International Telecommunication Union

ITU-T H.265

TELECOMMUNICATION (04/2013)
STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services — Coding of moving
video

High efficiency video coding

Recommendation ITU-T H.265

i

IR

Iinternationsl
Telscommunication
Union

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS
INFRASTRUCTURE OF AUDIOVISUAL SERVICES
General
Transmission multiplexing and synchronization
Systems aspects
Communication procedures
Coding of moving video
Related systems aspects
Systems and terminal equipment for audiovisual services
Directory services architecture for audiovisual and multimedia services
Quality of service architecture for audiovisual and multimedia services
Supplementary services for multimedia
MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures
Mobility for H-Series multimedia systems and services
Mobile multimedia collaboration applications and services
Security for mobile multimedia systems and services
Security for mobile multimedia collaboration applications and services
Mobility interworking procedures
Mobile multimedia collaboration inter-working procedures
BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL
Advanced multimedia services and applications
Ubiquitous sensor network applications and Internet of Things
IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV
General aspects
IPTV terminal devices
IPTV middleware
IPTV application event handling
IPTV metadata
IPTV multimedia application frameworks
IPTV service discovery up to consumption
Digital Signage

H.100-H.199

H.200-H.219
H.220-H.229
H.230-H.239
H.240-H.259
H.260-H.279
H.280-H.299
H.300-H.349
H.350-H.359
H.360-H.369
H.450-H.499

H.500-H.509
H.510-H.519
H.520-H.529
H.530-H.539
H.540-H.549
H.550-H.559
H.560-H.569

H.610-H.619
H.620-H.629
H.640-H.649

H.700-H.719
H.720-H.729
H.730-H.739
H.740-H.749
H.750-H.759
H.760-H.769
H.770-H.779
H.780-H.789

For further details, please refer to the list of ITU-T Recommendations.

Recommendation I'TU-T H.265

High efficiency video coding

Summary

Recommendation ITU-T H.265 represents an evolution of the existing video coding
Recommendations (ITU-T H.261, ITU-T H.262, ITU-T H.263 and ITU-T H.264) and was developed
in response to the growing need for higher compression of moving pictures for various applications
such as Internet streaming, communication, videoconferencing, digital storage media and television
broadcasting. It is also designed to enable the use of the coded video representation in a flexible
manner for a wide variety of network environments. The use of this Recommendation | International
Standard allows motion video to be manipulated as a form of computer data and to be stored on
various storage media, transmitted and received over existing and future networks and distributed on
existing and future broadcasting channels.

This Recommendation was developed jointly with ISO/IEC JTC 1/SC 29/WG 11 (MPEG) and
corresponds in a technically aligned manner to ISO/IEC 23008-2.

History

Edition Recommendation Approval Study Group
1.0 ITU-T H.265 2013-04-13 16

Rec. ITU-T H.265 (04/2013) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

©ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il Rec. ITU-T H.265 (04/2013)

http://www.itu.int/ITU-T/ipr/

0

CONTENTS

Page

INEEOAUCTION. ...ttt ettt b et h e et e st e s e et e b e ea e et e ebeeaeem e eneeseemeamseebeeeeebeeseeseeneensesenseabenaeas 1
(028 R & o) (4743 [OOSR 1
0.2 PUIPOSE ..ottt ettt ettt e st e et e s bt e e ateesabeeeabeesabeeenbeeaabaeenbeesabbeenbee e baeenteeebaeentaeenbaeentaeennes 1
0.3 APPIICALIONSviviieeieiietieteeteetesite st e bt eaeeteeseesseeseesseesseessesssessaesseessesssesseesseesseenseesseesaenseenseasseesbensseseenseensenneas 1
0.4 Publication and versions of this SPECITICALIONcc.eccviiiirieiieiieie ettt st teesseesbeennas 1
0.5 L) 1 (T 1S £V 0 L6 B (A2 C RO 2
0.6 Overview of the design ChAraCtErISLICScviiviirieriieiieie ettt e et e re et e e b e esbessbesssesseeseesseeneas 2
0.7 How to read thisS SPECITICALIONeiieriieiieiieieeieieete ettt sttt e te e e e et e see s e enseessessaesseenseenseensennnes 2
N TeT0) o OO OO UPORPPRRRUPRRPPO 3
NOTINALIVE TEIEBTETICESceuteutetiteteeieeet ettt ettt ettt ettt b e bt et et ettt b e s bt e bt e st e st et et et e b e sbeebeeaeeb s et entebenaeenes 3
2.1 L 1531 1<) 2) USSR PRRPRRSRIN 3
2.2 Identical Recommendations | International Standardsccoooeiriiiiiiieiiee e 3
2.3 Paired Recommendations | International Standards equivalent in technical contentcccocceveerieiieirnennne 3
24 AdditIONAl TEIETENCESoueeeiteiee ettt sttt ettt e et et e s bt bt e st es e en e e s e beebeebeebeeneeneeneensenteneeeaeene 3
DIEEINIEIONS ..ttt ettt h bt e e et e bt e s bt e s bt et e e bt eat e e a e e eh e e bt ea b e ebteeb b e s bt e be et e enbesatesaeenbeebeenee 3
ADDIEVIATIONS ...ttt h et e e et sh e e s bt et e et e ea e e bt e bt e bt e bt eh e e bt e bt e bt et e eeteehtenhe e bt e teenteas 12
COMVEITIONS ...ttt sttt ettt et et et s b ekt b e ebees e e st ea s e s et e bt sh e eb e es e ea s et et e bt ab e eb e ebeee b emten s e b e abe b e ebeestentensesbesbeabesbeeneens 13
5.1 GETIETAL. ...ttt bttt ettt b e e bt e h et b e bbbt e he ettt h e b she bt eat et et et b e 13
5.2 ATIRMETIC OPEIALOLS ...ouvieiieiieieeieeiieett et et eteettestee bt e e essesaaesseesseeseenseanseassessseseenseensesssessaesseenseenseensesnsesnsenns 13
RO T O T (71 o) o3 110 ¢SS 13
5.4 RelatioNal OPETALOTSc.veeieiieiiieiieie et eieete st e e eteete et teeteessee s e esseessesaeesseesseenseenseanseesseassessaenseenseenseensennsennnanns 14
TR T & 31 g Tl o) o T ¢ 110 ¢SSP RRTRUSUSPRN 14
5.6 ASSIZNIMENE OPEIALTOIS. .. .eeuiitietieieeiteeteertterteesteeteeueesteeteenteemteeseeaseesseeseemseeaeeeseesseanseanseenseeseenseenseeseenseensesnnanns 14
oI A 2 1 o(110 -1 () o OSSPSR 14
5.8 Mathematical fUNCHIONS.ocuieiieieeie ettt ettt ettt et e e e e s et e te e teeaeeeseesseeaseenseenseeneesneenns 15
5.9 Order of OPeration PIrECEAGICEeeuieiiriieetieetiete et ettt et et ettt e setesee e bt e et et e esee st e e teeaseensesseeaseeseenseeneesneenns 15
5.10 Variables, syntax elements, and tables...........cccoeriiiiiiiiieiieeee e 16
5.11 Text description Of I0ZICAl OPETALIONS......cc.eeteruietieieieie ettt ettt te sttt sttt e et e e s testesbeeeeeneeneeseeneeseseeseeenes 17
S.12 PIOCESSES -.cuuveiieteenteeute ettt ettt ettt se e s bt e st e bt ea et e at e eh e et em bt ea b e es e e bt e eh e e bt et e et e eh e e eh e et e en bt eateeh e e bt e abe e bt e beeneeeaeeae 18
Bitstream and picture formats, partitionings, scanning processes, and neighbouring relationshipsc..cccc..... 18
6.1 BItStIEAIM FOTTIIALSceueeuieieieite ettt h ettt b e bt b e h e st et et s b e st e e bt sbeebeene et et e te b e 18
6.2 Source, decoded, and output PICLUIE fOTMALSccvieeiiiieiieiieieeie ettt ettt e te et e eseesaessaesaeessessnesnnenns 18
6.3 Partitioning of pictures, slices, slice segments, tiles, coding tree units, and coding tree blocks....................... 21
6.3.1 Partitioning of pictures into slices, slice segments, and tilesceevverieriecieriienieene e 21
6.3.2 Block and qUAALIEE SLIUCTUTESccuervieterieeiieietitesteet ettt ettt ettt ettt sbeebe et sa et besieeaeene 22
6.3.3 Spatial Or COMPONENE-WISE PATLIONINESevveveereereererrereesseesseesseesessresseesseesseesessessessesseesseessesssesseene 23
6.4 AVAIIADIIILY PIOCESSES .. .vievvitieiieiietesiestesteesteeteeeteetteseesseenseessesseesseesseensesssesssesseasseenseassesssessaenseesseensennsesnsenns 23
6.4.1 Derivation process for z-scan order block availability..........cccoeoiriiiiiiiiiieee e 23
6.4.2 Derivation process for prediction block availabilityccceeieiiieiiiiiinieiieeee e 24
6.5 SCANMING PIOCESSESveeuveentienteeueeaueeattesseerteeateeeesaeesaeasseaaseanseanseasseaseaaseanseanseamsesmeesaeesseanseanseanseenseensesneesseenseennes 25
6.5.1 Coding tree block raster and tile scanning CONVEISiON PrOCESSceverreertierierierierieenieenieeeeseeeseeeneeeeeens 25
6.5.2 Z-scan order array initialiZation PIOCESScovirueruiruerieiieierieste ettt ettt e e ste st be et eseeseeseeseestesbesaeeneens 26
6.5.3 Up-right diagonal scan order array initialiZation PrOCESS.cceruteterierierierierieseeeteeieeneeeeseeseeseeseesseeneeneens 26
6.5.4 Horizontal scan order array initialiZation PrOCESS..........cueueriererertirteieieriese ettt et e e see et eae e eneene 27
6.5.5 Vertical scan order array initialiZation PIOCESScc.erverueeierieriertertenieeiteteteie e stesieeteeseeteseseestesbesaeeaeens 27
SYNLAX ANA SEIMANTICS ... eectiertretieieiteiterterteeteeteeteeteesteesseesseessessaesseesseesseesseessesssesssesseesseessesssesssesseesseessesssesssesseenns 28
7.1 Method of specifying syntax in tabular fOrm..........ccoeceriieiiiiiiii e 28
7.2 Specification of syntax functions and dESCIIPLOIS.......c.eecuerierieriieiieiie et et eteeee st e e eeeeeaessaesseesseesesnnesneenes 29
7.3 Syntax in tabULAT Oooiiiiiiieicc et sttt ettt e e neeestesseenseensesssessaessaenseenns 30
7.3.1 INAL UNIE SYIIEAX . ..evtenteieeterteete ettt sttt sttt ettt ettt sb e eb e eat et et st e ebesbeebeeat et et enae et e sbeebeebeeaeensensentenbenbeas 30
7.3.1.1 General NAL UNIt SYNEAXeeiuieiiiiieeiieiiertierte et eteetee st et et eseeeseessee st e seeseeeesneesseesseenseeseenseeneens 30
7.3.1.2 NAL UNit header SYNTAXccueiiiiiieeieitieieeie ettt ettt ettt e et e s bt esbe e seeteeseesneesaeenseenneeneeas 30

Rec. ITU-T H.265 (04/2013) il

v

7.3.2 Raw byte sequence payloads, trailing bits, and byte alignment SyNtax...........ccoceeeeeeeeieriereneseseseeeeeene 31

7.3.2.1 Video parameter set RBSP SYNEAXccuoiiiiiiiiiieieeee ettt 31
7.3.2.2 Sequence parameter sSet RBSP SYNtaX......c.coiviiiiiiiiiiiiiiieciesiieeiteseeeeeste ettt 32
7.3.2.3 Picture parameter set RBSP SYNtAX.......cccueiiiiiiiiiiiiiiieii ettt se et eae e e sseeseenseesseas 34
7.3.2.4 Supplemental enhancement information RBSP SyNtaX...........ccccccvevieriieciiiienienieeeie e 35
7.3.2.5 Access unit delimiter RBSP SYNTAXcccviiiiiiiiiiiieriesiiee ettt eene s 35
7.3.2.6 End of sequence RBSP SYNEAXccoccuiiiiiiiiieieeie sttt ettt eaesee e sneeseenseenneas 35
7.3.2.7 End of bitstream RBSP SYNEAX.......ccocciiiiiiieiieii ettt ettt eee e sseenseeneeas 35
7.3.2.8 Filler data RBSP SYNTAXccuiiiiiiietiiitieitiete ettt ettt et et esee st e st ebeeneeeneesaeesseenseenseeneeas 36
7329 Slice segment layer RBSP SYNEAXcccuiiiiiieiieieeie ettt snee e e 36
7.3.2.10 RBSP slice segment trailing bits SYNTAXccceciiiiirieiieiieie ettt 36
7.3.2.11 RBSP trailing DitS SYNEAXeoueiueetieuieuieieiestesteete et ettt etete st e te s bttt eteeseessensenseabesaeebeeseeneeneenseabesaeeseanean 36
7.3.2.12 Byte aliZNMENt SYNMTAXc.eeruieiieiieiieetientieteete ettt ettt ettt et e b e e esteebee s bt e s bt e bt eseesatesbe et e et enteas 36
733 Profile, tier and 16Vl SYNTAX.........c.eivieriieiiieiieiieieeiet ettt ste e ae st e sseesseesseesseessessaessaesseesseessessnanes 37
734 Scaling LISt dAtA SYNEAX......eeovieriieiieiieeieitestestteteetestesteesseesesseseesseesseesseesseessesssesssesseesseessessseessesssesseenes 38
7.3.5 Supplemental enhancement information MESSAZE SYNLAXc..eevvereeriierieeieeieniereesteesseeeeseeseeesseesseesnenes 38
7.3.6 Slice seZMENt NEAACT SYNEAXccuieiieiieieeiesiieieee et steste st et ete et e eaeesseesseesseesseessessaesseesseensesnsesnnessnenns 39
7.3.6.1 General slice segment header SYNTAXcc.eecuerierieiieiieieee ettt sttt e e s e s enseeneeas 39
7.3.6.2 Reference picture list MOdifiCation SYNTAX........ccuvervirierieriieiieieeie sttt eieste st seeeseeeeeeeesneenseenseeneeas 41
7.3.6.3 Weighted prediction parameters SYNEAXcecueeeeriereereerieeeeeienteesteeteetesseesseesseesseeeeeneesneesseenseensens 42
7.3.7 Short-term reference PICture SEt SYNEAKueieeitierieieeieeiesteerte et eteetee st e e eteeseesseesseesseeseeseeneesneesneenne 43
7.3.8 STCe SEZMENT AATA SYNTAXeitiiiieiieiieeieet e et ee it et et eeesetestee et e et eneeeaeeesee st e beenseenseeneesseesseenseenneeneesneenne 43
7.3.8.1 General slice SeZMEnt At SYNTAXc.eouerieirieieieiete ettt et e sbe bt ae st ese e e e besaeseesbeeaeeneans 43
7.3.8.2 COAING tIEE UNIL SYMEAX ...veuveteeiitieuienieteteteateeteeteettetteeetestesseabesseeseeseensensanseasesaeaseeseaneensenseabesaeeseanean 44
7.3.8.3 Sample adaptive OFFSEt SYNMTAXc.iiiiiiieeieieeee et sttt st eee b ees 44
7.3.8.4 COdING QUAALIEE SYNMEAX.....ccuvertieiieieeieiiertteseesteeteeeeettesseesseesseesseessesssesseesseesseessesssesssesseesseenseessenssens 45
7.3.8.5 COAING UNTE SYNTAX 1..veevvieiieeiieitiesteesteesteeteeetestesseeseesseesseessesseesseesseessesssesssesssesseessessseessesseesseessesssenssens 46
7.3.8.6 PrediCtion UNTE SYNTAXccvecviiciieieeeesiiesieeteeteseesteesseeseesaesseesseesseesseessasssesseesseessesssesssesseesseessesssesssens 48
7.3.8.7 PCM SAMPIE SYNLAX ..eeeviiieiieniieiieiieeitestee it esteetesteseee st esteeseeeseesseenseensesssesssesseesseenseensesssesseenseensennsens 48
7.3.8.8 TTANSTOIM IEC SYNTAX ...euvieuvieuiieiieieeieste st et eteeteeitesste st esteesseessesssesseeseesseansesnsesssesseesseenseenseensennsens 49
7.3.8.9 Motion Vector differenCe SYNTAXccuerieriiereriieiieeie sttt ee et et et e stesaeseesseeseenseeneesneenseenseensens 49
7.3.8.10 TranSfOrm UNIt SYNEAXcccieruieriieieetieet et et e te e teeeee st ettt e et e et e e bt e st enseeneesneesseesseeneeeneeeseenseenseeneeas 50
7.3.8.11 ResidUAl COAING SYNAX ..c.veeuieniieiiietieetiete ettt ettt ettt et e st et et e e e eseesseesbe e seentesseesaeesneeseenseeneeas 51
7.4 SEIMANTICS ...eevvieieiieeiieetee et e st e et e st eeteesbeeeaseessbeeasseessseeasseesssaeasseesssaeasseesssaaasseesnsaeassesnsseanseesnssesnssesnsseensessnses 53
7.4.1 GEINETAL.....ooiieeiiii et e et e e ettt e e e et e e e et e e et e e e e etaa e e ettt e e eetteaeeatraeeeattraeeaareaean 53
7.4.2 INAL UNIE SEIMANTICS ...vviieiiiieeeieieeeetiieeeeieeeeeittee e ettt e e eetteeeeeteeeeeeaeseeaetseeeeesseeeassseeeesseseeessseeeassseeensseseeanes 53
7.4.2.1 General NAL UNit SEMANTICS.....cccuviiiieeiiieeiieeitieeieeeieeeteesteesteeetteesteessaeessaeesseeesseeseeessaeensessseeenses 53
74.2.2 NAL Unit header SCMANTICS........eccvieieiieitierieesieeteeteseeste et ereetesseesseesseessesssesseesseesseessesssesseesseessesssens 54
7.4.2.3 Encapsulation of an SODB within an RBSP (informative)ccccccovvierieniiecieiieeieeeeeeeeeeieenn 57
7.4.2.4 Order of NAL units and association to coded pictures, access units, and coded video sequences 58
7.4.3 Raw byte sequence payloads, trailing bits, and byte alignment SEMAaNticsccooceerverrerrrreereerieennns 61
74.3.1 Video parameter set RBSP SCMANTICScevieierieiieiieii et eteetesteee ettt st ee e sseenaeesseeneeas 61
7432 Sequence parameter set RBSP SEMANTICScovuieiiieiiiiiieiiiiieieeieee e 63
7.4.3.3 Picture parameter set RBSP SEMANTICSccueeoueriiiiiiieiieie et 68
7.4.3.4 Supplemental enhancement information RBSP Semanticscccceereroiriiiienieniec e 71
7.4.3.5 Access unit delimiter RBSP SEMANtICSccueiuieuiiieiiiiieie et 71
7.4.3.6 End of sequence RBSP SEMANTICS.....cc.eiiivieeieeiiieiieeiiiesie et esteestteesteeeteeeaeesbeesseesnseesnseessseessseennns 71
7.4.3.7 End of bitstream RBSP SEMANTICScc.eouiruiiuieiiiieieieieie ettt ettt s 72
7.43.8 Filler data RBSP SEMANTICS. ...c..ccutiieiiieniiiteitieteeitettete ettt ettt sttt s ebe e 72
7.4.3.9 Slice segment layer RBSP SEMANTICS.......cc.civveiiiriiiiiiiiiieeiteste et eetestee e s eebessaesaeesaeesseessessnessnenns 72
7.4.3.10 RBSP slice segment trailing bitS SEMANTICSccververieriieriieiieieeiesteeieete e seeseesseeseesseesseesseeseessens 72
7.4.3.11 RBSP trailing DitS SEIMANTICS.ccueeeurerieriiertiesieeiesteseeste et eteeeesseeseesseessessaesseesseenseesseessesseenseensennsens 72
7.4.3.12 Byte aligNment SCMANTICSc.eecverrerrieriiesieeiesteseesstesseeseesesseesseesseesseessesssesseesseesseessesssesssesseensessens 72
7.4.4 Profile, tier and 1€VE] SEMANTICSccvvieieierieeiieieeeeeee et e eete e e et e e e e e et e e eeaeeeeenaeeeeetneeeeenreeeennneens 72
7.4.5 Scaling list data SEIMANTICScc.eeruieiieeieetieet ettt ettt ettt e st et et e bt e tesseesaeesseesseemeeeneesneeneeenes 74
7.4.6 Supplemental enhancement information message SEMANTICSc.eerveeieeieriierieieeie e eee et ee e 76
7.4.7 Slice segment header SEMANTICSeeuieuirieiieiietiee ettt ettt et e bt e e esteeseesseesseesseenaeeneeeneene 76
7.4.7.1 General slice segment header SEMANTICSceeeierieririeiiet ettt s ebe e eneenene 76
7.4.7.2 Reference picture list modification SEMANTICSc.eeeerrierrieriieieiieiteeste ettt reereeeee e esreesneas 81
7.4.7.3 Weighted prediction parameters SEMANTICS.........eoveueruertererieeteeeesietestesiesteseeseeeeeeseeeenseneessesseseeesesneas 81
7.4.8 Short-term reference Picture SEt SCMANTICSccveevereieiierierierieeteeteereseesteesseeseessessesseesseesseessesseesseenns 82
7.4.9 Slice seZMENnt data SEMANTICSecvveriieieeieiieieerteesteeteseesteesteesteesseeseesseesseesseessesssesssesseessessseessesssesseens 84
7.4.9.1 General slice segment data SEMANTICSeerieruieriieiieieeiertese e etesreseesee e esaeeseseeesseesseeseenseensens 84

Rec. ITU-T H.265 (04/2013)

8

9

7.4.9.2 COodING tre€ UNIt SEMANTICS ... eveeueeuietestiete et eteeitettetete e eteetesteeteeseeseenteeeseaseseeebesseeseeneensensasessesseeneans 84

7.49.3 Sample adaptive OffSEt SEMANTICSeecvieeiiieieiieie ettt ettt ettt te et reeebeseeesaeesaeesaeesseernesrnenns 84
7.4.9.4 Coding QUAALIEE SEIMANTICSeeivieiieieiieiieieesteeteeteeteettesteesteeseessessaesseesseesseesseesseessesssesseesseessenssens 86
7.4.9.5 COAING UNTE SCMANTICSveitietietieteeieitesteseesteesseesteesteessesseeseesseessesssesssesseesseessesssesssesseesseesseessenssens 87
7.4.9.6 Prediction UNIt SEMANTICSc..eiueitirieieieterte ettt sttt ettt ettt besae bt et e b e beseesbesbesaeebeenean 88
7.4.9.7 PCM SAMPIE SEIMANLICSveevvieeeieereeiieiieieeieetestesttesseeseeseesseesseesseenseessesssesseeseensesnsesssesseesseeseensenssens 89
7.4.9.8 Transform tree SEMANTICS ...c..eeuerutiutiiertite ettt ettt ettt et eb ettt e st e b e et st e sbesaeeaeene 89
7.49.9 Motion vector difference SEMANTICScouerueruertirieiiietenie sttt ettt ettt et s eaeas 90
7.4.9.10 Transform UNit SEMANTICS......cevuteruieieeeieetieite et ettt eeee st ettt et e e st e be e teeeeemeesneesseesseeneeeneeeneenseenseeneeas 90
7.4.9.11 Residual cOdING SEMANTICSeeuieiieeieetieitieie ettt ettt et e et et e e eneeeeaesaeesseeneeeneeeneeeseeseenneeneeas 91
DIECOTINE PLOCESS ... eeutteuteeuteeiieeiieetee et et et eateett e bt e et eaeeeaee et e easeenseemseemeesaeeeaeenseamseenseeseeaseeaseenseenseemseemeeeneesneanseanseentens 93
8.1 GENETal dECOAING PIOCESS ...uveeutieuiietietieteete ettt sttt ettt eat e e bt et e bt ea bt eate s b eesbe e bt e bt satesaeeebee bt enteenteeseesbeenbeennes 93
8.2 NAL UNit ECOMINE PIOCESS. ..ceuviemtiemiieitietieetieet ettt ettt ettt et e bttt et e et e esbe e be e bt eabeeetesbeesbeenbeentesseesaeenaeenseenee 94
8.3 STICE ACCOUING PIOCESSvveuvieurieerirreriieitesteeteeteeteeteesseesseesseasseassasssassaessaesseassesssesssesssenseesseessesssenssesssesseesseeses 95
8.3.1 Decoding process for picture Order COUNTccvirierieriierieiieieeseerteeteeteeteesteebeessessaesseesseesseessessnessnenes 95
8.3.2 Decoding process for reference PICtUIE SEtc.ecierieriieiieiieiiereeie ettt e st teebeeaesae e esseesesseesnnenes 95
833 Decoding process for generating unavailable reference picturescvevvecveeierieneesieecieseeseese e 99
8.3.3.1 General decoding process for generating unavailable reference picturesoccevveevveceeeiereeneennen. 99
8.3.3.2 Generation of one UNavailable PICTUIEccieeiieierieiieieeie ettt nneennes 100
8.34 Decoding process for reference picture lists CONStIUCHION.ccveriereieriieiieieeie et ens 100
8.4 Decoding process for coding units coded in intra prediction Modeccceereeiiriirienieeeeeee e 101
8.4.1 General decoding process for coding units coded in intra prediction mode...........cccceveeveereeieneeneenne. 101
8.4.2 Derivation process for luma intra prediction MOde............oveeiuieiieiiiierieeeeee e 102
8.4.3 Derivation process for chroma intra prediction MOde............ccveevieiieuierrieiiieiieeeceece e 104
8.4.4 Decoding process for intra BIOCKSco.eeiiiiieieeice et 104
8.4.4.1 General decoding process for intra BIOCKSccueueiieiiiiiiiieieeeee e 104
8.4.4.2 Intra SAMPLE PrEAICLION ...c..eiuieuiiuieiieieieie ettt ettt st b e st be et et e e e sae b e enes 105

8.5 Decoding process for coding units coded in inter prediction MOAEc.evvveviveriieciieierienieee e 111
8.5.1 General decoding process for coding units coded in inter prediction mode..........c..ccveveriereeriervernnenne. 111
8.5.2 INtEL PIEAICTION PIOCESSuvieuveeuiertietieteeteetestesstesseesteesseessessaesseesseenseassesssesseesseanseenseansesssessaenseesesnsesnns 111
853 Decoding process for prediction units in inter prediction MOdecceevveeriieeieriierieriee e 114
8.5.3.1 GETIETAL. ...ttt ettt ettt b e e bt ae ettt b e e h e bt et ettt e b e nes 114
8.53.2 Derivation process for motion vector components and reference indices..........ecceveeereereereeneeennne 115
8533 Decoding process for inter prediction SAMPIEScevierieiiiiiiiereeee e 130
8.54 Decoding process for the residual signal of coding units coded in inter prediction mode....................... 137
8.54.1 L€ 11 1<) ¥ | ES OO RO OO PRSPPI 137
8.5.42 Decoding process for luma residual bIOCKSccoeiieriiiiiiiiiiiieeee e 138
8.5.43 Decoding process for chroma residual bIOCKSccooiiiiiiiiiieiiee e 139

8.6 Scaling, transformation and array construction process prior to deblocking filter process...........c.cevvvrvennns 140
8.6.1 Derivation process for quantization PArameEErS.c.eiverierreeruerreereesteesteesseeeeeseesseesseesesssesseesseessessnes 140
8.6.2 Scaling and transformMation PIOCESSc.civverieriieriirieeiesiieteeteeeesteesseesseeaesseesseesseeseesseessesssessesssesseens 141
8.6.3 Scaling process for transform COCTTICIENTScuevierieriieiieieeiee et 142
8.6.4 Transformation process for scaled transform coefficientscccceevueecierierienieciieeee e 143
8.6.4.1 GETIETAL ...ttt et ettt eb e e bt e ae et ettt b e e a e bttt ettt e enes 143
8.6.4.2 TTaNSTOIMALION PIOCESS. ... eteitieieeiieeiiertt ettt eete et et e et eeteeaeessee bt e bt eneeeneeenee st enseenteesaeaneeseenseenees 143
8.6.5 Picture construction process prior to in-loop filter ProCess.coovereererrierieriereee et 145
I U1 B (0 10] oI 6 LS o o) (0 Lot USSR 146
8.7.1 (€131 1<3 2 | OO PSPPI PP 146
8.7.2 DeDblOCKING fIIEET PIOCESS -...veeetiieieiieieiete sttt ettt ettt ae et e et e e bt sbeebe e st eseenee s enseneanseaseseeenes 146
8.7.2.1 L€ 11 1<) ¥ | ES OO OO OO OO PRSPPI 146
8.7.2.2 Derivation process of transform block boundarycccoevevierienieiieciieeceeeee e 148
8.7.2.3 Derivation process of prediction block boundaryccocvevvieciieieniienienieeee e 149
8.7.2.4 Derivation process of boundary filtering strength.............cccooveviieiiieiiiiieiicieeee e 149
8.7.2.5 EdZE fIlteriNgG PIOCESSevievieeiieiiieiieeiieiteteeteeteste st e e etesatesaee st enseenseensesssesseenseensesnsesnsesnnesseenseenes 150
8.7.3 Sample adaptive OFFSEt PIOCESSvivieiieiieiierierit ettt ettt ettt e et e s aesatesseeseenseenaesseenseensesnsenseens 158
8.7.3.1 GETIETAL ... ettt ettt ettt b e eb e bt et ettt b e e h e bt et ettt be e eaes 158
8.7.3.2 Coding tree block MOodification PrOCESS.ccuieuieruieriieiieie ettt ettt se e e 159
PATSIIIE PIOCESS . ettt ettt et ettt et et e st e et e et e e bt eatesateemeesaeesae e et emteeaeeesseeseaseenseenseenaeeneesneenaeeneenes 160
9.1 L€ 131 1<) v | DO OO OO OO URSROPSRRPRRRPRUPPIR 160
9.2 Parsing process for 0-th order EXp-Golomb COEScccueriiiiiiiiiiiiiieieieieie ettt 161
9.2.1 (€131 1<) v | OO P PP 161

Rec. ITU-T H.265 (04/2013) v

9.2.2 Mapping process for signed EXp-Golomb COAESoeiriiiiiiiiiniiiiieeee e 162

9.3 CABAC parsing process for Slice SEZMENt datacoeiiieieieiieiereee ettt 163
9.3.1 GEIIETAL. ...ttt ettt h bt h e e et et b et b e bt eb et e e b ekt e bbbt st e st et e te b e 163
9.3.2 INItIAlIZALION PIOCESS ..eevierierrieireeiieiiesteesteeteeteettesseesseesseesseasaesseesseesseassesseesseesseesseesseessesssesssessessseessenses 165

9.3.2.1 GEMIETAL ...ttt b et h e et b e bbbt bt et e e bbbt bt bt et eat et et et st enes 165
9322 Initialization process for conteXt Variablescccevierierieiiieieeieseeeee et 166
9.3.23 Storage process for CONteXt VAriables........c.ccveiieiiiiiiiie ettt 174
9324 Synchronization process for context variables............ocevvierierierierieeieeeeee e 174
9325 Initialization process for the arithmetic decoding engineccoeeeveeieeiirienieniee e 174
933 BINATIZAtION PIOCESS ... veveevieteeteeteette et et et et et e et este e bt eteeateeaeeesee st et e eneeeneeeseeaseenseenseenseeneesneesaeenseenes 175
9.33.1 L€ 153 1 1<) 2 | OSSPSR 175
9.33.2 Truncated Rice (TR) DINATIZATION PIOCESS ...c.veevvierriirierriereereeeeiteesteeteesreeseesseesseesseessesssesseesseesseesnas 177
9.3.33 k-th order Exp-Golomb (EGK) binarization PrOCESSc..ccuievireesreerieeireereseesreesreeseeseeseesseesseenns 178
9334 Fixed-length (FL) DINAriZation PrOCESSccueeeierieriieierieeteeteeietestenteste et eteeneeseeeeeesaeseeeseseeeneeseeee 178
9.3.3.5 Binarization process for part MOAEcccvireiieiiiierierieie ettt sreesaeebesaesaeesaeese s 178
9.3.3.6 Binarization process for intra_chroma_pred mode..........cccoovveviieciieiieiienieieeecee e 179
9.3.3.7 Binarization process for inter pred 1dC......iiiiiiiiiiiirieceee e 179
9.3.3.8 Binarization process for cu_gp_delta abscccoociiiiiriiiiiei s 180
9.3.3.9 Binarization process for coeff abs_level remaining............ccoecvveeerieriieiieeieniesiee e 180
934 Decoding ProCess flOW.......uieieeiieiieiieieee ettt ettt et e e st e b e et e enbeenaessaesstesseennesneesneenseenes 181
9.34.1 L€ 153 1 1<) 2 | OSSPSR 181
9342 Derivation process for ctxTable, ctxIdx and bypassFlagccoocoiiiiieiiiiii e 181
9.343 ATIthmEtic dECOAING PIOCESS. ... veuieutieiieieitie ittt ettt ettt ettt ettt et e bt et e st esbeesbee bt e et e aeesaeenaeenee 187
9.3.5 Arithmetic encoding process (INfOrMAatIVE)..........cviririeieieieie ettt 193
9.3.5.1 L€ 11 1<) | ES OO OO U PTUSPSRRPRRURI 193
9.35.2 Initialization process for the arithmetic encoding engine (informative)ccceevvevveecierveneenenes. 193
9.3.5.3 Encoding process for a binary decision (informative)ccoevvveeiieiesienienieeiesieseeseesie e e 194
9.3.54 Renormalization process in the arithmetic encoding engine (informative)...........ccoocvevvveeeervenneenens 195
9.3.5.5 Bypass encoding process for binary decisions (informative)...........ocevvereeeierienieneenieee e seeeenns 196
9.3.5.6 Encoding process for a binary decision before termination (informative)...........cceccereververvenieenenne 197
9.3.5.7 Byte stuffing process (InfOrMatiVe)cecveerieeeieriieiienieerit ettt seeae e sneeseenes 199
10 Sub-bitStream eXIraCtiOn PIOCESSeecueerueeuerreertianteerteeteeeesseesteeeeenteeseeaseesseanseaseansesseesseesseensesneesseeseenseensesneasseans 199
Annex A Profiles, tierS and LIEVEISooooiuiiiiiiiie e et e e e enneas 200

A.1 Overview of profiles, tiers and 1EVELSc.ccviiiiiiieiieiecee ettt e re b ens 200

A2 Requirements on video decoder Capabilitycccceeieieiieiieriireie ettt sttt 200

A3 PIOTILES ettt ettt he bt bt e n e en b et et et ekt ebeeaeententenseteateteaaea 200
A3.1 GEIIETAL. ...ttt h bbbt et et e bbbt bt bt et e et b e bt ehe bt ae e st et e tenbe e 200
A3.2 MAIN PIOTILE ..oueiiiieieeie ettt ettt e s te et e e b e e st e eta e e te et e e be e s b e et b e esaesbe e reenbeenaesaeenaeenreenns 200
A33 IMAIN 10 PIOTILE .vieiiiiiciieetete ettt ettt e et e s te e beesbeesbesseesseesseesseessaessasssenseenseensenseas 201
A34 Main Stll PiCture Profile........cc.eiieiieiieiiiiie ettt s st se et esaeensesseenseenseenseennennaens 201

y N U TS 31 1 La B (<) TSRS 202
A4l General tier and 1eVE] HMILScccveiiiiieiicie ettt ettt e snaessaesseeseenseennas 202
A4.2 Profile-specific level limits for the Main and Main 10 profilesccooiroinieniinieieceeeeeeeees 203
A43 Effect of level limits on picture rate for the Main and Main 10 profiles (informative)...........cc.cceceeneenne 205

Annex B Byte Stream fOIMALccoiiuiiiiiiieeiee ettt ettt ettt ettt et es e bt e b et e e naeeneesneenaeeneenes 209

2 20 B € 1<) T v | O OO OO OSSP ORI 209

B.2 Byte stream NAL unit syntax and SEMANTICScerueeueeieieieierie ettt eeeeetestesteseestesbeeseesteeen e sseseesseseeas 209
B.2.1 Byte stream NAL UNIE SYNEAX......coouiiiiiietietieeete ettt ettt ettt ettt sbte b ee b e eteetesseeseeesbeeneeenee 209
B.2.2 Byte stream NAL UNit SEMANTICSeevertieriieriieiieieseesteesieeseseeseesseesseessesssesssesseessesssesssesssessesssesssessees 209

B.3 Byte stream NAL unit deCOAING PIOCESS ...ccveerviervieiieiieiieitiesieeieetesteseeesseeseesesssesseesseesseessesssesssesseesseessesses 210

B.4 Decoder byte-alignment recovery (INfOrmMatiVe).........c.ccverieriieiiiiieiierieese ettt sieesreesre s eseesraesseesseenseennas 210

Annex C Hypothetical 1eference deCOARTc.ieiviiiiiieiiieiieie ettt ettt e e b be e b e esaessnesseesseesseens 211

Gl GNETAL ..ttt ettt b e bt h ettt b e bt bt e at sttt be s h e bbbt e b et et e 211

C.2 Operation of coded picture buffer (CPB)........ccooiiiiiiiieiieie ettt 215
C.2.1 GETIETAL. ...ttt b e bt a et ettt b bbbttt b et be bt bt et ea et e e be e 215
C2.2 Timing of decoding Unit ArriValcoiiiiiiii ettt ee e 215
C.23 Timing of decoding unit removal and decoding of decoding Unitcceevevriirieniieiieeeeeeeeee, 217

C.3 Operation of the decoded picture buffer (DPB)ccoeiiiiiiiiieee e 219
C3.1 (€131 1<) v | OO OO PSPPSRI 219
C.3.2 Removal of pictures from the DPBcccoooiiiiiiiiiicicccceee et 220

vi Rec. ITU-T H.265 (04/2013)

