
)454 4���
TELECOMMUNICATION (03/93)
STANDARDIZATION SECTOR
OF ITU

4%2-).!,�%15)0-%.4�!.$�02/4/#/,3
&/2�4%,%-!4)#�3%26)#%3

).&/2-!4)/.��4%#(./,/'9�� ��#/$%$
2%02%3%.4!4)/.��/&��0)#452%��!.$
!5$)/��).&/2-!4)/.�� ��02/'2%33)6%
"),%6%,��)-!'%��#/-02%33)/.

)454�2ECOMMENDATION�4���

(Previously “CCITT Recommendation”)

INTERNATIONAL TELECOMMUNICATION UNION

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation T.82 was approved by the WTSC (Helsinki,
March 1-12, 1993). The identical text is also published as ISO/IEC International Standard 11544.

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

 ITU 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

CCITT Rec. T.82 (1993 E) i

CONTENTS
CCITT Rec. T.82 (1993 E)

Page

Intro. 1 General characteristics... i

Intro. 2 Stripes and data ordering ... ii

Intro. 3 Encoder functional blocks ... iv
Intro. 3.1 Resolution reduction and differential layer encoder .. v
Intro. 3.2 Lowest resolution layer encoder .. vii

Intro. 4 Decoder functional blocks ... vii

1 Scope.. 1

2 Normative references ... 1

3 Definitions.. 1

4 Symbols and abbreviations... 2
4.1 Acronyms.. 2
4.3 Mathematical symbols, operators, and indicators ... 3
4.4 Variables with mnemonic names .. 3

5 Conventions.. 3
5.1 Flow diagram conventions and symbols ... 3
5.2 Template graphics ... 3
5.3 Spatial phase ... 4
5.4 Data structure graphics ... 4

6 Requirements.. 7
6.1 General rules ... 7
6.2 Data organization .. 7
6.3 Resolution reduction ... 12
6.4 Differential-layer typical prediction.. 13
6.5 Lowest-resolution-layer typical prediction ... 16
6.6 Deterministic prediction (DP) ... 19
6.7 Model templates and adaptive templates .. 23
6.8 Arithmetic coding ... 26

7 Test methods and datastream examples ... 43
7.1 Arithmetic coding ... 44
7.2 Parameterized algorithm ... 51
7.3 Datastream examples .. 55

Annex A – Suggested minimum support for free parameters ... 56

Annex B – Design of the resolution reduction table ... 57
B.1 Filtering... 57
B.2 Exceptions... 58

Annex C – Adaptive template changes.. 60
C.1 General.. 60
C.2 Differential layers ... 60
C.3 Lowest resolution layer... 60

ii CCITT Rec. T.82 (1993 E)

Annex D – Design of the probability-estimation table .. 63
D.1 Bayesian estimation .. 63
D.2 Multiple contexts .. 63
D.3 MPS/LPS parameterization... 63
D.4 Rapid tracking... 64
D.5 Reducing computational burden ... 64

Annex E – Patents ... 68
E.1 Introductory remarks... 68
E.2 List of parents ... 68
E.3 Contact addresses for patent information.. 69

Annex F – Bibliography .. 71

CCITT Rec. T.82 (1993 E) i

ISO/IEC 11544 : 1993(E)

CCITT Rec. T.82 (1993 E)

Introduction and overview

(This introduction does not form an integral part of this Recommendation | International Standard)

This Recommendation | International Standard was prepared by the Joint Bi-level Image experts Group (JBIG) of
ISO/IEC JTC1/SC29/WG9 and CCITT SGVIII. The JBIG experts group was formed in 1988 to establish a standard for
the progressive encoding of bi-level images.

A progressive encoding system transmits a compressed image by first sending the compressed data for a reduced-
resolution version of the image and then enhancing it as needed by transmitting additional compressed data, which
builds on that already transmitted. This Recommendation | International Standard defines a coding method having
progressive, progressive-compatible sequential, and single-progression sequential modes and suggests a method to
obtain any needed low-resolution renditions. It has been found possible to effectively use the defined coding and
resolution-reduction algorithms for the lossless coding of greyscale and color images as well as bi-level images.

The Introduction-and-overview clause and Annexes A to F are informative and thus do not form an integral part of this
Recommendation | International Standard.

Intro. 1 General characteristics

This Specification defines a method for lossless compression encoding of a bi-level image (that is, an image that, like a
black-and-white image, has only two colors). The defined method can also be used for coding greyscale and color
images. Being adaptive to image characteristics, it is robust over image type. On scanned images of printed characters,
observed compression ratios have been from 1,1 to 1,5 times as great as those achieved by the MMR encoding algorithm
(which is less complex) described in Recommendations T.4 (G3) and T.6 (G4). On computer generated images of
printed characters, observed compression ratios have been as much as 5 times as great. On images with greyscale
rendered by halftoning or dithering, observed compression ratios have been from 2 to 30 times as great.

The method is bit-preserving, which means that it, like Recommendations T.4 and T.6, is distortionless and that the final
decoded image is identical to the original.

The method also has “progressive” capability. When decoding a progressively coded image, a low-resolution rendition
of the original image is made available first with subsequent doublings of resolution as more data is decoded. Note that
resolution reduction is performed from the higher to lower resolution layers, while decoding is performed from the lower
to higher resolution layers. The lowest resolution image sent in a progressive sequence is a sequentially coded image. In
a single-progression sequential coding application, this is the only image sent.

Progressive encodings have two distinct benefits. One is that with them it is possible to design an application with one
common database that can efficiently serve output devices with widely different resolution capabilities. Only that portion
of the compressed image file required for reconstruction to the resolution capability of the particular output device has to
be sent and decoded. Also, if additional resolution enhancement is desired, for say, a paper copy of an image already on
a CRT screen, only the needed resolution-enhancing information has to be sent.

The other benefit of progressive encodings is that they can provide subjectively superior image browsing (on a CRT) for
an application using low-rate and medium-rate communication links. A low-resolution rendition is transmitted and
displayed rapidly, and then followed by as much resolution enhancement as desired. Each stage of resolution
enhancement builds on the image already available. Progressive encoding can make it easier for a user to quickly
recognize the image as it is being built up, which in turn allows the user to interrupt the transmission of the image.

Let D denote the number of doublings in resolution (called differential layers) provided by the progressive coding.
Let ID denote the highest resolution image and let its horizontal and vertical dimensions in pixels be XD and YD.
Let RD denote the sampling resolution of the image ID.

This Specification imposes almost no restrictions on the parameters RD, XD, YD, or D. Choices such as 400 or 200 dpi
(dots-per-inch) for the resolution RD of the highest resolution layer result in a hierarchy of resolutions commensurate
with current facsimile standards. Choosing RD as 600 or 300 dpi gives a progressive hierarchy more compatible with the
laser printer resolutions available as of the writing of this Specification.

ii CCITT Rec. T.82 (1993 E)

It is anticipated that D will typically be chosen so that the lowest resolution is roughly 10 to 25 dpi. Typical bi-level
images when reduced to such a resolution are not legible, but nonetheless such low-resolution renditions are still quite
useful and function as automatically generated icons. Page layout is usually apparent and recognition of particular pages
that have been seen before at higher resolution is often possible.

As mentioned above, this Specification does not restrict the number D of resolution doublings. It can be set to 0 if
progressive coding is of no utility, as is the case, for example, in hardcopy facsimile. Doing so retains JBIG’s
compression advantage over MMR (and in fact usually increases it somewhat), while eliminating the need for any
buffering and simplifying the algorithm. Single-progression sequential JBIG coding has potential applications identical
to those of MMR coding. Images compressed by a single-progression sequential encoder will be readable by decoders
capable of progressive decoding, although only the lowest resolution version of a progressively encoded image will be
decodable by a single-progression sequential decoder.

It is possible to use this Specification for the lossless coding of greyscale and color images by coding bit-planes
independently as though each were itself a bi-level image. This approach to the coding of greyscale and color images can
be used as an alternative to the photographic encoding specification CCITT Rec. T.81 | ISO/IEC 10918-1 (JPEG) in its
lossless mode. Preliminary experimental results have shown that JBIG has a compression advantage over JPEG in its
lossless mode for greyscale images up to 6 bits-per-pixel. For 6 to 8 bits-per-pixel the compression results have been
similar for both JBIG and JPEG. This Specification makes provision for images with more than one bit plane, but makes
no recommendation on how to map greyscale or color intensities to bit-planes. Experimentally, it has been found that for
greyscale images a mapping via Gray-coding of intensity is superior to a mapping via simple weighted-binary coding of
intensity.

Intro. 2 Stripes and data ordering

When it is necessary to distinguish progressive coding from the more traditional form of image coding in which the
image is coded at full resolution from left to right and top to bottom, this older form of coding will be referred to as
“sequential”. The advantage of sequential coding over progressive coding is that no page (frame) buffer is required.
Progressive coding does require a page buffer at the next-to-highest resolution because lower resolution images are used
in coding higher resolution images.

It is possible to create a JBIG datastream with only a lowest resolution layer and this can be named single-progression
sequential coding. In such coding, a full-resolution image is coded without reference to any differential resolution layers.
The parameter D (mentioned in Intro. 1) is set equal to zero. It should be noted that in a progressive encoding of an
image, the lowest resolution layer is actually encoded in single-progression sequential coding. If a full-resolution image
is encoded using single-progression sequential coding, it will not be possible to decode the image progressively.

Coding in the progressive-compatible sequential mode is said to be “compatible” with coding in the progressive mode
because the datastreams created (encoder) or read (decoder) in either mode carry exactly the same information. All that
changes with a switch from progressive to progressive-compatible sequential encoding is the order in which parts of the
compressed data are created by the encoder. All that changes with a switch from progressive to progressive-compatible
sequential decoding is the order in which these parts are used by the decoder.

This compatibility is achieved by breaking an image into smaller parts before compression. These parts are created by
dividing the image in each of its resolution “layers” into horizontal bands called “stripes.” Progressive-compatible
sequential coding does require a “stripe” buffer (much smaller than a page buffer) and additional individual “state”
memory used for adaptive entropy coding of each resolution layer and bit plane.

Figure Intro. 1 shows such a decomposition when there are three resolution layers, three stripes per layer, and only one
bit plane. Table Intro. 1 shows defined ways to sequence through the nine stripes.

Notice that in addition to the progressive-versus-sequential distinction that is carried by the 3%1 bit, there is also a
resolution-order distinction that is carried by the ()4/,/ bit. Encoders work from high resolution downward and so
most naturally encode the stripes in ()4/,/ order. Decoders must build up the image from low resolution and so most
naturally process stripes in the opposite order. When an application uses an encoder that sends progressively coded data
directly to a decoder, one or the other must buffer to invert the order. When an application includes a database, the
database (with appropriate set-up) can be used to buffer and invert the order (including setting ()4/,/ correctly)
thereby removing this requirement from the encoder and decoder.

A stripe has a vertical size that is typically much smaller than that of the entire image. The number L0 of lines per stripe
at the lowest layer is another free parameter. As an example, L0 might be chosen so that a stripe is about 8 mm. If such a
choice is made, the number S of stripes in an image of a business-letter-sized sheet of paper will be about 35.

CCITT Rec. T.82 (1993 E) iii

0

1

2

S = 0

S�= 1

S�= 2

25 dpi
D = 0

3

4

5

6

7

8

50 dpi
D = 1

100 dpi
D�= 2

T0808630-91/D01

Figure Intro. 1 – Decomposition in the special case of 3 layers, 3 stripes, and 1 bit plane

FIGURE Intro. 1...[D01] = 5.5 CM

Table Intro. 1 – Possible bi-level data orderings

When there is more than one bit plane, as in Figure Intro. 2, there are twelve defined stripe orderings. Table Intro. 2 lists
them. As before, the ()4/,/ bit carries the resolution-order distinction, and the 3%1 bit carries the progressive-versus-
sequential distinction. When the),%!6% bit is 1, it indicates the interleaving of multiple bit planes. When the 3-)$ bit is
1, it indicates s, the index over the stripe, is in the middle as shown more clearly in Table 11 of 6.2.4.

25 dpi
D = 0

50 dpi
D = 1

100 dpi
D = 2

S�= 0

S = 1

S = 2

p = 1 (MSB)

P�= 0 (LSB)00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

T0808640-91/D02

Figure Intro. 2 – Decomposition in the special case of 3 layers, 3 stripes, and 2 bit planes

FIGURE Intro. 2...[D02] = 6.5 CM

()4/,/ 3%1 Example order

0 0 0,1,2 3,4,5 6,7,8

0 1 0,3,6 1,4,7 2,5,8

1 0 6,7,8 3,4,5 0,1,2

1 1 6,3,0 7,4,1 8,5,2

iv CCITT Rec. T.82 (1993 E)

Table Intro. 2 – Possible multi-plane data orderings

The two new variables),%!6% and 3-)$ plus the two earlier variables ()4/,/ and 3%1 make it possible to index all
twelve of these orders. The other four of the sixteen possible combinations for these four binary variables have no stripe
ordering associated with them. If there is only one plane, stripe order is not dependent on),%!6% and 3-)$ and their
values are inconsequential.

The compressed data Cs, d, p for stripe s of resolution layer d of bit-plane p is independent of stripe ordering. All that
changes as ()4/,/, 3%1,),%!6% and 3-)$ vary is the order in which the data is concatenated onto a datastream. This is
the compatibility feature noted earlier.

For simplicity, the remainder of this introductory clause will assume there is only one bit plane and the subscript p
denoting bit plane will be dropped from Cs, d, p.

Intro. 3 Encoder functional blocks

An encoder can be decomposed as shown in Figure Intro. 3. (In single-progression sequential coding only the
lowest-resolution-layer encoder would be used.)

Although conceptually there are D algorithmically identical differential-layer encoders as shown in Figure Intro. 3, some
implementations may choose to recursively use only one physical differential-layer encoder.

T0806280-90/D03

Resolution
reduction

and
differential

layer
encoder

Resolution
reduction

and
differential

layer
encoder

Lowest
resolution

layer
encoder

)$

Figure Intro. 3 – Decomposition of encoder

)$1)$2)0

�����# 0��$� #1��$� #31��$

�����

�����#0,0� #1,0� #31,0

0��$1� # 1��$1� # 31��$1

FIGURE Intro. 3...[D03] = 8 CM

()4/,/ 3%1),%!6% 3-)$ Example order

0 0 0 0 (00,01,02 06,07,08 12,13,14) (03,04,05 09,10,11 15,16,17)
0 0 1 0 (00,01,02 03,04,05) (06,07,08 09,10,11) (12,13,14 15,16,17)
0 0 1 1 (00,03 01,04 02,05) (06,09 07,10 08,11) (12,15 13,16 14,17)
0 1 0 0 (00,06,12 03,09,15) (01,07,13 04,10,16) (02,08,14 05,11,17)
0 1 0 1 (00,06,12 01,07,13 02,08,14) (03,09,15 04,10,16 05,11,17)
0 1 1 0 (00,03 06,09 12,15) (01,04 07,10 13,16) (02,05 08,11 14,17)
1 0 0 0 (12,13,14 06,07,08 00,01,02) (15,16,17 09,10,11 03,04,05)
1 0 1 0 (12,13,14 15,16,17) (06,07,08 09,10,11) (00,01,02 03,04,05)
1 0 1 1 (12,15 13,16 14,17) (06,09 07,10 08,11) (00,03 01,04 02,05)
1 1 0 0 (12,06,00 15,09,03) (13,07,01 16,10,04) (14,08,02 17,11,05)
1 1 0 1 (12,06,00 13,07,01 14,08,02) (15,09,03 16,10,04 17,11,05)
1 1 1 0 (12,15 06,09 00,03) (13,16 07,10 01,04) (14,17 08,11 02,05)

CCITT Rec. T.82 (1993 E) v

Intro. 3.1 Resolution reduction and differential layer encoder

Each of the resolution-reduction-and-differential-layer-encoder blocks of Figure Intro. 3 is identical in function, hence
only a description of the operation at one layer is needed. For such a description there are only two resolution layers
involved. For simplicity in the remainder of this subclause, the incoming image will be referred to as the
“high-resolution” image and the outgoing image, as the “low-resolution” image. Note though that the “high” and “low”
resolution images of any particular resolution-reduction-and-differential-layer-encoder block in Figure Intro. 3 are not in
general the highest and lowest resolution images of the entire system.

A resolution-reduction-and-differential-layer-encoder block of Figure Intro. 3 can itself be decomposed into sub-blocks
as shown in Figure Intro. 4. Not all sub-blocks need be used in all systems. Refer to the tables in 4 for a definition of
signal names.

T0806290-90/D04

Resolution
reduction

ATMOVE

Typycal
prediction

(differential)

LNTP

TPVALUE

DPVALUE

Deterministic
prediction

Adaptive
templates

Model
templates

Adaptive
arithmetic
encoder

)S��D
)S��D1

#S��D

Figure Intro. 4 – Resolution reduction and differential layer encoder

FIGURE Intro. 4...[D04] = 11.5 CM

Acronyms for the processing blocks of this figure and some others to be discussed in this introductory clause are given
in Table Intro. 3.

Table Intro. 3 – Acronyms for processing blocks

Acronym Meaning

AAD Adaptive Arithmetic Decoder
AAE Adaptive Arithmetic Encoder
AT Adaptive Templates
DP Deterministic Prediction
MT Model Templates
RR Resolution Reduction
TPB Typical Prediction (Bottom)
TPD Typical Prediction (Differential)

vi CCITT Rec. T.82 (1993 E)

Intro. 3.1.1 Resolution reduction

The resolution-reduction (RR) block performs resolution reduction. This block accepts a high-resolution image and
creates a low-resolution image with, as nearly as possible, half as many rows and half as many columns as the original.

An obvious way to reduce the resolution of a given image by a factor of two in each dimension is to subsample it by
taking every other row and every other column. Subsampling is simple, but creates images of poor subjective quality,
especially when the input image is bi-level.

For bi-level images containing text and line drawings, subsampling is poor because it frequently deletes thin lines. For
bi-level images that contain halftoning or ordered dithering to render greyscale, subsampling is poor because greyness is
not well preserved, especially if the dithering period is a power of two, as is frequently the case.

This Specification suggests a resolution reduction method. This particular method has been carefully designed,
extensively tested, and found to achieve excellent results for text, line art, dithered greyscale, halftoned greyscale, and
error-diffused greyscale.

Intro. 3.1.2 Differential layer typical prediction

The differential-layer typical prediction (TP) block provides some coding gain, but its primary purpose is to speed
implementations. Differential-layer TP looks for regions of solid color and when it finds that a given current
high-resolution pixel for coding is in such a region, none of the processing normally done in the DP, AT, MT, and AAE
blocks is needed. On text or line-art images, differential-layer TP usually makes it possible to avoid coding over 95% of
the pixels. On bi-level images rendering greyscale, processing savings are significantly smaller.

Intro. 3.1.3 Deterministic prediction

The purpose of the deterministic-prediction (DP) block is to provide coding gain. On the set of test images used in the
development of this Specification it provided a 7% gain, and such a gain is thought to be typical.

When images are reduced in resolution by a particular resolution reduction algorithm, it sometimes happens that the
value of a particular current high-resolution pixel to be coded is inferable from the pixels already known to both the
encoder and decoder, that is, all the pixels in the low-resolution image and those in the high-resolution image that are
causally related (in a raster sense) to the current pixel. When this occurs, the current pixel is said to be deterministically
predictable. The DP block flags any such pixels and inhibits their coding by the arithmetic coder.

DP is a table driven algorithm. The values of particular surrounding pixels in the low-resolution image and causal high-
resolution image are used to index into a table to check for determinicity and, when it is present, obtain the deterministic
prediction. DP tables are highly dependent on the particular resolution reduction method used. Provision is made for an
encoder to download DP tables to a decoder if it is using a private resolution reduction algorithm. If an application
requires default DP, decoders need to always have the default DP tables and no DP tables need be sent. Hence, if the
suggested resolution reduction algorithm is used, no DP table need ever be sent.

Intro. 3.1.4 Model templates

For each high-resolution pixel to be coded, the model-templates (MT) block provides the arithmetic coder with an
integer called the context. This integer is determined by the colors (binary levels) of particular pixels in the causal high-
resolution image, by particular pixels in the already available low-resolution image, and by the spatial phase of the pixel
being coded. “Spatial phase” describes the orientation of the high-resolution pixel with respect to its corresponding low-
resolution pixel.

The arithmetic coder maintains for each context an estimate of the conditional probability of the symbol given that
context. The greatest coding gain is achieved when this probability estimate is both accurate and close to 0 or 1. Thus,
good templates have good predictive value so that when the values of the pixels in the template are known, the value of
the pixel to be coded is highly predictable.

Intro. 3.1.5 Adaptive templates

The adaptive-templates (AT) block provides substantial coding gain (sometimes as much as 80%) on images rendering
greyscale with halftoning. AT looks for periodicity in the image and on finding it changes the template so that the pixel
preceding the current pixel by this periodicity is incorporated into the template. Such a pixel has excellent predictive
value.

Such changes are infrequent, and when one occurs, a control sequence (indicated symbolically by !4-/6% in
Figure Intro. 4) is added to the output datastream. Hence, decoders need not do any processing to search for the correct
setting for AT.

CCITT Rec. T.82 (1993 E) vii

Intro. 3.1.6 Adaptive arithmetic encoder

The adaptive-arithmetic-encoder (AAE) block is an entropy coder. It notes the outputs of the TP and DP blocks to
determine if it is even necessary to code a given pixel. Assuming it is, it then notes the context and uses its internal
probability estimator to estimate the conditional probability that the current pixel will be a given color. Often the pixel is
highly predictable from the context so that the conditional probability is very close to 0 or 1 and a large entropy coding
gain can be realized.

Maintaining probability estimates for each of the contexts is a non-trivial statistical problem. A balance must be struck
between obtaining extremely accurate estimates and the conflicting need of adapting quickly to changing underlying
statistics.

Intro. 3.2 Lowest resolution layer encoder

Figure Intro. 5 shows a lowest-resolution-layer encoder. It is conceptually simpler than the differential-layer encoder
because the RR and DP blocks are not applicable and the TP, AT, and MT blocks are different since there is no lower
resolution layer to be used as input. Refer to the tables in 4 for a definition of signal names. (Not all sub-blocks need to
be used in all systems.)

Lowest-resolution-layer TP like differential-layer TP is primarily intended to speed processing. The algorithms used for
the two versions of TP are quite different, however, and it is not possible to skip as high a percentage of pixels with
lowest-resolution-layer TP as it is with differential-layer TP. On images with text and line art, lowest-resolution-layer TP
allows skipping about 40% of the pixels.

T0808650-91/D05

Is, 0

s, 0C

ATMOVE

Typical
prediction
(bottom)

Adaptive
templates

Model
templates

Adaptive
arithmetic
encoder

SLNTP

Figure Intro. 5 – Lowest-resolution-layer encoder

TPVALUE

FIGURE Intro.5...[D05] = 7.5 CM

Intro. 4 Decoder functional blocks

Figures Intro. 6, Intro. 7 and Intro. 8 are analogous to Figures Intro. 3, Intro. 4 and Intro. 5 but show decoding rather
than encoding. Note that the RR and AT blocks do not appear in the decoder. Refer to the tables in 4 for a definition of
signal names. In single-progression sequential coding only the lowest-resolution-layer-decoder block of Figure Intro. 6
would be used. Not all sub-blocks in Figures Intro. 7 and Intro. 8 need be used in all systems.

viii CCITT Rec. T.82 (1993 E)

T0806310-90/D06

)$

Lowest
resolution

layer
decoder

Diferential
layer

decoder

Diferential
layer

decoder

Figure Intro. 6 – Decomposition of decoder

)0)$2)$1

�����#0,0’ #1,0’ #31,0

�����

�����# #1��$1’ #31��$1

#0��$� #1��$� #31��$

0��$1’

FIGURE Intro.6...[D06] = 7.5 CM

T0806320-90/D07

)S��D

LNTP

ATMOVE

TPVALUE

DPVALUE

Adaptive
arithmetic
decoder

Model
templates

Typical
prediction

(differential)

Deterministic
prediction

Figure Intro. 7 – Differential layer decoder

)S��D1

#S��D

FIGURE Intro.7...[D07] = 9 CM

CCITT Rec. T.82 (1993 E) ix

)S��0S��0#

T0808660-91/D08

SLNTP

ATMOVE

TPVALUE

Adaptive
arithmetic
decoder

Model
templates

Typical
prediction
(bottom)

Figure Intro. 8 – Lowest-resolution-layer decoder

FIGURE Intro.8...[D08] = 6.5 CM

CCITT Rec. T.82 (1993 E) 1

INTERNATIONAL STANDARD
ISO/IEC 11544 : 1993(E)
CCITT Rec. T.82 (1993 E)

CCITT RECOMMENDATION

INFORMATION TECHNOLOGY –
CODED REPRESENTATION OF PICTURE AND AUDIO INFORMATION –

PROGRESSIVE BI-LEVEL IMAGE COMPRESSION

1 Scope

This Recommendation | International Standard defines a bit-preserving (lossless) compression method for coding image
bit-planes and is particularly suitable for bi-level (two-tone, including black-white) images.

