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Summary 

This Recommendation defines authentication, access control, signalling and media content integrity, 
confidentiality, and non-repudiation security services for each of the network element interfaces. 

IPCablecom security spans the entire IPCablecom architecture. The IPCablecom architectural 
framework Recommendation (ITU-T Rec. J.160) defines the overall IPCablecom architecture, as 
well as the system elements, interfaces, and functional requirements for the entire IPCablecom 
network. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 
operating and tariff questions and issuing Recommendations on them with a view to standardizing 
telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
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Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 
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Recommendation is achieved when all of these mandatory provisions are met.  The words "shall" or some 
other obligatory language such as "must" and the negative equivalents are used to express requirements. The 
use of such words does not suggest that compliance with the Recommendation is required of any party. 
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Recommendation ITU-T J.170 

IPCablecom security specification 

1 Scope and introduction 

1.1 Scope 

Authentication, access control, signalling and media content integrity, confidentiality, and 
non-repudiation security services must be provided as defined herein for each of the network 
element interfaces. 

IPCablecom security spans the entire IPCablecom architecture. The IPCablecom architectural 
framework Recommendation (ITU-T Rec. J.160) defines the overall IPCablecom architecture, as 
well as the system elements, interfaces, and functional requirements for the entire IPCablecom 
network. 

1.2 Introduction 

1.2.1 Goals 

This Recommendation describes the security relationships between the elements on the IPCablecom 
network. The general goals of this IPCablecom network security Recommendation and any 
implementations that encompass the requirements defined herein should be: 

• Secure network communications: The IPCablecom network security must define a 
security architecture, methods, algorithms and protocols that meet the stated security 
service requirement. All media packets and all sensitive signalling communication across 
the network must be safe from eavesdropping. Unauthorized message modification, 
insertion, deletion and replays anywhere in the network must be easily detectable and must 
not affect proper network operation. 

• Reasonable cost: The IPCablecom network security must define security methods, 
algorithms and protocols that meet the stated security service requirements such that a 
reasonable implementation can be manifested with reasonable cost and implementation 
complexity. 

• Network element interoperability: All of the security services for any of the IPCablecom 
network elements must interoperate with the security services for all of the other 
IPCablecom network elements. Multiple vendors may implement each of the IPCablecom 
network elements as well as multiple vendors for a single IPCablecom network element. 

• Extensibility: The IPCablecom security architecture, methods, algorithms and protocols 
must provide a framework into which new security methods and algorithms may be 
incorporated as necessary. 

1.2.2 Assumptions 

The following assumptions are made relative to the current scope of the IPCablecom security 
Recommendation: 

• Embedded Media Terminal Adaptors (MTAs) are within the current scope. Stand-alone 
MTAs will be addressed in later phases and security issues for stand-alone MTAs are thus 
for future study. 

• Network Call Signalling (NCS) is the only call signalling method, on the access network, 
addressed in this Recommendation. 

• This version of the IPCablecom security Recommendation specifies security for a single 
administrative domain and the communications between domains. 
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• Security for chained RADIUS servers is not currently in the scope. 

This Recommendation also does not include requirements for associated security operational issues 
(e.g., site security), back-office or inter/intra back-office security, service authorization policies or 
secure database handling. Record Keeping Servers (RKS), Network Management Systems, File 
Transfer Protocol (FTP) servers and Dynamic Host Configuration Protocol (DHCP) servers are all 
considered to be unique to any service provider's implementation and are beyond the scope of this 
Recommendation. 

2 References 

2.1 Normative references 

The following ITU-T Recommendations and other references contain provisions which, through 
reference in this text, constitute provisions of this Recommendation. At the time of publication, the 
editions indicated were valid. All Recommendations and other references are subject to revision; 
users of this Recommendation are therefore encouraged to investigate the possibility of applying the 
most recent edition of the Recommendations and other references listed below. A list of the 
currently valid ITU-T Recommendations is regularly published. The reference to a document within 
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

− Recommendation ITU-T J.112 (1998), Transmission systems for interactive cable 
television services. 

− Recommendation ITU-T J.122 (2002), Second-generation transmission systems for 
interactive cable television services – IP cable modems. 

− Recommendation ITU-T J.125 (2004), Link privacy for cable modem implementations. 

− Recommendation ITU-T J.126 (2004), Embedded Cable Modem device specification. 

− Recommendation ITU-T J.162 (2005), Network call signalling protocol for the delivery of 
time-critical services over cable television networks using cable modems. 

– Recommendation ITU-T J.166 (2005), IPCablecom Management Information Base (MIB) 
framework. 

− Recommendation ITU-T J.167 (2005), Media terminal adapter (MTA) device provisioning 
requirements for the delivery of real-time services over cable television networks using 
cable modems. 

− Recommendation ITU-T X.509 (2000) | ISO/IEC 9594-8:2001, Information technology – 
Open Systems Interconnection – The Directory: Public-key and attribute certificate 
frameworks. 

− Recommendation ITU-T X.690 (2002) | ISO/IEC 8825-1:2002, Information technology – 
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding 
Rules (CER) and Distinguished Encoding Rules (DER). 

− IETF RFC 1889 (1996), RTP: A Transport Protocol for Real-Time Applications. 

– IETF RFC 1890 (1996), RTP Profile for Audio and Video Conferences with Minimal 
Control. 

− IETF RFC 2104 (1997), HMAC: Keyed-Hashing for Message Authentication. 

− IETF RFC 2246 (1999), The TLS Protocol Version 1.0. 

− IETF RFC 2367 (1998), PF_KEY Key Management API, Version 2. 

− IETF RFC 2401 (1998), Security Architecture for the Internet Protocol. 
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− IETF RFC 2403 (1998), The Use of HMAC-MD5-96 within ESP and AH. 

− IETF RFC 2404 (1998), The Use of HMAC-SHA-1-96 within ESP and AH. 

− IETF RFC 2406 (1998), IP Encapsulating Security Payload (ESP). 

− IETF RFC 2407 (1998), The Internet IP Security Domain of Interpretation for ISAKMP. 

– IETF RFC 2409 (1998), The Internet Key Exchange (IKE). 

− IETF RFC 2437 (1998), PKCS#1: RSA Cryptography Specification Version 2.0. 

– IETF RFC 2451 (1998), The ESP CBC-Mode Cipher Algorithms. 

− IETF RFC 2459 (1999), Internet X.509 Public Key Infrastructure Certificate and CRL 
Profile. 

− IETF RFC 2630 (1999), Cryptographic Message Syntax. 

− IETF RFC 3261 (2002), SIP: Session Initiation Protocol. 

– IETF RFC 3412 (2002), Message Processing and Dispatching for the Simple Network 
Management Protocol (SNMP). 

– IETF RFC 3414 (2002), User-based Security Model (USM) for Version 3 of the Simple 
Network Management Protocol (SNMPv3). 

– IETF RFC 4120 (2005), The Kerberos Network Authentication Service (V5). 

– IETF RFC 4556 (2006), Public Key Cryptography for Initial Authentication in Kerberos 
(PKINIJ). 

− FIPS PUB 81 (1980), DES Modes of Operation. 

− FIPS PUB 180-1 (1995), Secure Hash Algorithm (SHS).  

− FIPS PUB 197 (2001), Advanced Encryption Standard (AES). 

2.2 Informative references 

− Recommendation ITU-T J.160 (2005), Architectural framework for the delivery of 
time-critical services over cable television networks using cable modems. 

− Recommendation ITU-T J.161 (2001), Audio codec requirements for the provision of 
bidirectional audio service over cable television networks using cable modems. 

− Recommendation ITU-T J.163 (2005), Dynamic quality of service for the provision of 
real-time services over cable television networks using cable modems. 

− Recommendation ITU-T J.164 (2005), Event message requirements for the support of 
real-time services over cable television networks using cable modems. 

− Recommendation ITU-T J.171.x (2005), IPCablecom Trunking Gateway Control Protocol 
(TGCP). 

− Recommendation ITU-T J.175 (2002), Audio server protocol. 

− Recommendation ITU-T J.178 (2005), IPCablecom CMS to CMS signalling. 

− FIPS PUB 140-1 (1994), Security Requirements for Cryptographic Modules. 

− IETF RFC 1750 (1994), Randomness Recommendations for Security. 

− IETF RFC 2327 (1998), SDP: Session Description Protocol. 

– IETF RFC 2782 (2000), A DNS RR for specifying the location of services (DNS SRV). 
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− IETF RFC 3268 (2002), Advanced Encryption Standard (AES) Ciphersuites for Transport 
Layer Security (TLS). 

− HALEVI [S.], KRAWCZYK [H.]: MMH: Software Message Authentication in the 
Gbit/Second Rates, Proceedings of the 4th Workshop on Fast Software Encryption, 
Vol. 1267 Springer-Verloag, pp. 172-189, 1970. 

− KILIAN [J.], ROGAWAY [P.]: How to Protect DES Against Exhaustive Key Search, 
Edited version presented at Proceedings of Crypto '96, July 1997. 

− SCHNEIER [B.]: Applied Cryptography, John Wiley & Sons, Inc., Second edition, 1996. 

3 Terms and definitions 

This Recommendation defines the following terms: 

3.1 access control: Limiting the flow of information from the resources of a system only to 
authorized persons, programs, processes or other system resources on a network. 

3.2 audio server: An Audio Server plays informational announcements in IPCablecom 
network. Media announcements are needed for communications that do not complete and to provide 
enhanced information services to the user. The component parts of Audio Server services are Media 
Players and Media Player Controllers. 

3.3 authentication: The process of verifying the claimed identity of an entity to another entity. 

3.4 authenticity: The ability to ensure that the given information is without modification or 
forgery and was in fact produced by the entity that claims to have given the information. 

3.5 authorization: The act of giving access to a service or device if one has the permission to 
have the access. 

3.6 cipher: An algorithm that transforms data between plaintext and ciphertext. 

3.7 ciphersuite: A set, which must contain both an encryption algorithm and a message 
authentication algorithm (e.g., a MAC or an HMAC). In general, it may also contain a key 
management algorithm, which does not apply in the context of IPCablecom. 

3.8 confidentiality: A way to ensure that information is not disclosed to any one other than the 
intended parties. Information is encrypted to provide confidentiality. Also known as privacy. 

3.9 cryptanalysis: The process of recovering the plaintext of a message or the encryption key 
without access to the key. 

3.10 downstream: The direction from the head-end toward the subscriber location. 

3.11 encryption: A method used to translate information in plaintext into ciphertext. 

3.12 endpoint: A Terminal, Gateway or MCU. 

3.13 event message: Message capturing a single portion of a connection. 

3.14 gateway: Devices bridging between the IPCablecom Voice Communication world and the 
PSTN. Examples are the Media Gateway which provides the bearer circuit interfaces to the PSTN 
and transcodes the media stream, and the Signalling Gateway which sends and receives circuit 
switched network signalling to the edge of the IPCablecom network. 

3.15 header: Protocol control information located at the beginning of a protocol data unit. 

3.16 integrity: A way to ensure that information is not modified except by those who are 
authorized to do so. 

3.17 Kerberos: A secret-key network authentication protocol that uses a choice of cryptographic 
algorithms for encryption and a centralized key database for authentication. 
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3.18 key: A mathematical value input into the selected cryptographic algorithm. 

3.19 key exchange: The swapping of public keys between entities to be used to encrypt 
communication between the entities. 

3.20 key management: The process of distributing shared symmetric keys needed to run a 
security protocol. 

3.21 non-repudiation: The ability to prevent a sender from denying later that he or she sent a 
message or performed an action. 

3.22 privacy: A way to ensure that information is not disclosed to any one other than the 
intended parties. Information is usually encrypted to provide confidentiality. Also known as 
"confidentiality". 

3.23 private key: The key used in public key cryptography that belongs to an individual entity 
and must be kept secret. 

3.24 proxy: A facility that indirectly provides some service or acts as a representative in 
delivering information thereby eliminating the need for a host to support the service. 

3.25 public key: The key used in public key cryptography that belongs to an individual entity 
and is distributed publicly. Other entities use this key to encrypt data to be sent to the owner of the 
key. 

3.26 public key certificate: A binding between an entity's public key and one or more attributes 
relating to its identity, also known as a digital certificate. 

3.27 public key cryptography: A procedure that uses a pair of keys, a public key and a private 
key for encryption and decryption, also known as an asymmetric algorithm. A user's public key is 
publicly available for others to use to send a message to the owner of the key. A user's private key is 
kept secret and is the only key that can decrypt messages sent encrypted by the user's public key. 

3.28 root private key: The private signing key of the highest-level Certification Authority. It is 
normally used to sign public key certificates for lower-level Certification Authorities or other 
entities. 

3.29 X.509 certificate: A public key certificate specification developed as part of the 
ITU-T Rec. X.500 standards directory. 

4 Abbreviations, acronyms and conventions 

4.1 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AES Advanced Encryption Standard 

AH Authentication Header is an IPsec security protocol that provides message integrity for 
complete IP packets, including the IP header. 

ASD Application-Specific Data. An application-specific field in the IPsec header that along 
with the destination IP address provides a unique number for each SA. 

BPI+ Baseline Privacy Interface Plus is the security portion of ITU-T Rec. J.112 that runs on 
the MAC layer. 

CBC Cipher-block Chaining mode is an option in block ciphers that combine (XOR) the 
previous block of ciphertext with the current block of plaintext before encrypting that 
block of the message. 



 

6 Rec. ITU-T J.170 (11/2005) 

CA Certification Authority. A trusted organization that accepts certificate applications from 
entities, authenticates applications, issues certificates and maintains status information 
about certificates. 

CA Call Agent. The part of the CMS that maintains the communication state, and controls 
the line side of the communication. 

CM Cable Modem 

CMS Cryptographic Message Syntax 

CMS Call Management Server. Controls the audio connections. Also called a Call Agent in 
MGCP/SGCP terminology. This is one example of an Application Server. 

CMTS Cable Modem Termination System 

CNAME Canonical Name 

COPS Common Open Policy Service 

CRL Certificate Revocation List 

CSR Customer Service Record 

DES Data Encryption Standard 

DF Delivery Function 

DH Diffie-Hellman 

DHCP Dynamic Host Configuration Protocol 

DNS Domain Name Server 

DNS SRV A DNS RR for specifying the location of services 

DOCSIS Data-Over-Cable Service Interface Specification 

DQoS Dynamic Quality of Service 

DSCP DiffServ Code Point. A field in every IP packet that identifies the DiffServ Per-Hop 
Behavior. In IP version 4, the TOS byte is redefined to be the DSCP. In IP version 6, 
the Traffic Class octet is used as the DSCP. See IETF RFC 4556. 

DTMF Dual-Tone Multifrequency (tones) 

ESP IPsec Encapsulating Security 

FQDN Fully Qualified Domain Name. Refer to IETF RFC 821 for details. 

GW Gateway 

HFC Hybrid-Fibre/Coax 

HMAC Hashed Message Authentication Code. A message authentication algorithm, based on 
either SHA-1 or MD5 hash and defined in IETF RFC 2104. 

IKE Internet Key Exchange is a key management mechanism used to negotiate and derive 
keys for SAs in IPsec. 

IKE  A notation defined to refer to the use of IKE with pre-shared keys for authentication. 

INA Interactive Network Adapter 

IPsec Internet Protocol Security 

ISAKMP Internet Security Association and Key Management Protocol 

ISTP Internet Signalling Transport Protocol 
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IVR Interactive Voice Response 

KDC Key Distribution Centre 

MAC Message Authentication Code. A fixed-length data item that is sent together with a 
message to ensure integrity; also known as a MIC. 

MAC Media Access Control. It is a sublayer of the Data Link Layer. It normally runs directly 
over the physical layer. 

MD5 Message Digest 5 

MG Media Gateway 

MGC Media Gateway Controller 

MGCP Media Gateway Control Protocol 

MIB Management Information Base 

MMH Multilinear Modular Hash 

MSB Most Significant Bit 

MTA Media Terminal Adapter 

NCS Network Call Signalling 

NVRAM Non-Volatile Random Access Memory 

OID Object Identification 

OSS Operations Support Systems. The back-office software used for configuration, 
performance, fault, accounting, and security management. 

PKCS Public Key Cryptography Standards 

PKI  Public Key Infrastructure. A process for issuing public key certificates, which includes 
standards, Certification Authorities, communication between authorities and protocols 
for managing certification processes.  

PKCROSS Utilizes PKINIT for establishing the inter-realm keys and associated inter-realm 
policies to be applied in issuing cross-realm service tickets between realms and 
domains in support of Intradomain and Interdomain CMS-to-CMS signalling (CMSS). 

PSTN Public Switched Telephone Network 

QoS Quality of Service 

RADIUS Remote Authentication Dial-In User Service 

RC4 A variable key length stream cipher offered in the ciphersuite, used to encrypt the 
media traffic in IPCablecom. 

RFI Radio Frequency Interface 

RKS Record Keeping Server. The device which collects and correlates the various Event 
Messages. 

RSIP Realm Specific IP 

RSVP Resource Reservation Protocol 

RTCP Real-Time Control Protocol 

RTO Retransmission Timeout 

RTP Real-Time Protocol 
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SA Security Association 

SDP Session Description Protocol 

SG Signalling Gateway. A SG is a signalling agent that receives/sends SCN native 
signalling at the edge of the IP network. In particular, the SS7 SG function translates 
variants ISUP and TCAP in an SS7-Internet Gateway to a common version of ISUP 
and TCAP. 

SIP Session Initiation Protocol. An application-layer control (signalling) protocol for 
creating, modifying, and terminating sessions with one or more participants. 

SIP+ Session Initiation Protocol Plus. An extension to SIP. 

SNMP Simple Network Management Protocol 

SRV Server 

SS7 Signalling System No. 7. An architecture and set of protocols for performing out-of-
band call signalling with a telephone network. 

SSL Secure Sockets Layer 

TCAP Transaction Capabilities Application Protocol. A protocol within the SS7 stack that is 
used for performing remote database transactions with a Signalling Control Point. 

TD Timeout for Disconnect 

TFTP Trivial File Transfer Protocol 

TGS Ticket Granting Server. A sub-system of the KDC used to grant Kerberos tickets. 

TLS Transport Layer Security 

UDP User Datagram Protocol 

UNI User-Network Interface 

VCI Virtual Channel Identifier 

VPI Virtual Path Identifier 

4.2 Conventions 

If this Recommendation is implemented, the keywords "MUST" and "SHALL" as well as 
"REQUIRED" are to be interpreted as indicating a mandatory aspect of this Recommendation. 

The keywords indicating a certain level of significance of a particular requirements that are used 
throughout this Recommendation are summarized below: 

"MUST"   This word or the adjective "REQUIRED" means that the item is an absolute 
requirement of this Recommendation. 

"MUST NOT"  This phrase means that the item is an absolute prohibition of this 
Recommendation. 

"SHOULD"   This word or the adjective "RECOMMENDED" means that there may exist 
valid reasons in particular circumstances to ignore this item, but the full 
implications should be understood and the case carefully weighed before 
choosing a different course. 

"SHOULD NOT" This phrase means that there may exist valid reasons in particular 
circumstances when the listed behaviour is acceptable or even useful, but the 
full implications should be understood and the case carefully weighed before 
implementing any behaviour described with this label. 
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"MAY"    This word or the adjective "OPTIONAL" means that this item is truly optional. 
One vendor may choose to include the item because a particular marketplace 
requires it or because it enhances the product, for example; another vendor may 
omit the same item. 

5 Architectural overview of IPCablecom security 

5.1 IPCablecom reference architecture 

Security requirements have been defined for every signalling and media link within the IPCablecom 
network. In order to understand the security requirements and specifications for IPCablecom, one 
must first understand the overall architecture. This clause presents a brief overview of the 
IPCablecom architecture. For a more detailed specification, refer to the IPCablecom architecture 
Recommendation (ITU-T Rec. J.160). 

5.1.1 HFC network 

In Figure 1, the access network between the MTAs and the CMTS is an HFC network, which 
employs J.112/J.122 physical layer and MAC layer protocols. J.125 enhanced security (see 6.8) and 
QoS protocols are enabled over this link. 

J.170_F01  

Figure 1 − IPCablecom single zone architecture 

5.1.2 Call Management Server 

In the context of voice communications applications, a central component of the system is the Call 
Management Server (CMS). It is involved in both call signalling and the establishment of Dynamic 
Quality of Service (DQoS). The CMS also performs queries at the PSTN Gateway for LNP (Local 
Number Portability) and other services necessary for voice communications, including interfacing 
with the PSTN. 
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As described in the IPCablecom Architecture Framework, the CMS is divided into the following 
functional components: 

• Call Agent (CA) – The Call Agent maintains network intelligence and call state and 
controls the media gateway. Most of the time Call Agent is synonymous for Call 
Management Server. 

• Gate Controller (GC) – The Gate Controller is a logical QoS management component that 
is typically part of the CMS. The GC coordinates all quality of service authorization and 
control on behalf of the application service – e.g., voice communications. 

• Media Player Controller (MPC) – The MPC initiates and manages all announcement 
services provided by the Media Player. The MPC accepts requests from the CMS and 
arranges for the MP to provide the announcement in the appropriate stream so that the user 
hears the announcement. 

• Media Gateway Controller (MGC) – The Media Gateway Controller maintains the 
gateway's portion of call state for communications traversing the Gateway. 

A particular CMS can contain any subset of the above listed functional components. 

5.1.3 Functional categories 

The IPCablecom Architecture Framework identifies the following functional categories within the 
architecture: 

• MTA device provisioning; 

• quality of Service (HFC access network and managed IP Backbone); 

• billing interface security; 

• security (specified herein); 

• network call signalling (NCS); 

• PSTN interconnectivity; 

• CODEC functionality and media stream mapping; 

• Audio Server services; 

• electronic surveillance (DF interfaces). 

In most cases, each functional category corresponds to a particular IPCablecom Recommendation. 

5.1.3.1 Device and service provisioning 

During MTA provisioning, the MTA gets its configuration with the help of the DHCP and TFTP 
servers, as well as the OSS. 

Provisioning interfaces need to be secured and have to configure the MTA with the appropriate 
security parameters (e.g., customer X.509 certificate signed by the Service Provider). This 
Recommendation specifies the steps in MTA provisioning, but provides detailed specifications only 
for the security parameters. Refer to ITU-T Rec. J.167 for a full specification on MTA provisioning 
and customer enrolment. 

5.1.3.2 Dynamic Quality of Service 

IPCablecom provides guaranteed Quality of Service (QoS) for each voice communication within a 
single zone with Dynamic QoS (ITU-T Rec. J.163). 

DQoS is controlled by the Gate Controller function within the CMS and can guarantee Quality of 
Service within a single administrative domain. The Gate Controller utilizes the Common Open 
Policy Service (COPS) protocol to download QoS policy into the CMTS. After that, the QoS 
reservation is established via J.112/J.122 QoS messaging between the MTA and the CMTS on both 
sides of the connection.  
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5.1.3.3 Billing system interfaces 

The CMS, CMTS and the PSTN Gateway are all required to send out billing event messages to the 
Record Keeping Server (RKS). This interface is specified to be RADIUS. Billing information 
should be checked for integrity and authenticity as well as kept private. This Recommendation 
defines security requirements and specifications for the communication with RKS. 

5.1.3.4 Call signalling 

The call signalling architecture defined within IPCablecom is network-based call signalling (NCS) 
per ITU-T Rec. J.162. The CMS is used to control call set-up, termination and most other call 
signalling functions. In the NCS architecture, the Call Agent function within the CMS is used in call 
signalling and utilizes the MGCP protocol. 

5.1.3.5 PSTN interconnectivity 

The PSTN interface to the voice communications capabilities of the IPCablecom network is through 
the Signalling and Media Gateways (SG and MG). Both of these gateways are controlled with the 
MGC (Media Gateway Controller). The MGC may be standalone or combined with a CMS. For 
further detail on PSTN Gateways, refer to ITU-T Rec. J.171.x-series. 

All communications between the MGC and the SG and MG may be over the same-shared IP 
network and is subject to similar threats (e.g., privacy, masquerade, denial-of-service) that are 
encountered in other links in the same network. This Recommendation defines the security 
requirements and specifications for the PSTN Gateway links. 

When communications from an MTA to a PSTN phone are made, bearer channel traffic is passed 
directly between an MTA and an MG. The protocols used in this case are RTP and RTCP, as in the 
MTA-to-MTA case. Both security requirements and specifications are very similar to the 
MTA-to-MTA bearer requirements and are fully defined in this Recommendation. After a voice 
communication enters the PSTN, the security requirements as well as specifications are the 
responsibility of the PSTN. 

5.1.3.6 CODEC functionality and media stream mapping 

The media stream between two MTAs or between an MTA and a PSTN Gateway utilizes the RTP 
protocol. Although ITU-T J.125 provides for privacy over the HFC network, the potential threats 
within the rest of the voice communications network require that the RTP packets be encrypted 
end-to-end1. 

In addition to RTP, there is an accompanying RTCP protocol, primarily used for reporting of RTCP 
statistics. In addition, RTCP packets may carry CNAME – a unique identifier of the sender of RTP 
packets. RTCP also defines a BYE message2 that can be used to terminate an RTP session. These 
two additional RTCP functions raise privacy and denial-of-service threats. Due to these threats, 
RTCP security requirements are the same as the requirements for all other end-to-end (SIP+) 
signalling and are addressed in the same manner. 

____________________ 
1 In general, it is possible for an MTA-to-MTA or MTA-to-PSTN connection to cross the networks of 

several different Service Providers. In the process, this path may cross a PSTN network. This is an 
exception to the rule, where all RTP packets are encrypted end-to-end. The media traffic inside a PSTN 
network does not utilize RTP and has its own security requirements. Thus, in this case the encryption 
would not be end-to-end and would terminate at the PSTN Gateway on both sides of the intermediate 
PSTN network. 

2 The RTCP BYE message should not be confused with the SIP+ BYE message that is also used to indicate 
the end of a voice communication within the network. 
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In addition to MTAs and PSTN Gateways, Media Servers may also participate in the media stream 
flows. Media Servers are network-based components that operate on media flows to support various 
voice communications service options. Media Servers perform audio bridging, play terminating 
announcements, provide interactive voice response services, and so on. Both media stream and 
signalling interfaces to a Media Server are the same as the interfaces to an MTA. For more 
information on Codec functionality, see ITU-T Rec. J.161. 

5.1.3.7 Audio Server services 

Audio Server interfaces provide a suite of signalling protocols for providing announcement and 
audio services in an IPCablecom network. 

5.1.3.7.1 Media Player Controller (MPC) 

The Media Player Controller (MPC) initiates and manages all announcement services provided by 
the Media Player. The MPC accepts requests from the CMS and arranges for the MP to provide the 
announcement in the appropriate stream so that the user hears the announcement. The MPC also 
serves as the termination for certain calls routed to it for IVR services. When the MP collects 
information from the end-user, the MPC is responsible for interpreting this information and 
managing the IVR session accordingly. The MPC manages call state. 

5.1.3.7.2 Media Player (MP) 

The Media Player (MP) is a media resource server. It is responsible for receiving and interpreting 
commands from the MPC and for delivering the appropriate announcement(s) to the MTA. The MP 
provides the media stream with the announcement contents. The MP also is responsible for 
accepting and reporting user inputs (e.g., DTMF tones). The MP functions under the control of the 
MPC. 

5.1.3.8 Electronic surveillance 

The event interface between the CMS and the DF provides descriptions of calls, necessary to 
perform wiretapping. This information includes the media stream encryption key and the 
corresponding encryption algorithm. This event interface uses RADIUS and is similar to the 
CMS-RKS interface. 

The COPS interface between the CMS and the CMTS is used to signal the CMTS to start/stop 
duplicating media packets to the DF for a particular call. This is the same COPS interface that is 
used for (DQoS) Gate Authorization messages. 
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5.2 Threats 

Figure 2 contains the interfaces that were analysed for security. 
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Figure 2 − IPCablecom secured interfaces 

There are additional interfaces identified in IPCablecom but for which protocols are not specified. 
In those cases, the corresponding security protocols are also not specified, and those interfaces are 
not listed in Figure 2. 

As well, the interfaces for which security is not required in IPCablecom are not listed. 
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The following clause summarizes general threats and the corresponding attacks that are relevant in 
the context of IP voice communications. This list of threats is not based on the knowledge of the 
specific protocols or security mechanisms employed in the network. A more specific summary of 
threats that are based on the functionality of each network element is listed in 5.2.6. 

Some of the outlined threats cannot be addressed purely by cryptographic means – physical security 
and/or fraud management should also be used. These threats may be important, but cannot be fully 
addressed within the scope of IPCablecom. How vendors and cable operators implement fraud 
management and physical security will differ and in this case a standard is not required for 
interoperability. 

5.2.1 Theft of network services 

In the context of voice communications, the main services that may be stolen are: 

• long-distance service; 

• local (subscription) voice communications service; 

• video conferencing; 

• network-based three-way calling; 

• Quality of Service. 

5.2.1.1 MTA clones 

One or more MTAs can masquerade as another MTA by duplicating its permanent identity and 
keys. The secret cryptographic keys may be obtained by either breaking the physical security of the 
MTA or by employing cryptanalysis. 

When an MTA is broken into, the perpetrator can steal voice communications service and charge it 
all to the original owner. The feasibility of such an attack depends on where an MTA is located. 
This attack must be seriously considered in the cases when an MTA is located in an office or 
apartment building, or on a street corner. 

An owner might break into his or her own MTA in at least one instance – after a false account with 
the cable operator providing the voice communications service had been set up. The customer 
name, address, and Social Security number may all be invalid or belong to someone else. The 
provided credit card number may be stolen. In that case, the owner of the MTA would not mind 
giving out the MTA cryptographic identity to others – he or she would not have to pay for service 
anyway. 

In addition to cloning of the permanent cryptographic keys, temporary (usually symmetric) keys 
may also be cloned. Such an attack is more complex, since the temporary keys expire more often 
and have to be frequently redistributed. The only reason why someone would attempt this attack is 
if the permanent cryptographic keys are protected much better than the temporary ones, or if the 
temporary keys are particularly easy to steal or discover with cryptanalysis. 

5.2.1.2 Other clones 

It is conceivable that the cryptographic identity of another network element, such as a CMTS or a 
CMS, may be cloned. Such an attack is most likely to be mounted by an insider such as a corrupt or 
disgruntled employee. 

5.2.1.3 Subscription fraud 

A customer sets up an account under false information. 
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5.2.1.4 Non-payment for voice communications services 

A customer stops paying his or her bill, but continues to use the MTA for voice communications 
service. This can happen if the network does not have an automated method to revoke the 
customer's access to the network. 

5.2.1.5 Protocol attacks against an MTA 

A weakness in the protocol can be manipulated to allow an MTA to authenticate to a network server 
with a false identity or hijack an existing voice communication. This includes replay and 
man-in-the-middle attacks. 

5.2.1.6 Protocol attacks against other network elements 

A perpetrator might employ similar protocol attacks to masquerade as a different network element, 
such as a CMTS or a CMS. Such an attack may be used in collaboration with cooperating MTAs to 
steal service. 

5.2.1.7 Theft of services provided by the MTA 

Services such as the support for multiple MTA ports, 3-way calling and call waiting may be 
implemented entirely in the MTA, without any required interaction with the network. 

5.2.1.7.1 Attacks 

MTA code to support these services may be downloaded illegally by an MTA clone, in which case 
the clone has to interact with the network to get the download. In that case, this threat is no different 
from the network service theft described in the previous clause. 

Alternatively, downloading an illegal code image using some illegal out-of-band means can also 
enable these services. Such service theft is much harder to prevent (a secure software environment 
within the MTA may be required). On the other hand, in order for an adversary to go through this 
trouble, the price for these MTA-based services has to make the theft worthwhile. 

An implication of this threat is that valuable services cannot be implemented entirely inside the 
MTA without a secure software environment in addition to tamper-proof protection for the 
cryptographic keys. (While a secure software environment within an MTA adds significant 
complexity, it is an achievable task.) 

5.2.1.8 MTA moved to another network 

A leased MTA may be reconfigured and registered with another network, contrary to the intent and 
property rights of the leasing company. 

5.2.2 Bearer channel information threats 

This class of threats is concerned with the breaking of privacy of voice communications over the IP 
bearer channel. Threats against non-VoIP communications are not considered here and assumed to 
require additional security at the application layer. 

5.2.2.1 Attacks 

Clones of MTAs and other network elements, as well as protocol manipulation attacks, also apply 
in the case of bearer channel information threats. These attacks are already described under the 
Service Theft threats. 

MTA cloning attacks mounted by the actual owner of the MTA are less likely in this case, but not 
inconceivable. An owner of an MTA may distribute clones to unsuspecting victims, so that he or 
she can later spy on them. 
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5.2.2.1.1 Off-line cryptanalysis 

Bearer channel information may be recorded and then analysed over a period of time, until the 
encryption keys are discovered through cryptanalysis. The discovered information may be of value 
even after a relatively long time has passed. 

5.2.3 Signalling channel information threats 

Signalling information, such as the caller identity and the services to which each customer 
subscribes, may be collected for marketing purposes. The caller identity may also be used illegally 
to locate a customer that wishes to keep his or her location private. 

5.2.3.1 Attacks 

Clones of MTAs and other network elements, as well as protocol manipulation attacks, also apply 
in the case of the signalling channel information threats. These attacks are already described in the 
clause on Service Theft threats. 

MTA cloning attacks mounted by the actual owner of the MTA is theoretically possible in this case. 
An owner of an MTA may distribute clones to the unsuspecting victims, so that he or she can 
monitor their signalling messages (e.g., for information with marketing value). The potential 
benefits of such an attack seem unjustified, however. 

5.2.3.1.1 Caller ID 

A number of a party initiating a voice communication is revealed, even though a number is not 
generally available (i.e., is "unlisted") and the owner of that number enabled ID blocking. 

5.2.3.1.2 Information with marketing value  

Dialled numbers and the type of service customers use may be gathered for marketing purposes by 
other corporations. 

5.2.4 Service disruption threats 

This class of threats is aimed at disrupting the normal operation of voice communications. The 
motives for denial-of-service attacks may be malicious intent against a particular individual or 
against the service provider; or, perhaps a competitor wishes to degrade the performance of another 
service provider and use the resulting problems in an advertising campaign. 

5.2.4.1 Attacks 

5.2.4.1.1 Remote interference 

A perpetrator is able to manipulate the protocol to close down ongoing voice communications. This 
might be achieved by masquerading as an MTA involved in such an ongoing communication. The 
same effect may be achieved if the perpetrator impersonates another network element, such as a 
gate controller or an edge router during either call set-up or voice packet routing. 

Depending on the signalling protocol security, it might be possible for the perpetrator to mount this 
attack from the MTA, in the privacy of his or her own home. 

Clones of MTAs and other network elements, as well as protocol manipulation attacks, also apply 
in the case of the service disruption threats. These attacks are described under Service Theft threats. 

MTA cloning attacks mounted by the actual owner of the MTA can theoretically be used in service 
disruption against unsuspecting clone owners. However, since there are so many other ways to 
cause service disruption, such an attack cannot be taken seriously in this context. 
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5.2.5 Repudiation 

In a network where masquerading (using the above-mentioned cloning and protocol manipulation 
techniques) is common or easily achievable, a customer may repudiate a particular communication 
(and, thus deny responsibility for paying for it) on that basis. 

In addition, unless public key-based digital signatures are employed on each message, the source of 
each message cannot be absolutely proven. If a signature over a message that originated at an MTA 
is based on a symmetric key that is shared between that MTA and a network server (e.g., the CMS), 
it is unclear if the owner of the MTA can claim that the service provider somehow falsified the 
message. 

However, even if each message were to carry a public key-based digital signature and if each MTA 
were to employ stringent physical security, the customer can still claim in court that someone else 
initiated that communication without his or her knowledge, just as a customer of a 
telecommunications carrier on the PSTN can claim, e.g., that particular long distance calls made 
from the customer's telephone were not authorized by the customer. Such telecommunications 
carriers commonly address this situation by establishing contractual and/or tariffed relationships 
with customers in which customers assume liability for unauthorized use of the customer's service. 
These same contractual principles are typically implemented in service contracts between 
information services providers such as ISPs and their subscribers. For these reasons, the benefits of 
non-repudiation seem dubious at best and do not appear to justify the performance penalty of 
carrying a public key-based digital signature on every message. 

5.2.6 Threat summary 

This clause provides a summary of the above threats and attacks and a brief assessment of their 
relative importance. 

5.2.6.1 Primary threats 

− Theft of Service: Attacks are: 

• Subscription fraud: This attack is prevalent in today's telephony systems (i.e., the 
PSTN) and requires little economic investment. It can only be addressed with a Fraud 
Management system. 

• Non-payment for services: Within the PSTN, telecommunications carriers usually do 
not prosecute the offenders, but simply shut down their accounts. Because prosecution 
is expensive and not always successful, it is a poor counter to this attack. Methods such 
as debit-based billing and device authorization (pay as you play), increasingly common 
in the wireless sector of the PSTN, might be a possible solution for this attack in the 
IPCablecom context. This threat can also be minimized with effective Fraud 
Management systems. 

• MTA clones: This threat requires more technical knowledge than the previous two 
threats. A technically-knowledgeable adversary or underground organization might 
offer cloning services for profit. This threat is most effective when combined with 
subscription fraud, where an MTA registered under a fraudulent account is cloned. This 
threat can be addressed with both Fraud Management and physical security inside the 
MTA, or a combination of both. 

• Impersonation of a network server: With proper cryptographic mechanisms, 
authorization and procedural security in place, this attack is unlikely, but has the 
potential for great damage. 

• Protocol manipulation: Can occur only when security protocols are flawed or when not 
enough cryptographic strength is in place. 
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− Bearer Channel Information Disclosure: Attacks are: 

• Simple snooping: This would happen if voice packets were sent in the clear over some 
segment of the network. Even if that segment appears to be protected, an insider may 
still compromise it. This is the only major attack on privacy. The bearer channel 
privacy attacks listed below are possible but are all of secondary importance. 

• MTA clones: Again, this threat requires more technical knowledge but can be offered 
as a service by an underground organization. A most likely variation of this attack is 
when a publicly accessible MTA (e.g., in an office or apartment building) is cloned. 

• Protocol manipulation: A flawed protocol may somehow be exploited to discover 
bearer channel encryption keys. 

• Off-line cryptanalysis: Even when media packets are protected with encryption, they 
can be stored and analysed for long periods of time, until the decryption key is finally 
discovered. Such an attack is not likely to be prevalent, since it is justified only for 
particularly valuable customer-provided information (IPCablecom security is not 
required to protect data). This attack is more difficult to perform on voice packets (as 
opposed to data). Still, customers are very sensitive to this threat and it can serve as the 
basis for a negative publicity campaign by competitors. 

− Signalling Information Disclosure: This threat is listed as primary only due to potential 
for bad publicity and customer sensitivity to keeping their numbers and location private. All 
of the attacks listed below are similar to those for bearer channel privacy and are not 
described here: 

• Simple snooping; 

• MTA clones; 

• Protocol manipulation; 

• Off-line cryptanalysis; 

• Service disruption. 

5.2.6.2 Secondary threats 

− Theft of MTA-based services: Based on the voice communications services that are 
planned for the near future, this threat does not appear to have potential for significant 
economic damage. This could possibly change with the introduction of new value-added 
services in the future. 

− Illegally registering a leased MTA with a different Service Provider: Leased MTAs can 
normally be tracked. Most likely, this threat is combined with the actual theft of a leased 
MTA. Thus, this threat does not appear to have potential for widespread damage. 
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5.3 Security architecture 

5.3.1 Overview of security interfaces 

Figure 3 summarizes all of the IPCablecom security interfaces, including key management. 
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Figure 3 − IPCablecom security interfaces with key management 
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In Figure 3, each interface label is of the form: 

<label>: <protocol> { <security protocol>/<key management protocol> } 

If the key management protocol is missing, it is not needed for that interface. IPCablecom interfaces 
that do not require security are not shown in Figure 3. 

Table 1 briefly describes each of the interfaces shown in Figure 3. 

Table 1 − IPCablecom security interfaces table 

Interface Components Description 

pkt-s0 MTA-PS/OSS Immediately after the DHCP sequence in the Secure Provisioning Flow, 
the MTA performs Kerberos-based key management with the 
Provisioning Server to establish SNMPv3 keys. The MTA bypasses 
Kerberized SNMPv3 and uses SNMPv2c in the Basic and Hybrid 
Flows.  

pkt-s1 MTA-TFTP MTA Configuration file download. When the Provisioning Server in the 
Secure Provisioning Flow sends an SNMP Set command to the MTA, it 
includes both the configuration name and the hash of the file. Later, 
when the MTA downloads the file, it authenticates the configuration file 
using the hash value. The configuration file may be optionally 
encrypted. 

pkt-s2 CM-CMTS J.112: This interface should be secured with BPI+ using BPI key 
management. BPI+ privacy layer on the HFC link. 

pkt-s3 MTA-MTA 
MTA-MG 

RTP: End-to-end media packets between two MTAs, or between MTA 
and MG. RTP packets are encrypted directly with the chosen cipher. 
Message integrity is optionally provided by an HMAC (Hashed 
Message Authentication Code). Keys are randomly generated, and 
exchanged by the two endpoints inside the signalling messages via the 
CMS or other application server. 

pkt-s4 MTA-MTA 
MTA-MG 

RTCP: RTCP control protocol for RTP. Message integrity and 
encrypted by selected cipher. The RTCP keys are derived using the 
same secret negotiated during the RTP key management. No additional 
key management messages are needed or utilized. 

pkt-s5 MTA-CMS NCS: Message integrity and privacy via IPsec. Key management is with 
Kerberos with PKINIT (public key initial authentication) extension. 

pkt-s6 RKS-CMS RADIUS: IPsec is used for both message integrity, as well as privacy. 
Key management is IKE or Kerberos. 

pkt-s7 RKS-CMTS RADIUS: IPsec is used for both message integrity, as well as privacy. 
Key management is IKE or Kerberos. 

pkt-s8 CMS-CMTS COPS: COPS protocol between the GC and the CMTS, used to 
download QoS authorization to the CMTS. Security is provided with 
IPsec for message integrity, as well as privacy. Key management is IKE 
or Kerberos. 

pkt-s9  This interface has been removed from the IPCablecom architecture. 

pkt-s10 MGC-MG TGCP: IPCablecom interface to the PSTN Media Gateway. IPsec is 
used for both message integrity and privacy. Key management is IKE or 
Kerberos. 

pkt-s11  This interface has been removed from the IPCablecom architecture. 
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Table 1 − IPCablecom security interfaces table 

Interface Components Description 

pkt-s12 MTA-MSO 
KDC 

PKINIT: An AS-REQ message is sent to the KDC with public-key 
cryptography used for authentication. The KDC verifies the certificate 
and issues either a service ticket or a ticket granting ticket (TGT), 
depending on the contents of the AS Request. The AS Reply returned by 
the KDC contains a certificate chain and a digital signature that are used 
by the MTA to authenticate this message. In the case that the KDC 
returns a TGT, the MTA then sends a TGS Request to the KDC to 
which the KDC replies with a TGS Reply containing a service ticket. 
The TGS Request/Reply messages are authenticated using a symmetric 
session key inside the TGT. 

pkt-s13 MTA-telephony 
KDC 

PKINIT: See pkt-s12 above. 

pkt-s14  This interface has been removed from the IPCablecom architecture. 

pkt-s15  This interface has been removed from the IPCablecom architecture. 

pkt-s16 CMS-CMS 
CMS-MGC 
CMS-EBP 
EBP-EBP 

SIP: TLS is used for both message integrity and privacy. Certificates are 
used for mutual authentication during the TLS handshake. 

pkt-s17  This interface has been removed from the IPCablecom architecture. 

pkt-s18  This interface has been removed from the IPCablecom architecture. 

pkt-s19  This interface has been removed from the IPCablecom architecture. 

pkt-s20 MPC-MP ASP: IPsec is used for both message integrity and privacy. 
Key management is IKE or Kerberos. 

pkt-s21 DF-CMS RADIUS: IPsec is used for both message integrity and privacy. 
Key management is IKE or Kerberos. 

pkt-s22 DF-CMTS RADIUS: IPsec is used for both message integrity and privacy. 
Key management is IKE or Kerberos. 

pkt-s23 DF-MGC RADIUS: IPsec is used for both message integrity and privacy. 
Key management is IKE or Kerberos. 

pkt-s24 DF-DF RADIUS: IPsec is used for both message integrity and privacy. 
Key management is IKE+. 

pkt-s25 RKS-MGC RADIUS: IPsec is used for both message integrity, as well as privacy. 
Key management is IKE or Kerberos. 

pkt-s26 OSS/Prov Serv 
– MSO KDC 
OSS/Prov Serv 
– Telephony 
   KDC 

The KDC uses Kerberos to map the MTA's MAC address to its FQDN 
for the purpose of authenticating the MTA before issuing it a ticket. 

pkt-s27 CMS-PS/OSS HTTP: IPsec is used for both message integrity and privacy. 
Key management is IKE or Kerberos. 
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5.3.2 Security assumptions 

5.3.2.1 CMTS downstream messages are trusted 

As mentioned previously, it is assumed that CMTS downstream messages cannot be easily modified 
in transit and a CMTS can be impersonated only at great expense. 

Most messages secured in this Recommendation either move over the shared IP network in addition 
to the J.112 path, or do not go over J.112 at all. 

In one case – the case of J.112 QoS messages exchanged between the CMTS and the CM – this 
assumption does not apply. Although J.112 QoS messages (both upstream and downstream) include 
an integrity check, the corresponding (BPI+) key management does not authenticate the identity of 
the CMTS. The CM is unable to cryptographically know that the network element it has connected 
to is the true CMTS for that network. However, even if a CMTS could be impersonated, it would 
allow only limited denial-of-service attacks. This vulnerability is not considered to be worth the 
effort and the expense of impersonating a CMTS. 

5.3.2.2 Non-repudiation not supported 

Non-repudiation, in this Recommendation, means that an originator of a message cannot deny that 
he or she sent that message. In this voice communications architecture, non-repudiation is not 
supported for most messages, with the exception of the top key management layer. This decision 
was based on the performance penalty incurred with each public key operation. The most important 
use for non-repudiation would have been during communications set up – to prove that a particular 
party had initiated that particular communication. However, due to very strict requirements on the 
set-up time, it is not possible to perform public key operations for each communication. 

5.3.2.3 Root Private Key compromise protection 

The cryptographic mechanisms defined in this Recommendation are based on a Public Key 
Infrastructure (PKI). As is the case with most other architectures that are based on a PKI, there is no 
automated recovery path from a compromise of a Root Private Key. However, with proper 
safeguards, the probability of this happening is very low, to the point that the risk of a Root Private 
Key compromise occurring is outweighed by the benefits of this architecture. 

The corresponding Root Public Key is stored as a read-only parameter in many components of this 
architecture. Once the Root Private Key has been compromised, each manufacturer's certificate 
would have to be manually reconfigured. 

Due to this limitation of a PKI, the Root Private Key must be very carefully guarded with 
procedural and physical security. And, it must be sufficiently long so that its value cannot be 
discovered with cryptographic attacks within the expected lifetime of the system. 

5.3.2.4 Limited prevention of denial-of-service attacks  

This Recommendation does not attempt to address all or even most denial-of-service attacks. The 
cryptographic mechanisms defined in this Recommendation prevent some denial-of-service attacks 
that are particularly easy to mount and are hard to detect. For example, they will prevent a 
compromised MTA from masquerading as other MTAs in the same upstream HFC segment and 
interrupting ongoing communications with illicit HANGUP messages. 

This Recommendation will also prevent more serious denial-of-service attacks, such as an MTA 
masquerading as a CMS in a different network domain that causes all communications set-up 
requests to fail. 
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On the other hand, denial-of-service attacks where a router is taken out of service or is bombarded 
with bad IP packets are not addressed. In general, denial-of-service attacks that are based on 
damaging one of the network components can only be solved with procedural and physical security, 
which is out of the scope of this Recommendation. 

Denial-of-service attacks where network traffic is overburdened with bad packets cannot be 
prevented in a large network (although procedural and physical security helps), but can usually be 
detected. Detection of such an attack and of its cause is out of scope of this Recommendation. 

For example, denial-of-service attacks where a router is taken out of order or is bombarded with 
bogus IP packets cannot be prevented. 

5.3.3 Susceptibility of network elements to attack 

This clause describes the amount and the type of trust that can be assumed for each element of the 
voice communications network. It also describes the specific threats that are possible if each 
network component is compromised. These threats are based on the functionality specified for each 
component. The general categories of threats are described in 5.2. 

Both the trust and the specific threats are described with the assumption that no cryptographic or 
physical security has been employed in the system, with the exception of the security per 
ITU-T Rec. J.125 that is on the HFC J.112 links. The goal of this security Recommendation is to 
address threats that are relevant to this voice communications system. 

5.3.3.1 Managed IP network 

It is assumed that the same IP network may be shared between multiple, possibly competing service 
providers. It is also assumed that the service provider may provide multiple services on the same IP 
network, e.g., Internet connectivity. No assumptions can be made about the physical security of 
each link in this IP network. An intruder can pop up at any location with the ability to monitor 
traffic, perform message modification and to reroute messages. 