C.33 PICTUTE OULPUL ...ttt ettt ettt et e et e et e e te e etaeesseeesseeesseesssaessseesnsaesnsaesssaesssaessseenssaessseenssens 220
C.3.4 Current decoded picture marking and STOTAZE..........ccueruiieiiriiieieiieeee et 221
C.4 BitStream CONFOIMANCEccueviiriieriiesieeteiieetesteeteeteetesteesteesseessesssesstesseesseessesssesssenseassaessesssesseesseessesssenses 221
C.5 DeCOder CONTOIMANCEcveeevereieiiieitieieeteeteettesteeteeseestesteesseeseessesssesssesseesseesseassesssenssessaensesssanssesseessesssennes 222
C.5.1 GENETAL.....cuviiiiiceie ettt ettt e e et e s te et e e b e esbeesbeesaesseeabeesbeenbearaeaseees e et e enbeesbeesseesaenseenseenseeneas 222
C.5.2 Operation of the output order DPBccoooiiiiiiieiicicecece ettt ettt 223
(O T8 B € <11 T<) 1 PSS 223
C.5.2.2 Output and removal of pictures from the DPB...........ccccociriiriiriieiiceeeeeeee e 224
C.5.2.3 Picture decoding, marking, additional bumping, and StOragecceeeverierieriierieeieeiesieseesee e 224
C.5.2.4 "BUMPING" PIOCESS ..eeuvieuereuieeuiertienteetteteetteateesteesteateatesaeessea st anseenseeseaaseeaseanseanseeneesseesneensesneesneesneenseenes 225
Annex D Supplemental enhancement infOrMAationccoueiierierieie ittt saee s nee e 226
D 2 B € 1<) 1 v 1 DRSSPSR 226
I D 20N T 2 07 (0T T) 11 7 QO OO OSSR R U P RURSRPR 227
D.2.1 General SEL MESSAZE SYNMEAX ...c..eeuiiiiiiieitientieie ettt ettt et et st sate b e bt e et et e eb e e st e e bt enbeemtesssesbeebeenseeneas 227
D.2.2 Buffering period SEI MESSAZE SYNTAXc..eeuieriieriieiieieiiesieesieeeeseesteesseesseessesssesseesseessesssesssessesssesssessees 229
D.2.3 Picture timing SEI MESSAZE SYNTAXcvirvieriieriieiieieeiesieesieesteeaeseesteesseeseesseessesssesseessesssesssesssessessesses 230
D.24 Pan-scan rectangle SEI MESSAZE SYNEAXc.eccvieiieierierieeiieieseeseesteeteessesseesseesseesseessesssesssesseesseessenses 230
D.2.5 Filler payload SEI MESSAZE SYNTAXveecveerieriieriieieeiesieseeesteeteeaesseesseesseesseessesssesseesesssessesssesseesseenseenes 231
D.2.6 User data registered by Rec. ITU-T T.35 SEI MeSSage SYNTaXccceevvieurrieniieriieieeiesiesieeseeeseeennesenenns 231
D.2.7 User data unregistered SEI MeSSaZe SYNTAXccverieerieriirieniieiieieeeestesteeeeesesaeseesseesseessesnnesneenseenes 231
D.2.8 Recovery point SET MESSAZE SYNTAX ...eeuveruiertieieieiteeieteieeeiesteente et eteeneesteesteeteeseeneesseesseesseenseeneeeneenseenes 231
D.2.9 Scene information SEI MeSSAZE SYNTAXeeruieiiieiiieieetietieieeie ettt ettt seee st e et et e eneesneesteeeeeneesneens 232
D.2.10 Picture snapshot SEI MESSAZE SYNTAX......cecuerueeruiertierieeieeiesteesteeteeteeneestee bt e e eneeeseesseesseeseeneesneesneeneeenes 232
D.2.11 Progressive refinement segment start SEI MeSSage SYNTaXcccuieierieniienieeiienienienieeneeie et 232
D.2.12 Progressive refinement segment end SEI MeSSaZE SYNTAXevveruiruiririeieieie et 232
D.2.13 Film grain characteristics SEI MESSAZE SYNTAXccueeuerieiieriiriirierietieieeeiete ettt e e e see e enes 233
D.2.14 Post-filter hint SEI MESSAZE SYNTAX......ccvirviiierieriierieeieiteseesreeseeteesesseesseesseessesssesssesssesseessesseesseessesnss 233
D.2.15 Tone mapping information SEI MESSAZE SYNTAXcc.eevvireirieriieniieiieteeiesieesieereeaeseeseeesseessesssesssesseenns 234
D.2.16 Frame packing arrangement SEI MeESSAZE SYNTAXcccvevvierieeriieiieieeientiesieereevesaeseesreesseessessneeseesseenns 235
D.2.17 Display orientation SEI MESSAZE SYNAXecvverrierierrieriieriestienteeteeeesseesseesseesseeseessaesseessesssessesseesseesseenes 235
D.2.18 Structure of pictures information SEI MeSSage SYNAX.........cceeverrieriiriuerieriieieeieeaesreseesseesesnesseesseenes 236
D.2.19 Decoded picture hash SEI MeSSAZE SYNEAXccueeruirierieriieriieieeie e steenteeteeeeeeeeestee e eeeeee e seeeseeeeeenes 236
D.2.20 Active parameter sets SEI MeSSAZE SYNEAXccueeuiriierieiierieeie et stceie et eeeeeeee st e e aeseeeseeeseeeseeenes 236
D.2.21 Decoding unit information SEI MeSSage SYNTAXceerueriirierieitieieeieetiesteeie et eee e 237
D.2.22 Temporal sub-layer zero index SEI MeESSAZE SYNTAXeouiruiiriieriieiieiieiiestienieete ettt 237
D.2.23 Scalable nesting SEI MESSAZE SYNEAXc..ceueiuieuieuieiieiieieiestesteete ettt eseenteseseeeestestesseeseeseeneenseeasesseseeanes 237
D.2.24 Region refresh information SEI MeSSAZE SYNLAXc.eeveiieriiriiiiriieiieiieiieie ettt 238
D.2.25 Reserved SEI MESSAZE SYNTAXccveriieriieiieieiierteesteesteetesseesseesseesseassessaesseessesssesssesssesseessesssesssesseessesnss 238
D.3 SEIL PAYIOAA SCIMANTICS ...eeuvieeveieieiiiesiiesieeteeeteettesteeteesseesseessesssesseesseessesssesseesssesseesseessesssessasssesssesseesseessesssenses 238
D.3.1 General SEL payload SCMANTICS.........c..ecvievieierieiiieteeteseesteesteeteseesseesseesseessesssesseesseessesssesssesseessesssessees 238
D.3.2 Buffering period SEI MeSSage SCMANTICSccverrierieeierieiieriteteeteeeesseesteeseessesssesseesseesseessesssesssessesnss 241
D.3.3 Picture timing SEI MESSAZE SCMANTICSc.vevvierrieriieieiiesiierieeteeeeetessteeeesteensessaessaesseeseensesnnesseesseenseenes 243
D.3.4 Pan-scan rectangle SEI MeSSage SCMANLICSeevveeruerieriieriieriieteeteseeenteeteessesssessaesseeseesesssesseesseenseenes 248
D.3.5 Filler payload SEI MeSSaZE SEMANLICSeeveeruierieeieeieriierieente et eeteeteesteeteeneeeneesseesseeseeaesneesneesaeeneeenes 249
D.3.6 User data registered by Rec. ITU-T T.35 SEI message SemMantiCs.........ccuereerueeuereerieeneeneseeseeseeeneeens 249
D.3.7 User data unregistered SEI meSssage SeMANTICS.eerueeuerierieriietieieeeeetiesteeieeteeteseeeseeesaeeeeeneeeneeseeenes 249
D.3.8 Recovery point SEI MESSAZE SEMANTICSecueertiertirieiiieiiienieenit ettt steesteete e teettesbeesbe e aeetesaeeseeesaeenaeenee 250
D.3.9 Scene information SEI MeSSage SEMANTICScc.eeruiiiirieriieniieieeie ittt ettt ettt sbe e eaeneeens 251
D.3.10 Picture snapshot SEI MESSAZE SEMANLICScc.ueruviruieriieniieiieiieetienteete et ettestee e ebeeaeseeesaeenbeeeeeneeeaeenaeenee 253
D.3.11 Progressive refinement segment start SEI message SemMantiCs........c..ccveevereerreecresiereeneessesneseesseenennns 253
D.3.12 Progressive refinement segment end SEI message SeMantiCs........ccvvecverververieerreriiereeneenseeeeeeeseeesseenns 254
D.3.13 Film grain characteristics SEI MesSage SEMANTICSccueeverieriieriieiieieseesieeseeaeseeseesseeseesnesssesseenns 254
D.3.14 Post-filter hint SEI MESSAZE SCIMANTICSeevvervieieeiierieriesiieteeteeeeseeesseeteeseesaessaesseesseesesssesseesseenseenes 259
D.3.15 Tone mapping information SEI MesSage SEMANTICS.........c.vecverierieriieiieieriesieeteeseeeeseesieesseesseenesnnenns 260
D.3.16 Frame packing arrangement SEI MeSSage SCMANTICSc.eecverieruierieeiieieeiesiieieeieeeeseesieesseensesnesnnenns 264
D.3.17 Display orientation SEI MeSSaZE SEMANTICS........ccueerueerierierieertieteeieeeeeteesteeeeeeeeseesseesseenseeeesneesaeeseeenes 271
D.3.18 Structure of pictures information SEI message SeMAaNtiCsccuevueeriierirriienienieneerieeseesee e seee e 272
D.3.19 Decoded picture hash SEI MeSSaZe SEMANTICSeeuerueeriieriieriieiieieeiiesteesieeteeeeestee st eseeeaeeeeseeesaeeneeenes 273
D.3.20 Active parameter sets SEI MeSSage SEMANTICSc..eeveriiriierieniieiieiienitenieeie et etee sttt et st seee e e 274
D.3.21 Decoding unit information SEI message SeMAaNtiCsccueveerieriierieriiniieniienieeie et siee et 274
D.3.22 Temporal sub-layer zero index SEI message SEMANtiCS.eeerieieriiriereaieeieeeeeieeesie e eie et eeee e 276
D.3.23 Scalable nesting SEI MESSAZE SCMANTICSeevvrerreerreeierieriesrietieteeeesaesseesseesesssesssesseesseessesssesssesseenss 276

Rec. ITU-T H.265 (04/2013) vii

D.3.24 Region refresh information SEI message SEMAaNtiCscccevuererieieieiienieieie ettt 277

D.3.25 Reserved SEI MESSAZE SEIMANTICS. ...cc..teuuiriiertieriierteeieete st stte et et eaeestee st et e besatesbeesbeenbeeneesaeesaeeneeenee 278
Annex E Video usability iNfOrMAtIONccveciieiiiieiieieeie ettt ettt ste et esbeesaestaesse e beessasaesseensesssesssesseesseessennes 279
Eil GONETAL ..ttt ettt b b bttt b e bt bt e a e st et e b e bbbt he e st et et et e 279
E.2 VUL SYNEAX c.uttiiitieitieiiiieeite ettt ettt ettt ettt et ettt e b et et e e bt e e bt e e be e eabee e bt e eabteeabeeeastesabeeebeesabeeenbeesabaesnseesabes 280
E.2.1 VUI PATAMELETS SYNMEAX...cuveerutieriieriiierieenteesteesittesteestteesite ettt essaesbeeesbaeebeeeseesabeesnbeesabeesseesaseesaseenaeeas 280
E2.2 HRD Parameters SYNEAXcccueerueerieerieeniieeniteeettt et ettt stte et e et e et e s beesabeesabeesabeesabeesateesabeenateesaseenaeeas 282
E2.3 Sub-layer HRD parameters SYNEAX.........ccueeeerueerieerierieneeseeeteesesseesseessessessesssesseessesssesssessesssesssesssesseens 283

E 3 VUL SCIMANTICS. ..euteetietiete ettt etie sttt ettt te et e bt e bt et e eeteeseesseesseemseemeeemeeese e st ameeemseenseeseesseenseenseemsesneesneenseenseenes 283
E3.1 VUI Parameters SEIMANTICSccueerteeueeterriertierteerteeteeeeseeesteesteeneeenseeseesseeseenseansesseesseesseenseensesneesseenseenes 283
E3.2 HRD parameters SEMANTICSeeruteteeierriertierteesteesteeteseeesteenteeeeeseeeseesseeseeseenseeneesseesseesseansesneesseenseanes 295
E33 Sub-layer HRD parameters SEMANTICS.c..eeureieierierterterteeteeiteteeiteeeeessestessesteeseeneesseneensessessessessessessenns 298
BIDIHOGIAPIY ...ttt ettt ettt ettt et etttk et ekt heea e en et et e b e ekt eheeh e eh e e n e en b e beeke bt eeeebeeneensententeaeee 300

LIST OF FIGURES

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture............ccccueeuuenn. 20
Figure 6-2 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture..........c..cccce....... 20
Figure 6-3 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture............cccceeueenne 21

Figure 6-4 — A picture with 11 by 9 luma coding tree blocks that is partitioned into two slices, the first of which is
partitioned into three slice segments (INfOrMAtIVE)c.eruiriiririnireeieieieeseere et 22

Figure 6-5 — A picture with 11 by 9 luma coding tree blocks that is partitioned into two tiles and one slice (left) or is
partitioned into two tiles and three slices (right) (INfOrmMative).........ccoeceveverierieniieeeeeee e 22

Figure 7-1 — Structure of an access unit not containing any NAL units with nal unit_type equal to FD_NUT,
SUFFIX_SEI NUT, VPS NUT, SPS_ NUT, PPS NUT, RSV_VCL N10,RSV_VCL RI11,
RSV_VCL N12,RSV_VCL R13,RSV_VCL NI14,RSV_VCL R15, RSV _IRAP VCL22, or
RSV_IRAP_VCL23, or in the range of RSV_VCL24..RSV_VCL31, RSV_NVCL41..RSV_NVCL47, or

UNSPECA8..UNSPECO3 ...ttt st st 60
Figure 8-1 — Intra prediction mode directions (INfOrMAtIVE)c..ccuevieriieriiiciiiieiiere ettt beeseesaeeeees 102
Figure 8-2 — Intra prediction angle definition (infOrmMatiVe)...........ccoeeieieieiieree et 109
Figure 8-3 — Spatial motion vector neighbours (INfOrmMatiVe)ceoueiieriirieie e 125

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks
with lower-case letters) for quarter sample luma interpolationccceeevevieviriniencnenieeieiencenenee 132

Figure 8-5 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks

with lower-case letters) for eighth sample chroma interpolationcccccoeveninininininieienincnenee, 134
Figure 9-1 — Illustration of CABAC parsing process for a syntax element synEl (informative)cccceceveienenennene. 164
Figure 9-2 — Spatial neighbour T that is used to invoke the coding tree block availability derivation process relative to

the current coding tree block (INfOrMAtIVE)........cooveiiiiiiiiiiiec e 165
Figure 9-3 — Illustration of CABAC initialization process (informative)ccocevierieiieinieniereeeee e 166
Figure 9-4 — Illustration of CABAC storage process (infOIrmMatiVe).........cecuereuereuerierierieeieeeeeeenieesieeeeseaesseesseesseesesnnes 174
Figure 9-5 — Overview of the arithmetic decoding process for a single bin (informative)...........cccceeveeeiercierceereennennnn. 188
Figure 9-6 — Flowchart for decoding @ dECISIONcc.eeieiiiiiiiiiieie ettt sttt et ebe e e e e e 189
Figure 9-7 — Flowchart of ren0ormaliZationcocuiiiiiieriiei ettt sttt eee b et e eneeeneas 191
Figure 9-8 — Flowchart of bypass deCOdING PIOCESSccueeuieiiriertieiieieeieeite et ee ettt ete e et et et eneeeseesseesseeeeeneeenees 192
Figure 9-9 — Flowchart of decoding a decision before terminationc.cceeeverierierieerieeieeieseeieeie e seeseesee e 193
Figure 9-10 — Flowchart for encoding @ deCISIONcccveruieriieiiieiieieiiesieeteseesee st steereeaeeseesseesaessessaesseesseessesssesnnes 195
Figure 9-11 — Flowchart of renormalization in the €nCOdercoeiiiiiiiiiiiiiiiieeee e 196
Figure 9-12 — Flowchart 0f PUtBIt(B)........coiiiiiie ettt ettt ettt eneeemeeeneas 196

viii Rec. ITU-T H.265 (04/2013)

Figure 9-13 — Flowchart 0f @nCOdING DYPaSS......ceuieuiiieieieieie ettt ettt ettt st et ae bt e e e e nae e e 197

Figure 9-14 — Flowchart of encoding a decision before terminationcceecereierierienieeeie e 198
Figure 9-15 — Flowchart of flushing at terminationceecuieeierierierieiesiesee sttt e et e e eeeeseessaesseenseensesnsesnnes 198
Figure C.1 — Structure of byte streams and NAL unit streams for HRD conformance checks.............ccoevverrierrervennnnne. 211
Figure C.2 — HRD DUFTEr MOAELoouiiiiiiie ettt ettt et ee et e et e e e e e e e 214
Figure D.1 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields 245
Figure D.2 — Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields 246
Figure D.3 — Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields................ 246

Figure D.4 — Rearrangement and upconversion of side-by-side packing arrangement with
frame packing arrangement type equal to 3, quincunx_sampling_flag equal to 0, and (X, y) equal to
(0, 0) or (4, 8) for both cONStItUENT fTAMESccveeiiiiiiieiieie e s 268

Figure D.5 — Rearrangement and upconversion of side-by-side packing arrangement with
frame packing arrangement_type equal to 3, quincunx_sampling_flag equal to 0, (X, y) equal to (12, 8)
for constituent frame 0, and (x, y) equal to (0, 0) or (4, 8) for constituent frame 1...........ccccveevrrrennnne. 269

Figure D.6 — Rearrangement and upconversion of top-bottom packing arrangement with
frame packing arrangement type equal to 4, quincunx_sampling_flag equal to 0, and (X, y) equal to
(0, 0) or (8, 4) for both CONSLItUENT fTAMEScoviiiiiiiiiiiieie e 269

Figure D.7 — Rearrangement and upconversion of top-bottom packing arrangement with
frame packing arrangement_type equal to 4, quincunx_sampling_flag equal to 0, (X, y) equal to (8, 12)
for constituent frame 0, and (X, y) equal to (0, 0) or (8, 4) for constituent frame 1............ccccererirenens 270

Figure D.8 — Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling
(frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1)........cc.ceeee.e. 270

Figure D.9 — Rearrangement of a temporal interleaving frame arrangement (frame packing arrangement type equal to
) ettt ettt h et h e h et h e E et bt h et h e E et e h e h e e bt E et bt e h et eb e h et bt h e st e bt et et bt st et ebeneenean 271

Figure E-1 — Location of chroma samples for top and bottom fields for chroma format idc equal to 1 (4:2:0 chroma
format) as a function of chroma sample loc type top field and chroma sample loc type bottom field

LIST OF TABLES

Table 5-1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)ccccceevvvecverienireeens 16
Table 6-1 — SubWidthC, and SubHeightC values derived from chroma format idc and separate colour plane flag..19

Table 7-1 — NAL unit type codes and NAL Unit tyPe ClasSeS......ccueeuieiirierieiieieeie ettt sttt 55
Table 7-2 — Interpretation Of PIC EYPE ...cveeiieuieriieetiee ettt ettt ettt et e et e e bt e bt e et eeeemeesseesseeseenteenseentesneesneennes 71
Table 7-3 — Specification OF SIZEIAcccveiieiieiieie ettt e s e st e sae e sseesseenseenseensesnsesnaenseennas 74
Table 7-4 — Specification of matrixId according to sizeld, prediction mode and colour componentc..ccoeeueennenne. 74
Table 7-5 — Specification of default values of ScalingList[0][matrixId][1] with 1 =10..15....ccccccriiriiiiiiiiiiiees 75
Table 7-6 — Specification of default values of ScalingList[1..3][matrixId][1] withi=0..63c.ccocciriiniiniinenne. 75
Table 7-7 — Name aSsOCIation 10 SHICE tYPC .eevieverieriieriieieeiestertett ettt et et et e ete s e sseesseesseeneesseesseenseenseensesssesseesseenss 77
Table 7-8 — Specification 0F the SAD LY P ...cccuiiieriieiieie ettt ettt ste et e ae et estaesbeesbeessassaessaesseessesnsesssesseenseenss 85
Table 7-9 — Specification of the SAO edge OffSet CLASSc.eiiiiiieieeee e 86
Table 7-10 — Name association to prediction mode and partitioning tyPe........ceevereereereeierierieieeieeeiesieeie e seeeees 88
Table 7-11 — Name association to inter prediction MOAEc.eecueeierieriieieeie e seeste et ete st e seeesteete e enseenseseaesseesseeneas 89
Table 8-1 — Specification of intra prediction mode and associated NAMESceevverieriierrieienienieie e eeeseesae e eeees 102
Table 8-2 — Specification of INtraPredIMOAEC..........cc.eeviiiiiiieiieieeie ettt te et esreeraesreesre e beesbeesseessasseens 104

Rec. ITU-T H.265 (04/2013) ix

Table 8-3 — Specification of intraHorVerDistThres[nTbS] for various transform block sizes............cccocvvevvievreeninnnnns 107

Table 8-4 — Specification of INtraPTEdANGIEc.couiiuiiiiiiiiiiie ettt 109
Table 8-5 — Specification 0f INVANEIE...........ccociiiiiiiiiieeeec ettt 110
Table 8-6 — Specification of 10CandIdx and 11CaNdIAXccccovecirinieirinieiriicccceeee s 122
Table 8-7 — Assignment of the luma prediction sample predSampleLXL[XL, YL] ..ccooeoininiininiiniincncnecnenes 133
Table 8-8 — Assignment of the chroma prediction sample predSampleLXC[xC, yC] for (X, Y) being replaced by
(1,b),(2,¢),(3,d),(4,e),(5,1),(6,g),and (7,h), respectively.......ccccerverrrrrrrrrnianieeeeene, 135
Table 8-9 — Specification of QpC as a function Of QPcceiiiiiiiiiee e 141
Table 8-10 — Name of association t0 @AZETYPE.....ccuveruirierierieii ettt ettt et see et e seeseesseeseenseensessaenseens 146
Table 8-11 — Derivation of threshold variables ' and tC' from input Qccoevevririieeereeieieieieeeieeeete e 154
Table 8-12 — Specification of hPos and vPos according to the sample adaptive offset classcccocceevveiinienieiencnns 160
Table 9-1 — Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative).................... 161
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)............ccoeervenene. 162
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(V)............ 162
Table 9-4 — Association of ctxIdx and syntax elements for each initializationType in the initialization process 168
Table 9-5 — Values of initValue for ctxIdx of sao_merge left flag and sao_merge up flag........ccocvvvierieviecinienn. 169
Table 9-6 — Values of initValue for ctxldx of sao_type idx luma and sao_type idx chroma............ccccceerrirrreruernnnnne. 169
Table 9-7 — Values of initValue for ctxIdx of split_ et flag.......cocoiiiiiiiieee e 169
Table 9-8 — Values of initValue for ctxIdx of cu_transquant_bypass_flagccooeeiiroiiiiiiiiee e 169
Table 9-9 — Values of initValue for ctxIdx of cu_SKip flag........cccoeviiiiiiieieiceeeeeee e 169
Table 9-10 — Values of initValue for ctxIdx of pred mode flag........c.ccevieniiiiiiiiiiienieecceeeeeee e 169
Table 9-11 — Values of initValue for ctxIdx of part MOde...........cccoiieiiiiiieiiiie e 170
Table 9-12 — Values of initValue for ctxIdx of prev_intra_luma_pred flagcoccoeiiroiiiiiiiii e 170
Table 9-13 — Values of initValue for ctxIdx of intra_chroma_pred mode...........ccocceevieriiiiiicienieeeeeeeeeee e 170
Table 9-14 — Values of initValue for ctxIdx of rqt 100t Chf.....ccuiiiiiiiiiiiec e 170
Table 9-15 — Value of initValue for ctxIdx of merge flagccocoeiriiiiiiii e 170
Table 9-16 — Values of initValue for ctxIdX of Merge 1dX........covieiieiiiiieieiee e 170
Table 9-17 — Values of initValue for ctxIdx of inter pred idCc.oocveviieeiieiiieiecieieee e 171
Table 9-18 — Values of initValue for ctxIdx of ref idx 10 and ref idx I1......ccociiiiiiieniniiieeeee e 171
Table 9-19 — Values of initValue for ctxIdx of mvp 10 _flagand mvp 11 _flagccoocvvviieiieiiniinicieececeeeee e, 171
Table 9-20 — Values of initValue for ctxIdx of split_transform flagcccooiiiiiiiiiinii e 171
Table 9-21 — Values of initValue for ctxIdx of cbf Tuma...........coocoiiiiiiiii e 171
Table 9-22 — Values of initValue for ctxIdx of cbf cb and cbf Cr......cceeovieiieiiicie e 171
Table 9-23 — Values of initValue for ctxIdx of abs mvd greater0 flag and abs mvd greaterl flag........c...cccoueneenee. 172
Table 9-24 — Values of initValue for ctxIdx of cu_qp_delta abs.........coceeiiiiiiiiiiii e 172
Table 9-25 — Values of initValue for ctxIdx of transform_skip flagcccorieiiiiiniiii e 172
Table 9-26 — Values of initValue for ctxIdx of last _sig coeff X prefiX......ccccvvievieiiiceiieciee e 172
Table 9-27 — Values of initValue for ctxIdx of last sig coeff ¥ prefiX......ccocvvcieniiniiciiiiieieieeeeecee e 172
Table 9-28 — Values of initValue for ctxIdx of coded sub_block flag..........cooceiiiiiiiiiiiiiiie e 173
Table 9-29 — Values of initValue for ctxIdx of sig_ coeff flag.........cccoviiiiiiiiii e 173

X Rec. ITU-T H.265 (04/2013)

Table 9-30 — Values of initValue for ctxIdx of coeff abs level greaterl flagcccoooiiiiiiiniiiiiiiiiiiieeeeee,
Table 9-31 — Values of initValue for ctxIdx of coeff abs level greater2 flagcccoooevoivieiiiiiiiiiieeeeeeee
Table 9-32 — Syntax elements and associated DINAriZAtIONScevieriieeiieierieseeie ettt eee e see e eseeeseeneeseaenseens
Table 9-33 — Bin string of the unary binarization (INfOrMAatiVe).........c.ccveriiiiiiiiieiieiieie et ae e
Table 9-34 — Binarization for Part MOAE..........ccueiiriiiiieieee ettt et ea ettt be et ebe e e eneeeenaeneeeee
Table 9-35 — Binarization for intra_chroma pred mMOde.........coooiiiiiiiiiiiiieee e
Table 9-36 — Binarization for inter Pred 10C ...ooviiiiiiiieiece ettt sttt seeenneens
Table 9-37 — Assignment of ctxInc to syntax elements with context coded binsccceevvveviieieniieniiereece e,
Table 9-38 — Specification of ctxInc using left and above syntax elementsccoceeeeieierieienenieceeeeeee e
Table 9-39 — Specification Of CEXIAXMAP] 1] ..eeeueertieiiieieeiei ettt ettt ettt ettt e e eeesaee s et e seeenteeneeeseenneens
Table 9-40 — Specification of rangeTabLps depending on the values of pStateldx and qRangeldxcccccoceerennne.
Table 9-41 — State transition tAD1Eccooiiiiiriiiiiiii ettt
Table A.1 — General tier and leVel HIMILS.......cc.ccovuioieiniiiiiniciicrc ettt ettt
Table A.2 — Tier and level limits for the Main and Main 10 profilescccoeieviiiviiiienieiieieeeeeeee e

Table A.3 — Maximum picture rates (pictures per second) at level 1 to 4.3 for some example picture sizes when
MiINCDSIZEY 1S €QUAL L0 04 ...ttt ettt et e sttt e s e s bee bt e teeteeneeeneesaeenaeenes

Table A.4 — Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes when
MiINCDSIZEY 1S €QUAL L0 04 ...ttt ettt ettt e st e st e st et e e st e esaessaesseenseensesnnesneesaeenseanes

Table D.1 — Persistence scope of SEI messages (INfOrmMatiVe)ccverueeriiiieiierienieeie e eeeseesreeeeeeeesenesseessaesseessesnnes
Table D.2 — Interpretation Of PIC SEIUCT......cueiiiiitieteete ettt ettt ettt sttt te st et e e besbeebeeeeebe e st enseneeneeneeeee
Table D.3 — scene_transition_tYPE VAIUESc.eeiiiiiiriieie ettt st st e ettt s e e et et enbeeneeenaeeneas
Table D.4 — film_grain. Mmodel id VAIUESc.cccuiiiiiiiiiieieee ettt st e eeesaeesseeseenseensessaenseens
Table D.5 — blending MOde id VAIUEScceecviiiiiiiiieie ettt ettt te b e aesaaesreeseesseesseessessaesseesseenseessennnas
Table D.6 — filter hint tyPe VAIUEScc.eiuiiiiieietieiieiee ettt ettt a ettt e se et et e et ebe e st eneeneeneenseeseeas
Table D.7 — Interpretation of camera_iso_speed_idc and exposure indeX 1dC.........cecoeerirriiriirienieiieieeeesieeeeie e
Table D.8 — Definition of frame packing arrangement tyPec.ccceereeruierieeierieriiesieeteseeseeeseeeaeeeeseesseeseensessnenseens
Table D.9 — Definition of content interpretation tYPe.......ceecvieverierierieerieereeeeseesteesseesreeresseesseesseessesssesseesseesseessesses
Table D.10 — Interpretation 0f NASH LYPEoouiiuiriieiie ettt ettt et eae et e e e e sae e e
Table E.1 — Interpretation of sample aspect ratio INAICATOLoveirieriieiieieet ettt eeeeneens
Table E.2 — Meaning of VId@0 fOrmMaLt...........ccviciiiiiiiiiieiece ettt et st seeae st e sseeseenseensesssenseens
Table E.3 — COLOUL PIIMATIES. ... eevieveeierreiterteeteeteetesseesseesseesseassesseeseessesssesssesseesseessesssesssesseesseessesssesssesseessenssesssessees
Table E.4 — Transfer ChAraCteriSLICScouiruiiiiiiiet ettt ettt ettt ettt st eetese e e besbeebesaeebeeneeneeneeneeneees
Table E.5 — Matrix COBTIICIENLSiiiiieieitieiieieee ettt ettt ettt et et e e e e e et e sseeseeeneeeneesaeesaee st enseeneesseanseans

Table E.6 — Divisor for computation of DpbOutputElementallnterval] 01]......cccoceeiieiieiiiiiiieiee e

Rec. ITU-T H.265 (04/2013)

X1

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view
to standardizing telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for world-wide standardization. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organization to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a
vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

xii Rec. ITU-T H.265 (04/2013)

Recommendation ITU-T H.265

High efficiency video coding

0 Introduction

This clause and its subclauses do not form an integral part of this Recommendation | International Standard.

0.1 Prologue

As the costs for both processing power and memory have reduced, network support for coded video data has
diversified, and advances in video coding technology have progressed, the need has arisen for an industry standard for
compressed video representation with substantially increased coding efficiency and enhanced robustness to network
environments. Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG) formed a Joint Collaborative Team on Video Coding (JCT-VC) in 2010 for development of a
new Recommendation | International Standard. This Recommendation | International Standard was developed in the
JCT-VC.

0.2 Purpose

This Recommendation | International Standard was developed in response to the growing need for higher compression
of moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communications. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments as well as to enable the use of multi-core parallel encoding
and decoding devices. The use of this Recommendation | International Standard allows motion video to be manipulated
as a form of computer data and to be stored on various storage media, transmitted and received over existing and future
networks and distributed on existing and future broadcasting channels.

0.3 Applications

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

e Broadcast (cable TV on optical networks / copper, satellite, terrestrial, etc.)
e Camcorders

e Content production and distribution

e Digital cinema

e Home cinema

e Internet streaming, download and play

e Medical imaging

e Mobile streaming, broadcast and communications

e Real-time conversational services (videoconferencing, videophone, telepresence, etc.)
e Remote video surveillance

e Storage media (optical disks, digital video tape recorder, etc.)

e Wireless display

0.4 Publication and versions of this Specification

This Specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEGQ). It is published as technically-aligned twin text in both ITU-T and ISO/IEC. As
the basis text has been drafted to become both an ITU-T Recommendation and an ISO/IEC International Standard, the
term "Specification" (with capitalization to indicate that it refers to the whole of the text) is used herein when the text
refers to itself.

Rec. ITU-T H.265 (04/2013) 1

This is the first version of this Specification. Additional versions are anticipated.

0.5 Profiles, tiers and levels

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles", "tiers", and "levels". These and other related terms are formally
defined in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified in this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement
a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "tiers" and "levels" are specified within each profile. A level of a tier is a specified
set of constraints imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on
values. Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width
multiplied by picture height multiplied by number of pictures decoded per second). A level specified for a lower tier is
more constrained than a level specified for a higher tier.

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.6 Overview of the design characteristics

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
or video quality. The algorithm is typically not lossless, as the exact source sample values are typically not preserved
through the encoding and decoding processes. A number of techniques may be used to achieve highly efficient
compression. Encoding algorithms (not specified in this Recommendation | International Standard) may select between
inter and intra coding for block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter
prediction to exploit temporal statistical dependencies between different pictures. Intra coding uses various spatial
prediction modes to exploit spatial statistical dependencies in the source signal for a single picture. Motion vectors and
intra prediction modes may be specified for a variety of block sizes in the picture. The prediction residual may then be
further compressed using a transform to remove spatial correlation inside the transform block before it is quantized,
producing a possibly irreversible process that typically discards less important visual information while forming a close
approximation to the source samples. Finally, the motion vectors or intra prediction modes may also be further
compressed using a variety of prediction mechanisms, and, after prediction, are combined with the quantized transform
coefficient information and encoded using arithmetic coding.

0.7 How to read this Specification

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See clauses 7.1-7.3 for syntactical order and see
clause 7.4 for semantics; e.g., the scope, restrictions, and conditions that are imposed on the syntax elements. The actual
parsing for most syntax elements is specified in clause 9 (Parsing process). Clause 10 (Sub-bitstream extraction process)
specifies the sub-bitstream extraction process. Finally, clause 8 (Decoding process) specifies how the syntax elements
are mapped into decoded samples. Throughout reading this Specification, the reader should refer to clauses 2
(Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through E also form an integral
part of this Recommendation | International Standard.

Annex A specifies profiles each being tailored to certain application domains, and defines the so-called tiers and levels
of the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery of coded video as an
ordered stream of bytes. Annex C specifies the hypothetical reference decoder, bitstream conformance, decoder
conformance, and the use of the hypothetical reference decoder to check bitstream and decoder conformance. Annex D
specifies syntax and semantics for supplemental enhancement information message payloads. Annex E specifies syntax
and semantics of the video usability information parameters of the sequence parameter set.

2 Rec. ITU-T H.265 (04/2013)

Throughout this Specification, statements appearing with the preamble "NOTE —" are informative and are not an

integral part of this Recommendation | International Standard.

1 Scope

This Recommendation | International Standard specifies high efficiency video coding.

2 Normative references

2.1 General

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.2 Identical Recommendations | International Standards
— None

2.3 Paired Recommendations | International Standards equivalent in technical content
— None

24 Additional references

— Recommendation ITU-T T.35 (in force), Procedure for the allocation of ITU-T defined codes for
non-standard facilities.

— ISO/IEC 11578: in force, Information technology — Open Systems I nterconnection — Remote Procedure
Call (RPC).

— ISO 11664-1: in force, Colorimetry —Part 1: CIE standard colorimetric observers.

— ISO 12232: in force, Photography — Digital still cameras — Determination of exposure index, SO speed
ratings, standard output sensitivity, and recommended exposure index.

— IETF RFC 1321 (in force), The MD5 Message-Digest Algorithm.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 access unit: A set of NAL units that are associated with each other according to a specified classification rule,
are consecutive in decoding order, and contain exactly one coded picture.

NOTE - In addition to containing the VCL NAL units of the coded picture, an access unit may also contain non-
VCL NAL units. The decoding of an access unit always results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in at least one of the two
dimensions is non-zero.

33 associated non-VCL NAL unit: A non-VCL NAL unit (when present) for a VCL NAL unit where the VCL
NAL unit is the associated VCL NAL unit of the non-VCL NAL unit.

34 associated IRAP picture: The previous |RAP picture in decoding order (when present).

35 associated VCL NAL unit: The preceding VCL NAL unit in decoding order for a non-VCL NAL unit with

nal unit type equal to EOS NUT, EOB NUT, FD NUT, or SUFFIX SEI NUT, or in the ranges of
RSV _NVCL45.RSV_NVCL47 or UNSPEC56..UNSPEC63; or otherwise the next VCL NAL unit in decoding
order.

3.6 bin: One bit of a bin string.

Rec. ITU-T H.265 (04/2013) 3

3.7
3.8

3.9

3.10

3.11

3.12

3.13

3.14
3.15

3.16

3.17

3.18

3.19

3.20
3.21

3.22
3.23

3.24
3.25

3.26

binarization: A set of bin strings for all possible values of a syntax element.

binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
strings.

bin string: An intermediate binary representation of values of Ssyntax elements from the binarization of the
syntax element.

bi-predictive (B) slice: A slice that may be decoded using intra prediction or inter prediction using at most
two motion vectors and reference indices to predict the sample values of each block.

bitstream: A sequence of bits, in the form of a NAL unit stream or a byte stream, that forms the
representation of coded pictures and associated data forming one or more CVSs.

block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding
order may contain serious visual artefacts due to unspecified operations performed in the generation of the
bitstream.

broken link access (BLA) access unit: An access unit in which the coded pictureis a BLA picture.

broken link access (BLA) picture: An IRAP picture for which each VCL NAL unit has nal_unit_type equal

to BLA W _LP, BLA W _RADL, or BLA N LP.
NOTE — A BLA picture contains only I slices, and may be the first picture in the bitstream in decoding order, or
may appear later in the bitstream. Each BLA picture begins a new CVS, and has the same effect on the decoding
process as an IDR picture. However, a BLA picture contains syntax elements that specify a non-empty RPS. When a
BLA picture for which each VCL NAL unit has nal_unit type equal to BLA_W_LP, it may have associated RASL
pictures, which are not output by the decoder and may not be decodable, as they may contain references to pictures
that are not present in the bitstream. When a BLA picture for which each VCL NAL unit has nal unit_type equal to
BLA W _LP, it may also have associated RADL pictures, which are specified to be decoded. When a BLA picture
for which each VCL NAL unit has nal unit type equal to BLA W _RADL, it does not have associated RASL
pictures but may have associated RADL pictures. When a BLA picture for which each VCL NAL unit has
nal unit_type equal to BLA_N_LP, it does not have any associated leading pictures.

buffering period: The set of access units starting with an access unit that contains a buffering period SEI
message and containing all subsequent access units in decoding order up to but not including the next access
unit (when present) that contains a buffering period SEI message.

byte: A sequence of 8 bits, within which, when written or read as a sequence of bit values, the left-most and
right-most bits represent the most and least significant bits, respectively.

byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from
the position of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when
the position at which it appears in a bitstream is byte-aligned.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

can: A term used to refer to behaviour that is allowed, but not necessarily required.

chroma: An adjective, represented by the symbols Cb and Cr, specifying that a sample array or single sample
is representing one of the two colour difference signals related to the primary colours.

NOTE — The term chroma is used rather than the term chrominance in order to avoid the implication of the use of
linear light transfer characteristics that is often associated with the term chrominance.

clean random access (CRA) access unit: An access unit in which the coded pictureis a CRA picture.

clean random access (CRA) picture: An IRAP picture for which each VCL NAL unit has nal unit_type
equal to CRA_NUT.