2 Normative references

There are no normative references. Informative references to standards and to the technical literature are listed in
Annex F.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 adaptive arithmetic coder: A mechanism for adaptively compressing or decompressing data by using
observed data characteristics to predict and code future data symbols.

3.2 adaptive templates (AT): Model templates which can be modified by moving an AT pixel during the
processing of an image to take advantage of observed patterns in the image.

3.3 AT lag: The distance in pixels between the pixel being encoded and the AT pixel.

3.4 AT pixel: A special pixel in the model template that is allowed to adaptively change its location during the
processing of an image.

3.5 bit-plane: An array (or “plane”) of bi-level symbols constructed from an image by choosing a particular bit
from each pixel.

3.6 bit-plane interleaving: A method used for mixing together two or more bit-planes of data into a single stream.

3.7 byte: Eight bits of data.

3.8 byte stuffing: A mechanism for unambiguously distinguishing between predefined escape bytes indicating the
start of a marker segment and bytes identical to the escape byte which naturally occur in a compressed datastream.

3.9 context: An integer corresponding to the specific pattern of the template and spatial phase (if needed) that is
used to identify the index of the state of the adaptive arithmetic coder to be used for coding the current pixel.

3.10 deterministic prediction (DP): A method for exactly predicting (and therefore not coding) individual pixels
in an image by using a lower resolution version of the same image along with very specific knowledge of the method of
resolution reduction used.

3.11 differential layer coder: A mechanism for encoding or decoding differential-layer images.

3.12 differential-layer image: An image at a given resolution which is described by making reference to pixels in a
lower-resolution image.

3.13 entropy coder: Any lossless method for compressing or decompressing data.

3.14 escape byte: A byte in a datastream signifying that information to follow has special marker-code meaning.

3.15 high-resolution pixel: A pixel from the higher resolution image of the two resolution layers under discussion.

3.16 line not typical (,.40): A condition which occurs during typical prediction when one or more of the pixels
associated with a given low-resolution line would be predicted incorrectly.

3.17 lowest-resolution-layer coder: A mechanism for encoding or decoding lowest-resolution-layer images.

2 CCITT Rec. T.82 (1993 E)

3.18 lowest-resolution-layer image: An image at a given resolution which is described without reference to any
lower resolution images.

3.19 low-resolution pixel: A pixel from the lower resolution image of the two resolution layers under discussion.

3.20 marker: A combination of an escape byte and a marker byte that introduces control information.

3.21 marker byte: A byte immediately following an escape byte that defines the type of control information being
introduced.

3.22 marker segment: The combination of a marker and any additional bytes of associated control information.

3.23 model template (MT): A geometric pattern describing the location of pixels relative to a pixel to be coded. It
is used to model local image characteristics.

3.24 pixel: One picture element of an image which is described by a rectangular array of such elements.

3.25 progressive behavior: A coding technique shows progressive behavior if an image is first coded as a lowest
resolution layer image and then is successively increased in resolution by means of differential layer images.

3.26 progressive coding: A method of coding an image in which the image may be segmented into stripes, and then
the entire image is first coded as a lowest resolution layer image and then is successively increased in resolution by
means of differential layer images. This is compatible, by stripe/layer data reordering, with progressive-compatible
sequential coding.

3.27 progressive-compatible sequential coding: A method of coding an image in which the image may be
segmented into stripes, the image stripes are coded in sequence, and within each stripe the image is coded to full
resolution progressively. This is compatible, by stripe/layer data reordering with progressive coding.

3.28 protected stripe coded data (03#$): A compressed image datastream which has been modified by stuffing
bytes to distinguish between predefined escape bytes which signal special marker segments (which are not a part of the
compressed datastream) and bytes identical to the escape byte which occur naturally in the compressed datastream.

3.29 resolution reduction method (RR): A method for transforming an image with a particular resolution into an
image describing the same subject, but with a lower resolution.

3.30 sequential behavior: A coding technique shows sequential behavior if portions of the image near the top are
completely described before portions below have been described at all.

3.31 single-progression sequential coding: A method of coding an image such that the image is fully coded in a
single resolution layer, line by line, from left to right and top to bottom, without reference to any lower resolution
images. This is compatible with progressive coding and progressive-compatible sequential coding if the number of
differential layers is zero.

3.32 spatial phase: An attribute of a pixel in a differential-layer image that describes its orientation with respect to
the low-resolution pixel associated with it.

3.33 spatial resolution: The number of pixels used to describe a region of an image of fixed spatial size.

3.34 stripe: A fixed vertical size region of an image which encompasses the entire horizontal width of that image.

3.35 target pixel: A pixel to be processed.

3.36 typical prediction (TP): A method for exactly predicting (and therefore not coding) blocks of pixels in an
image by exploiting large regions of solid color.

4 Symbols and abbreviations

4.1 Acronyms

See Table 1.

4.2 Symbolic constants

See Table 2.

CCITT Rec. T.82 (1993 E) 3

Table 1 – Acronyms

Table 2 – Symbolic constants

4.3 Mathematical symbols, operators, and indicators

See Table 3.

4.4 Variables with mnemonic names

See Table 4.

5 Conventions

5.1 Flow diagram conventions and symbols

All flow diagrams are entered at the top and exited at the bottom. The symbol “<<” denotes a binary left shift with zero
fill of low order bits and the symbol “>>” denotes a binary right shift with zero fill of high order bits. For both “<<”
and “>>” the quantity on the left is the quantity being shifted and the quantity on the right is the shift amount. The binary
logical AND of two numbers is indicated by “&”.

5.2 Template graphics

It will frequently be necessary to show graphically the relationship of pixels in a high-resolution image to pixels in a
low-resolution image. Figure 1 is a three-dimensional graphic showing such a relationship. In the text of this
Specification two dimensional drawings like that in Figure 2 are used instead since they are more compact than their
three-dimensional equivalent. Note that in the two-dimensional graphic low-resolution pixels are shown as circles and
that the corresponding high-resolution pixels are shown as squares, partially hidden by the low-resolution circles.

Acronym Meaning

AT Adaptive templates
DP Deterministic prediction
LPS Less probable symbol
LSB Least significant bit
MPS More probable symbol
MSB Most significant bit
MT Model templates
RR Resolution reduction
TP Typical prediction

Value

Constant Meaning ISO Hexadecimal

!"/24 Abort 00/04 0x04
!4-/6% AT movement 00/06 0x06
#/--%.4 Private comment 00/07 0x07
%3# Escape 15/15 0xff
.%7,%. New length 00/05 0x05
2%3%26% Reserve 00/01 0x01
3$./2- Normal stripe data end 00/02 0x02
3$234 Reset at stripe data end 00/03 0x03
345&& Stuff 00/00 0x00

4 CCITT Rec. T.82 (1993 E)

Table 3 – Mathematical symbols, operators, and indicators

5.3 Spatial phase

A “spatial phase” can be associated with pixels in any resolution layer other than the lowest. This “phase” describes the
orientation of the pixel with respect to the lower resolution pixel associated with it. If it is the upper left hand pixel of the
four pixels associated with a single low-resolution pixel, it shall be said to have “phase 0”. Similarly, the upper right
pixel shall have “phase 1,” the lower left pixel shall have “phase 2,” and the lower right pixel shall have “phase 3” (see
Figure 3).

5.4 Data structure graphics

Tables 5 to 16 contain graphics illustrating the decomposition of fields into sub-fields. Typographically leftmost
sub-fields shall be transmitted earlier. The last row of each of these graphics gives field sizes in bytes. An entry of “1/8”
denotes a single bit. An entry of “varies” is used when the field size is variable and depends upon options chosen,
parameters chosen, or the particular image being coded.

Notation Meaning

Cs, d Coded data for stripe s and layer d

D Number for final resolution layer in ")%

DL Number for initial resolution layer in ")%

h High-resolution pixel

Id Image at layer d

l Low-resolution pixel

Lc Length in bytes of private comment

Ld Lines per stripe at layer d

MX Maximum horizontal offset allowed for AT pixel

MY Maximum vertical offset allowed for AT pixel

p Probability

P Number of bit-planes

Rd Resolution at layer d

S Number of stripes

Xd Horizontal image size at layer d

yAT Line in which an AT switch is to be made

Yd Vertical image size at layer d

τX Horizontal offset of the AT pixel

τY Vertical offset of the AT pixel

> > Binary right shift

< < Binary left shift

& Bitwise AND

! Logical NOT

⊕ Exclusive OR

 · Ceiling function (smallest integer ≥ argument)

0x Hexadecimal indicator

CCITT Rec. T.82 (1993 E) 5

Table 4 – Variables with mnemonic names

Variable Meaning

! Interval size register

")$ Bi-level image data

")% Bi-level image entity

")(Bi-level image header

"5&&%2 Buffer

Code register

#% Conditional exchange

#()'(Code register, high two bytes

#,/7 Code register, low two bytes

#4 Bit counter

#8 Context

$0,!34 DP last

$0/. DP enabled

$002)6 DP private

$04!",% DP table

$06!,5% DP value

()4/,/ High to low

),%!6% Interleave multiple bit-planes

,.40 Line not typical

,0)8 Low-resolution pixel

,2,47/ Lowest-resolution-layer two-line template

,3: LPS size on coding interval

-03 More probable symbol

.,03 Next if LPS

.-03 Next if MPS

0)8 Pixel

03#$ Protected stripe coded data

3# Stack (of 0xff bytes) counter

3#$ Stripe coded data

3$% Stripe data entity

3%1 Sequential

3,.40 Same ,.40

3-)$ Index over stripe is in middle

374#(Switch

34 State

40"/. Lowest-resolution-layer TP enabled

40$/. Differential-layer TP enabled

406!,5% TP value

6,%.'4(Variable length

6 CCITT Rec. T.82 (1993 E)

L L

LL

00H H H H

H H H H

H H H H

H H H H

01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

00 01

10 11

T0806340-90/d09

Figure 1 – High- and low-resolution pixels in three-dimensional graphic

FIGURE 1/T.82...[D09] = 10.5 CM

L 00 L

LL

00H H H H

H H H H

H H H H

H H H H

01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

01

10 11

T0806350-90/D10

Figure 2 – High- and low-resolution pixels in two-dimensional graphic

FIGURE 2/T.82...[D10] = 7 CM

CCITT Rec. T.82 (1993 E) 7

6 Requirements

6.1 General rules

6.1.1 Color assignment

Each bit of each pixel plane is either 0 or 1. When the image is bi-level, a 1 bit shall indicate the foreground color and
a 0 bit shall indicate the background color. If there is more than one bit plane, the mapping of intensity and color to
bit-planes is not defined by this Specification.

NOTE – Whether 1 or 0 represents the foreground color is inconsequential for all aspects of this Specification except the
described resolution reduction method. This resolution reduction method has a slight asymmetry between foreground and background
colors.

0 1

2 3

T0806360-90/D11

Figure 3 – Four possible phases for high-resolution pixels

FIGURE 3/T.82...[D11] = 4 CM

6.1.2 Edge conventions

The resolution reduction, typical prediction, deterministic prediction, and coding algorithms all iterate through the image
in the usual raster scan order, that is, from left to right and top to bottom. The processing for a current target pixel will
reference the colors of some pixels in fixed spatial relationship to that target pixel. At image edges, these neighbor
references may not lie in the actual image. For both high and low-resolution images, the rules to satisfy off-image
references shall be as follows:

– a background colored (0) border shall be assumed to lie to the top, left, and right of the actual image;

– the bottom of the image shall be extended downward as far as necessary by pixel replicating the actual
last line of the image.

Furthermore, in referencing pixels across stripe boundaries, the following rules shall be used:

– A pixel reference in a stripe above the current one shall return the actual value of the pixel, unless the
pixel is above the image, in which case the background-border-rule for the image top shall be applied.

– A pixel reference in a stripe below the current one shall be satisfied by pixel replicating the last line of the
current stripe. In particular, actual values shall not be used even if the reference is still within the image.

NOTE – This latter rule is only of consequence for the low-resolution image, as for decodability there can never be any
references to high-resolution pixels in the line below. Also, the described resolution reduction algorithm happens to never reference
even low-resolution pixels in the line below.

6.1.3 Byte alignment

NOTE – Because of the header and marker conventions to be described in 6.2, marker segments are always byte aligned in
a datastream.

6.2 Data organization

6.2.1 Image decomposition

The highest level data structure described in this Specification is known as a bi-level image entity (")%). A given ")%
may contain data for one or more resolution layers and bit-planes. The data describing a given image in all its available
resolutions and bit-planes may, but need not necessarily be, contained in more than one ")%.

8 CCITT Rec. T.82 (1993 E)

NOTE – A multiple ")% description of an image is needed when images are first made available at low or intermediate
resolution or bit-plane precision and there may or may not be a request for enhancement to higher resolution or precision.

6.2.2 Bi-level image entity and header (")% and ")() decomposition

As shown in Table 5, a bi-level image entity (")%) shall comprise a bi-level image header (")() and bi-level image data
(")$).

Table 5 – Decomposition of ")%

The bi-level image header shall comprise the fields shown in Tables 6, 7 and 8.

Table 6 – Decomposition of ")(

Table 7 – Decomposition of order byte

Table 8 – Decomposition of options byte

The first byte of the ")(shall specify DL, the initial resolution layer to be specified in this ")%. Most frequently, this
number will be zero in which case the data transmitted will allow building up the image without any prior knowledge
about it. It will be non-zero if a previous ")% has already defined the image to some intermediate layer and only
incremental information is to be specified. The second byte specifies D, the final resolution layer described in this ")%.
Note that with such multiple ")%’s, when DL is zero than D equals a number of differential layers, but not the total
number of differential layers.

The third byte shall specify P, the number of bit-planes. If the image is bi-level, P shall be 1.

")%

")(")$

Varies Varies

")(

DL D P – XD YD L0 MX MY Order Options $04!",%

1 1 1 1 4 4 4 1 1 1 1 0 or 1728

Order

MSB · · · LSB

– – – – ()4/,/ 3%1),%!6% 3-)$

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Options

MSB · · · LSB

– ,2,47/ 6,%.'4(40$/. 40"/. $0/. $002)6 $0,!34

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

CCITT Rec. T.82 (1993 E) 9

The fourth byte is fill. It shall always be written as 0.

The three subsequent four-byte fields specify XD, YD and L0, which are respectively, the horizontal dimension at highest
resolution, the vertical dimension at highest resolution, and the number of lines per stripe at lowest resolution. These
three integers are coded most significant byte first. In other words, XD is the sum of 2563 times the fifth byte in ")(,
2562 times the sixth byte, 256 times the seventh byte, and the eighth byte.

The seventeenth and eighteenth bytes shall specify MX and MY, the maximum horizontal and vertical offsets allowed for
the AT pixel. These parameters are discussed further in 6.7.3.

The nineteenth byte of the ")(shall carry the binary parameters ()4/,/, 3%1,),%!6% and 3-)$, which together
specify the order in which stripe data is concatenated to form ")$. More detail is provided in 6.2.4. The four most
significant bits of this byte are fill and shall always be written as 0.

The twentieth byte of the ")(shall specify options. Its most significant bit is fill and shall always be written as 0. The
template used for coding the lowest resolution layer shall have 2 or 3 lines as ,2,47/ is 1 or 0 (see 6.7.1). If the
6,%.'4(bit is 0, there shall be no .%7,%. marker segments (see 6.2.6.2). If 6,%.'4(is 1, there may or may not be
.%7,%. marker segments present. The 40$/., 40"/. and $0/. bits are 1 when it is desired to enable respectively,
differential-layer TP, lowest-resolution-layer TP, and DP. The $002)6 and $0,!34 bits are only meaningful if $0/.
equals 1. If $0/. is 1 and $002)6 is 1, a private DP table is to be used. If $0,!34 is 0, the private DP table (1728 bytes)
is to be loaded. Otherwise the DP table last used is to be reused.

The $04!",% field of ")(shall only be present if $0/. equals 1, $002)6 equals 1, and $0,!34 equals 0. Its size and
interpretation are defined in 6.6.

The variables DL, D, P, XD, YD, L0, MX, MY, ()4/,/, 3%1,),%!6%, 3-)$, ,2,47/, 6,%.'4(, 40$/., 40"/., $0/.,
$002)6 and $0,!34 are free parameters. Some applications standards may restrict the choices for some or all of them.
Table 9 shows the limits on these parameters as set by either their implicit natures or the field sizes allowed for them in a
")(.

A JBIG datastream is any datastream created as described in the normative portions of this Specification with parameters
in the range of Table 9. In the interests of creating as large as possible a community of applications for which it is
possible to share hardware and exchange decodable data, Annex A suggests minimum support for these free parameters.
Different applications are encouraged to choose parameter values within the suggested ranges of minimum support
whenever it is possible to do so. Implementations desiring to be compatible with a broad range of applications may wish
to support all free parameter choices within the suggested ranges.

Table 9 – Absolute limits on free parameters

Parameter Minimum Maximum

DL 0 D

D DL 255
P 1 255

XD 1 4 294 967 295
YD 1 4 294 967 295
L0 1 4 294 967 295
MX 0 127
MY 0 255

()4/,/ 0 1
3%1 0 1

),%!6% 0 1
3-)$ 0 1

,2,47/ 0 1
6,%.'4(0 1
40$/. 0 1
40"/. 0 1
$0/. 0 1

$002)6 0 1
$0,!34 0 1

10 CCITT Rec. T.82 (1993 E)

6.2.3 Iteration for parameters dependent on resolution layer

The image dimensions at lower layers (indexed by d) shall be defined recursively for D ≥ d ≥ 1 by the iterations.

X Xd d− =1 2/ (1)

Y Yd d− =1 2/ (2)

where ⋅ denotes the ceiling function, or, in other words, the smallest integer greater than or equal to the argument.

For 1≤ d ≤ D the number of lines per stripe at layer d shall be defined by

L Ld d= × −2 1 (3)

At all layers there will necessarily be

S Y L= 0 0/ (4)

stripes. In many cases, the last stripe in any layer d will have fewer than Ld lines.

6.2.4 Bi-level image data (")$) decomposition

The coded data Cs, d, p defining a given stripe s at resolution d and bit plane p shall be contained in a stripe data entity or
3$%. The ")$ shall consist of a concatenation of 3$%’s and floating marker segments as shown in Table 10.

Table 10 – Decomposition of ")$

The ordering of the 3$%’s depends on ()4/,/, 3%1,),%!6% and 3-)$. Index nesting shall be as defined by Table 11.
Only the six combinations of the three variables 3%1,),%!6% and 3-)$ shown in Table 11 are allowed. The remaining
two combinations shall never occur. The loops over the dummy variables s and p are respectively from 0 to S–1 (top to
bottom) and P–1 to 0 (MSB to LSB). If ()4/,/ is 0, the dummy variable d shall range from DL to D. Otherwise it shall
range from D to DL.

For a tutorial example see Table Intro. 2.

Table 11 – Ordering of stripe encodings in ")$

")$

Floating
marker segment(s) 3$%s, d, p

Floating
marker segments(s) 3$%s, d, p · · ·

Floating
marker segment(s) 3$%s, d, p

Varies Varies Varies Varies · · · Varies Varies

Loops

3%1),%!6% 3-)$ Outer Middle Inner

0
0
0
1
1
1

0
1
1
0
0
1

0
0
1
0
1
0

p
d
d
s
p
s

d
p
s
p
s
d

s
s
p
d
d
p

CCITT Rec. T.82 (1993 E) 11

6.2.5 Stripe data entity (3$%) decomposition

As shown in Table 12, each 3$% shall be terminated by an %3# byte and either an 3$./2- byte or an 3$234 byte.

Table 12 – Structure of the 3$%

Normally the terminating byte will be 3$./2-, which implies that all “state” information is saved. If instead the
terminating byte is 3$234, the “state” for that particular bit-plane and that particular resolution layer shall be reset prior
to encoding or decoding the next stripe of that plane and layer. Resetting the state with 3$234 requires initializing the
adaptive probability estimators as at the top of the image, resetting (if necessary) the AT pixel to its default location, and
initializing ,.40y–1 to 1 when in the lowest resolution layer. It also requires that all functions including resolution
reduction, deterministic prediction, typical prediction, and model templates start the next stripe as they do when at the
top of the image, that is, as defined in 6.1.2.

NOTE – Resetting the state with 3$234 should not be done unnecessarily as doing so degrades compression efficiency
and may introduce artifacts at stripe borders in lower-resolution images.

Protected stripe coded data (03#$) is defined as the bytes of 3$% that remain after removing the two terminating bytes. A
decoder shall create stripe coded data (3#$) from the 03#$ by replacing all occurrences of an %3# byte followed by a
345&& byte with a single %3# byte. An encoder shall create 03#$ from 3#$ by replacing all occurrences of an %3# byte
with an %3# byte followed by a 345&& byte. The use of 3#$ is described in 6.8. 03#$ is used in defining the 3$% rather
than 3#$ so that data for one stripe can be unambiguously located in the ")$.

An %3# byte and !"/24 byte may be used to prematurely terminate the ")$ as shown in Table 13.

NOTE – Without a mechanism like this an encoder encountering a problem would “hang” its associated decoder
indefinitely. There would be no way to restart the decoder as it would not reset until after it had received the announced amount of
data.

Table 13 – Marker code to prematurely terminate a ")$

6.2.6 Floating marker segments

Floating marker segments provide control information. They shall not occur within an 3$%. They may occur between
3$%’s or before the first 3$%. There are three floating marker segments: !4-/6%, .%7,%., and #/--%.4. (See Note 2 in
6.2.6.2.)

6.2.6.1 Adaptive-template (AT) movement

The location of the AT pixel may be changed with the !4-/6% marker segment shown in Table 14.

Table 14 – Structure of the !4-/6% floating marker segment

The third, fourth, fifth, and sixth byte define yAT, the line at which the template changes. The seventh and eighth bytes
define τX and τY, the horizontal and vertical offsets for the new AT pixel. The line yAT shall be decoded as the sum of
2563 times the third byte, 2562 times the fourth byte, 256 times the fifth byte, and the sixth byte.

3$%

03#$ %3# 3$./2- or 3$234

Varies 1 1

%3# !"/24

1 1

%3# !4-/6% YAT τX τY

1 1 4 1 1

12 CCITT Rec. T.82 (1993 E)

The probability estimator is not re-initialized following an !4-/6%. The resolution layer and bit plane for which a given
!4-/6% marker segment is to be effective shall be that of the first 3$% to follow the marker segment. The line
numbering for yAT restarts at 0 for each stripe so that if, for example, a change is to be effective on the initial line of a
stripe, yAT equals 0.

Further discussion of adaptive template pixels and the variables yAT, τX, and τY appears in 6.7.3.

6.2.6.2 Redefining image length

If 6,%.'4(is 1, it is permissible to change the length YD of the image with a new-length marker segment as shown in
Table 15.

Table 15 – Marker segment to indicate a new vertical dimension

At most only one new length marker segment shall appear in any ")%. However, a marker segment could refer to a line
in the immediately preceding stripe due to an unexpected termination of the image or the use of only one stripe. Such a
marker segment is followed immediately by %3# + 3$./2-/3$234, and the new YD given by the newlength marker
segment can be less than the line number at the end of the preceding stripe. The encoder shall not code more than the
number of lines in each layer corresponding to the new YD. Within the new length marker segment, YD shall be packed
into its four byte field exactly as it is packed into its four byte field in ")(. The new YD shall never be greater than the
original.

NOTES

1 The new length marker has been defined so that it is possible to begin coding an image of unknown length. In this
case the original dimension YD placed into the header serves as an indication of the maximum length that the image might
possibly be.

