

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T H.730
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2012)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

IPTV multimedia services and applications for IPTV –
IPTV middleware

 Web-based terminal middleware for IPTV

services

Recommendation ITU-T H.730

ITU-T H-SERIES RECOMMENDATIONS

AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100–H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General H.200–H.219
Transmission multiplexing and synchronization H.220–H.229
Systems aspects H.230–H.239
Communication procedures H.240–H.259
Coding of moving video H.260–H.279
Related systems aspects H.280–H.299
Systems and terminal equipment for audiovisual services H.300–H.349
Directory services architecture for audiovisual and multimedia services H.350–H.359
Quality of service architecture for audiovisual and multimedia services H.360–H.369
Supplementary services for multimedia H.450–H.499

MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500–H.509
Mobility for H-Series multimedia systems and services H.510–H.519
Mobile multimedia collaboration applications and services H.520–H.529
Security for mobile multimedia systems and services H.530–H.539
Security for mobile multimedia collaboration applications and services H.540–H.549
Mobility interworking procedures H.550–H.559
Mobile multimedia collaboration inter-working procedures H.560–H.569

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610–H.619
Advanced multimedia services and applications H.620–H.629
Ubiquitous sensor network applications and Internet of Things H.640–H.649

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV
General aspects H.700–H.719
IPTV terminal devices H.720–H.729
IPTV middleware H.730–H.739
IPTV application event handling H.740–H.749
IPTV metadata H.750–H.759
IPTV multimedia application frameworks H.760–H.769
IPTV service discovery up to consumption H.770–H.779
Digital Signage H.780–H.789

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T H.730 (06/2012) i

Recommendation ITU-T H.730

Web-based terminal middleware for IPTV services

Summary

Web-based terminal middleware (WBTM) defines the functional interfaces for high-level resource
management over an IPTV terminal device and describes the structure of a web-based presentation
engine, which basically supports IPTV multimedia application frameworks in the ITU-T H.76x
series of Recommendations. Web-based IPTV terminal middleware is based on ITU-T IPTV
functional architecture and ITU-T terminal devices in the H.72x series of Recommendations. ITU-T
web-based IPTV terminal middleware is necessary to support basic and advanced interactive IPTV
services for IPTV terminal devices.

This Recommendation also describes the general WBTM requirements for IPTV services and any
additional functionality for basic and advanced IPTV services. Annex A summarizes the general
requirements.

History

Edition Recommendation Approval Study Group

1.0 ITU-T H.730 2012-06-29 16

Keywords

IPTV services, IPTV terminal device, presentation engine, user agent, web-based terminal
middleware.

ii Rec. ITU-T H.730 (06/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T H.730 (06/2012) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 3

5 Conventions .. 4

6 Introduction .. 4

6.1 Application and middleware in IPTV architecture ... 4

6.2 Terminal middleware .. 5

6.3 WBTM architectural overview ... 6

7 Interfaces... 7

7.1 IPTV terminal transport functions interfaces ... 7

7.2 Content delivery client functions interface ... 7

7.3 Media client functions interfaces .. 8

7.4 SCP client functions interfaces ... 9

7.5 Application client functions interface .. 9

7.6 Connection and session management interface .. 9

7.7 Terminal device management interface .. 10

7.8 Performance monitoring interface .. 10

8 Web-based engine structure .. 10

8.1 Markup language .. 10

8.2 Document access interface ... 10

8.3 Document style ... 10

8.4 Scripting language .. 10

8.5 Extension engine .. 11

9 WBTM for IPTV services .. 11

9.1 WBTM for basic IPTV services ... 11

9.2 WBTM for advanced IPTV services .. 12

Annex A – General requirements for IPTV WBTM .. 14

Appendix I – IPTV service model with WBTM .. 16

I.1 Use case: General IPTV service ... 16

I.2 Use case: Enhanced IPTV service (IPTV community portal service) 16

Appendix II – Audience measurement architecture in web-based terminal middleware 17

Appendix III – Examples of script and plugin operation modes in WBTM 19

III.1 Relationship between application and IPTV terminal middleware 19

III.2 Relationship between WBTM and WBTM plugin ... 21

iv Rec. ITU-T H.730 (06/2012)

 Page

Appendix IV – Examples of WBTM overall workflow with the ITU-T H.76x series of
Recommendations .. 23

IV.1 Use case 1: Service display workflow .. 23

IV.2 Use case 2: User interactive working flow with media management 24

Appendix V – An implementation example for WBTM with interface description
language .. 26

V.1 Use case 1: WBTM interface list .. 26

V.2 Use case 2: Media client functions interfaces for WBTM 27

Appendix VI – An example of the interface description language for WBTM APIs 29

VI.1 Interfaces .. 29

VI.2 Web-based engine structure ... 39

Bibliography... 43

 Rec. ITU-T H.730 (06/2012) 1

Recommendation ITU-T H.730

Web-based terminal middleware for IPTV services

1 Scope

The purpose of web-based terminal middleware is to define a web-based presentation engine and
the functional interfaces for high-level resource management over an IPTV terminal device
[ITU-T Y.1901].

This Recommendation defines web-based terminal middleware, its general architecture and
interfaces as required by IPTV services.

This Recommendation is based on the ITU-T H.72x series of Recommendations for the
specifications of IPTV terminal devices and the ITU-T H.76x series of Recommendations for
multimedia interactivity and web-related technologies.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.720] Recommendation ITU-T H.720 (2008), Overview of IPTV terminal devices and
end systems.

[ITU-T H.721] Recommendation ITU-T H.721 (2009), IPTV terminal devices: Basic model.

[ITU-T H.760] Recommendation ITU-T H.760 (2009), Overview of multimedia application
frameworks for IPTV services.

[ITU-T H.761] Recommendation ITU-T H.761 v2 (2011), Nested context language (NCL) and
Ginga-NCL.

[ITU-T H.762] Recommendation ITU-T H.762 (2011), Lightweight interactive multimedia
environment for IPTV services.

[ITU-T H.763.1] Recommendation ITU-T H.763.1 (2010), Cascading style sheets for IPTV
services.

[ITU-T H.764] Recommendation ITU-T H.764 (2012), IPTV services enhanced script
language.

[ITU-T J.200] Recommendation ITU-T J.200 (2010), Worldwide common core – Application
environment for digital interactive television services.

[ITU-T Y.1901] Recommendation ITU-T Y.1901 (2009), Requirements for the support of IPTV
services.

[ITU-T Y.1910] Recommendation ITU-T Y.1910 (2008), IPTV functional architecture.

2 Rec. ITU-T H.730 (06/2012)

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 application [b-ITU-T Y.101]: A structured set of capabilities which provide value-added
functionality supported by one or more services.

3.1.2 application programming interface (API) [b-ITU-T Y.110]: This is an implementation
interface between equipment and a software module and which does not have any physical
realization as it is internal to the equipment.

3.1.3 end user [ITU-T Y.1910]: The actual user of the products or services.

NOTE – An end user consumes the product or service. An end user can optionally be a subscriber.

3.1.4 IPTV terminal device [ITU-T Y.1901]: A terminal device which has ITF functionality,
e.g., an STB.

3.1.5 IPTV terminal function (ITF) [ITU-T Y.1901]: An end user function associated with:

a) receiving and responding to network control channel messages regarding session set-up,
maintenance and tear-down;

b) receiving the content of an IP transport from the network and rendering.

3.1.6 linear TV [ITU-T Y.1901]: A television service in which a continuous stream flows in real
time from the service provider to the terminal device and where the user cannot control the temporal
order in which content is viewed.

3.1.7 metadata [ITU-T Y.1901]: Structured, encoded data that describe characteristics of
information-bearing entities to aid in the identification, discovery, assessment and management of
the described entities.

3.1.8 middleware [b-ITU-T Y.101]: The mediating entity between two information elements.
Such an element can be, for example, an application, an infrastructure component, or another
mediating entity.

3.1.9 plug-in [ITU-T J.200]: A set of functionalities which can be added to a generic platform in
order to provide additional functionality.

3.1.10 terminal device (TD) [ITU-T Y.1901]: An end-user device which typically presents and/or
processes the content, such as a personal computer, a computer peripheral, a mobile device, a TV
set, a monitor, a VoIP terminal or an audio-visual media player.

3.1.11 user agent [b-W3C WebArch]: One type of web agent; a piece of software acting on behalf
of a person.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 script: A script is a program written in a scripting program language. Script is often
interpreted from the source code. For example, a program written in ECMAscript is a script. On
web-based terminal middleware for IPTV services, scripts are used in order to enable various
services in IPTV terminal devices.

3.2.2 scripting program language: A scripting program language is a programming language
that allows control of one or more software applications.

3.2.3 WBTM plugin: A WBTM plugin is software that may be added to generic web-based
terminal middleware in order to provide additional functionality. WBTM plugins may be resident or
be downloaded from the server side. The additional functionality provided by WBTM plugins can

 Rec. ITU-T H.730 (06/2012) 3

be used by WBTM scripts. A WBTM plugin may be portable for service components, for a resource
abstraction layer, for resources, or for none of these.

3.2.4 WBTM plugin API: These APIs are defined by the WBTM to call WBTM plugins to
extend the functionalities and abilities provided by WBTM.

