

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T H.761
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2011)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

IPTV multimedia services and applications for IPTV –
IPTV multimedia application frameworks

 Nested context language (NCL) and Ginga-NCL

Recommendation ITU-T H.761

ITU-T H-SERIES RECOMMENDATIONS

AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100–H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General H.200–H.219
Transmission multiplexing and synchronization H.220–H.229
Systems aspects H.230–H.239
Communication procedures H.240–H.259
Coding of moving video H.260–H.279
Related systems aspects H.280–H.299
Systems and terminal equipment for audiovisual services H.300–H.349
Directory services architecture for audiovisual and multimedia services H.350–H.359
Quality of service architecture for audiovisual and multimedia services H.360–H.369
Supplementary services for multimedia H.450–H.499

MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500–H.509
Mobility for H-Series multimedia systems and services H.510–H.519
Mobile multimedia collaboration applications and services H.520–H.529
Security for mobile multimedia systems and services H.530–H.539
Security for mobile multimedia collaboration applications and services H.540–H.549
Mobility interworking procedures H.550–H.559
Mobile multimedia collaboration inter-working procedures H.560–H.569

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610–H.619
Advanced multimedia services and applications H.620–H.629

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV
General aspects H.700–H.719
IPTV terminal devices H.720–H.729
IPTV middleware H.730–H.739
IPTV application event handling H.740–H.749
IPTV metadata H.750–H.759
IPTV multimedia application frameworks H.760–H.769
IPTV service discovery up to consumption H.770–H.779

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T H.761 (06/2011) i

Recommendation ITU-T H.761

Nested context language (NCL) and Ginga-NCL

Summary

Recommendation ITU-T H.761 gives the specification of the nested context language (NCL) and of
an NCL presentation engine called Ginga-NCL to provide interoperability and harmonization among
IPTV multimedia application frameworks.

NCL is a glue language that holds media objects together in multimedia presentations, no matter
which object types they are. As an example, NCL treats an HTML document as one of its possible
media objects. In this way, NCL does not substitute, but embed, XHTML-based documents. The
same reasoning applies to other media content and multimedia content objects, and also to objects
with content coded in any computer language. Ginga-NCL is an NCL presentation engine built as a
component of a DTV middleware. A very special NCL object type defined in Ginga-NCL is NCLua,
an imperative media-object with Lua code.

This Recommendation includes an electronic attachment containing NCL 3.0 module schemas used
in the Enhanced DTV profile.

History

Edition Recommendation Approval Study Group

1.0 ITU-T H.761 2009-04-29 16

2.0 ITU-T H.761 v2 2011-06-13 16

ii Rec. ITU-T H.761 (06/2011)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T H.761 (06/2011) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 4

5 NCL and the Ginga-NCL.. 5

6 Ginga-NCL harmonization with other IPTV declarative environments 6

7 NCL: XML application declarative language for multimedia presentations 7

7.1 Identifiers for NCL 3.0 module and language profiles 8

7.2 NCL modules .. 10

NCL language profiles for IPTV .. 51

8 Media objects in NCL presentations .. 52

8.1 Expected behaviour of basic media players ... 52

8.2 Expected behaviour of declarative hypermedia players in NCL
applications ... 56

8.3 Expected behaviour of imperative-object players in NCL applications 60

8.4 Expected behaviour of media players after instructions applied to
composite objects ... 64

8.5 Relation between the presentation-event state machine of a node and the
presentation-event state machine of its parent-composite node 66

9 NCL editing commands .. 66

9.1 Private bases ... 66

9.2 Command parameters XML schemas .. 74

9.3 NCL editing commands in Ginga-NCL ... 74

10 Lua imperative objects in NCL presentations .. 78

10.1 Lua language – Functions removed from the Lua library 78

10.2 Execution model ... 78

10.3 Additional modules .. 79

Annex A – NCL 3.0 module schemas used in the Enhanced DTV profile 99

Appendix I – Ginga architecture .. 100

Appendix II – An NCL example .. 103

Bibliography... 104

Electronic attachment: NCL 3.0 module schemas

iv Rec. ITU-T H.761 (06/2011)

Introduction

Nested context language (NCL) is a declarative XML-based language initially designed for
hypermedia document specification for the Web. The language's flexibility, reusability,
multi-device support, application content adaptability and, mainly, the language intrinsic ability for
easily defining spatiotemporal synchronization among media assets, including viewer interactions,
make it an outstanding solution for IPTV systems. NCL is also the declarative language used in the
Nipo-Brazilian terrestrial DTV standard (ISDB-TB).

NCL is a glue language that holds media objects together in a multimedia presentation, no matter
which object types they are. In this sense, media objects may be image objects (JPEG, PNG, etc.),
video objects (MPEG, MOV, etc.), audio objects (MP3, WMA, etc.), text objects (TXT, PDF, etc.),
imperative objects (with Lua code, etc.), other declarative objects (HTML, LIME, SVG, MHEG,
nested NCL applications, etc.), etc. Which media objects are supported depend on which media
players are embedded in the NCL engine (Ginga-NCL).

Ginga-NCL is an NCL presentation engine built as a component of an IPTV middleware. An open
source reference implementation of Ginga-NCL is available under the GPLv2 licence. This
reference implementation was developed in a way that it can easily integrate a variety of
media-object players for audio, video, image, text, etc., including imperative execution engines and
other declarative language players.

A particular NCL object type defined in Ginga-NCL is NCLua, an imperative media-object with
Lua code. Because of its simplicity, efficiency and powerful data description syntax, Lua was
considered the natural scripting language for Ginga-NCL. The Lua engine is small and written in
ANSI/C, making it easily portable to several hardware platforms. The Lua engine is also distributed
as free software under the Massachusetts Institute of Technology (MIT) licence
(http://www.LUA.org/license.html).

http://www.lua.org/license.html

 Rec. ITU-T H.761 (06/2011) 1

Recommendation ITU-T H.761

Nested context language (NCL) and Ginga-NCL

1 Scope

This Recommendation1 specifies the nested context language (NCL) and an NCL presentation
engine called Ginga-NCL to provide interoperability and harmonization among IPTV multimedia
application frameworks. To provide global standard IPTV services, it is foreseeable that a
combination of different standard multimedia application frameworks will be used. Therefore, this
Recommendation specifies the nested context language, as one of those standards that compose the
multimedia application frameworks, to provide interoperable use of IPTV services. Ginga-NCL is
an NCL presentation engine that integrates NCL and Lua players into a declarative environment.
NCL and Lua frameworks can be used in other declarative environments, but if they are used
together they shall follow the Ginga-NCL specification.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.222.0] Recommendation ITU-T H.222.0 (2006) | ISO/IEC 13818-1:2007, Information
technology – Generic coding of moving pictures and associated audio
information: Systems.

[ITU-T H.750] Recommendation ITU-T H.750 (2008), High-level specification of metadata
for IPTV services.

[ITU-T J.200] Recommendation ITU-T J.200 (2001), Worldwide common core − Application
environment for digital interactive television services.

[ISO/IEC 13818-6] ISO/IEC 13818-6 (1998), Information technology – Generic coding of moving
pictures and associated audio information – Part 6: Extensions for DSM-CC.
Plus its Amd.1 (2000), Amd.2 (2000), Amd.3 (2001).

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 application [ITU-T J.200]: Information that expresses a specific set of observable
behaviour.

3.1.2 application environment [ITU-T J.200]: The context or software environment in which an
application is processed.

1 This Recommendation includes an electronic attachment containing NCL 3.0 module schemas used in the

Enhanced DTV profile.

2 Rec. ITU-T H.761 (06/2011)

3.1.3 application programming interface (API) [ITU-T J.200]: Consists of software libraries
that provide uniform access to system services.

3.1.4 character [ITU-T J.200]: Specific "letter" or other identifiable symbol, e.g., "A".

3.1.5 data carousel [ITU-T J.200]: A transmission scheme defined in [ISO/IEC 13818-6], with
which data is transmitted repetitively. It can be used for downloading various data in broadcasting.
It is the scheme of the DSM-CC User-to-Network Download protocol that embodies the cyclic
transmission of data.

3.1.6 declarative application [ITU-T J.200]: An application which is started by, and primarily
makes use of, a declarative information to express its behaviour; an XML document instance is an
example of a declarative application.

3.1.7 declarative application environment [ITU-T J.200]: An environment that supports the
processing of declarative applications.

3.1.8 digital storage media command and control (DSM-CC) [ITU-T J.200]: A control
method defined in [ISO/IEC 13818-6], which provides access to files or streams for digital
interactive services.

3.1.9 electronic program guide (EPG) [b-ITU-T H.770]: A service navigation interface which
is used especially for programs.

NOTE – In some traditional broadcast services, EPG is defined as an on-screen guide used to display
information on scheduled live broadcast television programs, allowing a viewer to navigate, select, and
discover programs by time, title, channel, genre, etc. This traditional definition does not cover "catalogues"
for on-demand and download services (sometimes called electronic content guide, ECG) and bidirectional
interactive services (sometimes called interactive program guide, IPG) for end-user interaction with a server
or head-end.

Some EPGs utilize web-pages, or teletext to realize this function.

3.1.10 element [ITU-T J.200]: A portion of document delimited by tags.

3.1.11 elementary stream (ES) [ITU-T H.222.0]: A generic term for one of the coded video,
coded audio or other coded bit streams in PES packets. One elementary stream is carried in a
sequence of PES packets with one, and only one, stream id.

3.1.12 execution engine [ITU-T J.200]: A subsystem in a receiver that evaluates and executes
imperative applications consisting of computer language instructions and associated data and media
content. An execution engine may be implemented with an operating system, computer language
compilers, interpreters, and Application Interfaces (APIs), which an imperative application may use
to present audiovisual content, interact with a user, or execute other tasks, which are not evident to
the user. A common example of an execution engine is the JavaTV software environment, using the
Java programming language and byte code interpreter, JavaTV APIs, and a Java Virtual Machine
for program execution.

3.1.13 locator [ITU-T J.200]: A linkage, expressed in the syntax provided in RFC 2396, which
provides a reference to an application or resource.

3.1.14 markup language [ITU-T J.200]: A formalism that describes document structures,
appearances, or other aspects. XHTML is an example of markup language.

3.1.15 normal play time (NPT) [ITU-T J.200]: The absolute temporal coordinates that represent
the position in a stream at which an event occurs.

3.1.16 packet identifier (PID) [ITU-T H.222.0]: A unique integer value used to identify
elementary streams of a program in a single or multi-program transport stream.

3.1.17 persistent storage [ITU-T J.200]: Memory available that can be read/written to by an
application and may outlive the application's life. Persistent storage can be volatile or non-volatile.

 Rec. ITU-T H.761 (06/2011) 3

3.1.18 plug-in [ITU-T J.200]: A set of functionalities that may be added to a generic platform in
order to provide additional functionality.

3.1.19 presentation engine [ITU-T J.200]: A subsystem in a receiver that evaluates and presents
declarative applications (consisting of content such as audio, video, graphics, and text) primarily
based on presentation rules defined in the presentation engine. A presentation engine also responds
to formatting information, or "markup", associated with the content, to user inputs, and to script
statements, which control presentation behaviour and initiate other processes in response to user
input and other events.

3.1.20 receiver platform (platform) [ITU-T J.200]: The receiver's hardware, operating system
and native software libraries.

3.1.21 resource [ITU-T J.200]: A network data object or a service that is uniquely identified in a
network. An application resource or environment resource.

3.1.22 service information (SI) [ITU-T J.200]: Data which describes programs and services.

3.1.23 transport stream [ITU-T H.222.0]: Refers to the MPEG-2 transport stream syntax for the
packetization and multiplexing of video, audio, and data signals for digital broadcast systems.

3.1.24 uniform resource identifier (URI) [ITU-T J.200]: An addressing method to access a
resource in local storage or on the Internet.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 application life-cycle: Time period from the moment an application is loaded until the
moment it is destroyed.

3.2.2 author: Person who writes NCL documents.

3.2.3 authoring tool: Tool to help authors create NCL documents.

3.2.4 attribute: Parameter that represents the character of a property.

3.2.5 declarative object content (or declarative media object content): Type of content that
takes the form of a code written in some declarative language.

NOTE – An XHTML-based document, an MHEG application and an embedded NCL application are
examples of declarative media objects.

3.2.6 element attribute (or attribute of an element): Property of an XML element.

3.2.7 event: Occurrence in time that may be instantaneous or have measurable duration.

3.2.8 hybrid application: A hybrid declarative application or a hybrid imperative application.

3.2.9 hybrid declarative application: Declarative application that makes use of imperative
object content.

NOTE – An NCL document with an embedded NCLua object is an example of a hybrid declarative
application.

3.2.10 hybrid imperative application: Imperative application that makes use of declarative
content.

NOTE – A Java Xlet that creates and causes the display of an NCL document instance is an example of a
hybrid imperative application.

3.2.11 imperative application: Application that is started by, and primarily makes use of,
imperative information to express its behaviour.

NOTE – A Java program and a Lua program are examples of imperative applications.

4 Rec. ITU-T H.761 (06/2011)

3.2.12 imperative application environment: Environment that supports the processing of
imperative applications.

3.2.13 imperative object content: Type of content that takes the form of an executable code
written in some non-declarative language.

NOTE – A Lua script is an example of imperative object content.

3.2.14 media object (or media node): Collection of named pieces of data that may represent a
media content, a multimedia content, or a program written in a specific language.

3.2.15 media player: Component of an application environment which decodes or executes a
specific content type.

3.2.16 native application: An intrinsic function implemented by a receiver platform.

NOTE – A closed captioning display is an example of a native application.

3.2.17 NCL application: Set of information that consists of an NCL document (the application
specification) and a group of data, including objects (media or execution objects) accompanying the
NCL document.

3.2.18 NCL document (or NCL content): An NCL application specification; an NCL code
chunk.

3.2.19 NCL formatter: Software component that is in charge of receiving the specification of an
NCL document and controlling its presentation, trying to guarantee that author-specified
relationships among media objects are respected.

NOTE – NCL document renderer, NCL user agent, and NCL player are other names used with the same
meaning of NCL formatter.

3.2.20 NCL node (or NCL Object): Refers to a <media>, <context>, <body>, or <switch>
element of NCL.

3.2.21 NCL user agent: Any program that interprets an NCL document written in the document
language according to the terms of this specification.

NOTE – A user agent may display a document, trying to guarantee that author-specified relationships among
media objects are respected. The relation can be: read it aloud; cause it to be printed; convert it to another
format, etc.

3.2.22 profile: Specification for a class of capabilities providing different levels of functionality in
a receiver.

3.2.23 property element: NCL element that defines a property name and its associated value.

3.2.24 scripting language: Language used to describe an imperative object content that is
embedded in NCL documents and HTML documents.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ABNT Brazilian Association for Technical Standards (Associação Brasileira de Normas
Técnicas)

DTV Digital Television

GIF Graphics Interchange Format

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

 Rec. ITU-T H.761 (06/2011) 5

ISDB-TB International Standard for Digital Broadcasting-Terrestrial TV with Brazilian
Innovations

JPEG Joint Photographic Experts Group

MIME Multipurpose Internet Mail Extension

MNG Multiple Network Graphics

MPEG Moving Picture Experts Group

NCL Nested Context Language

NCM Nested Context Model

NPT Normal Play Time

PES Packetized Elementary Stream

PID Packet Identifier

SMIL Synchronized Multimedia Integration Language

TS Transport Stream

URI Universal Resource Identifier

URL Universal Resource Locator

W3C World-Wide Web Consortium

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

5 NCL and the Ginga-NCL

Nested context language (NCL) is an XML application that allows authors to write interactive
multimedia presentations. Using NCL, authors can describe the temporal behaviour of a multimedia
presentation, associate hyperlinks (user interaction) with media objects, define alternatives for
presentation (adaptation), and describe the layout of the presentation on multiple devices. NCL also
allows for using editing commands (see clause 9) coming from an external source, including those
commands for live application generation.

Ginga-NCL is the logical subsystem of the Ginga system that processes NCL declarative
applications (NCL documents). A key component of Ginga-NCL is the declarative content
decoding engine (NCL formatter or NCL player). Another important module of Ginga is the Lua
engine, which is responsible for interpreting NCLua objects, that is, media objects with Lua code
[b-H.IPTV-MAFR.14]. Lua is the scripting language of NCL.

Ginga-NCL deals with applications collected inside a data structure known as private base. A
Private Base Manager component is in charge of receiving NCL document, editing commands and
maintaining the NCL documents being presented. In Ginga-NCL, an application can be generated
or modified on the fly, using NCL editing commands.

Figure 5-1 illustrates the Ginga-NCL presentation environment. Appendix I presents an overview of
the Ginga architecture.

6 Rec. ITU-T H.761 (06/2011)

H.761-v2(11)_F5-1

Ginga-NCL presentation engine

NCL context
manager

Player
manager

Scheduler

Layout manager

Formatter
XML parsers

Converters

Private base
manager

Adapters

Figure 5-1 – Ginga-NCL presentation environment

6 Ginga-NCL harmonization with other IPTV declarative environments

An NCL application has a strict separation between its content and its structure. NCL itself does not
define any media content. Instead, it defines the glue that holds media objects together in
multimedia presentations.

An NCL document only defines how media objects are structured and related, in time and space. As
a glue language, it does not restrict or prescribe its media-object content types. Which media objects
are supported depends on the media players that are coupled in the NCL formatter. One of these
players is the main video and audio decoder/player, usually implemented in hardware in an IPTV
receiver. In this way, note that the main video and audio of a service are treated like all other media
objects that may be related using NCL.

Another NCL media object that is required in a Ginga-NCL implementation is the HTML-based
media object [b-W3C XHTML]. Therefore, NCL does not substitute, but embed HTML-based
documents (or objects). As with other media objects, which HTML-based language will have
support in an NCL formatter is an implementation choice, and, therefore, it will depend on which
HTML browser will act as a media player integrated to the NCL formatter.

As a consequence, it is possible, for example, to have LIME browsers embedded in an NCL
document player. It is also possible to receive an HTML-based browser code through datacasting
and install it as a plug-in (usually as Lua objects).

It is also possible to have a harmonization browser implemented, and receiving the complementary
part, if needed, as a plug-in, in order to convert the HTML player into one of the several IPTV
browser standards.

Note that, in the extreme case, an NCL document may be reduced to having only one HTML media
object. In this case, the NCL document player will act nearly like an HTML browser.

No matter the case, the HTML-based browser implementation shall be a consequence of the
following requirements:

– minimization of the redundancy with existing NCL facilities;

– robustness;

– alignment with W3C specifications;

– rejection of non-conformant content;

– precise content layout control mechanisms;

– support of different pixel aspect ratios.

Although an HTML-based browser is required to be supported, the use of HTML elements to define
relationships (including HTML links) is not recommended when authoring NCL documents.
Structure-based authoring should be emphasized for the well-known reasons largely reported in the
literature.

 Rec. ITU-T H.761 (06/2011) 7

When any media player, in particular an HTML-based browser, is integrated to the Ginga-NCL
formatter, it shall support the generic API discussed in clause 8. Therefore, for some HTML-based
browsers, an adapter module can be necessary to accomplish the integration.

Finally, for live editing, Ginga-NCL also supports event descriptors and editing commands defined
by NCL. Again, although an HTML-based browser shall be supported by Ginga-NCL, the use of
HTML elements to define relationships (including those triggered by external events) is
discouraged in authoring NCL documents, for the same reason: structure-based authoring should be
emphasized for the well-known reasons largely reported in the literature.

7 NCL: XML application declarative language for multimedia presentations

The modularization approach has been used in several XML-based language recommendations.

Modules are collections of semantically-related XML elements, attributes, and attribute values that
represent a unit of functionality. Modules are defined in coherent sets. This coherence is expressed
in that the elements of these modules are associated with the same namespace
[b-W3C XMLNAMES1].

A language profile is a combination of modules. Modules are atomic, i.e., they shall not be
subdivided when included in a language profile. Furthermore, a module specification may include a
set of integration requirements to which language profiles that include the module shall comply.

NCL has been specified in a modular way, allowing for the combination of its modules in language
profiles [b-NCL DTV]. Each profile may group a subset of NCL modules, allowing for the creation
of languages according to the users' needs. Moreover, NCL modules and profiles can be combined
with other language modules, allowing for the incorporation of NCL features into those languages,
and vice-versa.

Commonly, there is a language profile that incorporates nearly all the modules associated with a
single namespace. Other language profiles can be specified as subsets of the larger one. This is the
case of the Enhanced DTV profile of NCL, focal point of this Recommendation.

The main purpose of being in conformance with a language profile is to enhance interoperability.
The mandatory modules are defined in such a way that any document interchanged in a conforming
language profile will yield a reasonable presentation. The document formatter, while supporting the
associated mandatory module set, should ignore all other (unknown) elements and attributes.

NCL edition 3.0 is partitioned into 14 functional areas, which are partitioned again into modules:

1) Structure:

– Structure Module.

2) Layout:

– Layout Module.

3) Components:

– Media Module.

– Context Module.

4) Interfaces:

– MediaContentAnchor Module.

– CompositeNodeInterface Module.

– PropertyAnchor Module.

– SwitchInterface Module.

8 Rec. ITU-T H.761 (06/2011)

5) Presentation Specification:

– Descriptor Module.

6) Linking:

– Linking Module.

7) Connectors:

– ConnectorCommonPart Module.

– ConnectorAssessmentExpression Module.

– ConnectorCausalExpression Module.

– CausalConnector Module.

– CausalConnectorFunctionality Module.

– ConnectorBase Module.

8) Presentation Control:

– TestRule Module.

– TestRuleUse Module.

– ContentControl Module.

– DescriptorControl Module.

9) Timing:

– Timing Module.

10) Reuse:

– Import Module.

– EntityReuse Module.

– ExtendedEntityReuse Module.

11) Navigational Key:

– KeyNavigation Module.

12) Animation:

– Animation Module.

13) Transition Effects:

– TransitionBase Module.

– Transition Module.

14) Meta-Information:

– Metainformation Module.

7.1 Identifiers for NCL 3.0 module and language profiles

Each NCL profile should explicitly state the namespace URI that is to be used to identify it.

Documents authored in language profiles that include the NCL Structure module can be associated
with the "application/x-ncl+xml" mime type. Documents using the "application/x-ncl+xml" mime
type are required to be host language conformant.

The XML namespace identifiers for the complete set of NCL 3.0 modules, elements and attributes
are contained within the following namespace: http://www.ncl.org.br/NCL3.0/.

Each NCL module has a unique identifier associated with it. The identifiers for NCL 3.0 modules
shall comply with Table 7-1.

http://www.ncl.org.br/NCL3.0/

 Rec. ITU-T H.761 (06/2011) 9

Modules may also be identified collectively. The following module collections are defined:

– modules used by the NCL 3.0 Language profile:

 http://www.ncl.org.br/NCL3.0/LanguageProfile

– modules used by the NCL 3.0 Causal Connector profile:

 http://www.ncl.org.br/NCL3.0/CausalConnectorProfile

– modules used by the NCL 3.0 Enhanced DTV profile:

 http://www.ncl.org.br/NCL3.0/EDTVProfile

Table 7-1 – The NCL 3.0 module identifiers

Modules Identifiers

Animation http://www.ncl.org.br/NCL3.0/Animation

CompositeNodeInterface http://www.ncl.org.br/NCL3.0/CompositeNodeInterface

CausalConnector http://www.ncl.org.br/NCL3.0/CausalConnector

CausalConnectorFunctionality http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality

ConnectorCausalExpression http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression

ConnectorAssessmentExpression http://www.ncl.org.br/NCL3.0/ConnectorAssessmentExpression

ConnectorBase http://www.ncl.org.br/NCL3.0/ConnectorBase

ConnectorCommonPart http://www.ncl.org.br/NCL3.0/ConnectorCommonPart

ContentControl http://www.ncl.org.br/NCL3.0/ContentControl

Context http://www.ncl.org.br/NCL3.0/Context

Descriptor http://www.ncl.org.br/NCL3.0/Descriptor

DescriptorControl http://www.ncl.org.br/NCL3.0/DescriptorControl

EntityReuse http://www.ncl.org.br/NCL3.0/EntityReuse

ExtendedEntityReuse http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse

Import http://www.ncl.org.br/NCL3.0/Import

Layout http://www.ncl.org.br/NCL3.0/Layout

Linking http://www.ncl.org.br/NCL3.0/Linking

Media http://www.ncl.org.br/NCL3.0/Media

MediaContentAnchor http://www.ncl.org.br/NCL3.0/MediaContentAnchor

KeyNavigation http://www.ncl.org.br/NCL3.0/KeyNavigation

PropertyAnchor http://www.ncl.org.br/NCL3.0/PropertyAnchor

Structure http://www.ncl.org.br/NCL3.0/Structure

SwitchInterface http://www.ncl.org.br/NCL3.0/SwitchInterface

TestRule http://www.ncl.org.br/NCL3.0/TestRule

TestRuleUse http://www.ncl.org.br/NCL3.0/TestRuleUse

Timing http://www.ncl.org.br/NCL3.0/Timing

TransitionBase http://www.ncl.org.br/NCL3.0/TransitionBase

Transition http://www.ncl.org.br/NCL3.0/Transition

Metainformation http://www.ncl.org.br/NCL3.0/MetaInformation

http://www.ncl.org.br/NCL3.0/LanguageProfile
http://www.ncl.org.br/NCL3.0/CausalConnectorProfile
http://www.ncl.org.br/NCL3.0/EDTVProfile

10 Rec. ITU-T H.761 (06/2011)

Three SMIL modules [b-W3C SMIL 2.1] were used as the basis for the NCL Transition module and
the NCL Metainformation module definitions. The identifiers of these SMIL 2.0 modules are shown
in Table 7-2.

Table 7-2 – The SMIL 2.0 module identifiers used in NCL profiles

Modules Identifiers

BasicTransitions http://www.w3.org/2001/SMIL20/BasicTransitions

TransitionModifiers http://www.w3.org/2001/SMIL20/TransitionsModifiers

Metainformation http://www.w3.org/2001/SMIL20/Metainformation

7.1.1 NCL version information

The following processing instructions shall be written in an NCL document. They identify NCL
documents that contain only the elements defined in this Recommendation, and the NCL version to
which the document conforms.

<?xml version="1.0" encoding="ISO-8859-1"?>
<ncl id="any string" xmlns="http://www.ncl.org.br/NCL3.0/profileName">

The id attribute of an <ncl> element may receive any string that matches the NCName type
definition [Namespaces in XML:1999] as its value. That is, it may receive any string value that
begins with a letter or an underscore and that only contains letters, digits, "." and "_".

The version number of an NCL document specification consists of a major number and a minor
number, separated by a dot. The numbers are represented as a decimal number character string with
leading zeros suppressed. The initial standard version number is 3.0.

New NCL versions shall be released in accordance with the following versioning policy. If
receivers that conform to older versions can still receive a document based on the revised
specification, in relation to error corrections, operational reasons, or the addition of a new concise
syntax notation ("syntax sugar") that can be translated at compile time to the old one, the new
version of NCL shall be released with the minor number updated. If receivers that conform to older
versions cannot receive a document based on the revised specifications, the major number shall be
updated.

A specific version is specified in the URI path http://www.ncl.org.br/NCLx.y/profileName, where
the version number "x.y" is written immediately after the "NCL".

The profileName, in the URI path, shall be EDTVProfile or CausalConnectorProfile.

7.2 NCL modules

7.2.1 General remarks

The main definitions made by the NCL 3.0 modules that are present in the NCL 3.0 Enhanced DTV
profile are given in clauses 7.2.2 to 7.2.15.

The complete definition of these NCL 3.0 modules, using XML schemas, is presented in Annex A.
Any ambiguity found in this text can be clarified by consulting the XML schemas.

As stated in the scope of this Recommendation, NCL can be used in other declarative environments
besides Ginga-NCL. Constraints coming only from Ginga-NCL are always pointed out in a separate
paragraph of the subclauses of clause 7.2, mentioning the Ginga-NCL specification.

After discussing each module, a table is presented indicating the module elements and their
attributes. The value of an attribute may not contain quotation marks ("). When a value is a string, it
may be any string that matches the NCName type [Namespaces in XML:1999]. That is, the value

http://www.ncl.org.br/NCLx.y/profileName

 Rec. ITU-T H.761 (06/2011) 11

may be any string that begins with a letter or an underscore and that only contains letters, digits, "."
and "_". For a given profile, attributes and contents (child elements) of an element may be defined
in the module itself or in the language profile that groups the modules. Therefore, tables in this
clause show attributes and contents that come from NCL Enhanced DTV profile, besides those
defined in the NCL modules themselves. Element attributes that are required are underlined. In the
tables, the following symbols are used: (?) optional (zero or one occurrence), (|) or, (*) zero or more
occurrences, (+) one or more occurrences. The child element order is not specified in the tables.

Additionally, an NCL application is presented in Appendix II, for example purposes only.

7.2.2 Structure functionality

The Structure functionality has just one module, called Structure, which defines the basic structure
of an NCL document. It defines the root element, called <ncl>, the <head> element and the <body>
element, following the terminology adopted by other W3C standards. The <body> element of an
NCL document is treated as an NCM context node [b-NCM Core].

In NCM, the conceptual data model of NCL, a node may be a context, a switch or a media object.
All NCM nodes are represented by corresponding NCL elements. Context nodes (see clause 7.2.4)
contain other NCM nodes and links.

Almost all NCL elements may have the id attribute. This attribute may receive as its value any
string that matches the NCName type definition [Namespaces in XML:1999]. That is, it may
receive any string value that begins with a letter or an underscore and that only contains letters,
digits, "." and "_". The id attribute uniquely identifies an element within a document. Its value is an
XML identifier.

In particular, the <ncl> element shall define the id attribute, and the <body> element may define the
id attribute. Documents with id attributes whose values are not strings that match the NCName
production [Namespaces in XML] shall be ignored by an implementation in conformance with this
Recommendation.

The title attribute of <ncl> offers advisory information about the element. Values of the title
attribute may be rendered by user agents in a variety of ways, which are outside the scope of this
Recommendation.