5.3.3.2 MTA 

The MTA is considered to be an untrusted network element. It is operating inside customer 
premises, considered to be a hostile environment. It is assumed that a hostile adversary has the 
ability to open up the MTA and make software and even hardware modifications to fit his or her 
needs. This would be done in the privacy of the customer's home. 

The MTA communicates with the CMTS over the shared J.112 path and has access to downstream 
and upstream messages from other MTAs within the same HFC segment. 

An MTA is responsible for: 

• initiating and receiving communications to/from another MTA or the PSTN; 

• negotiating QoS. 

A compromise of an MTA can result in: 

• MTA clones that are capable of: 

− accessing basic service and any enhanced features in the name of another user's 
account; 

− violating privacy of the owner of the compromised MTA that does not know that the 
keys were stolen; 

− identity fraud; 

• an MTA running a bad code image that disrupts communications made by other MTAs or 
degrades network performance. 
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5.3.3.3 CMTS 

The CMTS communicates both over the J.112 path and over the shared IP network. When the 
CMTS sends downstream messages over the J.112 path, it is assumed that a perpetrator cannot 
modify them or impersonate the CMTS. Implementing ITU-T Rec. J.125 over that path provides for 
privacy. 

However, when the CMTS is communicating over the shared IP network (e.g., with the CMS or 
another CMTS), no such assumptions can be made. 

While the CMTS, as well as voice communications network servers, are more trusted than the 
MTAs, they cannot be trusted completely. There is always a possibility of an insider attack. 

Insider attacks at the CMTS should be addressed by cryptographic authentication and authorization 
of the CMTS operators, as well as by physical and procedural security, which are all out of the 
scope of the IPCablecom Recommendations. 

A CMTS is responsible for: 

• reporting billing-related statistics to the RKS; 

• QoS allocation for MTAs over the J.112 path; 

• implementation of BPI+ (MAC layer security) and corresponding key management. 

A compromise of a CMTS may result in: 

• service theft by reporting invalid information to the RKS; 

• unauthorized levels of QoS; 

• loss of privacy, since the CMTS holds J.112 keys. This may not happen if additional 
encryption is provided above the MAC layer; 

• degraded performance of some or all MTAs in that HFC segment; 

• some or all of the MTAs in one HFC segment completely taken out of service. 

5.3.3.4 Voice communications network servers are untrusted network elements 

Application servers used for voice communications (e.g., CMS, RKS, Provisioning, OSS, DHCP 
and TFTP servers) reside on the network and can potentially be impersonated or subjected to insider 
attacks. The main difference would be in the damage that can be incurred in the case a particular 
server is impersonated or compromised. 

Threats that are associated with each network element are discussed in the following subclauses. To 
summarize those threats, a compromise or impersonation of each of these servers can result in a 
wide-scale service theft, loss of privacy, and in highly damaging denial-of-service attacks. 

In addition to authentication of all messages to and from these servers (specified in this 
Recommendation), care should be taken to minimize the likelihood of insider attacks. They should 
be addressed by cryptographic authentication and authorization of the operators, as well as by 
stringent physical and procedural security, which are all out of scope of the IPCablecom 
Recommendations. 

5.3.3.4.1 CMS 

The Call Management Server is responsible for: 

• authorizing individual voice communications by subscribers; 

• QoS allocation; 

• initializing the billing information in the CMTS; 
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• distributing per communication keys for MTA-MTA signalling, bearer channel, and DQoS 
messages on the MTA-CMTS and CMTS-CMTS links; 

• interface to PTSN gateway. 

A compromised CMS can result in: 

• free voice communications service to all of the MTAs that are located in the same network 
domain (up to 100 000). This may be accomplished by: 

− allowing unauthorized MTAs to create communications; 

− uploading invalid or wrong billing information to the CMTS; 

− combination of both of the above; 

• loss of privacy, since the CMS distributes bearer channel keys; 

• unauthorized allocation of QoS; 

• unauthorized disclosure of customer identity, location (e.g., IP address), communication 
patterns, and a list of services to which the customer subscribes. 

5.3.3.4.2 RKS 

The RKS is responsible for collecting billing events and reporting them to the billing system. A 
compromised RKS may result in: 

• free or reduced-rate service due to improper reporting of statistics; 

• billing to a wrong account; 

• billing customers for communications that were never made, i.e., fabricating 
communications; 

• unauthorized disclosure of customer identity, personal information, service usage patterns, 
and a list of services to which the customer subscribes. 

5.3.3.4.3 OSS, DHCP & TFTP servers 

The OSS system is responsible for: 

• MTA and service provisioning; 

• MTA code downloads and upgrades; 

• handling service change requests and dynamic reconfiguration of MTAs. 

A compromise of the OSS, DHCP or TFTP server can result in: 

• MTAs running illegal code, which may: 

− intentionally introduce bugs or render the MTA completely inoperable; 

− degrade voice communications performance on the IPCablecom or HFC network; 

− configure the MTA with features to which the customer is not entitled; 

• MTAs configured with an identity and keys of another customer; 

• MTAs configured with service options for which the customer did not pay; 

• MTAs provisioned with a bad set of parameters that would make them perform badly or not 
perform at all. 

5.3.3.5 PSTN Gateways 

5.3.3.5.1 Media Gateway 

The MG is responsible for: 

• passing media packets between the IPCablecom network and the PSTN; 
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• reporting statistics to the RKS. 

A compromise of the MG may result in: 

• service theft by reporting invalid information to the RKS; 

• loss of privacy on communications to/from the PSTN. 

5.3.3.5.2 Signalling Gateway 

The SG is responsible for translating call signalling between the IPCablecom network and the 
PSTN. 

A compromise of the SG may result in: 

• incorrect MTA identity reported to the PSTN; 

• unauthorized services enabled within the PSTN; 

• loss of PSTN connectivity; 

• unauthorized disclosure of customer identity, location (e.g., IP address), usage patterns and 
a list of services to which the customer subscribes. 

6 Security mechanisms 

Unless explicitly stated otherwise, the following requirements apply to messages described by this 
Recommendation: 

− ASN.1 encoded messages and objects MUST conform to the Distinguished Encoding Rules 
per ITU-T Rec. X.690. 

− FQDNs used as components of principal names and principal identifiers MUST be rendered 
in lower case. 

− FQDNs MUST NOT include the root domain (i.e., they MUST NOT include a trailing dot). 

 All Kerberos messages in IPCablecom MUST utilize only UDP/IP. 

6.1 IPsec 

6.1.1 Overview 

IPsec provides network-layer security that runs immediately above the IP layer in the protocol 
stack. It provides security for the TCP or UDP layer and above. It consists of two protocols, 
IPsec ESP and IPsec AH, as specified in RFC 2401. 

IPsec ESP provides confidentiality and message integrity, IP header not included. IPsec AH 
provides only message integrity, but that includes most of the IP header (with the exception of some 
IP header parameters that can change with each hop). IPCablecom utilizes only the IPsec ESP 
protocol per RFC 2406, since authentication of the IP header does not significantly improve 
security within the IPCablecom architecture. 

Each protocol supports two modes of use: transport mode and tunnel mode. IPCablecom only 
utilizes IPsec ESP transport mode. For more detail on IPsec and these two modes, refer to 
RFC 2401. Note that in RFC 2401, all implementations of ESP are required to support the concept 
of Security Associations (SAs). RFC 2401 also provides a general model for processing IP traffic 
relative to SAs. Although particular IPsec implementations need not follow the details of this 
general model, the external behavior of any IPsec implementation must match the external behavior 
of the general model. This ensures that components do not accept traffic from unknown addresses 
and do not send or accept traffic without security (when security is required). IPCablecom 
components that implement IPsec are expected to provide behavior that matches the general model 
described in RFC 2401. 



 

  Rec. ITU-T J.170 (11/2005) 27 

6.1.2 IPCablecom profile for IPsec ESP (Transport mode) 

6.1.2.1 IPsec ESP Transform Identifiers 

IPsec Transform Identifier (1 byte) is used by IKE to negotiate an encryption algorithm that is used 
by IPsec. A list of available IPsec Transform Identifiers is specified in RFC 2407. Within 
IPCablecom, the same Transform Identifiers are used by all IPsec key management protocols: IKE, 
Kerberos and application layer (embedded in IP signalling messages). 

Table 2 describes the IPsec Transform Identifiers (all of which use the CBC mode specified in 
RFC 2451) supported by IPCablecom. 

Table 2 − IPsec ESP Transform Identifiers 

Transform ID 
Value 
(Hex) 

Key size 
(in bits) 

MUST 
support 

Description 

ESP_3DES 0x03 192 Yes 3-DES in CBC mode 

ESP_RC5 0x04 128 No RC5 in CBC mode 

ESP_IDEA 0x05 128 No IDEA in CBC mode 

ESP_CAST 0x06 128 No CAST in CBC mode 

ESP_BLOWFISH 0x07 128 No BLOWFISH in CBC mode 

ESP_AES 0x08 128 No AES-128 in CBC mode with 
128-bit block size 

ESP_NULL 0x0B 0 Yes Encryption turned off 

The ESP_3DES and ESP_NULL Transform IDs MUST be supported. ESP_AES is included as an 
optional encryption algorithm. For all of the above transforms, the CBC Initialization Vector (IV) is 
carried in the clear inside each ESP packet payload per RFC 2451. AES-128 (FIPS PUB 197) 
MUST be used in CBC mode with a 128-bit block size and a randomly generated Initialization 
Vector (IV). AES-128 requires 10 rounds of cryptographic operations. 

IKE allows negotiation of the encryption key size. Other IPsec key management protocols used by 
IPCablecom do not allow key size negotiation, and so for consistency a single key size is listed for 
each Transform ID. If in the future it is desired to increase the key size for one of the above 
algorithms, IKE will use the built-in key-size negotiation, while other key management protocols 
will utilize a new Transform ID for the larger key size. 

6.1.2.2 IPsec ESP authentication algorithms 

The IPsec authentication algorithm (1 byte) is used by IKE to negotiate a packet-authentication 
algorithm that is used by IPsec. A list of available IPsec authentication algorithms is specified in 
RFC 2406. Within IPCablecom, the same authentication algorithms are used by all IPsec key 
management protocols: IKE, Kerberos, and application-layer (embedded in IP signalling messages). 

IPCablecom supports the IPsec authentication algorithms in Table 3. 

Table 3 − IPsec authentication algorithms 

Authentication 
algorithm 

Value 
(Hex) 

Key size 
(in bits) 

MUST support Description 

HMAC-MD5 0x01 128 Yes (also required by RFC 2407) First 12 bytes of the 
MD5 HMAC 

HMAC-SHA 0x02 160 Yes First 12 bytes of the 
SHA-1 HMAC 
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The HMAC-MD5-96 and HMAC-SHA-1-96 authentication algorithms MUST be supported. 

6.1.2.3 Replay protection 

In general, IPsec provides an optional replay-protection service (anti-replay service). An IPsec 
sequence number outside of the current anti-replay window is flagged as a replay and the packet is 
rejected. When the anti-replay service is turned on, an IPsec sequence number cannot overflow and 
roll over to 0. Before that happens, a new Security Association must be created as specified in 
RFC 2406. 

Within IPCablecom Security Specification, the IPsec anti-replay service MUST be turned on at all 
times. This is regardless of which key management mechanism is used with the particular IPsec 
interface. 

6.1.2.4 Key management requirements 

Within IPCablecom, IPsec is used on a number of different interfaces with different security and 
performance requirements. Because of this, several different key management protocols have been 
chosen for different IPCablecom interfaces. On some interfaces it is IKE (see 6.2), on other 
interfaces it is Kerberos/PKINIT (see 6.4.3.1). 

When IKE is not used for key management, an alternative key management protocol needs an 
interface to the IPsec layer in order to create/update/delete IPsec Security Associations. IPsec 
Security Associations (SAs) MUST be automatically established or re-established as required. This 
implies that the IPsec layer also needs a way to signal a key management application when a new 
Security Association needs to be set up (e.g., the old SA is about to expire or there is no SA on a 
particular interface). 

In addition, some network elements are required to run multiple key management protocols. In 
particular, the Application Server (such as a CMS) and the MTA MUST support multiple key 
management protocols. The MTA MUST support Kerberos/PKINIT on the MTA-CMS signalling 
interface. IKE MUST be supported on the CMS-CMTS and CMS-RKS interfaces. 

The PF_KEY interface (see RFC 2367) SHOULD be used for IPsec key management within 
IPCablecom and would satisfy the above-listed requirements. For example, PF_KEY permits 
multiple key management applications to register for rekeying events. When the IPsec layer detects 
a missing Security Association, it signals the event to all registered key management applications. 
Based on the Identity Extension associated with that Security Association, each key management 
application decides if it should handle the event. 

6.2 Internet Key Exchange (IKE) 

6.2.1 Overview 

IPCablecom utilizes RFC 2409 (IKE) as one of the key management protocols for IPsec. It is 
utilized on interfaces where: 

• there is not a very large number of connections; 

• the endpoints on each connection know about each other's identity in advance. 

Within IPCablecom, IKE key management is completely asynchronous to call signalling messages 
and does not contribute to any delays during communications set-up. The only exception would be 
some unexpected error, where a Security Association is unexpectedly lost by one of the endpoints. 

IKE is a peer-to-peer key management protocol. It consists of two phases. In the first phase, a 
shared secret is negotiated via a Diffie-Hellman key exchange. It is then used to authenticate the 
second IKE phase. The second phase negotiates another secret, used to derive keys for the 
IPsec ESP protocol. 
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6.2.2 IPCablecom profile for IKE 

6.2.2.1 First IKE phase 

There are several modes defined for authentication during the first IKE phase. 

6.2.2.1.1 IKE authentication with signatures 

In this mode, both peers MUST be authenticated with X.509 certificates and digital signatures. 
IPCablecom utilizes this IKE authentication mode on some IPsec interfaces. Whenever this mode is 
utilized, both sides MUST exchange X.509 certificates (although this is optional in RFC 2409). 

6.2.2.1.2 IKE authentication with public-key encryption 

IPCablecom MUST NOT utilize this IKE authentication with public key encryption. In order to 
perform this mode of IKE authentication, the initiator must already have the responder's public key, 
which is not supported by IPCablecom. 

6.2.2.1.3 IKE authentication with pre-shared keys 

A key derived by some out-of-band (e.g., manual) mechanism is used to authenticate the exchange. 
IPCablecom utilizes this IKE authentication mode on some IPsec interfaces. IPCablecom does not 
specify the out-of-band method for deriving pre-shared keys. 

When using pre-shared keys, the strength of the system is dependent upon the strength of the shared 
secret. The goal is to keep the shared secret from being the weak link in the chain of security. This 
implies that the shared secret needs to contain as much entropy (randomness) as the cipher being 
used. In other words, the shared secret should have at least 128-160 bits of entropy. This means if 
the shared secret is just a string of random 8-bit bytes, then the key can be 16-20 bytes. If the shared 
secret is derived from a passphrase that is a string of random alpha-numerics (a-zA-Z0-9/+), then it 
should be at least 22-27 characters. This is because there are only 64 characters (6 bits) instead of 
256 characters (8 bits) per 8-bit byte, which implies an expansion of 4/3 the length for the same 
amount of entropy. Both random 8-bit bytes and random 6-bit bytes assume truly random numbers. 
If there is any structure in the password/passphrase, like deriving from English, then even longer 
passphrases are necessary. A passphrase composed of English would need on the order of 
60-100 characters, depending on mixing of case. Using English (or any language, for that matter) 
passphrases creates the problem that, if an attacker knows the language of the passphrase then they 
have less space to search. It is less random. This implies fewer bits of entropy per character, so a 
longer passphrase is required to maintain the same level of entropy. 

6.2.2.2 Second IKE phase 

In the second IKE phase, an IPsec ESP SA is established, including the IPsec ESP keys and 
ciphersuites. It is possible to establish multiple Security Associations with a single second-phase 
IKE exchange. 

First, a shared second-phase secret is established, and then all the IPsec keying material is derived 
from it using the one-way function specified in RFC 2409. 

The second-phase secret is built from encrypted nonces that are exchanged by the two parties. 
Another Diffie-Hellman exchange may be used in addition to the encrypted nonces. Within 
IPCablecom, IKE MUST NOT perform a Diffie-Hellman exchange in the second IKE phase in 
order to avoid the associated performance penalties. 

The second IKE phase is authenticated using a shared secret that was established in the first phase. 
Supported authentication algorithms are the same as those specified for IPsec in 6.1.2.2. 
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6.2.2.3 Encryption algorithms for IKE exchanges 

Both phase 1 and phase 2 IKE exchanges include some symmetrically-encrypted messages. The 
encryption algorithms supported as part of the IPCablecom profile for IKE MUST be the same 
algorithms identified in the IPCablecom profile for IPsec ESP in Table 2. 

6.2.2.4 Diffie-Hellman groups 

IKE defines specific sets of Diffie-Hellman parameters (i.e., prime and generator) that may be used 
for the phase 1 IKE exchanges. These are called groups in RFC 2409. The use of Diffie-Hellman 
groups within IPCablecom IKE is identical to that specified in RFC 2409. Note that this is different 
from the requirements pertaining to the IPCablecom use of groups in PKINIT described in 
6.4.2.1.1. Annex A provides details of the first and second Oakley groups. 

6.3 SNMPv3 

Any mention of SNMP in this Recommendation without a specific reference to the SNMP protocol 
version must be interpreted as SNMPv3. 

IPCablecom supports use of SNMPv2c coexistence for network management operations for devices 
provisioned under the Basic Flow or the Hybrid Flow. It also supports the SNMPv3/v2c coexistence 
for network management operations when the device is provisioned under the Secure Flow. Refer to 
the provisioning specification (ITU-T Rec. J.167) for the use of SNMP coexistence in IPCablecom. 
For any interface within the IPCablecom architecture utilizing SNMPv3 authentication MUST be 
turned on at all times and SNMPv3 privacy MAY also be utilized. 

In order to establish SNMPv3 keys, all IPCablecom SNMP interfaces SHOULD utilize Kerberized 
SNMPv3 key management (as specified in 6.5.4). In addition, SNMPv3 key management 
techniques specified in RFC 3414 MAY also be used. 

6.3.1 SNMPv3 Transform Identifiers 

The SNMPv3 Transform Identifier (1 byte) is used by Kerberized key management to negotiate an 
encryption algorithm for use by SNMPv3. 

For IPCablecom, the SNMPv3 Transform Identifiers in Table 4 MUST be supported. 

Table 4 − SNMPv3 Transform Identifiers 

Transform ID 
Value 
(Hex) 

Key size 
(in bits) 

MUST be 
supported 

Description 

SNMPv3_DES 0x21 128 Yes DES in CBC mode The first 
64 bits are used as the DES Key 
and the remaining 64 are used as 
the pre-IV. 

SNMPv3_NULL 0x20 0 Yes Encryption turned off 

The SNMPv3_DES and the SNMPv3_NULL Transform IDs MUST be supported. The DES 
encryption transform for SNMPv3 is specified in RFC 3414. Note that DES encryption does not 
provide strong privacy but is currently the only encryption algorithm specified by the SNMPv3 
standard. 

6.3.2 SNMPv3 authentication algorithms 

SNMPv3 authentication algorithm (1 byte) is used by Kerberized key management to negotiate an 
SNMPv3 message authentication algorithm. 
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For IPCablecom, the SNMPv3 authentication algorithms in Table 5 are supported (both of which 
are specified in RFC 3414): 

Table 5 − SNMPv3 authentication algorithms 

Authentication algorithm 
Value 
(Hex) 

Key size 
(in bits) 

MUST be supported Description 

SNMPv3_HMAC-MD5 0x21 128 Yes (also required by 
RFC 3414) 

MD5 HMAC 

SNMPv3_HMAC-SHA-1 0x22 160 No (SHOULD be 
supported) 

SHA-1 HMAC 

The SNMPv3_HMAC-MD5 authentication algorithm MUST be supported. The SNMPv3_HMAC-
SHA-1 authentication algorithm SHOULD be supported. 

6.4 Kerberos/PKINIT 

6.4.1 Overview 

IPCablecom utilizes the concept of Kerberized IPsec for signalling between an Application Server, 
such as the CMS, and the MTA. This refers to the ability to create IPsec security associations using 
keys derived from the subkeys exchanged using the Kerberos AP Request/AP Reply messages. On 
this interface, Kerberos (see IETF RFC 4120) is utilized with the PKINIT public key extension 
(also see IETF RFC 4556). 

Kerberized IPsec consists of three distinct phases: 

1) A client SHOULD obtain a TGT (Ticket Granting Ticket) from the KDC (Key Distribution 
Centre). Once the client obtains the TGT, it MUST use the TGT in the subsequent phase to 
authenticate to the KDC and obtain a ticket for the specific Application Server, e.g., a 
CMS. 

 In Kerberos, tickets are symmetric authentication tokens encrypted with a particular server's 
key. (For a TGT, the server is the KDC.) Tickets are used to authenticate a client to a 
server. A PKI equivalent of a ticket would be an X.509 certificate. In addition to 
authentication, a ticket is used to establish a session key between a client and a server, 
where the session key is contained in the ticket. 

 The logical function within the KDC that is responsible for issuing TGTs is referred to as 
an Authentication Server or AS. 

2) A client obtains a ticket from the KDC for a specific Application Server. In this phase, a 
client can authenticate with a TGT obtained in the previous phase. A client can also 
authenticate to the KDC directly using a digital certificate or a password-derived key, 
bypassing phase 1.  

 The logical function within the KDC that is responsible for issuing Application Server 
tickets based on a TGT is referred to as the Ticket Granting Server (TGS). When the TGT 
is bypassed, it is the Authentication Server that issues the Application Server tickets.  

3) A client utilizes the ticket obtained in the previous phase to establish a pair of Security 
Parameters (one to send and one to receive) with the server. This is the only key 
management phase that is not already specified in an IETF standard. The previous two 
phases are part of standard Kerberos, while this phase defines new messages that tie 
together Kerberos key management and IPsec. 
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Figure 4 illustrates the three phases of Kerberos-based key management for IPsec. 
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Figure 4 − Kerberos-based key management for IPsec 

During the AS Request/AS Reply exchange (that can occur in either phase 1 or phase 2), the client 
and the KDC perform mutual authentication. In standard Kerberos, a client key that is shared with 
the KDC is used for this authentication (see 6.4.2.2). The same AS Request/AS Reply exchange 
may also be authenticated with digital signatures and certificates when the PKINIT public key 
extension is used (see 6.4.2). Both the TGT and the Application Server tickets used within 
IPCablecom have a relatively long lifetime (days or weeks). This is acceptable as 3-DES, a 
reasonably strong symmetric algorithm, is required by IPCablecom. 

IPCablecom utilizes the concept of a TGT (Ticket Granting Ticket), used to authenticate subsequent 
requests for Application Server tickets. The use of a TGT has two main advantages: 

• It limits the exposure of the relatively long-term client key (that is in some cases reused as 
the service key). This consideration does not apply to clients that use PKINIT. 

• It reduces the number of public key operations that are required for PKINIT clients. 

The Application Server ticket contains a symmetric session key, which MUST be used in phase 3 to 
establish a set of keys for the IPsec ESP protocol. The keys used by IPsec MUST expire after a 
configurable time-out period (e.g., 10 minutes). Normally, the same Application Server ticket 
SHOULD be used to automatically establish a new IPsec SA. However, there are instances where it 
is desirable to drop IPsec sessions after a Security Association time out and establish them 
on-demand later. This allows for improved system scalability, since an application server 
(e.g., CMS) does not need to maintain a SA for every client (e.g., MTA) that it controls. It also is 
possible that a group of application servers (e.g., CMS clusters) may control the same subset of 
clients (e.g., MTAs) for load balancing. In this case, the MTA is not required to maintain an SA 
with each CMS in that group. This clause provides specifications for how to automatically establish 
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a new IPsec SA right before an expiration of the old one and how to establish IPsec SAs 
on-demand, when a signalling message needs to be sent. 

IPCablecom also utilizes the Kerberos protocol to establish SNMPv3 keys between the MTAs and 
the Provisioning Server. Kerberized SNMPv3 key management is very similar to the Kerberized 
IPsec key management and consists of the same phases that were explained above for Kerberized 
IPsec. Each MTA again utilizes the PKINIT extension to Kerberos to authenticate itself to the KDC 
with X.509 certificates. 

Once an MTA obtains its service ticket for the Provisioning Server, it utilizes the same protocol that 
is used for Kerberized IPsec to authenticate itself to the Provisioning Server and to generate 
SNMPv3 keys. The key management protocol is specified to allow application-specific data that has 
different profiles for SNMPv3 and IPsec. The only exception is the Rekey exchange that is 
specified for IPsec in order to optimize the MTA hand-off between the members of a CMS cluster. 
The Rekey exchange is not utilized for SNMPv3 key management. 

A recipient of any Kerberos message that does not fully comply with the IPCablecom requirements 
MUST reject the message.  

6.4.1.1 Kerberos ticket storage 

Kerberos clients that store tickets in persistent storage will be able to re-use the same Kerberos 
ticket after a reboot. In the event that PKINIT is used, this avoids the need to perform public key 
operations. 

A Kerberos client MUST NOT obtain a new TGT upon reboot if it possesses a valid service ticket.  

An MTA MUST store the Provisioning Server service ticket in persistent storage. An MTA MUST 
be capable of storing a minimum of pktcMtaDevEndPntCount+1 CMS service tickets in persistent 
storage, where pktcMtaDevEndPntCount is the MIB object specifying the number of physical 
endpoints on the MTA. An MTA MUST store all CMS service tickets that correspond to active 
endpoints. This means that an MTA that reaches the maximum number of CMS service tickets that 
can be stored in persistent storage will not over-write CMS service tickets that correspond to active 
endpoints. 

Kerberos clients other than MTAs SHOULD retain service tickets in persistent storage.  

Note that Kerberos clients will need to store additional information in order to use and validate the 
ticket, such as the session key information, the client IP address, and the ticket validity period. 
Refer to 7.1 for additional information on re-using stored tickets. 

6.4.2 PKINIT exchange 

Figure 5 illustrates how a client may use PKINIT to either obtain a TGT (phase 1) or a Kerberos 
ticket for an Application Server (phase 2). 
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Figure 5 − PKINIT exchange 

The PKINIT Request is carried as a Kerberos pre-authenticator field inside an AS Request and the 
PKINIT Reply is a pre-authenticator inside the AS Reply. The syntax of the Kerberos 
AS Request/Reply messages and how pre-authenticators plug in is specified in IETF RFC 4120. 

In this clause, the PKINIT client is referred to as an MTA, as it is currently the only IPCablecom 
element that authenticates itself to the KDC with the PKINIT protocol. If in the future other 
IPCablecom elements will also utilize the PKINIT protocol, the same specifications will apply. 
IPCablecom use of the AS Request/AS Reply exchange without PKINIT is covered in 6.4.3. 

Figure 5 lists several important parameters in the PKINIT Request and Reply messages. These 
parameters are: 

PKINIT Request 

• MTA (Kerberos principal) name – found in the KDC-REQ-BODY Kerberos structure 
(see IETF RFC 4120). For the format used in IPCablecom, see 6.4.7. 

• KDC or Application Server (Kerberos principal) name – found in the KDC-REQ-BODY 
Kerberos structure (see IETF RFC 4120). For the format used in IPCablecom, see 6.4.6. 

• Time – found in the PKAuthenticator structure, specified by PKINIT (IETF RFC 4556). 

• Nonce – found in the PKAuthenticator structure, specified by PKINIT (IETF RFC 4556). 
There is also a second nonce in the KDC-REQ-BODY Kerberos structure. 

• Diffie-Hellman parameters, signature and MTA certificate – these are all specified by 
PKINIT (IETF RFC 4556) and their use in IPCablecom is specified in 6.4.2.1.1. 

PKINIT Reply 

• TGT or Application Server Ticket – found in the KDC-REP Kerberos structure 
(see IETF RFC 4120). 

• KDC Certificate, Diffie-Hellman parameters, signature – these are all specified by PKINIT 
(see IETF RFC 4556) and their use in IPCablecom is specified in 6.4.2.1.2. 
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• Nonce – found in the KdcDHKeyInfo structure, specified by PKINIT (IETF RFC 4556). 
This nonce must be the same as the one found in the PKAuthenticator structure of the 
PKINIT Request. There is another nonce in EncKDCRepPart Kerberos structure (see 
IETF RFC 4120). This nonce must be the same as the one found in the KDC-REQ-BODY 
of the PKINIT Request. 

• Session key, key validity period – found in the EncKDCRepPart Kerberos structure 
(see IETF RFC 4120). 

In Figure 5, the PKINIT exchange is performed at long intervals, in order to obtain an 
(intermediate) symmetric session key. This session key is shared between the MTA and the server 
via the server's ticket, where the application server may be the KDC (in which case the ticket is the 
TGT). 

6.4.2.1 PKINIT profile for IPCablecom 

A particular MTA implementation MUST utilize the PKINIT exchange to either obtain Application 
Server tickets directly, or obtain a TGT first and then use the TGT to obtain Application Server 
tickets. An MTA implementation MAY also support both uses of PKINIT, where the decision to get 
a TGT first or not is local to the MTA and is dependent on a particular MTA implementation. On 
the other hand, the KDC MUST be capable of processing PKINIT requests for both a TGT and for 
Application Server tickets. 

The PKINIT exchange occurs independent of the signalling protocol, based on the current Ticket 
Expiration Time (TicketEXP) and on the PKINIT Grace Period (PKINITGP). If the PKINIT client is 
an MTA and the ticket it currently possesses corresponds to the Provisioning Server in the MIB, a 
KDC for a REALM that currently exists in the REALM table, or a CMS that currently exists in the 
CMS table, the MTA MUST initiate the PKINIT exchange at the time: TicketEXP – PKINITGP. If the 
PKINIT client is an MTA and the ticket it currently possesses does not correspond to the 
Provisioning Server in the MIB, a KDC for a REALM that currently exists in the REALM table, or 
a CMS that currently exists in the CMS table, the MTA MUST NOT initiate a PKINIT exchange. 
On the interfaces where PKINITGP is not defined, the MTA SHOULD perform PKINIT exchanges 
on-demand. 

In the case where PKINIT is used to obtain an Application Server ticket directly, the use of the 
grace period accounts for a possible clock skew between the MTA and the CMS or other 
application server. If the MTA is late with the PKINIT exchange, it still has until TicketEXP before 
the Application Server starts rejecting the ticket. Similarly, if PKINIT is used to obtain a TGT, the 
grace period accounts for a possible clock skew between the MTA and the KDC. 

The PKINIT exchange stops after the MTA obtains a new ticket, and therefore does not affect 
existing security parameters between the MTA and the CMS or other application server. 
Synchronizing the PKINIT exchange with the AP Request/Reply exchange is not required as long 
as the AS Request/Reply exchange results in a valid, non-expired Kerberos ticket. 

The PKINIT Request/Reply messages contain public key certificates, which make them longer than 
a normal size of a UDP packet. In this case, large UDP packets MUST be sent using 
IP fragmentation. 

A KDC server SHOULD be implemented on a separate host, independent of the Application Server. 
This would mean that frequent PKINIT operations from some MTAs will not affect the 
performance of any of the application servers or the performance of those MTAs that do not require 
frequent PKINIT exchanges. 

Kerberos tickets MUST NOT be issued for a period of time that is longer than 7 days. The MTA 
clock MUST NOT drift more than 2.5 minutes within that period (7 days). The PKINIT Grace 
Period (PKINITGP) MUST be at least 15 minutes. 
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6.4.2.1.1 PKINIT Request 

The PKINIT Request message (PA-PK-AS-REQ) in IETF RFC 4556 is defined as: 
 
PA-PK-AS-REQ ::= SEQUENCE { 
 signedAuthPack  [0] ContentInfo 
 trustedCertifiers  [1] SEQUENCE OF TrustedCas OPTIONAL, 
 kdcCert    [2] IssuerAndSerialNumber OPTIONAL 
 encryptionCert  [3] IssuerAndSerialNumber OPTIONAL 
}  

The following fields MUST be present in PA-PK-AS-REQ for IPCablecom (and all other fields 
MUST NOT be present): 

• signedAuthPack – a signed authenticator field, needed to authenticate the client. It is 
defined in Cryptographic Message Syntax identified by the SignedData OID: 

 
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2}. 

 SignedData is defined as: 
 
 SignedData ::= SEQUENCE { 
   version    CMSVersion, 
   digestAlgorithms  DigestAlgorithmIdentifiers, 
   encapContentInfo  EncapsulatedContentInfo, 
   certificates   [0] IMPLICIT CertificateSet OPTIONAL, 
   crls    [1] IMPLICIT CertificateRevocationLists OPTIONAL, 
   signerInfos   SignerInfos 
} 

• digestAlgorithms – for now MUST contain an algorithm identifier for SHA-1. Other digest 
algorithms may optionally be supported in the future. 

• encapContentInfo – is of type EncapsulatedContentInfo that is defined by Cryptographic 
Message Syntax as: 

 
  EncapsulatedContentInfo ::= SEQUENCE { 
     eContentType ContentType, 
     eContent  [0] EXPLICIT OCTET STRING OPTIONAL 
  } 

Here eContentType indicates the type of data and for PKINIT must be set to: 
 

{iso(1) org(3) dod(6) internet(1) security(5) kerberosv5(2) pkinit(3) 
pkauthdata(1)} 

eContent is a data structure of type AuthPack encoded inside an OCTET STRING: 
 
  AuthPack ::= SEQUENCE { 
     pkAuthenticator   [0] PKAuthenticator, 
     clientPublicValue  [1] SubjectPublicKeyInfo OPTIONAL 
  }  

The optional clientPublicValue parameter inside the AuthPack MUST always be present for 
IPCablecom. (This parameter specifies the client's Diffie-Hellman public value.) 
 
PKAuthenticator ::= SEQUENCE { 
 cusec  [0] INTEGER, 
     -- for replay prevention as in RFC 4120 
 ctime  [1] KerberosTime, 
     -- for replay prevention as in RFC 4120 
 nonce  [2] INTEGER, 
     -- zero only if client will accept 
     -- cached DH parameters from KDC; 
     -- must be non-zero otherwise 
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 pachecksum [3] Checksum 
     -- Checksum over KDC-REQ-BODY 
     -- Defined by Kerberos spec 
} 

The pachecksum field MUST use the Kerberos checksum type rsa-md5, a plain MD5 checksum 
over the KDC-REQ-BODY. 

The nonce field MUST be non-zero, indicating that the client does not support the caching of 
Diffie-Hellman values and their expiration. 

• certificates – required by IPCablecom. This field MUST contain an MTA Device 
Certificate and an MTA Manufacturer Certificate. This field MUST NOT contain any other 
certificates. All IPCablecom certificates are X.509 certificates for RSA Public keys as 
specified in clause 8. 

• crls – MUST NOT be filled in by the MTA. 

• signerInfos – MUST be a set with exactly one member that holds the MTA signature. This 
signature is a part of a SignerInfo data structure defined within the Cryptographic Message 
Syntax. All optional fields in this data structure MUST NOT be used in IPCablecom. The 
digestAlgorithm MUST be set to SHA-1: 

 
iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26 

and the signatureAlgorithm MUST be set to rsaEncryption: 
 

iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 

PKINIT allows an Ephemeral-Ephemeral Diffie-Hellman exchange as part of the PKINIT 
Request/Reply sequence. (Ephemeral-Ephemeral means that both parties during each exchange 
randomly generate the Diffie-Hellman private exponents.) The Kerberos session key is returned to 
the MTA in the PKINIT Reply, encrypted with a secret that is derived from the Diffie-Hellman 
exchange. Within IPCablecom, the Ephemeral-Ephemeral Diffie-Hellman MUST be supported. 

The IKE specification in RFC 2409 defines Diffie-Hellman parameters as Oakley groups. Within 
the IPCablecom PKINIT profile the 2nd Oakley group MUST be supported and the 1st Oakley 
group MAY also be supported. Annex A provides details of the first and second Oakley groups. 

When generating Diffie-Hellman private keys, a device MUST generate a key of length at least 
144 bits when the first Oakley group is used and MUST generate a key of length at least 164 bits 
when the second Oakley group is used.  

For further details of PKINIT, please refer to IETF RFC 4556. 

Additionally, PKINIT supports a Static-Ephemeral Diffie-Hellman exchange, where the client is 
required to possess a Diffie-Hellman certificate in addition to an RSA certificate. This mode MUST 
NOT be used within IPCablecom. 

PKINIT also allows a single client RSA key to be used both for digital signatures and for 
encryption – wrapping the Kerberos session key in the PKINIT Reply. This mode MUST NOT be 
used within IPCablecom. 

PKINIT has an additional option for a client to use two separate RSA keys – one for digital 
signatures and one for encryption. This mode MUST NOT be used within IPCablecom. 

Upon receipt of a PA-PK-AS-REQ, the KDC MUST: 

1) check the validity of the certificate chain (MTA Device Certificate, MTA Manufacturer 
Certificate, MTA Root Certificate); 

2) check the validity of the signature in the (single) SignerInfo field; 

3) check the validity of the checksum in the PKAuthenticator. 
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6.4.2.1.2 PKINIT Reply 

The PKINIT Reply message (PA-PK-AS-REP) in IETF RFC 4556 is defined as follows: 
 
PA-PK-AS-REP ::= CHOICE { 
 dhSignedData [0] ContentInfo, 
 encKeyPack [1] ContentInfo, 
} 

IPCablecom MUST use only the dhSignedData choice, which is needed for a Diffie-Hellman 
exchange. 

The value of the Kerberos session key is not present in PA-PK-AS-REP. It is found in the encrypted 
portion of the AS Reply message that is specified in IETF RFC 4556. The AS Reply MUST be 
encrypted with 3-DES CBC, where the corresponding Kerberos etype value MUST be 
des3-cbc-md5. Other encryption types may be supported in the future. 

The client MUST use PA-PK-AS-REP to determine the encryption key used on the AS Reply. This 
PKINIT Reply contains the KDC's Diffie-Hellman public value that is used to generate a shared 
secret (part of the key agreement). This shared secret is used to encrypt/decrypt the private part of 
the AS Reply. 

• dhSignedData – dhSignedData is identified by the SignedData oid: 
 

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2} 

 Within SignedData (specified in 6.4.2.1.1): 

− digestAlgorithms for now MUST contain an algorithm identifier for SHA-1. Other 
digest algorithms may optionally be supported in the future. 

− encapContentInfo is of type pkdhkeydata, where eContentType contains the following 
OID value: 

 
{iso(1) org(3) dod(6) internet(1) security(5) kerberosv5(2) pkinit(3) 

pkdhkeydata(2)} 

 eContent is of type KdcDHKeyInfo (encoded inside an OCTET STRING): 
 

KdcDHKeyInfo ::= SEQUENCE { 
                       -- used only when utilizing Diffie-Hellman 
  subjectPublicKey [0] BIT STRING, 
                       -- Equals public exponent (g^a mod p) 
                       -- INTEGER encoded as payload of 
                       -- BIT STRING 
  nonce            [1] INTEGER, 
                       -- Binds response to the request 
                       -- Exception: Set to zero when KDC 
                       -- is using a cached DH value 
  dhKeyExpiration  [2] KerberosTime OPTIONAL 
                       -- Expiration time for KDC's cached 

                           -- DH value 

 The nonce MUST be the same nonce that was passed in by the client in the PKINIT 
Request.  

– The subjectPublicKey MUST be the Diffie-Hellman public value generated by the 
KDC. The Diffie-Hellman-derived key is used to directly encrypt part of the AS Reply. 
The requirements on the length of the Diffie-Hellman private exponent are as defined 
in 6.4.2.1.1. 

– The dhKeyExpiration MUST not be present as caching of Diffie-Hellman values is not 
permitted.  
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• certificates – required by IPCablecom. This field MUST contain a KDC certificate. If a 
Local System CA issued the KDC certificate, then the corresponding Local System CA 
Certificate MUST also be present. The Service Provider CA Certificate MUST also be 
present in this field. This field MAY contain the Service Provider Root CA certificate (refer 
to 8.2.1 for validating the Service Provider Root CA certificate if it is included in the 
PKINIT Reply). This field MUST NOT contain any other certificates. If the MTA is 
configured with a specific service provider name, it MUST verify that the Service Provider 
name is identical to the value of the OrganizationName attribute in the subjectName of the 
Service Provider certificate. If the Local System Certificate is present, then the MTA 
MUST verify that the Service Provider name is identical to the value of the 
OrganizationName attribute in the subjectName of the Local System Certificate. In addition 
to standard certificate verification rules specified in RFC 2459, an MTA MUST verify that 
the KDC certificate includes a subjectAltName extension in the format specified in 
8.2.3.4.1. The MTA MUST verify that the extension contains a valid KDC principal name 
and that the KDC realm in this extension is identical to the server realm name in the 
encrypted portion of the AS Reply message (EncKDCRepPart). 

• crls – this optional field MAY be filled in by the KDC. 

• signerInfos – MUST be a set with exactly one member that holds the KDC signature. This 
signature is a part of a SignerInfo data structure defined within the Cryptographic Message 
Syntax. All optional fields in this data structure MUST NOT be used in IPCablecom. The 
digestAlgorithm MUST be set to SHA-1: 

 
 iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26 

The signatureAlgorithm MUST be set to rsaEncryption: 
 
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 

Upon receipt of a PA-PK-AS-REP, the client MUST: 

1) check the value of the nonce in the eContent field; 

2) check the validity of the KDC certificate; 

3) check the validity of the signature in the SignerInfo field. 

6.4.2.1.2.1 PKINIT error messages 

In the case that a PKINIT Request is rejected, instead of a PKINIT Reply the KDC MUST return a 
Kerberos error message of type KRB_ERROR, as defined in IETF RFC 4556. Any error code that 
is defined in IETF RFC 4556 for PKINIT MAY be returned. 

• The KRB_ERROR MUST use typed-data of REQ-NONCE to bind the error message to the 
nonce from the KDC-REQ-BODY portion of the AS-REQ message. This error message 
MUST NOT include the optional e-cksum member that would contain a keyed checksum of 
the error reply. The use of this field is not possible during the PKINIT exchange, since the 
client and the KDC do not share a symmetric key. 

When a client receives an error message from the KDC, in some cases this Recommendation calls 
for the client to take some recovery steps and then send a new AS Request or TGS Request. When a 
client is responding to an error message, it is not a retry and MUST NOT be considered to be part of 
the client's back-off and retry procedure specified in 6.4.8. The client MUST reset its timers 
accordingly, to reflect that the new request in response to an error message is not a retry.  

Although this Recommendation calls for a KDC to return some specific error codes under certain 
error conditions, in the case when a KDC is repeatedly getting the same error from the same client 
IP address, it MAY at some point choose to stop sending back any further replies (errors or 
otherwise) to this client.  
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6.4.2.1.2.1.1 Clock skew error 

When the KDC clock and the client clock are off by more than the limit for a clock skew, an error 
code KRB_AP_ERR_SKEW MUST be returned. The value for the maximum clock skew allowed 
by the KDC MUST NOT exceed 5 minutes. The optional client's time in the KRB_ERROR MUST 
be filled out, and the client MUST compute the difference (in seconds) between the two clocks 
based upon the client and server time contained in the KRB_ERROR message. The client SHOULD 
store this clock difference in non-volatile memory and MUST use it to adjust Kerberos timestamps 
in subsequent KDC request messages (AS Request and TGS Request) by adding the clock skew to 
its local clock value each time. The client MUST maintain a separate clock skew value for each 
realm. The clock skew values are intended for uses only within the Kerberos protocol and 
SHOULD NOT otherwise affect the value of the local clock (since a clock skew is likely to vary 
from realm to realm). 

In the case that a KDC request fails due to a clock skew error, a client MUST immediately retry 
after adjusting the Kerberos timestamp inside the KDC Request message. 

In addition, the MTA MUST validate the time offset returned in the clock skew error, to make sure 
that it does not exceed a maximum allowable amount. This maximum time offset MUST NOT 
exceed 1 hour. This MTA check against a maximum time offset protects against an attack in which 
a rogue KDC attempts to fool an MTA into accepting an expired KDC certificate. 

6.4.2.1.3 Pre-authenticator for Provisioning Server Location 

An AS Request sent by the MTA MUST include this PROV-SRV-LOCATION pre-authenticator 
that the KDC can use to locate the Provisioning Server.  

The pre-authenticator type MUST be –1 (according to IETF RFC 4120, the negative type is used for 
application-specific pre-authenticators). Its ASN.1 encoding is specified as: 

PROV-SRV-LOCATION ::= GeneralString 

                      -- Provisioning Server's FQDN  

6.4.2.2 Profile for the Kerberos AS Request/AS Reply messages 

As mentioned earlier, the PKINIT Request and Reply are pre-authenticator fields embedded into the 
AS Request/AS Reply messages. The IPCablecom-specific PROV-SRV-LOCATION 
pre-authenticator MUST be used in combination with PKINIT. All other pre-authenticators MUST 
NOT be used in combination with PKINIT. 

The optional fields enc-authorization-data, additional-tickets and rtime in the KDC-REQ-BODY 
MUST NOT be present in the AS Request. All other optional fields in the AS Request MAY be 
present for IPCablecom. The client MUST NOT set any of the KDCOptions in the AS-REQUEST, 
except that the DISABLE-TRANSITED-CHECK option MAY be set.  

The MTA MUST include its IP address in the optional addresses field of the KDC-REQ-BODY. 
The KDC MUST verify that the addresses field in the KDC-REQ-BODY contains exactly one IP 
address and that it is identical to the IP address in the IP header of the AS Request. After the KDC 
validates the addresses field, it MUST include it in the caddr fields of the issued ticket and the AS 
Reply. The KDC MUST reject an AS Request that does not include the MTA's IP address. In this 
case the KDC MUST return a KDC_ERR_POLICY error code.  

If a KDC receives an AS-REQ message in which any of the KDCOptions are set, except for the 
DISABLE-TRANSITED-CHECK option, the KDC MUST return an error with the error code 
KDC_ERR_POLICY.  

In the AS Reply, key-expiration, starttime, and renew-till optional fields MUST NOT be present. 
The session key contained in the AS-REPLY (which MUST be identical to the session key in the 
ticket) MUST be etype des3-cbc-md5. 
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The encrypted part of the AS Reply is of the type EncryptedData. The ASN.1 definition of 
EncryptedData that is used inside multiple Kerberos objects is missing from the Kerberos revisions 
IETF RFC 4120. In all cases, EncryptedData MUST be DER-encoded with EXPLICIT tags as the 
following ASN.1 structure: 

EncryptedData   ::= SEQUENCE { 

        etype   [0] INTEGER,           -- EncryptionType 

kvno    [1] INTEGER OPTIONAL,  -- service key 

 -- version number 

cipher  [2] OCTET STRING       -- ciphertext 

}  

When EncryptedData contains ciphertext that is encrypted with a service key, the 'kvno' element 
MUST be present and MUST identify the version of the service key that was used to encrypt the 
data. When EncryptedData contains ciphertext that is encrypted with a Kerberos session key or with 
a reply key derived from a PKINIT pre-authenticator, the 'kvno' element MUST NOT be present. 
This is the case for the encrypted portion of the AS Reply. 

The encryption type for an encrypted portion of the AS Reply MUST be set to des3-cbc-md5. In 
order to generate the value of the 'cipher' element of the EncryptedData, the following data MUST 
be concatenated and processed in the following sequence before being encrypted with 3-DES CBC, 
IV=0: 

• 8-byte random byte sequence, called a confounder; 

• an MD5 checksum, which is the MD5 hash of the concatenation of the three quantities (the 
confounder + sixteen NULL octets + the text to be encrypted [not including any padding]); 

• AS Reply part that is to be encrypted; 

• random padding up to a multiple of 8. 

Upon receipt of an AS-REPLY, the client MUST check the validity of the checksum in the 
encrypted portion of the AS-REPLY. 

6.4.2.3 Profile for Kerberos tickets 

In Kerberos tickets, authorization-data, starttime and renew-till optional fields MUST NOT be 
present. The optional caddr field MUST be present when requested in an AS-REQUEST or when 
present in a TGT of a TGS Request (see IETF RFC 4120). The only ticket flags that are currently 
supported within IPCablecom are the INITIAL, PRE-AUTHENT and TRANSITED-POLICY-
CHECKED flags. If the KDC receives any request that would otherwise cause it to set any other 
flag, it MUST return an error with the error code KDC_ERR_POLICY. The KDC MUST NOT 
generate tickets with any other flags set. The session key contained in the ticket (which MUST be 
identical to the session key in the AS-REPLY) MUST be etype des3-cbc-md5. Since the transited 
encoding information normally required by PKINIT is not used in IPCablecom, a KDC MAY 
choose to leave as a null string the 'contents' field of the TransitedEncoding portion of a ticket 
issued in response to a PKINIT request. 

The encrypted part of the Kerberos ticket MUST be encrypted with the encryption type set to 
des3-cbc-md5, using the same procedure as described in 6.4.2.2. 