3.2.5 WBTM script: A script that is run on web-based terminal middleware in an IPTV terminal
device and that enables one or more IPTV services, or a part of an IPTV service. The engine for
WBTM scripts is recommended in the multimedia application framework series of
Recommendations (ITU-T H.76x series). WBTM scripts may include lines to call additional
functions that are implemented by WBTM plugins.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AM Audience Measurement

API Application Programming Interface

CAS Conditional Access System

CSS Cascading Style Sheet

DHCP Dynamic Host Configuration Protocol

DOM Document Object Model

DRM Digital Rights Management

EPG Electronic Programme Guide

HTML Hypertext Markup Language

IDL Interface Description Language

IGMP Internet Group Management Protocol

LIME Lightweight Interactive Multimedia Environment

MAFR Multimedia Application Framework

MLD Multicast Listener Discovery protocol

NCL Nested Context Language

OS Operating System

PIP Picture In Picture

PVR Personal Video Recorder

RAL Resource Abstraction Layer

RSS RDF Site Summary

RTP Real-time Transport Protocol

SADS Service and Application Discovery and Selection

SCP Service and Content Protection

SI Service Information

SNF Service Navigation Function

SP Service Provider

STB Set-Top Box

4 Rec. ITU-T H.730 (06/2012)

TD Terminal Device

TV Television

VoD Video on Demand

WBTM Web-Based Terminal Middleware

5 Conventions

The following conventions are used in this Recommendation:

– The keywords "is required to" indicate a requirement which must be strictly followed and
from which no deviation is permitted, if conformance to this Recommendation is to be
claimed.

– The keywords "is prohibited from" indicate a requirement which must be strictly followed
and from which no deviation is permitted, if conformance to this Recommendation is to be
claimed.

– The keywords "is recommended" indicate a requirement which is recommended but which
is not absolutely required. Thus, this requirement need not be present to claim
conformance.

– The keywords "is not recommended" indicate a requirement which is not recommended but
which is not specifically prohibited. Thus, conformance with this Recommendation can still
be claimed even if this requirement is present.

– The keywords "can optionally" indicate an optional requirement which is permissible,
without implying any sense of being recommended. This term is not intended to imply that
the vendor's implementation must provide the option and the feature can be optionally
enabled by the network operator/service provider. Rather, it means the vendor may
optionally provide the feature and still claim conformance with this Recommendation.

6 Introduction

Web-based terminal middleware is terminal middleware whose characteristic is that it has one
central middleware which orchestrates various applications. This orchestrating middleware,
generally called "browser" or "user agent", processes a structured document and an interpretive
language, usually called a "script", to enable various services. This typical use of web-based
services is described in [ITU-T H.760].

Web-based IPTV terminal middleware supports basic and advanced interactive IPTV services in
IPTV terminal devices. It is required to review IPTV service requirements and architecture, as well
as IPTV terminal devices. IPTV architecture is described in detail in the ITU-T Y.19x series of
Recommendations, and IPTV terminals are described in the ITU-T H.72x series of
Recommendations. Web-based IPTV terminal middleware is needed to define the interfaces on
IPTV terminal functional architecture and the structure of the presentation engine. The presentation
engine basically supports the ITU-T H.76x series of Recommendations.

6.1 Application and middleware in IPTV architecture

Figure 6-1 gives the overview of the functional architecture for an IPTV system.

 Rec. ITU-T H.730 (06/2012) 5

H.730(12)_F6-1

Management
functions

Application functionsEnd-user
functions

Content
provider
functions

Application profile
functional block

Content
preparation
functions

Application
management

functional
block

Application
client

functions

IPTV
 application

functions

Service control
management

functional
block

Control
SCP functions

Metadata

SCP client
functions

Content
and metadata

sources

Content

Service control functions
IPTV

 terminal
functions

Home
network
functions

Core transport
functions

Content
delivery

and storage
functions

Content
delivery

client
functions

Access network
functions

Delivery
network
gateway

functional
block

Resource control
functional block

Authentication
and IP allocation
functional block

Transport
management

functional
block

Content delivery
management

functional
block

Edge
functions

Service user
profile functional

block

Control
client

functional
block

IPTV service
control functional

block

Content
distribution
and location

control
functions

Delivery protocols

End-user device
management

functional
blockContent

and
control

Transport
functions

Content and metadata

Transaction
protocol

Multicast
delivery
control
protocol

Authentication
and

configuration
protocol

Content delivery
functions

Network
functions

Figure 6-1 – IPTV functional architecture

According to [ITU-T H.720], terminal middleware is located on the terminal side. It is a mediating
entity between two information elements in the terminal device, and WBTM could be various
engines along with a set of high-level services (e.g., HTML, CSS, Lua and SESL [ITU-T H.764]).

According to [ITU-T H.720], IPTV terminal middleware is hardware-agnostic. As one type of
implementation, WBTM in the IPTV terminal device provides various integrated functional blocks
and APIs for high-level services, which could be programmed in a WBTM script or by other
methods, to implement IPTV services with the integration of IPTV services such as VoD and
linear TV.

6.2 Terminal middleware

Terminal middleware is the middleware which sits in the end user's premises and primarily enables
IPTV terminal functions, see Figure 6-2. The terminal middleware in the IPTV terminal device is
shown on the left-hand side.

6 Rec. ITU-T H.730 (06/2012)

H.730(12)_F6-2

Application functions Management
functions

Service control
functions

Content delivery
functions

End-user
functions

IPTV
terminal
functions

Terminal
middleware

Home network
functions

Network functions

Figure 6-2 – IPTV terminal functions and terminal middleware

6.3 WBTM architectural overview

IPTV services can be deployed with web-based applications as well as middleware-based services
for interactive IPTV data services. Many types of IPTV terminal device types can be used, which
introduces a wide range of middleware environments: different middleware, application interfaces,
content formats, etc. This heterogeneity makes service interoperability difficult. However, most
devices have web-based standard user agents, which allow access to web content or support web
applications. Therefore, web-based middleware can work as a common cross platform over
different devices.

Also, IPTV services need to support seamless capabilities to users, regardless of device type, or
across different service providers. Therefore, users can access the same IPTV service independently
of the type of IPTV device. In this context, IPTV users and mobile IPTV users can enjoy the same
services/applications over different IPTV devices for some types of services, e.g., social networking
services, updated content notifications, etc. Therefore, IPTV services need to support
interoperability for web-based applications among different devices.

To share such kinds of web applications or content over different IPTV devices, web-based
middleware covers some service capabilities, as well as the web-based core engine.

Figure 6-3 gives the layered view of WBTM architecture.

Appendix I describes certain use cases of services using WBTM.

H.730(12)_F6-3

WBTM
plug-in API

User experience and applications

WBTM

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

WBTM plug-in

API
Service logic
adaptation

Multiple engine
architecture

UE skin and
customization

Resource
abstraction layer

Figure 6-3 – Layered view of IPTV web-based terminal middleware architecture

 Rec. ITU-T H.730 (06/2012) 7

7 Interfaces

Figure 7-1 shows the IPTV TD functional architecture recommended in [ITU-T H.720]. WBTM is
recommended to have interfaces with those functions in IPTV TDs.

H.730(12)_F7-1

SADS client
functional block

IPTV application
client

SCP client functions

Service protection client
functional block

Content protection client
functional block

Control client
functional block

Performance
monitoring

IPTV terminal functions

Application client functions

Content delivery client functions

Media client functions

Demux/
Mux

Storage Codecs Media
control

Metadata
managementBcast

Demux

Multicast content
delivery client

functional block

Unicast content
delivery client

functional block

Error recovery
client functional

block

T
er

m
in

al
 d

ev
ic

e
m

an
ag

em
en

t

IPTV terminal transport functions Network attachment
client

Figure 7-1 – Functional architecture block diagram of IPTV
terminal devices [ITU-T H.720]

7.1 IPTV terminal transport functions interfaces

This is the interface between WBTM and the IPTV TD transport functions.

The handling of the IP-based connection between the delivery network gateway and IPTV TD, or
between the IPTV network and IPTV TD is performed through this interface.

7.1.1 Network attachment client interface

This is the interface between WBTM and the IPTV TD network attachment client component.

In a web-based service discovery scenario, the network attachment client interface may be relevant.
Otherwise, this lies beyond the scope of this Recommendation.

7.2 Content delivery client functions interface

This is the interface between WBTM and IPTV TD content delivery client functions.

Reception and control of content delivery from the content delivery and storage functions is enabled
through this interface.

8 Rec. ITU-T H.730 (06/2012)

7.2.1 Broadcast demux interface

This is the interface between WBTM and an IPTV TD in a hybrid environment.

IPTV TD supports both IP content reception and non-IP content reception for terrestrial, cable or
satellite broadcast services.

7.2.2 Multicast content delivery client functional block interface

This is the interface between WBTM and an IPTV TD multicast client functional block.

Multicast protocols, such as IGMP for IPv4 or MLD for IPv6, are handled through this interface.

7.2.3 Unicast content delivery client functional block interface

This is the interface between WBTM and the IPTV TD unicast content delivery client functional
block.

For example, RTP and HTTP (for unicast content on-demand) are supported through this interface.

7.2.4 Error recovery client functional block interface

This is the interface between WBTM and IPTV TD error recovery client functional block.

This lies beyond the scope of this Recommendation.

7.3 Media client functions interfaces

This is the interface between WBTM and IPTV TD media client functions.

7.3.1 Media control interface

This is the interface between WBTM and the IPTV TD media control functional entity.

Control of video and audio components, as well as other components (such as metadata handling,
content storage including PVR control, and play/reproduction of content including streaming data),
is handled through this interface.

7.3.1.1 Video interface

This is the interface between WBTM and the IPTV TD video control component.

7.3.1.2 Audio interface

This is the interface between WBTM and the IPTV TD audio control component.

7.3.1.3 Other data format interface

This is the interface between WBTM and an IPTV TD for other multimedia data formats that are
commonly used, such as text (i.e., closed caption) and graphics.

7.3.2 Storage interface

This is the interface between WBTM and the IPTV TD storage functional entity.

Caching and storage of content and other application data is enabled through this interface.

7.3.3 Metadata management interfaces

This is the interface between WBTM and the IPTV TD metadata management functional entity.

Accessing and retrieving metadata and management of the local cached metadata is enabled through
this interface.

 Rec. ITU-T H.730 (06/2012) 9

7.4 SCP client functions interfaces

This is the interface between WBTM and IPTV TD SCP client functions.

7.4.1 Service protection client interface

This is the interface between WBTM and the IPTV TD for the commonly used service protection
function. This interface mediates service protection such as service authentication, service channel
protection, etc.

