
 

 
 

 

I n t e r n a t i o n a l  T e l e c o m m u n i c a t i o n  U n i o n  

  

ITU-T  J.340
TELECOMMUNICATION 
STANDARDIZATION  SECTOR 
OF  ITU 

(06/2010)  

 

SERIES J: CABLE NETWORKS AND TRANSMISSION 
OF TELEVISION, SOUND PROGRAMME AND OTHER 
MULTIMEDIA SIGNALS 

Measurement of the quality of service 

 
 Reference algorithm for computing peak signal 

to noise ratio of a processed video sequence 
with compensation for constant spatial shifts, 
constant temporal shift, and constant luminance 
gain and offset 

 

Recommendation  ITU-T  J.340 

 

 



 

  



 

  Rec. ITU-T J.340 (06/2010) i 

Recommendation ITU-T J.340 

Reference algorithm for computing peak signal to noise ratio of a processed video 
sequence with compensation for constant spatial shifts, constant temporal shift, 

and constant luminance gain and offset 

 

 

 

Summary 

Peak signal to noise ratio (PSNR) is a useful benchmark for evaluating performance improvements 
of new objective perceptual video quality metrics. This PSNR calculation method in 
Recommendation ITU-T J.340 has the advantage of automatically determining the highest possible 
PSNR value for a given video sequence over the range of spatial and temporal shifts. Only one 
temporal shift is allowed for all frames in the entire processed video sequence (i.e., constant delay). 

This Recommendation defines a full reference (FR) algorithm for computing both the calibration and 
PSNR estimations for a processed video sequence: peak signal to noise ratio with compensation for 
constant spatial shifts, constant temporal shift, and constant luminance gain and offset (PSNRconst). 
Since the PSNRconst algorithm only examines the Y luminance channel (as defined by 
Recommendation ITU-R BT.601-6) distortions in the CB and CR chrominance channels will not be 
detected by the algorithm of this Recommendation. The intent of this Recommendation is to define 
and facilitate a standardized PSNR metric for use by industry and standard organizations. Reference 
code and test vectors have been included to assure accurate and consistent implementation of this 
PSNRconst metric. 

 

 

 

History 

Edition Recommendation Approval Study Group  

1.0 ITU-T J.340 2010-06-29 9  
 

 

 

 

 



 

ii Rec. ITU-T J.340 (06/2010) 

FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 
operating and tariff questions and issuing Recommendations on them with a view to standardizing 
telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the 
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some 
other obligatory language such as "must" and the negative equivalents are used to express requirements. The 
use of such words does not suggest that compliance with the Recommendation is required of any party. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may 
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, 
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others 
outside of the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, 
protected by patents, which may be required to implement this Recommendation. However, implementers 
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the 
TSB patent database at http://www.itu.int/ITU-T/ipr/. 

 

 

 

  ITU  2011 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the 
prior written permission of ITU. 

http://www.itu.int/ITU-T/ipr/


 

  Rec. ITU-T J.340 (06/2010) iii 

CONTENTS 

 Page 

1 Scope ............................................................................................................................  1 

2 References.....................................................................................................................  2 

3 Definitions ....................................................................................................................  2 

4 Abbreviations and acronyms ........................................................................................  2 

5 Conventions ..................................................................................................................  2 

6 PSNRconst Algorithm Description .................................................................................  2 

6.1 Introduction ....................................................................................................  2 

6.2 Algorithm .......................................................................................................  3 

Appendix I – Reference Code to Calculate PSNR ...................................................................  5 

Bibliography.............................................................................................................................  20 

 

 





 

  Rec. ITU-T J.340 (06/2010) 1 

Recommendation ITU-T J.340 

Reference algorithm for computing peak signal to noise ratio of a processed 
video sequence with compensation for constant spatial shifts, constant temporal 

shift, and constant luminance gain and offset 

1 Scope 

Peak signal to noise ratio (PSNR) is a useful benchmark for evaluating performance improvements 
of new objective perceptual video quality metrics. For example, PSNR has been used as a 
benchmark for both the multimedia (MM) and reduced reference television (RRTV) test programs 
recently completed by the video quality experts group (VQEG). Since the calculation of PSNR is 
highly dependent upon proper estimation of spatial alignment, temporal alignment, gain, and level 
offset between the processed video sequence and the original video sequence, the method of 
measurement for PSNR should ideally include a method for performing these calibration 
procedures. This PSNR calculation method in this Recommendation has the advantage of 
automatically determining the highest possible PSNR value for a given video sequence over the 
range of spatial and temporal shifts. Only one temporal shift is allowed for all frames in the entire 
processed video sequence (i.e., constant delay). 

This Recommendation defines a full reference (FR) algorithm for computing both the calibration 
and PSNR estimations for a processed video sequence: peak signal to noise ratio with compensation 
for constant spatial shifts, constant temporal shift, and constant luminance gain and offset 
(PSNRconst). Since the PSNRconst algorithm only examines the Y luminance channel (as defined by 
[b-ITU-R BT.601-6]) distortions in the CB and CR chrominance channels will not be detected by 
the algorithm of this Recommendation. The intent of this Recommendation is to define and 
facilitate a standardized PSNR metric for use by industry and standards organizations. Reference 
code and test vectors have been included to assure accurate and consistent implementation of this 
PSNRconst metric. 

The intention of this PSNRconst metric is to fully calibrate the video and then calculate PSNR on the 
luminance plane only. For these purposes, calibration consists of selecting the valid video region 
spatially (e.g., discarding the overscan region) and then removing from the entire video sequence a 
constant temporal shift (delay or advance), a constant spatial shift (vertically and horizontally), and 
a constant luminance gain and offset.  