Upon receipt of a ticket for a service, the server MUST: 

1) check the validity of the checksum in the encrypted portion of the ticket; 

2) check that the ticket has not expired. 
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Currently, all the service keys are pre-shared using an out-of-band mechanism between the KDC 
and the device providing the service. In the future, IPCablecom may support a method that does not 
require these keys to be pre-shared. 

6.4.3 Symmetric Key AS Request/AS Reply exchange 

In IPCablecom, a Kerberos client MAY use standard symmetric-key authentication (with a client 
key) during the AS Request/AS Reply exchange. Also, in IPCablecom, a client not utilizing 
PKINIT is, at the same time, an Application Server for which other clients might obtain tickets. 
This means that an IPCablecom entity may utilize the same symmetric key for both client 
authentication and for decrypting its service tickets. 

The Kerberos AS Request/AS Reply exchange, in general, is allowed to occur with no client 
authentication. The client, in those cases, would authenticate itself later by proving that it is able to 
decrypt the AS Reply with its symmetric key and make use of the session key. 

Such use of Kerberos is not acceptable within IPCablecom. This approach would allow a rogue 
client to continuously generate AS Requests on behalf of other clients and receive the 
corresponding AS Replies. Although this rogue client would be unable to decrypt each AS Reply, it 
will know some of the fields that it should contain. This, and the availability of the matching 
encrypted AS Replies, would aid an attacker in the discovery of another client's key with 
cryptanalysis. 

Therefore, IPCablecom requires that whenever an AS Request is not using a PKINIT 
pre-authenticator, it MUST instead use a different pre-authenticator, of type PA-ENC-TS-ENC. 
This pre-authenticator is specified as: 
 
PA-ENC-TS-ENC ::= SEQUENCE { 
 patimestamp  [0] KerberosTime, 
      -− client's time 
 pausec   [1] INTEGER OPTIONAL 
 pachecksum   [2] CheckSum OPTIONAL 
      -- keyed checksum of 
      -- KDC-REQ-BODY 
}   

The PA-ENC-TS-ENC pre-authenticator MUST be encrypted with the client key using the 
encryption type des3-cbc-md5, as described in 6.4.2.2. All optional fields inside PA-ENC-TS-ENC 
MUST be present for IPCablecom. The pachecksum field MUST be a keyed checksum of type 
des3-cbc-md5 and MUST be validated by the KDC. The encrypted timestamp is used by the KDC 
to authenticate the client. At the same time, the timestamp inside this pre-authenticator is used to 
prevent replays. The KDC checks for replays upon the receipt of this pre-authenticator; this is 
similar to the checking performed by an Application Server upon receipt of an AP Request 
message. 

If the timestamp in the PA-ENC-TS-ENC pre-authenticator differs from the current KDC time by 
more than pktcKdcToMtaMaxClockSkew then KDC MUST reply with a clock skew error message 
and the client MUST respond to this error message as specified in 6.4.2.1.2.1.1. 

If the realm, target server name (e.g., the name of the KDC), along with the client name, time and 
microsecond fields from the PA-ENC-TS-ENC pre-authenticator match any recently-seen such 
tuples, the KRB_AP_ERR_REPEAT error MUST be returned. The KDC MUST remember any 
such pre-authenticator presented within acceptable clock skew period, so that a replay attempt is 
guaranteed to fail. 

If the Application Server loses track of any authenticator presented within acceptable clock skew 
period, it MUST reject all requests until the acceptable clock skew interval has passed. 
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Symmetric-key AS Request/AS Reply exchange is illustrated in Figure 6. 

J.170_F06  

Figure 6 − Symmetric-key AS Request/AS Reply exchange 

6.4.3.1 Profile for the Symmetric-key AS Request/AS Reply exchanges 

The content of the AS Request/AS Reply messages is the same as in the case of the PKINIT 
pre-authentication (see 6.4.2.2) with the exception of the type of the pre-authenticator that is used. 

In general, clients using a symmetric-key form of the AS Request/AS Reply exchange are not 
required to always possess a valid TGT or a valid Application Server ticket. A client MAY obtain 
both a TGT and Application Server tickets on demand, as they are needed for the key management 
with the Application Server. 

However, there may be cases where a client is required to quickly switch between servers for load 
balancing and the additional symmetric-key exchanges with the KDC are undesirable. In those 
cases, a client MAY be optimized to obtain tickets in advance, so that the key management would 
take only a single round trip (AP Request/AP Reply exchange). 

In the case that the KDC rejects the AS Request, it returns a KRB_ERROR message instead of the 
AS Reply, as specified in IETF RFC 4120. The KRB_ERROR MUST use typed-data of 
REQ-NONCE to bind the error message to the nonce from the AS-REQ message. This error 
message MUST include the optional e-cksum member that would contain an rsa-md5-des3 keyed 
checksum of the error reply, unless pre-authentication failed to prove knowledge of the shared 
symmetric key in which case the e-cksum MUST NOT be used. 

The rsa-md5-des3 checksum MUST be computed as follows: 

1) Prepend the message with an 8-byte random byte sequence, called a confounder. 

2) Take an MD5 hash of the result of step 1. 

3) Prepend the hash with the same 8-byte confounder. 

4) Take the 3DES session key from the ticket and XOR each byte with F0. 



 

44 Rec. ITU-T J.170 (11/2005) 

5) Use 3DES in CBC mode to encrypt the result of step 3, using the key in step 4 and with IV 
(initialization vector) = 0. 

Once a client receives an AS Reply, it SHOULD save both the obtained ticket and the session key 
information (found in the enc-part member of the reply) in non-volatile memory. Thus, the client 
will be able to reuse the same Kerberos ticket after a reboot, avoiding the need to perform the 
AS Request again. 

Kerberos tickets MUST NOT be issued for a period of time that is longer than 7 days (same as for 
PKINIT exchanges). 

Upon receipt of a KRB_ERROR that contains an e-cksum field, the recipient MUST verify the 
validity of the checksum. 

6.4.4 Kerberos TGS Request/TGS Reply exchange 

In the cases where a client obtained a TGT, that TGT is then used in the TGS Request/TGS Reply 
exchange to obtain a specific Application Server ticket. This is part of the Kerberos standard, as 
specified in IETF RFC 4120. 

A TGS Request includes a KRB_AP_REQ data structure (the same structure used in an 
AP Request: see 6.4.4.1). This data structure contains the TGT as well as an authenticator that is 
used by the client to prove the possession of the corresponding session key. The TGS Reply has the 
same format as an AS Reply, except that it is encrypted using a different key – the session key from 
the TGT. 

Figure 7 illustrates the TGS Request/TGS Reply exchange: 

J.170_F07  

Figure 7 − Kerberos TGS Request/TGS Reply exchange 
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Figure 7 lists several important parameters in the TGS Request and Reply messages. These 
parameters are: 

TGS Request 

• Target server (principal) name and realm, nonce – found in the KDC-REQ-BODY 
Kerberos structure (see IETF RFC 4120). 

• TGS pre-authenticator – found in the KDC-REQ Kerberos structure, inside the padata field 
(see IETF RFC 4120). The pre-authenticator type in this case is PA-TGS-REQ. 

• KRB_AP_REQ – the value of the pre-authenticator of type PA-TGS-REQ. 

• TGT – inside the KRB_AP_REQ. 

• Client name, time – inside the Kerberos Authenticator structure, which is embedded in an 
encrypted form in the KRB_AP_REQ. 

TGS Reply 

• Target server ticket – found in the KDC-REP Kerberos structure (see IETF RFC 4120). 

• Target server session key, nonce, key validity period – found in the EncKDCRepPart 
Kerberos structure (see IETF RFC 4120). 

In general, the TGS Request/Reply exchange may be performed on-demand – whenever an 
Application Server ticket is needed to establish Security Parameters. If the client is an MTA and a 
ticket it currently possesses corresponds to the Provisioning Server in the MIB or a CMS that 
currently exists in the CMS table, it MUST initiate the TGS Request/Reply exchange at the time: 
TicketEXP – TGSGP. Here, TicketEXP is the expiration time of the current Application Server ticket 
and TGSGP is the TGS Grace Period. If the client is an MTA and the ticket it currently possesses 
does not correspond to the Provisioning Server in the MIB or a CMS that currently exists in the 
CMS table, the MTA MUST NOT initiate a PKINIT exchange.  

The validity of the Application Server tickets MUST NOT extend beyond the expiration time of the 
TGT that was used to obtain the server ticket. 

6.4.4.1 TGS Request profile 

The optional padata element in the KDC-REQ data structure MUST consist of exactly one element 
– a pre-authenticator of type PA-TGS-REQ. The value of this pre-authenticator is the 
KRB_AP_REQ data structure. Within KRB_AP_REQ: 

1) options in the ap-options field MUST NOT be present; 

2) the ticket is the TGT; 

3) the encrypted authenticator MUST contain the checksum field – an MD5 checksum of the 
ASN.1 encoding of the KDC-REQ-BODY data structure. It MUST NOT contain any other 
optional fields; 

4) the authenticator MUST be encrypted using 3-DES CBC with the following Kerberos 
etype: value des3-cbc-md5 as specified in 6.4.2.2. 

The optional fields from enc-authorization-data, additional-tickets and rtime in the KDC-REQ-
BODY MUST NOT be present in the TGS Request. The optional field cname SHOULD NOT be 
present. All other optional fields in the TGS Request MAY be present for IPCablecom. The KDC 
MUST reject a TGT that has any ticket flags set, apart from the flags INITIAL, PRE-AUTHENT or 
TRANSITED-POLICY-CHECKED. If the KDC receives any request that would otherwise cause it 
to set any flag in the service ticket, apart from the PRE-AUTHENT and TRANSIT-POLICY-
CHECKED flags, it MUST return an error with the error code KDC_ERR_POLICY. The KDC 
MUST NOT generate TGT-based service tickets with any other flags set.  
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If the TGT contains a caddr field, the KDC MUST verify that it is a single IP address and that it is 
identical to the IP address in the IP header of the TGS Request. The KDC MUST reject TGS 
Requests from an MTA with a TGT that does not include the MTA's IP address, returning a 
KDC_ERR_POLICY error code (refer to 6.4.4.3) 

Upon receipt of a TGS Request, the KDC MUST: 

1) check the validity of the TGT; 

2) check the validity of the checksum in the authenticator. 

6.4.4.2 TGS Reply profile 

In the TGS Reply, key-expiration, starttime, and renew-till optional fields MUST NOT be present. 
The encrypted part of the TGS Reply MUST be encrypted with the encryption type set to 
des3-cbc-md5, using the same procedure as described in 6.4.2.2. 

Upon receipt of a TGS Reply, the client MUST: 

1) use the value of the nonce to bind the reply to the corresponding TGS Request; 

2) check the validity of the checksum in the encrypted portion of the TGS Reply. 

6.4.4.3 Error reply 

If the KDC is able to successfully parse the TGS Request and the TGT that is inside of it, but the 
TGS Request is rejected, it MUST return a Kerberos error message of type KRB_ERROR, as 
defined in IETF RFC 4120. The error message MUST include the optional e-cksum member, which 
is the keyed hash over the KRB_ERROR message. The checksum type MUST be rsa-md5-des3, 
calculated using the procedure described in 6.4.3.1. 

The KRB_ERROR MUST also include typed-data of REQ-NONCE to bind the error message to 
the nonce from the TGS-REQ message. 

Upon receipt of a KRB_ERROR, the client MUST check the validity of the checksum. 

6.4.5 Kerberos server locations and naming conventions 

6.4.5.1 Kerberos realms 

A realm name MAY use the same syntax as a domain name, however Kerberos Realms MUST be 
in all capitals. For a full specification of Kerberos realms, refer to IETF RFC 4120. 

6.4.5.2 KDC 

Kerberos principal identifier for the local KDC when it is in a role of issuing tickets is always: 
krbtgt/<realm>@<realm>, where <realm> is the Kerberos realm corresponding to the particular 
IPCablecom zone. This is the service name listed inside a TGT. 

A Kerberos client MUST query KDC FQDNs for a particular realm name using DNS SRV records, 
as specified in RFC 2782 and as shown below:  

<Service Name>.<Protocol>.<Name>  TTL Class  SRV  Priority  Weight  Port  Target 

where: 

• the Service Name for Kerberos in IPCablecom MUST be "_kerberos"; 

• the Protocol for Kerberos in IPCablecom MUST be "_udp"; 

• the Name MUST be the Kerberos realm name that this record corresponds to; 

• TTL, Class, SRV, Priority, Weight, Port, and Target have the standard meaning as defined 
in RFC 2782. 
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For example, assume the presence of a realm, PACKETCABLE.COM, with two KDCs: 
kdc1.packetcable.com and kdc2.packetcable.com. These KDCs have different priorities. The DNS 
SRV records in this case would be: 
 _kerberos._udp.PACKETCABLE.COM.   86400   IN   SRV   0   0   88   

kdc1.packetcable.com. 

 _kerberos._udp.PACKETCABLE.COM.   86400   IN   SRV   1   0   88   
kdc2.packetcable.com. 

To obtain records pertaining to the realm PACKETCABLE.COM, the MTA would send a DNS 
SRV request for: 
 kerberos._udp.PACKETCABLE.COM 

The client, upon receiving a response for a DNS SRV request, MUST consider the priority/weight 
as described in the algorithm in RFC 2782 and contact the servers in that order. A client MUST 
contact the next server based on priority/weight and so on, till all possible server FQDNs and the 
corresponding IPs are exhausted, if it fails to get a suitable response from the first server listed 
(refer to 6.4.8 for timeout procedures). 

For example, after the above DNS SRV records are retrieved, the client will try 
kdc1.packetcable.com first, based on its priority. (Priority for kdc1.packetcable.com is 0, while 
priority for kdc2.packetcable.com is 1: a lower priority number means a higher priority.) 

When an IPCablecom KDC is requesting information from a Provisioning Server (e.g., the mapping 
of an MTA MAC address to its corresponding FQDN) it MUST use a principal name of type 
NT-PRINCIPAL (1) with a single component "kdcquery" (without quotes). 

In an ASCII representation, the principal identifier is as follows: 
 

kdcquery@<realm> 

where <realm> is the Kerberos realm of the KDC. 

6.4.5.3 CMS 

A CMS Kerberos principal identifier MUST be constructed from the CMS FQDN as follows: 
 

cms/<FQDN>@<realm> 

where <FQDN> is the CMS's FQDN (in lower case) and <realm> is its Kerberos realm. 

For example, a CMS with an FQDN 'iptel-cms1.company1.com' and with a realm name 
'COMPANY1.COM' would have the principal identifier: 

 
'cms/iptel-cms1.company1.com@COMPANY1.COM' 

The Kerberos PrincipalName data structure (inside the Kerberos messages) is defined as follows: 
 
PrincipalName ::=  SEQUENCE { 
 name-type  [0] INTEGER, 
 name-string [1] SEQUENCE OF GeneralString 
} 

Within this data structure, name-type MUST be NT-SRV-HST (which has the value of 3 according 
to the Kerberos specification). The name-string element of the data structure MUST have exactly 
two components, where the first component has the string value "cms" (without the quotes) and the 
second component is the CMS's FQDN in lower case. 

For the full syntax of Kerberos principal names, refer to IETF RFC 4120. 

For the purpose of setting up an IPsec connection between the CMS and RKS, the first component 
of the CMS principal name MUST be of the form "cms:<ElementID", where the <ElementID> is 
described in 6.4.5.5. 
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In the case of a combined network element that integrates the functions of multiple logical elements 
within the PacketCable reference architecture (e.g., a single network element that provides both 
CMS and MGC functionality), the principal name may include all server functions as specified 
in 6.4.5.5. 

6.4.5.4 Provisioning Server  

When an IPCablecom MTA Provisioning Server is acting in the role of an SNMP manager, it 
MUST use a principal name of type NT-SRV-HST (3) with the following two components: 

1) "mtaprovsrvr" (without quotes); 

2) the FQDN of the Provisioning Server (in lower case). 

In ASCII representation, the Provisioning Server's principal identifier MUST be as follows: 
 

mtaprovsrvr /<Prov Server FQDN>@<realm> 

where <realm> is the Kerberos realm of the Provisioning Server. 

When an IPCablecom Provisioning Server is providing a service (to the KDC) that maps each MTA 
MAC address to its corresponding FQDN, it MUST use a principal name of type NT-SRV-HST (3) 
with the following two components: 

1) "mtafqdnmap" (without quotes); 

2) the FQDN of the Provisioning Server (in lower case). 

In ASCII representation, the principal identifier MUST be as follows: 
 

mtafqdnmap/<Prov Server FQDN>@<realm> 

where <realm> is the Kerberos realm of the Provisioning Server. 

6.4.5.5 Names of other Kerberized services 

All Kerberized services within IPCablecom except for the KDC krbtgt service (see 6.4.5.2), MUST 
be assigned a service principal name of type KRB_NT_SRV_HST (Value=3), which has the 
following form according to the Kerberos specification: <service name>/<FQDN>. 

This means that the first component of the service principal name is the service name in lower case, 
and the last is either an FQDN in lower case or an IP address of the corresponding host. If a specific 
host has an assigned FQDN, its principal name includes an FQDN and not an IP address. When a 
KDC receives a ticket request for a service on this host with an IP address instead of an FQDN as 
the second component of the service principal name, the KDC MUST reject such a request. 

When a KDC database contains a service with a principal name that has an IP address as the second 
component, all ticket requests for this service MUST use the same service principal name with the 
same IP address as the second component. When a KDC receives a ticket request for this service 
with an FQDN as the second component of the service principal name, the KDC MUST reject such 
a request. (This scenario could happen if a service principal is defined in the KDC database at the 
time when the corresponding host does not have an FQDN, and then later an FQDN for this host is 
defined as well.) 

When an IP address is used, it MUST be formatted as follows: 

[A.B.C.D] 

where A, B, C and D are components of an IPv4 address expressed as decimal numbers. The 
components of an IP address MUST be separated by a period '.' and the IP address MUST be 
surrounded by square brackets.  

The following is an example of a principal name based on an IP address: 

df/[192.35.65.4] 
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Figure 3 shows a number of interfaces for which the necessary security is provided by IPsec. In 
addition to supplying the required key management using IKE with pre-shared keys, some vendors 
may choose to implement, and operators to deploy, a Kerberized key management scheme for these 
interfaces. 

This Recommendation requires that the RKS verifies billing event messages by ensuring that the 
Element ID contained in the message matches correctly the IP address at the far end of the IPsec 
Security Associations. In order to ensure that the RKS is able to maintain this mapping when 
Kerberized key management is used to generate the Security Associations, devices that 
communicate with the RKS include their Element ID in their principal name. This information is 
then passed to the RKS in the cname field of the ticket that the KDC issues; this ticket is passed to 
the RKS in the AP-REQ that is used to initiate the IPsec Security Associations. 

The first component of the principal name for the various IPCablecom devices MUST be as 
follows: 

 1) BP: bp[:<ElementID>] 

 2) CMTS: cmts[:<ElementID>] 

 3) DF: df[:<ElementID>] 

 4) MG: mg[:<ElementID>] 

 5) MGC: mgc[:<ElementID>] 

 6) MP: mp[:<ElementID>] 

 7) MPC: mpc[:<ElementID>] 

 8) RKS: rks[:<ElementID>] 

 9) SG: sg[:<ElementID>]  

where: 

<ElementID> is the identifier that appears in billing event messages and it MUST be included in a 
principal name of every server that is capable of generating event messages. 

Element ID is defined as an 5-octet right-justified, space-padded ASCII-encoded numerical string 
(J.164). When converting the Element ID for use in a principal name, any spaces MUST be 
converted to ASCII zeros (0x48).  

For example, a CMTS that has the Element ID "311" will have a principal name whose first 
component is "cmts:00311". Similarly, a DF with no Element ID will have a principal name whose 
first component is "df". 

Components that contain combined elements (such as a CMS with an integrated MGC) MUST 
indicate this in the principal name by including all component names, joined with the character "&", 
in the first component of the principal name. The following is an example of a principal name for a 
combined CMS and MGC with a single IP address: 

cms:00210&mgc:00211/[192.35.65.4] 

If the combined component uses a single ElementID, the principal name would be: 

cms:00210&mgc:00210/[192.35.65.4] 

6.4.6 MTA principal names 

An MTA principal name MUST be of type NT-SRV-HST with exactly two components, where the 
first component MUST be the string "mta" (not including the quotes) and the second component 
MUST be the FQDN of the MTA: mta /<MTA FQDN>, where <MTA FQDN> is the FQDN of the 
MTA in lower case. 
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For example, if an MTA FQDN is "mta12345.mso1.com" and its realm is "MSO1.COM", the 
principal identifier would be: mta/mta12345.mso1.com@MSO1.COM. 

6.4.7 Mapping of MTA MAC address to MTA FQDN 

The MTA authenticates itself with the MTA Device Certificate in the AS Request, where the 
certificate contains the MTA MAC address but not its FQDN. In order to authenticate the MTA 
principal name (containing the FQDN), the KDC MUST map the MTA MAC address (from the 
MTA Device certificate) to the MTA FQDN, in order to verify the principal name in the 
AS Request. 

The protocol for retrieving the MTA FQDNs is Kerberos-based. The Provisioning Server MUST 
listen for the request on UDP port 2246 and MUST return the response to the UDP port from which 
the request was transmitted on the client: 

1) MTA FQDN Request – sent from the KDC to the Provisioning Server, containing the 
MTA MAC address and the hash of the MTA public key. This message consists of the 
Kerberos KRB_AP_REQ concatenated with KRB_SAFE. 

2) MTA FQDN Reply – a reply to the KDC by the Provisioning Server, containing the 
MTA FQDN. This message consists of the Kerberos KRB_AP_REP concatenated with 
KRB_SAFE. 

3) MTA FQDN Error Reply – an error reply in response to the MTA FQDN Request. This 
message is the Kerberos KRB_ERROR. 

The format of each of these messages is specified in the clauses below. 

6.4.7.1 MTA FQDN Request 

The KDC MUST first verify the digital signature and certificate chain in the PKINIT Request, 
before sending out an MTA FQDN Request message to determine the MTA MAC address to 
FQDN mapping. 

In the case where the PKINIT Request and certificate signatures are all valid but the manufacturer 
certificate is revoked, the KDC MAY still proceed with the MTA FQDN Request. In this case, the 
KDC MUST provide the revocation time in the MTA FQDN Request. 

The MTA FQDN Request MUST be formatted as in Table 6. 

Table 6 − MTA FQDN Request format 

Field name Length Description 

KRB_AP_REQ  Variable  DER-encoded. The length is in the ASN.1 header.  

KRB_SAFE  Variable  DER-encoded  

In the KRB_AP_REQ, only the following option is supported: 

• MUTUAL-REQUIRED – mutual authentication required. This option MUST always be 
set. 

• All other options are not supported. 

The encrypted authenticator in the KRB_AP_REQ MUST contain the following field, which is 
optional in Kerberos: 

• seq-number: random value generated by the KDC 

All other optional fields within the encrypted authenticator are not supported within IPCablecom. 
In 6.5.2.2 there is a requirement that the recipient of a KRB_AP_REQ accepts certain negative 
values of seq-number; that requirement does not apply when processing the KRB_AP_REQ 
embedded in a received MTA FQDN message. The authenticator itself MUST be encrypted using 
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3-DES CBC with the Kerberos etype value des3-cbc-md5 with the session key from the ticket that 
is contained in this KRB_AP_REQ object. The encryption method for des3-cbc-md5 is specified 
in 6.4.2.2. 

KRB_SAFE MUST contain the following field, which is optional in Kerberos: 

• seq-number: same value as in the KRB_AP_REQ, to tie KRB_SAFE to KRB_AP_REQ 
and avoid replay attacks. 

All other optional fields within KRB_SAFE are not supported within IPCablecom. The keyed 
checksum within KRB_SAFE MUST be of type rsa-md5-des3 and MUST be computed with the 
session key in the accompanying KRB_AP_REQ. The method for computing an rsa-md5 des3 
keyed checksum is specified in 6.4.3.1. 

The data that is wrapped inside KRB_SAFE MUST be formatted as in Table 7: 

Table 7 − KRB_SAFE format 

Field name Length Description 

Message Type  1 byte 1 = MTA FQDN Request  

Enterprise Number  4 bytes Network byte order, MSB first. 
1 = IPCablecom 

Protocol Version  1 byte 2 for this version 

MTA MAC Address  6 bytes MTA MAC Address 

MTA Pub Key Hash  20 bytes SHA-1 hash of DER-encoded SubjectPublicKeyInfo. 

Manufacturer Cert 
Revocation Time  

4 bytes 0 = MTA Manufacturer cert not revoked 
Otherwise, this is UTC time, number of seconds since 
midnight of Jan 1, 1970, in network byte order. 

Once the KDC has sent an MTA FQDN Request, it MUST save the nonce value that was contained 
in the seq-number field in order to validate a matching MTA FQDN Reply. 

If the KDC times out before getting a reply it MUST give up and simply drop the PKINIT request 
with no error code returned. The KDC MUST NOT retry in this case, since it would still have to 
handle retries of PKINIT Request from the MTA. At the same time, after a time out the KDC 
SHOULD increase its time out value on the next request to the same Provisioning Server using an 
exponential back-off algorithm. 

The Provisioning Server receiving this message MUST validate the KRB_AP_REQ and verify that 
it is not a replay using the procedure specified in the Kerberos standard (see IETF RFC 4120), also 
described in 6.5.2. After the KRB_AP_REQ has been validated, the Provisioning Server MUST 
also verify the KRB_SAFE component: that the checksum keyed with the session key is valid and 
that the seq-number field matches the KRB_AP_REQ. 

If the Manufacturer Cert Revocation Time field is 0 and the Provisioning Server supports the 
storage of MTA public key hashes, then it MUST update the MTA public key hash in its database. 
If the public key hash has changed or is saved for the first time, the Provisioning Server MUST also 
record the time this update (to the MTA public key hash) is performed. 

• If the Manufacturer Cert Revocation Time field is non-zero, the Provisioning Server MUST 
validate that the public key hash has not changed from the previous update and that the 
revocation time is after the last update to the MTA public key hash. If not, the error code 
KRB_MTAMA_ERR_PUBKE_NOT_TRUSTED MUST be returned. If the Provisioning 
Server does not support storage of MTA public key hashes and the Manufacturer Cert 
Revocation Time field is non-zero, the same error code MUST be returned. 
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6.4.7.2 MTA FQDN reply 

The MTA FQDN Reply MUST be formatted as in Table 8: 

Table 8 − MTA FQDN format 

Field name Length Description 

KRB_AP_REP  Variable  DER-encoded. The length is in the ASN.1 header. 

KRB_SAFE  Variable  DER-encoded 

The encrypted part of the KRB_AP_REP MUST contain the following field, which is optional in 
Kerberos: 

• seq-number: echoes the value in the KRB_AP_REQ 

All other optional fields within the encrypted part of the KRB_AP_REP are not supported within 
IPCablecom. It MUST be encrypted using 3-DES CBC with the Kerberos etype value 
des3-cbc-md5 and MUST be computed with the session key from the preceding KRB_AP_REQ. 
The encryption method for des3-cbc-md5 is specified in 6.4.2.2. 

KRB_SAFE MUST contain the following field, which is optional in Kerberos: 

• seq-number: same value as in the KRB_AP_REP, to tie KRB_SAFE to KRB_AP_REP and 
avoid replay attacks. 

All other optional fields within KRB_SAFE are not supported within IPCablecom. The keyed 
checksum within KRB_SAFE MUST be of type rsa-md5-des3 and MUST be computed with the 
session key from the preceding KRB_AP_REQ. The method for computing an rsa-md5-des3 keyed 
checksum is specified in 6.4.3.1. 

The data that is wrapped inside KRB_SAFE MUST be formatted as in Table 9: 

Table 9 − KRB_SAFE data format 

Field name Length Description 

Message Type 1 byte 2 = MTA FQDN Reply 

Enterprise Number 4 bytes Network byte order, MSB first 
1 = IPCablecom 

Protocol Version 1 byte 2 for this version 

MTA FQDN variable MTA FQDN 

MTA IP Address  4 bytes MTA-IP Address (MSB first)  

After the KDC receives this reply message, it MUST validate the integrity of both the 
KRB_AP_REP and KRB_SAFE objects (see IETF RFC 4120) and MUST also verify that the value 
of the seq-number field is the same for both. If this integrity check fails, the KDC MUST 
immediately discard the reply and proceed as if the message had never been received (e.g., if the 
KDC was waiting for a valid MTA FQDN Reply, it should continue to do so). 

The Provisioning Server MAY set the MTA IP Address field of the MTA FQDN Reply to zero. If 
the KDC receives an MTA FQDN REPLY with a non-zero MTA IP Address field, it MUST 
compare it to the IP address contained in the AS Request. If this check fails, then the KDC MUST 
NOT respond to the AS Request.  

6.4.7.3 MTA FQDN error 

If the Provisioning Server is able to successfully parse the KRB_AP_REQ and the ticket that is 
inside of it, but the MTA FQDN Request is rejected, it MUST return an error message. 
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All errors MUST be returned as a KRB_ERROR message, as specified in IETF RFC 4120. It 
MUST include typed-data of REQ-SEQ to bind the error message to the sequence number from the 
authenticator in the KRB_AP_REQ. Also, the error message MUST include the optional e-cksum 
member, which is the keyed hash over the KRB_ERROR message. The checksum type MUST be 
rsa-md5-des3 and MUST be computed with the session key from the preceding KRB_AP_REQ as 
specified in 6.4.3.1. 

In the case that the client time field inside KRB_AP_REQ differs from the Provisioning Server's 
clock by more than the maximum allowable clock skew, a clock skew error MUST be handled as 
specified in 6.5.2.3.2. 

If the error is application-specific (not a Kerberos-related error), then KRB_ERROR MUST include 
typed-data of type TD-APP-DEFINED-ERROR (value 106). The value of this typed-data is 
specified in IETF RFC 4120 as follows: 
 
AppSpecificTypedData ::= SEQUENCE {  
 oid   [0] OPTIONAL OBJECT IDENTIFIER, 
     -- identifies the application 
 data-value [1] OCTET STRING  
     -- application-specific data 
}  

Inside AppSpecificTypedData, the oid field MUST be set to: 
 
enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable 
(2) pktcSecurity (4) errorCodes (1) FQDN (3) 

The data-value field MUST correspond to the following typed-data value: 

pktcKrbMtaMappingError ::= SEQUENCE { 
 e-code[0] INTEGER, 
 e-text[1] GeneralString OPTIONAL, 
 e-data[2] OCTET STRING OPTIONAL 
} 

The e-code field MUST correspond to one of the following error code values: 

 KRB_MTAMAP_ERR_NOT_FOUND 1 MTA MAC Address not found 
 KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED 2 MTA public key is not trusted 
 KRB_MTAMAP_VERSION_UNSUP 3 Unsupported Version Number 
 KRB_MTAMAP_MSGTYPE_UNKNOWN 4 Unrecognized Message Type 
 KRB_MTAMAP_ENTERPRISE_UNKNOWN 5 Unrecognized Enterprise 
      Number 
 KRB_MTAMAP_NOT_YET_VALID 6 MTA not yet valid 
 KRB_MTAMAP_ERR_GENERIC 7 Generic MTA name  
      mapping error 

The optional e-text field can be used for informational purposes (i.e., logging, network 
troubleshooting) and the optional e-data field is reserved for future use to transport any application 
data associated with a specific error. 

Upon receipt of a KRB_ERROR from the Provisioning Server, the KDC MUST check the validity 
of the checksum. If the KRB_ERROR passes the validity check, the KDC MUST send a 
corresponding KRB_ERROR to the MTA (as specified in 6.4.2.1.2), in response to the PKINIT 
Request. The application specific MAC-FQDN error codes MUST be mapped to Kerberos error 
codes in the error reply to the MTA according to Table 10.  
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Table 10 – Mapping of KRB_MTAMAP_ERR to KRB_ERR 

KRB_MTAMAP_ERR_NOT_FOUND KDC_ERR_C_PRINCIPAL_UNKNOWN 

KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED KDC_ERR_CLIENT_REVOKED 

KRB_MTAMAP_VERSION_UNSUP KRB_ERR_GENERIC 

KRB_MTAMAP_MSGTYPE_UNKNOWN KRB_ERR_GENERIC 

KRB_MTAMAP_ENTERPRISE_UNKNOWN KRB_ERR_GENERIC 

KRB_MTAMAP_NOT_YET_VALID KDC_ERR_CLIENT_NOTYET 

KRB_MTAMAP_ERR_GENERIC KRB_ERR_GENERIC 

6.4.8 Server key management time-out procedure 

The Kerberos client MUST implement a retransmission strategy using exponential back-off with 
configurable initial and maximum retransmission timer values for any KDC or application server 
requests that have not been acknowledged by the server. The Kerberos client MUST update the 
client timestamp field with the current time-of-day reading for each such retry. During an 
exponential back-off, when a previous time out value was Ti, then the next time out value, value 
Ti+1, MUST satisfy the following criteria: 

  1.5 × Ti ≤ Ti+1 ≤ 2.5 × Ti  

After successfully processing an AS Request or TGS Request and generating a corresponding reply, 
the KDC MUST save:  

• the AS Request or TGS Request (e.g., the full AS Request/TGS Request or a hash of the 
AS Request/TGS Request); 

• the full KDC reply. 

The KDC MUST maintain this information for all requests with the client time field that is within 
the time window (T – ΔTMAX, T + ΔTMAX), where T is the current time and ΔTMAX is the maximum 
clock skew that is allowed by the KDC policy.  

The KDC MAY also save: 

• the client principal identifier; 

• the information that uniquely identifies the client pre-authentication field in the AS Request 
(PKINIT or encrypted timestamp in the case of non-public key AS Request) or TGS 
Request (PA-TGS-REQ). 

The KDC MAY maintain this information for all requests with the client time field that is within the 
time window (T – ΔTMAX, T + ΔTMAX), where T is the current time and ΔTMAX is the maximum 
clock skew that is allowed by the KDC policy. If the AS Request or TGS Request is identical to the 
one previously received, the KDC MUST respond with the same reply message. If only the 
principal name and pre-authenticator (PKINIT, encrypted timestamp or PA-TGS-REQ) match, then 
the KDC MUST perform one of the following:  

• If the received AS Request or TGS Request passes all other error checks, the KDC may 
reply with a cached reply message. 

• Reject this message as a replay. 

The MTA may have learned several IP addresses for a KDC or application server (refer to 6.4.5.2 
for more information on obtaining IP addresses from Realm Names and forming a local list of IP 
addresses based on prioritization). If the number of retransmissions for a KDC IP address has 
reached its maximum configured value and there are more IP addresses for the same KDC that have 
not been tried, then the MTA MUST direct the retransmissions to the remaining alternate addresses 
in its local list. Each time that the MTA switches to a new KDC IP address for retransmissions, it 
MUST start a new exponential back-off procedure. If there are no more KDC IP addresses to try, 
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then the MTA SHOULD actively query the name server in order to detect the possible change of 
KDC network interfaces, regardless of the Time To Live (TTL) associated with the DNS record to 
see if any other IP addresses have become available. If there are new IP Addresses discovered, the 
MTA MUST go through the retransmission strategy again for the newly discovered IP Addresses.  

For Kerberized key management with application servers, when an application layer is informed 
that key management with a particular IP address failed, it is normally up to the application layer to 
select the next IP address. The switch-over algorithm between multiple IP addresses mapped to the 
same FQDN is specified by each corresponding application protocol. For example, in the case of 
the Kerberized key management between the MTA and the CMS, refer to the NCS specification 
(ITU-T Rec. J.162) There are also cases when key management is performed independent of the 
application layer, e.g., to pre-establish security associations during MTA initialization. In those 
cases, it is up to a specific MTA implementation to decide if to failover and how to failover to 
another application server IP address. 

An application server may not respond to application messages (e.g., NCS messages) from the 
MTA. This may occur if the MTA has valid security parameters with the application server, but the 
security parameters on the server have been lost or corrupted (e.g., the CMS rebooted and lost all 
IPsec Security Associations). 

In the case of NCS signalling, an MTA MUST no longer use any previously established IPsec SAs 
with a particular CMS each time the NCS back-off and retry algorithm places an MTA endpoint 
controlled by that CMS into a DISCONNECTED state. After an MTA endpoint has moved to a 
DISCONNECT state, it will start sending RSIP/disconnect NCS messages which will need to be 
protected by newly established IPsec SAs. 

6.4.9 Service key versioning 

The service key that is shared between a KDC and an application server, to encrypt/decrypt service 
tickets, is a versioned key (refer to IETF RFC 4120). This key may be changed either due to a 
routine key refresh, or because it was compromised. When the service key is changed, the 
application server MUST retain the older key for a period of time that is at least as long as the ticket 
lifetime used when issuing service tickets (i.e., up to 7 days). In the case of a routine service key 
change, the application server MUST accept any ticket that is encrypted with an older key that it has 
retained and is still valid (not compromised). This key versioning on the application server will 
prevent against many MTAs from suddenly flooding a KDC with PKINIT Requests for new tickets. 

If a service key is changed because it has been compromised, the application server MUST flag all 
older key versions it has retained as invalid and reject any AP Request that contains a ticket that is 
encrypted with one of these invalid keys. When rejecting the AP Request, the application server 
MUST respond as specified in IETF RFC 4120 with a KRB_AP_ERR_BADKEYVER error. The 
application server MUST still decrypt the rejected ticket, using the invalid service key, in order to 
extract the session key. This session key is needed to securely bind the KRB_ERROR reply 
message to the AP Request message using a keyed checksum (see 6.5.2.3.1). Note that this step is 
necessary in order to prevent denial-of-service attacks, which could otherwise occur if the MTA 
was unable to verify the authenticity of the KRB_ERROR message. 

Upon receiving this error reply, the MTA MUST discard the service ticket which is no longer valid 
and fetch a new one from its KDC. 

6.5 Kerberized key management 

6.5.1 Overview 

This clause specifies how Kerberos tickets are used to perform key management between a client 
and an Application Server, where a client is able to get a Kerberos ticket for the server but not the 
other way around. 
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The same protocol described here applies in a symmetric case – where both sides of a key 
management interface are able to get a ticket for each other, i.e., each side is both a client and a 
server. In the symmetric case, only the AP Request and AP Reply messages apply. 

The Kerberos session key is used in the AP Request and AP Reply messages that are exchanged in 
order to re-establish security parameters. The sub-key from the AP-REQ and AP-REP are used to 
derive all of the secret keys used for both directions. The AP Request and AP Reply messages are 
small enough to fit into a standard UDP packet, not requiring fragmentation. 

A Kerberos AP Request/Reply exchange MAY occur periodically, to ensure that there are always 
valid security parameters between the client and the Application Server. It MAY also occur on 
demand, where the security parameters are allowed to time out and are re-established the next time 
that application traffic needs to be sent over a secure link. 

The UDP port used for all key management messages between the client and the Application Server 
MUST be 1293 (on both devices). 

A recipient of any Kerberized Key Management message that does not fully comply with the 
IPCablecom requirements MUST reject the message. 
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6.5.2 Kerberized key management messages 

Figure 8 illustrates an AP Request/AP Reply exchange: 

J.170_F08

 

Figure 8 − Kerberos AP Request/AP Reply exchange 

1) Wake Up – An Application Server sends this message when it initiates a new key 
management exchange. 

 To prevent denial-of-service attacks, this message includes a Server-nonce field – a random 
value generated by the Application Server. The client includes the exact value of this 
Server-nonce in the subsequent AP Request. 

 This message also contains the Server Kerberos principal identifier, used by the client to 
find or to obtain a correct Kerberos ticket for that Application Server. 
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 The Wake Up message MUST be formatted as the concatenation of the following fields: 

• Key Management Message ID – 1-byte value. Always set to 0x01. 

• Domain of Interpretation (DOI) – 1-byte value. Specifies the target protocol for which 
security parameters are established. 

 

Domain of Interpretation (DOI) values 

Value Target protocol 

1 IPsec 

2 SNMPv3 

• Protocol Version – 1 byte. The high-order nibble is the major version number, and the 
lower-order nibble is the minor version number. For IPCablecom, the major number 
MUST be 1, and the minor number MUST be 0.  

• Server-nonce: a 4-byte random binary string. Its value MUST NOT be all 0s. 

• Server Kerberos principal identifier: a printable, null-terminated ASCII string, 
representing a fully qualified Kerberos Principal identifier of the Application Server, as 
defined in 6.4.5. 

Once the Application Server has sent a Wake Up, it MUST save the Server-nonce. The 
Application Server MUST keep this nonce in order to validate a matching AP Request. In 
the case of a time-out, the Application Server MUST adhere to the exponential retry 
back-off procedure described in 6.4.8. The Application Server MUST begin each retry by 
re-sending a Wake Up message with a new server-nonce value. When the "Timeout 
Procedure" has completed without success, the Application Server MUST discard the 
server-nonce from the last retry, after which it will no longer accept a matching 
AP Request. 

2) AP Request – MUST be sent by the client in order to establish a new set of security 
parameters. Any time the client receives a Wake Up message from a valid application 
server that is listed as part of client configuration data, it MUST respond with the AP 
Request message specified below. If a client receives a Wake Up message from an 
unknown application server, the client MUST NOT respond. 

 In addition, this Recommendation specifies the use of this message by the client to 
periodically establish a new set of security parameters with the Application Server – 
see 6.5.4.2. It also specifies the use of this message by the client to establish a new set of 
security parameters with the Application Server, when the client somehow loses the 
security parameters (e.g., after a reboot) – see 6.5.3.5. 

 The client starts out with a valid Kerberos ticket, previously obtained during a PKINIT 
exchange. The Application Server starts out with its Service Key that it can use to decrypt 
and validate Kerberos tickets. 

 The client sends an AP Request that includes a ticket and an authenticator, encrypted with 
the session key. The Application Server gets the session key out of the ticket and uses it to 
decrypt and then validate the authenticator. 

 The AP Request includes the Kerberos KRB_AP_REQ message along with some 
additional information, specific to IPCablecom. It MUST consist of the concatenation of 
the following fields: 

• Key Management Message ID – 1-byte value. Always set to 0x02. 

• Domain of Interpretation (DOI) – 1-byte value. Specifies the target protocol for which 
security parameters are established. See the table of DOI values above. 
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• Protocol Version – 1 byte. The high-order nibble is the major version number, and the 
lower-order nibble is the minor version number. For IPCablecom, the major number 
MUST be 1, and the minor number MUST be 0. 

• KRB_AP_REQ – DER encoding of the KRB_AP_REQ Kerberos message, as specified 
in IETF RFC 4120. 

• Server-nonce – a 4-byte random binary string. If this AP Request is in response to a 
Wake Up, then the value MUST be identical to that of the Server-nonce field in the 
Wake Up message. If this AP Request is in response to a Rekey (see 6.5.2.1), then the 
value MUST be identical to that of the Server-nonce field in the Rekey message. 
Otherwise, the value MUST be all 0s. 

• Application-specific data – additional information that must be communicated by the 
client to the server, dependent on the target protocol for which security is being 
established (e.g., IPsec or SNMPv3). 

• List of ciphersuites available at the client: 

 Number of entries in this list (1 byte) 

 Each entry has the following format: 

Authentication Algorithm (1 byte) Encryption Transform ID (1 byte)

 The actual values of the authentication algorithms and encryption transform IDs are 
dependent on the target protocol. 

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), the client is 
making an attempt to automatically establish a new set of Security Parameters before 
the old one expires. Otherwise, the value is FALSE (0). 

• SHA-1 HMAC (20 bytes) over the contents of this message, not including this field. 
The 20-byte key for this HMAC is determined by taking a SHA-1 hash of the session 
key. 

• Whenever the AP Request is received (by the Application Server), it MUST verify the 
value of this HMAC. If this integrity check fails, the Application Server MUST 
immediately discard the AP Request and proceed as if the message had never been 
received (e.g., if the Application Server was waiting for a valid AP Request, it should 
continue to do so). 

 Once the client has sent an AP Request, it MUST save the nonce value that was contained 
in the seq-number field (a different nonce from the server-nonce specified above) along 
with the server Kerberos principal identifier in order to validate a matching AP Reply. If 
the client generated this AP Request on its own, it MUST adhere to the exponential retry 
backoff procedure described in 6.4.8. 

 If the AP Request was generated in response to a message sent by the 
Application Server (Wake Up or Rekey), then the client MUST save the nonce and 
Server Kerberos Principal Identifier until the time specified by the appropriate 
Key Management MIB variables (pktcMtaDevProvSolicitedKeyTimeout for Prov Server, 
pktcMtaDevCmsSolicitedKeyTimeout for CMS). After the timeout has been exceeded or 
when the "Timeout Procedure" has completed without success, the client MUST discard 
this (nonce, server Kerberos principal identifier) pair, after which it will no longer accept a 
matching AP Reply. 

 If the MTA generated an AP Request on its own and has reached the maximum number of 
retries with a particular application server IP address failing to get an AP Reply, it must 
retry with alternate application server IP addresses as specified in 6.4.8. 
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 In the case that the Server-nonce is 0 (not filled in), and the Application Server is currently 
waiting for a reply to a Wake Up or Rekey message from a client at this IP address, it 
MUST reject the AP Request and not reply to the client. If the Application Server is not 
waiting for a reply to a Wake Up or Rekey message, it MUST verify that this AP Request is 
not a replay using the procedure specified in the Kerberos standard (IETF RFC 4120): 

• If the timestamp in the AP Request differs from the current Application Server time by 
more than the acceptable clock skew then the Application Server MUST reply with an 
error message specified in 6.5.2.3.2. 

• If the realm, Application Server name, along with the client name, time and 
microsecond fields from the Kerberos Authenticator (in the AP Request) match any 
recently-seen such tuples, the KRB_AP_ERR_REPEAT error MAY be returned.  

 The Application Server MUST remember any authenticator presented within 
acceptable clock skew, so that a replay attempt is guaranteed to fail. 

• If the Application Server loses track of any authenticator presented within 
pktcSrvrToMtaMaxClockSkew, it MUST reject all requests until the clock skew 
interval has passed. 

 In the case that the Server-nonce is not 0, the Application Server MAY follow the above 
procedure in order to fully conform with the Kerberos specification (IETF RFC 4120). In 
this case, the above procedure is not required because matching the Server-nonce in the 
Wake Up or Rekey message against the Server-nonce in the AP Request also prevents 
replays. 

3) AP Reply – Sent by the Application Server in response to AP Request. 

 The AP Reply MUST include a randomly generated sub-key (inside the Kerberos 
KRB_AP_REP message), encrypted with the same session key. 

 The AP Reply includes the Kerberos KRB_AP_REP message along with some additional 
information, specific to IPCablecom. It MUST consist of the concatenation of the following 
fields: 

• Key Management Message ID – 1-byte value. Always set to 0x03. 

• Domain of Interpretation (DOI) – 1-byte value. Specifies the target protocol for which 
security parameters are established. See the table of DOI values in this clause. 

• Protocol Version – 1 byte. The high-order nibble is the major version number, and the 
lower-order nibble is the minor version number. For IPCablecom, the major number 
MUST be 1, and the minor number MUST be 0. 

• KRB_AP_REP – DER encoding of the KRB_AP_REP Kerberos message, as specified 
in IETF RFC 4120. 

• Application-specific data – additional information that must be communicated by the 
server to the client, dependent on the target protocol for which security is being 
established (e.g., IPsec or SNMPv3). 

• Selected ciphersuite for the target protocol, using the same format as defined for 
AP Request. The number of entries in the list MUST be one. 

• Security parameters lifetime – a 4-byte value, MSB first, indicating the number of 
seconds from now, when these security parameters are due to expire. 

• Grace period – a 4-byte value in seconds, MSB first. This indicates to the client to start 
creating a new set of security parameters (with a new AP Request/AP Reply exchange) 
when the timer gets to within this period of their expiration time. 
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• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), a new set of 
security parameters MUST be established before the old one expires. When the value is 
FALSE (0), the old set of security parameters MUST be allowed to expire. 

• ACK-required flag – a 1-byte Boolean value. When the value is TRUE (1), the AP 
Reply message requires an acknowledgement, in the form of the Security Parameter 
Recovered message. 

• SHA-1 HMAC (20 bytes) over the contents of this message, not including this field. 
The 20-byte key for this HMAC is determined by taking a SHA-1 hash of the session 
key. 

 Whenever the AP Reply is received (by the client), it MUST: 

• verify the value of this HMAC. If this integrity check fails, the client MUST 
immediately discard the AP Reply; 

• verify that the AP Reply Source IP Address matches the AP Request Destination IP 
Address in the list of outstanding AP Requests. The Client MUST immediately discard 
the AP Reply, which cannot be matched for the corresponding AP Request; 

• verify that the nonce value contained in the seq-number field in AP Reply matches the 
one in the corresponding AP Request. The Client MUST immediately discard the AP 
Reply if seq-number field value in AP Reply does not match.  