7.4.2 Content protection client interface

This is the interface between WBTM and the IPTV TD for commonly used content protection
functions. This interface mediates content protection functions such as content decryption, rights
and keys management.

7.5 Application client functions interface

This is the interface between WBTM and IPTV TD application client functions. There are three
types of application client functions:

1) Basic functions: applications include software components capable of enabling functional
and observable behaviour. Examples include GUI, SNF, VoD controls, SCP applications
and other service-related applications.

2) Management functions: some applications are responsible for basic management of the
IPTV TD, such as power management and event management.

3) Service support functions: some applications are responsible for support services, including
inter alia plugin applications, browser applications, media player applications or user agents
in general.

7.5.1 IPTV application client interface

This is the interface between WBTM and IPTV TD application client functions.

This interface accesses the following service-specific functional blocks:

1) On-demand client functional block: This functional block interacts with its server-side
counterpart to perform session management, service authorization, presentation of the
content metadata, and execution of the service logic for on-demand applications.

2) Linear TV client functional block: This functional block interacts with its server-side
counterpart to perform session management, service authorization, presentation of the
content metadata, and execution of the service logic for linear TV applications.

3) Other client functional blocks: These functional blocks interact with the other server-side
blocks relevant to the delivery and presentation of additional IPTV services and their
content (e.g., games, distant learning, audience measurement), and for the support and
management of modification, adaptation or integration of services and content
(e.g., uploading through a USB client interface of a family picture with a particular
template postcard provided from a server, or a video taken with a personal recorder with
additional text).

7.5.2 SADS client functional block interface

This is the interface between WBTM and the IPTV TD service and application discovery and
selection (SADS) client functional block.

This interface provides the end user's discovery and selection of IPTV services and applications.

7.6 Connection and session management interface

This is the interface between WBTM and the IPTV TD connection and session management.

10 Rec. ITU-T H.730 (06/2012)

7.7 Terminal device management interface

This is the interface between WBTM and the IPTV TD terminal device management functional
entity.

Setting terminal configuration values, e.g., local configuration, network interface, AV interface, is
enabled through this interface.

7.8 Performance monitoring interface

This is the interface between WBTM and the IPTV TD performance monitoring component.

8 Web-based engine structure

This clause identifies the modules that compose the structure of presentation engines for web-based
IPTV terminal middleware. Web-based IPTV terminal middleware defines a user agent
(e.g., browser and document renderer) as a presentation engine. Web-based middleware is based on
web standards with declarative formats as illustrated in Figure 8-1.

. . .

H.730(12)_F8-1

Presentation engine

Markup language
(HTML, LIME,
Ginga-NCL, ...)

Document interface
(DOM for IPTV,

language-specific ...)

Document style
(CSS for IPTV ...)

Scripting language
(IPTV SESL,

Lua for IPTV ...)

Extension
engine

Service
navigation Authentication

Event
dispatching

Figure 8-1 – Web-based engine structure

8.1 Markup language

Markup language support for IPTV applications includes a specialization of HTML for IPTV
services (currently under study within ITU-T), LIME [ITU-T H.762] and Ginga-NCL
[ITU-T H.761].

8.2 Document access interface

Document access interface is the interface specification that provides document access and editing,
such as the DOM profile for IPTV (currently under study within ITU-T) or NCL editing commands
in [ITU-T H.761].

8.3 Document style

Document style is the style description for web documents, such as the CSS profile for IPTV
[ITU-T H.763.1].

8.4 Scripting language

The scripting language is the element that allows for embedding imperative behaviour to web
documents, like the service enhanced script language (SESL) profile for IPTV in [ITU-T H.764] or
the Lua profile for IPTV currently under study within ITU-T.

 Rec. ITU-T H.730 (06/2012) 11

8.5 Extension engine

The extension engine provides additional service navigation and discovery according to the service
information provided by using the extended script.

Besides the basic requirement of a user agent, extended mark-up elements and scripts are used to
expand the user experience. Moreover, extended script could be used to accomplish user
interactivity, such as service navigation, authentication and event dispatch.

Moreover, the presentation engine layer could directly access the resource abstraction layer (RAL)
[ITU-T H.720] for the resource layer to gain better performance, through a WBTM plugin API, for
example. Web applications could be downloaded by the user agent to provide temporary service
[ITU-T J.200].

9 WBTM for IPTV services

9.1 WBTM for basic IPTV services

The following functionalities are provided by web-based terminal middleware for basic IPTV
services, such as those defined in [ITU-T H.721].

9.1.1 Licensing

– The function to get an IPTV licence: obtain the licence for the specified content.

– The function to get IPTV licence information: obtain information concerning the specified
licence.

– The function to get a DRM ID: obtain the identifier of the CAS/DRM client supporting the
specified CAS/DRM.

9.1.2 Content initialization

– The function to launch IPTV content: to initialize IPTV content by launching it.

9.1.3 Service registration

– The function to set IPTV service registration information: to set the basic registration
information of linear IPTV and VoD services.

– The function to check IPTV service registration information: to confirm the basic
registration information of linear IPTV and VoD services.

9.1.4 Communication of licence information

The function to set content package information: set the information for the purchased content
package.

The function to update package licence information: update the information of the licences for all
package content.

9.1.5 Page-transition control

The function to launch an unmanaged document: changes to a document in the unmanaged state.

The function to get the document's management status: obtains the information on the management
status of the document.

9.1.6 Text animation control

The function to display marquee text: displays the strings as marquee, e.g., in the "p" element of
HTML specialization for IPTV services currently under study within ITU-T.

12 Rec. ITU-T H.730 (06/2012)

9.1.7 Parental control function

The function to check the parental control password: confirms the password for ensuring parental
control.

9.1.8 Non-volatile memory access

The function to read and write from the local cache memory: access the non-volatile memory.

9.2 WBTM for advanced IPTV services

The service components for advanced services can be designed as "plugins" that can be added
selectively on web-based terminal middleware. These plugins interact with host applications that
reside either on web-based terminal middleware or on the server-side to provide enhanced services.
Other plugins in web-based terminal middleware, which are called WBTM plugins, interact with
functions residing either on service components, on the RAL or on resources. They can be deployed
separately, depending on what kind of service is to be offered. The enhanced services that can be
provided by WBTM plugins and WBTM scripts on web-based IPTV terminal middleware are listed
in Table 1.

Table 1 – List of enhanced services

Presence service: Provides services using information on the end user's service usage
state and statistics.

Communication service: Provides functionalities for the end user to exchange information
such as voice, video and data and includes many types of
communication such as telephony, video telephony, video
conference, messaging, chatting, etc.

Caller ID service: Provides features allowing the Caller ID of the incoming call to be
displayed on the terminal device.

Personalization service: Provides services to support personal settings or to recommend
preferable content or services.

Widget service: Provides running environments for widget application.

Multi-device/screen service: Provides methods and protocols for multimedia presentation over
multiple devices.

Feeds reader service: Provides services to subscribe, get notification on updates, and read
contents with RSS and Atom.

Audience measurement service: Provides services to collect and deliver audience measurement data.
WBTM scripts may provide the function to deliver audience
measurement data to an audience measurement server, and WBTM
plugins may provide the function to collect audience measurement
data by communicating with service components or other
components in the IPTV terminal device. Appendix III shows an
example of web-based terminal middleware architecture with the
audience measurement service.

PIP service: Provides the capability to display different media content on the
screen, which is composed of two or more video screen windows.

PVR service: Provides a personal video record function so that end users can
retrieve and play back the recorded video later.
For example, the PVR will be able to support a personal channel
service which allows generation of the end user's preview schedule,
customized according to his/her preferences or lifestyle.

 Rec. ITU-T H.730 (06/2012) 13

Table 1 – List of enhanced services

Advertising service: Provides IPTV advertising services which are quite different from
traditional linear TV advertising. The IPTV terminal device is
capable of supporting additional advertising services such as
targeted advertising and on-demand advertising of the full-fledged
terminal device model currently under study within ITU-T.

14 Rec. ITU-T H.730 (06/2012)

Annex A

General requirements for IPTV WBTM

(This annex forms an integral part of this Recommendation.)

Table A.1 – General requirements for IPTV WBTM

 Item Note

1 General requirements

1) Middleware
requirements

R-01: IPTV WBTM is required to support
terminal device start-up and the initialization
function.

Clause 7.1

R-02: IPTV WBTM is required to support
server-side device start-up and the initialization
function.

N/A

R-03: IPTV WBTM, if trick mode is supported,
it is required to support play, pause and stop
functions.

Clause 7.3.1

2) Middleware
recommendations

RR-01: IPTV WBTM is recommended to
support application management (e.g.,
application lifecycles, application states).

Clause 7.5

RR-02: IPTV WBTM is recommended to be
hardware and operating system (OS)
independent.

Common part

RR-03: IPTV WBTM is recommended to
support pause in a PVR-capable terminal or
system.

Clause 7.3.1

RR-04: IPTV WBTM is recommended to
manage skip forward and skip backward
functions (e.g., by time period, interval, location
in content).

Clause 7.3.1

RR-05: IPTV WBTM is recommended to
support executing multiple simultaneous
applications.

Clause 7.5

RR-06: IPTV WBTM is recommended to
support a means to change the style of EPG.

Clause 7.3.3

RR-07: IPTV WBTM components are
recommended to facilitate service processes
interaction among IPTV devices (e.g., a server
and its clients, such as a STB, security system,
or VoD server).

Common part

RR-08: IPTV WBTM is recommended to be
able to manage the IPTV application profile
information.

Clause 7.5

RR-09: IPTV WBTM is recommended to
support presentation capabilities for multimedia
data (e.g., audio, video, graphics, text and
images) providing the browsing, the
synchronization and the interaction of such data
with the end user [ITU-T Y.1910].

Clause 7.5

 Rec. ITU-T H.730 (06/2012) 15

Table A.1 – General requirements for IPTV WBTM

 Item Note

3) Middleware
options

OR-01: IPTV WBTM can optionally support the
decoding of service information (SI).