The xmlns attribute of <ncl> declares an XML namespace – that is, it declares the primary
collection of XML-defined constructs the document uses. The attribute value is the URL identifying
where the namespace is officially defined. Two values are allowed for the xmlns attribute:
"http://www.ncl.org.br/NCL3.0/EDTVProfile", for the Enhanced DTV profile, and
"http://www.ncl.org.br/NCL3.0/CausalConnectorProfile", for the Causal Connector profile. An
NCL formatter shall know that the schemaLocation for these namespaces is, by default,
respectively:

http://www.ncl.org.br/NCL3.0/profiles/NCL30EDTV.xsd,
http://www.ncl.org.br/NCL3.0/profiles/NCL30CausalConnector.xsd

Documents with xmlns attributes different from the two previously mentioned values shall be
ignored by an implementation in conformance with this Recommendation.

Child elements of <head> and <body> are defined in other NCL modules. The order in which the
<head> child elements may be declared is: importedDocumentBase?, ruleBase?, transitionBase?,
regionBase*, descriptorBase?, connectorBase?, meta*, metadata*. However, this order is not a
requirement.

The elements of this module, their child elements, and their attributes shall comply with Table 7-3.

http://www.ncl.org.br/NCL3.0/EDTVProfile
http://www.ncl.org.br/NCL3.0/CausalConnectorProfile

12 Rec. ITU-T H.761 (06/2011)

Table 7-3 – Extended Structure module

Elements Attributes Content

ncl id, title, xmlns (head?, body?)

head (importedDocumentBase?, ruleBase?, transitionBase?,
regionBase*, descriptorBase?, connectorBase?, meta*,
metadata*)

body id (port| property| media| context| switch| link | meta | metadata)*

7.2.3 Layout functionality

The Layout functionality has a single module, named Layout, which specifies elements and
attributes that may define how objects will be initially presented inside regions of output devices.
Indeed, this module may define initial values for homonym NCL properties defined in <media>,
<body>, and <context> elements (see clause 7.2.4).

In short, a <regionBase> element, which may be declared in the NCL document <head>, defines a
set of <region> elements, each of which may contain another set of nested <region> elements, and
so on, recursively.

The <regionBase> element may have the id attribute, and <region> elements shall have the id
attribute. As usual, the id attribute uniquely identifies the element within a document and shall
follow the NCName production [Namespaces in XML].

Each <regionBase> element is associated with a class of devices where presentation will take place.
In order to identify the association, the <regionBase> element defines the device attribute, which
may have the values: "systemScreen (i)" or "systemAudio(i)", where i is an integer greater than
zero. The chosen class defines global environment variables: system.screenSize(i),
system.screenGraphicSize(i), and system.audioType(i), as defined in Table 7-6 (see clause 7.2.4).
When the attribute is not specified, the presentation shall take place in the same device that runs the
NCL formatter.

NOTE 1 – There are two different types of device classes: active and passive. In an active class, a device is
able to run media players supported by Ginga-NCL. In a passive class, a device is not required to run media
players supported by Ginga-NCL, only to exhibit a bit map or a sequence of audio samples received from
another (parent) device. In a conformant implementation, systemScreen (1) and systemAudio(1) are reserved
to passive classes, and systemScreen (2) and systemAudio(2) are reserved to active classes.

NOTE 2 – The <regionBase> element that defines a passive class may also have a region attribute. This
attribute is used to identify a <region> element in a <regionBase> associated with an active class where the
(parent) device that creates the bit map sent to the passive-class devices is registered. In the specified region
the bit map must also be exhibited. If the attribute is not specified, the exhibition will take place only on the
passive class devices.

The interpretation of the region nesting inside a <regionBase> should be made by the software in
charge of the document presentation orchestration (the NCL formatter).

In an implementation in conformance with Ginga-NCL specification, a first nesting level shall be
interpreted as defining the device area where the presentation would take place; the second nesting
level as windows (that is, presentation areas in the screen) of the parent area; and the other levels as
regions inside these windows.

A <region> can also define the following attributes: title, left, right, top, bottom, height, width, and
zIndex. All these attributes have the usual meaning.

The position of a region, as specified by its top, bottom, left, and right attributes, is always relative
to the parent geometry, which is defined by the parent <region> element or the total device area in
the case of first nesting level regions. Attribute values may be non-negative "percentage" values, or
integer pixel units. For pixel values, the author may omit the "px" unit qualifier (e.g., "100"). For

 Rec. ITU-T H.761 (06/2011) 13

percentage values, on the other hand, the "%" symbol shall be indicated (e.g., "50%"). The
percentage is always relative to the parent's width, in the case of right, left and width definitions,
and parent's height, in the case of bottom, top and height definitions.

The top and left attributes are the primary region positioning attributes. They place the left-top
corner of the region at the specified distance away from the left-top edge of the parent region (or the
device left-top edge in the case of the outermost region). Sometimes, explicitly setting the bottom
and right attributes is helpful. Their values state the distance between the region's right-bottom
corner and the right-bottom corner of the parent region (or the device right-bottom edge in the case
of the outermost region); see Figure 7-1.

H.761-v2(11)_F7-1

Left Width Right

T
op

H
ei

gh
t

B
ot

to
m

Region

Parent region

Figure 7-1 – Region positioning attributes

Regarding region sizes, when they are specified by declaring width and height attributes using the
"%" notation, the size of the region is relative to the size of its parent geometry as mentioned
before. Sizes declared as absolute pixel values maintain those absolute values. The intrinsic size of
a region is equal to the size of the logical parent's geometry. This means that if a nested region does
not specify any positioning or size values, it will be assumed to have the same position and size
values of its parent region. In particular, when a first level region does not specify any positioning
or size values, it will be assumed to be the whole device presentation area.

When the user specifies top, bottom and height information for the same <region>, spatial
inconsistencies can occur. In this case, the top and height values shall have precedence over the
bottom value. Analogously, when the user specifies inconsistent values for the left, right and width
<region> attributes, the left and width values shall be used to compute a new right value. When any
of these attributes is not specified and cannot have its value computed from the other attributes, the
value shall be inherited from the corresponding parent absolute value. Another restriction is that
child regions cannot lay outside the area established by their parent regions. When some portion of
the child region lies outside of its parent region, the child region shall be ignored (considered as if it
were not specified).

The zIndex attribute specifies the region superposition precedence, where regions with greater
zIndex values are stacked on top of regions with smaller zIndex values. If two presentations
generated by elements A and B have the same stack level, then, if the display of an element B starts
later than the display of an element A, the presentation of B is stacked on top of the presentation of
A (temporal order); otherwise, if the display of the elements starts at the same time, the stacked
order is chosen arbitrarily by the formatter. When not specified, the zIndex attribute shall be set
equal to zero.

The Layout module also defines the region attribute to be used by a <descriptor> element
(see clause 7.2.6) to refer to a Layout <region> element.

The elements of this module, their child elements, and their attributes shall comply with Table 7-4.

14 Rec. ITU-T H.761 (06/2011)

Table 7-4 – Extended Layout module

Elements Attributes Content

regionBase id, device, region (importBase|region)+

region id, title, left, right, top, bottom, height, width, zIndex (region)*

7.2.4 Components functionality

The Components functionality is partitioned into two modules, called Media and Context.

The Media module defines basic media object types. For defining media objects, this module
defines the <media> element. Each media object has two main attributes, besides its id attribute:
src, which defines a URI of the object content, and type, which defines the object type.

In an implementation in conformance with Ginga-NCL specification, the URIs (uniform resource
identifiers) defined in Table 7-5 shall be supported.

Table 7-5 – Allowed URIs

Scheme Scheme-specific-part Use

file: ///file_path/#fragment_identifier For local files

http: //server_identifier/file_path/#fragment_identifier For remote files downloaded using the http
protocol

https: //server_identifier/file_path/#fragment_identifier For remote files downloaded using the https
protocol

rtsp: //server_identifier/file_path/#fragment_identifier For streams downloaded using the rtsp
protocol

rtp: //server_identifier/file_path/#fragment_identifier For streams using the rtp protocol

ncl-
mirror:

//media_element_identifier for a content flow identical to the one in
presentation by another media element

ts: //program_number.component_tag For elementary streams contained in the
tuned transport stream

An absolute URI by itself contains all information needed to locate its resource. Relative URIs are
also allowed. Relative URIs are incomplete addresses that are applied to a base URI to complete the
location. The portions omitted are the URI scheme and server, and potentially part of URI path, as
well.

The primary benefit of using relative URIs is that documents and directories containing them may
be moved or copied to other locations without requiring changing the URI attribute values within
the documents. This is especially interesting when transporting documents from the server part
(usually broadcasters) to the receivers. Relative URI paths are typically used as a short means of
locating media files stored in the same directory as the current NCL document, or in a directory
close to it. They often consist of just the filename (optionally with a fragment identifier into the
file). They may also have a relative directory path before the filename.

It should be emphasized that references to streaming video or audio resources may not cause tuning
to occur. References that imply tuning to access a resource shall behave as if the resource were
unavailable.

NOTE 1 – Media objects with the same src value and with the corresponding URI scheme different from
"ncl-mirror" have the same content to be presented. As a consequence, the content of each object can have its
presentation started at different moments in time, depending on the time the media objects were started, and
their presentation are completely independent. On the other hand, if the URI scheme is equal to "ncl-mirror",
the media object whose src attribute defines this scheme and the media object referred by the scheme shall

 Rec. ITU-T H.761 (06/2011) 15

have the same content presentation and at the same moment in time, if both media objects are being
presented, independently from their starting time. Being different media objects, their properties may have
different values, as, for example, those that define the presentation location. It should be stressed that the
mirroring relation is reflexive, symmetric and transitive.

As any other media object's content, if more than one media object having the same src attribute
with a value referring to a content transported in the transport stream (TS) are started, more than
one presentation shall be started. Moreover, as usual, these objects can have different presentation
regions that can be re-dimensioned by an application. For media objects with the src attribute whose
value identifies the "ts" scheme, the specific part of the scheme, that is, the program_number.
component_tag, can be substituted by the following reserved words:

– video: Corresponding to the primary video ES being presented on the video plan.

– audio: Corresponding to the primary audio ES.

– text: Corresponding to the primary text ES.

– video(i): Corresponding to the ith smaller video ES component_tag listed in the PMT of the
tuned services.

– audio(i): Corresponding to the ith smaller audio ES component_tag listed in the PMT of the
tuned services.

– text(i): Corresponding to the ith smaller text ES component_tag listed in the PMT of the
tuned services.

Any action on a <media> element representing an unavailable resource shall be ignored by the NCL
formatter. Any condition or assessment based on a <media> element representing an unavailable
resource shall be considered as false.

The type attribute allowed values shall follow MIME Media Types format (or, more simply,
mimetypes). A mimetype is a character string that defines the class of media (audio, video, image,
text, application) and a media encoding type (such as jpeg, mpeg, etc.). Mimetypes may be
registered or informal. Registered mimetypes are controlled by the Internet Assigned Numbers
Authority (IANA). Informal mimetypes are not registered with IANA, but are defined by common
agreement.

In an implementation in conformance with Ginga-NCL specification, two special types are defined:
"application/x-ginga-NCL", and "application/x-ginga-NCLua".

NOTE 2 – In an implementation in conformance with Ginga-NCL specification, "application/x-ginga-NCL"
and "application/x-ginga-NCLua" special types may also be defined as "application/x-ncl-NCL" and
"application/x-ncl-NCLua", respectively.

The "application/x-ginga-NCL" type shall be applied to <media> elements with NCL code content
(indeed, an NCL application can embed another NCL application). The "application/x-ginga-
NCLua" type shall be applied to <media> elements with Lua imperative code content (see
clause 10).

NCL objects embedded in NCL applications and HTML-based objects embedded in NCL
applications shall follow the guidelines established in "Nested Context Language 3.0: Part 11 –
Declarative Hypermedia Objects in NCL: Nesting Objects with NCL code in NCL Documents"
[b-NCL Decl. Obj.].

NCLua objects embedded in NCL applications shall follow the guidelines established in "Nested
Context Language 3.0: Part 10 – Imperative Objects in NCL: The NCLua Scripting Language
[b-NCL Imp. Obj.].

Two other special types shall be supported in any NCL presentation engine: "application/x-ncl-
settings", and "application/x-ncl-time".

16 Rec. ITU-T H.761 (06/2011)

NOTE 3 – In an implementation in conformance with Ginga-NCL specification, "application/x-ncl-settings"
and "application/x-ncl-time" special types may also be defined as "application/x-ginga-settings" and
"application/x-ginga-time", respectively.

The "application/x-ncl-settings" shall be applied to a special <media> element (there may be only
one in an NCL document) whose properties are global variables defined by the document author or
reserved environment variables that may be manipulated by the NCL document processing.
Table 7-6 states the already defined variables and their semantics.

The application/x-ncl-time type shall be applied to a special <media> element (it may be only one
in an NCL document), whose content is the Universal Time Coordinated (UTC). Note that any
continuous <media> element with no source can be used to define a clock relative to the <media>
element start time.

NOTE 4 – The content of a <media> element of application/x-ncl-time type shall be specified according to
the following syntax: Year":"Month":"Day":"Hours":"Minutes":"Seconds"."Fraction, where Year is an
integer; Month is an integer in the [1,12] interval; Day is an integer in the [1,31] interval; Hours is an integer
in the [0,23] interval; Minutes is an integer in the [0,59] interval; Seconds is an integer in the [0,59] interval;
Fraction is a positive integer.

17 Rec. ITU-T H.761 (06/2011)

Table 7-6 – Global variables

Group Variable Semantics Possible values

system
– set of variables managed by the

receiver system;
– they may be read, but they may

not have their values changed by
an NCL application, a Lua
procedure or any other
imperative or declarative
procedure;

– receiver's native applications
may change the variables'
values;

– they shall persist during all
receiver life cycle.

system.language Audio language . ISO 639-1 code

system.caption Caption language. ISO 639

system.subtitle Subtitle Language. ISO 639

system.returnBitRate(i) Bit rate of network interface (i) in kbit/s. real

system.screenSize Device screen size, in (lines, pixels/line), when a class is
not defined.

(integer, integer)

system.screenGraphicSize Resolution set for the device's screen graphics plane, in
(lines, pixels/line), when a class is not defined.

(integer, integer)

system.audioType Type of the device audio, when a class is not defined. "mono" | "stereo" | "5.1"

system.screenSize(i) Screen size of the class (i) of devices in (lines,
pixels/line).

(integer, integer)

system.screenGraphicSize(i) Resolution set for the screen graphics plane of the class
(i) of devices, in (lines, pixels/line).

(integer, integer)

system.audioType(i) Type of the audio of the class (i) of devices. "mono" | "stereo" | "5.1"

system.devNumber(i) Number of exhibition devices registered in the class (i). integer

system.classType(i) Type of the class (i). ("passive" | "active")

system.info(i) List of class (i)'s media players. string

system.classNumber Number of classes that have been defined. integer

system.CPU CPU performance in MIPS, regarding its capacity to run
applications.

real

system.memory Minimum memory space in Mbytes provided to
applications.

integer

system.operatingSystem Type of the operating system. string to be defined

system.luaVersion Version of the Lua engine supported by the receiver. string

18 Rec. ITU-T H.761 (06/2011)

Table 7-6 – Global variables

Group Variable Semantics Possible values

 system.ncl.version NCL language version. string

system.GingaNCL.version Ginga-NCL environment version. string

system.xxx Any variable with the "system" prefix shall be reserved
for future use.

user
– set of variables managed by the

receiver system;
– they may be read, but they may

not have their values changed by
an NCL application, a Lua
procedure or any other
imperative or declarative
procedure;

– receiver's native applications
may change the variables'
values;

– they shall persist during all
receiver life cycle.

user.age User age. integer

user.location User location shall be the country code concatenated with
the country post code. The country code specification
shall follow the ISO 3166-1 alpha 3 format.

string

user.genre User genre. "m"| "f"

user.xxx Any variable with the "user" prefix shall be reserved for
future use.

si
– set of variables managed by the

middleware system;
– they may be read but they may

not have their values changed by
an NCL application, a Lua
procedure or any other
imperative or declarative
procedure;

– they shall persist at least until
the next channel tuning.

si.numberOfServices Number of services available in the tuned channel for the
local country.

NOTE – The value for this variable should be obtained from
the number of PMT tables specified in the PAT table of the
transport stream received from the tuned channel (see
[ITU-T H.222.0]). The variable value should take into account
only the PMT tables whose field country_code are equal to the
value of the user.location variable of the Settings node (media
object of "application/x-ncl-settings" type).

integer

si.channelNumber Number of the tuned channel. integer

si.xxx Any variable with the "si" prefix shall follow the rules
specified for the group.

19 Rec. ITU-T H.761 (06/2011)

Table 7-6 – Global variables

Group Variable Semantics Possible values

metadata
– set of variables managed by the
middleware system;
– they may be read but they may

not have their values changed by
an NCL application, a Lua
procedure or any other
imperative or declarative
procedure;

– they shall persist at least until
the next channel tuning.

metadata.xxx Any variable with the "metadata" prefix shall follow the
rules specified for the group. Variables in this group shall
follow the high-level specification of metadata for IPTV
services [ITU-T H.750].

default
– set of variables managed by the

receiver system;
– they may be read and have their

values changed by an NCL
application, a Lua procedure or
any other imperative or
declarative procedure;

– receiver's native applications
may change the variables'
values;

default.focusBorderColor Default colour applied to the border of an element in
focus.

"white" | "black" | "silver" |
"gray" | "red" | "maroon" |
"fuchsia" | "purple" | "lime" |
"green" | "yellow" | "olive" |
"blue" | "navy" | "aqua" | "teal"

default.selBorderColor Default colour applied to the border of an element in
focus when activated.

"white" | "black" | "silver" |
"gray" | "red" | "maroon" |
"fuchsia" | "purple" | "lime" |
"green" | "yellow" | "olive" |
"blue" | "navy" | "aqua" | "teal"

default.focusBorderWidth Default width (in pixels) applied to the border of an
element in focus.

integer

20 Rec. ITU-T H.761 (06/2011)

Table 7-6 – Global variables

Group Variable Semantics Possible values

– they shall persist during all
receiver life cycle, however,
they shall be set to their initial
values when a new channel is
tuned.

default.focusBorderTranspa
rency

Default transparency applied to the border of an element
in focus.

A real value between 0 and 1,
or a real value in the range
[0,100] ending with the
character "%" (e.g., 30%), with
"1" or "100%" meaning full
transparency and "0" or "0%"
meaning no transparency.

default.xxx Any variable with the "default" prefix shall be reserved
for future use.

service
– set of variables managed by the

NCL formatter;
– they may be read and have their

values changed by an NCL
application of the same service;

– they may be read but they may
not have their values changed by
a Lua procedure or any other
imperative or declarative
procedure of the same service;
variable changes shall be done
using NCL commands;

– they shall persist at least during
the service life cycle.

service.currentFocus The focusIndex value of the <media> element on focus. integer

service.currentKeyMaster Identifier (id) of the <media> element that controls the
navigational keys; if the <media> element is not being
presented or is not paused, the navigational key control
pertains to the NCL Formatter.

string

service.xxx Any variable with the "service" prefix shall follow the
rules specified for the group.

21 Rec. ITU-T H.761 (06/2011)

Table 7-6 – Global variables

Group Variable Semantics Possible values

channel
– set of variables managed by the

NCL formatter;
– they may be read and have their

values changed by an NCL
application of the same channel;

– they may be read but they may
not have their values changed by
a Lua procedure or any other
imperative or declarative
procedure of the same channel;
variable changes shall be done
using NCL commands;

– they shall persist at least until
the next channel tuning.

NOTE – A channel is defined as a set
of related services.

channel.keyCapture Request of alphanumeric keys for NCL applications. (integer)

channel.virtualKeyboard Request of a virtual keyboard for NCL applications. (true | false)

channel.keyboardBounds Virtual keyboard region (left, top, width, height). (integer, integer, integer,
integer)

channel.xxx Any variable with the "channel" prefix shall follow the
rules specified for the group.

22 Rec. ITU-T H.761 (06/2011)

Table 7-6 – Global variables

Group Variable Semantics Possible values

shared
– set of variables managed by the

NCL formatter;
– they may be read and have their

values changed by an NCL
application;

– they may be read but they may
not have their values changed by
a Lua procedure or any other
imperative or declarative
procedure; variable changes
shall be done using NCL
commands;

– they shall persist at least during
the life cycle of the service that
has defined them.

shared.xxx Any variable with the "shared" prefix shall follow the
rules specified for the group.

 Rec. ITU-T H.761 (06/2011) 23

Table 7-7 shows some possible values of the type attribute for the Enhanced DTV profile and the
associated file extensions for an implementation in conformance with Ginga-NCL specification.
The required types shall be defined for each particular TV system. The type attribute is optional
(except for <media> elements with no src attribute defined) and should be used to guide the player's
(presentation tool) choice by the formatter. When the type attribute is not specified, the formatter
should use the content extension specification in the src attribute to make the player's choice.

When there is more than one player for the type supported by the formatter, the player property of
the <media> element may specify which one will be used for presentation. Otherwise the formatter
shall use a default player for that type of media.

Table 7-7 – MIME media types for Ginga-NCL formatters

Media type File extensions

text/html htm, html

text/plain txt

text/css css

text/xml xml

image/bmp bmp

image/png png

Image/mng mng

image/gif gif

image/jpeg jpg, jpeg

audio/basic wav

audio/mp3 mp3

audio/mp2 mp2

audio/mpeg mpeg, mpg

audio/mpeg4 mp4, mpg4

video/mpeg mpeg, mpg

application/x-ginga-NCL ncl

application/x-ginga-NCLua lua

application/x-ncl-settings no src (source)

application/x-ncl-time no src (source)

If the number of media objects of a certain type exceeds the maximum allowed number for that type
in a particular exhibition device, the start of exceeding media objects shall be ignored.

The "ncl-mirror" scheme shall not refer to a <media> element of application/x-ginga-NCL, and
application/x-ginga-NCLua types. If a <media> element whose src attribute specifies the "ncl-
mirror" scheme and this scheme refers to a <media> element of application/x-ginga-NCL or
application/x-ginga-NCLua types, the <media> element shall be ignored.

The Context module is responsible for the definition of context nodes (context objects) through
<context> elements. An NCM context node is a particular type of NCM composite node and is
defined as containing a set of nodes and a set of links. As usual, the id attribute uniquely identifies
each <context> and <media> element within a document.

The instance, refer and descriptor attributes are extensions defined in other modules and are
discussed in the definition of these modules.

24 Rec. ITU-T H.761 (06/2011)

NOTE 4 – A <media> element of application/x-ginga-NCL type may not have the instance and refer
attributes.

The elements of these two modules, their child elements, and their attributes shall comply with
Tables 7-8 and 7-9.

Table 7-8 – Extended Media module

Elements Attributes Content

media id, src, refer,
instance, type,
descriptor

(area|property)*

Table 7-9 – Extended Context module

Elements Attributes Content

context id, refer (port|property|media|context|link|switch|meta|metadata)*

7.2.5 Interfaces functionality

The Interfaces functionality allows for the definition of node (media object or composite object)
interfaces that will be used in relationships with other node interfaces. This functionality is
partitioned into four modules:

– MediaContentAnchor, which allows for content anchor (or area) definitions for media
nodes (<media> elements);

– CompositeNodeInterface, which allows for port definitions for composite nodes (<context>
and <switch> elements);

– PropertyAnchor, which allows for the definition of node properties as node interfaces; and

– SwitchInterface, which allows for the definition of special interfaces for <switch>
elements.

The MediaContentAnchor module defines the <area> element, which allows for the definition of
content anchors representing spatial portions, through the coords attribute (as in XHTML); the
definition of content anchors representing temporal portions, through begin and end attributes; and
the definition of content anchors representing temporal and spatial portions through coords, begin
and end attributes. In addition, the <area> element allows for the definition of textual anchors,
through the beginText,beginPosition and endText, endPosition attributes that define the string and
the string's occurrence in the text, respectively. Besides, the <area> element may also define a
content anchor based on the number of audio samples or video frames, through first and last
attributes, which shall indicate the initial and final sample/frame.

NOTE 1 – The first and last attributes shall be specified according to one of the following syntaxes:

 a) Samples"s", where Samples is a positive integer;

 b) Frames"f", where Frames is a positive integer;

 c) NPT"npt", where NPT is the Normal Play Time value.

NOTE 2 – When values of the first and last attributes of an <area> element are specified in NPT, they refer
to the temporal base specified in the contentId attribute of the <media> element that contains the <area>
element.

If the begin attribute is defined, but the end attribute is not specified, the end of the whole media
content presentation shall be assumed as the anchor ending. On the other hand, if the end attribute is
defined, but without an explicit begin definition, the start of the whole media content presentation
shall be considered as the anchor beginning. Analogous behaviour is expected from the first and last

 Rec. ITU-T H.761 (06/2011) 25

attributes. In the case of a <media> element of the application/x-ncl-time type, the begin and end
attributes shall be defined and shall assume an absolute value of the Universal Time Coordinated
(UTC).

NOTE 3 – Except for the <media> element of the application/x-ncl-time type, the begin and end attributes
shall be specified according to one of the following syntaxes: i) Hours":"Minutes":"Seconds"."Fraction,
Hours is an integer in the [0,23] interval; Minutes is an integer in the [0,59] interval; Seconds is an integer in
the [0,59] interval; Fraction is a positive integer; ii) Seconds"s", where Seconds is a positive real number.

NOTE 4 – For the <media> element of the application/x-ncl-time type, the begin and end attributes shall be
specified according to the following syntax: Year":"Month":"Day":"Hours":"Minutes":"Seconds"."Fraction
(according to the country time zone).

The NCL user agent is responsible for translating the value for the country time zone to the one
corresponding to the UTC.

In textual content anchors, if the end of the anchor region is not defined, the end of the text content
shall be assumed. If the beginning of the content anchor region is not defined, the beginning of the
text content shall be assumed.

The <area> element may also define a content anchor based on the label attribute, which specifies a
string that should be used by the media-object player to identify a content region. Moreover, for
media objects of application/x-ginga-NCL type, the clip and label attribute values may be defined,
and shall follow the guidelines established for any declarative hypermedia objects in NCL, as
follows.

A <media> element of a declarative type (application/x-???) shall be used to specify a declarative
hypermedia object in an NCL application. In this case, the object's content (located through the src
attribute) shall be a declarative code span to be executed. As an example, Ginga-NCL 3.0 allows for
the application/x-ginga-NCL type, for defining NCL applications (file extension .ncl) nested in an
NCL parent application.

A declarative hypermedia object is handled by the NCL parent application as a set of temporal
chains. A temporal chain corresponds to a sequence of presentation events (occurrences in time),
initiated from the event that corresponds to the beginning of the declarative hypermedia object
presentation. Sections in these chains may be associated with declarative hypermedia object's
<area> child elements using the clip attribute. The clip value is a triple "(chainId, beginOffset,
endOffset)". The chainId parameter identifies one of the chains defined by the declarative
hypermedia object. The beginOffset and endOffset parameters define the begin time and the end
time of the content anchor, with regards the chain beginning time. When a declarative hypermedia
object defines just one temporal chain, the chainId parameter may be omitted. The beginOffset and
endOffset may also be omitted when they assume their default values: 0s and the chain end time,
respectively.

For a declarative hypermedia object with NCL code (<media> element of application/x-ginga-NCL
type), a temporal chain is identified by one of the NCL document entry points, defined by <port>
elements, children of the document's <body> element.

A declarative hypermedia object's content anchor can also refer to any content anchor defined
inside the declarative code itself. In this case, the label attribute of the <area> element that defines
the content anchor has a value such that the declarative hypermedia object player is able to identify
one of its internally defined content anchors. For a declarative hypermedia object with NCL code
(<media type="application/x-ginga-NCL" …>), one of its <area> elements may refer to a <port>
element, child of its <body> element, through its label attribute (that must have the <port>'s id as its
value). In its turn, the <port> element may be mapped to an <area> element defined in any object
nested in the declarative NCL hypermedia object. Thus, a declarative hypermedia object can
externalize content anchors defined inside its content to be used in links defined by the NCL parent
object in which the declarative hypermedia object is included.

26 Rec. ITU-T H.761 (06/2011)

In a media object of "application/x-ginga-NCLua", an imperative-code span may be associated with
an <area> element using the label attribute. In this case, the label value shall identify the code span.
An <area> element may also be used just as an interface to be used as conditions of NCL links (set
by Lua code) to trigger actions on other objects.

As usual, <area> elements shall have the id attribute, which uniquely identifies the element within a
document.

In NCM, every node (media or context node) shall have an anchor with a region representing the
whole content of the node. This anchor is called the whole content anchor and is declared by default
in NCL documents. Except for media objects with imperative code content (<media
type="application/x-ginga-NCLua" …>, for example), every time an NCL component is referred
without specifying one of its anchors, the whole content anchor is assumed.

The <area> element and its attributes shall comply with Table 7-10.

Table 7-10 – Extended MediaContentAnchor module

Elements Attributes Content

area id, coords, begin, end, beginText,
beginPosition, endText, endPosition, first, last,
label, clip

Empty

The CompositeNodeInterface module defines the <port> element, which specifies a composite node
port with its respective mapping to an interface (interface attribute) of one and only one of its
components (specified by the component attribute).

The <port> element and its attributes shall comply with Table 7-11.

Table 7-11 – Extended CompositeNodeInterface module

Elements Attributes Content

port id, component, interface Empty

The PropertyAnchor module defines an element named <property>, which may be used for defining
a node property or a group of node properties as one of its interfaces (anchors). The <property>
element defines the name attribute, which indicates the name of the property or property group, and
the value attribute, an optional attribute that defines an initial value for the name property. The
parent element shall not have <property> elements with the same name attribute values. If two or
more <property> elements with the same name attribute are defined as child elements of the same
<media> element, only the last value defined shall be taken into account. The others shall be
ignored.

It is possible to have NCL document players (formatters) that define some node properties as node
interfaces, implicitly. However, in general, it is a good practice to explicitly define the interfaces.