2 Some applications might need the new length marker segment to immediately follow a PSCD just before the %3# +
3$./2-/3$234 in order to prematurely terminate. This usage is currently under study.

6.2.6.3 Comment marker segment

An %3# byte followed by a #/--%.4 byte and a four-byte integer Lc shall begin a comment marker segment as shown in
Table 16.

The number Lc shall be equal to the sum of 2563 times the third byte, 2562 times the fourth byte, 256 times the fifth byte,
and the sixth byte. This number shall give the length of only the private comment portion of the comment marker
segment. In other words, the total length of the comment marker segment shall be Lc + 6 bytes.

Table 16 – Comment marker segment

6.2.7 Reserved marker byte

An %3# byte followed by a 2%3%26% byte is a reserved marker. One possible use of this marker is described in 6.8.2.8.
No future extensions of this Specification shall use this marker for any purpose. Encoders or decoders may employ it for
any private purpose desired. The reserved marker shall never appear in a public datastream.

6.3 Resolution reduction

The default deterministic prediction table is matched to the suggested resolution reduction algorithm described in this
subclause. It is permissible to use an alternative resolution reduction algorithm in place of the suggested resolution
reduction algorithm, but in that case either deterministic prediction must be disabled or a matched deterministic
prediction table must be downloaded to the decoder as part of the ")(.

%3# .%7,%. YD

1 1 4

%3# #/--%.4 Lc

1 1 4

CCITT Rec. T.82 (1993 E) 13

The resolution reduction algorithm is identical for all resolution layers and all bit-planes. The processing to create the
image at resolution layer d – 1 from an image at resolution layer d is described here.

If Xd or Yd is not even, for purposes of resolution reduction a new layer d image shall be created by adding as necessary
either a column of background color (0) at the right side or a pixel replication of the last line at the bottom. Hence for the
remainder of this subclause, Xd and Yd are assumed even.

The original image can be divided up into two by two blocks of pixels, and each of these two by two superpixels shall
map to one low-resolution pixel in the reduced-resolution image. These low-resolution pixels shall be determined from
left to right and top to bottom in the normal raster scan order. The suggested resolution reduction rule of this
Specification is defined by Figure 4 and Table 17. The reasoning behind this particular mapping is explained in Annex B
(informative).

2

11 10

8 7 6

5 4 3

1 0

9 ?

T0806370-90/D12

Figure 4 – Pixels used to determine the color of a low-resolution pixel

FIGURE 4/T.82...[D12] = 7 CM

The circle with a “?” within it represents the low-resolution pixel the color of which is to be determined. The circles and
squares with numbers within them correspond to pixels used in making this determination.

The colors of the numbered pixels define an index, with each numbered pixel defining one bit in the index. The pixel
labeled “0” determines the least significant bit of the index and each additional numbered pixel determines the bit of the
index corresponding to its number. When a pixel takes on the foreground color, its corresponding bit in the index shall
take on the value “1.” Given this index, the color of the pixel labeled “?” shall be defined by Table 17, which is indexed
from left to right. For example, the colors of the pixels corresponding to indices 0 through 7 are 0, 0, 0, 1, 0, 0, 0, 1,
respectively.

At the edges of an image, some of the numbered pixels of Figure 4 may not be within the image. For the purpose of
defining an index, the general edge rules of 6.1.2 shall be used.

When beginning resolution reduction, the upper-left most pixel of the high resolution image shall be aligned with pixel 4
in Figure 4.

6.4 Differential-layer typical prediction

Differential-layer TP shall be enabled or disabled with the 40$/. bit in the options field of ")(. If it is disabled
(40$/. = 0), the TPD block in both an encoder or decoder shall simply output 406!,5% = 2 for all pixels, to indicate to
the arithmetic encoding or decoding block that no prediction is being made. Also, when differential-layer TP is disabled,
the pseudo-pixel ,.40 shall be neither encoded nor decoded by the arithmetic coder. The discussion in the remainder of
this subclause and its subclauses assumes differential-layer TP is enabled (40$/. = 1).

Whenever reference is made to a pixel that because of edge effects is not actually in the current stripe, the value of this
pixel shall be determined by the general edge rules of 6.1.2.

14 CCITT Rec. T.82 (1993 E)

Table 17 – Map to determine low-resolution color

Index Color

[0, 63] 00010001 01110011 11111111 11111111 00110011 11111111 11111111 11111111
[64, 127] 00000001 01110111 11111111 11111111 00110111 11111111 11111111 11111111

[128, 191] 00110111 11111111 11111111 11111111 01111101 11111111 11111111 11111111
[192, 255] 00110111 11111111 11111111 11111111 11111111 01111101 11111111 11111111
[256, 319] 00000001 00110111 11111101 11111111 00111111 11111111 11111111 11111111
[320, 383] 00110111 01111111 11111111 01111111 01111111 01111111 01111111 11111111
[384, 447] 00110101 11111111 11110111 11111111 11011111 01111111 11111111 11111111
[448, 511] 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111
[512, 575] 00000001 00100011 00000101 00111011 00010001 00100011 01110001 11111111
[576, 639] 00000001 01110101 00111011 01111111 00000000 01010011 11111110 11111111
[640, 703] 00000001 01000001 01111111 11111111 00001001 10110111 11111111 11111111
[704, 767] 00000000 01010011 01111111 11111011 10010011 01111001 11111111 11111111
[768, 831] 00000001 00000000 01110011 11111111 00110001 00010011 01110101 11111111
[832, 895] 00000000 01000001 10110111 11101110 00000001 00100001 11111100 11111111
[896, 959] 00000000 10010011 01110101 11111111 00010001 01101011 11110101 11111111
[960, 1023] 11101001 11110111 11111111 11111011 10110111 11111111 11111011 11111111

[1024, 1087] 00000001 00100011 00000001 00111111 00010001 00000001 01110111 11111111
[1088, 1151] 00000001 01110101 01101011 01111111 00000000 01010011 11111110 11111111
[1152, 1215] 00000001 01100001 01111111 11111111 00101001 00110111 11111111 11111111
[1216, 1279] 00000000 01110011 00111111 01111011 10010010 01111101 11111111 11111111
[1280, 1343] 00000001 00000000 01111011 11111110 00101111 00011011 01111111 11111111
[1344, 1407] 00000000 01000001 00110111 11111110 00001001 00110111 01111110 01111111
[1408, 1471] 00000000 11010010 01111111 11111111 00011011 01101111 11111111 11111111
[1472, 1535] 00000000 01110101 01111111 01110111 00100111 01111111 01111011 01111111
[1536, 1599] 00000001 00000011 00000001 00001001 00010001 00000001 01000001 10010011
[1600, 1663] 00000001 01110101 00100001 01010101 00000000 01010001 10000000 11110111
[1664, 1727] 00000001 01000001 01101011 00010011 00000001 00000000 11111011 11111111
[1728, 1791] 00000000 01010001 00000001 01110011 00000000 01000001 10110111 11111111
[1792, 1855] 00000001 00000000 01100001 10000001 00100111 00001001 00011110 10111111
[1856, 1919] 00000000 01000000 00000001 01010110 00001000 00000000 00010000 01111111
[1920, 1983] 00000000 10000000 00100001 01110111 00000011 00000001 00111111 11111111
[1984, 2047] 01101000 11010000 11110011 10110011 00000000 11010011 11111011 11111111
[2048, 2111] 00000001 00000011 00110111 11111111 00110011 00110111 01111111 11111111
[2112, 2175] 00000001 01110111 01111111 11111111 00010001 01111011 11111111 11111111
[2176, 2239] 00000001 11110111 01111111 11111111 00111111 11111111 11111101 11111111
[2240, 2303] 00010010 11110111 11111111 11111111 11111111 11111101 11111111 01111111
[2304, 2367] 00000001 00010010 01111101 11111111 00111111 01111111 11111111 11111111
[2368, 2431] 00000000 01100010 11111111 01111111 00111111 00111111 01111111 11111111
[2432, 2495] 00010000 11111111 11110111 11111111 01111111 11111111 01111111 11111111
[2496, 2559] 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111
[2560, 2623] 00000001 00100011 00000001 00011011 00010001 00100011 01110111 11111111
[2624, 2687] 00000001 01110101 00101011 01110111 00000000 01000001 10111110 11111111
[2688, 2751] 00000001 11000001 01011011 01111111 00001001 00110011 01111101 11111111
[2752, 2815] 00000000 01010001 00110111 11111011 10101001 10110001 11111111 11111111
[2816, 2879] 00000001 00000000 01110001 10110111 00100001 00000011 01110101 11111111
[2880, 2943] 00000000 01000000 00010111 01101111 00000000 00000001 01111101 11111111
[2944, 3007] 00000000 11000001 01110101 11111111 00000001 10101011 01010001 11111111
[3008, 3071] 11101000 11010011 11111111 11111011 10111011 11111111 11111011 11111111
[3072, 3135] 00000001 00100011 00000001 00011011 00110001 00000001 01010011 01111111
[3136, 3199] 00000001 01110101 00101001 01111111 00000000 01010001 10110110 11111111
[3200, 3263] 00000001 11100000 01111011 11111111 00001010 00111011 01111111 11111111
[3264, 3327] 00000000 01110001 01111111 11111011 10001000 01110101 11111111 01111111
[3328, 3391] 00000001 00000000 01100001 11110110 00111111 00001001 01111111 11111111
[3392, 3455] 00000000 01000000 00010111 01111111 00001000 00010011 01111110 01111111
[3456, 3519] 00000000 10000000 01110111 11111111 00101011 00101111 01111111 01111111
[3520, 3583] 00000000 01110001 01111111 01110111 00101011 01111111 00111011 01111111
[3584, 3647] 00000001 00000011 00000001 00001001 00010001 00000001 01000001 00000001
[3648, 3711] 00000001 01110101 00100001 01010101 00000000 01010001 10000000 01010011
[3712, 3775] 00000001 01000001 01001001 00000001 00001001 00000000 00000001 00010011
[3776, 3839] 00000000 01010001 00000000 01010011 10000000 01000001 00010011 01111111
[3840, 3903] 00000001 00000000 01100001 10000000 00100001 00000001 00000001 00010011
[3904, 3967] 00000000 01000000 00000000 01000000 00000000 00000000 00000000 00010011
[3968, 4031] 00000000 10000000 00000000 00010011 00000001 00000001 01010001 01111111
[4032, 4095] 00000000 01010000 00000000 01110011 00000001 01010100 00110001 01110111

CCITT Rec. T.82 (1993 E) 15

6.4.1 Processing in an encoder

Figure 5 defines an 8-neighborhood. The eight pixels not marked by the “?” are immediately adjacent to it and are its
8-neighborhood.

?

T0806380-90/D13

Figure 5 – Definition of 8-neighborhood

FIGURE 5/T.82...[D13] = 8.5 CM

A given low-resolution pixel is “not typical” if it and all the pixels in its 8-neighborhood are the same color, but one or
more of the four high-resolution pixels associated with it differs from this common color. A given low-resolution line is
“not typical” (,.40) if it contains any “not typical” pixels. A flow diagram for processing to determine ,.40 is shown in
Figure 6. In this Figure ,0)8 denotes a low-resolution pixel.

NOTE – Low resolution pixels that are not typical in this sense are possible, but extremely rare.

Figure 7 shows a high-resolution line pair and an associated low-resolution line. Also shown in this figure is the virtual
location used for coding the value ,.40.

As suggested by this figure the value ,.40 of the pseudo-pixel shall be coded by the arithmetic coder before any of the
regular high-resolution pixels in the line pair are coded. In coding this pseudo-pixel, 406!,5% and $06!,5% shall
always be 2. The context #8 that shall be used for coding is the same context that is used for coding an ordinary pixel
with phase 3 and surrounded by pixels as shown in Figure 8. In this figure “F” denotes foreground and “B” denotes
background.

NOTE – This particular context was chosen for reuse as a context for coding ,.40 because it occurs infrequently, and for
most images the probability of coding foreground within it is small as is the probability that ,.40 equals one. The more obvious
alternative of coding ,.40 in its own context unfortunately increases the total number of contexts to just over a power of 2.

Figure 9 shows the required processing to produce the output signal 406!,5%. In words, if ,.40 equals 0 and the
low-resolution pixel associated with a high-resolution pixel 0)8 is the same color as all of the pixels in its
8-neighborhood, then 406!,5% equals that color. Otherwise, it is set equal to 2 to indicate that a prediction can not be
made.

6.4.2 Processing in a decoder

At the beginning of each high-resolution line pair, the TP pseudo-pixel ,.40 shall be decoded (see Figure 7). In
decoding ,.40, the inputs 406!,5% and $06!,5% shall be 2 and #8 shall be as described in 6.4.1.

In decoding a given high-resolution pixel 0)8, 406!,5% shall be generated as in an encoder.

16 CCITT Rec. T.82 (1993 E)

T0806390-90/D14

LNTP = 0
X = 0

Read LPIX

Do all the pixels in the
8-neighborhood of LPIX

have its color?

No

Yes

Do any of the four
high-resolution pixels that

LPIX corresponds with have
a color different from LPIX?

No

Yes

X = X + 1
No

Yes

X�� (8��/2) – 1? LNTP = 1

Figure 6 – Processing to determine LNTP

D

FIGURE 6/T.82...[D14] = 19.5 CM

6.5 Lowest-resolution-layer typical prediction

TP in the lowest-resolution-layer can be enabled or disabled with the 40"/. bit in the options field of ")(. If it is
disabled (40"/. = 0), the TPB block in both an encoder and decoder shall simply output 406!,5% equal to 2 for
all pixels thereby indicating to the encoding and decoding blocks that no prediction is being made. Also, when
lowest-resolution-layer TP is disabled, the pseudo-pixel 3,.40 shall be neither encoded nor decoded by the arithmetic
coder. The discussion in the remainder of this subclause assumes lowest-resolution-layer TP is enabled (40"/. = 1).

CCITT Rec. T.82 (1993 E) 17

..........

T0806400-90/D15

LNTP

Figure 7 – Location of pseudo-pixel in relationship to ordinary pixels

FIGURE 7/T.82...[D15] = 4.5 CM

F

F

F F

F F

B B

BB

?

TISO2390-93/D16

Figure 8 – Reused context for coding the differential-layer-TP pseudo pixel

FIGURE 8/T.82...[D16] = 8 CM

6.5.1 Encoder processing

Let y denote the current line. If it differs at any pixel location from the line above, then ,.40y shall equal 1 and line y is
said to be non-typical. Otherwise, ,.40y shall equal 0. In determining whether the very first line of an image is
non-typical, the line immediately above the image shall be assumed, as usual, to be the background color.

NOTE – Whereas almost all lines are “typical” in the sense of differential-layer TP, only a modest fraction are “typical” in
the sense of lowest-resolution-layer TP.

Define

SLNTP (LNTP LNTPy y y= ⊕ −!)1 (5)

where the symbol ⊕ denotes the exclusive-or operation and the symbol ! denotes logical negation. In words, 3,.40y will
be 1 if and only if ,.40y is the same as ,.40y–1. For the top line of an image, ,.40y–1 shall be set equal to 1.

When lowest-resolution-layer TP is enabled, a pseudo-pixel equal in value to 3,.40 shall be coded in the virtual
location shown before any pixels of line y are coded (see Figure 10).

18 CCITT Rec. T.82 (1993 E)

T0806420-90/D17

LNTP = 0?
Yes No

Do all the pixels in the
8-neighborhood of LPIX

have its color?

TPVALUE equals the
color of LPIX

TPVALUE = 2

No

Yes

Figure 9 – Processing to determine TPVALUE

FIGURE 9/T.82...[D17] = 12 CM

..........

T0808670-91/D18

SLNTP

Figure 10 – Location of pseudo-pixel in relationship to ordinary pixels

FIGURE 10/M.3020...[D18] = 2.5 CM

When 3,.40 is coded, it shall be coded in the context shown in Figure 11 if ,2,47/ is 0 and in the context shown in
Figure 12 if ,2,47/ is 1 (see 6.7.1). In this figure “F” denotes foreground and “B” denotes background. When coding
3,.40, 406!,5% shall always equal 2. In other words, 3,.40 can never be predicted with TP and must always be
arithmetically encoded.

NOTE – Arithmetically encoding changes in ,.40 is more efficient than arithmetically encoding ,.40. In
lowest-resolution-layer TP, ,.40 does not take on either the value 1 or the value 0 with high probability, and can not be entropy
coded with high efficiency.

If ,.40y is 0, the TPB block shall output the value common to the current pixel and the pixel above as 406!,5%.
Otherwise, it shall output 2 to indicate that no prediction can be made.

6.5.2 Decoder processing

If 40"/. is one, the sameness indicator 3,.40y shall be decoded (see Figure 10). In decoding 3,.40, 406!,5% shall be
2 and #8 shall be as in Figure 11 or Figure 12 as appropriate.

CCITT Rec. T.82 (1993 E) 19

F

?

BB

F

TISO2400-93/D19

F B B F

B F

Figure 11 – Reused context for coding the lowest-resolution-layer-TP pseudo-pixel
(three-line template)

FIGURE 11/M.3020...[D19] = 6.5 CM

?

B F

TISO2410-93/D20

F FB B

B BF F

Figure 12 – Reused context for coding the lowest-resolution-layer-TP pseudo pixel
(two-line template)

FIGURE 12/M.3020...[D20] = 3.5 CM

The decoder shall recreate ,.40y by

LNTP SLNTP LNTPy y y= ⊕ −! ()1 (6)

As in the encoder, this iteration shall be initialized with ,.40 set equal to 1 for the line immediately above the top line of
the real image.

If ,.40y is 0, the block TPB shall output the value of the pixel immediately above the current one as 406!,5%.
Otherwise, it shall output 2 to indicate no prediction can be made.

6.6 Deterministic prediction (DP)

DP shall be enabled or disabled with the $0/. bit in the options field of ")(. If DP is disabled ($0/. = 0), the DP block
in both an encoder or decoder shall simply output $06!,5% = 2 for all pixels. The discussion in the remainder of this
subclause and its subclauses assumes DP is enabled ($0/. = 1).

If DP is used when encoding an image it shall be assumed that the DP tables described in this subclause were used to
make predictions unless the use of private DP tables has been signaled as described in 6.2.

6.6.1 Definition of associated pixels

For the purposes of describing the deterministic prediction algorithm, Figure 13 shows the labeling that will be used to
refer to needed pixels from both the low-resolution and high-resolution images. Whenever reference is made to a pixel
that because of edge effects is not actually in the current stripe, the value of this pixel shall be determined by the general
edge rules of 6.1.2.

20 CCITT Rec. T.82 (1993 E)

0 1

2 3

4 5 6

7 8 9

10 11

T0806430-90/D21

12

Figure 13 – Labeling of pixels used by DP

FIGURE 13/M.3020...[D21] = 7.5 CM

6.6.2 Default DP tables

The neighboring, or “reference”, pixels which are used to make predictions for each particular spatial phase shall be as
listed in Table 18. Note that for each of the four possible spatial phases a different set of pixels is used for making DP
predictions. The pixels used for each possible phase are those that are labeled in Figure 13 and are known to both an
encoder and a decoder at the time the particular spatial phase is to be coded. Also in this table is a number indicating
how many combinations of reference pixels actually result in a DP prediction (or hit) when using the DP rules that
follow.

Table 18 – DP pixels for each spatial phase

Private DP tables shall not use any pixels for any of the four phases other than those indicated in Table 18. The number
of reference pixel patterns they will “hit” will in general be different from the numbers listed in Table 18 for the default
resolution reduction algorithm.

Tables 19, 20, 21 and 22 define DP for the default resolution reduction algorithm. These four tables are to be used
respectively for determining $06!,5% in each of the four spatial phases 0, 1, 2, and 3. The index into the table is created
in the same way as the index into the resolution reduction Table 17 except that the bit significance shall be as defined by
the pixel numbers given in Figure 13 rather than Figure 4.

The entries in these tables give $06!,5% and are all 0, 1, or 2. A “2” indicates that it is not possible to make a
deterministic prediction. A “0” indicates that there is a DP “hit” and that the target pixel must be background (0). A “1”
indicates that there is a DP “hit” and that the target pixel must be foreground (1). As in Table 17 the entries are read
from left to right with increasing index.

Phase
Target
pixel

Reference
pixels

Number of hits with default
resolution reduction

0 08 0,1,2,3,4,5,6,7, 0020
1 09 0,1,2,3,4,5,6,7,8 0108
2 11 0,1,2,3,4,5,6,7,8,9,10 0526
3 12 0,1,2,3,4,5,6,7,8,9,10,11 1044

CCITT Rec. T.82 (1993 E) 21

Table 19 – DP table for predicting spatial phase 0

Table 20 – DP table for predicting spatial phase 1

Table 21 – DP table for predicting spatial phase 2

Index $06!,5%

[0, 63] 02222222 22222222 22222222 22222222 02222222 22222222 22222222 22222222
[64, 127] 02222222 22222222 22222222 22222222 00222222 22222222 22222222 22222222

[128, 191] 02222222 22222222 00222222 22222222 02020222 22222222 02022222 22222222
[192, 255] 00222222 22222222 22222222 22222221 02020022 22222222 22222222 22222222

Index $06!,5%

[0, 63] 22222222 22222222 22222222 22000000 02222222 22222222 00222222 22111111
[64, 127] 22222222 22222222 22222222 21111111 02222222 22111111 22222222 22112221

[128, 191] 02222222 22222222 02222222 22222222 00222222 22222200 20222222 22222222
[192, 255] 02222222 22111111 22222222 22222102 11222222 22222212 22220022 22222212
[256, 319] 20222222 22222222 00220222 22222222 20000222 22222222 00000022 22222221
[320, 383] 20222222 22222222 11222222 22222221 22222222 22222221 22221122 22222221
[384, 447] 20020022 22222222 22000022 22222222 20202002 22222222 20220002 22222222
[448, 511] 22000022 22222222 00220022 22222221 21212202 22222222 22220002 22222222

Index $06!,5%

[0, 63] 22222222 12222222 22222222 22222222 02222222 12222222 02222222 11222222
[64, 127] 22222222 22222222 02222222 12222222 02222222 11222222 22221122 22222222

[128, 191] 00202222 11111111 00200222 11111111 00222222 21122222 10222222 22111222
[192, 255] 02222222 11222222 00222222 21222222 22222222 22202220 22220022 22112222
[256, 319] 20222222 21222222 20020022 22222222 20000222 22222220 22000022 22222212
[320, 383] 20220222 22211111 22020222 22112122 22000022 22122122 22002222 22222222
[384, 447] 20020022 22222200 22000022 22222212 22202022 22222222 20202202 22222212
[448, 511] 22202022 22222200 00002022 22222212 22222202 22222221 22002220 22212221
[512, 575] 02222222 22111122 02222222 11222222 22212122 22220000 22122122 22202000
[576, 639] 00000000 22222222 02222222 22000000 22002222 22222222 22002112 22222222
[640, 703] 20222222 21221122 20222222 22121222 22000022 22112122 02222222 22212222
[704, 767] 20222222 22222022 00022222 21111222 02000022 22222200 22002212 22222222
[768, 831] 22020222 22111122 22222022 22222200 22222022 22222212 22222202 22222221
[832, 895] 22000022 22222222 00201222 22222220 22022202 22222222 22002200 22222222
[896, 959] 22202222 22222222 22222202 22222221 22222222 22222221 22202220 22222222
[960, 1023] 22222222 22222222 22002202 22222221 20202220 22222222 22002220 22222222

[1024, 1087] 22222222 11111111 22222222 11111111 02222222 21111111 22222222 22222222
[1088, 1151] 22222222 11111111 02222222 22222222 02222222 21222222 22222222 22222002
[1152, 1215] 00222222 11111111 22222202 22221121 12222222 22222212 22002202 22221111
[1216, 1279] 02222222 21222222 22222222 22201202 22220222 22101222 22000022 22222221
[1280, 1343] 20222222 22112111 11020222 22211111 22202002 22222222 00202222 22222212
[1344, 1407] 22020022 22222211 22000022 22222212 22222022 22222212 22222202 22222212
[1408, 1471] 22002022 22211211 22222212 22222221 21222102 22222221 22222222 22222121
[1472, 1535] 22121122 22222222 22111122 22220222 22222200 22222221 22000002 22222221
[1536, 1599] 00000000 11111111 02222222 21222222 20222222 22121111 22220222 22121122
[1600, 1663] 00222222 22222222 22222222 21121222 20020222 22111111 22220022 22212122
[1664, 1727] 20220022 22111111 22020022 22221121 22000022 22222122 22220022 22222211
[1728, 1791] 20020222 22111111 22002222 22211122 11122222 22222111 22222202 22222210
[1792, 1855] 22200022 22222222 22122022 22222212 22222202 22222211 22222200 22222221
[1856, 1919] 22222022 22222222 22121222 22222222 22000000 22222211 22000000 22222211
[1920, 1983] 22222202 22222211 22222220 22222221 22222220 22222221 22222222 22222222
[1984, 2047] 22222200 22222221 22222220 22222221 22222222 22222222 22222220 22222222

