J.
Because this information is not present in APIs related to authenticator discovery or policy, a
FIDO server MUST be prepared to accept and process any and all key representations defined
for any public key algorithm it supports. This value MUST be non-zero.

attestationTypesOftypeaﬂayOfrequired unsigned short
The supported attestation type(s). (e.g., Tac aTTEsTATTON BASTC FULL) See Registry for
more information (Annex E).

userVerificationDetails Of type array of required VerificationMethodAND
Combinations

A list of alternative VerificationMethodANDCombinations. Each of these entries is one
alternative user verification method. Each of these alternative user verification methods might
itself be an "AND" combination of multiple modalities.

All effectively available alternative user verification methods MUST be properly specified
here. A user verification method is considered effectively available if this method can be used
to either:

«enroll new verification reference data to one of the user verification methods
or

eunlock the UAuth key directly after successful user verification

Rec. ITU-T X.1277 (11/2018)

keyProtection of type required unsigned short

A 16-bit number representing the bit fields defined by the x=v proTECTTON constants in the
FIDO registry of predefined values (Annex J).

This value MUST be non-zero.

NOTE — The keyProtection specified here denotes the effective security of the attestation key and Uauth
private key and the effective trustworthiness of the attested attributes in the "sign assertion". Effective security
means that key extraction or injecting malicious attested attributes is only possible if the specified protection
method is compromised. For example, if keyProtection=TEE is stated, it shall be impossible to extract the
attestation key or the Uauth private key or to inject any malicious attested attributes without breaking the TEE.

isKeyRestricted Of type boolean

This entry is set to + rue, if the Uauth private key is restricted by the authenticator to only sign
valid FIDO signature assertions.

This entry is setto ra1se, if the authenticator does not restrict the Uauth key to only sign valid
FIDO signature assertions. In this case, the calling application could potentially get any hash
value signed by the authenticator.

If this field is missing, the assumed value is isKeyRestricted=+« rue

NOTE - Note that only in the case of isKeyRestricted=t rue, the FIDO server can trust a signature counter or
transaction text to have been correctly processed/controlled by the authenticator.

isFreshUserVerificationRequired of type boolean
This entry is set to « rue, if Uauth key usage always requires a fresh user verification.
If this field is missing, the assumed value is isFreshUserVerificationRequired== rue.

This entry is set to ra1se, if the Uauth key can be used without requiring a fresh user
verification, e.g., without any additional user interaction, if the user was verified a (potentially
configurable) caching time ago.

In the case of isFreshUserVerificationRequired=fz1se, the FIDO server MUST verify the
registration response and/or authentication response and verify that the (maximum) caching
time (sometimes also called "authTimeout™) is acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the
authenticator MUST always ask the user to authorize the specific transaction.

NOTE — Note that in the case of isFreshUserVerificationRequired=r=1se, the calling App
could trigger use of the key without user involvement. In this case it is the responsibility of
the App to ask for user consent.

matcherProtection Of type required unsigned short

A 16-bit number representing the bit fields defined by the vaTcrer proOTECTTON COnstants in
the FIDO registry of predefined values in Annex J.

This value MUST be non-zero.

NOTE 1 — If multiple matchers are implemented, then this value must reflect the weakest implementation of
all matchers.

NOTE 2 — The matcherProtection specified here denotes the effective security of the FIDO authenticator's user
verification. This means that a false positive user verification implies breach of the stated method. For example,
if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key when
bypassing the user verification without breaking the TEE.

attachmentHint Of type required unsigned long

Rec. ITU-T X.1277 (11/2018) 187

A 32-bit number representing the bit fields defined by the ArTacrvEnT HTNT constants in the
FIDO registry of predefined values (Annex J).

NOTE - The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware token
that can communicate over bluetooth should set ATTACHMENT HINT EXTERNAL but not
ATTACHMENT HINT INTERNAL.

isSecondFactorOnly of type required boolean

Indicates if the authenticator is designed to be used only as a second factor, i.e., requiring
some other authentication method as a first factor (e.g., username+password).

thisplayOftyperequired unsigned short

A 16-bit number representing a combination of the bit flags defined by the
TRANSACTTION CONFIRMATION DTSPLAY constants in the FIDO registry of predefined values
in Annex J.

This value MUST be 0, if transaction confirmation is not supported by the authenticator.

NOTE — The tcDisplay specified here denotes the effective security of the authenticator's transaction
confirmation display. This means that only a breach of the stated method allows an attacker to inject transaction
text to be included in the signature assertion which has not been displayed and confirmed by the user.

thisplayContentTypeOftyDEDOMString

Supported MIME content type [IETF RFC 2049] for the transaction confirmation display,
such as text/plain Of image/png.

This value MUST be present if transaction confirmation is supported, i.e., tcbisplay IS non-
zero.

tcDisplayb-PNGCharacteristics Of type array of Displayb-PNGCharacteristics
Descriptor

A list of alternative Displayb-PNGCharacteristicsDescriptor. Each of these entries is one
alternative of supported image characteristics for displaying a b-PNG image.

This list MUST be present if b-PNG-image based transaction confirmation is supported, i.e.,
tcDisplay ISNON-zero and tchisplayContentType IS image/png

atteStationRootCertificatesOftypeaﬂayOfrequired DOMString

Each element of this array represents a PKIX [IETF RFC 5280] trust root X.509 certificate
that is valid for this authenticator model. Multiple certificates might be used for different
batches of the same model. The array does not represent a certificate chain, but only the trust
anchor of that chain.

Each array element is a base64-encoded (clause 4 of [IETF RFC 4648]), DER-encoded
[ITU-T X.690] PKIX certificate value. Each element MUST be dedicated for authenticator
attestation.
NOTE 1 - A certificate listed here is a trust root. It might be the actual certificate presented by the authenticator,
or it might be an issuing authority certificate from the vendor that the actual certificate in the authenticator
chains to.

NOTE 2 - In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain
are included in the registration assertion (see Annex C).

188 Rec. ITU-T X.1277 (11/2018)

Either
1. the manufacturer attestation root certificate
or
2. the root certificate dedicated to a specific authenticator model

MUST be specified.

In the case (1), the root certificate might cover multiple authenticator models. In this case, it
must be possible to uniquely derive the authenticator model from the Attestation Certificate.
When using AAID or AAGUID, this can be achieved by either specifying the AAID or
AAGUID in the attestation certificate using the extension id-fido-gen-ce-aaid { 136141
45724 111 } or id-fido-gen-ce-aaguid { 1 36 14 1 45724 1 1 4 } or — when neither AAID
nor AAGUID are defined — by using the attestationCertificatekeyIdentifier method.

In the case (2) this is not required as the root certificate only covers a single authenticator
model.

When supporting surrogate basic attestation only (see Annex A, clause "Surrogate basic
attestation™), no attestation root certificate is required/used. So this array MUST be empty in
that case.

ecdaaTrustAnchors Of type array of EcdaaTrustanchor

A list of trust anchors used for ECDAA attestation. This entry MUST be present if and only
if attestationType includes TAG_ATTESTATION_ECDAA. The entries in attestation
rRootCertificates have no relevance for ECDAA attestation. Each ecdaaTrustAnchor
MUST be dedicated to a single authenticator model (e.g., as identified by its
AAID/AAGUID).

icon oOf type DOMString

A data: url [b-IETF RFC 2397] encoded PNG [b-PNG] icon for the authenticator.

supportedExtensions/|] of type ExtensionDescriptor

List of extensions supported by the authenticator.

H.5 Metadata statement format

A FIDO authenticator metadata statement is a document containing a JSON encoded dictionary
MetadataStatement.

H.5.1 UAF example
Example of the metadata statement for an UAF authenticator with:

. authenticatorVersion 2.

. Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance
rate of 0.002% and rate limiting attempts for 30 seconds after 5 false trials.

. Authenticator is embedded with the FIDO User device.

. The authentication keys are protected by TEE and are restricted to sign valid FIDO sign
assertions only.

. The (fingerprint) matcher is implemented in TEE.

. The transaction confirmation display is implemented in a TEE.

Rec. ITU-T X.1277 (11/2018) 189

. The transaction confirmation display supports display of "image/png" objects only.

. Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering
True Color (=Color Type 2). The zlib compression method (0). It does not support filtering
(i.e., filter type of=0) and no interlacing support (interlace method=0).

. The authentiator can act as first factor or as second factor, i.e., isSecondFactorOnly = false.
. It supports the "UAFV1TLV" assertion scheme.

. Itusesthe rnc stcn sEcp256r1 ECDSA sHA256 RaW authentication algorithm.

. It uses the ~r1.c kev mcc x962 raw public key format (0x100=256 decimal).

. It only implements the T2c atTesTaTTON BAsTC FULL method (0X3E07=15879 decimal).
. It implements UAF protocol version (upv) 1.0 and 1.1.

EXAMPLE 1: MetadataStatement for UAF authenticator

{ "aaid": "1234#5678",

"description": "FIDO Alliance Sample UAF Authenticator",
"authenticatorVersion": 2,

"upv": [{ "major": 1, "minor": O }, { "major": 1, "minor": 1 }],
"assertionScheme": "UAFV1TLV",

"authenticationAlgorithm": 1,

"publicKeyAlgAndEncoding": 256,

"attestationTypes": [15879],

"userVerificationDetails": [[{ "userVerification": 2, "baDesc":

{ "FAR": 0.00002, "maxRetries": 5, "blockSlowdown": 30, "maxReferenceDataSets": 5 } } 1 1,

"keyProtection": 6,

"isKeyRestricted": true,

"matcherProtection": 2,

"attachmentHint": 1,

"isSecondFactorOnly": "false",

"tcDisplay": 5,

"tcDisplayContentType": "image/png",

"tcDisplayb-PNGCharacteristics": [{"width": 320, "height": 480, "bitDepth": 16,

"colorType": 2, "compression": 0, "filter": 0, "interlace": 0}],

"attestationRootCertificates™: [
"MIICPTCCAeOgAwIBAgIJAOuexvU30y2wMA0oGCCgGSM4 9BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBAHR1c3RhdG1lvbiBSb2 90MRYWFAYDVQQKDAIGSURPIEFsbGlhbmN1
MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBWwJUGFEF sbyBBOHRVMQswCQYDVQQT
DAJDQTELMAkKGA1UEBhMCVVMwHhcNMTQwWNJE4MTMzMzMyWhcNNDExMTAzZMTMzMzMy
WiB7MSAwHgYDVQQODDBATYW1wbGUgQXROZXNOYXRpb24gUm9vdDEWMBQGALIUECgWN
Rk1ETyBBbGxpYW5jZTERMA8GALIUECWWIVUFGIFRXRywxEjJAQBgNVBACMCVBhbG8g
QWx0bzELMAKGALUECAWCQOExXCzAJBgNVBAYTAIVTMFkwEWYHK0ZIZzj0CAQYIKOZI
z30DAQCcDQUAEH8hv2D0HXa59/BmpQ7RzZehL/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrqOBb58pxGgHJIRyX/ 6NOME4wHQYDVROOBBYEFPOHA3CLhxFb
C0It7zE4w8hk5EJ/MB8GAIUAIWQYMBaAFPOHA3ZCLhxFbC0It7zE4w8hk5EJ/MAWG
AlUJEWQFMAMBAf8wCgYIKoZIzjOEAWIDSAAWRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAH]IzA9Xm63rruAxBZ9ps9z2XN
10=="1,

"icon": "data:image/png;base64,
1VBORwWOKGgoAAAANSUhEUgAAAES8AAAAVCAYAAACIwIfcAAAAAXNSROIArs4c6QAAAARNQUIBAACK
Jwv8YQUAAAAJCEhZcwAADSMAAATDAcAvgGQAAAahSURBVGhD7Zr5bxR1GME9KzTB8AM/YEhE2W7p
QZCWKKBC1SpHAT1ELARE7kNECCA3FKWKOCKKSCFISKBcgVCDWGNESAAYidwgggJBiRiMhFc/4wy8
884zu9Nd1InGT£ZIP2n3n0++88933fveBBx+PqCzJkTUVBbLmpUDWVBT ImpcCSZVvXLCAX9R055k19
bb5atf599fG+/erA5419g47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7aidn7QzZPMwbdys2erU2XMg
Udy8+ZcaNmGimE8yXN3RUd3al8nF0fUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx41i5pUMGHveo506g227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LvPH3rVtWjfz66Lfql8tX7FR1IYFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvpOkZHmTZg9x 7bLHcMNThbl 6eJ+mVEQq8yaUZONG64 1
X2z+0/kg6u0zZFO0QtatdWKEXnRQ99B]91R50IFnk54 jNOmkUiglO3XDW+M1+98mKB6tW7 rWpZcPc+
0zg4tLrYlUc86E6eGD]IMubVpcusearfgIYGRk6brhzVr/JcHzooL7550jedLExopWcApi2ZzUghu
7JILvrVsQU81lzkzOPeemMRYvVuUQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYgj6ouaYvEe
nW/W1Yjp8cwbMm682tPwqWlR4t)/2SH13IRJIY14moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHuU6vV
8tQJI3bwFkwpFru0Q50slr3levm8zZcql7+BBaw/K81EKS5qzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVg6Rgwdpksmbdi3bu2De7YfaBBxcqfvgPrUjFONTQ221fdUVVT68rT
JKF5DnSmUjgdgg4mSS9pms fDIR3G6ToHO1W9aV7/LWLHYXK11TDtOLTAtkYTaamplQjVv++uyGUxV
dJODNVXSm+blgRxpl84ddfX1Lpl0/d69tsod0vs5hGredxu8o+fpLR1cGhNTD6257CIKMWXe £JdO
794bb90gd1RONS7qITTzHimMgivb03g0DAVyk3WOBhBz tK35YKNAONnc803acS6fDZFgKaXLsEJpS
rdrliBgp89cJcs/m7Tvs0rkjGEN4b0kPoZn3UJulOrnZ22yPlfmvUx+05gSgebVim+zSuYNVhg7T
WbDiLVv1jplLlop6CLXP+2gtvGLIL/1vimISdMBgzSoFZyu6Tqd+]jzxgsPavIBCgee/NjYk6ve1lK
9cwiUc/STtf1HDpM3b592y7h3Thx502zK69HLpYWuAwagS5cv26q7ceb8efVYaReP31FU8zj1knSw
ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1£G3xD4tT7x8kwy]j8nw
b9ev26V0OB6d+7H4zKvudAH537FjqyzOHdInHEuzZmXq/WjxObvNMbv7nhywsX2aVsWtC8+48aLeap
E7p5wKZi0A2AQRVS5nvR4E+uJc+b61kApgInkBgmd/4V5QP/mt18HDC7sRHEtmeu51mhv0rn/ALX2
32bgd4BFnDx7VilcWS2uff0IbB47gexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+ugCadri
XGfwMPPtViavhU3YMOAANuUb/RO7L0OyOSeOadE88ApsSXFGEE30ynhlIJgM51CU6VNIEZgnpvHBEFUy
1VraePiwJ53DF52TZnomENg85kNUd20J1i2Wpr40mmkfN4x4zHEfiVFc8Dv8NzuhNgOidi1GvA6DGU
eZwO78AAQN6CciEk6+rw5VevivgNDYPOoIUwaKShrxAuXL1kH4aYuGEfMYDcl0WEF5Ta31hPJOfcUhr
U/J1INi6c6elRYdBpo6++Yfjx611GNfRmM4AMD5rJ1j3FoGHNnjDSBNarYUgMLyMszKpb7tXpoHfPs8
h3WplLzNfNk54XxClwDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GgxQ6BzeNboBk5n8k4nebRh+kl1hWfxTFOD1EyWUs5nv+dgQgKaxzuCdEQL
sH102NQ8ah0mXr12La3m0fIwik9+wLNTMY/86MP08yi310fxmT6PWogGI+DZukYna56mSZt5WWSy
5qVAlrwUyJgXAlnzkiai/gHSD7RkTyihogAAAABJRUSErkJggg=="

}

190 Rec. ITU-T X.1277 (11/2018)

Example of a User Verification Methods entry for an authenticator with:
. Fingerprint based user verification method, with:
o the ability for the user to enroll up to 5 fingers (reference data sets) with
» a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of

0.01% (0.0001).
« The fingerprint verification will be blocked after 5 unsuccessful attempts.
. A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative

verification method. Entering the PIN will be required to re-activate fingerprint based user
verification after it has been blocked.

EXAMPLE 2: User verification methods entry

[

[{ "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5,
"maxRetries": 5, "blockSlowdown": 0} }],
[{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } }]

]
H.5.2 U2F example
Example of the metadata statement for an U2F authenticator with:

. authenticatorVersion 2.

. Touch based user presence check.

. Authenticator is a USB pluggable hardware token.

. The authentication keys are protected by a secure element.

. The user presence check is implemented in the chip.

. The authentiator is a pure second factor authenticator.

. It supports the "U2FV1BIN" assertion scheme.

. Itusesthe r1c stcn sEcpP256r1 ECDSA sHA256 RaW authentication algorithm.
. It uses the ~r.c kev mcc x962 raw public key format (0x100=256 decimal).

. It only implements the Tac aTTeEstaTion BAstc FULL method (0x3EQ7=15879 decimal).
. It implements U2F protocol version 1.0 only.

EXAMPLE 3: MetadataStatement for U2F authenticator

{ "description": "FIDO Alliance Sample U2F Authenticator",
"attestationCertificateKeyIdentifiers":
'7c0903708b87115b0b422def3138c3c864e44573"],

[

"protocolFamily": "u2f",
"authenticatorVersion": 2,

"upv": [{ "major": 1, "minor": 0 }],
"assertionScheme": "U2FV1BIN",

"authenticationAlgorithm": 1,

"publicKeyAlgAndEncoding": 256,

"attestationTypes": [15879],

"userVerificationDetails": [[{ "userVerification": 1} 1],

"keyProtection": 10,

"matcherProtection": 4,

"attachmentHint": 2,

"isSecondFactorOnly": "true",

"tcDisplay": O,

"attestationRootCertificates": [
"MIICPTCCAeOgAWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHsxIDAeBgNVBAMM
F1NhbXBsZSBBAHR1c3RhdG1vbiBSb290MRYWFAYDVQQKDAIGSURPIEFsSbGlhbmN1
MREwDwYDVQQLDAhVQUYgVEFdHLDE SMBAGA1UEBWwJUGFsbyBBbHRVMQswCQYDVQQTI
DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQWNJE4AMTMzMzMyWhcNNDEXMTAZzZMTMzMzMy

Rec. ITU-T X.1277 (11/2018) 191

WiB7MSAWHGYDVQQDDBATYW1wbGUgQXROZXNOYXRpb24gUmOvdDEWMBQGALUECGWN
Rk1ETyYBBbGxpYWS5] ZTERMASGALIUECWwIVUFGIFRXRywxEJAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOEXCZzAJBgNVBAYTAIVTIMFkwEWYHK0ZIZzjO0CAQYIKOZI
23 0DAQCcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUPOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgqOBb58pxGqHIRyX/ 6NOME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It7zE4w8hk5EJ/MB8GA1UAIWQYMBaAaAFPOHA3CLhxFbCO0It72zE4w8hk5EJ/MAWG
A1UdEWQFMAMBAf8wWCgYIKoZIzjOEAWIDSAAWRQIhAJO6QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAH]IzA9Xm63rruAxBZ9ps9z2XN
10=="1,

H.6 Additional considerations
Field updates and metadata

Metadata statements are intended to be stable once they have been published. When authenticators
are updated in the field, such updates are expected to improve the authenticator security (for example,
improve FRR or FAR). The authenticatorversion must be updated if firmware updates fixing
severe security issues (e.g., as reported previously) are available.

NOTE 1 - The metadata statement is assumed to relate to all authenticators having the same AAID.

NOTE 2 — The FIDO server is recommended to assume increased risk if the authenticatorversion
specified in the metadata statement is newer (higher) than the one present in the authenticator.

Significant changes in authenticator functionality are not anticipated in firmware updates. For
example, if an authenticator vendor wants to modify a PIN-based authenticator to use "Speaker
Recognition” as a user verification method, the vendor MUST assign a new AAID to this
authenticator.

A single authenticator implementation could report itself as two "virtual™ authenticators using
different AAIDs. Such implementations MUST properly (i.e., according to the security characteristics
claimed in the metadata) protect vautn keys and other sensitive data from the other "virtual"
authenticator — just as a normal authenticator would do.

NOTE - Authentication keys (Uauth.pub) registered for one AAID cannot be used by authenticators
reporting a different AAID — even when running on the same hardware (see clause A.4.5.7.5)

192 Rec. ITU-T X.1277 (11/2018)

Annex |

FIDO metadata service
(This annex forms an integral part of this Recommendation.)

1.1 Summary

The FIDO authenticator metadata specification defines so-called "authenticator metadata” statements.
The metadata statements contain the "trust anchor" required to validate the attestation object and they
also describe several other important characteristics of the authenticator.

The metadata service described in this annex defines a baseline method for relying parties to access
the latest metadata statements.

1.2 Overview

Annex H defines authenticator metadata statements.

These metadata statements contain the trust anchor required to verify the attestation object (more
specifically the reyregistrationpata Object) and they also describe several other important
characteristics of the authenticator, including supported authentication and registration assertion
schemes and key protection flags.

These characteristics can be used when defining policies about which authenticators are acceptable
for registration or authentication.

The metadata service described in this annex defines a baseline method for relying parties to access
the latest metadata statements.

Figure 1.1 shows an overview of the FIDO metadata service architecture.
FIDO authenticator FIDO server

Attestation object

2. Support policy
configuration
obj sing using metadata
trust anchor
from metadata

Attestation key

Metadata

Authenticator vendor Metadata service

Provide metadata
as part of FIDO certification N

Figure 1.1 — FIDO metadata service architecture overview

1.2.1 Scope

This annex describes the FIDO metadata service architecture in detail and it defines the structure and
interface to access this service. It also defines the flow of the metadata related messages and presents
the rationale behind the design choices.

Rec. ITU-T X.1277 (11/2018) 193

1.2.2 Detailed architecture

The metadata "table-of-contents” (TOC) file contains a list of metadata statements related to the
authenticators known to the FIDO Alliance (FIDO authenticators).

The FIDO server downloads the metadata TOC file from a well-known FIDO URL and caches it
locally.

The FIDO server verifies the integrity and authenticity of this metadata TOC file using the digital
signature. It then iterates through the individual entries and loads the metadata statements related to
authenticator AAIDs relevant to the relying party.

Individual metadata statements will be downloaded from the URL specified in the entry of the
metadata TOC file and may be cached by the FIDO server as required.

Figure 1.2 shows the FIDO metadata service architecture.

The integrity of the metadata statements will be verified by the FIDO server using the hash value
included in the related entry of the metadata TOC file.

I Direction of data flow

Direction of connection

FIDO server

Download metadata
statement from
authenticator vendor

144 2. Download and 1. Download and
verify metadata verify metadata
statement from TOC from well-
URL supplied in known URL
metadata TOC

Download metadata Download
statement from metadata
metadata service TOC

A

Authenticator vendor Metadata service

Provide metadata
as part of FIDO certification

X.1277(18)_F1.2

Figure 1.2 — FIDO metadata service architecture

NOTE — The single arrow indicates the direction of the network connection, the double arrow indicates the
direction of the data flow.

NOTE — The metadata TOC file is freely accessible at a well-known URL published by the FIDO Alliance.

NOTE — The relying party decides how frequently the metadata service is accessed to check for metadata TOC
updates.

1.3 Metadata service details

NOTE - The relying party can decide whether it wants to use the metadata service and whether or not it wants
to accept certain authenticators for registration or authentication.

The relying party could also obtain metadata directly from authenticator vendors or other trusted
sources.

194 Rec. ITU-T X.1277 (11/2018)

1.3.1

Metadata TOC format

NOTE 1 — The metadata service makes the metadata TOC object (see Metadata TOC) accessible to FIDO servers.

NOTE 2 - This object is a "table-of-contents" for metadata, as it includes the AAID, the download URL and
the hash value of the individual metadata statements. The TOC object contains one signature.

1.3.1.1

Metadata TOC payload entry dictionary

Represents the MetadataTOCPayloadEntry

dictionary MetadataTOCPayloadEntry {

AAID aaid;

AAGUID aaguid;

DOMString[] attestationCertificateKeyldentifiers;
required DOMString hash;

required DOMString url;

required StatusReport[] statusReports;

required DOMString timeOfLastStatusChange;

DOMString rogueListURL;

DOMString rogueListHash;

1.3.1.1.

1 Dictionary MetadataToCPayloadEntry Members

aaia of type Aa1D

The AAID of the authenticator this metadata TOC payload entry relates to. See Annex A for
the definition of the AAID structure. This field MUST be set if the authenticator implements
FIDO UAF.

NOTE — FIDO UAF authenticators support AAID, but they do not support AAGUID.

aaguid Of type AacuID

The authenticator attestation GUID. See [b-FIDOKeyAttestation] for the definition of the
AAGUID structure. This field MUST be set if the authenticator implements FIDO 2.

NOTE - FIDO 2 authenticators support AAGUID, but they do not support AAID.

atteStationCertificateKeyIdentifiersOftypeaﬁayOfDOMString

A list of the attestation certificate public key identifiers encoded as hex string. This value
MUST be calculated according to method 1 for computing the keyldentifier as defined in
[IETF RFC 5280] clause 4.2.1.2. The hex string MUST NOT contain any non-hex characters
(e.g., spaces). All hex letters MUST be lower case. This field MUST be set if neither 2214
nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to
a single authenticator model.

NOTE — FIDO U2F authenticators do not support AAID or AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

haskloftype‘required DOMString

base64url (string[l..512])

The hash value computed over the base64url encoding of the UTF-8 representation of the
JSON encoded metadata statement available at .1 and as defined in Annex H. The hash
algorithm related to the signature algorithm specified in the JWTHeader (see Metadata TOC)
MUST be used.