 If the AP Reply is discarded, the Client MUST proceed as if the message had never been 
received (e.g., if the client was waiting for a valid AP Reply, it should continue to do so). 
Once the Application Server has sent an AP Reply with the ACK-required flag set, it 
MUST compute the expected value in the Security Parameter Recovered message and save 
it for an appropriate timeout period during which it will accept a matching Security 
Parameter Recovered Message. Once the appropriate timeout period is exceeded, the 
Application Server MUST discard the saved values and no longer accept a matching 
Security Parameter Recovered Message 

 Each time the Application Server times out waiting for the Security Parameter Recovered 
message, it MUST continue with the exponential back-off algorithm until all retries have 
been exhausted, as specified in clause 6.4.8. The Application Server MUST begin each 
retry by re-sending a Wake Up message with a new server-nonce value. 

4) Security Parameter Recovered – Sent by the client to the Application Server to 
acknowledge that it received an AP Reply and successfully set up new Security Parameters. 
This message is only sent when ACK-required flag is set in the AP Reply. 

 This message MUST consist of the concatenation of the following: 

• Key Management Message ID – 1-byte value. Always set to 0x04. 

• Domain of Interpretation (DOI) – 1-byte value. Specifies the target protocol for which 
security parameters are established. See the table of DOI values in this clause. 

• Protocol Version – 1 byte. The high-order nibble is the major version number, and the 
lower-order nibble is the minor version number. For IPCablecom, the major number 
MUST be 1, and the minor number MUST be 0. 

• HMAC – a 20-byte SHA-1 HMAC of the preceding AP Reply message. The 20-byte 
key for this HMAC is determined by taking a SHA-1 hash of the sub-key from the 
AP Reply. 

 If the receiver (Application Server) gets a bad Security Parameter Recovered message that 
does not match an AP Reply, the Application Server MUST discard it and proceed as if this 
Security Parameter Recovered message was never received.  
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6.5.2.1 Rekey messages 

The Rekey message replaces the Wake Up message and provides better performance, whenever a 
receiver (Application Server) wants to trigger the establishment of a Security Parameter with a 
specified client. The Rekey message requires the availability of the shared Server Authentication 
Key, which is not always available. Thus, support for the Wake Up message is still required.  

The Rekey message was added specifically for use with the NCS-based clustered Call Agents, 
potentially consisting of multiple IP addresses and multiple hosts. Any IP address or host within 
one cluster needs the ability to quickly establish a new Security Parameter with a client, without a 
significant impact to the ongoing voice communication. 

The use of the Rekey message eliminates the need for the AP Reply message, thus reducing the key 
management overhead to a single round trip. This is illustrated in Figure 9. 

MTA CMS

(1) Rekey:
CMS nonce

             CMS Kerberos Principal Identifier
             timestamp
             IPsec parameters:
                             list of available ciphersuites
                             SA lifetime

IPsec grace period
Re-establish flag

             

                             
                             
             SHA-1 HMAC

(2) AP Request:
             CMS ticket,
             MTA name + time + subkey + hash
                             encrypted with the
                             session key
             CMS nonce
             IPsec parameters:
                            ASD
                             selected ciphersuite
             SHA-1 HMAC

IPSEC ESP

sub-key IPSEC ESP Keys      → sub-key IPSEC ESP Keys      →

Ticket,
Session Key,
Server Auth Key

Service Key,
Server Auth Key
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Figure 9 − Rekey message to establish a security parameter 

The messages listed in Figure 9 are defined as follows: 

1) Rekey – Sent by the Application Server to establish a new set of security parameters. It 
MUST be a concatenation of the following:  

• Key Management Message ID – 1-byte value. Always set to 0x05. 

• Domain of Interpretation (DOI) – 1-byte value. Specifies the target protocol for which 
security parameters are established. See the table of DOI values in this clause. 
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• Protocol Version – 1 byte. The high-order nibble is the major version number, and the 
lower-order nibble is the minor version number. For IPCablecom, the major number 
MUST be 1, and the minor number MUST be 0. 

• Server-nonce – a 4-byte random binary string. Its value MUST NOT be all 0s. 

• Server Kerberos principal identifier – a printable, null-terminated ASCII string, 
representing a fully qualified Kerberos principal identifier of the Application Server, as 
defined in 6.4.5. This allows the client to both find the right Server Authentication Key 
and to pick the right Kerberos ticket for the subsequent AP Request message. 

• Timestamp – a string of the format YYMMDDhhmmssZ, representing UTC time. This 
string is not NULL-terminated. 

• Application-specific data – additional information that must be communicated by the 
server to the client, dependent on the target protocol for which security is being 
established (e.g., IPsec). 

• List of ciphersuites available at the server – see above specification for the AP Request 
message. 

• Security parameters lifetime – a 4-byte value, MSB first. This indicates the number of 
seconds from now, when this set of security parameters is due to expire. 

• Grace period – a 4-byte value in seconds, MSB first. This indicates to the client to start 
creating a new set of security parameters (with a new AP Request/AP Reply exchange) 
when the timer gets to within this period of their expiration time. 

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), a new set of 
security parameters MUST be established before the old one expires. When the value is 
FALSE (0), the old set of security parameters MUST be allowed to expire. 

• SHA-1 HMAC over the concatenation of all of the above-listed fields. 

 The Server Authentication Key used for this HMAC is uniquely identified by the following 
name pair (client principal name, server principal name). This key MUST be updated at the 
Application Server right after it sends an AP Reply message. It MUST be set to a (20-byte) 
SHA-1 hash of the Kerberos session key used in that AP Reply. The client MUST also 
update this key as soon as it receives the AP Reply. (Note that multiple AP Replies will 
continue using the same Kerberos session key, until it expires. That means that the derived 
Server Authentication Key may have the same value as the old one.) 

 It is possible that the Application Server sends a Rekey message as soon as it sends an AP 
Reply (from another IP address), and before the client is able to derive the new Server 
Authentication Key. In that case, the client will not authenticate the Rekey message and the 
Application Server will have to retry.  

 Similarly, after sending an AP Reply the Application Server might immediately send an IP 
packet using the just established Security Parameter, when the client is not yet ready to 
receive it. In this case, the client will reject the packet and the Application Server will have 
to retransmit. 

 Both of these error cases could be completely avoided with a 3-way handshake (a client 
acknowledging an AP Reply with a Security Association Recovered message). 

 Whenever the Rekey message is received (by the client), it MUST verify the value of this 
HMAC. If this integrity check fails, the client MUST immediately discard this message and 
proceed as if the message had never been received. 

 Once the Application Server has sent a Rekey, it MUST save the server-nonce in order to 
validate a matching AP Request. In the case of a time-out, the Application Server MUST 
adhere to the exponential retry backoff procedure described in 6.4.8. The Application 
Server MUST begin each retry by re-sending a Rekey message with a new server-nonce 
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value. When the "Time-out Procedure" has completed without success, the Application 
Server MUST discard the server-nonce from the last retry, after which it will no longer 
accept a matching AP Request. 

 When this Rekey message is received and validated by the client, all previously existing 
outgoing Security Parameters with this Application Server IP address MUST be removed at 
this time. If the client previously had a timer set for automatic refresh of Security 
Parameters with this Application Server IP address, that automatic refresh MUST be reset 
or disabled. 

 The client MUST verify that this Rekey message is not a replay using the procedure similar 
to the one for AP Request in the Kerberos standard (IETF RFC 4120): 

• If |TCMS – (TMTA + Skew)| > The acceptable Clock Skew, then the client MUST drop 
the message. Here, TCMS is the timestamp in the Rekey message and TMTA is the 
reading of the MTA local clock. Skew is the saved difference between the Application 
Server and MTA clock. PktcSrvrToMtaMaxClockSkew is currently in the MTA MIB 
(see ITU-T Rec. J.166) as the variable pktcMtaDevCmsMaxClockSkew. 

• If the Server-nonce, principal name and timestamp fields match any recently seen 
(within the pktcSrvrToMtaMaxClockSkew) Rekey messages, then the client MUST 
drop the message. 

2) AP Request – MUST be sent by the client as a response to a Rekey message. Unlike the AP 
Request message described above, this one MUST also include the sub-key (inside 
KRB_AP_REQ ASN.1 structure). KRB_AP_REQ will have a Kerberos flag set, indicating 
that an AP Reply MUST NOT follow. 

 The format of the AP Request is as specified above in 6.5.2. The only difference is that the 
list of ciphersuites here MUST contain exactly one entry – the ciphersuite selected by the 
client from the list provided in the Rekey message. 

 Right before the client sends out this AP Request, it MUST establish the security 
parameters with the corresponding server IP address. If the corresponding Rekey message 
had the Re-establish flag set, the client MUST be prepared to automatically re-establish 
new security parameters, as specified in 6.5. 

 Once this AP Request is received and verified by the Application Server, the server MUST 
also establish the security parameters. 

6.5.2.2 IPCablecom profile for KRB_AP_REQ/KRB_AP_REP messages 

In the KRB_AP_REQ, only the following option is supported: 

• MUTUAL-REQUIRED – mutual authentication required. When this option is set, the 
server MUST respond with an AP Reply message. When this option is not set, the 
AP Reply message MUST NOT be sent in reply. 

• All other options MUST NOT be set. If an application server receives a request containing 
the unsupported option USE-SESSION-KEY, it MUST return an error with the error code 
KRB_AP_ERR_METHOD. If an application server receives a request containing any other 
unsupported options, it MUST return an error with the error code KRB_ERR_GENERIC. 
When MUTUAL-REQUIRED is set, the encrypted authenticator in the KRB_AP_REQ 
MUST contain the following field, which is optional in Kerberos: 

– seq-number – MUST contain a pseudo-random number generated by the client (to be 
used as a nonce). 

 The server MUST accept otherwise-valid KRB-AP-REQ messages that contain a 
seq-number in the range –2^31 to –1. 
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When MUTUAL-REQUIRED is not set, the encrypted authenticator MUST contain the following 
field that is optional in Kerberos:  

− sub-key – used to generate security parameters for the target protocol. The sub-key type 
MUST be set to –13. The actual sub-key length is dependent on the target protocol.  

When MUTUAL-REQUIRED is set, the target protocol is IPsec and the client is an MTA, the client 
MAY include the subkey field; in the case that the target protocol is IPsec and the client is other 
than an MTA, the client SHOULD include the subkey field. For IPsec, the subkey, if present, 
MUST contain a pseudo-random number of length 46 octets generated by the client.  

Other optional fields in the authenticator MUST NOT be present. If the authenticator contains the 
authorization-data field, the application server MUST return an error with the error code 
KRB_ERR_GENERIC. If the authenticator contains any other optional fields (apart from subkey 
and authorization-data), the application server MUST ignore those fields.  

The negative key type is used to indicate that it is application-specific and not defined in the 
Kerberos specification. When the Kerberos specification is updated to include this key type, the 
IPCablecom spec will be updated accordingly. 

The authenticator itself MUST be encrypted using 3-DES CBC with the Kerberos etype value: 
des3-cbc-md5 as specified in 6.4.2.2. 

In the encrypted part of the KRB_AP_REP, the optional sub-key field MUST be used for 
IPCablecom. Its type and format MUST be the same as when it appears in the KRB_AP_REQ (see 
above).  

The optional seq-number MUST be present, and MUST echo the value that was sent by the client in 
the KRB_AP_REQ. In this context, the seq-number field is used as a random nonce. The encrypted 
part of the KRB_AP_REP MUST be encrypted with the Kerberos etype value: des3-cbc-md5 as 
specified in 6.4.2.2.  

6.5.2.3 Error handling 

6.5.2.3.1 Error Reply 

If the Application Server is able to successfully parse the AP Request and the ticket that is inside of 
it, but the AP Request is rejected, it MUST return an error message. This error message MUST be 
formatted as the concatenation of the following fields: 

• Key Management Message ID – 1-byte value. Always set to 0x06. 

• Protocol Version – 1-byte value. The high-order nibble is the major version number and the 
lower-order nibble is the minor version number. For IPCablecom the major version number 
MUST be 1 and the minor version number MUST be 0. 

• Domain of Interpretation (DOI) – 1-byte value. Specifies the target protocol for which 
security parameters are established. See the table of DOI values in 6.5.2. 

• KRB_ERROR – Kerberos error message as specified in IETF RFC 4120. It MUST include 
typed-data of REQ-SEQ to bind the error message to the sequence number from the 
authenticator in the AP-REQ message. The value encapsulated by the REQ-SEQ typed data 
MUST be the same as the value of the seq-number that was sent by the client in the 
KRB_AP_REQ. Also, the error message MUST include the optional e-cksum member, 
which is the keyed hash over the KRB_ERROR message. The checksum type MUST be 
rsa-md5-des3, as specified in 6.4.3.1. 

____________________ 
3 The negative key type is used to indicate that it is application-specific and not defined in the Kerberos 

specification. When the Kerberos specification is updated to include this key type, the IPCablecom spec 
will be updated accordingly. 
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If the error is application-specific (not a Kerberos-related error), then the KRB_ERROR MUST 
include typed-data of type TD-APP-DEFINED-ERROR (value 106). The value of this typed-data is 
the following ASN.1 encoding (specified in IETF RFC 4120): 
 
AppSpecificTypedData ::= SEQUENCE {  
  oid   [0] OPTIONAL OBJECT IDENTIFIER, 
      -- identifies the application 
  data-value [1] OCTET STRING  
      -- application-specific data 
} 

Both the oid and the data-value fields inside AppSpecificTypedData are specified separately for 
each DOI. 

• Upon receiving this error reply, the client MUST verify both the keyed checksum and the 
REQ-SEQ field, to make sure that they match the seq-number field from the authenticator 
in the AP Request. 

If the Application Server is not able to successfully parse the AP Request and the ticket, it MUST 
drop the request and it MUST NOT return any response to the client. In case of a line error, the 
client will time out and re-send its AP Request. If the verification has failed, then the MTA MUST 
ignore this error message and continue waiting for the reply as if the error message was never 
received. 

When a client receives an error message, in some cases this Recommendation calls for the client to 
take some recovery steps and then send a new AP Request message. When a client is responding to 
an error message, it is not a retry and MUST NOT be considered to be part of the client's back-off 
and retry procedure specified in 6.4.8. The client MUST reset its timers accordingly, to reflect that 
the AP Request in response to an error message is not a retry.  

Although this Recommendation calls for an application server to return some specific error codes 
under certain error conditions, in the case when a server is repeatedly getting the same error from 
the same client IP address, it MAY at some point choose to stop sending back any further replies 
(errors or otherwise) to this client.  

6.5.2.3.2 Clock skew error 

When the Application Server clock and the client clock are off by more than the limit for a clock 
skew, an error code KRB_AP_ERR_SKEW MUST be returned. The value for the maximum clock 
skew allowed by the Application Server MUST NOT exceed 5 minutes. The optional client's time 
in the KRB_ERROR MUST be filled out, and the client MUST compute the difference (in seconds) 
between the two clocks based upon the client and server time contained in the KRB_ERROR 
message. The client SHOULD store this clock difference in non-volatile memory and MUST use it 
to adjust Kerberos timestamps in subsequent AP Request messages by adding the clock skew to its 
local clock value each time. The client MUST maintain a separate clock skew value for each realm 
and MAY share the same clock skew between the KDC and various application servers within that 
realm. The clock skew values are intended for uses only within the Kerberos protocol and 
SHOULD NOT otherwise affect the value of the local clock (since a clock skew is likely to vary 
from realm to realm). 

In the case that an AP Request failed due to a clock skew error, a client MUST immediately retry 
after adjusting the Kerberos timestamp inside the AP Request message. 

Additionally, the client MUST validate the time offset returned in the clock skew error, to make 
sure that it does not exceed a maximum allowable amount. This maximum time offset MUST not 
exceed 1 hour. This client check against a maximum time offset protects against an attack, where a 
rogue KDC attempts to fool an client into accepting an expired KDC certificate (later, during the 
next PKINIT exchange). 
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6.5.2.3.3 Handling ticket errors after a Wake Up 

6.5.2.3.3.1 KRB_AP_ERR_BADKEYVER after a Wake Up 

This clause addresses a scenario when an application server sends a Wake Up to a client and 
subsequently receives an AP Request that contains a ticket that is encrypted using an obsolete 
service key (results in the KRB_AP_ERR_BADKEYVER error code). This error normally requires 
the client to get another ticket and retry, but in this particular scenario the client has to retry in the 
middle of a key management transaction. 

In this scenario, the application server MUST reply to the invalid AP Request with the 
KRB_ERROR message with the KRB_AP_ERR_BADKEYVER error code. Subsequent to the 
reply, the server MUST wait for another AP Request and MUST use the same time-out value that it 
would normally use when waiting for an AP Request. The client, upon getting back the above error 
code, MUST attempt to obtain a new ticket from the KDC (if the client has not done so already 
while waiting for server's reply) and if successful, MUST send another AP Request to the 
application server. If the client is unsuccessful in obtaining another ticket, it MUST not reply. If the 
server times out waiting for the second AP Request, it MUST proceed as if it timed out waiting for 
the original AP Request.  

If the application server is able to validate the second AP Request, it MUST then proceed as 
specified in 6.5.3. If the second AP Request again results in the KRB_AP_ERR_BADKEYVER 
error, the server MUST abort key management with this client and not reply.  

6.5.2.3.3.2 KRB_AP_ERR_SKEW after a Wake Up 

An application server is not required to check for a clock skew in this case, but if it does generate 
the KRB_AP_ERR_SKEW, the same procedure MUST be followed as in 6.5.2.3.3.1, except that 
the client MUST retry after adjusting the timestamp (see 6.5.2.3.2) instead of getting a new ticket.  

6.5.3 Kerberized IPsec 

This clause specifies the Kerberized key management profile specific to IPsec ESP in transport 
mode. IPsec uses the term "Security Association" (SA) to refer to a set of security parameters. IPsec 
Security Associations are always unidirectional and they MUST always be established in pairs 
within IPCablecom. 

An MTA MUST establish SAs with the IP address from where the corresponding Kerberized IPsec 
key management message (AP-REP or REKEY) has been received. Note that a CMS can notify an 
MTA that it is listening for NCS messages on a different port. Also, both the CMS and the MTA 
can send NCS messages from different ports, and the response must be sent to the port from which 
the message was sent. Kerberized Key Management does not allow for the negotiation of source or 
destination ports. Therefore SAs established to protect NCS signalling need to support multiple 
ports. One way to accomplish this is to establish two separate policies, outbound and inbound, in 
the IPsec Security Policy Database (see RFC 2367). Table 11 illustrates an example policy that 
would support changes in port numbers. Note that this table only illustrates inbound and outbound 
policies for NCS signalling between a specific MTA and a specific CMS. Table 11 is not a 
complete IPsec Security Policy Database. Other entries would be required to support 
communications over different protocols with the same host (e.g., Kerberized Key Management), 
communications with other hosts, or default policies for unknown hosts. 



 

68 Rec. ITU-T J.170 (11/2005) 

Table 11 – Example IPsec Security Policy Database Entries 
for NCS Signalling between MTA and CMS 

Direction Policy Source IP Source Port Destination IP Destination Port 

Inbound – this 
applies to 
messages 
being received 

Apply IPsec 
ESP 

Remote IP 
address 

Wildcard – any 
port 

Local IP 
address 

Bind to local port(s) 
that NCS messages 
will be sent from, 
and the provisioned 
NCS listening port. 

Outbound – 
this applies to 
messages 
being sent 

Apply IPsec 
ESP 

Local IP 
address 

Bind to local 
port(s) that 
messages will be 
sent from. 

Remote IP 
address 

Wildcard – any port 

The DOI value for IPsec MUST be set to 1. 

The ASD (Application-Specific Data) field in the AP Request key management message MUST be 
the SPI (Security Parameter Index) for the client's inbound Security Associations. It is a 4-byte 
integer value, MSB first. 

The ASD field in the AP Reply and Rekey key management messages MUST be the SPI for the 
server's inbound Security Associations. It is a 4-byte integer value, MSB first. 

The sub-key for IPsec MUST be a 46-byte value defined as follows: 

– If the AP-REQ does not include a sub-key, the 46-octet sub-key from AP-REP is taken as 
the subkey for IPsec.  

– If the AP-REQ does include a sub-key but no AP-REP (in the case of Rekey) is sent, then 
the 46-octet AP-REQ sub-key is used as the sub-key for IPsec.  

– Otherwise, both the AP-REQ and the AP-REP messages include 46-octet sub-keys, and 
their bit-by-bit XOR is the 46-byte sub-key for IPsec.  

An MTA MUST NOT perform Kerberized Key Management or establish IPsec Security 
Associations with a CMS when the pktcMtaDevCmsIpsecCtrl flag for that CMS is set to FALSE in 
the pktcMtaDevCmsTable. Note that this flag may only be set in the MTA configuration file and 
cannot be updated using SNMPv3. In the case of an NCS Redirect or any other dynamic method for 
associating a new CMS with an MTA endpoint where there is not an entry in the 
pktcMtaDevCmsTable for the new CMS, the MTA MUST perform Kerberized Key Management 
and establish IPsec Security Associations with the new CMS.  

The CMS MUST be capable of disabling its Kerberized Key Management interface. The CMS 
MUST NOT perform Kerberized Key Management or establish IPsec Security Associations when 
so configured.  

6.5.3.1 Derivation of IPsec keys 

After the Application Server sends out an AP Reply message, it is ready to derive a new set of IPsec 
keys. Similarly, after the client receives this AP Reply, it is ready to derive the same set of keys 
for IPsec. This clause specifies how the IPsec keys are derived from the Kerberos sub-key. 

The size of the Kerberos sub-key MUST be 46 bytes − the same as with the Secure Sockets Layer 
(SSL) or Transport Layer Security (TLS) pre-master secret. 

The IPsec ESP keys MUST be derived in the following order: 

1) Message authentication key for Client → Application Server messages; 

2) Encryption key for Client → Application Server messages; 

3) Message authentication key for Application Server → Client messages; 
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4) Encryption key for Application Server → Client messages. 

For specific authentication and encryption algorithms that may be used by IPCablecom for IPsec, 
refer to 6.1.2. 

The derivation of the required keying material MUST be based on running a one-way 
pseudo-random function F(S, "IPsec Security Association") recursively until the right number of 
bits has been generated. Here, S is the Kerberos sub-key and the ASCII string "IPsec Security 
Association" is taken without quotes and without a terminating null character. F is defined in 9.6. 

6.5.3.2 Periodic re-establishment of IPsec Security Associations 

An IPsec SA is defined with an expiration time TEXP and a grace period GPIPsec. The subclauses 
below specify how both the client and the Application Server handle the re-establishment of IPsec 
Security Associations (re-establish flag was TRUE in the AP Reply). When the re-establishment of 
IPsec SAs is required, there MUST always be at least one SA available for each direction and there 
MUST NOT be an interruption in the call signalling. 

6.5.3.2.1 Periodic re-establishment of IPsec SAs at the client 

If the re-establish flag is set, the client MUST attempt to establish a new set of IPsec SAs (one for 
each direction) starting at the time TEXP – GPIPsec. At this time, the client MUST send an 
AP Request as specified in 6.5. The destination IP Address of the AP Request message MUST be 
the destination IP Address of the outbound IPsec SA that is about to expire. After the client receives 
an AP Reply, it MUST perform the following steps:  

1) Create new IPsec SAs, based on the negotiated ciphersuite, SPIs and on the established 
Kerberos subkey, from which the IPsec keys are derived as specified in 6.5. The expiration 
time for the outgoing SA MUST be set to TEXP, while the expiration time for the incoming 
SA MUST be set to TEXP + GPIPsec. 

2) From this point forward, the new SA MUST be used for sending messages to the 
Application Server. The old SA that the client used for sending signalling messages to the 
Application Server MAY be explicitly removed at this time, or it MAY be allowed to 
expire (using an IPsec timer) at the time TEXP. 

3) Continue accepting incoming signalling messages from the Application Server on both the 
old and the new incoming SAs, until the time TEXP + GPIPsec. After this time, the old 
incoming SA MUST expire. If a client receives a signalling message from the Application 
Server using a new incoming SA at an earlier time, it MAY at that time remove the old 
incoming SA. 

If the client fails to get any reply from the server and has to retry one or more times with another 
AP Request, the re-establish flag MUST be set to FALSE in each retry. This implies that when 
CMS processes a retry, it will remove any existing outgoing IPsec SAs, including the ones that may 
have been created after the processing of the initial AP Request, and proceed as if it is processing 
the SAs on demand (see 6.5.3.5.1). 

6.5.3.2.2 Periodic re-establishment of IPsec SAs at the Application Server 

When an AP Request message is received with re-establish flag set, the Application Server MUST 
perform the applicable processing steps in 6.5.2. If the client is an MTA, the Application Server 
MUST also verify that the source IP address in the received datagram of the AP Request message is 
the same IP address as was used when the initial SA was established. The Application Server 
MUST ignore the AP Request if the IP addresses do not match.  



 

70 Rec. ITU-T J.170 (11/2005) 

In addition, the Application Server MUST perform the following steps, in the specified order 
immediately before an AP Reply is returned.  

1) Create new IPsec SAs, based on the negotiated ciphersuite, SPIs and on the established 
Kerberos sub-key, from which the IPsec keys are derived as specified in 6.5. 

2) Send back an AP Reply. 

3) Continue sending signalling messages to the client using an old outgoing SA until the time 
TEXP. During the same period, accept incoming messages from either the old or the new 
incoming SA. 

4) At the time TEXP both the old incoming and the old outgoing SAs MUST expire. At the 
time TEXP, the Application Server MUST switch to the new SA for outgoing signalling 
messages to the client. If for some reason the new IPsec SAs were not established 
successfully, there would not be any IPsec SAs that are available after this time. 

6.5.3.3 Expiration of IPsec SAs 

An IPsec SA is defined with an expiration time TEXP and a grace period GPIPsec. This clause 
specifies how both the client and the Application Server MUST handle the expiration of IPsec 
Security Associations (re-establish flag was FALSE in the AP Reply).  

At the Client: 

• Outgoing SA expires at TEXP 

• Incoming SA expires at TEXP + GPIPsec 

At the Application Server: 

• Outgoing SA expires at TEXP 

• Incoming SA expires at TEXP + GPIPsec  

Whenever an IPsec SA has been expired and a signalling message needs to be sent by either the 
client or the Application Server, the key management layer MUST be signalled to establish a new 
IPsec SA. It is established using the same procedures as the ones specified in 6.5.3.5. 

6.5.3.4 Initial establishment of IPsec SAs 

When a client is rebooted, it does not have any current IPsec SAs established with the Application 
Server, since IPsec SAs are not saved in non-volatile memory. In order to re-establish them, it 
MUST go through the recovery procedure that is described in 6.5.3.5.  

6.5.3.5 On-demand establishment of IPsec SAs 

This clause describes the recovery steps that MUST be taken in the case that an IPsec SA is 
somehow lost and needs to be re-established. 

6.5.3.5.1 Client loses an outgoing IPsec SA 

If a client attempts to send a signalling message to the Application Server without a valid IPsec SA, 
the IPsec layer in the client will realize the SA is missing and returns an error back to the signalling 
application4. In this case, the following recovery steps MUST be taken at the key management 
layer:  

1) The client first makes sure that it has a valid Kerberos ticket for the Application Server. If 
not, it must first perform a PKINIT exchange as specified in 6.4.2. 

____________________ 
4 In this case, there are no actual messages exchanged between the MTA and the application server (e.g., 

CMS). 
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2) Client sends a new AP Request to the Application Server and gets back an AP Reply, as 
specified in 6.5.2. After the receipt of an AP Reply, the client MUST: 

– create new IPsec SAs; 

– remove any old outgoing IPsec SAs; 

– be prepared to use both of the newly created IPsec SAs.  

3) If the Kerberos ticket includes the optional caddr field and the caddr does not contain a 
matching source IP address for the AP Request datagram, the Application Server MUST 
ignore the request.  

4) The Application Server also MUST NOT set the ACK-required flag in the AP Reply. Right 
after sending out an AP Reply, the Application Server MUST be prepared to both send and 
receive messages on the newly created SAs.  

5) After receiving this AP Request (with Re-establish flag = FALSE), the Application Server 
MUST remove any existing outgoing IPsec SAs that it might already have for this client. 

The key management application running on the client MUST send an explicit signal to the 
signalling application, when it completes the re-establishment of the IPsec SAs.  

6.5.3.5.2 Client loses an incoming IPsec SA 

When the client receives an IP packet from an Application Server on an unrecognized IPsec SA, the 
client MUST ignore this error and the packet MUST be dropped.  

6.5.3.5.3 Application Server loses an outgoing IPsec SA 

When an Application Server attempts to send a signalling message to the client, and the IPsec layer 
in the Application Server realizes a valid SA is missing, the IPsec layer MUST return an error back 
to the signalling application5. In this case, the following recovery steps MUST be taken at the key 
management layer:  

1) Application Server sends a Wake Up message to the client. 

2) The client makes sure that it has a valid Kerberos ticket for the Application Server. If not, it 
MUST first obtain it from the KDC. 

3) Client sends a new AP Request to the Application Server, as specified in 6.5.2. If the 
Kerberos ticket includes the optional caddr field and the caddr does not contain a matching 
source IP address for the AP Request datagram, the Application Server MUST ignore the 
request. 

4) For each AP Request, the client generates a nonce and puts it into the seq-number field. As 
specified in 6.5.2, the client will save this nonce for a period of time specified by the 
pktcMtaDevCmsSolicitedKeyTimeout MIB object, and wait for a matching AP Reply (this 
is not the same nonce as the Server-nonce received in the Wake Up). However, after this 
time-out, the client MUST NOT retry and MUST abort an attempt to establish a IPsec SA 
in response to a received Wake Up. 

 Once the client gets back a matching AP Reply, it will be in the format specified in 6.5.2. 
The ACK-required flag in the AP Reply MUST be set, to insure that the client replies with 
the SA Recovered message in the following step. If this client previously had any outgoing 
IPsec SAs with this Application Server IP address, they MUST be removed at this time. If 
the client previously had a timer set for automatic refresh of IPsec SAs with this 
Application Server IP address, that automatic refresh MUST be reset or disabled. The client 
MAY start using both of the newly created SAs. If the AP Reply had the Re-establish flag 

____________________ 
5  In this case, there are no actual messages exchanged between the MTA and the CMS or other application 

server. 
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set, the client MUST be prepared to automatically re-establish new IPsec SAs, as specified 
in 6.5.3.2. 

5) The Application Server can receive signalling messages from the client on the new 
incoming SA, but cannot yet start using an outgoing SA for sending messages to the client. 

6) Immediately after the client establishes the new IPsec SAs, it MUST send a SA Recovered 
message to the Application Server. 

7) Upon receipt of this message, the Application Server MUST immediately activate the new 
outgoing SA for sending signalling messages to the client.  

The key management application running on the Application Server MUST send an explicit signal 
to the signalling application when it completes the re-establishment of the IPsec SAs.  

6.5.3.5.4 Application Server loses an incoming IPsec SA 

When the Application Server receives an IP packet from a client on an unrecognized IPsec SA, the 
Application Server MUST ignore this error and the packet MUST be dropped. In this case, any 
attempt at recovery (e.g., establishing a new SA) is prone to denial-of-service attacks. 

6.5.3.6 IPsec-specific errors returned in KRB_ERROR 

Inside AppSpecificTypedData the oid field MUST be set to:  
 

enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable 
(2) pktcSecurity (4) errorCodes (1) ipSec (1) 

The data-value field MUST correspond to the following typed-data value: 
 
pktcKrbIpsecError ::= SEQUENCE { 
 e-code [0]  INTEGER, 
 e-text [1]  GeneralString OPTIONAL, 
 e-data [2]  OCTET STRING OPTIONAL 
} 

The e-code field MUST correspond to one of the following error code values: 

 KRB_IPSEC_ERR_NO_POLICY 1 No IPsec policy defined for request 
 KRB_IPSEC_ERR_NO_CIPHER 2 No support for requested ciphersuites 
 KRB_IPSEC_NO_SA_AVAIL 3 No IPsec SA available (i.e., SAD is full) 
 KRB_IPSEC_ERROR_GENERIC 16 Generic KRB IPsec error  

The optional e-text field can be used for informational purposes (i.e., logging, network 
troubleshooting) and the optional e-data field is reserved for future use to transport any application 
data associated with a specific error. 

6.5.4 Kerberized SNMPv3 

This clause specifies the Kerberized key management profile specific to SNMPv3; see RFC 3414. 
In the case of SNMPv3, the security parameters are associated with the usmUserName (SNMPv3 
user name), the agent's usmUserEngineID (SNMPv3 engine ID) and the manager's 
usmUserEngineID. 

Multiple SNMP managers on different hosts but with the same user name are considered as unique 
Kerberos principals. Still, the SNMPv3 keys generated by any one of these SNMP managers MUST 
be shared across all the managers – as long as they apply to the same SNMPv3 user name and the 
same SNMPv3 engine ID (of the agent). 

The security parameters consist of a single authentication key, a single privacy (encryption) key, 
SNMPv3 boot count and engine time. SNMPv3 privacy can be turned off by selecting a NULL 
encryption transform. 
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The DOI value for SNMPv3 MUST be set to 2.  

The ASD field in the AP Request message MUST be set to the concatenation of the fields as shown 
in Table 12: 

Table 12 − Required format for data in the AP Request 

Attribute Length 

Agent's snmpEngineID Length 1 byte 

Agent's snmpEngineID Variable 

Agent's snmpEngineBoots 4 bytes, network byte order 

Agent's snmpEngineTime 4 bytes, network byte order 

usmUserName Length 1 byte 

usmUserName Variable 

The ASD field in the AP Reply message MUST be set to the concatenation of the fields as shown in 
Table 13: 

Table 13 − Required format for data in the AP Reply 

Attribute Length 

Manager's snmpEngineId Length 1 byte 

Manager's snmpEngineId Variable 

Manager's snmpEngineBoots 4 bytes, network byte order 

Manager's snmpEngineTime 4 bytes, network byte order 

usmUserName Length 1 byte 

usmUserName Variable 

For IPCablecom MTAs, the usmUserName contains in it the MTA MAC address (see 
ITU-T Rec. J.167). The manager MUST verify that this MAC address and the MTA FQDN 
specified in the MTA principal name match. The manager MUST also verify that any SNMP 
INFORM message containing a MAC address, from the MTA contains a correct MAC address – the 
same one that is in the usmUserName. 

The usmUserName field inside the Application-specific data field in the AP Reply MUST be the 
same as the one in the preceding AP Request. 

The Rekey message is not used for SNMPv3 key management. 

The sub-key for SNMPv3 MUST be a 46-byte value. 

6.5.4.1 Derivation of SNMPv3 keys 

After the server sends out an AP Reply message, it is ready to derive a new set of SNMPv3 keys. 
Similarly, after the client receives this AP Reply, it is ready to derive the same set of keys for 
SNMPv3. This clause specifies how the SNMPv3 keys are derived from the Kerberos sub-key. 

The size of the Kerberos sub-key MUST be 46 bytes. 

The derived SNMPv3 Keys MUST be as follows, in the specified order: 

− SNMPv3 authentication key; 

− SNMPv3 privacy key. 
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For specific authentication and encryption algorithms that may be used by IPCablecom for 
SNMPv3, refer to 6.3. 

The derivation of the required keying material MUST use a one-way pseudo-random function 
F(S, "SNMPv3 Keys") recursively until the right number of bits has been generated. Here, S is the 
subkey and the string "SNMPv3 Keys" is taken without quotes and without a terminating null 
character. F is defined in 9.6. 

6.5.4.2 Periodic re-establishment of SNMPv3 keys 

Periodic re-establishment of SNMPv3 keys, where the next set of keys is created before the old one 
expired, is currently not supported by IPCablecom. The re-establish flag in the AP Reply key 
management message MUST be set to FALSE.  

6.5.4.3 Expiration of SNMPv3 keys 

Expiration of SNMPv3 keys is currently not supported by IPCablecom. The values of the Security 
Parameters Lifetime and Grace Period fields in the AP Reply MUST be set to 0. 

6.5.4.4 Initial establishment of SNMPv3 keys 

When a client is rebooted, it may not have any saved SNMPv3 keys established with the SNMP 
Manager. In order to re-establish them, it goes through the recovery procedure that is described 
in 6.5.4.5.1. 

6.5.4.5 Error recovery 

This clause describes the recovery steps that must be taken in the case that SNMPv3 keys are 
somehow lost and need to be re-established. 

6.5.4.5.1 SNMP agent wishes to send with missing SNMPv3 keys 

In the case of SNMP, an SNMP agent is not responsible for re-establishing SNMPv3 keys because 
it does not send unsolicited requests to the Provisioning Server after the initial provisioning is done. 
Still, an SNMP agent could attempt to re-establish SNMPv3 keys after it gets an SNMPv3 
authentication error back from the SNMP manager. If the SNMP agent determines that it has 
incorrect SNMPv3 keys, it MUST perform the following steps before it is able to send out an 
SNMP message: 

1) The agent first makes sure that it has a valid Kerberos ticket for the Application Server. If 
not, it must first obtain it as specified in 6.5.2. 

2) The agent sends a new AP Request to the manager and gets back an AP Reply, as specified 
in 6.5.2. After the receipt of the AP Reply the agent is prepared to use the newly created 
SNMPv3 keys. In this scenario, the SNMP manager MUST NOT set an ACK-required flag 
in the AP Reply. Right after sending out an AP Reply, the manager is prepared to both send 
and receive messages with the new SNMPv3 keys. After receiving this AP Request (with 
Re-establish flag = FALSE), the manager MUST remove its previous set of SNMPv3 keys 
that it might already have for this agent (and for this SNMPv3 user name). 

It is possible that the SNMP manager already initiated key management (with a Wake Up) but 
instead receives an unsolicited AP Request from the agent (with server-nonce = 0). This unlikely 
scenario might occur if the manager and the agent decide to initiate key management at about the 
same time. In this case, the SNMP manager MUST ignore the unsolicited AP Request message and 
continue waiting for the one that is in response to a Wake Up. 

6.5.4.5.2 SNMP agent receives with missing SNMPv3 keys 

If the SNMP agent receives a request from a SNMP manager and is unable to find SNMPv3 keys 
for the specified USM User Name, the agent MUST process the SNMP message according to 
RFC 3414 and RFC 3412. 
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6.5.4.5.3 SNMP manager wishes to send with missing SNMPv3 keys 

SNMP manager attempts to send a message to the agent and does not find the desired user's 
SNMPv3 keys (or considers the existing SNMPv3 keys invalid or compromised). In this case, the 
following recovery steps MUST be taken at the key management layer: 

1) The manager sends a Wake Up message to the agent. 

2) The agent makes sure that it has a valid Kerberos ticket for the manager. If not, it MUST 
first obtain it from the KDC. 

3) The agent sends a new AP Request to the manager, as specified in 6.5.2. For each AP 
Request, the agent generates a nonce and puts it into the seq-number field. As specified 
in 6.5.3.5.3, the agent will save this nonce for a period of time specified by the 
pktcMtaDevProvSolicitedKeyTimeout MIB object and wait for a matching AP Reply 
(this is not the same nonce as the server-nonce received in the Wake Up). However, after 
this time-out, the agent MUST NOT retry and MUST abort an attempt to establish 
SNMPv3 keys in response to a received Wake Up. 

 Once the agent gets back a matching AP Reply, it will be in the format specified in 6.5.2. 
The ACK-required flag in the AP Reply MUST be set, to ensure that the agent replies with 
the SA Recovered message in the following step. If this agent previously had SNMPv3 
keys for the specified SNMPv3 user, they MUST be removed at this time. 

4) After the receipt and validation of the AP Reply, the agent sends an SA Recovered message 
to the manager. At this time the agent will be ready to use the new SNMPv3 keys and will 
enable SNMPv3 security. 

5) Upon receipt of the SA Recovered message, the manager will immediately activate the new 
set of SNMPv3 keys and will enable SNMPv3 security. 

It is possible that the SNMP agent already initiated key management (with an unsolicited 
AP Request) but instead receives a Wake Up from the manager. This unlikely scenario might occur 
if the manager and the agent decide to initiate key management at about the same time. In this case, 
the SNMP agent MUST abort waiting for the reply to the unsolicited AP Request message and 
instead generate a new AP Request in response to the Wake Up. 

If an SNMP agent receives a second Wake Up message from a different SNMP manager (FQDN or 
IP address) before the first key management session has been completed, the SNMP agent MUST 
ignore the second Wake Up message. 

6.5.4.6 SNMPv3-specific errors returned in KRB_ERROR 

Inside AppSpecificTypedData, the oid field MUST be set to: 
 

enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable 
(2) pktcSecurity (4) errorCodes (1) snmpv3 (2) 

The data-value field MUST correspond to the following typed-data value: 
 
pktcKrbSnmpv3Error ::= SEQUENCE { 
 e-code [0]  INTEGER, 
 e-text [1]  GeneralString OPTIONAL, 
 e-data [2]  OCTET STRING OPTIONAL 
} 

The e-code field MUST correspond to one of the following error code values: 

KRB_SNMPV3_ERR_USER_NAME 1 Unrecognized SNMPv3 user name 
KRB_SNMPV3_ERR_NO_CIPHER 2 No support for requested ciphersuites 
KRB_SNMPV3_ERR_ENGINE_ID 3 Invalid SNMPv3 Engine ID specified 
KRB_SNMPV3_ERROR_GENERIC 16 Generic KRB SNMPv3 error  
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The optional e-text field can be used for informational purposes (i.e., logging, network 
troubleshooting) and the optional e-data field is reserved for future use to transport any application 
data associated with a specific error.  

6.6 End-to-end security for RTP 

RTP security is currently fully specified in 7.6.2.1. Key management for RTP requires that both the 
(encryption) Transform ID and the Authentication Algorithm are specified, analogous to the IPsec 
key management. This clause lists in Tables 14 and 15, respectively, the Transform IDs and 
Authentication Algorithms that are available for RTP security. 

Table 14 − RTP Packet Transform Identifiers 

Transform ID Value 
Key size  
(in bits) 

MUST support Description 

RTP_ENCR_NULL 0x50 NA Yes Encryption turned off 

RTP_AES 0x51 128 Yes AES-128 in CBC mode 
with 128-bit block size 

RTP_XDESX_CBC 0x53 192 No DESX-XEX-CBC 

RTP_DES_CBC_PAD 0x54 128 No DES-CBC-PAD 

RTP_3DES_CBC 0x56 128 No 3DES-EDE-CBC 

Reserved 0x57-59 − −  

The RTP_AES and RTP_ENCR_NULL Transform IDs MUST be supported. AES-128  0 MUST be 
used in CBC mode with a 128-bit block size and an Initialization Vector (IV) generated in 
accordance with 7.6.2.1.2.2.2. AES-128 requires 10 rounds of cryptographic operations (see 
FIPS PUB 197). 

Table 15 − RTP IPCablecom Authentication Algorithms 

Authentication 
Algorithm 

Value 
Key size  
(in bits) 

MUST support Description 

AUTH_NULL 0x60 0 Yes Authentication turned off 

Reserved 0x61 − −  

RTP_MMH_2 0x62 Variable  
(see 7.6.2.1.2.1.1) 

Yes 2-byte MMH MAC 

Reserved 0x63 − −  

RTP_MMH_4 0x64 Variable 
(see 7.6.2.1.2.1.1 )

Yes 4-byte MMH MAC 

Reserved 0x65 − −  

The Authentication Algorithms AUTH_NULL, RTP_MMH_2 and RTP_MMH_4 MUST be 
supported. 

6.7 End-to-end security for RTCP 

RTCP security is currently fully specified in 7.6.2.2. Key management for RTCP requires that both 
the (encryption) Transform ID and the Authentication Algorithm be specified. This clause lists in 
Tables 16 and 17, respectively, the Transform IDs and Authentication Algorithms that are available 
for RTCP security. 
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Table 16 − RTCP Packet Transform Identifiers 

Transform ID Value 
Key size  
(in bits) 

MUST support Description 

RTCP_ENCR_NULL 0x70 − Yes Encryption turned off. 

AES-CBC 0x71 128 Yes AES-128 in CBC mode 
with 128-bit block size 

XDESX-CBC 0x72 192 No DESX-XEX-CBC 

DES-CBC-PAD 0x73 128 No DES-CBC-PAD 

3DES-CBC 0x74 128 No 3DES-EDE-CBC 

Reserved 0x75-7f − −  

The AES-CBC and RTCP_ENCR_NULL Transform IDs MUST be supported. AES-128  0 MUST 
be used in CBC mode with a 128-bit block size and a randomly generated Initialization Vector (IV). 
AES-128 requires 10 rounds of cryptographic operations (see FIPS PUB 197). 

Table 17 − RTCP Authentication Algorithms 

Transform ID Value 
Key size  
(in bits) 

MUST support Description 

RTCP_AUTH_NULL 0x80 N/A Yes Authentication turned off. 

HMAC-SHA1-96 0x81 160 Yes First 12 bytes of the 
HMAC-SHA1 per 
RFC 2404  

HMAC-MD5-96 0x82 128 No First 12 bytes of the 
HMAC-MD5 per 
RFC 2403 

Reserved 0x83-8f − −  

The HMAC-SHA1-96 and RTCP_AUTH_NULL authentication algorithms MUST be supported. 

6.8 BPI+ 

All E-MTAs and S-MTAs MUST use J.112-compliant cable modems and MUST implement BPI+ 
(ITU-T Rec. J.125). Baseline Privacy Plus (BPI+) provides security services to the J.112 data link 
layer traffic flows running across the cable access network, i.e., between CM and CMTS. These 
services are message confidentiality and access control. The BPI+ security services operating in 
conjunction with J.112 provide cable modem users with data privacy across the cable network and 
protect cable operators from theft of service. 

The protected J.112 MAC data communication services fall into three categories: 

• best-effort, high-speed, IP data services; 

• QoS (e.g., constant bit rate) data services; and 

• IP multicast group services. 

When employing BPI+, the CMTS protects against unauthorized access to these data transport 
services by: 

1) enforcing encryption of the associated traffic flows across the cable network; and 

2) authenticating the J.112 MAC management messages that CMs use to establish QoS 
service flows.  
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BPI+ employs a client/server key management protocol in which the CMTS (the server) controls 
distribution of keying material to client CMs. The key management protocol ensures that only 
authorized CMs receive the encryption and authentication keys needed to access the protected 
services. 

Baseline Privacy Plus has two component protocols: 

− An encapsulation protocol for encrypting packet data across the cable network. This 
protocol defines: 

1) the frame format for carrying encrypted packet data within J.112 MAC frames; 

2) a set of supported cryptographic suites, i.e., pairings of data encryption and 
authentication algorithms; and 

3) the rules for applying those algorithms to a J.112 MAC frame's packet data. 

− A key management protocol (Baseline Privacy Key Management, or "BPKM") provides the 
secure distribution of keying data from CMTS to CMs. Through this key management 
protocol, CM and CMTS synchronize keying data; in addition, the CMTS uses the protocol 
to enforce conditional access to network services. 

Baseline Privacy Plus does not provide any security services beyond the J.112 cable access 
network. The majority of IPCablecom's signalling and media traffic flows, however, take paths that 
traverse the managed IP "backhaul" networks, which lie behind CMTSs. Since J.112 and 
IPCablecom service providers typically will not guarantee the security of their managed 
IP backhaul networks, the IPCablecom security architecture defines end-to-end security 
mechanisms for all these flows. End-to-end security is provided at the Network layer through IPsec, 
or, in the case of Client media flows, at the application/transport layer through RTP application 
layer security. Thus, IPCablecom does not rely on BPI+ to provide security services to its 
component protocol interfaces. 

6.9 TLS 

6.9.1 Overview 

The TLS protocol (RFC 2246) provides privacy and data integrity over a reliable transport layer 
protocol such as TCP. The protocol is composed of two layers: the TLS Record Protocol and the 
TLS Handshake Protocol. The TLS Record Protocol is used to securely encapsulate upper layer 
protocols, while the TLS Handshake Protocol provides the key management functionality required 
to establish TLS sessions. 

In IPCablecom, TLS is used to secure SIP-based signalling between SIP endpoints such as the CMS 
and EBPs. 

6.9.2 IPCablecom profile for TLS with SIP 

Unless specified within this Recommendation, IPCablecom SIP interfaces requiring TLS MUST be 
compliant with the TLS specification (RFC 2246) and any requirements specified in RFC 3261 
relating to its usage in SIP.  

TLS supports the negotiation and use of compression methods. However, since these methods are 
not specified within TLS, compression MUST NOT be used in IPCablecom.  

6.9.2.1 TLS ciphersuites 

In TLS, the ciphersuite includes the authenticated key agreement (AKE) method used in the 
TLS handshake, as well as encryption and authentication ciphers used to secure the record layer. 
Ciphersuites are negotiated with the TLS client presenting a list of supported ciphersuites in the 
Client Hello message, and the server responding with the selected ciphersuite in the Server Hello 
message. 
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Table 18 describes the TLS ciphersuites defined in RFC 2246 and RFC 3268 supported by 
IPCablecom: 

Table 18 – TLS ciphersuites 

TLS Ciphersuite Support 
AKE 

method 
Encryption Auth. 