NOTE — A CRA picture contains only I slices, and may be the first picture in the bitstream in decoding order, or
may appear later in the bitstream. A CRA picture may have associated RADL or RASL pictures. When a CRA
picture has NoRaslOutputFlag equal to 1, the associated RASL pictures are not output by the decoder, because they
may not be decodable, as they may contain references to pictures that are not present in the bitstream.

coded picture: A coded representation of a picture containing all coding tree units of the picture.

coded picture buffer (CPB): A first-in first-out buffer containing decoding units in decoding order specified
in the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.

Rec. ITU-T H.265 (04/2013)

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36
3.37

3.38

3.39

3.40

341

3.42

3.43

3.44

345

3.46

3.47

coded slice segment NAL unit: A NAL unit that has nal unit_type in the range of TRAIL N to RASL R,
inclusive, or in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive, which indicates that the NAL unit
contains a coded slice segment.

coded video sequence (CVS): A sequence of access units that consists, in decoding order, of an |RAP access
unit with NoRaslOutputFlag equal to 1, followed by zero or more access units that are not IRAP access units
with NoRaslOutputFlag equal to 1, including all subsequent access units up to but not including any
subsequent access unit that is an IRAP access unit with NoRaslOutputFlag equal to 1.
NOTE — An IRAP access unit may be an IDR access unit, a BLA access unit, or a CRA access unit. The value of
NoRaslOutputFlag is equal to 1 for each IDR access unit, each BLA access unit, and each CRA access unit that is
the first access unit in the bitstream in decoding order, is the first access unit that follows an end of sequence NAL
unit in decoding order, or has HandleCraAsBlaFlag equal to 1.

coding block: An NxN block of samples for some value of N such that the division of a coding tree block into
coding blocks is a partitioning.

coding tree block: An NxN block of samples for some value of N such that the division of a component into
coding tree blocksis a partitioning.

coding tree unit: A coding tree block of luma samples, two corresponding coding tree blocks of chroma
samples of a picture that has three sample arrays, or a coding tree block of samples of a monochrome picture
or a picture that is coded using three separate colour planes and syntax structures used to code the samples.

coding unit: A coding block of luma samples, two corresponding coding blocks of chroma samples of a
picture that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is
coded using three separate colour planes and syntax structuresused to code the samples.

component: An array or single sample from one of the three arrays (luma and two chroma) that compose a
picture in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that compose a
picture in monochrome format.

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

cropped decoded picture: The result of cropping a decoded picture based on the conformance cropping
window specified in the SPSthat is referred to by the corresponding coded picture.

decoded picture: A decoded pictureis derived by decoding a coded picture.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.

decoder under test (DUT): A decoder that is tested for conformance to this Specification by operating the
hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical
reference decoder and comparing the values and timing or order of the output of the two decoders.

decoding order: The order in which Syntax elements are processed by the decoding process.

decoding process: The process specified in this Specification that reads a bitstream and derives decoded
pictures from it.

decoding unit: An access unit if SubPicHrdFlag is equal to O or a subset of an access unit otherwise,
consisting of one or more VCL NAL units in an access unit and the associated non-VCL NAL units.

dependent slice segment: A slice segment for which the values of some syntax elements of the dlice segment
header are inferred from the values for the preceding independent slice segment in decoding order.

display process: A process not specified in this Specification having, as its input, the cropped decoded
pictures that are the output of the decoding process.

elementary stream: A sequence of one or more bitstreams.

NOTE — An elementary stream that consists of two or more bitstreams would typically have been formed by splicing
together two or more bitstreams (or parts thereof).

emulation prevention byte: A byte equal to 0x03 that is present within a NAL unit when the syntax elements
of the bitstream form certain patterns of byte values in a manner that ensures that no sequence of consecutive
byte-aligned bytes in the NAL unit can contain a start code prefix.

encoder: An embodiment of an encoding process.

Rec. ITU-T H.265 (04/2013) 5

3.48

3.49
3.50
3.51
3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.60
3.61

3.62
3.63

3.64

3.65

3.66
3.67

3.68

encoding process: A process not specified in this Specification that produces a bitstream conforming to this
Specification.

field: An assembly of alternative rows of samples of a frame.
filler data NAL units: NAL units with nal unit_type equal to FD_NUT.
flag: A variable that can take one of the two possible values 0 and 1.

frame: The composition of a top field and a bottom field, where sample rows 0, 2, 4, ... originate from the top
field and sample rows 1, 3, 5, ... originate from the bottom field.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior
to an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may
produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism used for checking the
conformance of a bitstream or a decoder with regards to the timing and data flow of the input of a bitstream
into the hypothetical reference decoder.

independent slice segment: A slice segment for which the values of the syntax elements of the slice segment
header are not inferred from the values for a preceding slice segment.

informative: A term used to refer to content provided in this Specification that does not establish any
mandatory requirements for conformance to this Specification and thus is not considered an integral part of
this Specification.

instantaneous decoding refresh (IDR) access unit: An access unit in which the coded picture is an IDR
picture.

instantaneous decoding refresh (IDR) picture: An IRAP picture for which each VCL NAL unit has
nal_unit_type equal to IDR. W _RADL or IDR N LP.
NOTE — An IDR picture contains only I slices, and may be the first picture in the bitstream in decoding order, or
may appear later in the bitstream. Each IDR picture is the first picture of a CVS in decoding order. When an IDR
picture for which each VCL NAL unit has nal unit type equal to IDR_ W _RADL, it may have associated RADL
pictures. When an IDR picture for which each VCL NAL unit has nal_unit_type equal to IDR N _LP, it does not
have any associated leading pictures. An IDR picture does not have associated RASL pictures.

inter coding: Coding of a coding block, dlice, or picture that uses inter prediction.

inter prediction: A prediction derived in a manner that is dependent on data elements (e.g., sample values or
motion vectors) of pictures other than the current picture.

intra coding: Coding of a coding block, slice, or picture that uses intra prediction.

intra prediction: A prediction derived from only data elements (e.g., sample values) of the same decoded
dlice.

intra random access point (IRAP) access unit: An access unit in which the coded picture is an IRAP
picture.

intra random access point (IRAP) picture: A coded picture for which each VCL NAL unit has nal unit_type
in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive.
NOTE — An IRAP picture contains only I slices, and may be a BLA picture, a CRA picture or an IDR picture. The
first picture in the bitstream in decoding order must be an IRAP picture. Provided the necessary parameter sets are
available when they need to be activated, the IRAP picture and all subsequent non-RASL pictures in decoding order
can be correctly decoded without performing the decoding process of any pictures that precede the IRAP picture in
decoding order. There may be pictures in a bitstream that contain only I slices that are not IRAP pictures.

intra (I) slice: A slice that is decoded using intra prediction only.

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values.

layer: A set of VCL NAL units that all have a particular value of nuh layer id and the associated non-VCL
NAL units, or one of a set of syntactical structures having a hierarchical relationship.

NOTE - Depending on the context, either the first layer concept or the second layer concept applies. The first layer
concept is also referred to as a scalable layer, wherein a layer may be a spatial scalable layer, a quality scalable
layer, a view, etc. A temporal true subset of a scalable layer is not referred to as a layer but referred to as a sub-layer

Rec. ITU-T H.265 (04/2013)

3.69

3.70

3.71

3.72
3.73

3.74

3.75

3.76
3.77
3.78

3.79

3.80

3.81

3.82
3.83

3.84
3.85
3.86

3.87
3.88
3.89

or temporal sub-layer. The second layer concept is also referred to as a coding layer, wherein higher layers contain
lower layers, and the coding layers are the CVS, picture, slice, slice segment, and coding tree unit layers.

layer identifier list: A list of nuh layer id values that is associated with a layer set or an operation point and
can be used as an input to the sub-bitstream extraction process.

layer set: A set of layers represented within a bitstream created from another bitstream by operation of the
sub-bitstream extraction process with the another bitstream, the target highest Temporalld equal to 6, and the
target layer identifier list equal to the layer identifier list associated with the layer set as inputs.

leading picture: A picture that precedes the associated IRAP picture in output order.
leaf: A terminating node of a tree that is a root node of a tree of depth 0.
level: A defined set of constraints on the values that may be taken by the Ssyntax elements and variables of this

Specification, or the value of a transform coefficient prior to scaling.

NOTE - The same set of levels is defined for all profiles, with most aspects of the definition of each level being in
common across different profiles. Individual implementations may, within the specified constraints, support a
different level for each supported profile.

list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list O (list 1).

list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into
reference picturelist O (list 1).

long-term reference picture: A picture that is marked as "used for long-term reference".
long-term reference picture set: The two RPS lists that may contain long-term reference pictures.
luma: An adjective, represented by the symbol or subscript Y or L, specifying that a sample array or single

sample is representing the monochrome signal related to the primary colours.
NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used
instead of the symbol Y to avoid confusion with the symbol y as used for vertical location.

may: A term that is used to refer to behaviour that is allowed, but not necessarily required.
NOTE - In some places where the optional nature of the described behaviour is intended to be emphasized, the
phrase "may or may not" is used to provide emphasis.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the
coordinates in the decoded picture to the coordinates in a reference picture.

must: A term that is used in expressing an observation about a requirement or an implication of a requirement
that is specified elsewhere in this Specification (used exclusively in an informative context).

nested SEI message: An SEI message that is contained in a scalable nesting SEI message.

network abstraction layer (NAL) unit: A syntax structure containing an indication of the type of data to
follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation
prevention bytes.

network abstraction layer (NAL) unit stream: A sequence of NAL units.
non-nested SEI message: An SEI message that is not contained in a scalable nesting SEI message.

non-reference picture: A picture that is marked as "unused for reference".

NOTE - A non-reference picture contains samples that cannot be used for inter prediction in the decoding process of
subsequent pictures in decoding order. In other words, once a picture is marked as "unused for reference", it can
never be marked back as "used for reference".

non-VCL NAL unit: A NAL unit that is not a VCL NAL unit.
note: A term that is used to prefix informative remarks (used exclusively in an informative context).

operation point: A bitstream created from another bitstream by operation of the sub-bitstream extraction
process with the another bitstream, a target highest Temporalld, and a target layer identifier list as inputs.
NOTE - If the target highest Temporalld of an operation point is equal to the greatest value of Temporalld in the

layer set associated with the target layer identification list, the operation point is identical to the layer set. Otherwise
it is a subset of the layer set.

Rec. ITU-T H.265 (04/2013) 7

3.90

3.91

3.92

3.93

3.94

3.95

3.96
3.97
3.98

3.99

3.100

3.101

3.102
3.103
3.104
3.105

3.106
3.107

3.108

3.109

3.110

3.111

output order: The order in which the decoded pictures are output from the decoded picture buffer (for the
decoded pictures that are to be output from the decoded picture buffer).

parameter: A syntax element of a VPS, SPS or PPS or the second word of the defined term quantization
parameter.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: An array of luma samples in monochrome format or an array of luma samples and two corresponding
arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format.
NOTE — A picture may be either a frame or a field. However, in one CVS, either all pictures are frames or all
pictures are fields.

picture parameter set (PPS): A syntax structure containing Syntax elements that apply to zero or more entire
coded pictures as determined by a syntax element found in each slice segment header.

picture order count: A variable that is associated with each picture, uniquely identifies the associated picture
among all pictures in the CVS and, when the associated picture is to be output from the decoded picture
buffer, indicates the position of the associated picture in output order relative to the output order positions of
the other picturesin the same CVSthat are to be output from the decoded picture buffer.

prediction: An embodiment of the prediction process.
prediction block: A rectangular MxN block of samples on which the same prediction is applied.

prediction process: The use of a predictor to provide an estimate of the data element (e.g., sample value or
motion vector) currently being decoded.

prediction unit: A prediction block of luma samples, two corresponding prediction blocks of chroma samples
of a picture that has three sample arrays, or a prediction block of samples of a monochrome picture or a
picture that is coded using three separate colour planes and Syntax structures used to predict the prediction
block samples.

predictive (P) slice: A slice that may be decoded using intra prediction or inter prediction using at most one
motion vector and reference index to predict the sample values of each block.

predictor: A combination of specified values or previously decoded data elements (e.g., sample value or
motion vector) used in the decoding process of subsequent data elements.

prefix SEI message: An SEI message that is contained in a prefix SEI NAL unit.
prefix SEI NAL unit: An SEI NAL unit that has nal_unit_type equal to PREFIX SEI NUT.
profile: A specified subset of the syntax of this Specification.

quadtree: A tree in which a parent node can be split into four child nodes, each of which may become parent
node for another split into four child nodes.

quantization parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

random access decodable leading (RADL) access unit: An access unit in which the coded picture is a
RADL picture.

random access decodable leading (RADL) picture: A coded picture for which each VCL NAL unit has
nal_unit_type equal to RADL R or RADL N.
NOTE — All RADL pictures are leading pictures. RADL pictures are not used as reference pictures for the decoding

process of trailing pictures of the same associated IRAP picture. When present, all RADL pictures precede, in
decoding order, all trailing pictures of the same associated IRAP picture.

random access skipped leading (RASL) access unit: An access unit in which the coded picture is a RASL
picture.

random access skipped leading (RASL) picture: A coded picture for which each VCL NAL unit has
nal _unit type equal to RASL R or RASL N.
NOTE — All RASL pictures are leading pictures of an associated BLA or CRA picture. When the associated IRAP

picture has NoRaslOutputFlag equal to 1, the RASL picture is not output and may not be correctly decodable, as the
RASL picture may contain references to pictures that are not present in the bitstream. RASL pictures are not used as

Rec. ITU-T H.265 (04/2013)

3.112

3.113

3.114

3.115

3.116
3.117

3.118

3.119

3.120

3.121

3.122

3.123
3.124

3.125
3.126

3.127

3.128
3.129
3.130

reference pictures for the decoding process of non-RASL pictures. When present, all RASL pictures precede, in
decoding order, all trailing pictures of the same associated IRAP picture.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit and that is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and zero or more subsequent bits equal to 0.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits, for which the location of the end within an RBSP can be identified by
searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation
of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

reference index: An index into a reference picturelist.

reference picture: A picturethat is a short-term reference picture or a long-term reference picture.

NOTE — A reference picture contains samples that may be used for inter prediction in the decoding process of
subsequent pictures in decoding order.

reference picture list: A list of reference pictures that is used for inter prediction of a P or B dlice.

NOTE - For the decoding process of a P slice, there is one reference picture list — reference picture list 0. For the
decoding process of a B slice, there are two reference picture lists — reference picture list 0 and reference picture
list 1.

reference picture list 0: The reference picture list used for inter prediction of a P or the first reference
picture list used for inter prediction of a B slice.

reference picture list 1: The second reference picture list used for inter prediction of a B dlice.

reference picture set (RPS): A set of reference pictures associated with a picture, consisting of all reference
pictures that are prior to the associated picture in decoding order, that may be used for inter prediction of the
associated picture or any picture following the associated picture in decoding order.

NOTE — The RPS of a picture consists of five RPS lists, three of which are to contain short-term reference pictures
and the other two are to contain long-term reference pictures.

reserved: A term that may be used to specify that some values of a particular Syntax element are for future use
by ITU-T | ISO/IEC and shall not be used in bitstreams conforming to this version of this Specification, but
may be used in bitstreams conforming to future extensions of this Specification by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

sample aspect ratio: The ratio between the intended horizontal distance between the columns and the
intended vertical distance between the rows of the luma sample array in a picture, which is specified for
assisting the display process (not specified in this Specification) and expressed as h:v, where h is the
horizontal width and v is the vertical height, in arbitrary units of spatial distance.

scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

sequence parameter set (SPS): A syntax structure containing Syntax elements that apply to zero or more
entire CVSs as determined by the content of a syntax element found in the PPSreferred to by a syntax element
found in each dice segment header.

shall: A term used to express mandatory requirements for conformance to this Specification.

NOTE — When used to express a mandatory constraint on the values of syntax elements or on the results obtained by
operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is
fulfilled. When used in reference to operations performed by the decoding process, any decoding process that
produces identical cropped decoded pictures to those output from the decoding process described in this
Specification conforms to the decoding process requirements of this Specification.

short-term reference picture: A picture that is marked as "used for short-term reference".
short-term reference picture set: The three RPS lists that may contain short-term reference pictures.

should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Specification.

Rec. ITU-T H.265 (04/2013) 9

3.131

3.132

3.133

3.134

3.135
3.136

3.137

3.138

3.139

3.140

3.141

3.142

3.143

3.144

3.145
3.146
3.147

3.148
3.149
3.150

10

slice: An integer number of coding tree units contained in one independent slice segment and all subsequent
dependent dlice segments (if any) that precede the next independent slice segment (if any) within the same
access unit.

slice header: The dice segment header of the independent slice segment that is a current slice segment or the
most recent independent slice segment that precedes a current dependent slice segment in decoding order.

slice segment: An integer number of coding tree units ordered consecutively in the tile scan and contained in
a single NAL unit.

slice segment header: A part of a coded slice segment containing the data elements pertaining to the first or
all coding tree units represented in the slice segment.

source: A term used to describe the video material or some of its attributes before encoding.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit.
NOTE — The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL unit

and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the inclusion
of emulation prevention bytes.

step-wise temporal sub-layer access (STSA) access unit: An access unit in which the coded picture is an
STSA picture.

step-wise temporal sub-layer access (STSA) picture: A coded picture for which each VCL NAL unit has
nal_unit type equal to STSA R or STSA N.
NOTE — An STSA picture does not use pictures with the same Temporalld as the STSA picture for inter prediction
reference. Pictures following an STSA picture in decoding order with the same Temporalld as the STSA picture do
not use pictures prior to the STSA picture in decoding order with the same Temporalld as the STSA picture for inter
prediction reference. An STSA picture enables up-switching, at the STSA picture, to the sub-layer containing the
STSA picture, from the immediately lower sub-layer. STSA pictures must have Temporalld greater than 0.

string of data bits (SODB): A sequence of some number of bits representing Syntax elements present within
a raw byte sequence payload prior to the raw byte sequence payload stop bit, where the left-most bit is
considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

sub-bitstream extraction process: A specified process by which NAL units in a bitstream that do not belong
to a target set, determined by a target highest Temporalld and a target layer identifier list, are removed from
the bitstream, with the output sub-bitstream consisting of the NAL units in the bitstream that belong to the
target set.

sub-layer: A temporal scalable layer of a temporal scalable bitstream, consisting of VCL NAL units with a
particular value of the Temporalld variable and the associated non-VCL NAL units.

sub-layer non-reference picture: A picture that contains samples that cannot be used for inter prediction in
the decoding process of subsequent pictures of the same sub-layer in decoding order.

NOTE - Samples of a sub-layer non-reference picture may be used for inter prediction in the decoding process of
subsequent pictures of higher sub-layers in decoding order.

sub-layer reference picture: A picture that contains samples that may be used for inter prediction in the
decoding process of subsequent pictures of the same sub-layer in decoding order.

NOTE - Samples of a sub-layer reference picture may also be used for inter prediction in the decoding process of
subsequent pictures of higher sub-layers in decoding order.

sub-layer representation: A subset of the bitstream consisting of NAL units of a particular sub-layer and the
lower sub-layers.

suffix SEI message: An SEI message that is contained in a suffix SEI NAL unit.
suffix SEI NAL unit: An SEI NAL unit that has nal unit type equal to SUFFIX SEI NUT.

supplemental enhancement information (SEI) NAL unit: A NAL unit that has nal unit type equal to
PREFIX_ SEI NUT or SUFFIX SEI NUT.

syntax element: An element of data represented in the bitstream.
syntax structure: Zero or more Syntax elements present together in the bitstreamin a specified order.

temporal sub-layer access (TSA) access unit: An access unit in which the coded picture is a TSA picture.

Rec. ITU-T H.265 (04/2013)

3.151

3.152

3.153

3.154

3.155

3.156

3.157

3.158

3.159
3.160

3.161

3.162

3.163
3.164

3.165

3.166

3.167

3.168

temporal sub-layer access (TSA) picture: A coded picture for which each VCL NAL unit has nal_unit_type
equal to TSA R or TSA N.
NOTE — A TSA picture and pictures following the TSA picture in decoding order do not use pictures prior to the
TSA picture in decoding order with Temporalld greater than or equal to that of the TSA picture for inter prediction
reference. A TSA picture enables up-switching, at the TSA picture, to the sub-layer containing the TSA picture or
any higher sub-layer, from the immediately lower sub-layer. TSA pictures must have Temporalld greater than 0.

temporal sub-layer: A temporal scalable layer of a temporal scalable bitstream, consisting of VCL NAL units
with a particular value of Temporalld and the associated non-VCL NAL units.

tier: A specified category of level constraints imposed on values of the syntax elements in the bitstream,
where the level contraints are nested within a tier and a decoder conforming to a certain tier and level would
be capable of decoding all bitstreams that conform to the same tier or the lower tier of that level or any level
below it.

tile: A rectangular region of coding tree blocks within a particular tile column and a particular tile row in a
picture.

tile column: A rectangular region of coding tree blocks having a height equal to the height of the picture and
a width specified by syntax elements in the picture parameter set.

tile row: A rectangular region of coding tree blocks having a height specified by syntax elements in the
picture parameter set and a width equal to the width of the picture.

tile scan: A specific sequential ordering of coding tree blocks partitioning a picture in which the coding tree
blocks are ordered consecutively in coding tree block raster scan in a tile whereas tiles in a picture are
ordered consecutively in a raster scan of the tiles of the picture.

trailing picture: A picture that follows the associated | RAP picture in output order.

NOTE - Trailing pictures associated with an IRAP picture also follow the IRAP picture in decoding order. Pictures
that follow the associated IRAP picture in output order and precede the associated IRAP picture in decoding order
are not allowed.

transform block: A rectangular MxN block of samples on which the same transform is applied.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

transform unit: A transform block of luma samples of size 8x8, 16x16, or 32x32 or four transform blocks of
luma samples of size 4x4, two corresponding transform blocks of chroma samples of a picture that has three
sample arrays, or a transform block of luma samples of size 8x8, 16x16, or 32x32 or four transform blocks of
luma samples of size 4x4 of a monochrome picture or a picture that is coded using three separate colour
planes and syntax structures used to transform the transform block samples.

tree: A tree is a finite set of nodes with a unique root node.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

unspecified: A term that may be used to specify some values of a particular syntax element to indicate that the
values have no specified meaning in this Specification and will not have a specified meaning in the future as
an integral part of future versions of this Specification.

video coding layer (VCL) NAL unit: A collective term for coded slice segment NAL units and the subset of
NAL units that have reserved values of nal unit type that are classified as VCL NAL units in this
Specification.

video parameter set (VPS): A syntax structure containing Syntax elements that apply to zero or more entire
CVSs as determined by the content of a syntax element found in the SPSreferred to by a syntax element found
in the PPSreferred to by a syntax element found in each slice segment header.

z-scan order: A specified sequential ordering of blocks partitioning a picture, where the order is identical to
coding tree block raster scan of the picture when the blocks are of the same size as coding tree blocks, and,
when the blocks are of a smaller size than coding tree blocks, i.e., coding tree blocks are further partitioned
into smaller coding blocks, the order traverses from coding tree block to coding tree block in coding tree

Rec. ITU-T H.265 (04/2013) 11

block raster scan of the picture, and inside each coding tree block, which may be divided into quadtrees
hierarchically to lower levels, the order traverses from quadtree to quadtree of a particular level in quadtree-
of-the-particular-level raster scan of the quadtree of the immediately higher level.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
B Bi-predictive

BLA Broken Link Access

CABAC Context-based Adaptive Binary Arithmetic Coding

CB Coding Block

CBR Constant Bit Rate

CRA Clean Random Access

CPB Coded Picture Buffer

CTB Coding Tree Block

CTU Coding Tree Unit

CuU Coding Unit

CVS Coded Video Sequence

DPB Decoded Picture Buffer

DUT Decoder Under Test

EG Exponential-Golomb

FIFO First-In, First-Out

FIR Finite Impulse Response

FL Fixed-Length

GDR Gradual Decoding Refresh
HRD Hypothetical Reference Decoder
HSS Hypothetical Stream Scheduler
I Intra

IDR Instantaneous Decoding Refresh
IRAP Intra Random Access Point
LPS Least Probable Symbol

LSB Least Significant Bit

MPS Most Probable Symbol

MSB Most Significant Bit

NAL Network Abstraction Layer

P Predictive

PB Prediction Block

PPS Picture Parameter Set

PU Prediction Unit

RADL Random Access Decodable Leading (Picture)
RASL Random Access Skipped Leading (Picture)

12 Rec. ITU-T H.265 (04/2013)

RBSP
RPS
SEI
SODB
SPS
STSA
TB
TR
TSA
TU
UUID
VBR
VCL
VPS
VUI

5

5.1

5.2

Raw Byte Sequence Payload

Reference Picture Set

Supplemental Enhancement Information

String Of Data Bits

Sequence Parameter Set

Step-wise Temporal Sub-layer Access

Transform Block

Truncated Rice

Temporal Sub-layer Access

Transform Unit

Universal Unique Identifier

Variable Bit Rate

Video Coding Layer

Video Parameter Set

Video Usability Information

Conventions

General

NOTE — The mathematical operators used in this Specification are similar to those used in the C programming language.
However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are
defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0.

Arithmetic operators

The following arithmetic operators are defined as follows:

53

~

X
y

Y .
>t

x%y

Addition
Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
Multiplication, including matrix multiplication

Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.

Integer division with truncation of the result toward zero. For example, 7 / 4 and —7 / —4 are truncated
to 1 and =7 /4 and 7 / —4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

The summation of f(i) with i taking all integer values from x up to and including y.

Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

Logical operators

The following logical operators are defined as follows:

X && y

x ||y
!

Boolean logical "and" of x and y
Boolean logical "or" of x and y

Boolean logical "not"

Rec. ITU-T H.265 (04/2013) 13

5.4

x?y:z

If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

Relational operators

The following relational operators are defined as follows:

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not
applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered
not to be equal to any other value.

5.5

Bit-wise operators

The following bit-wise operators are defined as follows:

5.6

&

x>>y

x<<y

Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits than
another argument, the shorter argument is extended by adding more significant bits equal to 0.

Arithmetic right shift of a two's complement integer representation of x by y binary digits. This
function is defined only for non-negative integer values of y. Bits shifted into the MSBs as a result of
the right shift have a value equal to the MSB of x prior to the shift operation.

Arithmetic left shift of a two's complement integer representation of x by y binary digits. This
function is defined only for non-negative integer values of y. Bits shifted into the LSBs as a result of
the left shift have a value equal to 0.

Assignment operators

The following arithmetic operators are defined as follows:

5.7

++

Assignment operator

Increment, i.e., X++ is equivalent to X = X+ 1; when used in an array index, evaluates to the value of
the variable prior to the increment operation.

Decrement, i.e., X— — is equivalent to X = X — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

Increment by amount specified, i.e., x += 3 is equivalent to x =x + 3, and x += (—3) is equivalent
tox =x+(-3).

Decrement by amount specified, i.e., x —= 3 is equivalent to x = x — 3, and x —= (—3) is equivalent
tox =x —(-3).

Range notation

The following notation is used to specify a range of values:

14

X=Yy.z

x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers and z
being greater than y.

Rec. ITU-T H.265 (04/2013)

5.8

Mathematical functions

The following mathematical functions are defined:

Abs(x)=] X+ x>=0
-x ; x<0

Ceil(x) the smallest integer greater than or equal to x.

Cliply(x)=Clip3(0, (1 << BitDepthy) —1,x)
Cliplc(x) =Clip3(0, (1 << BitDepthc)—1,x)
X 5 Z<X
Clip3(x,y.2) =]y

Z ; otherwise

5 2>y

Floor(x) the largest integer less than or equal to x.

Log2(x) the base-2 logarithm of x.
Log10(x)the base-10 logarithm of x.

Min(x,y)={" 7
y 5 X>Y
Max(x,y)= X 5 X>=y
y 5 X<y
Round(x) = Sign(x) * Floor(Abs(x)+0.5)
1 ; x>0
Sign(x)=:0 ; x=0
-1 ; x<0
Sqrt(x) = Vx

Swap(x,y)=(y,x)

5.9 Order of operation precedence

(5-1)

(5-2)
(5-3)
(5-4)

(3-5)

(5-6)
(5-7)
(5-8)

(5-9)

(5-10)

(5-11)

(5-12)

(5-13)
(5-14)

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:

— Operations of a higher precedence are evaluated before any operation of a lower precedence.

— Operations of the same precedence are evaluated sequentially from left to right.

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher

precedence.

NOTE - For those operators that are also used in the C programming language, the order of precedence used in this Specification

is the same as used in the C programming language.

Rec. ITU-T H.265 (04/2013) 15

Table 5-1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)

va++vv’ "y— "

"Ix", "—x" (as a unary prefix operator)

xY

nmn nn . nn

"X*y,X/y,Xiy, ","X%y"

y
"X +y","x —y" (as a two-argument operator), " z fay"
i=x

HX << yH UX >> y"

)

nn nn n

"XEYLUX <= Y XYL X >= Y

nn
)

"X:y", " 4= y X —=y

5.10 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), and one descriptor for its method of coded representation. The decoding
process behaves according to the value of the syntax element and to the values of previously decoded syntax elements.
When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting
with a lower case letter are only used within the clause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE - The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These
functions are specified in clause 7.2 and assume the existence of a bitstream pointer with an indication of the position of
the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which
are constructed as syntax element names and end with left and right round parentheses including zero or more variable
names (for definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in clause 5.8) are described by their
names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore
character, and end with left and right parentheses including zero or more variable names (for definition) or values (for
usage) separated by commas (if more than one variable).

16 Rec. ITU-T H.265 (04/2013)

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be
syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a
visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a
column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for
indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as
s[x][y] or as sy. A single column of a matrix may be referred to as a list and denoted by omission of the row index.
Thus, the column of a matrix s at horizontal position x may be referred to as the list s[x].

A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} }, where each
inner pair of brackets specifies the values of the elements within a row in increasing column order and the rows are
ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6 } {4 9 } specifies that s[0][0] is set equal
tol,s[1][0]issetequalto6,s[0][1]issetequalto4,ands[1][1]issetequalto9.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit)
equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value
different from zero.

5.11 Text description of logical operations
In the text, a statement of logical operations as would be described mathematically in the following form:

if(condition 0)
statement 0

else if(condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:
... as follows / ... the following applies:
— If condition 0, statement 0

— Otherwise, if condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as
follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described mathematically in the following form:

if(condition 0a && condition Ob)
statement 0

else if(condition la || condition 1b)
statement 1

else
statement n
may be described in the following manner:

... as follows / ... the following applies:
— If all of the following conditions are true, statement 0:

— condition Oa

Rec. ITU-T H.265 (04/2013) 17

— condition Ob

— Otherwise, if one or more of the following conditions are true, statement 1:
— condition la
— condition 1b

— Otherwise, statement n
In the text, a statement of logical operations as would be described mathematically in the following form:

if(condition 0)
statement 0
if(condition 1)
statement 1
may be described in the following manner:
When condition 0, statement 0

‘When condition 1, statement 1

5.12 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as input. Each process specification has explicitly specified an output. The output is a variable that
can either be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows:

— Ifthe variables at the invoking and the process specification do not have the same name, the variables are explicitly
assigned to lower case input or output variables of the process specification.

— Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.

In the specification of a process, a specific coding block may be referred to by the variable name having a value equal to
the address of the specific coding block.

6 Bitstream and picture formats, partitionings, scanning processes, and neighbouring
relationships
6.1 Bitstream formats

This clause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as
the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit
stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units.
This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the
NAL units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of
bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the
unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than
use of the byte stream format are outside the scope of this Specification. The byte stream format is specified in
Annex B.

6.2 Source, decoded, and output picture formats
This clause specifies the relationship between source and decoded pictures that is given via the bitstream.
The video source that is represented by the bitstream is a sequence of pictures in decoding order.

The source and decoded pictures are each comprised of one or more sample arrays:

18 Rec. ITU-T H.265 (04/2013)

— Luma (Y) only (monochrome).
— Luma and two chroma (YCbCr or YCgCo).
— Green, Blue and Red (GBR, also known as RGB).

— Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also
known as XYZ).

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays
are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of
the actual colour representation method in use. The actual colour representation method in use can be indicated in
syntax that is specified in Annex E.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma format idc and separate colour plane flag. Other values of
chroma_format idc, SubWidthC, and SubHeightC may be specified in the future by ITU-T | ISO/IEC.

Table 6-1 — SubWidthC, and SubHeightC values derived from
chroma_format_idc and separate colour_plane_ flag

chroma_format idc |separate colour_plane flag Chroma format SubWidthC |SubHeightC
0 0 monochrome 1 1
1 0 4:2:0 2 2
2 0 4:2:2 2 1
3 0 4:4:4 1 1
3 1 4:4:4 1 1

In monochrome sampling there is only one sample array, which is nominally considered the luma array.
In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.
In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, depending on the value of separate_colour plane flag, the following applies:

— If separate_colour plane flag is equal to 0, each of the two chroma arrays has the same height and width as the
luma array.

— Otherwise (separate colour plane flag is equal to 1), the three colour planes are separately processed as
monochrome sampled pictures.

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 14, inclusive, and the number of bits used in the luma array may differ from the number
of bits used in the chroma arrays.

When the value of chroma format idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in pictures are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in
video usability information (see Annex E).

Rec. ITU-T H.265 (04/2013) 19

eee XOX XOX XOX

Guide:

X = Location of luma sample

X X X X X X

XOX XOX XOX

X X X X X X

XOX XOX XOX

X X X X X X

O = Location of chroma sample

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture

When the value of chroma format idc is equal to 2, the chroma samples are co-sited with the corresponding luma
samples and the nominal locations in a picture are as shown in Figure 6-2.

=

e @ B ®W B ©®

Guide:

X = Location of luma sample

X

X X X X X

b2

B &8 ® & X

X

X X X X X

=

B &8 B & X

X

X X X X X

O = Location of chroma sample

Figure 6-2 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture

When the value of chroma format idc is equal to 3, all array samples are co-sited for all cases of pictures and the

nominal locations in a picture are as shown in Figure 6-3.

20

Rec. ITU-T H.265 (04/2013)

e B B W ® ® ®
B B B & & W
B &8 B & ® W
B & B & ® ®
B & B & ® ®
B &8 B & ® W

Guide:
X = Location of luma sample

O = Location of chroma sample

Figure 6-3 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture

6.3 Partitioning of pictures, slices, slice segments, tiles, coding tree units, and coding tree blocks

6.3.1 Partitioning of pictures into slices, slice segments, and tiles

This clause specifies how a picture is partitioned into slices, slice segments, and tiles. Pictures are divided into slices
and tiles. A slice is a sequence of one or more slice segments starting with an independent slice segment and containing
all subsequent dependent slice segments (if any) that precede the next independent slice segment (if any) within the
same access unit. A slice segment is a sequence of coding tree units. Likewise, a tile is a sequence of coding tree units.

For example, a picture may be divided into two slices as shown in Figure 6-4. In this example, the first slice is
composed of an independent slice segment containing 4 coding tree units, a dependent slice segment containing 32
coding tree units, and another dependent slice segment containing 24 coding tree units; and the second slice consists of
a single independent slice segment containing the remaining 39 coding tree units of the picture.

As another example, a picture may be divided into two tiles separated by a vertical tile boundary as shown in
Figure 6-5. The left side of the figure illustrates a case in which the picture only contains one slice, starting with an
independent slice segment and followed by four dependent slice segments. The right side of the figure illustrates an
alternative case in which the picture contains two slices in the first tile and one slice in the second tile.

Unlike slices, tiles are always rectangular. A tile always contains an integer number of coding tree units, and may
consist of coding tree units contained in more than one slice. Similarly, a slice may consist of coding tree units
contained in more than one tile.

One or both of the following conditions shall be fulfilled for each slice and tile:

— All coding tree units in a slice belong to the same tile.

— All coding tree units in a tile belong to the same slice.
NOTE 1 — Within the same picture, there may be both slices that contain multiple tiles and tiles that contain multiple slices.

One or both of the following conditions shall be fulfilled for each slice segment and tile:
— All coding tree units in a slice segment belong to the same tile.

— All coding tree units in a tile belong to the same slice segment.

When a picture is coded using three separate colour planes (separate colour plane flag is equal to 1), a slice contains
only coding tree blocks of one colour component being identified by the corresponding value of colour plane id, and
each colour component array of a picture consists of slices having the same colour plane id value. Coded slices with
different values of colour plane id within an access unit may be interleaved with each other under the constraint that
for each value of colour plane id, the coded slice segment NAL units with that value of colour plane id shall be in the
order of increasing coding tree block address in tile scan order for the first coding tree block of each coded slice
segment NAL unit.

Rec. ITU-T H.265 (04/2013) 21

NOTE 2 — When separate_colour_plane_flag is equal to 0, each coding tree block of a picture is contained in exactly one slice.
When separate_colour plane flag is equal to 1, each coding tree block of a colour component is contained in exactly one slice
(i.e., information for each coding tree block of a picture is present in exactly three slices and these three slices have different
values of colour_plane _id).

' .
independent — slice segment
slice segment boundary

- A li
dependent —] slice boundary
slice segment

Figure 6-4 — A picture with 11 by 9 luma coding tree blocks that is partitioned into two slices, the first of which is
partitioned into three slice segments (informative)

tile

|_—" boundary

Figure 6-5 — A picture with 11 by 9 luma coding tree blocks that is partitioned into two tiles and one slice (left) or
is partitioned into two tiles and three slices (right) (informative)

6.3.2 Block and quadtree structures

The samples are processed in units of coding tree blocks. The array size for each luma coding tree block in both width
and height is CtbSizeY in units of samples. The width and height of the array for each chroma coding tree block are
CtbWidthC and CtbHeightC, respectively, in units of samples.

Each coding tree block is assigned a partition signalling to identify the block sizes for intra or inter prediction and for
transform coding. The partitioning is a recursive quadtree partitioning. The root of the quadtree is associated with the
coding tree block. The quadtree is split until a leaf is reached, which is referred to as the coding block. When the
component width is not an integer number of the coding tree block size, the coding tree blocks at the right component
boundary are incomplete. When the component height is not an integer multiple of the coding tree block size, the
coding tree blocks at the bottom component boundary are incomplete.

The coding block is the root node of two trees, the prediction tree and the transform tree. The prediction tree specifies
the position and size of prediction blocks. The transform tree specifies the position and size of transform blocks. The
splitting information for luma and chroma is identical for the prediction tree and may or may not be identical for the
transform tree.

22 Rec. ITU-T H.265 (04/2013)

The blocks and associated syntax structures are encapsulated in a "unit" as follows:

— One prediction block (monochrome picture or separate_colour plane flag is equal to 1) or three prediction blocks
(luma and chroma) and associated prediction syntax structures units are encapsulated in a prediction unit.

— One transform block (monochrome picture or separate_colour_plane flag is equal to 1) or three transform blocks
(luma and chroma) and associated transform syntax structures units are encapsulated in a transform unit.