Common applications of the PSNRconst algorithm include: 

• A reference benchmark for evaluating the effectiveness of perceptual quality metrics. 

• A FR quality of service metric (QoS) for video transmission systems. 

It should be noted that the use of this calibration method will result in the best possible PSNRconst 
value for a video sequence with constant delay. This value may differ from PSNRconst obtained with 
perfectly calibrated video. Degradations due to gain are removed by this method. If higher 
PSNRconst is obtained using an alternative calibration method, then this alternative calibration 
method can be used, although differences are expected to be small. It is noted that this 
Recommendation considers only integer-pixel shifts. 

It should be noted that this PSNRconst algorithm will not detect as an impairment a constant spatial 
shift, a constant luminance gain, a constant luminance offset, or a constant temporal shift.  

2 References 

None. 



 

2 Rec. ITU-T J.340 (06/2010) 

3 Definitions 

None. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

FR  Full Reference 

MSE  Mean Squared Error 

PSNR  Peak Signal to Noise Ratio 

PSNRconst  Peak Signal to Noise Ratio with Compensation for Constant Spatial Shifts, Constant 
Temporal Shift, and Constant Luminance Gain and Offset 

QoS  Quality of Service 

SROI  Spatial Region of Interest 

ST  Spatial-Temporal  

TROI  Temporal Region of Interest 

5 Conventions 

None. 

6 PSNRconst algorithm description 

6.1 Introduction 

The PSNRconst algorithm performs an exhaustive search for the maximum Y-channel PSNRconst over 
plus or minus the horizontal and vertical spatial uncertainties (in pixels) and plus or minus the 
temporal uncertainty (in frames). The processed video segment is fixed and the original video 
segment is shifted over the search range. For each spatial-temporal (ST) shift, a linear fit between 
the Y channel processed and the original pixels is performed such that the mean squared error 
(MSE) of original – (gain*processed + offset) is minimized, hence maximizing PSNR. Thus, this 
calculation of PSNRconst yields values that are greater than or equal to commonly used PSNR 
implementations if the exhaustive search covered enough ST shifts.  

The ST search range, spatial region of interest (SROI), and temporal region of interest (TROI) are 
input parameters to the algorithm and the user of this Recommendation is advised to carefully 
consider appropriate input arguments for these quantities. For instance, some video systems truncate 
the border picture elements replacing these pixels with black. In these cases, the SROI should be 
reduced so as to not include these pixels in the PSNRconst calculation. 

Since the ST search performed by the algorithm only considers integer shifts in space and time, this 
method is not appropriate for video systems that contain sub-pixel shifts. Caution should also be 
observed when analysing video frames that contain interlaced video frames to assure that the 
interlaced framing of the processed video sequence is identical to the original video sequence before 
applying the algorithm (i.e., the algorithm does not account for one-field or half frame timing shifts 
between the processed and original). 

Since the video delay is assumed to be constant for all video frames in the processed video segment, 
this algorithm may not be appropriate for video systems that contain variable video delays (i.e., 
where the video delay of individual frames may vary). The algorithm may be used in these cases if 
one desires the PSNRconst calculation to include distortions due to variable video delays. 



 

  Rec. ITU-T J.340 (06/2010) 3 

6.2 Algorithm 

PSNR is defined as 10*log10 of the ratio of the peak signal energy to the MSE observed between the 
processed video signal and the original video signal. For the algorithm presented here, the peak 
signal energy is assumed to be (2R – 1)2 where R is the pixel depth, and the MSE summation is 
performed over the selected SROI and TROI of the processed video sequence. It is noted that the 
peak signal energy is 2552 (i.e., 255*255) for 8-bit video and 10232 for 10-bit video. The algorithm 
performs a linear fit of the processed image pixels to the corresponding original image pixels for 
each ST shift that is examined before computing the MSE. This is equivalent to removing gain 
(contrast) and level offset (brightness) calibration errors in the processed video before performing 
the PSNRconst calculation. 

Computation of PSNRconst for an (original, processed) video clip pair involves the following steps: 

1) Determine the appropriate ST search range for the processed video clip. This involves 
estimating the x and y spatial uncertainty (in pixels, denoted here as x_uncert and y_uncert) 
of spatial registration errors that might be present, as well as estimating the t temporal 
uncertainty (in frames, denoted as t_uncert) of any temporal registration errors that might 
be present. Since the algorithm will perform an exhaustive search over plus or minus 
x_uncert, y_uncert, and t_uncert shifts of the original video sequence with respect to the 
processed video sequence, these estimates should be as tight as possible while still 
including the optimal ST registration. 

2) Determine the maximum SROI and TROI that can be used for the processed video clip. If 
the processed video clip contains truncation of border pixels (i.e., black border), the SROI 
of the processed video clip should be reduced to eliminate these pixels. If the processed 
video clip contains transition video frames at the beginning or end of the video clip 
(perhaps due to prior or following scene content), these frames should be eliminated from 
the TROI. If necessary, reduce the maximum SROI and TROI to allow for the x_uncert, 
y_uncert, and t_uncert shifts found in step 1. The final SROI and TROI of the processed 
video clip that is determined by this step will remain fixed for all PSNR calculations. Since 
the original video clip will be shifted by a maximum of plus or minus x_uncert and 
y_uncert pixels and plus or minus t_uncert frames with respect to the processed video clip, 
one must assure that there are valid original video pixels that align to every processed video 
pixel within the final SROI and TROI. 