The <body>, <context>, and <media> elements may have several embedded properties. Examples
of these properties can be found among those that define the media object placement during a
presentation, the presentation duration, and others that define additional presentation characteristics:
top, left, bottom, right, width, height, zIndex, plan (defining in which plan of a structured screen an
object will be placed), explicitDur, background (specifying the background colour used to fill the
area of a region displaying a media that is not filled by the media itself), transparency (indicating
the degree of transparency of an object presentation), rgbChromakey (defining the RGB colour to
be set as transparent), visible (allowing the object presentation to be seen or hidden), fit (indicating
how an object will be presented), scroll (which allows for the specification of how an author would
like to configure the scroll in a region), style (which refers to a style sheet [b-W3C CSS2] with

 Rec. ITU-T H.761 (06/2011) 27

information for text presentation, for example), soundLevel, balanceLevel, trebleLevel, bassLevel,
fontColor, fontFamily, fontStyle, fontSize, fontVariant, fontWeight, player, reusePlayer (which
determines if a new player shall be instantiated or if a player already instantiated shall be used),
playerLife (which specifies what will happen to the player instance at the end of the presentation),
moveLeft, moveRight, moveUp, moveDown, focusIndex, focusBorderColor, focusBorderWidth,
focusBorderTransparency, focusSrc, focusSelSrc, selBorderColor, transIn, transOut, freeze, etc.
These properties assume as their initial values those defined in homonym attributes of their node-
associated descriptor and region (see clauses 7.2.3 and 7.2.6).

When the left, right, top, bottom, width or height properties exceed the dimension of the exhibition
device, only the content portion inside the device dimension shall be exhibited.

Some properties have their values defined by the middleware system, as for example, the contentId
property (associated to a continuous-media object whose content is defined referring to an
elementary stream), which has "null" as its initial value, and is set to the identifier value transported
in the NPT reference descriptor (in a field of the same name: contentId), as soon as the associated
continuous-media object is started. Another example is the standby property that shall be set to
"true" while an already started continuous-media object content referring to an elementary stream is
temporarily interrupted by another interleaved content, in the same elementary stream.

NOTE 5 – The standby property may be set to "true" when the identifier value transported in the NPT
reference descriptor (in a field of the same name: contentId) signalized as non-paused is different from the
contentId property value.

Use case: The standby property can be used to pause an application when the continuous media
object content referring to an elementary stream transporting the main video of a TV program is
temporarily interrupted by another interleaved content, for example an advertisement (TV
commercial). The same property can then be used to resume the application.

NOTE 6 – The visible property may also be associated with a <context> or <body> element. In these cases,
when the property's value is equal to "true", the visible property of each child element of the composition
shall be taken into account. When the property's value is equal to "false", all child elements of the
composition shall be exhibited but hidden. In particular, when a document has its <body> element with its
visible property set to "false" and its presentation event in the paused state, the document is said to be in
stand-by. When an application is in stand-by, the service's main video shall be dimensioned to 100% of the
screen, and the main audio shall be set to 100% of volume.

It should be remarked that an object with a visible property equal to "false", that is, an object
exhibited as hidden, may not transit selection event machines defined by its content anchors to the
"occurring" state (see 7.2.8) while the visible property value persists as "false".

A group of node properties may also be explicitly declared as a single <property> (interface)
element, allowing authors to specify the value of several properties within a single property. The
following groups shall be recognized by an NCL formatter: location, grouping (left, top), in this
order; size, grouping (width, height), in this order; and bounds, grouping (left, top, width, height), in
this order. When a formatter treats a change in a property group, it shall only test the process
consistency at its end.

The words top, left, bottom, right, width, height, zIndex, plan, explicitDur, background,
transparency, rgbChromakey, visible, fit, scroll, style, soundLevel, balanceLevel, trebleLevel,
bassLevel, fontColor, fontFamily, fontStyle, fontSize, fontVariant, fontWeight, player, reusePlayer,
playerLife, moveLeft, moveRight, moveUp, moveDown, focusIndex, focusBorderColor,
focusBorderWidth, focusBorderTransparency, focusSrc, focusSelSrc, selBorderColor, transIn,
transOut, freeze, location, size and bounds are reserved words for values of the name attribute of the
<property> element.

28 Rec. ITU-T H.761 (06/2011)

Every <property> element has a Boolean attribute named externable that shall be set to "true" by
default. If a property is defined in a <descriptor> or <region> element, its externable attribute shall
be set to "false" by default. When the property is intended to be used in a relationship, it shall be
explicitly declared as a <property> (interface) element and with the externable attribute equal to
"true". If a <bind> element refers to a <property> element with the externable attribute equal to
"false", the <bind> element shall be ignored by the NCL formatter.

The possible values for the reserved property names shall comply with Table 7-12.

Properties that have reserved colour string names as values ("white", "black", "silver", "gray",
"red", "maroon", "fuchsia", "purple", "lime", "green", "yellow", "olive", "blue", "navy", "aqua", or
"teal") follow the CSS1 colour standard, as defined in Table 7-13.

The <property> element and its attributes shall comply with Table 7-14.

Table 7-12 – Reserved parameter/attribute and possible values

Parameter/attribute
name

Value Default

top, left, bottom, right,
width, height

A real number in the range [0,100] ending with the
character "%" (e.g., 30%), or an integer value
specifying the attribute in pixels (a non-negative
integer, in the case of width and height).

If any of these properties
are not defined and cannot
be inferred from the NCL
rules, they shall assume
value "0"

location Two numbers separated by a comma, each one
following the value rule specified for left and top
parameters, respectively.

See first row

size Two values separated by a comma. Each value shall
follow the same rule specified for width and height
parameters, respectively.

See first row

bounds Four values separated by commas. Each value shall
follow the same rule specified for left, top, width
and height parameters, respectively.

See first row

plan "background", "video" and "graphic", following the
plan definition of the DTV system.

"video", for media with
src attribute referring to a
TS's PES,
"graphics", for all other
cases.

baseDeviceRegion

deviceClass 0

explicitDur i) Hours":"Minutes":"Seconds"."Fraction, where
Hours is an integer in the [0,23] interval;
Minutes is an integer in the [0,59] interval;
Seconds is an integer in the [0,59] interval; and
Fraction is a positive integer.

ii) Seconds"s", where Seconds is a positive real
number.

iii) The "nill" value.

For continuous media, the
default value shall be set
to the natural content
presentation duration,
otherwise it must be set to
nill

 Rec. ITU-T H.761 (06/2011) 29

Table 7-12 – Reserved parameter/attribute and possible values

Parameter/attribute
name

Value Default

background Reserved colour names: "white", "black", "silver",
"gray", "red", "maroon", "fuchsia", "purple", "lime",
"green", "yellow", "olive", "blue", "navy", "aqua",
or "teal". The background value may also be the
reserved value "transparent". This can be helpful to
present transparent images, like transparent GIFs,
superposed on other images or videos.

transparent

visible "true" or "false". true

transparency A real number in the range [0,1] or a real number in
the range [0,100] and ending with the character "%"
(e.g., 30%), specifying the degree of transparency
of an object presentation ("1" or "100%" means full
transparency and "0" or "0%" means opaque).

0

rgbChromakey An RGB 888 value. nill

fit "fill", "hidden", "meet", "meetBest", "slice".
"fill": scale the object's media content so that it
touches all edges of the box defined by the object's
width and height attributes.
"hidden": if the intrinsic height (width) of the media
content is smaller than the height (width) attribute,
the object shall be rendered starting from the top
(left) edge and have the remaining height (width)
filled up with the background colour; if the intrinsic
height (width) of the media content is greater than
the height (width) attribute, the object shall be
rendered starting from the top (left) edge until the
height (width) defined in the attribute is reached,
and have the part of the media content below (to the
right of) the height (width) clipped.
"meet": scale the visual media object while
preserving its aspect ratio until its height or width is
equal to the value specified by the height or width
attributes. The media content left-top corner is
positioned at the top-left coordinates of the box; the
empty space at the right or the bottom shall be filled
up with the background colour.
"meetBest": the semantic is identical to "meet"
except that the image is not scaled greater than
100% in either dimension.
"slice": scale the visual media content while
preserving its aspect ratio until its height or width
are equal to the value specified in the height and
width attributes and the defined presentation box is
completely filled. Some parts of the content may get
clipped. Overflow width is clipped from the right of
the media object. Overflow height is clipped from
the bottom of the media object.

fill

30 Rec. ITU-T H.761 (06/2011)

Table 7-12 – Reserved parameter/attribute and possible values

Parameter/attribute
name

Value Default

scroll "none", "horizontal", "vertical", "both", or
"automatic".

none

style The locator of a stylesheet file. nill

soundLevel,
trebleLevel, bassLevel

A real number in the range [0,1] or a real number in
the range [0,100] and ending with the character "%"
(e.g., 30%).

1

balanceLevel A real number in the range [–1,1]. 0

zIndex An integer number in the range [0,255], where
regions with greater zIndex values are stacked on
top of regions with smaller zIndex values.

0

fontColor "white", "black", "silver", "gray", "red", "maroon",
"fuchsia", "purple", "lime", "green", "yellow",
"olive", "blue", "navy", "aqua", or "teal".

white

textAlign left

fontFamily A prioritized list of font family names and/or
generic family names.

DTV system dependent

fontStyle Sets the style of the font ("normal", or "italic"). normal

fontSize The size of a font. DTV system dependent

fontVariant Displays text in a "small-caps" font or a "normal"
font.

normal

fontWeight Sets the weight of a font ("normal", or "bold"). normal

player

reusePlayer Boolean value: "false", "true". false

playerLife "keep", "close". close

moveLeft, moveRight,
moveUp, moveDown,
focusIndex

Positive integer. nill

focusBorderColor; "white", "black", "silver", "gray", "red", "maroon",
"fuchsia", "purple", "lime", "green", "yellow",
"olive", "blue", "navy", "aqua", or "teal".

DTV system dependent:
the value defined by the
default.focusBorderColor

selBorderColor "white", "black", "silver", "gray", "red", "maroon",
"fuchsia", "purple", "lime", "green", "yellow",
"olive", "blue", "navy", "aqua", or "teal".

DTV system dependent:
the value defined by the
default.selBorderColor

focusBorderWidth An integer value specifying the attribute in pixels. DTV system dependent:
the value defined by the
default.focusBorderWidth

focusBorderTranspare
ncy

A real number in the range [0,1] or a real number in
the range [0,100] ending with the character "%"
(e.g., 30%), specifying the degree of transparency
of an object presentation ("1" or "100%" means full
transparency and "0" or "0%" means opaque).

DTV system dependent:
the value defined by the
default.focusTransparency

 Rec. ITU-T H.761 (06/2011) 31

Table 7-12 – Reserved parameter/attribute and possible values

Parameter/attribute
name

Value Default

focusSrc, focusSelSrc String: an URI. nill

freeze "true", "false". "false"

transIn, transOut A semicolon-separated list of <transition> element
identifiers defined in the <transitionBase> element.

Empty string

Table 7-13 – Reserved names for colour definition

Name Hexadecimal R G B Hue Satur. Light Satur. Value

White #FFFFFF 100% 100% 100% 0o 0% 100% 0% 100%

Silver #C0C0C0 75% 75% 75% 0o 0% 75% 0% 75%

Gray #808080 50% 50% 50% 0o 0% 50% 0% 50%

Black #000000 0% 0% 0% 0o 0% 0% 0% 0%

Red #FF0000 100% 0% 0% 0o 100% 50% 100% 100%

Maroon #800000 50% 0% 0% 0o 100% 25% 100% 50%

Yellow #FFFF00 100% 100% 0% 60o 100% 50% 100% 100%

Olive #808000 50% 50% 0% 60o 100% 25% 100% 50%

Lime #00FF00 0% 100% 0% 120o 100% 50% 100% 100%

Green #008000 0% 50% 0% 120o 100% 25% 100% 50%

Aqua #00FFFF 0% 100% 100% 180o 100% 50% 100% 100%

Teal #008080 0% 50% 50% 180o 100% 25% 100% 50%

Blue #0000FF 0% 0% 100% 240o 100% 50% 100% 100%

Navy #000080 0% 0% 50% 240o 100% 25% 100% 50%

Fuchsia #FF00FF 100% 0% 100% 300o 100% 50% 100% 100%

Purple #800080 50% 0% 50% 300o 100% 25% 100% 50%

Table 7-14 – Extended PropertyAnchor module

Elements Attributes Content

property name, value, externable Empty

The SwitchInterface module allows for the creation of <switch> element interfaces (see
clause 7.2.4), which may be mapped to a set of alternative interfaces of internal nodes, allowing a
link to anchor on the chosen interface when the <switch> is processed (see [b-NCM Core]). This
module introduces the <switchPort> element, which contains a set of mapping elements. A mapping
element defines a path from the <switchPort> to an interface (interface attribute) of one of the
switch components (specified by its component attribute).

It is important to remark that every element representing an object interface (<area>, <port>,
<property>, and <switchPort>) shall have an identifier (id attribute or name attribute).

32 Rec. ITU-T H.761 (06/2011)

A reference to an internal switch component shall be made through a <switchPort> element or, by
default, to the <switch> element without specifying any <switchPort>. In this case, it is considered
as if the reference is made to a default <switchPort> that contains mapping elements to each child
object of the switch and referring to its whole content anchor.

A <switchPort> element may define a mapping to a subset of the switch's components. When a link
is bound to a <switchPort> element and none of the rules bind to the components defined by their
child <mapping> elements is evaluated as true, the <defaultComponent> element shall be chosen; if
the <defaultComponent> element is not defined no component shall be selected for presentation.

The <switchPort> element, its child elements, and its attributes shall comply with Table 7-15.

Table 7-15 – Extended SwitchInterface module

Elements Attributes Content

switchPort id mapping+

mapping component, interface Empty

7.2.6 Presentation Specification functionality

The Presentation Specification functionality has a single module named Descriptor. The purpose of
this module is to specify temporal and spatial information needed to present each document
component. This information is modelled by descriptors.

The Descriptor module allows for the definition of <descriptor> elements, which contain a set of
optional attributes, grouping temporal and spatial definitions, which should be used according to the
type of object to be presented. The definition of <descriptor> elements shall be included in the
document head, inside the <descriptorBase> element, which specifies the set of descriptors of a
document. The <descriptor> element shall have the id attribute and the <descriptorBase> element
may have the id attribute, which, as usual, uniquely identifies the elements within a document.

A <descriptor> element may have temporal attributes: explicitDur and freeze, defined by the
Timing module (see clause 7.2.10); an attribute named player; an attribute named region, which
refers to a region defined by elements of the Layout module (see clause 7.2.3); and key-navigation
attributes: moveLeft, moveRight, moveUp; moveDown, focusIndex, focusBorderColor;
focusBorderWidth; focusBorderTransparency, focusSrc, selBorderColor, and focusSelSrc, defined
by the KeyNavigation module (see clause 7.2.12); and transition attributes: transIn and transOut
(see clause 7.2.14).

NOTE – A <descriptor> element of a <media> element of application/x-ginga-NCL type shall not have the
player attribute. In this case, an NCL player in a specific exhibition device needs to be defined.

A <descriptor> element may also have <descriptorParam> child elements, which are used to
parameterize the presentation control of the object associated with the descriptor element. These
parameters can, for example, redefine some attribute values defined by the region attributes. They
can also define other media object property's values, such as plan; rgbChromakey; background;
visible; fit; scroll; transparency; style; and also specific attributes for audio objects, such as
soundLevel, balanceLevel, trebleLevel and bassLevel. Besides, <descriptorParam> child elements
can determine if a new player shall be instantiated or if a player already instantiated shall be used
(reusePlayer), and specify what will happen to the player instance at the end of the presentation
(playerLife).

Besides all the aforementioned attributes, the <descriptor> element may also have attributes defined
in the Transition effects functionality (see clause 7.2.14).

 Rec. ITU-T H.761 (06/2011) 33

Besides the <descriptor> element, the Descriptor module defines a homonym attribute, which refers
to an element of the document descriptor set. When a language profile uses the Descriptor module,
it has to determine how descriptors will be associated with document components. Following NCM
directives, this Recommendation establishes that the descriptor attribute is associated with any
media node through <media> elements and through link endpoints (<bind> elements) (see
clause 8.2.1).

It should be remarked that the set of descriptors of a document may contain <descriptor> elements
or <descriptorSwitch> elements, which allow for specifying alternative descriptors (see
clause 7.2.9).

The elements of the Descriptor module, their child elements, and their attributes shall comply with
Table 7-16.

Table 7-16 – Extended Descriptor module

Elements Attributes Content

descriptor id, player, explicitDur, region,
freeze, moveLeft, moveRight,
moveUp, moveDown, focusIndex,
focusBorderColor,
focusBorderWidth,
focusBorderTransparency, focusSrc,
focusSelSrc, selBorderColor,
transIn, transOut

(descriptorParam)*

descriptorParam name, value Empty

descriptorBase id (importBase|descriptor|descriptorSwitch)+

It must be stressed that <descriptor> and <region> elements are just "syntactic sugar" for the NCL
language that promote reuse. All <media> element's properties may be defined using only
<property> elements.

If several values are specified for the same property, the value defined in a <property> element has
precedence over the one defined in a <descriptorParam> element, which has precedence over the
value defined in an attribute of the corresponding <descriptor> element (including the region
attribute).

7.2.7 Linking functionality

The Linking functionality defines the Linking module, responsible for defining links using
connectors. A <link> element may have an id attribute, which uniquely identifies the element
within a document, and shall have an xconnector attribute, which refers to a hypermedia connector
URI. The reference shall have the format: alias#connector_id, or
documentURI_value#connector_id, for connectors defined in an external document (see
clause 7.2.11); or simply connector_id, for connectors defined in the document itself.

A <link> element must be ignored if the xconnector attribute is not defined, or if the xconnector
attribute refers to an inexistent hypermedia connector.

The <link> element also contains child elements called <bind> elements, which allow associating
nodes with connector roles (see clause 7.2.8). In order to make this association, a <bind> element
has four basic attributes. The first one is called role, which is used for referring to a connector role.
The second one is called component, which is used for identifying the node. The third is an optional
attribute called interface, used for making reference to the node interface. The fourth is an optional
attribute called descriptor, used to refer to a descriptor to be associated with the node, as defined by
the Descriptor module (see clause 7.2.6).

34 Rec. ITU-T H.761 (06/2011)

NOTE – The interface attribute may refer to any node interface, that is, an anchor, a property, a port (if it is a
composite node), or a switchPort (if it is a switch node). The interface attribute is optional. When it is not
specified, the association will be done with the whole node content, as explained in clause 7.2.5, except for
media objects with imperative code content, as explained in clause 8.3.1.

If the connector element defines parameters (see clause 7.2.8), the <bind> or <link> elements
should define parameter values through child elements called <bindParam> and <linkParam>,
respectively, both with name and value attributes. In this case, the name attribute shall refer to the
name of a connector parameter while the value attribute shall define a value to be assigned to the
respective parameter.

If a link defines the same parameter through using the <linkParam> and <bindParam> elements, the
definition by using <bindParam> element has precedence.

The elements of the linking module, their attributes, and their child elements shall comply with
Table 7-17.

Table 7-17 – Extended Linking module

Elements Attributes Content

bind role, component, interface, descriptor (bindParam)*

bindParam name, value Empty

linkParam name, value Empty

link id, xconnector (linkParam*, bind+)

7.2.8 Connectors functionality

The NCL 3.0 Connectors functionality is partitioned into seven basic modules:
ConnectorCommonPart, ConnectorAssessmentExpression, ConnectorCausalExpression,
CausalConnector, ConstraintConnector, ConnectorBase, and CompositeConnector.

The Connectors functionality modules are totally independent from the other NCL modules. These
modules are the core by themselves of an XML application language (indeed other NCL 3.0
profiles) for the definition of connectors, which may be used to specify spatiotemporal
synchronization relations, treating reference (user interaction) relations as a particular case of
temporal synchronization relations.

Besides the basic modules, the Connectors functionality also defines modules that group sets of
basic modules, in order to make it easy to define a language profile. This is the case of the
CausalConnectorFunctionality module, used in the definition of the EDTV and CausalConnector
profiles. The CausalConnectorFunctionality module groups the following modules:
ConnectorCommonPart, ConnectorAssessmentExpression, ConnectorCausalExpression, and
CausalConnector.

A <causalConnector> element represents a causal relation that may be used for creating <link>
elements in documents. In a causal relation, a condition shall be satisfied in order to trigger an
action.

A <causalConnector> specifies a relation independently of relationships, that is, it does not specify
which nodes (represented by <media>, <context>, <body>, and <switch> elements) will interact
through the relation. A <link> element, in its turn, represents a relationship, of the type defined by
its connector, interconnecting different nodes. Links representing the same type of relation, but
interconnecting different nodes, may reuse the same connector, reusing all previous specifications.
A <causalConnector> specifies, through its child elements, a set of interface points, called roles. A
<link> element refers to a <causalConnector> and defines a set of binds (<bind> child elements of

 Rec. ITU-T H.761 (06/2011) 35

the <link> element), which associate each link endpoint (node interface) to a role of the used
connector.

Relations in NCL are based on events. An event is an occurrence in time that may be instantaneous
or have a measurable duration. NCL 3.0 defines the following types of events:

– presentation event, which is defined by the presentation of a subset of the information units
of a media object, specified in NCL by the <area> element, or by the media node itself
(whole content presentation). Presentation events may also be defined on composite nodes
(represented by a <body>, <context>, or <switch> element), representing the presentation
of the information units of any node inside a composite node;

– selection event, which is defined by the selection of a subset of the information units of a
media object, specified in NCL by the <area> element, or by the media node itself (whole
content presentation), being presented and visible;

– attribution event, which is defined by the attribution of a value to a property of a node
(represented by a <media>, <body>, <context>, or <switch> element), which shall be
declared in a <property> child element of the node; and

– composition event, which is defined by the presentation of the structure of a composite
node (represented by a <body>, <context>, or <switch> element). Composition events are
used to present the composite map (composite organization). This functionality is optional.

Each event defines a state machine that should be maintained by the NCL formatter (see
Figure 7-2). Moreover, every event has an associated attribute, named occurrences, which counts
how many times the event transits from occurring to sleeping state during a document presentation.
Events of presentation and attribution types have also an attribute named repetitions, which counts
how many times the event shall be automatically restarted (transited from sleeping to occurring
states) by the formatter. This attribute may contain the "indefinite" value, leading to an endless loop
of the event occurrences, until some external interruption.

H.761-v2(11)_F7-2

Paused

Pause

Start
Stop abort

Resume

Occurring
Stop natural end

Abort

Sleeping

Figure 7-2 – Event state machine

Transition names for the event state machine shall comply with Table 7-18.

36 Rec. ITU-T H.761 (06/2011)

Table 7-18 – Transition names for an event state machine

Transition (caused by action) Transition name

sleeping→ occurring (start) starts

occurring→ sleeping (stop or natural end) stops

occurring→ sleeping (abort) aborts

occurring→ paused (pause) pauses

paused→ occurring (resume) resumes

paused→ sleeping (stop) stops

paused→ sleeping (abort) aborts

A presentation event associated with a media node, represented by a <media> element, initializes in
the sleeping state. At the beginning of the exhibition of its information units, the event goes to the
occurring state. If the exhibition is temporarily suspended, the event stays in the paused state, while
this situation lasts. A presentation event may change from occurring to sleeping as a consequence of
the natural end of the presentation duration, or due to an action that stops the event. In both cases,
the occurrences attribute is incremented, and the repetitions attribute is decremented by one. If after
being decremented, the repetitions attribute value is greater than zero, the event is automatically
restarted (set again to the occurring state). When the presentation of an event is abruptly interrupted,
through an abort presentation command, the event also goes to the sleeping state, but without
incrementing the occurrences attribute and setting the repetitions attribute value to zero. The
duration of an event is the time it remains in the occurring state. This duration may be intrinsic to
the media object, explicitly specified by an author (explicitDur attribute of a <descriptor> element),
or derived from a relationship.

A presentation event associated with a composite node represented by a <body> or a <context>
element stays in the occurring state while at least one presentation event associated with anyone of
the composite child nodes is in the occurring state, or at least one context node child link is being
evaluated. It is in the paused state if at least one presentation event associated with anyone of the
composite child nodes is in the paused state and all other presentation events associated with the
composite child nodes are in the sleeping or paused state. Otherwise, the presentation event is in the
sleeping state.

NOTE 1 – More details about the behaviour of presentation event state machines for media and composite
nodes are given in clause 8.

A presentation event associated with a switch node, represented by a <switch> element, stays in the
occurring state while the switch child element chosen from the bind rules (selected node) is in the
occurring state. It is in the paused state if the selected node is in the paused state. Otherwise, the
presentation event is in the sleeping state.

A selection event initializes in the sleeping state. It stays in the occurring state while the
corresponding anchor (subset of the information units of a media object) is being selected.

Attribution events stay in the occurring state while the corresponding property values are being
modified. Obviously, instantaneous events, like attribution events for simple value assignments,
stay in the occurring state only during an infinitesimal period of time.

A composition event (associated to a composite node represented by a <body>, <context> or
<switch> element) stays in the occurring state while the composition map is being presented.

Relations are defined based on event states, changes on the event state machines, on event attribute
values, and on node (<media>, <body>, <context> or <switch> element) property values. The
CausalConnectorFunctionality module allows only for the definition of causal relations, defined by
the <causalConnector> element of the CausalConnector module.

 Rec. ITU-T H.761 (06/2011) 37

A <causalConnector> element has a glue expression, which defines a condition expression and an
action expression. When the condition expression is satisfied, the action expression shall be
executed. The <causalConnector> element shall have the id attribute, which uniquely identifies the
element within a document.

A condition expression may be simple (<simpleCondition> element) or composite
(<compoundCondition> element), both elements defined by the ConnectorCausalExpression
module.

The <simpleCondition> element has a role attribute, whose value shall be unique in the connector's
role set. As aforementioned, a role is a connector interface point, which is associated to node
interfaces by a link that refers to the connector. A <simpleCondition> also defines an event type
(eventType attribute) and to which transition it refers (transition attribute). The eventType and
transition attributes are optional. They may be inferred by the role value if reserved values are used.
Otherwise, the eventType and transition attributes are required.

Reserved values used for defining <simpleCondition> roles are stated in Table 7-19. If an
eventType value is "selection", the role can also define to which selection apparatus (for example,
keyboard or remote control keys) it refers, through its key attribute. At least the following values
(case sensitive) shall be accepted for the key attribute: "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T",
"U", "V", "W", "X", "Y", "Z", "*", "#", "MENU", "INFO", "GUIDE", "CURSOR_DOWN",
"CURSOR_LEFT", "CURSOR_RIGHT", "CURSOR_UP", "CHANNEL_DOWN",
"CHANNEL_UP", "VOLUME_DOWN", "VOLUME_UP", "ENTER", "RED", "GREEN",
"YELLOW", "BLUE", "BACK", "EXIT", "POWER", "REWIND", "STOP", "EJECT", "PLAY",
"RECORD", "PAUSE". If the key attribute is not specified, the selection via a pointer device
(mouse, touch screen, navigational keys, in agreement with clause 7.2.12, etc.) shall be assumed.

NOTE 2 – When a same selection apparatus is pressed, more than one <simple condition> may be
considered satisfied, if this selection apparatus is defined in the key attribute of the <simpleCondition> and
the interfaces bounded by <link> elements referring to the <simpleCondition> (through the role attributes of
their <bind> elements) are being presented.

Table 7-19 – Reserved condition role values associated to event state machines

Role Value Transition Value Event Type

onBegin starts presentation

onEnd stops presentation

onAbort aborts presentation

onPause pauses presentation

onResume resumes presentation

onSelection starts selection

onBeginSelection starts selection

onEndSelection stops selection

onBeginAttribution starts attribution

onEndAttribution stops attribution

onAbortAttribution aborts attribution

onPauseAttribution pauses attribution

onResumeAttribution resumes attribution

38 Rec. ITU-T H.761 (06/2011)

The role cardinality specifies the minimal (min attribute) and maximal (max attribute) number of
participants that may play the role (number of binds) when the <causalConnector> is used for
creating a <link>. The minimal cardinality value shall always be a positive finite value, greater than
zero and lesser than or equal to the maximal cardinality value, otherwise the link shall be ignored. If
minimal and maximal cardinalities are not informed, "1" shall be assumed as the default value for
both parameters. When the maximal cardinality value is greater than one, several participants may
play the same role, i.e., there may be several binds connecting diverse nodes to the same role. The
"unbounded" value may be set to the max attribute, if the role may have unlimited binds associated
with it. In these two latter cases, a qualifier attribute should be specified informing the logical
relationship among the simple condition binds. As described in Table 7-20 the possible values for
the qualifier attribute are: "or" and "and". If the qualifier establishes an "or" logical operator, the
link action will be triggered whenever any condition occurs. If the qualifier establishes an "and"
logical operator, the link action will be triggered after all the simple conditions occur. If not
specified, the default value "or" shall be assumed.

Table 7-20 – Simple condition qualifier values

Role Element Qualifier Semantics

simpleCondition or True whenever any associated simple condition
occurs.

simpleCondition and True immediately after all associated simple
conditions have occurred.

A delay attribute may also be defined for a <simpleCondition> specifying that the condition will be
true after a time delay from the moment the transition occurs.

The <compoundCondition> element has a Boolean operator attribute ("and" or "or") relating its
child elements: <simpleCondition>, <compoundCondition>, <assessmentStatement> and
<compoundStatement>. A delay attribute may also be defined specifying that the compound
condition will be true after a time delay from when the expression relating its child elements is true.
The <assessmentStatement> and <compoundStatement> elements are defined by the
ConnectorAssessmentExpression module.

NOTE 3 – When an "and" compound condition relates more than one trigger condition (that is, a condition
that is satisfied only in an infinitesimal time instant – as for example, the end of an object presentation), the
compound condition shall be considered true in the instant immediately after all the trigger conditions are
satisfied.

An action expression captures actions that may be executed in causal relations and may be
composed of a <simpleAction> or a <compoundAction> element, also defined by the
ConnectorCausalExpression module.

The <simpleAction> element has a role attribute, which has to be unique in the connector role set.
As usual, the role is a connector interface point, which is associated to node interfaces by a <link>
that refers to the connector. A <simpleAction> also defines an event type (eventType attribute) and
which event state transition it triggers (actionType). The eventType and actionType attributes are
optional. They can be inferred by the role value if reserved values are used; otherwise, eventType
and actionType are required. Reserved values used for defining <simpleAction> roles are stated in
Table 7-21. If an eventType value is "attribution", the <simpleAction> shall also define the value
that shall be assigned, through its value attribute. If the value is specified as "$anyName" (where $
is a reserved symbol, and anyName is any string, except reserved role names), the assigned value
shall be retrieved from the property associated with the role="anyName" and defined by a <bind>
child element of the <link> element that refers to the connector. If this value cannot be retrieved, no
attribution shall be made.