TLS_RSA_WITH_AES_128_CBC_SHA MUST RSA AES-128 
CBC 

SHA 

TLS_DHE_RSA_WITH_AES_128_CBC_SHA MUST Ephemeral 
Diffie-
Hellman 
with RSA 
signatures 

AES-128 
CBC 

SHA 

TLS_RSA_WITH_3DES_EDE_CBC_SHA SHOULD RSA 3DES CBC SHA 

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA SHOULD Ephemeral 
Diffie-
Hellman 
with RSA 
signatures 

3DES CBC SHA 

6.9.2.2 IPCablecom TLS Certificates 

TLS is a client-server based protocol with optional client authentication. However, in IPCablecom, 
mutual authentication using RSA-based certificates MUST be used. The TLS server MUST send a 
Certificate Request to the client. Both the TLS client and server certificates MUST conform to the 
IPCablecom Server Certificate as specified in 8.2.3.4.3. 

IPCablecom Server Certificates include a server identifier (based on FQDN or IP address) 
embedded within the CN of the Subject Name field. Before accepting or continuing with a TLS 
connection, the TLS server or client MUST validate the remote server identifier to ensure it matches 
the IP address used for the TCP/TLS connection, in addition to any other local policy 
(i.e., provisioned list of allowed remote TLS endpoints based on FQDN or IP address).  

In addition to the CableLabs Service Provider Root certificate, a TLS implementation MAY support 
a list of trusted CAs (Certificate Authorities) to facilitate inter-working between IPCablecom 
domains (i.e., between Server Providers). 

6.9.2.3 Connection persistence and re-use 

Since TCP connection and TLS session establishment (which relies on TCP) can be quite costly 
both in terms of performance and network latency, they are not suited for on-demand SIP 
signalling. As such, TLS sessions SHOULD be kept persistent as much as possible and SIP 
connection re-use SHOULD be supported. 

6.9.2.4 Session caching 

In TLS, it is possible to resume a previous session if it has been cached on both the TLS client and 
server. Resuming sessions drastically speeds up the session establishment, as fewer messages are 
exchanged and authentication is based on symmetric key cryptography.  

In IPCablecom, TLS session caching SHOULD be supported. A TLS client initiating a TLS session 
MUST attempt to resume a cached session if it has retained a session for the remote server. The 
duration for which a TLS client or server must retain a cached session is a local policy and 
implementation specific. 



 

80 Rec. ITU-T J.170 (11/2005) 

7 Security profile 

The IPCablecom architecture defines over half a dozen networked components and the protocol 
interfaces between them. These networked components include the media terminal adapter (MTA), 
call management server (CMS), signalling gateway (SG), media gateway (MG) and a variety of 
OSS systems (DHCP, TFTP and DNS servers, network management systems, provisioning servers, 
etc.). IPCablecom security addresses the security requirements of each constituent protocol 
interface by: 

• identifying the threat model specific to each constituent protocol interface; 

• identifying the security services (authentication, authorization, confidentiality, integrity, 
non-repudiation) required to address the identified threats; 

• for each constituent protocol interface, specifying the particular security mechanism 
providing the required security services. 

Clause 5.2 summarizes the threat models applicable to IPCablecom's protocol interfaces. In this 
clause, we identify the security service requirements of each protocol interface and security 
mechanisms providing those services. 

The security mechanisms include both the security protocol (e.g., IPsec, RTP-layer security, 
SNMPv3 security) and the supporting key management protocol (e.g., IKE, PKINIT/Kerberos).  

The security analysis in 5.3.3 is organized by functional categories. For each functional category, 
we identify the constituent protocol interfaces, the security services required by each interface, and 
the particular security mechanism employed to deliver those security services. Each per-protocol 
security description includes the detailed information sufficient to ensure interoperability. This 
includes cryptographic algorithms and cryptographic parameters (e.g., key lengths). 

As a convenient reference, each functional category's security analysis includes a summary security 
profile matrix of the following form (Media security profile matrix shown) in Table 19: 

Table 19 − RTP – RTCP Security Profile Matrix 

 
RTP (MTA-MTA,  
MTA-PSTN GW) 

RTCP (MTA-MTA,  
MTA-MG, MG-MG) 

Authentication Optional (indirect) Optional (indirect) 

Access control Optional Optional 

Integrity Optional Yes 

Confidentiality Yes Yes 

Non-repudiation No No 

Security mechanisms Application Layer Security via RTP 
IPCablecom Security Profile keys 
distributed over secured MTA-CMS 
links 
AES-128 encryption algorithm 
Optional 2-byte or 4-byte MAC 
based on MMH algorithm 
IPCablecom supports ciphersuite 
negotiation.  

Application Layer Security via RTCP 
IPCablecom Security Profile keys 
distributed over secured MTA-CMS 
links 
RTCP ciphersuites are negotiated 
separately from the RTP ciphersuites and 
include both encryption and message 
authentication algorithms. 
Keys are derived from the end-end secret 
using the same mechanism as used for 
RTP encryption. 
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Each matrix column corresponds to a particular protocol interface. All but the last row corresponds 
to a particular security service; the cell contents in these rows indicate whether the protocol 
interface requires the corresponding security service. The final row summarizes the security 
mechanisms selected to provide the required services.  

Note that the protocol interface column headings not only identify the protocol, but also indicate the 
network components the protocols run between. 

7.1 Device and service provisioning  

Device provisioning is the process by which an MTA is configured to support voice 
communications service. The MTA provisioning process is specified in ITU-T Rec. J.167. 

Figure 10 illustrates only the flows involved with the Secure provisioning processes. The 
provisioning Recommendation lays out in detail these Secure Provisioning flows along with two 
non-secure MTA provisioning flows called Basic and Hybrid. The Secure Provisioning flows 
involving security mechanisms are described in this clause. Refer to ITU-T Rec. J.167 for the 
non-secure flows. 
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Figure 10 − IPCablecom provisioning flows 

As part of the provisioning process, the MTA performs Kerberos key management (AS Request/AS 
Reply and AP Request/AP Reply, and optional TGS Request/TGS Reply).  
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Table 20 describes the execution of the Kerberos key management step during MTA provisioning: 

Table 20 − Kerberos key management during MTA provisioning 

Flow step Security requirement Lifetime Step bypass permitted 

MTA-9/MTA-10 
AS Request/AS 
Response (see 6.4.1) 

TGT ticket if using TGS 
Request; Provisioning 
Server Ticket if otherwise 

Max. 7 days This step MUST NOT be 
performed if the MTA 
already possesses a valid 
ticket for the 
Provisioning Server.  

MTA-9a/MTA-9b – 
MTA FQDN 
Request/MTA FQDN 
Reply (see 6.4.7) 

MTA FQDN Request and 
Reply are protected using 
Kerberos tickets 

 These steps will not 
occur if MTA-9 is 
skipped. Otherwise, this 
step cannot be bypassed. 

MTA-11/MTA 12 
TGS Request/TGS 
Response (see 6.4.4) 

Applies when a TGT is 
used. Obtains a Provisioning 
Server Ticket. 

Lifetime is set to 
expire no later than 
the expiration time 
of the TGT ticket. 

This step MUST NOT be 
performed if the MTA 
already possesses a valid 
ticket for the 
Provisioning Server.  

MTA-13/MTA-14 
AP Request/AP Reply 
(see 6.5.2 and 6.5.4) 

Initial SNMPv3 
authentication and privacy 
keys for the MTA. The user 
name for the MTA is 
specified as "MTA-Prov-
xx:xx:xx:xx:xx:xx", where 
xx:xx:xx:xx:xx:xx 
represents the MAC address 
of the MTA. 
AP Req/AP Rep messages 
do not specify the SNMPv3 
key expiration time in the 
protocol, but the SNMP 
Manager may still set up 
expiration time locally; after 
the keys expire, the manager 
can send a Wake Up 
message to create a new set 
of SNMPv3 keys. 

Expiration is not 
supported by 
IPCablecom.  

None. New SNMPv3 
keys and User Ids are 
created each time the 
MTA is re-initialized. It 
is assumed that SNMPv3 
keys and User IDs are 
not saved in NVRAM. 
Also note that this step is 
used for Engine ID 
determination and 
SNMPv3 time 
synchronization – the 
two sides exchange 
initial values for 
SNMPv3 boots and 
engine time parameters. 

An MTA MUST get a new ticket before performing Kerberized Key Management with a particular 
Application Server if the ticket(s) it currently possesses is not valid. A ticket would no longer be 
valid if the KDC REALM or Application Server FQDN changes, if the MTA's IP address has 
changed, or if the current time, adjusted by the time offset for that REALM or Application Server, 
does not fall within the ticket validity period. 

The PKINITGP for the Provisioning Server's realm is specified in the MTA MIB inside the realm 
table. When the MTA implementation requests a TGT in an AS Request and when the MTA needs 
to obtain tickets for one or more CMSs in the same realm as the Provisioning Server, the PKINITGP 
value specified in the MIB MUST be used to refresh the TGT. In all other cases, the AS Request for 
the TGT in the Provisioning Server's realm or for the Provisioning Server's ticket directly MAY be 
issued on demand. 

The TGS Grace Period is not specified for the key management between the MTA and the 
Provisioning Server. The TGS Request for the Provisioning Server's ticket MAY be issued on 
demand.  
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7.1.1 Device provisioning 

Device provisioning occurs when an MTA device is inserted into the network. A provisioned MTA 
device that is not yet associated with a billing record MAY have minimal voice communications 
service available.  

Device provisioning involves the MTA making itself visible to the network, obtaining its 
IP configuration and downloading its configuration data. 

The IPCablecom architecture supports three provisioning flows: 

– Basic Flow; 

– Hybrid Flow; 

– Secure Flow. 

The Basic and Hybrid Flows are completely insecure flows (i.e., there are no mechanisms in the 
flows that would prevent a user from provisioning their own MTA). The Basic and Hybrid Flows 
also do not provide a means to secure the SNMP management interface on the MTA. Service 
providers that choose to deploy MTAs with one of these insecure flows must accept that there are 
security risks. For example, a Denial-of-Service attack could be mounted by sending SNMP TRAPs 
and INFORMs to the operator's management system. The management system would have to 
process them, even though they are unauthenticated. Unfortunately, the inclusion of these insecure 
flows also poses security risks for Service Providers that choose to deploy MTAs with the Secure 
Flow. 

MTAs that support the insecure flows may be provisioned by a user, even if the service provider is 
using the Secure Flows. Unauthorized provisioning of an MTA allows a user to provide their own 
configuration file. The MTA could then be used to communicate normally with a CMS. 
Alternatively, un-authorized provisioning of an MTA could be used to bypass service provider 
controls on secure software download (in the case of the S-MTA) and provide a software image that 
has some perceived value (such as a security vulnerability). 

With respect to the Secure Flow, support for SNMPv2c coexistence for network management 
operations also introduces vulnerabilities to service providers that use the Secure Flow 
(unauthenticated TRAPs and INFORMs could be sent). The best way to address these 
vulnerabilities is to disable SNMPv2c coexistence. 

Therefore it is recommended, as always, that service providers use multiple layers of security to 
ensure that their CMSs and back-office systems are protected against rogue MTAs. 

7.1.1.1 Security services 

7.1.1.1.1 MTA-DHCP server 

Authentication and Message Integrity is desirable on this interface, in order to prevent 
denial-of-service attacks that cause an MTA to be improperly configured. Securing DHCP is 
considered an operational issue to be evaluated by each network operator. It is possible to use 
access control through the local DHCP relay inside the local loop. IPsec can be used for security 
between the DHCP relay and the DHCP server. 

7.1.1.1.2 MTA-SNMP manager 

This clause applies to all SNMPv3 messages between the MTA and an SNMPv3 Manager. Within 
the IPCablecom architecture, the Provisioning Server includes the SNMPv3 Manager function, 
although SNMPv3 traffic occurs both during and after the provisioning phase. 
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Authentication: the identity of the MTA that is sending configuration parameters and faults to the 
SNMP manager must be authenticated, to prevent denial of service attacks. For example, the 
Provisioning Server may be tricked into continuously creating bogus configuration files or into 
creating a configuration file based on incorrect MTA capabilities that in effect disable that MTA.  

Also, during the provisioning sequence the MTA is told (via an SNMP Set) the parameters needed 
to find, authenticate and decrypt its configuration file. If this SNMP Set were forged, it would 
disrupt the MTA provisioning sequence. 

Message Integrity: required to prevent denial-of-service attacks at the OSS and at the MTA – see 
the above description of the denial-of-service attacks under authentication. 

Confidentiality: may be used to protect sensitive MTA configuration data. IPCablecom currently 
does not specify any such sensitive MTA parameters and so confidentiality is optional. 

Access Control: write access to the MTA configuration parameters must be allowed only to the 
authorized OSS users, to prevent denial of service/misconfiguration attacks. Read access can be 
enforced in conjunction with confidentiality, which is optional (see above on confidentiality). 

Note that DHCP is used to configure the MTA with the Kerberos realm name, which points it to a 
particular KDC. DHCP also configures the MTA with the location of the Provisioning Server. Since 
IPCablecom currently does not specify DHCP security, by faking DHCP responses it is possible to 
point MTAs to a wrong Provisioning Server and to a wrong KDC that permits security 
establishment with that Provisioning Server. (The MTA would only authenticate that wrong KDC if 
the CableLabs Service Provider Root CA signed the KDC certificate.) So, it is possible to bypass 
access control, but the attack has to be orchestrated by another MSO that had also been certified by 
IPCablecom. 

7.1.1.1.3 MTA-Provisioning Server, via TFTP Server 

Authentication: required to prevent denial-of-service attacks, that cause an MTA to be improperly 
configured.  

Message integrity: required to prevent denial-of-service attacks that cause an MTA to be either 
improperly configured or configured with old configuration data that was replayed. 

Confidentiality: optional; it is up to the Provisioning Server to decide whether or not to encrypt the 
file. 

Access control: not required at the TFTP Server. If needed, MTA configuration file is encrypted 
with the Provisioning Server-MTA shared key.  

Non-repudiation: is not required. 

7.1.1.2 Cryptographic mechanisms 

7.1.1.2.1 Call flows MTA-15, 16, 17: MTA-SNMP Manager: SNMP Inform/Get 
Requests/Responses 

All SNMP traffic between the MTA and the SNMP Manager in both directions is protected with 
SNMPv3 security per RFC 3414 during the Secure Provisioning process. IPCablecom requires that 
SNMPv3 message authentication is always turned on with privacy being optional (see 6.3). The 
only SNMPv3 encryption algorithm is currently DES-CBC. This is the limitation of the SNMPv3 
IETF standard, although stronger encryption algorithms are desirable. See 6.3. for the list of 
SNMPv3 cryptographic algorithms supported by IPCablecom. 
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7.1.1.2.2 Call Flow MTA-18: Provisioning Server-TFTP Server: Create MTA 
Configuration file 

This clause describes the MTA Config file creation in the Secure Provisioning Flow. In this flow, 
the Provisioning Server builds a MTA device configuration file. This file MUST contain the 
following configuration info for each endpoint (port) in the MTA: 

• CMS name (FQDN format); 

• Kerberos realm for this CMS; 

• Telephony Service Provider Organization Name; 

• PKINIT Grace Period. 

This file MUST be authenticated and MAY be encrypted. If the configuration file is encrypted, then 
the SNMPv3 privacy MUST be used in order to transport the configuration file encryption key 
securely. Once the Provisioning Server builds the configuration file, it will perform the following 
steps: 

1) The provisioning Server decides to encrypt the file, it creates a configuration file encryption 
key and encrypts the file with this key. The encryption algorithm MUST be the same as the 
one that is used for SNMPv3 privacy. It then stores the key and the cipher. The file MUST 
be encrypted using the following procedure: 

a) prepend the file contents with a random byte sequence, called a confounder. The size of 
the confounder MUST be the same as the block size for the encryption algorithm. In 
the case of DES it is 8 bytes; 

b) append random padding to the result in a). The output of this step is of length that is a 
multiple of the block size for the encryption algorithm; 

c) encrypt the result in b) using IV = 0. The output of this step is the encrypted 
configuration file. 

2) It creates a SHA-1 hash of the configuration file and stores it. If the file was encrypted, the 
hash is taken over the encrypted file. 

3) It sends the following items to the MTA in the SNMP SET in the flow MTA-19. 

a) pktcMtaDevConfigKey, which is the configuration file encryption key MIB variable 
generated in step 1. 

b) pktcMtaDevConfigHash, which is the SHA-1 of the configuration file MIB variable 
generated in step 2. 

c) Name and location of the configuration file. 

Steps 1 and 2 MUST occur only when a configuration file is created or an existing file is modified. 
If the pktcMtaDevConfigKey is set, then the MTA MUST use this key to decrypt the configuration 
file. Otherwise, MTA MUST assume that the file is not encrypted. SNMPv3 provides authentication 
when the pktcMtaDevConfigHash is set and therefore the configuration file is authenticated 
indirectly via SNMPv3. 

In the event that SNMPv3 privacy is selected during the key management phase, but is using a 
different algorithm than the one that was selected to encrypt the configuration file (or the 
configuration file was previously in the clear), the configuration file MUST be re-encrypted and the 
TFTP server directory MUST be updated with the new file. Similarly, if the Provisioning Server 
decides not to encrypt the file this time, after it was previously encrypted, the TFTP server directory 
MUST be updated with the new file.  

MTA endpoints MAY also be configured for IP Telephony service while the MTA is operational. In 
that case the same information that is normally assigned to an endpoint in a configuration file 
MUST be assigned with SNMP Set commands.  
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7.1.1.2.3 Call flows MTA-19, 20 and 21: Establish TFTP server location 

This set of call flows is used to establish the IP address of the TFTP server from where the MTA 
will retrieve its configuration file. Although flow MTA-19 is authenticated via SNMPv3, MTA-20 
and 21 are not authenticated. 

Flow MTA-21 allows for denial-of-service attacks, where the MTA is pointed to a wrong TFTP 
server (IP address). The MTA cannot be fooled in accepting the wrong configuration file since 
checking the hash of the file authenticates the file – this denial-of-service attack will result in failed 
MTA provisioning. 

The denial-of-service threats, where responses to DNS queries are forged, are currently not 
addressed by IPCablecom. It is mainly because DNS security (DNSSEC) is not yet available as a 
commercial product and would cause significant operational difficulty in the conversion of the DNS 
databases. 

7.1.1.2.4 Call flows MTA-22, 23: MTA-TFTP Server: TFTP Get/Get Response 

The TFTP get request is not authenticated and thus anyone can request an MTA configuration file. 
This file does not contain any sensitive data and may be encrypted with the Provisioning 
Server-MTA shared key if the Provisioning Server chooses to. In this case no one except the MTA 
can make use of this file. 

This flow is open for a denial-of-service attack, where the TFTP server is made busy with useless 
TFTP get requests. This denial-of-service attack is not addressed at this time. 

The TFTP get response retrieves a configuration file from the TFTP server. The contents of the 
configuration file are listed in 7.1.1.2.2. 

7.1.1.2.5 Security flows 

For each CMS specified in the pktcMtaDevCmsTable table with pktcMtaDevCmsIpsecCtrl value 
set to TRUE and assigned to a provisioned MTA endpoint, the MTA MUST perform the following 
security flows in Table 21 after the provisioning process and prior to any NCS message exchange. 
For each CMS specified in pktcMtaDevCmsTable with pktcMtaDevCmsIpsecCtrl set to FALSE, 
the MTA MUST NOT perform the following flows and MUST send and receive NCS messages 
without IPsec (i.e., NCS packets are sent in the "clear"). 

Table 21 − Post-MTA provisioning security flows 

Security 
flow 

Flow description If step fails, proceed here 

Get Kerberos tickets associated with each CMS with which the MTA communicates. 

SEC-1 DNS SRV Request 
The MTA requests the Telephony KDC host name for the 
Kerberos realm.  
This step MUST NOT be performed if the MTA already 
possesses a valid ticket for the CMS. 

SEC-1 

SEC-2 DNS SRV Reply 
Returns the Telephony KDC host name associated with the 
provisioning realm. If the KDC's IP Address is included in 
the Reply, proceed to SEC-5. 
This step MUST NOT be performed if the MTA already 
possesses a valid ticket for the CMS. 

SEC-1 
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Table 21 − Post-MTA provisioning security flows 

Security 
flow 

Flow description If step fails, proceed here 

SEC-3 DNS Request 
The MTA now requests the IP Address of the Telephony 
KDC. This step MUST NOT be performed if the MTA 
already possesses a valid ticket for the CMS. 

SEC-1 

SEC-4  DNS Reply 
The DNS Server returns the IP Address of the Telephony 
KDC. This step MUST NOT be performed if the MTA 
already possesses a valid ticket for the CMS. 

SEC-1 

SEC-5 AS Request 
For each different CMS assigned to voice communications 
endpoints, the MTA requests a TGT or a Kerberos ticket 
for the CMS by sending a PKINIT REQUEST message to 
the KDC containing the MTA Device Certificate and the 
MTA FQDN. This step MUST NOT be performed if the 
MTA already possesses a valid ticket for the CMS. 

Report alarm. Abort 
establishment of signalling 
security. 

SEC-5a MTA FQDN Request 
The KDC requests the MTA's FQDN from the 
Provisioning Server. 
This step will not occur if the MTA skips SEC-5. 

 

SEC-5b MTA FQDN Reply 
The Provisioning Server replies to the KDC request with 
the MTA's FQDN. 
This step will not occur if the MTA skips SEC-5. 

 

SEC-6 AS Reply 
The KDC sends the MTA a PKINIT REPLY message 
containing the requested Kerberos ticket. This step MUST 
NOT be performed if the MTA already possesses a valid 
ticket for the CMS. 

Proceed to SEC-5 or abort 
signalling security depending 
upon error conditions.  

SEC-7 TGS Request  
In the case where the MTA obtained a TGT in SEC-6, it 
now obtains the Kerberos ticket for the TGS request 
message. This step MUST NOT be performed if the MTA 
already possesses a valid ticket for the CMS. 

Report alarm. Abort 
establishment of signalling 
security. 

SEC-8 TGS Reply 
Response to TGS Request containing the requested CMS 
Kerberos ticket. This step MUST NOT be performed if the 
MTA already possesses a valid ticket for the CMS. 

Proceed here to SEC-7/SEC-5 
or abort signalling security 
depending upon error 
conditions.  
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Table 21 − Post-MTA provisioning security flows 

Security 
flow 

Flow description If step fails, proceed here 

SEC-9 AP Request 
The MTA requests a pair of IPsec simplex Security 
Associations (inbound and outbound) with the assigned 
CMS by sending the assigned CMS an AP REQUEST 
message containing the CMS Kerberos ticket. 

Report alarm. Abort 
establishment of signalling 
security.  

SEC-10 AP Reply 
The CMS establishes the Security Associations and then 
sends an AP REPLY message with the corresponding 
IPsec parameters. The MTA derives IPsec keys from the 
subkey in the AP Reply and establishes IPsec SAs. 

Proceed here to SEC-9/SEC-
7/SEC-5 or abort signalling 
security depending upon error 
conditions.  

Several tables in the MTA MIB are used to control security flows SEC-1 through SEC-10 
(see Table 21). 

The CMS table (pktcMtaDevCmsTable) and the realm table (pktcMtaDevRealmTable) are used for 
managing the MTA security signalling. The realm table defines the domains for the CMSs. The 
CMS table defines the CMSs within the domains. An endpoint is associated with one CMS at any 
given time. The following restrictions MUST be adhered to: 

a) The realm table in the configuration file MUST at a minimum include an entry for the 
realm that is identified in DHCP option 122, suboption 6. 

b) There MUST be a realm table entry for each CMS table entry. Multiple CMS table entries 
MAY utilize the same realm table entry. 

c) Each MTA endpoint defined in the NCS endpoint table (pktcNcsEndPntConfigTable) 
MUST be configured with a CMS FQDN (pktcNcsEndPntConfigCallAdgentId) that is also 
present in the CMS table (pktcMtaDevCmsFqdn). 

d) All members of a CMS cluster defined by the same FQDN MUST use the same 
configuration for establishing security associations as defined in the pktcMtaDevCmsTable. 

e) If NCS signalling selects a CMS (with an N: parameter selection) that is not defined by an 
entry in the CMS table, the same realm and CMS parameters, with the exception of the 
CMS FQDN and pktcMtaDevCmsIpsecCtrl, are used as defined in the current CMS table 
entry. The pktcMtaDevCmsIpsecCtrl flag for the new CMS MUST be set to TRUE. 

The use of the security-relevant MIB tables immediately following step MTA-25 is as follows: 

1) The MTA finds a list of CMSs with which it needs to establish IPsec SAs. This list MUST 
include every CMS that is assigned to a configured endpoint, as specified by the NCS MIB 
table pktcNcsEndPointConfigTable. This list of CMSs MUST include only CMSs that are 
listed in the pktcMtaDevCmsTable. 

2) For each CMS in the above list, the MTA MUST attempt to establish IPsec security 
associations as follows: 

a) Find the corresponding CMS table entry. 

b) If the MTA does not already possess a valid ticket for the specified CMS, use the 
pktcMtaDevCmsKerbRealmName parameter in the CMS table entry to index into the 
pktcMtaDevRealmTable. Then, using the parameters associated with that realm, 
perform steps SEC-1 through SEC-6 and optionally SEC-7 and SEC-8 in order to 
obtain the desired CMS ticket. 
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c) Perform IPsec key management according to flows SEC-9 and SEC-10. This step MAY 
occur at any time after step b above, but it must occur before any signalling messages 
are exchanged with that CMS. 

 The CMS table entry contains various timing parameters used in steps SEC-9 and 
SEC-10. In the case of time-outs or other errors, the MTA may retry using the timing 
parameters specified in the CMS table entry. 

 The above steps MUST also apply when an additional MTA endpoint is activated (see 
ITU-T Rec. J.167) or when an endpoint is configured (via SNMP sets) for a new CMS in 
the NCS MIB (see ITU-T Rec. J.166). 

3) Any time before an MTA endpoint sends an signalling message to a particular CMS, it 
MUST ensure that the respective security association is present. If the MTA is unable to 
establish IPsec SAs with a CMS that is associated with a configured endpoint (by the 
NCS MIB), it MUST set the NCS MIB variable pktcNcsEndPntStatusError to 
noSecurityAssociation (2). 

After the initial establishment of the IPsec security associations for CMSs, the MTA MIB is utilized 
in subsequent key management as follows: 

When the MTA receives a Wake Up message, it MUST respond with an AP Request when the 
corresponding CMS FQDN is found in the pktcMtaDevCmsTable and MUST NOT respond 
otherwise. 

Note that establishment of IPsec security associations due to a Wake Up does not result in any call 
signalling traffic between the MTA and the CMS. 

7.1.1.2.5.1 Call flows SEC-5, 6: Get a Kerberos ticket for the CMS 

The MTA uses PKINIT protocol to get a Kerberos ticket for the specified CMS (see 6.4.3). After 
the KDC receives a ticket request, it retrieves the MTA FQDN from the provisioning server so that 
it can verify the request before replying with a ticket. The Telephony KDC issues the Kerberos 
ticket for a group of one or more CMSs uniquely identified with the pair (Kerberos Realm, CMS 
Principal Name). 

In the event that different MTA ports are configured for a different group of CMSs, the MTA 
MUST obtain multiple Kerberos tickets by repeating these call flows for each CMS. Note that there 
is no requirement that the MTA obtain all the tickets from a single KDC. 

7.1.1.2.5.2 Call flows SEC-7, 8, 9: Establish IPsec SAs with the CMS 

The MTA uses the Kerberos ticket to establish a pair of simplex IPsec Security Associations with 
the given CMS. In the event that different MTA ports are configured with different CMS (FQDN) 
names, multiple pairs of SAs will be established (one set for each CMS). 

When a single Kerberos ticket is issued for clustered Call Agents, it is used to establish more than 
one pair of IPsec SAs. 

A CMS FQDN MAY translate into a list of multiple IP addresses, as would be the case with the 
NCS clustered Call Agents. In those cases, the MTA MUST initiate Kerberized key management 
with one of the IP addresses returned by the DNS Server. The MTA MAY also establish SAs with 
the additional CMS IP addresses. 

Additional IPsec SAs with the other IP addresses MAY be established later, as needed (e.g., the 
current CMS IP address does not respond). 
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7.1.1.3 Key management 

7.1.1.3.1 MTA-SNMP manager 

Key management for the MTA-Provisioning SNMPv3 user MUST use the Kerberized key 
management protocol as it is specified in 6.5.4. The MTA and the Provisioning Server MUST 
support this key management protocol. Additional SNMPv3 users MAY be created with the 
standard SNMPv3 cloning method per RFC 3414 or with the same Kerberized key management 
protocol. 

In order to perform Kerberized key management, the MTA must first locate the KDC. It retrieves 
the provisioning realm name from DHCP and then uses a DNS SRV record lookup to find the 
KDC FQDN(s) based on the realm name (see 6.4.5.1). When there is more than one KDC 
(DNS SRV record) found, DNS assigns a priority (and possibly a weighting) to each one. The MTA 
will choose a KDC based on the DNS priority and weight labelling and will go through the list until 
it finds a KDC that is able to respond. 

7.1.1.3.2 MTA-TFTP server 

The optional encryption key for the MTA configuration file is passed to the MTA with an SNMP 
Set command (by the Provisioning Server) shown in the provisioning flow MTA-19. SNMPv3 
security is utilized to provide message integrity and privacy. In the event that SNMPv3 privacy is 
not enabled, the MTA configuration file MUST NOT be encrypted and the file encryption key 
MUST NOT be passed to the MTA. 

The encryption algorithm used to encrypt the file MUST be the same as the one used for SNMPv3 
privacy. The same file encryption key MAY be re-used on the same configuration file while the 
MTA configuration file contents are unchanged. However, if the MTA configuration file changes or 
if a different encryption algorithm is selected for SNMPv3 privacy, the Provisioning Server MUST 
generate a new encryption key, MUST re-encrypt the configuration file and MUST update the 
TFTP server with the re-encrypted file. 

7.1.1.4 MTA embedded keys 

The MTA device MUST be manufactured with a public/private RSA key pair and an X.509 device 
certificate that MUST be different from the BPI+ device certificate.  

7.1.1.5 Summary security profile matrix – Device provisioning 

The following matrix in Table 22 applies only to the Secure Provisioning Flow and SNMPv3.  
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Table 22 − Security profile matrix – MTA device provisioning  

 SNMP TFTP (MTA-TFTP server) 

Authentication Yes Yes: authentication of source of configuration data. 

Access control Yes: write access to MTA 
configuration is limited to 
authorized SNMP users.  
Read access can also be 
limited to the valid users 
when confidentiality is 
enabled. 

Yes: write access to the TFTP server must be 
limited to the Provisioning Server but is out of 
scope for IPCablecom. Read access can be 
optionally indirectly enabled when the MTA 
configuration file is encrypted. 

Integrity Yes Yes 

Confidentiality Optional Optional (of MTA configuration information during 
the TFTP-get). 

Non-repudiation No No 

Security 
mechanisms 

SNMPv3 authentication and 
privacy. Kerberized key 
management protocol 
defined by IPCablecom. 

Hash of the MTA configuration file is sent to the 
MTA over SNMPv3, providing file authentication. 
When the file is encrypted, the key is also sent to 
the MTA over SNMPv3 (with SNMPv3 encryption 
turned on). 

7.1.2 Subscriber enrolment 

The subscriber enrolment process establishes a permanent customer billing account that uniquely 
identifies the MTA to the CMS via the endpoint ID, which contains the MTA's FQDN. The billing 
account is also used to identify the services subscribed to by the customer for the MTA.  

Subscriber enrolment MAY occur in-band or out-of-band. The actual specification of the subscriber 
enrolment process is out of scope for IPCablecom and may be different for each Service Provider. 
The device provisioning procedure described in the previous clause allows the MTA to establish 
IPsec Security Associations with one or more Call Agents, regardless of whether or not the 
corresponding subscriber had been enrolled. 

As a result, when subscriber enrolment is performed in-band, a communication to a Customer 
Service Record (CSR) (or to an automated subscriber enrolment system) is protected using the same 
security mechanisms that are used to secure all other voice communication. 

During each communication set-up (protected with IPsec ESP), the CMS MUST check the identity 
of an MTA against its authorization database to validate which voice communications services are 
permitted. If that MTA does not yet correspond to an enrolled subscriber, it will be restricted to 
permitting a customer to contact the service provider to establish service ("customer enrolment"). 
Some additional services, such as communications with emergency response organizations 
(e.g., 911), may also be permitted in this case. Since in-band customer enrolment is based on 
standard security provided for call signalling and media streams, no further details are provided in 
this clause. Refer to 7.6 and 6.6 on media streams. 
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7.2 Quality of Service (QoS) signalling 

7.2.1 Dynamic Quality of Service (DQoS) 

7.2.1.1 Reference architecture for embedded MTAs 
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Figure 11 − QoS Signalling interfaces in the IPCablecom network 

7.2.1.2 Security services 

7.2.1.2.1 CM-CMTS J.112 QoS messages  

Refer to ITU-T Rec. J.112. 

7.2.1.2.2 Gate Controller – CMTS COPS messages  

Authentication, access control and message integrity: required to prevent QoS theft and 
denial-of-service attacks. 

Confidentiality: required to keep customer information private. 

7.2.1.3 Cryptographic mechanisms 

7.2.1.3.1 CM-CMTS J.112 QoS messages 

The J.112 QoS messages are specified in the radio-frequency interface (RFI) specification in 
ITU-T Rec. J.112. 

7.2.1.3.1.1 QoS service flow 

A service flow is a J.112 MAC-layer transport service that provides unidirectional transport of 
packets either to upstream packets transmitted by the CM or to downstream packets transmitted by 
the CMTS. A service flow is characterized by a set of QoS Parameters such as latency, jitter, and 
throughput assurances. In order to standardize operation between the CM and CMTS, these 
attributes include details of how the CM requests mini-slots and the expected behavior of the CMTS 
upstream scheduler. 

ITU-T J.112 defines a Classifier, which consists of some packet matching criteria (IP source 
address, for example), a classifier priority, and a reference to a service flow. If a packet matches the 
specified packet matching criteria, it is then delivered on the referenced service flow. 

Downstream Classifiers are applied by the CMTS to packets it is transmitting, and Upstream 
Classifiers are applied at the CM and may be applied at the CMTS to police the classification of 
upstream packets. 
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The network can be vulnerable to IP packet attacks; i.e., attacks stemming from an attacker using 
another MTA's IP source address and flooding the network with the packets intended for another 
MTA's destination address. A CMTS controlling downstream service flows will limit an MTA's 
downstream bandwidth according to QoS allocations. If the CMTS is flooded from the backbone 
network with extra packets intended for one of its MTAs, packets for that MTA may be dropped to 
limit the downstream packet rate to its QoS allocation. The influx of the attacker's packets may 
result in the dropping of good packets intended for the destination MTA. 

To thwart this type of network attack, access to the backbone network should be controlled at the 
entry point. This can be accomplished using a variety of QoS classifiers, but is most effective when 
the packet source is verified by its source IP address. This will limit the ability of a rogue source to 
flood the network with unauthorized IP packets. 

To address J.112 CMTS accesses to the network, the CMTS SHOULD apply upstream classifiers to 
police upstream packets from its network, including the verification of the source IP address.  

For more information regarding the use of packet classifiers, refer to the J.112 CMTS-CMS Gate 
Coordination Messages (over UDP). 

7.2.1.3.2 Gate Controller – CMTS COPS messages 

To download a QoS policy for a particular communications connection, the Gate Controller 
function in the CMS MUST send COPS messages to the CMTS. These COPS messages MUST be 
both authenticated and encrypted with IPsec ESP. Refer to 6.1 on the details of how IPsec ESP is 
used within IPCablecom and for the list of available ciphersuites. 

7.2.1.4 Key management 

7.2.1.4.1 Gate Controller – CMTS COPS messages 

Key management for this COPS interface is either IKE or Kerberos. Implementations MUST 
support IKE with pre-shared keys. Implementations MAY support IKE with X.509 certificates and 
they MAY support Kerberos using symmetric keys. For more information on the IPCablecom use 
of IKE, refer to 6.2.2. For more information on the IPCablecom use of Kerberos with symmetric 
keys, refer to 6.4.3 and 6.5. 

When the Gate Controller detects a failure of all COPS connections associated with a particular 
outgoing IPsec SA, it MUST delete all associated SAs (IKE and IPsec SAs if IKE is used as the 
Key management protocol or only IPsec SAs if Kerberos is used as the Key management protocol).  

Subsequently, every N times (1 ≤ N ≤ 10) that the Gate Controller tries to recover the connection, 
the SAs MUST be removed.  

7.2.1.4.2 Security profile matrix summary 

Table 23 − Security profile matrix – DQoS 

 
COPS 

(CMTS-CMS) 

Authentication Yes 

Access control Yes 

Integrity Yes 

Confidentiality Yes 

Non-repudiation No 

Security mechanisms IPsec with encryption and message integrity. 
IKE or Kerberos 
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7.3 Billing system interfaces 

7.3.1 Security services 

7.3.1.1 CMS-RKS interface 

Authentication, access control and message integrity: required to prevent service theft and 
denial-of-service attacks. Want to ensure that the billing events reported to the RKS are not 
falsified. 

Confidentiality: required to protect subscriber information and communication patterns. 

7.3.1.2 CMTS-RKS interface 

Authentication, access control and message integrity: required to prevent service theft and 
denial-of-service attacks. Want to ensure that the billing events reported to the RKS are not 
falsified. 

Confidentiality: required to protect subscriber information and communication patterns. Also, 
effective QoS information and network performance is kept secret from competitors. 

7.3.1.3 MGC-RKS interface 

Authentication, access control and message integrity: required to prevent service theft and 
denial-of-service attacks. Want to ensure that the billing events reported to the RKS are not 
falsified. 

Confidentiality: required to protect subscriber information and communication patterns. 

7.3.2 Cryptographic mechanisms 

Both message integrity and privacy MUST be provided by IPsec ESP, using any of the ciphersuites 
that are listed in 6.1.2. 

RADIUS itself defines MD5-based keyed MAC for message integrity at the application layer. And, 
there does not appear to be a way to turn off this additional integrity check at the application layer. 
For IPCablecom, the key for this RADIUS MAC MUST always be hardcoded to the value of 
16 ASCII 0s. This, in effect, turns the RADIUS keyed MAC into an MD5 hash that can be used to 
protect against transmission errors but does not provide message integrity. No key management is 
needed for RADIUS MACs. 

Billing event messages contain an 8-octet binary Element ID of the CMS, CMTS or the MGC. The 
RKS MUST verify each billing event by ensuring that the specified Element ID correctly 
corresponds to the IP address. This check is done via a lookup into a map of IP addresses to 
Element IDs. Refer to 7.3.3 on how this map is maintained. A combined element (such as a 
combined CMS/MGC) MAY use the same IP address and Security Association to convey Event 
Messages from both elements. Additionally, both elements may use the same Element ID. Refer 
to 7.3.3.1 for information on how to maintain a map of multiple elements and Element IDs. 

7.3.2.1 RADIUS server chaining 

RADIUS servers may be chained. This means that when the local RADIUS server that is directly 
talking to the CMS or CMTS client is not able to process a message, it forwards it to the next server 
in the chain. 

IPCablecom specifies security mechanisms only on the links to the local RADIUS server. 
IPCablecom also requires authentication, access control, message integrity and privacy on the 
interfaces between the chained RADIUS servers, but the corresponding specifications are outside of 
the scope of IPCablecom. 

Key management (in the following clause) applies to the local RADIUS server/RKS only. 
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7.3.3 Key management 

7.3.3.1 CMS-RKS interface 

The CMS and the RKS MUST negotiate a shared secret (CMS-RKS Secret) using IKE or Kerberos 
with symmetric keys (implementations MUST support IKE with pre-shared keys; they MAY 
support IKE with X.509 certificates and they MAY support Kerberos using symmetric keys). For 
more information on the IPCablecom use of IKE, refer to 6.2.2. For more information on the 
IPCablecom use of Kerberos with symmetric keys, refer to 6.4.3 and 6.5. 

The key management protocol MUST run asynchronous to the billing event generation and will 
guarantee that there is always a valid, non-expired CMS-RKS Secret.  

An RKS MUST maintain a mapping between an IP address and an Element ID for each host with 
which it has IPsec Security Associations. How this mapping is created depends on the IPsec key 
management protocol: 

1) IKE with Pre-Shared Keys. One way to implement this mapping is to provide a local 
database of which Element ID(s) are associated with the source IP address. 

2) IKE with Certificates. As specified in 8.2.3.4.3, a certificate of a server that sends billing 
event messages to an RKS contains its Element ID(s) in the CN attribute of the 
distinguished name. During IKE phase 1, the RKS MUST save a mapping between the IP 
address and its Element ID(s) that is contained in the certificate.  

3) Kerberized Key Management. As specified in 6.4.5.5, a principal name of each server that 
reports billing event messages to the RKS includes its Element ID(s). After an RKS 
receives and validates an AP Request message, it MUST save a mapping between the IP 
address and its Element ID(s) that is contained in the principal name.  

When an event message arrives at the RKS, the RKS MUST retrieve a source IP address based on 
the Element ID, using the mapping established during key management. The RKS MUST ensure 
that this address is the same as the source IP address in the IP packet header.  

Later, when a billing event arrives at the RKS, it MUST be able to query the database of IPsec 
Security Associations and retrieve a source IP address, based on the Element ID. The RKS MUST 
ensure that it is the same as the source IP address in the IP packet header. 

7.3.3.2 CMTS-RKS interface 

CMTS and RKS MUST negotiate a shared secret (CMTS-RKS Secret) using IKE or Kerberos 
(implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 
certificates and they MAY support Kerberos using symmetric keys). For more information on the 
IPCablecom use of IKE, refer to 6.2.2. For more information on the IPCablecom use of Kerberos 
with symmetric keys, refer to 6.4.3 and 6.5. 

The key management protocol MUST be running asynchronous to the billing event generation and 
will guarantee that there is always a valid, non-expired CMTS-RKS Secret.  

An RKS maintains a mapping between an IP address and an Element ID for each host with which it 
has IPsec Security Associations, as specified in 7.3.3.1. This includes the CMTS. 

When a billing event arrives at the RKS, it MUST retrieve a source IP address, based on the 
Element ID using the mapping established during key management. The RKS MUST ensure that it 
is the same as the source IP address in the IP packet header. 

7.3.3.3 MGC-RKS interface 

MGC and RKS MUST negotiate a shared secret (MGC-RKS Secret) using IKE or Kerberos 
(implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 
certificates and they MAY support Kerberos using pre-shared keys). For more information on the 
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IPCablecom use of IKE, refer to 6.2.2. For more information on the IPCablecom use of Kerberos 
with symmetric keys, refer to 6.4.3 and 6.5. 

The key management protocol MUST be running asynchronous to the billing event generation and 
will guarantee that there is always a valid, non-expired MGC-RKS Secret.  

An RKS maintains a mapping between an IP address and an Element ID for each host with which it 
has IPsec Security Associations, as specified in 7.3.3.1. This includes the MGC. 

When an event arrives at the RKS, it MUST retrieve a source IP address, based on the Element ID 
based on the mapping established during key management. The RKS MUST ensure that it is the 
same as the source IP address in the IP packet header. 

7.3.4 Billing system summary security profile matrix 

Table 24 − Security profile matrix – RADIUS 

 RADIUS Accounting 
(CMS-RADIUS 

Server/RKS) 

RADIUS Accounting 
(CMTS-RADIUS 

Server/RKS) 

RADIUS Accounting 
(MGC-RADIUS 

Server/RKS) 

Authentication Yes Yes Yes 

Access control Yes Yes Yes 

Integrity Yes Yes Yes 

Confidentiality Yes Yes Yes 

Non-repudiation No No No 

Security mechanisms IPsec ESP with 
encryption and message 
integrity enabled. 
Key management using 
IKE or Kerberos 

IPsec ESP with 
encryption and message 
integrity enabled. 
Key management using 
IKE or Kerberos  

IPsec ESP with 
encryption and message 
integrity enabled. 
Key management using 
IKE or Kerberos  

7.4 Call signalling 

7.4.1 Network Call Signalling (NCS) 

7.4.1.1 Reference architecture 

Figure 12 shows the network components and the various interfaces to be discussed in this clause. 

J.170_F12  

Figure 12 − NCS reference architecture 
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Figure 12 shows a CMS containing a cluster of Call Agents, which are identifiable by one CMS 
FQDN. It also shows, even though this is not a likely scenario in early deployments, that different 
CMSs could potentially manage different endpoints in a single MTA.  

The security aspects of interfaces pkt-s3 and pkt-s4 (RTP bearer channel and RTCP) are described 
in 6.6. The protocol interface pkt-s16 (CMS to CMS) is SIP, with IPCablecom extensions, as 
specified in ITU-T Rec. J.178. 

When a call is made between two endpoints in different zones, the call signalling has to traverse the 
path between two different CMSs. The signalling protocol between CMSs is SIP with IPCablecom 
specific extensions. See ITU-T Rec. J.178 for more details. Initially, the initiating CMS may not 
have a direct signalling path to a terminating CMS. The call routing table of the initiating CMS may 
point it to an intermediate SIP proxy. That SIP proxy, in turn, may point to another SIP proxy. In 
general, we make no assumptions about the number of SIP proxies in the signalling path between 
the CMSs. Once the two CMSs have discovered each other's location, they have the option to 
continue SIP signalling directly between each other. The SIP proxies that route traffic between 
domains are called Exterior Border Proxies (EBPs). EBPs enforce access control on all signalling 
messages routed between domains. They also provide application level security on sensitive 
information contained within SIP messages. While not depicted in Figure 12, CMSS may also be 
used between a CMS and an MGC. 

As SIP proxies and CMSs may be in different PacketCable domains (and consequently different 
trust domains), there must be a signalling path and trust relationship between two domains, before 
any direct SIP signalling can take place. IPCablecom Server certificates are used for TLS mutual 
authentication in CMSS and provide the trust infrastructure for SIP signalling. A CMS or EBP may 
be configured to trust only specific Service Provider CA certificates and/or FQDNs (i.e., access list) 
of external CMSs and EBPs. Generally, trust between different Service Provider domains is be 
provided by the EBPs. 

7.4.1.2 Security services 

The same set of requirements applies to both CMS-MTA and CMS-CMS signalling interfaces. 

Authentication: Signalling messages should be authenticated in order to prevent a third party 
masquerading as either an authorized MTA, CMS, MGC or SIP Proxy. 

Confidentiality: NCS messages carry dialled numbers and other customer information, which must 
not be disclosed to a third party. Thus, confidentiality of signalling messages should be required. 
The signalling messages carry media stream keying material that must be kept private on each 
signalling hop, and should also be kept private end-to-end between the initiating and target CMSs, 
to avoid exposure at SIP signalling proxies. There is no standard well-supported mechanism to 
support end-to-end privacy of keying material, however, so only hop-by-hop confidentiality is 
supported in IPCablecom. 

Message integrity: This should be assured in order to prevent tampering with signalling messages – 
e.g., changing the dialled numbers. 

Access control: Services enabled by the NCS signalling should be made available only to authorized 
users – thus, access control is required at the CMS. 

7.4.1.3 Cryptographic mechanisms 

IPsec ESP MUST be used to secure the NCS signalling between the CMS and MTA. IPsec keys 
MUST be derived using the mechanism described in 6.5.3.1. 

TLS MUST be used to secure the SIP signalling (CMSS) between CMSs and between CMSs and 
SIP proxies (EBPs). 
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The first SIP signalling round trip between the initiating and target CMSs may transit through any 
number of intermediate SIP signalling proxies. Since TLS is applied separately on each signalling 
hop, the contents of the SIP signalling message is decrypted and re-encrypted at each SIP signalling 
proxy. The full contents of the SIP signalling message, including media stream keying material, are 
available in the clear at each intermediate SIP signalling proxy.  

7.4.1.3.1 MTA-CMS interface 

Each signalling message coming from the MTA and containing the MTA domain name (included in 
the NCS endpoint ID field) must be authenticated by the CMS. This domain name is an 
application-level NCS identifier that will be used by the Call Agent to associate the communication 
with a paying subscriber. In order to perform this authentication, the CMS MUST maintain an 
IP address to FQDN map for each MTA IP address that has a current SA. This map MUST be built 
during the key management process described in the following clause and does not need to reside in 
permanent storage. 

7.4.1.3.2 CMS-CMS, CMS-MGC, CMS-SIP Proxy and SIP Proxy-SIP Proxy interfaces 

When a CMS, MGC or a SIP Proxy receives a SIP signalling message, it SHOULD map the source 
IP address to the identity (FQDN) of the CMS or SIP Proxy and to the local policy associated with 
that FQDN. This lookup would utilize an IP address FQDN map for all MGCs and SIP Proxies that 
have current TLS sessions with this host. This map is built during key management described in the 
following clause and does not need to reside in permanent storage. 

7.4.1.4 Key management 

7.4.1.4.1 MTA-CMS key management 

The MTA MUST use Kerberos with PKINIT to obtain a CMS service ticket (see 6.4.3). The MTA 
SHOULD first obtain a TGT (Ticket Granting Ticket) via the AS Request/AS Reply exchange with 
the KDC (authenticated with PKINIT). In the case that the MTA obtained a TGT, it performs a 
TGS Request/TGS Reply exchange to obtain the CMS service ticket (see 6.4.4). 