3) For each ST shift of the original sequence in step 1 (i.e., shifts in the x, y and t directions 
will be denoted here as xS, yS and tS, respectively), perform a linear fit of the processed 
pixels to the shifted original pixels. This linear fit is performed for all pixels in the entire 
ST region encompassed by the processed video SROI and TROI selected in step 2. For a 
given ST shift, this can be expressed as finding the Gain(xS,yS,tS) and Offset(xS,yS,tS) that 
minimizes the MSE given by: 

 

TROI,SROI),(

;)]},,(),,(*),,([),,({
1

MSE 2

∈∈

+−+++= 
tyx

tyxOffsettyxPtyxGainttyyxxO
N x

sss
y

sss
t

sss
 



 

4 Rec. ITU-T J.340 (06/2010) 

 where three dimensional matrices O and P represent the original and processed video 
sequences, respectively, the MSE is computed over all x, y, and t that belong to SROI and 
TROI, and N is the total number of pixels in the three dimensional processed video segment 
encompassed by SROI and TROI. It is noted that this algorithm considers only 
integer-pixel shifts. 

4) Compute the MSE in step 3 for all ST shifts within the spatial and temporal uncertainties 
defined in step 1 (i.e., –x_uncert ≤ xS ≤ x_uncert, –y_uncert ≤ yS ≤ y_uncert, and –t_uncert 
≤ tS ≤ t_uncert) and select the minimum MSE (i.e., MSEmin). This is the MSE that will 
maximize the PSNR, defined by: 

  








 −=
min

2

10const MSE

)12(
log*10PSNR

R
 

 where R is the pixel bit depth. For example, R is 8 for 8-bit video (thus numerator is 2552) 
and R is 10 for 10-bit video (thus numerator is 10232). 

Reference code and test vectors to implement the PSNRconst algorithm given above are provided in 
Appendix I. 
  



 

  Rec. ITU-T J.340 (06/2010) 5 

Appendix I 
 

Reference code to calculate PSNR 

(This appendix does not form an integral part of this Recommendation) 

This appendix contains reference MATLAB® code and test files for calculating PSNRconst. Since 
the entire processed and original video sequences are held in memory in double precision format, a 
64-bit operating system with at least 4 GB of available memory is recommended for 
[b-ITU-R BT.601-6] sampled video sequences that are 8-10 seconds in length. More memory will 
be required to process high definition video streams. This reference code is an example case for 
8-bit video and uses a constant peak value of 255. For different peak values, the user will need to 
modify the code and comments in several places. 

Two functions are provided in this appendix; a function that performs the exhaustive PSNR search 
(psnr_search) and a function to read Big-YUV video files (read_bigyuv). See the psnr_search 
function documentation for a description of the Big-YUV file format and the input parameters that 
control the exhaustive search. This reference code assumes that the original and processed Big-
YUV files contain the same number of video frames. 

The psnr_search function can process all the video clips stored in a user-specified directory. When 
the PSNRconst test vectors (i.e., video clips) are stored in a directory and the psnr_search function is 
called with the following arguments, the exhaustive PSNR search algorithm should output the 
following results, with the final line printout for each test vector being the maximum PSNR that 
was found over the ST search range: 

 

results = psnr_search 
('c:\psnr\','psnr','yuv',144,176,'sroi',5,5,140,172,'spatial_uncertainty',1,1,'te
mporal_uncertainty',8,'verbose'); 

 

Test = psnr,   Scene = calmob,   HRC = hrc2 

dy = -1, dx = -1, dt = -8, gain = 0.6593, off = 49.3691, PSNR = 15.8660 

dy =  0, dx = -1, dt = -8, gain = 0.6985, off = 43.8486, PSNR = 16.2311 

dy =  1, dx = -1, dt = -8, gain = 0.7379, off = 38.2988, PSNR = 16.6628 

dy =  1, dx = -1, dt = -7, gain = 0.7720, off = 33.3844, PSNR = 17.1414 

dy =  1, dx = -1, dt = -6, gain = 0.8090, off = 28.0591, PSNR = 17.7597 

dy =  1, dx = -1, dt = -5, gain = 0.8438, off = 23.0324, PSNR = 18.4701 

dy =  1, dx = -1, dt = -4, gain = 0.8682, off = 19.5165, PSNR = 19.0599 

dy =  1, dx = -1, dt = -3, gain = 0.8726, off = 18.8568, PSNR = 19.1561 

dy =  0, dx = -1, dt = -2, gain = 0.8913, off = 16.0535, PSNR = 19.8223 

dy =  0, dx = -1, dt = -1, gain = 0.8956, off = 15.4151, PSNR = 19.9367 

dy =  0, dx =  0, dt = -1, gain = 0.9493, off = 7.6633, PSNR = 22.4131 

dy =  0, dx =  0, dt =  0, gain = 0.9907, off = 1.6981, PSNR = 26.6079 

HRC = hrc2, psnr_ave = 26.6079 

 



 