22 CCITT Rec. T.82 (1993 E)

Table 22 – DP table for predicting spatial phase 3

Index $06!,5%

[0, 63] 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222
[64, 127] 22222222 22222222 22222222 22222222 22222222 22222222 22222202 22222212
[128, 191] 22222222 22222222 22222222 22222222 02222222 12222222 20222222 21222222
[192, 255] 22222222 22222222 02222222 12222222 22111121 22000020 22221122 22220022
[256, 319] 22222222 22222222 20000000 21111111 20000000 21111111 22000022 22111122
[320, 383] 20022222 21122222 22221222 22220222 22200222 22211222 22002222 22112222
[384, 447] 20000000 21111111 22000022 22111122 22202022 22212122 20202020 21212121
[448, 511] 22212111 22202000 00002022 11112122 22222212 22222202 22022222 22122222
[512, 575] 02222222 12222222 22222222 22222222 22020200 22121211 22211211 22200200
[576, 639] 00000000 11111111 00000000 11111111 22000000 22111111 22002220 22112221
[640, 703] 22222222 22222222 20222222 21222222 22221222 22220222 02020122 12121022
[704, 767] 20000000 21111111 02222222 12222222 02000100 12111011 22002220 22112221
[768, 831] 22222222 22222222 22222111 22222000 22222022 22222122 22222202 22222212
[832, 895] 22000000 22111111 00202000 11212111 22022200 22122211 22002210 22112201
[896, 959] 22202212 22212202 22222212 22222202 22222222 22222222 22202220 22212221

[960, 1023] 22222220 22222221 22002202 22112212 20202220 21212221 22002220 22112221
[1024, 1087] 22222222 22222222 22222222 22222222 02222222 12222222 02222222 12222222
[1088, 1151] 22222222 22222222 02222222 12222222 02222222 12222222 22221112 22220002
[1152, 1215] 22222222 22222222 22222202 22222212 22111121 22000020 22112222 22002222
[1216, 1279] 02222222 12222222 22112212 22002202 22212122 22202022 22010122 22101022
[1280, 1343] 20220222 21221222 22122222 22022222 22212111 22202000 00200022 11211122
[1344, 1407] 22111122 22000022 22000022 22111122 22222022 22222122 22222222 22222222
[1408, 1471] 22022022 22122122 22220022 22221122 22222212 22222202 22220222 22221222
[1472, 1535] 22202222 22212222 22222222 22222222 22222202 22222212 22111112 22000002
[1536, 1599] 22222222 22222222 02222222 12222222 20222222 21222222 22222222 22222222
[1600, 1663] 00000000 11111111 22222222 22222222 20222222 21222222 22020222 22121222
[1664, 1727] 20222222 21222222 22112212 22002202 22010222 22101222 22221122 22220022
[1728, 1791] 21222222 20222222 22022222 22122222 22201222 22210222 22222220 22222221
[1792, 1855] 22211111 22200000 22202022 22212122 22222222 22222222 22222202 22222212
[1856, 1919] 22222000 22222111 22222202 22222212 22111122 22000022 22001122 22110022
[1920, 1983] 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222
[1984, 2047] 22222202 22222212 22222222 22222222 22222222 22222222 22222220 22222221
[2048, 2111] 02222222 12222222 22222222 22222222 22222222 22222222 20222222 21222222
[2112, 2175] 22222222 22222222 22222222 22222222 20222222 21222222 22221112 22220002
[2176, 2239] 22020000 22121111 22122111 22022000 22122222 22022222 02010222 12101222
[2240, 2303] 20222222 21222222 22222222 22222222 22020122 22121022 22112222 22002222
[2304, 2367] 22222222 22222222 22212211 22202200 22222012 22222102 22222212 22222202
[2368, 2431] 22112111 22002000 22202022 22212122 22222222 22222222 22222222 22222222
[2432, 2495] 22202222 22212222 22222202 22222212 22222222 22222222 22222020 22222121
[2496, 2559] 22222222 22222222 22222202 22222212 22222220 22222221 22222222 22222222
[2560, 2623] 22111122 22000022 20222222 21222222 22112222 22002222 22020222 22121222
[2624, 2687] 22222222 22222222 21222222 20222222 22220000 22221111 22222000 22222111
[2688, 2751] 22221122 22220022 22020222 22121222 22222222 22222222 22111122 22000022
[2752, 2815] 22000200 22111211 22201222 22210222 22222222 22222222 22222200 22222211
[2816, 2879] 22202022 22212122 22222222 22222222 22222202 22222212 22222220 22222221
[2880, 2943] 22222200 22222211 22221102 22220012 22222220 22222221 22222222 22222222
[2944, 3007] 22222202 22222212 22222220 22222221 22222220 22222221 22222222 22222222
[3008, 3071] 22222220 22222221 22222220 22222221 22222222 22222222 22222222 22222222
[3072, 3135] 00000000 11111111 00000000 11111111 20000000 21111111 02222222 12222222
[3136, 3199] 00000000 11111111 22222222 22222222 21222222 20222222 22220222 22221222
[3200, 3263] 22000000 22111111 22220020 22221121 02010000 12101111 22220020 22221121
[3264, 3327] 20222222 21222222 22020222 22121222 22122022 22022122 22222220 22222221
[3328, 3391] 22000000 22111111 00202000 11212111 22222220 22222221 22220002 22221112
[3392, 3455] 22202200 22212211 22222202 22222212 22222202 22222212 22222222 22222222
[3456, 3519] 22220200 22221211 22220010 22221101 20222020 21222121 22220020 22221121
[3520, 3583] 22111122 22000022 22112022 22002122 22222222 22222222 22222220 22222221
[3584, 3647] 22222222 22222222 21222222 20222222 22020000 22121111 22122022 22022122
[3648, 3711] 22000000 22111111 21020222 20121222 22202000 22212111 22002222 22112222
[3712, 3775] 22002200 22112211 22202200 22212211 22222222 22222222 22222200 22222211
[3776, 3839] 22202000 22212111 22220022 22221122 00000000 11111111 22222222 22222222
[3840, 3903] 22222200 22222211 22112202 22002212 22222220 22222221 22222222 22222222
[3904, 3967] 22222200 22222211 22121212 22020202 22222222 22222222 22222222 22222222
[3968, 4031] 22222220 22222221 22222222 22222222 22222222 22222222 22222222 22222222
[4032, 4095] 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222

CCITT Rec. T.82 (1993 E) 23

6.6.3 DP table format

If $0/. = 1, $002)6 = 1 and $0,!34 = 0, the private DP table shall be encoded into the $04!",% field of ")((see 6.2).
The $04!",% field shall be defined by paralleling the structure of the four tables above that define DP for the default
resolution reduction algorithm. In particular, it shall be a concatenation of the four tables with two bits allocated to each
table entry so that four entries pack into one byte. Typographically leftmost and uppermost entries in the tables shall
pack into higher order bits in bytes and earlier bytes in the $04!",% field. When it is not possible to make a DP
prediction, 2 shall be coded into the two-bit field.

NOTE – This permission is granted so that the most significant bit of the two-bit field becomes by itself an indication that
a DP prediction can not be made.

Because there are 8, 9, 11, and 12 reference pixels for predicting respectively pixels in spatial phases 0, 1, 2, and 3, the
$04!",% field will be

1728 2 256 512 2048 4096 8= × + + +() / (7)

bytes in length.

6.7 Model templates and adaptive templates

Model templates define a neighborhood around a pixel to be coded. The values of the pixels in these neighborhoods,
plus spatial phase in differential layers, define a context, with a separate arithmetic coding adapter used for each
different context (see 6.8). Although a template is a geometric pattern of pixels, the pixels in a template are said to take
on values when the template is aligned to a particular part of the image.

6.7.1 Lowest resolution layer

Figure 14 shows the template which shall be used when encoding the lowest resolution layer when ,2,47/ is 0.

X X

X X

X

?

A

X

X

X

X

T0806440-90/D22

Figure 14 – Three-line model template for lowest resolution layer

FIGURE 14/T.82...[D22] = 6 CM

The pixel denoted by a “?” corresponds to the pixel to be coded and is not part of the template. The pixels denoted by
“X” correspond to ordinary pixels in the template, and the pixel denoted by “A” is a special pixel in the template that is
called an “adaptive” or “AT” pixel. This pixel is special in that its position is allowed to change during the process of
encoding an image. See 6.7.3 for a description of AT pixels. The “A” indicates the initial location of the AT pixel.

24 CCITT Rec. T.82 (1993 E)

The values of the pixels in the template shall be combined to form a context. Each pixel in the model template (including
the adaptive pixel) shall correspond to a specific bit in the context, although the pixels in the template may be assigned
to bits in the context in any order. Because there are 10 pixels in this template, contexts associated with the lowest
resolution layer can take on 1024 different values. This context shall be used to identify which arithmetic coder adapter
is to be used for encoding the pixel to be coded, as described in 6.8.

If ,2,47/ is 1, the lowest-resolution-layer model-template shall be that shown in Figure 15.
ISO/IEC 11544 : 1993(E)

CCITT Rec. T.82 (1993 E)

X X X X ?

AX X X X X

T0808700-91/D23

Figure 15 – Two-line model template for lowest resolution layer

FIGURE 15/T.82...[D23] = 3 CM

The meaning of the labels “X”, “A”, and “?” is as before.

NOTE – Software execution speed in the lowest resolution layer will be somewhat faster with the two-line template than
the three-line template. The penalty in using the two-line template is about a 5% loss in compression efficiency.

Whenever any of the pixels in the templates of Figures 14 or 15 (as dictated by ,2,47/) lie outside the boundaries of the
image or stripe, the general edge rules of 6.1.2 shall be used.

6.7.2 Differential layer

Figure 16 shows the templates that shall be used when encoding differential-layer images. Notice that these templates
contain references to pixels in the next lower resolution image as well as to pixels in the image being encoded, and that
the model template is different for different phases. The symbols “?”, “X”, and “A” have the same meaning as in the
previous subclause.

Contexts shall be formed from these templates in a way similar to what was described for the lowest-resolution-layer
template. Each pixel in a template shall contribute one bit to the context. In addition, when encoding differential-layer
images, two additional bits shall be added to the context to describe the phase of the pixel being encoded. As before, any
particular bits may be used to describe the phase information, although the assignment of pixels and phase information to
bits in the context shall remain fixed while encoding an image. Because there are 10 pixels in the differential-layer
templates and because 2 bits are used to describe phase information, there are 4096 different possible contexts while
processing differential images. This context shall be used to identify which arithmetic coder adapter is to be used for
encoding the pixel to be coded.

6.7.3 Adaptive template pixels

In coding the differential layers as well as the lowest-resolution layer, the model template shall be allowed to change in
the restricted way described in this subclause.

The single pixel that is allowed to change shall be called the AT pixel. Its initial (or default) location is indicated by “A”
in Figures 14, 15, and 16 for, respectively, lowest-resolution-layer coding with a three-line template, lowest-resolution-
layer coding with a two-line template, and differential-layer coding. In general, the AT pixel can be moved
independently for all layers to anywhere in the field shown in Figure 17.

However, the new AT location shall not overlap any regular pixels in the template. (Hence permissible movements for
two-line lowest-resolution-layer coding, three-line lowest-resolution-layer coding, and differential-layer coding are
slightly different.)

A differential-layer AT movement is effective for all four phases simultaneously. If there is more than one differential
layer, the movements in each are independent. However, in any one layer, once the AT pixel is moved for a particular
stripe, subsequent stripes shall continue to use the new location.

The parameters MX and MY define the size of the rectangle in Figure 17. Absolute limits and suggested minimum support
are as in Tables 9 and A.1.

CCITT Rec. T.82 (1993 E) 25

X

X X

X

X X

X

X

?

X

X X

X

X X

X

X

?

X

X X

X

X X

X

X

?

X

X X

X

X X

X

X

?

A X A X

A X A X

T0806450-90/D24

Phase 0 Phase 1

Phase 2 Phase 3

Figure 16 – Model templates for differential-layer coding

FIGURE 16/T.82...[D24] = 19.5 CM

26 CCITT Rec. T.82 (1993 E)

�������� ��������

����������������

�������� T0808710-91/D25

���
���
��

-����-��8 9 2��-9 1��-9 0��-9 –1��-9 –2��-9
-����-��
8 9

-����18

-����0
8

2, 1 1, 1 0, 1 –1, 1 –2, 1

2, 0 1, 0 ?

-����1
8

Figure 17 – Field to which AT movements are restricted

FIGURE 17/T.82...[D25] = 6 CM

NOTE – Because it is more costly, in general, for hardware to support vertical movement of the AT pixel, the suggested
minimum support for MY is restricted to zero so that AT pixel movement to anywhere but the default location is restricted to the
current line being coded.

If an encoder wishes to change the location of the AT pixel, it shall inform the decoder of the change by coding τX, τY,
and yAT as indicated in Table 14. The numbers coded into τX and τY shall be, respectively, the horizontal and vertical
offsets from the target pixel as shown in Figure 17. The possibly negative number τX shall be encoded in
twos-complement form. The number coded into yAT shall be the number of the high-resolution line at the beginning of
which the change shall be made. The line numbering used shall restart with 0 at the top of each stripe.

It is permissible to move the AT pixel back to its initial (or default) location after having once moved it away. The
default location for the AT pixel shall always be coded by τX = 0 and τY = 0 rather than the true X and Y coordinates.

NOTE – This convention is convenient because the true coordinates are different for lowest-resolution-layer coding and
differential-layer coding. It also makes it possible for an encoder to inform a decoder that there will never be any AT movements by
setting MX and MY both equal to 0.

Annex C describes a computationally simple technique for making determinations of when an AT pixel change is
desirable and where it should be moved.

6.8 Arithmetic coding

The entropy coder used in this Specification is an adaptive arithmetic compression coder. In this subclause and all its
subclauses, the flow diagrams and Table 24 are normative only in the sense that they are defining an output that
alternative implementations must duplicate. All background information and discussion in the subclauses of this
subclause is informative.

NOTE – It is intended that the arithmetic coding operations described in this subclause be identical to the arithmetic coding
operations described in CCITT Rec. T.81 | ISO/IEC 10918-1. However, should there be any unintentional difference in the
descriptions, the procedure described in this Specification shall be used.

It is permissible to have as many as four !4-/6% marker segments in any one stripe. When there are multiple !4-/6%
marker segments in one stripe, their effective lines YAT shall be distinct and ordered with earlier !4-/6% markers having
numerically lower YAT values

For each stripe of each resolution-layer, the arithmetic encoder shall produce a byte stream 3#$. It shall have four
streams as inputs, each of them providing one value for each pixel in the stripe being coded. As shown in Figure 18
these four inputs shall be a pixel 0)8, a context value #8, a TP indication 406!,5%, and a DP indication $06!,5%.

T0806480-90/D26

PIX

CX

TPVALUE

DPVALUE

SCD

Arithmetic

encoder

Figure 18 – Encoder inputs and outputs
FIGURE 18/T.82...[D26] = 3 CM

CCITT Rec. T.82 (1993 E) 27

The pixel to be coded is generally just a pixel from the image, but if lowest-resolution-layer TP or differential-layer TP
is enabled, it will occasionally be a pseudo-pixel, ,.40 (differential-layer) or 3,.40 (lowest-resolution-layer). The
inputs #8, 406!,5%, and $06!,5% are generated as described in 6.7, 6.4, 6.5 and 6.6.

For each stripe of each resolution layer the arithmetic decoder shall read a byte stream 3#$. As shown in Figure 19
this stream along with the per-pixel inputs streams #8, 406!,5%, and $06!,5% shall be processed to recreate the stream
0)8.

T0806490-90/D27

SCD

CX

TPVALUE

DPVALUE

PIX

Arithmetic

decoder

Figure 19 – Decoder inputs and outputs

FIGURE 19/T.82...[D27] = 3 CM

The inputs #8, 406!,5%, and $06!,5% are identical to those used in the encoder.

It is simplest to specify the requirements for the encoder and decoder by describing sample procedures. The sample
procedures are defined by flow diagrams and a table. Many equivalent procedures exist. Some will have speed,
memory-usage, or simplicity advantages over others. Some are more suitable for hardware implementation and others
more suitable for software implementation. The choice here was weighted in favor of greatest simplicity and
conciseness. Any encoding or decoding procedures producing the same outputs as the sample procedures may be used.
This output equivalence shall be the only requirement.

6.8.1 Fundamental arithmetic coding concepts (informative)

6.8.1.1 Interval subdivision

Recursive probability interval subdivision is the basis for arithmetic coding. Conceptually, an input sequence of symbols
is mapped into a real number x on the interval [0,1) where a square bracket on an interval end denotes equality being
allowed and a curved bracket denotes it being disallowed. What is transmitted or stored instead of the original sequence
of symbols is the binary expansion of x.

Figure 20 shows an example of such interval division through an initial sequence 0, 1, 0, 0 to be coded.

T0806500-90/D28

A(1)

A(011)

A(0101)

A(0100)A(010)

A(01)

A(0)

A(00)

1,000

0,000

0 1 0 0Symbols to be coded:

Figure 20 – Interval subdivision

FIGURE 20/T.82...[D28] = 7.5 CM

28 CCITT Rec. T.82 (1993 E)

The portion of [0,1) on which x is known to lie after coding an initial sequence of symbols is known as the current
coding interval. For each binary input the current coding interval is divided into two sub-intervals with sizes
proportional to the relative probabilities of symbol value occurrences. The new current coding interval becomes that
associated with the symbol value that actually occurred. In an encoder, knowledge of the current coding interval is
maintained in a variable giving its size and a second variable giving its base (lower bound). The output stream is
obtained from the variable pointing to the base.

In the partitioning of the current interval into two sub-intervals, the sub-interval for the less probable symbol (LPS)
is ordered above the sub-interval for the more probable symbol (MPS). Therefore, when the LPS is coded, the MPS
sub-interval is added to the base. This coding convention requires that symbols be recognized as either MPS or LPS,
rather than 0 or 1. Consequently, the size of the LPS interval and the sense of the MPS for each symbol must be known
in order to code that symbol.

Since the code stream always points to a real number in the current coding interval, the decoding process is a matter of
determining, for each decision, which sub-interval is pointed to by the code string. This is also done recursively, using
the same interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts any
interval the encoder added to the code stream. Therefore, the code stream in the decoder is a pointer into the current
interval relative to the base of the current interval.

Since the coding process involves addition of binary fractions rather than concatenation of integer code words, the more
probable binary decisions can often be coded at a cost of much less than one bit per decision.

6.8.1.2 Coding conventions and approximations

It is possible to perform these coding operations using fixed precision integer arithmetic. A register ! contains the size of
the current coding interval normalized to always lie in the range [0x8000,0x10000] where an “0x” prefix denotes a
hexadecimal integer. Whenever as a result of coding a symbol ! temporarily falls below 0x8000, it is doubled
recursively until it is greater than or equal to 0x8000. Such doublings are termed “renormalizations”.

A second register, #, contains the trailing bits of the code stream. The register # is also doubled each time ! is doubled.
Periodically (to keep # from overflowing) a byte of data is removed from the high order bits of the # register and placed
in an external code string buffer. Possible carry-over must be resolved before the contents of this buffer is committed to
output.

A simple arithmetic approximation is used in the interval subdivision. For an interval ! and a current estimate p of the
LPS probability, a precise calculation of the LPS sub-interval would require a multiplication p × !. Instead, the
approximation

p p× ≈ ×A A = ,3: (8)

is used where the overscore denotes an average over the probability density of ! and ,3: is a stored quantity equal to the
size of the approximated interval for the LPS. Because ! is kept in the range [0x8000,0x10000], replacing ! by its
statistical average does not introduce too great an error. Empirically, ! is found to have a probability density inversely
proportional to !.

Whenever the LPS is coded, the value of the MPS sub-interval !-,3: is added to the code register and the coding
interval is reduced to the value ,3: of the LPS sub-interval. Whenever the MPS is coded, the code register is left
unchanged and the interval is reduced to !-,3:. If ! falls below 0x8000 in performing these operations, it is restored to
the proper range by renormalizing both ! and #.

With the process sketched above, the approximation in the interval subdivision process can sometimes make the LPS
sub-interval larger than the MPS sub-interval. If, for example, the value of ,3: is 0,33 × 0x10000 and ! is at the
minimum allowed value of 0x8000, the approximate scaling gives 1/3 of the interval to the MPS and 2/3 to the LPS. To
avoid this size inversion, the interval is subdivided using this simple approximation, but the MPS and LPS interval
assignments are exchanged whenever the LPS interval is larger than the MPS interval. This MPS/LPS “conditional
exchange” can only occur when a renormalization will be needed.

Whenever a renormalization occurs, a probability estimation process is invoked which determines a new probability
estimate for the context currently being coded.

CCITT Rec. T.82 (1993 E) 29

6.8.2 Encoder

6.8.2.1 Encoder flow diagram

This flow diagram is executed for each stripe of each resolution layer. Pixels that are not typically predictable and are
not deterministically predictable are coded with the procedure %.#/$%. The initialization procedure).)4%.# is called
on entry, and the termination procedure &,53(, on exit (see Figure 21).

T0806510-90/D29

Call INITENC

Read PIX, CX,
TPVALUE, DPVALUE

TPVALUE ≠ 2
or

DPVALUE ≠ 2?

Yes

No

Call ENCODE

Finished stripe?

Yes

No

Call FLUSH

Figure 21 – Encoder flow diagram

FIGURE 21/T.82...[D29] = 17.5 CM

30 CCITT Rec. T.82 (1993 E)

6.8.2.2 Encoder code register conventions

The flow diagrams given in this subclause assume the register structure shown in Table 23.

Table 23 – Encoder register structure

The “a” bits are the fractional bits in the current interval value and the “x” bits are the fractional bits in the code register.
The “s” bits are spacer bits, at least one of which is needed to constrain carry-over, and the “b” bits indicate the bit
positions from which the completed bytes of data are removed from the # register. The “c” bit is a carry bit. The
seventeenth ! register bit is conceptually present and hence shown here, but it can easily be avoided if a 16-bit
implementation is desired. In this case, initializing to 0x0000 instead of 0x10000 works properly as long as underflow in
the underlying hardware or software produces the same low order 16 bits on subtracting from 0x0000 as on subtracting
from 0x10000. Such behavior is the usual.

These register conventions illustrate one possible implementation. Here especially, there are many other possibilities.

6.8.2.3 Probability estimation tables

For each possible value of the context #8 there is stored a one-bit value -03;#8= and a seven-bit value 34;#8=, which
together completely capture the adaptive probability estimate associated with that particular context. Four arrays indexed
by 34;#8= are shown in Table 24.

The color -03 is the (estimated) most likely color for 0)8. ,3: is the LPS interval size, which can be interpreted to a
probability via equation 9, although no such interpretation need be made as only ,3: ever enters subsequent
calculations.

The arrays .,03 and .-03 give, respectively, the next probability-estimation state for an observation of the LPS and the
MPS. The movement given by .-03 only occurs if in addition to observing the MPS, a renormalization also occurs.
When the movement given by .,03 occurs, there will also be an inversion of -03;#8= if 374#(;#8= is 1.

Annex D (informative) explains why the entries in Table 24 are the way they are.

6.8.2.4 Flow diagram for the procedure ENCODE

If the current symbol 0)8 equals the value currently thought to be most probable, the routine #/$%-03 is called.
Otherwise, #/$%,03 is called (see Figure 22).

6.8.2.5 Flow diagram for the procedure #/$%,03

The #/$%,03 procedure normally consists of the addition of the MPS sub-interval !-,3:;34;#8== to the code stream
and a scaling of the interval to the sub-interval ,3:;34;#8==. It is always followed by a renormalization. If
374#(;34;#8== is 1, -03;#8= is inverted.

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPS sub-interval is coded (see Figure 23).