Rec. ITU-T X.1277 (11/2018) 195

NOTE - This method of base64url encoding the UTF-8 representation is also used by JWT [IETF RFC 7519]
to avoid encoding ambiguities.

urlOftyperequired DOMString

Uniform resource locator (URL) of the encoded metadata statement for this authenticator
model (identified by its AAID, AAGUID or attestationCertificateKeyldentifier). This URL
MUST point to the base64url encoding of the UTF-8 representation of the JSON encoded
metadata statement as defined in Annex H.

encodedMetadataStatement = base6d4url (utf8 (JSONMetadataStatement))

NOTE - This method of the base64url encoding the UTF-8 representation is also used by JWT
[IETF RFC 7519] to avoid encoding ambiguities.

statusReports Of type array of required statusReport

An array of status reports applicable to this authenticator.

timeOfLastStatusChange Of type required DOMString

ISO-8601 formatted date since when the status report array was set to the current value.

rogueListURL Of type poMstring

URL of a list of rogue (i.e., untrusted) individual authenticators.

roguelistHash Of type poMstring
base6durl (string[1l..512])

The hash value computed over the Base64url encoding of the UTF-8 representation of the
JSON encoded rogueList available at roguernisturs (with type rogueListEntry[]). The hash
algorithm related to the signature algorithm specified in the JWTHeader (see Metadata TOC)
MUST be used.

This hash value MUST be present and non-empty whenever rogueristURL IS present.

NOTE - This method of base64url-encoding the UTF-8 representation is also used by JWT [IETF RFC 7519]
to avoid encoding ambiguities.

EXAMPLE 1: UAF METADATA TOC PAYLOAD

{ "no": 1234, "nextUpdate": "2014-03-31",
"entries": [
{ "aaid": "1234#5678",
"hash": "90da8da6de23248abb34da0d4861£f4b30a793e198a8d5baa7f98£260db71acd4",
"url": "https://fidoalliance.org/metadata/1234%x23abcd",
"rogueListHash": "b5079cf40£fd7ed174c645cc04df1e72b7£1229590585d16d£62dd20b9541c6b5",
"rogueListURL": "https://fidoalliance.org/metadata/1234%x23abcd.rl",
"statusReports": [
{ status: "FIDO CERTIFIED", effectiveDate: "2014-01-04"}
]I
"timeOfLastStatusChange": "2014-01-04"
}l
{ "attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
"hash": "785d16df640fd7b50ed174cb5645cc0fle72b7£19¢c£22959052dd20b9541c64d",
"url": "https://authnr-vendor-a.com/metadata/9876%x234321",
"statusReports": [
{ status: "FIDO CERTIFIED", effectiveDate: "2014-01-07"},
{ status: "UPDATE AVAILABLE", effectiveDate: "2014-02-19",
url: "https://example.com/updatel234" }
]l
"timeOfLastStatusChange": "2014-02-19"
}
]
}

NOTE 1 — The character # is a reserved character and not allowed in URLs [b-IETF RFC 3986]. As a
consequence it has been replaced by its hex value 2x23.

196 Rec. ITU-T X.1277 (11/2018)

NOTE 2 — The authenticator vendors can decide to let the metadata service publish its metadata statements or
to publish metadata statements themselves. Authenticator vendors can restrict access to the metadata
statements they publish themselves.

1.3.1.2 StatusReport dictionary

NOTE 1 - Contains an ruthenticatorStatus and additional data associated with it, if any.

NOTE 2 — New statusReport entries will be added to report known issues present in firmware updates.
The latest statusreport entry MUST reflect the "current™ status. For example, if the latest entry has
status user VERTFICATTON BYPASS, then it is recommended assuming an increased risk associated

with all authenticators of this AAID; if the latest entry has status vroaTe 2vaTT.ABRLE, then the update
is intended to address at least all previous issues reported in this StatusReport dictionary.

dictionary StatusReport {
required AuthenticatorStatus status;

DOMString effectiveDate;
DOMString certificate;
DOMString url;

1.3.1.2.1 Dictionary statusrReport members
statusOftyperequired AuthenticatorStatus

Status of the authenticator. Additional fields MAY be set depending on this value.

effectiveDateOftyDEDOMString

ISO-8601 formatted date since when the status code was set, if applicable. If no date is given,
the status is assumed to be effective while present.

certificate Of type poMstring
Base64-encoded [IETF RFC 4648] (not base64url!) DER [ITU-T X.690] PKIX certificate
value related to the current status, if applicable.
NOTE - As an example, this could be an Attestation Root Certificate (see Annex H) related to a set of
compromised authenticators (ATTESTATION_KEY_COMPROMISE).
urlOftypeDOMString
HTTPS URL where additional information may be found related to the current status, if
applicable.

NOTE — For example a link to a web page describing an available firmware update in the case of status
UPDATE AVAILABLE, or a link to a description of an identified issue in the case of status
USER _VERIFICATION BYPASS.

1.3.1.3 AuthenticatorStatus enum

This enumeration describes the status of an authenticator model as identified by its AAID and
potentially some additional information (such as a specific attestation key).

Rec. ITU-T X.1277 (11/2018) 197

enum AuthenticatorStatus {
"NOT FIDO CERTIFIED",
"FIDO CERTIFIED",
"USER VERIFICATION BYPASS",
"ATTESTATION KEY COMPROMISE",
"USER_KEY REMOTE COMPROMISE",
"USER KEY PHYSICAL COMPROMISE",
"UPDATE AVAILABLE",
"REVOKED",
"SELF ASSERTION SUBMITTED",
"FIDO SECURITY CERTIFIED L1",
"FIDO SECURITY CERTIFIED L2",
"FIDO SECURITY CERTIFIED L3",
"FIDO SECURITY CERTIFIED L4"
}i

Table 1.1 — Enumeration of authenticator status

Enumeration description

NOT_FIDO CERTIFIED This authenticator is not FIDO certified — no functional and no
security certification.

FIDO CERTIFIED This authenticator has passed FIDO functional certification.

USER_VERIFICATION BYPASS Indicates that malware is able to bypass the user verification. This

means that the authenticator could be used without the user's
consent and potentially even without the user's knowledge.

ATTESTATION_KEY_ COMPROMISE Indicates that an attestation key for this authenticator is known to
be compromised. Additional data should be supplied, including
the key identifier and the date of compromise, if known.

USER_KEY REMOTE_COMPROMISE This authenticator has identified weaknesses that allow registered
keys to be compromised and should not be trusted. This would
include both, e.g., weak entropy that causes predictable keys to be
generated or side channels that allow keys or signatures to be
forged, guessed or extracted.

USER_KEY PHYSICAL_ COMPROMISE | This authenticator has known weaknesses in its key protection
mechanism(s) that allow user keys to be extracted by an adversary
in physical possession of the device.

UPDATE_AVAILABLE A software or firmware update is available for the device.
Additional data should be supplied including a URL where users
can obtain an update and the date the update was published.
When this code is used, then the field authenticatorversion
in the metadata Statement Annex H MUST be updated, if the
update fixes severe security issues, e.g., the ones reported by
preceding StatusReport entries with status code
USER_VERIFICATION BYPASS,
ATTESTATION KEY COMPROMISE,

USER_KEY REMOTE COMPROMISE,

USER_KEY PHYSICAL COMPROMISE, REVOKED.

NOTE — Relying parties might want to inform users about
available firmware updates.

198 Rec. ITU-T X.1277 (11/2018)

Table 1.1 — Enumeration of authenticator status

Enumeration description

REVOKED The FIDO Alliance has determined that this authenticator should
not be trusted for any reason, for example if it is known to be a
fraudulent product or contain a deliberate backdoor.

SELF_ASSERTION_SUBMITTED The authenticator vendor has completed and submitted the self-
certification checklist to the FIDO Alliance. If this completed
checklist is publicly available, the URL will be specified in
StatusReport.url.

FIDO SECURITY CERTIFIED L1 The authenticator has passed a sanctioned third party security
validation according to FIDO level 1.

FIDO_SECURITY CERTIFIED L2 The authenticator has passed a sanctioned third party security
validation according to FIDO level 2.

FIDO SECURITY CERTIFIED L3 The authenticator has passed a sanctioned third party security
validation according to FIDO level 3.

FIDO_SECURITY_CERTIFIED L4 The authenticator has passed a sanctioned third party security
validation according to FIDO level 4.

More values might be added in the future. FIDO servers MUST silently ignore all unknown
AuthenticatorStatus values.

1.3.1.4 RogueListEntry dictionary
NOTE 1 — Contains a list of individual authenticators known to be rogue.

NOTE 2 — New rRogueListEntry entries will be added to report new individual authenticators known to be
rogue.

NOTE 3 — Old rogueListEntry entries will be removed if the individual authenticator is known to not be
rogue any longer.

dictionary RogueListEntry ({
required DOMString sk;
required DOMString date;

1.3.1.4.1 Dictionary rogueListEntry members
sk of type required DOMString
Base64url encoding of the rogue authenticator's secret key (sk value, see Annex K, clause
ECDAA attestation).
NOTE — In order to revoke an individual authenticator, its secret key (sk) must be known.
date Of type required DOMString

ISO-8601 formatted date since when this entry is effective.

EXAMPLE 2: ROGUELISTENTRY[] EXAMPLE

[
{ "sk": "30efa86aacde25249%9acb35da0d4861f4b30a793e198a8d5baa7e96f240da51£3",
"date": "2016-06-07"},
{ "sk": "93de8da6de23248abb34da0d4861f4b30a793e153a8d5bb27£98f260db71acd4",
"date": "2016-06-09"},

Rec. ITU-T X.1277 (11/2018) 199

1.3.1.5 Metadata TOC payload dictionary
Represents the MetadataTOCPayload

dictionary MetadataTOCPayload {
required Number no;
required DOMString nextUpdate;
required MetadataTOCPayloadEntry[] entries;

1.3.1.5.1 Dictionary MetadataToCPayload members
no Of type required Number

The serial number of this UAF Metadata TOC Payload. Serial numbers MUST be consecutive
and strictly monotonic, i.e., the successor TOC will have a no value exactly incremented by
one.

nextUpdateOftyDEquuired DOMString

ISO-8601 formatted date when the next update will be provided at latest.

entries Of type array of required MetadataTOCPayloadEntry

List of zero or more MetadataTOCPayloadEntry objects.

1.3.1.6 Metadata TOC

The metadata table of contents (TOC) is a JSON Web Token (see [IETF RFC 7519] and
[IETF RFC 7515]).

It consists of three elements:

. The base64url encoding, without padding, of the UTF-8 encoded JWT Header (see example
below),
. the base64url encoding, without padding, of the UTF-8 encoded UAF Metadata TOC Payload
(see example at the beginning of clause 1.3.1 Metadata TOC Format),
. and the base64url-encoded, also without padding, JWS Signature [IETF RFC 7515]
computed over the to-be-signed payload, i.e.
tbsPayload = EncodeddWTHeader | "." | EncodedMetadataTOCPayload

All three elements of the TOC are concatenated by a period ("."):

MetadataTOC = EncodedJWTHeader | "." | EncodedMetadataTOCPayload | "." |
EncodeddWSSignature

The hash algorithm related to the signing algorithm specified in the JWT Header (e.g., SHA256 in
the case of "ES256"™) MUST also be used to compute the hash of the metadata statements
(see clause 1.3.1.1 Metadata TOC payload entry dictionary).

1.3.1.6.1 Examples
EXAMPLE 3: Encoded Metadata Statement

eyAiQUFJRCIGICIxXMIMOIzU2NzgiLAOKICALIQXROZXNOYXRpb25Sb29002VydGlmaWNhdGUiOiAL
TU1JQ1BUQONBZUINQXdJQkFnSUpBT3V1eHZVMO095MndNQWIHQONXRINNND1ICQU1DTUhzeELIEQWVC
ZOSWQkEFNTQOKRjFOaGJIYQOnNaUOJCZEhSbGMzUmhkR2x2Ym1CU2IyOTBNU113RkFZRFZRUUtEQTFH
UlVSUE1FRNNiR2x0Yml1ObAOKTVIFAOR3WURWUVFMREFOVIFVWWAWRMRITERFUO1CQUABMVVEQnNnd3
S1VHRnNNieUJCYkhSdk1Rc3dDUV1EV1FRSQOKREFKRFFURUXNQWtHQTFVRUJOTUNWVk13SGhjTk1lU
UXd0akUOTVRNek1l 6TX1XaGNOTkRFeE1UQXpNVE1 6TXpNeQOKV2pCNO1TQOXdIZ11EVIFRRERCZERZ

200 Rec. ITU-T X.1277 (11/2018)

VzF3YkdVZ1FYUjBaWE4wiWVhScGIyNGAVbT12ZERFV0O1CUUABMVVEQ2d3Tg0KUmt sRVR5QkJiR3hw
WVclalpURVINQThHQTFVRUN3dAO1WVUZHSUZSWEJ5d3hFakFROmMAOVkJIBY01DVkJoYkc4ZwOKUVd4
MGJ6RUXNQWEtHQTFVRUNBAONRMEV4Q3pBSkInT1ZCQVIUQWXWVE1Ga3dFd1l1IS29aSXpgMENBUV1J
S29aSQ0KemowREFRYORRZOFFSDhodjJEMEhYYTUSLO0JtcFE3UlplaEwvRk1HekZkMVFCZz12QVVw
T1ozYWpudVESNEFBSNwOKYU16SDMzb1VTOnI4ZkhZRHIXxTOJiNThweEdxSEpSeVgvNk5RTUUOJOhR
WURWUJBPQkJZRUZQbOhBMONMaHhGYgO0KQzBJADA6RTR30OGhrNUVKLO1COEABMVVkSXdRWU1CYUFG
UG9IQTNDTGh4RmJDME1ON3pFNHc4aGs1RUoOVTUF3RwOKQTFVZEV3UUZNQU1CQWY4dONnWU1Lblpd
emowRUF3SURTQUF3U1FJaEFKMDZRULIhOOW1oSWIFS11LSWpzUGtyaQOKVMRMSWAOZnNiRENINOVyY
SmZ6cjRBaUJIxbl1DWmYwWK3pJINTVhUWVBSGpJekESWG02M3JydUF40105¢cHM5ejJYTgOKbFE9PSTs
DQogICJEZXN]jcmlwdGlvbiI6ICIGSURPIEFsbGlhbmN1IFNhbXBsZSBVQUYgQXV0aGVudGljYXRv
ciIsDQogICJVc2VyVmVyaWZpY2F0aW9uTWVv0aG9kcyI6IDIsDQogICIWYWxpZEFO0dGFjaGl1lbnRU
eXBlcyI6IDEsSDQogICJILZX1Qcm90ZWNOaWOuIljogNiwNCiAgIklhdGNoZXJQcm90ZWNOaWSuIljog
MiwNCiAgI1N1Y3VyZURpc3BsYXkiOiAOLAOKICAi1U2VidXJ1RGlzcGxheUNvbnR1bnRUeXBlcyI6
IFsiaWlhz2UvcG5nI10sDQogICITZWN1cmVEaXNwbGF5UESHQ2hhemFjdGVyaXNOaWNzIjogWlsw
LDAsSMSw2NCwwLDASMSwyMjQsMTYsMiwwLDASMEF1dLAOKICALIaXNTZWNvbmRGYWNOb3JPbmx5Ijog
ImZhbHNIIiwNCiAgIkljb24i0iAiZGFOYTppbWEFNnZSOwbmc7YmEFzZTYOLG1WQk9SdzBLR2dVvQUEB
QUSTVWhFVWABQUFFOEFBQUF2Q0FZQUFBQ213SmZjQUFBQUFYT1INSME1RcnMOYzZRQUFBQVJUUVUX
QkFBQ3gNCmp3djhZUVVBQUFBSmNFaFpjdOFBRHNNQUFBNORBY2R2cUdRQUFBYWhTVVJICVkdoRDda
cjVieFJsRO1mOUt6VEI4QUOVWUVORTIXN3ANC1FaY1dLSO0JjbFNwSEFUDEVMQVJIEFN2 tORUNDQTNG
aldLMENLS1INDRk1zS0JjZ1ZDRFAHTKVTZEFZaWR3Z22dnSkJpUmlNaEZjLzR3eTgNCjg4NHp1lOUSk
PG5HVGZaS1AybijNuTysrODg5MzNmdmVCOngrUHFDekprVEV2QmIMbXBVRFA2Q1RIbXBjQ1NadlhM
Q2RYOVIWNVNrMTKNCmJIiNWFO0ZjUSOWZHKy91ckELINDFXNDAhUDFMTEFZhOVNJeVZOVitk4SWk4ZDVr
R1RzaTMwTkZ2N2FpOW43UVpQTXdiZH1 zMmVyVTJYTXENC1VkeTgrWmNhTm1HaWlFOH1IYTJNSVWQz
YTE4bkYwZ1Vsb3ZaKzBDVHpXcGQyVmorZU9tMWIFeXk2RHg0aTVwVU1HV3Z1bzUwNnEyMjcNCmRO
dvdCSXVmzZnI2bldwViBGUESMaG93MTc1MUStM)FMd1BIM3JWdFdgZno2NkxmcWw4dFg3R1JIsOV1G
UlhzbVNzZWI5Y2VPR2JZazcNCk1OVWNHUGC4AWNNiTWUScmZRVWFhVi9KTVg5c3FkekRDU3ZwMGta
SG1lUWmc5eDdiTEhjTW5UaGIxNmVKK21WZ1FxOH1hVVpRTkc2NGkNClhaKzAva3E2dU%aRk8wUXRh
dGRXS2ZYb1JROT1CajkxUjVPSUZuazUOakdwbWtVaXFsTzNYRFcrTWwrOThtS0I2dFc3cldwiWmNQ
YysNCjB6ZzROTHIZbFVjODZFNmVHRGpJITXViVnBjdXN1YXImZ01ZR1JrNmJyaFpWci9KY0h6b29M
NzUIMGplZExFeGOwV2NBcGkyW1lVxaHUNCjdKTHZyVnNRVTgxemt 6T1B1ZWINU112VnVRc1lg3UGJIp
REFZNUp2WmOuZnRLKzZFWWThIOXV0eDUzMGgwb2Iraml SWXFgNm9O1YV12RWUNCmSXL1dsWWpwOGN3
Yk1tNjgydFB3cVexUjR0ai8yU0gxM01SS11sNG1vIWnZYcGlTcURYN2RYdFFIeGEVUEszLytCV3NL
MWRUZOhIN1YNCjhOUUozY¥ndGa3dwRnJVT1E1IMHMxcjNsZXZtOHpaY3ExNytCOmEF3N0s4bEVLNXE6
alllYXJrOUE4cDdQMOd6REsrbmQzRFFvdys2VUMNCIhTVk44Mm11diM4aW03TnRhWHRWMUNWCTZS
Z3c0cGtzbWJkaTNidTJIEZTdZZmFCOnhjcWZ2cVByVWpGUUSUUTIybGZkVVZWVDY4c1QONCkpLRJVE
DINtVWpnZHFNNG1TUZ 1wbXNmREpSMOCc2VGIIMGIXOWFWNOxXxXTEhZWEt sbFREADBMVEF0allJYWFt
cDFRalZ2Kyt1leUdVeFYNCmRKMEROV1hTbStiMXFSeHBsODRkZGZYMUxwMUBvZDY5dHNvZDB2czVo
R3J10Xh10G8rZnBMUJjFJR2hOVEQ2WjU3Qz1LTVAYZWZKZEBNC105NGJIJ1i0WIxZDFST25TN3FJVFR6
SG1ltTXFpdmJIPM2cwRGRWeWszV1FCaEJ6dEszNV1ILTmRPbmM4TzNhY1M2ZkRaRmdLYVhMcOVKcDUN
CnJkcmxpOnFwOD1jSmNzL203VHZ zMHIrakdmTjRiMGtQOblpuM1VKdUl1Pcm5aMjJ5UDFmbXZVeCtP
NWATcWViViFtK3pTdV1OVmMhxN1IQNC1diRGIMVnZsanBsTGxvcDZDTFhQKzIxdHZHTEIMLzF2aWlJ
U2RNQOmMd6U29GWn11N1RxZCtgenhnclBhVj1CQ3F1Z2S90allrNnY2bEsNC]j1jd21VYy9TVHRmMMUhE
cE0zYjU5Mnk3aDNUaHglb3pLNj1ITHBZV3VBd2FxUzVjdjI2cTdjZWI4ZWZWWWFSZVAZzaUZVOHpg
MWtuU3cNClpYSE1tbkNQWTBPZ2FsbzdVUWZTQ00zcVFRcjJIL1hGUDAzc1h4NDVZbDkxQnl1Q2Vw
NG1vWmOIKzFmRzN4RDROVDA40Gt3eWo4bncNCmISZXYyN1YwQ]jZkKzdINHpLdnVkQUglMzdGanFE5
ek9IZEpuSEV1emlYcS9XanhPYnZOTWJI2N250eXdzWDJhVNNXdEM4KzQ4YUx1YXANCkU3cDV3Slpp
MEEyQVFSVjVudlIORSt1SmMrYjY¥xa0FwcUlueEJnbWQVNEFY1UVAVDbXQxOEhEQzdzUkhmdG11dTVs
PWhWMHJULOFMWDINCjMyYnFKNEJGbkRAN1 ZpMWNXUZzJ1ZmYwSWJICNDAxZXh4bVVgOVF1dF1gdXBk
M3RZRDZhY1dCQklyaCthcESiTO0tyTkYxK3VnNnQ2EOcmkNC1hHZndNUFBOVM1hdmhVM11INTOFBbnVvV
Yi9SMDAMMH1PU2VPYWRFODhBcHNYRkdAmZ jMweW50bEpnTTUxQ1U2dk4 5RXpnbnB2SEJGVXKNCm1IW
cmF1lUG13SjUzZREY1W1Rabm9tRUSNODVrT1VkMmIKaTIXcHIOT21ta2ZONHg0ekhmaVZGYzhEdjhO
enVoTnFPaWRpbEd2QTZER3UNCmVad0830EFBUW42Y21FazYrcnclVmN2anZxTkRZUESvSVV3YUtLT
aHJ4QXVYTGxr SDRhWXVHZk1ZRGMxMFAGNVRhMzFoUEpPZmNVaHINC1UvSmxJTmk2YzZ1bFJZZEJw
bzY¥rKllmang2MWxHTmZSObTRNRDVySjFgMO0ZvROhuakRTQk5hcl11lVZ01MeUlzektwYjdOWHBVSGZQ
czgNCmgzV3AxXxTHpOZk5rNTRYeEMxdORHVW1ZelhZZWZoNnovY0t0VmOORUJ4YT1IWUUdEel1yMOxy
VU1SakhFS2trN3phRktZUUEyaEdRVTENCnorODVOR1dwWERya3ozdngxMEdxeFE20nplTmJvOms 1
bjhrNG51Y1JoK2sxaFdmeFRGMEQxRX1XVXM1bnYrZGdRcUtheHplQ2RFMGKNCNNIbDAYT1E4YWgw
PVhyMTJIMYTNtMGY5d21rOSt3TESUTVkvODZNUG84eWkzMU9meG1UN1IBXb3FHOStEWNVrWWShNTZt
UlpONVAXU3KNC]jVxVkExcndVeUpxWEFsbnpraWFpL2dIU0Q3UmtUeWlob2dBQUFBQkpSVTVFcmtK
Z2dnPTO1LAOKICALIQXNzZXJ0aWOuU2NoZW11IjogIlVBRIYXVEXWIiwNCiAgIkF1dGhlbnRpY2F0
aWouQWxnb3JpdGhtIjogMSWNCiAgIkFO0dGVzdGF0aWOuVHIwZXMi01BbMTYZOTFALAOKICAIVVBW
IjogWlsxLDBAXQOKEfQOK

EXAMPLE 4: JWT Header

{ "typ" H "JWT" ,
"alg":"ES256"
"x5t#5256":"7231962210d2933ec993a77b4a7203898ab74cdf974££02d2de3flecTcb9de68")

Rec. ITU-T X.1277 (11/2018) 201

To produce the thsPayload, the base64url-encoded (without padding) JWT Header is first needed:
EXAMPLE 5: Encoded JWT Header

eyJ0eXAi0iJKV1IQiLAogImFsZyI6IkVIMjU2IiwKICJI4NXQjUZzIINiI6IjcyMzESN]IyMTBkMjkz
M2VjOTkzYTc3YjRhNz IwMzg50GFiNzR ZGY5NzRmZjAyZDIkZTNMMWVN2NiOWR1IN gi£Q

then a period ("") and the base64url encoding of the =Encodedvetadata
Tocrayload (taken from the example in clause 1.3.1 Metadata TOC Format) are appended:

EXAMPLE 6: tbsPayload

eyJ0eXAi01iJKVIQiLAogImFsZyI6IkVIMjU2IiwKICJI4NXQjUZzIINiI6IjcyMzESN]IyMTBkMjkz
M2VjOTkzYTc3YjRhNz IwMzg50GFiNzR ZGY5NzRmZjAyZDIkZTNMMWVN2NiOWRINGgifQ.
eyAibm8i0iAxXMjMOLCAibmV4dC1l1cGRhAGUi0iAIMzEtMDMEMjAXNCIsDQogICJlbnRyaWvVzIjog
WwOKICAgeyAiYWFpZCI6ICIXMjMOIzU2NzgiLCANCiAgICAgGImhhc2giOiAiOTBKYThkYTZkZTIz
MJQ4YWIiMzRkYTBKNDG2MWY0YjMwYTc5M2UxOThhOGQ1YmFhN2Y50GYyNiBkYjcxYWNKNCIsIAOK
ICAgICAiIdXJsIjogImh0dHBz0i8vZmlkb2FsbGlhbmN1Lm9yZy9tZXRhZGFOYS8xMjMOTXgyM2Fi
Y2QiLCANCiAgICAgINNOYXR1lcyI6ICImaWRvQ2VydGlmaWVkIgOKICAGICAIdGltZUOIMTGFzdENO
YXR1cONoYW5nZSI6ICIiLAOKICAgICALIY2VydGlmaWNhdGlvbkRhdGUi0O1AIMjAXNCOWMSOWNCIg
fSWNCiAgIHsgImFhaWQiOiAiOTg3NiMOMzIxIiwgDQogICAgICJoYXNoIjogIjc4ANWOxNmMRmNIQOw
ZmQ3YjUwZWQxNzRj Y U2NDV] YzBmMWU3MmMI3ZJES5Y2YyMjk10TA1MmRkMBiOTUOMWM2NGQiLAOK
ICAgICA1dXJsIjogImh0dHBz0i8vYXV0aG5yLXZ1lbmRvcilhLmNvbS9tZXRhZGFOYS850Dc2JXgy
MzQzMjEiLAOKICAgICAic3RhdHVzZIjogImZpZGIDZXI0aWZpZWQiDQogICAGICI0aWl1T2ZMYXNO
U3RhdHVzQ2hhbmd1IjogIjIwMTQtMDItMTkiLAOKICAGICAIY2VydGlmaWNhdGlvbkRhdGUiO1AL
MjAxNCOWMSOwNyIgfQOKICBADQp9DQo

and finally another period (".") is appended followed by the base64url-encoded signature.
EXAMPLE 7: JWT

eyJ0eXAi0iJKVIQiLAogImFsZyI6IkVIMjU2IiwKICJI4NXQjUZzIINiI6IjcyMzESN]IyMTBkMjkz
M2VjOTkzYTc3YjRhNz IwMzg50GFiNzR ZGY5NzRmZjAyZDIkZTNMMWVN2NiOWRINGgifQ.
eyAibm8i0iAxMiMOLCAibmV4dC11cGRhAGUiOiAIMzEEtMDMEMAXNCIsDQogICIlbnRyaWvzIjog
WwOKICAgeyA1YWFpZCI6ICIxMJMO0IzU2NzgiLCANCiAgICAgImhhc2giOiAIiOTBkYThkYTZkZTIzZ
MjQ4YWIiMzRkYTBkNDg2MWYOY I MwYTc5M2UxOThhOGQ1YmMFhN2Y50GYyNjBkYjcxYWNkKkNCIsIAOK
ICAgICA1dXJsIjogImh0dHBz0i8vZmlkb2FsbGlhbmN1LmOyZy9tZXRhZGFOYS8xMjMOJIXgyM2F i
Y2QiLCANCiAgICAgINNOYXR1lcyI6ICImaWRvQ2VydGlmaWVkIgOKICAgICAIdGLltZUIMTGEFzdFNO
YXR1cONoYW5nZSI6ICIiLAOKICAGICAiIY2VydGlmaWNhdGlvbkRhdGUi0OiAIMjAXNCOWMSOWNCIg
fSWNCiAgIHsgImFhaWQiOiAiOTg3NiMOMzIxIiwgDQogICAgICJIJoYXNoIjogljc4dNWQxXxNmMRmMNjQw
ZmQ3YJUwWZWQxNZR) Y U2NDV] Y zBmMWU3MmMI3ZJE5Y2YyM] k10TAIMmRkM)B1iOTUOMWM2NGQ1iLAOK
ICAgICAiIdXJsIjogImh0dHBz0i8vYXV0aG5yLXZ1lbmRveilhlmNvbS9tZXRhZGF0YS850Dc2IXgy
MzQzMjEiLAOKICAGICAic3RhdHVZzIjogImZpZGODZXJ0aWZpZWQiDQogICAGICJI0aWl1T2ZMYXNO
U3RhdHVZzQ2hhbmdlIjogIjIwMTQtMDItMTkiLAOKICAgICAi1Y2VydGlmaWNhdGlvbkRhdGUiO1iAL
MjAxXNCOwWMSOwNyIgfQOKICBADQPIDQo.
AP-qoJ3VPzj7L61CE1UzHzJIYOnszFQ8d2hJz51sPASgyABKSVXOFNAHzBTQRRkGwWGqQULyY 6Pt TyUV
zKxMOHrvoyZg

NOTE — The line breaks are for display purposes only.
The signature in the example above was computed with the following ECDSA key

EXAMPLE 8: ECDSA Key used for signature computation

x: d4166ba8843d1731813f46£1af32174b5c2£6013831fbl6£f12c9c0bl8af3a%b4
y: 861bc2£803a2241£4939bd0d8ecd34e468ed42f7fdccd424edblc3ce7c4ddl4e
d: 3744c426764£331£153e182d24£133190b6393cead80a8eeclc7722fcelblfe2d

1.3.1.7 Metadata TOC object processing rules

The FIDO server MUST follow these processing rules:

1. The FIDO server MUST be able to download the latest metadata TOC object from the well-
known URL, when appropriate. The nextupdate field of the Metadata TOC specifies a date
when the download SHOULD occur at latest.

2. If the = 5u attribute is present in the JWT Header, then:

202 Rec. ITU-T X.1277 (11/2018)

1.

The FIDO server MUST verify that the URL specified by the =5u attribute has the same
web-origin as the URL used to download the metadata TOC from. The FIDO server
SHOULD ignore the file if the web-origin differs (in order to prevent loading objects
from arbitrary sites).

The FIDO server MUST download the certificate (chain) from the URL specified by the
«5u attribute [IETF RFC 7515]. The certificate chain MUST be verified to properly chain
to the metadata TOC signing trust anchor according to [IETF RFC 5280]. All certificates
in the chain MUST be checked for revocation according to [IETF RFC 5280].

The FIDO server SHOULD ignore the file if the chain cannot be verified or if one of the
chain certificates is revoked.

If the 51 attribute is missing, the chain should be retrieved from the «5c attribute. If that
attribute is missing as well, metadata TOC signing trust anchor is considered the TOC signing
certificate chain.

Verify the signature of the metadata TOC object using the TOC signing certificate chain (as
determined by the steps above). The FIDO server SHOULD ignore the file if the signature is
invalid. It SHOULD also ignore the file if its number (n0) is less or equal to the number of
the last metadata TOC object cached locally.

Write the verified object to a local cache as required.
Iterate through the individual entries (of type vetadataTocrayloadentry). FOr each entry:

1.

Ignore the entry if the AAID, AAGUID or attestationCertificateKeyldentifiers is not
relevant to the relying party (e.g., not acceptable by any policy).

Download the metadata statement from the URL specified by the field ur1. Some
authenticator vendors might require authentication in order to provide access to the data.
Conforming FIDO servers SHOULD support the HTTP Basic and HTTP Digest
authentication schemes, as defined in [b-IETF RFC 2617].

Check whether the status report of the authenticator model has changed compared to the
cached entry by looking at the fields timeofrLaststatusChange and statuskReport.
Update the status of the cached entry. It is up to the relying party to specify behavior for
authenticators with status reports that indicate a lack of certification, or known security
issues. However, the status r=voreD indicates significant security issues related to such
authenticators.

NOTE - authenticators with an unacceptable status should be marked accordingly. This
information is required for building registration and authentication policies included in
the registration request and the authentication request (Annex A).

Compute the hash value of the (base64url encoding without padding of the UTF-8
encoded) metadata statement downloaded from the URL and verify the hash value to the
hash specified in the field nash of the metadata TOC object. Ignore the downloaded
metadata statement if the hash value does not match.

5. Update the cached metadata statement according to the dowloaded one.

Considerations

This clause describes the key considerations for designing this metadata service.

Need for authenticator metadata When defining policies for acceptable authenticators, it is often
better to describe the required authenticator characteristics in a generic way than to list individual
authenticator AAIDs. The metadata statements provide such information. Authenticator metadata
also provides the trust anchor required to verify attestation objects.

The metadata service provides a standardized method to access such metadata statements.

Rec. ITU-T X.1277 (11/2018) 203

Integrity and authenticity Metadata statements include information relevant for the security. Some
business verticals might even have the need to document authenticator policies and trust anchors used
for verifying attestation objects for auditing purposes.

It is important to have a strong method to verify and proof integrity and authenticity and the freshness
of metadata statements. A single digital signature is used to protect the integrity and authenticity of
the metadata TOC object and the integrity and authenticity of the individual metadata statements are
protected by including their cryptographic hash values into the metadata TOC object. This allows for
flexible distribution of the metadata statements and the metadata TOC object using standard content
distribution networks.

Organizational impact Authenticator vendors can delegate the publication of metadata statements
to the metadata service in its entirety. Even if authenticator vendors choose to publish metadata
statements themselves, the effort is very limited as the metadata statement can be published like a
normal document on a website. The FIDO Alliance has control over the FIDO certification process
and receives the metadata as part of that process anyway. With this metadata service, the list of known
authenticators needs to be updated, signed and published regularly. A single signature needs to be
generated in order to protect the integrity and authenticity of the metadata TOC object.

Performance impact Metadata TOC objects and metadata statements can be cached by the FIDO
server.

The update policy can be specified by the relying party.

The metadata TOC object includes a date for the next scheduled update. As a result there is no
additional impact to the FIDO server during FIDO authentication or FIDO registration operations.

Updating the metadata TOC object and metadata statements can be performed asynchronously. This
reduces the availability requirements for the metadata service and the load for the FIDO server.

The metadata TOC object itself is relatively small as it does not contain the individual metadata
statements. So downloading the metadata TOC object does not generate excessive data traffic.

Individual metadata statements are expected to change less frequently than the metadata TOC object.
Only the modified metadata statements need be downloaded by the FIDO server.

Non-public metadata statements Some authenticator vendors might want to provide access to
metadata statements only to their subscribed customers.

They can publish the metadata statements on access protected URLs. The access URL and the
cryptographic hash of the metadata statement is included in the metadata TOC object.

High security environments Some high security environments might only trust internal policy
authorities. FIDO servers in such environments could be restricted to use metadata TOC objects from
a proprietary trusted source only. The metadata service is the baseline for most relying parties.

Extended authenticator information Some relying parties might want additional information about
authenticators before accepting them. The policy configuration is under control of the relying party,
so it is possible to only accept authenticators for which additional data is available and meets the
requirements.

204 Rec. ITU-T X.1277 (11/2018)

Annex J

FIDO ECDAA algorithm
(This annex forms an integral part of this Recommendation.)

J.1l Summary

The FIDO basic attestation scheme uses attestation "group" keys shared across a set of authenticators
with identical characteristics in order to preserve privacy by avoiding the introduction of global
correlation handles. If such an attestation key is extracted from one single authenticator, it is possible
to create a "fake" authenticator using the same key and hence indistinguishable from the original
authenticators by the relying party. Removing trust for registering new authenticators with the related
key would affect the entire set of authenticators sharing the same "group” key. Depending on the
number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as
opposed to targeted physical attacks.

An alternative approach to "group” keys is the use of individual keys combined with a Privacy-CA
[b-TPMv1-2-Partl]. Translated to FIDO, this approach would require one Privacy-CA interaction for
each Uauth key. This means relatively high load and high availability requirements for the Privacy-
CA. Additionally the Privacy-CA aggregates sensitive information (i.e., knowing the relying parties
the user interacts with). This might make the Privacy-CA an interesting attack target.

Another alternative is the direct anonymous attestation [b-BriCamChe2004-DAA]. Direct
anonymous attestation is a cryptographic scheme combining privacy with security. It uses the
authenticator specific secret once to communicate with a single DAA Issuer and uses the resulting
DAA credential in the DAA-Sign protocol with each relying party. The DAA scheme has been
adopted by the trusted computing group for TPM v1.2 [b-TPMv1-2-Partl].

This annex specifies the use of an improved DAA scheme based on elliptic curves and bilinear
pairings largely compatible with [b-CheLi2013-ECDAA] called ECDAA. This scheme provides
significantly improved performance compared with the original DAA and basic building blocks for
its implementation are part of the TPMv2 specification [b-TPMv2-Part1].

Our improvements over [b-CheLi2013-ECDAA] mainly consist of security fixes, see [b-ANZ-2013]
and [b-XYZF-2014], when splitting the sign operation into two parts.

The FIDO basic attestation scheme uses attestation "group™ keys shared across a set of authenticators
with identical characteristics.

J.2 Overview

FIDO uses the concept of attestation to provide a cryptographic proof of the authenticator model to
the relying party. When the authenticator is registered to the relying party (RP), it generates a new
authentication key pair and includes the public key in the attestation message, which is also known
as a key registration data object (KRD). When using the ECDAA algorithm, the KRD object is signed
using ECDAA-Sign (clause J.3.5).

For privacy reasons, the authentication key pair is dedicated to one RP, or to be more specific, to an
application identifier (ApplID). Consequently the attestation method needs to provide the same level
of unlinkability. This is the reason why the FIDO ECDAA algorithm does not use a basename (bsn)
often found in other direct anonymous attestation algorithms, e.g., [b-BriCamChe2004-DAA] or
[b-BFGSW-2011].

Rec. ITU-T X.1277 (11/2018) 205

The authenticator encapsulates all user verification operations and cryptographic functions. An
authenticator specific module (ASM) is used to provide a standardized communication interface for
authenticators. The authenticator might be implemented in separate hardware or trusted execution
environments. The ASM is assumed to run in the normal operating system (e.g., Android, Windows, etc.).

J.2.1 Scope
This annex describes the FIDO ECDAA attestation algorithm in detail.

J.2.2 Architecture overview

ECDAA attestation defines global system parameters and issuer specific parameters. Both parameter
sets need to be installed on the host, in the authenticator and in the FIDO server. The ECDAA method
consists of two steps:

. ECDAA-Join to be performed before the first FIDO registration
o n=GetNonceFromECDAAIssuer()
o (Q,cl,sl) = Ecdaaloinl(X, Y, n)
o (A B,C,D,s2,c2)=EcdaalssuerJoin(Q, c1, s1)
o Ecdaaloin2(A, B, C, D, c2, s2) // store cre=(A, B, C, D)
. and the pair of ECDAA-Sign performed by the authenticator and ECDAA-Verify performed
by the FIDO server as part of the FIDO registration.
o Client: Attestation = (signature, KRD) = EcdaaSign(AppID)
o Server: success=EcdaaVerify(signature, KRD, AppID)
The technical implementation details of the ECDAA-Join step are out-of-scope for FIDO. This annex

normatively specifies the general algorithm to the extent required for interoperability and outlines
examples of some possible implementations for this step.

The ECDAA-Sign and ECDAA-Verify steps and the encoding of the related ECDAA signature are
normatively specified in this annex. The generation and encoding of the KRD object is defined in
other FIDO specifications.

The algorithm and terminology are inspired by [b-BFGSW-2011]. The algorithm was modified in
order to fix security weaknesses (e.g., as mentioned by [b-ANZ-2013] and [b-XYZF-2014]). Our
algorithm proposes an improved task split for the sign operation while still being compatible with
TPMv2 (without fixing the TPMv2 weaknesses in such case).

J.3 FIDO ECDAA attestation

J.3.1 Object encodings

There is a need to convert zignumber and ecroint objects to byte strings using the following
encoding functions:

J.3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)

The 120SP algorithm is used as defined in [IETF RFC 3447] for converting big numbers to byte
arrays. The bytes from the big endian encoded (non-negative) number » will be copied right-aligned
into the buffer area ». The unused bytes will be set to 0. Negative values will not occur due to the
construction of the algorithms.

EXAMPLE 1: Converting BigNumber n to byte string b

b0 bl b2 b3 b4 b5 b6 b7
0 0 n0 nl n2 n3 n4 n5

206 Rec. ITU-T X.1277 (11/2018)

The algorithm implemented in Java looks like this:
EXAMPLE 2: Algorithm for converting BigNumber to byte strings

ByteArray BigNumberToB (
BigNumber inval, // IN: number to convert
int size // IN: size of the output.
)

ByteArray buffer = new ByteArray(size);
int oversize = size - inVal.length;
if (oversize < 0)
return null;
for (int i=overvize; 1 > 0; 1i--)
buffer[i] = 0;
ByteCopy(inVal.bytes, &buffer[oversize], inVal.length);
return buffer;

}
J.3.1.2 Encoding Ecroint values as byte strings (ECPointToB)

The ANSI X9.62 point-to-octet-string [b-ECDSA-ANSI] conversion is used in the expanded format,
i.e., the format where the compression byte (i.e., 0x04 for expanded) is followed by the encoding of
the affine x coordinate, followed by the encoding of the affine y coordinate.

EXAMPLE 3: Converting ECPoint P to byte string

(x, y) = ECPointGetAffineCoordinates (P)
len = Gl.bytelLength
byte string = 0x04 | BigIntegerToB(x,len) | BigIntegerToB(y,len)

J.3.1.3 Encoding Ecroint2 values as byte strings (ECPoint2ToB)

The type =croint2 denotes a point on the sextic twist of a BN elliptic curve over F(g2), see clause J.4.1
Supported curves for ECDAA. Each =croint2 is represented by a pair (=, ©) of elements of F(q).

The group zero element is always encoded (using the encoding rules as described below) as a an
element having all components set to zero (i.e., cx.a=0, cx.b=0, cy.a=0, cy.b=0).

Normalized (non-zero) ECPoint2 values (i.e., cz = 1) are always assumed before they are encoded.
Non-zero values are encoded using the expanded format (i.e., 0x04 for expanded) followed by the cx
followed by the cy value. This leads to the concatenation of 0x04 followed by the first element (cx . =)
and second element (cx . v) of the pair of cx followed by the first element (cv . 2) and second element
(cy.p) of the pair of cy. All individual numbers are padded to the same length (i.e., the maximum
byte length of all relevant 4 numbers).

EXAMPLE 4: Converting ECPoint2 P2 to byte string

(cx, cy) = ECPointGetAffineCoordinates (P2)

len = G2.bytelength

byte string = 0x04 | BigIntegerToB(cx.a,len) | BigIntegerToB (cx.b, len)
| BigIntegerToB(cy.a,len) | BigIntegerToB(cy.b,len)

J.3.2 Global ECDAA system parameters

1. Groups G4, G,and G, of sufficiently large prime order p.

2. Two generators P; and P, , such that G; = (P;) and G, = (P,).

3. A bilinear pairing e: G; X G, = Gr. The use of "ate™ pairing (see [b-BarNae-2006]) is
proposed. For example source code on this topic, see BNPairings.

4. Hash function H with H: {0,1}" - Z,,.

5. (G4, P, p, H) are installed in all authenticators implementing FIDO ECDAA attestation.

Definition of G4, G,, G, pairings and hash function H.
See clause J.4.1 Supported curves for ECDAA.

Rec. ITU-T X.1277 (11/2018) 207

J.3.3 Issuer specific ECDAA parameters
Issuer parameters parl consist of the following values:

1. Randomly generated issuer private isk = (x,y) with [x,y = RAND(p)].
2. Issuer public key (X,Y), with X = P¥and Y = P;.
3. A proof that the issuer key was correctly computed

1. Biglinteger r, = RAND(p)
2. Biginteger r, = RAND(p)
3. ECPoint2 U, = P,*
4. ECPoint2 U, = P,”
5. Bigintegerc = HUx| Uy |P_2|X]Y)
6. Biglnteger s, = ry + ¢ - x(modp)
7. Biginteger sy = ry + ¢ - y(modp)
4, ipk = X,Y,c,sy, Sy
Whenever a party uses ipk for the first time, it must first verify that it was correctly generated:
H(PS) - X~C|BY Y|P, |X|Y) = c
NOTE 1 - P;* - X~¢ = P,*"™. py™ = px = U,
NOTE2-P -y =P ¥ .p,¥ =pY = U,

The ECDAA-Issuer public key ipk MUST be dedicated to a single authenticator model.

J.3.4 ECDAA-Join

NOTE — One ECDAA-Join operation is required once in the lifetime of an authenticator prior to the first
registration of a credential.

In order to use ECDAA, the authenticator must first receive ECDAA credentials from an
ECDAA-Issuer. This is done by the ECDAA-Join operation. This operation needs to be performed a
single time (before the first credential registration can take place). After the ECDAA-Join, the
authenticator will use the ECDAA-Sign operation as part of each FIDO Registration. The
ECDAA-Issuer is not involved in this step. ECDAA plays no role in FIDO authentication/transaction
confirmation operations.

In order to use ECDAA, (at least) one ECDAA-Issuer is needed. The approach specified in this annex
easily scales to multiple ECDAA-Issuers, e.g., one per authenticator vendor. FIDO lets the
authenticator vendor choose any ECDAA-Issuer (similar to his current freedom for selecting any PKI
infrastructure/service provider to issuing attestation certificates required for FIDO basic attestation).

. All ECDAA-Join operations (of the related authenticators) are performed with one of the
ECDAA-Issuer entities.
. Each ECDAA-Issuer has a set of public parameters, i.e., ECDAA public key material. The

related attestation trust anchor is contained in the metadata of each authenticator model
identified by its AAGUID.

There are two different implementation options relevant for the authenticator vendors (the
authenticator vendor can freely choose them):

1. In-Factory ECDAA-Join
2. Remote ECDAA-Join and

208 Rec. ITU-T X.1277 (11/2018)

In the first case, physical proximity is used to locally establish the trust between the ECDAA-Issuer
and the authenticator (e.g., using a key provisioning station in a production line). There is no
requirement for the ECDAA-Issuer to operate an online web service.

In the second case, some credential is required to remotely establish the trust between the
ECDAA-Issuer and the authenticator. As this operation is performed once and only with a single
ECDAA-Issuer, privacy is preserved and an authenticator specific credential can and should be used.

Not all ECDAA authenticators might be able to add their authenticator model 1Ds (e.g., AAGUID)
to the registration assertion (e.g., TPMs). In all cases, the ECDAA-Issuer will be able to derive the
exact the authenticator model from either the credential or the physically proximiate authenticator.
So the ECDAA-Issuer root key MUST be dedicated to a single authenticator model.

J.3.41 ECDAA-Join algorithm

NOTE - If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving
this value, the issuer must verify that this authenticator did not join before.

1. The authenticator asks the issuer for a nonce.

2. The issuer chooses a nonce Biginteger n = RAND(p) and sends n via the ASM to the
authenticator.

3. The authenticator chooses and stores the ECDAA private key Biglnteger sk = RAND(p)

4. The authenticator computes its ECDAA public key ECPoint Q = P5¥

5. The authenticator proves knowledge of sk as follows
1. Biglinteger r; = RAND(p)
2. ECPointU; = P*
3. Biglnteger c; = H(U;|P;|Q|n)
4. Biglntegers; =r; +¢; - sk

6. The authenticator sends Q, c;, s, via the ASM to the issuer

7. The issuer verifies that the authenticator is "authentic" and that Q was indeed generated by
the authenticator. In the case of an in-factory Join, this might be trivial; in the case of a remote
Join this typically requires the use of other cryptographic methods. Since ECDAA-Join is a
one-time operation, unlinkability is not a concern for that.

8. The issuer verifies that Q € G, and verifies H(P;* - Q™1|P,|Q|n) ze, (check proof-of-

possession of private key).
NOTE—Plsl . Q_Cl — P1r1+clsk . Q_Cl — P1r1+clsk . Pl—clsk — P1r1 — Ul
9. The issuer creates credential (A, B, C, D) as follows:
Biglinteger 1; = RAND(p)

1.

2. ECPointA = P11’

3. ECPointB = AY

4. ECPointC = A* - Q¥

5. ECPointD = QWY
10. The issuer proves that it computed this credential correctly:
BiglInteger r, = RAND(p)
ECPoint U, = P,
ECPointV, = Q"
Bigintegerc.2 = H(U_2|V_2|P_1|B|Q|D)
Bigintegers, =r, + ¢y -1y -y

ok~ -

Rec. ITU-T X.1277 (11/2018) 209

11.
12.

13.

14.

15.

16.

J.3.4.2

The issuer sends A, B, C, D, c,, s, to the authenticator.

The authenticator checks that A,B,C,D € Gy and A # 1,

The authenticator checks H(P;2 - B=¢2|Q%2| - D~2|Py|B|Q|D) Ze,
NOTE 1P .B=% = p2. p*Y . p=e2 = yJ, . B2 . p=<2 = U,
NOTE2-Q%2-D~%2 =Q™.-Q2YY.p~%2 =V, -D%2.D 2 =V,

The authenticator checks e(A, Y) z e(B,P_2)

NOTE —e(4,Y) = e (B, B)); (e(B,P,) = e(4”,P,) = e (B, P,)

and the authenticator checks e(C, P_2) z e(A -D,X)

NOTE —e(C,P,) = e(4* - Q*Y,P,)); (e(A-D,X) = e(A- Q*Y,PY)
The authenticator stores credential A, B, C, D

ECDAA-Join split between authenticator and ASM

NOTE — If this join is not in-factory, the value Q must be authenticated by the authenticator. Upon receiving
this value, the issuer must verify that this authenticator did not join before.

1.

o ok~ D

10.

11.

210

The ASM asks the issuer for a nonce.

The issuer chooses a nonce Biglnteger n = RAND(p) and sends n to the ASM.
The ASM forwards n to the authenticator.

The authenticator chooses and stores the private key Biglnteger sk = RAND(p).
The authenticator computes its ECDAA public key ECPoint Q = PS.

The authenticator proves knowledge of sk as follows:

1. Biginteger r; = RAND(p)

2. ECPointU; = P*

3. Biglnteger c; = H(U;|P;|Q|n)

4. Biglntegers; =r; +¢; - sk

The authenticator sends Q, c;, s, to the ASM, who forwards it to the issuer.

The issuer verifies that the authenticator is "authentic" and that Q was indeed generated by
the authenticator. In the case of an in-factory Join, this might be trivial; in the case of a remote
Join this typically requires the use of other cryptographic methods. Since ECDAA-Join is a
one-time operation, unlinkability is not a concern for that.

The issuer verifies that Q € G1 and verifies H(P™ - Q= | P, | Q | n) Z c
The issuer creates credential A, B, C, D as follows:
Biglinteger 1; = RAND(p)

1

2. ECPointA = P11’

3. ECPoint B = AY

4. ECPoint C = A* - Q9

5. ECPoint D = QW

The issuer proves that it computed this credential correctly:
1. Biglinteger r, = RAND(p)

2. ECPointU, = P;?

3. ECPointV, = Q"

Rec. ITU-T X.1277 (11/2018)

12.