 Rec. ITU-T H.761 (06/2011) 39

NOTE 4 – Declaring the role="anyName" attribute in a <bind> element of a <link> implies having a role
implicitly declared as <attributeAssessment role="anyName" eventType="attribution"
attributeType="nodeProperty"/>. This is the only possible case of a <bind> element referring to a role that is
not explicitly declared in a connector.

NOTE 5 – If value="$anyName", the value to be attributed is the value of a property (<property> element) of
a component of the same composition where the link (<link> element) that refers to the event is defined, or
of a property of the composition where the link is defined, or of a property of an element that can be reached
through a <port> element of the composition where the link is defined, or even of a property of an element
that can be reached through a port (elements <port> or <switchPort>) of a composition nested in the same
composition where the link is defined. Each time an attribution is set, the attributed value shall be gotten
from the property identified by the <bind> element of the link.

As with <simpleCondition> elements, the role cardinality specifies the minimal (min attribute) and
maximal (max attribute) number of participants that may play the role (number of binds) when the
<causalConnector> is used for creating a link. When the maximal cardinality value is greater than
one, several participants may play the same role. When it has the "unbounded" value, the number of
binds is unlimited. In these two latter cases, a qualifier shall be specified. Table 7-22 presents
possible qualifier values. If the qualifier value is not specified, the default value "par" shall be
assumed.

Table 7-21 – Reserved action role values associated to event state machines

Role value Action type Event type

start start presentation

stop stop presentation

abort abort presentation

pause pause presentation

resume resume presentation

set start attribution

startAttribution start attribution

stopAttribution stop attribution

abortAttribution abort attribution

pauseAttribution pause attribution

resumeAttribution resume attribution

Table 7-22 – Action qualifier values

Role element Qualifier Semantics

simpleAction par All actions shall be executed in parallel

simpleAction seq All actions shall be executed in the bind sequence

A delay attribute may also be defined for a <simpleAction> specifying that the action shall be
triggered only after having waited for the specified time. Besides, the <simpleAction> may also
define a repeat attribute to be assigned to the repetitions attribute of the event, and a repeatDelay to
be awaited before repeating the action.

Besides all the aforementioned attributes, the <simpleAction> element may also have attributes
defined in the Animation Functionality (duration and by attributes), if its eventType value is
"attribution" (see clause 7.2.13).

40 Rec. ITU-T H.761 (06/2011)

The <compoundAction> element has an operator attribute ("par" or "seq") relating its child
elements: <simpleAction> and <compoundAction>. Parallel ("par") and sequential ("seq")
compound actions specify that the execution of actions shall be performed in any order or in a
specific order, respectively. A delay attribute may also be defined specifying that the compound
action shall be applied after the specified delay.

NOTE 6 – When the sequential operator is used, actions shall be triggered in the specified order. However,
an action does not need to wait for the previous one to be finished in order to be triggered.

The ConnectorAssessmentExpression module defines four elements: <assessmentStatement>,
<attributeAssessment>, <valueAssessment> and <compoundStatement>.

The <attributeAssessment> has a role attribute, which has to be unique in the connector role set. As
usual, the role is a connector interface point, which is associated to node interfaces by a <link> that
refers to the connector. An <attributeAssessment> also defines an event type (eventType attribute).
If the eventType value is "selection", the <attributeAssessment> should also define to which
selection apparatus (for example, keyboard or remote control keys) it refers, through its key
attribute. If the key attribute is not specified, the selection via a pointer device (mouse, touch screen,
etc.) shall be assumed. If the eventType value is "presentation", the attributeType attribute specifies
the event attribute ("occurrences" or "repetition") or the event state ("state"); if the eventType value
is "selection", the attributeType attribute is optional and, if present, it may have the value
"occurrences" (default) or "state"; if the eventType is "attribution" the attributeType is optional and
may have the value "nodeProperty" (default), "occurrences", "repetition" or "state". In the first case,
the event represents a node property to be evaluated; in the other ones the event represents the
evaluation of the corresponding attribution event property or the attribution event state. An offset
value may be added to an <attributeAssessment> before the comparison. For example, an offset
may be added to an attribute assessment to specify: "the screen vertical position plus 50 pixels".

The <valueAssessment> element has a value attribute that may assume an event state value, or any
value to be compared with a node property or event attribute.

The <assessmentStatement> element has a comparator attribute that compares the values inferred
from its child elements (<attributeAssessment> element and <valueAssessment> element). In the
case of <attributeAssessment>: a node property value [eventType = "attribution" and the
attributeType = "nodeProperty"]; an event attribute value [eventType = ("presentation", "attribution"
or "selection") and the attributeType = ("occurrences", or "repetition")]; or an event state
[eventType = ("presentation", "attribution" or "selection") and the attributeType = "state"]. In the
case of <valueAssessment>: a value of its value attribute. The comparator attribute shall have one
of the values: "eq", "ne", "gt", "lt", "gte", or "lte". If a value different from these is specified, the
<assessmentStatement> element shall be ignored.

The <compoundStatement> element has a Boolean operator attribute ("and" or "or") relating its
child elements: <assessmentStatement> or <compoundStatement>. An isNegated attribute may also
be defined to specify that the <compoundStatement> child element shall be negated before the
Boolean operation is evaluated.

The <causalConnector> element may have <connectorParam> child elements, which are used to
parameterize connector attribute values. The ConnectorCommonPart module defines the type of the
<connectorParam> element, which has name and type attributes. In order to specify which attributes
receive parameter values defined by the connector, their values are specified as the parameter name
preceded by the $ symbol. For instance, in order to parameterize the delay attribute, a parameter
called actionDelay is defined (<connectorParam name="actionDelay" type="unsignedLong"/>)
and the value "$actionDelay" is used in the attribute (delay="$actionDelay").

The elements of the CausalConnectorFunctionality module, their attributes, and their child elements
shall comply with Table 7-23.

 Rec. ITU-T H.761 (06/2011) 41

Table 7-23 – Extended CausalConnectorFunctionality module

Elements Attributes Content

causalConnector id (connectorParam*, (simpleCondition |
compoundCondition), (simpleAction |
compoundAction))

connectorParam name, type Empty

simpleCondition role, delay, eventType, key,
transition, min, max, qualifier

Empty

compoundCondition operator, delay ((simpleCondition |
compoundCondition)+,
(assessmentStatement |
compoundStatement)*)

simpleAction role, delay, eventType,
actionType, value, min, max,
qualifier, repeat, repeatDelay,
duration, by

Empty

compoundAction operator, delay (simpleAction | compoundAction)+

assessmentStatement comparator (attributeAssessment,
(attributeAssessment |
valueAssessment))

attributeAssessment role, eventType, key,
attributeType, offset

Empty

valueAssessment value Empty

compoundStatement operator, isNegated (assessmentStatement |
compoundStatement)+

The ConnectorBase module defines an element named <connectorBase>, which allows for
grouping connectors. As usual, the <connectorBase> element should have the id attribute, which
uniquely identifies the element within a document. The exact content of a connector base is
specified by the language profile that uses the Connectors Facility. However, since the definition of
connectors is not easily done by inexperienced users, the idea is to have expert users define
connectors, store them in libraries (connector bases) that may be imported, and make them available
to others for creating links.

The element of the ConnectorBase module, its attributes, and its child elements shall comply with
Table 7-24.

Table 7-24 – Extended ConnectorBase module

Elements Attributes Content

connectorBase id (importBase|causalConnector)*

7.2.9 Presentation control functionality

The purpose of the Presentation Control functionality is to specify content and presentation
alternatives for a document. This functional area is partitioned into four modules, named TestRule,
TestRuleUse, ContentControl and DescriptorControl.

The TestRule module allows for the definition of rules that, when satisfied, select alternatives for
document presentation. The specification of rules in NCL 3.0 was done in a separate module,
because they are useful for defining either alternative components or alternative descriptors.

42 Rec. ITU-T H.761 (06/2011)

The <ruleBase> element specifies a set of rules, and shall be defined as a child element of the
<head> element. These rules may be simple, defined by the <rule> element, or composite, defined
by the <compositeRule> element.

Simple rules define an optional identifier (id attribute), a variable (var attribute), a value (value
attribute), and a comparator (comparator attribute) relating the variable to the value. The variable
type and the value type shall be the same; otherwise the rule definition shall be ignored by the NCL
formatter. The variable shall be a property of the settings node (<media> element of application/x-
ncl-settings type), that is, the var attribute shall have the same value of a <property> name attribute,
defined as a child of the <media> element of application/x-ncl-settings type. The comparator
attribute shall have one of the values: "eq", "ne", "gt", "lt", "gte", or "lte". If a value different from
these is specified, the <rule> element shall be ignored.

Composite rules have an identifier (id attribute) and a Boolean operator ("and" or "or" – operator
attribute) relating their child rules. As usual, the id attribute uniquely identifies the <rule> and
<compositeRule> elements within a document.

The elements of the TestRule module, their attributes, and their child elements shall comply with
Table 7-25.

Table 7-25 – Extended TestRule module

Elements Attributes Content

ruleBase id (importBase|rule|compositeRule)+

rule id, var,
comparator,
value

Empty

compositeRule id, operator (rule | compositeRule)+

The TestRuleUse defines the <bindRule> element, which is used to associate rules with
components of a <switch> or <descriptorSwitch> element, through its rule and constituent
attributes, respectively.

The element of the TestRuleUse module and its attributes shall comply with Table 7-26.

Table 7-26 – Extended TestRuleUse module

Elements Attributes Content

bindRule constituent, rule Empty

The ContentControl module specifies the <switch> element, allowing the definition of alternative
document nodes to be chosen during presentation time. Test rules used to choose the switch
component to be presented are defined by the TestRule module or are test rules specifically defined
and embedded in an NCL formatter implementation. The ContentControl module also defines the
<defaultComponent> element, whose component attribute (also of IDREF type) identifies the
default element that shall be selected if none of the bindRule rules is evaluated as true. If the
<defaultComponent> element is not defined in a <switch> element, and if none of the bindRule
rules is evaluated as true to a component bound by a <mapping> element child of the <switchPort>
from which the <switch> element is referred, no component is selected for presentation and the
NCL formatter shall behave as if the component did not exist.

In order to allow links to anchor on the component chosen after evaluating the rules of a switch, a
language profile should also include the SwitchInterface module, which allows for the definition of
special interfaces, named <switchPort>.

 Rec. ITU-T H.761 (06/2011) 43

As usual, <switch> elements shall have the id attribute, which uniquely identifies the element
within a document. The refer attribute is an extension defined in the Reuse module (see
clause 7.2.11).

When a <context> is defined as a child of a <switch> element, the <link> elements recursively
contained in the <context> shall be considered by an NCL player only if the <context> is selected
after the switch evaluation. Otherwise, the <link> elements should be considered disabled and shall
not interfere in the document presentation.

The ContentControl module elements, their attributes and child elements shall comply with
Table 7-27.

Table 7-27 – Extended ContentControl module

Elements Attributes Content

switch id, refer (defaultComponent?, (switchPort | bindRule | media |
context | switch)*)

defaultComponent component Empty

The DescriptorControl module specifies the <descriptorSwitch> element, which contains a set of
alternative descriptors to be associated with an object. The <descriptorSwitch> elements shall have
the id attribute, which uniquely identifies the element within a document. Analogous to the
<switch> element, the <descriptorSwitch> choice is done during presentation time, using test rules
defined by the TestRule module, or test rules specifically defined and embedded in an NCL
formatter implementation. The DescriptorControl module also defines the <defaultDescriptor>
element, whose descriptor attribute (also of IDREF type) identifies the default element that shall be
selected if none of the bindRule rules is evaluated as true.

The DescriptorControl module elements, their attributes, and their child elements shall comply with
Table 7-28.

Table 7-28 – Extended DescriptorControl module

Elements Attributes Content

descriptorSwitch id (defaultDescriptor?, (bindRule |
descriptor)*)

defaultDescriptor descriptor Empty

During a document presentation, from the moment a <switch> is evaluated, it is considered
resolved until the end of the current switch presentation, that is, while its corresponding
presentation event is in the "occurring" or "paused" state. During a document presentation, from the
moment a <descriptorSwitch> is evaluated for a specific <media> element, it is considered resolved
for that <media> element until the end of the presentation of this <media> element, that is, while
any presentation event associated with the <media> element is in the "occurring" or "paused" state.

NOTE – NCL formatters should delay the switch evaluation to the moment that a link anchoring in the
switch needs to be evaluated. The descriptorSwitch evaluation should be delayed until the object referring
the descriptorSwitch needs to be prepared to be presented.

7.2.10 Timing functionality

The Timing functionality defines the Timing module. The Timing module allows for the definition
of temporal attributes for document components. Basically, this module defines attributes for
specifying what will happen with an object at the end of its presentation (freeze), and the ideal
duration of an object (explicitDur). These attributes may be incorporated by <descriptor> elements.

44 Rec. ITU-T H.761 (06/2011)

When freeze is specified with a value equal to "true" the last image map of the object must be
frozen indefinitely, that is, until its end is determined by an external event (for example, coming
from a <link> evaluation), or by the explicitDur value for that object.

The explicitDur attribute gives the presentation duration of an object and not the presentation
duration of the object's content. If the explicitDur value is greater than the content presentation
duration what must happen on the end of the content presentation depends on the freeze attribute
previously mentioned. If the explicitDur value is smaller than the content presentation duration, the
content presentation is cut. Note that a player may, optionally, make elastic time adjustments on the
media content in order to make the content presentation duration as close as possible to the
explicitDur value.

7.2.11 Reuse functionality

NCL allows for intensive reuse of its elements. The NCL Reuse functionality is partitioned into
three modules: Import, EntityReuse and ExtendedEntityReuse.

In order to allow an entity base to incorporate another already-defined base, the Import module
defines the <importBase> element, which has two attributes: documentURI and alias. The
documentURI refers to a URI corresponding to the NCL document containing the base to be
imported. The alias attribute specifies a name to be used as prefix when referring to elements of this
imported base. The alias name shall be unique in a document and its scope is constrained to the
document that has defined the alias attribute. The reference would have the format:
alias#element_id. The import operation is transitive, that is, if baseA imports baseB that imports
baseC, then baseA imports baseC. However, the alias defined for baseC inside baseB shall not be
considered by baseA.

When a language profile uses the Import module, the following specifications are allowed:

– the <descriptorBase> element may have a child <importBase> element referring to a URI
corresponding to another NCL document containing the descriptor base (in fact its child
elements) to be imported and nested. When a descriptor base is imported, the region bases
and the rule base, when present in the imported document, are also automatically imported
to the corresponding region and rule bases of the importing document;

– the <connectorBase> element may have a child <importBase> element referring to a URI
corresponding to another connector base (in fact its child elements) to be imported and
nested;

– the <transitionBase> element may have a child <importBase> element referring to a URI
corresponding to another transition base (in fact its child elements) to be imported and
nested;

– the <ruleBase> element may have a child <importBase> element referring to a URI
corresponding to another NCL document containing the rule base (in fact its child
elements) to be imported and nested;

– the <regionBase> element may have a child <importBase> element referring to a URI
corresponding to another NCL document containing the region base (in fact its child
elements) to be imported and nested. As the referred document URI can have more than
one region base, the base to be imported must be identified by assigning its id to the baseId
attribute. Although NCL defines its layout model, nothing prevents an NCL document from
using other layout models, since they define regions where objects may be presented, as for
example SMIL 2.1 [b-W3C SMIL 2.1] layout models. On importing a <regionBase>, an
optional attribute named region may be specified within the <importBase> element. When
present, the attribute shall identify the id of a <region> element declared in the
<regionBase> element of the host document (the document that did the importing
operation). As a consequence, all child <region> elements of the imported <regionBase>
shall be considered as child <region> elements of the region referred by the <importBase>'s

 Rec. ITU-T H.761 (06/2011) 45

region attribute. If not specified, the child <region> elements of the imported <regionBase>
shall be considered children of the host document <regionBase> element.

The <importedDocumentBase> element specifies a set of imported NCL documents, and shall be
defined as a child element of the <head> element. In addition, <importedDocumentBase> elements
shall have the id attribute, which uniquely identifies the element within a document.

An NCL document may be imported through the <importNCL> element. All bases defined inside
an NCL document, as well as the document <body> element, are imported all at once through the
<importNCL> element. The bases will be treated as if each one were imported by an <importBase>
element. The imported <body> element will be treated as a <context> element. It should be stressed
that the <importNCL> element does not "include" the referred NCL document but only makes the
referred document visible to have its components reused by the document that has defined the
<importNCL> element. Thus, imported <body>, as well as any of its contained nodes, may be
reused inside the <body> element of the importing NCL document.

The <importNCL> element has two attributes: documentURI, and alias. The documentURI refers to
a URI corresponding to the document to be imported. The alias attribute specifies a name to be used
when referring an element of this imported document. As in the <importBase> element, the name
shall be unique (type=ID) and its scope is constrained to the document that has defined the alias
attribute. The reference would have the format: alias#element_id. It is important to note that the
same alias should be used when referring to elements defined in the imported document bases
(<regionBase>, <connectorBase>, <descriptorBase>, etc.). The <importNCL> element operation
has also the transitive property, that is, if documentA imports documentB that imports documentC,
then documentA imports documentC. However, the alias defined for documentC inside documentB
shall not be considered by documentA. By definition, the import operation is not recursive.

When a document is imported, its <media> element of application/x-ginga-settings (or
application/x-ncl-settings) type has no influence on the same type <media> element of the
importing document, whose properties are those that are valid for the importing document.

The elements of the Import module, their child elements, and their attributes shall comply with
Table 7-29.

Table 7-29 – Extended Import module

Elements Attributes Content

importBase alias, documentURI, region,
baseId

Empty

importedDocumentBase id (importNCL)+

importNCL alias, documentURI Empty

The EntityReuse module allows an NCL element to be reused. This module defines the refer
attribute, which refers to an element id that will be reused. Only <media>, <context>, <body> and
<switch> may be reused. An element that refers to another element cannot be reused; that is, its id
cannot be the value of any refer attribute.

NOTE – If the referred node is defined within an imported document D, the refer attribute value shall have
the format "alias#id", where "alias" is the value of the alias attribute associated with the D import.

When a language profile uses this module, it may add the refer attribute to:

– a <media> or <switch> element. In this case, the referred element shall be, respectively, a
<media> or <switch> element, which will represent the same node previously defined in
the document <body> itself or in an external imported <body>. This referred element shall
directly contain the definition of all its attributes and child elements;

46 Rec. ITU-T H.761 (06/2011)

– a <context> element. In this case, the referred element shall be a <context> or a <body>
element that will represent the same context, which is previously defined in the document
<body> itself or in an external imported <body>. This referred element shall directly
contain the definition of all its attributes and child elements.

When an element declares a refer attribute, all attributes and child elements defined by the referred
element are inherited. All other attributes and child elements, if they are defined by the referring
element, shall be ignored by the formatter, except the id attribute that shall be defined. The only
other exception is for <media> elements, in which new child <area> and <property> elements may
be added, and a new attribute, instance, may be defined. If the new added <property> element has
the same name attribute of an already existing <property> element (defined in the reused <media>
element), the new added <property> shall be ignored. Similarly, if the new added <area> element
has the same id attribute of an already existent <area> element (defined in the reused <media>
element), the new added <area> shall be ignored. The instance attribute is defined in the
ExtendedEntityReuse module and has "new" as its default string value.

The referred element and the element that refers to it shall be considered the same, regarding its
data specification. In other words it means that a single NCM node (see [b-NCM Core]) can be
represented by more than one NCL element. As nodes contained in an NCM composite node define
a set, an NCM node may be represented by no more than one NCL element inside a composition.
This means that the id attribute of an NCL element representing an NCM node is not only a unique
identifier for the element, but also the unique identifier for the NCM node in the composition.

EXAMPLE – Consider the NCL element (node1) that defines an NCM node. The NCL elements that refer to
it (node1ReuseA, node1ReuseB) represent the same NCM node. In other words, the single NCM node is
represented by more than one NCL element (node1, node1ReuseA, and node1ReuseB). Moreover, since
nodes contained in an NCM composite node define a set, the NCL elements node1, node1ReuseA, and
node1ReuseB shall each be declared inside a different composition.

The referred element and the element that refers to it shall also be considered the same regarding
their presentation, if the instance attribute receives a "instSame" or "gradSame" value. Therefore,
the following semantics shall be respected.

– Assume the set of <media> elements composed of the referred <media> element and all the
referring <media> elements. If any element of the subset formed by the referred <media>
element and all other <media> elements having the instance attribute equal to "instSame"
or "gradSame" is scheduled to be presented, all other elements in this subset, which are not
child descendants of a <switch> element, are also assumed as scheduled for presenting, and
more than that, when they are being presented, they shall be represented by the same
presentation instance. Descendant elements of a <switch> element shall also have the same
behaviour, if all rules needed to present these elements are satisfied; otherwise, they shall
not be scheduled for presenting.

– If the instance attribute is equal to "instSame", all scheduled nodes of the subset shall be
presented at the same time through a unique instance (start instruction applied on all subset
elements).

– If the instance attribute is equal to "gradSame", all scheduled nodes of the subset shall be
presented through a unique instance, but now gradually, as start instructions are applied,
coming from a link, etc.

– The common instance in presentation shall notify all events associated with the <area> and
<property> elements defined in all <media> elements of this subset that were scheduled for
presenting.

The referred element and the element that refers to it shall be considered independent objects
regarding their presentation, if the instance attribute receives a "new" value. When they are
individually scheduled for presenting, no other element in the set is affected. Moreover, new
independent presentation instances shall be created at each individual presentation start.

 Rec. ITU-T H.761 (06/2011) 47

It should be stressed that all <media> element have the same behaviour regarding reuse, including
the <media> element of application/x-ginga-settings (or application/x-ncl-settings) type.

7.2.12 Navigational Key functionality

The Navigational Key functionality defines the KeyNavigation module that provides the extensions
necessary to describe focus movement operations using a control device like a remote control.
Basically, the module defines attributes that may be incorporated by <descriptor> elements.

The focusIndex attribute specifies an index for the <media> element to which the focus may be
applied, when this element is in exhibition. The focusIndex may be defined using a <property> or a
<descriptor> element. When this property is not defined, the object is considered as if no focus
could be set. In a certain presentation moment, if the focus has not been already defined, or is lost, a
focus will be initially applied to the element being presented with the smallest index value. Values
of focusIndex attribute shall be unique in an NCL document. Otherwise, the repeated attributes will
be ignored if at a certain moment there is more than one <media> element to gain the focus.
Moreover, when a <media> element refers to another <media> element (using the refer attribute
specified in clause 7.2.11), it shall ignore the focusIndex associated with the referred <media>
element.

The moveUp attribute specifies a value equal to the focusIndex value associated to an element to
which the focus should be applied when the "up arrow key" is pressed. The moveDown attribute
specifies a value equal to the focusIndex value associated to an element to which the focus should
be applied when the "down arrow key" is pressed. The moveRight attribute specifies a value equal
to the focusIndex value associated to an element to which the focus should be applied when the
"right arrow key" is pressed. The moveLeft attribute specifies a value equal to the focusIndex value
associated to an element to which the focus should be applied when the "left arrow key" is pressed.

When the focus is applied to an element with the visible property set to false, or to an element that it
is not being presented, the current focus does not move.

The focusSrc attribute can specify an alternative media source to be presented, instead of the current
presentation, if an element receives the focus. This attribute follows the same rules of the src
attribute of the <media> element.

When an element receives a focus, the square box defined by the element positioning attributes
shall be decorated. The focusBorderColor attribute defines the decorative colour.

In an implementation in conformance with Ginga-NCL specification, the focusBorderColor
attribute may receive the reserved colour names: "white", "black", "silver", "gray", "red", "maroon",
"fuchsia", "purple", "lime", "green", "yellow", "olive", "blue", "navy", "aqua", or "teal".

The focusBorderWidth attribute defines the width in pixels of the decorative border (0 means that
no border will appear, positive values mean that the border is outside the object content, and
negative values mean that the border is drawn over the object content), and the
focusBorderTransparency attribute defines the decorative colour transparency. The
focusBorderTransparency shall be a real value between 0 and 1; or a real value in the range [0,100],
ending with the character "%" (e.g., 30%), with "1" or "100%" meaning full transparency and "0" or
"0%" meaning no transparency. When the focusBorderColor, the focusBorderWidth, or the
focusBorderTransparency are not defined, default values shall be assumed. These values are
specified in the properties of the <media> element of application/x-ncl-settings type:
default.focusBorderColor, default.focusBorderWidth, default.focusTransparency, respectively.

When an element on focus is selected by pressing the activation (select or enter) key, the
focusSelSrc attribute can specify an alternative media source to be presented, instead of the current
presentation. This attribute follows the same rules of the src attribute of the <media> element.
When selected, the square box defined by the element positioning attributes shall be decorated with
the colour defined by the selBorderColor attribute (default value specified by the

48 Rec. ITU-T H.761 (06/2011)

default.selBorderColor of the <media> element of application/x-ncl-settings type), the width of the
decorative border defined by the focusBorderWidth attribute, and the decorative colour transparency
defined by the focusBorderTransparency attribute.

When an element on focus is selected by pressing the "activate (select, enter, etc.) key", if there is a
<simpleCondition> element with its role attribute equal to "onSelection" without specifying the key
attribute, this condition is considered satisfied if the element on focus is the one specified by the
component attribute of the <simpleCondition> element. Therefore, the navigational keys act
similarly to a pointer device (like mouse, etc.).

When an element on focus is selected by pressing the "activate (select or enter) key", the focus
control shall be passed to the <media> element renderer (player). The player can then follow its
own rules for navigation. The focus control shall be passed back to the NCL formatter when the
"back key" is pressed. In this case, the focus goes to the element identified by the
service.currentFocus attribute of the settings node (<media> element of application/x-ncl-settings
type). In a multiple device environment, the hierarchical rules for input key control and exhibition
device control shall follow the guidelines established in "Nested Context Language 3.0: Part 12 –
Support to Multiple Exhibition Devices".

NOTE – The focus control may also be passed by setting the service.currentKeyMaster attribute of the
settings node (<media> element of application/x-ncl-settings type). This may be done through a link action,
through an NCL editing command executed by an imperative-code node (for example, an NCLua
object).The player of a node that has the current control may not directly change the
service.currentKeyMaster property.

7.2.13 Animation functionality

Animation in the cartoon sense is actually a combination of two factors: support for object drawing
and support for object motion – or more correctly, support for object alteration as a function of
time.

NCL is not a content format and, as such, does not have support for creating media object's content
and it does not have a generalized method for altering media object's content. Instead, NCL is a
scheduling and orchestration format. This means that NCL cannot be used to make cartoons, but
can be used to render cartoon objects in the context of a general presentation, and to change the
timing and rendering properties of a cartoon (or any other) object as a whole, while it is being
displayed.

The animation primitives of NCL allow values of node properties to be changed during an active
explicitly declared duration. Since NCL animation can be computationally intensive only the
properties that define numerical values and colours may be animated.

The Animation Functionality defines the Animation module that provides the extensions necessary
to describe what happens when a node property value is changed. Basically, the module defines
attributes that may be incorporated by <simpleAction> elements of a connector, if its eventType
value is "attribution". Two new attributes are defined: duration and by.

When setting a new value to a property, the change is instantaneous by default (duration=″0″), but
the change may also be carried out during an explicitly declared duration, specified by the duration
attribute.

Also, when setting a new value to a property, the change from the old value to the new one may be
linear by default (by=″indefinite″), or carried out step by step, with the pace specified by the by
attribute.

The combination of the duration and by attribute definitions gives how (discretely or linearly) the
change shall be performed, and its transforming interval.

 Rec. ITU-T H.761 (06/2011) 49

7.2.14 Transition Effects functionality

The Transition Effects functionality is divided into two modules: TransitionBase and Transition.

The TransitionBase module is defined by NCL 3.0 and consists of the <transitionBase> element
that specifies a set of transition effects, and shall be defined as a child element of the <head>
element.

The <transitionBase> element, its child elements, and its attributes shall comply with Table 7-30.

Table 7-30 – Extended TransitionBase module

Elements Attributes Content

transitionBase id (importBase, transition)+

The Transition module is based on SMIL 2.1 specification [b-W3C SMIL 2.1]. It has just one
element called <transition>.

In NCL 3.0 Enhanced DTV profile, the <transition> element is specified in the <transitionBase>
element and allows a transition template to be defined. Each <transition> element defines a single
transition template and shall have an id attribute so that it may be referred.

Seven <transition> element attributes come from SMIL BasicTransitions module specification:
type; subtype; dur; startProgress; endProgress; direction; and fadeColor.

Transitions are classified according to a two-level taxonomy of types and subtypes. Each of the
transition types describes a group of transitions which are closely related. Within that type, each of
the individual transitions is assigned a subtype which emphasizes the distinguishing characteristic
of that transition.

The type attribute is required and is used to specify the general transition. If the named type is not
supported by the NCL formatter, the transition is ignored. Note that this is not an error condition,
since implementations are free to ignore transitions.

The subtype attribute provides transition-specific control. This attribute is optional and, if specified,
shall be one of the transition subtypes appropriate for the specified type. If this attribute is not
specified, then the transition reverts to the default subtype for the specified transition type. Only the
subtypes for the five required transition types listed in Table 7-31 shall be supported. The other
subtypes defined in SMIL specifications [b-W3C SMIL 2.1] are optional

Table 7-31 – Required transition types and subtypes

Transition type Default transition subtype

barWipe leftToRight

irisWipe rectangle

clockWipe clockwiseTwelve

snakeWipe topLeftHorizontal

fade crossfade

The dur attribute specifies the duration of the transition. The default duration is 1 second.

The startProgress attribute specifies the amount of progress through the transition at which to begin
execution. Legal values are real numbers in the range [0.0,1.0]. For instance, we may want to begin
a crossfade with the destination image being already 40% faded in. In this case, startProgress
would be 0.4. The default value is 0.0.

50 Rec. ITU-T H.761 (06/2011)

The endProgress attribute specifies the amount of progress through the transition at which to end
execution. Legal values are real numbers in the range [0.0,1.0], and the value of this attribute shall
be greater than or equal to the value of the startProgress attribute. If endProgress is equal to
startProgress, then the transition remains at a fixed progress for the duration of the transition. The
default value is 1.0.