6.8.2.6 Flow diagram for the procedure #/$%-03

The #/$%-03 procedure normally reduces the size of the interval to the MPS sub-interval. However, if the LPS
sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is coded
instead. Note that this interval size inversion cannot occur unless a renormalization is required after the coding of the
symbol (see Figure 24).

msb lsb

register 0000cbbb, bbbbbsss, xxxxxxxx, xxxxxxxx

! register 00000000, 0000000a, aaaaaaaa, aaaaaaaa

CCITT Rec. T.82 (1993 E) 31

Table 24 – Probability estimation table

34 ,3: .,03 .-03 374#(34 ,3: .,03 .-03 374#(

00 0x5a1d 01 01 1 057 0x01a4 55 058 0
01 0x2586 14 02 0 058 0x0160 56 059 0
02 0x1114 16 03 0 059 0x0125 57 060 0
03 0x080b 18 04 0 060 0x00f6 58 061 0
04 0x03d8 20 05 0 061 0x00cb 59 062 0
05 0x01da 23 06 0 062 0x00ab 61 063 0
06 0x00e5 25 07 0 063 0x008f 61 032 0
07 0x006f 28 08 0 064 0x5b12 65 065 1
08 0x0036 30 09 0 065 0x4d04 80 066 0
09 0x001a 33 10 0 066 0x412c 81 067 0
10 0x000d 35 11 0 067 0x37d8 82 068 0
11 0x0006 09 12 0 068 0x2fe8 83 069 0
12 0x0003 10 13 0 069 0x293c 84 070 0
13 0x0001 12 13 0 070 0x2379 86 071 0
14 0x5a7f 15 15 1 071 0x1edf 87 072 0
15 0x3f25 36 16 0 072 0x1aa9 87 073 0
16 0x2cf2 38 17 0 073 0x174e 72 074 0
17 0x207c 39 18 0 074 0x1424 72 075 0
18 0x17b9 40 19 0 075 0x119c 74 076 0
19 0x1182 42 20 0 076 0x0f6b 74 077 0
20 0x0cef 43 21 0 077 0x0d51 75 078 0
21 0x09a1 45 22 0 078 0x0bb6 77 079 0
22 0x072f 46 23 0 079 0x0a40 77 048 0
23 0x055c 48 24 0 080 0x5832 80 081 1
24 0x0406 49 25 0 081 0x4d1c 88 082 0
25 0x0303 51 26 0 082 0x438e 89 083 0
26 0x0240 52 27 0 083 0x3bdd 90 084 0
27 0x01b1 54 28 0 084 0x34ee 91 085 0
28 0x0144 56 29 0 085 0x2eae 92 086 0
29 0x00f5 57 30 0 086 0x299a 93 087 0
30 0x00b7 59 31 0 087 0x2516 86 071 0
31 0x008a 60 32 0 088 0x5570 88 089 1
32 0x0068 62 33 0 089 0x4ca9 95 090 0
33 0x004e 63 34 0 090 0x44d9 96 091 0
34 0x003b 32 35 0 091 0x3e22 97 092 0
35 0x002c 33 09 0 092 0x3824 99 093 0
36 0x5ae1 37 37 1 093 0x32b4 99 094 0
37 0x484c 64 38 0 094 0x2e17 93 086 0
38 0x3a0d 65 39 0 095 0x56a8 95 096 1
39 0x2ef1 67 40 0 096 0x4f46 101 097 0
40 0x261f 68 41 0 097 0x47e5 102 098 0
41 0x1f33 69 42 0 098 0x41cf 103 099 0
42 0x19a8 70 43 0 099 0x3c3d 104 100 0
43 0x1518 72 44 0 100 0x375e 099 093 0
44 0x1177 73 45 0 101 0x5231 105 102 0
45 0x0e74 74 46 0 102 0x4c0f 106 103 0
46 0x0bfb 75 47 0 103 0x4639 107 104 0
47 0x09f8 77 48 0 104 0x415e 103 99 0
48 0x0861 78 49 0 105 0x5627 105 106 1
49 0x0706 79 50 0 106 0x50e7 108 107 0
50 0x05cd 48 51 0 107 0x4b85 109 103 0
51 0x04de 50 52 0 108 0x5597 110 109 0
52 0x040f 50 53 0 109 0x504f 111 107 0
53 0x0363 51 54 0 110 0x5a10 110 111 1
54 0x02d4 52 55 0 111 0x5522 112 109 0
55 0x025c 53 56 0 112 0x59eb 112 111 1
56 0x01f8 54 57 0

32 CCITT Rec. T.82 (1993 E)

T0806520-90/D30

PIX = MPS[CX]?
No Yes

Call CODELPS Call CODEMPS

Figure 22 – Flow diagram for the procedure ENCODE

FIGURE 22/T.82...[D30] = 8 CM

6.8.2.7 Flow diagram for the procedure 2%./2-%

Both the interval register ! and the code register # are shifted, one bit at a time. The number of shifts is counted in the
counter #4, and when #4 is counted down to zero, a byte of compressed data is removed from # by the procedure
"94%/54. Renormalization continues until ! is no longer less than 0x8000 (see Figure 25).

6.8.2.8 Flow diagram for the procedure "94%/54

The procedure "94%/54 is called from 2%./2-%. The variable 4%-0 is a temporary variable that holds the byte at the
top of the # register that is to be output plus a carry indication. The variable "5&&%2 holds the most recent tentative
output that was unequal to 0xff. The counter 3# holds the number of 0xff bytes there have been since the byte in "5&&%2
was tentatively output (see Figure 26).

The shift of the code register by 19 bits aligns the output bits “b” with the low order bits of 4%-0. The first test then
determines if a carry-over has occurred. If so, the carry must be added to the tentative output byte in "5&&%2�before it is
finally committed to output. Any stacked output bytes (converted to zeros by the carry) are then output. Finally the new
tentative output byte "5&&%2�is set equal to 4%-0 less any carry.

If a carry has not occurred, the output byte is checked to see if it is 0xff. If so, the stack count 3# is incremented, as the
output must be delayed until the carry is resolved. If not, the carry has been resolved, and any stacked 0xff bytes may be
output.

NOTE – The probability that the counter 3# will reach a given integer n falls off rapidly as 2–8n so that in practice values
of 3# beyond 3 or 4 are rarely seen in coding an image. However, in principle 3# can become as large as the number of bytes in the
output file 3#$. Whenever carry is resolved, the input image can not be processed while 3# 0x00 or 0xff bytes are output. Since 3#
can become in principle quite large, this halt can also in principle become quite long.

If it is important for a particular implementation, the reserved marker can be used to finitely bound any halt of the
processing of the input image. One way is to insert the reserved marker whenever 3# reaches some small number, say 8, and then
decrement 3# by 8. Then, in a postprocessing step within the encoder each of these markers is replaced by either eight 0xff bytes or
eight 0x00 bytes as appropriate. This postprocessing must be done by the encoder as no decoder is expected to know anything about
such an application of the reserved marker. Such a use of the reserved marker byte only works with 03#$�data dynamically created
from 3#$ data as it is generated.

As a second way to use the reserved marker to this same end, let 3# build up to arbitrarily large values. If 3# is larger than
a given number (e.g. eight) when carry is eventually resolved, output the reserved marker followed by an 0x00 or 0xff to indicate the
carry resolution value. Then encode the actual 3# with additional bytes. Again, encoder postprocessing is required to replace this
marker by the proper number of 0xff or 0x00 bytes.

CCITT Rec. T.82 (1993 E) 33

T0806530-90/D31

A = A – LSZ[ST[CX]]

A < LSZ[ST[CX]]?
Yes

No

C = C + A
A = LSZ[ST[CX]]

Yes

No
SWTCH [ST[CX]] = 1?

MPS[CX] = 1 – MPS[CX]

ST[CX] = NLPS[ST[CX]]
Call RENORME

Figure 23 – Flow diagram for the procedure CODELPS

FIGURE 23/T.82...[D31] = 18 CM

6.8.2.9 Flow diagram for the procedure).)4%.#

If this stripe is at the top of the image, the probability-estimation states for all possible values of #8 are set to 0 (that is,
the equiprobable state). Otherwise, they are reset to their values at the end of the last stripe at this resolution. The stack
count 3# and the code register # are cleared. The counter #4 is set to 11 (a byte plus the 3 spacer bits). The coding
interval register ! is set to 0x10000. Alternatively, for 16-bit implementation, it can be set to 0x0000 as long as the
hardware or software produces the same 16 bits on subtracting a 16-bit quantity from 0 as is obtained in mathematically
subtracting from 0x10000. This will almost always be the case (see Figure 27).

34 CCITT Rec. T.82 (1993 E)

A = A – LSZ[ST[CX]]

A < LSZ[ST[CX]]?

YesNo

C = C + A
A = LSZ[ST[CX]]

YesNo

A < 0x8000?

ST[CX] = NMPS[ST[CX]]
Call RENORME

Figure 24 – Flow diagram for the procedure CODEMPS

T0806540-90/D32

FIGURE 24/T.82...[D32] = 16.5 CM

6.8.2.10 Flow diagram for the procedure &,53(

Two subprocedures are called first. Then the first byte that was written into the stream 3#$ is removed and if desired
some or all of any 0x00 bytes at the end of 3#$ are also removed until finally coming to a byte unequal to 0x00. Good
software and hardware implementations will set up auxiliary variables so that these bytes are never written in the first
place. The implementation described here was chosen for simplicity and conciseness (see Figure 28).

6.8.2.11 Flow diagram for the procedure #,%!2")43

The code register # is set to the value in ;#�� #�!�= that ends with the greatest possible number of zero bits
(see Figure 29).

6.8.2.12 Flow diagram for the procedure &).!,72)4%3

The final carry resolution is performed and two bytes from # are written (see Figure 30).

CCITT Rec. T.82 (1993 E) 35

T0806550-90/D33

A = A << 1
C = C << 1

CT = CT – 1

CT = 0?
No

Yes

Call BYTEOUT

A < 0x8000?
Yes

No

Figure 25 – Flow diagram for the procedure RENORME

FIGURE 25/T.82...[D33] = 13 CM

6.8.3 Decoder

6.8.3.1 Decoder flow diagram

This flow diagram is executed for each stripe of each resolution layer. Pixels that are not typically predictable and are
not deterministically predictable are decoded by the procedure $%#/$%. The initialization procedure).)4$%# is called
on entry (see Figure 31).

6.8.3.2 Decoder code register conventions

The flow diagrams given in this subclause assume the register structure shown in Table 25.

36 CCITT Rec. T.82 (1993 E)

T0806560-90/D34

TEMP = C >> 19

TEMP > 0xff?
NoYes

Figure 26 – Flow diagram for the procedure BYTEOUT

NoYes

BUFFER = BUFFER + 1
Write BUFFER

Write 0x00 SC times
SC = 0

BUFFER = TEMP&0xff

TEMP = 0xff?

SC = SC + 1

Write BUFFER
Write 0xff SC times

SC = 0
BUFFER = TEMP

C = C&0x7ffff
CT = 8

FIGURE 26/T.82...[D34] = 15 CM

CCITT Rec. T.82 (1993 E) 37

T0806570-90/D35

First stripe of

this layer or

forced reset?

Yes No

For all CX

ST[CX] = 0

MPS[CX] = 0

For all CX set ST[CX] and MPS[CX]

to their values at the end

of the previous stripe of this layer

SC = 0

A = 0x10000

C = 0

CT = 11

Figure 27 – Flow diagram for the procedure INITENC

FIGURE 27/T.82...[D35] = 11 CM

T0806580-90/D36

Call CLEARBITS
Call FINALWRITES

Remove the first byte in SCD
If desired, remove any 0x00 bytes at the end of SCD

Figure 28 – Flow diagram for the procedure FLUSH

FIGURE 28/T.82...[D36] = 4.5 CM

38 CCITT Rec. T.82 (1993 E)

T0806590-90/D37

TEMP = (A – 1 + C)&0xffff0000

TEMP < C?
Yes No

C = TEMP + 0x8000 C = TEMP

Figure 29 – Flow diagram for the procedure CLEARBITS

FIGURE 29/T.82...[D37] = 11.5 CM

CCITT Rec. T.82 (1993 E) 39

T0806600-90/D38

C = C << CT

C > 0x7ffffff?
Yes No

Write BUFFER + 1
Write 0x00 sc times

Figure 30 – Flow diagram for the procedure FINALWRITES

Write BUFFER + 1
Write 0xff sc times

Write (C >> 19)&0xff
Write (C >> 11)&0xff

FIGURE 30/T.82...[D38] = 14.5 CM

40 CCITT Rec. T.82 (1993 E)

T0806610-90/D39

Call INITDEC

Read CX, TPVALUE, DPVALUE

TPVALUE ≠ 2

DPVALUE ≠ 2

Yes

No

No

Set PIX to
TPVALUE

Set PIX to
DPVALUE

Call DECODE

Finished stripe?

No

Yes

Figure 31 – Decoder flow diagram

FIGURE 31/T.82...[D39] = 20 CM

CCITT Rec. T.82 (1993 E) 41

Table 25 – Decor register structure

#()'(and #,/7 can be thought of as one 32 bit # register, in that renormalization of # shifts a bit of new data from
bit 15 (leftmost) of #,/7 to bit 0 (rightmost) of #()'(. However, the decoding comparisons use #()'(alone. New data
is inserted into the “b” bits of #,/7 one byte at a time. As in the encoder, the seventeenth ! register bit is conceptually
present, but easily avoided in implementations.

6.8.3.3 Probability estimation tables

The probability-estimation tables used in decoding are identical to those used in encoding.

6.8.3.4 Flow diagram for the procedure $%#/$%

Only when a renormalization is needed is it possible that the MPS/LPS conditional exchange may have occurred (see
Figure 32).

T0806620-90/D40

A = A – LSZ[ST[CX]]

CHIGH < A?

Yes

NoYes

No
A < 0x8000?

Call MPS_EXCHANGE
Call RENORMD

Figure 32 – Flow diagram for the procedure DECODE

PIX = MPS[CX]
Call LPS_EXCHANGE

Call RENORMD

FIGURE 32/T.82...[D40] = 13 CM

msb lsb

#()'(register xxxxxxxx, xxxxxxxx

#,/7 register bbbbbbbb, 00000000

! register a, aaaaaaaa, aaaaaaaa

42 CCITT Rec. T.82 (1993 E)

6.8.3.5 Flow diagram for the procedure ,03?%8#(!.'%

See Figure 33.

TISO2420-93/D41

A < LSZ[ST[CX]]?
Yes No

CHIGH = CHIGH-A
A = LSZ[ST[CX]]

PIX = MPS[CX]
ST[CX] = NMPS[ST[CX]]

CHIGH = CHIGH-A
A = LSZ[ST[CX]]

PIX = 1 – MPS[CX]

SWTCH[ST[CX]] = 1?
No

Yes

MPS[CX] = 1 – MPS[CX]

ST[CX] = NLPS[ST[CX]]

Figure 33 – Flow diagram for the procedure LPS_EXCHANGE

FIGURE 33/T.82...[D41] = 17 CM

6.8.3.6 Flow diagram for the procedure -03?%8#(!.'%

See Figure 34.

6.8.3.7 Flow diagram for the procedure 2%./2-$

#4 is a counter which keeps track of the number of compressed bits in the #,/7 section of the # register. When #4 is
zero, a new byte is inserted into #,/7.

Both the interval register ! and the code register # are shifted, one bit at a time, until ! is no longer less than 0x8000.
(See Figure 35).

CCITT Rec. T.82 (1993 E) 43

T0806640-90/D42

A < LSZ[ST[CX]]?
Yes No

PIX = MPS[CX]
ST[CX] = NMPS[ST[CX]]

PIX = 1 – MPS[CX]

SWTCH[ST[CX]] = 1?
No

Yes

ST[CX] = NLPS[ST[CX]]

Figure 34 – Flow diagram for the procedure MPS_EXCHANGE

MPS[CX] = 1 – MPS[CX]

FIGURE 34/T.82...[D42] = 15 CM

6.8.3.8 Flow diagram for the procedure "94%).

Bytes are read from 3#$ until it exhausts, after which further reads are satisfied by returning 0x00. The bytes read are
inserted into the upper 8 bits of #,/7. The counter #4 is reset to 8 (see Figure 36).

6.8.3.9 Flow diagram for the procedure).)4$%#

If this stripe is at the top of the image, the probability-estimation states for all possible values of #8 are set to 0.
Otherwise, they are reset to their values at the end of the last stripe at this resolution. Three bytes are read into the #
register (see Figure 37).

7 Test methods and datastream examples

This normative clause describes test methods for the algorithm described in earlier clauses of this Specification. There
are many possible parameterizations, and this clause will document ways to test the accuracy of some parameterizations
thought to be helpful in debugging implementations.

44 CCITT Rec. T.82 (1993 E)

TISO2430-93/D43

CT = 0?

Yes

No

Call BYTEIN

A = A << 1
C = C << 1

CT = CT – 1

A < 0×8000?

CT = 0?

Call BYTEIN

Yes

No

No

Yes

Figure 35 – Flow diagram for the procedure RENORMD

FIGURE 35/T.82...[D43] = 17 CM

7.1 Arithmetic coding

In this subclause a small data set is provided for testing the arithmetic encoder and decoder. It will be assumed that this
data set represents the raw data of a stripe in raster scan order and from MSB to LSB. The test is structured to test many
of the encoder and decoder paths, but it is impossible in a short test sequence to check all of them so agreement with the
results of this test unfortunately does not guarantee a completely correct implementation.

0)8: 05e0 0000 8b00 01c4 1700 0034 7fff 1a3f 951b 05d8 1d17 e770 0000 0000 0656 0e6a

P#8: 0fe0 0000 0f00 00f0 ff00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

CCITT Rec. T.82 (1993 E) 45

T0806660-90/D44

Has all data been
read from SCD?

BUFFER = 0?
Read one byte from SCD
Set BUFFER equal to it

C = C + (BUFFER << 8)
CT = 8

Yes No

Figure 36 – Flow diagram for the procedure BYTEIN

NIGURE 36/T.82...[D44] = 10 CM

T0806670-90/D45

First stripe of
this layer or

forced reset?

For all CX
ST[CX] = 0

MPS[CX] = 0

For all CX set ST[CX] and MPS[CX]
to their values at the end

of the previous stripe of this layer

C = 0
Call BYTEIN
C = C << 8

Call BYTEIN
C = C << 8

Call BYTEIN
A = 0×10000

Yes No

Figure 37 – Flow diagram for the procedure INITDEC

FIGURE 37/T.82...[D45] = 11.5 CM

46 CCITT Rec. T.82 (1993 E)

The encoder, see Figure 18, has four inputs. The first sequence describes the 0)8 input and the second one describes the
corresponding #8 input. For simplicity, the input variable CX for this test takes only the two values 0 and 1, rather than
the 4096 values it takes on for the JBIG encoder/decoder. The other two inputs 406!,5% and $06!,5% are assumed to
be always 2 (for the encoder and decoder). The encoder’s output (3#$) consists of 200 bits (25 bytes) and is shown
below in hex form (hexadecimal).

3#$: 6989 995c 32ea faa0 d5ff 527f ffff ffc0 0000 003f ff2d 2082 91

For the decoder, see Figure 19, the inputs 3#$ and #8 are given from the sequences above while 0)8 is now the output.

Table 26 provides a symbol by symbol list of the arithmetic encoder and decoder operation. The first line in this table
corresponds to the).)4%.# and).)4$%# procedures with "5&&%2 initialized to 0x00. The last line in Table 26
corresponds to the encoder’s &).!,72)4%3 procedure. The first column is the event counter (%#), the second is the
value of the binary event 0)8 to be encoded and decoded and the third is the corresponding value of the input variable
#8. The -03 column indicates the sense of -03, and the #% column indicates that the conditional exchange (see 6.8.2.5,
6.8.2.6 and 6.8.3.4) will occur when encoding (decoding) the current binary event 0)8. The current state (see Table 24)
and its corresponding ,03 size are shown in the columns labeled 34 and ,3:. Next is listed the value of the register !
before the event is encoded (decoded). Note that the ! register is always greater than or equal to 0x8000.

The variables up to this point were common for the encoder and decoder. The next five columns (#, #4, 3#, "5&, /54)
are only for the encoder and the last 3 columns (#, #4,).) are for the decoder. For the encoder the inputs are (0)8, #8)
and its output is given in column /54, while for the decoder the inputs are (#8,).) and the output is 0)8. The values of
the register # listed under column # are given before the current event is encoded (decoded). For the encoder, #4 is a
counter indicating when a byte is ready for output from register #. 3# is the number of 0xff bytes stacked in the encoder
waiting for resolution of carry-over. The column under "5& shows the byte in variable "5&&%2 waiting to be sent out.
This byte can sometimes change from a carry-over. Finally, for the encoder the code bytes are listed under column /54.
These bytes are sent to the output during the coding of the current event. If more than one byte is listed, these bytes were
also output during the current event and they were generated by clearing the 3# counter.

For the decoder, the values of the register # are given before the event is decoded and they are listed under column #.
The decoder’s counter #4 is shown in the next column and indicates when to input the next byte from the code stream.
Finally in the last column, the code bytes are listed if they were read into the code register at the end of the current event.

The last row, shows the output generated by the &).!,72)4%3 procedure. This procedure generates also five additional
0x00 bytes, two from clearing the counter 3# and three from flushing the # register. These final 0x00 bytes are not
included in the code bytes 3#$, since the option to remove all the 0x00 bytes from the end of the code stream of a stripe
(see FLUSH procedure in Figure 28) was exercised. Notice, that it is allowable to leave any of these final 0x00 at the
end of the code stream 3#$. The decoder, upon reaching the end of the coded stream, reads 0x00’s in its # register until
it decodes the desired number (256) of pixels.

In order to generate the 03#$ code stream, see Table 12, the 345&& (0x00) byte must be inserted after each %3# (0xff)
byte in 3#$.

03#$: 6989 995c 32ea faa0 d5ff 0052 7fff 00ff 00ff 00c0 0000 003f ff00 2d20 8291

Finally, because of the assumption that the data (#8, 0)8) are the raw data of a stripe, the stripe data entity (3$%) can be
generated by appending the bytes %3# (0xff) and 3$./2- (0x02).