13.
14.
15.

16.
17.
18.

19.
20.

4. Biglinteger c, = H(U,|V,|P;|B|Q|D)
5. Bigintegers, =r, +c;-1j-y

The issuer sends A, B, C, D, c,, s, to the ASM. The issuer authenticates B, D, c,, s, such that
the authenticator can verify they were created by the issuer.

The ASM checks that A, B,C,D € Gy and A # 1,

The ASM checks H(P? - B~ |Q%2 - D™2| P, | B| Q | D) < c,
The ASM checks e(A,Y) = e(B,P_2)

and the ASM checks that e(C, P_2) = e(A -D,X)

The ASM stores A, B, C, D and sends B, D, c,, s, to the authenticator.

The authenticator checks B,D € G; and B # 1, and verifies that B, D, c;, s, were sent by
the issuer.

The authenticator checks H(P;? - B=2|Q%2 - D~|P;| B| Q | D) z cy
The authenticator stores B, D and ignores further join requests.

NOTE — These values belong to the ECDAA secret key sk. They should persist even in the case of a factory

reset.

J.3.43

ECDAA-Join split between TPM and ASM

NOTE — The endorsement key credential (EK-C) and TPM2_ActivateCredentials are used for supporting the
remote Join.

This description is based on the principles described in [b-TPMv2-Partl] section 24 and [b-Arthur-
Challener-2015], page 109 ("Activating a credential™).

1.
2.
3.

The ASM asks the ECDAA Issuer for a nonce.
The ECDAA lIssue chooses a nonce Biginteger n = RAND(p) and sends n to the ASM.
The ASM

1. instructs the TPM to create a restricted key by calling TPM2_Create, giving the public
key template tevr purnTc [b-TPMv2-Part2] (including the public key Q in field
unique) to the ASM.

2. retrieves TPM Endorsement Key Certificate (EK-C) from the TPM

calls TPM2_Commit(keyhandle, P1, s2, y2) where keyhandle is the handle of the
restricted key generated before (see above), P1 is set to P; and s2 and y2 are left empty.
This call returns K, L, E and ctr; where K and L will be empty.

4. computes Biginteger c; = H(E|P;|Q|n)

5. call TPM2_Sign(c,, ctr), returning s;.

6. sends EK-C, revr purtrc (including Q in field unique), ¢q, 51 to the ECDAA Issuer.
The ECDAA lIssuer

1. verifies EK-C and its certificate chain. As a result the ECDAA Issuer knows the TPM
model related to EK-C.

2. verifies that this EK-C was not used in a (successful) Join before.

verifies that the ovjectattributes In TevT puRLIC [D-TPMv2-Part2] matches the
following flags: fixedTPM = 1, fixedParent = 1; sensitiveDataOrigin = 1;
encryptedDuplication = 0; restricted =1; decrypt = 0; sign =1.

Rec. ITU-T X.1277 (11/2018) 211

4. examines the public key Q, i.e., it verifies that Q € G,
checks H(Pt - Q1 |P,[Q[n) = ¢y
generates the ECDAA credential (A, B, C, D) as follows:

1. Biglinteger I; = RAND(p)
2. ECPointA =P

3. ECPointB = AY

4. ECPoint C = A*- Q¥

5. ECPoint D = QWY

7. proves that it computed this credential correctly:

1. Biglinteger r, = RAND(p)

2. ECPointU, = P;?

3. ECPointV, = Q"

4. Bigintegerc 2 = H(U_2|V_2|P_1|B|Q|D)
5. Bigintegers, =r,+c; Ly

8. generates a secret (derived from a seed) and wraps the credential A, B, C, D using that
secret.

9. encrypts the seed using the public key included in EK-C.

10. uses seed and name in KDFa (see [b-TPMv2-Part2] section 24.4) to derive HMAC and
symmetric encryption key. Wrap the secret in symmetric encryption key and protect it
with the HMAC key.

NOTE — The parameter name in KDFa is derived from TrvT PUBRLIC, See [b-TPMv2-Partl],
section 16.

11. sends the credential proof c,, s, and the wrapped object including the credential from
previous step to the ASM.

5. The ASM instructs the TPM (by calling TPM2_ActivateCredential) to

1. decrypt the seed using the TPM Endorsement key

2. compute the name (for the ECDAA attestation key)

3. use the seed in KDFa (with name) to derive the HMAC key and the symmetric encryption
key.

4. use the symmetric encryption key to unwrap the secret.

6. The ASM

1. unwraps the credential A, B, C, D using the secret received from the TPM.

2. checksthat A,B,C,D € Gland A # 1g,

3. checks H(PS? - B~ [Q%- D~ |P,| B| Q| D) =c,

4. checks e(A,Y) = e(B,P,) and e(C, P,) = e(A - D,X)

5. storesA,B,C,D

J.3.5 ECDAA-Sign

NOTE — One ECDAA-Sign operation is required for the client-side environment whenever a new credential
is being registered at a relying party.

212 Rec. ITU-T X.1277 (11/2018)

J.3.5.1 ECDAA-Sign algorithm
(signature, KRD) = EcdaaSign(String AppID)

Parameters:
. p: System parameter prime order of group G1 (global constant)
. AppID: FIDO ApplD (i.e., https-URL of TrustedFacets object)

Algorithm outline:

1. KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here
2. BigNumber 1 = RAND(p)

3. ECPoint R = Al;

4. ECPoint S = B!;

5. ECPoint T = C;

6. ECPoint W = D!;

7. BigInteger r = RAND(p)

8. ECPoint U = S

9. Biginteger c = H(U | S| W | AppID | H(KRD))
10. Biglinteger s = r + c - sk (mod p)

11. signature = (c, s, R, S, T, W)

12. return (signature, KRD)

J.3.5.2 ECDAA-Sign split between authenticator and ASM

NOTE — This split requires both the authenticator and ASM to be honest to achieve anonymity. Only the
authenticator must be trusted for unforgeability. The communication between ASM and authenticator must be
secure.

Algorithm outline:

1. The ASM randomizes the credential

BigNumber 1 = RAND(p)

ECPointR = Al

ECPoint S = B!;

ECPoint T = C!;

ECPoint W = D!;

2. The ASM sends 1, AppID to the authenticator.

3. The authenticator performs the following tasks:

KRD = BuildAndEncodeKRD(); // all traditional Registration tasks are here
ECPoint S’ = B!

ECPoint W' = D!

BigInteger r = RAND(p)

ECPoint U = S*

Biglinteger c = H(U | S’ | W' | AppID | H(KRD))

Biginteger s = r + c - sk mod(p)

Send ¢, s, KRD to the ASM

4. The ASM sets signature = (c, s, R, S, T, W) and outputs (signature, KRD).

o & w e

©® N U A WwN P

Rec. ITU-T X.1277 (11/2018) 213

J.3.5.3 ECDAA-Sign split between TPM and ASM

NOTE — This algorithm is for the special case of a TPMv2 as authenticator. This case requires both the TPM
and ASM to be honest for anonymity and unforgeability, see [b-XYZF-2014].

Algorithm outline:

1. The ASM randomizes the credential
BigNumber 1 = RAND(p)
ECPointR = Al;

ECPoint S = B';

ECPoint T = C!;

. ECPoint W = D!;

2. The ASM calls TPM2_Commit() with P; set to S and s,,y, empty buffers. The ASM
receives the result values K, L, E = S™ and ctr. K and L are empty since s,,y, are empty
buffers.

3. The ASM calls TPM2_Create to generate the new authentication key pair.

4. The ASM calls TPM2_Certify() on the newly created key with ctr from the TPM2_Commit
and E, S, W, AppID as qualifying data (E = S; is returned by step 2). The ASM receives
signature c, s and attestation block KRD (i.e., TPMS_ATTEST structure in this case).

5. The ASM sets signature = (c, s, R, S, T, W) and outputs (signature, KRD)

J.3.6 ECDAA-Verify operation
NOTE — One ECDAA-Verify operation is required for the FIDO server as part of each FIDO registration.

boolean EcdaaVerify(signature, AppID, KRD, ModelName)

o &M W e

Parameters:

. p: System parameter prime order of group G1 (global constant)

. P2: System parameter generator of group G2 (global constant)

. signature: (c,s,R,S,T,W)

. AppID: FIDO ApplID

. KRD: Attestation Data object as defined in other specifications.

. ModelName: the claimed FIDO authenticator model (i.e., either AAID or AAGUID)
Algorithm outline:

1. Based on the claimed ModelName, look up X, Y from trusted source
2 Check that R, S, T,W € Gy, R # 1¢, and S # 1.

3. H(SS-W~=|S|W |AppID | HKKRD)) = c: fail if not equal

NOTE 1-B =AY = P

NOTE 2-D = QW = P = psk

1
NOTE 3-S = Bland W = D!
NOTE4-U=S"
NOTE5-S5- W~¢ = srtesk. w—c = (. gesk. yy=¢
=U. Blcsk . D—lc =U. Blcsk . B—lCSk =U
?
4, e(RY) = e(S, P,); fail if not equal

NOTE —e(R,Y) = e(A, P)); e(S,P,) = e(BL, P,) = e(AY, P,)

214 Rec. ITU-T X.1277 (11/2018)

5. e(T,P,) < e(R - W, X); fail if not equal

NOTE — (T, P,) = e(C!,P,) = e(A¥ - @V, P,); e(A' - D!, X) = e(A! - QYY, PY)
6. for (all sk’on RogueL.ist) do if W Z gk fail;
7. /I perform all other processing steps for new credential registration

NOTE — In the case of a TPMv2, i.e.,, KRD isa TrpMvs ATTEST object. In this case the verifier must
check whether the Tpvs ATTEST object starts with Tpv GENErRATED magic number and whether its
field objectattributes contains the flag £ixedTrv=1 (indicating that the key was generated by
the TPM).

8. return true;

J.4 FIDO ECDAA object formats and algorithm details

J.4.1 Supported curves for ECDAA

Definition of G1:

Gl is an elliptic curve group E: y? = x3 + ax + b over F(q) with a = 0.
Definition of G2:

G2 is the p-torsion subgroup of E’(qu) where E’ is a sextic twist of E. With E: y'2 = x'3 + b’.

An element of F(q_,) is represented by a pair (a,b) where a + bX is an element of F(q)[X]/< X? +
1 > F(g)[X]/<X2+1>. Angle brackets < Y > are used to signify the ideal generated by the enclosed
value.

NOTE — In the literature the pair (a,b) is sometimes also written as a complex number a+bxi.

Definition of GT

GT is an order-p subgroup of F1z.

Pairings

The use of Ate pairings are proposed as they are efficient (more efficient than Tate pairings) on
Barreto-Naehrig curves [b-DevScoDah2007].

Supported BN curves

Pairing-friendly Barreto-Naehrig [b-BarNae-2006] [b-ISO 15946-5] elliptic curves are used. The
curves Tev Ecc BN p256 and Tem Ecc BN P38 curves are defined in [b-TPMv2-Part4].

BN curves have a Modulus q =36 -u*+36-u®+24-u?+6-u+1 [b-1ISO 15946-5] and a
related order of the groupp = 36 - u* + 36 - u3 + 18 - u? + 6 - u + 1 [b-1SO 15946-5].

. TPM ECC BN P256 IS acurve of form E(F(q)), where q is the field modulus [b-TPMv2-Part4]
[b-BarNae-2006]. This curve is identical to the P256 curve defined in [b-1SO 15946-5]
section C.3.5.

o The values have been generated using u=-7 530 851 732 716 300 289.

o Modulus q = 115 792 089 237 314 936 872 688 561 244 471 742 058 375 878 355 761
205 198 700 409 522 629 664 518 163

o Group order p = 115 792 089 237 314 936 872 688 561 244 471 742 058 035 595 988
840 268 584 488 757 999 429 535 617 037

o pand g have length of 256 bit each.
o b=3
o P 256=(x=1y=2)

Rec. ITU-T X.1277 (11/2018) 215

216

O

O

b'=(@=3,b=23)
P, 256 = (x,y), with
+ P, 256.x =(a=114 909 019 869 825 495 805 094 438 766 505 779 201 460 871 441

403 689 227 802 685 522 624 680 861 435, b=35 574 363 727 580 634 541 930 638
464 681 913 209 705 880 605 623 913 174 726 536 241 706 071 648 811)

« P, 256.y = (a=65 076 021 719 150 302 283 757 931 701 622 350 436 355 986 716
727 896 397 520 706 509 932 529 649 684, b=113 380 538 053 789 372 416 298
017 450 764 517 685 681 349 483 061 506 360 354 665 554 452 649 749 368)

TPM ECC BN P638 [b-TPMv2-Part4] uses

O

The values have been generated using u=365 375 408 992 443 362 629 982 744 420 548
242 302 862 098 433

Modulus q = 641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238
356 871 360 716 989 515 584 497 239 494 051 781 991 794 253 619 096 481 315 470
262 367 432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740
457 083 469 793 717 125 223

The related order of the group is p = 641 593 209 463 000 238 284 923 228 689 168 801
117 629 789 043 238 356 871 360 716 989 515 584 497 239 494 051 781 991 794 252
818 101 344 337 098 690 003 906 272 221 387 599 391 201 666 378 807 960 583 525
233 832 645 565 592 955 122 034 352 630 792 289

p and g have length of 638 bit each.
b =257

P, 638 = (x=641 593 209 463 000 238 284 923 228 689 168 801 117 629 789 043 238
356 871 360 716 989 515 584 497 239 494 051 781 991 794 253 619 096 481 315 470
262 367 432 019 698 642 631 650 152 075 067 922 231 951 354 925 301 839 708 740
457 083 469 793 717 125 222, y=16)

b'=(a=771, b=1542)
P, 638 = (X, y), with

« P, 638.x=(a=192 492 098 325 059 629 927 844 609 092 536 807 849 769 208 589
403 233 289 748 474 758 010 838 876 457 636 072 173 883 771 602 089 605 233
264 992 910 618 494 201 909 695 576 234 119 413 319 303 931 909 848 663 554
062 144 113 485 982 076 866 968 711 247, b=166 614 418 891 499 184 781 285
132 766 747 495 170 152 701 259 472 324 679 873 541 478 330 301 406 623 174
002 502 345 930 325 474 988 134 317 071 869 554 535 111 092 924 719 466 650
228 182 095 841 246 668 361 451 788 368 418 036 777 197 454 618 413 255)

+ P, 638.y=(a=622 964 952 935 200 827 531 506 751 874 167 806 262 407 152 244
280 323 674 626 687 789 202 660 794 092 633 841 098 984 322 671 973 226 667
873 503 889 270 602 870 064 426 165 592 237 410 681 318 519 893 784 898 821
343 051 339 820 566 224 981 344 169 470, b=514 285 963 827 225 043 076 463
721 426 569 583 576 029 220 880 138 564 906 219 230 942 887 639 456 599 654
554 743 732 087 558 187 149 207 036 952 474 092 411 405 629 612 957 921 369
286 372 038 525 830 610 755 207 588 843 864 366 759 521 090 861 911 494)

Ecc BN DsD p256 [b-DevScoDah2007] section 3 uses

O

O

The values have been generated using u=6 917 529 027 641 089 837

Modulus q = 82434016654300679721217353503190038836571781811386228921167
322412819029493183

The related order of the group is p = 824340166543006797212173535031900388362846
68564296686430114510052556401373769

Rec. ITU-T X.1277 (11/2018)

o pand g have length of 256 bit each.
o b=3
o P, DSD_P256=(1, 2)
o b'=(a=3,b=6)
o P, DSD_P256 = (x, y), with
« P, DSD_P256.x = (a=73 481 346 555 305 118 071 940 904 527 347 990 526 214

212 698 180 576 973 201 374 397 013 567 073 039, b=28 955 468 426 222 256 383
171 634 927 293 329 392 145 263 879 318 611 908 127 165 887 947 997 417 463)

- P, DSD_P256.y = (a=3 632 491 054 685 712 358 616 318 558 909 408 435 559 591
759 282 597 787 781 393 534 962 445 630 353, b=60 960 585 579 560 783 681 258
978 162 498 088 639 544 584 959 644 221 094 447 372 720 880 177 666 763)

. Ecc BN 1s0p512 [b-1SO 15946-5] clause C.3.7 uses

o The values have been generated using u=138 919 694 570 470 098 040 331 481 282 401
523 727

o Modulus q = 13 407 807 929 942 597 099 574 024 998 205 830 437 246 153 344 875
111 580 494 527 427 714 590 099 881 795 845 981 157 516 604 994 291 639 750 834
285 779 043 186 149 750 164 319 950 153 126 044 364 566 323

o The related order of the group is p = 13 407 807 929 942 597 099 574 024 998 205 830
437 246 153 344 875 111 580 494 527 427 714 590 099 881 680 053 891 920 200 409
570 720 654 742 146 445 677 939 306 408 461 754 626 647 833 262 056 300 743 149

o pand g have length of 512 bit each.

o b =3

o P, _ISO_P512 = (x=1,y=2)

o b"=(@=3b=23)

o P, ISO _P512 = (x,Yy), with

« P, ISO_P512.x = (a=3 094 648 157 539 090 131 026 477 120 117 259 896 222 920

557 994 037 039 545 437 079 729 804 516 315 481 514 566 156 984 245 473 190
248 967 907 724 153 072 490 467 902 779 495 072 074 156 718 085 785 269, b=3
776 690 234 788 102 103 015 760 376 468 067 863 580 475 949 014 286 077 855

600 384 033 870 546 339 773 119 295 555 161 718 985 244 561 452 474 412 673
836 012 873 126 926 524 076 966 265 127 900 471 529)

P, ISO_P512.y = (a=7 593 872 605 334 070 150 001 723 245 210 278 735 800 573
263 881 411 015 285 406 372 548 542 328 752 430 917 597 485 450 360 707 892
769 159 214 115 916 255 816 324 924 295 339 525 686 777 569 132 644 242, b=9
131 995 053 349 122 285 871 305 684 665 648 028 094 505 015 281 268 488 257
987 110 193 875 868 585 868 792 041 571 666 587 093 146 239 570 057 934 816
183 220 992 460 187 617 700 670 514 736 173 834 408)

NOTE — Spaces are used inside numbers to improve readability.
Hash algorithms:

Depending on the curve, # (x) = SHA256 (%) mod p OF H(x) = SHA512 (x) mod p IS used as hash
algorithm H: {0,1} x— Z,.

The argument of the hash function must always be converted to a byte string using the appropriate
encoding function specific in clause J.3.1 Object Encodings, e.g., according to clause J.3.1.3
Encoding ECPoint2 values as byte strings (ECPoint2ToB) in the case of ccroint2 points.

NOTE —IEEE P1363.3 clause 6.1.1 IHF1-SHA with security parameter t (e.g., t=128 or 256) is not used as it
is more complex and not supported by TPMv2.

Rec. ITU-T X.1277 (11/2018) 217

J.4.2 ECDAA algorithm names
The following JWS-style algorithm names are defined, see [IETF RFC 7515]:
ED256

TPM ECC BN P256 CUrve, using SHA256 as hash algorithm H.
ED256-2

ECC BN DSD P256 curve, using SHA256 as hash algorithm H.
ED512

ECC BN ISOP512 curve, using SHA512 as hash algorithm H.
ED638

TPM ECC BN P638 curve, using SHA512 as hash algorithm H.

J.4.3 ecdaaSignature object
The fields ¢ and s both have length N. The fields R, S, T, W have equal length (2*N+1 each).

In the case of BN_P256 curve (with key length N=32 bytes), the fields R, S, T, W have length
2*32+1=65 bytes. The fields ¢ and s have length N=32 each.

The ecdaaSignature object is a binary object generated as the concatenation of the binary fields in the
order described in Table J.1 (total length of 324 bytes for 256bit curves):

Table J.1 — ecdaaSignature object fields

Length ..
Value (in Bytes) Description
UINTS]] N The ¢ value, c=H(U | S| W | KRD | AppID) as returned by
ECDAA_Signature_c AuthnrEcdaaSign encoded as byte string according to
BigNumberToB.
Where

« U =S", withr = RAND(p) computed by the signer.
» KRD is the the entire to-be-signed object (e.g.,
TAG_UAFV1_KRD in the case of FIDO UAF).

« S = B! with1 = RAND(p) computed by the signer and
B = AY computed in the ECDAA-Join

UINTS]] N The s value, s=r + ¢ * sk (mod p), as returned by
ECDAA_Signature_s AuthnrEcdaaSign encoded as byte string according to
BigNumberToB.
Where

* r=RAND(p), computed by the signer at FIDO
registration (see J.3.5.2 ECDAA-Sign Split between
Authenticator and ASM)

» pisthe group order of G1

+ sk: is the authenticator's attestation secret key, see above
UINTS[] 2*N+1 R = Al; computed by the ASM or the authenticator at FIDO

ECDAA Signature R registration; encoded as byte string according to
ECPointToB. Where

218 Rec. ITU-T X.1277 (11/2018)

Table J.1 — ecdaaSignature object fields

Length
(in Bytes)

Description

* 1 =RAND(p), i.e., random number 0 <1< p.
Computed by the ASM or the authenticator at FIDO
registration.

« And where R = Al denotes the scalar multiplication (of
scalar 1) of a curve point A.

» Where A has been provided by the ECDAA-Issuer as

part of ECDAA-Join: A = PV, see clause J.3.4.1
ECDAA-Join Algorithm.

» Where P, and p are system values, injected into the
authenticator and ; is a random number computed by
the ECDAA-Issuer on Join.

UINT8[] 2*N+1 S = B!; computed by the ASM or the authenticator at FIDO
ECDAA_Signature_S registration encoded as byte string according to
ECPointToB.

Where B has been provided by the ECDAA-Issuer on Join:
B = AY, see clause J.3.4.1 ECDAA-Join Algorithm.

UINTS(] 2*N+1 T = C; computed by the ASM or the authenticator at FIDO

ECDAA_Signature_T registration encoded as byte string according to

ECPointToB. Where

« C=A*-QYY, provided by the ECDAA-Issuer on Join

* 1 = RAND(p) computed by the ECDAA-Issuer at Join
(see clause J.3.4.1 ECDAA-Join Algorithm)

» Xxandy are components of the ECDAA-Issuer private
key, iskk=(x,y).

» Q is the authenticator public key

UINT8[] 2*N+1 W = D!; computed by the ASM or the authenticator at
ECDAA Signature W FIDO registration encoded as byte string according to
ECPointToB.

Where D = QY is computed by the ECDAA-Issuer at Join
(see clause J.3.4.1 ECDAA-Join Algorithm).

J.5 Considerations
A detailed security analysis of this algorithm can be found in [b-FIDO-DAA-Security-Proof].

J.5.1 Algorithms and key sizes
The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

J.5.2 Indicating the authenticator model

Some authenticators (e.g., TPMv2) do not have the ability to include their model (i.e., vendor ID and
model name) in attested messages (i.e., the to-be-signed part of the registration assertion). The TPM's
endorsement key certificate typically contains that information directly or at least it allows the model
to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator model.

The ECDAA-Issuers public key (ipk=(X,Y,c,sx,sy)) is required to be dedicated to one single
authenticator model (e.g., as identified by AAID or AAGUID).

Rec. ITU-T X.1277 (11/2018) 219

J.5.3 Revocation

If the private ECDAA attestation key sk of an authenticator has been leaked, it can be revoked by
adding its value to a RogueList.

The ECDAA-Verifier (i.e., FIDO server) check for such revocations. See clause J.3.6 ECDAA-Verify
operation.

The ECDAA-Issuer is expected to check revocation by other means:

1. if ECDAA-Join is done in-factory, it is assumed that produced devices are known to be
uncompomised (at time of production).
2. if a remote ECDAA-Join is performed, the (remote) ECDAA-Issuer already must use a

different method to remotely authenticate the authenticator (e.g., using some endorsement
key). The ECDAA-Issuer is expected to perform a revocation check based on that
information. This is even more flexible as it does not require access to the authenticator
ECDAA private key sk.

J.5.4 Pairing algorithm

The pairing algorithm < needs to be used by the ASM as part of the Join process and by the verifier
(i.e., FIDO relying party) as part of the verification (i.e., FIDO registration) process.

The result of such a pairing operation is only compared to the result of another pairing operation
computed by the same entity. As a consequence, it does not matter whether the ASM and the verifier
use the exact same pairings or not (as long as they both use valid pairings).

J.5.5 Performance

For performance reasons the calculation of Sig2=(R, S, T, W) may be performed by the ASM running
on the FIDO user device (as opposed to inside the authenticator). See clause J.3.5.2 ECDAA-Sign
split between authenticator and ASM.

The cryptographic computations to be performed inside the authenticator are limited to G1. The
ECDAA-Issuer has to perform two G2 point multiplications for computing the public key. The
verifier (i.e., FIDO relying party) has to perform G1 operations and two pairing operations.

J.5.6 Binary concatentation
A simple byte-wise concatenation function is used for the different parameters, i.e., H(a,b) = H(a | b).

This approach is as secure as the underlying hash algorithm since the authenticator controls the length
of the (fixed-length) values (e.g., U, S, W). The AppID is provided externally and has unverified
structure and length. However, it is only followed by a fixed length entry — the (system defined) hash
of KRD. As a consequence, no parts of the AppID would ever be confused with the fixed length
value.

J.5.7 1ANA considerations

This annex (see Table J.2) registers the algorithm names "ED256", "ED512" and "ED638" defined in
clause J.4 FIDO ECDAA object formats and algorithm details with the IANA JSON Web algorithms
registry as defined in "Cryptographic algorithms for digital signatures and MACs" in [b-RFC7518].

220 Rec. ITU-T X.1277 (11/2018)

Table J.2 — Algorithm names

Algorithm Name

"ED256"

Algorithm Description

FIDO ECDAA algorithm based on TPM_ECC_BN_P256 [b-TPMv2-Part4]
curve using SHA256 hash algorithm.

Algorithm Usage
Location(s)

"alg", i.e., used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller

FIDO Alliance, Contact Us

Specification Documents

Clauses J.3. FIDO ECDAA Attestation and J.4. FIDO ECDAA Object
Formats and Algorithm Details of Annex K.