6 Rec. ITU-T J.340 (06/2010) 

Test = psnr,   Scene = flogar,   HRC = hrc1 

dy = -1, dx = -1, dt = -8, gain = 0.8117, off = 30.9903, PSNR = 15.9486 

dy =  0, dx = -1, dt = -8, gain = 0.8455, off = 24.9600, PSNR = 16.4640 

dy = -1, dx =  0, dt = -8, gain = 0.8433, off = 25.9047, PSNR = 16.5596 

dy =  0, dx =  0, dt = -8, gain = 0.8899, off = 17.7494, PSNR = 17.5184 

dy =  0, dx =  1, dt = -8, gain = 0.8994, off = 16.2670, PSNR = 17.8159 

dy =  0, dx =  0, dt = -7, gain = 0.9014, off = 15.8865, PSNR = 17.8463 

dy =  0, dx =  1, dt = -7, gain = 0.9133, off = 14.0029, PSNR = 18.2496 

dy =  0, dx =  0, dt = -6, gain = 0.9156, off = 13.5618, PSNR = 18.2970 

dy =  0, dx =  1, dt = -6, gain = 0.9287, off = 11.4980, PSNR = 18.7934 

dy =  0, dx =  0, dt = -5, gain = 0.9334, off = 10.6651, PSNR = 18.9420 

dy =  0, dx =  1, dt = -5, gain = 0.9437, off = 9.0428, PSNR = 19.4130 

dy =  0, dx =  0, dt = -4, gain = 0.9537, off = 7.3531, PSNR = 19.8371 

dy =  0, dx =  1, dt = -4, gain = 0.9550, off = 7.1976, PSNR = 19.9555 

dy =  0, dx =  0, dt = -3, gain = 0.9730, off = 4.2002, PSNR = 20.9305 

dy =  0, dx =  0, dt = -2, gain = 0.9863, off = 2.0200, PSNR = 21.9130 

dy =  0, dx =  0, dt = -1, gain = 0.9909, off = 1.2905, PSNR = 22.3187 

HRC = hrc1, psnr_ave = 22.3187 

 

PSNR search function 
 

function [results] = psnr_search(clip_dir, test, varargin) 

% PSNR_SEARCH 

%   Estimate the Y-channel PSNR (PSNR) of all clips and HRCs (Hypothetical  

%   Reference Circuits) in a video test (input argument test) where the  

%   video clips are stored in the specified directory (clip_dir).  The  

%   video clips must have names that conform to the naming convention  

%   test_scene_hrc.yuv, with no extra '_' or '.' in the file names.  "test" 

%   is the name of the test, "scene" is the name of the scene, and "hrc" is 

%   the name of the HRC.  The name of the original reference clip for the  

%   PSNR calculation must be "test_scene_original.yuv". 

% 

%   Files must be stored in "Big YUV format", which is a binary format for 

%   storing Recommendation ITU-R BT.601 video sequences.  The format can 

%   be used for any image size.  In the Big YUV format, all the frames are 

%   stored sequentially in one big binary file. The sampling is 4:2:2 and  

%   image pixels are stored sequentially by video scan line as bytes in the 

%   following order: Cb1 Y1 Cr1 Y2 Cb3 Y3 Cr3 Y4…, where Y is the  

%   luminance component, Cb is the blue chrominance component, Cr is the  

%   red chrominance component, and the subscript is the pixel number. The  



 

  Rec. ITU-T J.340 (06/2010) 7 

%   Y signal is quantized into 220 levels where black = 16 and white = 235, 

%   while the Cb and Cr signals are quantized into 225 levels with zero  

%   signal corresponding to 128.  Occasional excursions beyond these levels 

%   may occur. For example, Y=15 may be produced by a real system, but in  

%   any case, Y, Cb, and Cr values are always between 0 and 255.  The 

%   original and processed Big YUV files must have the same number of frames. 

% 

%   A peak signal of 255 is used for calculation of PSNR.  Double precision 

%   calculations are used everywhere.  A 64-bit operating system with at 

%   least 4 GB of free memory is recommended since the entire double 

%   precision versions of the original and processed sequences must be held 

%   in memory. 

% 

% SYNTAX 

%   [results] = psnr_search('clip_dir', 'test', option); 

% 

% DESCRIPTION 

%   This function will process all video clips in the user-specified 

%   clip_dir and test, estimate the Y-channel PSNR of each clip, and then 

%   average these clip results to produce an estimate for each HRC.  The 

%   algorithm performs an exhaustive search for max PSNR over plus or minus 

%   the spatial_uncertainty (in pixels) and plus or minus the  

%   temporal_uncertainty (in frames).  The processed video segment is fixed 

%   and the original video segment is shifted over the search range.  For 

%   each spatial-temporal shift, a linear fit between the processed pixels  

%   and the original pixels is performed such that the mean squared error of 

%   [original-gain*processed+offset] is minimized (hence maximizing PSNR). 

% 

%   Any or all of the following optional properties may be requested (the 

%   first option is required for yuv files). 

% 

%   'yuv',rows,cols    Specifies the number of rows and cols for the Big 

%                      YUV files. 

% 

%   'sroi',top,left,bottom,right   Only use the specified spatial region  

%                                   of interest (sroi) for the PSNR 

%                                   calculation.  This is the sroi of the 

%                                   processed sequence, which remains fixed 

%                                   over all spatial shifts.  By default, 

%                                   sroi is the entire image reduced by the 



 

8 Rec. ITU-T J.340 (06/2010) 

%                                   spatial uncertainty.  If the user 

%                                   inputs a sroi, allowance must be made 

%                                   for the spatial search specified by 

%                                   'spatial_uncertainty'. 

% 

%   'frames',fstart,fstop  Only use the frames from fstart to fstop 

%                          (inclusive) to perform the PSNR estimate.  This 

%                          specifies the temporal segment of the processed 

%                          sequence, which remains fixed over all temporal 

%                          shifts.  By default, the temporal segment is the 

%                          entire file reduced by the temporal uncertainty. 

%                          If the user inputs an fstart and fstop, 

%                          allowance must be made for the temporal search 

%                          specified by 'temporal_uncertainty'.  

% 

%                           

%   'spatial_uncertainty',x,y   Specifies the spatial uncertainty (plus  

%                               or minus, in pixels) over which to  

%                               search.  The processed remains fixed and 

%                               the original is shifted.  By default, 

%                               this is set to zero. 

% 

%   'temporal_uncertainty',t  Specifies the temporal uncertainty 

%                             (plus or minus, in frames) over which 

%                             to search.  The processed remains fixed 

%                             and the original is shifted.  By 

%                             default, this is set to zero. 

% 

%   'verbose'   Display output during processing. 