Clause 7.3.3

OR-02: IPTV WBTM can optionally support a
shortcut mechanism for selection.

Clause 7.3.3

OR-03: IPTV WBTM can optionally support
metadata compression.

Clause 7.3.3

2 Middleware application programming interfaces

1) Middleware
requirements

R-01: IPTV WBTM is required to provide an
API for stopping and starting the presentation of
video and audio.

Clause 7.3.1

R-02: IPTV WBTM is required to provide an
API to communicate with service providers to
implement media transmission and media
control functions.

Clause 7.3.1

R-03: IPTV WBTM is required to provide an
API to access metadata information.

Clause 7.3.3

2) Middleware
recommendations

RR-01: IPTV WBTM is recommended to
support an API to access information on
removable storage devices (e.g., USB key).

Clause 7.3.2

RR-02: IPTV WBTM is recommended to
support an API for controlling (e.g., selecting,
showing and hiding) subtitles and a closed
captioning display.

Clause 7.3.1

RR-03: IPTV WBTM is recommended to
include an API to access user preferences (e.g.,
accessibility features and display settings)
available on a removable storage device (e.g.,
smartcard).

Clause 7.3.2

RR-04: IPTV WBTM is recommended to
provide service enabling APIs.

Clause 7.5

RR-05: IPTV WBTM APIs are recommended to
be open, flexible, granular, self-contained and
components-based.

Common part

RR-06: IPTV WBTM is recommended to
provide an API to support a variety of mixed
media formats to be presented together (e.g., an
HTML text page embedding a video stream).

Clause 7.3.1

RR-07: IPTV WBTM is recommended to
provide an API to support picture-in-picture.

Clause 7.3.1

RR-08: IPTV WBTM is recommended to
provide an API to manage captioning including
the selection from a range of languages, speed
and verbosity.

Clause 7.3.1

3) Middleware
options

OR-01: IPTV WBTM can optionally provide an
API for recording programmes locally.

Clause 7.3.1

16 Rec. ITU-T H.730 (06/2012)

Appendix I

IPTV service model with WBTM

(This appendix does not form an integral part of this Recommendation.)

This use case illustrates how WBTM can be applied in IPTV services. Several use cases are
possible and the example here focuses on two types of service. The first is a general service case
illustrating HTML content service with a web portal server. The other example explores an
enhanced IPTV service case where an IPTV community portal service provides services amongst
IPTV service users.

HTLM

H.730(12)_FI.1

IPTV TD

Browser

WBTM

IPTV community portal server

Return path

Portal web server

Content creation

Head-end

Broadcast/
multicast

Return path

Figure I.1 – Example of IPTV services with WBTM

I.1 Use case: General IPTV service

Figure I.1 shows a conceptual service from web content creation delivery to an IPTV terminal, and
then the return path for interactive operation. WBTM can be used with ITU-T IPTV various classes
of terminal, e.g., basic terminal mode, fully-fledged mode or mobile terminal mode.

I.2 Use case: Enhanced IPTV service (IPTV community portal service)

The support of better user service experience requires enhanced IPTV service support in IPTV
terminals using WBTM (see also clause 8, on service components to support enhanced services).
These service components use mixed functional entities and are implementation-dependent. An
IPTV community portal service is a popular enhanced IPTV service. The example in Figure I.1 also
shows functionalities that are required for an IPTV community portal service.

An IPTV community portal server can have several components: user management, metadata
management, content management, media management, etc. The user management component
manages a user's login history information and account management. The metadata management
component comprises processing for metadata management, electronic programme guide (EPG)
management and syndication operation. The content management component is provided for page
management, content search and content transformation. The media management component is for
processing A/V media content management and video tagging processing.

 Rec. ITU-T H.730 (06/2012) 17

Appendix II

Audience measurement architecture in web-based terminal middleware

(This appendix does not form an integral part of this Recommendation.)

Figure II.1 shows an example of audience measurement in WBTM. The "AM data delivery" script
denotes a WBTM script that delivers audience measurement data (AM data) to aggregation
functions [b-ITU-T H.741.0]. This WBTM script may be downloaded from a server. "AM data
collection" refers to a WBTM plugin that collects audience measurement data to communicate with
media management functionality in service components. Both the AM data delivery WBTM script
and AM data collection WBTM plugin provide audience measurement services in IPTV terminal
devices with web-based terminal middleware. For example, An AM data delivery WBTM script
may be written using functions to access web servers. If the AM data collection WBTM plugin is
written using portable interfaces between WBTM and service components, the plugin will also be
portable.

Figure II.2 shows another example of audience measurement in WBTM. The "AM data
management" WBTM script and the "AM data collection and delivery" WBTM plugin implement
the audience measurement service in the IPTV terminal device with web-based terminal
middleware. "AM data management" denotes a WBTM script that manages the delivery timing
from an IPTV terminal device to the aggregation functions. It sets the timing to run the "AM data
collection and delivery" WBTM plugin using the presentation engine. This plugin collects audience
measurement data by communicating with the media management functions in the service
components and delivers the AM data using the RAL. In this example, delivery protocols between
"AM data collection and delivery" WBTM plugin and aggregation functions can be selected
independently from the specification of [b-ITU-T H.750] and other IPTV multimedia application
framework Recommendations (ITU-T H.76x series).

H.730(12)_FII-1

WBTM
plug-in API

User experience, application layer WBTM script

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-in

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

WBTM
plug-in

suite

AM data
collection

AM data delivery

Figure II.1 – Audience measurement architecture in WBTM

18 Rec. ITU-T H.730 (06/2012)

H.730(12)_FII-2

WBTM
plug-in API

User experience, application layer WBTM script

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-in

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

WBTM
plug-in

suite

AM data
collection and

delivery

AM data
mgmt (timing...)

Figure II.2 – Another web-based terminal middleware architecture with AM service

 Rec. ITU-T H.730 (06/2012) 19

Appendix III

Examples of script and plugin operation modes in WBTM

(This appendix does not form an integral part of this Recommendation.)

This appendix describes the relationship between applications and IPTV terminal middleware, and
between "script" and WBTM.

III.1 Relationship between application and IPTV terminal middleware

In Figure III.1, the highest layer refers to user experience and applications, and IPTV terminal
middleware comprises all other parts except for the resources (HW & SW) layer and RAL. In web-
based terminal middleware for IPTV devices, a script is an application located in the highest layer
of the IPTV terminal software architecture. The highest layer application may consist of several
scripts (WBTM and non-WBTM ones), as well as non-script applications (WBTM plugin).

H.730(12)_FIII-1

WBTM
plug-in API

Reference point
User experience, application layer
(highest layer application)

IPTV terminal middleware (incl.WBTM)

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

WBTM
plug-in

suite

Figure III.1 – IPTV terminal middleware and the highest layer

Figure III.2 shows five types of applications in the highest layer application, denoted A1 to A5. The
applications may be resident or downloadable. In the figure, A1 is a WBTM script and A2 is a
WBTM plugin application (which may itself contain scripts) that uses WBTM functions and service
component functions, while A3, A4 and A5 are WBTM plugin applications that directly use service
component functions, RAL functions, and functions in resources, respectively. One should note that
while both A4 and A5 use functions that are not provided by IPTV terminal middleware, A4 is
portable (since it is based on RAL) and A5 is not portable (implementation-specific). All WBTM
plugins are IPTV terminal applications.

As WBTM scripts have the highest portability, it is important that they be clearly specified in
ITU-T Recommendations. In order to extend the ability of A1 while keeping the highest portability,
the ability of WBTM is extended by the means of WBTM plugins. In Figure III.2, WBTM can only
use functions provided by service components.

20 Rec. ITU-T H.730 (06/2012)

WBTM
plug-in API

H.730(12)_FIII-2

User experience and application layer

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-inIPTV terminal middleware (incl.WBTM)

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

A1 A2

A3

A4
A5

Figure III.2 – Relationship between applications in the highest layer
application and the lower layers

Figure III.3 shows the use of WBTM plugins to gain extended portability. Reference point R3 is the
interface with RAL, and R4 is the interface with the resources layer. Application A6 is a WBTM
plugin application with WBTM scripts, which is called by the WBTM via a WBTM script and uses
RAL functions through interfaces R1 and R3. Application A6 also uses functions in service
components through R2 and R5. Though A6 uses functions provided by RAL, A6 keeps the highest
portability by use of R1 and R3.

WBTM
plug-in API

H.730(12)_FIII-3

User experience and application layer

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-inIPTV terminal middleware (incl.WBTM)

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

A1

R
1

R
2

R
5

R
3

R
4

A6

Figure III.3 – Reference points from WBTM to other components

 Rec. ITU-T H.730 (06/2012) 21

III.2 Relationship between WBTM and WBTM plugin

Figure III.4 shows the location of both WBTM and the WBTM plugin in an IPTV terminal device.
The WBTM plugin can be called from the WBTM script as A7 and A8. WBTM script A7 is a
WBTM script that needs WBTM plugin P1, and P1 uses one or more functions in the service
component. These functions are not included in the generic function of WBTM. WBTM script A8
needs WBTM plugin P2. P2 uses one or more functions in the service component as P1 does and
uses functions in the resource abstraction layer. As P1 is independent from the RAL, it is more
portable than P2.

WBTM
plug-in API

H.730(12)_FIII-4

W
B

T
M

pl
u

g-
in

 A
P

I

User experience and application layer WBTM script

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-in

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

P1A8A7

P2

Figure III.4 – WBTM plugin and WBTM

Figure III.5 shows another example of a WBTM plugin. The difference between Figure III.4 and
Figure III.5 is the WBTM plugin. The interface between WBTM script A8 and WBTM is the same
in figures III.4 and III.5. This means that WBTM plugins P2 and P3 provide the same interface for
WBTM scripts. The difference between P2 and P3 is the interfaces between WBTM and its lower
layer. As P3 directly uses RAL and the resources layer, P3 may be faster than P2. However, P3 is
dependent on the resources layer, hence it is less portable than P2.