Algorithm Analysis
Document(s)

[b-FIDO-DAA-Security-Proof]

Algorithm Name

"ED512"

Algorithm Description

ECDAA algorithm based on ECC_BN_ISOP512 [b-1SO 15946-5] curve
using SHA512 algorithm.

Algorithm Usage
Location(s)

"alg", i.e., used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller

FIDO Alliance, Contact Us

Specification Documents

Clauses J.3. FIDO ECDAA Attestation and J.4. FIDO ECDAA Object
Formats and Algorithm Details of Annex K.

Algorithm Analysis
Document(s)

[b-FIDO-DAA-Security-Proof]

Algorithm Name

"ED638"

Algorithm Description

ECDAA algorithm based on TPM_ECC_BN_P638 [b-TPMv2-Part4] curve
using SHA512 algorithm.

Algorithm Usage
Location(s)

"alg", i.e., used with JWS.

JOSE Implementation
Requirements

Optional

Change Controller

FIDO Alliance, Contact Us

Specification Documents

Clauses J.3. FIDO ECDAA Attestation and J.4. FIDO ECDAA Object
Formats and Algorithm Details of Annex K.

Algorithm Analysis
Document(s)

[b-FIDO-DAA-Security-Proof]

Rec. ITU-T X.1277 (11/2018) 221

Annex K

FIDO registry of predefined values
(This annex forms an integral part of this Recommendation.)

K.l Summary

This annex defines all the strings and constants reserved by FIDO protocols. The values defined in
this annex are referenced by various FIDO specifications.

K.2 Overview

This annex defines the registry of FIDO-specific constants common to multiple FIDO protocol
families. It is expected that, over time, new constants will be added to this registry. For example new
authentication algorithms and new types of authenticator characteristics will require new constants to
be defined for use within the specifications.

K.3 Authenticator characteristics

K.3.1 User verification methods

The user veErTFY constants are flags in a bitfield represented as a 32 bit long integer. They describe
the methods and capabilities of an UAF authenticator for locally verifying a user. The operational
details of these methods are opaque to the server. These constants are used in the authoritative
metadata for an authenticator, reported and queried through the UAF discovery APIs and used to
form authenticator policies in UAF protocol messages.

All user verification methods must be performed locally by the authenticator in order to meet FIDO
privacy principles.

USER VERIFY PRESENCE 0x00000001

This flag MUST be set if the authenticator is able to confirm user presence in any fashion. If
this flag and no other is set for user verification, the guarantee is only that the authenticator
cannot be operated without some human intervention, not necessarily that the presence
verification provides any level of authentication of the human's identity. (e.g., a device that
requires a touch to activate)

USER _VERIFY FINGERPRINT 0x00000002

This flag MUST be set if the authenticator uses any type of measurement of a fingerprint for
user verification.

USER VERIFY PASSCODE 0x00000004

This flag MUST be set if the authenticator uses a local-only passcode (i.e., a passcode not
known by the server) for user verification.

USER VERIFY VOICEPRINT 0x00000008

This flag MUST be set if the authenticator uses a voiceprint (also known as speaker
recognition) for user verification.

USER VERIFY FACEPRINT 0x00000010

This flag MUST be set if the authenticator uses any manner of face recognition to verify the
user.

USER VERIFY LOCATION 0x00000020

This flag MUST be set if the authenticator uses any form of location sensor or measurement
for user verification.

222 Rec. ITU-T X.1277 (11/2018)

USER _VERIFY EYEPRINT 0x00000040

This flag MUST be set if the authenticator uses any form of eye biometrics for user
verification.

USER VERIFY PATTERN 0x00000080

This flag MUST be set if the authenticator uses a drawn pattern for user verification.

USER_VERIFY HANDPRINT 0x00000100

This flag MUST be set if the authenticator uses any measurement of a full hand (including
palm-print, hand geometry or vein geometry) for user verification.

USER_VERIFY NONE 0x00000200

This flag MUST be set if the authenticator will respond without any user interaction
(e.g., Silent authenticator).

USER_VERIFY ALL 0x00000400

If an authenticator sets multiple flags for user verification types, it MAY also set this flag to
indicate that all verification methods will be enforced (e.g., faceprint AND voiceprint). If flags
for multiple user verification methods are set and this flag is not set, verification with only
one is necessary (e.g., fingerprint OR passcode).

K.3.2 Key protection types

The xev proTECTTON constants are flags in a bit field represented as a 16 bit long integer. They
describe the method an authenticator uses to protect the private key material for FIDO registrations.
Refer to Annex C for more details on the relevance of keys and key protection. These constants are
used in the authoritative metadata for an authenticator, reported and queried through the UAF
discovery APIs and used to form authenticator policies in UAF protocol messages.

When used in metadata describing an authenticator, several of these flags are exclusive of others (i.e.,
can not be combined) — the certified metadata may have at most one of the mutually exclusive bits
set to 1. When used in authenticator policy, any bit may be set to 1, e.g., to indicate that a server is
willing to accept authenticators using either x&v PROTECTTION SOFTWARE OF KEY PROTECTION
HARDWARE.

NOTE - These flags must be set according to the effective security of the keys, in order to follow the
assumptions made in Annex L. For example, if a key is stored in a secure element but software running on the
FIDO user device could call a function in the secure element to export the key either in the clear or using an
arbitrary wrapping key, then the effective security is kKevy PROTECTION SOFTWARE and not
KEY PROTECTION SECURE ELEMENT.

KEY PROTECTION SOFTWARE 0x0001

This flag MUST be set if the authenticator uses software-based key management. Exclusive

in authenticator metadata with x&Ev PROTECTION HARDWARE, KEY PROTECTION TEE,
KEY PROTECTION SECURE ELEMENT

KEY PROTECTION HARDWARE 0x0002

This flag SHOULD be set if the authenticator uses hardware-based key management.
Exclusive in authenticator metadata with k=v PROTECTTION SOFTWARE

KEY PROTECTION TEE 0x0004
This flag SHOULD be set if the authenticator uses the Trusted Execution Environment [b-
TEE] for key management. In authenticator metadata, this flag should be set in conjunction

with ey proTEcTTON HARDWARE. Mutually exclusive in authenticator metadata with
KEY PROTECTION SOFTWARE, KEY PROTECTION SECURE ELEMENT

Rec. ITU-T X.1277 (11/2018) 223

KEY PROTECTION SECURE ELEMENT 0x0008

This flag SHOULD be set if the authenticator uses a secure element [b-SecureElement] for
key management. In authenticator metadata, this flag should be set in conjunction with
KEY PROTECTION HARDWARE., Mutually exclusive in authenticator metadata with
KEY PROTECTION_ TEE, KEY PROTECTION SOFTWARE

KEY PROTECTION_ REMOTE HANDLE 0x0010

This flag MUST be set if the authenticator does not store (wrapped) UAuth keys at the client,
but relies on a server-provided key handle. This flag MUST be set in conjunction with one of
the other x=v protecTTON flags to indicate how the local key handle wrapping key and
operations are protected. servers MAY unset this flag in authenticator policy if they are not
prepared to store and return key handles, for example, if they have a requirement to respond
indistinguishably to authentication attempts against userIDs that do and do not exist. Refer to
Annex A for more details.

K.3.3 Matcher protection types

The vaTcuer prOTECTTON cOnstants are flags in a bit field represented as a 16 bit long integer. They
describe the method an authenticator uses to protect the matcher that performs user verification. These
constants are used in the authoritative metadata for an authenticator, reported and queried through the
UAF discovery APIs and used to form authenticator policies in UAF protocol messages. Refer to
Annex C for more details on the matcher component.

NOTE — These flags must be set according to the effective security of the matcher, in order to follow the
assumptions made in Annex L. For example, if a passcode based matcher is implemented in a secure element,
but the passcode is expected to be provided as unauthenticated parameter, then the effective security is
MATCHER PROTECTION SOFTWARE and not MATCHER PROTECTION ON CHIP.

MATCHER PROTECTION SOFTWARE 0x0001

This flag MUST be set if the authenticator's matcher is running in software. Exclusive in
authenticator metadata with vATCHER PROTECTTION TEE, MATCHER PROTECTION ON CHIP

MATCHER PROTECTION TEE 0x0002

This flag SHOULD be set if the authenticator's matcher is running inside the trusted execution
environment [b-TEE]. Mutually exclusive in authenticator metadata with
MATCHER PROTECTION SOFTWARE, MATCHER PROTECTION ON CHIP

MATCHER PROTECTION ON CHIP 0x0004

This flag SHOULD be set if the authenticator's matcher is running on the chip. Mutually

exclusive in authenticator metadata with vATCHER PROTECTTON TEE, MATCHER PROTECTTON
SOFTWARE

K.3.4 Authenticator attachment hints

The arracuvenT HInT constants are flags in a bit field represented as a 32 bit long. They describe
the method an authenticator uses to communicate with the FIDO user device. These constants are
reported and queried through the UAF discovery APIs (Annex B) and used to form authenticator
policies in UAF protocol messages. Because the connection state and topology of an authenticator
may be transient, these values are only hints that can be used by server-supplied policy to guide the
user experience, e.g., to prefer a device that is connected and ready for authenticating or confirming
a low-value transaction, rather than one that is more secure but requires more user effort.

NOTE — These flags are not a mandatory part of authenticator metadata and, when present, only indicate
possible states that may be reported during authenticator discovery.

224 Rec. ITU-T X.1277 (11/2018)

ATTACHMENT HINT INTERNAL 0x0001

This flag MAY be set to indicate that the authenticator is permanently attached to the FIDO
user device.

A device such as a smartphone may have authenticator functionality that is able to be used
both locally and remotely. In such a case, the FIDO client MUST filter and exclusively report
only the relevant bit during discovery and when performing policy matching.

This flag cannot be combined with any other arracuvenT HinT flags.
ATTACHMENT HINT EXTERNAL 0x0002

This flag MAY be set to indicate, for a hardware-based authenticator, that it is removable or
remote from the FIDO user device.

A device such as a smartphone may have authenticator functionality that is able to be used
both locally and remotely. In such a case, the FIDO UAF client MUST filter and exclusively
report only the relevant bit during discovery and when performing policy matching.

ATTACHMENT HINT WIRED 0x0004

This flag MAY be set to indicate that an external authenticator currently has an exclusive
wired connection, e.g., through USB, Firewire or similar, to the FIDO user device.

ATTACHMENT HINT WIRELESS 0x0008

This flag MAY be set to indicate that an external authenticator communicates with the FIDO
user device through a personal area or otherwise non-routed wireless protocol, such as
Bluetooth or NFC.

ATTACHMENT HINT NFC 0x0010

This flag MAY be set to indicate that an external authenticator is able to communicate by
NFC to the FIDO user device. As part of authenticator metadata, or when reporting
characteristics through discovery, if this flag is set, the rArTacuvenT HinT WwireLess flag
SHOULD also be set as well.

ATTACHMENT HINT BLUETOOTH 0x0020

This flag MAY be set to indicate that an external authenticator is able to communicate using
Bluetooth with the FIDO user device. As part of authenticator metadata, or when reporting
characteristics through discovery, if this flag is set, the ArTacavenT HTnT WireLEss flag
SHOULD also be set.

ATTACHMENT HINT NETWORK 0x0040

This flag MAY be set to indicate that the authenticator is connected to the FIDO user device
over a non-exclusive network (e.g., over a TCP/IP LAN or WAN, as opposed to a PAN or
point-to-point connection).

ATTACHMENT HINT READY 0x0080

This flag MAY be set to indicate that an external authenticator is in a "ready" state. This flag
is set by the ASM at its discretion.

NOTE — Generally this should indicate that the device is immediately available to perform user verification
without additional actions such as connecting the device or creating a new biometric profile enrollment, but
the exact meaning may vary for different types of devices. For example, a USB authenticator may only report
itself as ready when it is plugged in, or a Bluetooth authenticator when it is paired and connected, but an NFC-
based authenticator may always report itself as ready.

Rec. ITU-T X.1277 (11/2018) 225

ATTACHMENT HINT WIFI DIRECT 0x0100

This flag MAY be set to indicate that an external authenticator is able to communicate using
WiFi direct with the FIDO user device. As part of authenticator metadata and when reporting
characteristics through discovery, if this flag is set, the rArTacaveEnT HTnT WireELESS flag
SHOULD also be set.

K.3.5 Transaction confirmation display types

The TrANSACTION CONFIRMATION DISPLAY constants are flags in a bit field represented as a 16 bit
long integer. They describe the availability and implementation of a transaction confirmation display
capability required for the transaction confirmation operation. These constants are used in the
authoritative metadata for an authenticator, reported and queried through the UAF Discovery APIs
and used to form authenticator policies in UAF protocol messages. Refer to Annex C for more details
on the security aspects of TransactionConfirmation Display.

TRANSACTION CONFIRMATION DISPLAY ANY 0x0001

This flag MUST be set to indicate that a transaction confirmation display, of any type, is
available on this authenticator. Other TransacTToN cowrTrMaTTON Drspray flags MAY
also be set if this flag is set. If the authenticator does not support a transaction confirmation
display, then the value of TransacTTON conrTrMaTION DIsprAay MUST be setto O.

TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE 0x0002

This flag MUST be set to indicate, that a software-based transaction confirmation display
operating in a privileged context is available on this authenticator.

A FIDO client that is capable of providing this capability MAY set this bit (in conjunction
with TrRansacTION conrTrMATION DIsPLAY any) for all authenticators of type
ATTACHMENT HINT INTERNAL, even if the authoritative metadata for the authenticator does
not indicate this capability.

NOTE - Software based transaction confirmation displays might be implemented within the boundaries of the
ASM rather than by the authenticator itself Annex D.

This flag is mutually exclusive with TrANSACTTION CONFIRMATION DISPLAY TeEE and
TRANSACTION CONFIRMATION DISPLAY HARDWARE.

TRANSACTION CONFIRMATION DISPLAY TEE 0x0004
This flag SHOULD be set to indicate that the authenticator implements a transaction
confirmation display in a Trusted Execution Environment ([b-TEE], [b-TEESecureDisplay]).

This flag is mutually exclusive with TRANSACTTON CONFIRMATION DISPLAY PRIVILEGED
SOFTWARE and TRANSACTION CONFIRMATION DISPLAY HARDWARE.

TRANSACTION CONFIRMATION DISPLAY HARDWARE 0x0008

This flag SHOULD be set to indicate that a transaction confirmation display based on
hardware assisted capabilities is available on this authenticator. This flag is mutually exclusive
With TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE and TRANSACTION
CONFIRMATION DISPLAY TEE.

TRANSACTION CONFIRMATION DISPLAY REMOTE 0x0010

This flag SHOULD be set to indicate that the transaction confirmation display is provided on
a distinct device from the FIDO user device. This flag can be combined with any other flag.

K.3.6 Tags used for crypto algorithms and types

These tags indicate the specific authentication algorithms, public key formats and other crypto
relevant data.

226 Rec. ITU-T X.1277 (11/2018)

K.3.6.1 Authentication algorithms

The ~1.c stcn constants are 16 bit long integers indicating the specific signature algorithm and
encoding.

NOTE — FIDO UAF supports RAW and DER signature encodings in order to allow small footprint
authenticator implementations.

ALG_SIGN SECP256R1 ECDSA SHA256 RAW 0x0001

An ECDSA signature on the NIST secp256r1 curve which MUST have raw R and S buffers,
encoded in big-endian order. This is the signature encoding as specified in [b-ECDSA-ANSI].

i.e.,, [R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_ECC_X962 RAW
+ALG_KEY_ECC_X962_DER

ALG_SIGN SECP256R1_ECDSA SHA256 DER 0x0002

DER [ITU-T X.690] encoded ECDSA signature [IETF RFC 5480] on the NIST secp256r1
curve.

i.e., a DER encoded sEQUENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_ECC_X962_RAW
«ALG_KEY_ECC_X962_DER

ALG_SIGN RSASSA PSS SHA256 RAW 0x0003

RSASSA-PSS [IETF RFC 3447] signature MUST have raw S buffers, encoded in big-endian
order [IETF RFC 4055] [IETF RFC 4056]. The default parameters as specified in [IETF RFC
4055] MUST be assumed, i.e.,

«Mask generation algorithm MGF1 with SHA256
«Salt length of 32 bytes, i.e., the length of a SHA256 hash value.
o Trailer field value of 1, which represents the trailer field with hexadecimal value ox=c.

.8, [S (256 bytes)]
This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
+ALG_KEY_RSA 2048 DER

ALG_SIGN RSASSA PSS SHA256 DER 0x0004

DER[ITU-T X.690] encoded OCTET STRING (not BIT STRING!) containing the RSASSA-
PSS [IETF RFC 3447] signature [IETF RFC 4055] [IETF RFC 4056]. The default parameters
as specified in [IETF RFC 4055] MUST be assumed, i.e.,

«Mask generation algorithm MGF1 with SHA256

«Salt length of 32 bytes, i.e., the length of a SHA256 hash value.
e Trailer field value of 1, which represents the trailer field with hexadecimal value ox=c.

Rec. ITU-T X.1277 (11/2018) 227

i.e.,, a DER encoded ocTteT strING (including its tag and length bytes).
This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
+ALG_KEY_RSA 2048 DER
ALG SIGN SECP256K1 ECDSA SHA256 RAW 0x0005

An ECDSA signature on the secp256kl curve which MUST have raw R and S buffers,
encoded in big-endian order.

I.e.[R (32 bytes), S (32 bytes)]

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_ECC_X962_RAW
«ALG_KEY_ECC_X962 DER

ALG SIGN SECP256K1 ECDSA SHA256 DER 0x0006
DER [ITU-T X.690] encoded ECDSA signature [IETF RFC 5480] on the secp256k1 curve.
i.e., a DER encoded seoueENCE { r INTEGER, s INTEGER }

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_ECC_X962_RAW
«ALG_KEY_ECC_X962 DER

ALG SIGN SM2 sM3 RAW 0x0007 (optional)

Chinese SM2 elliptic curve based signature algorithm combined with SM3 hash algorithm [b-
OSCCA-SM2],[b-OSCCA-SM3]. The 256bit curve [b-OSCCA-SM2-curve-param] is used.

This algorithm is suitable for authenticators using the following key representation format:
ALG_KEY_ECC_X962_RAW.

ALG SIGN RSA EMSA PKCS1 SHA256 RAW 0x0008

This is the EMSA-PKCS1-v1_5 signature as defined in [IETF RFC 3447]. This means that
the encoded message EM will be the input to the cryptographic signing algorithm RSASP1 as
defined in [IETF RFC 3447]. The result s of RSASP1 is then encoded using function 120SP
to produce the raw signature octets.

®EM = 0x00 | 0x01 | PS | 0x00 | T

«with the padding string PS with length=emLen — tLen — 3 octets having the value Oxff
for each octet, e.qg., (0x) ff £f ff ff ff ff ff £f

«with the DER [ITU-T X.690] encoded DigestInfo value T: (0x) 30 31 30 0d 06 09 60
86 48 01 65 03 04 02 01 05 00 04 20 | H, where H denotes the bytes of the
SHA256 hash value.

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
«ALG_KEY RSA 2048 DER

228 Rec. ITU-T X.1277 (11/2018)

NOTE — Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows the
recommendations in [b-IETF RFC 3218] to protect against adaptive chosen-ciphertext attacks such as
Bleichenbacher.

ALG_SIGN RSA EMSA PKCS1 SHA256 DER 0x0009

DER [ITU-T X.690] encoded OCTET STRING (not BIT STRING!) containing the EMSA-
PKCS1-vl 5 signature as defined in [IETF RFC 3447]. This means that the encoded message
EM will be the input to the cryptographic signing algorithm RSASP1 as defined in [IETF
RFC 3447]. The result s of RSASP1 is then encoded using function 120SP to produce the raw
signature. The raw signature is DER [ITU-T X.690] encoded as an OCTET STRING to
produce the final signature octets.

®EM = 0x00 | 0x01 | PS | 0x00 | T

«with the padding string PS with length=emLen — tLen — 3 octets having the value Oxff
for each octet, e.qg., (0x) ©f £f £f £f £f £f ff £f

«with the DER encoded Digestinfo value T: (0x)30 31 30 0d 06 09 60 86 48 01 65
03 04 02 01 05 00 04 20 | #, where H denotes the bytes of the SHA256 hash
value.

This algorithm is suitable for authenticators using the following key representation formats:

«ALG_KEY_RSA 2048 RAW
+ALG_KEY_RSA 2048 DER

NOTE — Implementers should verify that their implementation of the PKCS#1 V1.5 signature follows the
recommendations in [b-IETF RFC 3218] to protect against adaptive chosen-ciphertext attacks such as
Bleichenbacher.

K.3.6.2 Public key representation formats
The 21.c xev constants are 16 bit long integers indicating the specific Public Key algorithm and
encoding.

NOTE - FIDO UAF supports RAW and DER encodings in order to allow small footprint authenticator
implementations. By definition, the authenticator must encode the public key as part of the registration
assertion.

ALG KEY ECC X962 RAW 0x0100
Raw ANSI X9.62 formatted elliptic curve public key [b-SEC1].

I.e., [0x04, X (32 bytes), Y (32 bytes)].Where the byte 0x04 denotes the uncompressed
point compression method.

ALG_KEY ECC X962 DER 0x0101

DER [ITU-T X.690] encoded ANSI X.9.62 formatted subjectrublickeyinfo [IETF RFC
5480] specifying an elliptic curve public key.

i.e., a DER encoded SubjectPublicKeyInfo aS defined in [|ETF RFC 5480].

Authenticator implementations MUST generate namedcurve in the ecrarameters object
which is included in the rigorithmidentifier. A FIDO UAF server MUST accept
namedCurve INthe Ecrarameters object which is included inthe 21gorithmidentifier.

Rec. ITU-T X.1277 (11/2018) 229

ALG_KEY RSA 2048 RAW 0x0102
Raw encoded 2048-bit RSA public key [IETF RFC 3447].
Thatis, (n (256 bytes), e (N-256 bytes)]. Where w is the total length of the field.

This total length should be taken from the object containing this key, e.g., the TLV encoded
field.

ALG_KEY RSA 2048 DER 0x0103

ASN.1 DER [ITU-T X.690] encoded 2048-bit RSA [IETF RFC 3447] public key [IETF RFC
4055].

That is a DER encoded sEQuENCE { n INTEGER, e INTEGER }.

230 Rec. ITU-T X.1277 (11/2018)

Annex L

FIDO security reference
(This annex forms an integral part of this Recommendation.)

L.1 Summary

This annex analyzes the FIDO security. The analysis is performed on the basis of the FIDO universal
authentication framework (UAF) specification and FIDO Universal 2nd Factor (U2F) specifications
as of the date of this publication.

L.2 Introduction

This annex analyzes the security properties of the FIDO UAF and U2F families of protocols.
Although a brief architectural summary is provided in Figure L.1, readers should familiarize
themselves with clause 3.2 for definitions of terms used throughout. For technical details of various
aspects of the architecture, readers should refer to the FIDO Alliance specifications in the
bibliography.

TLS TLS
protocol key

BROWSER/APP UAF protocol . WEB SERVER

Cryptographic
authentication key FIDO SERVER

FIDO CLIENT reference DB

ASM

FIDO AUTHENTICATOR

Authenticator
metadata and
attestation trust
store

FIDO METADATA SERVICE

Certify
compliance

X.1277(18)_FL.1

Figure L.1 — FIDO reference architecture

Conceptually, FIDO involves a conversation between a computing environment controlled by a
relying party and one controlled by the user to be authenticated. The relying party's environment
consists conceptually of at least a web server and the server-side portions of a web application, plus
a FIDO server. The FIDO server has a trust store, containing the (public) trust anchors for the
attestation of FIDO authenticators. The user's environment, referred to as the FIDO user device,
consists of one or more FIDO authenticators, a piece of software called the FIDO client that is the
endpoint for UAF and U2F conversations and user agent software. The user agent software may be a
browser hosting a web application delivered by the relying party, or it may be a standalone application
delivered by the relying party. In either case, the FIDO client, while a conceptually distinct entity,
may actually be implemented in whole or part within the boundaries of the user agent.

Rec. ITU-T X.1277 (11/2018) 231

L.2.1 Intended audience

This annex assumes a technical audience that is proficient with security analysis of computing
systems and network protocols as well as the specifics of the FIDO architecture and protocol families.
It discusses the security goals, security measures, security assumptions and a series of threats to FIDO
systems, including the user's computing environment, the relying party's computing environment and
the supply chain, including the vendors of FIDO components.

L.3 Attack classification
The following threat classes (all leading to the impersonation of the user) can be distinguished:

1. Automated attacks focused on relying parties, which affect the user but cannot be prevented
by the user.

2. Automated attacks which are performed once and lead to the ability to impersonate the user
on an on-going basis without involving him or his device directly.

3. Automated attacks which involve the user or his device for each successful impersonation.
Automated attacks to sessions authenticated by the user.

5. Not automatable attacks to the user or his device which are performed once and lead to the ability
to impersonate the user on an on-going basis without involving him or his device directly.

6. Not automatable attacks to the user or his device which involve the user or his device for

each successful impersonation.

Counter Examples
measures

Use robust and

spoofing resistant Physically attacking Physically attacking
user verification user devices s e
steal data for misuse them for
Use SE based key impersonation impersonation
protection

Use transaction
confirmation with Remotely Remotely Remotely EuroGrabber

QR clcking los g aitacking lois i - atiacking lots
transaction dlsplay Of user aevices Of user devices of user devices

Use TEE or SE))
based key steal data for misuse them for

protection impersonation impersonation
Use HW based
user verification

misuse FlashCrest. iSpy
authenticated
sessions

Recent mass-
scale attacks to
steal passwords

Use asymmetric
crypto. e.g., FIDO

Remotely attacking central servers
steal data for impersonation

X.1277(18)_FL.2

Figure L.2 — Attack classes

Figure L.2 shows attack classes. The first four attack classes are considered scalable as they are
automated (or at least can be automated). The attack classes 5 and 6 are not automatable; they involve
some kind of manual/physical interaction of the attacker with the user or his device. The threats
analyzed in this annex will be attributed with the related attack class (AC1 — ACS6).

