

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.181
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(01/2014)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS

Digital transmission of television signals

 Digital program insertion cueing message for

cable television systems

Recommendation ITU-T J.181

 Rec. ITU-T J.181 (01/2014) i

Recommendation ITU-T J.181

Digital program insertion cueing message for cable television systems

Summary

Recommendation ITU-T J.181 supports frame accurate signalling of events in MPEG-2 transport
streams along with associated descriptive data. This Recommendation supports the splicing of
MPEG-2 transport streams for the purpose of digital program insertion, which includes
advertisement insertion and insertion of other content types. An in-stream messaging mechanism is
defined to signal splicing and insertion opportunities and it is not intended to ensure seamless
splicing. As such, this Recommendation does not specify the splicing method used or constraints
applied to the streams being spliced, nor does it address constraints placed on splicing devices.

A fully compliant MPEG-2 transport stream (either multi program transport stream (MPTS) or single
program transport stream (SPTS)) is assumed. No further constraints beyond the inclusion of the
defined cueing messages are placed upon the stream.

This Recommendation specifies a technique for carrying notification of upcoming Splice Points and
other timing information in the transport stream. A splice information table is defined for notifying
downstream devices of splice events, such as a network break or return from a network break. The
splice information table, which pertains to a given program, is carried in one or more PID(s) referred
to by that program's program map table (PMT). In this way, splice event notification can pass
through most transport stream remultiplexers without need for special processing.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T J.181 2001-03-09 9 11.1002/1000/5386-en

1.1 ITU-T J.181 (2001) Amd. 1 2003-04-04 9 11.1002/1000/6355-en

2.0 ITU-T J.181 2004-06-29 9 11.1002/1000/7379-en

3.0 ITU-T J.181 2014-01-13 9 11.1002/1000/12102-en

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.

http://handle.itu.int/11.1002/1000/5386-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/6355-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/7379-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/12102-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T J.181 (01/2014)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T J.181 (01/2014) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 4

5 Conventions .. 5

6 Introduction .. 5

6.1 Splice points (Informative) ... 5

6.2 Program splice points (Informative) ... 6

6.3 Splice events (Informative) .. 6

6.4 Content storage considerations (Informative) .. 6

6.5 PID selection .. 7

6.6 Message flow (Informative) ... 8

7 XML notational conventions .. 8

7.1 Normative XML schema .. 8

7.2 Unknown/unrecognized/unsupported XML elements and attributes 9

7.3 Element order ... 9

8 PMT descriptors ... 9

8.1 Registration descriptor .. 9

8.2 Cue identifier descriptor ... 10

8.3 Stream identifier descriptor .. 11

9 Splice information table .. 12

9.1 Overview .. 12

9.2 Splice info section .. 13

9.3 Splice commands .. 18

9.4 Constraints .. 29

10 Splice descriptors .. 31

10.1 Overview .. 31

10.2 Splice descriptor ... 31

10.3 Specific splice descriptors .. 33

11 Encryption .. 46

11.1 Overview .. 46

11.2 Fixed key encryption .. 46

11.3 Encryption algorithms .. 46

12 SCTE 35 XML elements and types .. 47

12.1 Ext element ... 47

iv Rec. ITU-T J.181 (01/2014)

 Page

12.2 PTSType ... 48

Appendix I – CableLabs metadata identifier ... 49

Bibliography... 50

 Rec. ITU-T J.181 (01/2014) 1

Recommendation ITU-T J.181

Digital program insertion cueing message for cable television systems

1 Scope

This Recommendation supports frame accurate signalling of events in MPEG-2 transport streams
along with associated descriptive data. This Recommendation supports the splicing of MPEG-2
transport streams for the purpose of Digital Program Insertion, which includes advertisement
insertion and insertion of other content types. An in-stream messaging mechanism is defined to
signal splicing and insertion opportunities and it is not intended to ensure seamless splicing. As
such, this Recommendation does not specify the splicing method used or constraints applied to the
streams being spliced, nor does it address constraints placed on splicing devices.

A fully compliant MPEG-2 transport stream (either multi program transport stream (MPTS) or
single program transport stream (SPTS)) is assumed. No further constraints beyond the inclusion of
the defined cueing messages are placed upon the stream.

This Recommendation specifies a technique for carrying notification of upcoming Splice Points and
other timing information in the transport stream. A splice information table is defined for notifying
downstream devices of splice events, such as a network break or return from a network break. The
splice information table, which pertains to a given program, is carried in one or more packet
identifiers (PIDs) referred to by that program's program map table (PMT). In this way, splice event
notification can pass through most transport stream remultiplexers without need for special
processing.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.222.0] Recommendation ITU-T H.222.0 (2012) | ISO/IEC 13818-1:2013, Information
Technology – Generic coding of moving pictures and associated audio
information: Systems.

[IETF RFC 3986] IETF RFC 3986 (2005), Uniform Resource Identifier (URI): Generic Syntax,
www.ietf.org/rfc/rfc3986.txt/

[ISO 15706-2] ISO 15706-2:2007 – Information and documentation – International Standard
Audiovisual Number (ISAN) – Part 2: Version identifier.

[ATSC A/57B] ATSC A/57B – ATSC Standard: Content Identification and Labeling for ATSC
Transport Document A/57B, 26 May 2008.

[FIPS PUB 46-3] FIPS PUB 46-3, Data Encryption Standard (DES), 25 October 1999.

[FIPS PUB 81] FIPS PUB 81, DES Modes of Operation, 2 December 1980.

[SMPTE 330M] SMPTE 330M-2004 – SMPTE Standard for Television – Unique Material
Identifier.

[XML] W3C, Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C
Recommendation 16 August 2006, http://www.w3.org/TR/2006/REC-xml-20060816/

http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2006/RECxml-20060816/

2 Rec. ITU-T J.181 (01/2014)

[XMLInfoSet] W3C, XML Information Set (Second Edition), W3C Recommendation,
4 February 2004, http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 pointer_field [ITU-T H.222.0]: The first byte of a transport packet payload, required when
a section begins in that packet.

3.1.2 presentation unit (PU) [ITU-T H.222.0]: A decoded audio access unit or a decoded
picture.

3.1.3 uniform resource identifier (URI): See [IETF RFC 3986].

3.1.4 extensible markup language (XML): See [XML].

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 access unit: A coded representation of a presentation unit.

3.2.2 advertisement (also called "ad"): An inducement to buy or patronize. As used in the cable
industry, usually with a duration under 2 minutes (sometimes called "short-form" content).

3.2.3 analogue cue tone: In an analogue system, a signal that is usually either a sequence of dual
tone multi-frequency (DTMF) tones or a contact closure that denotes to ad insertion equipment that
an advertisement avail is about to begin or end.

3.2.4 avail: Time space provided to cable operators by cable programming services during a
program for use by the community antenna television (CATV) operator; the time is usually sold to
local advertisers or used for channel self promotion.

3.2.5 bit stream format: An encoding of information resulting in a compliant MPEG-2 transport
stream.

3.2.6 break: Avail or an actual insertion in progress.

3.2.7 chapter: A short section of a longer program, usually situated to permit a viewer to easily
locate a scene or section of the program.

3.2.8 component splice mode: A mode of the cueing message whereby the program_splice_flag
is set to '0' and indicates that each PID/component that is intended to be spliced will be listed
separately by the syntax that follows. Components not listed in the message are not to be spliced.

3.2.9 content: Generic term for television material, either advertisements or programs.

3.2.10 cueing message: See message.

3.2.11 event: A splice event or a viewing event.

3.2.12 in point: A point in the stream, suitable for entry, that lies on an elementary presentation
unit boundary. An in point is actually between two presentation units rather than being a
presentation unit itself.

3.2.13 in stream device: A device that receives the transport stream directly and is able to derive
timing information directly from the transport stream.

3.2.14 message: In the context of this Recommendation a message is the contents of any
splice_info_section.

http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

 Rec. ITU-T J.181 (01/2014) 3

3.2.15 multi program transport stream: A transport stream with multiple programs.

3.2.16 out of stream device: A device that receives the cue message from an in stream device
over a separate connection from the transport stream. An out of stream device does not receive or
pass the transport stream directly.

3.2.17 out point: A point in the stream, suitable for exit, that lies on an elementary presentation
unit boundary. An out point is actually between two presentation units rather than being a
presentation unit itself.

3.2.18 packet identifier (PID): A unique 13-bit value used to identify the type of data stored in
the packet payload.

3.2.19 payload_unit_start_indicator: A bit in the transport packet header that signals, among
other things, that a section begins in the payload that follows.

3.2.20 PID stream: All the packets with the same PID within a transport stream.

3.2.21 presentation time: The time that a presentation unit is presented in the system target
decoder.

3.2.22 presentation unit: A decoded Audio Access Unit or a decoded picture (see
[b-ITU-T H.262]).

3.2.23 program: A collection of video, audio, and data PID streams that share a common program
number within an MPTS (see [ITU-T H.222.0]). As used in the context of the segmentation
descriptor, a performance or informative presentation broadcast on television, typically with a
duration over 5 minutes (sometimes called "long-form" content).

3.2.24 program in point: A group of PID stream in points that correspond in presentation time.

3.2.25 program out point: A group of PID stream out points that correspond in presentation time.

3.2.26 program splice mode: A mode of the cueing message whereby the program_splice_flag is
set to '1' and indicates that the message refers to a Program Splice Point and that all
PIDs/components of the program are to be spliced.

3.2.27 program splice point: A program in point or a program out point.

3.2.28 receiving device: A device that receives or interprets sections conforming to this
Recommendation. Examples of these devices include splicers, ad servers, segmenters and satellite
receivers.

3.2.29 registration descriptor: Carried in the program map table (PMT) of a program to indicate
that, when signalling splice events, splice_info_sections shall be carried in a PID stream within this
program. The presence of the Registration Descriptor signifies a program's compliance with this
Recommendation.

3.2.30 reserved: The term "reserved", when used in the clauses defining the coded bit stream,
indicates that the value may be used in the future for extensions to the Recommendation. Unless
otherwise specified, all reserved bits shall be set to '1' and this field shall be ignored by receiving
equipment.

3.2.31 segment: Either a Program, a Chapter, a Provider Advertisement, a Distributor
Advertisement, or an Unscheduled Event as listed in Table 10-8, segmentation_type_id.

3.2.32 single program transport stream: A transport stream containing a single MPEG program.

3.2.33 splice event: An opportunity to splice one or more PID streams.

4 Rec. ITU-T J.181 (01/2014)

3.2.34 splice immediate mode: A mode of the cueing message whereby the splicing device shall
choose the nearest opportunity in the stream, relative to the splice_info_table, to splice. When not in
this mode, the message gives a "pts_time" that, when modified by pts_adjustment, gives a
presentation time for the intended splicing moment.

3.2.35 splice point: A point in a PID stream that is either an out point or an in point.

3.2.36 viewing event: A television program or a span of compressed material within a service; as
opposed to a splice event, which is a point in time.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ad advertisement

ADI Asset Distribution Interface

Ad-ID Advertisement Identifier

ASCII American Standard Code for Information Interchange

ATSC Advanced Television Systems Committee

bslbf Bit string, left bit first, where left is the order in which bit strings are written.

CA Conditional Access

CATV Community Antenna Television

CBC Cipher Block Chaining

CRC Cyclic Redundancy Check

DTMF Dual Tone Multi-Frequency

DES Data Encryption Standard

DTS Decoding Time-Stamp

DVB Digital Video Broadcast

ECB Electronic Codebook

EDE Encrypt-Decrypt-Encrypt

EIDR Entertainment Identifier Registry association

FIPS Federal Information Processing Standard

Id Identifier

InfoSet Information Set

ISAN International Standard Audiovisual Number

ISCI Industry Standard Commercial Identifier

MID Multiple UPID

MPEG Moving Picture Experts Group

MPTS Multi Program Transport Stream

MPU Managed Private UPID

PCR Program Clock Reference

PES Packetized Elementary Stream

 Rec. ITU-T J.181 (01/2014) 5

PID Packet Identifier

PMT Program Map Table (see [ITU-T H.222.0])

PTS Presentation Time Stamp (see [ITU-T H.222.0])

rpchof Remainder polynomial coefficients, highest order first

SCTE Society of Cable Telecommunications Engineers

SMPTE Society of Motion Picture & Television Engineers

SPTS Single Program Transport Stream

STC System Time Clock

TI Turner Identifier

TID Tribune Identifier

uimsbf Unsigned integer, most significant bit first

UMID Unique Material Identifier

URI Uniform Resource Identifier (see [IETF RFC 3986])

UTC Coordinated Universal Time

V-ISAN Version-ISAN

XML Extensible Markup Language

5 Conventions

Deprecated: Use is permissible for legacy purposes only. Deprecated features may be removed from
future versions of this Recommendation. Implementations should avoid use of deprecated features.

6 Introduction

6.1 Splice points (Informative)

To enable the splicing of compressed bit streams, this Recommendation defines splice points.
Splice points in an MPEG-2 transport stream provide opportunities to switch elementary streams
from one source to another. They indicate a place to switch or a place in the bit stream where a
switch can be made. Splicing at such splice points may or may not result in good visual and audio
quality. That is determined by the performance of the splicing device.

Transport streams are created by multiplexing packet identifier (PID) streams. In this
Recommendation, two types of splice points for PID streams are defined: "out points" and "in
points". In points are places in the bit streams where it is acceptable to enter, from a splicing
standpoint. Out points are places where it is acceptable to exit the bit stream. The grouping of in
points of individual PID streams into program in points in order to enable the switching of entire
programs (video with audio) is defined. Program out points for exiting a program are also defined.