3$%: 6989 995c 32ea faa0 d5ff 0052 7fff 00ff 00ff 00c0 0000 003f ff00 2d20 8291 ff02

CCITT Rec. T.82 (1993 E) 47

Table 26 – Encoder and decoder trace data

ENCODER DECODER

EC PIX CX MPS CE ST LSZ A C CT CS BUF OUT C CT IN
hex hex hex hex hex hex hex

000 00000000 0 698999
001 0 0 0 0 000 5a1d 10000 00000000 11 0 00 69899900 8
002 0 0 0 1 000 5a1d 0a5e3 00000000 11 0 00 69899900 8
003 0 0 0 0 001 2586 0b43a 0000978c 10 0 00 3b873200 7
004 0 0 0 0 001 2586 08eb4 0000978c 10 0 00 3b873200 7
005 0 1 0 0 000 5a1d 0d25c 00012f18 09 0 00 770e6400 6
006 1 1 0 0 001 2586 0f07e 00025e30 08 0 00 ee1cc800 5
007 0 1 0 1 014 5a7f 09618 000ca4a0 06 0 00 8c932000 3
008 1 1 0 0 015 3f25 0b4fe 0019c072 05 0 00 a1f44000 2 5c
009 1 1 0 0 036 5ae1 0fc94 0068d92c 03 0 00 b06d5c00 8
010 1 1 1 0 037 484c 0b5c2 00d2f5be 02 0 00 1d74b800 7
011 1 1 1 0 038 3a0d 0daec 01a5eb7c 01 0 00 3ae97000 6
012 0 0 0 0 002 1114 0a0df 01a5eb7c 01 0 00 3ae97000 6
013 0 0 0 0 002 1114 08fcb 01a5eb7c 01 0 00 3ae97000 6
014 0 0 0 0 003 080b 0fd6e 0003d6f8 08 0 69 75d2e000 5
015 0 0 0 0 003 080b 0f563 0003d6f8 08 0 69 75d2e000 5
016 0 0 0 0 003 080b 0ed58 0003d6f8 08 0 69 75d2e000 5
017 0 0 0 0 003 080b 0e54d 0003d6f8 08 0 69 75d2e000 5
018 0 0 0 0 003 080b 0dd42 0003d6f8 08 0 69 75d2e000 5
019 0 0 0 0 003 080b 0d537 0003d6f8 08 0 69 75d2e000 5
020 0 0 0 0 003 080b 0cd2c 0003d6f8 08 0 69 75d2e000 5
021 0 0 0 0 003 080b 0c521 0003d6f8 08 0 69 75d2e000 5
022 0 0 0 0 003 080b 0bd16 0003d6f8 08 0 69 75d2e000 5
023 0 0 0 0 003 080b 0b50b 0003d6f8 08 0 69 75d2e000 5
024 0 0 0 0 003 080b 0ad00 0003d6f8 08 0 69 75d2e000 5
025 0 0 0 0 003 080b 0a4f5 0003d6f8 08 0 69 75d2e000 5
026 0 0 0 0 003 080b 09cea 0003d6f8 08 0 69 75d2e000 5
027 0 0 0 0 003 080b 094df 0003d6f8 08 0 69 75d2e000 5
028 0 0 0 0 003 080b 08cd4 0003d6f8 08 0 69 75d2e000 5
029 0 0 0 0 003 080b 084c9 0003d6f8 08 0 69 75d2e000 5
030 0 0 0 0 004 03d8 0f97c 0007adf0 07 0 69 eba5c000 4
031 0 0 0 0 004 03d8 0f5a4 0007adf0 07 0 69 eba5c000 4
032 0 0 0 0 004 03d8 0f1cc 0007adf0 07 0 69 eba5c000 4
033 1 0 0 0 004 03d8 0edf4 0007adf0 07 0 69 eba5c000 4 32
034 0 0 0 0 020 0cef 0f600 02260300 01 0 69 6270c800 6
035 0 0 0 0 020 0cef 0e911 02260300 01 0 69 6270c800 6
036 0 0 0 0 020 0cef 0dc22 02260300 01 0 69 6270c800 6
037 1 1 1 0 038 3a0d 0cf33 02260300 01 0 69 6270c800 6
038 0 1 1 0 038 3a0d 09526 02260300 01 0 69 69 6270c800 6
039 1 1 1 0 065 4d04 0e834 00097864 07 0 89 1d5f2000 4
040 1 1 1 0 065 4d04 09b30 00097864 07 0 89 1d5f2000 4
041 0 0 0 0 020 0cef 09c58 0012f0c8 06 0 89 3abe4000 3
042 0 0 0 0 020 0cef 08f69 0012f0c8 06 0 89 3abe4000 3
043 0 0 0 0 020 0cef 0827a 0012f0c8 06 0 89 3abe4000 3
044 0 0 0 0 021 09a1 0eb16 0025e190 05 0 89 757c8000 2
045 0 0 0 0 021 09a1 0e175 0025e190 05 0 89 757c8000 2
046 0 0 0 0 021 09a1 0d7d4 0025e190 05 0 89 757c8000 2
047 0 0 0 0 021 09a1 0ce33 0025e190 05 0 89 757c8000 2
048 0 0 0 0 021 09a1 0c492 0025e190 05 0 89 757c8000 2
049 0 0 0 0 021 09a1 0baf1 0025e190 05 0 89 757c8000 2
050 0 0 0 0 021 09a1 0b150 0025e190 05 0 89 757c8000 2
051 0 0 0 0 021 09a1 0a7af 0025e190 05 0 89 757c8000 2
052 0 0 0 0 021 09a1 09e0e 0025e190 05 0 89 757c8000 2
053 0 0 0 0 021 09a1 0946d 0025e190 05 0 89 757c8000 2
054 0 0 0 0 021 09a1 08acc 0025e190 05 0 89 757c8000 2
055 0 0 0 0 021 09a1 0812b 0025e190 05 0 89 757c8000 2
056 1 0 0 0 022 072f 0ef14 004bc320 04 0 89 89 eaf90000 1 ea

48 CCITT Rec. T.82 (1993 E)

Table 26 – (continued)

ENCODER DECODER

EC PIX CX MPS CE ST LSZ A C CT CS BUF OUT C CT IN
hex hex hex hex hex hex hex

057 1 1 1 0 066 412c 0e5e0 000560a0 07 0 99 628ea000 4
058 1 1 1 0 066 412c 0a4b4 000560a0 07 0 99 628ea000 4
059 0 1 1 0 067 37d8 0c710 000ac140 06 0 99 c51d4000 3
060 0 1 1 0 082 438e 0df60 002d41e0 04 0 99 d7950000 1 fa
061 0 0 0 0 046 0bfb 0871c 005bbb64 03 0 99 7786fa00 8
062 1 0 0 0 047 09f8 0f642 00b776c8 02 0 99 99 ef0df400 7
063 0 0 0 0 077 0d51 09f80 00063120 06 0 5c 2c3f4000 3
064 0 0 0 0 077 0d51 0922f 00063120 06 0 5c 2c3f4000 3
065 0 1 1 1 089 4ca9 084de 00063120 06 0 5c 2c3f4000 3
066 0 1 1 0 095 56a8 0e0d4 0018c480 04 0 5c b0fd0000 1 a0
067 0 1 0 0 095 56a8 0ad50 00329d58 03 0 5c 4da2a000 8
068 1 1 0 0 096 4f46 0ad50 00653ab0 02 0 5c 9b454000 7
069 0 1 0 1 101 5231 09e8c 00cb3174 01 0 5c 5c 7a768000 6
070 1 1 0 0 102 4c0f 0a462 0006fb9e 08 0 32 5c370000 5
071 1 1 0 1 106 50e7 0981e 000ea7e2 07 0 32 07c80000 4
072 1 1 0 1 108 5597 08e6e 001d4fc4 06 0 32 0f900000 3
073 0 0 0 0 077 0d51 0e35c 00753f10 04 0 32 3e400000 1
074 0 0 0 0 077 0d51 0d60b 00753f10 04 0 32 3e400000 1
075 0 0 0 0 077 0d51 0c8ba 00753f10 04 0 32 3e400000 1
076 0 0 0 0 077 0d51 0bb69 00753f10 04 0 32 3e400000 1
077 0 0 0 0 077 0d51 0ae18 00753f10 04 0 32 3e400000 1
078 0 0 0 0 077 0d51 0a0c7 00753f10 04 0 32 3e400000 1
079 0 0 0 0 077 0d51 09376 00753f10 04 0 32 3e400000 1
080 0 0 0 0 077 0d51 08625 00753f10 04 0 32 3e400000 1 d5
081 0 0 0 0 078 0bb6 0f1a8 00ea7e20 03 0 32 7c80d500 8
082 0 0 0 0 078 0bb6 0e5f2 00ea7e20 03 0 32 7c80d500 8
083 0 0 0 0 078 0bb6 0da3c 00ea7e20 03 0 32 7c80d500 8
084 0 0 0 0 078 0bb6 0ce86 00ea7e20 03 0 32 7c80d500 8
085 0 0 0 0 078 0bb6 0c2d0 00ea7e20 03 0 32 7c80d500 8
086 0 0 0 0 078 0bb6 0b71a 00ea7e20 03 0 32 7c80d500 8
087 0 0 0 0 078 0bb6 0ab64 00ea7e20 03 0 32 7c80d500 8
088 0 0 0 0 078 0bb6 09fae 00ea7e20 03 0 32 7c80d500 8
089 0 0 0 0 078 0bb6 093f8 00ea7e20 03 0 32 7c80d500 8
090 0 0 0 0 078 0bb6 08842 00ea7e20 03 0 32 7c80d500 8
091 1 0 0 0 079 0a40 0f918 01d4fc40 02 0 32 32 f901aa00 7
092 1 0 0 0 077 0d51 0a400 001eb180 06 0 ea a29aa000 3 ff
093 0 0 0 0 075 119c 0d510 01f482f0 02 0 ea bebbfe00 7
094 1 0 0 0 075 119c 0c374 01f482f0 02 0 ea ea bebbfe00 7
095 0 0 0 0 074 1424 08ce0 0009a640 07 0 fa 671ff000 4
096 0 0 0 0 075 119c 0f178 00134c80 06 0 fa ce3fe000 3
097 0 0 0 0 075 119c 0dfdc 00134c80 06 0 fa ce3fe000 3
098 1 0 0 0 075 119c 0ce40 00134c80 06 0 fa ce3fe000 3 52
099 1 0 0 0 074 1424 08ce0 00a04920 03 0 fa fa 8cdf5200 8
100 1 0 0 0 072 1aa9 0a120 00060ee0 08 0 a0 a11a9000 5
101 1 0 0 0 087 2516 0d548 0034aab8 05 0 a0 d51c8000 2 7f
102 1 0 0 0 086 299a 09458 00d56ba8 03 0 a0 93aa7f00 8
103 1 0 0 0 093 32b4 0a668 03575998 01 0 a0 a0 a3b1fc00 6
104 1 0 0 0 099 3c3d 0cad0 000f3530 07 0 d5 bff7f000 4
105 1 0 0 0 104 415e 0f0f4 003f0f0c 05 0 d5 c593c000 2
106 1 0 0 1 103 4639 082bc 007f7d44 04 0 d5 2bfb8000 1 ff
107 1 0 0 0 107 4b85 0f20c 01fdf510 02 0 d5 afeffe00 7
108 1 0 0 1 109 504f 0970a 03fd372e 01 0 d5 12d1fc00 6
109 1 0 0 1 111 5522 08d76 00026e5c 08 1 d5 25a3f800 5
110 1 0 0 0 112 59eb 0e150 0009b970 06 1 d5 968fe000 3
111 1 0 1 0 112 59eb 0b3d6 001481aa 05 1 d5 1e55c000 2
112 1 0 1 0 111 5522 0b3d6 00290354 04 1 d5 3cab8000 1 ff

CCITT Rec. T.82 (1993 E) 49

Table 26 – (continued)

ENCODER DECODER

EC PIX CX MPS CE ST LSZ A C CT CS BUF OUT C CT IN
hex hex hex hex hex hex hex

113 0 0 1 0 109 504f 0bd68 005206a8 03 1 d5 7957ff00 8
114 0 0 1 1 111 5522 0a09e 00a4e782 02 1 d5 187dfe00 7
115 0 0 1 1 112 59eb 096f8 0149cf04 01 1 d5 d5ff 30fbfc00 6
116 1 0 0 0 112 59eb 0f434 00073c10 07 0 52 c3eff000 4
117 1 0 1 0 112 59eb 0b3d6 000facb2 06 0 52 534de000 3
118 0 0 1 0 111 5522 0b3d6 001f5964 05 0 52 a69bc000 2
119 1 0 1 1 112 59eb 0aa44 003f7030 04 0 52 8fcf8000 1 ff
120 0 0 1 0 111 5522 0b3d6 007f8112 03 0 52 7eedff00 8
121 0 0 1 1 112 59eb 0aa44 00ffbf8c 02 0 52 4073fe00 7
122 0 0 0 1 112 59eb 0a0b2 01ff7f18 01 0 52 52 80e7fc00 6
123 1 0 0 0 111 5522 0b3d6 00078bbe 08 0 7f 7441f800 5
124 1 0 0 1 112 59eb 0aa44 000fd4e4 07 0 7f 2b1bf000 4
125 1 0 1 1 112 59eb 0a0b2 001fa9c8 06 0 7f 5637e000 3
126 1 0 1 0 111 5522 0b3d6 003fe11e 05 0 7f 1ee1c000 2
127 1 0 1 0 109 504f 0bd68 007fc23c 04 0 7f 3dc38000 1 c0
128 1 0 1 0 107 4b85 0da32 00ff8478 03 0 7f 7b87c000 8
129 1 0 1 1 107 4b85 08ead 00ff8478 03 0 7f 7b87c000 8
130 0 0 1 0 103 4639 0970a 01ff8f40 02 0 7f 70bf8000 7
131 0 0 1 1 107 4b85 08c72 03ffc022 01 0 7f 3fdd0000 6
132 1 0 1 1 109 504f 081da 00078044 08 1 7f 7fba0000 5
133 0 0 1 0 107 4b85 0a09e 000f639e 07 1 7f 9c5e0000 4
134 1 0 1 1 109 504f 0970a 001f716e 06 1 7f 8e8a0000 3
135 0 0 1 0 107 4b85 0a09e 003f7052 05 1 7f 8f9e0000 2
136 1 0 1 1 109 504f 0970a 007f8ad6 04 1 7f 750a0000 1 00
137 0 0 1 0 107 4b85 0a09e 00ffa322 03 1 7f 5c9e0000 8
138 0 0 1 1 109 504f 0970a 01fff076 02 1 7f 0f0a0000 7
139 0 0 1 1 111 5522 08d76 03ffe0ec 01 1 7f 1e140000 6
140 1 0 1 0 112 59eb 0e150 000f83b0 07 2 7f 78500000 4
141 1 0 1 1 112 59eb 08765 000f83b0 07 2 7f 78500000 4
142 0 0 1 0 111 5522 0b3d6 001f6254 06 2 7f 95ac0000 3
143 1 0 1 1 112 59eb 0aa44 003f8210 05 2 7f 6df00000 2
144 1 0 1 0 111 5522 0b3d6 007fa4d2 04 2 7f 3b2e0000 1 00
145 0 0 1 0 109 504f 0bd68 00ff49a4 03 2 7f 765c0000 8
146 0 0 1 1 111 5522 0a09e 01ff6d7a 02 2 7f 12860000 7
147 0 0 1 1 112 59eb 096f8 03fedaf4 01 2 7f 250c0000 6
148 0 0 0 0 112 59eb 0f434 000b6bd0 07 3 7f 94300000 4
149 0 0 0 1 112 59eb 09a49 000b6bd0 07 3 7f 94300000 4
150 1 0 0 0 111 5522 0b3d6 0017585c 06 3 7f a7a40000 3
151 0 0 0 1 112 59eb 0aa44 002f6e20 05 3 7f 91e00000 2
152 1 0 0 0 111 5522 0b3d6 005f7cf2 04 3 7f 830e0000 1 00
153 1 0 0 1 112 59eb 0aa44 00bfb74c 03 3 7f 48b40000 8
154 1 0 1 1 112 59eb 0a0b2 017f6e98 02 3 7f 91680000 7
155 0 0 1 0 111 5522 0b3d6 02ff6abe 01 3 7f 7fffffff 95420000 6
156 1 0 1 1 112 59eb 0aa44 000792e4 08 0 bf 6d1c0000 5
157 1 0 1 0 111 5522 0b3d6 000fc67a 07 0 bf 39860000 4
158 0 0 1 0 109 504f 0bd68 001f8cf4 06 0 bf 730c0000 3
159 0 0 1 1 111 5522 0a09e 003ff41a 05 0 bf 0be60000 2
160 0 0 1 1 112 59eb 096f8 007fe834 04 0 bf 17cc0000 1 3f
161 0 0 0 0 112 59eb 0f434 01ffa0d0 02 0 bf 5f307e00 7
162 0 0 0 1 112 59eb 09a49 01ffa0d0 02 0 bf 5f307e00 7
163 0 0 0 0 111 5522 0b3d6 03ffc25c 01 0 bf 3da4fc00 6
164 1 0 0 0 109 504f 0bd68 000784b8 08 1 bf 7b49f800 5
165 1 0 0 1 111 5522 0a09e 000fe3a2 07 1 bf 1c61f000 4
166 1 0 0 1 112 59eb 096f8 001fc744 06 1 bf 38c3e000 3
167 0 0 1 0 112 59eb 0f434 007f1d10 04 1 bf e30f8000 1 ff
168 1 0 0 0 112 59eb 0b3d6 00ff6eb2 03 1 bf 918dff00 8

50 CCITT Rec. T.82 (1993 E)

Table 26 – (continued)

ENCODER DECODER

EC PIX CX MPS CE ST LSZ A C CT CS BUF OUT C CT IN
hex hex hex hex hex hex hex

169 0 0 1 0 112 59eb 0b3d6 01ff913a 02 1 bf 6f45fe00 7
170 0 0 0 0 112 59eb 0b3d6 03ffd64a 01 1 bf 2ab5fc00 6
171 0 0 0 0 111 5522 0b3d6 0007ac94 08 2 bf 556bf800 5
172 1 0 0 0 109 504f 0bd68 000f5928 07 2 bf aad7f000 4
173 0 0 0 1 111 5522 0a09e 001f8c82 06 2 bf 7b7de000 3
174 1 0 0 0 109 504f 0aa44 003faffc 05 2 bf 6003c000 2
175 1 0 0 1 111 5522 0a09e 008013e2 04 2 bf 0c1d8000 1 2d
176 1 0 0 1 112 59eb 096f8 010027c4 03 2 bf 183b2d00 8
177 1 0 1 0 112 59eb 0f434 04009f10 01 2 bf 60ecb400 6
178 1 0 1 1 112 59eb 09a49 04009f10 01 2 bf c00000 60ecb400 6
179 1 0 1 0 111 5522 0b3d6 0001bedc 08 0 00 411d6800 5
180 0 0 1 0 109 504f 0bd68 00037db8 07 0 00 823ad000 4
181 0 0 1 1 111 5522 0a09e 0007d5a2 06 0 00 2a43a000 3
182 1 0 1 1 112 59eb 096f8 000fab44 05 0 00 54874000 2
183 1 0 1 0 111 5522 0b3d6 001fd0a2 04 0 00 2ef48000 1 20
184 1 0 1 0 109 504f 0bd68 003fa144 03 0 00 5de92000 8
185 0 0 1 0 107 4b85 0da32 007f4288 02 0 00 bbd24000 7
186 1 0 1 1 109 504f 0970a 00ffa26a 01 0 00 00 5a4a8000 6
187 1 0 1 0 107 4b85 0a09e 0007d24a 08 0 3f 271f0000 5
188 1 0 1 0 103 4639 0aa32 000fa494 07 0 3f 4e3e0000 4
189 0 0 1 0 104 415e 0c7f2 001f4928 06 0 3f 9c7c0000 3
190 0 0 1 1 103 4639 082bc 003f9f78 05 0 3f 2bd00000 2 82
191 0 0 1 0 107 4b85 0f20c 00fe7de0 03 0 3f af408200 8
192 0 0 1 1 109 504f 0970a 01fe48ce 02 0 3f 11730400 7
193 0 0 1 1 111 5522 08d76 03fc919c 01 0 3f 22e60800 6
194 0 0 1 0 112 59eb 0e150 00024670 07 1 3f 8b982000 4
195 0 0 0 0 112 59eb 0b3d6 00059baa 06 1 3f 08664000 3
196 0 0 0 0 111 5522 0b3d6 000b3754 05 1 3f 10cc8000 2
197 0 0 0 0 109 504f 0bd68 00166ea8 04 1 3f 21990000 1 91
198 0 0 0 0 107 4b85 0da32 002cdd50 03 1 3f 43329100 8
199 0 0 0 1 107 4b85 08ead 002cdd50 03 1 3f 43329100 8
200 0 0 0 0 103 4639 0970a 005a40f0 02 1 3f 00152200 7
201 0 0 0 0 104 415e 0a1a2 00b481e0 01 1 3f 3fff 002a4400 6
202 0 0 0 0 099 3c3d 0c088 000103c0 08 0 2d 00548800 5
203 0 0 0 0 099 3c3d 0844b 000103c0 08 0 2d 00548800 5
204 0 0 0 0 100 375e 0901c 00020780 07 0 2d 00a91000 4
205 0 0 0 0 093 32b4 0b17c 00040f00 06 0 2d 01522000 3
206 0 0 0 0 094 2e17 0fd90 00081e00 05 0 2d 02a44000 2
207 0 0 0 0 094 2e17 0cf79 00081e00 05 0 2d 02a44000 2
208 0 0 0 0 094 2e17 0a162 00081e00 05 0 2d 02a44000 2
209 0 0 0 0 086 299a 0e696 00103c00 04 0 2d 05488000 1
210 0 0 0 0 086 299a 0bcfc 00103c00 04 0 2d 05488000 1
211 0 0 0 0 086 299a 09362 00103c00 04 0 2d 05488000 1 00
212 0 0 0 0 087 2516 0d390 00207800 03 0 2d 0a910000 8
213 0 0 0 0 087 2516 0ae7a 00207800 03 0 2d 0a910000 8
214 0 0 0 0 087 2516 08964 00207800 03 0 2d 0a910000 8
215 0 0 0 0 071 1edf 0c89c 0040f000 02 0 2d 15220000 7
216 0 0 0 0 071 1edf 0a9bd 0040f000 02 0 2d 15220000 7
217 0 0 0 0 071 1edf 08ade 0040f000 02 0 2d 15220000 7
218 0 0 0 0 072 1aa9 0d7fe 0081e000 01 0 2d 2a440000 6
219 0 0 0 0 072 1aa9 0bd55 0081e000 01 0 2d 2a440000 6
220 0 0 0 0 072 1aa9 0a2ac 0081e000 01 0 2d 2a440000 6
221 0 0 0 0 072 1aa9 08803 0081e000 01 0 2d 2d 2a440000 6
222 0 0 0 0 073 174e 0dab4 0003c000 08 0 20 54880000 5
223 0 0 0 0 073 174e 0c366 0003c000 08 0 20 54880000 5

CCITT Rec. T.82 (1993 E) 51

Table 26 – (concluded)

7.2 Parameterized algorithm

This normative subclause describes test methods for the algorithm described in earlier clauses of this Specification.
There are many possible parameterizations, and this subclause will document ways to test the accuracy of some
parameterizations thought to be helpful in debugging implementations. If an encoder implementation claims to support a
parameterization broader than or as broad as any configuration for which test data is supplied in this subclause, then that
implementation must generate exactly the byte counts shown for those test data. If a decoder implementation claims to
support a parameterization broader than or as broad as any configuration for which test data is supplied in this subclause,
then that implementation must decode those test data (generated by an encoder implementation which satisfies the
encoder implementation requirements outlined above) and exactly generate the artificial image described in 7.2.1. An
encoder supporting AT but not using the suggested algorithm of Annex C to determine AT pixel movement shall
artificially force AT movements identical to those to be described here. Also, an encoder not choosing to remove all
possible 0x00 bytes from the end of all 3$% will need to temporarily postprocess to do so in order to duplicate the byte
counts given.

7.2.1 Artificial image

The various tests of the full algorithm use an artificially generated image. This image is generated by the flow chart in
Figure 38. It has 1960 pixels/line and 1951 lines and contains 86 1965 foreground pixels and 2 961 995 background
pixels.