% 

% 

%   The returned variable [results] is a struct that contains the following 

%   information for each processed clip i: 

% 

%   results(i).test    The test name for the video clip. 

%   results(i).scene   The scene name for the video clip. 

%   results(i).hrc     The HRC name for the video clip. 

%   results(i).yshift  The y shift for max PSNR. 

%   results(i).xshift  The x shift for max PSNR. 

%   results(i).tshift  The time shift for max PSNR. 



 

  Rec. ITU-T J.340 (06/2010) 9 

%   results(i).gain    The gain*processed+offset for max PSNR. 

%   results(i).offset 

%   results(i).psnr    The maximum PSNR observed over the search. 

% 

% EXAMPLES 

%   These examples illustrate how to call the routine to process the VQEG 

%   MM Phase I test scenes, where test scenes from each subjective 

%   experiment are stored in a unique directory.  These sequences must 

%   first be converted from AVI format to Big YUV format. 

% 

%   q01 = psnr_search('d:\q01\','q01','yuv',144,176,'sroi',5,5,140,172,... 

%       'spatial_uncertainty',1,1,'temporal_uncertainty',8,'verbose'); 

%   c01 = psnr_search('d:\c01\','c01','yuv',288,352,'sroi',8,8,281,345,... 

%       'spatial_uncertainty',1,1,'temporal_uncertainty',8,'verbose'); 

%   v01 = psnr_search('d:\v01\','v01','yuv',480,640,'sroi',14,14,467,627,... 

%       'spatial_uncertainty',1,1,'temporal_uncertainty',8,'verbose'); 

% 

 

% Define the peak signal level 

peak = 255.0; 

  

% Add extra \ in clip_dir in case user did not 

clip_dir = strcat(clip_dir,'\'); 

  

% Validate input arguments and set their defaults 

is_yuv = 0; 

is_whole_image = 1; 

is_whole_time = 1; 

x_uncert = 0; 

y_uncert = 0; 

t_uncert = 0; 

verbose = 0; 

dx=1;  % dx, dy, and dt sizes to use for gain and level offset calculations 

dy=1; 

dt=1; 

cnt=1; 

while cnt <= length(varargin), 

    if ~isstr(varargin{cnt}), 

        error('Property value passed into psnr_search is not recognized'); 

    end 



 

10 Rec. ITU-T J.340 (06/2010) 

    if strcmpi(varargin(cnt),'yuv') == 1 

        rows = varargin{cnt+1}; 

        cols = varargin{cnt+2}; 

        is_yuv = 1; 

        cnt = cnt + 3; 

    elseif strcmpi(varargin(cnt),'sroi') == 1 

        top = varargin{cnt+1}; 

        left = varargin{cnt+2}; 

        bottom = varargin{cnt+3}; 

        right = varargin{cnt+4}; 

        is_whole_image = 0; 

        cnt = cnt + 5; 

    elseif strcmpi(varargin(cnt),'frames') == 1 

        fstart = varargin{cnt+1}; 

        fstop = varargin{cnt+2}; 

        is_whole_time = 0; 

        cnt = cnt + 3; 

    elseif strcmpi(varargin(cnt), 'spatial_uncertainty') ==1 

        x_uncert = varargin{cnt+1}; 

        y_uncert = varargin{cnt+2}; 

        cnt = cnt + 3; 

    elseif strcmpi(varargin(cnt), 'temporal_uncertainty') ==1 

        t_uncert = varargin{cnt+1}; 

        cnt = cnt + 2; 

    elseif strcmpi(varargin(cnt),'verbose') == 1 

        verbose = 1; 

        cnt = cnt +1; 

    else 

        error('Property value passed into psnr_search not recognized'); 

    end 

end 

  

%  Get a directory listing 

files = dir(clip_dir);  % first two files are '.' and '..' 

num_files = size(files,1); 

  

% Find the HRCs and their scenes for the specified video test 

hrc_list = {}; 

scene_list = {}; 

for i=3:num_files 



 

  Rec. ITU-T J.340 (06/2010) 11 

    this_file = files(i).name; 

    und = strfind(this_file,'_'); % find underscores and period 

    dot = strfind(this_file,'.'); 

    if(size(und,2)==2) % possible standard naming convention file found 

        this_test = this_file(1:und(1)-1);  % pick off the test name 

        if(strmatch(test,this_test,'exact'))  % test clip found 

            this_scene = this_file(und(1)+1:und(2)-1); 

            this_hrc = this_file(und(2)+1:dot(1)-1); 

            % See if this HRC already exists and find its list location 

            loc = strmatch(this_hrc,hrc_list,'exact'); 

            if(loc)  % HRC already present, add to scene list for that HRC 

                if(size(strmatch(this_scene,scene_list{loc},'exact'),1)==0) 

                    scene_list{loc} = [scene_list{loc} this_scene]; 

                end 

            else  % new HRC found 

                hrc_list = [hrc_list;{this_hrc}]; 

                this_loc = size(hrc_list,1); 

                scene_list(this_loc) = {{this_scene}}; 

            end 

        end 

    end 

end 

  

scene_list = scene_list'; 

num_hrcs = size(hrc_list,1); 

  

% Results struct to store results, shifts are how much the original must be 

% shifted with respect to the processed 

results = struct('test', {}, 'scene', {}, 'hrc', {}, 'yshift', {}, ... 