NOTE —

1. FIDO UAF uses asymmetric cryptography to protect against this class of attacks. This gives control
back to the user, i.e., when using good random numbers, the user's authenticator can make breaking
the key as hard as the underlying factoring (in the case of RSA) or discrete logarithm (in the case of
DSA or ECDSA) problem.

232 Rec. ITU-T X.1277 (11/2018)

2. Once counter-measures for this kind of attack are commonly in place, attackers will likely focus on
another attack class.

3. The numbers at the attack classes do not imply a feasibility ranking of the related attacks, e.g., it is
not necessarily more difficult to perform (4) than it is to perform (3).

4. Feasibility of attack class (1) cannot be influenced by the user at all. This makes this attack class
really bad.

5. The concept of physical security (i.e., "protect your authenticator from being stolen™), related to attack

classes (5) and (6) is much better internalized by users than the concept of logical security, related to
attack classes (2), (3) and (4).

6. In order to protect against misuse of authenticated sessions (e.g., MITB attacks), the FIDO
authenticator must support the concept of transaction confirmation and the relying party must use it.
7. For an attacker to succeed, any attack class is sufficient.

L.4 UAF security goals

In this clause the specific security goals of UAF are described. The FIDO UAF protocol in Annex A
supports a variety of different FIDO authenticators. Even though the security of those authenticators
varies, the UAF protocol and the FIDO server should provide a very high level of security — at least
on a conceptual level. In reality it might require a FIDO authenticator with a high security level in
order to fully leverage the UAF security strength.

NOTE - In certain environments the overall security of the explicit authentication (as provided by FIDO) is

less important, as it might be supplemented with a high degree of implicit authentication or the application
does not even require a high level of authentication strength.

The FIDO U2F protocol [U2FOverview] supports a more constrained set of authenticator capabilities.
It shares the same security goals as UAF, with the exception of [SG-14] transaction non-repudiation.
The UAF protocol has the following security goals:

[SG-1]

Strong user authentication: Authenticate (i.e., recognize) a user and/or a device to a relying
party with high (cryptographic) strength.

[SG-2]

Credential guessing resilience: Provide robust protection against eavesdroppers, e.g., be
resilient to physical observation, resilient to targeted impersonation, resilient to throttled and
unthrottled guessing.

[SG-3]

Credential disclosure resilience: Be resilient to phishing attacks and real-time phishing attack,
including resilience to online attacks by adversaries able to actively manipulate network
traffic.

[SG-4]

Unlinkablity: Protect the protocol conversation such that any two relying parties cannot link
the conversation to one user (i.e., be unlinkable).

[SG-5]

Verifier leak resilience: Be resilient to leaks from other relying parties. i.e., nothing that a
verifier could possibly leak can help an attacker impersonate the user to another relying party.

Rec. ITU-T X.1277 (11/2018) 233

[SG-6]

Authenticator leak resilience: Be resilient to leaks from other FIDO authenticators. i.e.,
nothing that a particular FIDO authenticator could possibly leak can help an attacker to
impersonate any other user to any relying party.

[SG-7]
User consent: Notify the user before a relationship to a new relying party is being established
(requiring explicit consent).

[SG-8]

Limited PII: Limit the amount of personal identifiable information (P11) exposed to the relying
party to the absolute minimum.

[SG-9]

Attestable properties: relying party must be able to verify FIDO authenticator model/type (in
order to calculate the associated risk).

[SG-10]

DosS resistance: Be resilient to denial of service attacks. i.e., prevent attackers from inserting
invalid registration information for a legitimate user for the next login phase. Afterward, the
legitimate user will not be able to login successfully anymore.

[SG-11]

Forgery resistance: Be resilient to forgery attacks (impersonation attacks). i.e., prevent
attackers from attempting to modify intercepted communications in order to masquerade as
the legitimate user and login to the system.

[SG-12]

Parallel session resistance: Be resilient to parallel session attacks. Without knowing a user's
authentication credential, an attacker can masquerade as the legitimate user by creating a valid
authentication message out of some eavesdropped communication between the user and the
server.

[SG-13]

Forwarding resistance: Be resilient to forwarding and replay attacks. Having intercepted
previous communications, an attacker can impersonate the legal user to authenticate to the
system. The attacker can replay or forward the intercepted messages.

[SG-14]
Transaction non-repudiation: Provide strong cryptographic non-repudiation for secure
transactions.

[SG-15]

Respect for operating environment security boundaries: Ensure that registrations and key
material as a shared system resource is appropriately protected according to the operating
environment privilege boundaries in place on the FIDO user device.

NOTE - For a definition of the phrases printed in italics, refer to [b-QuestToReplacePasswords] and to
[b-PWAuthSchemesKeylssues]

234 Rec. ITU-T X.1277 (11/2018)

L.4.1 Assets to be protected

Independent of any particular implementation, the UAF protocol assumes some assets to be present
and to be protected.

1. Cryptographic authentication key. Typically keys in FIDO are unique for each tuple of
(relying party, user account, authenticator).
2. Cryptographic authentication key reference. This is the cryptographic material stored at the

relying party and used to uniquely verify the cryptographic authentication key, typically the
public portion of an asymmetric key pair.

3. Authenticator attestation key (as stored in each authenticator). This should only be usable to
attest a cryptographic authentication key and the type and manufacturing batch of an
authenticator. Attestation keys and certificates are shared by a large number of authenticators
in a device class from a given vendor in order to prevent their becoming a linkable identifier
across relying parties. Authenticator attestation certificates may be self-signed, or signed by
an authority key controlled by the vendor.

4. Authenticator attestation authority key. An authenticator vendor may elect to sign
authenticator attestation certificates with a per-vendor certificate authority key.

5. Authenticator attestation authority certificate. Contained in the initial/default trust store as
part of the FIDO server and contained in the active trust store maintained by each relying
party.

6. Active trust store. Contains all trusted attestation master certificates for a given FIDO server.

7. All data items suitable for uniquely identifying the authenticator across relying parties. An
attack on those would break the non-linkability security goal.

8. Private key of relying party TLS server certificate.

9. TLS root certificate trust store for the user's browser/app.

L.5 FIDO security measures

NOTE 1 — Particular implementations of FIDO clients, authenticators, servers and participating applications
may not implement all of these security measures (e.g., secure display, [SM-10] Transaction Confirmation)
and they also might (and should) implement add itional security measures.

NOTE 2 — The U2F protocol lacks support for [SM-10] Transaction confirmation, has only server-supplied
[SM-8] Protocol nonces and [SM-3] Authenticator class attestation is implicit as there is only a single class of
device.

[SM-1] (U2F + UAF)

Key protection: Authentication key is protected against misuse. Misuse means any use
violating the FIDO specification or the details given in the metadata statement. Before a key
can be used, it requires the user to unlock it using the user verification method specified in the
authenticator metadata statement (Silent authenticators do not require any user verification
method).

[SM-2] (U2F + UAF)

Unique authentication keys: Cryptographic authentication key is specific and unique to the
tuple of (FIDO authenticator, user, relying party).

[SM-3] (U2F + UAF)

Authenticator class attestation: Hardware-based FIDO authenticators support authenticator
attestation using an attestation key using one of the FIDO specified attestation types and
algorithms. Each relying party receives regular updates of the trust store (through the FIDO
metadata service).

Rec. ITU-T X.1277 (11/2018) 235

[SM-4] (UAF)

Authenticator status checking: Relying parties will be notified of compromised authenticators
or authenticator attestation keys. The FIDO server must take this information into account.
Authenticator manufacturers have to inform FIDO alliance about compromised
authenticators.

[SM-5] (UAF)

User consent: FIDO client implements a user interface for getting user's consent on any
actions (except authentication with silent authenticator) and displaying RP name (derived
from server URL).

[SM-6] (U2F + UAF)

Cryptographically secure verifier database: The relying party stores only the public portion of
an asymmetric key pair, or an encrypted key handle, as a cryptographic authentication key
reference.

[SM-7] (U2F + UAF)

Secure channel with server authentication: The TLS protocol with server authentication or a
transport with equivalent properties is used as transport protocol for UAF. The use of https is
enforced by a browser or relying party application.

[SM-8] (UAF)

Protocol nonces: Both server and client supplied nonces are used for UAF registration and
authentication. U2F requires server supplied nonces.

[SM-9] (U2F + UAF)

Authenticator certification: Only authenticators meeting certification requirements defined by
the FIDO Alliance and accurately describing their relevant characteristics will have have their
related attestation keys included in the default trust store.

[SM-10] (UAF)
Transaction confirmation (WYSIWYS): Secure sisplay (WYSIWYS) (optionally)
implemented by the FIDO authenticators is used by FIDO client for displaying relying party
name and transaction data to be confirmed by the user.

[SM-11] (U2F + UAF)

Round trip integrity: FIDO server verifies that the transaction data related to the server
challenge received in the UAF message from the FIDO client is identical to the transaction
data and server challenge delivered as part of the UAF request message.

[SM-12] (U2F + UAF)

Channel binding: Relying party servers may verify the continuity of a secure channel with a
client application.

[SM-13] (UAF)

Key handle access token: Authenticators not intended to roam between untrusted systems are
able to constrain the use of registration keys within the privilege boundaries defined by the
operating environment of the user device. (per-user, or perapplication, or per-user + per-
application as appropriate)

236 Rec. ITU-T X.1277 (11/2018)

[SM-14] (U2F + UAF)

ApplD separation: A relying party can declare the application identities allowed to access its
registered keys, for operating environments on user devices that support this concept.

[SM-15] (U2F + UAF)

Signature counter: Authenticators send a monotonically increasing signature counter that a
relying party can check to possibly detect cloned authenticators.

L.5.1 Relation between measures and goals

Table L.1 shows the relationship between security measures and goals.

Table L.1 — Relationship between security measures and goals

Security goal

[SG-1] Strong User Authentication

Supporting security measures

[SM-1] Key Protection
[SM-12] Channel Binding
[SM-14] AppID Separation
[SM-15] Signature Counter

[SG-2] Credential Guessing Resilience

[SM-1] Key Protection
[SM-6] Cryptographically Secure Verifier Database

[SG-3] Credential Disclosure Resilience

[SM-1] Key Protection
[SM-9] Authenticator Certification
[SM-15] Signature Counter

[SG-4] Unlinkability

[SM-2] Unique Authentication Keys
[SM-3] Authenticator Class Attestation

[SG-5] Verifier Leak Resilience

[SM-2] Unique Authentication Keys
[SM-6] Cryptographically Secure Verifier Database

[SG-6] Authenticator Leak Resilience

[SM-9] Authenticator Certification
[SM-15] Signature Counter

[SG-7] User Consent

[SM-1] Key Protection

[SM-5] User Consent

[SM-7] Secure Channel with server Authentication
[SM-10] Transaction Confirmation (WY SIWYS)

[SG-8] Limited PII

[SM-2] Unique Authentication Keys

[SG-9] Attestable Properties

[SM-3] Authenticator Class Attestation
[SM-4] Authenticator Status Checking
[SM-9] Authenticator Certification

[SG-10] DoS Resistance

[SM-8] Protocol Nonces

[SG-11] Forgery Resistance

[SM-7] Secure Channel with server Authentication
[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-12] Parallel Session Resistance

[SM-7] Secure Channel with server Authentication
[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

Rec. ITU-T X.1277 (11/2018) 237

Table L.1 — Relationship between security measures and goals

Security goal ‘ Supporting security measures

[SM-7] Secure Channel with server Authentication
[SM-8] Protocol Nonces

[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SM-1] Key Protection

[SM-2] Unique Authentication Keys

[SM-8] Protocol Nonces

[SG-14] Transaction Non-Repudiation [SM-9] Authenticator Certification

[SM-10] Transaction Confirmation (WYSIWYS)
[SM-11] Round Trip Integrity

[SM-12] Channel Binding

[SG-15] Respect for Operating Environment [SM-13] Key Handle Access Token
Security Boundaries [SM-14] AppID Separation

[SG-13] Forwarding Resistance

L.6 UAF security assumptions

Today's computer systems and cryptographic algorithms are not provably secure. This clause lists the
security assumptions, i.e., assumptions on security provided by other components. A violation of any
of these assumptions will prevent reliable achievement of the security goals.

[SA-1]

The cryptographic algorithms and parameters (key size, mode, output length, etc.) in use are
not subject to unknown weaknesses that make them unfit for their purpose in encrypting,
digitally signing and authenticating messages.

[SA-2]

Operating system privilege separation mechanisms relied up on by the software modules
involved in a FIDO operation on the user device perform as advertised. For example,
boundaries between user and kernel mode, between user accounts and between applications
(where applicable) are securely enforced and security principals can be mutually, securely
identifiable.

[SA-3]

Applications on the user device are able to establish secure channels that provide trustworthy
server authentication and confidentiality and integrity for messages (e.g., through TLS).

[SA-4]
The secure display implementation is protected against spoofing and tampering.
[SA-5]

The computing environment on the FIDO user device and the applications involved in a FIDO
operation act as trustworthy agents of the user.

[SA-6]

The inherent value of a cryptographic key resides in the confidence it imparts and this
commodity decays with the passage of time, irrespective of any compromise event. As a result
the effective assurance level of authenticators will be reduced over time.

238 Rec. ITU-T X.1277 (11/2018)

[SA-T]

The computing resources at the relying party involved in processing a FIDO operation act as
trustworthy agents of the relying party.

L.6.1 Discussion

With regard to [SA-5] and malicious computation on the FIDO user's device, only very limited
guarantees can be made within the scope of these assumptions. Malicious code privileged at the level
of the trusted computing base can always violate [SA-2] and [SA- 3]. Malicious code privileged at
the level of the user's account in traditional multi-user environments will also likely be able to violate
[SA-3].

FIDO can also provide only limited protections when a user chooses to deliberately violate [SA-5],
e.g., by roaming a USB authenticator to an untrusted system like a kiosk, or by granting permissions
to access all authentication keys to a malicious app in a mobile environment. Transaction
Confirmation can be used as a method to protect against compromised FIDO user devices.

In to components such as the FIDO client, server, Authenticators and the mix of software and
hardware modules they are comprised of, the end-to-end security goals also depend on correct
implementation and adherence to FIDO security guidance by other participating components, including
web browsers and relying party applications. Some configurations and uses may not be able to meet all
security goals. For example, authenticators may lack a secure display, they may be composed only of
unattestable software components, they may be deliberately designed to roam between untrusted
operating environments and some operating environments may not provide all necessary security
primitives (e.g., secure IPC, application isolation, modern TLS implementations, etc.)

L.7 Threat analysis
L.7.1 Threats to client side

L.7.1.1 Exploiting user’s pattern matching weaknesses

Table L.2 — Homograph mis-registration

T-1.1.1 Homograph mis-registration Violates

The user registers a FIDO authentication key with a fraudulent web site instead
of the genuine relying party.

Consequences: The fraudulent site may convince the user to disclose a set of
non-FIDO credentials sufficient to allow the attacker to register a FIDO
Authenticator under its own control, at the genuine relying party, on the user's
behalf, violating [SG-1] Strong User Authentication.

Mitigations: Disclosure of non-FIDO credentials is outside of the scope of the
FIDO security measures, but Relying Parties should be aware that the initial
strength of an authentication key is no better than the identity-proofing applied as
part of the registration process.

AC3 SG-1

Rec. ITU-T X.1277 (11/2018) 239

L.7.1.2

Table L.3 — Threats to the user device, FIDO client and relying party
client applications

Threats to the user device, FIDO client and relying party client applications

T-1.2.1

FIDO client corrpution

Violates

AC3

Attacker gains ability to execute code in the security context of the FIDO client.
Consequences: Violation of [SA-5].

Mitigations: When the operating environment on the FIDO user device allows,
the FIDO client should operate in a privileged and isolated context under [SA-2]
to protect itself from malicious modification by anything outside of the Trusted
Computing Base.

SA-5

T-1.2.2

Logical/Physical user device attack

Violates

AC3/
AC5

Attacker gains physical access to the FIDO user device but not the FIDO
Authenticator.

Consequences: Possible violation of [SA-5] by installing malicious software or
otherwise tampering with the FIDO user device.

Mitigations: [SM-1] Key Protection prevents the disclosure of authentication
keys or other assets during a transient compromise of the FIDO user device.

A persistent compromise of the FIDO user device can lead to a violation of
[SA-5] unless additional protection measures outside the scope of FIDO are
applied to the FIDO user device. (e,g. whole disk encryption and boot-chain
integrity)

SA-5

T-1.2.3

User device account access

Violates

AC3/
AC4

Attacker gains access to a user's login credentials on the FIDO user device.
Consequences: Authenticators might be remotely abused, or weakly-verifying
authenticators might be locally abused, violating [SG-1] Strong User
Authentication and [SG-13] Transaction Non-Repudiation.

Possible violation of [SA-5] by the installation of malicious software.
Mitigations: Relying Parties can use [SM-9] Authenticator Certification and
[SM-3] Authenticator Class Attestation to determine the nature of authenticators
and not rely on weak, or weakly-verifying authenticators for high value
operations.

SG-1,
SG-13;
SA-5

T-1.24

App server verification error

Violates

AC3

A client application fails to properly validate the remote sever identity, accepts
forged or stolen credentials for a remote server, or allows weak or missing
cryptographic protections for the secure channel.

Consequences: An active network adversary can modify the relying party's
authenticator policy and downgrade the client's choice of authenticator to make it
easier to attack.

An active network adversary can intercept or view FIDO messages intended for
the relying party. It may be able to use this ability to violate [SG-12] Parallel

SG-11,
SG-12,
SG-13

240

Rec. ITU-T X.1277 (11/2018)

T-1.24

App server verification error

Violates

AC3

Session Resistance, [SG-11] Forgery Resistance or [SG-13] Forwarding
Resistance,

Mitigations: The server can verify [SM-8] Protocol Nonces to detect replayed
messages and protect from an adversary that can read but not modify traffic in a
secure channel.

The server can mandate a channel with strong cryptographic protections to
prevent message forgery and can verify a [SM-12] Channel Binding to detect
forwarded messages.

SG-11,
SG-12,
SG-13

T-1.25

RP Web app corruption

Violates

An attacker is able to obtain malicious execution in the security context of the
relying party application (e.g., via Cross-Site Scripting) or abuse the secure
channel or session identifier after the user has successfully authenticated.
Consequences: The attacker is able to control the user's session, violating
[SG-14] Transaction Non-Repudiation.

Mitigations: The server can employ [SM-10] Transaction Confirmation to gain
additional assurance for high value operations.

SG-14

T-1.2.6

Fingerprinting authenticators

Violates

A remote adversary is able to uniquely identify a FIDO user device using the
fingerprint of discoverable configuration of its FIDO Authenticators.

Consequences: The exposed information violates [SG-8] Limited PII, allowing
an adversary to violate [SG-7] User Consent by strongly authenticating the user
without their knowledge and [SG-4] Unlinkablity by sharing that fingerprint.
Mitigations: [SM-3] Authenticator Class Attestation ensures that the fingerprint
of an Authenticator will not be unique.

For web browsing situations where this threat is most prominent, user agents
may provide additional user controls around the discoverability of FIDO
Authenticators.

SGA4,
SG7,
SG-8

T-1.2.7

App to FIDO client full MITM attack

Violates

AC3

Malicious software on the FIDO user device is able to read, tamper with, or
spoof the endpoint of inter-process communication channels between the FIDO
client and browser or relying party application.

Consequences: Adversary is able to subvert [SA-2].

Mitigations: On platforms where [SA-2] is not strong the security of the system
may depend on preventing malicious applications from arriving on the FIDO user
device. Such protections, e.g., app store policing, are outside the scope of FIDO.
When using [SM-10] Transaction Confirmation, the user would see the relevant
ApplD and transaction text and decide whether or not to accept an action.

SA-2

T-1.2.8

Authenticator to app read-only MITM attack

Violates

AC3

An adversary is able to obtain an authenticator's signed protocol response
message.

Consequences: The attacker attempts to replay the message to authenticate as
the user, violating [SG-1] Strong User Authentication, [SG-13] Forwarding
Resistance and [SG-12] Parallel Session Resistance.

SG-1, SG-
12, SG-13

Rec. ITU-T X.1277 (11/2018) 241

T-1.2.8

Authenticator to app read-only MITM attack

Violates

Mitigations: The server can use [SM-8] Protocol Nonces to detect replay of
messages and verify [SM-11] Round Trip Integrity to detect modified
messages.

T-1.2.9

Malicious app

Violates

AC3

A user installs an application that represents itself as being associated with to
one relying party application but actually initiates a protocol conversation with
a different relying party and attempts to abuse previously registered
authentication keys at that relying party.

Consequences: Adversary is able to violate [SG-7] User Consent by
misrepresenting the target of authentication.

Other consequences equivalent to [T-1.2.5]

Mitigations: If a [SM-10] Transaction Confirmation Display is present, the
user may be able to verify the true target of an operation.

If the malicious application attempts to communicate directly with an
Authenticator that uses [SM-13] KeyHandleAccessToken, it should not be able
to access keys registered by other FIDO clients.

If the operating environment on the FIDO user device supports it, the FIDO
client may be able to determine the application's identity and verify if it is
authorized to target that relying party using a [SM-14] AppID Separation.

SG-7

T-1.2.10

Phishing attack

Violates

A Phisher convinces the user to enter his PIN used for user verification into an
application / web site disclosing the PIN to the Phisher. In the traditional
username/password world this enables the attacker to successfully impersonate
the user (to the relying party).

Consequences: None as the phisher additionally would need access to the
Authenticator in order to pass user verification [SM-1]. In FIDO, the user
verification PIN (if user verification is done via PIN) is not known to the
relying party and hence is not sufficient for user impersonation. If user
verification is done using an alternative user verification method, this applies
accordingly.

Mitigations: In FIDO, the Uauth.priv key is used to sign a relying party supplied
challenge. without (use) access to that key, no impersonation is possible.

L.7.1.3

Creating a fake client

Table L.4 — Creating a fake client

T-1.3.1

Malicious FIDO client

Violates

AC3

Attacker convinces users to install and use a malicious FIDO client.
Consequences: Violation of [SA-5]
Mitigations: Mitigating malicious software installation is outside the scope of FIDO.

If an authenticator implements [SM-1] Key Protection, the user may be able to
recover full control of their registered authentication keys by removing the
malicious software from their user device.

When using [SM-10] Transaction Confirmation, the user sees the real ApplDs and
transaction text and can decide to accept or reject the action.

SA-5

242 Rec. ITU-T X.1277 (11/2018)

L.7.1.4 Threats to FIDO authenticator

Table L.5

T-14.1

Malicious authenticator

Violates

AC2

Attacker convinces users to use a maliciously implemented authenticator.

Consequences: The fake authenticator does not implement any appropriate
security measures and is able to violate all security goals of FIDO.

Mitigations: A user may be unable to distinguish a malicious authenticator, but a
relying party can use [SM-3] Authenticator Class Attestation to identify and only
allow registration of reliable authenticators that have passed [SM-9] Authenticator
Certification

A relying party can additionally rely on [SM-4] Authenticator Status Checking to

check if an attestation presented by a malicious authenticator has been marked as
compromised.

SG-1

T-14.2

Uauth.priv key compromise

Violates

AC2

Attacker succeeds in extracting a user's cryptographic authentication key for use in
a different context.

Consequences: The attacker could impersonate the user with a cloned
authenticator that does not do trustworthy user verification, violating [SG-1].
Mitigations: [SM-1] Key Protection measures are intended to prevent this.
Relying Parties can check [SM-9] Authenticator Certification attributes to
determine the type of key protection in use by a given authenticator class.

Relying Parties can additionally verify the [SM-15] Signature Counter and detect
that an authenticator has been cloned if it ever fails to advance relative to the prior
operation.

SG-1

T-14.3

User verification by-pass

Violates

AC3

Attacker could use the cryptographic authentication key (inside the authenticator)
either with or without being noticed by the legitimate user.

Consequences: Attacker could impersonate user, violating [SG-1].

Mitigations: A user can only register and a relying party only allow authenticators
that perform [SM-1] Key Protection with an appropriately secure user verification
process.

Does not apply to Silent Authenticators.

SG-1

T-1.4.4

Physical authenticator attack

Violates

AC5/
AC6

Attacker could get physical access to FIDO Authenticator (e.g., by stealing it).

Consequences: Attacker could launch offline attack in order to use the
authentication key. If this offline attack succeeds, the attacker could successfully
impersonate the user, violating [SG-1] Strong User Authentication.

Attacker can introduce a low entropy situation to recover an ECDSA signature key
(or optherwise extract the Uauth.priv key), violating [SG-9] Attestable Properties
if the attestation key is targeted or [SG-1] Strong User Authentication if a user key
is targeted.

Mitigations: [SM-1] Key Protection includes requirements to implement strong

protections for key material, including resistance to offline attacks and low entropy
situations.

SG-1

Rec. ITU-T X.1277 (11/2018)

243

T-14.4

Physical authenticator attack

Violates

Relying Parties should use [SM-3] Authenticator Class Attestation to only accept
Authenticators implementing a sufficiently strong user verification method.

T-1.4.6

Fake authenticator

Violates

Attacker is able to extract the authenticator attestation key from an authenticator,
e.g., by neutralizing physical countermeasures in a laboratory setting.
Consequences: Attacker can violate [SG-9] Attestable Properties by creating a
malicious hardware or software device that represents itself as a legitimate one.
Mitigations: Relying Parties can use [SM-4] Authenticator Status Checking to
identify known-compromised keys. Identification of such compromise is outside
the strict scope of the FIDO protocols.

SG-9

T-14.7

Transaction confirmation display overlay attack

Violates

Attacker is able to subvert [SM-5] Secure Display functionality (WYSIWYS),
perhaps by overlaying the display with false information.