ENCODER DECODER

EC PIX CX MPS CE ST LSZ A C CT CS BUF OUT C CT IN
hex hex hex hex hex hex hex

224 0 0 0 0 073 174e 0ac18 0003c000 08 0 20 54880000 5
225 0 0 0 0 073 174e 094ca 0003c000 08 0 20 54880000 5
226 0 0 0 0 074 1424 0faf8 00078000 07 0 20 a9100000 4
227 0 0 0 0 074 1424 0e6d4 00078000 07 0 20 a9100000 4
228 0 0 0 0 074 1424 0d2b0 00078000 07 0 20 a9100000 4
229 0 0 0 0 074 1424 0be8c 00078000 07 0 20 a9100000 4
230 1 0 0 0 074 1424 0aa68 00078000 07 0 20 a9100000 4
231 1 0 0 0 072 1aa9 0a120 0040b220 04 0 20 96600000 1 00
232 0 0 0 0 087 2516 0d548 0209c4b8 01 0 20 7f480000 6
233 0 0 0 0 087 2516 0b032 0209c4b8 01 0 20 7f480000 6
234 1 0 0 0 087 2516 08b1c 0209c4b8 01 0 20 20 7f480000 6
235 0 0 0 0 086 299a 09458 0008aaf8 07 0 82 65080000 4
236 1 0 0 0 087 2516 0d57c 001155f0 06 0 82 ca100000 3
237 0 0 0 0 086 299a 09458 00481958 04 0 82 66a80000 1 00
238 1 0 0 0 087 2516 0d57c 009032b0 03 0 82 cd500000 8
239 1 0 0 0 086 299a 09458 02438c58 01 0 82 82 73a80000 6
240 0 0 0 0 093 32b4 0a668 000fdc58 07 0 90 23a80000 4
241 0 0 0 0 094 2e17 0e768 001fb8b0 06 0 90 47500000 3
242 0 0 0 0 094 2e17 0b951 001fb8b0 06 0 90 47500000 3
243 0 0 0 0 094 2e17 08b3a 001fb8b0 06 0 90 47500000 3
244 0 0 0 0 086 299a 0ba46 003f7160 05 0 90 8ea00000 2
245 1 0 0 0 086 299a 090ac 003f7160 05 0 90 8ea00000 2 00
246 1 0 0 0 093 32b4 0a668 00ff61c8 03 0 90 9e380000 8
247 1 0 0 0 099 3c3d 0cad0 03ff55f0 01 0 90 aa100000 6
248 0 0 0 0 104 415e 0f0f4 000f920c 07 1 90 6df40000 4
249 0 0 0 0 104 415e 0af96 000f920c 07 1 90 6df40000 4
250 1 0 0 0 099 3c3d 0dc70 001f2418 06 1 90 dbe80000 3
251 1 0 0 0 104 415e 0f0f4 007f112c 04 1 90 eed40000 1 00
252 0 0 0 1 103 4639 082bc 00ff8184 03 1 90 7e7c0000 8
253 1 0 0 0 104 415e 08c72 01ff7c0e 02 1 90 83f20000 7
254 0 0 0 1 103 4639 082bc 03ff8e44 01 1 90 71bc0000 6
255 1 0 0 0 104 415e 08c72 0007958e 08 2 90 6a720000 5
256 0 0 0 1 103 4639 082bc 000fc144 07 2 90 3ebc0000 4
257 08c72 08000000 06 2 90 91

52 CCITT Rec. T.82 (1993 E)

TISO2440-93/D46

J = 0
PRSG = 1

I = 0

J < 192?
Yes

No

No

Yes

J < 1023
or

(I >> 3)&3 = 0? Write 0

Write REPEAT[I&7]
SUM = (PRSG&1) + [(PRSG >> 2)&1] +
(PRSG >> 11)&1) + [(PRSG >> 15)&1]

SUM = SUM&1
PRSG = (PRSG << 1) + SUM

PRSG&3 = 0?
NoYes

Write 1
REPEAT[I&7] = 1

Write 0
REPEAT[I&7] = 0

I = I + 1

I < 1960

No

Yes

J = J + 1

J < 1951

No

Yes

Figure 38 – Procedure for generating testing image

CCITT Rec. T.82 (1993 E) 53

This image has been constructed so as to exercise as many features as possible. It is in no sense a typical image and
compression results with it are not representative.

7.2.2 Single-progression sequential tests

For all three tests of this subclause, DL = 0, D = 0, P = 1, X0 = 1960, Y0 = 1951, and MY = 0. The values of
()4/,/, 3%1,),%!6%, 3-)$, 6,%.'4(, 40$/., $0/., $002)6, $0,!34 are immaterial. The four remaining parameters,
L0 , MX , ,2,47/, and 40"/. vary as shown in Table 27. The remaining columns of this table provide trace data when
the input image is the artificial image described in the previous subclause. For each of the first two tests there is just one
3#$ and the indicated byte count is its size. The final test, having L0 = 128, produces 16 3#$ and the indicated byte
count is the sum of their sizes. In all cases all possible trailing 0x00 bytes are removed from the end of each 3#$ (see
6.8.2.10 and Figure 28).

Table 27 – Trace parameters for tests of single-progression sequential coding

In the first two tests, AT is effectively disabled by having MX set equal to zero. The final test turns on AT as well as
lowest-resolution-layer TP. AT was implemented as described in Annex C and the suggestion to defer any AT switches
until the beginning of the next stripe was followed. The data in the last line of Table 28 were obtained by using 3$./2-,
which means that the probability estimator is not re-initialized. Table 29 provides information helpful in debugging AT.
The first two columns give the stripe and line at which the switch becomes effective (both line and stripe numbering
starts with zero), and the third column gives the lag τX for the new AT pixel location. The final 8 columns give the
values of the counters described in Annex C when the AT movement is triggered.

Table 28 – AT change information for third test of single-progression sequential coding

Table 29 – Byte counts for tests of single-progession sequential conding

Further data for these three tests is provided by Table 30. The entry in the 3#$ column duplicates the final column of
Table 27. The protected stripe coded data (03#$) is obtained from the stripe coded data (3#$) by replacing each byte
aligned 0xff with 0xff (%3#) and 0x00 (345&&). The stripe data entity (3$%) is obtained from the 03#$ by appending an
0xff (%3#) and 0x02 (3$./2-) byte at the end of each 03#$. The binary image data has the same number of bytes in it
as the 3$% except for the final test where it is eight bytes larger because of the AT movement marker segment. Finally,
the ")% is 20 bytes larger (the header size) than the ")$.

40"/. MX ,2,47/ L0
TP

pixels
Encoded

pixels
Coded
bytes

0
0
1

0
0
8

0
1
0

1951
1951
0128

000000
000000
376 320

3 823 960
3 823 960
3 447 640

316 094
315 887
252 557

Stripe Line τX Call C0 C3 C4 C5 C6 C7 C8

9 0 8 3900 2336 2456 2472 2446 2442 2730 3534

40"/. MX ,2,47/ L0 3#$ 03#$ 3$% ")$ ")%

0
0
1

0
0
8

0
1
0

1951
1951
0128

316 094
315 887
252 557

317 362
317 110
253 593

317 364
317 112
253 625

317 364
317 112
253 633

317 384
317 132
253 653

54 CCITT Rec. T.82 (1993 E)

Table 30 – Trace parameters for the enconding of artificial image

7.2.3 Progressive and progressive-compatible sequential test

For the test of this subclause, the input image is again the artificial image, but this time the parameters are set as follows
(see Table 9): DL = 0, D = 6, P = 1, X6 = 1960, Y6 = 1951, L0 = 2, MX = 8, MY = 0, ()4/,/ = 0 (immaterial),
3%1 = 0 (immaterial),),%!6% = 0 (immaterial), 3-)$ = 0 (immaterial), ,2,47/ = 0, 6,%.'4(= 0 (immaterial), 40$/.
= 1, 40"/. = 1, $002)6 = 0, and $0,!34 = 0 (immaterial). Although the above parameterization is a progressive-coding
parameterization, the value of 3%1 is immaterial and identical byte counts are generated under progressive-compatible
sequential coding. Hence, the test data here pertain to both modes. AT is again implemented as suggested in Annex C
with any switches found to be desirable deferred until the beginning of the next stripe.

Table 31 provides trace data for coding the artificial image with the above parameters. The coded byte count shown in
the last column is the sum of the number of bytes from all 16 3#$ of that layer. As before all possible 0x00 bytes are
removed.

There are two adaptive template switches, one in layer 6 and one in layer 5. Data pertinent to these two switches is
provided in Table 31.

Table 31 – AT change information

Per-layer byte counts for all 16 03#$ and 3$% are shown in Table 32, as well as the total number of bytes in the ")$ and
")% (see 6.2). The protected stripe coded data (03#$) is obtained from the stripe coded data (3#$) by replacing each
byte aligned 0xff with 0xff (%3#) and 0x00 (345&&). The stripe data entity (3$%) is obtained from the 03#$ by
appending an 0xff (%3#) byte and an 0x02 (3$./2-) byte at the end of each 03#$. Finally, the binary image data field
")$ is obtained by concatenating all 112 3$%s (7 layers with 16 stripes for each layer) and the two !4-/6% marker
segments, and the ")% is obtained by appending the ")$ to the twenty byte ")(.

Table 32 – Byte counts for the artificial image

Layer Xd Yd Ld
TP

lines
TP

exceptions
TP

pixels
DP

pixels
Encoded

pixels
Coded
bytes

6
5
4
3
2
1
0

1960
0980
0490
0245
0123
0062
0031

1951
0976
0488
0244
0122
0061
0031

128
064
032
016
008
004
002

137
186
181
117
061
031
003

7033
1442
0135
0008
0000
0000

–

375 520
093 120
022 792
005406
001238
000248
000093

589 344
128 642
030 230
007246
001769
000452

–

2 859 096
0734 718
0186 098
0047 128
0011 999
0003082
0000868

188 817
065 584
016 565
004994
001430
000370
000113

Layer Stripe Line τX Call C0 C3 C4 C5 C6 C7 C8

6
5

09
10

0
0

8
4

3243
2580

1984
1323

2014
1401

2055
2259

2031
1440

2001
1447

2212
1426

2924
1966

Layer 3#$ 03#$ 3$% ")$ ")%

6
5
4
3
2
1
0

188 817
065 584
016 565
004994
001430
000370
000113

189 584
065 905
016 634
005010
001434
000373
000114

189 616
065 937
016 666
005042
001466
000405
000146

Total 277 873 279 054 279 278 279 294 279 314

CCITT Rec. T.82 (1993 E) 55

7.3 Datastream examples

A sample ")% for single-progression sequential coding of a binary image 1728 pixels wide and 2376 pixels tall with one
stripe for the entire image and all binary parameters set to zero is (in hexadecimal):

|0x00|0x01|0x01|0x00|0x00 0x00 0x06 0xc0|0x00 0x00 0x09 0x48|

|0x00 0x00 0x09 0x48|0x00|0x00|0x00|0x00|

| 03#$ for entire image |0xff|0x02|

(The vertical bars show logical groupings, but otherwise are no different from a simple space.)

A sample ")% for a progressive-compatible sequential encoding of a binary image 1728 pixels wide and 2376 pixels tall
with 1 differential layer, 64 lines per stripe in the reduced image, and all binary parameters except 3%1 set to zero is (in
hexadecimal):

|0x00|0x01|0x01|0x00|0x00 0x00 0x06 0xc0|0x00 0x00 0x09 0x48|

|0x00 0x00 0x00 0x40|0x00|0x00|0x04|0x00|

| 03#$ for stripe 00 and layer 0 (base image lines 0000 to 0063)|0xff|0x02|

| 03#$ for stripe 00 and layer 1 (diff. image lines 0000 to 0127)|0xff|0x02|

| 03#$ for stripe 01 and layer 0 (base image lines 0064 to 0127)|0xff|0x02|

| 03#$ for stripe 01 and layer 1 (diff. image lines 0128 to 0255)|0xff|0x02|

·
·
·

| 03#$ for stripe 17 and layer 0 (base image lines 1088 to 1151)|0xff|0x02|

| 03#$ for stripe 17 and layer 1 (diff. image lines 2176 to 2303)|0xff|0x02|

| 03#$ for stripe 18 and layer 0 (base image lines 1152 to 1187)|0xff|0x02|

| 03#$ for stripe 18 and layer 1 (diff. image lines 2304 to 2375)|0xff|0x02|

The parenthetical comments indicate which lines of the base and differential images are encoded in which stripe.

A sample ")% for a progressive encoding of a binary image 1728 pixels wide and 2376 pixels tall with 1 differential
layer, 64 lines per stripe in the reduced image, and all binary parameters set to zero is (in hexadecimal):

|0x00|0x01|0x01|0x00|0x00 0x00 0x06 0xc0|0x00 0x00 0x09 0x48|

|0x00 0x00 0x00 0x40|0x00|0x00|0x00|0x00|

| 03#$ for stripe 0 and layer 0 (base image lines0000 to 0063)|0xff|0x02|

| 03#$ for stripe 1 and layer 0 (base image lines0064 to 0127)|0xff|0x02|

·
·
·

| 03#$ for stripe 17 and layer 0 (base image lines 1088 to 1151)|0xff|0x02|

| 03#$ for stripe 18 and layer 0 (base image lines 1152 to 1187)|0xff|0x02|

| 03#$ for stripe 00 and layer 1 (diff. image lines00000 to 0127)|0xff|0x02|

| 03#$ for stripe 01 and layer 1 (diff. image lines00128 to 0255)|0xff|0x02|

·
·
·

| 03#$ for stripe 17 and layer 1 (diff. image lines 2176 to 2303)|0xff|0x02|

| 03#$ for stripe 18 and layer 1 (diff. image lines 2304 to 2375)|0xff|0x02|

56 CCITT Rec. T.82 (1993 E)

Annex A
Suggested minimum support for free parameters

(This annex does not form an integral part of this Recommendation | International Standard)

Applications may set any of the 19 free parameters to any values within the ranges specified in Table 9. The suggestions
on minimum support contained in this annex are being given so that it might be possible for a broad range of
applications to share hardware and exchange decodable image data. Unless absolutely necessary, applications are
encouraged to not choose parameter values outside the suggested support ranges.

Table A.1 lists suggested minimum ranges of decoder support. Hardware and software intended for general use with a
variety of different output devices should be such that, if provisioned with sufficient external memory, support is
available for parameter choices within the indicated ranges. A complete decoder that includes a specific output device
should provide support over these same ranges, but with the obvious exceptions that there need be no support for

– image dimensions XD and YD beyond the capability of the particular output device that is available;

– values of P beyond the capability of the particular output device that is available; and

– more than one stripe order as defined by 3%1,),%!6%, and 3-)$.

NOTE – In single-progression sequential applications the maximum support for D is zero, the maximum support for L0 is
YD, and no support is required for the parameters ()4/,/, 3%1, 40$/., $0/., $002)6, and $0,!34.

Table A.1 – Suggested minimum support for free parameters

Parameter Minimum Maximum

DL 0 D

D DL 6
P 1 4

XD 1 5184
YD 1 8192
L0 1 128/2D, for D > 0

YD, for D = 0

MX 0 8, for encoders
16, for decoders

MY 0 0
()4/,/ 0 0
3%1 0 1

),%!6% 0 1
3-)$ 0 1

,2,47/ 0 1
6,%.'4(0 1
40$/. 0 1
40"/. 0 1
$0/. 0 1

$002)6 0 1
$0,!34 0 1

CCITT Rec. T.82 (1993 E) 57

Annex B
Design of the resolution reduction table

(This annex does not form an integral part of this Recommendation | International Standard)

B.1 Filtering

The underlying principle in the reduction algorithm is the preservation of density via the use of filtering (a difference
equation). However, it is necessary to occasionally override the output of the filter in the interests of preserving edges,
preserving lines, preserving periodic patterns, and preserving dither patterns. Such overrides of the general rule are
termed “exceptions”.

Figure B.1 is a repeat of Figure 4 but with changes in the names for the various pixels. The color of the target pixel “?”
is decided using not only the four corresponding high-resolution pixels, h22, h23, h32, h33, but also the periphery pixels
h11, h12, h13, h21, h31 and the already committed low-resolution pixels l00, l01, l10. If the value of l00 is not equal to the
value of h11, their difference in value affects the current decision for the value of l11. Similarly, differences in value
between l10 and h21, between l10 and h31, between l01 and h12, and between l01 and h13 also affect the decision for the
current value. Specifically, the quantity

4 2 2 222 23 32 33 11 00 21 10 31 10 12 01 13 01h h h h h l h l h l h l h l+ + + + − + − + − + − + −() () () () () () (B-1)

or, equivalently,

4 2 322 12 21 23 32 11 13 31 33 01 10 00h h h h h h h h h l l l+ + + + + + + + − + −() () () (B-2)

is formed.

L00 L

L

H H H

H H H

H H H

11 12 13

21 22 23

31 32 33

01

10 ?

T0806690-90/D47

Figure B.1 – Pixels used to determine the color of a low-resolution pixel

FIGURE B.1/T.82...[D47] = 7.5 CM

Figure B.2 shows graphically the weightings in the latter form of the expression.

Assuming foreground and background are equally likely and that pixels are statistically independent, the expected value
of expression B.2 is 4,5. Pixel l11 is tentatively decided to be 1 if and only if expression B.2 is greater than 4,5. (It must
be integer.)

58 CCITT Rec. T.82 (1993 E)

?

1 2 1

2 4 2

1 2 1

–1 –3

–3

T0806700-90/D48

Figure B.2 – Pixels weightings

FIGURE B.2/T.82...[D48] = 7.5 CM

B.2 Exceptions

B.2.1 Edge preservation

Preserving edges is the most basic of the motivations for introducing exceptions. The defined edge exceptions help to
make edges of continuous color regions straight rather than zig-zag no matter whether the edge occurs on an even or odd
high-resolution line or an even or odd high-resolution column. The contexts for the 132 edge exceptions are listed below
in hexadecimal. Pixel colors are mapped to these integer contexts via the bit-significance map of Figure 4. For all 132 of
the listed contexts the actual color chosen is reversed from that given by the general rule.

0x007 0x207 0x407 0x607 0x807 0xa07 0xc07 0xe07 0x20f 0x40f 0x60f 0xa0f

0xc0f 0xe0f 0x617 0xa17 0xc17 0xe17 0x61f 0xe1f 0x227 0x427 0x627 0xa27

0xc27 0xe27 0x62f 0xa2f 0xc2f 0xe2f 0x637 0xe37 0x247 0x447 0x647 0x847

0xa47 0xc47 0xe47 0x049 0x249 0x449 0x649 0x849 0xa49 0xc49 0xe49 0x24b

0x44b 0x64b 0xa4b 0xc4b 0xe4b 0x24d 0x44d 0x64d 0x84d 0xa4d 0xc4d 0xe4d

0x659 0xa59 0xc59 0xe59 0x65b 0xe5b 0x269 0x469 0x669 0xa69 0xc69 0xe69

0x287 0x487 0x687 0xa87 0xc87 0xe87 0x8b6 0xab6 0x2c9 0x4c9 0x6c9 0xac9

0xcc9 0xec9 0x6cb 0xacb 0xccb 0xecb 0x6d9 0xed9 0x8f8 0xcf8 0x307 0x507

0x707 0x907 0xb07 0xd07 0xf07 0x334 0x336 0xb36 0x349 0x549 0x749 0x949

0xb49 0xd49 0xf49 0x578 0xd78 0x396 0xb96 0x3a6 0xbb2 0x3b4 0xbb4 0x3b6

0xbb6 0xfb6 0xdb8 0x5d0 0x5d8 0xdd8 0x5e8 0x5f0 0xdf0 0x5f8 0xdf8 0xff8

B.2.2 Line preservation

Vertical and horizontal lines are preserved by the general rule and by the edge exceptions. The defined line exceptions
help preserve linkage along slanted lines. The line exceptions are important for quality on text images. The 420 line
exceptions are listed below:

0x003 0x009 0x00a 0x022 0x088 0x0a6 0x0e8 0x0ee 0x116 0x124 0x158 0x168

0x170 0x186 0x194 0x1a2 0x1a8 0x1c0 0x20a 0x20e 0x215 0x21c 0x21d 0x223

0x22a 0x22e 0x231 0x235 0x236 0x24a 0x24f 0x252 0x254 0x270 0x277 0x289

0x291 0x294 0x2a4 0x2a8 0x2dd 0x2e0 0x2ed 0x2ee 0x311 0x312 0x318 0x322

CCITT Rec. T.82 (1993 E) 59

0x323 0x327 0x350 0x35b 0x35f 0x36b 0x36e 0x376 0x377 0x388 0x394 0x3ab

0x3ad 0x3c0 0x3c1 0x3c2 0x3c4 0x3c8 0x3c9 0x3dd 0x3e0 0x3f5 0x40a 0x40e

0x41c 0x423 0x431 0x44a 0x44f 0x451 0x452 0x453 0x454 0x470 0x477 0x489

0x48a 0x491 0x494 0x4a2 0x4a4 0x4ca 0x4d1 0x4d8 0x4dd 0x4e0 0x4e7 0x4ee

0x511 0x512 0x514 0x518 0x51f 0x522 0x524 0x525 0x526 0x527 0x52c 0x55f

0x564 0x570 0x577 0x588 0x589 0x58f 0x5a4 0x5ab 0x5c9 0x5ce 0x5dc 0x5e3

0x5f5 0x60e 0x61c 0x623 0x631 0x64a 0x64f 0x652 0x657 0x65d 0x66b 0x66f

0x670 0x677 0x678 0x679 0x689 0x68f 0x691 0x694 0x696 0x697 0x6a7 0x6b0

0x6b1 0x6b2 0x6b4 0x6b8 0x6cf 0x6dd 0x6e9 0x6f0 0x711 0x712 0x717 0x718

0x722 0x725 0x726 0x727 0x72c 0x72f 0x733 0x734 0x735 0x736 0x737 0x738

0x73c 0x757 0x759 0x75d 0x75f 0x764 0x776 0x777 0x788 0x792 0x799 0x7a6

0x7a7 0x7b4 0x7c1 0x7c2 0x7c4 0x7c8 0x7c9 0x7cb 0x7d0 0x7d1 0x7d2 0x7d8

0x7d9 0x7dc 0x7dd 0x7e8 0x7e9 0x7f0 0x7f5 0x80e 0x822 0x823 0x826 0x830

0x84a 0x866 0x86d 0x888 0x889 0x890 0x8a4 0x8c7 0x8c8 0x8cc 0x8e0 0x8ee

0x90f 0x916 0x922 0x924 0x925 0x947 0x94b 0x94d 0x94f 0x958 0x964 0x968

0x969 0x970 0x986 0x987 0x988 0x994 0x9b0 0x9c0 0x9c1 0x9c4 0xa0a 0xa0e

0xa1c 0xa23 0xa2a 0xa2e 0xa31 0xa32 0xa35 0xa4a 0xa4f 0xa52 0xa54 0xa56

0xa70 0xa74 0xa77 0xa88 0xa89 0xa8f 0xa91 0xa94 0xaa4 0xaa7 0xadd 0xae0

0xae2 0xae4 0xae8 0xaed 0xaee 0xb11 0xb12 0xb13 0xb18 0xb22 0xb27 0xb2e

0xb31 0xb5b 0xb6b 0xb6e 0xb76 0xb88 0xb89 0xb91 0xba8 0xbab 0xbac 0xbad

0xbb0 0xbb5 0xbc0 0xbc1 0xbc2 0xbc4 0xbc8 0xbc9 0xbd0 0xbdd 0xbe0 0xbe2

0xbe4 0xbe8 0xbf5 0xc0a 0xc0e 0xc1c 0xc22 0xc23 0xc31 0xc4a 0xc4f 0xc52

0xc54 0xc5c 0xc6b 0xc70 0xc77 0xc88 0xc89 0xc8a 0xc91 0xc94 0xc98 0xca4

0xca6 0xcac 0xcca 0xcd1 0xcd4 0xcdd 0xce0 0xce4 0xce7 0xce9 0xcee 0xd11

0xd12 0xd18 0xd19 0xd1f 0xd22 0xd23 0xd24 0xd25 0xd26 0xd27 0xd2c 0xd31

0xd34 0xd64 0xd77 0xd88 0xd8f 0xd91 0xda2 0xda4 0xda6 0xdab 0xdac 0xdb0

0xdc9 0xdca 0xdce 0xddc 0xde2 0xde3 0xde4 0xdf1 0xdf5 0xe0e 0xe1c 0xe23

0xe31 0xe4a 0xe4f 0xe52 0xe57 0xe5d 0xe5f 0xe6b 0xe6f 0xe70 0xe79 0xe89

0xe8f 0xe91 0xe94 0xe97 0xea4 0xea7 0xecf 0xee0 0xee9 0xeef 0xf11 0xf12

0xf17 0xf18 0xf22 0xf27 0xf2f 0xf37 0xf59 0xf5f 0xf77 0xf88 0xfa7 0xfaf

0xfb1 0xfc9 0xfcb 0xfd9 0xfdd 0xfe7 0xfe9 0xfeb 0xfed 0xff5 0xff6 0xffc

B.2.3 Periodic pattern preservation

Most periodic patterns are preserved by the general rule. Some exceptions are needed, however, for better performance
in regions of transition to and from periodic patterns. The 10 periodic-pattern exceptions are listed below:

0x638 0xa38 0x692 0xc92 0xaaa 0xcaa 0xb55 0xd55 0x36d 0x5c7

B.2.4 Dither pattern preservation

The 12 dither-pattern exceptions help preserve very low density or very high density dithering, i.e. isolated background
or foreground pixels. They are listed below:

0x010 0x028 0x082 0x085 0xeba 0xebd 0x142 0x145 0xf7a 0xf7d 0xfd7 0xfef

60 CCITT Rec. T.82 (1993 E)

Annex C
Adaptive template changes

(This annex does not form an integral part of this Recommendation | International Standard)

C.1 General

The technique described in this annex is computationally simple and makes good determinations of when an AT pixel
change is desirable. It will provide substantial coding gain, sometimes as much as a 80%, on images containing
halftoning.

The description assumes MY = 0, that is, that only on-line movement of the AT pixel is allowed. (The suggested
minimum support is only for this situation.) A generalization for MY ≠ 0 is obvious, but the resulting algorithm has not
been tested and with MY large the required encoder processing is substantial.