— One coding block (monochrome picture or separate colour plane flag is equal to 1) or three coding blocks (luma
and chroma), the associated coding syntax structures and the associated prediction and transform units are
encapsulated in a coding unit.

— One coding tree block (monochrome picture or separate_colour plane flag is equal to 1) or three coding tree blocks
(luma and chroma), the associated coding tree syntax structures and the associated coding units are encapsulated in a
coding tree unit.

6.3.3 Spatial or component-wise partionings

The following divisions of processing elements of this Specification form spatial or component-wise partitionings:
— The division of each picture into components

— The division of each component into coding tree blocks

— The division of each picture into tile columns

— The division of each picture into tile rows

— The division of each tile column into tiles

— The division of each tile row into tiles

— The division of each tile into coding tree units

— The division of each picture into slices

— The division of each slice into slice segments

— The division of each slice segment into coding tree units

— The division of each coding tree unit into coding tree blocks

— The division of each coding tree block into coding blocks, except that the coding tree blocks are incomplete at the
right component boundary when the component width is not an integer multiple of the coding tree block size and the
coding tree blocks are incomplete at the bottom component boundary when the component height is not an integer
multiple of the coding tree block size

— The division of each coding tree unit into coding units, except that the coding tree units are incomplete at the right
picture boundary when the picture width in luma samples is not an integer multiple of the luma coding tree block
size and the coding tree units are incomplete at the bottom picture boundary when the picture height in luma
samples is not an integer multiple of the luma coding tree block size

— The division of each coding unit into prediction units

— The division of each coding unit into transform units

— The division of each coding unit into coding blocks

— The division of each coding block into prediction blocks
— The division of each coding block into transform blocks

— The division of each prediction unit into prediction blocks

— The division of each transform unit into transform blocks.

6.4 Availability processes
6.4.1 Derivation process for z-scan order block availability
Inputs to this process are:

— The luma location (xCurr, yCurr) of the top-left sample of the current block relative to the top-left luma sample of
the current picture

Rec. ITU-T H.265 (04/2013) 23

— The luma location (xNbY, yNbY) covered by a neighbouring block relative to the top-left luma sample of the
current picture.

Output of this process is the availability of the neighbouring block covering the location (xXNbY, yNbY), denoted as
availableN.

The minimum luma block address in z-scan order minBlockAddrCurr of the current block is derived as follows:
minBlockAddrCurr = MinTbAddrZs[xCurr >> Log2MinTrafoSize][yCurr >> Log2MinTrafoSize] (6-1)

The minimum luma block address in z-scan order minBlockAddrN of the neighbouring block covering the location
(xNbY, yNbY) is derived as follows:

— If one or more of the following conditions are true, minBlockAddrN is set equal to —1:
xNbY is less than 0
yNbY is less than 0

— xNbY is greater than or equal to pic width in luma samples

— yNbY is greater than or equal to pic_height in luma_samples
— Otherwise (xNbY and yNbY are inside the picture boundaries),

minBlockAddrN = MinTbAddrZs[xNbY >> Log2MinTrafoSize][yNbY >> Log2MinTrafoSize] (6-2)

The neighbouring block availability availableN is derived as follows:
— If one or more of the following conditions are true, availableN is set equal to FALSE:

— minBlockAddrN is less than 0,

— minBlockAddrN is greater than minBlockAddrCurr,

— the variable SliceAddrRs associated with the slice segment containing the neighbouring block with the
minimum luma block address minBlockAddrN differs in value from the variable SliceAddrRs associated with
the slice segment containing the current block with the minimum luma block address minBlockAddrCurr.

— the neighbouring block with the minimum Iuma block address minBlockAddrN is contained in a different tile
than the current block with the minimum Iuma block address minBlockAddrCurr.

— Otherwise, availableN is set equal to TRUE.

6.4.2 Derivation process for prediction block availability
Inputs to this process are:

— the luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

— avariable nCbS specifying the size of the current luma coding block,

— the luma location (xPb, yPb) of the top-left sample of the current luma prediction block relative to the top-left
luma sample of the current picture,

— two variables nPbW and nPbH specifying the width and the height of the current luma prediction block,
— avariable partldx specifying the partition index of the current prediction unit within the current coding unit,

— the luma location (xNbY, yNbY) covered by a neighbouring prediction block relative to the top-left luma sample
of the current picture.

Output of this process is the availability of the neighbouring prediction block covering the location (xXNbY, yNbY),
denoted as availableN is derived as follows:

The variable sameCb specifying whether the current luma prediction block and the neighbouring luma prediction block
cover the same luma coding block.

— If all of the following conditions are true, sameCb is set equal to TRUE:
— XCb is less than or equal than xXNbY,
— yCb is less than or equal than yNbY,
— (xCb +nCbS) is greater than xXNbY,

24 Rec. ITU-T H.265 (04/2013)

— (yCb + nCbS) is greater than yNbY.
— Otherwise, sameCbD is set equal to FALSE.
The neighbouring prediction block availability availableN is derived as follows:

— If sameCb is equal to FALSE, the derivation process for z-scan order block availability as specified in clause 6.4.1 is
invoked with (xCurr, yCurr) set equal to (xPb, yPb) and the luma location (xNbY, yNbY) as inputs, and the
output is assigned to availableN.

— Otherwise, if all of the following conditions are true, availableN is set equal to FALSE:
— (nPbW << 1) is equal to nCbS,
— (nPbH << 1) is equal to nCbS,
— partldx is equal to 1,
— (yCb+nPbH) is less than or equal to yNbY,
— (xCb + nPbW) is greater than xNbY.
— Otherwise, availableN is set equal to TRUE.

When availableN is equal to TRUE and CuPredMode[xNbY][yNbY] is equal to MODE INTRA, availableN is set
equal to FALSE.

6.5 Scanning processes

6.5.1 Coding tree block raster and tile scanning conversion process

The list colWidth[i] for i ranging from 0 to num_tile columns minusl, inclusive, specifying the width of the i-th tile
column in units of CTBs, is derived as follows:

if(uniform_spacing_flag)
for(i=0;1 <= num_tile_columns_minusl; i++)
colWidth[i]=((i+ 1) * PicWidthInCtbsY)/ (num_tile columns minusl + 1) —
(1 * PicWidthInCtbsY)/ (num_tile columns minusl + 1)
else {
colWidth[num_tile columns minusl] = PicWidthInCtbsY (6-3)
for(1=0;1<num_tile columns minusl; i++) {
colWidth[i] = column_width minusI[i]+1
colWidth[num_tile columns minusl | —= colWidth[i]
H
}

The list rowHeight[j] for j ranging from 0 to num_tile rows _minusl, inclusive, specifying the height of the j-th tile
row in units of CTBs, is derived as follows:

if(uniform_spacing_flag)
for(j=0;j <= num_tile rows_minusl; j++)
rowHeight[j]=((j + 1) * PicHeightInCtbsY) / (num_tile rows minusl + 1) —
(j * PicHeightInCtbsY) / (num_tile rows minusl + 1)
else {
rowHeight[num _tile rows minusl] = PicHeightInCtbsY (6-4)
for(j=0;j <num tile rows minusl; j++) {
rowHeight[j] = row_height minusl[j]+ 1
rowHeight[num_tile rows_minusl]| — rowHeight[j]
H
H

The list colBd[i] for i ranging from 0 to num tile columns minusl + 1, inclusive, specifying the location of the i-th
tile column boundary in units of coding tree blocks, is derived as follows:

for(colBd[0]=0,i=0;1 <= num _tile columns minusl; i++)
colBd[i+1]=colBd[i]+ colWidth[i] (6-5)

The list rowBd] j] for j ranging from 0 to num_tile rows minusl + 1, inclusive, specifying the location of the j-th tile
row boundary in units of coding tree blocks, is derived as follows:

Rec. ITU-T H.265 (04/2013) 25

for(rowBd[0]=0,j=0;j <= num_tile rows minusl; j++)
rowBd[j+ 1]=rowBd[j] + rowHeight[j] (6-6)

The list CtbAddrRsToTs[ctbAddrRs] for ctbAddrRs ranging from 0 to PicSizeInCtbsY — 1, inclusive, specifying the
conversion from a CTB address in CTB raster scan of a picture to a CTB address in tile scan, is derived as follows:

for(ctbAddrRs = 0; ctbAddrRs < PicSizeInCtbsY; ctbAddrRs++) {
tbX = ctbAddrRs % PicWidthInCtbsY
tbY = ctbAddrRs / PicWidthInCtbsY
for(1=0;1 <= num_tile_columns minusl; i++)
if(tbX >= colBd[i])
tileX =1
for(j=0;j <= num_tile rows_minusl; j++) (6-7)
if(tbY >= rowBd[j])
tileY =]
CtbAddrRsToTs[ctbAddrRs]=0
for(1=0;1 <tileX; i++)
CtbAddrRsToTs[ctbAddrRs | += rowHeight][tileY] * colWidth[i]
for(j=0;j <tileY; j++)
CtbAddrRsToTs[ctbAddrRs | += PicWidthInCtbsY * rowHeight][j]
CtbAddrRsToTs[ctbAddrRs] += (tbY —rowBd[tileY]) * colWidth[tileX] + tbX — colBd[tileX]

}

The list CtbAddrTsToRs[ctbAddrTs] for ctbAddrTs ranging from 0 to PicSizeInCtbsY — 1, inclusive, specifying the
conversion from a CTB address in tile scan to a CTB address in CTB raster scan of a picture, is derived as follows:

for(ctbAddrRs = 0; ctbAddrRs < PicSizeInCtbsY; ctbAddrRs++) (6-8)
CtbAddrTsToRs[CtbAddrRsToTs[ctbAddrRs]] = ctbAddrRs

The list Tileld[ctbAddrTs] for ctbAddrTs ranging from 0 to PicSizeInCtbsY — 1, inclusive, specifying the conversion
from a CTB address in tile scan to a tile ID, is derived as follows:

for(j =0, tileldx =0;j <= num_tile rows minusl; j++)
for(1=0;1 <= num_tile columns minusl; i++, tileldx++)
for(y=rowBd[j]; y<rowBd[j+1]; y++) (6-9)
for(x =colBd[i]; x<colBd[i+1]; x++)
Tileld[CtbAddrRsToTs[y * PicWidthInCtbsY+ x] | = tileldx

The values of ColumnWidthInLumaSamples| i], specifying the width of the i-th tile column in units of luma samples,
are set equal to colWidth[i] << CtbLog2SizeY for i ranging from 0 to num_tile columns minusl, inclusive.

The values of RowHeightInLumaSamples] j], specifying the height of the j-th tile row in units of luma samples, are set
equal to rowHeight[j] << CtbLog2SizeY for j ranging from 0 to num_tile rows minusl, inclusive.

6.5.2 Z-scan order array initialization process

The array MinTbAddrZs with elements MinTbAddrZs[x][y] for x ranging from O to
(PicWidthInCtbsY << (CtbLog2SizeY — Log2MinTrafoSize)) — 1, inclusive, and y ranging from 0 to
(PicHeightInCtbsY << (CtbLog2SizeY — Log2MinTrafoSize)) — 1, specifying the conversion from a location
(%, y) in units of minimum blocks to a minimum block address in z-scan order, inclusive is derived as follows:

for(y = 0; y <(PicHeightInCtbsY << (CtbLog2SizeY — Log2MinTrafoSize)); y++)
for(x = 0; x < (PicWidthInCtbsY << (CtbLog2SizeY — Log2MinTrafoSize)); x++) {

tbX = (x << Log2MinTrafoSize) >> CtbLog2SizeY

tbY = (y << Log2MinTrafoSize) >> CtbLog2SizeY

ctbAddrRs = PicWidthInCtbsY * tbY + tbX

MinTbAddrZs[x][y] = CtbAddrRsToTs[ctbAddrRs | << (6-10)

((CtbLog2SizeY — Log2MinTrafoSize) * 2)

for(1=0, p=0; i< (CtbLog2SizeY — Log2MinTrafoSize); i++) {
m=1 <<1i
ptr=(m&x?m*m:0)+(m&y?2*m*m:0)

}
MinTbAddrZs[x][y] += p
}

6.5.3 Up-right diagonal scan order array initialization process

Input to this process is a block size blkSize.

26 Rec. ITU-T H.265 (04/2013)

Output of this process is the array diagScan[sPos][sComp]. The array index sPos specify the scan position ranging
from 0 to (blkSize * blkSize) — 1. The array index sComp equal to 0 specifies the horizontal component and the array
index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array diagScan is
derived as follows:

i=0
x=0
y=0

stopLoop = FALSE
while(!stopLoop) {
while(y >= 0) {
if(x <blkSize && y <blkSize) { (6-11)
diagScan[1][0]=x
diagScan[i][1] =y
i++
§
y——
X++
}
y=X
x=0
if(i >= blkSize * blkSize)
stopLoop = TRUE
}

6.5.4 Horizontal scan order array initialization process
Input to this process is a block size blkSize.

Output of this process is the array horScan[sPos][sComp]. The array index sPos specifies the scan position ranging
from 0 to (blkSize * blkSize) — 1. The array index sComp equal to 0 specifies the horizontal component and the array
index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array horScan is
derived as follows:

i=0
for(y =0;y <blkSize; y++)
for(x = 0; x <blkSize; x++) {

horScan[i][0]=x (6-12)
horScan[i][1] =y
i++

}

6.5.5 Vertical scan order array initialization process
Input to this process is a block size blkSize.

Output of this process is the array verScan[sPos][sComp]. The array index sPos specifies the scan position ranging
from 0 to (blkSize * blkSize) — 1. The array index sComp equal to 0 specifies the horizontal component and the array
index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array verScan is
derived as follows:

i=0
for(x =0; x <blkSize; x++)
for(y = 0; y <blkSize; y++) {

verScan[1][0]=x (6-13)
verScan[i][1]=y
i++

Rec. ITU-T H.265 (04/2013) 27

7

7.1

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be

Syntax and semantics

Method of specifying syntax in tabular form

specified, either directly or indirectly, in other clauses.

The following table lists examples of the syntax specification format. When syntax_element appears, it specifies that a
syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax

element in the bitstream parsing process.

28

NOTE — An actual decoder should implement some means for identifying entry points into the bitstream and some means to
identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not
specified in this Specification.

Descriptor
/* A statement can be a syntax element with an associated descriptor or can be an expression
used to specify conditions for the existence, type, and quantity of syntax elements, as in the
following two examples */
syntax_element ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and is treated
functionally as a single statement. */

{

statement

statement

/* A "while" structure specifies a test of whether a condition is true, and if true, specifies
evaluation of a statement (or compound statement) repeatedly until the condition is no longer
true */

while(condition)

statement

/* A "do ... while" structure specifies evaluation of a statement once, followed by a test of
whether a condition is true, and if true, specifies repeated evaluation of the statement until the
condition is no longer true */

do

statement

while(condition)

/* An "if ... else" structure specifies a test of whether a condition is true and, if the condition is
true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an
alternative statement. The "else" part of the structure and the associated alternative statement is
omitted if no alternative statement evaluation is needed */

if(condition)

primary statement

else

alternative statement

/* A "for" structure specifies evaluation of an initial statement, followed by a test of a
condition, and if the condition is true, specifies repeated evaluation of a primary statement
followed by a subsequent statement until the condition is no longer true. */

for(initial statement; condition; subsequent statement)

primary statement

Rec. ITU-T H.265 (04/2013)

7.2 Specification of syntax functions and descriptors

The functions presented here are used in the syntactical description. These functions are expressed in terms of the value
of a bitstream pointer that indicates the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows:

— If'the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte aligned() is equal to TRUE.

— Otherwise, the return value of byte aligned() is equal to FALSE.

more_data_in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows:

— If more data follow in the byte stream, the return value of more data_in_byte stream() is equal to TRUE.
— Otherwise, the return value of more_data in_byte stream() is equal to FALSE.
more_data_in_payload() is specified as follows:

— If byte aligned() is equal to TRUE and the current position in the sei payload() syntax structure is
8 * payloadSize bits from the beginning of the sei payload() syntax structure, the return value of
more_data in_payload() is equal to FALSE.

— Otherwise, the return value of more_data_in_payload() is equal to TRUE.
more_rbsp_data() is specified as follows:
— If'there is no more data in the RBSP, the return value of more rbsp_data() is equal to FALSE.

— Otherwise, the RBSP data are searched for the last (least significant, right-most) bit equal to 1 that is present in
the RBSP. Given the position of this bit, which is the first bit (rbsp_stop one bit) of the rbsp_trailing bits()
syntax structure, the following applies:

— If there is more data in an RBSP before the rbsp trailing bits() syntax structure, the return value of
more rbsp data() is equal to TRUE.

— Otherwise, the return value of more rbsp data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application
(or in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data() is specified as follows:
— If'there is more data in an RBSP, the return value of more rbsp_trailing_data() is equal to TRUE.
— Otherwise, the return value of more rbsp_trailing data() is equal to FALSE.

payload extension_present() is specified as follows:

— If the current position in the sei_payload() syntax structure is not the position of the last (least significant,
right-most) bit that is equal to 1 that is less than 8 * payloadSize bits from the beginning of the syntax structure
(i.e., the position of the bit equal to one syntax element), the return value of payload extension_present() is
equal to TRUE.

— Otherwise, the return value of payload_extension_present() is equal to FALSE.

Rec. ITU-T H.265 (04/2013) 29

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream format as
specified in Annex B and fewer than n bits remain within the byte stream, next bits(n) returns a value of 0.

read bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

The following descriptors specify the parsing process of each syntax element:

— ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in clause 9.3.

— b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read bits(8).

— f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process
for this descriptor is specified by the return value of the function read bits(n).

— se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in clause 9.2.

— u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a binary representation of an unsigned integer with
most significant bit written first.

— ue(v): unsigned integer O-th order Exp-Golomb-coded syntax element with the left bit first. The parsing
process for this descriptor is specified in clause 9.2.

7.3 Syntax in tabular form
7.3.1 NAL unit syntax

7.3.1.1 General NAL unit syntax

nal_unit(NumBytesInNalUnit) { Descriptor

nal_unit_header()
NumBytesInRbsp = 0
for(1= 2; 1< NumBytesInNalUnit; i++)
if(i+ 2 <NumBytesInNalUnit && next bits(24) == 0x000003) {

rbsp_byte[NumBytesInRbsp++] b(8)

rbsp_byte[NumBytesInRbsp++] b(8)

i+=2

emulation_prevention_three_byte /* equal to 0x03 */ f(8)
} else

rbsp_byte[NumBytesInRbsp++] b(8)

7.3.1.2 NAL unit header syntax

nal unit header() { Descriptor
forbidden_zero_bit f(1)
nal_unit_type u(6)
nuh_layer_id u(6)
nuh_temporal_id_plusl u(3)

}

30 Rec. ITU-T H.265 (04/2013)

7.3.2 Raw byte sequence payloads, trailing bits, and byte alignment syntax

7.3.2.1 Video parameter set RBSP syntax

video_parameter set rbsp() { Descriptor
vps_video_parameter_set id u(4)
vps_reserved_three_2bits u(2)
vps_max_layers minusl u(6)
vps_max_sub_layers_minusl u(3)
vps_temporal_id nesting_flag u(l)
vps_reserved_O0xffff 16bits u(16)
profile_tier level(vps_max_sub layers _minus])
vps_sub_layer ordering info_present_ flag u(l)
for(i=(vps_sub_layer ordering info present flag ? 0 : vps_max_sub_layers minusl);
i <= vps max_sub layers minusl;i++) {
vps_max_dec_pic_buffering minusl1[i] ue(v)
vps_max_num_reorder_pics[i] ue(v)
vps_max_latency_increase plusl[i] ue(v)
}
vps_max_layer id u(6)
vps_num_layer_sets minusl ue(v)
for(i=1;1 <= vps_num_layer sets minusl; i++)
for(j=0;j <= vps_max_layer id;j++)
layer_id_included_flag[i][j] u(l)
vps_timing_info_present_flag u(l)
if(vps_timing_info present flag) {
vps_num_units_in_tick u(32)
vps_time_scale u(32)
vps_poc_proportional _to_timing flag u(l)
if(vps_poc_proportional to_timing flag)
vps_num_ticks_poc_diff one minusl ue(v)
vps_num_hrd_parameters ue(v)
for(i=0;1<vps_num_hrd parameters; i++) {
hrd_layer_set idx[i] ue(v)
if(i>0)
cprms_present_flag[i | u(l)
hrd parameters(cprms_present flag[i], vps_max_sub layers minus])
§
}
vps_extension_flag u(l)
if(vps_extension_flag)
while(more_rbsp_data())
vps_extension_data_flag u(l)

rbsp_trailing_bits()

Rec. ITU-T H.265 (04/2013)

31

7.3.2.2 Sequence parameter set RBSP syntax

seq_parameter_set rbsp() { Descriptor

sps_video_parameter_set_id u(4)
sps_max_sub_layers minusl u(3)
sps_temporal_id_nesting_flag u(l)
profile tier level(sps_max_sub layers minusl)
sps_seq_parameter_set_id ue(v)
chroma_format_idc ue(v)
if(chroma_format idc == 3)

separate_colour_plane_flag u(l)
pic_width_in_luma_samples ue(v)
pic_height_in_luma_samples ue(v)
conformance_window_flag u(l)
if(conformance window_flag) {

conf_win_left offset ue(v)

conf_win_right offset ue(v)

conf_win_top_offset ue(v)

conf_win_bottom_offset ue(v)
}
bit_depth_luma_minus8 ue(v)
bit_depth_chroma_minus§8 ue(v)
log2_max_pic_order_cnt_Isb_minus4 ue(v)
sps_sub_layer_ordering_info_present_flag u(l)
for(i=(sps_sub_layer ordering info present flag ? 0 : sps_max_sub layers_minusl);

i <= sps_max sub layers minusl;i++) {

sps_max_dec_pic_buffering_ minus1[i] ue(v)

sps_max_num_reorder_pics[i | ue(v)

sps_max_latency_increase plus1[i] ue(v)
)
log2_min_luma_coding_block_size_minus3 ue(v)
log2 diff max_min_luma_coding block_size ue(v)
log2_min_transform_block_size minus2 ue(v)
log2 diff max_min_transform_block size ue(v)
max_transform_hierarchy depth_inter ue(v)
max_transform_hierarchy depth_intra ue(v)
scaling list_enabled_flag u(l)
if(scaling_list enabled flag) {

sps_scaling list data_present_flag u(1)

if(sps_scaling list data present flag)

scaling_list_data()

)
amp_enabled_flag u(l)
sample_adaptive_offset_enabled_flag u(l)
pcm_enabled_flag u(l)
if(pcm_enabled flag) {

pcm_sample_bit_depth_luma_minusl u(4)

pcm_sample bit_depth_chroma_minusl u(4)

32 Rec. ITU-T H.265 (04/2013)

log2_min_pcm_luma_coding_block_size minus3 ue(v)
log2_diff max_min_pcm_luma_coding_block_size ue(v)
pem_loop_filter_disabled_flag u(l)
)
num_short_term_ref pic_sets ue(v)
for(i=0; 1 <num_short term ref pic_sets; i++)
short_term_ref pic set(1)
long_term_ref pics present flag u(l)
if(long_term ref pics present flag) {
num_long_term_ref pics_sps ue(v)
for(i=0;1<num long term ref pics_sps; i++) {
It_ref pic_poc_Isb_sps[i] u(v)
used_by_curr_pic_It_sps_flag[i] u(l)
)
§
sps_temporal_mvp_enabled_flag u(l)
strong_intra_smoothing_enabled_flag u(l)
vui_parameters_present_flag u(l)
if(vui_parameters_present flag)
vui_parameters()
sps_extension_flag u(1)
if(sps_extension_flag)
while(more rbsp data())
sps_extension_data_flag u(l)
rbsp_trailing_bits()

Rec. ITU-T H.265 (04/2013)

33

7.3.2.3 Picture parameter set RBSP syntax

pic_parameter_set rbsp() { Descriptor
pPps_pic_parameter_set_id ue(v)
Pps_seq_parameter_set_id ue(v)
dependent_slice_segments_enabled_flag u(l)
output_flag present_flag u(l)
num_extra_slice_header_bits u(3)
sign_data_hiding_enabled flag u(l)
cabac_init_present_flag u(l)
num_ref idx 10_default active minusl ue(v)
num_ref idx 11 _default_active_minusl ue(v)
init_qp_minus26 se(v)
constrained_intra_pred_flag u(l)
transform_skip enabled_flag u(l)
cu_qp_delta_enabled_flag u(l)
if(cu_qp_delta_enabled flag)
diff cu_qp_delta_depth ue(v)
pps_cb_qp_offset se(v)
pps_cr_qp_offset se(v)
pps_slice_chroma_qp_offsets_present flag u(l)
weighted _pred_flag u(l)
weighted_bipred_flag u(l)
transquant_bypass_enabled_flag u(l)
tiles_enabled_flag u(l)
entropy_coding_sync_enabled_flag u(l)
if(tiles_enabled flag) {
num_tile columns_minusl ue(v)
num_tile_rows_minusl ue(v)
uniform_spacing_flag u(l)
if('uniform_spacing_flag) {
for(1=0;1<num tile columns minusl; i++)
column_width_minus1[1] ue(v)
for(1=0;1<num tile rows minusl; i++)
row_height_minus1[i] ue(v)
}
loop_filter_across_tiles_enabled_flag u(1)
!
pps_loop_filter_across_slices_enabled_flag u(l)
deblocking_filter _control present flag u(l)
if(deblocking_filter control present flag) {
deblocking_filter_override_enabled flag u(l)
pps_deblocking_filter_disabled_flag u(l)
if(!pps_deblocking_filter disabled flag) {
pps_beta_offset_div2 se(v)
pps_tc_offset_div2 se(v)

34 Rec. ITU-T H.265 (04/2013)

pps_scaling list data_present_ flag u(1)
if(pps_scaling_list data present flag)
scaling_list_data()
lists_modification_present_flag u(l)
log2_parallel_merge level minus2 ue(v)
slice_segment_header_extension_present_flag u(l)
pps_extension_flag u(1)
if(pps_extension_flag)
while(more rbsp data())
pps_extension_data_flag u(l)
rbsp_trailing_bits()
}
7.3.2.4 Supplemental enhancement information RBSP syntax
sei_rbsp() { Descriptor
do
sei_message()
while(more rbsp data())
rbsp_trailing_bits()
}
7.3.2.5 Access unit delimiter RBSP syntax
access_unit_delimiter rbsp() { Descriptor
pic_type u(3)
rbsp_trailing bits()
}
7.3.2.6 End of sequence RBSP syntax
end of seq rbsp() { Descriptor
}
7.3.2.7 End of bitstream RBSP syntax
end of bitstream rbsp() { Descriptor

}

Rec. ITU-T H.265 (04/2013)

35

7.3.2.8 Filler data RBSP syntax

filler data rbsp() { Descriptor
while(next_bits(8) == OxFF)
ff byte /* equal to OxFF */ f(8)

rbsp_trailing_bits()

7.3.2.9 Slice segment layer RBSP syntax

slice_segment_layer rbsp() { Descriptor

slice_segment_header()

slice_segment_data()

tbsp_slice segment trailing_bits()

7.3.2.10 RBSP slice segment trailing bits syntax

tbsp_slice_segment trailing bits() { Descriptor

rbsp_trailing_bits()

while(more rbsp _trailing data())

cabac_zero_word /* equal to 0x0000 */ f(16)

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing bits() { Descriptor
rbsp_stop _one_bit /* equalto 1 */ f(1)
while(!byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ f(1)
}

7.3.2.12 Byte alignment syntax

byte alignment() { Descriptor
alignment_bit_equal_to_one /* equal to 1 */ f(1)
while(!byte aligned())
alignment_bit_equal_to_zero /* equalto 0 */ f(1)
H

36 Rec. ITU-T H.265 (04/2013)

7.3.3

Profile, tier and level syntax

profile_tier level(maxNumSubLayersMinusl) { Descriptor
general_profile_space u2)
general_tier_flag u(l)
general_profile idc u(s)
for(j=0;j<32;j++)
general_profile compatibility flag|[j] u(l)
general_progressive_source_flag u(l)
general_interlaced_source_flag u(l)
general non_packed_constraint flag u(l)
general_frame_only constraint_flag u(l)
general_reserved_zero_44bits u(44)
general_level idc u(8)
for(1= 0; i < maxNumSubLayersMinusl; i++) {
sub_layer profile present flag[i] u(l)
sub_layer_level present flag[i] u(l)
}
if(maxNumSubLayersMinus1 >0)
for(1= maxNumSubLayersMinusl; i <8; i++)
reserved_zero_2bits[i | u2)
for(1= 0; i < maxNumSubLayersMinus1; i++) {
if(sub_layer profile present flag[i]) {
sub_layer profile space[i] u(2)
sub_layer_tier_flag[i | u(l)
sub_layer profile idc[i] u(s)
for(j = 0;] < 32; j++)
sub_layer_profile_compatibility flag[i][]] u(l)
sub_layer_ progressive source flag[i | u(l)
sub_layer_interlaced_source flag[i] u(l)
sub_layer_non_packed_constraint_flag[i | u(l)
sub_layer_frame only_constraint_flag[i] u(l)
sub_layer_reserved_zero_44bits[i | u(44)
}
if(sub_layer level present flag[i])
sub_layer level idc[i] u(8)
§

Rec. ITU-T H.265 (04/2013)

37

7.3.4

Scaling list data syntax

scaling_list_data() {

Descriptor

for(sizeld = 0; sizeld < 4; sizeld++)

for(matrixId = 0; matrixId < ((sizeld == 3) ?2:6); matrixId++) {

scaling_list_pred_mode_flag[sizeld][matrixId]

u(l)

if(!scaling_list_pred_mode_flag[sizeld][matrixId])

scaling_list_pred_matrix_id_delta[sizeld][matrixId]

ue(v)

else {

nextCoef =8

coefNum = Min(64, (1 << (4 +(sizeld << 1))))

if(sizeld>1) {

scaling_list dc_coef minus8[sizeld — 2][matrixId]

se(v)

nextCoef = scaling_list dc_coef minus§[sizeld — 2][matrixId]+ 8

}

for(i=0; 1< coefNum; i++) {

scaling_list_delta_coef

se(v)

nextCoef = (nextCoef + scaling_list delta coef+ 256) % 256

ScalingList[sizeld][matrixId][i] = nextCoef

7.3.5

Supplemental enhancement information message syntax

sei_message() {

Descriptor

payloadType =0

while(next_bits(8) == OxFF) {

ff_byte /* equal to OxFF */

f(8)

payloadType += 255

}

last_payload_type byte

u(®)

payloadType += last payload type byte

payloadSize =0

while(next_bits(8) == OXFF) {

ff_byte /* equal to OxFF */

f(8)

payloadSize += 255

}

last_payload_size byte

u(®)

payloadSize += last payload size byte

sei_payload(payloadType, payloadSize)

38

Rec. ITU-T H.265 (04/2013)

7.3.6 Slice segment header syntax

7.3.6.1 General slice segment header syntax

slice_segment_header() {

Descriptor
first_slice_segment _in_pic_flag u(l)
if(nal_unit type >= BLA W _LP && nal unit type <= RSV _IRAP VCL23)
no_output_of prior_pics flag u(l)
slice_pic_parameter_set_id ue(v)
if(!first_slice_segment in pic_flag) {
if(dependent slice segments enabled flag)
dependent_slice_segment flag u(l)
slice_segment_address u(v)
§
if(!dependent_slice _segment flag) {
for(i=0;1<num_extra slice header bits; i++)
slice_reserved_flag[i | u(l)
slice_type ue(v)
if(output flag present flag)
pic_output_flag u(l)
if(separate_colour plane flag == 1)
colour_plane_id u(2)
if(nal unit type != IDR W RADL && nal unit type != IDR N LP) {
slice_pic_order_cnt_Isb u(v)
short_term_ref pic_set sps flag u(l)
if(!short_term ref pic set sps flag)
short_term_ref pic_set(num_short term ref pic_sets)
else if(num_short_term_ref pic sets> 1)
short_term_ref pic_set idx u(v)
if(long_term ref pics present flag) {
if(num_long_term_ref pics sps>0)
num_long_term_sps ue(v)
num_long_term_pics ue(v)
for(i=0;1<num_long term sps + num_long term_pics; i++) {
if(i <num_long term sps) {
if(num_long_term_ref pics sps>1)
It_idx_sps[i] u(v)
} else {
poc_Isb 1t[i] u(v)
used_by curr_pic_It flag[i] u(l)
}
delta_poc_msb_present_flag[i | u(l)
if(delta_poc_msb_present flag[i])
delta_poc_msb_cycle It[i] ue(v)
}
¥
if(sps_temporal mvp enabled flag)
slice_temporal_mvp _enabled_flag u(l)

Rec. ITU-T H.265 (04/2013)

39

if(sample adaptive offset enabled flag) {

40

slice_sao_luma_flag u(l)
slice_sao_chroma_flag u(1)
}
if(slice_type == P || slice _type == B) {
num_ref _idx_active override flag u(l)
if(num_ref idx active override flag) {
num_ref _idx_10_active_minusl ue(v)
if(slice_type == B)
num_ref _idx_11_active_minusl ue(v)
§
if(lists modification present flag && NumPocTotalCurr > 1)
ref pic_lists modification()
if(slice type == B)
mvd_l1_zero_flag u(l)
if(cabac _init present flag)
cabac_init_flag u(1)
if(slice_temporal mvp enabled flag) {
if(slice_type == B)
collocated_from_l0_flag u(l)
if((collocated from 10 flag && num ref idx 10 active minusl >0) |
(!collocated from 10 flag && num ref idx 11 active minusl >0))
collocated_ref idx ue(v)
}
if((weighted pred flag && slice type == P) ||
(weighted bipred flag && slice type == B))
pred_weight table()
five_minus_max_ num_merge cand ue(v)
}
slice_qp_delta se(v)
if(pps_slice_chroma qp offsets present flag) {
slice_cb_qp_offset se(v)
slice_cr_qp_offset se(v)
§
if(deblocking_filter override enabled flag)
deblocking_filter override flag u(l)
if(deblocking_filter override flag) {
slice_deblocking filter disabled_flag u(l)
if(!slice_deblocking_filter disabled flag) {
slice_beta_offset_div2 se(v)
slice_tc_offset_div2 se(v)
§
}
if(pps_loop_filter_across_slices_enabled flag &&
(slice_sao_luma flag || slice sao chroma flag ||
Islice_deblocking filter disabled flag))
slice_loop_filter_across_slices_enabled_flag u(1)
}
if(tiles_enabled flag || entropy coding sync enabled flag) {
num_entry point_offsets ue(v)

Rec. ITU-T H.265 (04/2013)

if(num_entry point offsets >0) {
offset_len_minusl ue(v)
for(1=0;1<num_entry point offsets; i++)
entry_point_offset_minus1[i] u(v)
H
}
if(slice_segment header extension present flag) {
slice_segment_header_extension_length ue(v)
for(1=0;1<slice segment header extension_length; i++)
slice_segment_header_extension_data_byte[i] u(8)
§
byte alignment()
H
7.3.6.2 Reference picture list modification syntax
ref pic_lists modification() { Descriptor
ref pic_list_modification_flag 10 u(l)
if(ref pic_list modification flag 10)
for(i=0;1 <= num_ref idx 10 active_minusl; i++)
list entry 10[1] u(v)
if(slice type == B) {
ref _pic_list modification_flag 11 u(l)
if(ref pic_list_modification_flag 11)
for(1=0;1 <= num_ref idx 11 active minusl; i++)
list_ entry 11[1] u(v)
}
}

Rec. ITU-T H.265 (04/2013)

41

7.3.6.3 Weighted prediction parameters syntax

pred weight table() { Descriptor
luma_log2 weight_denom ue(v)
if(chroma_format idc != 0)
delta_chroma_log2 weight _denom se(v)
for(i=0;1 <= num_ref idx 10 active_minusl; i++)
luma_weight 10 flag[i] u(l)
if(chroma_format idc != 0)
for(1=0;1 <= num_ref idx 10 active_minusl; it+)
chroma_weight 10 flag[i] u(l)
for(i=0;1 <= num_ref idx 10 active _minusl; i++) {
if(luma_weight 10 flag[i]) {
delta luma_weight 10] i] se(v)
luma_offset _10[i] se(v)
i
if(chroma_weight 10 flag[i])
for(j=0;j<2;j++) {
delta_chroma_weight 10[i][]] se(v)
delta_chroma_offset 10[i][j] se(v)
H
i
if(slice_type == B) {
for(1=0;1 <= num_ref idx 11 active_minusl; it+)
luma_weight 11 flag[i] u(l)
if(chroma_format idc != 0)
for(i=0;1 <= num_ref idx 11 active _minusl; i++)
chroma_weight 11 flag[i] u(l)
for(i=0;1 <= num_ref idx 11 active _minusl; i++) {
if(luma_weight 11 flag[i]) {
delta_luma_weight 11] 1] se(v)
luma_offset 11[1] se(v)
H
if(chroma_weight 11_flag[i])
for(j=0;j<2;j++) {
delta_chroma_weight 11[1][]] se(v)
delta_chroma_offset 11[1][]] se(v)

42 Rec. ITU-T H.265 (04/2013)

7.3.7 Short-term reference picture set syntax

short term_ref pic_set(stRpsldx) { Descriptor
if(stRpsldx = 0)
inter_ref pic_set_prediction_flag u(l)

if(inter_ref pic_set prediction flag) {

if(stRpsldx == num_short term_ref pic_sets)

delta_idx_minusl ue(v)
delta_rps_sign u(l)
abs_delta_rps_minusl ue(v)
for(j =0;j <= NumDeltaPocs[RefRpsldx]; j++) {

used_by curr_pic_flag[j] u(l)

if(lused_by curr pic_flag[j])

use_delta_flag[j | u(l)
}
} else {

num_negative_ pics ue(v)
num_positive_pics ue(v)
for(i=0; i <num_negative pics; it++) {

delta_poc_s0 minusl1[i] ue(v)

used_by_curr_pic_s0_flag[i] u(l)
j
for(1=0; 1 <num_positive_pics; i++) {

delta_poc_s1_minusl[i] ue(v)

used_by_curr_pic_s1_flag[i] u(l)

7.3.8 Slice segment data syntax

7.3.8.1 General slice segment data syntax

slice_segment data() { Descriptor
do {
coding_tree unit()
end_of slice_segment_flag ae(v)
CtbAddrInTs++

CtbAddrInRs = CtbAddrTsToRs[CtbAddrInTs]
if(lend of slice segment flag &&
((tiles_enabled flag && Tileld[CtbAddrInTs] != Tileld[CtbAddrinTs —117)

|l
0))

(‘entropy_coding_sync_enabled flag && CtbAddrInTs % PicWidthInCtbsY =
) {
end of sub_stream_one_ bit /* equal to 1 */ ae(v)
byte alignment()
}
} while(!lend_of slice _segment flag)