Out points and in points are imaginary points in the bit stream located between two elementary
stream presentation units. Out points and in points are not necessarily transport packet aligned and
are not necessarily PES packet aligned. An out point and an in point may be co-located; that is, a
single presentation unit boundary may serve as both a safe place to leave a bit stream and a safe
place to enter it.

The output of a simple switching operation will contain access unit data from one stream up until its
out point followed by data from another stream starting with the first access unit following an in
point. More complex splicing operations may exist whereby data prior to an out point or data after

6 Rec. ITU-T J.181 (01/2014)

an in point are modified by a splicing device. Splicing devices may also insert data between one
stream's out point and the other stream's in point. The behaviour of splicing devices will not be
specified or constrained in any way by this Recommendation.

6.2 Program splice points (Informative)

Program in points and program out points are sets of PID stream in points or out points that
correspond in presentation time.

Although splice points in a program splice point correspond in presentation time, they do not
usually appear near each other in the transport stream. Because compressed video takes much
longer to decode than audio, the audio splice points may lag the video splice points by as much as
hundreds of milliseconds and by an amount that can vary during a program.

This Recommendation defines two ways of signalling which splice points within a program are to
be spliced. A program_splice_flag, when true, denotes that the program splice mode is active and
that all PIDs of a program may be spliced (the splice information table PID is an exception; splicing
or passage of these messages is beyond the scope of this Recommendation). A program_splice_flag,
when false, indicates that the component splice mode is active and that the message will specify
unambiguously which PIDs are to be spliced and may give a unique splice time for each. This is
required to direct the splicing device to splice or not to splice various unspecified data types as well
as video and audio.

While this Recommendation allows for a unique splice time to be given for each component of a
program, it is expected that most component splice mode messages will utilize one splice time (a
default splice time) for all components as described in clause 9. The facility for optionally
specifying a separate splice time for each component is intended to be used when one or more
components differ significantly in their start or stop time relative to other components within the
same message. An example would be a downloaded applet that must arrive at a set-top box several
seconds prior to an advertisement.

6.3 Splice events (Informative)

This Recommendation provides a method for in-band signalling of splice events using splice
commands to downstream splicing equipment. Signalling a splice event identifies which splice
point within a stream to use for a splice. A splicing device may choose to act or not act upon a
signalled event (a signalled event should be interpreted as an opportunity to splice; not a command).
A splice information table carries the notice of splice event opportunities. Each signalled splice
event is analogous to an analogue cue tone. The splice information table incorporates the
functionality of cue tones and extends it to enable the scheduling of splice events in advance.

This Recommendation establishes that the splice information table is carried on a per-program basis
in one or more PID stream(s) with a designated stream_type. The program's splice information
PID(s) are designated in the program's program map table (PMT). In this way, the splice
information table is switched with the program as it goes through remultiplexing operations. A
common stream_type identifies all PID streams that carry splice information tables. Remultiplexers
or splicers may use this stream_type field to drop splice information prior to sending the transport
stream to the end-user device.

The cue injection equipment may send messages at intervals that do not indicate a splice point to be
used as heartbeat messages which help ensure the proper operation of the system. This could be
performed by periodically issuing splice_null() messages or by sending encrypted splice_insert
messages generated with a key that is not distributed. Since cues are currently sent twice per hour
on a typical network, an average interval of 5 minutes would be a reasonable interval. If a message
was not received in a 10 minute interval, a receiving device could alarm an operator to a possible
system malfunction (such behaviour would be implementer dependent).

 Rec. ITU-T J.181 (01/2014) 7

6.4 Content storage considerations (Informative)

The requirements for identifier uniqueness are written expecting the content to be playing in real
time. If the content is stored, then the playback of the content does not place requirements upon the
playback equipment to alter any of these identifiers (such as splice_event_id or
segmentation_event_id). Downstream equipment parsing the identifiers should keep this in mind
and, if applicable, rely upon other confirming information before reacting adversely to a seeming
violation of the identifier uniqueness requirements of this Recommendation.

This Recommendation provides optional tools to assist with segmenting content into shorter
sections which may be either chapters or advertisements. See clause 10.3.3.

6.5 PID selection

6.5.1 PID selection (Normative)

Splice Information can be carried in multiple PIDs. The maximum number of PIDs that can carry
splice information shall not exceed 8. These PIDs can be either in the clear (where the transport
scrambling_control bits are set to '00') or scrambled by a control access (CA) system. Each cue
message PID may include the cue_identifier_descriptor defined in clause 8.2 to describe the splice
commands included in the PID. When multiple PIDs are used to carry splice information, the first
cue message PID in the program map table (PMT) shall only contain the splice command types
0x00 (splice_null), 0x04 (splice_schedule) and 0x05 (splice_insert). In addition, the splice_event_id
shall be unique in all splice information PIDs within the program.

6.5.2 PID selection (Informative)

While the use of multiple cue message PIDs is an allowed practice, it should be noted that not all
equipments may respond in the same manner to a stream that contains multiple cue message PIDs.
Some equipment may limit the number of PIDs that the equipment can pass or receive. If a system
utilizes multiple PIDs through various devices with the intention of reaching the set-top, it is
suggested that thorough end-to-end testing be performed.

In many systems, the delivery of PIDs that carry splice information beyond the ad insertion
equipment in the head-end is not desired. In these systems, the splicing or multiplexing device will
drop any or all of these messages (PIDs) so they will not be delivered to the set-top. In other
systems it may selectively pass certain PIDs to the set-top to enable set-top functionality. A third
possibility is that the splicing or multiplexing device will aggregate the multiple PIDs that carry
splice information into a single PID to handle downstream, set-top, issues with multiple PIDs. The
action of ignoring or passing the message is recommended to be a user provisioned item, with a
suitable default behaviour chosen by the implementer.

The default operation if a splicing or multiplexing device receives a PID based on this specification
with the scrambling bits set in the header should be to drop that PID and not pass it through to the
output. This ideally should be a user provisioned operation, as in some instances this PID may be
descrambled by a downstream device.

The delivery of messages outside of the receive location to the customer may be based on business
agreements. An example would be that one programmer wants the cue messages passed to set-tops
to enable a targeted advertising method while a different programmer insists that the messages be
dropped to ensure that a commercial killer may not utilize the messages.

When multiple splicing PIDs are identified in the PMT, the splicing device should process all of
these PIDs. If the cue_identifier_descriptor is utilized, the splicing or multiplexing device may use
that information to be more selective of the PIDs on which it will act.

Some possible reasons for utilizing multiple PIDs for this message include selective delivery of cue
messages for different tiers of advertising or for separating cue messages from segmentation

8 Rec. ITU-T J.181 (01/2014)

messages. While one possible method of handling these issues is to use the encryption methods
built in to this Recommendation, many delivery mechanisms can support conditional delivery by
PID in a secure fashion. The delivery equipment (Satellite transmitter/receiver, remultiplexer) may
PID filter the stream to only allow one or a small number of the PIDs to be passed in-stream. This
method may be used to create multiple programs in the feed based on entitlement. The decision to
use one or more PIDs will be based on the security required and the CA hardware available on the
system.

6.6 Message flow (Informative)

The messages described in this Recommendation can originate from multiple sources. They are
designed to be sent in-stream to downstream devices. The downstream devices may act on the
messages or send them to a device that is not in-stream to act upon them. An example would be a
splicer communicating via SCTE 30 protocol to an ad server (See [b-SCTE 30]). The in-stream
devices could pass the messages to the next device in the transmission chain, or they could,
optionally, drop the messages. Implementers are urged to make these decisions user provisioned,
rather than arbitrarily hard-coded.

Any device that restamps pcr/pts/dts and that passes these cue messages to a downstream device
should modify the pts_time field or the pts_adjustment field in the message in all PIDs conforming
to this Recommendation. Modifying the pts_adjustment field is preferred because the restamping
device will not have to be knowledgeable of the pts_time field that may occur in multiple
commands (and possibly in future commands).

The bandwidth_reservation() message is intended as a message used on a closed path from a
satellite origination system (encoder) to a receiver. It is also intended that this message will be
dropped (replaced by a NULL packet) by the receiver, but this is not required. Should this message
reach an in-stream device (e.g., a splicer) the message should not be forwarded to an out-of-stream
device (e.g., Ad server) and can either be ignored or passed by an in-stream device. The action of
ignoring or passing the message is recommended to be a user provisioned item, with a suitable
default behaviour chosen by the implementer.

7 XML notational conventions

7.1 Normative XML schema

Descriptions of elements and attributes are normative and, when combined with the normative
XML schema document (provided separately), comprise the full normative schema specification.
Unless otherwise specified, the normative text and values assigned to elements or attributes in this
Recommendation shall be constrained by the bit stream equivalent field.

Non-normative schema illustrations and instance examples are included herein for informational
purposes only. Any real or implied usage, semantics, or structure indicated by the schema
illustrations and examples shall not be considered part of the specification.

No XML documents representing the structures defined in the schema are considered conformant
unless they are valid according to the schema document. Additionally, other SCTE 35 [b-SCTE 35]
standard normative parts may impose additional rules or restrictions that shall be adhered to in order
for XML documents to be considered conformant to those parts.

In the case where this Recommendation and the normative schema document (i.e., the separately
provided XML 'xsd' file) conflict, this Recommendation shall take precedence over the XML
schema document.

The inclusion of a normative XML schema document does not require or imply the specific use of
the schema nor a requirement that an XML document be validated.

 Rec. ITU-T J.181 (01/2014) 9

If the SCTE 35 schema is used in combination with other schemas, it is recommended to utilize the
namespace prefix of "SCTE35". For example, SCTE35:SpliceInsertType to reference an SCTE 35
SpliceInsert Type.

7.2 Unknown/unrecognized/unsupported XML elements and attributes

Generally, unknown, unrecognized or unsupported XML elements and attributes contained within
SCTE 35 elements should be ignored during XML document processing. Specifically, these are
elements or attributes which the implementation does not understand or expect. XML parsers that
encounter elements or attributes which are prohibited by a namespace should include exception
handling

7.3 Element order

Element order is constrained by the schemas and must be preserved throughout processing of the
XML document. In particular, the order of elements affects the end result of the processing.
Consequently, an implementation failing to preserve the order may cause incorrect processing
results. Subsequently, the process of producing an abstract XML information set (InfoSet) from a
concrete XML document, e.g., by parsing it, shall always result in the same abstract InfoSet, with
the same element order per XML InfoSet. (See [XMLInfoSet]) for additional information). Any
intermediary processing may enhance the XML document but it shall not alter the abstract InfoSet
element order (i.e., the XML elements comprising the document shall stay in document order).

8 PMT descriptors

8.1 Registration descriptor

The registration descriptor ([ITU-T H.222.0], Table 2-51 – Registration descriptor, clause 2.6.8) is
defined to identify unambiguously the programs that comply with this Recommendation. The
registration descriptor shall be carried in the program_info loop of the PMT for each program that
complies with this Recommendation. It must reside in all PMTs of all complying programs within a
multiplex. The presence of the registration descriptor also indicates that, when signalling splice
events, splice_info_sections shall be carried in one or more PID stream(s) within this program.

Presence of this registration descriptor in the PMT signals the following:

1) The program elements do not include the splice information table defined by
[b-SMPTE 312].

2) The only descriptors that can be present in the ES_descriptor_loop of the PMT for the
PID(s) that carry the splice_information_table are those that are defined in this specification
or user private descriptors.

Note that this descriptor applies to the indicated program and not to the entire multiplex. The
content of the registration descriptor is specified in Table 8-1 and below:

Table 8-1 – registration_descriptor()

Syntax Bits Mnemonic

registration_descriptor() {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 SCTE_splice_format_identifier 32 uimsbf

}

10 Rec. ITU-T J.181 (01/2014)

8.1.1 Semantic definition of fields in registration descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For registration
purposes, this field shall be set to 0x05.

descriptor_length – The descriptor_length is an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this registration descriptor,
descriptor_length shall be set to 0x04.

SCTE_splice_format_identifier – SCTE has assigned a value of 0x43554549 (ASCII "CUEI") to
this 4-byte field to identify the program (within a multiplex) in which it is carried as complying
with this Recommendation.

8.2 Cue identifier descriptor

The cue_identifier_descriptor may be used in the PMT to label PIDs that carry splice commands so
that they can be differentiated as to the type or level of splice commands they carry. The
cue_identifier_descriptor, when present, shall be located in the elementary descriptor loop. If the
cue_identifier_descriptor is not utilized, the stream may carry any valid command in this
specification.

Table 8-2 – cue_identifier_descriptor()

Syntax Bits Mnemonic

cue identifier descriptor() {
 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 cue_stream_type 8 uimsbf

}

8.2.1 Semantic definition of fields in cue identifier descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For
cue_identifier_descriptor, this field shall be set to 0x8A.

descriptor_length – The descriptor_length in an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length
shall be set to 0x01.

cue_stream_type – This 8-bit field is defined in the following table.

Table 8-3 – cue_stream_type values

cue_stream_type PID usage

0x00 splice_insert, splice_null, splice_schedule

0x01 All Commands

0x02 Segmentation

0x03 Tiered Splicing

0x04 Tiered Segmentation

0x05-0x7f Reserved

0x80-0xff User Defined

 Rec. ITU-T J.181 (01/2014) 11

8.2.2 Description of cue_stream_type usage

0x00 – splice_insert, splice_null, splice_schedule – Only these cue messages are allowed in this
PID stream. There shall be a maximum of one PID identified with this cue_stream_type. If this PID
exists, it shall be the first stream complying with this Recommendation in the PMT elementary
stream loop.