The direction attribute specifies the direction in which the transition will run. The legal values are
"forward" and "reverse". The default value is "forward". Note that not all transitions will have
meaningful reverse interpretations. For instance, a crossfade is not a geometric transition, and
therefore has no interpretation of reverse direction. Transitions that do not have a reverse
interpretation should have the direction attribute ignored and the default value of "forward"
assumed.

If the value of the type attribute is "fade" and the value of the subtype attribute is "fadeToColor" or
"fadeFromColor" (values that are optional in NCL), then the fadeColor attribute specifies the
ending or starting colour of the fade. If the value of the type attribute is not "fade", or the value of
the subtype attribute is not "fadeToColor" or "fadeFromColor", then the fadeColor attribute shall be
ignored. The default value is "black".

The Transition module also defines attributes to be used in <descriptor> elements to use the
transition templates defined by <transition> elements: transIn and transOut attributes. Transitions
specified with a transIn attribute will begin at the beginning of the media element's active duration
(when the object presentation begins to occur). Transitions specified with a transOut attribute will
end at the end of the media element's active duration (when the object presentation transits from
occurring to sleeping state).

The transIn and transOut attributes are added to <descriptor> elements. The default value of both
attributes is an empty string, which indicates that no transition shall be performed. The properties
may also be defined using <property> elements.

The value of the transIn and transOut attributes is a semicolon-separated list of transition
identifiers. Each of the identifiers shall correspond to the value of the XML identifier of one of the
transition elements previously defined in the <transitionBase> element. The purpose of the
semicolon-separated list is to allow authors to specify a set of fall-back transitions if the preferred
transition is not available. The first transition in the list should be performed if the user-agent has
implemented this transition. If this transition is not available, then the second transition in the list
should be performed, and so on. If the value of the transIn attribute or the transOut attribute does
not correspond to the value of the XML identifier of any one of the transition elements previously
defined, then this is an error. In the case of this error, the value of the attribute should be considered
to be the empty string and therefore no transition should be performed.

All transitions defined in the Transition module accept four additional attributes (coming from the
SMIL TransitionModifiers module specification) that may be used to control the visual appearance
of the transitions. The horRepeat attribute specifies how many times to perform the transition
pattern along the horizontal axis. The default value is 1 (the pattern occurs once horizontally). The
vertRepeat attribute specifies how many times to perform the transition pattern along the vertical
axis. The default value is 1 (the pattern occurs once vertically). The borderWidth attribute specifies
the width of a generated border along a wipe edge. Legal values are integers greater than or equal
to 0. If borderWidth value is equal to 0, then no border should be generated along the wipe edge.
The default value is 0. If the value of the type attribute is not "fade", then the borderColor attribute
specifies the content of the generated border along a wipe edge. If the value of this attribute is a
colour, then the generated border along the wipe or warp edge is filled with this colour. If the value
of this attribute is "blend", then the generated border along the wipe blend is an additive blend (or
blur) of the media sources. The default value for this attribute is "black".

 Rec. ITU-T H.761 (06/2011) 51

The element of the Extended Transition Module, its child elements, and its attributes shall comply
with Table 7-32.

Table 7-32 – Extended Transition module

Elements Attributes Content

transition id, type, subtype, dur,
startProgress, endProgress,
direction, fadeColor, horRepeat,
vertRepeat, borderWidth,
borderColor

Empty

7.2.15 Metainformation functionality

Metainformation does not contain content information that is used or displayed during a
presentation. Instead, it contains information about content that is used or displayed. The
Metainformation Functionality is composed of the Metainformation module that comes from SMIL
Metainformation module specification [b-W3C SMIL 2.1].

The Metainformation module contains two elements that allow for the description of NCL
documents. The <meta> element specifies a single property/value pair in the name and content
attributes, respectively. The <metadata> element contains information that is also related to
metainformation of the document. It acts as the root element of the resource description framework
(RDF) tree. The <metadata> element may have as child elements: RDF elements and its sub-
elements [b-W3C RDF].

The elements of the Metainformation module, their child elements, and their attributes shall comply
with Table 7-33.

Table 7-33 – Extended Metainformation module

Elements Attributes Content

meta name, content Empty

metadata empty RDF tree

NCL language profiles for IPTV

Each NCL profile may group a subset of NCL modules, allowing the creation of languages
according to user needs.

Any document in conformance with NCL profiles shall have the <ncl> element as its root element.

The NCL 3.0 Full profile, also called NCL 3.0 Language profile, is the "complete profile" of the
NCL 3.0 language. It comprises all NCL modules (including those discussed in clause 7.2) and
provides all facilities for declarative authoring of NCL documents.

The profiles defined for IPTV are:

a) NCL 3.0 Enhanced DTV profile: includes the Structure, Layout, Media, Context,
MediaContentAnchor, CompositeNodeInterface, PropertyAnchor, SwitchInterface,
Descriptor, Linking, CausalConnectorFunctionality, ConnectorBase, TestRule,
TestRuleUse, ContentControl, DescriptorControl, Timing, Import, EntityReuse,
ExtendedEntityReuse KeyNavigation, Animation, TransitionBase, Transition and
Metainformation modules of NCL 3.0. The tables in clause 7.2 show each module element,
already extended by the attributes and child elements inherited from other modules, for this

52 Rec. ITU-T H.761 (06/2011)

profile (see XML schemas in the electronic attachment NCL30EDTV.xsd of this
Recommendation).

b) NCL 3.0 CausalConnector profile: allows for the creation of simple hypermedia connectors.
This profile includes the Structure, CausalConnectorFunctionality, and ConnectorBase
modules. In the profile, the <body> element of the Structure module is not used (see XML
schemas in the electronic attachment CausalConnector.xsd of this Recommendation).

8 Media objects in NCL presentations

The presentation of an NCL document requires the synchronization control of several media objects
specified through <media> elements. For each media object, a media player shall control the
content presentation and its NCL events. For each media object, the associated media player shall
be able to receive presentation commands, control all event state machines, and answer queries
coming from the formatter.

In order to favour the incorporation of third-party media players into an NCL presentation engine
architecture, a modular design is suggested, aiming at separating the media players from the
presentation engine (NCL formatter) itself.

Figure 8-1 illustrates a modular organization for an NCL presentation environment. Note that media
players are plug-in modules of the presentation engine. Since it can be interesting to use already
existing media players that can have proprietary interfaces that are not compatible with the one
required by the presentation engine, it will be necessary to develop modules to make the necessary
adaptations. In this case, the media player will be constituted of an adapter, besides the player itself.

H.761-v2(11)_F8-1

Media
player

Media
player

Non compliant
player

Player proprietary API

Adapter
NCL formatter API
for media players

NCL presentation engine

Figure 8-1 – APIs for integrating media players with an NCL
presentation engine implementation

As the Ginga-NCL architecture and implementation is a choice of each receiver developer, the
following clauses do not intend to standardize the syntax of the presentation engine API. The goal is
just to define the expected behaviour of a media player when controlling objects that take part in an
NCL document.

8.1 Expected behaviour of basic media players

This clause deals with media players for <media> elements whose types are different from any
media object containing hypermedia declarative code (for example, "application/x-ginga-NCL" type
and text/html type) and different from any media object containing imperative or functional code
(for example, "application/x-ginga-NCLua" type).

A media object being presented is identified by the id attribute of the corresponding <media>
element and the id of the <descriptor> elements that were associated with the media object. This
identification is called in this clause representationObjectId.

 Rec. ITU-T H.761 (06/2011) 53

8.1.1 start instruction for presentation events

Before sending a start instruction, the formatter should find the more appropriate media player to be
called, based on the content type to be exhibited. For this sake, the formatter takes into
consideration the player attribute associated with the media object to be exhibited. If this attribute is
not specified, the formatter shall take into account the type attribute of the <media> element. If this
attribute is not specified either, the formatter shall consider the file extension specified in the src
attribute of the <media> element.

The start instruction issued by a formatter shall inform the following parameters to the media
player: the locator of the content of the media object to be controlled, a list of all properties
associated with the media object, the media object identification during execution
(representationObjectId), a list of events (presentation, selection or attribution) that need to be
monitored by the media player (defined by the <media> element's <area> and <property> child
elements, and by the default content anchor), the presentation event that needs to be started (called
here main event), an optional offset-time and an optional delay-time.

NOTE – The presentation properties that are not required by a DTV system that conforms with this
Recommendation must be ignored by the media player.

The src attribute of the <media> element shall be used, by the media player, to locate the content
and start its presentation. If the content cannot be located, or if the media player does not know how
to handle the content type, the media player shall finish the starting operation without performing
any action.

The descriptors shall be chosen by the formatter following the directives specified in the NCL
document. If the start instruction results from a link action that has a descriptor explicitly declared
in its <bind> element (descriptor attribute of the children <bind> element of the <link> element),
the resulting descriptor shall merge the attributes of the bind descriptor with the attributes of the
descriptor specified in the corresponding <media> element, if this attribute was specified. For the
common attributes, the <bind> descriptor information shall superpose the <media> descriptor data.
If the <bind> element does not contain an explicit descriptor, the evaluated descriptor shall be the
<media> descriptor, if this attribute was specified. Otherwise, a default descriptor for that type of
<media> shall be chosen by the formatter. Based on this procedure, the list of <descriptor>
elements' id that are associated with the media object is computed, and, unifying the properties
defined by the resulting descriptor with those properties explicitly defined by the <media> element,
the list of properties associated with the media object is evaluated.

The list of events to be monitored by a media player should also be computed by the formatter,
taking into account the NCL document specification. It shall check all the links where the media
object and the resulting descriptor participate. When computing the events to be monitored, the
formatter shall take into account the media-object perspective, i.e., the path of <body> and
<context> elements to reach the <media> element. Only links contained in these <body> and
<context> elements should be considered to compute the monitored events.

The offset-time parameter is optional, it has "zero" as its default value, and is meaningful only for
continuous media or static media with explicit duration. In this case, this parameter defines a time
offset from the beginning (beginning-time) of the main event, from which the presentation of the
main event shall be immediately started (i.e., it commands the player to jump to the beginning-time
+ offset-time). Obviously, the offset-time value shall be lower than the main event duration;
otherwise, that start instruction shall be ignored. If the offset-time is greater than zero, the media
player shall put the main event in the occurring state, but the event starts transition shall not be
notified. If the offset-time is zero, the media player shall put the main event in the occurring state
and notify the starts transition occurrence.

54 Rec. ITU-T H.761 (06/2011)

The events that would have their end-times before the beginning-time of the main event, and the
events that would have their beginning times after the end-time of the main event do not need to be
monitored by the media player (the formatter should do this verification when building the
monitored event list).

Monitored events that would have beginning-times before the start time (beginning-time + offset-
time) of the main event and end-times after the start time (beginning-time + offset-time) of the main
event shall be put in the occurring state, but their starts transitions shall not be notified (links that
depend on this transition shall not be triggered).

Monitored events that would have their end times after the main event beginning-time, but before
the start time (beginning-time + offset-time) shall have their occurrences attribute incremented, but
the starts and stops transitions shall not be notified.

The delay-time is also an optional parameter and its default value is "zero" too. If greater than zero,
this parameter contains a time to be waited by the media player before starting the presentation.

If a media player receives a start instruction for an object already being presented (paused or not), it
shall ignore the instruction and keep on controlling the ongoing presentation. In this case, the
<simpleAction> element that has caused the start instruction shall not cause any transition on the
corresponding event state machine.

8.1.2 stop instruction for presentation events

The stop instruction only needs to identify a media object already being controlled
(representationObjectId). To identify the media object means to identify the <media> element and
the corresponding descriptors. Therefore, if a <simpleAction> element with an actionType attribute
equal to "stop" is bound through a link to a node interface, the interface shall be ignored when the
action is performed.

If the object is not being presented (none of the events in the object's list of events is in the
occurring or paused state) and the media player is not waiting due to a delayed start instruction, the
stop instruction shall be ignored. If the object is being presented, the main event (the event passed
as a parameter when the media object was started) and all monitored events in the occurring or in
the paused state with end time equal or previous to the main event end time shall transit to the
sleeping state, and their stops transitions shall be notified. Monitored events in the occurring or in
the paused states with end time posterior to the main event end time shall be put in the sleeping
state, but their stops transitions shall not be notified and their occurrences attribute shall not be
incremented. The object content presentation shall be stopped. If the repetitions event attribute is
greater than zero, it shall be decremented by one and the main event presentation shall restart after
the repeat delay time (the repeat delay shall have been passed to the media player as the start delay
parameter). If the media object is waiting to be presented after a delayed start instruction and a stop
instruction is issued, the previous start instruction shall be removed.

NOTE 1 – The stop instruction shall transit the monitored events to the sleeping state irrespective of whether
a transition effect is being applied to the media object. In other words, the transition effect shall also be
stopped. Transition effects are never applied after an object is subjected to a stop instruction.

NOTE 2 – When all media objects referring to the elementary stream that carries the service main video are
in the sleeping state, the main video shall be dimensioned to 100% of the screen. The main video can be
redimensioned only using a media object (referring to the main video) in presentation. The same happens
with the main audio. When all media objects referring to the elementary stream that carries the service main
audio are in the sleeping state, the main audio shall be presented with 100% of its volume.

8.1.3 abort instruction for presentation events

The abort instruction only needs to identify a media object already being controlled
(representationObjectId). If a <simpleAction> element with an actionType attribute equal to "abort"
is bound through a link to a node interface, the interface shall be ignored when the action is applied.

 Rec. ITU-T H.761 (06/2011) 55

If the object is not being presented and is not waiting to be presented after a delayed start
instruction, the abort instruction shall be ignored. If the object is being presented, the main event
and all monitored events in the occurring or in the paused state shall transit to the sleeping state,
and their aborts transitions shall be notified. Any content presentation shall stop. If the repetitions
event attribute is greater than zero, it shall be set to zero and the media object presentation shall not
restart. If the media object is waiting to be presented after a delayed start instruction, and an abort
instruction is issued, the previous start instruction shall be removed.

8.1.4 pause instruction for presentation events

The pause instruction only needs to identify a media object already being controlled
(representationObjectId). If a <simpleAction> element with an actionType attribute equal to
"pause" is bound through a link to a node interface, the interface shall be ignored when the action is
applied.

If the object is not being presented (the main event, passed as a parameter when the media object
was started, is not in the occurring state) and the media player is not waiting for the start delay, the
instruction shall be ignored. If the object is being presented, the main event and all monitored
events in the occurring state shall transit to the paused state and their pauses transitions shall be
notified. The object presentation shall be paused and the pause elapsed time shall not be considered
as part of the object duration. As an example, if an object has an explicit duration of 30 s and, after
25 s it is paused, even if the object stays paused for 7 min, after resuming the object main event
shall stay occurring for 5 s. If the main event is still not occurring because the media player is
waiting for the start delay, the media object shall wait for a resume instruction to continue waiting
for the remaining start delay.

8.1.5 resume instruction for presentation events

The resume instruction only needs to identify a media object already being controlled
(representationObjectId). If a <simpleAction> element with an actionType attribute equal to
"resume" is bound through a link to a node interface, the interface shall be ignored when the action
is applied.

If the object is not paused (the main event, passed as a parameter when the media object was
started, is not in the paused state) or the media player is not paused (waiting for the start delay), the
instruction shall be ignored. If the media player is paused waiting for the start delay, it shall resume
the wait from the instant it was paused. If the main event is in the paused state, the main event and
all monitored events in the paused state shall be put in the occurring state and their resumes
transitions shall be notified.

8.1.6 start instruction for attribution events

The start instruction may be applied to an object property independently of whether the object is
being presented or not (in the latter case, although the object is not being presented, its media player
shall be already instantiated). The start instruction needs to identify the media object being
controlled (representationObjectId) and a monitored attribution event, and needs to determine a
value to be assigned to the property wrapped by the event, the duration of the attribution process,
and the attribution step. When setting a value to the property, the media player shall set the event
state machine to the occurring state, and after finishing the attribution, again to the sleeping state,
generating the starts transition and afterwards the stops transition.

For every monitored attribution event, if the media player changes by itself the corresponding
attribute value, it shall also proceed as if it had received an external start instruction.

8.1.7 stop, abort, pause and resume instructions for attribution events

The stop, abort, pause and resume instructions need to identify a media object already being
controlled (representationObjectId) and an attribution event being monitored.

56 Rec. ITU-T H.761 (06/2011)

The stop instruction only stops the property attribution procedure, bringing the attribution event
state machine to the sleeping state.

The abort instruction stops the property attribution procedure, bringing the attribution event state
machine to the sleeping state and the property value to its original one.

The pause instruction only pauses the property attribution procedure, bringing the attribution event
state machine to the paused state.

Finally, the resume instruction only resumes the property attribution procedure, bringing the
attribution event state machine to the occurring state.

8.1.8 addEvent instruction

The addEvent instruction is issued in the case of receiving an addInterface NCL editing command
(see clause 9). The instruction needs to identify a media object already being controlled and a new
event that shall be included to be monitored. All rules applied to the intersection of monitored
events with the main event shall be applied to the new event. If the new event start time is previous
to the object current time, and the new event end time is posterior to the object current time, the
new event shall be put in the same state of the main event (occurring or paused), without notifying
the corresponding transition.

8.1.9 removeEvent instruction

The removeEvent instruction is issued in the case of receiving a removeInterface NCL editing
command. The instruction needs to identify a media object already being controlled and a
monitored event that should not be controlled any more. The event state shall be put in the sleeping
state without generating any transition.

8.1.10 Natural end of a presentation

Events of an object, with an explicit or an intrinsic duration, normally end their presentations
naturally, without needing external instructions. In this case, the media player shall transit the event
to the sleeping state and notify the stops transition. The same shall be done for monitored events in
the occurring state with the same end time of the main event or with unknown end time, when the
main event ends. Events in the occurring state with end time posterior to the main event end time
shall be put in the sleeping state, but without generating the stops transition and without
incrementing the occurrences attribute. It is important to remark that if the main event corresponds
to an object internal temporal anchor, when this anchor presentation finishes, the whole media
object presentation shall finish.

8.2 Expected behaviour of declarative hypermedia players in NCL applications

Declarative hypermedia objects (media objects whose content are a declarative code specified in
some declarative programming language, for example media objects of "application/x-ginga-NCL"
type or text/html type) have their life cycle controlled by their parent NCL application. This implies
an execution model different from when the declarative code runs under the total control of its own
engine.

Document authors may define NCL links to start, stop, pause, resume or abort the execution of a
declarative code. On the other hand, a declarative code may also command the start, stop, pause or
resume of its associated content anchors and properties. These transitions may be used as conditions
of NCL links to trigger actions on other objects of the same NCL parent document. Thus, a two-
way synchronization can be established between a declarative code and the remainder of the NCL
document.

NCL links may be bound to declarative hypermedia object interfaces (<area> and <property>
elements, and the default whole content anchor). A declarative player (the language engine) shall
interface its declarative execution environment with the NCL formatter. Analogous to basic media

 Rec. ITU-T H.761 (06/2011) 57

content players, declarative code players shall control event state machines associated with the
declarative media object, reporting changes to their parent NCL player. A declarative hypermedia
object shall be able to reflect in its content anchors and properties behaviour changes in its temporal
chains.

8.2.1 start instruction for presentation events

The start instruction issued by a formatter shall inform the following parameters to the declarative
hypermedia object player: the locator of the content of the declarative hypermedia object to be
controlled, a list of all properties associated with the media object, the media object identification
during execution (representationObjectId), a list of events (presentation, selection or attribution)
that need to be monitored by the media player (defined by the <media> element's <area> and
<property> child elements, and by the whole content anchor), the clip or label content anchor, or by
default the whole content anchor, identifying the associated temporal chain sections to be started
(called here main event), an optional offset-time and an optional delay-time. From the locator (src
attribute of the media object), the declarative hypermedia object player tries to locate the temporal
chain section and start its execution. If the content cannot be located, the player shall finish the
starting operation, without performing any action.

From these start instruction parameters, the formatter shall follow the same procedure defined for
basic media objects, defined in clause 8.1.1, with the exception presented in the next three
paragraphs.

If a declarative hypermedia object player receives a start instruction for a temporal chain already
being presented (paused or not), it shall ignore the instruction and keep on controlling the ongoing
presentation. However, different from what is performed on other <media> elements, if the start
instruction is for a temporal chain that is not being presented, the instruction must be executed even
if another temporal chain is being presented (paused or occurring). As a consequence, different
from what happens for other <media> elements, a <simpleAction> element with an actionType
attribute equal to "stop", "pause", "resume" or "abort" shall be bound through a link to a declarative
hypermedia object's interface, which shall not be ignored when the action is applied.

Every time a declarative hypermedia object is started without specifying one of its content anchors,
the whole content anchor is assumed, as usual, meaning that the presentation of every chain shall be
started in parallel.

Unlike other <media> elements, if any content anchor is started and the event associated with the
whole content anchor is in sleeping or paused state, it shall be put in the occurring state and the
corresponding transition shall be notified.

8.2.2 stop instruction for presentation events

The stop instruction needs to identify a temporal chain already being controlled (or by default, all of
them). To identify the temporal chain means to identify the corresponding declarative hypermedia
object under control (representationObjectId), and a <media> element's interface.

The stop instruction issued by an NCL formatter shall be ignored by a declarative hypermedia
object player if the temporal chain associated with the specified interface is not being presented (if
none of the events in the object list of events is in the occurring or paused state) and the declarative
hypermedia object player is not waiting to exhibit that temporal chain due to a delayed start
instruction. If the temporal chain associated with the specified interface is being presented, the main
event (the event passed as a parameter when the temporal chain was started) and all monitored
events of this temporal chain in the occurring state or in the paused state with end time equal or
previous to the main event end time shall transit to the sleeping state, and their stops transitions
shall be notified. Monitored events in the occurring state or in the paused state with end time
posterior to the main event end time shall be put in the sleeping state, but their stops transitions
shall not be notified and their occurrences attribute shall not be incremented. The temporal chain

58 Rec. ITU-T H.761 (06/2011)

presentation shall be stopped. If the repetitions event attribute is greater than zero, it shall be
decremented by one and the main event presentation shall restart after the repeat delay time (the
repeat delay shall have been passed to the media player as the start delay parameter). If the temporal
chain associated with the specified interface is waiting to be presented after a delayed start
instruction and a stop instruction is issued, the previous start instruction shall be removed.

Unlike other basic <media> elements, if any content anchor is stopped and all other presentation
events are in the sleeping state, the whole content anchor shall be put in the sleeping state. If a
content anchor is stopped and at least another presentation event is in the occurring state, the whole
content anchor shall remain in the occurring state. In all other cases, if a content anchor is stopped,
the whole content anchor shall be put in the paused state. If the stop instruction is applied to a
declarative hypermedia object without specifying the node's interface, the whole content anchor is
assumed. In this case, stop instructions shall be issued for all temporal chains.

8.2.3 abort instruction for presentation events

The abort instruction needs to identify a temporal chain already being controlled (or, by default, all
of them). To identify the temporal chain means to identify the corresponding declarative
hypermedia object under control (representationObjectId), and a <media> element's interface.

The abort instruction issued by an NCL formatter shall be ignored by a declarative hypermedia
object player if the temporal chain associated with the specified interface is not being presented
(i.e., if none of the events in the object list of events is in the occurring or paused state) and the
declarative hypermedia object player is not waiting to exhibit that temporal chain due to a delayed
start instruction. If the temporal chain associated with the specified interface is being presented, the
main event (the event passed as a parameter when the temporal chain was started) and all monitored
events of this temporal chain in the occurring state or in the paused state, shall transit to the
sleeping state, and their aborts transitions shall be notified. The temporal chain presentation shall be
stopped. If the repetitions event attribute is greater than zero, it shall be set to zero and the temporal
chain presentation shall not restart. If the temporal chain associated with the specified interface is
waiting to be presented after a delayed start instruction and an abort instruction is issued, the
previous start instruction shall be removed.

Unlike other <media> elements, if any content anchor is aborted and all other presentation events
are in the sleeping state, the whole content anchor shall be put in the sleeping state. If a content
anchor is aborted and at least one other presentation event is in the occurring state, the whole
content anchor shall remain in the occurring state. In all other cases, if a content anchor is stopped,
the whole content anchor shall be put in the paused state. If the abort instruction is applied to a
declarative hypermedia object without specifying the node's interface, the whole content anchor is
assumed. In this case, abort instructions shall be issued for all temporal chains.

8.2.4 pause instruction for presentation events

The pause instruction needs to identify a temporal chain already being controlled (or, by default, all
of them). To identify the temporal chain means to identify the corresponding declarative
hypermedia object under control (representationObjectId), and a <media> element's interface.

The pause instruction issued by an NCL formatter shall be ignored by a declarative hypermedia
object player if the temporal chain associated with the specified interface is not being presented
(i.e., if none of the events in the object list of events is in the occurring or paused state) and the
declarative hypermedia object player is not waiting to exhibit that temporal chain due to a delayed
start instruction. If the temporal chain associated with the specified interface is being presented, the
main event (the event passed as a parameter when the temporal chain was started) and all monitored
events of this temporal chain in the occurring state shall transit to the paused state, and their pauses
transitions shall be notified. The temporal chain presentation shall be paused and the pause elapsed
time shall not be considered as part its duration.

 Rec. ITU-T H.761 (06/2011) 59

If the temporal chain associated with the specified interface is waiting to be presented after a
delayed start instruction and a pause instruction is issued, the temporal chain shall wait for a
resume instruction to continue waiting for the remaining start delay.

Unlike other <media> elements, if any content anchor is paused and all other presentation events
are in the sleeping state or in the paused state, the whole content anchor shall be put in the paused
state. If a content anchor is paused and at least one other presentation event is in the occurring state,
the whole content anchor shall remain in the occurring state. If the pause instruction is applied to a
declarative hypermedia object without specifying the node's interface, the whole content anchor is
assumed. In this case, pause instructions shall be issued for all other content anchors that are in the
occurring state.

8.2.5 resume instruction for presentation events

The resume instruction needs to identify a temporal chain already being controlled (or, by default,
all of them). To identify the temporal chain means to identify the corresponding declarative
hypermedia object under control (representationObjectId), and a <media> element's interface.

The resume instruction issued by an NCL formatter shall be ignored by a declarative hypermedia
object player if the temporal chain associated with the specified interface is not paused, or the
declarative hypermedia object player is not waiting to exhibit that temporal chain due to a delayed
start instruction. If the declarative hypermedia object player is paused waiting for the start delay, it
shall resume the wait from the instant it was paused. If the temporal chain is in the paused state, the
main event and all monitored events in the paused state shall be put in the occurring state, and their
resumes transitions shall be notified.

Unlike other <media> elements, if any content anchor is resumed, the whole content anchor shall be
set to the occurring state. If the resume instruction is applied to a declarative hypermedia object
without specifying the node's interface, the whole content anchor is assumed. If the whole content
anchor is not in the paused state due to a previously received pause instruction, the resume
instruction is ignored. Otherwise, resume instructions shall be issued for all other content anchors
that are in the paused state, except those that were already paused before the whole content anchor
received the paused instruction.

8.2.6 Natural end of a temporal chain section presentation

Events of a declarative hypermedia object normally end their execution naturally, without needing
external instructions. In this case, the declarative hypermedia object player shall transit the event to
the sleeping state and notify the stops transition. The same shall be done for monitored events of the
same temporal chain in the occurring state with the same end time of the main event, or with
unknown end time, when the main event ends. Events chain of the same temporal chain in the
occurring state with end time posterior to the main event end time shall be put in the sleeping state,
but without generating the stops transition and without incrementing the occurrences attribute.

In the case of a natural end of a main event, if the repetitions event attribute is greater than zero, it
shall be decremented by one and the main event presentation shall restart after the repeat delay time
(the repeat delay shall have been passed to the media player as the start delay parameter).

Unlike other <media> elements, if any content anchor execution ends and all other presentation
events are in the sleeping state, the whole content anchor shall be put in the sleeping state. If a
content anchor execution ends and at least one other presentation event is in the occurring state, the
whole content anchor shall remain in the occurring state. In all other cases, if a content anchor
execution ends, the whole content anchor shall be set to the paused state.

60 Rec. ITU-T H.761 (06/2011)

8.2.7 start, stop, abort, pause and resume instructions for attribution events

All instructions for attribution events have the same effect on the corresponding property attribution
as they have on any property attribution of any type of NCL object, as specified in clauses 8.1.6
and 8.1.7.

8.3 Expected behaviour of imperative-object players in NCL applications

In an implementation in conformance with Ginga-NCL specification, EDTV profile of NCL 3.0,
support of the application/x-ginga-NCLua type to be associated with the <media> element is
required for Lua imperative code content (file extension .lua). It is also possible to support other
imperative object types.

Authors may define NCL links to start, stop, pause, resume or abort the execution of an imperative
code. An imperative player (the language engine) shall interface the imperative execution
environment with the NCL formatter.

As stated in clause 7.2.5, imperative code span may be associated with an <area> element (using the
label attribute). If external links start, stop, pause, resume or abort the anchor presentation,
call-backs in the imperative code span shall be triggered. The way these call-backs are defined is
responsibility of each imperative code associated with the NCL imperative object.

As usual in NCL, an imperative object shall have a content anchor called the whole content anchor
and it is declared by default in NCL documents. This content anchor, however, has a special
meaning. It represents the execution of any code span inside the imperative code object. Another
content anchor is also defined by default, called main content anchor. Every time an imperative
object is started without specifying one of its content anchors or properties, the main content anchor
is assumed and, as a consequence, the code span associated to it. In all other references to the
imperative object without specifying one of its content anchors or properties, the whole content
anchor shall be assumed.

Analogous to perceptual media content players (video, audio, image, etc.), imperative code players
shall control event state machines associated with the imperative object. As an example, if the code
finishes its execution, the player shall generate the stops transition in the event presentation state
machine corresponding to the code execution. However, different from media content players, an
imperative code player does not have sufficient information to control by itself all event state
machines, and shall rely on the imperative application content to command these controls.

On the other hand, an imperative code span may also command the start, stop, pause or resume of
its <area> elements through an API offered by the imperative language. The resulting transitions
may be used as conditions of NCL links to trigger actions on other NCL objects of the same
document. Thus, a two-way synchronization can be established between the imperative code and
the remainder of the NCL document.