After the MTA has obtained a CMS ticket, it MUST execute a Kerberized key management 
protocol (that utilizes the CMS ticket) with the CMS to create SAs for the pkt-s10 interface. This 
Kerberized key management protocol is specified in 6.5. Clause 6.5 also describes the mechanism 
to be deployed to handle timed-out IPsec keys and Kerberos tickets. The mechanism for 
transparently handling key switch-over from one key lifetime to another key lifetime is also 
defined. 

The key distribution and time-out mechanism is not linked to any specific NCS message. Rather, 
the MTA will obtain the Kerberos ticket from the KDC when started and will refresh it based on the 
time-out parameter. Similarly, the MTA will obtain the sub-key (and thus IPsec ESP keys) based on 
the IPsec time-out parameters. In addition, when the IPsec ESP keys are timed out and the MTA 
needs to transmit data to the CMS, it will perform key management with the CMS and obtain the 
new keys. It is also possible for the IPsec SAs to expire at the CMS while it has data to send to 
the MTA. In this case, clause 6.5.3.5.3 describes the technique for the CMS to initiate key 
management and establish new security associations. 

7.4.1.4.1.1 Call Agent clustering  

At the time that the CMS receives a Kerberos ticket for establishing an IPsec SA, it MUST extract 
the MTA FQDN from the MTA principal name in the ticket and map it to the IP address. This map 
is later used to authenticate the MTA endpoint ID in the NCS signalling messages.  

In the case a CMS, or an application server, is constructed as a cluster of Call Agents with different 
IP addresses, all Call Agents should share the same service key for decrypting a Kerberos ticket. 
Thus, the MTA will need to execute a single PKINIT Request/Reply sequence with the KDC and 
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multiple AP Request/Reply sequences for each Call Agent in the cluster. The Kerberos messages 
are specified in 6.4.4. 

Optimized key management is specified for the case when, in the middle of a communication, a 
clustered Call Agent sends a message to an MTA from a new IP address, where it does not yet have 
an IPsec SA with that MTA (see 6.5.2.1). 

In this optimized approach, the CMS sends a Rekey message instead of the Wake Up. This Rekey 
message is authenticated with a SHA-1 HMAC, using a Server Authentication Key, derived from a 
session key used to encrypt the last AP Reply sent from the same CMS (or another CMS with the 
same Kerberos Principal Name). 

Additionally, the Rekey message includes IPsec parameters, to avoid the need for the AP Reply 
message. The MTA responds with a different version of the AP Request that includes the 
MTA-CMS Secret, normally sent by the CMS in the AP Reply. As a result, after the MTA responds 
with the AP Request, a new IPsec SA can be established with no further messages. The total price 
for establishing a new SA with this optimized approach is a single round-trip time. This is 
illustrated in Figure 13. 

J.170_F13 

Figure 13 − Key management for NCS clusters 

In Figure 13, an NCS clustered Call Agent suddenly decides to send an NCS message from a new 
IP address that did not previously have any SA established with that MTA. 

The first security association SA1 with CMS at IP1 was established with a basic AP Request/AP 
Reply exchange. HMAC key KSRA for authenticating Rekey message from the CMS was derived 
from the session key used to encrypt the AP Reply (as shown in steps 1 through 3 in Figure 13). 
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When a new SA3 needs to be established between the MTA and CMS at IP3, the key management is 
as follows in steps 4 and 5 in Figure 13: 

4) The CMS at IP3 sends a Rekey message, similar in functionality to the Wake Up message, 
but with a significantly different content. It contains: 

• IPsec parameters (also found in the AP Reply): SPI, selected ciphersuite, SA lifetime, 
grace period, and re-establish flag. The purpose of adding these IPsec parameters to 
Rekey is to eliminate the need for the subsequent AP Reply message. 

• SHA-1 HMAC using KSRA. 

5) AP Request that includes the MTA-CMS secret, normally sent in the AP Reply message. 
This is a legal Kerberos mode, where the key is contained in the AP Request and AP Reply 
is not used at all. 

For more details, refer to 6.5.3. 

7.4.1.4.1.2 MTA controlled by multiple CMSs 

In the case a single MTA is controlled by multiple CMSs and each CMS is associated with a 
different Kerberos realm, the MTA will need to execute multiple PKINIT Request/Reply exchanges 
with the KDC, one for each realm, optionally followed by a TGS Request/Reply exchange. Then, 
an MTA would execute multiple AP Request/Reply exchanges in order to create the security 
association with the individual CMSs. 

7.4.1.4.1.3 Transferring from one CMS to another via NCS signalling  

When control of an MTA endpoint is transferred from one CMS to another via NCS signalling, the 
following steps are taken: 

1) The new CMS might not have been included in the CMS table. In that case, the 
corresponding table entry MUST be locally created. Refer to 7.1.1.2.5 for instructions on 
how to create the new CMS table entry.  

2) If the MTA does not already have IPsec SAs established with this CMS (e.g., via an earlier 
Wake Up), it MUST attempt to establish them at this time. 

3) If the MTA now possesses valid IPsec security associations with the new CMS, the NCS 
signalling software is notified and the security association can be utilized. Further 
signalling traffic for this affected endpoint related to the prior CMS security association 
MUST NOT be sent. 

7.4.1.4.2 CMS-CMS, CMS-MGC, CMS-SIP Proxy, SIP Proxy-SIP Proxy key management 

When a CMS MGC, or a SIP Proxy has data to send to another CMS, MGC, or SIP Proxy and does 
not already have a TLS session with that host, it MUST first establish a TLS session with the other 
CMS, MGC, or SIP Proxy (see 6.9). 

A CMS or a SIP Proxy SHOULD create TLS sessions ahead of time (before they are needed) 
whenever possible and maintain persistent connections.  

7.4.1.4.2.1 Example of inter-domain Call Set-up with TLS sessions 

Figure 14 depicts a typical SIP signalling flow for an inter-domain call set-up in which EBPs are 
used (refer to ITU-T Rec. J.178 for further details on CMSS call flows). It illustrates several points 
in the End-End call set-up where different TLS sessions and TCP connections may be required and 
also emphasizes the importance of connection persistence and re-use to minimize TCP connection 
and TLS session establishment during the call set-up (i.e., in order to minimize performance 
impacts and call set-up delays). It should be noted that a peering relationship between two SIP User 
Agents (i.e., CMSs and/or EBPs) often results in two TCP connections, one for SIP transactions 
initiated in each direction. This is due to the fact most TCP connections are initiated using 



 

102 Rec. ITU-T J.170 (11/2005) 

ephemeral source ports, and SIP transactions are initiated by sending SIP requests to a User Agent's 
well-known SIP port. As for securing each TCP connection with TLS, TLS clients typically cache 
TLS sessions based on specific remote IP address and port pairs; therefore, it is unlikely that TLS 
session caching using a common TLS master key can be used for both of the TLS sessions. 

The inter-domain signalling flow begins with CMS "A" sending an INVITE to EBP "A" (CMS "A" 
is initiating a SIP INVITE transaction and will signal the well-known SIP port on EBP "A"). A TLS 
session is required and may need to be established for the TCP connection if one does not already 
exist (which can be re-used) for this new transaction. Similarly, a TLS session is required for each 
hop in this INVITE transaction, and may require a TLS session to be established between EBP "A" 
and EBP "B", and also between EBP "B" and CMS "B". 

The 183 (Session Progress) response from CMS "B" is routed back through the EBPs to CMS "A" 
using the previously established TLS sessions. Once CMS "A" receives this 183 response, it sends a 
PRACK (Provisional ACK) directly to CMS "B". This PRACK is a SIP request which initiates a 
new transaction, and requires that a TLS session be established with CMS "B"'s well-known SIP 
port. CMS "B" sends a 200 OK response back to CMS "A" (using the same TLS session and TCP 
connection) as the final response to this PRACK transaction. Upon receiving a response to its initial 
INVITE, CMS "A" will also send an UPDATE request to CMS "B" over the previously established 
TLS session, to indicate that resource reservation has been completed. CMS "B" will respond with a 
200 OK, completing this UPDATE transaction. 

Upon receiving the UPDATE, CMS "B" reserves any necessary resource and sends back a 180 
(Ringing) provisional response to CMS "A" over the previously established TLS session. This 
provisional response will also initiate PRACK/200 OK transaction between the two CMSs, over the 
same TLS session.  

Once the terminating end answers the call, CMS "B" sends the 200 OK final response to the 
INVITE. However, this response is sent back via the EBPs using the same TLS sessions used for 
the INVITE. CMS "A" will acknowledge receipt of this 200 OK response by sending an ACK (a 
SIP request) directly to CMS "B". This ACK is sent using the previously established TLS session 
used for the first PRACK. 

Once the call is established, the example illustrates the case where the terminating end goes on 
hook. CMS "B" initiates a BYE/200 OK transaction by sending a BYE (SIP request) to CMS "A". 
As this BYE request is sent to the well-known SIP signalling port of CMS "A", it is very likely that 
CMS "B" will need to use a different TCP connection and TLS session than the ones used for 
sending SIP requests from CMS "A" to CMS "B" (assuming CMS "A" is using an ephemeral port 
for its TCP connection to CMS "B"). 

As can be seen from this example, two TCP connections with two distinct TLS sessions may be 
required between two CMSs. It is important to support persistent and re-usable connections and 
TLS session caching in order to minimize impacts on CMS performance and call latency. 
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Figure 14 – CMS – CMS Signalling Flow with Security 

Figure 14 illustrates the beginning of an inter-domain call set-up. In this example, the signalling 
between the two CMSs is routed through two EBPs (Exterior Border Proxies). After one round-trip 
between the CMSs (after the 183 SDP message is received by CMS "A"), the rest of the CMS-CMS 
signalling is done directly, without the involvement of the intermediate EBPs. 

Figure 14 assumes that there are no prior SAs between the two CMSs and that CMS "B" does not 
possess a service ticket for CMS "A". It shows the key management flows necessary to establish the 
necessary SAs for this call.   

CMS "B" sends a TGS Request to its local KDC (KDC "B") to get a ticket for CMS "A". This TGS 
Request is sent at the same time as the Gate-Set message to the local CMTS. The key management 
flows continue in parallel with the subsequent DQoS flows (Gate-Set ACK) and also in parallel 
with some NCS signalling flows (CRCX from CMS "B" to MTA "B" and the 200+SDP response 
from MTA "B"). After the 200+SDP response, no more parallelism is possible.  

The next signalling message that CMS "B" sends out is the 183 SDP to EBP "B" that has to wait 
until CMS "B" obtains a ticket for CMS "A", in order to encrypt the media stream keying material 
inside SDP. To ensure synchronization, CMS "B" also waits until it establishes IPSec SAs with 
CMS "B", before sending the 183 SDP. This guarantees that when CMS "A" later sends a signalling 
message (PRACK) directly to CMS "B", IPSec SAs will already be established. 

Since CMS "A" is in a different realm (and not in KDC "B's" database), the TGS Request from 
CMS "B" causes KDC "B" to perform a DNS lookup to retrieve CMS "A's" realm name. After the 
DNS lookup is complete, KDC "B" will attempt to locate a ticket for KDC "A" in its local ticket 
cache. If it finds that ticket, it will immediately return to CMS "B" the cross-realm TGT needed to 
authenticate to KDC "A". If (in a rare circumstance) KDC "B" does not currently have a ticket for 
KDC "A", it will first have to perform DNS lookups to locate it and then perform a PKCROSS 
exchange with KDC "A" to obtain the KDC ticket. 

Once CMS "B" finally receives a cross-realm TGT for KDC "A", it has to send another TGS 
Request for KDC "A" and then finally obtain the service ticket for CMS "A". In order for CMS "B" 
to contact KDC "A", it will first have to perform two more DNS queries (one to get the KDC "A's" 
FQDN and another to get its IP address). 
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After CMS "B" had obtained a ticket for CMS "A", it will initiate Kerberized IPsec key 
management with CMS "A" in order to set up SAs. After IPSec SAs are established, CMS "B" 
continues with signalling by sending 183 SDP SIP message to CMS "A", via the external border 
proxy EBP "B". The keying material inside 183 SDP is encrypted as specified in 7.4.1.4.2.1. 
Further SIP signalling between the two CMSes is sent directly, without the participation of the 
border proxies and using the just established IPSec SAs. 

7.4.2 Call Signalling Security Profile Matrix  

Table 25 – Security profile matrix – Network call signalling 

 MTA-CMS CMS-CMS 
CMS-SIP Proxy/ 

SIP Proxy-SIP Proxy 

Authentication Optional Yes Yes 

Access control Optional Yes Yes 

Integrity Optional Yes Yes 

Confidentiality Optional Yes Yes 

Non-repudiation No No No 

Security 
mechanisms 

IPsec ESP with 
encryption and message 
integrity enabled 
Authentication via 
Kerberos with PKINIT 
Kerberized key 
management defined by 
IPCablecom 
Security may be disabled 
through the provisioning 
process. 

TLS with encryption and 
message integrity 
Authentication via X.509 
certificates (or symmetric 
keys when TLS session 
caching is used) 

TLS with encryption and 
message integrity  
Authentication via X.509 
certificates (or symmetric 
keys when TLS session 
caching is used) 

7.5 PSTN Gateway interface 

7.5.1 Reference architecture 

An IPCablecom PSTN Gateway consists of three functional components: 

• a Media Gateway Controller (MGC) which may or may not be part of the CMS; 

• a Media Gateway (MG); and 

• a Signalling Gateway (SG). 

These components are described in detail in ITU-T Rec. J.171.x. 

7.5.1.1 Media Gateway Controller  

The Media Gateway Controller (MGC) is the PSTN gateway's overall controller. The MGC 
receives and mediates call-signalling information between the IPCablecom and the PSTN domains 
(from the SG), and it maintains and controls the overall state for all communications. 

7.5.1.2 Media Gateway  

Media Gateways (MG) provide the bearer connectivity between the PSTN and the IPCablecom 
network.  
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7.5.1.3 Signalling Gateway  

IPCablecom provides support for SS7 signalling gateways. The SG contains the SG to MGC 
interface. Refer to ITU-T Rec. J.171.x for more detail on signalling gateways. 

The SS7 Signalling Gateway performs the following security-related functions: 

• Isolates the SS7 network from the IP network. Guards the SS7 network from threats such as 
information leakage, integrity violation, denial-of-service, and illegitimate use. 

• Provides mechanisms for certain trusted entities ("TCAP Users") within the IPCablecom 

network, such as Call Agents, to query external PSTN databases via TCAP messages sent 
over the SS7 network. 

7.5.2 Security services 

7.5.2.1 MGC-MG interface  

Authentication: Both the MG and the MGC must be authenticated, in order to prevent a third party 
masquerading as either an authorized MGC or MG. 

Access control: MG resources should be made available only to authorized users – thus, access 
control is required at the MG. 

Integrity: must be assured in order to prevent tampering with the TGCP signalling messages – 
e.g., changing the dialled numbers. 

Confidentiality: TGCP signalling messages carry dialled numbers and other customer information, 
which must not be disclosed to a third party. Thus, confidentiality of the TGCP signalling messages 
is required. 

7.5.3 Cryptographic mechanisms 

7.5.3.1 MGC-MG interface 

IPsec ESP MUST be used to both authenticate and encrypt the messages from MGC to MG and 
vice versa. Refer to 6.1 for details of how IPsec ESP is used within IPCablecom and for the list of 
available ciphersuites. 

7.5.4 Key management 

7.5.4.1 MGC-MG interface 

Key management for MGC-MG interface is either IKE or Kerberos. Implementations MUST 
support IKE with pre-shared keys. Implementations MAY support IKE with X.509 certificates and 
they MAY support Kerberos using symmetric keys. For more information on the IPCablecom use 
of IKE, refer to 6.2.2. For more information on the IPCablecom use of Kerberos with symmetric 
keys, refer to 6.4.3 and 6.5. 

The key management protocol ensures that there is always a valid, non-expired MGC-MG Secret.  
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7.5.5 MGC-MG summary security profile matrix 

Table 26 − Security profile matrix – TCAP/IP and TGCP 

 TGCP 
(MG-MGC) 

Authentication Yes 

Access control Yes 

Integrity Yes 

Confidentiality Yes 

Non-repudiation No 

Security mechanisms IPsec, IKE or Kerberos 

7.6 Media stream 

This security Recommendation allows for end-to-end ciphersuite negotiation so that the 
communicating parties can choose their preferred encryption and authentication algorithms for the 
particular communication.  

7.6.1 Security services 

7.6.1.1 RTP 

Authentication: End-to-end authentication cannot be required, because the initiating party may want 
to keep their identity private. Optional end-to-end exchanges for both authentication and additional 
key negotiation are possible but are outside of the scope for IPCablecom.  

Encryption: The media stream between MTAs and/or MGs should be encrypted for privacy. 
Without encryption, the stream is vulnerable to eavesdropping at any point in the network.  

Key Distribution via the CMS, a trusted third party, assures the MTA (or MG) that the 
communication was established through valid signalling procedures, and with a valid subscriber. 
All this guarantees confidentiality (but not authentication). 

Message integrity: It is desirable to provide each packet of the media stream with a message 
authentication code (MAC). A MAC ensures the receiver that the packet came from the legitimate 
sender and that it has not been tampered with en route. A MAC defends against a variety of 
potential known attacks, such as replay, clogging, etc. It also may defend against 
as-yet-undiscovered attacks. Typically, a MAC consists of 8 or more octets appended to the 
message being protected. In some situations, where data bandwidth is limited, a MAC of this size is 
inappropriate. As a tradeoff between security and bandwidth utilization, a short MAC consisting or 
2 or 4 octets is specified and selectable as an option to protect media stream packets. Use of the 
MAC during an end-to-end connection is optional; whether it is used or not is decided during the 
end-to-end ciphersuite negotiation (see 7.6.2.3.1). 

Low complexity: Media stream security must be easy to implement. Of particular concern is a PSTN 
gateway, which may have to apply security to thousands of media streams simultaneously. The 
encryption and MAC algorithms used with the PSTN gateway must be of low complexity so that it 
is practical to implement them on such a scale. 
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7.6.1.2 RTCP 

Authentication: See the above clause. 

Encryption: Within IPCablecom, RTCP messages are not permitted to contain the identity of the 
RTCP termination endpoint. Snooping on RTCP messages, therefore, does not reveal any 
subscriber-specific information but may reveal network usage and reliability statistics. RTCP 
encryption is optional. 

Message integrity: RTCP signalling messages (e.g., BYE) can be manipulated to cause 
denial-of-service attacks and alteration of reception statistics. To prevent these attacks, message 
integrity should be used for RTCP. 

7.6.2 Cryptographic mechanisms 

MTAs and MGs MUST have an ability to negotiate a particular encryption and authentication 
algorithm. If media security parameters are negotiated and RTP encryption is on (Transform ID is 
not RTP_ENCR_NULL), each media RTP packet MUST be encrypted for privacy. If RTP 
encryption is on, encryption MUST be applied to the RTP payload and MUST NOT be applied to 
the RTP header. Security MUST NOT be applied to RTP packets if the negotiated RTP ciphersuite 
is AUTH_NULL and RTP_ENCR_NULL. 

Each RTP packet MAY include an optional message authentication code (MAC). The MAC 
algorithm can also be negotiated. The MAC computation MUST span the packet's unencrypted 
header and encrypted payload. The receiver MUST perform the same computation as the sender and 
it MUST discard the received packet if the value in the MAC field does not match the computed 
value. 

Keys for the encryption and MAC calculation MUST be derived from the End-End secret, which is 
exchanged between sending and receiving MTAs as described in 7.6.2.3.1. 

7.6.2.1 RTP messages 

Figure 15 shows the format of an encoded RTP packet. IPCablecom MUST adhere to the RTP 
packet format as defined by RFC 1889 and RFC 1890 after being authenticated and decrypted 
(where the MAC bytes, if included, are stripped off as part of the authentication). 

The packet's header consists of 12 or more octets, as described in RFC 1889. The only field of the 
header that is relevant to the encoding process is the timestamp field. 

The RTP header has the format (RFC 1889) as shown in Figure 15. 

 
0          1          2          3  

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

V=2 P X CC M PT Sequence Number 

Timestamp 

Synchronization Source (SSRC) Identifier 

Contributing Source (CSRC) Identifier 

Figure 15 − RTP packet header format 
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The first twelve octets are present in every RTP packet, while the list of CSRC identifiers is present 
only when inserted by a mixer. See Figure 16. 

J.170_F16

Authenticated

Encrypted

Header
Timestamp
(4 octets)

Payload
(0 or more octets)

Optional MAC
(4 octets)

 

Figure 16 − Format of encoded RTP packet  

In IPCablecom, an RTP packet will carry compressed audio from the sender's voice codec, or it will 
carry a message describing one or more events such as a DTMF tone, trunk or line signalling, etc. 
For simplicity, the former is referred to as a "voice packet" and the latter as an "event packet". 

A voice packet's payload consists of compressed audio from the sender's voice codec. The length of 
the payload is variable and depends on the voice codec as well as the number of codec frames 
carried by the packet. 

An event packet's payload consists of a message describing the relevant event or events. The format 
of the message is outside the scope of this Recommendation. The length of the payload is variable, 
but it will not exceed a known maximum value. 

For either type of packet, the payload MUST be encrypted. If the optional MAC is selected, the 
MAC field is appended to the end of the packet after the payload. 

Parameters representing RTP packet characteristics are defined as follows: 

• Nc: the number of octets in one frame of compressed audio. Each codec has a well-defined 
value of Nc. In the case of a codec that encodes silence using short frames, Nc refers to the 
number of octets in a non silent frame. 

• Nu: the number of speech samples in one frame of uncompressed audio. The number of 
speech samples represented by a voice packet is an integral multiple of Nu. 

• Nf: the frame number. The first frame of the sender's codec has a value of zero for Nf. 
Subsequent frames increment Nf by one. Nf increments regardless of whether a frame is 
actually transmitted or discarded as silent. 
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• Mf: the maximum number of frames per packet. Mf is determined by the codec's frame rate 
and by the sender's packetization rate. The packetization rate is specified during 
communications set-up. For NCS signalling, it is a parameter in the 
LocalConnectionOptions – see ITU-T Rec. J.162. 

 For example, suppose the speech sample rate is 8000 samples/s, the frame rate is 10 ms, the 
packetization rate is 30 ms, and the compressed audio rate is 16 000 bits/s. Then Nc = 20, 
Nu = 80, Mf = 3, and Nf counts the sequence 0, 1, 2. 

• Ne: the maximum number of bytes that might be sent within the duration of one codec 
frame. It is assumed that an event packet can have a payload as large as that of a voice 
packet, but no longer. In the case of a block cipher, the cryptographic keys do not change 
after midstream codec changes. When a codec change does not require a corresponding key 
change, the value of Ne MUST be calculated as follows: 

  Ne = MAX { NcK } for K = 1, … N 

 where N1, N2, … NK are the different frame sizes for codecs that are supported by a 
particular endpoint. 

 Otherwise, Ne = Nc, where Nc is the frame size for the current codec.  

• Nm: the number of MAC octets. This value is 0, if the optional MAC is not selected; or 2 
or 4, representing the MAC size if the optional MAC is selected. 

J.170_F17

N

(bytes)
m

Header CSCI MMH MAC

M  (Frames/Packet)f

Frame N (N–1) Frame N (1) Frame N (N+1)

octet octet octet octet octet. . .

S . . .SSSSSSSS SSSSSS

Compressed frame

Uncompressed frame

N  (Octets/Frames)c

N  (samples)u

 

Figure 17 − RTP packet profile characteristics 

7.6.2.1.1 RTP timestamp 

According to RFC 1889, the timestamp field is a 32-bit value initially chosen at random. To 
IPCablecom, the timestamp MUST increment according to the codec sampling frequency. The 
timestamp in the RTP header MUST reflect the sampling instant of the first octet in each RTP 
packet presented as offset from the initial random timestamp value. The timestamp field MAY be 
used by the receiver to synchronize its decryption process to the encryption process of the sender. 

Based on the definition of the timestamp and the packet parameters described in the previous 
clause, the timestamp MUST equate to the value: ((Nf × Nu) + (RTP initial timestamp)) modulo 232, 
where Nf is the frame number of the first frame included in the packet. 
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7.6.2.1.2 Packet encoding requirements 

Prior to encoding the packets of an RTP stream, the sending MTA MUST derive the keys and 
parameters from the End-End Secret it shares with the receiving MTA, as specified in 7.6.2.3.3. 

An MTA MUST derive two distinct sets of these quantities, one set for processing outgoing packets 
and another set for processing incoming packets. 

7.6.2.1.2.1 Encryption and MMH MAC option 

7.6.2.1.2.1.1 Deriving an MMH MAC Key 

The MMH MAC Key size MUST be determined before generating the MMH MAC Key. The 
following algorithm specifies how to derive the MMH MAC Key when being used with block 
ciphers: 

  MMH MAC key size = (Mf × Ne) + Nh + Nm – 2 + P 

where:  

 Mf is the maximum number of frames per packet  

 Ne is maximum number of octets in one frame of compressed audio  

 Nh is the maximum number of octets in the RTP header, as defined in 7.6.2.1 

 Nm is the number of octets in the MAC 

Therefore, (Mf × Ne) + Nh represents the maximum size of an RTP packet, and Nm – 2 represents 
the additional two octets that are added to the key size when a four-octet MMH MAC is used. (The 
key size is the same as the maximum RTP packet size when a two-octet MMH MAC is used.) P is 0 
or 1, as needed to make the MMH MAC key size an even number so that it is a multiple of the word 
size (2 bytes) used in the MMH MAC algorithm.  

The number of octets in the RTP header ranges from 12 to 72, inclusive, depending on the number 
of CSRC identifiers that are included (see RFC 1889). An implementation MUST choose Nh at least 
as large as required to accommodate the maximum number of CSRC identifiers that may occur 
during a session. An implementation MUST set Nh to 72 if the maximum number of CSRC 
identifiers is otherwise unknown. 

Since the key derivation procedure generates the MMH MAC key last (see 7.6.2.3.3.1), it is not 
necessary to generate a complete MMH MAC key at the start of the RTP session. Implementations 
MAY generate less than the full MMH MAC key and generate the rest later, as needed. For 
example, instead of using a value of Ne that reflects all possible codecs supported by an endpoint, 
an implementation might initially derive an MMH key of size (Mf × Nc) + Nh + Nm – 2 + P, where 
Nc is the frame size for the currently selected codec. Later, after a codec change that results in a 
larger value of Nc, additional bytes for the MMH key may be generated. 

7.6.2.1.2.1.2 RTP timestamp wrap-around 

Let us say that the initial RTP timestamp value is T0. A timestamp wrap-around occurs when: 

• an RTP packet with sequence number i has a timestamp value 232 – ξ1 for 0 < ξ1 ≤ ΔTMAX, 
where ΔTMAX is the maximum difference between two consecutive RTP timestamps; 

• an RTP packet with a sequence number i+1 has a timestamp value ξ2 for 0 ≤ ξ2 < ΔTMAX. 

The wrap-around point is between the RTP packets i and i+1. 

Each endpoint MUST keep a count NWRAP of RTP timestamp wrap-arounds, with a range from 0 to 
216 − 1 and initialized to zero at the start of the connection. NWRAP MUST be incremented by the 
sender right after the wrap-around point. NWRAP MUST also be incremented by the receiver before 
it decrypts any RTP packets after the wrap-around point.  
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7.6.2.1.2.2 Block cipher encryption of RTP packets 

The AES block cipher must be supported for encryption of RTP packets. The following subclauses 
specify how to support any block cipher, including AES.  

7.6.2.1.2.2.1 Block termination 

If an implementation supports block ciphers, residual block termination (RBT) MUST be used to 
terminate streams that end with less than a full block of data to encrypt (see 9.3). 

7.6.2.1.2.2.2 Initialization Vector 

An Initialization Vector (IV) is required when using a block cipher in CBC mode to encrypt RTP 
packet payloads. The size of an IV is the same as the block size for the particular block cipher. For 
example, the IV size for DESX and 3-DES is 64 bits, while for AES-CBC it is 128 bits. In order to 
calculate the IV, each endpoint MUST keep track of NWRAP – the count of timestamp wrap-arounds 
during this RTP session; see 7.6.2.1.2.1.2. The IV MUST be calculated new for each RTP packet as 
specified below: 

1) Take the first N bits of the header, where N = min(cipher block size, RTP header size). 

2) In the result of the previous step, replace the first 16 bits of the header with the 16-bit value 
of NWRAP, MSB first. 

3) Pad the result of previous step with 0s on the right, so that the resulting bit string is equal in 
size to the cipher block size. 

4) XOR the result of the previous step with the RTP Initialization Key (defined in 7.6.2.3.3.1). 
The size of the RTP Initialization Key is the same as the cipher block size. 

5) Encrypt the result of the previous step using the same block cipher that is used to encrypt 
RTP packets, but in ECB mode. The result of this step is the Initialization Vector for this 
RTP packet. 

7.6.2.1.2.2.3 MMH-MAC pad derivation when using a block cipher 

The MMH-MAC algorithm requires a one-time pad for each RTP packet. The MMH-MAC Pad 
MUST be derived by performing the MMH Function on the Block Cipher's IV. For a 2-byte 
MMH-MAC, use the MMH Function described in 9.7.1.1; for a 4-byte MMH-MAC, use the MMH 
Function described in 9.7.1.2. 

The IV value is calculated according to 7.6.2.1.2.2.2 for block ciphers that require an IV. Even if 
the block cipher does not require an IV, one MUST be derived according to 7.6.2.1.2.2.2 and used 
as the basis of the MMH-MAC pad derivation. 

A key is also required by the MMH digest function in order to calculate the pad. The MMH MAC 
key derived in 7.6.2.3.3.1 MUST be truncated according to 9.7.2.2 and MUST then be used as the 
key to the MMH digest. Accordingly, the MMH MAC key is truncated to: 

  <size of IV> + Nm – 2 

Where <size of IV> is 16 bytes for AES, Nm is the size of the MMH MAC in bytes, as defined 
in 7.6.2.1, and Nm – 2 represents the additional two octets that are added to the key size when a 
four-octet MMH MAC is used. (The truncated key size is the same as the IV size when a two-octet 
MMH MAC is used.) 

7.6.2.1.3 Packet decoding requirements 

Prior to decoding the packets of an RTP stream, the receiving MTA MUST derive the keys and 
parameters from the End-End Secret it shares with the sending MTA, as specified in 7.6.2.3.3. 

The derived quantities MUST match the corresponding quantities at the sending MTA. 
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7.6.2.1.3.1 Timestamp tolerance check 

Before processing a received packet, the receiver SHOULD perform a sanity check on the 
timestamp value in the RTP header, consisting of the items 1 and 2 below: 

1) Beginning with the RTP timestamp in the first packet received from a sender, the receiver 
calculates an expected value for the timestamp of the sender's next RTP packet based on 
timestamps received in the sender's previous packets for the session. 

2) The next packet is rejected without being processed if its timestamp value is outside a 
reasonable tolerance of the expected value. (Timestamps from rejected packets are not to be 
used to predict future packets). The tolerance value is defined to be: 

a) sufficiently tight to ensure that an invalid timestamp value cannot derail the receiver's 
state so much that it cannot quickly recover to decrypting valid packets; 

b) able to account for known differences in the expected and received timestamp values, 
such as might occur at call startup, codec switch-over and due to sender/receiver clock 
drift. 

If the timestamp value in the RTP headers from a sender never comes back within the acceptable 
range, the receiver discontinues the session. 

At the receipt of each packet, the receiver adjusts its time relationship with the sender within the 
acceptable tolerance range of estimated values. 

7.6.2.1.3.2 Packet authentication 

If authentication is used on an RTP packet stream, verification of the MAC MUST be the first step 
in the packet decoding process. When the timestamp tolerance check is performed, the MAC MAY 
be verified on packets with valid RTP timestamps immediately after the check is completed. 

If the MAC does not verify, the packet MUST be rejected. 

7.6.2.2 RTCP messages 

7.6.2.2.1 RTCP format 

RFC 1889 defines the packet format of RTCP messages as in Figure 18. 

 
v=2 p count pkt type Length 

SSRC 

 

 

Figure 18 − RTCP packet format 

The RTCP packet type could be SR (sender reports), RR (receiver reports), SDES (source 
description), BYE (leaving conference), and APP (application-specific function). The length varies 
depending on the message type, but generally around 40 bytes. 

7.6.2.2.2 RTCP encryption 

The RTCP messages MUST always be encrypted in their entirety when the negotiated encryption 
algorithm is a block cipher in CBC mode. RTCP messages MUST NOT be encrypted when the 
negotiated encryption algorithm is RTCP_ENCR_NULL. However, the encoded RTCP messages 
MUST still be formatted according to 7.6.2.2.2 when RTCP_ENCR_NULL is selected in 
conjunction with a non-NULL authentication algorithm (e.g., HMAC-SHA1-96 or 
HMAC-MD5-96). Security MUST NOT be applied to RTCP packets if the negotiated RTCP 
ciphersuite is RTCP_AUTH_NULL and RTCP_ENCR_NULL After the message is encrypted, an 
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additional header and MAC (Message Authentication Code) are added. The result packet has the 
format in Figure 19. 

 
Sequence number (4 bytes) 

 
IV 

 

 
 
 

Encrypted RTCP message 
 
 
 

 
MAC 

 

Figure 19 − RTCP encrypted packet format 

The first 4 bytes MUST be the sequence number, MSB first. The initial sequence number for each 
direction of traffic MUST be 0. Afterwards, the sequence number for each direction MUST be 
incremented by 1. Generally, one RTCP message is sent every 5 seconds for each channel. Thus, 
32 bits for the sequence number field would be big enough for any connections without wrapping 
around. 

The IV (Initialization Vector) MUST immediately follow the sequence number. The IV MUST be 
randomly generated by the sender for each RTCP message and the IV size MUST be the same as 
the block size for the selected block cipher. The Initialization Vector (IV) MUST NOT be included 
when RTCP_ENCR_NULL is used. 

The original cleartext RTCP message encrypted in its entirety MUST immediately follow the IV. 
The MAC (Message Authentication Code) computed over the concatenation of the sequence 
number, the IV, and the encrypted message MUST follow the encrypted RTCP message. The size 
of the MAC is algorithm-dependent. 

7.6.2.2.3 Sequence numbers 

The receiver of RTCP messages SHOULD keep a sliding window of the RTCP sequence numbers. 
The size of the sliding window WRTCP depends on the reliability of the UDP transport and is locally 
configured at each endpoint. WRTCP SHOULD be 32 or 64. The sliding window is most efficiently 
implemented with a bit mask and bit shift operations. 

When the receiver is first ready to receive RTCP packets, the first sequence number in this window 
MUST be 0 and the last MUST be WRTCP – 1. All sequence numbers within this window MUST be 
accepted the first time but MUST be rejected when they are repeated. All sequence numbers that are 
smaller than the "left" edge of the window MUST be rejected. 

When an authenticated RTCP packet with a sequence number that is larger than the "right" edge of 
the window is received, that sequence number is accepted and the "right" edge of the window is 
replaced with this sequence number. The "left" edge of the window is updated in order to maintain 
the same window size. 

When for a window (Sright – WRTCP + 1, Sright), sequence number Snew is received and Snew > Sright, 
then the new window becomes: 

  (Snew – WRTCP + 1, Snew) 
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7.6.2.2.4 Block termination 

Residual block termination (RBT) MUST be used to terminate RTCP messages that end with less 
than a full block of data to encrypt (see 9.3). 

7.6.2.2.5 RTCP message encoding 

Each RTCP message MUST be encoded using the following procedure: 

1) A random IV is generated. 

2) The entire RTCP message is encrypted with the selected block cipher and the just 
generated IV. 

3) The current sequence number, the IV, and the encrypted RTCP message are concatenated in 
that order. 

4) The MAC is computed (using the selected MAC algorithm) over the result in step 3) and 
appended to the message. 

7.6.2.2.6 RTCP message decoding 

Each RTCP message MUST be decoded using the following procedure: 

1) Regenerate the MAC code and compare with the received value. If the two do not match, 
the message is dropped. 

2) The sequence number is verified based on the sliding window approach specified 
in 7.6.2.2.3. If the sequence number is rejected, the message is dropped. The sliding 
window is also updated as specified in 7.6.2.2.3.  

3) The RTCP message is decrypted with the shared encryption key and with the IV that is 
specified in the message header.  

7.6.2.3 Key management 

The key management specified here for end-to-end communication is identical in the cases of the 
MTA-to-PSTN and MTA-to-MTA communications. In the case of the MTA-to-PSTN 
communications, one of the MTAs is replaced by a MG (Media Gateway).  

The descriptions below refer to MTA-to-MTA communications only for simplicity. In this context, 
an MTA actually means a communication endpoint, which can be an MTA or a MG. In the case that 
the endpoint is a MG, it is controlled by an MGC instead of a CMS. 

During call set-up MTA0 (the initiating MTA) and MTA1 (the terminating MTA) exchange 
randomly generate keying material, carried inside the call signalling messages. Call signalling 
messages are themselves protected by IPsec ESP or TLS at each hop. This keying material is then 
used to generate the AES-CBC keys used to protect both RTP and RTCP messages between the two 
MTAs. 

MTA0 generates two randomly generated values: End-End Secret0 (46-bytes) and Pad1 (46-bytes). 

MTA1 generates two randomly generated values: End-End Secret1 (46-bytes) and Pad0 (46-bytes). 

MTA0 uses End-End Secret1 and Pad1 to derive encryption and authentication keys to be applied to 
its outbound traffic and used by MTA1 to decrypt and authenticate it. 

MTA1 uses End-End Secret0 and Pad0 to derive encryption and authentication keys to be applied to 
its outbound traffic, and used by MTA0 to decrypt and authenticate it. As a result, both MTA0 and 
MTA1 contribute randomly generated bytes to all of the keying material for both RTP and 
RTCP traffic. 

The distribution of the end-to-end keying material is specific to the call signalling from ITU-T 
Rec. J.162 and is described in the following subclauses. 
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7.6.2.3.1 Key management over NCS 

Figure 20 shows the actual NCS messages that are used to carry out the distribution of end-to-end 
keys. Each NCS message that is involved in the end-to-end key management is labelled with a 
number of the corresponding key management interface. 

The name of each NCS message is in bold. Below the NCS message name is the information 
needed in the NCS message, in order to perform end-to-end key distribution. Messages between the 
CMSs are labelled as SIP+ messages. 
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Figure 20 − End-End secret distribution over NCS  
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Figure 20 shows that before the start of this scenario, both the source and destination MTAs had 
already established an IPsec ESP session with their local CMS. It is also assumed that CMS-CMS 
signalling is secure. 

This allows the End-End Secrets to be distributed securely, with privacy, integrity and anti-replay 
mechanisms already in place. The CMSs have access to this keying material but are trusted by 
the MTAs. 

7.6.2.3.1.1 NULL ciphersuite combinations and ordering 

RTP_ENCR_NULL MUST only be used in conjunction with AUTH_NULL. RTP packets, with 
authentication but no encryption, are not allowed.  

RTCP_AUTH_NULL MUST only be used in conjunction with RTCP_ENCR_NULL. RTCP 
messages with encryption and without authentication are not allowed.  

Both RTP and RTCP security must be enabled or disabled together. The following five 
combinations MUST NOT be generated.  

• RTP NULL encryption and RTP non-NULL authentication; 

• RTCP non-NULL encryption & RTCP NULL authentication; 

• RTP non-NULL encryption and RTCP NULL authentication; 

• RTP NULL encryption and RTCP non-NULL authentication; 

• RTP NULL encryption and RTCP non-NULL encryption. 

If the MTA receives LocalConnectionOptions parameter that meet the above combinations, the 
MTA MUST return the error code 524 (Internal inconsistency in LocalConnectionOptions). 
Otherwise, if the MTA receives RemoteConnectionDescriptor parameter that meet the above 
combinations, then the MTA MUST return the error code 505 (Unsupported 
RemoteConnectionDescriptor).  

For both RTP and RTCP ciphersuite lists exchanged during ciphersuite negotiation, the 
combination of NULL encryption and NULL authentication algorithms MUST always be included 
last. For example, the list of RTP ciphersuites "60/50;62/51;64/51" is not allowed, while the list of 
RTP ciphersuites "62/51;64/51;60/50", or "60/50" is allowed. If the list of ciphersuites in 
LocalConnectionOptions includes the NULL authentication and NULL encryption combination 
(60/50 for RTP, and 80/70 for RTCP), but this combination is not the last in the list, the MTA 
MUST return error code 524 (Internal inconsistency in LocalConnectionOptions). Otherwise, if this 
combination is not last in a RemoteConnectionDescriptor, error code 505 (Unsupported 
RemoteConnectionDescriptor) MUST be returned.  

7.6.2.3.1.2 Ciphersuite negotiation for MTAs 

This Recommendation only defines security for RTP/RTCP media streams; therefore, ciphersuite 
negotiation applies only to RTP/RTCP media streams. Use of security for any other type of media 
streams is not specified. 

An MTA MUST perform RTP and RTCP ciphersuite negotiation when processing any of the 
following:  

• a CreateConnection command;  

• a ModifyConnection command with a RemoteConnectionDescriptor parameter;  

• a ModifyConnection command where the LocalConnectionOptions parameter includes 
ciphersuite fields. 
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An MTA MUST NOT perform ciphersuite negotiation in any other case. The steps involved in 
ciphersuite negotiation are the following:  

1) An approved list of ciphersuites is formed by taking the intersection of the internal list of 
ciphersuites and ciphersuites allowed by the LocalConnectionOptions parameter, subject to 
the constraints specified in 7.6.2.3.1.1. The internal list of ciphersuites contains the 
ciphersuites that the MTA supports and which this Recommendation requires. If the 
LocalConnectionOptions parameter was not included, or if the ciphersuite fields were not 
provided in the LocalConnectionOptions parameter, the approved list of ciphersuites 
contains the previously agreed upon approved list, or if no such list exists, the internal list 
of ciphersuites.  

2) If the approved list of ciphersuites is empty, an error response MUST be generated, error 
code 532 (Unsupported value(s) in LocalConnectionOptions). 

3) Otherwise, a negotiated list of ciphersuites is formed by taking the intersection of the 
approved list of ciphersuites and ciphersuites allowed by the RemoteConnectionDescriptor 
parameter (if present), subject to the constraints specified in 7.6.2.3.1.1. If a 
RemoteConnectionDescriptor was not provided, the negotiated list of ciphersuites thus 
contains the approved list of ciphersuites. If a RemoteConnectionDescriptor parameter is 
provided without fields containing the RTP and RTCP ciphersuite lists, then the RTP 
AUTH_NULL/RTP_ENCR_NULL and RTCP_AUTH_NULL/RTCP_ENCR_NULL 
ciphersuites are assumed for the remote endpoints, and the regular ciphersuite negotiation 
process continues (i.e., the negotiated list of ciphersuites is formed by taking the 
intersection of the approved list of ciphersuites and the RTP 
AUTH_NULL/RTP_ENCR_NULL and RTCP_AUTH_NULL/RTCP_ENCR_NULL 
ciphersuites).  

4) If the negotiated list of ciphersuites is empty, a ciphersuite negotiation failure has occurred 
and an error response MUST be generated. If a RemoteConnectionDescriptor parameter 
was provided, two different error codes can be returned:  

a) If the endpoint does not support any of the ciphersuites allowed by the 
RemoteConnectionDescriptor, error code 505 (Unsupported 
RemotedConnectionDescriptor) MUST be used.  

b) If the endpoint does support at least one of the ciphersuites, but the negotiated list of 
ciphersuites ended up being empty, error code 506 (Unable to satisfy both 
LocalConnectionOptions and RemoteConnectionDescriptor) MUST be used.  

5) Otherwise, ciphersuite negotiation has succeeded, and the negotiated list of ciphersuites is 
returned in the LocalConnectionDescriptor parameter. Note that both 
LocalConnectionOptions and the RemoteConnectionDescriptor parameters can contain a 
list of ciphersuites that MUST be ordered by preference provided by the CMS in the 
RemoteConnectionDescriptor parameter. When both are supplied, the MTA SHOULD 
adhere to the preferences provided by the CMS in the RemoteConnectionDescriptor 
parameter, and otherwise, the MTA SHOULD adhere to the preferences provided in the 
LocalConnectionOptions parameter. If the MTA receives a RemoteConnectionDescriptor 
parameter with AUTH_NULL/RTP_ENCR_NULL for RTP or 
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP that is not last in the list, it MUST 
return the error code 505 (Unsupported RemoteConnectionDescriptor).  

The following requirements apply during ciphersuite negotiation: 

• A CMS MUST be capable of sending the allowable lists of ciphersuites for RTP and/or 
RTCP in the LocalConnectionOptions parameter of a CreateConnection command (CRCX) 
or a ModifyConnection command (MDCX) in the order of preference specified by the 
operator subject to the constraints specified in 7.6.2.3.1.1. 
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• Whenever possible, a MTA SHOULD select the first supported ciphersuite for RTP and the 
first supported ciphersuite for RTCP in the RemoteConnectionDescriptor parameter. This 
allows the MTA to immediately start sending RTP and RTCP packets to the other MTA. 
An MTA MAY instead select alternate ciphersuites specified by the other MTA.  

• When returning a LocalConnectionDescriptor and the negotiated list of RTP and RTCP 
ciphersuites is NULL, an MTA MUST NOT include an End-End Secret or Pad.  

• When returning a LocalConnectionDescriptor and the negotiated list of RTP and RTCP 
ciphersuites contains at least one non-NULL selection each, an MTA MUST include an 
End-End Secret (for incoming RTP and RTCP packets) and MAY include a Pad value (for 
outgoing RTP and RTCP packets). The following rules apply: 

1) The MTA MUST generate a new End-End Secret when responding to a 
CreateConnection command.  

2) The MTA MUST generate a new End-End Secret when responding to a 
ModifyConnection command if the remote connection address (e.g., IP Address) or the 
remote transport address (e.g., port) are not identical to what was previously assigned.  

3) The MTA MUST use the existing End-End Secret when responding to a 
ModifyConnection command where there was no previous 
RemoteConnectionDescriptor provided.  

4) The MTA MUST generate a new Pad when responding to a CreateConnection 
command without a RemoteConnectionDescriptor.  

5) The MTA MUST generate a new Pad when generating a new End-End Secret in 
response to a ModifyConnection command without a RemoteConnectionDescriptor.  

6) If not otherwise required, the MTA MAY generate a new Pad when generating a new 
End-End Secret.  

7) The MTA MUST NOT generate a new Pad when not generating a new End-End 
Secret.  

• If, in response to a CreateConnection command, the list of ciphersuites selected for RTP 
contains at least one non-NULL encryption or authentication algorithm, before sending the 
response message, an MTA MUST:  

1) Establish inbound RTP security based on the preferred (first) RTP ciphersuite, its 
End-End Secret (which it generated), and a Pad value (if included in the 
RemoteConnectionDescriptor), as described in 7.6.2.3.3.1. 

2) If a RemoteConnectionDescriptor was included and it contains media security 
attributes, establish outbound RTP security based on the selected RTP ciphersuite, 
End-End Secret (generated by the other MTA), and a Pad value (which it may have 
generated) as described in 7.6.2.3.3.1. 

3) If connection mode allows, be ready to receive RTP packets, which may arrive any 
time after the Response message is sent.  

• If, in response to a CreateConnection command, the list of ciphersuites for RTCP contains 
at least one non-NULL encryption algorithm, before sending the response message, an 
MTA MUST:  

1) Establish inbound RTCP security based on the preferred (first) RTCP ciphersuite, its 
End-End Secret (which it generated), and a Pad value (if included in the 
RemoteConnectionDescriptor), as described in 7.6.2.3.3.1.  

2) If a RemoteConnectionDescriptor was included and it contained media security 
attributes, establish outbound RTCP security based on the selected RTCP ciphersuite, 
End-End Secret (generated by the far-end MTA), and a Pad value (which it may have 
generated) as described in 7.6.2.3.3.1. 
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3) Be ready to receive RTCP packets, which may arrive any time after the Response 
message is sent.  

• If, in response to a ModifyConnection command that includes a 
RemoteConnectionDescriptor, and negotiated lists of ciphersuites for RTP and RTCP 
contain at least one non-NULL encryption or authentication algorithm each, before sending 
the response message, an MTA MUST:  

1) If a Pad was included in the RemoteConnectionDescriptor and it is different from a Pad 
that may have previously been received, remove any existing inbound RTP keys and 
generate new ones, based on the keys that are generated from both the End-End Secret 
(generated locally) and the Pad (generated by the other MTA). The MTA MUST 
re-initialize the RTP timestamp if new keys are generated The ciphersuites used for 
these inbound keys are taken from the RemoteConnectionDescriptor parameter just 
received from the CMS. 

2) If a Pad was included in the RemoteConnectionDescriptor and it is different from a Pad 
that may have previously been received, remove any existing inbound RTCP keys and 
generate new ones, based on the keys that are generated from both the End-End Secret 
(generated locally) and the Pad (generated by the other MTA). The MTA MUST 
re-initialize RTCP sequence numbers if new keys are generated. The ciphersuites used 
for these inbound keys are taken from the RemoteConnectionDescriptor parameter just 
received from CMS.  