Rec. ITU-T H.265 (04/2013) 43

7.3.8.2 Coding tree unit syntax

coding_tree unit() { Descriptor

xCtb = (CtbAddrInRs % PicWidthInCtbsY) << CtbLog2SizeY

yCtb = (CtbAddrInRs / PicWidthInCtbsY) << CtbLog2SizeY

if(slice_sao luma flag || slice_sao _chroma flag)

sao(xCtb >> CtbLog2SizeY, yCtb >> CtbLog2SizeY)

coding_quadtree(xCtb, yCtb, CtbLog2SizeY, 0)

}

7.3.8.3 Sample adaptive offset syntax

sao(rx, ry){ Descriptor

if(rx>0) {

leftCtbInSliceSeg = CtbAddrInRs > SliceAddrRs

leftCtbInTile = Tileld[CtbAddrInTs] == Tileld[CtbAddrRsToTs[CtbAddrInRs — 1]]

if(leftCtbInSliceSeg && leftCtbInTile)

sao_merge_left flag ae(v)

}

if(ry >0 && !sao_merge left flag) {

upCtbInSliceSeg = (CtbAddrInRs — PicWidthInCtbsY) >= SliceAddrRs

upCtbInTile = Tileld[CtbAddrInTs | ==
Tileld[CtbAddrRsToTs[CtbAddrInRs — PicWidthInCtbsY]]

if(upCtbInSliceSeg && upCtbInTile)

sao_merge_up_flag ae(v)

}

if(!sao_merge up flag && !sao _merge left flag)

for(cIdx = 0; cldx < 3; cIdx++)

if((slice_sao luma flag && cldx == 0) ||
(slice_sao chroma flag && cldx>0)) {

if(cldx == 0)

sao_type_idx_luma ae(v)
elseif(cldx == 1)

sao_type_idx_chroma ae(v)

if(SaoTypeldx[cldx [[rx J[ry] != 0) {

for(i=0;1<4;itt)

sao_offset_abs[cldx [[rx][ry][1] ae(v)

if(SaoTypeldx[cldx [[rx J[ry] == 1) {

for(i=0;1<4;i++)

if(sao_offset abs[cldx J[rx J[ry][i] != 0)

sao_offset sign[cldx [[rx |[ry][1] ae(v)

44 Rec. ITU-T H.265 (04/2013)

sao_band_position[cldx J[rx][ry] ae(v)
} else {
if(cldx == 0)
sao_eo_class luma ae(v)
if(cldx == 1)
sao_eo_class _chroma ae(v)
}
b
}
b
7.3.8.4 Coding quadtree syntax
coding_quadtree(x0, y0, log2CbSize, cqtDepth) { Descriptor
if(x0+ (1 << log2CbSize) <= pic_width_in_luma samples &&
yO + (1 << log2CbSize) <= pic_height in luma samples &&
log2CbSize > MinCbLog2SizeY)
split_cu_flag[x0][yO] ae(v)

if(cu_gp delta enabled flag && log2CbSize >= Log2MinCuQpDeltaSize) {

IsCuQpDeltaCoded = 0

CuQpDeltaVal =0

}

if(split_cu flag[x0][y0]) {

x1 =x0+ (1 << (log2CbSize+ 1))

yl=y0+ (1 << (log2CbSize* 1))

coding_quadtree(x0, y0, log2CbSize — 1, cqtDepth + 1)

if(x1 <pic_width in luma samples)

coding_quadtree(x1, y0, log2CbSize — 1, cqtDepth + 1)

if(yl <pic_height in luma samples)

coding_quadtree(x0, y1, log2CbSize — 1, cqtDepth + 1)

if(x1 <pic_width in luma samples && yl <pic_height in luma samples)

coding_quadtree(x1, y1, log2CbSize — 1, cqtDepth + 1)

} else

coding_unit(x0, y0, log2CbSize)

Rec. ITU-T H.265 (04/2013)

45

7.3.8.5 Coding unit syntax

46

coding_unit(x0, y0, log2CbSize) {

Descriptor

if(transquant_bypass_enabled flag)

cu_transquant_bypass_flag

ae(v)

if(slice_type != 1)

cu_skip_flag[x0][yO]

ae(v)

nCbS = (1 << log2CbSize)

if(cu_skip flag[x0][y0])

prediction_unit(x0, y0, nCbS, nCbS)

else {

if(slice_type !'= 1)

pred_mode_flag

ae(v)

if(CuPredMode[x0][y0] != MODE_INTRA || log2CbSize ==

MinCbLog2SizeY)

part_mode

ae(v)

if(CuPredMode[x0][y0] == MODE _INTRA) {

if(PartMode == PART 2Nx2N && pcm_enabled flag &&
log2CbSize >= Log2MinlpecmCbSizeY &&
log2CbSize <= Log2MaxIpcmCbSizeY)

pem_flag[x0][yO]

ae(v)

if(pem_flag[x0][y0]) {

while('byte aligned())

pem_alignment_zero_bit

f(1)

pcm_sample(x0, y0, log2CbSize)

} else {

pbOffset = (PartMode == PART NxN) ? (nCbS/2) : nCbS

for(j=0;j <nCbS; j =j + pbOffset)

for(1=0;1<nCbS;i=1+ pbOffset)

prev_intra_luma_pred_flag[x0 +i][y0 +]]

ae(v)

for(j=0;j <nCbS;j=]j + pbOffset)

for(1=0;1<nCbS; i=1+ pbOffset)

if(prev_intra_luma pred flag[x0+i][y0+j])

mpm_idx[x0+i][y0O+j]

ae(v)

else

rem_intra_luma_pred_mode[x0 +1][y0 +j]

ae(v)

intra_chroma_pred_mode[x0][yO0]

ae(v)

}

} else {

if(PartMode == PART 2Nx2N)

prediction_unit(x0, y0, nCbS, nCbS)

else if(PartMode == PART 2NxN) {

prediction_unit(x0, y0, nCbS, nCbS /2)

prediction_unit(X0, y0 + (nCbS /2), nCbS, nCbS /2)

} else if(PartMode == PART Nx2N) {

prediction_unit(x0, y0, nCbS /2, nCbS)

prediction_unit(X0 + (nCbS /2), y0, nCbS /2, nCbS)

} else if(PartMode == PART 2NxnU) {

prediction _unit(x0, y0, nCbS, nCbS /4)

prediction_unit(x0, y0 + (nCbS /4), nCbS, nCbS *3/4)

} else if(PartMode == PART 2NxnD) {

prediction_unit(x0, y0, nCbS, nCbS *3/4)

Rec. ITU-T H.265 (04/2013)

prediction_unit(x0, y0 + (nCbS * 3/4), nCbS, nCbS /4)

} else if(PartMode == PART nLx2N) {

prediction unit(x0, y0, nCbS / 4, nCbS)

prediction unit(X0 + (nCbS /4), y0, nCbS * 3 /4, nCbS)

} else if(PartMode == PART nRx2N) {

prediction_unit(x0, y0, nCbS * 3 /4, nCbS)

prediction unit(X0 + (nCbS * 3/4), y0, nCbS / 4, nCbS)

} else { /* PART NxN */

prediction unit(x0, y0, nCbS/2,nCbS/2)

prediction unit(x0 + (nCbS/2), y0,nCbS/2,nCbS/2)

prediction unit(x0, y0 + (nCbS/2),nCbS/2,nCbS/2)

prediction unit(X0 + (nCbS/2),y0+ (nCbS/2),nCbS/2,nCbS/2)

i

i

if(!pem flag[x0][y01]) {
if(CuPredMode[x0][y0] != MODE_INTRA &&
!(PartMode == PART 2Nx2N && merge flag[x0][y01]))

rqt_root_cbf

ae(v)

if(rqt_root cbf) {

MaxTrafoDepth = (CuPredMode[x0][y0] == MODE_INTRA ?

(max_transform_hierarchy depth intra + IntraSplitFlag) :

max_transform hierarchy depth inter)

transform_tree(x0, y0, x0, y0, log2CbSize, 0, 0)

}

}

Rec. ITU-T H.265 (04/2013)

47

7.3.8.6 Prediction unit syntax

prediction_unit(x0, y0, nPbW, nPbH) {

Descriptor

if(cu_skip flag[x0][y0]) {

if(MaxNumMergeCand > 1)

merge_idx[x0][y0]

ae(v)

} else { /* MODE_INTER */

merge_flag[x0][yO]

ae(v)

if(merge flag[x0][y0]) {

if MaxNumMergeCand > 1)

merge_idx[x0][yO]

ae(v)

}else {

if(slice type == B)

inter_pred_idc[x0][y0]

ae(v)

if(inter pred idc[x0][y0] != PRED L1) {

if(num ref idx 10 active minusl >0)

ref idx 10[x0][yO]

ae(v)

mvd_coding(x0, y0, 0)

mvp 10 flag[x0][yO]

ae(v)

}

if(inter pred idc[x0][y0] != PRED L0) {

if(num ref idx 11 active minusl >0)

ref idx 11[x0][y0]

ae(v)

ifl mvd 11 _zero flag &&

inter_pred ide[x0 J[y0] == PRED BI) {

MvdLI[x0][y0][0]=0

MvdLI[x0][y0][1]=0

} else

mvd_coding(x0, y0, 1)

mvp 11 flag[x0][yO0]

ae(v)

}

}

7.3.8.7 PCM sample syntax

pecm_sample(x0, y0, log2CbSize) {

Descriptor

for(i=0;1<1 << (log2CbSize << 1);i++)

pem_sample lumal i |

u(v)

for(i=0;i<(1 << (log2CbSize << 1)) >> I;i++)

pcem_sample chromal i |

u(v)

48 Rec. ITU-T H.265 (04/2013)

7.3.8.8 Transform tree syntax

transform_tree(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx) {

Descriptor

if(log2TrafoSize <= Log2MaxTrafoSize &&
log2TrafoSize > Log2MinTrafoSize &&
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && (trafoDepth == 0)))

split_transform_flag[x0][yO][trafoDepth]

ae(v)

if(log2TrafoSize >2) {

if(trafoDepth == 0 || cbf cb[xBase][yBase][trafoDepth — 1])

cbf_cb[x0][yO][trafoDepth]

ae(v)

if(trafoDepth == 0 || cbf cr[xBase][yBase][trafoDepth —1])

cbf _cr[x0][yO][trafoDepth]

ae(v)

}

if(split_transform_flag[x0][yO][trafoDepth]) {

x1 =x0+ (1 << (log2TrafoSize* 1))

yl=y0+ (1 << (log2TrafoSize* 1))

transform_tree(x0, y0, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 0)

transform_tree(x1, y0, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 1)

transform_tree(x0, y1, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 2)

transform_tree(x1, y1, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 3)

}else {

if(CuPredMode[x0][y0] == MODE_INTRA || trafoDepth != 0 ||
cbf cb[x0][yO][trafoDepth] || cbf cr[x0][yO][trafoDepth])

cbf lumal x0][yO][trafoDepth]

ae(v)

transform_unit(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkldx)

7.3.8.9 Motion vector difference syntax

mvd coding(x0, y0, refList) {

Descriptor

ae(v)

abs_mvd_greater(flag[0
abs_mvd_greater(flag[1

ae(v)

if(abs mvd greater0 flag[

ae(v)

if(abs mvd greater0 flag[

abs mvd_greater]l flag

ae(v)

]
]
0]
abs_mvd_greater1l flag[0
1]
[1
0]

if(abs mvd greater0 flag[{

)
]
)
]
)
0

if(abs mvd greaterl flag[0])

abs mvd minus2[0]

ae(v)

mvd_sign flag[0]

ae(v)

}

if(abs mvd greater0 flag[1]) {

if(abs mvd greaterl flag[1])

abs mvd minus2[1]

ae(v)

mvd_sign flag[|]

ae(v)

}

i

Rec. ITU-T H.265 (04/2013)

49

7.3.8.10 Transform unit syntax

50

transform_unit(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) {

Descriptor

if(cbf luma[x0][yO][trafoDepth] || cbf cb[x0][yO][trafoDepth] ||
cbf cr[x0][y0][trafoDepth]) {

if(cu_qgp_delta_enabled flag && !IsCuQpDeltaCoded) {

cu_qp_delta_abs

ae(v)

if(cu_qp_delta_abs)

cu_qp_delta_sign_flag

ae(v)

}

if(cbf luma[x0][yO][trafoDepth])

residual coding(x0, y0, log2TrafoSize, 0)

if(log2TrafoSize >2) {

if(cbf _cb[x0 [y0][trafoDepth])

residual coding(x0, y0, log2TrafoSize — 1, 1)

if(cbf_cr[x0][yO][trafoDepth])

residual coding(x0, y0, log2TrafoSize — 1, 2)

} else if(blkIdx == 3) {

if(cbf cb[xBase][yBase][trafoDepth])

residual coding(xBase, yBase, log2TrafoSize, 1)

if(cbf cr[xBase][yBase][trafoDepth])

residual coding(xBase, yBase, log2TrafoSize, 2)

Rec. ITU-T H.265 (04/2013)

7.3.8.11 Residual coding syntax

residual coding(x0, y0, log2TrafoSize, cldx) { Descriptor

if(transform_skip enabled flag && !cu transquant bypass flag &&
(log2TrafoSize == 2))

transform_skip_flag[x0][yO0][cldx] ae(v)
last_sig_coeff x_prefix ae(v)
last_sig_coeff y prefix ae(v)

if(last_sig_coeff x prefix >3)

last_sig_coeff x_suffix ae(v)

if(last_sig_coeff y prefix >3)

last_sig_coeff y suffix ae(v)
lastScanPos = 16
lastSubBlock = (1 << (log2TrafoSize—2))* (1 << (log2TrafoSize—2))—1
do {
if(lastScanPos == 0) {
lastScanPos = 16
lastSubBlock— —
}
lastScanPos— —
xS = ScanOrder[log2TrafoSize — 2][scanldx][lastSubBlock][0]
yS = ScanOrder| log2TrafoSize — 2][scanldx][lastSubBlock][1]
xC = (xS << 2)+ ScanOrder[2][scanldx][lastScanPos][0]
yC =(yS << 2)+ ScanOrder[2][scanldx][lastScanPos][1]
} while((xC != LastSignificantCoeffX) | | (yC != LastSignificantCoeffY))
for(1= lastSubBlock; i >= 0;i——) {
xS = ScanOrder| log2TrafoSize — 2][scanldx][1][0]
yS = ScanOrder[log2TrafoSize — 2][scanldx J[i][1]
inferSbDcSigCoeffFlag = 0
if((1<lastSubBlock) && (i>0)) {
coded_sub_block flag[xS][yS] ae(v)
inferSbDcSigCoeffFlag = 1
}
for(n=(1i == lastSubBlock) ? lastScanPos — 1 : 15;n >= 0;n——) {
xC = (xS << 2)+ ScanOrder|[2][scanldx [[n][0]
yC=(yS << 2)+ ScanOrder[2][scanldx [[n][1]
if(coded sub_block flag[xS][yS] && (n>0 || !inferSbDcSigCoeffFlag)) {
sig_coeff flag[xC][yC] ae(v)
if(sig_coeff flag[xC][yC])
inferSbDcSigCoeffFlag = 0

!
firstSigScanPos = 16

lastSigScanPos = —1

numGreater1Flag =0

lastGreaterl ScanPos = —1

for(n=15;n >= 0;n——) {
xC = (xS << 2)+ ScanOrder[2][scanldx [[n][0]
yC=(yS << 2)+ ScanOrder[2][scanldx J[n][1]

Rec. ITU-T H.265 (04/2013) 51

if(sig_coeff flag[xC][yC) {

if(numGreater1Flag <8) {

coeff_abs_level greaterl flag[n]

ae(v)

numGreater1 Flag++

if(coeff abs_level greaterl flag[n] && lastGreaterlScanPos == —1)

lastGreater1 ScanPos = n

}

if(lastSigScanPos == —1)

lastSigScanPos = n

firstSigScanPos = n

}

signHidden = (lastSigScanPos — firstSigScanPos >3 && !cu transquant bypass flag)

if(lastGreaterl ScanPos != —1)

coeff _abs_level_greater2_flag[lastGreaterlScanPos]

ae(v)

for(n=15;n >= 0;n——) {

xC = (xS << 2)+ ScanOrder[2][scanldx [[n][0]

yC=(yS << 2)+ ScanOrder[2][scanldx [[n][1]

if(sig_coeff flag[xC][yC] &&
(!sign data hiding enabled flag || !signHidden || (n != firstSigScanPos)))

coeff_sign_flag[n]

ae(v)

}

numSigCoeff=0

sumAbsLevel =0

for(n=15;n >= 0;n——) {

xC = (xS << 2)+ ScanOrder[2][scanldx [[n][0]

yC=(yS << 2)+ ScanOrder[2][scanldx J[n][1]

if(sig_coeff flag[xC][yC]) {

baseLevel = 1 + coeff abs level greaterl flag[n]+
coeff abs level greater2 flag[n]

if(baseLevel == ((numSigCoeff<8)?
((n == lastGreaterlScanPos)?3:2):1))

coeff_abs_level remaining[n]

ae(v)

TransCoeffLevel[x0][yO][cldx][xC [yC] =
(coeff abs level remaining[n | + baseLevel) * (1 —2 * coeff sign flag[n])

if(sign_data hiding_enabled flag && signHidden) {

sumAbsLevel += (coeff abs level remaining[n] + baseLevel)

if((n == firstSigScanPos) && ((sumAbsLevel %2) == 1))

TransCoeffLevel[x0][yO][cldx][xC][yC | =
—TransCoeffLevel[x0][yO][cldx][xC J[yC]

}

numSigCoeff++

52

Rec. ITU-T H.265 (04/2013)

7.4 Semantics

7.4.1 General

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
clause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not
specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Specification.

7.4.2 NAL unit semantics

7.4.2.1 General NAL unit semantics

NumBytesInNalUnit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNalUnit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be
specified outside of this Specification.

NOTE 1 — The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data
and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage
media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic
format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and
byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte
stream format specified in Annex B.

rbsp_byte[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows:

The RBSP contains an SODB as follows:
— Ifthe SODB is empty (i.e., zero bits in length), the RBSP is also empty.
— Otherwise, the RBSP contains the SODB as follows:

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the
SODB (if any).

ii) The next bit consists of a single rbsp_stop_one_bit equal to 1.

iii) When the rbsp stop one bit is not the last bit of a byte-aligned byte, one or more
rbsp_alignment_zero_bit is present to result in byte alignment.

3) One or more cabac zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing_bits() at the end of the RBSP.

n

Syntax structures having these RBSP properties are denoted in the syntax tables using an " rbsp" suffix. These
structures are carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structures to the NAL units is as specified in Table 7-1.

NOTE 2 — When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the
bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1,
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for
the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byte is a byte equal to 0x03. When an emulation_prevention_three byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
- 0x000000
- 0x000001
- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

- 0x00000300
- 0x00000301
- 0x00000302

Rec. ITU-T H.265 (04/2013) 53

— 0x00000303

7.4.2.2 NAL unit header semantics
forbidden_zero_bit shall be equal to 0.
nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1.

NAL units that have nal_unit_type in the range of UNSPEC48..UNSPEC63, inclusive, for which semantics are not
specified, shall not affect the decoding process specified in this Specification.
NOTE 1 — NAL unit types in the range of UNSPEC48..UNSPEC63 may be used as determined by the application. No decoding
process for these values of nal unit_type is specified in this Specification. Since different applications might use these NAL unit

types for different purposes, particular care must be exercised in the design of encoders that generate NAL units with these
nal unit_type values, and in the design of decoders that interpret the content of NAL units with these nal unit _type values.

For purposes other than determining the amount of data in the decoding units of the bitstream (as specified in Annex C),
decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.

NOTE 2 — This requirement allows future definition of compatible extensions to this Specification.

54 Rec. ITU-T H.265 (04/2013)

Table 7-1 — NAL unit type codes and NAL unit type classes

nal_unit_type Name of Content of NAL unit and RBSP syntax structure NAL unit
nal_unit_type type class
0 TRAIL N Coded slice segment of a non-TSA, non-STSA trailing VCL
1 TRAIL R picture
slice_segment_layer rbsp()
2 TSA N Coded slice segment of a TSA picture VCL
3 TSA R slice_segment_layer rbsp()
4 STSA N Coded slice segment of an STSA picture VCL
S STSA_R slice_segment layer rbsp()
6 RADL N Coded slice segment of a RADL picture VCL
7 RADL_R slice_segment layer rbsp()
8 RASL N Coded slice segment of a RASL picture VCL
9 RASL R slice_segment_layer rbsp()
10 RSV_VCL NI10 Reserved non-IRAP sub-layer non-reference VCL NAL VCL
12 RSV_VCL N12 unit types
14 RSV_VCL N14
11 RSV_VCL RI11 Reserved non-IRAP sub-layer reference VCL NAL unit VCL
13 RSV_VCL R13 types
15 RSV_VCL R15
16 BLA W _LP Coded slice segment of a BLA picture VCL
17 BLA W_RADL slice_segment layer rbsp()
18 BLA N _LP
19 IDR_W_RADL Coded slice segment of an IDR picture VCL
20 IDR N LP slice_segment_layer rbsp()
21 CRA _NUT Coded slice segment of a CRA picture VCL
slice_segment_layer rbsp()
22 RSV _IRAP VCL22 | Reserved IRAP VCL NAL unit types VCL
23 RSV _IRAP VCL23
24.31 RSV _VCL24.. Reserved non-IRAP VCL NAL unit types VCL
RSV_VCL31
32 VPS NUT Video parameter set non-VCL
video parameter set rbsp()
33 SPS NUT Sequence parameter set non-VCL
seq_parameter_set rbsp()
34 PPS NUT Picture parameter set non-VCL
pic_parameter_set rbsp()
35 AUD NUT Access unit delimiter non-VCL
access_unit_delimiter rbsp()
36 EOS NUT End of sequence non-VCL
end of seq rbsp()
37 EOB_NUT End of bitstream non-VCL
end_of bitstream_rbsp()
38 FD NUT Filler data non-VCL
filler_data rbsp()
39 PREFIX SEI NUT | Supplemental enhancement information non-VCL
40 SUFFIX_SEI NUT | sei_rbsp()
41..47 RSV_NVCLA4I1.. Reserved non-VCL
RSV _NVCL47
48..63 UNSPEC48.. Unspecified non-VCL
UNSPEC63

Rec. ITU-T H.265 (04/2013)

55

NOTE 3 — A CRA picture may have associated RASL or RADL pictures present in the bitstream.

NOTE 4 — A BLA picture having nal_unit_type equal to BLA_W_LP may have associated RASL or RADL pictures present in
the bitstream. A BLA picture having nal unit_type equal to BLA_W_RADL does not have associated RASL pictures present in
the bitstream, but may have associated RADL pictures in the bitstream. A BLA picture having nal unit type equal to
BLA N _LP does not have associated leading pictures present in the bitstream.

NOTE 5 — An IDR picture having nal_unit type equal to IDR_ N LP does not have associated leading pictures present in the
bitstream. An IDR picture having nal_unit_type equal to IDR_W_RADL does not have associated RASL pictures present in the
bitstream, but may have associated RADL pictures in the bitstream.

NOTE 6 — A sub-layer non-reference picture is not included in any of RefPicSetStCurrBefore, RefPicSetStCurrAfter and
RefPicSetLtCurr of any picture with the same value of Temporalld, and may be discarded without affecting the decodability of
other pictures with the same value of Temporalld.

All coded slice segment NAL units of an access unit shall have the same value of nal unit type. A picture or an access
unit is also referred to as having a nal unit type equal to the nal unit type of the coded slice segment NAL units of the
picture or access unit.

If a picture has nal unit type equal to TRAIL N, TSA N, STSA N, RADL N, RASL N, RSV_VCL NI10,
RSV_VCL N12, or RSV_VCL N14, the picture is a sub-layer non-reference picture. Otherwise, the picture is a sub-
layer reference picture.

Each picture, other than the first picture in the bitstream in decoding order, is considered to be associated with the
previous IRAP picture in decoding order.

When a picture is a leading picture, it shall be a RADL or RASL picture.
When a picture is a trailing picture, it shall not be a RADL or RASL picture.

When a picture is a leading picture, it shall precede, in decoding order, all trailing pictures that are associated with the
same IRAP picture.

No RASL pictures shall be present in the bitstream that are associated with a BLA picture having nal unit type equal to
BLA W RADL or BLA N LP.

No RASL pictures shall be present in the bitstream that are associated with an IDR picture.

No RADL pictures shall be present in the bitstream that are associated with a BLA picture having nal unit type equal
to BLA N_LP or that are associated with an IDR picture having nal_unit_type equal to IDR_N_LP.
NOTE 7 — It is possible to perform random access at the position of an IRAP access unit by discarding all access units before the
IRAP access unit (and to correctly decode the IRAP picture and all the subsequent non-RASL pictures in decoding order),
provided each parameter set is available (either in the bitstream or by external means not specified in this Specification) when it
needs to be activated.

Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture in decoding order shall precede the IRAP
picture in output order and shall precede any RADL picture associated with the IRAP picture in output order.

Any RASL picture associated with a CRA or BLA picture shall precede any RADL picture associated with the CRA or
BLA picture in output order.

Any RASL picture associated with a CRA picture shall follow, in output order, any IRAP picture that precedes the CRA
picture in decoding order.

When sps_temporal id nesting flag is equal to 1 and Temporalld is greater than 0, the nal unit type shall be equal to
TSA R, TSA N, RADL R, RADL N, RASL R, or RASL N.

nuh_layer_id shall be equal to 0. Other values of nuh_layer id may be specified in the future by ITU-T | ISO/IEC. For
purposes other than determining the amount of data in the decoding units of the bitstream (as specified in Annex C),
decoders shall ignore (i.e., remove from the bitstream and discard) all NAL units with values of nuh_layer id not equal
to 0.

NOTE 8 — It is anticipated that in future scalable or 3D video coding extensions of this specification, this syntax element will be
used to identify additional layers that may be present in the CVS, wherein a layer may be, e.g., a spatial scalable layer, a quality
scalable layer, a texture view or a depth view.

nuh_temporal_id_plus1l minus 1 specifies a temporal identifier for the NAL unit. The value of nuh_temporal id plusl
shall not be equal to 0.

The variable Temporalld is specified as follows:

Temporalld = nuh_temporal id plusl — 1 (7-1)

56 Rec. ITU-T H.265 (04/2013)

If nal_unit_type is in the range of BLA_ W_LP to RSV_IRAP_VCL23, inclusive, i.e., the coded slice segment belongs
to an IRAP picture, Temporalld shall be equal to 0. Otherwise, when nal unit type is equal to TSA R, TSA N,
STSA R, or STSA N, Temporalld shall not be equal to 0.

The value of Temporalld shall be the same for all VCL NAL units of an access unit. The value of Temporalld of an
access unit is the value of the Temporalld of the VCL NAL units of the access unit.

The value of Temporalld for non-VCL NAL units is constrained as follows:

— If nal unit type is equal to VPS NUT or SPS NUT, Temporalld shall be equal to 0 and the Temporalld of the
access unit containing the NAL unit shall be equal to 0.

— Otherwise if nal unit type is equal to EOS NUT or EOB_NUT, Temporalld shall be equal to 0.

— Otherwise, if nal_unit _type is equal to AUD NUT or FD NUT, Temporalld shall be equal to the Temporalld of
the access unit containing the NAL unit.

— Otherwise, Temporalld shall be greater than or equal to the Temporalld of the access unit containing the NAL unit.

NOTE 9 — When the NAL unit is a non-VCL NAL unit, the value of Temporalld is equal to the minimum value of the
Temporalld values of all access units to which the non-VCL NAL unit applies. When nal unit type is equal to PPS NUT,
Temporalld may be greater than or equal to the Temporalld of the containing access unit, as all PPSs may be included in the
beginning of a bitstream, wherein the first coded picture has Temporalld equal to 0. When nal unit type is equal to
PREFIX_SEI NUT or SUFFIX SEI NUT, Temporalld may be greater than or equal to the Temporalld of the containing access
unit, as an SEI NAL unit may contain information, e.g., in a buffering period SEI message or a picture timing SEI message, that
applies to a bitstream subset that includes access units for which the Temporalld values are greater than the Temporalld of the
access unit containing the SEI NAL unit.

7.4.2.3 Encapsulation of an SODB within an RBSP (informative)
This clause does not form an integral part of this Specification.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention three byte for
encapsulation of an RBSP within a NAL unit is described for the following purposes:

— To prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— To enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop_one_bit starting at the end of the RBSP,

— To enable a NAL unit to have a size greater than that of the SODB under some circumstances (using one or more
cabac_zero_word syntax elements).

The encoder can produce a NAL unit from an RBSP by the following procedure:
1. The RBSP data are searched for byte-aligned bits of the following binary patterns:

'00000000 00000000 000000xx" (where 'xx' represents any two-bit pattern: '00', '01', '10', or '11"),
and a byte equal to 0x03 is inserted to replace the bit pattern with the pattern:
'00000000 00000000 00000011 000000xx'",

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends
in a cabac zero word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a
byte-aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence
0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits
with the binary patterns specified above.

2. The resulting sequence of bytes is then prefixed with the NAL unit header, within which the nal unit type
indicates the type of RBSP data structure in the NAL unit.

The process specified above results in the construction of the entire NAL unit.
This process can allow any SODB to be represented in a NAL unit while ensuring both of the following:
— No byte-aligned start code prefix is emulated within the NAL unit.

— No sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

Rec. ITU-T H.265 (04/2013) 57

7.4.2.4 Order of NAL units and association to coded pictures, access units, and coded video sequences

7.4.2.4.1 General
This clause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of
NAL units. Within a NAL unit, the syntax in clauses 7.3, D.2, and E.2 specifies the decoding order of syntax elements.
Decoders shall be capable of receiving NAL units and their syntax elements in decoding order.

7.4.2.4.2 Order of VPS, SPS and PPS RBSPs and their activation

This clause specifies the activation process of VPSs, SPSs, and PPSs.

NOTE 1 —The VPS, SPS, and PPS mechanism decouples the transmission of infrequently changing information from the
transmission of coded block data. VPSs, SPSs, and PPSs may, in some applications, be conveyed "out-of-band".

A PPS RBSP includes parameters that can be referred to by the coded slice segment NAL units of one or more coded
pictures. Each PPS RBSP is initially considered not active at the start of the operation of the decoding process. At most
one PPS RBSP is considered active at any given moment during the operation of the decoding process, and the
activation of any particular PPS RBSP results in the deactivation of the previously-active PPS RBSP (if any).

When a PPS RBSP (with a particular value of pps_pic_parameter_set id) is not active and it is referred to by a coded
slice segment NAL unit (using a value of slice_pic_parameter set _id equal to the pps_pic_parameter_set id value), it is
activated. This PPS RBSP is called the active PPS RBSP until it is deactivated by the activation of another PPS RBSP.
A PPS RBSP, with that particular value of pps_pic_parameter set id, shall be available to the decoding process prior to
its activation, included in at least one access unit with Temporalld less than or equal to the Temporalld of the PPS NAL
unit or provided through external means.

Any PPS NAL unit containing the value of pps_pic_parameter set id for the active PPS RBSP for a coded picture shall
have the same content as that of the active PPS RBSP for the coded picture, unless it follows the last VCL NAL unit of
the coded picture and precedes the first VCL NAL unit of another coded picture.

An SPS RBSP includes parameters that can be referred to by one or more PPS RBSPs or one or more SEI NAL units
containing an active parameter sets SEI message. Each SPS RBSP is initially considered not active at the start of the
operation of the decoding process. At most one SPS RBSP is considered active at any given moment during the
operation of the decoding process, and the activation of any particular SPS RBSP results in the deactivation of the
previously-active SPS RBSP (if any).

When an SPS RBSP (with a particular value of sps_seq parameter set id) is not already active and it is referred to by
activation of a PPS RBSP (in which pps_seq parameter set id is equal to the sps seq parameter set id value) or is
referred to by an SEI NAL unit containing an active parameter sets SEI message (in which
active_seq_parameter_set id[0] is equal to the sps_seq parameter set id value), it is activated. This SPS RBSP is
called the active SPS RBSP until it is deactivated by the activation of another SPS RBSP. An SPS RBSP, with that
particular value of sps_seq parameter set id, shall be available to the decoding process prior to its activation, included
in at least one access unit with Temporalld equal to 0 or provided through external means. An activated SPS RBSP shall
remain active for the entire CVS.

NOTE 2 — Because an IRAP access unit with NoRaslOutputFlag equal to 1 begins a new CVS and an activated SPS RBSP must

remain active for the entire CVS, an SPS RBSP can only be activated by an active parameter sets SEI message when the active

parameter sets SEI message is part of an IRAP access unit with NoRaslOutputFlag equal to 1.

Any SPS NAL unit containing the value of sps_seq_parameter set id for the active SPS RBSP for a CVS shall have the
same content as that of the active SPS RBSP for the CVS, unless it follows the last access unit of the CVS and precedes
the first VCL NAL unit and the first SEI NAL unit containing an active parameter sets SEI message (when present) of
another CVS.

A VPS RBSP includes parameters that can be referred to by one or more SPS RBSPs or one or more SEI NAL units
containing an active parameter sets SEI message. Each VPS RBSP is initially considered not active at the start of the
operation of the decoding process. At most one VPS RBSP is considered active at any given moment during the
operation of the decoding process, and the activation of any particular VPS RBSP results in the deactivation of the
previously-active VPS RBSP (if any).

When a VPS RBSP (with a particular value of vps_video parameter_set id) is not already active and it is referred to by
activation of an SPS RBSP (in which sps_video parameter_set_id is equal to the vps_video parameter set id value), or
is referred to by an SEI NAL unit containing an active parameter sets SEI message (in which
active_video parameter set _id is equal to the vps_video parameter set id value), it is activated. This VPS RBSP is
called the active VPS RBSP until it is deactivated by the activation of another VPS RBSP. A VPS RBSP, with that
particular value of vps_video parameter set id, shall be available to the decoding process prior to its activation,

58 Rec. ITU-T H.265 (04/2013)

included in at least one access unit with Temporalld equal to 0 or provided through external means. An activated VPS
RBSP shall remain active for the entire CVS.

NOTE 3 — Because an IRAP access unit with NoRaslOutputFlag equal to 1 begins a new CVS and an activated VPS RBSP must
remain active for the entire CVS, a VPS RBSP can only be activated by an active parameter sets SEI message when the active
parameter sets SEI message is part of an IRAP access unit with NoRaslOutputFlag equal to 1.

Any VPS NAL unit containing the value of vps_video_parameter set id for the active VPS RBSP for a CVS shall have
the same content as that of the active VPS RBSP for the CVS, unless it follows the last access unit of the CVS and
precedes the first VCL NAL unit, the first SPS NAL unit, and the first SEI NAL unit containing an active parameter
sets SEI message (when present) of another CVS.

NOTE 4 —If VPS RBSP, SPS RBSP, or PPS RBSP are conveyed within the bitstream, these constraints impose an order
constraint on the NAL units that contain the VPS RBSP, SPS RBSP, or PPS RBSP, respectively. Otherwise (VPS RBSP, SPS
RBSP, or PPS RBSP are conveyed by other means not specified in this Specification), they must be available to the decoding
process in a timely fashion such that these constraints are obeyed.

All constraints that are expressed on the relationship between the values of the syntax elements and the values of
variables derived from those syntax elements in VPSs, SPSs, and PPSs and other syntax elements are expressions of
constraints that apply only to the active VPS, the active SPS, and the active PPS. If any VPS RBSP, SPS RBSP, and
PPS RBSP is present that is never activated in the bitstream, its syntax elements shall have values that would conform
to the specified constraints if it was activated by reference in an otherwise conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active VPS, the active SPS, and
the active PPS RBSP are considered in effect. For interpretation of SEI messages, the values of the active VPS, the
active SPS, and the active PPS RBSP for the operation of the decoding process for the VCL NAL units of the coded
picture in the same access unit are considered in effect unless otherwise specified in the SEI message semantics.

7.4.2.4.3 Order of access units and association to CVSs
A bitstream conforming to this Specification consists of one or more CVSs.

A CVS consists of one or more access units. The order of NAL units and coded pictures and their association to access
units is described in clause 7.4.2.4.4.

The first access unit of a CVS is an IRAP access unit with NoRaslOutputFlag equal to 1.

It is a requirement of bitstream conformance that, when present, the next access unit after an access unit that contains an
end of sequence NAL unit or an end of bitstream NAL unit shall be an IRAP access unit, which may be an IDR access
unit, a BLA access unit, or a CRA access unit.

7.4.2.4.4 Order of NAL units and coded pictures and their association to access units

This clause specifies the order of NAL units and coded pictures and their association to access unit for CVSs that
conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in
clauses 2 through 10.

An access unit consists of one coded picture and zero or more non-VCL NAL units. The association of VCL NAL units
to coded pictures is described in clause 7.4.2.4.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a coded picture specifies the start of a new
access unit:

— access unit delimiter NAL unit (when present),

— VPS NAL unit (when present),

— SPS NAL unit (when present),

— PPS NAL unit (when present),

— Prefix SEI NAL unit (when present),

— NAL units with nal unit type in the range of RSV_NVCL41..RSV_NVCL44 (when present),
— NAL units with nal_unit_type in the range of UNSPEC48..UNSPECS55 (when present),

— first VCL NAL unit of a coded picture (always present).

The order of the coded pictures and non-VCL NAL units within an access unit shall obey the following constraints:

Rec. ITU-T H.265 (04/2013) 59

When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

When any prefix SEI NAL units are present, they shall not follow the last VCL NAL unit of the access unit.

NAL units having nal unit type equal to FD NUT or SUFFIX SEI NUT, or in the range of
RSV_NVCL45.RSV_NVCL47 or UNSPEC56..UNSPEC63 shall not precede the first VCL NAL unit of the
coded picture.

When an end of sequence NAL unit is present, it shall be the last NAL unit in the access unit other than an end of
bitstream NAL unit (when present).

When an end of bitstream NAL unit is present, it shall be the last NAL unit in the access unit.

NOTE — VPS NAL units, SPS NAL units, PPS NAL units, prefix SEI NAL units, or NAL units with nal unit_type in the range
of RSV_NVCL41.RSV_NVCL44 or UNSPEC48..UNSPECS5S5, may be present in an access unit, but cannot follow the last VCL
NAL unit of the coded picture within the access unit, as this condition would specify the start of a new access unit.