    'xshift', {}, 'tshift', {}, 'gain', {}, 'offset', {}, 'psnr', {}); 

  

% Process one HRC at a time to compute average PSNR for that HRC 

index = 1;  % index to store results 

for i = 1:num_hrcs 

     

    psnr_ave = 0;  % initialize the psnr average summer for this HRC 

    this_hrc = hrc_list{i}; 

    if(strmatch('original',this_hrc,'exact')) % Don't process original 

        continue; 

    end 



 

12 Rec. ITU-T J.340 (06/2010) 

    num_scenes = size(scene_list{i},2);  % Number of scenes in this HRC 

     

    for j = 1:num_scenes 

         

        this_scene = scene_list{i}{j}; 

        results(index).test = test; 

        results(index).scene = this_scene; 

        results(index).hrc = this_hrc; 

         

        % Read original and processed video files 

        if (~is_yuv)  % YUV file parameters not specified 

            display('Must specify Big YUV rows and cols.  Use yuv input 
option.'); 

            return 

        else  % YUV file 

            % Re-generate the original and processed YUV file name 

            orig = strcat(clip_dir, test,'_', this_scene, '_', 'original', 
'.yuv'); 

            proc = strcat(clip_dir, test,'_', this_scene, '_', this_hrc, '.yuv'); 

            % Set/Validate the ROI 

            if (is_whole_image) % make ROI whole image less uncertainty 

                top = 1+y_uncert; 

                left = 1+x_uncert; 

                bottom = rows-y_uncert; 

                right = cols-x_uncert; 

            elseif (top<1 || left<1 || bottom>rows || right>cols) 

                display('Requested SROI too large for image size.'); 

                return; 

            end 

            % Find the total frames of the input original file 

            [fid, message] = fopen(orig, 'r'); 

            if fid == -1 

                fprintf(message); 

                error('Cannot open this clip''s bigyuv file, %s', orig); 

                return 

            end 

            % Find last frame. 

            fseek(fid,0, 'eof'); 

            tframes = ftell(fid) / (2 * rows * cols); 

            fclose(fid); 

            % Find the total frames of the processed file 



 

  Rec. ITU-T J.340 (06/2010) 13 

            [fid, message] = fopen(proc, 'r'); 

            if fid == -1 

                fprintf(message); 

                error('Cannot open this clip''s bigyuv file, %s', proc); 

                return 

            end 

            % Find last frame. 

            fseek(fid,0, 'eof'); 

            tframes_proc = ftell(fid) / (2 * rows * cols); 

            fclose(fid); 

            % Validate that orig and proc have the same number of frames 

            if (tframes ~= tframes_proc) 

                display('The orig & proc files must have the same length.'); 

                return 

            end 

            % Set/Validate the time segment to use 

            if (is_whole_time) % use whole time segment less uncertainty 

                fstart= 1+t_uncert; 

                fstop = tframes-t_uncert; 

            elseif (fstart<1 || fstop>tframes) 

                display('Requested Temporal segment too large for file size.'); 

                return 

            end 

             % Validate the spatial uncertainty search bounds 

            if (left-x_uncert < 1 || right+x_uncert > cols) 

                display('Spatial x-uncertainty too large for SROI.'); 

                return; 

            end 

            if (top-y_uncert < 1 || bottom+y_uncert > rows) 

                display('Spatial y-uncertainty too large for SROI.'); 

                return; 

            end 

            % Validate the temporal uncertainty search bounds 

            if(fstart-t_uncert < 1 || fstop+t_uncert > tframes) 

                display('Temporal uncertainty too large for fstart or fstop.'); 

                return; 

            end 

            % Read in video and clear color planes to free up memory 

            [y_orig,cb,cr] = read_bigyuv(orig,'frames',fstart-t_uncert,... 

                fstop+t_uncert,'size',rows,cols,'sroi',top-y_uncert,... 



 

14 Rec. ITU-T J.340 (06/2010) 

                left-x_uncert,bottom+y_uncert,right+x_uncert); 

            clear cb cr; 

            [y_proc,cb,cr] = read_bigyuv(proc,'frames',fstart,fstop,... 

                'size',rows,cols,'sroi',top,left,bottom,right); 

            clear cb cr; 

        end 

         

        % Convert images to double precision 

        y_orig = double(y_orig); 

        y_proc = double(y_proc); 

         

        [nrows, ncols, nsamps] = size(y_proc); 

        % Reshape y_proc for the PSNR calculation:  this stays fixed 

        y_proc = reshape(y_proc,nrows*ncols*nsamps,1); % make column vector 

             

        % Compute PSNR for each spatial-temporal shift 

        best_psnr = -inf; 

        best_xshift = 0; 

        best_yshift = 0; 

        best_tshift = 0; 

        best_gain = 1; 

        best_offset = 0; 

        if(verbose) 

            fprintf('\nTest = %s,   Scene = %s,   HRC = %s\n',test, this_scene, 
this_hrc); 

        end 

         

        for k = -t_uncert:t_uncert 

            for m = -x_uncert:x_uncert 

                for n = -y_uncert:y_uncert 

                     

                    % Perform gain and level offset calculation 

                    this_fit = 
polyfit(y_proc,reshape(y_orig(1+n+y_uncert:n+y_uncert+nrows,... 

                        
1+m+x_uncert:m+x_uncert+ncols,1+k+t_uncert:k+t_uncert+nsamps),... 

                        nrows*ncols*nsamps,1),1); 

                     

                    % Calculate the PSNR 

                    this_psnr = 10*(log10(peak*peak)-
log10(sum(((this_fit(1)*y_proc+this_fit(2))-... 



 

  Rec. ITU-T J.340 (06/2010) 15 

                        
reshape(y_orig(1+n+y_uncert:n+y_uncert+nrows,1+m+x_uncert:m+x_uncert+ncols,... 