22 Rec. ITU-T H.730 (06/2012)

WBTM
plug-in API

H.730(12)_FIII-5

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

A8

P3

User experience and application layer WBTM script

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-in

Figure III.5 – Another WBTM plugin that calls RAL and WBTM

Figure III.6 shows the most complicated example of the relationship between WBTM and WBTM
plugins. A9 is a WBTM script which is executed by the WBTM presentation engine and it calls
WBTM plugin P4 via the WBTM script APIs. P4 is a WBTM plugin using a WBTM script, service
component and RAL. Since P4 contains the WBTM script A10, A10 calls the WBTM plugin P5 via
the WBTM script APIs to gain the additional abilities implemented by P5.

WBTM
plug-in API

H.730(12)_FIII-6

WBTM plug-in API

User experience
and applications

Presentation engine layer

Service components

System
Mgmt

Media
Mgmt Com. Metadata

Application
manager

RAL

Resources (HW and SW)

A9

P5

User experience and application layer WBTM script

IPTV terminal middleware (incl.WBTM)

Reference point

WBTM plug-in

A10

P4

Figure III.6 – WBTM script calls WBTM plugin

 Rec. ITU-T H.730 (06/2012) 23

Appendix IV

Examples of WBTM overall workflow with
the ITU-T H.76x series of Recommendations

(This appendix does not form an integral part of this Recommendation.)

IV.1 Use case 1: Service display workflow

The user agent in the presentation engine extends its ability with the help of an extension engine to
meet the needs of IPTV services' requirements. In Figure IV.1, the web document programmed
using a Recommendation of the ITU-T H.76x series is located in the user experience and
applications layer, and can be executed by the user agent. The end user experiences the IPTV
service via the web documents, which contain EPG information, executed and displayed by the user
agent. In order to provide the IPTV service, the terminal device will implement the following steps
shown in Figure IV.1:

Step 1: The user agent in the WBTM downloads the web documents from the web server in the
IPTV service platform.

Step 2: The user agent analyses the web documents and executes the scripts (e.g., SESL
[ITU-T H.764], Lua profile for IPTV (currently under study within ITU-T), etc.).

Step 3: The user agent calls the functional block "Media Management" defined in the service
components layer to communicate with the streaming server in the IPTV service
platform and the streaming server feeds back the required video stream.

Step 4: The media management component receives and decodes the video from the streaming
server.

Step 5: The decoded video output from the media management component and web documents
displayed by the user agent are sent together to the output service component.

Step 6: The output service component refreshes the display on the TV.

24 Rec. ITU-T H.730 (06/2012)

. . .

H.730(12)_FIV-1

Web documents in [ITU-T H.76x] Working steps

Service components

System
Mgmt

App
Mgmt Com. Output

Metadata
Media
Mgmt

User experience and applications

RAL

Resources (HW and SW)

Presentation engine layer

Markup
language

Document
interface

Document
style

Scripting
language

Extension
engine

Service
navigation Authentication

Event
dispatching

5

3

2

API

5

W1

IPTV service
platform

Web server

Streaming server

1

4

6

User agent

Figure IV.1 – Service display working flow using WBTM

IV.2 Use case 2: User interactive working flow with media management

Clause 7.3 defines the interfaces between WBTM and IPTV TD media client functions and
clause 7.3.1 defines how to control video/audio/other media.

Web-based IPTV middleware defines a user agent (e.g., browser, document renderer, etc.) as a
presentation engine, and web standards with declarative formats are used. Since the scripting
language specifications that allow embedding imperative behaviour to web documents are part of
the web-based presentation engine, a detailed interface definition is required by scripting languages
(e.g., IPTV SESL [ITU-T H.764] and the Lua profile for IPTV (currently under study within
ITU-T)) between WBTM and IPTV TD media client functions:

Media control interface: Media control interfaces are required for providing STB capabilities
that control the life cycle of the media and provide methods like
pause, resume, fast-forward, fast-rewind, etc.

Video interface: Video interfaces are required for providing video-related methods that
support functionalities like media codec selection, video output
control, etc.

Audio interface: Audio interfaces are required for providing audio-related methods that
support functionalities like audio channel switching, audio codec
selection, etc.

In this example, after the user watches the web documents and decoded the video stream on a TV,
he selects a VoD programme to play. During the VoD's playback, the user presses the "PAUSE"
key on the remote control to pause the VoD. Figure IV.2 illustrates the flow of how the WBTM
handles the procedure to interact with the user; this is described below:

 Rec. ITU-T H.730 (06/2012) 25

H.730(12)_FIV-2

. . .Extension
engine

Service
navigation Authentication

Event
dispatching

Web documents in [ITU-T H.76x] Working steps

Service components

System
Mgmt

App
Mgmt Com. Output

Metadata
Media
Mgmt

User experience and applications

RAL

Resources (HW and SW)

Presentation engine layer

Markup
language

Document
interface

Document
style

Scripting
language

8

7 5

1

API

8

W2

IPTV service
platform

Web server

Streaming
server

1

6

9

3

User agent

4

2

Figure IV.2 – Working flow of user interaction handled by WBTM

Step 1: The user agent downloads the web documents with WBTM scripts from the web server
in the IPTV service platform to play the VoD.

Step 2: The user presses the "PAUSE" key on the remote.

Step 3: The key pressed status is sent to the "Event Dispatching" block in the extension engine
through the service components layer.

Step 4: The user agent in the presentation engine layer receives the "PAUSE" key press event
and executes the WBTM scripts (e.g., SESL, Lua, etc.) to handle the event.

Step 5: The user agent calls the media management service component.

Step 6: The media management service component communicates with the streaming server in
the IPTV service platform to pause the video stream.

Step 7: The media management service component feeds back the successful communication
result to the user agent.

Step 8: The media management service component refreshes the video display and the user
agent refreshes the web document display according to the operation result.

Step 9: The output service component refreshes the display on the TV.

26 Rec. ITU-T H.730 (06/2012)

Appendix V

An implementation example for WBTM with
interface description language

(This appendix does not form an integral part of this Recommendation.)

This appendix provides an example of an implementation where WBTM can work on a terminal
device using an interface description language (IDL).

V.1 Use case 1: WBTM interface list

The example in Figure V.1 shows the overall function list to support interactive IPTV applications,
which are implemented via WBTM.

5:34

H.730(12)_FV.1

Welcome to ITU-T WBTM!

This file is located at assets/index.html

Interfaces

1. IPTV terminal transport functions(*)

2. Content delivery client functions

3. Media client functions

4. SCP client functions(*)

5. Application client functions

6. Connection and session management

7. Terminal device management

8. Performance monitoring

Figure V.1 – WBTM interface list

 Rec. ITU-T H.730 (06/2012) 27

V.2 Use case 2: Media client functions interfaces for WBTM

Figure V.2 shows an example of media client that supports media-related information.

5:36 5:38

H.730(12)_FV.2

Welcome to ITU-T WBTM!
This file is located at assets/

Media_Client_Functions.html

Welcome to ITU-T WBTM!
This file is located at assets/MediaPlayer_Audio.html

Media client functions MediaPlayer Audio

MediaPlayer

MediaRecorder

MediaPlayer Audio

REW

VOL –

Time

mp3:http://192.168.1.55/wbtm/000_Poison.mp3

00:03

STOP

PLAY/PAUSE FF

VOL +

03:43

Figure V.2 – Display of media clients function interface

Figure V.3 illustrates the IDL sample for the implementation of the above functions.

function play() //AudioPlayer play
{
 MediaPlayer.play();
}

function pause() //Pauses playback
{
 MediaPlayer.pause();
}

function stop() //AudioPlayer stop
{
 MediaPlayer.stop();
}

function start() //AudioPlayer stop
{
 AudioPlayer.audioPlay();
 duration();
}

function stop() //AudioPlayer stop
{
 on = 1;
 AudioPlayer.audioStop();
}

function FF() //AudioPlayer fast-foward (5 seconds)
{
 AudioPlayer.audioFF();
}

function REW() //Audioplayer rewand (5 seconds)
{
 AudioPlayer.audioREW();
}

function volumeUp() //Sets Audio Volume up

28 Rec. ITU-T H.730 (06/2012)

{
 AudioPlayer.audioVolumeUp();
}

function volumeDown() //Sets Audio Volume down
{
 AudioPlayer.audioVolumeDown();
}

function audioPath(arg) //the audiopath of the file
{
 AudioPlayer.audioPath(arg);
}

function gerDuration() //Get the duration of the file
{
 time = string(AudioPlayer.audioDuration());
 }

function getCurrentPosition() //Get the current playback position
{
 time = string(AudioPlayer.audioCurrentPosition());
 }

Figure V.3 – IDL for the example in Appendix III

 Rec. ITU-T H.730 (06/2012) 29

Appendix VI

An example of the interface description language for WBTM APIs

(This appendix does not form an integral part of this Recommendation.)

The interface description language (IDL) description in this appendix describes the interfaces of the
WBTM APIs; this is provided for a better understanding of WBTM.