Consequences: Violation of [SG-14] Transaction Non-Repudiation.

Mitigations: Implementations must take care to protect [SA-4] in their
implementation of a secure display, e.g., by implementing a distinct hardware
display or employing appropriate privileges in the operating environment of the
user device to protect against spoofing and tampering.

[SM-9] Authenticator Certification will provide Relying Parties with metadata
about the nature of a transaction confirmation display information that can be used
to assess whether it matches the assurance level and risk tolerance of the relying
party for that particular transaction.

SG-14

T-14.8

Signature algorithm attack

Violates

AC2

A cryptographic attack is discovered against the public key cryptography system
used to sign data by the FIDO authenticator.

Consequences: Attacker is able to use messages generated by the client to violate
[SG-2] Credential Guessing Resistance

Mitigations: [SM-8] Protocol Nonces, including client-generated entropy, limit
the amount of control any adversary has over the internal structure of an
authenticator.

[SM-1] Key Protection for non-silent authenticators requires user interaction to
authorize any operation performed with the authentication key, severely limiting
the rate at which an adversary can perform adaptive cryptographic attacks.

SG-2

T-14.9

Abuse functionality

Violates

It might be possible for an attacker to abuse the Authenticator functionality by
sending commands with invalid parameters or invalid commands to the
Authenticator.

Consequences: This might lead to e.g., user verification by-pass or potential key
extraction.

Mitigations: Proper robustness (e.g., due to testing) of the Authenticator firmware.

SG-1

244

Rec. ITU-T X.1277 (11/2018)

T-1.4.10

Random number prediction

Violates

It might be possible for an attacker to get access to information allowing the
prediction of RNG data.

Consequences: This might lead to key compromise situation (T-1.4.2) when
using ECDSA (if the k value is used multiple times or if it is predictable).
Mitigations: Proper robustness of the Authenticator's RNG and verification of
the relevant operating environment parameters (e.g., temperature, ...).

SG-1

T-14.11

Firmware rollback

Violates

Attacker might be able to install a previous and potentially buggy version of the
firmware.

Consequences: This might lead to successful attacks, e.g., T-1.4.9.
Mitigations: Proper robustness firmware verification method.

SG-1

T-1.4.12

User verification data injection

Violates

AC3,
AC6

Attacker might be able to inject pre-captured user verification data into the
Authenticator. For example, if a password is used as user verification method, the
attacker could capture the password entered by the user and then send the correct
password to the Authenticator (by-passing the expected keyboard/PIN pad).
Passwords could be captured ahead of the attack e.g., by convincing the user to
enter the password into a malicious app (“phishing") or by spying directly or
indirectly the password data.

SG-1

T-1.4.12

User verification data injection

Violates

AC3,
AC6

In another example, some malware could play an audio stream which would be
recorded by the microphone and used by a Speaker-Recognition based
Authenticator.

Consequences: This might lead to successful user impersonation (if the attacker
has access to valid user verification data).

Mitigations: Use a physically secured user verification input method, e.g.,
Fingerprint Sensor or Trusted-User-Interface for PIN entry which cannot be by-
passed by malware.

SG-1

T-1.4.13

Verification reference data modification

Violates

AC3,
AC6

The Attacker gained logical or physical access to the Authenticator and modifies
Verification Reference Data (e.g., hashed PIN value, fingerprint templates) stored
in the Authenticator and adds reference data known to or reproducible by the
attacker.

Consequences: The attacker would be recognized as the legitimate User and
could impersonate the user.

Mitigations: Proper protection of the the verification reference data in the
Authenticator.

SG-1

T-14.14

Read access to captured user verification data

Violates

AC3,
AC6

The Attacker gained read access to the captured user verification dat (e.g., PIN,
fingerprint image, ...).

Consequences: The attacker gets access to Pll and could disclose it violating
SG-8.

Mitigations: Limiting access to the user verification data to the Authenticator
exclusively.

SG-8

Rec. ITU-T X.1277 (11/2018) 245

L.7.2 Threats to relying party

L.7.2.1 Threats to FIDO server data
Table L.6 — Threats to FIDO server data

T-2.1.1 FIDO server DB read attack Violates
Attacker could obtains read-access to FIDO server registration database.
Consequences:Attacker can access all cryptographic key handles and
authenticator characteristics associated with a username. If an authenticator
or combination of authenticators is unique, they might use this to try to
violate [SG-2] Unlinkability
Attacker attempts to perform factorization of public keys by virtue of
having access to a large corpus of data, violating [SG-5] Verifier Leak
Resiliance and [SG-2] Credential Guessing Resilience SG-2,
Mitigations: [SM-2] Unique Authentication Keys help prevent disclosed SG-5
key material from being useful against any other relying party, even if
successfully attacked.
The use of an [SM-6] Cryptographically Secure Verifier Database helps assure
that it is infeasible to attack any leaked verifier keys.
[SM-9] Authenticator Certification should help prevent authenticators with
poor entropy from entering the market, reducing the likelihood that even a
large corpus of key material will be useful in mounting attacks.

T-2.1.2 FIDO server DB modification attack Violates
Attacker gains write-access to the FIDO server registration database.
Consequences: Violation of [SA-7]
The attacker may inject a key registration under its control, violating [SG-1]
Strong User Authentication SA-7
Mitigations: Mitigating such attacks is outside the scope of the FIDO
specifications. The relying party must maintain the integrity of any information
it relies up on to identify a user as part of [SA-7].

T-2.21 WebApp malware Violates
Attacker gains ability to execute code in the security context of the relying party
web application or FIDO server.
Consequences: Attacker is able to violate [SG-1], [SG-10], [SG-9] and any
other relying party controls. SG-1
Mitigations: The consequences of such an incident are limited to the SG-9’
relationship between the user and that particular relying party by [SM-1], [SM- SG-16
2] and [SM-5].
Even within the relying party to user relationship, a user can be protected by
[SM-10] Transaction Confirmation if the compromise does not include to the
user's computing environment

246 Rec. ITU-T X.1277 (11/2018)

L.7.3 Threats to the secure channel between client and relying party

L.7.3.1 Exploiting weaknesses in the secure transport of FIDO messages

FIDO takes as a base assumption that [SA-3] applications on the user device are able to establish
secure channels that provide trustworthy server authentication and confidentiality and integrity for
messages. e.g., through TLS. [T-1.2.4] discusses some consequences of violations of this assumption
due to implementation errors in a browser or client application, but other threats exist in different
layers.

Table L.7 — Exploiting weaknesses in the secure transport of FIDO messages

T-3.1.1 TLS proxy Violates

The FIDO user device is administratively configured to connect through a proxy
that terminates TLS connections. The client trusts this device, but the
connection between the user and FIDO server is no longer end-to-end secure.
Consequences: Any such proxies introduce a new party into the protocol. If this
party is untrustworthy, consequences may be as for [T-1.2.4]

Mitigations: Mitigations for [T-1.2.4] apply, except that the proxy is considered SG-11,
trusted by the client, so certain methods of [SM-12] Channel Binding may SG-12,
indicate a compromised channel even in the absence of an attack. servers should SG-13
use multiple methods and adjust their risk scoring appropriately. A trustworthy
client that reports a server certificate that is unknown to the server and does not
chain to a public root may indicate a client behind such a proxy. A client
reporting a server certificate that is unknown to the server but validates for the
server's identity according to commonly used public trust roots is more likely to
indicate [T-3.1.2]

T-3.1.2 Fraudulent TLS server certificate Violates

An attacker is able to obtain control of a certificate credential for a relying party,
perhaps from a compromised Certification Authority or poor protection practices
by the relying party.

Consequences:As for [T-1.2.4].

Mitigations:As for [T-1.2.4].

T-3.1.3 Protocol level real-time MITM attack Violates

An adversary can intercept and manipulate network packages sent from the
relying party to the client. The adversary uses this capability to (a) terminate the
underlying TLS session from the client at the adversary and to (b)
simultaneously use another TLS session from the adversary to the relying party.
In the traditional username/password world, this allows the adversary to
intercept the username and the password and then successfully impersonate the
user at the relying party.

Consequences: None if FIDO channelBinding [SM-12] or transaction
confirmation [SM-10] are used.

Mitigations: In the case of channelBinding [SM-12], the FIDO server will
detect the MITM in the TLS channel by comparing the channel binding
information provided by the client and the channel binding information retrieved
locally by the server.

In the case of transaction confirmation [SM-10], the user verifies and approves a
particular transaction. The adversary could modify the transaction before
approval. This would lead to rejection by the user. Alternatively, the adversary
could modify the transaction after approval. This will break the signature in the
transaction confirmation response. The FIDO server will not accept it as a
consequence.

Rec. ITU-T X.1277 (11/2018) 247

L.7.4 Threats to the infrastructure

L.7.4.1

Threats to FIDO authenticator manufacturers

Table L.8 — Threats to FIDO authenticator manufacturers

T-4.11

Manufacturer level attestation key compromise

Violates

Attacker obtains control of an attestation key or attestation key issuing key.
Consequences: Same as [T-1.4.6]: Attacker can violate [SG-9] Attestable
Properties by creating a malicious hardware or software device that represents
itself as a legitimate one.

Mitigations: Same as [T-1.4.6]: Relying Parties can use [SM-4] Authenticator
Status Checking to identify known-compromised keys. Identification of such
compromise is outside the strict scope of the FIDO protocols.

SG-9

T-4.1.2

Malicious authenticator HW

Violates

FIDO Authenticator manufacturer relies on hardware or software components that
generate weak cryptographic authentication key material or contain backdoors.
Consequences: Effective violation of [SA-1] in the context of such an
Authenticator.

Mitigations: The process of [SM-9] Authenticator Certification may reveal a
subset of such threats, but it is not possible that all such can be revealed with black
box testing and white box examination may be is economically infeasible. Users
and Relying Parties with special concerns about this class of threat must exercise
their own necessary caution about the trustworthiness and verifiability of their
vendors and supply chain.

SA-1

L.7.4.2

Threats to FIDO server vendors

Table L.9 — Threats to FIDO server vendors

T-4.2.1

Vendor level trust anchor injection attack

Violates

Attacker adds malicious trust anchors to the trust list shipped by a FIDO server
vendor.

Consequences: Attacker can deploy fake Authenticators which Relying Parties
cannot detect as such, which do not implement any appropriate security measures
and is able to violate all security goals of FIDO.

Mitigations: This type of supply chain threat is outside the strict scope of the
FIDO protocols and violates [SA-7]. Relying Parties can their trust list against
definitive data published by the FIDO Alliance.

SA-7

248

Rec. ITU-T X.1277 (11/2018)

L.7.4.3

Threats to FIDO metadata service operators

Table L.10 — Threats to FIDO metadata service operators

T-4.3.1

Metadata service signing key compromise

Violates

The attacker gets access to the private Metadata signing key.
Consequences: The attacker could sign invalid Metadata. The attacker could

» make trustworthy authenticators look less trustworthy (e.g., by increasing
FAR).

» make weak authenticators look strong (e.g., by changing the key protection
method to a more secure one)

+ inject malicious attestation trust anchors, e.g., root certificates which cross-
signed the original attestation trust anchor and the cross signed original
attestation root certificate. This malicious trust anchors could be used to sign
attestation certificates for fraudulent authenticators, e.g., authenticators using
the AAID of trustworthy authenticators but not protecting their keys as stated in
the metadata.

Mitigations: The Metadata Service operator should protect the Metadata signing

key appropriately, e.g., using a hardware protected key storage.

Relying parties could use out-of-band methods to cross-check Metadata Statements

with the respective vendors and cross-check the revocation state of the Metadata

signing key with the provider of the Metadata Service.

SG-9

T-4.3.2

Metadata service data injection

Violates

The attacker injects malicious Authenticator data into the Metadata source.

Consequences: The attacker could make the Metadata Service operator sign

invalid Metadata. The attacker could

» make trustworthy authenticators look less trustworthy (e.g., by increasing
FAR).

» make weak authenticators look strong (e.g., by changing the key protection
method to a more secure one)

« inject malicious attestation trust anchors, e.g., root certificates which cross-
signed the original attestation trust anchor and the cross signed original
attestation root certificate. This malicious trust anchors could be used to sign
attestation certificates for fraudulent authenticators, e.g., authenticators using
the AAID of trustworthy authenticators but not protecting their keys as stated in
the metadata.

Mitigations: The Metadata Service operator could carefully review the delta

between the old and the new Metadata. Authenticator vendors could verify the

published Metadata related to their Authenticators.

SG-9

Rec. ITU-T X.1277 (11/2018) 249

L.7.5 Threats specific to UAF with a second factor / U2F

Table L.11 — Threats specific to UAF with a second factor / U2F

T-5.11

Error status side channel

Violates

Relying parties issues an authentication challenge to an authenticator and can infer
from error status if it is already enrolled.

Consequences: U2F authenticators not requiring user interaction may be used to
track users without their consent by issuing a pre-authentication challenge to a U2F
token, revealing the identity of an otherwise anonymous user. Users would be
identifiable by relying parties without their knowledge, violating [SG-7]
Mitigations: The U2F specification recommends that browsers prompt users
whether to allow this operation using mechanisms similar to those defined for other
privacy sensitive operations like Geolocation.

SG-7

T-5.1.2

Malicious RP

Violates

Malicious relying party mounts a cryptographic attack on a key handle it is storing.

Consequences: U2F does not have a protocol-level notion of [SG-14] Transaction
Non-Repudiation but If the relying party is able to recover the contents of the key
handle it might forge logs of protocol exchanges to associate the user with actions
he or she did not perform.

If the relying party is able to recover the key used to wrap a key handle, that key is
likely shared and might be used to decrypt key handles stored with other Relying
Parties and violate [SG-1] Strong User Authentication.

Mitigations: None. U2F depends on [SA-1] to hold for key wrapping operations.

T-5.1.3

Physical U2F authenticator attack

Violates

Attacker gains physical access to U2F Authenticator (e.g., by stealing it).
Consequences: Same as for T-1.4.4

A U2F authenticator has weak local user verification. If the attacker can guess the
username and password/PIN, they can impersonate the user, violating [SG-1]
Strong User Authentication

Mitigations: Relying Parties can use strong additional factors.

Relying Parties should provide users a means to revoke keys associated with a lost
device.

SG-1

250

Rec. ITU-T X.1277 (11/2018)

[b-1SO 15946-5]

[b-1SOIEC-19794]

[b-ABNF]

[b-ANDROID]

[b-AndroidUnlockPattern]

[b-AnonTerminology]

[b-ANZ-2013]

[b-APK-Signing]

[b-Arthur-Challener-2015]

[b-BFGSW-2011]

[b-BarNae-2006]

[b-BriCamChe2004-DAA]

Bibliography

ISO/IEC 15946-5, Information Technology — Security
Techniques — Cryptographic techniques based on elliptic

curves — Part 5: Elliptic curve generation.
https://webstore.iec.ch/publication/10468

ISO 19794 series, Information technology — Biometric data

interchange formats.
https://shop.bsigroup.com/Browse-By-Subject/Biometrics/BS-ISOIEC-19794-
SERIES/

D. Crocker, Ed.; P. Overell (2008), Augmented BNF for
Syntax Specifications: ABNF.

https://tools.ietf.org/html/rfc5234

The Android™ Operating System. Google, Inc., the Open
Handset Alliance and the Android Open Source Project
(Work in progress)

http://developer.android.com/

Android Unlock Pattern Security Analysis.

http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/

Pfitzmann and M. Hansen (2010), Anonymity, Unlinkability,
Unobservability, Pseudonymity, and Identity Management — A

Consolidated Proposal for Terminology, Version 0.34.
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology v0.34.pdf

Tolga Acar, Lan Nguyen and Greg Zaverucha, Microsoft
Research, Redmond, WA (2013), A TPM Diffie-Hellman

Oracle.
http://eprint.iacr.org/2013/667.pdf

Signing Your Applications (2014), The Android™ Operating
System. Google, Inc., the Open Handset Alliance and the
Android Open Source Project
http://developer.android.com/tools/publishing/app-signing.html

Will Arthur and David Challener with Kenneth Goldman
(2014), A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security.
http://www.apress.com/9781430265832

D. Bernhard, G. Fuchsbauer, E. Ghadafi, N. P. Smart and B.
Warinschi (2011), Anonymous attestation with user-controlled
linkability.

http://eprint.iacr.org/2011/658.pdf

Paulo S. L. M. Barreto and Michael Naehrig (2006), Pairing-
Friendly Elliptic Curves of Prime Order.
http://research.microsoft.com/pubs/118425/pfcpo.pdf

Ernie Brickell, Intel Corporation; Jan Camenisch, IBM
Research; Liqun Chen, HP Laboratories (2004), Direct

Anonymous Attestation.
http://eprint.iacr.orq/2004/205.pdf

Rec. ITU-T X.1277 (11/2018) 251

https://webstore.iec.ch/publication/10468
https://shop.bsigroup.com/Browse-By-Subject/Biometrics/BS-ISOIEC-19794-SERIES/
https://shop.bsigroup.com/Browse-By-Subject/Biometrics/BS-ISOIEC-19794-SERIES/
https://tools.ietf.org/html/rfc5234
http://developer.android.com/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://eprint.iacr.org/2013/667.pdf
http://developer.android.com/tools/publishing/app-signing.html
http://www.apress.com/9781430265832
http://eprint.iacr.org/2011/658.pdf
http://research.microsoft.com/pubs/118425/pfcpo.pdf
http://eprint.iacr.org/2004/205.pdf

[b-BundlelD]

[b-ChannellD]

[b-Coron99]

[b-CheLi2013-ECDAA]

[b-Clickjacking]

[b-CommonCriteria]

[b-CTRMode]

[b-DevScoDah2007]

[b-ECDSA-ANSI]

[b-ECMA-262]
[b-ECMA-404]

[b-ETSI-Secure-Channel]

[b-FIDO-DAA-Security-Proof]

[b-FIDOKeyAttestation]

[b_FIPS140-2]

Apple, Inc. (2014), Configuring your Xcode Project for

Distribution, clause About Bundle IDs.
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributi
onGuide/ConfiguringY ourApp/ConfiguringYourApp.html

D. Balfanz (Work In Progress), Transport Layer Security
(TLS) Channel IDs.

http://tools.ietf.org/html/draft-balfanz-tls-channelid

J. Coron and D. Naccache, LNCS 1556 (1999), An accurate

evaluation of Maurer's universal test.
http://www.jscoron.fr/publications/universal.pdf

Liqun Chen, HP Laboratories and Jiangtao Li, Intel
Corporation (2013), Flexible and Scalable Digital Signatures
in TPM 2.0.

http://dx.doi.org/10.1145/2508859.2516729

D. Lin-Shung Huang, C. Jackson, A. Moshchuk, H. Wang, S.
Schlechter, USENIX (2012), Clickjacking: Attacks and
Defenses.

https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

CommonCriteria Publications. CCRA Members (2014).

https://www.commoncriteriaportal.org/cc/

H. Lipmea, P. Rogaway, D. Wagner, National Institute of
Standards and Technology (2014), Comments to NIST
concerning AES Modes of Operation: CTR-Mode Encryption.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodesi/ctr/ctr-
spec.pdf

Augusto Jun Devegili, Michael Scott, and Ricardo Dahab
(2007), Implementing Cryptographic Pairings over Barreto-

Naehrig Curves.
https://eprint.iacr.org/2007/390.pdf

National Standards Institute, (2005), Public Key Cryptography
for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA), ANSI X9.62-2005.

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005

ECMAScript Language Specification.

https://tc39.qithub.io/ecma262/

The JSON Data Interchange Format. (2013)
https://www.ecma-international.org/publications/files/ECMA-ST/b-ECMA-404.pdf
ETSI TS 102 484 (2012), Smart Cards; Secure channel

between a UICC and an end-point terminal.
https://standards.globalspec.com/std/1637349/etsi-ts-102-484

Jan Camenisch, Manu Drijvers, Anja Lehmann (2015),
Universally Composable Direct Anonymous Attestation.
https://eprint.iacr.org/2015/1246

FIDO 2.0: Key attestation format.
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-
20150904.html

National Institute of Standards and Technology (2001), FIPS
PUB 140-2: Security Requirements for Cryptographic

Modules.
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

252 Rec. ITU-T X.1277 (11/2018)

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
http://tools.ietf.org/html/draft-balfanz-tls-channelid
http://www.jscoron.fr/publications/universal.pdf
http://dx.doi.org/10.1145/2508859.2516729
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.commoncriteriaportal.org/cc/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
https://eprint.iacr.org/2007/390.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.62%3A2005
https://tc39.github.io/ecma262/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://standards.globalspec.com/std/1637349/etsi-ts-102-484
https://eprint.iacr.org/2015/1246
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[b-FIPS198-1]

[b-GlobalPlatform-Card]

[b-GlobalPlatform-TEE-SE]
[b-1ISOBiometrics]

[b-iOS]
[b-iPhonePasscodes]
[b-MoreTopWorstPasswords]

[b-NSTCBiometrics]

[b-OSCCA-SM2]

[0-OSCCA-SM2-curve-param]

[b-OSCCA-SM3]

[b-OWASP2013]

[b-PWAuUthSchemesKeylssues]

[b-PNG]

[b-QuestToReplacePasswords]

[b-IETF RFC 2560]

National Institute of Standards and Technology (2008), FIPS
PUB 198-1: The Keyed-Hash Message Authentication Code
(HMAC).

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf

Secure Channel Protocol 03 — GlobalPlatform Card
Specification v.2.2 — Amendment D.

TEE Secure Element API Specification v1.0 | GPD_SPE_024

ISO/IEC 2382-37 (2012), Project Editor, Harmonized

Biometric Vocabulary.
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194 ISOIEC 2382-
37 _2012.zip

Apple, Inc. (2014), b-iOS Dev Center.

https://developer.apple.com/devcenter/ios/index.action

Daniel Amitay (2014), Most Common iPhone Passcodes.

http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

Mark Burnett (2014), 10000 Top Passwords.

https://xato.net/passwords/more-top-worst-passwords/

National Science and Technology Council Subcommittee on
Biometrics, (2006), Biometrics Glossary.
http://biometrics.gov/Documents/Glossary.pdf

SM2: Public Key Cryptographic Algorithm SM2 Based on
Elliptic Curves: Part 1: General. (2010).
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

SM2: Elliptic Curve Public-Key Cryptography Algorithm:
Recommended Curve Parameters. (2010)
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf

SM3 Cryptographic Hash Algorithm. (2010)
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

OWASP (2013), OWASP Top 10 — 2013. The Ten Most
Critical Web Application Security Risks.

Chwei-Shyong Tsai, Cheng-Chi Lee, and Min-Shiang Hwang,
International Journal of Network Security, Vol.3, No.2,
PP.101-115 (2006), Password Authentication Schemes:
Current Status and Key Issues.
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf

Tom Lane (2003), Portable Network Graphics (b-PNG)

Specification (Second Edition). W3C Recommendation.
https://www.w3.0rg/TR/b-PNG/

Joseph Bonneau, Cormac Herley, Paul C. van Oorschot and
Frank Stajano, Microsoft Research, Carleton University and
University of Cambridge, March 2012 The Quest to Replace
Passwords: A Framework for Comparative Evaluation of Web

Authentication Schemes.
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

M. Myers; R. Ankney; A. Malpani; S. Galperin; C. Adams.

(1999), Proposed Standard. X.509 Internet Public Key

Infrastructure Online Certificate Status Protocol — OCSP.
https://tools.ietf.org/html/rfc2560

Rec. ITU-T X.1277 (11/2018) 253

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
https://developer.apple.com/devcenter/ios/index.action
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
https://xato.net/passwords/more-top-worst-passwords/
http://biometrics.gov/Documents/Glossary.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://ijns.femto.com.tw/contents/ijns-v3-n2/ijns-2006-v3-n2-p101-115.pdf
https://www.w3.org/TR/PNG/
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
https://tools.ietf.org/html/rfc2560

[b-IETF RFC 2397]

[b-IETF RFC 2617]

[b-IETF RFC 3218]

[b-IETF RFC 3986]

[b-IETF RFC 5746]

[b-IETF RFC 6287]

[b-IETE RFC 7525]

[b-IETF RFC 7627]

[b-SecureElement]

[b-SHEFFER-TLS]

[b-SEC1]

[b-SP800-38C]

[b-SP800-38D]

[b-SP800-38F]

L. Masinter (1998), Proposed Standard, The "data™ URL

scheme.
https://tools.ietf.org/html/rfc2397

J. Franks; P. Hallam-Baker; J. Hostetler; S. Lawrence; P.
Leach; A. Luotonen; L. Stewart (1999), HTTP Authentication:

Basic and Digest Access Authentication. Draft Standard.
https://tools.ietf.org/html/rfc2617

E. Rescorla (2002), Preventing the Million Message Attack on
Cryptographic Message Syntax.

https://tools.ietf.org/html/rfc3218

T. Berners-Lee; R. Fielding; L. Masinter (2005) Internet
Standard, Uniform Resource Identifier (URI): Generic Syntax.
https://tools.ietf.org/html/rfc3986

E. Rescorla; M. Ray; S. Dispensa; N. Oskov (2010), Proposed
Standard. Transport Layer Security (TLS) Renegotiation
Indication Extension.

https://tools.ietf.org/html/rfc5746

D. M'Raihi, J. Rydell, S. Bajaj, S. Machani, D. Naccache,
IETF (2011), OCRA: OATH Challenge-Response Algorithm
(RFC 6287).

http://www.ietf.org/rfc/rfc6287.txt

Y. Sheffer; R. Holz; P. Saint-Andre (2015), Best Current
Practice. Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLYS).

https://tools.ietf.org/html/rfc7525

K. Bhargavan, Ed.; A. Delignat-Lavaud; A. Pironti; A.
Langley; M. Ray (2015), Proposed Standard. Transport Layer
Security (TLS) Session Hash and Extended Master Secret
Extension.

https://tools.ietf.org/html/rfc7627

GlobalPlatform Card Specifications. GlobalPlatform. (2014),
https://www.globalplatform.org/specifications.asp

Y. Sheffer, R. Holz, P. Saint-Andre. Internet-Draft (Work in
progress.) Recommendations for Secure Use of TLS and
DTLS.

https://tools.ietf.org/html/draft-sheffer-tls-bcp

Standards for Efficient Cryptography Group (SECG) (2000),
SECL1: Elliptic Curve Cryptography, Version 2.0.