0x01 – All Commands – Default if this descriptor is not present. All messages can be used in this
PID.

0x02 – Segmentation – This PID carries the time_signal command and the segmentation
descriptor. It may also carry all other commands if needed for the application, but the primary
purpose is to transmit content segmentation information.

x03 – Tiered Splicing – Tiered Splicing refers to an insertion system where the operator provides
different inserted program possibilities in a given avail for different customers. The physical and
logical implementation may be done in several different manners, some of them outside the scope
of this Recommendation.

0x04 – Tiered Segmentation – Tiered Segmentation refers to a system where the operator provides
different program segmentation possibilities for different customers. The physical and logical
implementation may be done in several different manners, some of them outside the scope of this
Recommendation.

0x05-0x7F – Reserved for future extensions to this Recommendation.

0x80-0xFF – User defined range.

8.3 Stream identifier descriptor

The stream identifier descriptor may be used in the PMT to label component streams of a service so
that they can be differentiated. The stream identifier descriptor shall be located in the elementary
descriptor loop following the relevant ES_info_length field. The stream identifier descriptor shall
be used if either the program_splice_flag or the program_segmentation_flag is zero. If stream
identifier descriptors are used, a stream identifier descriptor shall be present in each occurrence of
the elementary stream loop within the PMT and shall have a unique component tag within the given
program.

Table 8-4 – stream_identifier_descriptor()

Syntax Bits Mnemonic

stream_identifier_descriptor() {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 component_tag 8 uimsbf

}

8.3.1 Semantic definition of fields in stream identifier descriptor

descriptor_tag – The descriptor_tag is an 8-bit field that identifies each descriptor. For
stream_identifier_descriptor, this field shall be set to 0x52.

descriptor_length – The descriptor_length in an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length
shall be set to 0x01.

12 Rec. ITU-T J.181 (01/2014)

component_tag – This 8-bit field identifies the component stream for associating it with a
description given in a component descriptor. Within a program map section each stream identifier
descriptor shall have a different value for this field.

9 Splice information table

9.1 Overview

The splice information table provides command and control information to the splicer. It notifies
the splicer of splice events in advance of those events. It is designed to accommodate ad insertion in
network feeds. In this environment, examples of splice events would include:

1) a splice out of a network feed into an ad, or

2) the splice out of an ad to return to the network feed.

The splice information table may be sent multiple times and splice events may be cancelled. Syntax
for a splice_info_section is defined to convey the splice information table. The splice_info_section
is carried on one or more PID stream(s) with the PID(s) declared in that program's PMT.

A splice event indicates the opportunity to splice one or more elementary streams within a program.
Each splice event is uniquely identified with a splice_event_id. Splice events may be communicated
in three ways: they may be scheduled ahead of time, a preroll warning may be given, or a command
may be given to execute the splice event at specified splice points. These three types of messages
are sent via the splice_info_section. The splice_command_type field specifies the message being
sent. Depending on the value of this field, different constraints apply to the remaining syntax.

The following command types are specified: splice_null(), splice_schedule(), splice_insert(),
time_signal() and bandwidth_reservation(). If the receiving device does not support a command, it
can ignore the entire splice_info_section.

The splice_null() command is provided for extensibility. It can be used as a means of providing a
heartbeat message to downstream splicing equipment.

The splice_schedule() command is a command that allows a schedule of splice events to be
conveyed in advance.

The splice_insert() command shall be sent at least once before each splice point. Packets containing
the entirety of the splice_info_table shall always precede the packet that contains the related splice
point (i.e., the first packet that contains the first byte of an access unit whose presentation time most
closely matches the signalled time in the splice_info_section).

In order to give advance warning of the impending splice (a pre-roll function), the splice_insert()
command could be sent multiple times before the splice point. For example, the splice_insert()
command could be sent at 8, 5, 4 and 2 seconds prior to the packet containing the related splice
point. In order to meet other splicing deadlines in the system, any message received with less than 4
seconds of advance notice may not create the desired result. The splice_insert() message shall be
sent at least once a minimum of 4 seconds in advance of the desired splice time for a network out
point condition. It is recommended that, if a return-to-network (an in point) message is sent, the
same minimum 4 second pre-roll be provided.

The splice_insert() command provides for an optional break_duration() structure to identify the
length of the commercial break. It is recommended that splice_insert() messages with the
out_of_network_indicator set to 1 (a network out point) include a break_duration() structure to
provide the splicer with an indication of when the network in point will occur. The break_duration()
structure provides for an optional auto_return flag that, when set to 1, indicates that the splicer is to
return to the network at the end of the break (defined as Auto Return Mode, refer to clause 9.4.2.2).
It is recommended that this Auto Return Mode be used to support dynamic avail durations.

 Rec. ITU-T J.181 (01/2014) 13

The time_signal() command is provided for extensibility while preserving the precise timing
allowed in the splice_insert() command. This is to allow for new features not directly related to
splicing utilizing the timing capabilities of this specification while causing minimal impact to the
splicing devices that conform to this specification. This allows the device that will be inserting the
time into the cue message to have a defined location.

The bandwidth_reservation() command is provided to allow command insertion devices to utilize a
consistent amount of transport stream bandwidth. Descriptors may be used in this command, but
they cannot be expected to be processed and sent downstream to provide signalling information.

There are two methods for changing the parameters of a command once it has been issued. One
method is to cancel the issued command by sending a splice_info_section with the
splice_event_cancel_indicator set and then to send a new splice_info_section with the correct/new
parameters. The other method is to simply send a subsequent message with the new data (without
cancelling the old message via a cue message that has the splice_event_cancel_indicator bit set).

9.1.1 Time base discontinuities

In the case where a system time base discontinuity is present, packets containing a splice_insert() or
time_signal() command with time expressed in the new time base shall not arrive prior to the
occurrence of the time base discontinuity. Packets containing a splice_insert() or time_signal()
command with time expressed in the previous time base shall not arrive after the occurrence of the
time base discontinuity (see[b-ISO/IEC 13818-4]).

The complete syntax is presented below, followed by definition of terms, followed by constraints.

9.2 Splice info section

The splice_info_section shall be carried in transport packets whereby only one section or partial
section may be in any transport packet. Splice_info_sections must always start at the beginning of a
transport packet payload. When a section begins in a transport packet, the pointer_field must be
present and equal to 0x00 and the payload_unit_start_indicator bit must be equal to one (per the
requirements of section syntax usage per [ITU-T H.222.0]).

Table 9-1 – splice_info_section()

Syntax Bits Mnemonic Encrypted

splice_info_section() {

 table_id 8 uimsbf

 section_syntax_indicator 1 bslbf

 private_indicator 1 bslbf

 reserved 2 bslbf

 section_length 12 uimsbf

 protocol_version 8 uimsbf

 encrypted_packet 1 bslbf

 encryption_algorithm 6 uimsbf

 pts_adjustment 33 uimsbf

 cw_index 8 uimsbf

 tier 12 bslbf

 splice_command_length 12 uimsbf

 splice_command_type 8 uimsbf E

14 Rec. ITU-T J.181 (01/2014)

Table 9-1 – splice_info_section()

Syntax Bits Mnemonic Encrypted

 if(splice_command_type == 0x00)

 splice_null() E

 if(splice_command_type == 0x04)

 splice_schedule() E

 if(splice_command_type == 0x05)

 splice_insert() E

 if(splice_command_type == 0x06)

 time_signal() E

 if(splice_command_type == 0x07)

 bandwidth_reservation() E

 if(splice_command_type == 0xff)

 private_command() E

 descriptor_loop_length 16 uimsbf E

 for(i=0; i<N1; i++)

 splice_descriptor() E

 for(i=0; i<N2; i++)

 alignment_stuffing 8 bslbf E

 if(encrypted_packet)

 E_CRC_32 32 rpchof E

 CRC_32 32 rpchof

}

NOTE – In Table 9-1, column 4, E stands for "Encrypted".

The XML schema for splice_info_section is shown in Figure 9-1.

 Rec. ITU-T J.181 (01/2014) 15

0..∞

attributes

J.181(14)_F9-1

SpliceInfoSectionType

ptsAdjustment

protocolVersion

tier

any ##any

Ext

EncryptedPacketSpliceInfoSection

SpliceNull

SpliceSchedule

SpliceInsert

TimeSignal

BandwidthReservation

PrivateCommand

AvailDescriptor

DTMFDescriptor

SegmentationDescriptor

Figure 9-1 – SpliceInfoSection

9.2.1 Semantic definition of fields in splice_info_section()

table_id – This is an 8-bit field. Its value shall be 0xFC.

There is no entry in the XML schema for table_id. The value is implicit when transforming to or
from an XML representation of the splice_info_section.

section_syntax_indicator – The section_syntax_indicator is a 1-bit field that should always be set
to '0' indicating that MPEG short sections are to be used.

There is no entry in the XML schema for section_syntax_indicator. The value is a constant when
converting an XML representation of the splice_info_section to Bit Stream Format.

private_indicator – This is a 1-bit flag that shall be set to 0.

There is no entry in the XML schema for private_indicator. The value is a constant when converting
an XML representation of the splice_info_section to Bit Stream Format.

section_length – This is a 12-bit field specifying the number of remaining bytes in the
splice_info_section immediately following the section_length field up to the end of the
splice_info_section. The value in this field shall not exceed 4093.

16 Rec. ITU-T J.181 (01/2014)

There is no entry in the XML schema for section_length. The value shall be derived when
converting an XML representation of the splice_info_section to Bit Stream Format.

protocol_version – An 8-bit unsigned integer field whose function is to allow, in the future, this
table type to carry parameters that may be structured differently than those defined in the current
protocol. At present, the only valid value for protocol_version is zero. Non-zero values of
protocol_version may be used by a future version of this Recommendation to indicate structurally
different tables.

@protocolVersion [Optional; xsd:unsignedByte] If present, this attribute shall be set to 0.

encrypted_packet – When this bit is set to '1', it indicates that portions of the splice_info_section,
starting with splice_command_type and ending with and including E_CRC_32, are encrypted.
When this bit is set to '0', no part of this message is encrypted. The potentially encrypted portions of
the splice_info_table are indicated by an E in the Encrypted column of Table 9-1.

There is no entry in the XML schema for encrypted_packet. When converting an XML
representation of the splice_info_section to Bit Stream Format, this value shall be set to 1 if the
EncryptedPacket element is present; otherwise, the value shall be set to 0. When creating the
SpliceInfoSection element, the EncryptedPacket element shall be populated if encryption is desired.
The encrypted attributes shall only apply to the generation of the Bit Stream Format of the
splice_info_section. The encrypted attributes may be populated when converting a
splice_info_section to XML but the actual data in the XML shall not be encrypted.

encryption_algorithm – This 6-bit unsigned integer specifies which encryption algorithm was used
to encrypt the current message. When the encrypted_packet bit is zero, this field is present but
undefined. Refer to clause 11, and specifically Table 11-1 for details on the use of this field.

@encryptionAlgorithm [Conditional Mandatory, xsd:unsignedByte] If the EncryptedPacket element
is present this value shall be provided.

pts_adjustment – A 33-bit unsigned integer that appears in the clear and that shall be used by a
splicing device as an offset to be added to the (sometimes) encrypted pts_time field(s) throughout
this message to obtain the intended splice time(s). When this field has a zero value, then the
pts_time field(s) shall be used without an offset. Normally, the creator of a cueing message will
place a zero value into this field. This adjustment value is the means by which an upstream device,
which restamps pcr/pts/dts, may convey to the splicing device the means by which to convert the
pts_time field of the message to a newly imposed time domain.

It is intended that the first device that restamps pcr/pts/dts and that passes the cueing message will
insert a value into the pts_adjustment field, which is the delta time between this device's input time
domain and its output time domain. All subsequent devices, which also restamp pcr/pts/dts, may
further alter the pts_adjustment field by adding their delta time to the field's existing delta time and
placing the result back in the pts_adjustment field. Upon each alteration of the pts_adjustment field,
the altering device must recalculate and update the CRC_32 field.

The pts_adjustment shall, at all times, be the proper value to use for conversion of the pts_time field
to the current time-base. The conversion is done by adding the two fields. In the presence of a wrap
or overflow condition the carry shall be ignored.

@ptsAdjustment [Optional, PTSType]. See clause 12.2.

cw_index – An 8-bit unsigned integer that conveys which control word (key) is to be used to
decrypt the message. The splicing device may store up to 256 keys previously provided for this
purpose. When the encrypted_packet bit is zero, this field is present but undefined.

@cwIndex [Conditional Mandatory, xsd:unsignedByte] If the EncryptedPacket element is present
this value shall be provided.

 Rec. ITU-T J.181 (01/2014) 17

tier – A 12-bit value used by the SCTE 35 message provider to assign messages to authorization
tiers. This field may take any value between 0x000 and 0xFFF. The value of 0xFFF provides
backwards compatibility and shall be ignored by downstream equipment. When using tier, the
message provider should keep the entire message in a single transport stream packet.

@tier [Optional, xsd:unsignedShort]

splice_command_length – A 12-bit length of the splice command. The length shall represent the
number of bytes following the splice_command_type up to but not including the
descriptor_loop_length. Devices that are compliant with this Recommendation shall populate this
field with the actual length. The value of 0xFFF provides backwards compatibility and shall be
ignored by downstream equipment.