The structure of access units not containing any NAL units with nal unit type equal to FD NUT, VPS NUT,
SPS_NUT, PPS NUT, RSV_VCL NI10, RSV_VCL RI11, RSV_VCL NI12, RSV_VCL _R13, RSV_VCL N14, or
RSV_VCL R15, RSV IRAP VCL22, or RSV IRAP VCL23, or in the range of RSV _VCL24.RSV VCL3],
RSV_NVCL41..RSV_NVCLA47, or UNSPEC48..UNSPEC63 is shown in Figure 7-1.

start

| I

Access unit delimiter

)
P

Coded slice segment

End of sequence

End of bitstream

t—

end

Figure 7-1 — Structure of an access unit not containing any NAL units with nal_unit_type equal to FD_NUT,

SUFFIX_SEI_NUT, VPS_NUT, SPS_NUT, PPS_NUT, RSV_VCL_N10, RSV_VCL_R11, RSV_VCL_N12,

RSV_VCL_R13,RSV_VCL_N14, RSV_VCL_R15, RSV_IRAP_VCL22, or RSV_IRAP_VCL23, or in the range

of RSV_VCL24..RSV_VCL31, RSV_NVCLA41..RSV_NVCLA47, or UNSPEC48..UNSPEC63

7.4.2.4.5 Order of VCL NAL units and association to coded pictures

This clause specifies the order of VCL NAL units and association to coded pictures.

Each VCL NAL unit is part of a coded picture.

The order of the VCL NAL units within a coded picture is constrained as follows:

60

The first VCL NAL unit of the coded picture shall have first _slice_segment in_pic_flag equal to 1.

Let sliceSegAddrA and sliceSegAddrB be the slice_segment_address values of any two coded slice segment NAL
units A and B within the same coded picture. When either of the following conditions is true, coded slice segment
NAL unit A shall precede the coded slice segment NAL unit B:

Rec. ITU-T H.265 (04/2013)

— Tileld[CtbAddrRsToTs[sliceSegAddrA]] is less than Tileld[CtbAddrRsToTs[sliceSegAddrB]].

— Tileld[CtbAddrRsToTs[sliceSegAddrA]] is equal to Tileld[CtbAddrRsToTs[sliceSegAddrB]] and
CtbAddrRsToTs[sliceSegAddrA] is less than CtbAddrRsToTs[sliceSegAddrB].

7.4.3 Raw byte sequence payloads, trailing bits, and byte alignment semantics

7.4.3.1 Video parameter set RBSP semantics

NOTE 1 — VPS NAL units are required to be available to the decoding process prior to their activation (either in the bitstream or
by external means), as specified in clause 7.4.2.4.2. However, the VPS RBSP contains information that is not necessary for
operation of the decoding process of this version of this Specification. For purposes other than determining the amount of data in
the decoding units of the bitstream (as specified in Annex C), decoders conforming to this version of this Specification may
ignore (remove from the bitstream and discard) the content of all VPS NAL units.

Any two instances of the syntax structure hrd_parameters() included in a VPS RBSP shall not have the same content.
vps_video_parameter_set_id identifies the VPS for reference by other syntax elements.

vps_reserved_three 2bits shall be equal to 3 in bitstreams conforming to this version of this Specification. Other
values for vps_reserved_three 2bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value of
vps_reserved_three 2bits.

vps_max_layers_minusl1 shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values
for vps_ max layers minusl are reserved for future use by ITU-T | ISO/IEC. Although the value of
vps_max_layers minusl is required to be equal to 0 in this version of this Specification, decoders shall allow other
values of vps_max layers minusl to appear in the syntax.

NOTE 2 - It is anticipated that in future scalable or 3D video coding extensions of this Specification, this field will be used to

specify the maximum number of layers that may be present in the CVS, wherein a layer may e.g., be a spatial scalable layer, a
quality scalable layer, a texture view or a depth view.

vps_max_sub_layers minus1 plus 1 specifies the maximum number of temporal sub-layers that may be present in the
CVS. The value of vps_max_sub _layers minusl1 shall be in the range of 0 to 6, inclusive.

vps_temporal_id_nesting flag, when vps _max sub layers minusl is greater than 0, specifies whether inter
prediction is additionally restricted for CVSs referring to the VPS. When vps max_sub_layers minusl is equal to 0,
vps_temporal_id nesting_flag shall be equal to 1.

NOTE 3 — The syntax element vps temporal id nesting flag is used to indicate that temporal sub-layer up-switching, i.e.,

switching from decoding of up to any Temporalld tIdN to decoding up to any Temporalld tIdM that is greater than tIdN, is
always possible.

vps_reserved_Oxffff 16bits shall be equal to OXFFFF in bitstreams conforming to this version of this Specification.
Other values for vps_reserved Oxffff 16bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the
value of vps_reserved Oxffff 16bits.
NOTE 4 — It is anticipated that in future scalable or 3D video coding extensions of this Specification, this this syntax element
will specify a byte offset to the next set of fixed-length coded information in the VPS RBSP, within the data currently specified
as vps_extension_data flag syntax elements. The byte offset would then help to locate and access such information in the VPS
RBSP without the need for performing entropy decoding.

vps_sub_layer_ordering_info_present flag equal to 1 specifies that vps max dec pic_buffering minusli[i],

vps_max_num_reorder pics[i], and vps_max_latency increase plusl[i] are present for
vps_max_sub_layers_minusl + 1 sub-layers. vps sub_layer ordering info present flag equal to O specifies that the
values of vps_max_dec_pic_buffering minusl[vps_max_sub_layers minusl]],
vps_max_num_reorder pics[vps_max_sub layers minusl], and

vps_max_latency increase plusl[vps_max sub layers minusl] apply to all sub-layers.

vps_max_dec_pic_buffering minusl1[i] plus 1 specifies the maximum required size of the decoded picture buffer for
the CVS in units of picture storage buffers when HighestTid is equal to i. The wvalue of
vps_max_dec_pic_buffering minusi[i] shall be in the range of 0 to MaxDpbSize — 1 (as specified in clause A.4),
inclusive. When 1 is greater than 0, vps _max_dec pic buffering minusl[i] shall be greater than or equal to
vps_max_dec pic_buffering minusl1[i— 1]. When vps_max dec pic_buffering minusl[i] is not present for i in the
range of 0 to vps_max_sub _layers_minusl — 1, inclusive, due to vps_sub_layer ordering_info present flag being equal
to 0, it is inferred to be equal to vps_max_dec_pic_buffering minusl[vps_max sub_layers minusl].

vps_max_num_reorder pics[i] indicates the maximum allowed number of pictures that can precede any picture in
the CVS in decoding order and follow that picture in output order when HighestTid is equal to i. The value of
vps_max_num_reorder pics[i] shall be in the range of 0 to vps_max_dec_pic_buffering minusl1[i], inclusive. When i
is greater than 0, vps_max_num _reorder pics[i] shall be greater than or equal to vps_max_num_reorder pics[i—1].
When vps max_num reorder pics[i] is not present for i in the range of 0 to vps max sub layers minusl — 1,

Rec. ITU-T H.265 (04/2013) 61

inclusive, due to vps sub layer ordering info present flag being equal to 0, it is inferred to be equal to
vps_max_num_reorder pics[vps_max_sub layers minusl].

vps_max_latency_increase_plusl[i] not equal to O is used to compute the value of VpsMaxLatencyPictures[1i],
which specifies the maximum number of pictures that can precede any picture in the CVS in output order and follow
that picture in decoding order when HighestTid is equal to i.

When vps _max_latency increase plusl[i] is not equal to 0, the value of VpsMaxLatencyPictures| i] is specified as
follows:

VpsMaxLatencyPictures[i | = vps_max_num_reorder pics[i]+ (7-2)
When vps max_latency increase plusl[i] is equal to 0, no corresponding limit is expressed.

The value of vps_max latency increase plusl[i] shall be in the range of 0 to 2*—2, inclusive. When
vps_max_latency increase plusl[i] is not present for i in the range of 0 to vps max sub layers minusl — 1,
inclusive, due to vps sub layer ordering info present flag being equal to 0, it is inferred to be equal to
vps_max_latency increase plusl[vps_max sub layers minusl].

vps_max_layer_id specifies the maximum allowed value of nuh_layer id of all NAL units in the CVS.

vps_num_layer_sets minusl plus 1 specifies the number of layer sets that are specified by the VPS. In bitstreams
conforming to this version of this Specification, the value of vps_num_layer sets minusl shall be equal to 0. Although
the value of vps_num_layer sets_minusl is required to be equal to 0 in this version of this Specification, decoders shall
allow other values of vps_num_layer sets minusl in the range of 0 to 1023, inclusive, to appear in the syntax.

layer_id_included _flag[i][j] equal to 1 specifies that the value of nuh layer id equal to j is included in the layer
identifier list layerSetLayerldList[i]. layer id included flag[i][j] equal to O specifies that the value of nuh_layer id
equal to j is not included in the layer identifier list layerSetLayerldList[i].

The value of numLayersInldList[O] is set equal to 1 and the value of layerSetLayerIdList[0][O] is set equal to 0.

For each value of i in the range of 1 to vps_ num_layer sets minusl, inclusive, the variable numLayersInldList[i] and
the layer identifier list layerSetLayerIdList[i | are derived as follows:

n=0
for(m=0; m <= vps max_layer id; m++)
if(layer id included flag[i][m]) (7-3)

layerSetLayerIdList[i][n++]=m
numLayersInldList[i | =n

For each value of i in the range of 1 to vps num layer sets minusl, inclusive, numLayersInldList[i] shall be in the
range of 1 to vps_max_layers minusl + 1, inclusive.

When numLayersInldList[iA] is equal to numLayersInldList] iB] for any iA and iB in the range of 0 to
vps_num_layer sets minusl, inclusive, with iA not equal to iB, the value of layerSetLayerIdList[iA][n] shall not be
equal to layerSetLayerIdList[iB][n] for at least one value of n in the range of 0 to numLayersInldList[iA], inclusive.

A layer set is identified by the associated layer identifier list. The i-th layer set specified by the VPS is associated with
the layer identifier list layerSetLayerIdList[i |, for i in the range of 0 to vps_num_layer sets minusl, inclusive.

A layer set consists of all operation points that are associated with the same layer identifier list.

Each operation point is identified by the associated layer identifier list, denoted as OpLayerldList, which consists of the
list of nuh_layer id values of all NAL units included in the operation point, in increasing order of nuh_layer id values,
and a variable OpTid, which is equal to the highest Temporalld of all NAL units included in the operation point. The
bitstream subset associated with the operation point identified by OpLayerldList and OpTid is the output of the sub-
bitstream extraction process as specified in clause 10 with the bitstream, the target highest Temporalld equal to OpTid,
and the target layer identifier list equal to OpLayerldList as inputs. The OpLayerldList and OpTid that identify an
operation point are also referred to as the OpLayerldList and OpTid associated with the operation point, respectively.

vps_timing_info_present flag equal to 1 specifies that vps num units in tick, vps_time scale,
vps_poc_proportional to timing_ flag, and vps_num_hrd parameters are present in the VPS.
vps_timing_info present flag equal to 0 specifies that vps num units_in tick, vps time scale,
vps_poc_proportional to timing_ flag, and vps_num_hrd parameters are not present in the VPS.

vps_num_units_in_tick is the number of time units of a clock operating at the frequency vps time scale Hz that
corresponds to one increment (called a clock tick) of a clock tick counter. The value of vps num_units_in_tick shall be
greater than 0. A clock tick, in units of seconds, is equal to the quotient of vps num units_in_tick divided by

62 Rec. ITU-T H.265 (04/2013)

Vps

vps_time scale. For example, when the picture rate of a video signal is 25 Hz, vps_time scale may be equal to
27 000 000 and vps_num_units_in_tick may be equal to 1 080 000, and consequently a clock tick may be 0.04 seconds.

vps_time_scale is the number of time units that pass in one second. For example, a time coordinate system that
measures time using a 27 MHz clock has a vps_time_scale of 27 000 000. The value of vps_time_scale shall be greater
than 0.

vps_poc_proportional_to_timing_flag equal to | indicates that the picture order count value for each picture in the
CVS that is not the first picture in the CVS, in decoding order, is proportional to the output time of the picture relative
to the output time of the first picture in the CVS. vps poc_proportional to timing flag equal to 0 indicates that the
picture order count value for each picture in the CVS that is not the first picture in the CVS, in decoding order, may or
may not be proportional to the output time of the picture relative to the output time of the first picture in the CVS.

vps_num_ticks poc_diff one minusl plus 1 specifies the number of clock ticks corresponding to a difference of
picture order count values equal to 1. The value of vps num_ticks poc diff one minusl shall be in the range of 0
to 232 — 2, inclusive.

vps_num_hrd_parameters specifies the number of hrd_parameters() syntax structures present in the VPS RBSP. In
bitstreams conforming to this version of this Specification, the value of vps_num_hrd parameters shall be less than or
equal to 1. Although the value of vps num_hrd parameters is required to be less than or equal to 1 in this version of
this Specification, decoders shall allow other values of vps num_hrd parameters in the range of 0 to 1024, inclusive, to
appear in the syntax.

hrd_layer_set_idx][i] specifies the index, into the list of layer sets specified by the VPS, of the layer set to which the
i-th hrd_parameters() syntax structure in the VPS applies. In bitstreams conforming to this version of this Specification,
the value of hrd layer set idx[i] shall be equal to 0. Although the value of hrd layer set idx[i] is required to be
equal to 0 in this version of this Specification, decoders shall allow other values of hrd layer set idx[i] in the range of
0 to 1023, inclusive, to appear in the syntax.

cprms_present_flag[i] equal to 1 specifies that the HRD parameters that are common for all sub-layers are present in
the i-th hrd parameters() syntax structure in the VPS. cprms present flag[i] equal to O specifies that the HRD
parameters that are common for all sub-layers are not present in the i-th hrd parameters() syntax structure in the VPS
and are derived to be the same as the (1 — 1)-th hrd parameters() syntax structure in the VPS. cprms_present_flag[0]
is inferred to be equal to 1.

vps_extension_flag equal to 0 specifies that no vps_extension_data flag syntax elements are present in the VPS RBSP
syntax structure. vps_extension_flag shall be equal to 0 in bitstreams conforming to this version of this Specification.
The value of 1 for vps_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all data that
follow the value 1 for vps_extension_flag in a VPS NAL unit.

vps_extension_data flag may have any value. Its presence and value do not affect decoder conformance to profiles
specified in this version of this Specification. Decoders conforming to this version of this Specification shall ignore all
vps_extension_data flag syntax elements.

7.4.3.2 Sequence parameter set RBSP semantics
sps_video_parameter_set_id specifies the value of the vps_video parameter set id of the active VPS.

sps_max_sub_layers minusl plus 1 specifies the maximum number of temporal sub-layers that may be present in
each CVS referring to the SPS. The value of sps_max_sub_layers_minus] shall be in the range of 0 to 6, inclusive.

sps_temporal_id nesting flag, when sps_max_sub_layers minus] is greater than 0, specifies whether inter prediction
is additionally restricted for CVSs referring to the SPS. When vps temporal id nesting flag is equal to 1,
sps_temporal id nesting flag shall be equal to 1. When sps max sub layers minusl is equal to O,
sps_temporal id nesting flag shall be equal to 1.

NOTE 1 — The syntax element sps_temporal _id nesting_flag is used to indicate that temporal up-switching, i.e., switching from

decoding up to any Temporalld tIdN to decoding up to any Temporalld tIdM that is greater than tIdN, is always possible in the
CVS.

sps_seq_parameter_set_id provides an identifier for the SPS for reference by other syntax elements. The value of
sps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2. The value
of chroma_format idc shall be in the range of 0 to 3, inclusive.

separate_colour_plane flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are
coded separately. separate colour plane flag equal to O specifies that the colour components are not coded separately.
When separate colour plane flag is not present, it is inferred to be equal to 0. When separate_colour plane flag is
equal to 1, the coded picture consists of three separate components, each of which consists of coded samples of one

Rec. ITU-T H.265 (04/2013) 63

colour plane (Y, Cb, or Cr) and uses the monochrome coding syntax. In this case, each colour plane is associated with a
specific colour plane_id value.

NOTE 2 — There is no dependency in decoding processes between the colour planes having different colour plane id values. For
example, the decoding process of a monochrome picture with one value of colour plane id does not use any data from
monochrome pictures having different values of colour_plane id for inter prediction.

Depending on the value of separate colour plane flag, the value of the variable ChromaArrayType is assigned as
follows:

— Ifseparate colour plane flag is equal to 0, ChromaArrayType is set equal to chroma_format idc.

— Otherwise (separate_colour plane flag is equal to 1), ChromaArrayType is set equal to 0.

pic_width_in_luma_samples specifies the width of each decoded picture in units of luma samples.
pic_width in luma samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY.

pic_height_in_luma_samples specifies the height of each decoded picture in units of luma samples.
pic_height in luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY.

conformance_window_flag equal to 1 indicates that the conformance cropping window offset parameters follow next
in the SPS. conformance window_flag equal to O indicates that the conformance cropping window offset parameters
are not present.

conf_win_left offset, conf win_right_offset, conf_win_top_offset, and conf win_bottom_offset specify the samples
of the pictures in the CVS that are output from the decoding process, in terms of a rectangular region specified in
picture coordinates for output. When conformance window flag is equal to 0, the values of conf win_left offset,
conf win_right offset, conf win top offset, and conf win_bottom_offset are inferred to be equal to 0.

The conformance cropping window contains the luma samples with horizontal picture coordinates from
SubWidthC * conf win_left offset to pic_width in luma samples — (SubWidthC * conf win_right offset+ 1) and
vertical picture coordinates from SubHeightC * conf win_top offset to
pic_height in luma samples — (SubHeightC * conf win bottom offset + 1), inclusive.

The value of SubWidthC * (conf win left offset + conf win right offset) shall be less than
pic_width in luma samples, and the value of SubHeightC * (conf win top offset + conf win_bottom offset) shall
be less than pic_height in luma samples.

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the
samples having picture coordinates (x / SubWidthC, y / SubHeightC), where (X, y) are the picture coordinates of the
specified luma samples.

NOTE 3 — The conformance cropping window offset parameters are only applied at the output. All internal decoding processes
are applied to the uncropped picture size.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array BitDepthy and the value of the luma
quantization parameter range offset QpBdOffsety as follows:

BitDepthy =8 + bit_depth_luma_minus8 (7-4)
QpBdOffsety = 6 * bit_depth luma_minus8 (7-5)
bit_depth luma minus8§ shall be in the range of 0 to 6, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays BitDepthc and the value of the
chroma quantization parameter range offset QpBdOffsetc as follows:

BitDepthe = 8 + bit_depth_chroma minus8 (7-6)
QpBdOffsetc = 6 * bit_depth _chroma minus8 (7-7)
bit_depth_chroma minus8 shall be in the range of 0 to 6, inclusive.

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as follows:

MaxPicOrderCntLsbh = 2(log2_max_pic_order_cnt_Isb_minus4 +4) (7_8)
The value of log2 max pic order cnt Isb minus4 shall be in the range of 0 to 12, inclusive.

sps_sub_layer ordering info present flag ecqual to 1 specifies that sps max dec pic_buffering minusli[i],

sps_max_num_reorder pics[i], and sps_max_latency increase plusl[i] are present for
sps_max_sub_layers minusl + 1 sub-layers. sps_sub_layer ordering info present flag equal to O specifies that the
values of sps_max_dec pic_buffering minusl[sps max sub layers minusl],

64 Rec. ITU-T H.265 (04/2013)

sps_max_num_reorder pics[sps_max_sub_layers minusl]], and
sps_max_latency increase plusl[sps_max_sub_layers minusl] apply to all sub-layers.

sps_max_dec_pic_buffering_minusl1[i] plus 1 specifies the maximum required size of the decoded picture buffer for
the CVS in units of picture storage buffers when HighestTid is equal to i. The wvalue of
sps_max_dec pic_buffering minus1[i] shall be in the range of 0 to MaxDpbSize — 1 (as specified in clause A.4),
inclusive. When i is greater than 0, sps max_dec pic buffering minusi[i] shall be greater than or equal to
sps_max_dec_pic_buffering minusi[i— 1]. The value of sps_max_dec pic_buffering_ minusl][i] shall be less than or
equal to vps_max_dec pic_buffering minusl[i] for each value of i. When sps_max_dec_pic_buffering minusl[i] is
not present for 1 in the range of O to sps max sub layers minusl — 1, inclusive, due to
sps_sub_layer ordering_info present flag being equal to 0, it is inferred to be equal to
sps_max_dec pic_buffering minusl[sps max_sub layers minusl].

sps_max_num_reorder_pics[i | indicates the maximum allowed number of pictures that can precede any picture in
the CVS in decoding order and follow that picture in output order when HighestTid is equal to i. The value of
sps_max_num_reorder pics[i] shall be in the range of 0 to sps max_dec pic_buffering minusl[i], inclusive. When i
is greater than 0, sps_max_num_reorder pics[i] shall be greater than or equal to sps_max num_reorder pics[i—1].
The value of sps_max num_reorder pics[i] shall be less than or equal to vps max num_reorder pics[i] for each
value of 1. When sps_max num reorder pics[i] is not present for i in the range of 0 to
sps_max_sub_layers minusl — 1, inclusive, due to sps_sub_layer ordering info present flag being equal to 0, it is
inferred to be equal to sps_max_num_reorder pics[sps_max_sub_layers minusl].

sps_max_latency_increase plusl[i] not equal to 0 is used to compute the value of SpsMaxLatencyPictures| i],
which specifies the maximum number of pictures that can precede any picture in the CVS in output order and follow
that picture in decoding order when HighestTid is equal to i.

When sps_max_latency increase plusl[i] is not equal to 0, the value of SpsMaxLatencyPictures[i] is specified as
follows:

SpsMaxLatencyPictures[i] = sps_max_num_reorder pics[i]+ (7-9)
sps_max_latency increase plusl[i]—1

When sps_max_latency increase plusl[i] is equal to 0, no corresponding limit is expressed.

The value of sps_max latency increase plusi[i] shall be in the range of 0 to 2**—2, inclusive. When
vps_max_latency increase plusl[i] is not equal to 0, the value of sps_max latency increase plusl[i] shall not be
equal to 0 and shall be less than or equal to vps max_ latency increase plusl[i] for each value of i. When
sps_max_latency increase plusl[i] is not present for i in the range of 0 to sps_max_sub_layers minusl — 1, inclusive,
due to sps sub layer ordering info present flag being equal to 0, it is inferred to be equal to
sps_max_latency increase plusl[sps max sub layers minusl].

log2_min_luma_coding_block_size_minus3 plus 3 specifies the minimum size of a luma coding block.

log2 diff max_min_luma_coding block_ size specifies the difference between the maximum and minimum luma
coding block size.

The variables MinCbLog2SizeY, CtbLog2SizeY, MinCbSizeY, CtbSizeY, PicWidthInMinCbsY, PicWidthInCtbsY,
PicHeightInMinCbsY, PicHeightInCtbsY, PicSizeInMinCbsY, PicSizeInCtbsY, PicSizeInSamplesY,
PicWidthInSamplesC, and PicHeightInSamplesC are derived as follows:

MinCbLog28SizeY = log2 min_luma coding_ block size minus3 + 3 (7-10)
CtbLog2SizeY = MinCbLog2SizeY + log2 diff max min luma coding block size (7-11)
MinCbSizeY =1 << MinCbLog2SizeY (7-12)
CtbSizeY =1 << CtbLog2SizeY (7-13)
PicWidthInMinCbsY = pic_width_in_luma_samples / MinCbSizeY (7-14)
PicWidthInCtbsY = Ceil(pic_ width in luma samples + CtbSizeY) (7-15)
PicHeightInMinCbsY = pic_height in_luma samples / MinCbSizeY (7-16)
PicHeightInCtbsY = Ceil(pic_height in luma samples + CtbSizeY) (7-17)
PicSizeInMinCbsY = PicWidthInMinCbsY * PicHeightiInMinCbsY (7-18)
PicSizeInCtbsY = PicWidthInCtbsY * PicHeightInCtbsY (7-19)
PicSizeInSamplesY = pic_width_in luma samples * pic_height in luma samples (7-20)

Rec. ITU-T H.265 (04/2013) 65

PicWidthInSamplesC = pic_width_in luma_samples / SubWidthC (7-21)

PicHeightInSamplesC = pic_height_in_luma_samples / SubHeightC (7-22)
The variables CtbWidthC and CtbHeightC, which specify the width and height, respectively, of the array for each
chroma coding tree block, are derived as follows:

— If chroma format_idc is equal to 0 (monochrome) or separate _colour plane flag is equal to 1, CtbWidthC and
CtbHeightC are both equal to 0.

— Otherwise, CtbWidthC and CtbHeightC are derived as follows:
CtbWidthC = CtbSizeY / SubWidthC (7-23)
CtbHeightC = CtbSizeY / SubHeightC (7-24)
log2_min_transform_block_size _minus2 plus 2 specifies the minimum transform block size.

The variable Log2MinTrafoSize is set equal to log2 min_transform_block size minus2 + 2. The CVS shall not contain
data that result in Log2MinTrafoSize greater than or equal to MinCbLog2SizeY.

log2 diff max_min_transform_block size specifies the difference between the maximum and minimum transform
block size.

The variable Log2MaxTrafoSize is set equal to log2 min_transform block size minus2 +2 +
log2 diff max_min_transform_block_size.

The CVS shall not contain data that result in Log2MaxTrafoSize greater than Min(CtbLog2SizeY, 5).

The array ScanOrder[log2BlockSize][scanldx][sPos][sComp | specifies the mapping of the scan position sPos,
ranging from 0 to (1 << log2BlockSize) * (1 << log2BlockSize) — 1, inclusive, to horizontal and vertical
components of the scan-order matrix. The array index scanldx equal to O specifies an up-right diagonal scan order,
scanldx equal to 1 specifies a horizontal scan order, and scanldx equal to 2 specifies a vertical scan order. The array
index sComp equal to 0 specifies the horizontal component and the array index sComp equal to 1 specifies the vertical
component. The array ScanOrder is derived as follows:

For the variable log2BlockSize ranging from 0 to 3, inclusive, the scanning order array ScanOrder is derived as follows:

— The up-right diagonal scan order array initialization process as specified in clause 6.5.3 is invoked with
1 << log2BlockSize as input, and the output is assigned to ScanOrder[log2BlockSize][0].

— The horizontal scan order array initialization process as specified in clause 6.5.4 is invoked with
1 << log2BlockSize as input, and the output is assigned to ScanOrder| log2BlockSize][1].

— The vertical scan order array initialization process as specified in clause 6.5.5 is invoked with 1 << log2BlockSize
as input, and the output is assigned to ScanOrder[log2BlockSize][2].

max_transform_hierarchy_depth_inter specifies the maximum hierarchy depth for transform units of coding units
coded in inter prediction mode. The value of max_transform_hierarchy depth inter shall be in the range of 0 to
CtbLog2SizeY — Log2MinTrafoSize, inclusive.

max_transform_hierarchy_depth_intra specifies the maximum hierarchy depth for transform blocks of coding
blocks coded in intra prediction mode. The value of max_transform_hierarchy depth_intra shall be in the range of 0 to
CtbLog2SizeY — Log2MinTrafoSize, inclusive.

scaling_list enabled flag equal to 1 specifies that a scaling list is used for the scaling process for transform
coefficients. scaling_ list enabled flag equal to O specifies that scaling list is not used for the scaling process for
transform coefficients.

sps_scaling_list_data_present flag equal to 1 specifies that scaling list data are present in the SPS.
sps_scaling_list data_present flag equal to 0 specifies that scaling list data are not present in the SPS. When not
present, the value of sps_scaling_list _data present flag is inferred to be equal to 0.

amp_enabled_flag equal to 1 specifies that asymmetric motion partitions, i.e., PartMode equal to PART 2NxnU,
PART 2NxnD, PART nLx2N, or PART nRx2N, may be used in coding tree blocks. amp enabled flag equal to 0
specifies that asymmetric motion partitions cannot be used in coding tree blocks.

sample_adaptive_offset_enabled_flag equal to 1 specifies that the sample adaptive offset process is applied to the
reconstructed picture after the deblocking filter process. sample adaptive offset enabled flag equal to O specifies that
the sample adaptive offset process is not applied to the reconstructed picture after the deblocking filter process.

pcm_enabled_flag equal to 0 specifies that PCM data are not present in the CVS.

66 Rec. ITU-T H.265 (04/2013)

NOTE 4 — When MinCbLog2SizeY is equal to 6, PCM data are not present in the CVS even when pcm_enabled flag is equal
to 1. The maximum size of coding block with pcm_enabled flag equal to 1 is restricted to be less than or equal to
Min(CtbLog2SizeY, 5). Encoders are encouraged to use an appropriate combination of
log2 min_luma_coding block size minus3, log2 min_pcm_luma_ coding_block size minus3, and
log2 diff max min pcm luma_coding block size values when sending PCM data in the CVS.

pem_sample bit_depth_luma_minus1 specifies the number of bits used to represent each of PCM sample values of
the luma component as follows:

PcmBitDepthy = pcm_sample bit depth luma minus] + 1 (7-25)
The value of PcmBitDepthy shall be less than or equal to the value of BitDepthy.

pem_sample_bit_depth_chroma_minusl1 specifies the number of bits used to represent each of PCM sample values of
the chroma components as follows:

PcmBitDepthe = pcm_sample bit_depth chroma minusl + 1 (7-26)
The value of PcmBitDepthc shall be less than or equal to the value of BitDepthc.

log2 min_pcm_luma_coding_block_size minus3 plus 3 specifies the minimum size of coding blocks with pcm_flag
equal to 1.

The variable Log2MinlpemCbSizeY is set equal to log2 min_pcm_luma coding block size minus3 + 3. The value of
Log2MinlpemCbSizeY shall be in the range of MinCbLog2SizeY to Min(CtbLog28SizeY, 5), inclusive.

log2_diff max_min_pcm_luma_coding_block_size specifies the difference between the maximum and minimum size
of coding blocks with pcm_flag equal to 1.

The variable Log2MaxIpcmCbSizeY is set equal to log2 diff max min pcm luma coding block size +
Log2MinlpemCbSizeY. The value of Log2MaxIpcmCbSizeY shall be less than or equal to Min(CtbLog2SizeY, 5).

pem_loop_filter_disabled_flag specifies whether the loop filter process is disabled on reconstructed samples in a
coding unit with pcm_flag equal to 1 as follows:

— If pcm_loop filter disabled flag is equal to 1, the deblocking filter and sample adaptive offset filter processes on
the reconstructed samples in a coding unit with pcm_flag equal to 1 are disabled.

— Otherwise (pcm_loop_filter disabled flag value is equal to 0), the deblocking filter and sample adaptive offset
filter processes on the reconstructed samples in a coding unit with pcm_flag equal to 1 are not disabled.

When pcm_loop _filter disabled flag is not present, it is inferred to be equal to 0.

num_short_term_ref pic_sets specifies the number of short_term_ref pic_set() syntax structures included in the SPS.
The value of num_short_term_ref pic_sets shall be in the range of 0 to 64, inclusive.
NOTE 5 — A decoder should allocate memory for a total number of num_short_term_ref pic_sets + 1 short_term_ref pic_set()
syntax structures since there may be a short term_ref pic set() syntax structure directly signalled in the slice headers of a

current picture. A short term_ref pic set() syntax structure directly signalled in the slice headers of a current picture has an
index equal to num_short term_ref pic_sets.

long_term_ref pics_present_flag equal to 0 specifies that no long-term reference picture is used for inter prediction of
any coded picture in the CVS. long_term ref pics present flag equal to 1 specifies that long-term reference pictures
may be used for inter prediction of one or more coded pictures in the CVS.

num_long_term_ref pics_sps specifies the number of candidate long-term reference pictures that are specified in the
SPS. The value of num_long_term_ref pics_sps shall be in the range of 0 to 32, inclusive.

It_ref pic_poc_Isb_sps[i] specifies the picture order count modulo MaxPicOrderCntLsb of the i-th candidate long-
term reference picture specified in the SPS. The number of bits used to represent It_ref pic_poc lsb_sps[i] is equal to
log2 max_pic_order cnt Isb minus4 + 4.

used_by curr_pic_It_sps_flag[i] equal to O specifies that the i-th candidate long-term reference picture specified in
the SPS is not used for reference by a picture that includes in its long-term RPS the i-th candidate long-term reference
picture specified in the SPS.

sps_temporal_mvp_enabled_flag equal to 1 specifies that slice temporal mvp enabled flag is present in the slice
headers of non-IDR pictures in the CVS. sps temporal mvp enabled flag equal to 0 specifies that
slice_temporal mvp_enabled flag is not present in slice headers and that temporal motion vector predictors are not
used in the CVS.

Rec. ITU-T H.265 (04/2013) 67

strong_intra_smoothing_enabled_flag equal to 1 specifies that bi-linear interpolation is conditionally used in the
filtering process in the CVS as specified in clause 8.4.4.2.3. strong_intra_smoothing_enabled flag equal to 0 specifies
that that the bi-linear interpolation is not used in the CVS.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E
is present. vui_parameters present flag equal to 0 specifies that the vui_parameters() syntax structure as specified in
Annex E is not present.

sps_extension_flag equal to 0 specifies that no sps_extension_data flag syntax elements are present in the SPS RBSP
syntax structure. sps_extension_flag shall be equal to 0 in bitstreams conforming to this version of this Specification.
The value of 1 for sps extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all
sps_extension_data flag syntax elements that follow the value 1 for sps_extension_flag in an SPS NAL unit.

sps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance to profiles
specified in this version of this Specification. Decoders conforming to this version of this Specification shall ignore all
sps_extension_data flag syntax elements.

7.4.3.3 Picture parameter set RBSP semantics

pps_pic_parameter_set id identifies the PPS for reference by other syntax elements. The value of
pps_pic_parameter set id shall be in the range of 0 to 63, inclusive.

pps_seq_parameter_set id specifies the value of sps seq parameter set id for the active SPS. The value of
pps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive.

dependent_slice_segments_enabled_flag equal to 1 specifies the presence of the syntax element
dependent slice segment flag in the slice segment headers for coded pictures referring to the PPS.
dependent slice segments_enabled flag equal to O specifies the absence of the syntax element
dependent slice segment flag in the slice segment headers for coded pictures referring to the PPS.

output_flag present_flag equal to 1 indicates that the pic_output flag syntax element is present in the associated slice
headers. output flag present flag equal to 0 indicates that the pic output flag syntax element is not present in the
associated slice headers.

num_extra_slice_header_bits equal to 0 specifies that no extra slice header bits are present in the slice header RBSP
for coded pictures referring to the PPS. num_extra_slice header bits shall be equal to 0 in bitstreams conforming to this
version of this Specification. Other values for num_extra slice header bits are reserved for future use by ITU-T |
ISO/IEC. However, decoders shall allow num_extra_slice header_ bits to have any value.

sign_data_hiding_enabled_flag equal to O specifies that sign bit hiding is disabled. sign data hiding_enabled flag
equal to 1 specifies that sign bit hiding is enabled.

cabac_init_present_flag equal to 1 specifies that cabac init flag is present in slice headers referring to the PPS.
cabac_init_present_flag equal to 0 specifies that cabac_init_flag is not present in slice headers referring to the PPS.

num_ref _idx_l0_default_active_minus1 specifies the inferred value of num ref idx 10 active minusl for P and B
slices with num_ref idx active override flag equal to 0. The value of num_ref idx 10 default active _minus] shall be
in the range of 0 to 14, inclusive.

num_ref _idx_l1_default_active_minusl specifies the inferred value of num ref idx Il active minusl with
num_ref idx_active override flag equal to 0. The value of num ref idx 11 default active minusl shall be in the
range of 0 to 14, inclusive.

init_qp_minus26 specifies the initial value minus 26 of SliceQpy for each slice. The initial value is modified at the
slice segment layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value
of cu qp delta abs is decoded at the coding unit layer. The value of init qp minus26 shall be in the range of
—(26 + QpBdOffsety) to +25, inclusive.

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded
samples of neighbouring coding blocks coded using either intra or inter prediction modes. constrained intra pred flag
equal to 1 specifies constrained intra prediction, in which case intra prediction only uses residual data and decoded
samples from neighbouring coding blocks coded using intra prediction modes.

transform_skip_enabled_flag equal to 1 specifies that transform skip flag may be present in the residual coding
syntax. transform_skip enabled flag equal to O specifies that transform skip flag is not present in the residual coding
syntax.

cu_qp_delta_enabled_flag equal to 1 specifies that the diff cu qp_delta depth syntax element is present in the PPS
and that cu_qp_delta_abs may be present in the transform unit syntax. cu_qp_delta_enabled flag equal to 0 specifies

68 Rec. ITU-T H.265 (04/2013)

that the diff cu qp_delta depth syntax element is not present in the PPS and that cu_qp_delta_abs is not present in the
transform unit syntax.

diff cu_qp_delta_depth specifies the difference between the luma coding tree block size and the minimum luma
coding block size of coding units that convey cu gp delta abs and cu qgp delta sign flag. The value of
diff cu qgp_delta_depth shall be in the range of 0 to log2 diff max min luma coding_block size, inclusive. When not
present, the value of diff cu qp_delta_depth is inferred to be equal to 0.

The variable Log2MinCuQpDeltaSize is devived as follows:
Log2MinCuQpDeltaSize = CtbLog2SizeY — diff cu_qp_delta_depth (7-27)

pps_cb_qp_offset and pps_cr_qp_offset specify offsets to the luma quantization parameter Qp'y used for deriving
Qp'cy, and Qp’c;, respectively. The values of pps_cb_qp_offset and pps_cr_qp_offset shall be in the range of —12 to +12,
inclusive.

pps_slice_chroma_qp_offsets_present_flag equal to 1 indicates that the slice cb _qp offset and slice cr qp offset
syntax elements are present in the associated slice headers. pps_slice chroma qp offsets present flag equal to 0
indicates that these syntax elements are not present in the associated slice headers.

weighted pred_flag equal to 0 specifies that weighted prediction is not applied to P slices. weighted pred flag equal
to 1 specifies that weighted prediction is applied to P slices.

weighted bipred flag ecqual to 0 specifies that the default weighted prediction is applied to B slices.
weighted bipred flag equal to 1 specifies that weighted prediction is applied to B slices.

transquant_bypass_enabled_flag equal to 1 specifies that cu transquant bypass flag is present.
transquant_bypass_enabled flag equal to O specifies that cu_transquant_bypass_flag is not present.

tiles_enabled_flag equal to 1 specifies that there is more than one tile in each picture referring to the PPS.
tiles_enabled_flag equal to O specifies that there is only one tile in each picture referring to the PPS.

It is a requirement of bitstream conformance that the value of tiles_enabled_flag shall be the same for all PPSs that are
activated within a CVS.

entropy_coding_sync_enabled_flag equal to 1 specifies that a specific synchronization process for context variables is
invoked before decoding the coding tree unit which includes the first coding tree block of a row of coding tree blocks in
each tile in each picture referring to the PPS, and a specific storage process for context variables is invoked after
decoding the coding tree unit which includes the second coding tree block of a row of coding tree blocks in each tile in
each picture referring to the PPS. entropy coding sync enabled flag equal to 0 specifies that no specific
synchronization process for context variables is required to be invoked before decoding the coding tree unit which
includes the first coding tree block of a row of coding tree blocks in each tile in each picture referring to the PPS, and
no specific storage process for context variables is required to be invoked after decoding the coding tree unit which
includes the second coding tree block of a row of coding tree blocks in each tile in each picture referring to the PPS.