An imperative code may also be synchronized with other objects through <property> elements.
When the <property> element is mapped to a code span (function, method, etc.) through its name
attribute, a link action "start" applied to the property shall cause the code execution, with the set
values interpreted as parameters passed to the code span. When the <property> element is mapped
to an imperative code attribute, the action "start" shall assign the value to the attribute. As usual, the
event state machine associated with the property shall be controlled by the imperative object player,
but, sometimes, commanded by the imperative application.

A <property> element defined as a child of a <media> element representing an imperative code
may also be associated with an NCL link assessment role. In this case, the NCL formatter shall
query the property value in order to evaluate the link expression. If the <property> element is
mapped to a code attribute, the code attribute value shall be returned by the imperative player to the

 Rec. ITU-T H.761 (06/2011) 61

NCL formatter. If the <property> element is mapped to a code span, it shall be called and the output
value resulting from its execution shall be returned by the imperative player to the NCL formatter.

The lifecycle of an imperative object is controlled by the NCL formatter. The NCL formatter is
responsible for triggering the execution of an imperative object and for mediating the
communication among this object and other nodes in an NCL document.

As with all media object players, once instantiated, the imperative object player shall execute an
initialization procedure. However, different from other media players, this initialization code is
specified by the author of the imperative code. This initialization procedure is executed only once
for each instance; it creates all code spans and data that may be used during the imperative object
execution and, in particular, registers one (or more) event handlers for communication with the
NCL formatter. Note that at least the code span associated with the main content anchor shall be
created during the initialization procedure.

After the initialization, the execution of the imperative object becomes event-oriented in both
directions. That is, any action commanded by the NCL formatter reaches the registered event
handlers, and any NCL event state change notification is sent as an event to the NCL formatter (as
for example, the natural end of a code span execution). The imperative object player is then ready to
perform any instruction as discussed in the next clauses.

8.3.1 start instruction for presentation events

The start instruction issued by a formatter shall inform the following parameters to the imperative
object player: the locator of the content of the media object to be controlled, a list of all properties
associated with the media object, the media object identification during execution
(representationObjectId), a list of events (defined by the <media> element's <area> and <property>
child elements, and by the default content anchors) that need to be monitored by the imperative
object player, the content anchor label, or by default the main content anchor, identifying the
associated imperative code to be started, and an optional delay time. From the src attribute of the
media object, the imperative object player tries to locate the imperative code and start its execution.
If the content cannot be located, the player shall finish the starting operation, without performing
any action.

From these start instruction parameter, the formatter shall follow the same procedure defined for
basic media objects, defined in clause 8.1.1, with the exception presented in the next two
paragraphs.

Unlike what is performed on basic <media> elements, if an imperative object player receives a start
instruction for an event associated with a content anchor, and this event is in the sleeping state, it
shall start the execution of the imperative code associated with the element, even though other
portion of the object's imperative code is in execution (paused or not). However, if the event
associated with the target content anchor is in the occurring or paused state, the start instruction
shall be ignored by the imperative code player that controls the ongoing execution. As a
consequence, differently from what happens for other <media> elements, a <simpleAction>
element with an actionType attribute equal to "stop", "pause", "resume" or "abort" shall be bound
through a link to an imperative node interface, which shall not be ignored when the action is
applied.

Since neither the formatter nor the imperative code player has any other knowledge of the
imperative-object's content anchors, except their id and label attributes, they do not know which
other content anchors shall have their associated event put in the occurring state when a content
anchor is started or is being in execution. Therefore, except for the event associated with the whole
content anchor, it is the responsibility of the imperative code span, as soon as it is started, to
command the imperative code player to change the state of any other event state machine that is
related to the event state machine associated to the started code, and to inform if a transition
associated with a change shall be notified. Similarly, it is the responsibility of the imperative code

62 Rec. ITU-T H.761 (06/2011)

span to command any event state change, and to inform if the associated transition shall be notified,
if the code span execution starts another code span associated with a content anchor.

Differently from other <media> elements, if any content anchor is started and the event associated
with the whole content anchor is in sleeping or paused state, it shall be put in the occurring state
and the corresponding transition shall be notified.

8.3.2 stop instruction for presentation events

The stop instruction needs to identify an imperative code span already being controlled. To identify
the imperative code span means to identify the corresponding media object in execution and a
<media> element's interface.

The stop instruction issued by an NCL formatter shall be ignored by an imperative object player if
the imperative code span associated with the specified interface is not being executed (if the
corresponding event is not in the occurring or paused state) and the imperative object player is not
waiting due to a delayed start instruction. If the imperative object interface is being executed, its
corresponding presentation event shall transit to the sleeping state, and its stops transition shall be
notified. The imperative code execution associated with the interface shall be stopped. If the
repetitions event attribute is greater than zero, it shall be decremented by one and the imperative
code associated with the interface shall restart after the repeat delay time (the repeat delay shall
have been passed to the media player as the start delay parameter). If the imperative object is
waiting to be presented after a delayed start instruction and a stop instruction is issued, the previous
start instruction shall be removed.

For the same reason discussed in the start instruction, except for the event associated with the whole
content anchor, it is responsibility of the stopped code span, before it stops, to command the
imperative code player to change the state of any other event state machine that is related with the
event state machine associated to the stopped code, and to inform if a transition associated with a
change shall be notified.

Unlike other <media> elements, if any content anchor is stopped and all other presentation events
are in the sleeping state, the whole content anchor shall be put in the sleeping state. If a content
anchor is stopped and at least one other presentation event is in the occurring state, the whole
content anchor shall remain in the occurring state. In all other cases, if a content anchor is stopped,
the whole content anchor shall be put in the paused state. If the stop instruction is applied to an
imperative object without specifying the node's interface, the whole content anchor is assumed. In
this case, stop instructions shall be issued for all other content anchors.

8.3.3 abort instruction for presentation events

The abort instruction needs to identify an imperative code span already being controlled. To
identify the imperative code span means to identify the corresponding media object in execution and
a <media> element's interface.

If the imperative code associated with the object's interface is not being executed and is not waiting
to be executed after a delayed start instruction, the abort instruction shall be ignored. If the
imperative code associated with the object's interface is being executed, its associated event, in the
occurring or in the paused state, shall transit to the sleeping state, and its aborts transition shall be
notified. If the repetitions event attribute is greater than zero, it shall be set to zero and the
imperative code execution shall not restart. If the imperative code associated with the object's
interface is waiting to be executed after a delayed start instruction and an abort instruction is
issued, the previous start instruction shall be removed.

 Rec. ITU-T H.761 (06/2011) 63

For the same reason discussed in the start instruction, except for the event associated with the whole
content anchor, it is the responsibility of the aborted code span, before it aborts, to command the
imperative code player to change the state of any other event state machine that is related to the
event state machine associated to the aborted code, and to inform if a transition associated with a
change shall be notified.

Differently from other <media> elements, if any content anchor is aborted and all other presentation
events are in the sleeping state, the whole content anchor shall be put in the sleeping state. If a
content anchor is aborted and at least one other presentation event is in the occurring state, the
whole content anchor shall remain in the occurring state. In all other cases, if a content anchor is
aborted, the whole content anchor shall be put in the paused state. If the abort instruction is applied
to an imperative object without specifying the node's interface, the whole content anchor is
assumed. In this case, abort instructions shall be issued for all other content anchors.

8.3.4 pause instruction for presentation events

The pause instruction needs to identify an imperative code span already being controlled. To
identify the imperative code span means to identify the corresponding media object in execution and
a <media> element's interface.

If the imperative code associated with the object's interface is not being executed (and not in the
paused state) and is not waiting to be executed after a delayed start instruction, the instruction shall
be ignored. If the imperative code associated with the object's interface is being executed, its
associated event in the occurring shall transit to the paused state, its pauses transition shall be
notified, and the pause elapsed time shall not be considered as part of the object duration. If the
imperative code associated with the object's interface is waiting to be executed after a delayed start
instruction, the imperative object's interface shall wait for a resume instruction to continue waiting
for the remaining start delay.

For the same reason discussed in the start instruction, except for the event associated with the whole
content anchor, it is the responsibility of the paused code span, before it pauses, to command the
imperative-code player to change the state of any other event state machine that is related to the
event state machine associated to the paused code, and to inform if a transition associated with a
change shall be notified.

Differently from other <media> elements, if any content anchor is paused and all other presentation
events are in the sleeping state or paused state, the whole content anchor shall be put in the paused
state. If a content anchor is paused and at least one other presentation event is in the occurring state,
the whole content anchor shall remain in the occurring state. If the pause instruction is applied to an
imperative object without specifying the node's interface, the whole content anchor is assumed. In
this case, pause instructions shall be issued for all other content anchors that are in the occurring
state.

8.3.5 resume instruction for presentation events

The resume instruction needs to identify an imperative code span already being controlled. To
identify the imperative code span means to identify the corresponding media object in execution and
a <media> element's interface.

If the imperative code associated with the object's interface is not paused or the imperative object
player is not paused (waiting for the start delay), the instruction shall be ignored. If the imperative
object player is paused waiting for the start delay, it shall resume the wait from the instant it was
paused. If the imperative code associated with the object's interface is paused, its associated event
shall transit to the occurring state, and its resumes transition shall be notified.

For the same reason discussed in the start instruction, except for the event associated with the whole
content anchor, it is the responsibility of the paused code span, before it resumes, to command the
imperative code player to change the state of any other event state machine that is related to the

64 Rec. ITU-T H.761 (06/2011)

event state machine associated to the resumed code, and to inform if a transition associated with a
change shall be notified.

Differently from other <media> elements, if any content anchor is resumed, the whole content
anchor shall be set to the occurring state. If the resume instruction is applied to an imperative object
without specifying the node's interface, the whole content anchor is assumed. If the whole content
anchor is not in the paused state due to a previously received pause instruction, the resume
instruction is ignored. Otherwise, resume instructions shall be issued for all other content anchors
that are in the paused state, except those that were already paused before the whole content anchor
received the paused instruction.

8.3.6 Natural end of a code execution for presentation events

Events of an imperative object normally end their execution naturally, without needing external
instructions. In this case, immediately before ending, the code span shall command the imperative
code player to change the state of any other event state machine that is related to the event state
machine associated to the ending code, and to inform if a transition associated with a change shall
be notified. The ending presentation event shall transit to the sleeping state, and its stops transition
shall be notified. If the repetitions event attribute is greater than zero, it shall be decremented by
one, and the imperative code associated with the interface shall restart after the repeat delay time
(the repeat delay shall have been passed to the media player as the start delay parameter).

Differently from other <media> elements, if any content anchor execution ends and all other
presentation events are in the sleeping state, the whole content anchor shall be put in the sleeping
state. If a content anchor execution ends and at least one other presentation event is in the occurring
state, the whole content anchor shall remain in the occurring state. In all other cases, if a content
anchor execution ends, the whole content anchor shall be set to the paused state.

8.3.7 start instruction for attribution events

The start instruction issued by an NCL formatter may be applied to an imperative object's property
independently from whether the object is in execution (the whole content anchor is in the occurring
state) or not (in this latter case, although the object is not being executed, its imperative object
player shall have already been instantiated). In both cases, the start instruction needs to identify the
imperative object (representationObjectId), a monitored attribution event, and, if it is the case, a
value to be passed to the imperative code wrapped by the event. When setting a value to an
attribute, the imperative object player shall set the event state machine to the occurring state, and
after finishing the attribution, again to the sleeping state, generating the starts transition and
afterwards the stops transition.

Note again that, if a start instruction is applied to a <property> element that calls the execution of a
code span, no content anchor state is affected.

For every monitored attribution event, if an imperative object's code span changes by itself the
corresponding attribute value, it shall also command the imperative code player to proceed as if it
had received an external start instruction.

8.3.8 stop, abort, pause and resume instructions for attribution events

With the exception of the start instruction discussed in the previous clause, all other instructions
have the same effect on the corresponding property attribution as they have on any property
attribution of any type of object, as specified in clause 8.1.7.

8.4 Expected behaviour of media players after instructions applied to composite objects

This clause applies only for objects represented by <context>, <body> and <switch> elements.

 Rec. ITU-T H.761 (06/2011) 65

8.4.1 Binding a composite node

A <simpleCondition> or <simpleAction> with eventType attribute value equal to "presentation"
may be bound by a link to a composite node (represented by a <context>, <switch>, or <body>
element) as a whole (i.e., without an interface being informed). As usual, the event state machine of
the presentation event defined on the composite node shall be controlled as specified in clause 7.2.8.
Analogously, an <attributeAssessment> with eventType attribute value equal to "presentation" and
attributeType equal to "state", "occurrences" or "repetitions" may be bound by a link to a composite
node (represented by a <context>, <switch>, or <body> element) as a whole, and the attribute value
should come from the event state machine of the presentation event defined on the composite node.

If a <simpleAction> with eventType attribute value equal to "presentation" is bound by a link to a
composite node (represented by a <context> or <body> element) as a whole (i.e., without an
interface being informed), the instruction shall also be reflected to the event state machines of the
composite child nodes, as explained in the following clauses.

8.4.2 Starting a context presentation

If a <context> or <body> element participates in an action role whose action type is "start", when
the action is triggered without referring to any specific interface, the start instruction shall also be
applied to all presentation events mapped by the <context> or <body> element's ports.

If the author wants to start the presentation using a specific port, it shall in addition indicate the
<port> id as the interface value of the corresponding <bind> element.

8.4.3 Stopping a context presentation

If a <context> or <body> element participates in an action role whose action type is "stop", when
the action is triggered without referring to any specific interface, the stop instruction shall also be
applied to all presentation events of the composite child nodes.

If the composite node contains links being evaluated (or with their evaluation paused), the
evaluations shall be suspended and no action shall be triggered.

8.4.4 Aborting a context presentation

If a <context> or <body> element participates in an action role whose action type is "abort", when
the action is triggered without referring to any specific interface, the abort instruction shall also be
applied to all presentation events of the composite child nodes.

If the composite contains links being evaluated (or with their evaluation paused), the evaluations
shall be suspended and no action shall be triggered.

8.4.5 Pausing a context presentation

If a <context> or <body> element participates in an action role whose action type is "pause", when
the action is triggered without referring to any specific interface, the pause instruction shall also be
applied to all presentation events of the composite child nodes that are in the occurring state.

If the composite contains links being evaluated, all evaluations shall be suspended until a resume,
stop or abort action is issued.

If the composite contains child nodes with presentation events already in the paused state when the
pause action is issued, these nodes shall be identified because if the composite receives a resume
instruction, these events shall not be resumed.

66 Rec. ITU-T H.761 (06/2011)

8.4.6 Resuming a context presentation

If a <context> or <body> element participates in an action role whose action type is "resume", when
the action is triggered without referring to any specific interface, the resume instruction shall also be
applied to all presentation events of the composite child nodes that are in the paused state, except
those that were already paused before the composite has been paused.

If the composite contains links with paused evaluations, they shall be resumed.

8.5 Relation between the presentation-event state machine of a node and the presentation-
event state machine of its parent-composite node

This clause applies for objects represented by <context>, <body>, and <switch> elements, and
<media> elements of "application/x-ginga-NCL" type.

Whenever a presentation event of a child node (media or composite) goes to the occurring state, the
presentation event of the composite node (or of the NCL node of "application/x- ginga-NCL" type)
that contains the node shall also enter the occurring state.

When all child nodes of a composite node (or of an NCL node of "application/x- ginga-NCL" type)
have their presentation events in the sleeping state, the presentation event of the composite node (or
of the NCL node of "application/x- ginga-NCL" type) shall also be in the sleeping state.

Composite nodes (or NCL nodes of "application/x- ginga-NCL" type) do not need to infer aborts
transitions from their child nodes. These transitions in presentation events of composite nodes (or of
NCL nodes of "application/x- ginga-NCL" type) shall occur only when instructions are applied
directly to composite node presentation events (see clause 8.4).

When all child nodes of a composite node (or of an NCL node of "application/x- ginga-NCL" type)
have their presentation events in a state different from the occurring state, and at least one child
node has its main event in the paused state, the presentation event of the composite node (or of the
NCL node of "application/x- ginga-NCL" type) shall also be in the paused state.

If a <switch> element is started, but it does not define a default component, and none of the
<bindRule> referred rules is evaluated as true, the switch presentation shall not enter the occurring
state.

9 NCL editing commands

NCL editing commands (nclEditingCommand) may be issued externally, to an NCL application
execution, or internally by the execution of an NCL application's imperative object (clause 10 deals
with events generated by NCLua objects).

NCL editing commands allow changing an NCL application behaviour during runtime [b-NCL
Live E.C.].

9.1 Private bases

The core of an NCL presentation engine is composed of the NCL formatter and its private base
manager module.

The NCL formatter is in charge of receiving an NCL document and controlling its presentation,
trying to guarantee that the specified relationships among media objects are respected. The
formatter deals with NCL documents that are collected inside a data structure known as private
base. NCL documents in a private base may be started, paused, resumed, aborted, stopped and may
refer to each other.

The private base manager is in charge of receiving NCL editing commands and maintaining the
active NCL documents (documents being presented).

 Rec. ITU-T H.761 (06/2011) 67

Editing commands are wrapped in a structure called event descriptors. Event descriptors have a
structure composed basically of an id (identification), a time reference and a private data field. The
identification uniquely identifies editing command events. The time reference indicates the exact
moment to trigger the event. A time reference equal to zero informs that the event shall be triggered
immediately after being received (events carrying this type of time-reference are commonly known
as "do it now" events). The private data field provides support for event parameters (see Table 9-1).

Table 9-1 – Editing command event descriptor

Syntax Number of bits

EventDescriptor () {

 eventId 16

 eventNPT 33

 privateDataLength 8

 commandTag 8

 sequenceNumber 7

 finalFlag 1

 privateDataPayload 8 to 1928

 FCS 8

}

The commandTag uniquely identifies the editing commands, as specified in Table 9-1. In order to
allow sending a complete command in more than one event descriptor, all descriptors of the same
command shall be numbered and sent in sequence (that is, it cannot be multiplexed with other
editing commands with the same commandTag), with the finalFlag equal to 1, except for the last
descriptor, which shall have the finalFlag field equal to 0. The privateDataPayload contains the
editing-command parameters. Finally, the FCS field contains a checksum of the entire privateData
field, including the privateDataLength.

NCL editing commands are divided in three subsets.

The first subset focuses on the private base operation (openBase, activateBase, deactivateBase,
saveBase, and closeBase commands).

The second subset allows for document manipulation in a private base (to add, remove, and save a
document in an open private base, and to start, pause, resume, and stop document presentations in
an active private base).

The third subset defines commands for live editing in an open private base, allowing NCL elements
to be added and removed, and allowing values to be set to NCL <property> elements. Add
commands always have NCL elements as their arguments. The NCL elements are defined using an
XML-based syntax notation defined in clause 9.2, which is identical to the syntax notation used in
the NCL 3.0 language schemas, with the exception of the addInterface command, in which the
begin or first attribute of an <area> element may receive the "now" value, specifying the current
NPT (Normal Play Time) of the node specified in the nodeId argument. Whether the specified NCL
element already exists or not, document consistency shall be maintained by the NCL formatter, in
the sense that all element attributes stated as required shall be defined. There is just one exception to
this rule, the interface attribute of a <bind> child element of a <link> elements may be left
inconsistent, referring to an <area> element to be fulfilled by an addInterface command whose
begin attribute has the "now" value. In this case, the <link> shall be evaluated as soon as the
addInterface command is issued.

68 Rec. ITU-T H.761 (06/2011)

If the XML-based command parameter (command arguments) is short enough, it may be
transported directly in the event descriptors' payload. Otherwise, the privateDataPayload carries a
set of reference pairs. In the case of pushed files (NCL documents or nodes), each pair is used to
associate a set of file paths with their respective location (identification) in the transport system. In
the case of pulled files or files located in the receiver itself, no reference pairs have to be sent,
except the {uri, "null"} pair associated with the NCL document or XML node specification that is
commanded to be added.

Table 9-2 shows the command strings, with their arguments (command parameters) in parenthesis.
The table also gives the unique identifier of each editing command (commandTag) and the
command semantics.

Table 9-2 – Editing commands for Ginga's private base manager

Command string
Command

tag
Description

openBase (baseId, location) 0x00 Opens an existing private base located using the
location parameter. If the private base does not exist
or the location parameter is not communicated, a new
base is created with the baseId identifier. The
location parameter shall specify the storage device in
the receiver environment and the path for opening the
base.

activateBase (baseId) 0x01 Turns on an open private base. All applications are
then available to be started.

deactivateBase (baseId) 0x02 Turns off an open private base. All applications shall
be stopped.

saveBase (baseId, location) 0x03 Saves all private base content into a persistent
storage device (if available). The location parameter
shall specify the device and the path for saving the
base.

closeBase (baseId) 0x04 Closes the open private base and disposes of all the
private base content.

addDocument (baseId, {uri, id}+) 0x05 Adds an NCL document to an open private base. The
NCL document's files can be:
i) sent in the data-cast network as a set of pushed

files. For these pushed files, each {uri,id} pair is
used to relate a set of file paths in the NCL
document specification with their respective
locations in a transport system;

 NOTE – The set of reference pairs shall be sufficient
for the middleware to map any file reference present in
the NCL document specification to its concrete
location in the receiver memory.

ii) received from an IP network as a set of pulled
files, or may be files already present in the
receiver. For these pulled files, no {uri, id} pairs
have to be sent, except the {uri, "null"} pair
associated with the NCL document specification
that the editing command requests to be added in
baseId, in case the NCL document is not received
as a pushed file.

 Rec. ITU-T H.761 (06/2011) 69

Table 9-2 – Editing commands for Ginga's private base manager

Command string
Command

tag
Description

removeDocument (baseId,
documentId)

0x06 Removes an NCL document from an open private
base.

startDocument (baseId, documentId,
interfaceId, offset, nptBaseId,
nptTrigger)
NOTE – The offset parameter is a time
value.

0x07 Starts playing an NCL document in an active private
base, beginning the presentation from a specific
document interface. The time reference provided in
the nptTrigger field defines the initial time
positioning of the document with regard to the NPT
time base identified in the nptBaseId field.
Three cases may happen:
i) If nptTrigger is different from 0 and is greater

than or equal to the current NPT value of the NPT
time base identified by the nptBaseId, the
document presentation shall wait until NPT has
the value specified in nptTrigger to be started
from its beginning time+offset.

ii) If nptTrigger is different from 0 and is less than
the current NPT value of the NPT time base
identified by the nptBaseId, the document shall be
started immediately from its beginning
time+offset+(NPT – nptTrigger) seconds.

 NOTE 1 – Only in this case, the offset parameter value
may be a negative time value, but offset+(NPT –
nptTrigger) seconds shall be a positive time value.

 iii) If nptTrigger is equal to 0, the document shall
start its presentation immediately from its
beginning time+offset.

 NOTE 2 – If the refDocumentId or refNodeId is
specified as "null", the NPT value is assumed as "do it
now", independently from the value specified in the
event descriptor.

 NOTE 3 – If the interfaceId parameter is specified as
"null", all <port> element of the <body> element shall
be triggered (started).

 NOTE 4 – If the offset parameter is specified as "null",
it shall assume the "0" as value.

stopDocument (baseId, documentId) 0x08 Stops the presentation of an NCL document in an
active private base. All document events that are
occurring shall be stopped.

pauseDocument (baseId,
documentId)

0x09 Pauses the presentation of an NCL document in an
active private base. All document events that are
occurring shall be paused.

resumeDocument (baseId,
documentId)

0x0A Resumes the presentation of an NCL document in an
active private base. All previously document events
that were paused by the pauseDocument editing
command shall be resumed.

70 Rec. ITU-T H.761 (06/2011)

Table 9-2 – Editing commands for Ginga's private base manager

Command string
Command

tag
Description

saveDocument (baseId,
documentId, location)

0x2E Saves an NCL document of an open private base into
a persistent storage device (if available). The location
parameter shall specify the device and the path for
saving the document. If the NCL document to be
saved is running in the open private base, its
presentation is first stopped (all document events that
are occurring shall be stopped).

addRegion (baseId, documentId,
regionBaseId, regionId, xmlRegion)

0x0B Adds a <region> element as a child of another
<region> in the <regionBase> or as a child of the
<regionBase> (regionId="null") of an NCL
document in an open private base.

removeRegion (baseId, documentId,
regionId)

0x0C Removes a <region> element from a <regionBase>
of an NCL document in an open private base.

addRegionBase (baseId,
documentId, xmlRegionBase)

0x0D Adds a <regionBase> element to the <head> element
of an NCL document in an open private base. If the
XML specification of the regionBase is sent in a file
system apart; the xmlRegionBase parameter is just a
reference to this content.

removeRegionBase (baseId,
documentId, regionBaseId)

0x0E Removes a <regionBase> element from the <head>
element of an NCL document in an open private
base.

addRule (baseId, documentId,
xmlRule)

0x0F Adds a <rule> element to the <ruleBase> of an NCL
document in an open private base.

removeRule (baseId, documentId,
ruleId)

0x10 Removes a <rule> element from the <ruleBase> of
an NCL document in an open private base.

addRuleBase (baseId, documentId,
xmlRuleBase)

0x11 Adds a <ruleBase> element to the <head> element of
an NCL document in an open private base. If the
XML specification of the ruleBase is sent in a file
system apart; the xmlRuleBase parameter is just a
reference to this content.

removeRuleBase (baseId,
documentId, ruleBaseId)

0x12 Removes a <ruleBase> element from the <head>
element of an NCL document in an open private
base.

addConnector (baseId, documentId,
xmlConnector)

0x13 Adds a <connector> element to the <connectorBase>
of an NCL document in an open private base.

removeConnector (baseId,
documentId, connectorId)

0x14 Removes a <connector> element from the
<connectorBase> of an NCL document in an open
private base.

addConnectorBase (baseId,
documentId, xmlConnectorBase)

0x15 Adds a <connectorBase> element to the <head>
element of an NCL document in an open private
base. If the XML specification of the connectorBase
is sent in a file system apart, the xmlConnectorBase
parameter is just a reference to this content.

removeConnectorBase (baseId,
documentId, connectorBaseId)

0x16 Removes a <connectorBase> element from the
<head> element of an NCL document in an open
private base.

 Rec. ITU-T H.761 (06/2011) 71

Table 9-2 – Editing commands for Ginga's private base manager

Command string
Command

tag
Description

addDescriptor (baseId, documentId,
xmlDescriptor)

0x17 Adds a <descriptor> element to the <descriptorBase>
of an NCL document in an open private base.

removeDescriptor (baseId,
documentId, descriptorId)

0x18 Removes a <descriptor> element from the
<descriptorBase> of an NCL document in an open
private base.

addDescriptorSwitch (baseId,
documentId, xmlDescriptorSwitch)

0x19 Adds a <descriptorSwitch> element to the
<descriptorBase> of an NCL document in an open
private base. If the XML specification of the
descriptorSwitch is sent in a file system; the
xmlDescriptorSwitch parameter is just a reference to
this content.

removeDescriptorSwitch (baseId,
documentId, descriptorSwitchId)

0x1A Removes a <descriptorSwitch> element from the
<descriptorBase> of an NCL document in an open
private base.

addDescriptorBase (baseId,
documentId, xmlDescriptorBase)

0x1B Adds a <descriptorBase> element to the <head>
element of an NCL document in an open private
base. If the XML specification of the descriptorBase
is sent in a separate file system, the
xmlDescriptorBase parameter is just a reference to
this content.

removeDescriptorBase (baseId,
documentId, descriptorBaseId)

0x1C Removes a <descriptorBase> element from the
<head> element of an NCL document in an open
private base.

addTransition (baseId, documentId,
xmlTransition)

0x1D Adds a <transition> element to the <transitionBase>
of an NCL document in an open private base.

removeTransition (baseId,
documentId, transitionId)

0x1E Removes a <transition> element from the
<transitionBase> of an NCL document in an open
private base.

addTransitionBase (baseId,
documentId, xmlTransitionBase)

0x1F Adds a <transitionBase> element to the <head>
element of an NCL document in an open private
base. If the XML specification of the transitionBase
is sent in a separate file system, the
xmlTransitionBase parameter is just a reference to
this content.

removeTransitionBase (baseId,
documentId, transitionBaseId)

0x20 Removes a <transitionBase> element from the
<head> element of an NCL document in an open
private base.

addImportBase (baseId,
documentId, docBaseId,
xmlImportBase)

0x21 Adds an <importBase> element to the base
(<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase>, or <connectorBase> element) of an
NCL document in an open private base.

removeImportBase (baseId,
documentId, docBaseId,
documentURI)

0x22 Removes an <importBase> element, whose
documentURI attribute is identified by the
documentURI parameter, from the base
(<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase>, or <connectorBase> element) of an
NCL document in an open private base.

72 Rec. ITU-T H.761 (06/2011)

Table 9-2 – Editing commands for Ginga's private base manager

Command string
Command

tag
Description

addImportedDocumentBase
(baseId, documentId,
xmlImportedDocumentBase)

0x23 Adds an <importedDocumentBase> element to the
<head> element of an NCL document in an open
private base.

removeImportedDocumentBase
(baseId, documentId,
importedDocumentBaseId)

0x24 Removes an <importedDocumentBase> element
from the <head> element of an NCL document in an
open private base.

addImportNCL (baseId,
documentId, xmlImportNCL)

0x25 Adds a <importNCL> element to the
<importedDocumentBase > element of an NCL
document in an open private base.

removeImportNCL (baseId,
documentId, documentURI)

0x26 Removes an <importNCL> element, whose
documentURI attribute is identified by the
documentURI parameter, from the
<importedDocumentBase> element of an NCL
document in an open private base.

addNode (baseId, documentId,
compositeId, {uri, id}+)

0x27 Adds a node (<media>, <context>, or <switch>
element) to a composite node (<body>, <context>, or
<switch> element) of an NCL document in an open
private base. The XML specification of the node and
its media content may be:
i) sent in the datacast network as a set of pushed

files; the {uri,id} pair is used to relate file paths in
the NCL document specification of the node with
their respective locations in a transport system;

 NOTE – The set of reference pairs shall be sufficient
for the middleware to map any file reference present in
the XML specification to its concrete location in the
receiver memory.

 ii) received from an IP network as a set of pulled
files, or may be files already present in the
receiver. For these pulled files, no {uri, id} pairs
have to be sent, except the {uri, "null"} pair
associated with the XML node specification that
the editing command requests to be added in
compositeId, if this XML document is not
received as a pushed file.

removeNode (baseId, documentId,
compositeId, nodeId)

0x28 Removes a node (<media>, <context>, or <switch>
element) from a composite node (<body>, <context>,
or <switch> element) of an NCL document in an
open private base.

addInterface (baseId, documentId,
nodeId, xmlInterface)

0x29 Adds an interface (<port>, <area>, <property>, or
<switchPort>) to a node (<media>, <body>,
<context>, or <switch> element) of an NCL
document in an open private base.