3) If the RemoteConnectionDescriptor parameter was received without a Pad, check if the 
first RTP ciphersuite field in the RemoteConnectionDescriptor parameter differs from 
the one that the MTA originally selected. Also, check to see if a Pad had been 
previously received. If the ciphersuites differ, or if a Pad had been previously received, 
perform the following steps:  

a) Remove any existing inbound RTP key.  

b) If the new RTP ciphersuite is non-NULL, generate new inbound RTP keys and 
RTP timestamp from the same End-End Secret (generated locally) as the last time, 
as specified in 7.6.2.3.3.1. 

4) If the RemoteConnectionDescriptor parameter was received without a Pad, check if the 
first RTCP ciphersuite field in the RemoteConnectionDescriptor parameter differs from 
the one that the MTA originally selected. Also, check to see if a Pad had been 
previously received. If the ciphersuites differ, or if a Pad had been previously received, 
perform the following steps:  

a) Remove any existing inbound RTCP key.  

b) If the new RTCP ciphersuite is non-NULL, generate new inbound RTCP keys from 
the same End-End Secret (generated locally) as the last time, as specified 
in 7.6.2.3.3.1, and reset the RTCP sequence number to 0.  

5) If the End-End Secret included in the RemoteConnectionDescriptor has changed or the 
negotiated RTP ciphersuite has changed, perform the following steps:  

a) Remove any existing outbound RTP keys.  

b) If the new list of RTP ciphersuites is non-NULL, generate new outbound RTP 
keys, based on the End-End Secret (generated by the other MTA) and the Pad 
(generated locally), and generate a new RTP timestamp.  
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6) If the End-End Secret included in the RemoteConnectionDescriptor has changed or the 
negotiated RTCP ciphersuite has changed, perform the following steps:  

a) Remove any existing outbound RTCP keys  

b) If the new list of RTCP ciphersuites is non-NULL, generate new outbound RTCP 
keys, based on the End-End Secret (generated by the other MTA) and the Pad 
(generated locally), and reset the RTCP sequence number to 0.  

7) Be ready to send RTCP messages to and receive RTCP messages from the remote 
MTA. If connection mode allows, be ready to send and receive RTP messages with the 
remote MTA. If the list of ciphersuites for RTP was sent within a ModifyConnection 
command, the CMS MAY send an inactive directive to the MTA in the same 
command. The MTA should be returned to active status only when the new ciphersuite 
negotiation is complete. 

• If, in response to a ModifyConnection command that does not include a 
RemoteConnectionDescriptor, and negotiated lists of ciphersuites for RTP and RTCP 
contain at least one non-NULL encryption or authentication algorithm each, before sending 
the response message, an MTA MUST:  

1) If the first RTP ciphersuites field in the negotiated list differs from the one that the 
MTA previously selected, then perform the following steps:  

a) Remove any existing inbound RTP keys.  

b) Generate new inbound RTP keys from the previous End-End Secret (locally 
generated) and Pad (generated by the other MTA), and generate a new RTP 
timestamp.  

2) If the first RTCP ciphersuites field in the negotiated list differs from the one that the 
MTA previously selected, then perform the following steps:  

a) Remove any existing inbound RTCP keys.  

b) Generate new inbound RTCP keys from the previous End-End Secret (locally 
generated) and Pad (generated by the other MTA), and reset the RTCP sequence 
number to 0.  

3) Be ready to send RTCP messages to and receive RTCP messages from the remote 
MTA. If connection mode allows, be ready to send and receive RTP messages with the 
remote MTA. If the list of ciphersuites for RTP was sent within a ModifyConnection 
command, the CMS MAY send an inactive directive to the MTA in the same 
command. The MTA should be returned to active status only when the new ciphersuite 
negotiation is complete.  

• If an MTA receives a ModifyConnection command, and the resulting intersection of 
ciphersuites results in NULL encryption and authentication algorithms for RTP and RTCP, 
then the MTA MUST remove any existing RTP and RTCP keys and do not perform 
security on the RTP and RTCP packets.  

• If an MTA returns a LocalConnectionDescriptor parameter, it MUST return the latest 
negotiated list of ciphersuites.  

The following message flow is informative. Each of the numbered flows in Figure 20 is described 
below: 

1) CMS0 → MTA0 

 CMS0 may send the allowable lists of ciphersuites for the new communication to MTA0 in 
the CreateConnection (CRCX) command, inside the LocalConnectionOptions parameter, if 
the CMS has been configured to do so. The ciphersuites are provided in the order of 
preference specified by the operator subject to the constraints specified in 7.6.2.3.1.1. There 
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can be two lists of ciphersuites, one list for RTP security and one for RTCP security. Each 
of these two lists may be included to specify the list of allowable ciphersuites, however 
ciphersuite negotiation will take place for both RTP and RTCP irrespective of whether the 
lists are included or not. 

 If RTP and/or RTCP ciphersuites are included but do not adhere to the rules provided 
in 7.6.2.3.1.1, the MTA returns an error, e.g., 524 (Internal inconsistency in 
LocalConnectionOptions). 

2) MTA0 → CMS0 

 MTA0 performs ciphersuite negotiation according to the ciphersuite negotiation procedure 
described above, and returns a non-empty list of RTP ciphersuites in the response message. 
This list contains the list of MTA0's list of allowed ciphersuites in the order of preference 
specified by CMS0 if the LocalConnectionOptions ciphersuites parameter(s) is included in 
step 1, as specified above. If RTP or RTCP ciphersuite negotiation fails, MTA0 returns an 
error code as specified above. 

 If the lists of negotiated ciphersuites for RTP and RTCP contain at least one non-NULL 
combination each, MTA0 generates the End-End Secret0 and Pad1 value and returns them 
along with the ciphersuites in the LocalConnectionDescriptor parameter. For further details 
on the NCS message syntax, refer to ITU-T Rec. J.162. Note that the NULL authentication 
and NULL encryption combinations will be at the end of each ciphersuite list. 

 The response message also includes the ConnectionId and the EndpointId for MTA0 as 
described in ITU-T Rec. J.162. The pair (ConnectionId EndpointId) uniquely identifies this 
connection, where the EndpointId is an NCS identifier for MTA0. 

 If the list of ciphersuites for RTP contains at least one non-NULL encryption or 
authentication algorithm, before sending the response message, MTA0 must: 

a) establish inbound RTP security based on its preferred (first) RTP ciphersuite and 
End-End Secret0, as described in 7.6.2.3.3.1; 

b) if connection mode allows, be ready to receive RTP packets, which may arrive any 
time after this message is sent by the MTA0. If the list of ciphersuites for RTP was sent 
within a ModifyConnection command, the CMS may send an inactive directive to the 
MTA in the same command. The MTA should be returned to active status only when 
the new ciphersuite negotiation is complete. 

 If the list of ciphersuites for RTCP contains at least one non-NULL encryption algorithm, 
before sending the response message, MTA0 must: 

a) establish inbound RTCP security based on its preferred (first) RTCP ciphersuite and 
End-End Secret0, as described in 7.6; 

b) be ready to receive RTCP packets, which may arrive any time after this message is sent 
by MTA0. 

 If MTA1 decides to use an alternate ciphersuite listed by MTA0, MTA0 will later have to 
update its RTP and RTCP keys. If MTA1 decides to send MTA0 packets before ciphersuite 
negotiation had completed, processing on those packets at MTA0 will fail (since it assumed 
a different ciphersuite). If media stream security is disabled 
(AUTH_NULL/RTP_ENCR_NULL ciphersuite list for RTP and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP), MTA0 will later have to discard 
its keys and send and receive RTP and RTCP packets without any security. 

3) CMS0 → CMS1 

 CMS0 must send End-End Secret0 (if included), Pad1 (if included) and the list of RTP and 
RTCP ciphersuites to CMS1 (local to MTA1) as selected by MTA0. CMS1 will later forward 
this information to MTA1. Note that End-End Secret0 and Pad1 will not be included if the 
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RTP and RTCP ciphersuites lists both contain only the NULL authentication and NULL 
encryption combination. 

4) CMS1 → MTA1 

 CMS1 sends a CreateConnection to MTA1. CMS1 may provide lists of approved RTP and 
RTCP ciphersuites, if the CMS has been configured to do so. The ciphersuites are provided 
in the order of preference specified by the operator subject to the constraints specified 
in 7.6.2.3.3.1. The RemoteConnectionDescriptor must be included in this CRCX command. 
It must contain End-End Secret0 (if sent in step 3) and Pad1 (if sent in step 3) received from 
MTA0 (via CMS0). It must also contain the ciphersuites preferred by MTA0. 

5) MTA1 → CMS1 

 MTA1 has received a CRCX message that contains both LocalConnectionOptions and 
RemoteConnectionDescriptor parameters and must follow the ciphersuite negotiation 
procedure described above to negotiate RTP and RTCP ciphersuites. This list will consist 
of MTA1's allowed ciphersuites in the order of preference specified by CMS1 if the 
LocalConnectionOptions ciphersuites parameter is included in step 4. If RTP and RTCP 
ciphersuite negotiation succeeds and there is at least one RTP ciphersuite and at least one 
RTCP ciphersuite, then MTA1 returns the negotiated list of ciphersuites in the subsequent 
response message, in the LocalConnectionDescriptor parameter, in the form of SDP 
attributes. Note that if media stream security is being disabled, the NULL authentication 
and NULL encryption combination will be the only entry in both the RTP and RTCP 
ciphersuites lists. If RTP or RTCP ciphersuite negotiation fails, MTA1 must return an error 
code as specified above. 

 In the event that MTA1 receives SDP in the RemoteConnectionDescriptor parameter 
without ciphersuites media attributes, MTA1 assumes that the lists of RTP and RTCP 
ciphersuites supported by the remote endpoint is RTP AUTH_NULL/RTP_ENCR_NULL 
and RTCP_AUTH_NULL/RTCP_ENCR_NULL.  

 If the RTP and RTCP ciphersuites provided do not adhere to the rules provided 
in 7.6.2.3.1.1, the MTA returns an error, e.g., 524 (Internal inconsistency in 
LocalConnectionOptions). 

 Whenever possible, MTA1 SHOULD select the first supported ciphersuite for RTP and the 
first supported ciphersuite for RTCP in the RemoteConnectionDescriptor parameter. This 
allows MTA1 to immediately start sending RTP and RTCP packets to MTA0. MTA1 MAY 
instead select alternate ciphersuites specified by MTA0.  

 MTA1 returns a response message, which includes lists of the selected ciphersuites inside 
the LocalConnectionDescriptor parameter, in the form of SDP attributes. The first 
ciphersuite in each list (one for RTP and one for RTCP) must be the one that was selected 
by MTA1. Additional ciphersuites in each list are alternatives in a prioritized order. If at any 
time MTA0 wants to switch to one of the alternatives that were selected by MTA1, it would 
have to go through a new key negotiation. The response message must also include the 
ConnectionId (generated by MTA1) as specified in ITU-T Rec. J.162. Thus, both End-End 
Secret0 and End-End Secret1 are now associated with a pair (EndpointId, ConnectionId). 

 If the lists of ciphersuites for RTP and RTCP contain at least one non-NULL selection 
each, then MTA1 must generate the End-End Secret1 for the incoming RTP and RTCP 
packets, and return it along with the ciphersuite list in the LocalConnectionDescriptor. If 
the lists of ciphersuites for RTP and RTCP contain at least one non-NULL selection each, 
MTA1 should also generate Pad0 and return it in the same LocalConnectionDescriptor 
parameter. 

 Although the option of not generating Pad0 is provided in order to better support early 
media flows from MTA1, it results in MTA1 using a send key that is completely dependent 
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on a random value generated by MTA0. In other words, privacy of the media stream 
generated by MTA1 in this case depends on the strength of MTA0's random number 
generator. 

 If the list of ciphersuites for RTP contains at least one non-NULL encryption or 
authentication algorithm, before sending the response message, MTA1 must: 

a) establish inbound RTP security based on its selected RTP ciphersuite, End-End Secret1 
and Pad1, as described in 7.6.2.3.3.1; 

b) establish outbound RTP security based on its selected RTP ciphersuite and End-End 
Secret0, as described in 7.6.2.3.3.1. If Pad0 was generated by MTA1, the outbound 
RTP security will also be based on Pad0; 

c) if connection mode allows, be ready to receive RTP packets, which may arrive from 
MTA0 any time after this message is sent. 

 If the list of ciphersuites for RTCP contains at least one non-NULL encryption or 
authentication algorithm, before sending the response message, MTA1 must:  

a) establish inbound RTCP security based on its selected RTCP ciphersuite, End-End 
Secret1 and Pad1 as described in 7.6.2.3.3.1; 

b) establish outbound RTCP security, based on its selected RTCP ciphersuite and 
End-End Secret0, as described in 7.6.2.3.3.1. If Pad0 was generated by MTA1, the 
outbound RTCP security will also be based on Pad0; 

c) be ready to receive RTCP messages, which may arrive from MTA0 any time after this 
message is sent by. 

 Any time after sending this response message to the CMS1, MTA1 may begin sending 
RTP and RTCP packets to MTA0. However, in the case that MTA1 generated Pad0 or 
selected a different ciphersuite from the one preferred by MTA0, MTA0 will not be able 
to decrypt packets from MTA1, until MTA0 has received MTA1's SDP. 

6) CMS1 → CMS0 

 CMS1 must forward the End-End Secret1 (if included), Pad0 (if included) and the selected 
ciphersuites sent from MTA1 to CMS0. Note that End-End Secret0 and Pad1 will not be 
included if the RTP and RTCP ciphersuites lists both contain only the NULL authentication 
and NULL encryption algorithm combination. 

7) CMS0 → MTA0 

 CMS0 may send to MTA0 in the ModifyConnection (MDCX) command, inside the 
LocalConnectionOptions parameter, the lists of allowed RTP and RTCP ciphersuites. These 
ciphersuites should be what CMS0 policy allows. (The reason that CMS0 is not required to 
send the lists of ciphersuites is because it might have already sent them to MTA0 in a 
CreateConnection (CRCX) command. CMS0 would send the ciphersuites again for 
consistency.)  

 In the event that MTA0 receives SDP in the RemoteConnectionDescriptor 
parameter without fields containing ciphersuites media attributes, MTA0 assumes 
that the RTP and RTCP ciphersuite lists supported by the remote 
endpoint are AUTH_NULL/RTP_ENCR_NULL for RTP and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP. 

 In the event that CMS0 received SDP from from MTA1, the RemoteConnectionDescriptor 
parameter must be included in this ModifyConnection command. If present, it must contain 
the RTP and RTCP ciphersuites (and alternatives) selected by MTA1. If ciphersuites are 
included in LocalConnectionOptions parameter or a RemoteConnectionDescriptor 
parameter is included with the ModifyConnection command, MTA0 must perform 
ciphersuite negotiation as described above. 
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 If the RemoteConnectionDescriptor is not sent in this MDCX command, MTA0 will still be 
able to receive RTP and RTCP messages but will be unable to send anything to MTA1. 

 After receiving this message, MTA0 must: 

a) if Pad0 was received, remove its inbound RTP keys and replace them with new ones, 
based on the keys that are generated from both End-End Secret0 and Pad0. MTA0 
MUST re-initialize the RTP timestamp for the new keys. The ciphersuites used for 
these inbound keys are taken from the RemoteConnectionDescriptor just received from 
CMS0; 

b) if Pad0 was received, remove its inbound RTCP keys and replace them with new ones, 
based on the keys that are generated from both End-End Secret0 and Pad0. Re-initialize 
RTCP sequence numbers for the new keys. The ciphersuites used for these inbound 
keys are taken from the RemoteConnectionDescriptor just received from CMS0; 

c) if the RemoteConnectionDescriptor was received without Pad0, check if the first RTP 
ciphersuite in the RemoteConnectionDescriptor differs from the one that MTA0 
selected in step b. If they differ, perform the following steps: 

– Remove the inbound RTP key. 

– If the new RTP ciphersuite is non NULL, generate new inbound RTP keys and 
RTP timestamp from the same End-End Secret0 as the last time, as specified 
in 7.6.2.3.3.1; 

d) if the RemoteConnectionDescriptor parameter was received without Pad0, check if the 
first RTCP ciphersuite field in the RemoteConnectionDescriptor parameter differs from 
the one that MTA0 selected in step b. If they differ, perform the following steps: 

– Remove the inbound RTCP key. 

– If the new RTCP ciphersuite is non NULL, generate a new key based on the key 
generated from the same End-End Secret0 as the last time, but for the new 
authentication and/or encryption algorithms; 

e) if the RemoteConnectionDescriptor parameter was received, establish outbound RTP 
keys, based on End-End Secret1 and Pad1; 

f) if the RemoteConnectionDescriptor parameter was received, establish outbound RTCP 
keys, based on End-End Secret1 and Pad1; 

g) be ready to send and receive RTCP messages with MTA1. If connection mode allows, 
be ready to send and receive RTP messages with MTA1. 

For the full syntax of the NCS messages, please refer to the NCS signalling 
Recommendation (ITU-T Rec. J.162). 

7.6.2.3.2 Ciphersuite format 

Each ciphersuite for both RTP security and RTCP security MUST be represented as follows: 

 
Authentication Algorithm (1 byte) – 
represented by 2 ASCII hex characters 
(using characters 0-9, A-F)  

Encryption Transform ID (1 byte) – 
represented by 2 ASCII hex characters 
(using characters 0-9, A-F)  

For the list of available transforms and their values, refer to 6.6 for RTP security, and to 6.7 for 
RTCP security. For the exact syntax of how the Authentication Algorithm and the Encryption 
Transform ID are included in the signalling messages, refer to ITU-T Rec. J.162 for NCS. 
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7.6.2.3.3 Derivation of end-to-end keys 

7.6.2.3.3.1 Initial key derivation 

The End-End Secrets MUST be 46 bytes long. The Pad parameters MUST be 46 bytes long. 

Keys are independently derived by each MTA from either just the End-End Secret or from the 
End-End Secret and Pad concatenated together. The Pad may or may not be available – see the call 
flow details specified in 7.6.2.3.1. 

The keys derived from one End-End Secret (and possibly a Pad) MUST be used to secure RTP and 
RTCP messages directed to only one of the MTAs. There is a separate End-End Secret and a 
separate Pad value for each direction, negotiated through NCS signalling. The keys MUST be 
derived as follows, in the specified order: 

1) RTP (media stream security). Derive a set of the following keys with the derivation 
function F(S, "End-End RTP Security Association"). Here, S is concatenation of the 
following binary values, each in MSB-first order: 

a) End-End Secret; 

b) Pad (optional, if it was negotiated through signalling). 

 The string "End-End RTP Security Association" is taken without quotes and without a 
terminating null character. Function F (specified in 9.6) is used to recursively generate 
enough random bytes to produce all of the keys and other parameters that are specified 
below, in the listed order: 

a) RTP privacy key. 

b) RTP Initial Timestamp (integer value, 4 octets, Big-Endian byte order). 

c) RTP Initialization Key (required when using a block cipher to encrypt the RTP 
payload). The length MUST be the same as the selected cipher's block size. This value 
is used to derive the IV according to 7.6.2.1.2.2. The resulting IV is used for the block 
cipher in CBC mode (if applicable) and for the random pad used to calculate the MMH 
MAC. 

d) RTP packet MAC key (if MAC option is selected). The requirements for the MMH 
MAC key can be found in 7.6.2.1.2.1.1 

2) RTCP security. Derive a set of the following keys in the specified order with the derivation 
function F(S, "End-End RTP Control Protocol Security Association"). Here, S is 
concatenation of the following binary values: 

a) End-End Secret. 

b) Pad (optional, if it was negotiated through signalling). 

 Function F (specified in 9.6) is used to recursively generate enough random bytes to 
produce all of the keys that are specified below, in the listed order: 

a) RTCP authentication key. 

b) RTCP encryption key. 
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7.6.2.4 RTP-RTCP summary security profile matrix 

Table 27 − Security profile matrix – RTP and RTCP 

 
RTP (MTA-MTA,  

MTA-MG) 
RTCP (MTA-MTA,  
MTA-MG, MG-MG) 

Authentication Optional (indirect) (Note) Optional (indirect) 

Access control Optional Optional 

Integrity Optional Optional 

Confidentiality Optional Optional 

Non-repudiation No No 

Security mechanisms Application Layer Security via RTP 
IPCablecom Security Profile 
End-to-End Secret distributed over secured 
MTA-CMS links. Final keys derived from 
this secret. 
AES-128 in CBC mode encryption 
algorithm 
Optional 2-byte or 4-byte MAC based on 
MMH algorithm. 
RTP encryption and authentication can be 
optionally turned off with the selection of 
NULL encryption and NULL 
authentication algorithms. RTP security 
and RTCP security are disabled together. 
 
IPCablecom requires support for 
ciphersuite negotiation. 

RTCP messages are secured by 
RTCP application layer security 
mechanisms specified in the 
profile. 
RTCP ciphersuites are negotiated 
separately from the RTP 
ciphersuites and include both 
encryption and message 
authentication algorithms.  
RTCP encryption can be 
optionally turned off with the 
selection of a null encryption 
algorithm. 
Both RTCP encryption and 
authentication can be optionally 
turned off with the selection of 
NULL encryption and NULL 
authentication algorithms. RTCP 
security and RTP security are 
disabled together. 
Keys are derived from the 
End-End Secret using the same 
mechanism as used for RTP 
encryption. 

NOTE – MTAs do not authenticate directly. Authentication refers to the authentication of identity. 

7.7 Audio Server services 

7.7.1 Reference architecture 

Figure 21 shows the network components and the various interfaces to be discussed in this clause; 
see ITU-T Rec. J.175. 
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J.170_F21 

Figure 21 − Audio Server components and interfaces 

Figure 21 shows a network-based Media Player (MP). It has an optional Audio Server Protocol 
(ASP) interface (Ann-2) to the Media Player Controller (MPC), in the case that MPC and MP are 
not integrated into a single physical entity. Security on this interface is specified in this clause. 

There is also an NCS signalling interface (Ann-1) between the MTA and CMS and between the 
Media Gateway Controller (MGC) and the Media Gateway (MG). Refer to 7.4.1 for NCS signalling 
security. There is also a signalling interface (Ann-3) between the CMS and the MPC and the CMS 
and the MGC. This interface is proprietary for IPCablecom, and thus the corresponding security 
interface is not specified (although this clause lists recommended security services for Ann-3). 

Finally, there is a media stream (RTP and RTCP) interface (Ann-4) between the MTA and the MP. 
This is a standard media stream interface, for which security is defined in 6.6. 

The Audio Server architecture also allows local playout of announcements at the MTA. In those 
cases, an announcement is initiated with NCS signalling between the MTA and the CMS (interface 
Ann-1). No other interfaces are needed for MTA-based announcement services. 

7.7.2 Security services 

7.7.2.1 MTA-CMS NCS signalling (Ann-1) 

Refer to the security services in NCS signalling in 7.4.1.2. 

7.7.2.2 MPC-MP Signalling (Ann-2) 

Authentication: All signalling messages must be authenticated, in order to prevent a third party 
masquerading as either an authorized MPC or MP. A rogue MPC could configure the MP to play 
obscene or inappropriate messages. A rogue MP could likewise play obscene or inappropriate 
messages that the MPC did not intend it to play. If MP is unable to authenticate to the MPC, the 
MPC should not pass it the key for media packets, preventing unauthorized announcement playout. 

Confidentiality: If a snooper is able to monitor ASP signalling messages on this interface, he or she 
might determine which services are used by a particular subscriber or which destinations a 
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subscriber is communicating to. This information could then be sold for marketing purposes or 
simply used to spy on other subscribers. Thus, confidentiality is required on this interface. 

Message integrity: must be assured in order to prevent tampering with signalling messages. This 
could lead to playout of obscene or inappropriate messages – see authentication above. 

Access control: An MPC should keep a list of valid Media Players and which announcements each 
supports. Along with authentication, this ensures that wrong announcements are not played out. 

7.7.2.3 MTA-MP (Ann-4) 

Security services on this media packet interface are listed in 7.6.1. 

7.7.3 Cryptographic mechanisms 

7.7.3.1 MTA-CMS NCS signalling (Ann-1) 

Refer to the cryptographic mechanisms in NCS signalling in 7.4.1.3. 

7.7.3.2 MPC-MP signalling (Ann-2) 

IPsec ESP MUST be used to both authenticate and encrypt the messages from MPC to MP and vice 
versa. Refer to 6.1 for details of how IPsec ESP is used within IPCablecom and for the list of 
available ciphersuites.  

7.7.3.3 MTA-MP (Ann-4) 

Cryptographic mechanisms on this media packet interface are specified in 7.6.2. 

7.7.4 Key management 

7.7.4.1 MTA-CMS NCS signalling (Ann-1) 

Refer to the key management in NCS signalling in 7.4.1. 

7.7.4.2 MPC-MP signalling (Ann-2) 

The MPC and the MP negotiate a shared secret (MPC-MP Secret) using IKE or Kerberos 
(implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 
certificates and they MAY support Kerberos using symmetric keys). For more information on the 
use of IKE, refer to 6.2.2. For more information on the use of Kerberos with symmetric keys, refer 
to 6.4.3 and 6.5. 

The key management protocol MUST be running asynchronous to the signalling messages and will 
guarantee that there is always a valid, non-expired MPC-MP Secret. This shared secret MUST be 
unique to this particular MPC and MP. 

7.7.4.3 MTA-MP (Ann-4) 

Key management on the media packet interface is specified in 7.6.2.3. This case is very similar to 
the key management for the MTA-MG media interface. The flow of signalling messages and the 
syntax of carrying keys and ciphersuites MUST be the same, except that here MG is replaced with 
the MP and MGC (which delivers the key to MG) is replaced with MPC (which delivers the key 
to MP).  

7.7.5 MPC-MP summary security profile matrix 

The CMS to MPC protocol is not defined in IPCablecom and thus is outside the scope of this 
Recommendation. The corresponding column in the matrix in Table 28 provides only the security 
requirements on that interface. Security specifications on that interface will be added in future 
revisions of this Recommendation. 
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Table 28 − Security profile matrix – Audio Server services 

 
Ann-1: NCS 

(MTA-CMS) &  
(MG-MGC) 

Ann-2: 
ASP 

(MPC-
MP) 

Ann-3: 
Unspecified 

(CMS-MPC) & 
(CMS-MGC) 

interface security 
requirements 

(Note) 

Ann-4: RTP 
(MTA-MP) 

Ann-4: 
RTCP 

(MTA-MP) 

Authentication Yes Yes Yes Yes (indirect) Yes (indirect) 

Access control Yes Yes Yes Optional Optional 

Integrity Yes Yes Yes Optional Yes 

Confidentiality Yes Yes Yes Yes Yes 

Non-repudiation No No No No No 

Security 
mechanisms 

IPsec ESP in 
transport mode 
Encryption and 
message 
integrity both 
enabled 
Kerberos with 
PKINIT key 
management for 
MTA-CMS 
interface 
IKE or 
Kerberos for 
MG-MGC 
interface 

IPsec 
IKE or 
Kerberos 

 Application Layer 
Security via RTP 
Packet Cable 
Security Profile 
keys distributed 
over secured 
MTA-CMS and 
MP-MPC links 
AES-128 
encryption 
algorithm 
Optional 2-byte or 
4-byte MAC 
based on MMH 
algorithm. 

RTCP 
messages are 
secured by 
RTCP 
application 
layer security 
mechanisms 
specified in 
the profile. 
Keys are 
derived from 
the End-End 
Secret using 
the same 
mechanism as 
used for RTP 
encryption. 

NOTE – Although (CMS-MPC) is a proprietary interface, these are security requirements for the 
CMS-MPC interface.  

7.8 Electronic surveillance interfaces 

7.8.1 Reference architecture 

The IPCablecom system for electronic surveillance consists of elements and interfaces, as shown in 
Figure 22. 
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Figure 22 − Electronic surveillance security interfaces 
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The DF (Delivery Function) in Figure 22 is responsible for redirecting duplicated media packets to 
law enforcement, for the purpose of wiretapping. 

The event interface between the CMS or the MGC and the DF provides descriptions of calls, which 
is necessary to perform wiretapping. That information includes the media stream encryption key 
and the corresponding encryption algorithm. This event interface uses RADIUS and is similar to the 
CMS-RKS interface. 

The COPS interface between the CMS and the CMTS is used to signal the CMTS to start/stop 
duplicating media packets to the DF for a particular call. This is the same COPS interface that is 
used for (DQoS) Gate Authorization messages. For the corresponding security services, refer 
to 7.2.1.2.2, 7.2.1.3.2 and 7.2.1.4.1. 

The TGCP signalling interface between the MGC and MG is used to signal the MG to start/stop 
duplicating media packets to the DF for a particular call. This is the same TGCP signalling interface 
that is used during call set-up on the PSTN Gateway side. For the corresponding security services, 
refer to 7.8.2.1, 7.8.3.1 and 7.8.4.1. 

The event interface between the CMTS and DF is needed to tell the DF when the actual call begins 
and when it ends. In IPCablecom, the start and end of the actual call is signalled with RADIUS 
event messages generated by the CMTS. 

The interface between the CMTS and DF for call content is where the CMTS encapsulates copies of 
the RTP media packets – including the original IP header – inside UDP and forwards them to the 
DF. Since the original media packets are already encrypted (and optionally authenticated), no 
additional security is defined on this interface. Similarly, there is no additional security applied to 
the call content interface between the MG and DF: the MG simply encapsulates copies of the 
encrypted RTP packets inside UDP and forwards them to the DF. 

The event interface between the two DFs is used to forward call information in the case where a 
wiretapped call is forwarded to another location that is wiretapped using a different DF. This 
interface utilizes the RADIUS protocol – the same as all other event message interfaces. 

The interface between the two DFs for call content is used to forward media packets (including the 
original IP header) in the case where a wiretapped call is forwarded to another location that is 
wiretapped using a different DF. Since the original media packets are already encrypted (and 
optionally authenticated), no additional security is defined on this interface. 

7.8.2 Security services 

7.8.2.1 Event interfaces CMS-DF, MGC-DF, CMTS-DF and DF-DF 

Authentication, Access control and Message integrity: required to prevent service theft and 
denial-of-service attacks. There is a need to ensure that the DF (law enforcement) has the right 
parameters for wiretapping (prevent denial-of-service). Also, there is a need to authenticate the DF, 
to make sure that the copy of the media stream is directed to the right place (protect privacy). 

Confidentiality: required to protect subscriber information and communication patterns. 

7.8.2.2 Call content interfaces CMTS-DF, MG-DF and DF-DF 

Authentication and Access control: already performed during the phase of key management for 
protection of event messages – see the above clause. In order to protect privacy, a party that is not 
properly authorized should not receive the call content decryption key. 

Message integrity: optional for voice packets, since it is generally hard to make undetected changes 
to voice packets. No additional security is required here – an optional integrity check would be 
placed into the media packets by the source (MTA or MG). 

Confidentiality: required to protect call content from unauthorized snooping. 
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However, no additional security is required in this case – the packets had been previously encrypted 
by the source (MTA or MG). 

7.8.3 Cryptographic mechanisms 

7.8.3.1 Interface between CMS and DF 

This interface MUST be protected with IPsec ESP in transport mode, where each packet is both 
encrypted and authenticated – identical to the security for the CMS-RKS interface specified 
in 7.3.3.1. 

As with the CMS-RKS interface, the MAC value normally used to authenticate RADIUS messages 
is not used (message integrity is provided with IPsec). The key for this RADIUS MAC MUST 
always be hardcoded to 16 ASCII 0s. 

7.8.3.2 Interface between CMTS and DF for Event Messages 

This interface MUST be protected with IPsec ESP in transport mode, where each packet is both 
encrypted and authenticated – identical to the security for the CMTS-RKS interface specified 
in 7.3.3.2. 

As with the CMTS-RKS interface, the MAC value normally used to authenticate RADIUS 
messages is not used (message integrity is provided with IPsec). The key for this RADIUS MAC 
MUST always be hardcoded to 16 ASCII 0s. 

7.8.3.3 Interface between DF and DF for event messages 

This interface MUST be protected with IPsec ESP in transport mode, where each packet is both 
encrypted and authenticated – identical to the security for the CMS-RKS interface specified 
in 7.3.3.1. 

As with the CMS-RKS interface, the MAC value normally used to authenticate RADIUS messages 
is not used (message integrity is provided with IPsec). The key for this RADIUS MAC MUST 
always be hardcoded to 16 ASCII 0s. 

7.8.3.4 Interface between MGC and DF 

This interface MUST be protected with IPsec ESP in transport mode, where each packet is both 
encrypted and authenticated – identical to the security for the MGC-RKS interface specified 
in 7.3.3.3. 

As with the MGC-RKS interface, the MAC value normally used to authenticate RADIUS messages 
is not used (message integrity is provided by IPsec). The key for this RADIUS MAC MUST always 
be hardcoded to 16 ASCII 0s.  

7.8.4 Key management 

7.8.4.1 Interface between CMS and DF 

CMS and DF MUST negotiate a pair of IPsec SAs (inbound and outbound) using IKE or Kerberos 
(implementations MUST support IKE with pre-shared keys; they MAY support IKE with X.509 
certificates and they MAY support Kerberos using symmetric keys).  

7.8.4.2 Interface between CMTS and DF 

The CMTS and the DF MUST negotiate a pair of SAs (inbound and outbound) using IKE or 
Kerberos (implementations MUST support IKE with pre-shared keys; they MAY support IKE with 
X.509 certificates and they MAY support Kerberos using symmetric keys). 

The key management protocol will be running asynchronous to the event message generation and 
will guarantee that there is always a valid, non-expired pair of SAs.  
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7.8.4.3 Interface between DF and DF 

The two DF hosts MUST negotiate a shared secret (DF-DF Secret) using IKE with certificates. The 
IPCablecom profile for IKE with certificates is specified in 6.2.2. IKE will be running 
asynchronous to the event message generation. In the case where an event message needs to be sent 
to a DF with which there is not a valid SA, the IPsec layer MUST automatically signal IKE to 
proceed with the key management exchanges and build a pair of IPsec SAs (inbound and 
outbound). 

Not all interfaces between the same pair of DFs will require IPsec. For example, the call content 
interface does not run over IPsec. In order for the IPsec SAs to be established only for the DF-DF 
event message interface, each DF MUST allocate a set of UDP ports on which it will both send and 
receive DF-DF event messages. IPsec policy database for each DF MUST specify either an 
enumeration or a range of local UDP ports for which IPsec is enabled and which will be used 
exclusively for DF-DF event messages. If there are multiple calls that are simultaneously 
wiretapped and forwarded between the same pair of DFs (on different UDP ports) – they MUST all 
be protected with a single pair of IPsec SAs (inbound-outbound). Whenever a DF attempts to send 
on one of those UDP ports, it will either use an existing IPsec SA for a particular destination DF, or 
it will trigger IKE to establish a pair of SAs (inbound-outbound) for the specific target DF. When 
the CMS tells a DF to forward event messages to another DF, it specifies the destination DF with an 
IP address. This means that the DF identity that needs authentication during an IKE exchange is the 
IP address. An IKE certificate for a DF contains the IP address of that DF. This IP address in the 
certificate MUST be used by IKE to validate the DF's IP address – to prevent IP address spoofing 
attacks. 

After a pair of DF-DF SAs has been idle for some period of time, a DF MAY decide to remove it. 
In this case, the DF MUST send an ISAKMP Delete message to the other DF – to notify the other 
side of the SA deletion. Upon receiving a Delete message, the other DF MUST also remove that 
pair of SAs. 

It will still be possible (with very small probability) that a DF uses an IPsec SA to send an event 
message to another DF; but when the event message arrives, the target DF has already deleted the 
corresponding SA and has to drop the message. If there is still a problem after several timeouts and 
retries (e.g., ISAKMP Delete message was lost in transit), the sending DF MUST remove all of the 
corresponding IPsec SAs and re-run IKE to set up new SAs. 

7.8.4.4 Interface between MGC and DF 

MGC and the DF MUST negotiate a pair of IPsec SAs (inbound and outbound) using IKE with 
pre-shared keys.  

IKE will be running asynchronous to the event message generation and will guarantee that there is 
always a valid, non-expired pair of SAs.  

At the DF, MGC Element IDs MUST somehow be associated with the corresponding IP addresses. 
One possibility is to associate each pre-shared key directly with the Element ID. IKE negotiations 
will use an ISAKMP identity payload of type ID_KEY_ID to identify the pre-shared key. The value 
in that identity payload will be the Element ID used in event messages.  

Later, when an event message arrives at the DF, it will be able to query the database of SAs and 
retrieve a source IP address, based on the Element ID. The DF will make sure that it is the same as 
the source IP address in the IP packet header. One way to query this database is through SNMP, 
using an IPsec MIB. 
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7.8.5 Electronic surveillance security profile matrix 

Table 29 – Security profile matrix – Electronic surveillance 

 

CMS-DF 
events, 

MGC-DF 
events & 

CMTS-DF 
events 

DF-DF events 
CMTS-DF  
content &  

MG-DF content 
DF-DF content 

Authentication Yes Yes Yes (indirect) Yes (indirect) 

Access control  Yes Yes Optional Optional 

Integrity Yes Yes Optional Optional 

Confidentiality Yes Yes Yes Yes 

Non-repudiation No No No No 

Security 
mechanisms 

IPsec with 
encryption and 
message 
integrity 
enabled 
Key 
management is 
IKE or 
Kerberos 

IPsec with 
encryption and 
message 
integrity enabled 
Key 
management is 
IKE with 
certificates 

RTP packets are 
already encrypted 
and authenticated 
by the source 
(MTA or MG) 

RTP packets are 
already 
encrypted and 
authenticated by 
the source (MTA 
or MG) 

7.9  CMS provisioning 

7.9.1 Reference Architecture 

Provisioning is defined as the operations necessary to provide a specified service to a customer. 
IPCablecom service provisioning can be viewed as two distinct operations: MTA provisioning and 
CMS subscriber provisioning. CMS provisioning refers to the interface between the Provisioning 
Server and the CMS. 

7.9.2 Security Services 

Authentication: provisioning Server needs to be authenticated to prevent a third party from 
masquerading as a provisioning server to enable services for unauthorized MTAs. CMS needs to be 
authenticated to prevent someone from impersonating the CMS to receiving provisioning messages, 
thereby compromising privacy and deny service to provisioned MTAs. 

Access Control: required along with authentication to prevent unauthorized access to provisioning 
data as well as denial-of-service. 

Integrity: must be assured to disallow tampering with provisioning messages, in order to prevent a 
class of denial-of-service attacks. 

Confidentiality: provisioning messages contains private customer information, thus confidentiality 
is required. 

7.9.3 Cryptographic mechanisms 

IPsec ESP MUST be used to both authenticate and encrypt the messages from CMS to Provisioning 
Server and vice versa. Refer to 6.1.2 for details of how IPsec ESP is used within IPCablecom and 
for the list of available ciphersuites. 
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7.9.4 Key management 

Key management for the CMS-Provisioning Server interface is either IKE or Kerberos. 
Implementations MUST support IKE with pre-shared keys. Implementations MAY support IKE 
with X.509 certificates and they MAY support Kerberos using symmetric keys. For more 
information on the IPCablecom use of IKE, refer to 6.2.2. For more information on the IPCablecom 
use of Kerberos with symmetric keys, refer to 6.4.3 and 6.5 

7.9.5 Provisioning Server – CMS summary security profile matrix 

Table 30 – Security profile matrix – CMS provisioning 

 CMS-Provisioning Server 

Authentication Yes 

Access control Yes 

Integrity Yes 

Confidentiality Yes 

Non-repudiation No 

Security mechanisms IPsec 
IKE or Kerberos 

8 IPCablecom certificates 

IPCablecom uses digital certificates, which comply with ITU-T Rec. X.509 and RFC 2459. 

8.1 Generic structure 

8.1.1 Version 

The version of the certificates MUST be v3. All certificates MUST comply with RFC 2459 except 
where the non-compliance with the RFC is explicitly stated in this clause. 

8.1.2 Public Key type 

RSA Public Keys are used throughout the hierarchy. The subjectPublicKeyInfo.algorithm.algorithm 
Object Identifier (OID) used MUST be 1.2.840.113549.1.1.1 (rsaEncryption). 

The public exponent for all RSA IPCablecom keys MUST be F4 – 65537. 

8.1.3 Extensions  

The following four extension MUST be used as specified in the subclauses below. Any other 
certificate extensions MAY also be included, but must be marked as non-critical.  

8.1.3.1 subjectKeyIdentifier 

The subjectKeyIdentifier extension included in all IPCablecom CA certificates as required by 
RFC 2459 (e.g., all certificates except the device and ancillary certificates) MUST include the 
keyIdentifier value composed of the 160-bit SHA-1 hash of the value of the BIT STRING 
subjectPublicKey (excluding the tag, length and number of unused bits from the ASN.1 encoding) 
(see RFC 2459). 

8.1.3.2 authorityKeyIdentifier 

The authorityKeyIdentifier extension MUST be included in all IPCablecom certificates with the 
exception of root certificates, and MUST include a keyIdentifier value that is identical to the 
subjectKeyIdentifier in the CA certificate. 
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8.1.3.3 keyUsage 

The keyUsage extension MUST be used for all IPCablecom CA certificates and MUST be marked 
as critical with a value of keyCertSign and cRLSign. A KeyUsage extension MAY be included in 
end-entity certificates and SHOULD be marked as critical if included as specified in RFC 2459. 

8.1.3.4 basicConstraints 

The basicConstraints extension MUST be used for all IPCablecom CA certificates and MUST be 
marked as critical. The values for each certificate for basicConstraints MUST be marked as 
specified in each of the certificate description tables. 

8.1.4 Signature algorithm 

The signature mechanism used MUST be SHA-1 with RSA encryption. The specific OID is 
1.2.840.113549.1.1.5. 

8.1.5 SubjectName and IssuerName 

If a string cannot be encoded as a PrintableString, it MUST be encoded as a UTF8String (tag 
[UNIVERSAL 12]). 

When encoding an X.500 Name: 

1) each RelativeDistinguishedName (RDN) MUST contain only a single element in the set of 
X.500 attributes; 

2) the order of the RDNs in an X.500 name MUST be the same as the order in which they are 
presented in this Recommendation. 

It should be noted that ITU-T Rec. X.509 and RFC 2459 define constraints (i.e., upper bounds) on 
the length of the attribute values. For example, the maximum length for common name (CN), 
organization name (O) and organizational unit (OU) name values is 64 characters. Where this 
Recommendation mandates the inclusion of a static string in one of these values 
(i.e., CN=<Company> System Operator CA), companies MUST ensure that the addition of their 
identifying information does not cause the total length of the value to exceed the upper bound. In 
the case where a company's name causes the length of the value to exceed the upper bound, the 
vendor MUST truncate or abbreviate their information to ensure the total length does not exceed the 
upper bound.  

8.1.6 Certificate profile notation 

The tables below use the following notation: 

• Extension details are specified by [c:critical, n:non-critical; m:mandatory, o:optional].  

• Optional subject naming attributes are surrounded by square brackets (e.g., [L = <city>]).  

• Variable naming attribute values are surrounded by angle brackets. (e.g., CN = <Company 
Name> IPCablecom CA). Values not surrounded by angle brackets are static and cannot be 
modified.  

8.2 Certificate trust hierarchy 

There are two distinct certificate hierarchies used in IPCablecom: the MTA Device Certificate 
Hierarchy and the IPCablecom Telephony Certificate Hierarchy (see Figure 23). 
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J.170_F23 

Figure 23 − IPCablecom certificate hierarchy 

8.2.1 Certificate validation 

Within IPCablecom, certificate validation, in general, involves validation of a whole chain of 
certificates. As an example, when the Provisioning Server validates an MTA Device Certificate, the 
actual chain of three certificates is validated: 

  MTA Root Certificate + MTA Manufacturer Certificate + MTA Device Certificate 

The signature on the MTA Manufacturer Certificate is verified with the MTA Root Certificate and 
the signature on the MTA Device Certificate is verified with the MTA Manufacturer Certificate. 
The MTA Root Certificate is self-signed and is known in advance to the Provisioning Server. The 
public key present in the MTA Root Certificate is used to validate the signature on this same 
certificate. 

Usually, the first certificate in the chain is not explicitly included in the certificate chain that is sent 
over the wire. In the cases where the first certificate is explicitly included it MUST already be 
known to the verifying party ahead of time and MUST NOT contain any changes to the certificate 
with the possible exception of the certificate serial number, validity period and the value of the 
signature. If changes other than the certificate serial number, validity period and the value of the 
signature, exist in the IP Telephony Root certificate that was passed over the wire in comparison to 
the known IP Telephony Root certificate, the device making the comparison MUST fail the 
certificate verification. 

The exact rules for certificate chain validation must fully comply with RFC 2459, where they are 
referred to as "Certificate Path Validation". In general, X.509 certificates support a liberal set of 
rules for determining if the issuer name of a certificate matches the subject name of another. The 
rules are such that two name fields may be declared to match even though a binary comparison of 
the two name fields does not indicate a match. RFC 2459 recommends that certificate authorities 
restrict the encoding of name fields so that an implementation can declare a match or mismatch 
using simple binary comparison. IPCablecom security follows this recommendation. Accordingly, 
the DER-encoded tbsCertificate.issuer field of an IPCablecom certificate MUST be an exact match 
to the DER-encoded tbsCertificate.subject field of its issuer certificate. An implementation MAY 
compare an issuer name to a subject name by performing a binary comparison of the DER-encoded 
tbsCertificate.issuer and tbsCertificate.subject fields. 
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The clauses below specify the required certificate chain, which must be used to verify each 
certificate that appears at the leaf node (i.e., at the bottom) in the IPCablecom certificate trust 
hierarchy illustrated in Figure 23. 

Validity period nesting is not checked and intentionally not enforced. Thus, the validity period of a 
certificate need not fall within the validity period of the certificate that issued it.  

8.2.2 MTA Device certificate hierarchy 

The device certificate hierarchy is rooted in an IPCablecom MTA Root certificate, which is used as 
the issuing certificate of a set of manufacturer's certificates. The manufacturer's certificates are used 
to sign the individual device certificates. 

The information contained in Table 31 contains the IPCablecom specific values for the required 
fields according to RFC 2459. These IPCablecom specific values MUST be followed according to 
Table 31, except that Validity Periods SHOULD be as given in the tables. If a required field is not 
specifically listed for IPCablecom, then the guidelines in RFC 2459 MUST be followed.  

8.2.2.1 MTA Root Certificate 

This certificate MUST be verified as part of a certificate chain containing the MTA Root 
Certificate, MTA Manufacturer Certificate and the MTA Device Certificate. 

Table 31 − MTA Root Certificate 

Subject name form C=US, O=CableLabs, OU=PacketCable, CN=PacketCable Root Device 
Certificate Authority 

Intended usage This certificate is used to sign MTA Manufacturer Certificates and is used by the 
Provisioning Server. This certificate is not used by the MTAs and thus does not 
appear in the MTA MIB. 

Signed by Self-signed 

Validity period 20+ years. It is intended that the validity period be long enough so that this 
certificate is never re-issued. 

Modulus length 2048 

Extensions  KeyUsage[c,m](keyCertSign, cRLSign), subjectKeyIdentifier, 
basicConstraints[c,m](cA=true, pathLenConstraint=1) 

8.2.2.2 MTA Manufacturer Certificate 

This certificate MUST be verified as part of a certificate chain containing the MTA Root 
Certificate, MTA Manufacturer Certificate (see Table 32) and the MTA Device Certificate. 

The state/province, city and manufacturer's facility are optional attributes. A manufacturer may 
have more than one manufacturer's certificate, and there may exist one or more certificates per 
manufacturer. All certificates for the same manufacturer MUST be provided to each MTA either at 
manufacture time or during a field update. The MTA MUST select an appropriate certificate for its 
use by matching the issuer name in the MTA Device Certificate with the subject name in the MTA 
Manufacturer Certificate. If present, the authorityKeyIdentifier of the device certificate MUST be 
matched to the subjectKeyIdentifier of the manufacturer certificate as described in RFC 2459. 

The <CompanyName> field that is present in O and CN MAY be different in the two instances.  
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Table 32 − MTA Manufacturer Certificate 

Subject name form C=<country>, O=<CompanyName>, [S=<state/province>], [L=<city>], 
OU=PacketCable, [OU=<Manufacturer's Facility>], CN=<CompanyName> 
PacketCable CA 

Intended usage This certificate is issued to each MTA manufacturer and can be provided to each 
MTA as part of the secure code download as specified by this Recommendation 
(either at manufacture time, or during a field update). This certificate appears as a 
read-only parameter in the MTA MIB. 
This certificate along with the MTA Device Certificate is used to authenticate the 
MTA device identity (MAC address) during provisioning. 

Signed by MTA Root Certificate CA 

Validity period 20 years 

Modulus length 2048 

Extensions keyUsage[c,m](keyCertSign, cRLSign), subjectKeyIdentifier, 
authorityKeyIdentifier basicConstraints[c,m](cA=true, pathLenConstraint=0) 

8.2.2.3 MTA Device Certificate 

This certificate MUST be verified as part of a certificate chain containing the MTA Root 
Certificate, MTA Manufacturer Certificate and the MTA Device Certificate (see Table 33). 