It is a requirement of bitstream conformance that the value of entropy coding_sync_enabled flag shall be the same for
all PPSs that are activated within a CVS.

When entropy_coding_sync_enabled flag is equal to 1 and the first coding tree block in a slice is not the first coding
tree block of a row of coding tree blocks in a tile, it is a requirement of bitstream conformance that the last coding tree
block in the slice shall belong to the same row of coding tree blocks as the first coding tree block in the slice.

When entropy_coding_sync_enabled_flag is equal to 1 and the first coding tree block in a slice segment is not the first
coding tree block of a row of coding tree blocks in a tile, it is a requirement of bitstream conformance that the last
coding tree block in the slice segment shall belong to the same row of coding tree blocks as the first coding tree block in
the slice segment.

num_tile columns minusl plus 1 specifies the number of tile columns partitioning the picture.
num_tile columns minusl shall be in the range of 0 to PicWidthInCtbsY — 1, inclusive. When not present, the value of
num_tile columns minusl is inferred to be equal to 0.

num_tile rows_minusl plus 1 specifies the number of tile rows partitioning the picture. num_tile rows_minus] shall
be in the range of 0 to PicHeightInCtbsY — 1, inclusive. When not present, the value of num_tile rows minusl is
inferred to be equal to 0.

When tiles enabled flag is equal to 1, num tile columns minusl and num tile rows minusl shall not be both equal
to 0.

uniform_spacing_flag equal to 1 specifies that tile column boundaries and likewise tile row boundaries are distributed
uniformly across the picture. uniform_spacing_flag equal to 0 specifies that tile column boundaries and likewise tile

Rec. ITU-T H.265 (04/2013) 69

row boundaries are not distributed uniformly across the picture but signalled explicitly using the syntax elements
column_width minus1[i] and row height minusi[i]. When not present, the value of uniform spacing flag is
inferred to be equal to 1.

column_width_minus1[i] plus 1 specifies the width of the i-th tile column in units of coding tree blocks.
row_height_minus1[i] plus 1 specifies the height of the i-th tile row in units of coding tree blocks.

The following variables are derived by invoking the coding tree block raster and tile scanning conversion process as
specified in clause 6.5.1:

— The list CtbAddrRsToTs[ctbAddrRs] for ctbAddrRs ranging from 0 to PicSizeInCtbsY — 1, inclusive, specifying
the conversion from a CTB address in CTB raster scan of a picture to a CTB address in tile scan,

— the list CtbAddrTsToRs[ctbAddrTs] for ctbAddrTs ranging from 0 to PicSizeInCtbsY — 1, inclusive, specifying
the conversion from a CTB address in tile scan to a CTB address in CTB raster scan of a picture,

— the list Tileld[ctbAddrTs] for ctbAddrTs ranging from 0 to PicSizelnCtbsY — 1, inclusive, specifying the
conversion from a CTB address in tile scan to a tile ID,

— the list ColumnWidthInLumaSamples][i] for i ranging from 0 to num_tile columns minusl, inclusive, specifying
the width of the i-th tile column in units of luma samples,

— the list RowHeightInLumaSamples][j | for j ranging from 0 to num_tile rows_minusl, inclusive, specifying the
height of the j-th tile row in units of luma samples.

The values of ColumnWidthInLumaSamples[i] for i ranging from O to num tile columns minusl, inclusive, and
RowHeightInLumaSamples[j] for j ranging from 0 to num_tile rows_minusl, inclusive, shall all be greater than 0.

The array MinTbAddrZs with elements MinTbAddrZs[x][y] for x ranging from O to
(PicWidthInCtbsY << (CtbLog2SizeY — Log2MinTrafoSize)) — 1, inclusive, and y ranging from 0 to
(PicHeightInCtbsY << (CtbLog2SizeY — Log2MinTrafoSize)) — 1, inclusive, specifying the conversion from a
location (X,y) in units of minimum transform blocks to a transform block address in z-scan order, is derived by
invoking the z-scan order array initialization process as specified in clause 6.5.2.

loop_filter_across_tiles_enabled_flag equal to 1 specifies that in-loop filtering operations may be performed across
tile boundaries in pictures referring to the PPS. loop filter across _tiles enabled flag equal to 0 specifies that in-loop
filtering operations are not performed across tile boundaries in pictures referring to the PPS. The in-loop filtering
operations include the deblocking filter and sample adaptive offset filter operations. When not present, the value of
loop_filter across_tiles enabled flag is inferred to be equal to 1.

pps_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering operations may be performed
across left and upper boundaries of slices referring to the PPS. pps_loop filter across_slices_enabled flag equal to 0
specifies that in-loop filtering operations are not performed across left and upper boundaries of slices referring to the
PPS. The in-loop filtering operations include the deblocking filter and sample adaptive offset filter operations.

NOTE 1 — Loop filtering across slice boundaries can be enabled while loop filtering across tile boundaries is disabled and vice
versa.

deblocking_filter _control present flag equal to 1 specifies the presence of deblocking filter control syntax elements
in the PPS. deblocking_filter control present flag equal to O specifies the absence of deblocking filter control syntax
elements in the PPS.

deblocking_filter_override_enabled flag equal to 1 specifies the presence of deblocking filter override flag in the
slice headers for pictures referring to the PPS. deblocking_filter override enabled flag equal to O specifies the absence
of deblocking_filter override flag in the slice headers for pictures referring to the PPS. When not present, the value of
deblocking_filter override enabled flag is inferred to be equal to 0.

pps_deblocking_filter_disabled_flag equal to 1 specifies that the operation of deblocking filter is not applied for slices
referring to the PPS in which slice_deblocking_filter disabled flag is not present. pps_deblocking_filter disabled flag
equal to O specifies that the operation of the deblocking filter is applied for slices referring to the PPS in which
slice_deblocking_filter disabled flag is not present. When not present, the value of
pps_deblocking_filter disabled flag is inferred to be equal to 0.

pps_beta_offset div2 and pps_tc_offset_div2 specify the default deblocking parameter offsets for § and tC (divided
by 2) that are applied for slices referring to the PPS, unless the default deblocking parameter offsets are overridden by
the deblocking parameter offsets present in the slice headers of the slices referring to the PPS. The values of
pps_beta_offset div2 and pps_tc_offset div2 shall both be in the range of —6 to 6, inclusive. When not present, the
value of pps_beta offset div2 and pps_tc_offset div2 are inferred to be equal to 0.

pps_scaling_list_data present flag equal to 1 specifies that parameters are present in the PPS to modify the scaling
lists specified in the active SPS. pps_scaling_list data_present flag equal to 0 specifies that the scaling lists used for the

70 Rec. ITU-T H.265 (04/2013)

pictures referring to the PPS is inferred to be equal to those specified by the active SPS. When scaling_list_enabled flag
is equal to 0, the value of pps_scaling list data present flag shall be equal to 0. When scaling_list enabled flag is
equal to 1, sps_scaling list data present flag is equal to 0, and pps_scaling_list data present flag is equal to 0, the
default scaling list data are used to derive the array ScalingFactor as described in the scaling list data semantics 7.4.5.

lists_modification_present_flag equal to 1 specifies that the syntax structure ref pic_lists_modification() is present in
the slice segment header. lists modification present flag equal to O specifies that the syntax structure
ref pic_lists modification() is not present in the slice segment header.

log2 parallel_merge level minus2 plus 2 specifies the value of the variable Log2ParMrglLevel, which is used in the
derivation process for luma motion vectors for merge mode as specified in clause 8.5.3.2.1 and the derivation process
for spatial merging candidates as specified in clause 8.5.3.2.2. The value of log2 parallel merge level minus2 shall be
in the range of 0 to CtbLog2SizeY — 2, inclusive.

The variable Log2ParMrgLevel is derived as follows:

Log2ParMrgLevel =log2 parallel merge level minus2 + 2 (7-28)

NOTE 2 — The value of Log2ParMrgLevel indicates the built-in capability of parallel derivation of the merging candidate lists.
For example, when Log2ParMrgLevel is equal to 6, the merging candidate lists for all the PUs and CUs contained in a 64x64
block can be derived in parallel.

slice_segment_header_extension_present_flag equal to 0 specifies that no slice segment header extension syntax
elements are present in the slice segment headers for coded pictures referring to the PPS.
slice_segment_header extension_present flag shall be equal to 0 in bitstreams conforming to this version of this
Specification. The value of 1 for slice_segment header extension present flag is reserved for future use by ITU-T |
ISO/IEC.

pps_extension_flag equal to O specifies that no pps_extension_data flag syntax elements are present in the PPS RBSP
syntax structure. pps_extension_flag shall be equal to 0 in bitstreams conforming to this version of this Specification.
The value of 1 for pps_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all data that
follow the value 1 for pps_extension flag in a PPS NAL unit.

pps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance to profiles
specified in this version of this Specification. Decoders conforming to this version of this Specification shall ignore all
pps_extension_data flag syntax elements.

7.4.3.4 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of
coded pictures from VCL NAL units. An SEI RBSP contains one or more SEI messages.

7.4.3.5 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

pic_type indicates that the slice_type values for all slices of the coded picture are members of the set listed in Table 7-2
for the given value of pic_type.

Table 7-2 — Interpretation of pic_type

pic_type | slice_type values that may be present in the coded picture

0 I
1 P, 1
2 B,P,1

7.4.3.6 End of sequence RBSP semantics

The end of sequence RBSP specifies that the current access unit is the last access unit in the coded video sequence in
decoding order and the next subsequent access unit in the bitstream in decoding order (if any) is an IRAP access unit
with NoRaslOutputFlag equal to 1. The syntax content of the SODB and RBSP for the end of sequence RBSP are
empty.

Rec. ITU-T H.265 (04/2013) 71

7.4.3.7 End of bitstream RBSP semantics

The end of bitstream RBSP indicates that no additional NAL units are present in the bitstream that are subsequent to the
end of bitstream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of bitstream RBSP
are empty.

NOTE — When an elementary stream contains more than one bitstream, the last NAL unit of the last access unit of a bitstream
must contain an end of bitstream NAL unit and the first access unit of the subsequent bitstream must be an IRAP access unit.
This IRAP access unit may be a CRA, BLA, or IDR access unit.

7.4.3.8 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for
a filler data RBSP.

ff_byte is a byte equal to OxFF.

7.4.3.9 Slice segment layer RBSP semantics

The slice segment layer RBSP consists of a slice segment header and slice segment data.

7.4.3.10 RBSP slice segment trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVcINalUnits be the sum of the values of NumBytesInNalUnit for all VCL NAL units of a coded
picture.

Let BinCountsInNalUnits be the number of times that the parsing process function DecodeBin(), specified in
clause 9.3.4.3, is invoked to decode the contents of all VCL NAL units of a coded picture.

Let the variable RawMinCuBits be derived as follows:
RawMinCuBits = MinCbSizeY * MinCbSizeY * (BitDepthy + BitDepth¢ /2) (7-29)

The value of BinCountsIinNalUnits shall be less than or equal to (32+3)* NumBytesInVcINalUnits +
(RawMinCuBits * PicSizeInMinCbsY) + 32.

NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the coded slice segment NAL
units can be met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInVcINalUnits.
Each cabac_zero word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL
unit contents that result in requiring inclusion of an emulation prevention_three byte for each cabac_zero word).

7.4.3.11 RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.3.12 Byte alignment semantics
alignment_bit_equal_to_one shall be equal to 1.

alignment_bit equal _to_zero shall be equal to 0.

7.4.4 Profile, tier and level semantics

general_profile space specifies the context for the interpretation of general profile idc and
general profile combatibility flag[1] for all values of i in the range of 0 to 31, inclusive. The value of
general profile space shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values for
general profile space are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the CVS when
general_profile space is not equal to 0.

general_tier_ flag specifies the tier context for the interpretation of general level idc as specified in Annex A.

general_profile_idc, when general profile space is equal to 0, indicates a profile to which the CVS conforms as
specified in Annex A. Bitstreams shall not contain values of general profile idc other than those specified in Annex A.
Other values of general profile idc are reserved for future use by ITU-T | ISO/IEC.

general_profile_compatibility flag[j] equal to 1, when general profile space is equal to 0, indicates that the CVS
conforms to the profile indicated by general profile idc equal to j as specified in Annex A. When
general_profile space is equal to 0, general profile compatibility flag[general profile idc] shall be equal to 1. The
value of general profile compatibility flag[j] shall be equal to 0 for any value of j that is not specified as an allowed
value of general profile idc in Annex A.

72 Rec. ITU-T H.265 (04/2013)

general_progressive_source_flag and general_interlaced_source_flag are interpreted as follows:

— If general progressive source flag is equal to 1 and general interlaced source flag is equal to 0, the source scan
type of the pictures in the CVS should be interpreted as progressive only.

— Otherwise, if general progressive source flag is equal to 0 and general interlaced source flag is equal to 1, the
source scan type of the pictures in the CVS should be interpreted as interlaced only.

— Otherwise, if general progressive source flag is equal to 0 and general interlaced source flag is equal to 0, the
source scan type of the pictures in the CVS should be interpreted as unknown or unspecified.

— Otherwise (general progressive source flag is equal to 1 and general interlaced source flag is equal to 1), the
source scan type of each picture in the CVS is indicated at the picture level using the syntax element
source_scan_type in a picture timing SEI message.

NOTE 1 — Decoders may ignore the values of general progressive source flag and general interlaced source flag for purposes
other than determining the value to be inferred for frame field info present flag when vui_parameters present flag is equal to
0, as there are no other decoding process requirements associated with the values of these flags. Moreover, the actual source scan
type of the pictures is outside the scope of this Specification, and the method by which the encoder selects the values of
general progressive_source flag and general interlaced source_flag is unspecified.

general_non_packed_constraint_flag equal to 1 specifies that there are no frame packing arrangement SEI messages
present in the CVS. general non_packed constraint flag equal to 0 indicates that there may or may not be one or more
frame packing arrangement SEI messages present in the CVS.

NOTE 2 — Decoders may ignore the value of general non packed constraint flag, as there are no decoding process requirements
associated with the presence or interpretation of frame packing arrangement SEI messages.

general frame only constraint flag equal to 1 specifies that field seq flag is equal to O.
general frame only constraint flag equal to 0 indicates that field seq flag may or may not be equal to 0.
NOTE 3 — Decoders may ignore the value of general frame only constraint flag, as there are no decoding process requirements
associated with the value of field_seq_flag.

NOTE 4 — When general progressive source flag is equal to 1, general frame only constraint flag may or may not be equal
to 1.

general_reserved_zero_44bits shall be equal to 0 in bitstreams conforming to this version of this Specification. Other
values for general reserved zero 44bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the
value of general reserved zero 44bits.

general _level idc indicates a level to which the CVS conforms as specified in Annex A. Bitstreams shall not contain
values of general level idc other than those specified in Annex A. Other values of general level idc are reserved for
future use by ITU-T | ISO/IEC.

NOTE 5 — A greater value of general_level idc indicates a higher level. The maximum level signalled in the VPS for a CVS may
be higher than the level signalled in the SPS for the same CVS.

NOTE 6 — When the coded video sequence conforms to multiple profiles, general profile idc should indicate the profile that
provides the preferred decoded result or the preferred bitstream identification, as determined by the encoder (in a manner not
specified in this Specification).

NOTE 7 — The general reserved zero 44bits may be used in future editions of this Specification to indicate further constraints
on the bitstream (e.g., that a particular syntax combination that would otherwise be permitted by the indicated values of
general_profile_compatibility flag[j], is not used).

sub_layer_profile_present flag[i] equal to 1, specifies that profile information is present in the profile tier level()
syntax structure for the representation of the sub-layer with Temporalld equal to i. sub_layer profile present flag[i]
equal to O specifies that profile information is not present in the profile tier level() syntax structure for the
representations of the sub-layer with Temporalld equal to i.

sub_layer_level present flag[i] equal to 1 specifies that level information is present in the profile tier level()
syntax structure for the representation of the sub-layer with Temporalld equal to i. sub_layer level present flag[i]
equal to O specifies that level information is not present in the profile tier level() syntax structure for the
representation of the sub-layer with Temporalld equal to i.

reserved_zero_2bits[i] shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values
for reserved zero 2bits[i] are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value of
reserved_zero 2bits[i].

The semantics of the syntax elements sub_layer_profile_space[i], sub_layer_tier flag[i],
sub_layer_profile idc[i], sub_layer profile_compatibility flag[i][j], sub_layer_progressive source flag[i],
sub_layer_interlaced_source flag[i], sub_layer_non_packed_constraint_flag[i],

sub_layer frame only_constraint flag[i], sub_layer reserved zero 44bits[i], and sub_layer level idc[i] are
the same as the syntax elements general profile space, general tier flag, general profile idc,
general_profile compatibility flag[j], general progressive source flag, general_interlaced source flag,

Rec. ITU-T H.265 (04/2013) 73

general non packed constraint flag, general frame only constraint flag, general reserved zero 44bits, and
general _level idc, respectively, but apply to the representation of the sub-layer with Temporalld equal to i.

When not present, the value of sub_layer tier flag[i] is inferred to be equal to 0.

NOTE 8 — It is possible that sub_layer tier flag[i] is not present and sub_layer level idc[i] is present. In this case, a default
value of sub_layer tier flag[i] is needed for interpretation of sub_layer level idc[i].

7.4.5 Scaling list data semantics

scaling list pred_mode_flag[sizeld][matrixId] equal to 0 specifies that the values of the scaling list are the same as
the values of a reference scaling listt The reference scaling list is specified by
scaling_list pred matrix_id delta[sizeld][matrixId]. scaling_list pred mode flag[sizeld][matrixld] equal to 1
specifies that the values of the scaling list are explicitly signalled.

scaling_list pred_matrix_id_delta[sizeld][matrixId] specifies the reference scaling list used to derive
ScalingList[sizeld][matrixId] as follows:

— If scaling_list pred matrix id delta[sizeld][matrixId] is equal to 0, the scaling list is inferred from the default
scaling list ScalingList[sizeld][matrixId][i] as specified in Table7-5 and Table7-6 for
1=0.Min(63, (1 << (4+(sizeld << 1)))—1).

— Otherwise, the scaling list is inferred from the reference scaling list as follows:
refMatrixId = matrixId — scaling_list pred matrix_id_delta[sizeld][matrixId] (7-30)

ScalingList[sizeld][matrixId][i] = ScalingList[sizeld][refMatrixId][i]
with 1=0..Min(63, (1 << (4+(sizeld << 1)))—1) (7-31)

The value of scaling_list pred matrix_id_delta[sizeld][matrixId] shall be in the range of 0 to matrixId, inclusive.

Table 7-3 — Specification of sizeld

Size of quantization matrix sizeld
4x4 0
8x8 1
16x16 2
32x32 3

Table 7-4 — Specification of matrixId according to sizeld, prediction mode and colour component

sizeld CuPredMode (colour z{)(:l(ponen t) matrixId
0,1,2 MODE_INTRA 0(Y) 0
0,1,2 MODE_INTRA 1 (Cb) 1
0,1,2 MODE_INTRA 2 (Cr) 2
0,1,2 MODE_INTER 0(Y) 3
0,1,2 MODE INTER 1 (Cb) 4
0,1,2 MODE_INTER 2 (Cr) 5

3 MODE_INTRA 0Y) 0

3 MODE INTER 0 (Y) 1

scaling_list dc_coef minus8|[sizeld — 2][matrixId] plus 8 specifies the DC value of the scaling list for 16x16 size
when sizeld is equal to 2 and specifies the DC value of the scaling list for 32x32 size when sizeld is equal to 3. The
value of scaling_list dc_coef minus§[sizeld — 2][matrixId] shall be in the range of —7 to 247, inclusive.

When scaling_list pred mode flag[sizeld][matrixId] is equal to 0,
scaling_list pred matrix_id delta[sizeld][matrixId] is equal to 0, and sizeld is greater than 1, the value of
scaling_list_dc_coef minus8| sizeld — 2][matrixId] is inferred to be equal to 8.

74 Rec. ITU-T H.265 (04/2013)

When scaling_list pred matrix_id_delta[sizeld][matrixId] is not equal to 0 and sizeld is greater than 1, the value of
scaling_list dc coef minus8[sizeld — 2][matrixId] is inferred to be equal to
scaling_list dc_coef minus8] sizeld — 2][refMatrixId].

scaling_list_delta_coef specifies the difference between the current matrix coefficient
ScalingList[sizeld][matrixId][i] and the previous matrix coefficient ScalingList[sizeld][matrixId]J[i—1], when
scaling_list pred mode flag[sizeld][matrixId] is equal to 1. The value of scaling list delta coef shall be in the
range of —128 to 127, inclusive. The value of ScalingList[sizeld][matrixId][i] shall be greater than 0.

Table 7-5 — Specification of default values of ScalingList[0][matrixId][i] with i=0..15

i ol1|2|3|4|5]6|7|8|9|10|11|12[13]14]15
ScalingList[0][0.5][i] |16|16|16|16|16|16|16|16|16|16|16|16]16]|16|16]16

Table 7-6 — Specification of default values of ScalingList[1..3][matrixId |[i | with i = 0..63

i 0(1]|2(3|4|5|6|7 (8|9 (10|11|12|13|14(15
ScalingList[1.2][0.2][i]
ScalingList[3][0][1i]
ScalingList[1.2][3..5][i]
ScalingList[3][1][i]

i—16 0|12 (3|4(5|]6(7|8|9|10]{11(12|13(14]| 15
ScalingList[1..2 [[0..2][i]
ScalingList[3][0][i]
ScalingList[1.2][3..5][i]
ScalingList[3][1][i]

i—32 0|12 (3|4(5|]6(7|8|9|10]{11(12|13(14]| 15
ScalingList[1.2][0.2][i]
ScalingList[3][0][1i]
ScalingList[1.2 [[3..5][i]
ScalingList[3][1][i]

i—48 0|12 (3|4(5|]6(7|8|9|10]|11(12|13(14]| 15
ScalingList[1..2 [[0..2][i]
ScalingList[3][0][i]
ScalingList[1.2][3..5][i]
ScalingList[3][1][i]

1616161616 |16(16(16|16|16|17|16(17(16(17| 18

1616|1616 |16 |16 (16(16|16|16|17 |17 (17 (17[17| 18

1711818171821 (19(20(21]20|19|21(24(22|22| 24

18|18 (18|18|18(20]20(20]|20(20|20|20(24|24 (24| 24

2412212224 (25(25(27(30|2725|25(29(31(35|35]| 31

24124124124 |125(25(25(25(25(25]25|28(28(28(28| 28

2913641 |44 (41 (36|47 |54|54|47|65[70]65|88|88| 115

2813313333 (33(33(41(41|41|41|54(54(54(71|71| 91

The four-dimensional array ScalingFactor[sizeld][matrixId J[x][y], with X, y=0..(1 << (2+sizeld))—1,
specifies the array of scaling factors according to the variables sizeld specified in Table 7-3 and matrixId specified in
Table 7-4.

The elements of the quantization matrix of size 4x4, ScalingFactor[0][matrixId][][], are derived as follows:

ScalingFactor[0][matrixId][x][y] = ScalingList[0][matrixId][i] (7-32)
with i =0..15, matrixId = 0..5, x = ScanOrder[2][0][1][0], and y = ScanOrder[2][O J[1][1]

The elements of the quantization matrix of size 8x8, ScalingFactor[1][matrixId][][], are derived as follows:

ScalingFactor[1][matrixId][x][y] = ScalingList[1][matrixId][i] (7-33)
with 1= 0..63, matrixId = 0..5, x = ScanOrder[3][0][1][0], and y = ScanOrder[3][O J[1][I]

The elements of the quantization matrix of size 16x16, ScalingFactor[2][matrixId][][], are derived as follows:

ScalingFactor| 2][matrixId [[x * 2+ k [y * 2 +j] = ScalingList[2][matrixId][i] (7-34)
with 1=0..63,j=0..1, k=0..1, matrixId = 0..5, x = ScanOrder[3][0][1][0],
and y =ScanOrder[3][0][i][1]

ScalingFactor[2][matrixId]J[0][0] = scaling_list dc_coef minus8[0][matrixId]+ 8 (7-35)
with matrixId = 0..5

Rec. ITU-T H.265 (04/2013) 75

The elements of the quantization matrix of size 32x32, ScalingFactor| 3][matrixId][][], are derived as follows:

ScalingFactor[3][matrixId][x *4 + k][y * 4 +j] = ScalingList[3][matrixId][i] (7-36)
with1=0..63,j=0..3, k=0..3, matrixId = 0..1, x = ScanOrder[3][0][i][0],
andy =ScanOrder[3J[O][i][1]

ScalingFactor[3][matrixId][0][0] = scaling_list dc_coef minus8[1][matrixId] + 8 (7-37)
with matrixId = 0..1

7.4.6 Supplemental enhancement information message semantics

Each SEI message consists of the variables specifying the type payloadType and size payloadSize of the SEI message
payload. SEI message payloads are specified in Annex D. The derived SEI message payload size payloadSize is
specified in bytes and shall be equal to the number of RBSP bytes in the SEI message payload.

NOTE — The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes

(represented by emulation_prevention_three byte syntax elements). Since the payload size of an SEI message is specified in
RBSP bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to OxFF identifying a need for a longer representation of the syntax structure that it is used
within.

last_payload_type_byte is the last byte of the payload type of an SEI message.
last_payload_size byte is the last byte of the payload size of an SEI message.

7.4.7 Slice segment header semantics

7.4.7.1 General slice segment header semantics

When present, the value of the slice segment header syntax elements slice pic_parameter set id, pic_output flag,
no_output_of prior pics flag, slice pic_order cnt Isb, short term ref pic set sps flag, short term ref pic_set idx,
num_long term sps, num long term pics, and slice temporal mvp enabled flag shall be the same in all slice
segment headers of a coded picture. When present, the value of the slice segment header syntax elements It idx sps[i],
poc Isb 1t[i], used by curr pic It flag[i], delta poc msb present flag[i], and delta poc msb cycle It[i] shall be
the same in all slice segment headers of a coded picture for each possible value of i.

first_slice segment _in_pic_flag equal to 1 specifies that the slice segment is the first slice segment of the picture in
decoding order. first_slice_segment in_pic_flag equal to 0 specifies that the slice segment is not the first slice segment
of the picture in decoding order.

no_output_of prior_pics_flag affects the output of previously-decoded pictures in the decoded picture buffer after the
decoding of an IDR or a BLA picture that is not the first picture in the bitstream as specified in Annex C.

slice_pic_parameter_set id specifies the value of pps pic parameter set for the PPS in use. The value of
slice_pic_parameter_set id shall be in the range of 0 to 63, inclusive.

dependent_slice_segment_flag equal to 1 specifies that the value of each slice segment header syntax element that is
not present is inferred to be equal to the value of the corresponding slice segment header syntax element in the slice
header. When not present, the value of dependent slice segment_flag is inferred to be equal to 0.

The variable SliceAddrRs is derived as follows:
— Ifdependent slice segment flag is equal to 0, SliceAddrRs is set equal to slice_segment_address.

— Otherwise, SliceAddrRs is set equal to SliceAddrRs of the preceding slice segment containing the coding tree
block for which the coding tree block address is CtbAddrTsToRs[CtbAddrRsToTs| slice_segment address | —1].

slice_segment_address specifies the address of the first coding tree block in the slice segment, in coding tree block
raster scan of a picture. The length of the slice_segment address syntax element is Ceil(Log2(PicSizeInCtbsY)) bits.
The value of slice segment address shall be in the range of 0 to PicSizeInCtbsY — 1, inclusive and the value of
slice_segment_address shall not be equal to the value of slice_segment address of any other coded slice segment NAL
unit of the same coded picture. When slice_segment_address is not present, it is inferred to be equal to 0.

The variable CtbAddrInRs, specifying a coding tree block address in coding tree block raster scan of a picture, is set
equal to slice_segment address. The variable CtbAddrInTs, specifying a coding tree block address in tile scan, is set
equal to CtbAddrRsToTs[CtbAddrInRs]. The variable CuQpDeltaVal, specifying the difference between a luma
quantization parameter for the coding unit containing cu_qp_delta_abs and its prediction, is set equal to O.

slice_reserved_flag[i | has semantics and values that are reserved for future use by ITU-T | ISO/IEC. Decoders shall
ignore the presence and value of slice _reserved flag[i].

76 Rec. ITU-T H.265 (04/2013)

slice_type specifies the coding type of the slice according to Table 7-7.

Table 7-7 — Name association to slice_type

slice_type Name of slice_type
0 B (B slice)
1 P (P slice)
2 I (Islice)

When nal_unit_type has a value in the range of BLA W _LP to RSV_IRAP_VCL23, inclusive, i.e., the picture is an
IRAP picture, slice_type shall be equal to 2.

When sps_max_dec_pic_buffering minus1[Temporalld] is equal to 0, slice_type shall be equal to 2.

pic_output_flag affects the decoded picture output and removal processes as specified in Annex C. When
pic_output flag is not present, it is inferred to be equal to 1.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate colour plane flag is
equal to 1. The value of colour plane id shall be in the range of 0 to 2, inclusive. colour plane id values 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE 1 — There is no dependency between the decoding processes of pictures having different values of colour plane id.

slice_pic_order_cnt_Isb specifies the picture order count modulo MaxPicOrderCntLsb for the current picture. The
length of the slice pic order cnt Isb syntax element is log2 max pic_order cnt Isb minus4 + 4 bits. The value of the
slice_pic_order_cnt Isb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive. When slice pic_order cnt_lsb
is not present, slice_pic_order_cnt_lIsb is inferred to be equal to 0, except as specified in clause 8.3.3.1.

short_term_ref pic_set_sps_flag equal to 1 specifies that the short-term RPS of the current picture is derived based on
one of the short term ref pic_set() syntax structures in the active SPS that is identified by the syntax element
short term_ref pic_set idx in the slice header. short term_ref pic_set sps flag equal to O specifies that the short-term
RPS of the current picture is derived based on the short_term ref pic_set() syntax structure that is directly included in
the slice headers of the current picture. When num_short term ref pic sets is equal to 0, the value of
short_term_ref pic_set sps_flag shall be equal to 0.

short_term_ref pic_set idx specifies the index, into the list of the short_term_ref pic_set() syntax structures included
in the active SPS, of the short_term_ref pic_set() syntax structure that is used for derivation of the short-term RPS of
the current picture. The syntax element short_term_ref pic_set idx is represented by
Ceil(Log2(num_short term_ref pic_sets)) bits. When not present, the value of short term_ref pic_set idx is inferred
to be equal to 0. The value of short term_ref pic_set idx shall be in the range of 0 to num_short term_ref pic_sets — 1,
inclusive.

The variable CurrRpsldx is derived as follows:
— Ifshort_term ref pic set sps flag is equal to 1, CurrRpsldx is set equal to short_term ref pic set idx.

— Otherwise, CurrRpsldx is set equal to num_short term_ref pic_sets.

num_long_term_sps specifies the number of entries in the long-term RPS of the current picture that are derived based
on the candidate long-term reference pictures specified in the active SPS. The value of num_long term_sps shall be in
the range of 0 to num long term ref pics_sps, inclusive. When not present, the value of num_long term sps is
inferred to be equal to 0.

num_long_term_pics specifies the number of entries in the long-term RPS of the current picture that are directly
signalled in the slice header. When not present, the value of num_long_term_pics is inferred to be equal to 0.

The sum of NumNegativePics[CurrRpsldx], NumPositivePics[CurrRpsldx], num long term sps, and
num_long_term_pics shall be less than or equal to
sps_max_dec pic_buffering_ minus1[sps_max_sub_layers minus]].

It_idx_sps[i] specifies an index, into the list of candidate long-term reference pictures specified in the active SPS, of
the i-th entry in the long-term RPS of the current picture. The number of bits used to represent It_idx_sps[i] is equal to
Ceil(Log2(num_long_term_ref pics sps)). When not present, the value of It _idx sps[i] is inferred to be equal to 0.
The value of It_idx_sps[i] shall be in the range of 0 to num_long_term_ref pics_sps — 1, inclusive.

poc_lsb_1t[i] specifies the value of the picture order count modulo MaxPicOrderCntLsb of the i-th entry in the
long-term RPS of the current picture. The length of the poc Isb Itfi] syntax element is
log2 max_pic_order cnt Isb_minus4 + 4 bits.

Rec. ITU-T H.265 (04/2013) 77

used_by curr_pic_It flag[i] equal to O specifies that the i-th entry in the long-term RPS of the current picture is not
used for reference by the current picture.

The variables PocLsbLt[i] and UsedByCurrPicLt[i] are derived as follows:

— If i is less than num_long term_sps, PocLsbLt[i] is set equal to It ref pic poc Isb sps[It idx sps[i]] and
UsedByCurrPicLt[i] is set equal to used by curr pic_It sps_flag[It idx_sps[i]].

— Otherwise, PocLsbLt[i] is set equal to poc Isb Itfi] and UsedByCurrPicLt[i] is set equal to
used by curr pic It flag[i].

delta_poc_msb_present flag[i] equal to 1 specifies that delta poc msb cycle Itfi] 1is present.
delta poc_msb present flag[i] equal to O specifies that delta poc_msb _cycle It[i] is not present.

Let prevTidOPic be the previous picture in decoding order that has Temporalld equal to 0 and is not a RASL picture, a
RADL picture, or a sub-layer non-reference picture. Let setOfPrevPocVals be a set consisting of the following:

— the PicOrderCntVal of prevTidOPic,
— the PicOrderCntVal of each picture in the RPS of prevTidOPic,

— the PicOrderCntVal of each picture that follows prevTidOPic in decoding order and precedes the current picture in
decoding order.

When there is more than one value in setOfPrevPocVals for which the value modulo MaxPicOrderCntLsb is equal to
PocLsbLt[i], delta poc_msb_present flag[i] shall be equal to 1.

delta_poc_msb_cycle It[i] is used to determine the value of the most significant bits of the picture order count value
of the i-th entry in the long-term RPS of the current picture. When delta_poc_msb_cycle It[i] is not present, it is
inferred to be equal to 0.

The variable DeltaPocMsbCycleLt[i] is derived as follows:

if(i == 10 || 1 == num_long_term_sps)
DeltaPocMsbCycleLt[i] = delta_poc_msb_cycle It[1]

else (7-38)
DeltaPocMsbCycleLt[i] = delta_poc_msb_cycle It[i | + DeltaPocMsbCycleLt[i — 1]

slice_temporal_mvp_enabled_flag specifies whether temporal motion vector predictors can be used for inter
prediction. If slice temporal mvp enabled flag is equal to 0, the syntax elements of the current picture shall be
constrained such that no temporal motion vector predictor is used in decoding of the current picture. Otherwise
(slice_temporal mvp_enabled flag is equal to 1), temporal motion vector predictors may be used in decoding of the
current picture. When not present, the value of slice_temporal mvp enabled_flag is inferred to be equal to 0.

When both slice_temporal mvp_enabled flag and Temporalld are equal to 0, the syntax elements for all coded pictures
that follow the current picture in decoding order shall be constrained such that no temporal motion vector from any
picture that precedes the current picture in decoding order is used in decoding of any coded picture that follows the
current picture in decoding order.
NOTE 2 — When slice_temporal mvp enabled flag is equal to 0 in an I slice, it has no impact on the normative decoding process
of the picture but merely expresses a bitstream constraint.
NOTE 3 — When slice_temporal mvp_enabled flag is equal to 0 in a slice with Temporalld are equal to 0, decoders may empty
"motion vector storage" for all reference pictures in the decoded picture buffer.

slice_sao_luma_flag equal to 1 specifies that SAO is enabled for the luma component in the current slice;
slice sao luma flag equal to O specifies that SAO is disabled for the luma component in the current slice. When
slice sao_luma_flag is not present, it is inferred to be equal to 0.

slice_sao_chroma_flag equal to 1 specifies that SAO is enabled for the chroma component in the current slice;
slice sao_chroma flag equal to 0 specifies that SAO is disabled for the chroma component in the current slice. When
slice sao_chroma_flag is not present, it is inferred to be equal to 0.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num ref idx 10 active minusl is
present for P and B slices and that the syntax element num ref idx Il active minusl is present for B slices.
num_ref idx active override flag equal to O specifies that the syntax elements num ref idx 10 active minusl and
num_ref idx 11 active _minus] are not present.

num_ref _idx_l0_active_minus]1 specifies the maximum reference index for reference picture list O that may be used to
decode the slice. num_ref idx 10_active_minus] shall be in the range of 0 to 14, inclusive. When the current slice is a P
or B slice and num_ref idx 10 active minus] is not present, num ref idx 10 active minusl] is inferred to be equal to
num_ref idx 10 default active minusl.

78 Rec. ITU-T H.265 (04/2013)

num_ref idx_11_active_minusl1 specifies the maximum reference index for reference picture list 1 that may be used to
decode the slice. num ref idx 11 active minusl shall be in the range of 0 to 14, inclusive. When
num_ref idx 11 active minusl is not present, num ref idx Il active minusl 1is inferred to be equal to
num_ref idx 11 default active minusl.

mvd_I1_zero_flag equal to 1 indicates that the mvd coding(x0,y0,1) syntax structure is not parsed and
MvdL1[x0][yO][compldx] is set equal to 0 for compldx =0..1. mvd 11 _zero flag equal to O indicates that the
mvd_coding(x0, y0, 1) syntax structure is parsed.

cabac_init_flag specifies the method for determining the initialization table used in the initialization process for context
variables. When cabac_init flag is not present, it is inferred to be equal to 0.

collocated_from_10_flag equal to 1 specifies that the collocated picture used for temporal motion vector prediction is
derived from reference picture list 0. collocated from 10 flag equal to O specifies that the collocated picture used for
temporal motion vector prediction is derived from reference picture list 1. When collocated from 10 flag is not present,
it is inferred to be equal to 1.

collocated_ref idx specifies the reference index of the collocated picture used for temporal motion vector prediction.

When slice_type is equal to P or when slice_type is equal to B and collocated from 10 is equal to 1, collocated ref idx
refers to a picture in list 0, and the value of collocated ref idx shall be in the range of 0 to
num_ref idx_10_active _minusl, inclusive.

When slice_type is equal to B and collocated from_10 is equal to 0, collocated ref idx refers to a picture in list 1, and
the value of collocated ref idx shall be in the range of 0 to num_ref idx 11 active minusl, inclusive.