There is no entry in the XML schema for splice_command_length. The value shall be derived when
converting an XML representation of the splice_info_section to Bit Stream Format.

splice_command_type – An 8-bit unsigned integer which shall be assigned one of the values
shown in column labelled splice_command_type value in Table 9-2.

There is no entry in the XML schema for splice_command_type. The value is implicit when
transforming to or from an XML representation of the splice_info_section based on the specific
command element supplied. The element names can be found in the XML element column
in Table 9-2.

Table 9-2 – splice_command_type values

Command splice_command_type value XML element

splice_null 0x00 SpliceNull

Reserved 0x01

Reserved 0x02

Reserved 0x03

splice_schedule 0x04 SpliceSchedule

splice_insert 0x05 SpliceInsert

time_signal 0x06 TimeSignal

bandwidth_reservation 0x07 BandwidthReservation

Reserved 0x08-0xfe

private_command 0xff PrivateCommand

descriptor_loop_length – A 16-bit unsigned integer specifying the number of bytes used in the
splice descriptor loop immediately following.

There is no entry in the XML schema for descriptor_loop_length. The value shall be derived when
converting an XML representation of the splice_info_section to Bit Stream Format.

alignment_stuffing – When encryption is used this field is a function of the particular encryption
algorithm chosen. Since some encryption algorithms require a specific length for the encrypted
data, it is necessary to allow the insertion of stuffing bytes. For example, data encryption standard
(DES) requires a multiple of 8 bytes be present in order to encrypt to the end of the packet. This
allows standard DES to be used, as opposed to requiring a special version of the encryption
algorithm.

When encryption is not used, this field shall not be used to carry valid data but may be present.

There is no entry in the XML schema for alignment_stuffing. The required data shall be derived
when converting an XML representation of the splice_info_section to Bit Stream Format.

18 Rec. ITU-T J.181 (01/2014)

E_CRC_32 – This is a 32-bit field that contains the cyclic redundancy check (CRC) value that
gives a zero output of the registers in the decoder defined in [ITU-T H.222.0] after processing the
entire decrypted portion of the splice_info_section. This field is intended to give an indication that
the decryption was performed successfully. Hence the zero output is obtained following decryption
and by processing the fields splice_command_type through E_CRC_32.

There is no entry in the XML schema for E_CRC_32. The value shall be derived when converting
an XML representation of the splice_info_section to Bit Stream Format.

CRC_32 – This is a 32-bit field that contains the CRC value that gives a zero output of the registers
in the decoder defined in [ITU-T H.222.0] after processing the entire splice_info_section, which
includes the table_id field through the CRC_32 field. The processing of CRC_32 shall occur prior
to decryption of the encrypted fields and shall utilize the encrypted fields in their encrypted state.

There is no entry in the XML schema for CRC_32. The value shall be derived when converting an
XML representation of the splice_info_section to Bit Stream Format.

9.3 Splice commands

9.3.1 splice_null()

The splice_null() command is provided for extensibility of the standard. The splice_null() command
allows a splice_info_table to be sent that can carry descriptors without having to send one of the
other defined commands. This command may also be used as a "heartbeat message" for monitoring
cue injection equipment integrity and link integrity.

Table 9-3 – splice_null()

Syntax Bits Mnemonic

splice_null() {

}

The XML schema for splice_null is shown in Figure 9-2:

attributes

J.181(14)_F9-2

SpliceNullType

any ##any

Ext

SpliceNull

Figure 9-2 – SpliceNull

9.3.2 splice_schedule()

The splice_schedule() command is provided to allow a schedule of splice events to be conveyed in
advance.

 Rec. ITU-T J.181 (01/2014) 19

Table 9-4 – splice_schedule()

Syntax Bits Mnemonic

splice_schedule() {

 splice_count 8 uimsbf

 for (i=0; i<splice_count; i++) {

 splice_event_id 32 uimsbf

 splice_event_cancel_indicator 1 bslbf

 reserved 7 bslbf

 if (splice_event_cancel_indicator == '0') {

 out_of_network_indicator 1 bslbf

 program_splice_flag 1 bslbf

 duration_flag 1 bslbf

 reserved 5 bslbf

 if (program_splice_flag == '1')

 utc_splice_time 32 uimsbf

 if (program_splice_flag == '0') {

 component_count 8 uimsbf

 for(j=0;j<component_count;j++) {

 component_tag 8 uimsbf

 utc_splice_time 32 uimsbf

 }

 }

 if (duration_flag)

 break_duration()

 unique_program_id 16 uimsbf

 avail_num 8 uimsbf

 avails_expected 8 uimsbf

 }

 }

}

The XML schema for splice_schedule is shown in Figure 9-3.

20 Rec. ITU-T J.181 (01/2014)

attributes

attributes

attributes

J.181(14)_F9-3

attributes

1..255

Component

0..255

Event

Ext

Ext

utcSpliceTime

componentTag

utcSpliceTime

Program any ##any

any ##any

SpliceScheduleType

any ##any

Ext

Ext

BreakDuration

SpliceSchedule

spliceEventId

spliceEventCancelIndicator

availsExpected

any ##any

availNum

uniqueProgramId

outOfNetworkIndicator

Figure 9-3 – SpliceSchedule

9.3.2.1 Semantic definition of fields in splice_schedule()

splice_count – An 8-bit unsigned integer that indicates the number of splice events specified in the
loop that follows.

There is no entry in the XML schema for splice_count. The value shall be derived when converting
an XML representation of the splice_schedule to Bit Stream Format. splice_count shall be set to the
count of Event elements supplied in the XML document.

splice_event_id – A 32-bit unique splice event identifier.

@spliceEventId [Optional, xsd:unsignedInt]

splice_event_cancel_indicator – A 1-bit flag that when set to '1' indicates that a previously sent
splice event, identified by splice_event_id, has been cancelled.

 Rec. ITU-T J.181 (01/2014) 21

@spliceEventCancelIndicator [Optional; xsd:boolean] A value of TRUE shall be equivalent to a
value of '1' and FALSE shall be equivalent to a value of '0'. If omitted, set
splice_event_cancel_indicator to 0 when generating an SCTE 35 splice_schedule message.

out_of_network_indicator – A 1-bit flag. When set to '1', indicates that the splice event is an
opportunity to exit from the network feed and that the value of utc_splice_time shall refer to an
intended out point or program out point. When set to '0', the flag indicates that the splice event is an
opportunity to return to the network feed and that the value of utc_splice_time shall refer to an
intended in point or program in point.

@outOfNetworkIndicator [Optional, xsd:boolean] A value of TRUE shall be equivalent to a value
of '1' for out_of_network_indicator in Bit Stream Format.

program_splice_flag – A 1-bit flag that, when set to '1', indicates that the message refers to a
Program Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components
of the program are to be spliced. When set to '0', this field indicates that the mode is the Component
Splice Mode whereby each component that is intended to be spliced will be listed separately by the
syntax that follows.

There is no entry in the XML schema for program_splice_flag. The value of program_splice_flag
shall be set to '1' when converting an XML representation of the splice_schedule to Bit Stream
Format if the Program element in the Event element is specified; otherwise, the value of
program_splice_flag shall be set to '0'.

duration_flag – A 1-bit flag that indicates the presence of the break_duration() field.

There is no entry in the XML schema for duration_flag. The value shall be derived when converting
an XML representation of the splice_schedule to Bit Stream Format. duration_flag shall be set to '1'
if a BreakDuration element is supplied within the Event element; otherwise, duration_flag shall be
set to '0'. See clause 9.3.8 for a description of the BreakDuration element.

utc_splice_time – A 32-bit unsigned integer quantity representing the time of the signalled splice
event as the number of seconds since 00 hours coordinated universal time (UTC), January 6th,
1980, with the count of intervening leap seconds included. The utc_splice_time may be converted to
UTC without the use of the GPS_UTC_offset value provided by the System Time table. The
utc_splice_time field is used only in the splice_schedule() command.

@utcSpliceTime [Required, xsd:dateTime] utcSplice time applies to both Program Splice Mode and
Component Splice Mode.

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary
PID stream data in the loop that follows. Components are equivalent to elementary PID streams. If
program_splice_flag == '0' then the value of component_count shall be greater than or equal to 1.

There is no entry in the XML schema for component_count. For Component Splice Mode, the value
shall be derived when converting an XML representation of the splice_schedule to Bit Stream
Format. component_count shall be set to the count of Component elements supplied within the
Event element in the XML document.

component_tag – An 8-bit value that identifies the elementary PID stream containing the Splice
Point specified by the value of splice_time() that follows. The value shall be the same as the value
used in the stream_identification_descriptor() to identify that elementary PID stream.

@componentTag [Required, xsd:unsignedByte]

unique_program_id – This value should provide a unique identification for a viewing event within
the service.

NOTE – See [b-SCTE 118-2] for guidance in setting values for this field.

@uniqueProgramId [Optional, xsd:unsignedShort]

22 Rec. ITU-T J.181 (01/2014)

avail_num – (previously 'avail') This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing
event. This value is expected to reset to one for the first avail in a new viewing event. This field is
expected to increment for each new avail. It may optionally carry a zero value to indicate its
non-usage.

@availNum [Optional, xsd:unsignedByte]

avails_expected – (previously 'avail_count') This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the
avail_num field has no meaning.

@availsExpected [Optional, xsd:unsignedByte]

9.3.3 splice_insert()

The splice_insert() command shall be sent at least once for every splice event. Refer to clause 6.3
for the use of this message.

Table 9-5 – splice_insert()

Syntax Bits Mnemonic

splice_insert() {

 splice_event_id 32 uimsbf

 splice_event_cancel_indicator 1 bslbf

 reserved 7 bslbf

 if(splice_event_cancel_indicator == '0') {

 out_of_network_indicator 1 bslbf

 program_splice_flag 1 bslbf

 duration_flag 1 bslbf

 splice_immediate_flag 1 bslbf

 reserved 4 bslbf

 If((program_splice_flag == '1') && (splice_immediate_flag == '0'))

 splice_time()

 if(program_splice_flag == '0') {

 component_count 8 uimsbf

 for(i=0;i<component_count;i++) {

 component_tag 8 uimsbf

 if(splice_immediate_flag == '0')

 splice_time()

 }

 }

 if(duration_flag == '1')

 break_duration()

 unique_program_id 16 uimsbf

 avail_num 8 uimsbf

 avails_expected 8 uimsbf

 }

}

 Rec. ITU-T J.181 (01/2014) 23

The XML schema for splice_insert is shown in Figure 9-4:

attributes

attributes

J.181(14)_F9-4

any ##any

attributes

spliceImmediateFlag

1..255

Component

spliceEventId

Ext

componentTag

Program
attributes

Ext

Ext

ptsTime

any ##any

SpliceInsertType

Ext

BreakDuration

SpliceInsert

spliceEventCancelIndicator

availsExpected

any ##any

availNum

uniqueProgramId

outOfNetworkIndicator

any ##any

SpliceTime

SpliceTimeType

SpliceTime

Figure 9-4 – SpliceInsert

9.3.3.1 Semantic definition of fields in splice_insert()

splice_event_id – A 32-bit unique splice event identifier.

@spliceEventId [Optional; xsd:unsignedInt]

splice_event_cancel_indicator – A 1-bit flag that when set to '1' indicates that a previously sent
splice event, identified by splice_event_id, has been cancelled.

@spliceEventCancelIndicator [Optional; xsd:boolean] A value of TRUE shall be equivalent to a
value of '1' and FALSE shall be equivalent to a value of '0'. If omitted, set
splice_event_cancel_indicator to 0 when generating an SCTE 35 splice_insert message.

out_of_network_indicator – A 1-bit flag. When set to '1', indicates that the splice event is an
opportunity to exit from the network feed and that the value of splice_time(), as modified by

24 Rec. ITU-T J.181 (01/2014)

pts_adjustment, shall refer to an intended out point or program out point. When set to '0', the flag
indicates that the splice event is an opportunity to return to the network feed and that the value of
splice_time(), as modified by pts_adjustment, shall refer to an intended in point or program in point.

@outOfNetworkIndicator [Optional; xsd:boolean]

program_splice_flag – A 1-bit flag that, when set to '1', indicates that the message refers to a
Program Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components
of the program are to be spliced. When set to '0', this field indicates that the mode is the Component
Splice Mode whereby each component that is intended to be spliced will be listed separately by the
syntax that follows.

There is no entry in the XML schema for program_splice_flag. The value of program_splice_flag
shall be set to '1' when converting an XML representation of the splice_insert to Bit Stream Format
if the Program element in the Event element is specified; otherwise, the value of
program_splice_flag shall be set to '0'.

duration_flag – A 1-bit flag that, when set to '1', indicates the presence of the break_duration()
field.

There is no entry in the XML schema for duration_flag. The value shall be derived when converting
an XML representation of the splice_insert to Bit Stream Format. duration_flag shall be set to '1' if
a BreakDuration element is supplied within the SpliceInsert Element; otherwise, duration_flag shall
be set to '0'. See clause 9.3.8 for a description of the BreakDuration Element.

splice_immediate_flag – When this flag is '1', it indicates the absence of the splice_time() field and
that the splice mode shall be the Splice Immediate Mode, whereby the splicing device shall choose
the nearest opportunity in the stream, relative to the splice information packet, to splice. When this
flag is '0', it indicates the presence of the splice_time() field in at least one location within the
splice_insert() command.

@spliceImmediateFlag [Optional; xsd:boolean]

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary
PID stream data in the loop that follows. Components are equivalent to elementary PID streams. If
program_splice_flag == '0' then the value of component_count shall be greater than or equal to 1.