                        
1+k+t_uncert:k+t_uncert+nsamps),nrows*ncols*nsamps,1)).^2)/(nrows*ncols*nsamps)))
; 

                     

                    if(this_psnr > best_psnr) 

                        best_psnr = this_psnr; 

                        best_yshift = n; 

                        best_xshift = m; 

                        best_tshift = k; 

                        best_gain = this_fit(1); 

                        best_offset = this_fit(2); 

                        if(verbose) 

                            fprintf('dy =%3i, dx =%3i, dt =%3i, gain = %5.4f, off 
= %5.4f, PSNR = %5.4f\n',... 

                                
best_yshift,best_xshift,best_tshift,best_gain,best_offset,best_psnr); 

                        end 

                    end 

                     

                end 

            end 

        end 

         

        results(index).yshift = best_yshift; 

        results(index).xshift = best_xshift; 

        results(index).tshift = best_tshift; 

        results(index).gain = best_gain; 

        results(index).offset = best_offset; 

        results(index).psnr = best_psnr; 

        psnr_ave = psnr_ave+best_psnr; 

        index = index+1; 

         

    end 

     

    % Compute average PSNR for this HRC 

    psnr_ave = psnr_ave/(num_scenes); 

    if(verbose) 

        fprintf('HRC = %s, psnr_ave = %5.4f\n',this_hrc, psnr_ave); 

    end 

     



 

16 Rec. ITU-T J.340 (06/2010) 

end 

 

Read Big-YUV Function 
 

function [y,cb,cr] = read_bigyuv(file_name, varargin); 

% READ_BIGYUV 

%   Read images from bigyuv-file. 

% 

% SYNTAX 

%   [y] = read_bigyuv(file_name); 

%   [y,cb,cr] = read_bigyuv(...); 

%   [...] = read_bigyuv(...,'PropertyName',PropertyValue,...); 

% 

% DESCRIPTION 

%   Read in images from bigyuv file named 'file_name'.   

% 

%   The luminance plane is returned in 'Y'; the color planes are 

%   returned in 'cb' and 'cr' if requested.  The Cb and Cr color planes 

%   will be up-sampled by 2 horizontally. 

% 

%   The following optional properties may be requested: 

% 

%   'sroi',top,left,bottom,right,            

%                       Spatial region of interest to be returned.  By  

%                       default, the entirety of each image is returned. 

%                       Inclusive coordinates (top,left),(bottom,right)  

%                       start numbering with row/line number 1. 

%   'size',row,col,    Size of images (row,col).  By default, row=486, 

%                      col=720. 

%   'frames',start,stop,    Specify the first and last frames, inclusive,  

%                           to be read ('start' and 'stop').  By default, 

%                           the first frame is read. 

%   '128'    Subtract 128 from all Cb and Cr values.  By default, Cb and 

%            Cr values are left in the [0..255] range. 

%   'interp'    Interpolate Cb and Cr values.  By default, color planes 

%               are pixel replicated.  Note: Interpolation is slow. 

% 

 

% read values from clip_struct that can be over written by variable argument 

% list. 

is_whole_image = 1; 

is_sub128 = 0; 

is_interp = 0; 

  

num_rows = 486; 

num_cols = 720; 

  

start = 1; 

stop = 1; 

  

% parse varargin list (property values) 

cnt = 1; 

while cnt <= nargin - 1, 

    if ~isstr(varargin{cnt}), 

        error('Property value passed into read_bigyuv not recognized'); 

    end 



 

  Rec. ITU-T J.340 (06/2010) 17 

    if strcmp(lower(varargin(cnt)),'sroi') == 1, 

        sroi.top = varargin{cnt+1}; 

        sroi.left = varargin{cnt+2}; 

        sroi.bottom = varargin{cnt+3}; 

        sroi.right = varargin{cnt+4}; 

        is_whole_image = 0; 

        cnt = cnt + 5; 

    elseif strcmp(lower(varargin(cnt)),'size') == 1, 

        num_rows = varargin{cnt+1}; 

        num_cols = varargin{cnt+2}; 

        cnt = cnt + 3; 

    elseif strcmp(lower(varargin(cnt)),'frames') == 1, 

        start = varargin{cnt+1}; 

        stop = varargin{cnt+2}; 

        cnt = cnt + 3; 

    elseif strcmp(lower(varargin(cnt)),'128') == 1, 

        is_sub128 = 1; 

        cnt = cnt + 1; 

    elseif strcmp(lower(varargin(cnt)),'interp') == 1, 

        is_interp = 1; 

        cnt = cnt + 1; 

    else 

        error('Property value passed into read_bigyuv not recognized'); 

    end 

end 

  

if mod(num_cols,2) ~= 0, 

    fprintf('Error: number of columns must be even.\nFile format stores 4 bytes for 2 
pixels\n'); 

    error('Invalid specification for argument "num_cols" in read_bigyuv'); 

end 

  

% Open image file  

% [test_struct.path{1} clip_struct.file_name{1}] 

[fid, message] = fopen(file_name, 'r'); 

if fid == -1 

    fprintf(message); 

    error('read_bigyuv cannot open this clip''s bigyuv file, %s', file_name); 

end 

  

% Find last frame.   

fseek(fid,0, 'eof'); 

total = ftell(fid) / (2 * num_rows * num_cols); 

if stop > total, 

    error('Requested a frame past the end of the file.  Only %d frames available', 
total); 

end 

if stop < 0, 

    error('Range of frames invalid'); 

end 

if start > stop | stop < 1, 

    error('Range of frames invalid, or no images exist in this bigyuv file'); 

end 

  

% find range of frames requested. 

prev_tslice_frames = start - 1; 

tslice_frames = stop - start + 1; 

number = start; 



 

18 Rec. ITU-T J.340 (06/2010) 

  