The algorithm checks at the beginning of each stripe to see which of the AT pixels has the greatest predictive value for
the target pixel. Whenever an AT pixel not currently configured into the template is found to have much greater
predictive value than the one that is, a switch might be desirable. It is essential though that any such template switches
only be made infrequently and for strong reason. Whenever a template switch is made, the probability estimates
maintained by the arithmetic coder become poor until sufficient time passes for readaptation to occur.

C.2 Differential layers

Figures C.1 and C.2 provide a flow diagram for AT processing in a differential layer. An array of counters is used to
measure predictive value. Counter cn, n = 0 or 3 ≤ n ≤ MX, counts the number of polarity coincidences between the target
pixel and candidate AT pixel n. Candidate AT pixel 0 is the default AT pixel. Candidate pixels n, 3 ≤ n ≤ MX are pixels
at τX = n and τY = 0. A polarity coincidence is said to have occurred whenever both pixels are background or both are
foreground.

The flow diagram of Figures C.1 and C.2 is executed once at the beginning of each stripe. The counters are reset to zero
and coincidences are counted until at the end of some line, the maximum possible count is greater than or equal to 2048.
When this count is reached, a nest of conditions is checked and if all of them are satisfied a template switch is made.
Otherwise, the template is left as it was for at least the remainder of the stripe.

Only checking once per stripe for a possible template switch is a reasonable way to save computation if the number of
stripes per image is not appreciably smaller than the suggested number, 35. If there are just a few stripes per image, or,
especially, if there is only one stripe per image, continual or periodic checking within each stripe might be needed.

At very low resolutions there may not be 2048 pixels in a stripe. In this case, no AT template changes will be made with
this algorithm. Such behavior is probably desirable. With too few pixels the data is noisy and can not provide reliable
guidance on where to move the AT pixel.

If it has been determined that an AT switch is desirable, there are two reasonable choices for when to make it effective.
One choice is to make the switch effective at the start of the next line. This approach provides the greater coding gain,
but requires either that AT processing be done in a prepass or that the 3#$ for a given stripe be buffered by an encoder
so as to be able to precede it by an !4-/6% marker segment if an AT switch is found desirable while coding that stripe.
Alternatively, at a very slight loss in coding efficiency (assuming again a reasonable number of stripes per image), the
switch can be made effective at the beginning (yAT = 0) of the next stripe. In this case, the AT marker segment need not
appear until the beginning of that stripe and pipelining the encoder is again possible.

C.3 Lowest resolution layer

AT processing in the lowest resolution layer can be done almost identically to that described in the subclause above for
differential layers. There are only three changes that need to be made to Figure C.1. First, remove the condition
$06!,5% = 2 from the block in the middle of Figure C.1. Second, replace the condition x ≥ MX with MX ≤ x < Xd – 2.
Lastly, appropriately change the set over which the counter index n varies.

CCITT Rec. T.82 (1993 E) 61

T0806710-90/D49

Top stripe?

τ = old valueOLD τ = 0OLD

X = 0, Y = 0
C = 0, N = 0, 3, ... , -

C = 0
N 8

ALL

Read PIX,
TPVALUE,
DPVALUE

Y = Y + 1

TPVALUE = 2
and

DPVALUE = 2
and

X ≥ -��?8

C = C + 1
For all N with polarity coincidence:

C = C + 1

ALL ALL

N N

X = X + 1 X = 8 – 1?

No

Yes

No Yes

Yes

NoNo

Yes

Y = , – 1?

D

D C > 2048?ALL

Call CHECK

Figure C.1 – Flow diagram for differential-layer AT

FIGURE C.1/T.82...[D49] = 21 CM PAGE PLEINE

62 CCITT Rec. T.82 (1993 E)

T0806720-90/D50

C = max {C C , ... C }

C = min {C C , ... C }

C = max {C , ... C }

C = min {C , ... C }

C = C at N = τ
τ = smallest τ such that:

C ≥ C for all λ ≠ τ

MAX

MIN

-8

-8

-8

-8

LMAX

LMIN

OLD N OLD

MAX

τ λ

0 3

0 3

3

3

MAX

MAX

OLD

Are the following satisfied?

C C >> 3)

C – C C C

C C C

C – (C – C – C

C – (C – C) > (C >> 4)

C – C > (C >> 2)

τ ≠ 0 or C – C > (C >> 3)

ALL

MAX

MAX ALL

 – < (

 > –

 – < (>> 4)

) >

ALL MAX

OLD ALL

MAX OLD ALL

OLD

MAX

MAX ALL OLD ALL

ALLMIN

LMIN ALLLMAX

C

CALL

Figure C.2 – Flow diagram for the procedure CHECK

Switch τ
to τ LMAX

!4

FIGURE C.2/T.82...[D50] = 19 CM

CCITT Rec. T.82 (1993 E) 63

Annex D
Design of the probability-estimation table

(This annex does not form an integral part of this Recommendation | International Standard)

D.1 Bayesian estimation

Let x0, x1, . . . be a sequence of independent, identically distributed, binary random variables taking on the values 1 and
0 with probabilities p1 and p0 = (1 – p1). Let n1 (k) denote the number of ones in the sequence x0, x1, . . . , xk–1 and let n0

(k) denote the number of zeroes in that same sequence. (Hence n0 (k) + n1 (k) = k.) If p1 is itself a random variable with a
uniform distribution on [0,1], then the Bayesian estimate 1$p (k) of p1 given an observation x0, x1, . . . , xk–1 is given by

$ ()
()

() ()
p k

n k

n k n k1
1

1 0

1

1 1
=

+
+ + +

(D-1)

The estimate

$ ()
()

() ()
p k

n k

n k n k1
1

1 0
=

+
+ + +

δ
δ δ

(D-2)

with δ ∈ (0,1) is also a Bayesian estimate. However, the particular a priori distribution for which it is Bayesian is one
that makes values of p1 near 0 and 1 more likely than values near ½. The smaller the value of δ is, the more skewed
toward 0 and 1 this probability density is.

D.2 Multiple contexts

The arithmetic coder of this Specification operates in an environment of multiple contexts. In coding 0)8 (k) it is
supplied with a context #8 (k). A Bayesian estimate of the probability p1 (k) that 0)8 (k) will be 1 is provided by

$ ()
()

() ()
,

, ,
p k

n k

n k n k1
1

1 0
=

+
+ + +

cx

cx cx

δ
δ δ

(D-3)

where δ is again a free parameter in (0,1), n1,#8 (k) denotes the number of times 0)8 (i), i∈ [0,k–1], has been 1 in the
context #8�K	, and n0,#8 (k) is similarly defined for 0.

For ease of presentation in the remainder of this annex, a single context environment will be assumed, but all the
concepts and formulas to be developed are trivially generalizable for multiple contexts in the same way equation (D-3)
generalizes equation (D-2).

D.3 MPS/LPS parameterization

It is convenient to reparameterize equation (D-2). Let -03 (k) equal 1 or 0 as there are respectively more ones or zeros
in the sequence x0, x1, . . . , xk–1. (If there are an equal number, -03 (k) can be defined as either 0 or 1.) Then

$ ()
$ (),)
$ (),)

p k
p k k

p k k
LPS

LPS
�

�

� �
=

=
− =

RST
if (

if (

-03

-03
(D-4)

where

$ ()
()

() ()
p k

n k

n k n kLPS
LPS

MPS LPS
=

+
+ + +

δ
δ δ

(D-5)

and nLPS (k) and nMPS (k) are counts for, respectively, the less probable and more probable symbols in x0, x1, . . . , xk–1.

64 CCITT Rec. T.82 (1993 E)

Iterations for nLPS (k), nMPS (k), and -03 (k) are provided by

n k
n k x k n k n k

n kLPS
LPS k LPS MPS

LPS
()

() ,) () ()

(),
+ =

+ ≠ ≠RS|T|
1

1 if (and

otherwise

-03
(D-6)

n k
n k x k n k n k

n kMPS
MPS k LPS MPS

MPS
()

() ,) () ()

(),
+ =

+ = =RS|T|
1

1 if (or

otherwise

-03
(D-7)

and

-03
-03 -03

-03
()

(),) () ()

(),
k

k x k n k n k

k
k LPS MPS+ =

− ≠ =RST�
� if (and

otherwise
(D-8)

D.4 Rapid tracking

The estimate of pLPS given by (D-5) is a Bayesian estimate and an excellent estimate if as assumed in its derivation the
sequence x0, x1, . . . is stationary. However, in the application of arithmetic coding in this Specification, the input might
not be stationary and can change its statistical nature as different portions of an image are coded. For good coding
efficiency it is important that the probability estimator track changes in input statistics. The problem with the estimate
(D-5) of pLPS in a non-stationary environment is that it becomes “stuck”. Once nLPS and nMPS have built up to large
numbers, it takes many contrary observations to appreciably change pLPS .

At the same time, of course, accurate (not noisy) estimation in the steady-state environment is also desired. An excellent
compromise between rapid tracking and accurate steady-state estimation can be achieved by clamping nLPS. When the
iteration (D-6), (D-7), (D-8) drives nLPS over some threshold, then both it and nMPS are scaled down proportionately.
Since the scaling is proportionate, it does not affect pLPS . It does, however, keep nLPS and nMPS small so that response

to changing underlying statistics is rapid. The exact setting of the clamping threshold to trigger proportionate scaling
allows making a tradeoff between rapid tracking and estimation accuracy. Small thresholds favor rapid tracking and
large ones favor estimation accuracy.

D.5 Reducing computational burden

Table 24 in effect defines a probability estimator. This estimator imitates the clamped version of the iteration (D-6),
(D-7), (D-8) just discussed. Importantly though, this imitation is done in such a way as to minimize computational
burden.

Figures D.1A and D.1B show the same plot, but at two different vertical resolutions differing by a factor of 1000. This
plot shows graphically, in nLPS – nMPS space, the data that is presented tabularly in Table 24. There are 113 solid color
squares in the plot and each corresponds to one of the states shown in Table 24. Each of these states has a probability
estimate $PLPS associated with it via equation (D-5). The value of δ was chosen as 0,45 by experimental optimization.

For later graphical convenience, the point (–δ, –δ) is shown as a circle in Figures D.1A and D.1B. All lines radiating
from this point are lines of constant probability.

CCITT Rec. T.82 (1993 E) 65

T0814680-93/D51

0.0

5.0

10.0

15.0

20.0

0.0 2.0 4.0 6.0 8.0 10.0

N,03

N-03

Figure D.1A – Probability estimator states in n – n space: Maximum plotted n value = 25LPS MPS MPS

FIGURE D.1A/T.82...[D51] = 21 CM

66 CCITT Rec. T.82 (1993 E)

T0814690-93/D52

0.0 2.0 4.0 6.0 8.0 10.0

0.0

5000.0

10000.0

15000.0

20000.0

N,03

N-03

Figure D.1B – Probability estimator states in n – n space: Maximum plotted n value = 25 000LPS MPS MPS

FIGURE D.1B/T.82...[D52] = 21 CM

CCITT Rec. T.82 (1993 E) 67

The column labeled ,3: in Table 24 is obtained to first approximation by using equation 8 (see 6.8.1.2). The coding
interval ! has a probability density that is well approximated as being inversely proportional to ! so that A in equation 8
(see 6.8.1.2) is

0 721 0 10000 0. × =x xb893 (D-9)

The actual entries in Table 24 differ from pLPS × 0xb893 by a few percent because some further experimental

optimization has been performed.

When the MPS is received, ideally nMPS should be incremented by 1 as in equation (D-7). However, such an approach
would lead to an unreasonably large number of states. Instead movement downward in plot (D-1) is conditioned on there
being a renormalization. Let

a = A / 0x10000 (D-10)

denote the normalized ! register size. The probability PRN of an MPS driven renormalization is given by

P P p a
P a p

p

RN R
R

= − <
= < −
= −

{() (/)}
{ (/) / ()}
(/ ())

1 1 2
1 2 1

1 12log
(D-11)

where the random variable a has again been assumed to have a density on [½,1) inversely proportional to a. In any
vertical column the distance between any two states is equal to 1/PRN where PRN is as given by (D-11) with p equal to
pLPS for the upper of the two states. This large increment exactly compensates for the fact that nMPS is only being

changed with probability PRN.

When the current state is at the bottom of its column, it is of course impossible to go lower in that column by 1/PRN. In
plot (D-1) such states have immediately below them an open square marking where the MPS update would like to drive
nMPS. This desired point is connected by a dashed line to the state actually moved to. Note that the dashed lines all
radiate towards the circle at (–δ, –δ) and thus the remapping changes pLPS as little as possible.

When the LPS is received, there is always a renormalization and the nominal movement in nLPS – nMPS space is to (nLPS
+ 1, nMPS). Such points are also shown as open squares in plot (D-1). In all cases these open squares do not coincide
with any available state and must be remapped. When the nominal update is “internal” to the area in
nLPS – nMPS space covered by the available states, the remapping is done by a vertical movement to the nearest (in a
pLPS sense) available state. Such mappings are shown by solid lines. When the nominal update is “external”, clamping

as described in D.4 is desirable and the remapping is to an available state in the column one to the left of the nominal
point. Again the particular point chosen in this column is nearest to the nominal point in a pLPS sense. External

remappings like this are also shown as solid lines in plot (D-1).

There is one state that maps back into itself on receipt of an MPS. It is shown with a circle around it and only appears
with the large scaling of Figure D.1B. This state has the smallest associated probability of any of the states
(approximately 0.00002) and there is no better state to transition to upon receipt of the MPS.

The effective clamping threshold is a weak function of nMPS and hence pLPS . Values of pLPS near ½ are estimated with

less noise but hence less tracking ability than values near 0. This behavior was found to be desirable in designing a
common arithmetic encoder for both this Specification and also CCITT Rec. T.81 | ISO/IEC 10918-1. For the
application of this Specification, rapid tracking is of relatively more importance whereas in CCITT Rec. T.81 | ISO/IEC
10918-1 estimation quality is of relatively more importance. Conveniently, the values of pLPS generally encountered in
the application of this Specification are much smaller than those encountered in the application of CCITT Rec. T.81 |
ISO/IEC 10918-1. Having the clamping threshold become somewhat smaller for small pLPS in effect automatically
provides the desired behavior in each of the two different Specifications.

68 CCITT Rec. T.82 (1993 E)

Annex E
Patents

(This annex does not form an integral part of this Recommendation | International Standard)

E.1 Introductory remarks

The user’s attention is called to the possibility that compliance with this Specification may require use of an invention
covered by patent rights.

By publication of this Specification, no position is taken with respect to the validity of the claim or of any patent rights
in connection therewith. However, for each patent listed in this Annex, the patent holder has filed with the ISO/IEC
Information Technology Task Force (ITTF) and the Telecommunication Standardization Bureau (TSB) a statement of
willingness to grant a license under these rights on reasonable and non-discriminatory terms and conditions to
applications desiring to obtain such a license.

The criteria for including patents in this annex are:

1) The patent has been identified by someone who is familiar with the technical fields relevant to this
Specification, and who believes use of the invention covered by the patent is required for implementation
of one or more of the coding processes specified.

2) The patent holder has filed a letter with the ITTF and the TSB stating willingness to grant a license to an
unlimited number of applicants throughout the world under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

During maintenance of this Specification, the list of patents shall be updated, if necessary, upon any revisions to the
Recommendation | International Standard.

E.2 List of patents

Only patents in the home countries of the patent-holding corporations are listed. In many cases foreign filings have been
made.

1) IBM, A method and means for pipeline decoding of the high to low order pairwise combined digits of a
decodable set of relatively shifted finite number of strings, US 4 295 125, Oct. 13, 1981.

2) IBM, A method and means for carry-over control in a high order to low order combining of digits of a
decodable set of relatively shifted finite number strings, US 4 463 342, July 31, 1984.

3) IBM, High-speed arithmetic compression using concurrent value updating, US 4 467 317, August 21,
1984.

4) IBM, Method and means for arithmetic coding using a reduced number of operations, US 4 286 256,
August 25, 1981.

5) IBM, A multiplication-free multi-alphabet arithmetic code, US 4 652 856, Feb. 4, 1986.

6) IBM, Symmetrical adaptive data compression/decompression system, US 4 633 490, Dec. 30, 1986.

7) IBM, Arithmetic coding data compression/de compression by selectively employed, diverse arithmetic
encoders and decoders, US 4 891 643, January 2, 1990.

8) IBM, System for compression bi-level data, US 4 901 363, February 13, 1990.

9) IBM, Arithmetic coding encoder and decoder system, US 4 905 297, February 27, 1990.

10) IBM, Probability adaptation for arithmetic coders, US 4 935 882, June 19, 1990.

11) IBM, Probability adaptation for arithmetic coders, US 5 099 440, March 24, 1992.

12) IBM, Method and apparatus for processing pel signals of an image, US 4 982 292, January 1, 1991.

13) AT&T, Progressive transmission of high resolution two-tone facsimile images, US 4 870 497,
September 26, 1989.

14) AT&T, Edge decomposition for the transmission of high resolution facsimile images, US 4 873 577,
October 10, 1989.

15) AT&T, Adaptive probability estimator for entropy encoder/decoder, US 5 025 258, June 18, 1991.

16) AT&T, Efficient encoding/decoding in the decomposition and recomposition of a high resolution image
utilizing its low resolution replica, US 4 979 049, December 18, 1990.

CCITT Rec. T.82 (1993 E) 69

17) AT&T, Efficient encoding/decoding in the decomposition and recomposition of a high resolution image
utilizing pixel clusters, US 5 031 053, July 9, 1991.

18) AT&T, Entropy encoder/decoder including a context extractor, US 5 023 611, June 11, 1991.

19) AT&T, Method and apparatus for carry-over control in arithmetic entropy coding, US 4 973 961,
November 27, 1990.

20) KDD, Methods for reduced-sized images, Japan Application No. 63-212 432, pending in Japan.

21) KDD, Image reduction system, Japan Application No. 1-167 033, joint with Canon, pending in Japan.

22) Mitsubishi, Facsimile encoding communication system, Japan 1 251 403, July 6, 1984.

23) Mitsubishi, Encoding method, pending in Japan.

24) Canon, Image reduction system, Japan Application No. 1-167 033, joint with KDD, pending in Japan.

E.3 Contact addresses for patent information

Director, Telecommunication Standardization Bureau (formerly CCITT)

International Telecommunication Union

Place des Nations

CH-1211 Genève 20

Switzerland

Tel: +41 (22) 730 5111

Fax: +41 (22) 730 5853

ITTF

International Organization for Standardization

1, rue de Varembé

CH-1211 Genève 20

Switzerland

Tel: +41 (22) 734 0150

Fax: +41 (22) 733 3843

Program Manager, Licensing

Intellectual Property and Licensing Services

IBM Corporation

208 Harbor Drive

P.O. Box 10501

Stamford, Connecticut 08904-2501

Tel: +1 (203) 973 7935

Fax: +1 (203) 973 7981 or +1 (203) 973 7982

Mitsubishi Electric Corp.

Intellectual Property License Department

1-2-3 Morunouchi, Chiyoda-ku

Tokyo 100, Japan

Tel: +81 (3) 3218 3465

Fax: +81 (3) 3215 3842

70 CCITT Rec. T.82 (1993 E)

International Affairs Department

Kokusai Denshin Denwa Co. Ltd.

3-2 Nishishinjuku 2-chome

Shinjuku-ku

Tokyo 163, Japan

Tel: +81 (3) 3347 6457

Tel: +81 (3) 3347 6470

AT&T Intellectual Property Division Manager

Room 3A21

10 Independence Blvd.

Warren, NJ 07059, USA

Tel: +1 (908) 580 5392

Fax: +1 (908) 580 6355

Senior General Manager

Corporate Intellectual Property and Legal Headquarters

Canon Inc.

30-2 Shimomaruko 3-chome

Ohta-ku, Tokyo 146, Japan

Tel: +81 (3) 3758 2111

Fax: +81 (3) 3756 0947

CCITT Rec. T.82 (1993 E) 71

Annex F
Bibliography

(This annex does not form an integral part of this Recommendation | International Standard)

ISO/IEC 9281-1, Information technology – Picture coding methods – Part 1: Identification.

CCITT Rec. T.81 (1992) | ISO/IEC 10918-1:1993, Information technology – Digital compression and coding of
continuous-tone still images: Requirements and guidelines.

CCITT Recommendation T.4, Standardization of Group 3 facsimile apparatus for document transmission.

CCITT Recommendation T.6, Facsimile coding schemes and coding control functions for Group 4 facsimile apparatus.

WITTEN (I. H.), NEAL (R. M.) and CLEARY (J. G.): Arithmetic coding for data compression, Communications of the
ACM, Vol. 30, No. 6, pp. 520-540, June 1987.

ARPS (R. B.), TRUONG (T. K.), LU (D. J.), PASCO (R. C.) and FRIEDMAN (T. D.): A multi-purpose VLSI chip for
adaptive data compression of bilevel images, IBM Journal of Research and Development, Vol. 32, No. 6, pp. 775-795,
November 1988.

PENNEBAKER (W. B.), MITCHELL (J. L.), LANGDON (G. G.) Jr. and ARPS (R. B.): An overview of the basic
principles of the Q-Coder adaptive binary arithmetic coder, IBM Journal of Research and Development, Vol. 32, No. 6,
pp. 717-726, November 1988.

ONO (F.), KINO (S.), YOSHIDA (M.) and KIMURA (T.): Bi-level image coding with Melcode – Comparison of block
type code and arithmetic type code, IEEE Global Telecommunications Conference, pp. 255-260, November 1989.

DUTTWEILER (D.) and CHAMZAS (C.): Probability estimation in arithmetic and adaptive-Huffman entropy coders, to
appear in IEEE Trans. on Image Processing.

SHEINWALD (D.) and PASCO (R.): Deriving deterministic prediction rules from reduction schemes, to appear in IEEE
Trans. Information Theory.

LANGDON (G.): Method for carry-over control in a FIFO arithmetic code string, IBM Technical Disclosure Bulletin,
Vol. 23, No. 1, pp. 310-312, June 1980.

JONES (C.): An efficient coding system for long source sequences, IEEE Trans. Information Theory, Vol. IT-27,
pp. 280-291, May 1981.

LANGDON (G.): An introduction to arithmetic coding, IBM Journal of Research and Development, Vol. 28,
pp. 135-149, March 1984.

	ITU-T Rec. T.82 (03/93) INFORMATION TECHNOLOGY … CODED REPRESENTATION OF PICTURE AND AUDIO INFORMATION … PROGRESSIVE
	Foreword
	CONTENTS
	Intro. 1 General characteristics
	Intro. 2 Stripes and data ordering
	Intro. 3 Encoder functional blocks
	Intro. 3.1 Resolution reduction and differential layer encoder
	Intro. 3.2 Lowest resolution layer encoder

	Intro. 4 Decoder functional blocks
	INFORMATION TECHNOLOGY … CODED REPRESENTATION OF PICTURE AND AUDIO INFORMATION … PROGRESSIVE BI-LEVEL IMAGE COMPRESSION
	1 Scope
	2 Normative references
	3 Definitions
	4 Symbols and abbreviations
	4.1 Acronyms
	4.3 Mathematical symbols, operators, and indicators
	4.4 Variables with mnemonic names

	5 Conventions
	5.1 Flow diagram conventions and symbols
	5.2 Template graphics
	5.3 Spatial phase
	5.4 Data structure graphics

	6 Requirements
	6.1 General rules
	6.2 Data organization
	6.3 Resolution reduction
	6.4 Differential-layer typical prediction
	6.5 Lowest-resolution-layer typical prediction
	6.6 Deterministic prediction (DP)
	6.7 Model templates and adaptive templates
	6.8 Arithmetic coding

	7 Test methods and datastream examples
	7.1 Arithmetic coding
	7.2 Parameterized algorithm
	7.3 Datastream examples

	Annex A - Suggested minimum support for free parameters
	Annex B - Design of the resolution reduction table
	B.1 Filtering
	B.2 Exceptions
	Annex C - Adaptive template changes
	C.1 General
	C.2 Differential layers
	C.3 Lowest resolution layer
	Annex D - Design of the probability-estimation table
	D.1 Bayesian estimation
	D.2 Multiple contexts
	D.3 MPS/LPS parameterization
	D.4 Rapid tracking
	D.5 Reducing computational burden
	Annex E - Patents
	E.1 Introductory remarks
	E.2 List of patents
	E.3 Contact addresses for patent information
	Annex F - Bibliography