There is no entry in the XML schema for component_count. For Component Splice Mode, the value
shall be derived when converting an XML representation of the splice_insert to Bit Stream Format.
component_count shall be set to the count of Component elements supplied within the SpliceInsert
element in the XML document.

component_tag – An 8-bit value that identifies the elementary PID stream containing the Splice
Point specified by the value of splice_time() that follows. The value shall be the same as the value
used in the stream_identification_descriptor() to identify that elementary PID stream.

@componentTag [Required, xsd:unsignedByte]

unique_program_id – This value should provide a unique identification for a viewing event within
the service.

NOTE – See [b-SCTE 118-2] for guidance in setting values for this field.

@uniqueProgramId [Optional; xsd:unsignedShort]

avail_num – (previously 'avail') This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing
event. This value is expected to reset to one for the first avail in a new viewing event. This field is
expected to increment for each new avail. It may optionally carry a zero value to indicate its non-
usage.

@availNum [Optional, xsd:unsignedByte]

 Rec. ITU-T J.181 (01/2014) 25

avails_expected – (previously 'avail_count') This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the avail
field has no meaning.

@availsExpected [Optional, xsd:unsignedByte]

9.3.4 time_signal()

The time_signal() provides a time synchronized data delivery mechanism. The syntax of the
time_signal() allows for the synchronization of the information carried in this message with the
system time clock (STC). The unique payload of the message is carried in the descriptor, however
the syntax and transport capabilities afforded to splice_insert() messages are also afforded to the
time_signal(). The carriage however can be in a different PID than that carrying the other cue
messages used for signalling splice points.

If the time_specified_flag is set to 0, indicating no pts_time in the message, then the command shall
be interpreted as an immediate command. It must be understood that using it in this manner will
cause an unspecified amount of accuracy error.

Since the time_signal() command utilizes descriptors for most of the specific information, this
command could exceed one MPEG transport packet in length. It is strongly recommended to keep
this command to one packet if possible. This may not always be possible in situations, for example,
where the unique information is long or where another specification is used for the definition of this
unique information.

Table 9-6 – time_signal()

Syntax Bits Mnemonic

time_signal() {

 splice_time()

}

The XML schema for time_signal is shown in Figure 9-5.

J.181(14)_F9-5

attributes

SpliceTime

Ext

any ##any

TimeSignal

TimeSignalType

Figure 9-5 – TimeSignal

9.3.4.1 Semantic definition of time_signal()

This time_signal() provides a uniform method of associating a pts_time sample with an arbitrary
descriptor (or descriptors) as provided by the splice_info_section syntax (see Table 9-1). Please
refer to clause 10 for Splice Descriptors.

9.3.5 bandwidth_reservation()

The bandwidth_reservation() command is provided for reserving bandwidth in a multiplex. A
typical usage would be in a satellite delivery system that requires packets of a certain PID to always
be present at the intended repetition rate to guarantee a certain bandwidth for that PID. This

26 Rec. ITU-T J.181 (01/2014)

message differs from a splice_null() command so that it can easily be handled in a unique way by
receiving equipment (i.e., removed from the multiplex by a satellite receiver). If a descriptor is sent
with this command, it cannot be expected that it will be carried through the entire transmission
chain and it should be a private descriptor that is utilized only by the bandwidth reservation process.

Table 9-7 – bandwidth_reservation()

Syntax Bits Mnemonic

bandwidth_reservation() {

}

The XML schema for bandwidth_reservation is shown in Figure 9-6.

J.181(14)_F9-6

attributes

Ext

any ##any

BandwidthReservation

BandwidthReservationType

Figure 9-6 – BandwidthReservation

9.3.6 private_command()

The private_command() structure provides a means to distribute user-defined commands using the
SCTE 35 protocol. The first bit field in each user-defined command is a 32-bit identifier, unique for
each participating vendor. Receiving equipment should skip any splice_info_section() messages
containing private_command() structures with unknown identifiers.

Table 9-8 – private_command()

Syntax Bits Mnemonic

private_command() {

 identifier 32 uimsbf

 for(i=0; i<N; i++) {

 private_byte 8 uimsbf

 }

}

The XML schema for private_command is shown in Figure 9-7.

 Rec. ITU-T J.181 (01/2014) 27

J.181(14)_F9-7

attributes

PrivateBytes

Ext

any ##any

PrivateCommand

PrivateCommandType

identifier

Figure 9-7 – PrivateCommand

identifier – The identifier is a 32-bit field as defined in [ITU-T H.222.0]. Refer to clauses 2.6.8
and 2.6.9 of [ITU-T H.222.0] for descriptions of Registration descriptor and semantic definition of
fields in registration descriptor. Only identifier values registered and recognized by SMPTE
Registration Authority, LLC should be used (see [b-SMPTE RA]). Its use in the private_command()
structure shall scope and identify only the private information contained within this command. This
32-bit number is used to identify the owner of the command.

@identifier [Optional; xsd:unsignedInt]

private_byte – The remainder of the descriptor is dedicated to data fields as required by the
descriptor being defined.

PrivateBytes [Optional; xsd:hexBinary] If present, the PrivateBytes shall contain the hex binary
representation of the private data.

Private means for communicating detailed vendor-unique ancillary information SHOULD be the
only use of such data, and it SHALL NOT provide the same result as a standardized command.

9.3.7 splice_time()

The splice_time() structure, when modified by pts_adjustment, specifies the time of the splice
event.

Table 9-9 – splice_time()

Syntax Bits Mnemonic

splice_time() {

 time_specified_flag 1 bslbf

 if(time_specified_flag == 1) {

 reserved 6 bslbf

 pts_time 33 uimsbf

 }

 else

 reserved 7 bslbf

}

The XML schema for splice_time() is shown in Figure 9-8.

28 Rec. ITU-T J.181 (01/2014)

J.181(14)_F9-8

any ##any

ptsTime

attributes

Ext

SpliceTime

SpliceTimeType

Figure 9-8 – SpliceTime

9.3.7.1 Semantic definition of fields in splice_time()

time_specified_flag – A 1-bit flag that, when set to '1', indicates the presence of the pts_time field
and associated reserved bits.

There is no entry in the XML schema for time_specified_flag. The value of time_specified_flag
shall be set to '1' when converting an XML representation of the splice_insert to Bit Stream Format
if the ptsTime attribute is present in the SpliceTime Element; otherwise, the value of
time_specified_flag shall be set to '0'.

pts_time – A 33-bit field that indicates time in terms of ticks of the program's 90 kHz clock. This
field, when modified by pts_adjustment, represents the time of the intended splice point.

@ptsTime [Optional; PTSType] See clause 12.2 for a description of PTSType.

9.3.8 break_duration()

The break_duration() structure specifies the duration of the commercial break(s). It may be used to
give the splicer an indication of when the break will be over and when the network in point will
occur.

Table 9-10 – break_duration()

Syntax Bits Mnemonic

break_duration() {

 auto_return 1 bslbf

 reserved 6 bslbf

 duration 33 uimsbf

}

The XML schema for break_duration() is shown in Figure 9-9.

 Rec. ITU-T J.181 (01/2014) 29

J.181(14)_F9-9

any ##any

autoReturn

duration

attributes

Ext

BreakDuration

BreakDurationType

Figure 9-9 – BreakDuration

9.3.8.1 Semantic definition of fields in break_duration()

auto_return – A 1-bit flag that, when set to '1', denotes that the duration shall be used by the
splicing device to know when the return to the network feed (end of break) is to take place. A
splice_insert() command with out_of_network_indicator set to 0 is not intended to be sent to end
this break. When this flag is '0', the duration field, if present, is not required to end the break
because a new splice_insert() command will be sent to end the break. In this case, the presence of
the break_duration field acts as a safety mechanism in the event that a splice_insert() command is
lost at the end of a break.

@autoReturn [Required; xsd:boolean]

duration – A 33-bit field that indicates elapsed time in terms of ticks of the program's 90 kHz
clock.

@duration [Required; PTSType]. See clause 12.2 for a description of PTSType.

9.4 Constraints

9.4.1 Constraints on splice_info_section()

The splice_info_section shall be carried in one or more PID stream(s) that are specific to a program
and referred to in the PMT. The splice_info_section PID(s) shall be identified in the PMT by
stream_type equal to 0x86.

The splice_info_section carried in one or more PID stream(s) referenced in a program's PMT shall
contain only information about splice events that occur in that program.

A splice event shall be defined by a single value of splice_event_id.

If the Component Splice Mode will be used, then each elementary PID stream shall be identified by
a stream_identifier_descriptor carried in the PMT loop, one for each PID. The
stream_identifier_descriptor shall carry a component_tag, which uniquely corresponds to one PID
stream among those contained within a program and listed in the PMT for that program.

Any splice_event_id that is sent in a splice_info_section using a splice_schedule() command shall
be sent again prior to the event using a splice_insert() command. Hence, there shall be a
correspondence between the splice_event_id values chosen for particular events signalled by the
splice_schedule() command (distant future) and splice_event_id values utilized in the splice_insert()
command (near future) to indicate the same events.

Splice_event_id values do not need to be sent in an incrementing order in subsequent messages nor
must they increment chronologically. Splice_event_id values may be chosen at random. When
utilizing the splice_schedule() command, splice_event_id values shall be unique over the period of
the splice_schedule() command. A splice_event_id value may be re-used when its associated splice
time has passed.

30 Rec. ITU-T J.181 (01/2014)

When the splice_immediate_flag is set to 1, the time to splice shall be interpreted as the current
time. This is called the "Splice Immediate Mode". When this form is used with the splice_insert()
command, the splice may occur at the nearest (prior or subsequent) opportunity that is detected by
the splicer. The "Splice Immediate Mode" may be used for both splicing entry and exit points,
i.e., for both states of out_of_network_indicator.

It shall be allowed that any avail may be ended with a Program Splice Mode message, a Component
Splice Mode message or no message (whereby the break_duration is reached) regardless of the
nature of the message at the beginning of the avail.

9.4.2 Constraints on the interpretation of time

9.4.2.1 Constraints on splice_time() for splice_insert()

For splice_command_type equal to 0x05 (splice_insert()) the following constraints on splice_time()
shall apply:

At least one message for a network out point must arrive at least 4 seconds in advance of the
signalled splice time (pts_time as modified by pts_adjustment) if the time is specified. A Splice
Immediate Mode message is allowed for a network out point, but the actual splice time is not
defined and it is recommended that Splice Immediate Mode messages only be used for the early
termination of breaks. When non-Splice Immediate Mode cue messages are used for network in
points, the cue message must arrive at the splicer before the arrival of the signalled in point picture
at the receiver.

An out point lies between two presentation units. The intended out point of a signalled splice event
shall be the out point that is immediately prior to the presentation unit whose presentation time most
closely matches the signalled pts_time as modified by pts_adjustment.

An in point lies between two presentation units. The intended in point of a signalled splice event
shall be the in point that is immediately prior to the presentation unit whose presentation time most
closely matches the signalled pts_time as modified by pts_adjustment.

When the Component Splice Mode is in effect and the out_of_network_indicator is '1' (the
beginning of a break), each component listed in the splice_insert() component loop shall be
switched from the network component to the splicer supplied component at the time indicated.
Components not listed in the component loop of the message will remain unchanged: if a splicer
output component was the network component then it will remain the network component; if a
splicer output component was the splicer supplied component then it will remain the splicer
supplied component.

When the Component Splice Mode is in effect and the out_of_network_indicator is '0' (the end of a
break), each component listed in the splice_insert() component loop shall be switched from the
splicer supplied component to the network component at the time indicated. Components not listed
in the component loop of the message will remain unchanged: if a splicer output component was the
network component then it will remain the network component; if a splicer output component was
the splicer supplied component then it will remain the splicer supplied component.

When the Component Splice Mode is in effect and the Splice Immediate Mode is not in effect, the
first component listed in the component loop of the splice_insert() command shall have a valid
pts_time in its associated splice_time() and this pts_time is referred to as the default pts_time.
Subsequent components listed in the component loop of the same message, which do not have an
associated pts_time, shall utilize this default pts_time. It shall be allowed that any and all
components following the first listed component of a splice_insert() command may contain a
unique pts_time that is different from the default pts_time.

In the Component Splice Mode, all pts_time values given in the splice_insert component loop shall
be modified by the pts_adjustment field to obtain each intended value for the signalled out point or

 Rec. ITU-T J.181 (01/2014) 31

in point. The pts_adjustment, provided by any device that generates or modifies a pts_adjustment
field value, shall apply to all pts_time fields in the message.

9.4.2.2 Constraints on break_duration() for splice_insert()

For splice_command_type equal to 0x05 (insert) the following constraints on break_duration() shall
apply:

The value given in break_duration() is interpreted as the intended duration of the commercial break.
It is an optional field to be used when the out_of_network_indicator equals 1. It may be used in the
same splice_insert() command that specifies the start time of the break, so that the splicer can
calculate the time when the break will be over.

Breaks may be terminated by issuing a splice_insert() command with out_of_network_indicator set
to 0. A splice_time() may be given or the Splice Immediate Mode may be used. When a
break_duration was given at the start of the break (where the auto_return was set to zero), the
break_duration value may be utilized as a backup mechanism for insuring that a return to the
network actually happens in the event of a lost cueing packet.