 Rec. ITU-T H.761 (06/2011) 73

Table 9-2 – Editing commands for Ginga's private base manager

Command string
Command

tag
Description

removeInterface (baseId,
documentId, nodeId, interfaceId)

0x2A Removes an interface (<port>, <area>, <property>,
or <switchPort>) from a node (<media>, <body>,
<context>, or <switch> element) of an NCL
document in an open private base. The interfaceID
shall identify a <property> element's name attribute
or a <port>, <area>, or <switchPort> element's id
attribute.

addLink (baseId, documentId,
compositeId, xmlLink)

0x2B Adds a <link> element to a composite node (<body>,
<context>, or <switch> element) of an NCL
document in an open private base.

removeLink (baseId, documentId,
compositeId, linkId)

0x2C Removes a <link> element from a composite node
(<body>, <context>, or <switch> element) of an
NCL document in an open private base.

setPropertyValue (baseId,
documentId, nodeId, propertyId,
value)

0x2D Sets the value for a property. The propertyId shall
identify a <property> element's name attribute or a
<switchPort> element's id attribute. The <property>
or <switchPort> shall belong to a node (<body>,
<context>, <switch> or <media> element) of an NCL
document in an open private base identified by the
parameters.

The identifiers used in the commands shall comply with Table 9-3.

Table 9-3 – Identifiers used in editing commands

Identifiers Definition

baseId The identifier_of_a_tuned_TV_channel (set of services) or the identifier_
of_a_tuned_TV_channel.identifier_of_one_of_its_services as specified by
the IPTV system. When the parameter is specified as "null", it shall assume
the tuned TV channel identifier through which the nclEditingCommand
was issued. When the baseId parameter of an nclEditingCommand coming
from an NCLua object running in a certain private base is specified as
"null", it shall assume the same baseId value of this private base.

documentId The id attribute of an <ncl> element of an NCL document.

nptBaseId The identifier of an NPT time base.

nptTrigger A value of NPT.

regionId The id attribute of a <region> element of an NCL document.

ruleId The id attribute of a <rule> element of an NCL document.

connectorId The id attribute of a <connector> element of an NCL document.

descriptorId The id attribute of a <descriptor> element of an NCL document.

descriptorSwitchId The id attribute of a <descriptorSwitch> element of an NCL document.

transitionId The id attribute of a <transition> element of an NCL document.

regionBaseId The id attribute of a <regionBase> element of an NCL document.

ruleBaseId The id attribute of a <ruleBase> element of an NCL document.

connectorBaseId The id attribute of a <connectorBase> element of an NCL document.

74 Rec. ITU-T H.761 (06/2011)

Identifiers Definition

descriptorBaseId The id attribute of a <descriptorBase> element of an NCL document.

transitionBaseId The id attribute of a <transitionBase> element of an NCL document.

docBaseId The id attribute of a <regionBase>, <ruleBase>, <connectorBase>,
<descriptorBase>, or <transitionBase> element of an NCL document.

documentURI The documentURI attribute of an <importBase> element or an
<importNCL> element of an NCL document.

importedDocumentBaseId The id attribute of a <importedDocumentBase> element of an NCL
document.

compositeID The id attribute of a <body>, <context> or <switch> element of an NCL
document. If the parameter is specified as "null", the <body> element shall
be assumed as the composite to be edited.

nodeId The id attribute of a <body>, <context>, <switch> or <media> element of
an NCL document.

interfaceId The id attribute of a <port>, <area>, <property> or <switchPort> element
of an NCL document.

linkId The id attribute of a <link> element of an NCL document.

propertyId The id attribute of a <property> or <switchPort> element of an NCL
document.

9.2 Command parameters XML schemas

NCL entities used in editing commands shall be a document in conformance with the NCL 3.0
Command profile defined by the XML Schema that is found in the electronic attachment
NCL30EdCommand.xsd to this Recommendation.

Note that unlike NCL documents, several <ncl> elements may be the root element in the XML
command parameters.

9.3 NCL editing commands in Ginga-NCL

As stated in the scope of this Recommendation, NCL can be used in other declarative environments
besides Ginga-NCL. When Ginga-NCL is used, some constraints are defined.

Ginga associates at least one private base with each TV channel (set of services) – the TV channel's
default private base. When a TV channel is tuned, its corresponding default private base is opened
and activated by the Private Base Manager; other private bases shall be deactivated. Other private
bases can be opened (or created), but at most one associated with each service of a TV channel.
When a TV channel has just one service, it shall have just one private base associated with the TV
channel, namely the TV channel's default private base.

NOTE 1 – The identifier (baseId parameter) of the private base associated with the TV channel shall be
equal to the TV channel identifier. The identifier (baseId parameter) of the possible private base associated
with a TV channel's service shall be equal to the "value of the channel identifier.value of the service
identifier".

NCL resident applications are managed in a specific private base.

For security reasons, only one private base may be active at a time, among those controlled through
the tuned TVchannel. The simplest and most restricted way to manage private bases is to have only
one private base open at a time, among those controlled through the tuned TV channel. However,
the number of private bases that may be kept open is a specific middleware implementation
decision.

 Rec. ITU-T H.761 (06/2011) 75

NOTE 2 – Only private bases created by NCL editing commands sent through the tuned TV channel and the
default private base associated with this TV tuned TV channel can be controlled by NCL Editing Commands
sent through the same tuned TV channel.

NOTE 3 – NCLua events (NCL editing command events) generated by NCLua objects running in private
bases controlled by NCL editing commands sent through a tuned TV channel may control just these
mentioned private bases.

In Ginga-NCL, event descriptors (defined in clause 9.1) can be transported using any protocol, in
special those for pushed data transmission.

In environments that adopt DSM-CC for digital media transport, Ginga-NCL defines how this can
be done. In this case, NCL editing commands are transported in DSM-CC stream-event descriptors.
As specified in [ISO/IEC 13818-6], a DSM-CC stream-event descriptor has a very similar structure
as the event descriptor presented in Table 9-1 (see Table 9-4).

Table 9-4 – Editing command stream event descriptor

Syntax Number of bits

StreamEventDescriptor () {

 descriptorTag 8

 descriptorLength 8

 eventId 16

 reserved 31

 eventNPT 33

 privateDataLength 8

 commandTag 8

 sequenceNumber 7

 finalFlag 1

 privateDataPayload 8 to 2008

 FCS 8

}

Several alternatives have been defined by Ginga-NCL to transport unsolicited NCL editing
command parameters. All alternatives are optional, but if one of them is chosen, it shall comply
with clauses 9.3.1 and 9.3.2.

9.3.1 DSM-CC transport of editing commands parameters using object carousels

The DSM-CC object carousel protocol allows the cyclical transmission of stream event objects and
file systems. Stream event objects are used to map event names to event ids defined in event
descriptors. The private base manager should register itself as a listener of the event descriptors it
handles, by using event names; or the name "nclEditingCommand" in case of editing commands.

Besides stream event objects, the DSM-CC object carousel protocol can also be used to transport
files organized in directories. A DSM-CC demultiplexer is responsible for mounting the file system
at the receiver device. XML-based command parameters specified as XML documents (NCL
documents or NCL entities to be added) can thus be organized in file system structures to be
transported in these carousels, as an alternative to the direct transportation in the payload of stream
event descriptors. A DSM-CC carousel generator is used to join the file systems and stream event
objects into data elementary streams.

76 Rec. ITU-T H.761 (06/2011)

Thus, when an NCL editing command needs to be sent, a DSM-CC stream event object shall be
created, mapping the string "nclEditingCommand" into a selected event id, and shall be put in a
DSM-CC object carousel sent in an elementary stream of type = "0x0B". If DSM-CC stream event
descriptors are used, one or more of these descriptors, with a previous selected event id, are then
created and sent in another MPEG-2 TS elementary stream. These stream events usually have their
time reference set to zero, but may be postponed to be executed at a specific time. The private base
manager shall register itself as an "nclEditingCommand" listener in order to be notified when this
kind of stream event arrives.

The commandTag of the received stream event descriptor is then used by the private base manager
to interpret the complete command string semantics. If the XML-based command parameter is short
enough, it is transported directly in the event descriptor payload. Otherwise, the
privateDataPayload field carries a set of reference pairs. In this case, the XML specification shall
be placed in the same object carousel that carries the stream event object. The uri parameter of the
first reference pair shall have the schema (optional) and the absolute path of the XML specification
(the path in the data server). The corresponding id parameter in the pair shall refer to the XML
specification IOR (carouselId, moduleId, objectKey; see [ISO/IEC 13818-6]) in the object carousel.
If other file systems need to be transmitted using other object carousels to complete the editing
command with media contents (as it is usual in the case of addDocument or addNode commands),
other {uri, id} pairs shall be present in the command. In this case, the uri parameter shall have the
schema (optional) and the absolute path of file system root (the path in the datacast server), and the
corresponding id parameter in the pair shall refer to the IOR (carouselId, moduleId, objectKey) of
any root child file or child directory in the object carousel (the carousel service gateway).

9.3.2 Transport of editing commands parameters using specific Ginga-NCL structures

Three data structure types are defined to support the transmission of NCL editing command
parameters: maps, metadata and data files.

For map structures, the mappingType field identifies the map type. If the mappingType is equal to
"0x01" ("events"), an event-map is characterized. In this case, after the mappingType field comes a
list of event identifiers as defined in Table 9-5. Other mappingType values may also be defined.

Table 9-5 – List of event identifiers defined by the mapping structure

Syntax Number of bits

mappingStructure () {

 mappingType 8

 for (i=1; i<N; i++){

 eventId 8

 eventNameLength 8

 eventName 8 to 255

 }

}

Maps of type "events" (event maps) are used to map event names into eventIds of event descriptors
(see Table 9-1). Event maps are used to inform which events shall be received. Event names allow
specifying types of events, offering a higher abstraction level for middleware applications. The
private base manager, as well as NCL imperative and declarative objects, should register
themselves as listeners of the events they handle, using event names.

 Rec. ITU-T H.761 (06/2011) 77

When an NCL editing command needs to be sent, an event map shall be created, mapping the string
"nclEditingCommand" into a selected event descriptor id (see Table 9-1). One or more event
descriptors with the previous selected eventId are then created and sent (for example, it can be sent
in an MPEG-2 TS elementary stream, or using some protocol for pushed data transmission). These
event descriptors may have their time reference set to zero, but may be postponed to be executed at
a specific time. The private base manager shall register itself as an "nclEditingCommand" listener in
order to be notified when this type of event arrives.

Each data file structure is indeed a file content that composes an NCL application or an NCL entity
specification: the XML specification file or its media content files (video, audio, text, image, ncl,
lua, etc.).

A metadata structure is an XML document, as defined by the schema in the electronic attachment
file NCLSectionMetadataFile.xsd. Note that the schema defines, for each pushed file, an association
between its location in a transport system (transport system identification (component_tag attribute)
and the file identification in the transport system (structureId attribute)), and its universal resource
identifier (uri attribute).

For each NCL Document file or other XML Document files used in addDocument or addNode
editing command parameters, at least one metadata structure shall be defined. Only one NCL
application file or XML document file representing an NCL node to be inserted may be defined in a
metadata structure. More precisely, there can be only one <pushedRoot> element in a metadata
XML document. However, an NCL application (and its content files) or an XML document (and its
content files) may extend over more than one metadata structure. Moreover, there may also be a
metadata structure without any NCL application or XML document described in its <pushedRoot>
and <pushedData> elements.

Some alternatives have been defined by Ginga-NCL to transport these three aforementioned data
structures. All alternatives are optional, but if one of them is chosen, it shall comply with
clause 9.3.2.1.

9.3.2.1 Transporting in unsolicited NCL sections

The use of NCL sections may allow the transmission of the three data structure types: maps,
metadata and data files. Every NCL section contains data of a single structure. However, one
structure may extend over several sections. Every data structure can be transmitted in any order and
as many times as necessary. All NCL sections transmitted in sequence compound an NCL section
stream.

NCL sections have a header and a payload. The first byte of an NCL section payload identifies the
structure type (0x01 for metadata; 0x02 for data files, and 0x03 for event-map). The second payload
byte carries the unique identifier of the structure (structureId).

The NCL section stream and the structure identifier are those that are associated by the metadata
structure to a file locator (URL), through the component_tag and structureId attributes of the
<pushedRoot> and <pushedData> elements.

After the second byte comes a serialized data structure that can be a mappingStructure (as depicted
by Table 9-3), a metadata structure (an XML document), or a data file structure (a serialized file
content). The NCL section demultiplexer is responsible for mounting the application's structure at
the receiver device.

In the same NCL section stream that carries the XML specification (the NCL Document file or
other XML Document file used in NCL editing commands), an event-map file should be
transmitted in order to map the name "nclEditingCommand" to the eventId of the event descriptor,
which shall carry an NCL editing command, as described in clause 9.1. The privateDataPayload of
the event descriptor shall carry a set of {uri, id} reference pairs. The uri parameters are always
"null". In the case of addDocument and addNode commands, the id parameter of the first pair shall

78 Rec. ITU-T H.761 (06/2011)

identify the NCL section stream ("component_tag") and its metadata structure ("structureId") that
carries the absolute path of the NCL document or the NCL node specification (the path in the data
server) and the corresponding related structure ("structureId") transported in NCL sections of the
same NCL section stream. If other additional metadata structures are used in order to complete the
addDocument or addNode command, other {uri, id} pairs shall be present in the command. In this
case, the uri parameter shall also be "null" and the corresponding id parameter in the pair shall refer
to the component_tag and the corresponding metadata structureId.

NCL sections can be wrapped in other protocol data formats like FLUTE packets, or MPEG-2
specific section types.

NCL sections can also transport the aforedefined data structures encapsulated in other data
structures. For example, MPEG-2 MPE (multi-protocol encapsulation) can be used and be wrapped
in MPEG-2 sections; in this case, NCL sections are MPEG-2 datagram sections.

Instead of transporting metadata structures directly inside NCL sections, a second alternative
procedure consists in treating metadata structures as command parameters, which are transported in
the privateDataPayload field of an event descriptor.

In this situation, the set of {uri, id} parameter pairs of addDocument and addNode command is
substituted by metadata structure parameters that define a set of {"uri", "component_tag,
structureId"} pairs for each pushed file.

Still another alternative is to transport NCL sections containing metadata structures as MPEG-2
metadata sections, transported in MPEG-2 stream type = "0x16".

10 Lua imperative objects in NCL presentations

The scripting language adopted by Ginga-NCL to implement imperative objects in NCL documents
is Lua (<media> elements of type application/x-ginga-NCLua). In the NCL Recommendation, the
support to NCLua objects (<media> element of "application/x-ginga-NCLua" type) is optional. Any
imperative scripting language could be used as NCL scripting language. However, in the Ginga-
NCL Recommendation, Lua is required as an NCL scripting language. The complete definition of
Lua is presented in [b-H.IPTV-MAFR.14].

10.1 Lua language – Functions removed from the Lua library

The following functions are platform dependent and were removed in the implementation:

1) from module package: loadlib;

2) from module os: clock, execute, exit, getenv, remove, rename, tmpname and setlocale;

3) from module debug: all functions.

10.2 Execution model

The lifecycle of an NCLua object is controlled by the NCL formatter. The formatter is responsible
for triggering the execution of an NCLua object and for mediating the communication between an
NCLua object and other nodes in an NCL document, as defined in clause 8.4.

As with all media object players, once instantiated, the Lua player shall execute an initialization
procedure. However, unlike other media players, this initialization code is specified by the NCLua
object author. This initialization procedure is executed only once, for each instance, and creates
functions and objects that may be used during the NCLua object execution and, in particular,
registers one (or more) event handler(s) for communicating with the NCL formatter.

After the initialization, the execution of the NCLua object becomes event oriented in both
directions. That is, any action commanded by the NCL formatter reaches the registered event
handlers, and any NCL event state change notification is sent as an event to the NCL formatter (as

 Rec. ITU-T H.761 (06/2011) 79

for example, the natural end of a procedure execution). The Lua Player is then ready to perform any
start or set instruction (see clause 8.3).

10.3 Additional modules

Besides the Lua standard library, the following modules shall be implemented and automatically
loaded:

1) module canvas: offers an API to draw graphical primitives and manipulate images;

2) module event: allows NCLua applications to communicate with the middleware through
events (NCL, pointer and key events);

3) module settings: exports a table with variables defined by the NCL document author and
reserved environment variables contained in an "application/x-ncl-settings" node;

4) module persistent: exports a table with persistent variables, which may be manipulated only
by imperative objects.

The definition of each function in the above modules uses the following naming convention:

funcname (parnameI: partypeI [; optnameI: opttypeI]) -> retname: rettype

10.3.1 The canvas module

10.3.1.1 The canvas object

When an NCLua media object is initialized, the corresponding region of the <media> element (of
type application/x-ginga-NCLua) is available as the global canvas variable for the Lua script. If the
<media> element has no associated region defined (left, right, top and bottom properties), then the
value for canvas is set to "nil".

As an example, assume an NCL document region defined as:

<region id="luaRegion" width="300" height="100" top="200" left="20"/>

The canvas variable in an NCLua media object referring to "luaRegion" is bound to a canvas object
of size 300x100, associated with the specified region at (20,200).

A canvas offers a graphical API to be used in an NCLua application. Using the API, it is possible to
draw lines, rectangles, font, images, etc.

A canvas keeps in its state a set of attributes under which the drawing primitives operate. For
instance, if its colour attribute is blue, a call to canvas:drawLine() will draw a blue line on
the canvas.

The coordinates are always relative to the top/leftmost point in canvas (0,0).

10.3.1.2 Constructors

From any canvas object, it is possible to create new canvas and combine them through composite
operations.

80 Rec. ITU-T H.761 (06/2011)

canvas:new (image_path: string)  canvas: object

Arguments

image_path: Image path.

Return values

canvas: Canvas representing the image.

Description

Returns a new canvas whose content is the image received as a parameter.

The new canvas shall keep the transparency aspects of the original image.

canvas:new (width, height: number)  canvas: object

Arguments

width: Canvas width.

height: Canvas height.

Return values

canvas: New canvas.

Description

Returns a new canvas with the received size.

Initially, all pixels shall be transparent.

10.3.1.3 Attributes

All attribute methods have the prefix "attr" and are used to get and set attributes (with the
exceptions specified).

When a method is invoked without input parameters, the current attribute value is returned. On the
other hand, when a method is invoked with input parameters, these parameters must be used as the
new attribute values.

 Rec. ITU-T H.761 (06/2011) 81

canvas:attrSize ()  width, height: number

Return values

width: Canvas width.

height: Canvas height.

Description

Returns the canvas dimensions.

It is important to note that it is not possible to change the dimensions of an existing canvas.

canvas:attrColor (R, G, B, A: number)

Arguments

R: Red colour component.

G: Green colour component.

B: Blue colour component.

A: Alpha colour component.

Description

Change the canvas' attribute colour.

The colours are given in RGBA, where A varies from 0 (full transparency) to 255 (full opacity).

The primitives (see clause 10.3.1.4) are drawn with the colour set to this attribute.

The initial value is '0,0,0,255' (black).

canvas:attrColor (clr_name: string)

Arguments

clr_name: Colour name.

Change the canvas' attribute colour.

The colours are given as a string corresponding to one of the 16 pre-defined NCL colours:

 'white', 'aqua', 'lime', 'yellow', 'red', 'fuchsia', 'purple', 'maroon',

 'blue', 'navy', 'teal', 'green', 'olive', 'silver', 'gray', 'black'

The values given have their alpha equal to full opacity ("A = 255").

The primitives (see clause 10.3.1.4) are drawn with the colour set in this attribute.

The initial value is 'black'.

canvas:attrColor ()  R, G, B, A: number

Return values

R: Red colour component.

G: Green colour component.

B: Blue colour component.

A: Alpha colour component.

Description

Returns the canvas' colour.

82 Rec. ITU-T H.761 (06/2011)

canvas:attrFont (face: string; size: number; style: string)

Arguments

face: Font name.

size: Font size.

style: Font style.

Description

Changes the canvas' font attribute.

The following fonts shall be available: 'Tiresias' and 'Verdana'.

The size is in pixels, and it represents the maximum height of a line written with the chosen font.

The possible style values are: 'bold', 'italic', 'bold-italic' and 'nil'. A 'nil' value assumes that no style
will be used.

Any invalid input value shall raise an error.

The initial font value is undefined.

canvas:attrFont ()  face: string; size: number; style: string

Return values

face: Font name.

size: Font size.

style: Font style.

Description

Returns the canvas' font.

canvas:attrClip (x, y, width, height: number)

Arguments

x: Clipping area coordinate.

y: Clipping area coordinate.

width: Clipping area width.

height: Clipping area height.

Description

Changes the canvas' clipping area.

The drawing primitives (see clause 10.3.1.4) and the method canvas:compose() only operate
inside this clipping region.

The initial value is the whole canvas.

 Rec. ITU-T H.761 (06/2011) 83

canvas:attrClip ()  x, y, width, height: number

Return values

x: Clipping area coordinate.

y: Clipping area coordinate.

width: Clipping area width.

height: Clipping area height.

Description

Returns the canvas' clipping area.

canvas:attrCrop (x, y, w, h: number)

Arguments

x: Crop region coordinate.

y: Crop region coordinate.

w: Crop region width.

h: Crop region height.

Description

Changes the canvas crop region.

Only the set region is affected by operations following graphical compositions.

The initial crop region is the whole canvas.

The main canvas cannot have its crop region changed, as it is controlled by the NCL formatter.

canvas:attrCrop ()  x, y, w, h: number

Return values

x: Crop region coordinate.

y: Crop region coordinate.

w: Crop region width.

h: Crop region height.

Description

Returns the canvas' crop region.

canvas:attrFlip (horiz, vert: boolean)

Arguments

horiz: If canvas should be flipped horizontally.

vert: If canvas should be flipped vertically.

Description

Sets the canvas flipping mode used when the canvas is composed.

The main canvas cannot be flipped as it is controlled by the NCL formatter.

84 Rec. ITU-T H.761 (06/2011)

canvas:attrFlip ()  horiz, vert: boolean

Return values

horiz: If canvas is flipped horizontally.

vert: If canvas is flipped vertically.

Description

Returns the current canvas' flipping setup.

canvas:attrOpacity (opacity: number)

Argument

opacity: Canvas opacity.

Description

Changes canvas opacity.

The opacity values varies between 0 (full transparency) to 255 (full opacity).

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrOpacity ()  opacity: number

Return value

opacity: Canvas opacity.

Description

Returns the current canvas opacity.

canvas:attrRotation (degrees: number)

Argument

degrees: Canvas rotation in degrees.

Description

Sets the canvas rotation attribute, which must be a multiple of 90o.

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrRotation ()  degrees: number

Return value

degrees: Canvas rotation in degrees.

Description

Returns the current canvas rotation value.

 Rec. ITU-T H.761 (06/2011) 85

canvas:attrScale (w, h: number|boolean)

Arguments

w: Canvas scaling width.

h: Canvas scaling height.

Description

Scales the canvas to a given width and height.

One of the given values may be true, indicating that the aspect ratio must be kept.

The scaling attribute is independent of the size attribute, which shall remain the same.

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrScale ()  w, h: number

Return values

w: Canvas scaling width.

h: Canvas scaling height.

Description

Returns the current canvas scaling values.

10.3.1.4 Primitives

All the following methods take the canvas attributes into account.

NOTE – In all primitives, the line width shall be assumed as 1 pixel.

canvas:drawLine (x1, y1, x2, y2: number)

Arguments

x1: Line extremity 1 coordinate.

y1: Line extremity 1 coordinate.

x2: Line extremity 2 coordinate.

y2: Line extremity 2 coordinate.

Description

Draws a line with its extremities in (x1,y1) and (x2,y2).

canvas:drawRect (mode: string; x, y, width, height: number)

Arguments

mode: Drawing mode.

x: Rectangle coordinate.

y: Rectangle coordinate.

width: Rectangle width.

height: Rectangle height.

86 Rec. ITU-T H.761 (06/2011)

Description

Method for rectangle drawing and filling.

The parameter mode may receive 'frame' or 'fill' values, for drawing the rectangle with no fill or
filling it, respectively.

canvas:drawRoundRect (mode: string; x, y, width, height, arcWidth, arcHeight: number)

Arguments

mode: Drawing mode.

x: Rectangle coordinate.

y: Rectangle coordinate.

width: Rectangle width.

height: Rectangle height.

arcWidth: Rounded edge arc width.

arcHeight: Rounded edge arc height.

Description

Function for rounded rectangle drawing and filling.

The parameter mode may be 'frame' in order to draw the rectangle frame or 'fill' to fill it.

canvas:drawPolygon (mode: string) -> drawer: function

Arguments

mode: Drawing mode.

Return values

f: Drawing function.

Description

Method for polygon drawing and filling.

The parameter mode may receive the 'open' value, to draw the polygon not linking the last point to
the first; the 'close' value, to draw the polygon linking the last point to the first; or the 'fill' value, to
draw the polygon linking the last point to the first and painting the region inside.

The function canvas:drawPolygon returns an anonymous function "drawer" with the signature:

 Function (x, y) end

The returned function receives the next polygon vertex coordinates and returns itself as the result.
This recurrent procedure allows the idiom:

 canvas:drawPolygon('fill')(1,1)(10,1)(10,10)(1,10)()

When the function "drawer" receives 'nil' as input, it completes the chained operation. Any
subsequent call shall raise an error.

 Rec. ITU-T H.761 (06/2011) 87

canvas:drawEllipse (mode: string; xc, yc, width, height, ang_start, ang_end: number)

Arguments

mode: Drawing mode.

xc: Ellipse centre.

yc: Ellipse centre.

width: Ellipse width.

height: Ellipse height.

ang_start: Starting angle.

ang_end: Ending angle.

Description

Draws an ellipse and other similar primitives as circle, arcs and sectors.

The parameter mode may receive 'arc' to only draw the circumference or 'fill' for internal painting.

The angle units shall be assumed as degrees. The 0 degree angle is in the higher Y coordinate of the
ellipse and the angle progression follows the clockwise motion.

canvas:drawText (x, y: number; text: string)

Arguments

x: Text coordinate.

y: Text coordinate.

text: Text do be drawn.

Description

Draws the given text at (x,y) in the canvas, using the font set by canvas:attrFont().

10.3.1.5 Miscellaneous

canvas:clear ([x, y, w, h: number])

Arguments

x: Clear area coordinate.

y: Clear area coordinate.

w: Clear area width.

h: Clear area height.

Description

Clears the canvas with the colour set to attrColor.

If the area parameters are not given, all the canvas should be cleared.

canvas:flush ()

Description

Flushes the canvas after a set of drawing and composite operations.

It suffices to call this method only once, after a sequence of operations.

88 Rec. ITU-T H.761 (06/2011)

canvas:compose (x, y: number; src: canvas; [src_x, src_y, src_width, src_height: number])

Arguments

x: Position of the composition.

y: Position of the composition.

src: Canvas with which to compose.

src_x: Position in the canvas src.

src_y: Position in the canvas src.

src_width: Composition width in the canvas src.

src_height: Composition height in the canvas src.

Description

Composes pixel by pixel the canvas src on the current canvas (destination canvas), at position (x,y).

The other parameters are optional and indicate which region in the canvas src is used for the
composition. When absent, the whole canvas is used.

This operation calls src:flush() automatically before the composition.

The operation satisfies the following equations:

 Cd = Cs*As + Cd*(255 − As)/255

 Ad = As*As + Ad*(255 − As)/255

where:

 Cd = Colour of the destination canvas (canvas).

 Ad = Alpha of the destination canvas (canvas).

 Cs = Colour of the source canvas (src).

 As = Alpha of the source canvas (src).

After the operations, the destination canvas has the resulting content and the canvas src remains
intact.

canvas:pixel (x, y, R, G, B, A: number)

Arguments

x: Pixel position.

y: Pixel position.

R: Colour red component.

G: Colour green component.

B: Colour blue component.

A: Colour alpha component.

Description

Changes a pixel's colour.

 Rec. ITU-T H.761 (06/2011) 89

canvas:pixel (x, y: number)  R, G, B, A: number

Arguments

x: Pixel position.

y: Pixel position.

Return values

R: Colour red component.

G: Colour green component.

B: Colour blue component.

A: Colour alpha component.

Description

Returns a pixel's colour.

canvas:measureText (text: string)  dx, dy: number

Arguments

x: Text coordinate.

y: Text coordinate.

text: Text to be measured.

Return values

dx: Text width.

dy: Text height.

Description

Returns the border coordinates for the given text, as if it were drawn at (x,y) with the configured
font of canvas:attrFont().

10.3.2 The event module

This module offers an API for event handling. Using the API, the NCL formatter may communicate
with an NCLua application asynchronously.

An application may also use this mechanism internally, using the "user" event class.

The typical use of NCLua application is to handle events: NCL events (see clause 7.2.8) or events
coming from user interactions (for example, through the remote control).

During its initiation, before becoming event oriented, a Lua script has to register an event handler
function. After the initialization, any action performed by the script will be in response to an event
notified to the application, that is, to the event handler function.

=== example.lua ===
... -- initializing code
function handler (evt)
 ... -- handler code
end
event.register(handler) -- register as an event listener
=== end ===

Among the event types that may be received by the handler function are all those generated by the
NCL formatter. As mentioned before, a Lua script is also capable of generating events, called
"spontaneous", through a call to the event.post(evt) function.

90 Rec. ITU-T H.761 (06/2011)

10.3.2.1 Functions

event.post ([dst: string]; evt: event)  sent: boolean; err_msg: string

Arguments

dst: Event destination.

evt: Event to be posted.

Return values

sent: If the event was successfully sent.

err_msg: Error message in case of errors.

Description

Posts the given event.