% go to requested location 

if isnan(start), 

    error('first frame of this clip is undefined (NaN).'); 

end 

offset = prev_tslice_frames * num_rows * num_cols * 2; %pixels each image 

status = fseek(fid, offset, 'bof'); 

  

if status == -1, 

    fclose(fid); 

    error('read_bigyuv cannot seek requested image location'); 

end 

  

% initialize memory to hold return images. 

y = zeros(num_rows,num_cols,tslice_frames, 'single'); 

  

if (nargout == 3), 

    cb = y; 

    cr = y; 

end 

  

% loop through & read in the time-slice of images 

this_try = 1; 

for cnt = 1:tslice_frames, 

    where = ftell(fid); 

    [hold_fread,count] = fread(fid, [2*num_cols,num_rows], 'uint8=>uint8'); 

    if count ~= 2*num_cols*num_rows, 

        % try one more time. 

        fprintf('Warning: read_bigyuv could not read requested time-slice; re-trying\n'); 

        %pause(5); 

        if where == -1, 

            fprintf('Could not determine current location.  Re-try failed.\n'); 

            error('read_bigyuv could not read entirety of requested image time-slice'); 

            fclose(fid); 

        end 

        fseek(fid, where, 'bof'); 

        [hold_fread,count] = fread(fid, [2*num_cols,num_rows], 'uint8=>uint8'); 

        if count ~= 2*num_cols*num_rows, 

            fclose(fid); 

            hold = sprintf('read_bigyuv failed for %s\nCould not read time-slice', 
file_name); 

            error(hold); 

        end 

    end 

     

    % pick off the Y plane (luminance) 

    temp = reshape(hold_fread', num_rows, 2, num_cols); 

    uncalib = squeeze(temp(:,2,:));   

    y(:,:,cnt) = single(uncalib); 

     

    % If color image planes are requested, pick those off and perform 

    % pixel replication to upsample horizontally by 2. 

    if nargout == 3, 

        temp = reshape(hold_fread,4,num_rows*num_cols/2); 

  

        color = reshape(temp(1,:),num_cols/2,num_rows)'; 

        color2 = [color ; color]; 

        uncalib = reshape(color2,num_rows,num_cols); 



 

  Rec. ITU-T J.340 (06/2010) 19 

        cb(:,:,cnt) = single(uncalib); 

        if is_sub128, 

            cb(:,:,cnt) = cb(:,:,cnt) - 128; 

        end 

         

        color = reshape(temp(3,:),num_cols/2,num_rows)'; 

        color2 = [color ; color]; 

        uncalib = reshape(color2,num_rows,num_cols); 

        cr(:,:,cnt) = single(uncalib); 

        if is_sub128, 

            cr(:,:,cnt) = cr(:,:,cnt) - 128; 

        end 

  

        % Interpolate, if requested 

        if is_interp == 1, 

            for i=2:2:num_cols-2, 

                cb(:,i,cnt) = (cb(:,i-1,cnt) + cb(:,i+1,cnt))/2; 

                cr(:,i,cnt) = (cr(:,i-1,cnt) + cr(:,i+1,cnt))/2; 

            end 

        end 

    end 

end 

  

fclose(fid); 

  

if ~is_whole_image, 

    y = y(sroi.top:sroi.bottom, sroi.left:sroi.right, :); 

    if nargout == 3, 

        cb = cb(sroi.top:sroi.bottom, sroi.left:sroi.right, :); 

        cr = cr(sroi.top:sroi.bottom, sroi.left:sroi.right, :); 

    end 

end 

 

  



 

20 Rec. ITU-T J.340 (06/2010) 

Bibliography 

 

[b-ITU-R BT.601-6] Recommendation ITU-R BT.601-6 (2007), Studio encoding parameters of 
digital television for standard 4:3 and wide-screen 16:9 aspect ratios. 

[b-VQEG Report] VQEG Final Report of MM Phase I Validation Test (2008), Final report 
from the Video Quality Experts Group on the validation of objective models 
of multimedia quality assessment, phase I, Video Quality Experts Group 
(VQEG) 
http://www.its.bldrdoc.gov/vqeg/projects/multimedia. 

 

http://www.its.bldrdoc.gov/vqeg/projects/multimedia.


 

 

 
 



 

Printed in Switzerland 
Geneva, 2011 

 

SERIES OF ITU-T RECOMMENDATIONS 

Series A Organization of the work of ITU-T 

Series D General tariff principles 

Series E Overall network operation, telephone service, service operation and human factors 

Series F Non-telephone telecommunication services 

Series G Transmission systems and media, digital systems and networks 

Series H Audiovisual and multimedia systems 

Series I Integrated services digital network 

Series J Cable networks and transmission of television, sound programme and other multimedia 
signals 

Series K Protection against interference 

Series L Construction, installation and protection of cables and other elements of outside plant 

Series M Telecommunication management, including TMN and network maintenance 

Series N Maintenance: international sound programme and television transmission circuits 

Series O Specifications of measuring equipment 

Series P Terminals and subjective and objective assessment methods 

Series Q Switching and signalling 

Series R Telegraph transmission 

Series S Telegraph services terminal equipment 

Series T Terminals for telematic services 

Series U Telegraph switching 

Series V Data communication over the telephone network 

Series X Data networks, open system communications and security 

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks 

Series Z Languages and general software aspects for telecommunication systems 

  

 
 


	ITU-T Rec. J.340 (06/2010) – Reference algorithm for computing peak signal to noise ratio of a processed video sequence with compensation for constant spatial shifts, constant temporal shift, and constant luminance gain and offset
	Summary
	History
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	6 PSNRconst algorithm description
	6.1 Introduction
	6.2 Algorithm

	Appendix I – Reference code to calculate PSNR
	Bibliography