Breaks may also be terminated by giving a break duration at the beginning of a break and relying on
the splicing device to return to the network feed at the proper time. The auto_return flag must be 1.
This will be referred to as the Auto Return Mode. Auto Return Mode breaks do not require and do
not disallow cue messages at the end of the break with out_of_network_indicator set to 0. Hence a
receiving device should not expect a cue message at the end of a break in order to function properly.
Auto Return Mode breaks may however be terminated early. To end the break prematurely a second
splice_insert() command may be given, where the out_of_network_indicator equals 0. The new
time of the back to network splice may be given by an updated splice_time(), or the Splice
Immediate Mode message may be used. A cue message with out_of_network_indicator set to 0
shall always override the duration field of a previous cue message (with out_of_network_indicator
set to 1) if that break's signalled duration is still under way.

10 Splice descriptors

10.1 Overview

The splice_descriptor is a prototype for adding new fields to the splice_info_section. All descriptors
included use the same syntax for the first six bytes. In order to allow private information to be
added we have included the 'identifier' code. This removes the need for a registration descriptor in
the descriptor loop.

Any receiving equipment should skip any descriptors with unknown identifiers or unknown
descriptor tags. For descriptors with known identifiers, the receiving equipment should skip
descriptors with an unknown splice_descriptor_tag.

Splice descriptors may exist in the splice_info_section for extensions specific to the various
commands.

Table 10-1 lists the defined Splice Descriptor Tags. Both the tag values that shall be used for Bit
Stream Format as well as the XML Element that shall be used to identify each specific Splice
Descriptor are listed.

Implementers note: Multiple descriptors of the same or different types in a single command are
allowed and may be common. One case of multiple segmentation_descriptors is described in
clause 10.3.3.1. The only limit on the number of descriptors is the section_length in Table 7-1,
although there may be other practical or implementation limits.

32 Rec. ITU-T J.181 (01/2014)

Table 10-1 – Splice descriptor tags

Tag XML element Descriptors for identifier "CUEI"

0x00 AvailDescriptor avail_descriptor

0x01 DTMFDescriptor DTMF_descriptor

0x02 SegmentationDescriptor segmentation_descriptor

0x03 – 0xFF Reserved for future SCTE splice_descriptors

10.2 Splice descriptor

The Splice Descriptor syntax provided in this clause is to be used as a template for specific
implementations of a descriptor intended for the splice_info_section. It should be noted that splice
descriptors are only used within a splice_info_section. They are not to be used within MPEG
syntax, such as the PMT, or in the syntax of any other standard. This allows one to draw on the
entire range of descriptor tags when defining new descriptors.

Table 10-2 – splice_descriptor()

Syntax Bits Mnemonic

splice_descriptor() {

 splice_descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 identifier 32 uimsbf

 for(i=0; i<N; i++) {

 private_byte 8 uimsbf

 }

}

The XML schema base type for all Splice Descriptors is SpliceDescriptorType. The XML schema
for the SpliceDescriptorType base type is shown in Figure 10-1. The optional extension element is
the only element defined within the base type.

J.181(14)_F10-1

attributes

Ext

any ##any

SpliceDescriptorType

Figure 10-1 – SpliceDescriptorType

10.2.1 Semantic definition of fields in splice_descriptor()

splice_descriptor_tag – This 8 bit number defines the syntax for the private bytes that make up the
body of this descriptor. The descriptor tags are defined by the owner of the descriptor, as registered
using the identifier.

There is no entry in the XML schema for splice_descriptor_tag. The value is implicit when
transforming to or from an XML representation of the splice_descriptor() based on the specific
descriptor Element supplied. The XML element names can be found in Table 10-1.

descriptor_length – This 8 bit number gives the length, in bytes, of the descriptor following this
field. Descriptors are limited to 256 bytes, so this value is limited to 254.

 Rec. ITU-T J.181 (01/2014) 33

There is no entry in the XML schema for descriptor_length. The value shall be derived when
converting an XML representation of the specific splice_descriptor() to Bit Stream Format.

identifier – The identifier is a 32-bit field as defined in [ITU-T H.222.0]. Refer to clauses 2.6.8
and 2.6.9 of [ITU-T H.222.0] for a description of registration descriptor and the semantic definition
of fields in the registration descriptor. Only identifier values registered and recognized by SMPTE
registration authority, LLC should be used. Its use in this descriptor shall scope and identify only
the private information contained within this descriptor. This 32 bit number is used to identify the
owner of the descriptor. The code 0x43554549 (ASCII "CUEI") for descriptors defined in this
specification has been registered with SMPTE.

There is no entry in the XML schema for identifier.

private_byte – The remainder of the descriptor is dedicated to data fields as required by the
descriptor being defined.

There is no entry in the XML schema for private_byte.

10.3 Specific splice descriptors

10.3.1 avail_descriptor()

The avail_descriptor is an implementation of a splice_descriptor. It provides an optional extension
to the splice_insert() command that allows an authorization identifier to be sent for an avail.
Multiple copies of this descriptor may be included by using the loop mechanism provided. This
identifier is intended to replicate the functionality of the cue tone system used in analogue systems
for ad insertion. This descriptor is intended only for use with a splice_insert() command, within a
splice_info_section.

Table 10-3 – avail_descriptor()

Syntax Bits Mnemonic

avail_descriptor() {

 splice_descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 identifier 32 uimsbf

 provider_avail_id 32 uimsbf

}

The XML schema for avail_descriptor() is shown in Figure 10-2.

J.181(14)_F10-2

attributes

Ext

any ##any

AvailDescriptor

AvailDescriptorType

providerAvailId

Figure 10-2 – AvailDescriptor

34 Rec. ITU-T J.181 (01/2014)

10.3.1.1 Semantic definition of fields in avail_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x00.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x00 when
transforming from an XML representation of the avail_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this
field. The descriptor_length field shall have a value of 0x08.

There is no entry in the XML schema for descriptor_length. The value shall be derived when
converting an XML representation of the avail_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall
have a value of 0x43554549 (ASCII "CUEI").

There is no entry in the XML schema for identifier.

provider_avail_id – This 32-bit number provides information that a receiving device may utilize to
alter its behaviour during or outside of an avail. It may be used in a manner similar to analogue cue
tones. An example would be a network directing an affiliate or a head-end to black out a sporting
event.

@providerAvailId [Required; xsd:unsignedInt]

10.3.2 DTMF_descriptor()

The DTMF_descriptor() is an implementation of a splice_descriptor. It provides an optional
extension to the splice_insert() command that allows a receiver device to generate a legacy
analogue DTMF sequence based on a splice_info_section being received.

Table 10-4 – DTMF_descriptor()

Syntax Bits Mnemonic

DTMF_descriptor() {

 splice_descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 identifier 32 uimsbf

 preroll 8 uimsbf

 dtmf_count 3 uimsbf

 reserved 5 bslbf

 for(i=0; i<dtmf_count; i++) {

 DTMF_char 8 uimsbf

 }

}

The XML schema for DTMF_descriptor() is shown in Figure 10-3.

 Rec. ITU-T J.181 (01/2014) 35

J.181(14)_F10-3

any ##any

preroll

attributes

Ext

DTMFDescriptor

DTMFDescriptorType

chars

Figure 10-3 – DTMFDescriptor

10.3.2.1 Semantic definition of fields in DTMF_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x01.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x01 when
transforming from an XML representation of the DTMF_descriptor() to Bit Stream Format.

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this
field.

There is no entry in the XML schema for descriptor_length. The value shall be derived when
converting an XML representation of the avail_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall
have a value of 0x43554549 (ASCII "CUEI").

There is no entry in the XML schema for identifier.

preroll – This 8-bit number is the time the DTMF is presented to the analogue output of the device
in tenths of seconds. This gives a preroll range of 0 to 25.5 seconds. The splice info section shall be
sent at least two seconds earlier then this value. The minimum suggested preroll is 4.0 seconds.

@preroll [Optional; xsd:unsignedByte]

dtmf_count – This value of this flag is the number of DTMF characters the device is to generate.

There is no entry in the XML schema for dtmf_count. The value shall be derived when converting
an XML representation of the avail_descriptor() to Bit Stream Format based on the number of chars
in @chars.

DTMF_char – This is an ASCII value for the numerals '0' to '9', '*', '#'. The device shall use these
values to generate a DTMF sequence to be output on an analogue output. The sequence shall
complete with the last character sent being the timing mark for the preroll.

@chars [Optional; xsd:token]

10.3.3 segmentation_descriptor()

The segmentation_descriptor() is an implementation of a splice_descriptor(). It provides an optional
extension to the time_signal() and splice_insert() commands that allows for segmentation messages
to be sent in a time/video accurate method. This descriptor shall only be used with the
time_signal(), splice_insert() and the splice_null() commands. The time_signal() or splice_insert()
message should be sent at least once a minimum of 4 seconds in advance of the signalled
splice_time() to permit the insertion device to place the splice_info_section() accurately.

Devices that do not recognize a value in any field shall ignore the message and take no action.

36 Rec. ITU-T J.181 (01/2014)

Table 10-5 – segmentation_descriptor()

Syntax Bits Mnemonic

segmentation_descriptor() {

 splice_descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 identifier 32 uimsbf

 segmentation_event_id 32 uimsbf

 segmentation_event_cancel_indicator 1 bslbf

 reserved 7 bslbf

 if(segmentation_event_cancel_indicator == '0') {

 program_segmentation_flag 1 bslbf

 segmentation_duration_flag 1 bslbf

 delivery_not_restricted_flag 1 bslbf

 if(delivery_not_restricted_flag == '0') {

 web_delivery_allowed_flag 1 bslbf

 no_regional_blackout_flag 1 bslbf

 archive_allowed_flag 1 bslbf

 device_restrictions 2 bslbf

 } else {

 reserved 5 bslbf

 }

 if(program_segmentation_flag == '0') {

 component_count 8 uimsbf

 for(i=0;i<component_count;i++) {

 component_tag 8 uimsbf

 reserved 7 bslbf

 pts_offset 33 uimsbf

 }

 }

 if(segmentation_duration_flag == '1')

 segmentation_duration 40 uimsbf

 segmentation_upid_type 8 uimsbf

 segmentation_upid_length 8 uimsbf

 segmentation_upid()

 segmentation_type_id 8 uimsbf

 segment_num 8 uimsbf

 segments_expected 8 uimsbf

 }

}

The XML schema representation of the Segmentation Descriptor is specified in Figure 10-4:

 Rec. ITU-T J.181 (01/2014) 37

attributes

J.181(14)_F10-4

attributes

noRegionalBlackoutFlag

Ext

archiveAllowedFlag

any ##any

webDeliveryAllowedFlag

deviceRestrictions

attributes

attributes

formatIdentifier

ptsOffset

Ext

any ##any

any ##any

segmentationUpidType

componentTag

segmentationTypeId

SegmentationUpid

DeliveryRestrictions

Component

segmentationEventId

SegmentationDescriptorType

Ext

SegmentationDescriptor

segmentationEventCancelIndica...

any ##any

segmentsExpected

segmentNum

segmentationDuration

0..∞

0..255

Figure 10-4 – SegmentationDescriptorType

10.3.3.1 Semantic definition of fields in segmentation_descriptor()

splice_descriptor_tag – This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x02.

There is no entry in the XML schema for splice_descriptor_tag. The value is set to 0x02 when
transforming from an XML representation of the segmentation_descriptor() to Bit Stream Format.

38 Rec. ITU-T J.181 (01/2014)

descriptor_length – This 8-bit number gives the length, in bytes, of the descriptor following this
field.

There is no entry in the XML schema for descriptor_length. The value shall be derived when
converting an XML representation of the segmentation_descriptor() to Bit Stream Format.

identifier – This 32-bit number is used to identify the owner of the descriptor. The identifier shall
have a value of 0x43554549 (ASCII "CUEI").

There is no entry in the XML schema for identifier.

segmentation_event_id – A 32-bit unique segmentation event identifier. Only one occurrence of a
given segmentation_event_id value shall be active at any one time. See discussion in
clause 10.3.3.5.

@segmentation_event_id [Optional; xsd:unsignedInt]

segmentation_event_cancel_indicator – A 1-bit flag that when set to '1' indicates that a previously
sent segmentation event, identified by segmentation_event_id, has been cancelled. The
segmentation_type_id does not need to match between the original/cancelled segmentation event
message and the message with the segmentation_event_cancel_indicator true. Once a segmentation
event is cancelled the segmentation_event_id may be reused for content identification or to start a
new segment.

@segmentationEventCancelIndicator [Optional; xsd:Boolean] A value of TRUE shall be equivalent
to a value of '1' and FALSE shall be quivalent to a value of '0'. If omitted, set
segmentation_event_cancel_indicator to 0 when generating a segmentation_descriptor().

program_segmentation_flag – A 1-bit flag that should be set to '1' indicating that the message
refers to a Program Segmentation Point and that the mode is the Program Segmentation Mode
whereby all PIDs/components of the program are to be segmented. When set to '0', this field
indicates that the mode is the Component Segmentation Mode whereby each component that is
intended to be segmented will be listed separately by the syntax that follows. The
program_segmentation_flag can be set to different states during different descriptors messages
within a program.

There is no entry in the XML schema for program_segmentation_flag. The value of
program_segmentation_flag shall be set to '1' when converting an XML representation of the
segmentation_descriptor() to Bit Stream Format if there are no Component elements present in the
SegmentationDescriptor element; otherwise, the value of program_segmentation_flag shall be set to
'0'.

segmentation_duration_flag – A 1-bit flag that should be set to '1' indicating the presence of
segmentation_duration field. The accuracy of the start time of this duration is constrained by the
splice_command_type specified. For example, if a splice_null() command is specified the precise
position in the stream is not deterministic.