VI.1 Interfaces

VI.1.1 IPTV terminal transport functions interfaces

VI.1.1.1 Network attachment client interface

DiscoveryFinder: Find one or more terminal device.

interface DiscoveryFinder
{
 public DiscoveryServiceCollection find(in string strName, in int
nTimeoutInMS); // Find a device of special name in local network, with in time
out
 public DiscoveryServiceCollection find(in int nTimeoutInMS); // Find all
device in local network, with in time out
 public void done();// Stop finding
};

VI.1.2 Content delivery client functions interface

VI.1.2.1 Broadcast demux interface

VI.1.2.1.1 Broadcast

interface Broadcast
{
 // Broadcasting Type define
 const long BROADCAST_TYPE_TERRERRESTRIAL = 0; // Non IP - TERRERRESTRIAL
 const long BROADCAST_TYPE_CABLE = 1; // Non IP - CABLE
 const long BROADCAST_TYPE_SATELLITE = 2; // Non IP - SATELLITE
 const long BROADCAST_TYPE_UNICAST = 3; // Over IP - UNICAST
 const long BROADCAST_TYPE_MULTICAST = 4; // Over IP - MULTICAST
 boolean OpenBroadCast(); // Open and Connect to Broadcasting
 void CloseBroadCast(); // Close or disconnect from Broadcasting
 void setBroadCastType(in long nType); // Set Broadcasting type
 void getBroadCastType(); // Get Broadcasting type
 void ChannelUp(); // Channel Up
 void ChannelDown();// Channel Down
 void setChannel(in ChannelInfo sToChannel); // Set Channel by Channel
information
 void setChannel(in string strChNum); // Set Channel by Channel number
 void SetDefaultChannel();// Set to default channel
 ChannelInfo getCurrentChannel();// Get current channel information
 string getCurrentChannelName();// Get current channel Name
 boolean StartChannelScan();// Channel scanning start
 void StopChannelScan();// Channel scanning start
 int getChannelCount();// Get available channels count
};

30 Rec. ITU-T H.730 (06/2012)

VI.1.2.1.2 Channel manager

interface ChannelManager
{
 attribute Vector m_vecChannels; // Channel vector
 attribute int m_ChannelIndex; // Current channel index
 int AddChannel(in ChannelInfo sCh); // Add Channel information to channel
vector - return channel count
 int getChannelCount(in ChannelInfo sCh); // Get Channel count of channel
vector
 boolean RemoveChannel(in string nChannelNum); // Remove channel information
from channel vector
 ChannelInfo FindChannel(in string nChannelNum); //Find Channel Information
via channel number
 boolean StartChannelScan();//Channel Scan Start
 boolean StopChannelScan();//Channel Scan Stop
 boolean ClearChannel();//Clear channel information from channel vector
 ChannelInfo ChannelUp();//Channel up
 ChannelInfo ChannelDown();//Channel Down
 ChannelInfo getCurrentChannel();//Get current channel information
 ChannelInfo SetDefaultChannel();//set to default channel
};

VI.1.2.1.3 Channel information

interface ChannelInfo
{
 attribute string mstrChannelName; // Channel Name
 attribute string mstrURL; // Channel attribute
Service URL
 attribute string mstrChannelNo; // Channel Number
 attribute int mnChannelFreq; // Channel Frequency
 attribute int mnChannelMajorCh; // Major Channel Number
 attribute int mnChannelMinorCh; // Minor Channel Number

 int getChannelFreq(); //Get Channel frequency
 void setChannelFreq(in long mnChannelFreq); // Set Channel Frequency
 int getChannelMajorCh(); // Get Major Channel Number
 void setChannelMajorCh(in long mnChannelMajorCh); // Set Major Channel
Number
 int getChannelMinorCh() ; // Get Minor Channel Number
 void setChannelMinorCh(in long mnChannelMinorCh) ; // Set Minor Channel
Number
 string getChannelName(); // Get Channel Name
 void setChannelName(string mstrChannelName) ; // Set Channel Name
 string getURL() ; // Get URL
 void setURL(string mstrURL) ; // Set URL
 string getChannelNo(); // Get Channel Num,ber
 void getChannelNo (string chNum) ; // Set Channel Number
}

VI.1.2.2 MulticastClient – Multicast content delivery client functional interface

interface MulticastClient
{
 attribute MulticastSocket mSocket; // MulticastSocket
 attribute int mPort ; // Port for Multicast
 attribute string mServerAddress ; // Server IP Address
 attribute InetAddress mAddress; // IP Address container
 attribute boolean bJoin; // Is Joined to multicast server
 void joinGroup(); //Join to Mulicast group
 void leaveGroup(); //Leave Mulicast group

 Rec. ITU-T H.730 (06/2012) 31

 void leaveGroup(); // Leave Mulicast group
 DatagramPacket getDataPacket(in long nDataLen); // Get DataPaket
 boolean isJoinned(); // Is Joinned to Multicast
};

VI.1.2.3 Unicast content delivery client functional block interface

This is a normal media player's function. A media stream or file can be played.

See clause VI.1.3 for the media client function.

VI.1.3 Media client functions interfaces

VI.1.3.1 MediaPlayer

MediaPlayer can be used to control the playback of audio/video files and streams.

interface MediaPlayer
{
 void getCurrentPosition(); //Gets the current playback position
 void getDuration(); //Get the duration of the file
 long getVideoHeight(); //Returns the height of the video
 long getVideoWidth(); //Returns the width of the video
 boolean isLooping(); //Checks whether the MediaPlayer is looping or non-
looping
 boolean isPlaying(); //Checks whether the MediaPlayer is playing
 void mediaPause(); //Pauses playback
 void seekTo(in long msec); //Seeks to specified time position
 void setLooping(in boolean looping); //Sets the MediaPlayer to be loopint
or non-looping
 void mediaVolumeUp(); //Sets the MediaVolume 1 step up
 void mediaVolumeDown(); //Sets the MediaVolume 1 step dwon
 void mediaPlay(); //MediaPlayer play
 void mediaStop(); //MediaPlayer stop
 void mediaFF(); //MediaPlayer fast-foward (5 seconds)
 void mediaREW(); //Mediaplayer rewand (5 seconds)
 void MediaPath(in string path); //the Mediapath of the file, or the
http/rtsp URL of the stream you want to play
};

VI.1.3.2 Subtitle

interface SubTitle
{
 boolean mbVisible = true; //visible subtitles
 void subtitleVisible(in boolean visible); //true is visible. false is
invisible
 void subtitleFontSize(in long fontSize); //Subtitles font size
 void subtitleLocation(in long X, in long Y); //Subtitles locate position
 void subtitleDefaultPosition(); //Subtitles default position
 void subtileFF(in long time); //movement synchronization subtitles Fase-
Forward
 void subtileREW(in long time); //Movement synchoronization subtitles
Rewind
};

32 Rec. ITU-T H.730 (06/2012)

VI.1.3.3 MediaInfo

interface MediaInfo
{
 long long fileInfoDate_Created(); //The time the Media was Created to the
media provider Units are seconds since 1970
 long long fileInfoDate_Modified(); //The time the Media was last modified
Units are seconds sincd 1970
 string fileInfoDisplay_Name(); //The display name of this file
 long long getSize(); //The size of the file in bytes
 string getTitle(); //The title of the content
 string getArtist(); //Audio file info Artist
 string getAlbum(); //Audio file info Album
 string getFileName(); //Audio file info filename
 sCodecInfo videocodecInfo(); //Return video codec info
 sCodecInfo audiocodecInfo(); //Return audio codec info
};

VI.1.3.4 AudioPlayer

AudioPlayer class can be used to control playback of audio files and streams

interface AudioPlayer
{
 void getCurrentPosition(); //Gets the current playback position
 void getDuration(); //Get the duration of the file
 boolean isLooping(); //Checks whether the AudioPlayer is looping or non-
looping
 boolean isPlaying(); //Checks whether the AudioPlayer is playing
 void Pause(); //Pauses playback
 void seekTo(in long msec); //Seeks to specified time position
 void setLooping(in boolean looping); //Sets the player to be loopint or
non-looping
 void VolumeUp(); //Sets Audio Volume up
 void VolumeDown(); //Sets Audio Volume dwon
 void Play(); //AudioPlayer play
 void Stop(); //AudioPlayer stop
 void FF(); //AudioPlayer fast-foward (5 seconds)
 void REW(); //Audioplayer rewand (5 seconds)
 void audioPath(in string path); //the audiopath of the file, or the
http/rtsp URL of the stream you want to play
};

VI.1.3.5 MediaRecorder

Used to record audio and video. The recording control is based on a simple state machine.

interface MediaRecoder
{
 void getRecodertime(); //Gets the Recodertime
 void getDuration(); //Get the duration of the file
 long getVideoHeight(); //Returns the height of the video
 long getVideoWidth(); //Returns the width of the video
 boolean isRecording(); //Checks whether the MediaRecorder is recording
 void pauseRecorder(); //Pauses playback
 void stopRecorder(); //MediaRecorder stop
 void playRecorder(in string file, in long type); //Default MediaRecorder
play
 void playAudioRecorder(in string file, in long audioSource, in long
outputFormat, in long audioEncoder, in long maxDuration, in long maxFileSize);
//Detail setting for AudioRecording by user
 void playMediaRecorder(in string file, in long audioSource, in long

 Rec. ITU-T H.730 (06/2012) 33

videoSource, in long outputFormat, in long audioEncoder, in long vidoeEncoder,
in long width, in long height, in long videoFrameRate, in long maxDuration, in
long maxFileSize); //Detail setting for MediaRecording by user
 // Defines the audio source. These constants are used with
setAudioSource(int)
 const long AudioSource.DEFAULT = 0;
 const long AudioSource.MIC = 1;
 const long AudioSource.VOICE_UPLINK = 2;
 const long AudioSource.VOICE_DOWNLINK = 3;
 const long AudioSource.VOICE_CALL = 4;
 const long AudioSource.CAMCORDER = 5;
 const long AudioSource.VOICE_RECOGNITION = 6;
 //Defines the video source. These constants are used with
setVideoSource(int)
 const long VideoSource.DEFAULT = 0;
 const long VideoSource.CAMERA 1 = 1;
 const long VideoSource.CAMERA 2 = 2;
 //Defines the output format. These constants are used with
setOutputFormat(int)
 const long OutputFormat.DEFAULT = 0;
 const long OutputFormat.THREE_GPP = 1;
 const long OutputFormat.MPEG_4 = 2;
 const long OutputFormat.RAW_AMR = 3;
 //Defines the audio encoding. These constants are used with
setAudioEncoder(int)
 const long AudioEncoder.DEFAULT = 0;
 const long AudioEncoder.AMR_NB = 1;
 //Defines the video encoding. These constants are used with
setVideoEncoder(int)
 const long VideoEncoder.DEFAULT = 0;
 const long VideoEncoder.H263 = 1;
 const long VideoEncoder.H264 = 2;
 const long VideoEncoder.MPEG_4_SP = 3;
};