The parameter 'dst' is the event destination and may assume the values 'in' (send to itself) and 'out'
(send to the NCL formatter). The default value is 'out'.

event.timer (time: number, f: function)  cancel: function

Arguments

time: Time in milliseconds.

f: Call-back function.

Return value

unreg: Function to cancel the timer.

Description

Creates a timer that expires after a timeout (in milliseconds) and then calls the call-back function f.

The signature of f is simple, no parameters are received or returned:

 function f () end

The value of 0 milliseconds is valid. In this case, event.timer() shall return immediately and f shall
be called as soon as possible.

event.register ([pos: number]; f: function; [class: string]; […: any])

Arguments

pos: Register position (optional).

f: Call-back function.

class: Class filter (optional).

…: Class dependent filter (optional).

Description

Registers the given function as an event listener, that is, whenever an event happens, f is called
(function f is an event handler).

The parameter pos is optional. It indicates the position where f is registered. If it is not given, the
function is registered in the last position. The initial register position is 1.

 Rec. ITU-T H.761 (06/2011) 91

The parameter class is optional and indicates which class of events the function shall receive. If
class is specified, other class dependent filters may be defined. A nil value in any position indicates
that the parameter shall not be filtered.

The signature for f is:

 function f (evt) end -> handled: boolean

Where evt is the event that triggers the function. The function may return "true", to signalize that
the event was handled and, therefore, should not be sent to other handlers.

It is recommended that the function, defined by the application, returns fast, since no other event
may be processed while it is running.

The NCL formatter shall notify the listeners in the order they were registered, and if any of them
returns true, the formatter shall not notify the remaining listeners.

event.unregister (f: function)

Arguments

f: Call-back function.

Description

Unregisters the given function as a listener, that is, new events will no longer be notified to f.

event.uptime ()  ms: number

Return values

ms: Time in milliseconds.

Description

Returns the number of milliseconds elapsed since the beginning of the application.

Event classes

The function event.post() and the registered handler in event.register() receive events as
parameters.

An event is described by a common Lua table, where the class field is mandatory and identifies the
event class.

The following event classes are defined:

key class:

evt = { class='key', type: string, key: string}

where:

 type may be 'press' or 'release';

 key is the key value; the "event.keys" table holds all keycodes available in the NCL.

Example: evt = { class='key', type='press', key='0'}

NOTE 1 – In the key class, the class dependent filter could be type and key, in this order.

pointer class:

evt = { class='pointer', type: string, x:number, y:number}

 type may be 'press' or 'release' or 'move'.

 x and y refer to the coordinates of the pointer event occurrence.

92 Rec. ITU-T H.761 (06/2011)

Example: evt = { class='pointer', type='press', x=20, y=50}

NOTE 2 – In the pointer class, the class dependent filter could only be type.

ncl class:

Relationships among NCL media nodes are based on events. Lua has access to these events through
ncl Class.

Events may act in two directions, that is, the formatter may send action events to change the state of
the Lua player, which in turn may trigger transition events to signal state changes.

In events, the type field shall assume one of the three values: 'presentation', 'selection' or
'attribution'.

Events may be directed to specific anchors or to the whole node, this is identified by the label field,
which assumes the whole node when absent.

In the case of an event generated by the formatter, the action field shall have one of the following
values: 'start', 'stop', 'abort', 'pause' or 'resume'.

Type 'presentation':
evt = { class='ncl', type='presentation', label='?', action='?'}

Type 'attribution':
evt = { class='ncl', type='attribution', name='?', action='?', value='?' }

For events generated by the Lua player, the "action" field shall assume one of the following values:
'start', 'stop', 'abort', 'pause, or 'resume', depending on the type field.

Type 'presentation':
evt = { class='ncl', type='presentation', label='?',
 action='start'/'stop'/'abort'/'pause'/'resume'}

Type 'selection':
evt = { class='ncl', type='selection', label='?', action='stop' }

Type 'attribution':
evt = {class='ncl', type='attribution', name='?',
 action='start'/'stop'/'abort'/'pause'/'resume', value='?'}

NOTE 3 – In the ncl class, the class dependent filter could be type, label, and action, in this order.

edit class:

This class reproduces the editing commands for the private base manager (see clause 9). However,
there is an important difference between editing commands coming from systems external to private
bases, and the editing commands performed by Lua scripts (NCLua objects). The first ones may
alter not only the NCL document presentation, but also the NCL document specification. That is, at
the end of the process a new NCL document is generated incorporating all editing results. On the
other hand, editing commands coming from NCLua media objects may only alter the NCL
document presentation. The original document is preserved throughout the editing process.

Just like in other event classes, an editing command is represented by a Lua table. All events shall
contain the command field: a string with the command name. The other fields depend on the
command type (see Table 9-1). The unique difference regards the field that defines the reference
pairs {uri,ior}, named data field in the edit class. This field's values may be not only the reference
pairs mentioned in Table 9-1, but also XML strings with the content to be added.

 Rec. ITU-T H.761 (06/2011) 93

Example:

evt = {
 command = 'addNode',
 compositeId = 'someId',
 data = '<media>...',
}

The baseId and documentId fields are optional (when applicable) and they assume by default the
base and document identifiers where the NCLua object is being executed.

The event describing the editing command may also receive a time reference as an optional
parameter (optional parameters are indicated in the function signatures as arguments between
square brackets). This optional parameter may be used to specify the exact moment when the
editing command shall be executed. If this parameter is not provided in the function call, the editing
command shall be executed immediately. When provided, this parameter may have two different
types of values, with two different meanings. If it is a number value, it defines the amount of time,
in seconds, for how long the command shall be postponed. However, this parameter may also
specify the exact moment, in absolute values, at which the command shall be executed. In this case,
this parameter shall be a table value with the following fields: year (four digits), month (1-12), day
(1-31), hour (0-23), min (0-59), sec (0-59), and isdst (a daylight saving flag, a Boolean).

tcp class:

In order to send or receive tcp data, a connection shall be firstly established by posting an event in
the form:

evt = { class='tcp', type='connect', host=addr, port=number,
 [timeout=number] }

The connection result is returned in a pre-registered event handler for the class. The returned event
is in the form:

evt = { class='tcp', type='connect', host=addr, port=number,
 connection=identifier, error=<err_msg>}

The error and connection fields are mutually exclusive. When there is a communication error, a
message is returned in the error field. If the communication is successful, the connection identifier
is returned in the connection field.

An NCLua application sends data, using the tcp protocol, through posting events in the form:

evt = { class='tcp', type='data', connection=identifier,
 value=string, [timeout=number] }

Similarly, an NCLua application receives data transported by the tcp protocol, by using events in
the form:

evt = { class='tcp', type='data', connection=identifier,
 value=string, error=msg}

The error and value fields are mutually exclusive. If there is a communication error, a message is
returned in the error field. If the communication is successful, the message is passed in the value
field.

In order to close the connection, the following event shall be posted:

evt = { class='tcp', type='disconnect', connection=identifier }

NOTE 4 – A specific middleware implementation should handle issues like authentication, connection
timeout/retry, whether a connection should be kept open, etc.

NOTE 5 – In the tcp class, the class dependent filter can only be connection.

94 Rec. ITU-T H.761 (06/2011)

http class:

An NCLua application sends data, using the http protocol, by posting events in the form:

evt = { class='http', host=addr, port=number,
 value=string, [timeout=number] }

Similarly, an NCLua application receives data transported by the http protocol, by using events in
the form:

evt = { class='http', host=addr, port=number, value=string, error=msg}

The error and value fields are mutually exclusive. If there is a communication error, a message is
returned in the error field. If the communication is successful, the message is passed in the value
field.

NOTE 6 – A specific middleware implementation should handle issues like authentication, connection
timeout/retry, whether a connection should be kept open, etc.

NOTE 7 – In the http class, the class dependent filter can only be host, port.

rtp class:

An NCLua application sends data, using the rtp protocol, by posting events in the form:

evt = { class='rtp', host=addr, port=number, value=string, timeout=number }

Similarly, an NCLua application receives data transported by the rtp protocol, by using events in the
form:

evt = { class='rtp', host=addr, port=number, value=string, error=msg}

The error and value fields are mutually exclusive. If there is a communication error, a message is
returned in the error field. If the communication is successful, the message is passed in the value
field.

NOTE 8 – A specific middleware implementation should handle issues like authentication, connection
timeout/retry, whether a connection should be kept open, etc.

NOTE 9 – In the rtp class, the class dependent filter can only be host, port.

sms class:

The behaviour for sending and receiving data using SMS is very similar to that of the tcp class. The
sms class is optional in a Ginga_NCL conformant implementation.

An NCLua application sends data, using SMS, by posting events in the form:

evt = { class='sms', type='send', to='string', value=string [, id:string]}

The to field contains the destination number (phone number or large account number). If they are
not specified, region and country code prefixes will receive the respective region and country codes
from where the message is being sent.

The value field contains the message content.

The id field can be used to identify the SMS that will be dispatched. The application is responsible
for defining the id value and guarantee its unicity.

 Rec. ITU-T H.761 (06/2011) 95

A confirmation event must be sent back to the NCLua application, following the format:

evt = { class='sms', type='send', to:string, sent:Boolean [,error:string] [,
id:string] }

In the confirmation message the to field shall have the same value as in the original event posted by
the NCLua application. The sent field notifies if the SMS was dispatched by the device (true) or
not. The error field is optional. If the sent field value is false, it may contain a detailed error
message. If the original SMS is posted with the id field defined, the confirmation event shall arrive
with the same id value. Thus, the NCLua application will be able to make an association between
both events, and deal with multiple SMS messages being dispatched simultaneously.

Similarly, an NCLua application registers itself to receive SMS messages by posting events in the
form:

evt = { class='sms', type ='register', port:number }

The port field shall receive a valid TCP port number. For compliance with the GSM Standards (in
particular, [b-3GPP TS 23.040]), this value should be in the interval [16000,16999].

Events received by the handler have the following format:

evt = { class='sms', type='receive', from:string, port:number, value:string }

The port field is defined as in the type = 'register'. The from field contains the source message
number (phone number or large account number). Region and country code prefixes may be
omitted if they are equal to the receiver ones. The value field contains the message content.

At any moment the application can request to stop receiving SMS messages in a given port by
posting the event:

evt = { class='sms', type='unregister', port:number }

The port field is defined as in the type = 'register'.

At the moment the NCLua media presentation stops, the middleware implementation shall ensure
that all ports will be unregistered.

NOTE 10 – A specific middleware implementation should handle issues like authentication, etc.

NOTE 11 – In the sms class, the class dependent filter could only be from and port, in this order.

NOTE 12 – The purpose of the port number is to avoid conflicts between common SMS messages received
by a user, and SMS messages that are to be handled only by the application.

NOTE 13 – A Ginga-NCL implementation shall immediately return false in every call to event.post() that
uses an event class that is not supported. The NCLua application must capture this error condition in order to
verify if the SMS dispatch failed.

si class:

The si event class provides access to a set of information multiplexed in a transport stream and
periodically transmitted.

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function.

2) An event is received in return, to be delivered to the registered-event handlers of an NCLua
script, whose data field contains a set of subfields and is represented by a Lua table. The set
of subfields depends on requested information.

96 Rec. ITU-T H.761 (06/2011)

NOTE 14 – In the si class, the class-dependent filter can only be type.

Three event types are defined as follows:

type = 'services'

The table of 'services' event type is made up of a set of vectors, each one with information related to
a multiplexed service of the tuned transport stream.

Each request for a table of 'services' event type shall be carried out through the following call:

event.post('out', { class='si', type='services'[, index=N][, fields={field_1, field_2,…, field_j}]}),

where:

i) the index field defines the service index, when specified; if not specified, all services of the
tuned transport stream shall be present in the returned event;

ii) the fields list may have as a value any subset of subfields defined for the data table of the
returned event (thus, field_i represents one of the subfields of the data table). If the fields
list is not specified, all subfields of the data table shall be filled.

The returned event is created after all requested information is processed by the middleware
(information that is not received within a maximum interval shall be returned as 'nil').

NOTE 15 – In order to compute the values of the data-table subfields to be returned in events of services
type, SI tables should be used as a basis, as well as the descriptors associated with service [i].

Some information from SI may be specific for a country, service provider or system used.
Therefore, data table subfields are left to be defined for each case.

type = 'epg'

The table of the 'epg' event type is made up by a set of vectors. Each vector contains information
about an event of the content being transmitted.

Each request for a table of 'epg' event type shall be carried out through one of the following possible
calls:

1) event.post('out', { class='si', type='epg', stage='current'[, fields={field_1, field_2,…,
field_j}]})

 where the fields list may have as a value any subset of subfields defined for the data table
of the returned event (thus, field_i represents one of the subfields of the data table). If the
fields list is not specified, all subfields of the data table shall be filled.

 Description: returns information relative to the current content (from now on called "TV
event" in order to differentiate from the NCL and Lua events) being transmitted.

2) event.post('out', {class='si', type='epg', stage='next'[, eventId=<number>][, fields={field_1,
field_2,…, field_j}]})

 where:

a) the eventId field, when specified, identifies the TV event immediately before the TV
event whose information is required. When not specified, the requested information is
about the event that immediately follows the current TV event;

b) the fields list may have as a value any subset of subfields defined for the data table of
the returned event (thus, field_i represents one of the subfields of the data table). If the
fields list is not specified, all subfields of the data table shall be filled.

 Description: returns information regarding the TV event immediately after the TV event
defined in eventId, or information relative to the TV event immediately after the current TV
event, if eventId is not specified.

 Rec. ITU-T H.761 (06/2011) 97

3) event.post('out', {class='si', type='epg', stage='schedule', startTime=<date>,

 endTime=<date>[, fields={field_1, field_2,…, field_j}]})

 where the fields list may have as a value any subset of subfields defined for the data table
of the returned event (thus, field_i represents one of the subfields of the data table). If the
fields list is not specified, all subfields of the data table shall be filled.

 Description: returns information relative to TV events within the time interval defined by
the startTime and endTime fields, which have tables in the <date> format as values.

The returned event is created after all request information is processed by the middleware
(information that is not broadcasted within a maximum interval shall be returned as 'nil').

NOTE 16 – In order to compute the values of the data-table subfields to be returned in events of epg type, SI
tables should be used as a basis, as well the descriptors associated with TV event [i].

Some information from SI may be specific for a country, service provider or system used.
Therefore, data-table subfields are left to be defined for each case.

type='time'

The table of the 'time' event type contains information about the current UTC (Universal Time
Coordinated) date and time, but in the official country time zone in which the receptor is located.

Each request for a table of 'time' event type shall be carried out through the following call:

event.post('out', { class='si', type='time'})

The returned event is created after all the requested information has been processed by the
middleware (information that is not broadcasted within a maximum interval shall be returned as
'nil'). The data table is returned as follows:

evt = {
 class = 'si',
 type = 'time',
 data = {
 year = <number>,
 month = <number>,
 day = <number>,
 hours = <number>,
 minutes = <number>,
 seconds = <number>
 }}

NOTE 17 – In order to compute the values of the data-table subfields to be returned in events of time type,
the appropriate SI table should be used as a basis.

The SI table used is left to be defined for each case, since some information from SI may be specific
for a country, service provider or system used.

metadata class:

The metadata event class provides access to information about content, users, systems, providers,
etc., as defined in the high-level specification of metadata for IPTV services [ITU-T H.750].

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function.

2) An event is received in return, to be delivered to the registered-event handlers of an NCLua
script, whose data field contains a set of subfields and is represented by a Lua table. The set
of subfields depends on the requested information.

In the metadata class, no fields are defined (with the exception of the class field). They are left to be
specified by vendors, operators and providers, for example.

98 Rec. ITU-T H.761 (06/2011)

NOTE 18 – In the metadata class, the class dependent filter could be type, if this field is defined.

user class:

By using the class user, applications may extend their functionalities, create their own events.

In this class, no fields are defined (with the exception of the class field).

NOTE 19 – In the user class, the class dependent filter could be type, if this field is defined.

10.3.3 The settings module

Exports the settings table with the reserved environment variables and the variables defined by the
NCL document author, as defined in the application/x-ncl-settings node.

It is not allowed that values be set to fields representing variables in the settings node. An error
shall be raised in this case. Properties of the application/x-ncl-settings node may only be changed
through using NCL links.

The settings table splits its groups into several subtables, corresponding to each application/
x-ncl-settings node's group. For instance, in an NCLua object, the settings node's variable
"system.CPU" is referred to as settings.system.CPU.

Examples of use:

lang = settings.system.language
age = settings.user.age
val = settings.default.selBorderColor
settings.service.myVar = 10
settings.user.age = 18 --> ERROR!

10.3.4 The persistent module

NCLua applications may save data in a restricted middleware area and recover it between
executions. Lua player allows an NCLua application to persist a value to be used by itself or by
another imperative object. In order to do so, it defines a reserved area, inaccessible to non-
imperative NCL media objects. This area is split into the groups "service", "channel" and "shared",
with the same semantics of the homonym groups of the NCL settings node. There are no predefined
or reserved variables in these groups, and imperative objects are allowed to change the variable's
values directly. Other imperative languages should offer an API to access this same area.

In this module, Lua offers an API to export the persistent table with the variables defined in the
reserved area.

The use of the persistent table is very similar to the settings table, except that, in this case,
imperative codes may change field values.

Examples of use:

persistent.service.total = 10
color = persistent.shared.color

 Rec. ITU-T H.761 (06/2011) 99

Annex A

NCL 3.0 module schemas used in the Enhanced DTV profile

(This annex forms an integral part of this Recommendation.)

The following NCL 3.0 module schemas used in the Enhanced DTV profile (NCL30EDTV.xsd) are
available as an electronic attachment to this Recommendation:

– Animation module: NCL30Animation.xsd

– CausalConnector module: NCL30CausalConnector.xsd

– CausalConnectorFunctionality: NCL30CausalConnectorFunctionality.xsd

– CompositeNodeInterface module: NCL30CompositeNodeInterface.xsd

– ConnectorAssessmentExpression Module: NCL30ConnectorAssessmentExpression.xsd

– ConnectorBase module: NCL30ConnectorBase.xsd

– ConnectorCausalExpression Module: NCL30ConnectorCausalExpression.xsd

– ConnectorCommonPart Module: NCL30ConnectorCommonPart.xsd

– ContentControl module: NCL30ContentControl.xsd

– Context module: NCL30Context.xsd

– DescriptorControl module: NCL30DescriptorControl.xsd

– Descriptor module: NCL30Descriptor.xsd

– EntityReuse module: NCL30EntityReuse.xsd

– ExtendedEntityReuse module: NCL30ExtendedEntityReuse.xsd

– Import module: NCL30Import.xsd

– KeyNavigation module: NCL30KeyNavigation.xsd

– Layout module: NCL30Layout.xsd

– Linking module: NCL30Linking.xsd

– MediaContentAnchor module: NCL30MediaContentAnchor.xsd

– Media module: NCL30Media.xsd

– Metainformation module: NCL30Metainformation.xsd

– PropertyAnchor module: NCL30PropertyAnchor.xsd

– Structure module: NCL30Structure.xsd

– SwitchInterface module: NCL30SwitchInterface.xsd

– TestRule module: NCL30TestRule.xsd

– TestRuleUse module: NCL30TestRuleUse.xsd

– Timing module: NCL30Timing.xsd

– Transition module: NCL30Transition.xsd

– TransitionBase module: NCL30TransitionBase.xsd

100 Rec. ITU-T H.761 (06/2011)

Appendix I

Ginga architecture

(This appendix does not form an integral part of this Recommendation.)

Ginga-NCL was originally built as a component of the middleware Ginga [b-ABNT NBR 15606-2],
as depicted in Figure I.1.

The universe of Ginga applications can be partitioned into a set of declarative applications and a set
of imperative applications. A declarative application is an application whose initial entity is of a
declarative content type. An imperative application is an application whose initial entity is of an
imperative content type. A purely declarative application is one in which every entity is of a
declarative content type. A purely imperative application is one in which every entity is of an
imperative content type. A hybrid application is one whose entity set contains entities of both
declarative and imperative content types. A Ginga application need not be purely declarative nor
imperative. In particular, NCL declarative applications often make use of Lua script content, which
is imperative in nature. Therefore, either type of Ginga application may make use of facilities of
both the declarative and imperative application environments.

A Ginga implementation is recommended to be open, flexible, granular, self-contained and
component-based. However, this Recommendation does not specify any Ginga implementation in a
compliant receiver. The architecture presented in this Recommendation only helps to present the
requirements and recommendations for a Ginga implementation. A receiver manufacturer may
implement all subsystems and their modules as a single subsystem; alternatively, all modules may
be implemented as distinct components with well-defined interfaces.

Ginga-NCL is a logical subsystem of the Ginga system that processes NCL documents. A key
component of Ginga-NCL is the declarative content decoding engine (NCL formatter or NCL user
agent). Another important module is the Lua engine, which is responsible for interpreting Lua
scripts [b-H.IPTV-MAFR.14].

Ginga-Imp is a logical subsystem of the Ginga system that processes imperative applications. A key
component of the imperative application environment is the imperative content execution engine.
Ginga-J is a particular case of Ginga-Imp that processes applications coded in Java.

It is important to note that a Ginga-Imp-only implementation shall not claim any kind of Ginga
conformance. This avoids the threat of market fragmentation and ensures that Ginga will always
offer backward-compatible profiles. A Ginga-NCL-only implementation is not prohibited. In other
words, to be Ginga compliant, the Ginga-NCL subsystem is required and the Ginga-Imp subsystem
is optional.

Common content decoders serve both imperative and declarative application needs for the decoding
and presentation of common content types such as PNG, JPEG, MPEG and other formats. The
Ginga Common Core is composed of common content decoders, procedures to obtain contents
transported in the several networks accessed by a receiver, the conceptual display graphical model
defined by the receiver platform, and other functions.

The Ginga Common Core is required to support receiver device start-up and initialization function
and server-side device start-up and initialization function. It is also required to gather metadata
information and to provide this information through the NCL settings media object
(see clause 7.2.4).

It is also recommended that the Ginga Common Core provide an API to communicate with a DRM
system; pull together context information (like user profiles and receiver profiles available on a
local or removable storage device) and provide context awareness through the NCL settings media

 Rec. ITU-T H.761 (06/2011) 101

object (see clause 7.2.4); and to support software version management (update) of Ginga's
components.

 H.761-v2(11)_FI-1

Bridge

Protocol stack

IGMP
FTP HTTP RSTP RTCP

SI MPE

RTP

UDP

IP

TCP

IPTV services / applications

VOIP EPG

Gaming

PPV VOD

Ginga-NCL presentation engine

Ginga-Imp execution environment

NCL context
manager

Player
manager

Scheduler

Layout manager

Formatter
XML parsers

Converters

Private base
manager

AdaptersGinga common core

CA
Data

processing

DRM

DSM-CC

TS and others

Media streams

Tuner G. manager
Players

Context manager

Search engine Update manager

Brid
ge

Figure I.1 – Ginga architecture

The core of the Ginga-NCL Presentation Engine is the Formatter. This component is in charge of
receiving and controlling multimedia applications written in NCL. Applications are delivered to the
Formatter by the Ginga Common Core subsystem. Upon receiving an application, the Formatter
requests the XML Parser and Converter component to translate the NCL application to the Ginga-
NCL internal data structures necessary for controlling the application presentation. From then on,
the Scheduler component is started in order to orchestrate the NCL document presentation. The pre-
fetching of media object's contents, the evaluation of link conditions and the scheduling of
corresponding link's actions that guide the presentation flow are some tasks performed by the
Scheduler component. In addition, the Scheduler component is responsible for commanding the
Player Manager component to instantiate an appropriate Player, according to the media content type
to be exhibited at a given moment in time. Media contents are acquired through the protocol stack,
and can come from different communication networks.

One important player, part of Ginga-NCL, is the Lua Engine, responsible for the execution of
NCLua objects, that is, media objects with Lua code.

In Ginga-NCL, a generic API is defined to establish the necessary communication between Players
components and the Presentation Engine (Scheduler component). Thanks to this API, the Ginga-
NCL Presentation Engine and the Ginga Common Core are strongly coupled but independent
subsystems. Ginga Common Core may be substituted for other third party implementations that
support IPTV engines, allowing Ginga-NCL to be integrated in other IPTV middleware
specifications, extending their functionalities with NCL facilities for supporting NCL applications.

102 Rec. ITU-T H.761 (06/2011)

Players are responsible for notifying the Presentation Engine about content anchor events (see
clause 8) defined in NCL applications, that is, when a media segment (an anchor) begins and ends
its presentation, or when it is selected. Presentation events can be derived from NPT or MPEG-2
timestamps, timers started with images, videos, etc., depending on the media format.

Players that do not follow the generic API are required to use the services provided by adapters.
Any user agent or execution engine could be adapted to the Ginga-NCL Players, e.g., XHTML
browsers or a Java engine, as mentioned before.

In Ginga-NCL, a declarative application can be generated or modified on the fly, using Ginga-NCL
editing commands (see clause 9).

The Presentation Engine deals with NCL applications collected inside a data structure known as
private base. A Private Base Manager component is in charge of receiving NCL document editing
commands and maintaining the NCL documents being presented.

The Ginga-NCL Presentation Engine supports multiple presentation devices through its Layout
Manager module. This component is responsible for mapping all regions (see clause 7.2.3) defined
in an NCL application to a canvas on the receiver's presentation devices.

Ginga-NCL provides declarative support to IPTV specific services, such as VoD, datacasting, etc.
Thus, a VoD service may, for example, play an NCL application besides the main audiovisual
stream. Moreover, an IPTV service itself can be an NCL application.

 Rec. ITU-T H.761 (06/2011) 103

Appendix II

An NCL example

(This appendix does not form an integral part of this Recommendation.)

An example NCL application is available as an electronic attachment to this Recommendation. The
example explores many NCL functionalities, including NCLua objects. This is intended to illustrate
how NCL applications are usually structured. The example is composed of the following files:

– main.ncl

– causalConnBase.ncl

– counter.lua

Media objects used in this example are not included in the attachment but can be freely obtained
from http://club.ncl.org.br.

http://club.ncl.org.br/

104 Rec. ITU-T H.761 (06/2011)

Bibliography

[b-ITU-T H.770] Recommendation ITU-T H.770 (2009), Mechanisms for service
discovery and selection for IPTV services.

[b-H.IPTV-MAFR.14] Recommendation ITU-T H.IPTV-MAFR.14 (draft), Lua script
language for IPTV.

[b-ABNT NBR 15606-2] ABNT NBR 15606-2 (2007), Digital terrestrial television – Data
Coding and transmission specification for digital broadcasting –
Part 2: Ginga-NCL for fixed and mobile receivers: XML application
language for application coding.

[b-3GPP TS 23.040] 3GPP TS 23.040 V6.8.1 (2006-10), Technical realization of the Short
Message Service (SMS).

[b-NCM Core] Soares L.F.G; Rodrigues R.F (2005), Nested Context Model 3.0: Part 1
– NCM Core, Technical Report, Departamento de Informática
PUC-Rio, ISSN: 0103-9741. Also available at http://www.ncl.org.br.

[b-NCL DTV] Soares L.F.G; Rodrigues R.F. (2006), Part 8 – NCL (Nested Context
Language) Digital TV Profiles, Technical Report, Departamento de
Informática PUC-Rio, No. 35/06. ISSN: 0103-9741. Also available at
http://www.ncl.org.br.

[b-NCL Live E.C.] Soares L.F.G; Rodrigues R.F; Costa, R.R.; Moreno, M.F. (2006), Part 9
– NCL Live Editing Commands. Technical Report, Departamento de
Informática PUC-Rio, No. 36/06. ISSN: 0103-9741. Also available at
http://www.ncl.org.br.

[b-NCL Imp. Obj.] Soares L.F.G.; Sant'Anna F.F.; Cerqueira R.F.G. (2008), Part 10 –
Imperative Objects in NCL: The NCLua Scripting Language. Technical
Report, Departamento de Informática PUC-Rio, No. 02/08. Rio de
Janeiro. ISSN 0103-9741. Also available at http://www.ncl.org.br.

[b-NCL Decl. Obj.] Soares L.F.G. (2009), Part 11 – Declarative Hypermedia Objects in
NCL: Nesting Objects with NCL Code in NCL Documents. Technical
Report, Departamento de Informática PUC-Rio, No. 02/09. Rio de
Janeiro. ISSN 0103-9741. Also available at http://www.ncl.org.br.

[b-W3C CSS2] W3C Recommendation CSS2 (1998) – Cascading Style Sheets, level 2.

[b-W3C RDF] W3C Recommendation. RDF (1999) – Resource Description
Framework (RDF) Model and Syntax Specification.

[b-W3C SMIL 2.1] W3C Recommendation. SMIL 2.1 (2005) – Synchronized Multimedia
Integration Language – SMIL 2.1 Specification.

[b-W3C XHTML] W3C Recommendation. XHTML 1.0 (2000) – The Extensible
HyperText Markup Language.

[b-W3C XMLNAMES1] W3C Recommendation. XML_Names 1.0 (1999) – Namespaces in
XML.

http://www.ncl.org.br/
http://www.ncl.org.br/
http://www.ncl.org.br/
http://www.ncl.org.br/
http://www.ncl.org.br/

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. H.761 (06/2011) – Nested context language (NCL) and Ginga-NCL
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 NCL and the Ginga-NCL
	6 Ginga-NCL harmonization with other IPTV declarative environments
	7 NCL: XML application declarative language for multimedia presentations
	7.1 Identifiers for NCL 3.0 module and language profiles
	7.2 NCL modules

	8 Media objects in NCL presentations
	8.1 Expected behaviour of basic media players
	8.2 Expected behaviour of declarative hypermedia players in NCL applications
	8.3 Expected behaviour of imperative-object players in NCL applications
	8.4 Expected behaviour of media players after instructions applied to composite objects
	8.5 Relation between the presentation-event state machine of a node and the presentation-event state machine of its...

	9 NCL editing commands
	9.1 Private bases
	9.2 Command parameters XML schemas
	9.3 NCL editing commands in Ginga-NCL

	10 Lua imperative objects in NCL presentations
	10.1 Lua language - Functions removed from the Lua library
	10.2 Execution model
	10.3 Additional modules

	Annex A – NCL 3.0 module schemas used in the Enhanced DTV profile
	Appendix I – Ginga architecture
	Appendix II – An NCL example
	Bibliography