There is no entry in the XML schema for segmentation_duration_flag. The value of
segmentation_duration_flag shall be set to '1' when converting an XML representation of the
segmentation_descriptor() to Bit Stream Format if the segmentationDuration attribute is specified;
otherwise, the value of segmentation_duration_flag shall be set to '0'.

delivery_not_restricted_flag – When this bit has a value of '1' the next five bits are reserved.
When this bit has the value of '0', the following additional information bits shall have the meanings
defined below. This bit and the following five bits are provided to facilitate implementations that
use methods that are out of scope of this Recommendation to process and manage this segment.

There is no entry in the XML schema for delivery_not_restricted_flag. The value of
delivery_not_restricted_flag shall be set to '0' when converting an XML representation of the

 Rec. ITU-T J.181 (01/2014) 39

segmentation_descriptor() to Bit Stream Format if the DeliveryRestrictions element is specified;
otherwise, the value of delivery_not_restricted_flag shall be set to '1'.

web_delivery_allowed_flag – This bit shall have the value of '1' when there are no restrictions with
respect to web delivery of this segment. This bit shall have the value of '0' to signal that restrictions
related to web delivery of this segment are asserted.

@webDeliveryAllowedFlag [Conditional Mandatory; xsd:boolean] The webDeliveryAllowedFlag
shall be specified if the DeliveryRestrictions element is specified.

no_regional_blackout_flag – This bit shall have the value of '1' when there is no regional blackout
of this segment. This bit shall have the value of '0' when this segment is restricted due to regional
blackout rules.

@noRegionalBlackoutFlag [Conditional Mandatory; xsd:boolean] The noRegionalBlackoutFlag
shall be specified if the DeliveryRestrictions element is specified.

archive_allowed_flag – This bit shall have the value of '1' when there is no assertion about
recording this segment. This bit shall have the value of 0 to signal that restrictions related to
recording this segment are asserted.

@archiveAllowedFlag [Conditional Mandatory; xsd:boolean] The archiveAllowedFlag shall be
specified if the DeliveryRestrictions element is specified.

device_restrictions – See Table 10-6 for the meaning of this syntax element. This field signals
three pre-defined groups of devices. The population of each group is independent and the groups are
non-hierarchical. The delivery and format of the messaging to define the devices contained in the
groups is out of the scope of this Recommendation.

Table 10-6 – device_restrictions

Segmentation message device_restrictions

Restrict Group 0 0x00

Restrict Group 1 0x01

Restrict Group 2 0x10

None 0x11

Restrict Group 0 – This segment is restricted for a class of devices defined by an out-of-band
message that describes which devices are excluded.

Restrict Group 1 – This segment is restricted for a class of devices defined by an out-of-band
message that describes which devices are excluded.

Restrict Group 2 – This segment is restricted for a class of devices defined by an out-of-band
message that describes which devices are excluded.

None – This segment has no device restrictions.

@deviceRestrictions [Conditional Mandatory; xsd:unsignedByte] The deviceRestrictions shall be
specified if the DeliveryRestrictions Element is specified.

component_count – An 8-bit unsigned integer that specifies the number of instances of elementary
PID stream data in the loop that follows. Components are equivalent to elementary PID streams. If
program_segmentation_flag == '0' then the value of component_count shall be greater than or equal
to 1.

There is no entry in the XML schema for component_count. For Component Splice Mode, the value
shall be derived when converting an XML representation of the segmentation_descriptor() to Bit

40 Rec. ITU-T J.181 (01/2014)

Stream Format. component_count shall be set to the count of Component elements supplied within
the SegmentationDescriptor element in the XML document.

component_tag – An 8-bit value that identifies the elementary PID stream containing the
Segmentation Point specified by the value of splice_time() that follows. The value shall be the same
as the value used in the stream_identification_descriptor() to identify that elementary PID stream.
The presence of this field from the component loop denotes the presence of this component of the
asset.

@componentTag [Required, xsd:unsignedByte]

pts_offset – A 33 bit unsigned integer that shall be used by a splicing device as an offset to be
added to the pts_time in the time_signal() message to obtain the intended splice time(s). When this
field has a zero value, then the pts_time field(s) shall be used without an offset. If splice_time()
time_specified_flag = 0 or if the command this descriptor is carried with does not have a
splice_time() field, this field shall be used to offset the derived immediate splice time.

@ptsOffset [Required, PTSType] See clause 12.2.

segmentation_duration – A 40-bit unsigned integer that specifies the duration of the segment in
terms of ticks of the program's 90 kHz clock. It may be used to give the splicer an indication of
when the segment will be over and when the next segmentation message will occur. Must be 0 for
end messages.

@segmentationDuration [Optional; xsd:unsignedLong]

segmentation_upid_type – A value from Table 10-7. There are multiple types allowed to ensure
that programmers will be able to use an id that their systems support. It is expected that the
consumers of these ids will have an out-of-band method of collecting other data related to these
numbers and therefore they do not need to be of identical types. These ids may be in other
descriptors in the program and, where the same identifier is used (ISAN for example), it shall match
between programs.

Table 10-7 – segmentation_upid_type

segmentation_upid
_type

segmentation_upid
_length

(Bytes)

segmentation
_upid()

(Name)
Description

0x00 0 Not Used The segmentation_upid is not defined
and is not present in the descriptor.

0x01 variable User Defined Deprecated: use type 0x0C. The
segmentation_upid does not follow a
standard naming scheme.

0x02 8 ISCI Deprecated: use type 0x03; 8
characters; 4 alpha characters
followed by 4 numbers.

0x03 12 Ad-ID Defined by the Advertising Digital
Identification, LLC group. 12
characters; 4 alpha characters
(company identification prefix)
followed by 8 alphanumeric
characters. (See [b-Ad-ID].)

0x04 32 UMID See [SMPTE 330M].

0x05 8 ISAN Deprecated: use type 0x06; ISO 15706
binary encoding.

 Rec. ITU-T J.181 (01/2014) 41

Table 10-7 – segmentation_upid_type

segmentation_upid
_type

segmentation_upid
_length

(Bytes)

segmentation
_upid()

(Name)
Description

0x06 12 ISAN Formerly known as V-ISAN.
ISO 15706-2 binary encoding
("versioned" ISAN).
See [ISO 15706-2]

0x07 12 TID Tribune Media Systems Program
identifier. 12 characters; 2 alpha
characters followed by 10 numbers.

0x08 8 TI Turner Identifier

0x09
(optional)

variable ADI CableLabs metadata identifier as
defined in clause 10.3.3.2

0x0A
(optional)

12 EIDR An EIDR (see [b-EIDR]) represented
in Compact Binary encoding as
defined in section 2.1.1 in EIDR ID
Format [b-EIDR-FORMAT]

0x0B variable ATSC Content
Identifier

ATSC_content_identifier() structure
as defined in [ATSC A57/B].

0x0C variable MPU() Managed Private UPID structure as
defined in clause 10.3.3.3

0x0D variable MID() Multiple UPID types structure as
defined in clause 10.3.3.4

0x0E-0xFF variable Reserved Reserved for future standardization.

@segmentationUpidType [Optional, xsd:unsignedByte] The value for MID() shall not be specified.
MID() shall be implied based on the presence of multiple SegmentationUpid elements. If multiple
SegmentationUpid elements are present the MID() structure shall be generated per clause 10.3.3.4.

segmentation_upid_length – Length in bytes of segmentation_upid() as indicated by Table 10-7.

There is no entry in the XML schema for segmentation_upid_length. The value shall be derived
when converting an XML representation of the SegmentationUpid to Bit Stream Format. In the case
of UPID type MID(), this reflects the total length of nested UPID types structure. See
clause 10.3.3.4.

segmentation_upid() – Length and identification from Table 10-7. This structure's contents and
length are determined by the segmentation_upid_type and segmentation_upid_length fields. An
example would be a type of 0x06 for ISAN and a length of 12 bytes. This field would then contain
the ISAN identifier for the content to which this descriptor refers.

SegmentationUpid [Optional, xsd:hexBinary] If present, the SegmentationUpid shall contain the
hex binary representation of the segmentation_upid.

segmentation_type_id – The 8 bit value shall contain one of the values in Table 10-8 to designate
type of segmentation. All unused values are reserved. When the segmentation_type_id is 0x01
(Content Identification), the value of segmentation_upid_type shall be non-zero.

42 Rec. ITU-T J.181 (01/2014)

Table 10-8 – segmentation_type_id

Segmentation message Segmentation_type_id segment_num segments_expected

Not Indicated 0x00 0 0

Content Identification 0x01 0 0

Program Start 0x10 1 1

Program End 0x11 1 1

Program Early Termination 0x12 1 1

Program Breakaway 0x13 1 1

Program Resumption 0x14 1 1

Program Runover Planned 0x15 1 1

Program Runover Unplanned 0x16 1 1

Program Overlap Start 0x17 1 1

Program Blackout Override 0x18 0 0

Chapter Start 0x20 Non-zero Non-zero

Chapter End 0x21 Non-zero Non-zero

Provider Advertisement Start 0x30 0 or non-zero 0 or Non-zero

Provider Advertisement End 0x31 0 or non-zero 0 or Non-zero

Distributor Advertisement Start 0x32 0 or Non-zero 0 or Non-zero

Distributor Advertisement End 0x33 0 or non-zero 0 or Non-zero

Placement Opportunity Start 0x34 0 or non-zero 0 or Non-zero

Placement Opportunity End 0x35 0 or non-zero 0 or Non-zero

Unscheduled_event_start 0x40 0 0

Unscheduled_event_end 0x41 0 0

Network Start 0x50 0 0

Network End 0x51 0 0

NOTE – Only one Program Overlap Start is allowed to be active at a time. A Program End shall occur before
a subsequent Program Overlap Start can occur.

@segmentationTypeId [Optional, xsd:unsignedByte]

segment_num – This field provides identification for a specific chapter or advertisement within a
segmentation_upid(). This value, when utilized, is expected to reset to one for the first chapter in a
new viewing event. This field is expected to increment for each new segment (such as a chapter).
The value of this field shall be as indicated in Table 10-8.

@segmentationNum [Optional, xsd:unsignedByte]

segments_expected – This field provides a count of the expected number of individual segments
(such as chapters) within the current segmentation event. The value of this field shall be as
indicated in Table 10-8.

@segmentsExpected [Optional, xsd:unsignedByte]

10.3.3.2 CableLabs metadata identifier

This is an optional identifier. See Appendix I for details.

 Rec. ITU-T J.181 (01/2014) 43

10.3.3.3 MPU() definition and semantics

Table 10-9 – MPU()

Syntax Bits Mnemonic

MPU() {

 format_identifier 32 uimsbf

 private_data N*8 uimsbf

}

format_identifier – A 32-bit unique identifier as defined in [ITU-T H.222.0] and registered with
the SMPTE registration authority (See [b-SMPTE-RA]).

private_data – A variable length, byte-aligned, set of data as defined by the registered owner of the
format_identifier field value. The length is defined by the segmentation_upid_length, which
includes the format_identifier field length.

10.3.3.4 MID() definition and semantics

Table 10-10 – MID()

Syntax Bits Mnemonic

MID() {

 for (i=0; i<N; i++) {

 segmentation_upid_type 8 uimsbf

 length 8 uimsbf

 segmentation_upid N*8 uimsbf

 }

}

segmentation_upid_type – As defined above.

length – segmentation_upid_length for the following segmentation_upid.

segmentation_upid – segmentation_upid according to segmentation_upid_type as defined in
Table 10-7.

NOTE – The number of segmentation_upid's present ("N") is not explicitly signalled. It is discovered by
repeatedly parsing the fields above until segmentation_upid_length is exhausted.

There is no structure in the XML schema for MID(). When converting an XML document to Bit
Stream Format, the presence of two or more SegmentationUpid elements shall result in a MID()
structure being inserted into the bit stream.

10.3.3.5 Segmenting Content – Additional semantics

One use of this descriptor is to signal content Segments. Segments are expected to have a logical
hierarchy consisting of programs (highest level), chapters and advertisements (refer to Table 10-8,
above). Provider and distributor advertisements share the lowest logical level and should not
overlap.

For the purposes of defining the semantics stated in this document section, the following definition
applies:

44 Rec. ITU-T J.181 (01/2014)

Segment – Shall be either a Program, a Chapter, a Provider Advertisement, a Distributor
Advertisement, or an Unscheduled Event as listed in Table 10-8, segmentation_type_id.
Occurrences of the segmentation_descriptor() that support Segments typically occur in pairs. The
valid pairings are:

– Program start/end – Program end can be overridden by Program Early Termination

– Program breakaway/resumption

– Chapter start/end

– Provider advertisement start/end

– Distributor advertisement start/end

– Unscheduled_event_start/end

The following segmentation_types (from Table 10-8) also support Segments but are not paired:

– Program Runover Planned

– Program Runover Unplanned

The following segmentation_types (from Table 10-8) are outside of the scope of this document
section. They are not considered to support Segments (Segmenting Content):

– Not Indicated

– Content Identification

Descriptors should normally be paired, once for a given Segment start and then for Segment end.
Each Segment end usage may be followed by another Segment start of the same logical level
Segment. Refer to clause 10.3.3.6 (Programs) and clause 10.3.3.7 (Chapters) for additional
semantics. When a Segment's duration is provided, and that duration expires without a Segment end
being signalled, then the value of segmentation_event_id may be reused if appropriate. Such
inferred Segment end cases are not to be encouraged and should not be used.

In order to associate different types of segmentation constructs (such as associating Program level
constructs with Chapter level constructs) the same segmentation_upid() may be used in the
associated constructs. This however is not required.