M. Dworkin, National Institute of Standards and Technology
(2007), NIST Special Publication 800-38C: Recommendation
for Block Cipher Modes of Operation: The CCM Maode for
Authentication and Confidentiality.
http://csrc.nist.gov/publications/nistpubs/800-38C/b-SP800-38C _updated-
July20_2007.pdf

M. Dworkin (2007), NIST Special Publication 800-38D:
Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC.

https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

M. Dworkin, National Institute of Standards and Technology,
(2012), NIST Special Publication 800-38F: Recommendation

254 Rec. ITU-T X.1277 (11/2018)

https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc3218
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5746
http://www.ietf.org/rfc/rfc6287.txt
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7627
https://www.globalplatform.org/specifications.asp
https://tools.ietf.org/html/draft-sheffer-tls-bcp
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[b-SP800-57]

[b-SP800-63]

[b-SP800-90B]

[b-SP800-131A]

[b-TEESecureDisplay]

[b-TPM]

[b-TPMv1-2-Part1]

[b-TPMv2-Partl]

[b-TPMv2-Part2]

[b-TLS]

for Block Cipher Modes of Operation: Methods for Key
Wrapping.
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
SP800-57 (2012), U.S. Department of Commerce/National
Institute of Standards and Technology. Recommendation for
Key Management — Part 1: General (Revision 3).
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57 partl rev3 general.pdf
W. Burr, D. Dodson, E. Newton, R. Perlner, W.T. Polk, S.
Gupta and E. Nabbus, National Institute of Standards and
Technology (2013), NIST Special Publication 800-63-2:
Electronic Authentication Guideline.
http://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
Elaine Barker and John Kelsey (2016), NIST Special
Publication 800-90B: Recommendation for the Entropy
Sources Used for Random Bit Generation. National Institute
of Standards and Technology.
https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
Laine Barker and Allen Roginsky (2015), NIST Special
Publication 800-131A Rev.1: Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and
Key Lengths.

https://doi.org/10.6028/NIST.SP.800-131Ar1

GlobalPlatform (2014), GlobalPlatform Trusted User
Interface API Specifications.
https://www.globalplatform.org/specifications.asp

Trusted Computing Group. (2014), TPM Main Specification.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Trusted Computing Group, TPM 1.2 Part 1: Design

Principles.

http://www.trustedcomputinggroup.org/files/static_page files/72C26AB5-1A4B-B294-
D002BCOB8C062FF6/TPM%20Main-

Part%201%20Design%20Principles v1.2 rev116 01032011.pdf

Trusted Computing Group, Trusted Platform Module Library,

Part 1: Architecture.

http://www.trustedcomputinggroup.org/files/static_page files/S8C56AE3E-1A4B-B294-
DOF43097156A55D8/TPM%20Rev%202.0%20Part%201%20-
%20Architecture%2001.16.pdf

Trusted Computing Group, Trusted Platform Module Library,

Part 2: Structures.
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-
D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-
%20Structures%2001.16.pdf

T. Dierks; E. Rescorla (2008), Proposed Standard. The

Transport Layer Security (TLS) Protocol Version 1.2.
https://tools.ietf.org/html/rfc5246

Rec. ITU-T X.1277 (11/2018) 255

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C26AB5-1A4B-B294-D002BC0B8C062FF6/TPM%20Main-Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C56AE3E-1A4B-B294-D0F43097156A55D8/TPM%20Rev%202.0%20Part%201%20-%20Architecture%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-%20Structures%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-%20Structures%2001.16.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C583202-1A4B-B294-D0469592DB10A6CD/TPM%20Rev%202.0%20Part%202%20-%20Structures%2001.16.pdf
https://tools.ietf.org/html/rfc5246

[b-TLSAUTH]

[b-TR-03116-4]

[b-TPMv2-Part4]

[b-WebIDL]

[b-WebIDL-ED]

[b-XYZF-2014]

Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Cédric
Fournet; Alfredo Pironti; Pierre-Yves Strub (2014), Triple
Handshakes and Cookie Cutters: Breaking and Fixing
Authentication over TLS.

https://secure-resumption.com/tlsauth.pdf

Bundesamt fiir Sicherheit in der Informationstechnik (2013),
Technische Richtlinie b-TR-03116-4: eCard-Projekte der
Bundesregierung: Teil 4 — Vorgaben fiir
Kommunikationsverfahren im eGovernment.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeR
ichtlinien/TR03116/BSI-b-TR-03116-4.pdf

Trusted Computing Group, Trusted Platform Module Library,

Part 4: Supporting Routines.
http://www.trustedcomputinggroup.org/files/static_page files/8C6CABBC-1A4B-
B294-DODA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-
%20Supporting%20Routines%2001.16-code.pdf

Cameron McCormack; Boris Zbarsky; Tobie Langel (2016),
Web IDL. W3C Editor's Draft.

https://heycam.github.io/webidl/

Cameron McCormack, Web IDL, W3C. Editor's Draft (2014),

http://heycam.github.io/webidl/

Li Xi, Kang Yang, Zhenfeng Zhang, and Dengguo Feng,
(2014), DAA-Related APIs in TPM 2.0 Revisited, in T. Holz
and S. loannidis (Eds.): TRUST 2014, LNCS 8564, pp. 1-18.

256 Rec. ITU-T X.1277 (11/2018)

https://secure-resumption.com/tlsauth.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-%20Supporting%20Routines%2001.16-code.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-%20Supporting%20Routines%2001.16-code.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/8C6CABBC-1A4B-B294-D0DA8CE1B452CAB4/TPM%20Rev%202.0%20Part%204%20-%20Supporting%20Routines%2001.16-code.pdf
https://heycam.github.io/webidl/
http://heycam.github.io/webidl/

Series A

Series D

Series E
Series F
Series G
Series H
Series |

Series J

Series K

Series L

Series M
Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X

Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Tariff and accounting principles and international telecommunication/ICT economic and
policy issues

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia
signals

Protection against interference

Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation
and protection of cables and other elements of outside plant

Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling, and associated measurements and tests

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects, next-generation networks,
Internet of Things and smart cities

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2019

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	5.1 Notation
	5.2 Conformance

	6 Introduction
	6.1 Background
	6.2 FIDO UAF documentation
	6.3 FIDO UAF goals

	7 FIDO UAF high-level architecture
	7.1 FIDO UAF client
	7.2 FIDO UAF server
	7.3 FIDO UAF protocols
	7.4 FIDO UAF authenticator abstraction layer
	7.5 FIDO UAF authenticator
	7.6 FIDO UAF authenticator metadata validation

	8 FIDO UAF usage scenarios and protocol message flows
	8.1 FIDO UAF authenticator acquisition and user enrollment
	8.2 Authenticator registration
	8.3 Authentication
	8.4 Step-up authentication
	8.5 Transaction confirmation
	8.6 Authenticator deregistration
	8.7 Adoption of new types of FIDO UAF authenticators

	9 Privacy considerations
	10 Relationship to other technologies
	10.1 OATH, TCG, PKCS#11 and ISO 24727

	Annex A FIDO UAF protocol specification
	A.1 Summary
	A.2 Abstract
	A.3 Overview
	A.3.1 Architecture
	A.3.2 Protocol conversation
	A.3.2.1 Registration
	A.3.2.2 Authentication
	A.3.2.3 Transaction confirmation
	A.3.2.4 Deregistration

	A.4 Protocol details
	A.4.1 Shared structures and types
	A.4.1.1 Version interface
	A.4.1.1.1 Attributes

	A.4.1.2 Operation enumeration
	A.4.1.3 OperationHeader dictionary
	A.4.1.3.1 Dictionary OperationHeader members

	A.4.1.4 Authenticator attestation ID (AAID) typedef
	A.4.1.5 KeyID typedef
	A.4.1.6 ServerChallenge typedef
	A.4.1.7 FinalChallengeParams dictionary
	A.4.1.7.1 Dictionary FinalChallengeParams members
	A.4.1.8 TLS ChannelBinding dictionary
	A.4.1.8.1 Dictionary ChannelBinding members

	A.4.1.9 JwkKey dictionary
	A.4.1.9.1 Dictionary JwkKey members

	A.4.1.10 Extension dictionary
	A.4.1.10.1 Dictionary Extension members

	A.4.1.11 MatchCriteria dictionary
	A.4.1.11.1 Dictionary MatchCriteria members

	A.4.1.12 Policy dictionary
	A.4.1.12.1 Dictionary Policy members

	A.4.2 Processing rules for the server policy
	A.4.2.1 Examples

	A.4.3 Version negotiation
	A.4.4 Registration operation
	A.4.4.1 Registration request message
	A.4.4.2 RegistrationRequest dictionary
	A.4.4.2.1 Dictionary RegistrationRequest members

	A.4.4.3 AuthenticatorRegistrationAssertion dictionary
	A.4.4.3.1 Dictionary AuthenticatorRegistrationAssertion members

	A.4.4.4 Registration response message
	A.4.4.5 RegistrationResponse dictionary
	A.4.4.5.1 Dictionary RegistrationResponse members

	A.4.4.6 Registration processing rules
	A.4.4.6.1 Registration request generation rules for FIDO server
	A.4.4.6.2 Registration request processing rules for FIDO UAF clients
	A.4.4.6.2.1 Mapping ASM status codes to ErrorCode

	A.4.4.6.3 Registration request processing rules for FIDO authenticator
	A.4.4.6.4 Registration response generation rules for FIDO UAF client
	A.4.4.6.5 Registration response processing rules for FIDO server

	A.4.5 Authentication operation
	A.4.5.1 Transaction dictionary
	A.4.5.1.1 Dictionary Transaction members

	A.4.5.2 Authentication request message
	A.4.5.3 AuthenticationRequest dictionary
	A.4.5.3.1 Dictionary AuthenticationRequest members

	A.4.5.4 AuthenticatorSignAssertion dictionary
	A.4.5.4.1 Dictionary AuthenticatorSignAssertion members

	A.4.5.5 AuthenticationResponse dictionary
	A.4.5.5.1 Dictionary AuthenticationResponse members
	A.4.5.6 Authentication response message

	A.4.5.7 Authentication processing rules
	A.4.5.7.1 Authentication request generation rules for FIDO server
	A.4.5.7.2 Authentication request processing rules for FIDO UAF client
	A.4.5.7.3 Authentication request processing rules for FIDO authenticator
	A.4.5.7.4 Authentication response generation rules for FIDO UAF client
	A.4.5.7.5 Authentication response processing rules for FIDO server

	A.4.6 Deregistration operation
	A.4.6.1 Deregistration request message
	A.4.6.2 DeregisterAuthenticator dictionary
	A.4.6.2.1 Dictionary DeregisterAuthenticator members

	A.4.6.3 DeregistrationRequest dictionary
	A.4.6.3.1 Dictionary DeregistrationRequest members

	A.4.6.4 Deregistration processing rules
	A.4.6.4.1 Deregistration request generation rules for FIDO server
	A.4.6.4.2 Deregistration request processing rules for FIDO UAF client
	A.4.6.4.3 Deregistration request processing rules for FIDO authenticator

	A.5 Considerations
	A.5.1 Protocol core design considerations
	A.5.1.1 Authenticator metadata
	A.5.1.2 Authenticator attestation
	A.5.1.2.1 Basic attestation
	A.5.1.2.1.1 Full basic attestation
	A.5.1.2.1.2 Surrogate basic attestation
	A.5.1.2.2 Direct anonymous attestation (ECDAA)

	A.5.1.3 Error handling
	A.5.1.4 Assertion schemes
	A.5.1.5 Username in authenticator
	A.5.1.6 Silent authenticators
	A.5.1.7 TLS protected communication

	A.5.2 Implementation considerations
	A.5.2.1 Server challenge and random numbers

	A.5.3 Security considerations
	A.5.3.1 FIDO authenticator security
	A.5.3.2 Cryptographic algorithms
	A.5.3.3 FIDO client trust model
	A.5.3.3.1 Isolation using KHAccessToken

	A.5.3.4 TLS binding
	A.5.3.5 Session management
	A.5.3.6 Personas
	A.5.3.7 ServerData and KeyHandle
	A.5.3.8 Authenticator information retrieved through UAF application API vs. metadata
	A.5.3.9 Policy verification
	A.5.3.10 Replay attack protection
	A.5.3.11 Protection against cloned authenticators
	A.5.3.12 Anti-fraud signals

	A.5.4 Interoperability considerations

	A.6 UAF supported assertion schemes
	A.6.1 Assertion scheme "UAFV1TLV"
	A.6.1.1 KeyRegistrationData
	A.6.1.2 SignedData

	Annex B UAF application API and transport binding specification
	B.1 Summary
	B.2 Overview
	B.2.1 Motivation
	B.2.2 Avoiding app-phishing
	B.2.3 Comparison to OAuth and OAuth2
	B.2.4 Non-goals

	B.3 The AppID and FacetID assertions
	B.3.1 Processing rules for AppID and FacetID assertions
	B.3.1.1 Determining the FacetID of a calling application
	B.3.1.2 Determining if a caller's FacetID is authorized for an AppID
	B.3.1.3 TrustedFacets structure
	B.3.1.3.1 Dictionary TrustedFacets members

	B.3.1.4 AppID example 1
	B.3.1.5 AppID example 2:
	B.3.1.6 Obtaining FacetID of Android native app
	B.3.1.7 Additional security considerations
	B.3.1.7.1 Wildcards in TrustedFacet identifiers

	Annex C FIDO UAF authenticator commands
	C.1 Summary
	C.2 Overview
	C.3 UAF authenticator
	C.3.1 Types of authenticators

	C.4 Tags
	C.4.1 Command tags
	C4.2 Tags used only in Authenticator Commands
	C4.3 Tags used in UAF protocol
	C.4.4 Status codes

	C.5 Structures
	C.5.1 RawKeyHandle
	C.5.2 Structures to be parsed by FIDO server
	C.5.2.1 TAG_UAFV1_REG_ASSERTION
	C.5.2.1 TAG_UAFV1_AUTH_ASSERTION

	C.5.3 UserVerificationToken

	C.6 Commands
	C.6.1 GetInfo command
	C.6.1.1 Command description
	C.6.1.2 Command structure
	C.6.1.3 Command response
	C.6.1.4 Status codes

	C.6.2 Register command
	C.6.2.1 Command structure
	C.6.2.2 Command response
	C.6.2.3 Status codes
	C.6.2.4 Command description

	C.6.3 Sign command
	C.6.3.1 Command structure
	C.6.3.2 Command response
	C.6.3.3 Status codes
	C.6.3.4 Command description

	C.6.4 Deregister command
	C.6.4.1 Command structure
	C.6.4.2 Command response
	C.6.4.3 Status codes
	C.6.4.4 Command description

	C.6.5. OpenSettings command
	C.6.5.1 Command structure
	C.6.5.2 Command response
	C.6.5.3 Status codes

	C.7 KeyIDs and key handles
	C.7.1 first-factor bound authenticator
	C.7.2 2ndF bound authenticator
	C.7.3 first-factor roaming authenticator
	C.7.4 2ndF roaming authenticator

	C.8 Access control for commands
	C.9 Considerations
	C.9.1 Algorithms and key sizes
	C.9.2 Indicating the authenticator model

	C.10 Relationship to other standards
	C.10.1 TEE
	C.10.2 Secure elements
	C.10.3 TPM
	C.10.4 Unreliable transports

	C.11 Security guidelines

	Annex D FIDO UAF authenticator-specific module API
	D.1 Summary
	D.2 Overview
	D.2.1 Code example format

	D.3 ASM requests and responses
	D.3.1 Request enum
	D.3.2 StatusCode interface
	D.3.2.1 Constants
	D.3.2.2 Mapping authenticator status codes to ASM status codes

	D.3.3 ASMRequest dictionary
	D.3.3.1 Dictionary ASMRequest members

	D.3.4 ASMResponse dictionary
	D.3.4.1 Dictionary ASMResponse members

	D.3.5 GetInfo request
	D.3.5.1 GetInfoOut dictionary
	D.3.5.1.1 Dictionary GetInfoOut members
	D.3.5.2 AuthenticatorInfo dictionary
	D.3.5.2.1 Dictionary AuthenticatorInfo members

	D.3.6 Register request
	D.3.6.1 RegisterIn object
	D.3.6.1.1 Dictionary RegisterIn members

	D.3.6.2 RegisterOut object
	D.3.6.2.1 Dictionary RegisterOut members
	D.3.6.3 Detailed description for processing the register request

	D.3.7 Authenticate request
	D.3.7.1 AuthenticateIn object
	D.3.7.1.1 Dictionary AuthenticateIn members

	D.3.7.2 Transaction object
	D.3.7.2.1 Dictionary Transaction members

	D.3.7.3 AuthenticateOut object
	D.3.7.3.1 Dictionary AuthenticateOut members
	D.3.7.4 Detailed description for processing the authenticate request

	D.3.8 Deregister request
	D.3.8.1 DeregisterIn object
	D.3.8.1.1 Dictionary DeregisterIn members

	D.3.8.2 Detailed description for processing the deregister request

	D.3.9 GetRegistrations request
	D.3.9.1 GetRegistrationsOut object
	D.3.9.1.1 Dictionary GetRegistrationsOut members

	D.3.9.2 AppRegistration object
	D.3.9.2.1 Dictionary AppRegistration members

	D.3.9.3 Detailed description for processing the GetRegistrations request

	D.3.10 OpenSettings request

	D.4 Using ASM API
	D.5 Using the ASM API on various platforms
	D.5.1 Android ASM Intent API
	D.5.1.1 Discovering ASMs
	D.5.1.2 Alternate Android AIDL service ASM implementation

	D.5.2 Windows ASM API

	D.6 Security and privacy guidelines
	D.6.1 KHAccessToken
	D.6.2 Access control for ASM APIs

	Annex E UAF registry of predefined values
	E.1 Overview
	E.2 Authenticator characteristics
	E.2.1 User verification methods
	E.2.2 Key protection types
	E.2.3 Matcher protection types
	E.2.4 Authenticator attachment hints
	E.2.5 Transaction confirmation display types
	E.2.6 Tags used for crypto algorithms and types
	E.2.6.1 Authentication algorithms
	E.2.6.2 Public key representation formats

	Annex F UAF APDU
	F.1 Summary
	F.2 Introduction
	F.3 SE-based authenticator implementation sse cases
	F.3.1 Hybrid SE authenticator
	F.3.1.1 Architecture of the hybrid SE authenticator
	F.3.1.2 Communication flow between the ASM and the hybrid SE authenticator

	F.4 FIDO UAF applet and APDU commands
	F.4.1 UAF applet in the authenticator
	F.4.1.1 Application identifier
	F.4.1.2 User verification
	F.4.1.3 Cryptographic operations

	F.4.2 APDU commands for FIDO UAF
	F.4.2.1 Class byte coding
	F.4.2.2 APDU command "UAF"
	F.4.2.2.1 Mapping between FIDO UAF authenticator commands and APDU commands

	F.4.2.2.2 Response message and status conditions of an "UAF" APDU command

	F.4.2.3 APDU command "SELECT"
	F.4.2.4 APDU command "VERIFY"
	F.4.2.4.1 Command structure
	F.4.2.4.2 Response message and status conditions

	F.4.3 Managing long APDU commands and responses
	F.4.3.1 ISO variant
	F.4.3.2 Proprietary variant

	F.5 Security considerations

	Annex G FIDO AppID and facets specification
	G.1 Summary
	G.2 Overview
	G.2.1 Motivation
	G.2.2 Avoiding app-phishing
	G.2.3 Comparison to OAuth and OAuth2
	G.2.4 Non-goals

	G.3 The AppID and FacetID assertions
	G.3.1 Processing rules for AppID and FacetID assertions
	G.3.1.1 Determining the FacetID of a calling application
	G.3.1.2 Determining if a caller's FacetID is authorized for an AppID
	G.3.1.3 TrustedFacets structure
	G.3.1.3.1 Dictionary TrustedFacets members

	G.3.1.4 AppID example 1:
	G.3.1.5 AppID example 2:
	G.3.1.6 Obtaining FacetID of Android native app
	G.3.1.7 Additional security considerations
	G.3.1.7.1 Wildcards in TrustedFacet identifiers

	Annex H FIDO metadata statements
	H.1 Summary
	H.2 Overview
	H.2.1 Scope
	H.2.2 Audience
	H.2.3 Architecture

	H.3 Types
	H.3.1 CodeAccuracyDescriptor dictionary
	H.3.1.1 Dictionary CodeAccuracyDescriptor members

	H.3.2 BiometricAccuracyDescriptor dictionary
	H.3.2.1 Dictionary BiometricAccuracyDescriptor members

	H.3.3 PatternAccuracyDescriptor dictionary
	H.3.3.1 Dictionary PatternAccuracyDescriptor members

	H.3.4 VerificationMethodDescriptor dictionary
	H.3.4.1 Dictionary VerificationMethodDescriptor members

	H.3.5 verificationMethodANDCombinations typedef
	H.3.6 rgbPaletteEntry dictionary
	H.3.6.1 Dictionary rgbPaletteEntry members

	H.3.7 Displayb-PNGCharacteristicsDescriptor dictionary
	H.3.7.1 Dictionary Displayb-PNGCharacteristicsDescriptor members

	H.3.8 EcdaaTrustAnchor dictionary
	H.3.8.1 Dictionary EcdaaTrustAnchor members

	H.3.9 ExtensionDescriptor dictionary
	H.3.9.1 Dictionary ExtensionDescriptor members

	H.4 Metadata keys
	H.4.1 Dictionary MetadataStatement members

	H.5 Metadata statement format
	H.5.1 UAF example
	H.5.2 U2F example

	H.6 Additional considerations

	Annex I FIDO metadata service
	I.1 Summary
	I.2 Overview
	I.2.1 Scope
	I.2.2 Detailed architecture

	I.3 Metadata service details
	I.3.1 Metadata TOC format
	I.3.1.1 Metadata TOC payload entry dictionary
	I.3.1.1.1 Dictionary MetadataTOCPayloadEntry members

	I.3.1.2 StatusReport dictionary
	I.3.1.2.1 Dictionary StatusReport members

	I.3.1.3 AuthenticatorStatus enum
	I.3.1.4 RogueListEntry dictionary
	I.3.1.4.1 Dictionary RogueListEntry members

	I.3.1.5 Metadata TOC payload dictionary
	I.3.1.5.1 Dictionary MetadataTOCPayload members

	I.3.1.6 Metadata TOC
	I.3.1.6.1 Examples

	I.3.1.7 Metadata TOC object processing rules

	I.4 Considerations

	Annex J FIDO ECDAA algorithm
	J.1 Summary
	J.2 Overview
	J.2.1 Scope
	J.2.2 Architecture overview

	J.3 FIDO ECDAA attestation
	J.3.1 Object encodings
	J.3.1.1 Encoding BigNumber values as byte strings (BigNumberToB)
	J.3.1.2 Encoding ECPoint values as byte strings (ECPointToB)
	J.3.1.3 Encoding ECPoint2 values as byte strings (ECPoint2ToB)

	J.3.2 Global ECDAA system parameters
	J.3.3 Issuer specific ECDAA parameters
	J.3.4 ECDAA-Join
	J.3.4.1 ECDAA-Join algorithm
	J.3.4.2 ECDAA-Join split between authenticator and ASM
	J.3.4.3 ECDAA-Join split between TPM and ASM

	J.3.5 ECDAA-Sign
	J.3.5.1 ECDAA-Sign algorithm
	J.3.5.2 ECDAA-Sign split between authenticator and ASM
	J.3.5.3 ECDAA-Sign split between TPM and ASM

	J.3.6 ECDAA-Verify operation

	J.4 FIDO ECDAA object formats and algorithm details
	J.4.1 Supported curves for ECDAA
	J.4.2 ECDAA algorithm names
	J.4.3 ecdaaSignature object

	J.5 Considerations
	J.5.1 Algorithms and key sizes
	J.5.2 Indicating the authenticator model
	J.5.3 Revocation
	J.5.4 Pairing algorithm
	J.5.5 Performance
	J.5.6 Binary concatentation
	J.5.7 IANA considerations

	Annex K FIDO registry of predefined values
	K.1 Summary
	K.2 Overview
	K.3 Authenticator characteristics
	K.3.1 User verification methods
	K.3.2 Key protection types
	K.3.3 Matcher protection types
	K.3.4 Authenticator attachment hints
	K.3.5 Transaction confirmation display types
	K.3.6 Tags used for crypto algorithms and types
	K.3.6.1 Authentication algorithms
	K.3.6.2 Public key representation formats

	Annex L FIDO security reference
	L.1 Summary
	L.2 Introduction
	L.2.1 Intended audience

	L.3 Attack classification
	L.4 UAF security goals
	L.4.1 Assets to be protected

	L.5 FIDO security measures
	L.5.1 Relation between measures and goals

	L.6 UAF security assumptions
	L.6.1 Discussion

	L.7 Threat analysis
	L.7.1 Threats to client side
	L.7.1.1 Exploiting user's pattern matching weaknesses
	L.7.1.2 Threats to the user device, FIDO client and relying party client applications
	L.7.1.3 Creating a fake client
	L.7.1.4 Threats to FIDO authenticator

	L.7.2 Threats to relying party
	L.7.2.1 Threats to FIDO server data

	L.7.3 Threats to the secure channel between client and relying party
	L.7.3.1 Exploiting weaknesses in the secure transport of FIDO messages

	L.7.4 Threats to the infrastructure
	L.7.4.1 Threats to FIDO authenticator manufacturers
	L.7.4.2 Threats to FIDO server vendors
	L.7.4.3 Threats to FIDO metadata service operators

	L.7.5 Threats specific to UAF with a second factor / U2F

	Bibliography