VI.1.4 SCP client functions interfaces

VI.1.4.1 DRM function interface

interface DRM
{
 struct DRMInfo{
 char SID[64]; //sellerID
 char SCID[128]; //SellerContentID
 char UID[64]; //UserID
 char UPW[64]; //Password
 };
 void setDRMInfo(in string SID, in string SCID, in string UDI, in string
UPW);
};

34 Rec. ITU-T H.730 (06/2012)

VI.1.4.2 CAS function interface

interface CAS
{
 long authorityCheck(in long CW); // decoding by CW
};

VI.1.5 Application client functions interface

VI.1.5.1 appExecuter – IPTV application client interface

interface appExecuter
{
 boolean isRunning(in string fileName); //Check isRunning
 void execute(in string filePath, in string fileName); //Execute program
 void terminate(in string fileName); //Kill the executed program
};

VI.1.5.1.1 Browser – Global function for WBTM client

interface Browser
{
 void navigate(in string strURL); // Go to the URL web site
 void closeApplication(); //Close the browser or exit web application.
 void goBack(); //Go back to history of URL stack.
 boolean canGoBack(); //Return true if this WebView has a back history
item.
 void zoomIn(); //Perform zoom in in the Browser
 void zoomOut(); //Perform zoom out in the Browser
 void goBackOrForward(in long steps); //Go to the history item that is the
number of steps away from the current item.
 void goForward(); //Go forward in the history of this Browser.
 void setVerticalScrollBarEnabled(in boolean b); //Specify whether the
vertical scrollbar has overlay style.
 string getUrl(); //Get the url for the current page
 boolean canGoBackOrForward(in long steps); //Return true if the page can
go back or forward the given number of steps.
 boolean canGoForward(); //Return true if this Browser has a forward
history item.
 void clearCache(in boolean includeDiskFiles); //Clear the resource cache.
 void clearFormData(); //Make sure that clearing the form data removes the
adapter from the currently focused textfield if there is one.
 void clearHistory(); //Tell the Browser to clear its internal
back/forward list.
 string getOriginalUrl(); //Get the original url for the current page.
 int getProgress(); //Get the progress for the current page.
 float getScale(); //Return the current scale of the Browser
 string getTitle(); //Get the title for the current page.
 void stopLoading(); //Stop the current load.
 void reload(); //Reload the current url.
};

 Rec. ITU-T H.730 (06/2012) 35

VI.1.5.1.2 WebSettings

interface WebSettings
{
 enum ZoomDensity { FAR, // 240dpi
 MEDIUM, // 160dpi
 CLOSE}; // 120dpi}
 int getDefaultFontSize(); //Get the default font size.
 boolean getAllowFileAccess(); //Returns true if this Browser supports
file access.
 int getCacheMode(); // Return the current setting for overriding the
cache mode
 string getCursiveFontFamily(); // Get the cursive font family name
 boolean getDatabaseEnabled(); // Returns true if database storage API is
enabled
 string getDatabasePath(); // Return the path to where database storage
API databases are saved for the current Browser
 int getDefaultFixedFontSize(); // Get the default fixed font size. The
default is 16.
 string getDefaultTextEncodingName(); // Get the default text encoding
name
 WebSettings.ZoomDensity getDefaultZoom(); // Get the default zoom density
of the page
 boolean getJavaScriptEnabled(); // Return true if javascript is enabled.
The default is false.
 void setAppCacheEnabled(in boolean flag); //Tell the Browser to enable
Application Caches API.
 void setCacheMode(in long mode); //Override the way the cache is used.
The way the cache is used is based on the navigation option
 void setCursiveFontFamily(in string font); //Set the cursive font family
name
 void setDatabaseEnabled(in boolean flag); //Set whether the database
storage API is enabled
 void setDefaultZoom(in WebSettings.ZoomDensity zoom); //Set the default
zoom density of the page
 void setDatabasePath(in string databasePath); //Set the path to where
database storage API databases to be saved
 void setDefaultFixedFontSize(in long size); //Set the default fixed font
size.
 void setDefaultFontSize(in long size); //Set the default font size
 void setJavaScriptEnabled(in boolean flag); //Tell the Browser to enable
javascript execution.
 void setStandardFontFamily(in string font); //Set the standard font
family name.
 void setSupportZoom(in boolean support); //Set whether the Browser
supports zoom
 boolean supportZoom(); //Returns whether the Browser supports zoom
};

VI.1.5.1.3 URLUtil

interface URLUtil
{
 string decode(in string strUrl, in string encode); //Decode url
 string guessUrl(in string inUrl); //Cleans up (if possible) user-entered
web addresses
 boolean isAboutUrl(in string url); //True iff the url is an about: url.
 boolean isAssetUrl(in string url); //True iff the url is an asset file.
 boolean isContentUrl(in string url); //True iff the url is a content:
url.
 boolean isDataUrl(in string url); //True iff the url is a data: url.
 boolean isFileUrl(in string url); //True iff the url is a local file.
 boolean isHttpUrl(in string url); //True iff the url is an http: url.

36 Rec. ITU-T H.730 (06/2012)

 boolean isHttpsUrl(in string url); //True iff the url is an https: url.
 boolean isJavaScriptUrl(in string url); //True iff the url is a
javascript: url.
 boolean isNetworkUrl(in string url); //True iff the url is a network url.
 boolean isValidUrl(in string url); //True iff the url is valid.
 string stripAnchor(in string url); //Strips the url of the anchor.
};

VI.1.5.2 SADS client functional block interface

VI.1.5.2.1 Starter

interface Starter
{
 void getInstance(); // Gets this sigleton instance of the Service starter
 void goHome(); // Browser to HomeScreen of WBTM. You can choose one of
the Contents provider and service category.
};

VI.1.6 Connection and session management interface

VI.1.6.1 CookieManager

interface CookieManager
{
 boolean acceptCookie () ; //Return whether cookie is enabled
 string getCookie(in string url); //Get cookie(s) for a given url so that
it can be set to "cookie:" in http request header.
 boolean hasCookies (); //Return true if there are stored cookies.
 void removeAllCookie (); //Remove all cookies
 void removeExpiredCookie (); //Remove all expired cookies
 void removeSessionCookie (); //Remove all session cookies, which are
cookies without expiration date
 void setAcceptCookie (in boolean accept); //Control whether cookie is
enabled or disabled
 void setCookie (in string url, in string value); //Set cookie for a given
url.
};

VI.1.6.2 CookieSyncManager

interface CookieSyncManager
{
 void resetSync () ; // resets sync manager's timer
 void run () ; //Starts executing the active part of the class' code.
 void startSync () ; //startSync() requests sync manager to start sync
 void stopSync () ; //stopSync() requests sync manager to stop sync
 void sync () ; //sync() forces sync manager to sync now
};

 Rec. ITU-T H.730 (06/2012) 37

VI.1.7 Terminal device management interface

VI.1.7.1 NetworkSetting

interface NetworkSetting
{
 attribute boolean mbDHCP; // is DHCP or Not
 attribute string mstrIPAddress; // Local Ip Address
 attribute string mstrSubnetMask; // Subnet Mask
 attribute string mstrGetWay; //Gateway IP
 attribute boolean mbAutoDNS; // Get DNS Address automaticaly
 attribute string mstrPrimDNS; // Primary DNS
 attribute string mstrSecDNS; // Secondary DNS
 boolean IsDHCP(); // Get Information about DHCP or Not
 void SetDHCP(in boolean bdhcp); // Set DHCP or Not
 void setIPAddress (in string strIP); // Set IP Address
 string getIPAddress (); // Get IP Address
 void setSubnetMask(in string strIP); // Set Subnet Mask
 string getSubnetMask (); // Get Subnet Mask
 void setGateway(in string strIP); // Set Gateway
 string getGateway(); // Get Gateway Address
};

VI.1.7.2 StorageManager

This class represents the storage manager which keeps track of the storage devices attached to the
system.

interface StorageManager
{
 const long STORAGETYPE_HD = 0;
 const long STORAGETYPE_USB = 1;
 long getStorageType();//Return StorageType
 void onRemove(in long storageType); //Remove Storage
 void onAttach(in long storageType); //Attach Storage
 const long STORAGE_ADDED = 0;
 const long STORAGE_REMOVED = 1;
 const long STORAGE_CHANGED = 2;
 long addStorageManagerListener(in StorageManagerListener listener);
//Return STORAGE_ADDED
 long removeStorageManagerListener(in StorageManagerListener listener);
//Return STORAGE_REMOVED
 sequence<string> getMountList(); //Return MountList
 octet getTotalVolume(); //Return TotalVolume
 octet getFreeVolume(); //Return FreeVolume
 octet getUsedVolume(); //Return UsedVolume
 const long FAT16 = 0;
 const long FAT32 = 1;
 const long NTFS = 2;
 const long EXT2 = 3;
 const long EXT3 = 4;
 const long RAISERFS = 5;
 long getFileSystem(in long storageType); //Return storage filesystem
};

38 Rec. ITU-T H.730 (06/2012)

VI.1.7.3 MicController

interface MicController
{
 const long RET_OK = 0;
 const long RET_NOT_SUPPORTED = 1;
 const long RET_FAIL = 2;
 void instance(); //Create MikeController object.
 void setVolume(in long level); //Set microphone volume to level.
 void getVolume(); //Get current microphone volume.
 void setMikeEnabled(in boolean enable); //Set microphone Enable or
disable.
 void isMikeEnabled(); //Check is microphone enabled.
 void MikeMute(); //Check whether themicrophone mute is on or off.
 void setMikeMute(in boolean on); //Sets the microphone mute on or off
};