The semantics of the fields within the segmentation_descriptor() for segmenting content are as
follows:

segmentation_event_id – When a Segment start is signalled, the segmentation_event_id value
becomes active. While active this value shall not be used to identify other segmentation events.
When a Segment end is signalled, the segmentation_event_id value shall match the segment start
segmentation_event_id value and this value then becomes inactive and hence able to be used again
for a new segmentation_descriptor() occurrence including non-Segment usage such as Content
Identification.

program_segmentation_flag – Shall be set to '1'.

segmentation_duration_flag – If set to '1', a valid segmentation_duration shall be included in the
descriptor. If segmentation_type_id is set to 0x10 (Program Start) then this flag may be set to '0'.

segment_num – Shall be set to non-zero values for Chapters ranging from one to the value of
segments_expected. For Program segments, this value shall be set to one. This field may be
optionally utilized for Advertisements in the same manner as Chapters.

segments_expected Shall be set to a non-zero value, providing the number of Chapters (and
optionally Advertisements) in the program. For Program segments, this value shall be set to one.

 Rec. ITU-T J.181 (01/2014) 45

10.3.3.6 Programs – Additional semantics

When signalled, a Program shall begin with a segmentation_descriptor() containing a
segmentation_type_id value of 0x10 (Program Start). The Program shall utilize a single and
unique value for segmentation_event_id in all descriptors that pertain to this Program. The usage
of a segmentation_upid() is optional but, if used, its value must be uniquely assigned to this
Program and not shared by Programs that are embedded within this Program. A Program shall end
with a segmentation_descriptor() containing a segmentation_type_id value of 0x11 (Program End)
or 0x12 (Program Early Termination).

The following segmentation messages shall only occur between the Program Start and Program end
(Program End or Program Early Termination): Program Breakaway (segmentation_type_id value
of 0x13); Program Resumption (segmentation_type_id value of 0x14); Program Runover Planned
(segmentation_type_id value of 0x15); or Program Runover Unplanned (segmentation_type_id
value of 0x16). A Program Resumption may only follow a Program Breakaway. A program may be
ended while in a Program Breakaway state.

Following a Program Breakaway, another Program Start to Program End sequence may occur, with
new values of segmentation_event_id and segmentation_upid(). An entire embedded Program or
Segments of an embedded Program shall be situated only between a Program Breakaway and a
Program Resumption. Multiple instances of embedded Programs may occur.

NOTE – Program Runover messages are asynchronous notifications and may occur at any time
between the start and end of the program including within another embedded active program.

If provided the segmentation_duration is considered from the splice_time() of the time_signal
command, if time is present, or from the time the message is received. The duration clock continues
to increment during Program Breakaways. Segmentation_duration can be extended using a Runover
Planned or Runover Unplanned message. The value supplied in the new message is an update to the
overall duration of the program and represents the elapsed time from the effective moment of the
new message to the end of the segment. It is not an addition of elapsed time. If
segmentation_duration is specified, when the duration is exceeded the program shall be considered
terminated.

If at Program start a duration is not provided, a duration may be provided at a later time using a
Program Runover Planned or Program Runover Unplanned message.

If a duration is in effect, either set at Program start or later introduced, segmentation_duration may
be set to zero by sending a Program Runover Planned or Program Runover Unplanned message
with segmentation_duration_flag set to '0'.

A Content Identification (value of segmentation_type_id 0x01) message with a value of
segmentation_upid() matching the currently active Program may be sent on a periodic basis to
make an implementation more robust. If sent it shall match the values of segmentation_event_id
and segmentation_upid() used in the Program related messages. This does not restrict Content
Identification messages being sent that do not match the segmentation_event_id and
segmentation_upid() used in the Program related messages.

10.3.3.7 Chapters – Additional semantics

A chapter Segment shall be introduced by a Chapter Start and ended by a Chapter End. For Chapter
End, the value of segmentation_event_id shall match the value of segmentation_event_id for
Chapter Start. If present, the segmentation_upid() shall be the same in both occurrences of a
segmentation_descriptor() pair.

Chapter Segments may be associated with Program segments using the same segmentation_upid()
on both Chapter and Program messages.

46 Rec. ITU-T J.181 (01/2014)

Chapters may overlap. Chapters may be numbered using segment_num. Segments_expected shall
indicate the expected number of chapters. Use of non-zero values for segmentation_duration on
Chapter Start is optional.

11 Encryption

11.1 Overview

The splice_info_section supports the encryption of a portion of the section in order that one may
prevent access to an avail to all except those receivers that are authorized for that avail. This clause
describes the various encryption algorithms that may be used. The encryption of the section is
optional, as is the implementation of encryption by either the creator of the message, or any receive
devices. The use of encryption is deemed optional to allow a manufacturer to ship "in-the-clear"
systems without worrying about the export of encryption technology. If encryption is included in
the system, any receive device shall implement all of the algorithms listed in this Recommendation,
which allows the creator of a splice info table to use any of the algorithms in a transmission. The
use of private encryption technology is optional, and out of the scope of this Recommendation.

11.2 Fixed key encryption

The encryption used with this Recommendation assumes a fixed key is to be used. The same key is
provided to both the transmitter and the receiver. The method of delivering the key to all parties is
unspecified. This Recommendation allows for up to 256 different keys to be available for
decryption. The cw_index field is used to determine which key should be used when decrypting a
section. The length of the fixed key is dependent on the type of algorithm being used. It is assumed
that fixed key delivered to all parties will be the correct length for the algorithm that is intended to
be used.

11.3 Encryption algorithms

The encryption_algorithm field of the splice_info_section is a six-bit value, which may contain one
of the values shown in Table 9-1. All Data Encryption Standard variants use a 64-bit key (actually
56 bits plus a checksum) to encrypt or decrypt a block of 8 bytes. In the case of triple DES, there
will need to be 3 64-bit keys, one for each of the three passes of the DES algorithm. The "standard"
triple DES actually uses two keys, where the first and third keys are identical. See [FIPS PUB 46-3]
and [FIPS PUB 81].

Table 11-1 – Encryption algorithm

Value Encryption algorithm

0 No encryption

1 DES – ECB mode

2 DES – CBC mode

3 Triple DES EDE3 – ECB mode

4-31 Reserved

32-63 User private

 Rec. ITU-T J.181 (01/2014) 47

11.3.1 DES – ECB mode

This algorithm uses the "Data Encryption Standard", (see [FIPS PUB 81]), in the electronic
codebook mode.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used
to pad any extra bytes that may be required.

11.3.2 DES – CBC mode

This algorithm uses the "Data Encryption Standard", (see [FIPS PUB 81]) in the cipher block
chaining mode. The basic algorithm is identical to DES ECB. Each 64-bit plaintext block is bitwise
exclusive-ORed with the previous ciphertext block before being encrypted with the DES key. The
first block is exclusive-ORed with an initial vector. For the purposes of this document, the initial
vector shall have a fixed value of zero.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used
to pad any extra bytes that may be required.

11.3.3 Triple DES EDE3 – ECB mode

This algorithm uses three 64-bit keys, each key being used on one pass of the DES-ECB algorithm.
See [FIPS PUB 46-3]. Every block of data at the transmit device is first encrypted with the first key,
decrypted with the second key, and finally encrypted with the third key. Every block at the receive
site is first decrypted with the third key, encrypted with the second key, and finally decrypted with
the first key.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used
to pad any extra bytes that may be required.

11.3.4 User private algorithms

This document allows for the use of private encryption algorithms. It is not specified how the
transmit and receive devices agree on the algorithm to use for any user private code. It is also not
specified as to how coordination of private values for the encryption_algorithm field should be
registered or administered.

12 SCTE 35 XML elements and types

In addition to the SCTE 35 XML types and associated elements and attributes described in earlier
clauses of this Recommendation, this clause provides details on additional SCTE 35 XML elements
and types.

12.1 Ext element

The Ext (extensibility) element allows zero or more elements from any namespace to be included.
This element facilitates expansion, customization, and extensibility of the specification.
Encapsulating elements from external namespaces into a single element allows filters, transforms,
and other operations to be applied easily. See Figure 12-1.

48 Rec. ITU-T J.181 (01/2014)

0..∞
J.181(14)_F12-1

attributes

Ext

any ##any

any ##any

Figure 12-1 – Ext element

@##any [Optional] – Any additional attribute from any namespace.

##any[Optional] – Zero or more elements from any namespace. (Zero elements are allowed as all
the data may be included via attributes.)

12.2 PTSType

PTSType is a simple type used to specify a PTS Time. PTSType is an xsd:unsignedLong that can
hold 33-bit time. It is constrained to a minimum value of 0 and a maximum value of 8589934592.
The default value is 0.

 Rec. ITU-T J.181 (01/2014) 49

Appendix I

CableLabs metadata identifier

(This appendix does not form an integral part of this Recommendation.)

When the value of segmentation_upid_type is 0x09 (ADI), it shall have the abbreviated syntax of
<element>:<identifier>. The variable <element> shall take only the values "PREVIEW",
"MPEG2HD", "MPEG2SD", "AVCHD", "AVCSD", "SIGNAL", "PO" (PlacementOpportunity)
and "OTHER".

For CableLabs metadata 1.1 the variable <identifier> shall take the form <providerID>/<assetID>,
the variables <providerID> and <assetID> shall be as specified in [b-MD-SP-CONTENTv1.1]
Sections 5.3.1 for Movie or 5.5.1 for Preview represented as 7-bit printable ASCII characters
(values ranging from 0x20 (space) to 0x7E (tilde)).

CableLabs metadata 3.0 provides compatibility with this identifier model as described in
[b-MD-SP-CONTENTv3.0] section 6.11.1. For CableLabs metadata 3.0 the variable <identifier>
shall be a URI conforming to [IETF RFC 3986].

Any specifics on the systems that will ingest and process this information are out of scope of this
Recommendation.

50 Rec. ITU-T J.181 (01/2014)

Bibliography

[b-ITU-T H.262] Recommendation ITU-T H.262 (2012) | ISO/IEC 13818-2:2013 ,
Information Technology – Generic coding of moving pictures and
associated audio information: Video.

[b-ISO/IEC 13818-4] ISO/IEC 13818-4:2004 – Information Technology – Generic coding
of moving pictures and associated audio information – Part 4:
Conformance testing.

[b-ISO 15706-1] ISO 15706-1:2002 – Information and Documentation – International
Standard Audiovisual Number (ISAN) – Part 1: Audiovisual work
identifier.

[b-ISO 15706-1 Amd1] ISO 15706-1:2002/Amd.1:2008 – Alternate encodings and editorial
changes.

[b-ADID] Advertising Digital Identification, LLC – http://www.ad-id.org/

[b-DOI] Digital Object Identifier website – http://www.doi.org

[b-EIDR] Entertainment ID Registry Association (EIDR) http://eidr.org

[b-EIDR-FORMAT] EIDR ID Format – EIDR_ID_Format_Ver 1.02_Jan 2012-1.pdf,
www.eidr.org

[b-ISAN] ISAN (International Standard Audiovisual Number) website –
http://www.isan.org

[b-MD-SP-CONTENTv1.1] MD-SP-VOD-CONTENTv1.1-C01-120803 – Cablelabs Video-on-
Demand Content Specification 1.1.

[b-MD-SP-CONTENTv3.0] MD-SP-CONTENTv3.0-I01-100812 – Metadata Specifications
Cablelabs Content 3.0 Specification.

[b-SCTE 30] ANSI/SCTE 30 2009 – Digital Program Insertion Splicing API.

[b-SCTE 35] SCTE 35 2013 – Digital Program Insertion Cueing Message for
Cable.

[b-SCTE 67] ANSI/SCTE 67 2010 – Digital Program Insertion Cueing Message
for Cable – Recommended Practice for SCTE 35.

[b-SCTE 118-2] ANSI/SCTE 118-2 2012 – Program-Specific Ad Insertion – Content
Provider to Traffic Communication Applications Data Model.

[b-SCTE 172] ANSI/SCTE 172 2011 – Constraints on AVC Video Coding for
Digital Program Insertion.

[b-SMPTE 312] SMPTE 312 – 2001 – SMPTE STANDARD for Television – Splice
Points for MPEG-2 Transport Streams.

[b-SMPTE-RA] SMPTE Registration Authority, LLC – http://www.smpte-ra.org/

http://www.ad-id.org/
http://www.doi.org/
http://eidr.org/
C:UsersGhassemDesktopJ181Compowww.eidr.org
http://www.isan.org/
http://www.smpte-ra.org/

Printed in Switzerland
Geneva, 2014

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.181 (01/2014) – Digital program insertion cueing message for cable television systems
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	6.1 Splice points (Informative)
	6.2 Program splice points (Informative)
	6.3 Splice events (Informative)
	6.4 Content storage considerations (Informative)
	6.5 PID selection
	6.6 Message flow (Informative)

	7 XML notational conventions
	7.1 Normative XML schema
	7.2 Unknown/unrecognized/unsupported XML elements and attributes
	7.3 Element order

	8 PMT descriptors
	8.1 Registration descriptor
	8.2 Cue identifier descriptor
	8.3 Stream identifier descriptor

	9 Splice information table
	9.1 Overview
	9.2 Splice info section
	9.3 Splice commands
	9.4 Constraints

	10 Splice descriptors
	10.1 Overview
	10.2 Splice descriptor
	10.3 Specific splice descriptors

	11 Encryption
	11.1 Overview
	11.2 Fixed key encryption
	11.3 Encryption algorithms

	12 SCTE 35 XML elements and types
	12.1 Ext element
	12.2 PTSType

	Appendix I –CableLabs metadata identifier
	Bibliography