The state/province, city and manufacturer's facility are optional attributes. The Manufacturer's 
Facility OU field, (if present) MAY be different from the Manufacturer's Facility OU field (if 
present) in the MTA Manufacturer certificate. 

The MAC address MUST be expressed as six pairs of hexadecimal digits separated by colons, e.g., 
"00:60:21:A5:0A:23". The alpha hex characters (A-F) MUST be expressed as uppercase letters. 

The MTA device certificate should not be replaced or renewed. 

Table 33 − MTA Device Certificate 

Subject name form C=<country>, O=<Company Name>, [S=<state/province>,] [L=<city>], 
OU=PacketCable, [OU=<Product Name>,] [OU=<Manufacturer's Facility>,] 
CN=<MAC Address> 

Intended usage This certificate is issued by the MTA manufacturer and installed in the factory. 
The provisioning server cannot update this certificate. This certificate appears as a 
read-only parameter in the MTA MIB. 
This certificate is used to authenticate the MTA device identity (MAC address) 
during provisioning. 

Signed by MTA Manufacturer Certificate CA 

Validity period At least 20 years 

Modulus length 1024, 1536 or 2048 

Extensions keyUsage[n,o](digitalSignature, keyEncipherment), 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from CA 
certificate>) 
 

8.2.3 IPCablecom Telephony Certificate Hierarchy 

The Service Provider Certificate Hierarchy is rooted in an IP Telephony Root certificate. That 
certificate is used as the issuing certificate of a set of service provider's certificates. The service 
provider's certificates are used to sign an optional local system certificate. If the local system 
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certificate exists, then that is used to sign the ancillary equipment certificates; otherwise, the 
ancillary certificates are signed by the Service Provider's CA. 

The information contained in Table 34 contains the IPCablecom specific values for the required 
fields according to RFC 2459. These IPCablecom specific values MUST be followed according to 
Table 34 except that Validity Periods SHOULD be as given in the tables. If a required field is not 
specifically listed for IPCablecom, then the guidelines in RFC 2459 MUST be followed.  

8.2.3.1 IP Telephony Root Certificate 

Before any Kerberos key management can be performed, an MTA and a KDC need to perform 
mutual authentication using the PKINIT extension to the Kerberos protocol. An MTA authenticates 
a KDC after it receives a PKINIT Reply message containing a KDC certificate chain. In 
authenticating the KDC, the MTA verifies the KDC certificate chain, including KDC's Service 
Provider Certificate signed by the IP Telephony Root CA. 

Table 34 − IP Telephony Root Certificate 

Subject name form C=US, O=CableLabs, OU=PacketCable, CN=PacketCable Root 
IP Telephony Certificate Authority 

Intended usage This certificate is used to sign Telephony Service Provider certificates. 
This certificate is installed into each MTA at the time of manufacture or 
with a secure code download as specified by this Recommendation and 
cannot be updated by the Provisioning Server. 
Neither this root certificate nor the corresponding public key appears in the 
MTA MIB. 

Signed by Self-signed 

Validity period 20+ years. It is intended that the validity period be long enough so that this 
certificate is never re-issued. 

Modulus length 2048 

Extensions keyUsage[c,m](keyCertSign. cRLSign), subjectKeyIdentifier, 
basicConstraints[c,m](cA=true, pathLenConstraint=2) 

8.2.3.2 Telephony Service Provider Certificate 

This is the certificate (see Table 35) held by the telephony service provider, signed by the 
IP Telephony Root CA. It is verified as part of a certificate chain that includes the IP Telephony 
Root Certificate, Telephony Service Provider Certificate, optional Local System Certificate and an 
end-entity server certificate. The authenticating entities normally already possess the IP Telephony 
Root Certificate and it is not transmitted with the rest of the certificate chain. 

The fact that a Telephony Service Provider CA Certificate is always explicitly included in the 
certificate chain allows a Service Provider the flexibility to change its certificate without requiring 
re-configuration of each entity that validates this certificate chain (e.g., MTA validating a PKINIT 
Reply). Each time the Service Provider CA Certificate changes, its signature MUST be verified 
with the IP Telephony Root Certificate. However, a new certificate for the same Service Provider 
MUST preserve the same value of the OrganizationName attribute in the SubjectName. 

The <Company> field that is present in O and CN MAY be different in the two instances.  
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Table 35 − Telephony Service Provider Certificate 

Subject name form C=<country>, O=<Company>, OU=PacketCable, CN=<Company> PacketCable 
System Operator CA 

Intended usage This certificate corresponds to a top-level Certification Authority within a 
domain of a single Service Provider. In order to make it easy to update this 
certificate, each network element is configured with the OrganizationName 
attribute of the Service Provider Certificate SubjectName. This is the only 
attribute in the certificate that must remain constant. 
In the case of an MTA, there is a read-write parameter in the MIB that identifies 
the OrganizationName attribute for each Kerberos realm (that may be shared 
among multiple MTA endpoints). The MTA does not accept Service Provider 
certificates that do not match this value of the OrganizationName attribute in the 
SubjectName. 
An MTA needs to perform the first PKINIT exchange with the MSO KDC right 
after a reboot, at which time its MIB tables are not yet configured. At that time, 
the MTA MUST accept any Service Provider OrganizationName attribute, but it 
MUST later check that the value added into the MIB for this realm is the same 
as the one in the initial PKINIT Reply. 

Signed by Signed by IP Telephony Root Certificate 

Validity period 20 years 

Modulus length 2048 

Extensions keyUsage[c,m](keyCertSign, cRLSign), subjectKeyIdentifier[n,m], 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from CA 
certificate>), basicConstraints[c,m](cA=true, pathLenConstraint=1) 

8.2.3.3 Local System CA Certificate 

This is the certificate (see Table 36) held by the local system. The existence of this certificate is 
optional, as the Telephony Service Provider CA may be used to directly sign all network server 
end-entity certificates. A certificate chain with a Local System Certificate MUST consist of the 
IP Telephony Root CA Certificate, Service Provider CA Certificate, Local System CA Certificate 
and an end-entity certificate. 

The <Company> field that is present in O and CN MAY be different in the two instances. 

Table 36 − Local System Certificate 

Subject name form C=<Country>, O=<Company>, OU=PacketCable, OU=<Local System Name>, 
CN=<Company> PacketCable Local System CA 

Intended usage Telephony Service Provider CA may delegate the issuance of certificates to a 
regional Certification Authority called Local System CA (with the 
corresponding Local System Certificate). 
Network servers are allowed to move freely between regional Certification 
Authorities of the same Service Provider. Therefore, the MTA MIB does not 
contain any information regarding a Local System Certificate (which might 
restrict an MTA to KDCs within a particular region). 

Signed by Telephony Service Provider Certificate 

Validity period 20 years 

Modulus length 1024, 1536, 2048 

Extensions keyUsage[c,m](keyCertSign, cRLSign), subjectKeyIdentifier [n,m], 
authorityKeyIdentifier [n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>), basicConstraints[c,m](cA=true, pathLenConstraint=0) 
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8.2.3.4 Operational ancillary certificates 

All of these are signed by either the Local System CA or by the Telephony Service Provider CA. 
Other ancillary certificates may be added to this Recommendation at a later time. 

8.2.3.4.1 Key Distribution Centre Certificate 

This certificate (see Table 37) MUST be verified as part of a certificate chain containing the 
IP Telephony Root Certificate, Service Provider Certificate and the Ancillary Device Certificates.  

The PKINIT specification in IETF RFC 4556 requires the KDC certificate to include the 
subjectAltName v3 certificate extension, the value of which must be the Kerberos principal name of 
the KDC. 

Table 37 − Key Distribution Centre Certificate 

Subject name form C=<Country>, O=<Company>, OU=PacketCable, OU=[<Local System 
Name>], OU= Key Distribution Center, CN=<DNS Name> 

Intended usage To authenticate the identity of the KDC server to the MTA during PKINIT 
exchanges. This certificate is passed to the MTA inside the PKINIT replies and 
is therefore not included in the MTA MIB and cannot be updated or queried by 
the Provisioning Server. 

Signed by Telephony Service Provider Certificate or Local System Certificate 

Validity period 20 years 

Modulus length 1024, 1536 or 2048 

Extensions keyUsage[n,o](digitalSignature), authorityKeyIdentifier 
The keyUsage tag is optional. When it is used it SHOULD be marked as critical. 
subjectAltName[n,m](see PKINIT Spec) 

8.2.3.4.2 Delivery Function (DF) Certificate 

This certificate (see Table 38) MUST be verified as part of a certificate chain containing the 
IP Telephony Root Certificate, Service Provider Certificate and the Ancillary Device Certificates. 

This certificate is used to sign phase 1 IKE intra-domain exchanges between DFs (which are used in 
Electronic Surveillance). Although Local System Name is optional, it is REQUIRED when the 
Local System CA signs this certificate. The IP address MUST be specified in standard dotted-quad 
notation, e.g., 245.120.75.22. 
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Table 38 − DF Certificate 

Subject name form C=<Country>, O=<Company>, OU=[<Local System Name>], OU=IPCablecom 
Electronic Surveillance, CN=<IP address> 

Intended usage To authenticate IKE key management, used to establish IPsec Security 
Associations between pairs of DFs. These Security Associations are used when a 
subject that is being legally wiretapped forwards the call and event messages 
containing call info have to be forwarded to a new wiretap server (DF). 

Signed by Telephony Service Provider Certificate or Local System Certificate 

Validity period 20 years 

Modulus length 2048 

Extensions KeyUsage[n,o](digitalSignature), 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from CA 
certificate>) 
subjectAltName[n,m](dNSName=<DNSName>) 
extendedKeyUsage[n,m](iKEIntermediate) 

8.2.3.4.3 IPCablecom Server Certificates 

These certificates MUST be verified as part of a certificate chain containing the Service Provider 
Root Certificate, Service Provider Certificate, Local System Operator Certificate (if used) and the 
Ancillary Device Certificates.  

These certificates are used to identify various servers in the IPCablecom system. For example, they 
may be used to sign phase 1 IKE exchanges or to authenticate a PKINIT exchange. Although the 
Local System Name is optional, it is REQUIRED when the Local System CA signs this certificate. 
2IP address values MUST be specified in standard dotted decimal notation: e.g., 245.120.75.22. 
DNS Name values MUST be specified as a fully qualified domain name (FQDN): 
e.g., device.packetcable.com.  
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Table 39 – IPCablecom Server Certificates 

IPCablecom Server Certificates 

Subject name form C=<Country> 
O=<Company> 
OU=PacketCable 
OU=[<Local System Name>] 
OU=<Sub-System Name>[&<Sub-System Name>] 
CN=<Server Identifier>] 
or 
CN=[<Element ID>][&<Element ID>]  
The CN will contain either a <Server Identifier> or one or more <Element 
ID>s. If the CN contains a <Server Identifier>, the value of <Server 
Identifier> MUST be the server's FQDN or its IP address, optionally 
followed by a colon (:) and an Element ID with no white space either before 
or after the colon.  
<Element ID> is the identifier that appears in billing event messages; it 
MUST be included in a certificate of every server that is capable of 
generating event messages. This includes a CMS, CMTS and MGC. There 
MAY be multiple <Element ID> fields, each separated by the character "&". 
ITU-T Rec. J.164 defines the Element ID as a 5-octet right-justified, space-
padded ASCII-encoded numerical string. When converting the Element ID 
for use in a certificate, any spaces MUST be converted to ASCII zeroes 
(0x30).  
For example, a CMTS that has the Element ID "311" will have a common 
name "00311". 
The value of <Sub-System Name> MUST be one of the following: 
– for Border Proxy: bp 
– for Cable Modem Termination System: cmts  
– for Call Management Server: cms 
– for Media Gateway: mg 
– for Media Gateway Controller: mgc 
– for Media Player: mp 
– for Media Player Controller: mpc 
– for Provisioning Server: ps 
– for Record Keeping Server: rks 
– for Signalling Gateway: sg  
Components that contain combined elements (such as a CMS with an 
integrated MGC) MUST indicate this in the Subject Name by including all 
Sub-System Names, joined with the character "&", in the OU field. In the 
case of combined elements, a single Element ID or multiple Element IDs 
may be used. If multiple Element IDs are used, all Element IDs MUST be 
included in the CN, and the order of these Element IDs MUST correspond to 
the order of the Sub-System Name fields in the OU. The following is an 
example OU and CN for a combined CMS and MGC. The CMS with 
Element ID "311" and a MGC with Element ID "312". 
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Table 39 – IPCablecom Server Certificates 

IPCablecom Server Certificates 

Subject name form OU=cms&mgc 
CN=00311&00312 
The following is an example OU and CN for a combined CMS and MGC. In 
this case, the CMS and MGC share a single Element ID of "311".  
OU=cms&mgc 
CN=00311&00311 

Intended usage These certificates are used to identify various servers in the IPCablecom 
system. For example they may be used to sign phase 1 IKE exchanges or to 
authenticate a device in a PKINIT exchange.  

Signed by Telephony Service Provider Certificate or Local System Certificate 

Validity period Set by MSO policy 

Modulus length 2048 

Extensions keyUsage[c,o](digitalSignature, keyEncipherment)  
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA cert>) 
subjectAltName[n,o](dNSName=<DNSName> | iPAddress=<IP Address 
Name>) 
The keyUsage tag is optional. When it is used it MUST be marked as critical. 
The subjectAltName extension MUST be included for all servers that are 
capable of generating event messages. 
For all other servers, the subjectAltName extension MAY be included. If the 
subjectAltName extension is included, it MUST include the corresponding 
name value as specified in the CN field of the subject.  

8.2.3.4.4 TLS Certificates 

These certificates MUST be verified as part of a certificate chain containing the Service Provider 
Root Certificate, Service Provider Certificate, Local System Operator Certificate (if used) and the 
Ancillary Device Certificates.  

These certificates are used to authenticate TLS handshake exchanges (and encrypt when using RSA 
key exchange). Although the Local System Name is optional, it is REQUIRED when the Local 
System CA signs this certificate. DNS Name values MUST be specified as a fully qualified domain 
name (FQDN): e.g., device.packetcable.com.  
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Table 40 – TLS Certificates 

Server Certificates 

Subject name form C=<Country> 
O=<Company> 
OU=[<Local System Name>] 
OU= IPCablecom 
CN=[<Server Identifier>] 
The value of <Server Identifier> MUST be the server's FQDN. Note that only a 
single FQDN can be included in the CN field. 

Intended usage These certificates are used to authenticate TLS handshake exchanges (and encrypt 
when using RSA key exchange).  

Signed by Telephony Service Provider Certificate or Local System Certificate 

Validity period Set by operator policy 

Modulus length 1024, 1536, 2048 

Extensions KeyUsage[c,m](digitalSignature, keyEncipherment) 
extendedKeyUsage[n,m] (id-kp-serverAuth, id-kp-clientAuth) 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from CA 
cert>) 

8.2.4 Certificate revocation 

For future study. 

9 Cryptographic algorithms 

This clause describes the cryptographic algorithms used in the IPCablecom security 
Recommendation. When a particular algorithm is used, the algorithm MUST follow the 
corresponding specification. 

9.1 AES 

AES-128 is a 128-bit block cipher that MUST be implemented according to the Advanced 
Encryption Standard (AES) proposal specified in AES − The Rijndael Block Cipher. AES-128 is 
used in CBC mode with a 128-bit block size in IPCablecom. AES-128 requires 10 rounds of 
cryptographic operations in encryption or decryption. The Initialization Vector for CBC mode is 
specified for each use of AES in IPCablecom. 

In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a 
symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal 
information in furtherance of NIST's statutory responsibilities. In 1998, NIST announced the 
acceptance of fifteen candidate algorithms and requested the assistance of the cryptographic 
research community in analysing the candidates. This analysis included an initial examination of the 
security and efficiency characteristics for each algorithm. NIST reviewed the results of this 
preliminary research and selected MARS, RC6(TM), Rijndael, Serpent and Twofish as finalists. 
Having reviewed further public analysis of the finalists, NIST has decided to propose Rijndael as 
the Advanced Encryption Standard. 

9.2 DES 

The Data Encryption Standard (DES) is specified in FIPS PUB 81. For Media Stream encryption, 
IPCablecom does not require error checking on the DES key, and the full 64 bits of key provided to 
the DES algorithm will be generated according to 7.6.2.3.3.1. 
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9.2.1 XDESX 

An option for the encryption of RTP packets is DESX-XEX. XDESX, or DESX, has been proven as 
a viable method for overcoming the weaknesses in DES while not greatly adding to the 
implementation complexity. The strength of DESX against key search attacks is presented in 
FIPS PUB 81. The CBC mode of DESX-XEX is shown in Figure 24 below, where DESX-XEX is 
executed within the block called "block cipher". Inside the block, DESX-XEX is performed as 
shown in Figure 26 below using a 192-bit key. K1 is the first 8 bytes of the key, and K2 represents 
the second 8 bytes of the key; and K3 the third 8 bytes of the key. 

9.2.2 DES-CBC-PAD 

This variant of DES is also based on the analysis of DESX presented in How to protect DES 
Against Exhaustive Key Search. When using DESX in CBC mode, an optimized architecture is 
possible. It can be described in terms of the DES-CBC configuration plus the application of a 
random pad on the final DES-CBC output blocks. This configuration uses 128 bits of keying 
material, where 64 bits are applied to the DES block according to FIPS PUB 81, and an additional 
64 bits of keying material are applied as the random pad on the final DES-CBC output blocks. 

In this case, the same IV used to initialize the CBC mode is used as keying material for the random 
pad. Each block of DES-CBC encrypted output is XORed with the 64-bit Initialization Vector that 
was used to start the CBC operation. If a short block results from using residual block termination 
(see 9.3), the left-most-bits of the IV are used in the final XOR padding operation. This mode of 
DES-CBC is shown in Figure 25 below, where DES is executed in the block called "block cipher". 
A 64-bit key value is used. 

9.2.3 3DES-EDE 

Another option for the encryption of RTP packets for IPCablecom is 3DES-EDE-CBC. The CBC 
mode of 3DES-EDE is shown in Figure 24 below, where 3DES-EDE is executed within the block 
called "block cipher." Inside the block, 3DES-EDE is performed as shown in Figure 27 below using 
a 128-bit key. K1 is the first 8 bytes of the key, and K2 represents the second 8 bytes of key; and 
K3 = K1. 

9.3 Block termination 

If block ciphers are supported, a short block (n bits < block size, depending on the cipher 
algorithms) MUST be terminated by residual block termination as shown in Figure 28. Residual 
block termination (RBT) is executed as follows: 

Given a final block having n bits, where n is less than the block size, the n bits are padded up to a 
block by appending (block size – n) bits of arbitrary value to the right of the n-bits. The resulting 
block is encrypted using B-bit CFB mode, with the next-to-last ciphertext block serving as the 
initialization vector for the CFB operation (see B. Schneier's Applied Cryptography). Here, B stands 
for the cipher-specific block size. The leftmost n bits of the resulting ciphertext are used as the short 
cipher block. In the special case where the complete payload is less than the cipher block size, the 
procedure is the same as for a short final block, with the provided initialization vector serving as the 
initialization vector for the operation. Residual block termination is illustrated in Figure 28 for both 
encryption and decryption operations. 
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Figure 24 − CBC Mode 
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Figure 25 − CBC Pad Mode 
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Figure 26 − DESX-XEX as Block Cipher 
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Figure 27 − 3DES-EDE as Block Cipher 
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Figure 28 − CBC with Residual Block Termination 

9.4 RSA signature 

All public key signatures for IPCablecom MUST be generated and verified using the RSA signature 
algorithm described in RFC 2437. The format for all IPCablecom RSA signatures MUST be 
compliant with the Cryptographic Message Syntax of RFC 2630. 

9.5 HMAC-SHA-1 

The keyed hash employed by the HMAC-Digest Attribute MUST use the HMAC message 
authentication method per RFC 2104 with the SHA-1 hash algorithm per FIPS PUB 180-1. 

9.6 Key derivation 

Key derivation clauses in this Recommendation refer to a function F(S, seed), where S is a shared 
secret from which keying material is derived, and seed is a constant string of bytes. Below is the 
specification of F(S, seed), borrowed from TLS (RFC 2246): 

 F(S, seed) =  HMAC_SHA-1(S, A(1) + seed) + 
     HMAC_SHA-1(S, A(2) + seed) + 
     HMAC_SHA-1(S, A(3) + seed) + … 

where + indicates concatenation.  

A() is defined as: A(0) = seed 
    A(i) = HMAC_SHA-1(S, A(i − 1)) 
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F(S, seed) is iterated as many times as is necessary to produce required quantity of data. Unused 
bytes at the end of the last iteration will be discarded. 

9.7 The MMH-MAC 

In this clause the MMH Function and the MMH Message Authentication Code (MAC) are 
described. The MMH-MAC is the message authentication code option for the media flows. As 
discussed in 7.6.2, the MMH-MAC is computed over the RTP header and the payload is generated 
by the codec. The MMH Function will be described next, followed by a description of the 
MMH-MAC. 

9.7.1 The MMH Function 

The Multilinear Modular Hash (MMH) Function described below is a variant of the MMH Function 
described in MMH: Software Message Authentication in Gbit/second Rates. Some of the 
computations described below use signed arithmetic whereas the computations in MMH: Software 
Message Authentication in Gbit/second Rates use unsigned arithmetic. The signed arithmetic 
variant described here was selected for its computational efficiency when implemented on DSPs. 
All of the properties shown for the MMH function in MMH: Software Message Authentication in 
Gbit/second Rates continue to hold for the signed variant. 

The MMH Function has three parameters: the word size, the number of words of input, and the 
number of words of output. MMH[ω,s,t] specifies the hash function with word size ω, s input 
words, and t output words. For IPCablecom the word size is fixed to 16 bits: ω = 16. The number of 
output words will be either 1 or 2: t ∈{1,2}. The MMH Hash Function will first be described for 
t = 1, i.e., one output word. 

9.7.1.1 MMH[16,s,1] 

For the remainder of this clause, MMH[16,s,1] is denoted by H. In addition to s words of input, H 
also takes as input a key of s words. When H is used in computing the MMH-MAC, the key is 
randomly generated and remains fixed for several inputs as described in 9.7.2. The key is denoted 
by k and the ith word of the key by ki: k = k1,k2,…,ks. Likewise the input message is denoted by m 
and the ith word of the input message by mi: m = m1,m2,…,ms. 

To describe H, the following definitions are needed. For any even positive integer n, Sn is defined to 
be the following set of n integers: {−n/2,…,0,…,(n/2) − 1}. For example, 

{ }12,...,0,...,2 1515
216 −−=S  is the set of signed 16-bit integers. For any integer z, z smod n is the 

unique element ω of Sn such that z ≡ ω (mod n). For example, if z is a 32-bit signed integer in 32-bit 
twos complement representation, then z smod 216 can be computed by taking the 16 least significant 
bits of z and interpreting those bits in 16-bit twos complement representation. 

For any positive integer q, Zq denotes the following set of q integers: {0, 1,…, q − 1}. 

As described above, H takes as input a key of s words. Each of the s words is interpreted as a 16-bit 
signed integer, i.e., an element of 162

S . H also takes as input a message of s words. Each of the s 

words is interpreted as a 16-bit signed integer, i.e., an element of 162
S . The output of H is an 

unsigned 16-bit integer, i.e., an element of 162
Z . Alternatively, the range of H is SS SS 1616 22

×  and the 

domain is 162
Z . 

H is defined by a series of steps. For k, SSm 162
∈ : 

1) define H1 as H1(k,m) = 32
1

2 smodi
S

i i mk ⋅ = ; 

2) define H2 as H2(k,m) = H1(k,m) mod p where p is the prime number p = 216 + 1; 



 

  Rec. ITU-T J.170 (11/2005) 153 

3) define H as H(k,m) = H2(k,m) mod 216. 

Equivalently: 

  ( ) 1632

1

2mod mod2smod,


































⋅= 

=
pmkmkH

S

i
ii  

Each step is discussed in detail below. 

Step 1) H1(k,m) is the inner product of two vectors each of s 16-bit signed integers. The result of 
the inner product is taken smod 232 to yield an element of 322

S 6. That is, if the inner 

product is in twos complement representation of 32 or more bits, the 32 least significant 
bits are retained and the resulting integer is interpreted in 32-bit twos complement 
representation. 

Step 2) This step consists of taking an element x of 322
S  and reducing it mod p to yield an element 

of Zp. If x is represented in 32-bit twos complement notation, then this reduction can be 
accomplished very simply as follows. Let a be the unsigned integer given by the 16 most 
significant bits of x. Let b be the unsigned integer given by the 16 least significant bits of x. 
There are two cases depending upon whether x is negative. 

Case i) If x is non-negative then x = a216 + b where a ∈{0,…,215 − 1} and 
b ∈ {0,…,216 − 1}. 

  From the modular equation: 

  ( ) ( )( )12mod1222 16161616 ++−+≡+ ababa  

  it follows that x ≡ b − a (mod p). The quantity b − a is in the range 
{−215 + 1,…,216 − 1}. Therefore if b − a is non-negative then x mod p = b − a. If 
b − a is negative then x mod p = b − a + p. 

 Case ii) If x is negative then x = a216 + b – 232 where a ∈{215,…,216 − 1} and 
b ∈ {0,…,216 − 1}. From the modular equation: 

  ( ) ( ) ( )( )12mod1222  12222 1616163216163216 +++−+−+≡−+ aabba  

   it follows that ( )162– +≡ abx  (mod p). The quantity b – a + 216 is in the range 

{215 + 1,…,217 – 1}. Therefore, if b – a < p then x mod p = b − a. If b – a ≥ p then 
x mod p = b − a − p. 

Step 3) This step takes an element of Zp and reduces it mod 216. This is equivalent to taking the 16 
least significant bits. 

9.7.1.2 MMH[16,s,2] 

This clause describes the MMH Function with an output length of two words, which in this case is 
32 bits. For convenience, let H' = MMH[16,s,2]. H' takes a key of s + 1 words. Let k = k1,…,ks+1. 
Furthermore, define k(1) to be the s words of k starting with k1, i.e., k(1) = k1,…,ks. Define k(2) to be 

the s words of k, starting with k2, i.e., k(2) = k2,…,ks+1. For any 1
216

+∈ SSk  and any SSm 162
∈  m, 

H'(k,m) is computed by first computing H(k(1),m) and then H(k(2),m) and concatenating the results. 
That is, H'(k,m) = H(k(1),m) ° H(k(2),m). 

____________________ 
6 The entire sum need not be computed before performing the smod 232 operation. The smod 232 operation 

can be computed on partial sums since (x + y) smod 232 = (x smod 232 + y smod 232) smod 232. 
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9.7.2 The MMH-MAC 

This clause describes the MMH-MAC. The MMH-MAC has three parameters: the word size, the 
number of words of input, and the number of words of output. MMH-MAC[ω,s,t] specifies the 
message authentication code with word size ω, s input words and t output words. For IPCablecom 
the word size is fixed to 16 bits: ω = 16. The number of output words will be either 1 or 2: t ∈{1,2}. 

For convenience, let M = MMH-MAC[16,s,t]. When using M, a sender and receiver share a key k of 
s + t − 1 words. In addition, they share a sequence of key streams of t words each, one one-time pad 
for each message sent. Let r(i) be the key stream used for the ith message sent and received. For the 
ith message, m(i), the message authentication code is computed as: 

  ( ) ( )( ) ( ) )()(,,, iiii rmkHmrkM +=  

Here H = MMH[16,s,t], r(i) is in 162
Z  and addition is mod 216. 

9.7.2.1 MMH-MAC when using a block cipher 

When calculating the MMH-MAC when encryption is performed by one of the available block 
ciphers, the block cipher is used to calculate the t words of r(i) key stream (pad) as defined 
in 7.6.2.1.2.2.3. 

9.7.2.2 Handling variable-size data 

In order to handle data of all possible sizes up to a maximum value, the following rules MUST be 
followed for computing an MMH function:  

• If the data is not a multiple of the word size, pad the data up to a multiple of the word size 
(16 bits) with zero-bytes. In other words, if the length of message m is not a multiple of 
word size w, but rather of length b octets, b = n × w + r with n ≥ 0 and 0 < r < w, then pad 
message m at the end with w – r zero-bytes before passing it as the input to M.  

• It the key is larger than what is needed for a particular message, truncate the key. In other 
words, if a message m is not of length s words, but rather of length v < s words, then 
truncate the value of the key k to v + t – 1 words before it is used to calculate the MMH 
hash. (For MMH hash with 1 word output, t = 1 and k is truncated to v words. For 2-word 
output, t = 2 and k is truncated to v + 1 words.)  

9.8 Random number generation 

Good random number generation is vital to most cryptographic mechanisms. Implementations 
SHOULD do their best to produce true-random seeds; they should also use cryptographically strong 
pseudo-random number generation algorithms. RFC 1750 gives some suggestions; other 
possibilities include use of a per-MTA secret installed at manufacture time and used in the random 
number generation process. 

10 Physical security 

10.1 Protection for MTA key storage 

An MTA MUST maintain in permanent write-once memory an RSA key pair. An MTA SHOULD 
deter unauthorized physical access to this keying material. 

The level of physical protection of keying material required by this Recommendation for an MTA is 
specified in terms of the security levels defined in FIPS PUBS 140-2, Security Requirements for 
Cryptographic Modules. An MTA SHOULD, at a minimum, meet FIPS PUBS 140-2 Security 
Level 1 requirements. 
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This Recommendation's minimal physical security requirements for an MTA will not, in normal 
practice, jeopardize a customer's data privacy. Assuming the subscriber controls the access to the 
MTA with the same diligence they would protect a cellular phone, physical attacks on that MTA to 
extract keying data are likely to be detected by the subscriber. 

An MTA's weak physical security requirements, however, could undermine the cryptographic 
protocol's ability to meet its main security objective: to provide a service operator with strong 
protection from theft of high value network.  

This Recommendation specifies requirements to protect against unauthorized access to these 
network services by enforcing an end-to-end message integrity and encryption of signalling flows 
across the network and by employing an authenticated key management protocol. If an attacker is 
able to legitimately subscribe to a set of services and also gain physical access to an MTA 
containing keying material, then in the absence of strong physical protection of this information, the 
attacker can extract keying material from the MTA, and redistribute the keys to other users running 
modified illegitimate MTAs, effectively allowing theft of network services. 

There are two distinct variations of "active attacks" involving the extraction and redistribution of 
cryptographic keys. These include the following: 

1) An "RSA active clone" would actively participate in IPCablecom key exchanges. An 
attacker must have some means by which to remove the cryptographic keys that enable 
services from the clone master, and install these keys into a clone MTA. An active clone 
would work in conjunction with an active clone master to passively obtain the clone 
master's keying material and then actively impersonate the clone master. A single active 
clone may have numerous active clone master identities from which to select to obtain 
access to network services. This attack allows, for example, the theft of non-local voice 
communications. 

2) An DH active clone would also actively participate in the IPCablecom key exchanges and 
like the RSA active clone, would require an attacker to extract the cryptographic keys that 
enable the service from the clone master and install these keys into a clone MTA. However, 
unlike the RSA active clone, the DH active clone must obtain the clone master's random 
number through alternate means or perform the key exchange and risk detection. Like an 
RSA active clone, an DH active clone may have numerous clone master identities from 
which to select to obtain access to the network services. 

3) An "active black box" MTA, holding another MTA's session or IPsec keys, would use the 
keys to obtain access to network-based services or traffic flows similar to the RSA active 
clone. Since both session keys and IPsec keys change frequently, such clones have to be 
periodically updated with the new keying material, using some out-of-band means. 

An active RSA clone, for example, could operate on a cable access network within whatever 
geographic region the cloned parent MTA was authorized to operate in. Depending upon the degree 
to which a service operator's subscriber authorization system restricted the location from which the 
MTA could operate, the clone's scope of operation could extend well beyond a single J.112 MAC 
domain. 

An active clone attack may be detectable by implementing the appropriate network controls in the 
system infrastructure. Depending on the access fraud detection methods that are in place, a service 
operator has a good probability of detecting a clone's operation should it attempt to operate within 
the network. The service operator could then take defensive measures against the detected clone. 
For example, in the case of an active RSA clone, it could block the device's future network access 
by including the device certificate on the certificate hot list. Also, the service operator's subscriber 
authorization system could limit the geographic region over which a subscriber, identified by its 
cryptographic credentials, could operate. Additionally, the edge router functionality in the CMTS 
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could limit any access based upon the IP address. These methods would limit the region over which 
an active RSA clone could operate and reduce the financial incentive for such an attack. 

The architectural guidelines for IPCablecom security are determined by balancing the revenues that 
could be lost due to the classes of active attacks against the cost of the methods to prevent the 
attack. At the extreme side of preventive methods available to thwart attacks, both physical security 
equivalent to FIPS PUB 140-1 Security Level 3 and network-based fraud detection methods could 
be used to limit the access fraud that allows theft of network-based services. The network-based 
intrusion detection of active attacks allows operators to consider operational defenses as an 
alternative to increased physical security. If the revenues threatened by the active attacks increase 
significantly to the point where additional protective mechanisms are necessary, the long-term costs 
of operational defenses would need to be compared with the costs of migrating to MTAs with 
stronger physical security. The inclusion of physical security should be an implementation- and 
product-differentiation-specific decision. 

Although the scope of the current IPCablecom Recommendations do not specifically define 
requirements for MTAs to support any requirements other than voice communications, the goal of 
the IPCablecom effort is to provide for the eventual inclusion of integrated services. Part of these 
integrated services may include the "multicast" of high-value content or extremely secure multicast 
corporate videoconference sessions. 

Two additional attacks enabling a compromise of these types of services are defined: 

1) An "RSA passive clone" passively monitors the parent MTA's key exchanges and, having a 
copy of the parent MTA's RSA private key, is able to obtain the same traffic keying 
material the parent MTA has access to. The clone then uses the keying material to decrypt 
downstream traffic flows it receives across the shared medium. This attack is limited in that 
it only allows snooping, but if the traffic were of high value, the attack could facilitate the 
theft of high-value multicast traffic. 

2) A "Passive black box" MTA, holding another MTA's short-term (relative to the RSA key) 
keys, uses the keying material to gain access to encrypted traffic flows similar to the RSA 
passive clone. 

The passive attacks, unlike the active attacks, are not detectable using network-based intrusion 
detection techniques since these units never make themselves known to the network while 
performing the attack. However, this type of service theft has unlimited scale since the passive 
clones and black boxes, even though they operate on different cable access networks (sometimes 
referred to as the same J.112 MAC domain) as the parent MTA from whom the keys were 
extracted, gain access to the protected data the parent MTA is currently receiving since the 
encryption of the data most likely occurred at the source. (These are general IP multicast services, 
not to be confused with the specific J.112/BPI+ multicast implementation, where passive clones 
would be restricted to a single downstream CMTS segment.) The snooping of the point-to-point 
data is limited to the J.112 MAC domain of the parent MTA. Passive attacks may be prevented by 
ensuring that the cryptographic keys that are used to enable the services cannot be tampered with in 
any manner. 

In setting goals and guidelines for the IPCablecom security architecture, an assessment has to be 
made of the value of the services and content that can be stolen or monitored by key extraction and 
redistribution to passive MTAs. The cost of the solution should not be greater than the lost revenue 
due to theft of the service or subscribers terminating the service due to lack of privacy. However at 
this time, there is no clear cost that can be attributed to either the lost revenue from high-value 
multicast services or the loss of subscribers due to privacy issues unique to this type of network. 
Therefore, it was concluded that passive key extraction and redistribution attacks would pose an 
indeterminate financial risk to service operators, and that the cost of protection (i.e., incorporation 
of stronger physical security into the MTA) should be balanced against the value of the risk. As 
with the active attacks, the decision to include additional functionality to implement physical 
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security in the MTA should be left as an implementation and product differentiation issue and not 
be mandated as a requirement of this Recommendation. 

10.2 MTA key encapsulation 

As stated in the previous clause, FIPS PUB 140-2 Security Level 1 specifies very little actual 
physical security and that an MTA MUST deter unauthorized "physical" access to its keying 
material. This restricted access also includes any ability to directly read the keying material using 
any of the MTA interfaces. 

One of the (many) requirements of FIPS PUB 140-2 Security Level 3 is that "the entry or output of 
plaintext Critical Security Parameters (CSPs) be performed using ports that are physically separated 
from other ports or interfaces that are logically separated using a trusted path from other interfaces. 
Plaintext CSPs may be entered into or output from the cryptographic module in encrypted form 
(in which case they may travel through enclosing or intervening systems)". As also mentioned in 
the previous clause, this Recommendation is not requiring compliance with any of the FIPS 
PUB 140-2 Security Level 3 requirements. 

However, it is strongly recommended that any persistent keying material SHOULD be encapsulated 
such that there is no way to extract the keying material from the MTA using any of the MTA 
interfaces (either required in the IPCablecom specifications or proprietary provided by the vendor) 
without modifications to the MTA. 

In particular, an MTA subscriber may also be connected to the Internet via a cable modem (which 
may be embedded in the same MTA). In that case, hackers may potentially exploit any weakness in 
the configuration of the subscriber's local network and steal MTA's secret and private keys over the 
network. If instead, the MTA subscriber is connected to a company Intranet, the same threat still 
exists, although from a smaller group of people. 

11 Secure software upgrade 

IPCablecom includes only Embedded MTAs. E-MTAs are embedded with J.112/J.122 cable 
modems (including J.125 BPI+). Embedded MTAs MUST have their software upgraded by the 
cable modem according to the J.112/J.122 and J.125 requirements.  
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Annex A 
 

Oakley groups 

PKINIT states that DH parameters SHOULD be taken from the first or second Oakley groups as 
defined in RFC 2409. Additionally, this Recommendation requires that DH groups are used exactly 
as defined in RFC 2409. 

RFC 2409 defines several so-called "Oakley groups." Only the first two are relevant to this 
Recommendation. RFC 2409 requires implementations to support the first group, and recommends 
that they support the second. This annex is included because RFC 2409 does not give values of q 
(the p–1 factor) for the groups, and these are necessary in order to encode the dhpublicnumber type 
used in the subjectPublicKeyInfo data structure in PKINIT. 

The first two Oakley groups are defined as follows: 

First Oakley Group: 

 Prime (p):  
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 

29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD 

EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245 

E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF 

Generator (g or b):  

2.  

Factor (q): 
7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68 

94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E 

F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122 

F242DABB 312F3F63 7A262174 D31D1B10 7FFFFFFF FFFFFFFF 

Second Oakley Group: 

 Prime (p):  

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 

29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD 

EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245 

E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED 

EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381  

FFFFFFFF FFFFFFFF 

Generator (g or b):  

2.  

Factor (q): 

7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68 

94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E 

F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122 

F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6 

F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F67329C0 

FFFFFFFF FFFFFFFF 
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Annex B 
 

Kerberos Network Authentication Service  

See IETF RFC 4120 (2005). 

 

 

Annex C 
 

PKINIT specification 

See IETF RFC 4556 (2006). 
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Appendix I 
 

IPCablecom administration guidelines and best practices 

This appendix describes various administration guidelines and best practices recommended by 
IPCablecom. These are included to help facilitate network administration and/or strengthen overall 
security in the IPCablecom network.  

I.1 Routine CMS service key refresh 

IPCablecom recommends that the CMS service keys be routinely changed (refreshed) at least once 
every 90 days in order to reduce the risk of key compromises. The refresh period should be a 
provisioned parameter that can be used in one of the following ways: 

• In the case of manual key changes, an administrator is prompted or reminded to manually 
change a CMS service key. 

• In the case of autonomous key changes (using Kerberos Set/Change Password), it will 
define the refresh period. 

Note that in the case of autonomous key refreshes, whereby administrative overhead and scalability 
are not an issue, it may be desirable to use a refresh period that is less than 90 days (but at least the 
maximum ticket lifetime). This may further reduce the risk of key compromise. 
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Appendix II 
 

Example of MMH algorithm implementation 

This appendix gives an example implementation of the MMH MAC algorithm. There may be other 
implementations that have advantages over this example in particular operating environments. This 
example is for informational purposes only and is meant to clarify the Recommendation. 

The example implementation uses the term "MMH16" for the case where the MAC length is 
2 octets and "MMH32" for the case where the length is 4 octets. 

A main program is included for exercising the example implementation. The output produced by 
the program is included. 
/* 
 Demo of IPCablecom MMH16 and MMH32 MAC algorithms. 
 
 This program has been tested using Microsoft C/C++ Version 5.0. 
 It is believed to port easily to other compilers, but this has 
 not been tested. When porting, be sure to pick the definitions 
 for int16, int32, uint16, and uint32 carefully. 
*/ 
#include <stdio.h> 
/* 
 Define signed and unsigned integers having 16 and 32 bits. 
 This is machine/compiler dependent, so pick carefully. 
*/ 
typedef short int16; 
typedef unsigned short uint16; 
typedef int int32; 
typedef unsigned int uint32; 
/* 
 Define this symbol to see intermediate values. 
 Comment it out for clean display. 
*/ 
#define VERBOSE 
int32 reduceModF4(int32 x) { 
   /* 
 Routine to reduce an int32 value modulo F4, where F4 = 0x10001. 
 Result is in range [0, 0x10000]. 
 */ 
 int32 xHi, xLo; 
 /* Range of x is [0x80000000, 0x7fffffff]. */ 
 /* 
 If x is negative, add a multiple of F4 to make it non-negative. 
 This loop executes no more than two times. 
 */ 
 while (x < 0) x += 0x7fff7fff; 
 /* Range of x is [0, 0x7fffffff]. */ 
 /* Subtract high 16 bits of x from low 16 bits. */ 
 xHi = x >> 16; 
 xLo = x & 0xffff; 
 x = xLo - xHi; 
 /* Range of x is [0xffff8001, 0x0000ffff]. */ 
 /* If x is negative, add F4. */ 
 if (x < 0) x += 0x10001; 
 /* Range of x is [0, 0x10000]. */ 
 return x; 
} 
uint16 mmh16( 
 unsigned char *message,  
 unsigned char *key,  
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 unsigned char *pad, 
 int msgLen) { 
 /* 
 Compute and return the MMH16 MAC of the message using the indicated key and 
 pad. 
 The length of the message is msgLen bytes; msgLen must be even. 
 The length of the key must be at least msgLen bytes. 
 The length of the pad is two bytes. The pad must be freshly picked from a 
 secure random source. 
 */ 
 int16 x, y; 
 uint16 u, v; 
 int32 sum; 
 int i; 
 sum = 0; 
 for (i=0; i<msgLen; i+=2) { 
  /* Build a 16-bit factor from the next two message bytes. */ 
  x = *message++; 
  x <<= 8; 
  x |= *message++; 
  /* Build a 16-bit factor from the next two key bytes. */ 
  y = *key++; 
  y <<= 8; 
  y |= *key++; 
  /* Accumulate product of the factors into 32-bit sum */ 
  sum += (int32)x * (int32)y; 
  #ifdef VERBOSE 
   printf(" x %04x y %04x sum %08x\n", x & 0xffff, y & 0xffff, sum); 
  #endif 
 } 
 /* Reduce sum modulo F4 and truncate to 16 bits. */ 
 u = (uint16) reduceModF4(sum); 
 #ifdef VERBOSE 
  printf(" sum mod F4, truncated to 16 bits: %04x\n", u & 0xffff); 
 #endif 
 /* Build the pad variable from the two pad bytes */ 
 v = *pad++; 
 v <<= 8; 
 v |= *pad; 
 #ifdef VERBOSE 
  printf(" pad variable: %04x\n", v & 0xffff); 
 #endif 
 /* Accumulate pad variable, truncate to 16 bits */ 
 u = (uint16)(u + v); 
 #ifdef VERBOSE 
  printf(" mmh16 value: %04x\n", u & 0xffff); 
 #endif 
 return u; 
} 
uint32 mmh32( 
 unsigned char *message,  
 unsigned char *key,  
 unsigned char *pad, 
 int msgLen) { 
 /* 
 Compute and return the MMH32 MAC of the message using the indicated key and 
pad. 
 The length of the message is msgLen bytes; msgLen must be even. 
 The length of the key must be at least (msgLen + 2) bytes. 
 The length of the pad is four bytes. The pad must be freshly picked from a 
 secure random source. 
 */ 
 uint16 x, y; 
 uint32 sum; 



 

  Rec. ITU-T J.170 (11/2005) 163 

 x = mmh16(message, key, pad, msgLen); 
 y = mmh16(message, key+2, pad+2, msgLen); 
 sum = x; 
 sum <<= 16; 
 sum |= y; 
 return sum; 
} 
void show(char *name, unsigned char *src, int nbytes) 
{ 
 /* 
 Routine to display a byte array, in normal or reverse order 
 */ 
 int i; 
 enum { BYTES_PER_LINE = 16 }; 
 if (name) printf("%s", name); 
 for (i=0; i<nbytes; i++) { 
  if ((i % BYTES_PER_LINE) == 0) printf("\n"); 
  printf("%02x ", src[i]); 
 } 
 printf("\n"); 
} 
int main() 
{ 
 uint16 mac16; 
 uint32 mac32; 
 unsigned char message[] = { 
  0x4e, 0x6f, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68, 
  0x65, 0x20, 0x74, 0x69, 0x6d, 0x65, 0x2e, 
 }; 
 unsigned char key[] = { 
 0x35, 0x2c, 0xcf, 0x84, 0x95, 0xef, 0xd7, 0xdf, 0xb8, 
 0xf5, 0x74, 0x05, 0x95, 0xeb, 0x98, 0xd6, 0xeb, 0x98, 
 }; 
 unsigned char pad16[] = { 
 0xae, 0x07,  
 }; 
 unsigned char pad32[] = { 
 0xbd, 0xe1, 0x89, 0x7b, 
 }; 
 unsigned char macBuf[4]; 
 printf("Example of MMH16 computation\n"); 
 show("message", message, sizeof(message)); 
 show("key", key, sizeof(message)); 
 show("pad", pad16, 2); 
 mac16 = mmh16(message, key, pad16, sizeof(message)); 
 macBuf[1] = (unsigned char)mac16; mac16 >>= 8; 
 macBuf[0] = (unsigned char)mac16;  
 show("MMH16 MAC", macBuf, 2); 
 printf("\n"); 
 printf("Example of MMH32 computation\n"); 
 show("message", message, sizeof(message)); 
 show("key", key, sizeof(message)+2); 
 show("pad", pad32, 4); 
 mac32 = mmh32(message, key, pad32, sizeof(message)); 
 macBuf[3] = (unsigned char)mac32; mac32 >>= 8; 
 macBuf[2] = (unsigned char)mac32; mac32 >>= 8; 
 macBuf[1] = (unsigned char)mac32; mac32 >>= 8; 
 macBuf[0] = (unsigned char)mac32;  
 show("MMH32 MAC", macBuf, 4); 
 printf("\n"); 
 return 0; 
} 
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Here is the output produced by the program: 
 
Example of MMH16 computation 
message 
4e 6f 77 20 69 73 20 74 68 65 20 74 69 6d 65 2e  
key 
35 2c cf 84 95 ef d7 df b8 f5 74 05 95 eb 98 d6  
pad 
ae 07  
 x 4e6f y 352c sum 104a7614 
 x 7720 y cf84 sum f9bac294 
 x 6973 y 95ef sum ce0a23f1 
 x 2074 y d7df sum c8f3d4fd 
 x 6865 y b8f5 sum abfb55a6 
 x 2074 y 7405 sum bab087ea 
 x 696d y 95eb sum 8f00bff9 
 x 652e y 98d6 sum 663aa46d 
 sum mod F4, truncated to 16 bits: 3e33 
 pad variable: ae07 
 mmh16 value: ec3a 
MMH16 MAC 
ec 3a  
Example of MMH32 computation 
message 
4e 6f 77 20 69 73 20 74 68 65 20 74 69 6d 65 2e  
key 
35 2c cf 84 95 ef d7 df b8 f5 74 05 95 eb 98 d6  
eb 98  
pad 
bd e1 89 7b  
 x 4e6f y 352c sum 104a7614 
 x 7720 y cf84 sum f9bac294 
 x 6973 y 95ef sum ce0a23f1 
 x 2074 y d7df sum c8f3d4fd 
 x 6865 y b8f5 sum abfb55a6 
 x 2074 y 7405 sum bab087ea 
 x 696d y 95eb sum 8f00bff9 
 x 652e y 98d6 sum 663aa46d 
 sum mod F4, truncated to 16 bits: 3e33 
 pad variable: bde1 
 mmh16 value: fc14 
 x 4e6f y cf84 sum f125323c 
 x 7720 y 95ef sum bfca091c 
 x 6973 y d7df sum af427949 
 x 2074 y b8f5 sum a640e84d 
 x 6865 y 7405 sum d590b646 
 x 2074 y 95eb sum c81e04c2 
 x 696d y 98d6 sum 9da1dde0 
 x 652e y eb98 sum 95912b30 
 sum mod F4, truncated to 16 bits: 959f 
 pad variable: 897b 
 mmh16 value: 1f1a 
MMH32 MAC 
fc 14 1f 1a 
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