VI.1.7.4 VolumeController

interface VolumeController
{
 void getInstance(); //Create VolumeController object.
 void setVolumeLevel(in long value); //Set speaker volume to the level.
 void setMute(in boolean isMute); //Set Mute
 boolean isMute(); //Check is muted
 void getCurrentVolumeLevel(); //Get current volume level.
 void systemVolumeUp(); //Set SystemVolume 1 step up.
 void systemVolumeDown(); //Set SystemVolume 1 step down.
 void mediaVolumeUp(); //set MediaVolume 1 step up.
 void mediaVolumedown(); //set MediaVolume 1 step down
 void getMaxVolumeLevel(); //Get maximum volume leavel.
 void getMinVolumeLevel(); //Get minimum volume level.
};

VI.1.7.5 PowerManager

interface PowerManager
{
 void goToSleep(in long long time); //Force the device to go to sleep.
Overrides all the wake locks that are held.
 void isScreenOn(); //Returns whether the screen is currently on. The
screen could be bright or dim.
 void reboot(); //Reboot the device. Will not return if the reboot is
successful.
};

VI.1.7.6 System Clock

interface SystemClock
{
 long long currentThreadTimeMillis(in boolean realTime); //Returns
milliseconds running in the current thread.
 long long elapsedRealtime(); //Returns milliseconds since boot, including
time spent in sleep.
 boolean setCurrentTimeMillis(in long long millis); //Sets the current wall
time, in milliseconds. Requires the calling process to have appropriate
permissions.
 void sleep(in long long ms); //Waits a given number of milliseconds(of
uptimeMillis) before returning.
};

 Rec. ITU-T H.730 (06/2012) 39

VI.1.8 Performance monitoring interface

VI.1.8.1 MemoryInfo

interface MemoryInfo
{
 long long totalMemory(); //Returns the total amount of memory which is
available to the running program.
 long long freeMemory(); //Returns the amount of free memory resources
which are available to the running program.
 long long maxMemory(); //Returns the maximum amount of memory that may be
used by the virtual machine, or Long.MAX_VALUE if there is no such limit
 long long usedMemory(); //Returns the amount of Usedmemory resources which
are available to the running program.
};

VI.1.8.2 ProcessorInfo

interface ProcessorInfo
{
 struct Processor
 {
 string mName;
 long mID;
 };
 long getTotalProcessor(); // Count of All Processor
 int CPUUsageRate(); // Get CPU Usage Rate
 int ProcessorRate(in long ProcessorID); // Get Processor's Usage Rate
 void KillProcessor(in long ProcessorID); // Kill Processor
 void KillAllProcessor(in string strProcessorName); // Kill Processor vis
Processor name
 typedef sequence<Processor> GetWorkingProcessorList(); //Get Progessor
List
};

VI.2 Web-based engine structure

VI.2.1 Markup language

VI.2.1.1 MLDocument

interface MLDocument
{
 void load(string URL); // load url
 boolean isLoading(); //Check whether current page is loading
 string getURL(); // Get current url
 boolean isComplete();// Check whether current page loads complete
 void stopLoad(); //stop loading page
 boolean isStopping(); //Check whether current page stop loading
 ResourceError getError(); //Get Loading error information
};

VI.2.1.2 ResourceError

interface ResourceError
{
 string domain(); //get the domain
 int errorCode(); //get errordode
 string localizedDescription(); //get error code descriptione
};

40 Rec. ITU-T H.730 (06/2012)

VI.2.2 Document access interface

VI.2.2.1 DOM node

interface DOMNode
{
 string getNodeName(string strNode); //get node name
 void setNodeValue(string strValue); //setting node value of current node
 string nodeValue(string strNode); //get node value
 string nodeType(string strNode); //get node type
 DOMNode parentNode(string strNode); //get parent node
 DOMNodeList childNodes(); //get child node list of current node
 DOMNode firstChild(); //get first child node of current node
 DOMNode lastChild(); //get last child node of current node
 DOMNode previousSibling(); // get the previous sibling node
 DOMNode nextSibling(); //get the next sibling node
 boolean removeChild (DOMNode oldChild); //remove child node of current
node
 boolean appendChild(DOMNode newChild) //append child node of current
node
 boolean hasChildNodes(); //return true if node has children
 boolean hasAttributes(); //return ture if node has attributes
};

VI.2.2.2 DOM node list

interface DOMNodeList
{
 DOMNode item(UINT index); //get DOMNode of DOMNodeList
 int length(); //get length of DOMNodeList
};

VI.2.2.3 DOM document

interface DOMDocument
{
 void Load(string strFile); // load DOM file
 DOMNodeList getElementsByTagName(BSTR tagName);
 // returns a NodeList of all a elements with a specified name
 DOMElement getElementById(BSTR elementId);
 //returns the first element with the specified id
};

VI.2.2.4 DOM element

interface DOMElement
{
 string getAttribute(string name); // gets an attribute value by name
 void setAttribute(string name, string value); // adds a new attribute.
 void removeAttribute(string name); // removes a specified attribute
};

 Rec. ITU-T H.730 (06/2012) 41

VI.2.3 Document style

VI.2.3.1 Style sheet

interface StyleSheet
{
 CSSRule ownerRule(); //get Parent(Owner)'s Rule
 CSSRuleList* rules(); //get rulelist
 int addRule(string selector, string style, int index); //Add rule to
style sheet
 int addRule(string selector, string style); //Add rule to style sheet
 void removeRule(unsigned index); //remove rule from style sheet
 boolean isLoading(); //Check whether style sheet is loading
 boolean isComplete() ; // Check whether style sheet loads complete
};

VI.2.3.2 Rule

interface Rule
{
 boolean isStyleSheet(); //check sytlesheet
 boolean isCSSStyleSheet(); //check CSS style sheet
 boolean isXSLStyleSheet(); //check XSL style sheet
 boolean isStyleSheetList() ; //check style sheet list
 boolean isMediaList(); // check media list
 boolean isMediaRule(); // check media rule
 boolean isRuleList(); // check rulelist
 boolean isRule(); // check rule
 boolean isStyleRule(); // check style rule
 boolean isCharsetRule(); // check charset rule
 boolean isImportRule(); //check imported rule
 boolean isFontFaceRule(); // check fontface rule
 boolean isPageRule(); // check page rule
 boolean isUnknownRule(); // check unknown rule
 boolean isValue(); // check a value
 string getValue(); //get value
};

VI.2.3.3 Rule list

interface RuleList
{
 int length() ; //get item length
 Rule item(unsigned index); //get rule item of list
 int insertRule(Rule*, unsigned index); //insert a new rule
 void deleteRule(unsigned index); // delete rule
 void append(CSSRule); // append a new rule
};

VI.2.4 Scripting language

VI.2.4.1 Script

Script
{
 JSValue executeScript(string script, boolean forceUserGesture);
 // execute script string
};

42 Rec. ITU-T H.730 (06/2012)

VI.2.4.2 Script value

ScriptValue
{
 enum JSType
 {
 UnspecifiedType = 0;
 NumberType = 1;
 BooleanType = 2;
 UndefinedType = 3;
 NullType = 4;
 StringType = 5;
 };
 boolean isUndefined(); //check undefined type
 boolean isNull(); //check null type
 boolean isBoolean(); //check boolean
 boolean isNumber(); // check number
 boolean isString(); // check string
 boolean getBoolean(); //get boolean value
 double getNumber(); //get number value
 string getString(); //get string value
};

 Rec. ITU-T H.730 (06/2012) 43

Bibliography

[b-ITU-T H.741.0] Recommendation ITU-T H.741.0 (2011), IPTV application event handling:
Overall aspects of audience measurement for IPTV services.

[b-ITU-T H.750] Recommendation ITU-T H.750 (2008), High-level specification of metadata
for IPTV services.

[b-ITU-T Y.101] Recommendation ITU-T Y.101 (2000), Global Information Infrastructure
terminology: Terms and definitions.

[b-ITU-T Y.110] Recommendation ITU-T Y.110 (1998), Global Information Infrastructure
principles and framework architecture.

[b-W3C WebArch] W3C Recommendation (2004), Architecture of the World Wide Web, Volume
One.

Printed in Switzerland
Geneva, 2013

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. H.730 (06/2012) – Web-based terminal middleware for IPTV services
	Summary
	History
	Keywords
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	6.1 Application and middleware in IPTV architecture
	6.2 Terminal middleware
	6.3 WBTM architectural overview

	7 Interfaces
	7.1 IPTV terminal transport functions interfaces
	7.2 Content delivery client functions interface
	7.3 Media client functions interfaces
	7.4 SCP client functions interfaces
	7.5 Application client functions interface
	7.6 Connection and session management interface
	7.7 Terminal device management interface
	7.8 Performance monitoring interface

	8 Web-based engine structure
	8.1 Markup language
	8.2 Document access interface
	8.3 Document style
	8.4 Scripting language
	8.5 Extension engine

	9 WBTM for IPTV services
	9.1 WBTM for basic IPTV services
	9.2 WBTM for advanced IPTV services

	Annex A – General requirements for IPTV WBTM
	Appendix I – IPTV service model with WBTM
	I.1 Use case: General IPTV service
	I.2 Use case: Enhanced IPTV service (IPTV community portal service)
	Appendix II – Audience measurement architecture in web-based terminal middleware
	Appendix III – Examples of script and plugin operation modes in WBTM
	III.1 Relationship between application and IPTV terminal middleware
	III.2 Relationship between WBTM and WBTM plugin
	Appendix IV – Examples of WBTM overall workflow with the ITU-T H.76x series of Recommendations
	IV.1 Use case 1: Service display workflow
	IV.2 Use case 2: User interactive working flow with media management
	Appendix V – An implementation example for WBTM with interface description language
	V.1 Use case 1: WBTM interface list
	V.2 Use case 2: Media client functions interfaces for WBTM
	Appendix VI – An example of the interface description language for WBTM APIs
	VI.1 Interfaces
	VI.2 Web-based engine structure
	Bibliography