It is a requirement of bitstream conformance that the picture referred to by collocated ref idx shall be the same for all
slices of a coded picture.

five_minus_max_num_merge_cand specifies the maximum number of merging MVP candidates supported in the
slice subtracted from 5. The maximum number of merging MVP candidates, MaxNumMergeCand is derived as follows:

MaxNumMergeCand = 5 — five_minus_max_num_merge cand (7-39)
The value of MaxNumMergeCand shall be in the range of 1 to 5, inclusive.

slice_qp_delta specifies the initial value of Qpy to be used for the coding blocks in the slice until modified by the value
of CuQpDeltaVal in the coding unit layer. The initial value of the Qpy quantization parameter for the slice, SliceQpy, is
derived as follows:

SliceQpy =26 + init_gp _minus26 + slice_qp_delta (7-40)
The value of SliceQpy shall be in the range of —QpBdOffsety to +51, inclusive.

slice_cb_qp_offset specifies a difference to be added to the value of pps_cb_qp_offset when determining the value of
the Qp’cy, quantization parameter. The value of slice cb_qp_offset shall be in the range of —12 to +12, inclusive. When
slice_cb_qgp_offset is not present, it is inferred to be equal to 0. The value of pps_cb_qp offset + slice cb_qp_offset
shall be in the range of —12 to +12, inclusive.

slice_cr_qp_offset specifies a difference to be added to the value of pps_cr_gp_offset when determining the value of
the Qp’c; quantization parameter. The value of slice cr_qp_offset shall be in the range of —12 to +12, inclusive. When
slice_cr_qp_offset is not present, it is inferred to be equal to 0. The value of pps_cr_qp_offset + slice_cr_qp_offset shall
be in the range of —12 to +12, inclusive.

deblocking_filter_override flag equal to 1 specifies that deblocking parameters are present in the slice header.
deblocking_filter override flag equal to 0 specifies that deblocking parameters are not present in the slice header.
When not present, the value of deblocking_filter override flag is inferred to be equal to 0.

slice_deblocking_filter_disabled_flag equal to 1 specifies that the operation of the deblocking filter is not applied for
the current slice. slice_deblocking_filter disabled flag equal to O specifies that the operation of the deblocking filter is
applied for the current slice. When slice_deblocking_filter disabled flag is not present, it is inferred to be equal to
pps_deblocking_filter disabled flag.

slice_beta_offset_div2 and slice_tc_offset div2 specify the deblocking parameter offsets for f and tC (divided by 2)
for the current slice. The values of slice_beta_offset div2 and slice tc offset div2 shall both be in the range of —6 to 6,
inclusive. When not present, the values of slice beta offset div2 and slice tc offset div2 are inferred to be equal to
pps_beta offset div2 and pps_tc_offset div2, respectively.

slice_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering operations may be performed
across the left and upper boundaries of the current slice. slice loop filter across_slices_enabled flag equal to 0
specifies that in-loop operations are not performed across left and upper boundaries of the current slice. The in-loop

Rec. ITU-T H.265 (04/2013) 79

filtering operations include the deblocking filter and sample adaptive offset filter. When
slice_loop_filter across_slices_enabled flag is not present, it is inferred to be equal to
pps_loop_filter_across_slices enabled flag.

num_entry point_offsets specifies the number of entry point offset minusl[i] syntax elements in the slice header.
When not present, the value of num_entry point offsets is inferred to be equal to 0.

The value of num_entry point_offsets is constrained as follows:

— If tiles enabled flag is equal to 0 and entropy coding sync enabled flag is equal to 1, the value of
num_entry point_offsets shall be in the range of 0 to PicHeightInCtbsY — 1, inclusive.

— Otherwise, if tiles_enabled flag is equal to 1 and entropy coding_sync enabled flag is equal to 0, the value of
num_entry point offsets shall be in the range of O to (num tile columns minusl +1)*
(num_tile rows minusl + 1) — 1, inclusive.

— Otherwise, when tiles _enabled flag is equal to 1 and entropy coding sync enabled flag is equal to 1, the value of
num_entry point_offsets shall be in the range of 0 to (num_tile columns minusl + 1) * PicHeightInCtbsY — 1,
inclusive.

offset_len_minus1 plus 1 specifies the length, in bits, of the entry point offset minusl[i] syntax elements. The value
of offset len minus] shall be in the range of 0 to 31, inclusive.

entry_point_offset_ minusl1[i] plus 1 specifies the i-th entry point offset in bytes, and is represented by
offset len minusl plus 1 bits. The slice segment data that follows the slice segment header consists of
num_entry point_offsets + 1 subsets, with subset index values ranging from 0 to num_entry point offsets, inclusive.
The first byte of the slice segment data is considered byte 0. When present, emulation prevention bytes that appear in
the slice segment data portion of the coded slice segment NAL unit are counted as part of the slice segment data for
purposes of subset identification. Subset 0 consists of bytes 0 to entry point offset minusl[O], inclusive, of the coded
slice segment data, subset k, with k in the range of 1 to num_entry point offsets — 1, inclusive, consists of bytes
firstByte[k] to lastByte[k], inclusive, of the coded slice segment data with firstByte[k] and lastByte[k] defined as:

k
firstByte[k]= z (entry_point_offset minusl[n—1]+1) (7-41)

n=l
lastByte[k] = firstByte[k] + entry_point_offset minusl1[k] (7-42)

The last subset (with subset index equal to num_entry point_offsets) consists of the remaining bytes of the coded slice
segment data.

When tiles_enabled flag is equal to 1 and entropy coding_sync_enabled flag is equal to 0, each subset shall consist of
all coded bits of all coding tree units in the slice segment that are within the same tile, and the number of subsets (i.c.,
the value of num_entry point_offsets + 1) shall be equal to the number of tiles that contain coding tree units that are in
the coded slice segment.
NOTE 4 — When tiles_enabled flag is equal to 1 and entropy coding_sync_enabled flag is equal to 0, each slice must include
either a subset of the coding tree units of one tile (in which case the syntax element entry point offset minusl[i] is not present)
or must include all coding tree units of an integer number of complete tiles.

When tiles enabled flag is equal to 0 and entropy coding sync_enabled flag is equal to 1, each subset k with k in the
range of 0 to num_entry point_offsets, inclusive, shall consist of all coded bits of all coding tree units in the slice
segment that include luma coding tree blocks that are in the same luma coding tree block row of the picture, and the
number of subsets (i.e., the value of num_entry point offsets + 1) shall be equal to the number of coding tree block
rows of the picture that contain coding tree units that are in the coded slice segment.

NOTE 5 — The last subset (i.e., subset k for k equal to num_entry_point_offsets) may or may not contain all coding tree units that
include luma coding tree blocks that are in a luma coding tree block row of the picture.

When tiles_enabled flag is equal to 1 and entropy_coding_sync_enabled flag is equal to 1, each subset k with k in the
range of 0 to num_entry point_offsets, inclusive, shall consist of all coded bits of all coding tree units in the slice
segment that include luma coding tree blocks that are in the same luma coding tree block row of a tile, and the number
of subsets (i.e., the value of num_entry point_offsets + 1) shall be equal to the number of luma coding tree block rows
of a tile that contain coding tree units that are in the coded slice segment.

slice_segment_header_extension_length specifies the length of the slice segment header extension data in bytes, not
including the bits wused for signalling slice segment header extension length itself. The value of
slice_segment_header extension_length shall be in the range of 0 to 256, inclusive.

slice_segment_header_extension_data_byte may have any value. Decoders shall ignore the value of
slice_segment_header extension_data_byte. Its value does not affect decoder conformance to profiles specified in this
version of this Specification.

80 Rec. ITU-T H.265 (04/2013)

7.4.7.2 Reference picture list modification semantics

ref_pic_list modification_flag 10 equal to 1 indicates that reference picture list 0 is specified explicitly by a list of
list_entry 10[i] values. ref pic_list modification_flag 10 equal to 0 indicates that reference picture list 0 is determined
implicitly. When ref pic list modification flag 10 is not present in the slice header, it is inferred to be equal to 0.

list_entry 10[i] specifies the index of the reference picture in RefPicListTempO to be placed at the current position of
reference picture list 0. The length of the list_entry 10[i] syntax element is Ceil(Log2(NumPocTotalCurr)) bits. The
value of list_entry 10[i] shall be in the range of 0 to NumPocTotalCurr — 1, inclusive. When the syntax element
list entry 10[1] is not present in the slice header, it is inferred to be equal to 0.

The variable NumPocTotalCurr is derived as follows:

NumPocTotalCurr = 0
for(1= 0; i < NumNegativePics[CurrRpsldx]; i++)
if(UsedByCurrPicSO[CurrRpsldx J[1])

NumPocTotalCurr++
for(i=0; i < NumPositivePics[CurrRpsldx]; i++) (7-43)
if(UsedByCurrPicS1[CurrRpsldx][1])
NumPocTotalCurr++

for(1=0;1<num_long term sps + num_long_term pics; i++)
if(UsedByCurrPicLt[i])
NumPocTotalCurr++

ref pic_list_modification_flag 11 equal to 1 indicates that reference picture list 1 is specified explicitly by a list of
list entry 11[1] values. ref pic list modification flag 11 equal to 0 indicates that reference picture list 1 is determined
implicitly. When ref pic list modification flag 11 is not present in the slice header, it is inferred to be equal to 0.

list_entry 11] i] specifies the index of the reference picture in RefPicListTempl to be placed at the current position of
reference picture list 1. The length of the list entry 11] i] syntax element is Ceil(Log2(NumPocTotalCurr)) bits. The
value of list_entry 11[1] shall be in the range of 0 to NumPocTotalCurr — 1, inclusive. When the syntax element
list entry 11[1] is not present in the slice header, it is inferred to be equal to 0.

7.4.7.3 Weighted prediction parameters semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma log2 weight denom shall be in the range of 0 to 7, inclusive.

delta_chroma log2 weight denom is the difference of the base 2 logarithm of the denominator for all chroma
weighting factors.

The wvariable ChromaLog2WeightDenom is derived to be equal to Iuma log2 weight denom +
delta chroma log2 weight denom, and the value shall be in the range of 0 to 7, inclusive.

luma_weight 10 flag[i] equal to 1 specifies that weighting factors for the luma component of list 0 prediction using
RefPicListO[i] are present. luma_weight 10 flag[i] equal to O specifies that these weighting factors are not present.

chroma_weight 10 flag[i] equal to 1 specifies that weighting factors for the chroma prediction values of list 0
prediction using RefPicListO[i] are present. chroma weight 10 flag[i] equal to O specifies that these weighting
factors are not present. When chroma_weight 10 flag[i] is not present, it is inferred to be equal to 0.

delta_luma_weight 10[i] is the difference of the weighting factor applied to the luma prediction value for list 0
prediction using RefPicList0[i].

The variable LumaWeightLO[i] is derived to be equal to (1 << luma log2 weight denom)+
delta luma weight 10[i]. When luma weight 10 flag[i] is equal to 1, the value of delta luma weight 10[i] shall be

in the range of —128 to 127, inclusive. When luma_weight 10 flag[i] is equal to 0, LumaWeightL.0[i] is inferred to be
e qual to 21umaﬁlog27weight7denom.

luma_offset_10[i | is the additive offset applied to the luma prediction value for list 0 prediction using RefPicListO[i].
The value of luma_offset 10[i] shall be in the range of —128 to 127, inclusive. When luma_weight 10 flag[i] is equal
to 0, luma_offset 10[i] is inferred as equal to O.

delta_chroma_weight 10[i][] is the difference of the weighting factor applied to the chroma prediction values for
list 0 prediction using RefPicListO[i] with j equal to O for Cb and j equal to 1 for Cr.

The wvariable ChromaWeightLO[i][j] is derived to be equal to (1 << ChromalLog2WeightDenom)+
delta chroma weight 10[i][j]. When chroma weight 10 flag[i] is equal to 1, the value of
delta_chroma weight 10[i][j] shall be in the range of —128 to 127, inclusive. When chroma_weight 10 flag[i] is
equal to 0, ChromaWeightLO[i][j] is inferred to be equal to 2C™omaLog2WeightDenom

Rec. ITU-T H.265 (04/2013) 81

delta_chroma_offset 10[i][]] is the difference of the additive offset applied to the chroma prediction values for list 0
prediction using RefPicList0[i] with j equal to 0 for Cb and j equal to 1 for Cr.

The variable ChromaOffsetLO[i][j] is derived as follows:

ChromaOffsetLO[i][j] = Clip3(—128, 127, (delta_chroma offset 10[i][j] — (7-44)
((128 * ChromaWeightLO[i][j]) >> ChromalLog2WeightDenom) + 128))

The value of delta chroma offset 10[1][j] shall be in the range of —512 to 511, inclusive. When
chroma weight 10 flag[i] is equal to 0, ChromaOffsetLO[i][j] is inferred to be equal to 0.

luma_weight 11 flag[i], chroma_weight 11 flag[i], delta luma_weight 111], luma_offset 11[1],
delta_chroma_weight 11[i][j], and delta_chroma_offset 11[i][j] have the same semantics as
luma weight 10 flag[i], chroma weight 10 flag[i], delta luma weight 10[1], luma offset 10[1],
delta chroma weight 10[i][]], and delta chroma offset 10[i][j], respectively, with 10, L0, list 0, and ListO replaced
by 11, L1, list 1, and List1, respectively.

The variable sumWeightLOFlags is derived to be equal to the sum of
luma weight 10 flag[i]+ 2 * chroma weight 10 flag[i], fori=0..num ref idx 10 active minusl.

When slice type is equal to B, the variable sumWeightL1Flags is derived to be equal to the sum of
luma weight 11 flag[i]+ 2 * chroma weight 11 _flag[i], fori=0..num ref idx 11 active minusl.

It is a requirement of bitstream conformance that, when slice type is equal to P, sumWeightLOFlags shall be less than
or equal to 24, and when slice_type is equal to B, the sum of sumWeightLOFlags and sumWeightL1Flags shall be less
than or equal to 24.

7.4.8 Short-term reference picture set semantics

A short_term ref pic set(stRpsldx) syntax structure may be present in an SPS or in a slice header. Depending on
whether the syntax structure is included in a slice header or an SPS, the following applies:

— If present in a slice header, the short term_ref pic_set(stRpsldx) syntax structure specifies the short-term RPS of
the current picture (the picture containing the slice), and the following applies:

— The content of the short_term_ref pic_set(stRpsldx) syntax structure shall be the same in all slice headers of
the current picture.

— The value of stRpsldx shall be equal to the syntax element num_short_term_ref pic_sets in the active SPS.

— The short-term RPS of the current picture is also referred to as the num_short_term_ref pic_sets-th candidate
short-term RPS in the semantics specified in the remainder of this clause.

— Otherwise (present in an SPS), the short term ref pic set(stRpsldx) syntax structure specifies a candidate
short-term RPS, and the term "the current picture" in the semantics specified in the remainder of this clause refers
to each picture that has short _term_ref pic_set idx equal to stRpsldx in a CVS that has the SPS as the active SPS.

inter_ref pic_set prediction_flag equal to 1 specifies that the stRpsldx-th candidate short-term RPS is predicted from
another candidate short-term RPS, which is referred to as the source candidate short-term RPS. When
inter_ref pic set prediction flag is not present, it is inferred to be equal to 0.

delta_idx_minusl plus 1 specifies the difference between the value of stRpsldx and the index, into the list of the
candidate short-term RPSs specified in the SPS, of the source candidate short-term RPS. The value of delta_idx minusl
shall be in the range of 0 to stRpsldx — 1, inclusive. When delta_idx minus] is not present, it is inferred to be equal to
0.

The variable RefRpsldx is derived as follows:

RefRpsldx = stRpsldx — (delta_idx_minusl + 1) (7-45)
delta_rps_sign and abs_delta_rps_minusl together specify the value of the variable deltaRps as follows:

deltaRps = (1 — 2 * delta_rps_sign) * (abs_delta rps_minusl + 1) (7-46)

The variable deltaRps represents the value to be added to the picture order count difference values of the source
candidate short-term RPS to obtain the picture order count difference values of the stRpsldx-th candidate short-term
RPS. The value of abs_delta_rps_minus] shall be in the range of 0 to 2'° — 1, inclusive.

used_by curr_pic_flag[j | equal to O specifies that the j-th entry in the source candidate short-term RPS is not used for
reference by the current picture.

82 Rec. ITU-T H.265 (04/2013)

use_delta_flag[j] equal to 1 specifies that the j-th entry in the source candidate short-term RPS is included in the
stRpsldx-th candidate short-term RPS. use delta flag[j] equal to 0 specifies that the j-th entry in the source candidate
short-term RPS is not included in the stRpsldx-th candidate short-term RPS. When use_delta flag[j] is not present, its
value is inferred to be equal to 1.

When inter ref pic set prediction flag is equal to 1, the variables DeltaPocSO[stRpsldx J[i],

UsedByCurrPicSO[stRpsldx][i], NumNegativePics[stRpsldx], DeltaPocS1[stRpsldx][1],
UsedByCurrPicS1[stRpsldx][i1], and NumPositivePics[stRpsldx] are derived as follows:
i=0

for(j = NumPositivePics[RefRpsldx | — 1;j >= 0;j——) {
dPoc = DeltaPocS1[RefRpsldx][j] + deltaRps
if(dPoc <0 && use delta flag] NumNegativePics[RefRpsldx] +j]) {
DeltaPocSO[stRpsldx][i] = dPoc
UsedByCurrPicSO[stRpsldx][i++] =used by curr_pic_flag] NumNegativePics[RefRpsldx | +]]
}

}
if(deltaRps <0 && use_delta flag] NumDeltaPocs[RefRpsldx]]) ¢ (7-47)
DeltaPocS0[stRpsldx][i] = deltaRps
UsedByCurrPicSO[stRpsldx][i++] =used by curr pic_flag] NumDeltaPocs[RefRpsldx]]
}
for(j = 0; j < NumNegativePics[RefRpsldx]; j++) {
dPoc = DeltaPocSO[RefRpsIdx][j] + deltaRps
if(dPoc <0 && use delta flag[j]) {
DeltaPocSO[stRpsldx][i] = dPoc
UsedByCurrPicSO[stRpsldx][i++] =used by curr pic flag[j]

}
}
NumNegativePics[stRpsldx | =1
i=0

for(j = NumNegativePics[RefRpsldx | — 1;j >= 0;j——) {
dPoc = DeltaPocSO[RefRpsldx][j] + deltaRps
if(dPoc >0 && use delta flag[j]) {
DeltaPocS1[stRpsldx][i] = dPoc
UsedByCurrPicS1[stRpsldx][i++] =used by curr_pic flag[j]

}

h

if(deltaRps > 0 && use delta flag] NumDeltaPocs[RefRpsldx]]) { (7-48)
DeltaPocS1[stRpsldx][i] = deltaRps
UsedByCurrPicS1[stRpsldx][i++] =used by curr pic flag] NumDeltaPocs[RefRpsldx]]

}

for(j = 0; j < NumPositivePics[RefRpsldx |; j++) {
dPoc = DeltaPocS1[RefRpsldx][j] + deltaRps
if(dPoc >0 && use delta flag] NumNegativePics[RefRpsldx] +j]) {
DeltaPocS1[stRpsldx][i] = dPoc
UsedByCurrPicS1[stRpsldx][i++] =used by curr_pic_flag] NumNegativePics[RefRpsldx | +]]
H
}
NumPositivePics[stRpsldx] =1

num_negative pics specifies the number of entries in the stRpsldx-th candidate short-term RPS that have picture order
count values less than the picture order count value of the current picture. The value of num_negative pics shall be in
the range of 0 to sps_max_dec pic_buffering minus1[sps_max sub layers minusl], inclusive.

num_positive_pics specifies the number of entries in the stRpsldx-th candidate short-term RPS that have picture order
count values greater than the picture order count value of the current picture. The value of num_positive_pics shall be in
the range of 0 to sps_max_dec_pic_buffering minus1[sps_max sub_layers minusl] — num_negative pics, inclusive.

delta_poc_s0_minusl[i] plus 1, when i is equal to 0, specifies the difference between the picture order count values of
the current picture and i-th entry in the stRpsldx-th candidate short-term RPS that has picture order count value less
than that of the current picture, or, when i is greater than 0, specifies the difference between the picture order count
values of the i-th entry and the (i+ 1)-th entry in the stRpsldx-th candidate short-term RPS that have picture order
count values less than the picture order count value of the current picture. The value of delta poc s0 minusl[i] shall
be in the range of 0 to 2"° — 1, inclusive.

Rec. ITU-T H.265 (04/2013) 83

used_by curr_pic_s0_flag[i | equal to O specifies that the i-th entry in the stRpsldx-th candidate short-term RPS that
has picture order count value less than that of the current picture is not used for reference by the current picture.

delta_poc_s1_minusl[i] plus 1, when i is equal to 0, specifies the difference between the picture order count values of
the current picture and the i-th entry in the stRpsldx-th candidate short-term RPS that has picture order count value
greater than that of the current picture, or, when 1 is greater than 0, specifies the difference between the picture order
count values of the (i+ 1)-th entry and i-th entry in the current candidate short-term RPS that have picture order count
values greater than the picture order count value of the current picture. The value of delta poc sl _minusl][i] shall be
in the range of 0 to 2'° — 1, inclusive.

used_by curr_pic_s1_flag[i | equal to 0 specifies that the i-th entry in the current candidate short-term RPS that has
picture order count value greater than that of the current picture is not used for reference by the current picture.

When inter ref pic_set prediction flag is equal to 0, the variables NumNegativePics[stRpsldx],
NumPositivePics[stRpsldx], UsedByCurrPicSO[stRpsldx][1], UsedByCurrPicS1[stRpsldx][1],
DeltaPocSO[stRpsIdx][i], and DeltaPocS1[stRpsldx][i] are derived as follows:

NumNegativePics[stRpsldx] = num_negative pics (7-49)
NumPositivePics[stRpsldx] = num_positive pics (7-50)
UsedByCurrPicSO[stRpsldx][i] =used by _curr_pic _sO flag[i] (7-51)
UsedByCurrPicS1[stRpsldx][i] =used by curr pic sl flag[i] (7-52)

— Ifiis equal to 0, the following applies:
DeltaPocSO[stRpsldx][i] =—(delta_poc sO minusI[i]+1) (7-53)
DeltaPocS1[stRpsldx][i] = delta_poc_sl minusl[i]+ 1 (7-54)
— Otherwise, the following applies:
DeltaPocSO[stRpsldx][i] = DeltaPocSO[stRpsldx J[i— 1] — (delta poc sO minusl[i]+1) (7-55)
DeltaPocS1[stRpsldx][i] = DeltaPocS1[stRpsldx][i— 1] + (delta_poc_sl minusl[i]+1) (7-56)
The variable NumDeltaPocs[stRpsldx] is derived as follows:
NumDeltaPocs[stRpsldx] = NumNegativePics[stRpsldx] + NumPositivePics[stRpsldx] (7-57)

7.4.9 Slice segment data semantics

7.4.9.1 General slice segment data semantics

end_of slice_segment flag equal to 0 specifies that another coding tree unit is following in the slice.
end of slice segment flag equal to 1 specifies the end of the slice segment, i.e., that no further coding tree unit follows
in the slice segment.

end_of sub_stream_one_bit shall be equal to 1.

7.4.9.2 Coding tree unit semantics

The coding tree unit is the root node of the coding quadtree structure.

7.4.9.3 Sample adaptive offset semantics

sao_merge left flag equal to 1 specifies that the syntax elements sao type idx luma, sao type idx chroma,
sao_band_position, sao_eo class_luma, sao_eo class chroma, sao offset abs, and sao offset sign are derived from
the corresponding syntax elements of the left coding tree block. sao_merge left flag equal to O specifies that these
syntax elements are not derived from the corresponding syntax elements of the left coding tree block. When
sao_merge left flag is not present, it is inferred to be equal to 0.

sao_merge _up_flag equal to 1 specifies that the syntax elements sao type idx luma, sao_type idx chroma,
sao_band_position, sao_eo class_luma, sao_eo class chroma, sao offset abs, and sao offset sign are derived from
the corresponding syntax elements of the above coding tree block. sao_merge up flag equal to O specifies that these
syntax elements are not derived from the corresponding syntax elements of the above coding tree block. When
sao_merge up_flag is not present, it is inferred to be equal to 0.

sao_type_idx_luma specifies the offset type for the luma component. The array SaoTypeldx[cldx][rx][ry] specifies
the offset type as specified in Table 7-8 for the coding tree block at the location (rx, ry) for the colour component cldx.
The value of SaoTypeldx[0][rx][ry] is derived as follows:

84 Rec. ITU-T H.265 (04/2013)

— Ifsao_type idx luma is present, SaoTypeldx[O][rx][ry] is set equal to sao_type idx_luma.
— Otherwise (sao_type_idx luma is not present), SaoTypeldx[0][rx][ry] is derived as follows:
— Ifsao_merge left flag isequal to 1, SaoTypeldx[O][rx][ry] is set equal to SaoTypeldx[0 J[rx — 1][ry].

— Otherwise, if sao merge up flag is equal to 1, SaoTypeldx[O0][rx][ry] 1is set equal to
SaoTypeldx[O J[rx J[ry —1].

— Otherwise, SaoTypeldx[0][rx][ry] is set equal to 0.

sao_type idx_chroma specifies the offset type for the chroma components. The values of
SaoTypeldx][cldx][rx][ry] are derived as follows for cldx equal to 1..2:

— Ifsao_type idx_chroma is present, SaoTypeldx[cldx][rx][ry] is set equal to sao_type idx chroma.
— Otherwise (sao_type idx chroma is not present), SaoTypeldx[cldx][rx][ry] is derived as follows:

— If sao merge left flag is equal to 1, SaoTypeldx[cldx][rx][ry] is set equal to
SaoTypeldx[cldx [[rx —1][ry].

— Otherwise, if sao merge up flag is equal to 1, SaoTypeldx[cldx][rx][ry] is set equal to
SaoTypeldx[cldx [[rx [[ry—11].

— Otherwise, SaoTypeldx[cldx][rx][ry] is set equal to O.

Table 7-8 — Specification of the SAO type

SaoTypeldx| cldx][rx][ry] | SAO type (informative)
0 Not applied
1 Band offset
2 Edge offset

sao_offset_abs[cldx][rx][ry][1] specifies the offset value of i-th category for the coding tree block at the location
(rx, ry) for the colour component cldx.

When sao_offset_abs[cldx][rx][ry][i] is not present, it is inferred as follows:

— If sao merge left flag is equal to 1, sao offset abs[cldx]J[rx][ry][i] is inferred to be equal to
sao_offset abs[cldx J[rx—1][ry][1].

— Otherwise, if sao_merge up_flag is equal to 1, sao offset abs[cldx |[[rx J[ry][i] is inferred to be equal to
sao_offset abs[cldx J[rx [[ry—1][1].

— Otherwise, sao_offset_abs[cldx][rx][ry][i] is inferred to be equal to 0.

sao_offset_sign[cldx][rx][ry][i] specifies the sign of the offset value of i-th category for the coding tree block at
the location (rx, ry) for the colour component cldx.

When sao_offset_sign[cldx][rx][ry][1] is not present, it is inferred as follows:

— If sao_merge left flag is equal to 1, sao offset sign[cldx J[rx][ry][i] is inferred to be equal to
sao_offset sign[cldx [[rx—1][ry][1].

Otherwise, if sao _merge up flag is equal to 1, sao offset sign[cldx J[rx]J[ry][i] is inferred to be equal to
sao_offset sign[cldx [[rx J[ry—1][1].

Otherwise, if SaoTypeldx[cldx][rx][ry] is equal to 2, the following applies:

— IfiisequaltoOor 1, sao offset sign[cldx][rx][ry][i] is inferred to be equal 0.

— Otherwise (i is equal to 2 or 3), sao_offset sign[cIdx][rx][ry][i] is inferred to be equal 1.
— Otherwise, sao_offset_sign[cldx |[rx][ry][1] is inferred to be equal 0.

The variable bitDepth is derived as follows:

— Ifcldx is equal to 0, bitDepth is set equal to BitDepthy.

— Otherwise (cldx is equal to 1 or 2), bitDepth is set equal to BitDepthc.

Rec. ITU-T H.265 (04/2013) 85

The list SaoOffsetVal[cldx][rx][ry][1] for i ranging from O to 4, inclusive, is derived as follows:
SaoOffsetVal[cldx [[rx][ry][0]=0
for(1=0;1<4;i++)
SaoOffsetVal[cldx [[rx J[ry J[i+1]=(1—-2 * sao_offset sign[cldx [[rx [[ry][i])* (7-58)
sao_offset abs[cldx J[rx][ry][1] << (' bitDepth — Min(bitDepth, 10))

sao_band_position[cldx][rx |[[ry] specifies the displacement of the band offset of the sample range when
SaoTypeldx[cldx][rx][ry] is equal to 1.

When sao_band_position[cldx][rx][ry] is not present, it is inferred as follows:

— If sao merge left flag is equal to 1, sao band position[cldx [[rx J[ry] is inferred to be equal to
sao_band position[cldx J[rx—1][ry].

— Otherwise, if sao_merge up flag is equal to 1, sao_band position[cldx][rx][ry] is inferred to be equal to
sao_band position[cldx J[rx [[ry—1].

— Otherwise, sao_band_position[cldx][rx][ry] is inferred to be equal to 0.

sao_eo_class luma specifies the edge offset class for the luma component. The array SaoEoClass[cldx][rx][ry]
specifies the offset type as specified in Table 7-9 for the coding tree block at the location (rx,ry) for the colour
component cldx. The value of SaoEoClass[0][rx][ry] is derived as follows:

— Ifsao_eo class_luma is present, SaoEoClass[0][rx][ry] is set equal to sao_eo_class_luma.
— Otherwise (sao_eo_class_luma is not present), SaoEoClass[0][rx][ry] is derived as follows:
— Ifsao_merge left flagis equal to 1, SaoEoClass[0][rx][ry] is set equal to SaoEoClass[0 J[rx — 1][ry].

— Otherwise, if sao merge up flag is equal to 1, SaoEoClass[0][rx][ry] 1is set equal to
SaoEoClass[0 [[rx J[ry — 1].

— Otherwise, SaoEoClass[0][rx][ry] is set equal to 0.

sao_eo_class chroma specifies the edge offset class for the chroma components. The values of
SaoEoClass[cldx][rx][ry] are derived as follows for cldx equal to 1..2:

— Ifsao_eo class _chroma is present, SaoEoClass[cldx][rx][ry] is set equal to sao_eo_class_chroma.
— Otherwise (sao_eo_class_chroma is not present), SaoEoClass[cldx][rx][ry] is derived as follows:

— If sao merge left flag is equal to 1, SaoEoClass[cldx][rx][ry] is set equal to
SaoEoClass[cldx J[[rx—1][ry].

— Otherwise, if sao merge up flag is equal to 1, SaoEoClass[cldx J[rx][ry] is set equal to
SaoEoClass[cldx J[rx J[ry — 1].

— Otherwise, SaoEoClass[cldx][rx][ry] is set equal to 0.

Table 7-9 — Specification of the SAO edge offset class

SaoEoClass| cldx |[rx][ry] SAO edge offset class (informative)
0 1D 0-degree edge offset
1 1D 90-degree edge offset
2 1D 135-degree edge offset
3 1D 45-degree edge offset

7.4.9.4 Coding quadtree semantics

split_cu_flag[x0][yO] specifies whether a coding unit is split into coding units with half horizontal and vertical size.
The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block
relative to the top-left luma sample of the picture.

When split_cu_flag[x0][y0] is not present, the following applies:
— Iflog2CbSize is greater than MinCbLog2SizeY, the value of split cu_flag[x0][y0] is inferred to be equal to 1.

86 Rec. ITU-T H.265 (04/2013)

— Otherwise (log2CbSize is equal to MinCbLog2SizeY), the value of split_cu flag[x0][yO] is inferred to be equal
to 0.

The array CtDepth[x][y] specifies the coding tree depth for a luma coding block covering the location (x, y). When
split_cu_flag[x0][yO] is equal to 0, CtDepth[x][y] is inferred to be equal to cqtDepth for x = x0..x0 +nCbS — 1 and
y =y0..y0 + nCbS — 1.

7.4.9.5 Coding unit semantics

cu_transquant_bypass_flag equal to 1 specifies that the scaling and transform process as specified in clause 8.6 and
the in-loop filter process as specified in clause 8.7 are bypassed. When cu_transquant bypass_flag is not present, it is
inferred to be equal to 0.

cu_skip_flag[x0][yO] equal to 1 specifies that for the current coding unit, when decoding a P or B slice, no more
syntax elements except the merging candidate index merge idx[x0][yO] are parsed after cu_skip flag[x0][yO].
cu_skip flag[x0][yO] equal to O specifies that the coding unit is not skipped. The array indices x0, y0 specify the
location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the
picture.

When cu_skip flag[x0][yO] is not present, it is inferred to be equal to O.

pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction mode. pred mode flag
equal to 1 specifies that the current coding unit is coded in intra prediction mode. The variable CuPredMode[x][y] is
derived as follows for x = x0..x0 + nCbS — 1 and y = y0..y0 + nCbS — 1:

— Ifpred mode flag is equal to 0, CuPredMode[x][y] is set equal to MODE INTER.
— Otherwise (pred_mode flag is equal to 1), CuPredMode[x][y] is set equal to MODE_INTRA.

When pred_mode_flag is not present, the variable CuPredMode[x][y] is derived as follows for x = x0..x0 + nCbS — 1
and y = y0..y0 + nCbS — 1:

— Ifslice type is equal to I, CuPredMode[x][y] is inferred to be equal to MODE INTRA.

— Otherwise (slice type is equal to P or B), when cu skip flag[x0][yO] is equal to 1, CuPredMode[x][y] is
inferred to be equal to MODE SKIP.

part_mode specifies partitioning mode of the current coding unit. The semantics of part mode depend on
CuPredMode[x0][yO]. The variables PartMode and IntraSplitFlag are derived from the value of part_ mode as defined
in Table 7-10.

The value of part mode is restricted as follows:
— If CuPredMode[x0][yO] is equal to MODE INTRA, part mode shall be equal to 0 or 1.
— Otherwise (CuPredMode[x0][y0] is equal to MODE_INTER), the following applies:

— If log2CbSize is greater than MinCbLog2SizeY and amp_enabled flag is equal to 1, part mode shall be in the
range of 0 to 2, inclusive, or in the range of 4 to 7, inclusive.

— Otherwise, if log2CbSize is greater than MinCbLog2SizeY and amp_enabled flag is equal to 0, or log2CbSize
is equal to 3, part_mode shall be in the range of 0 to 2, inclusive.

— Otherwise (log2CbSize is greater than 3 and less than or equal to MinCbLog2SizeY), the value of part mode
shall be in the range of 0 to 3, inclusive.

When part_mode is not present, the variables PartMode and IntraSplitFlag are derived as follows:
— PartMode is set equal to PART 2Nx2N.
— IntraSplitFlag is set equal to 0.

pem_flag[x0][y0] equal to 1 specifies that the pcm_sample() syntax structure is present and the transform_tree()
syntax structure is not present in the coding unit including the luma coding block at the location (x0,y0).
pem_flag[x0][yO] equal to 0 specifies that pcm_sample() syntax structure is not present. When pem_flag[x0][yO]
is not present, it is inferred to be equal to 0.

The value of pem flag[x0+i][y0+j] with i=1.nCbS—1, j=1.nCbS—1 is inferred to be equal to
pem_flag[x0][yO].

pem_alignment_zero_bit is a bit equal to 0.

Rec. ITU-T H.265 (04/2013) 87

Table 7-10 — Name association to prediction mode and partitioning type

CuPredMode[x0][y0 | part_mode IntraSplitFlag PartMode
0 0 PART 2Nx2N
MODE_INTRA " 1 AR N
0 0 PART 2Nx2N
! 0 PART 2NxN
2 0 PART Nx2N
MODE_INTER 3 0 PART NxN
) 4 0 PART 2NxnU
> 0 PART 2NxnD
6 0 PART nLx2N
7 0 PART nRx2N

The syntax elements prev_intra_luma_pred flag[x0+i][y0+j], mpm_idx[x0+1][y0+j] and
rem_intra_luma_pred_mode[x0 + i][yO +j] specify the intra prediction mode for luma samples. The array indices
x0 + 1, yO + j specify the location (x0 + 1, y0 + j) of the top-left luma sample of the considered prediction block relative
to the top-left luma sample of the picture. When prev_intra luma pred flag[x0+1][y0 +j] is equal to 1, the intra
prediction mode is inferred from a neighbouring intra-predicted prediction unit according to clause 8.4.2.

intra_chroma_pred_mode[x0][yO] specifies the intra prediction mode for chroma samples. The array indices x0, y0
specify the location (x0, y0) of the top-left luma sample of the considered prediction block relative to the top-left luma
sample of the picture.

rqt_root_cbf equal to 1 specifies that the transform_tree() syntax structure is present for the current coding unit.
rqt_root_cbf equal to 0 specifies that the transform_tree() syntax structure is not present for the current coding unit.

When rqt_root_cbf is not present, its value is inferred to be equal to 1.

7.4.9.6 Prediction unit semantics

mvp_l0_flag[x0][yO] specifies the motion vector predictor index of list 0 where x0, y0 specify the location (x0, y0)
of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.

When mvp_10_flag[x0][yO] is not present, it is inferred to be equal to 0.

mvp_l1_flag[x0][yO] has the same semantics as mvp 10 flag, with 10 and list 0 replaced by 11 and list 1,
respectively.

merge_flag[x0][yO] specifies whether the inter prediction parameters for the current prediction unit are inferred from
a neighbouring inter-predicted partition. The array indices x0, y0 specify the location (x0, y0) of the top-left luma
sample of the considered prediction block relative to the top-left luma sample of the picture.

When merge flag[x0][yO0] is not present, it is inferred as follows:
— If CuPredMode[x0][yO] is equal to MODE_SKIP, merge flag[x0][y0] is inferred to be equal to 1.
— Otherwise, merge flag[x0][y0] is inferred to be equal to 0.

merge_idx[x0][yO] specifies the merging candidate index of the merging candidate list where x0, yO specify the
location (x0, y0) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of
the picture.

When merge idx[x0][yO] is not present, it is inferred to be equal to 0.

inter_pred_idc[x0][yO] specifies whether list0, list1, or bi-prediction is used for the current prediction unit according
to Table 7-11. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered
prediction block relative to the top-left luma sample of the picture.

88 Rec. ITU-T H.265 (04/2013)

Table 7-11 — Name association to inter prediction mode

inter_pred_idc Name of inter pred idc

(nPbW +nPbH) != 12 |(nPbW +nPbH) == 12

0 PRED L0 PRED L0
1 PRED L1 PRED L1
2 PRED BI na

When inter pred idc[x0][yO] is not present, it is inferred to be equal to PRED_L0.

ref_idx_10[x0][yO] specifies the list 0 reference picture index for the current prediction unit. The array indices x0, y0
specify the location (x0, y0) of the top-left luma sample of the considered prediction block relative to the top-left luma
sample of the picture.

When ref idx_10[x0][yO] is not present it is inferred to be equal to 0.

ref_idx 11 x0][yO] has the same semantics as ref idx 10, with 10 and list O replaced by 11 and list 1, respectively.

7.4.9.7 PCM sample semantics

pem_sample lumal i] represents a coded luma sample value in the raster scan within the coding unit. The number of
bits used to represent each of these samples is PcmBitDepthy.

pem_sample_chromal i | represents a coded chroma sample value in the raster scan within the coding unit. The first
half of the values represent coded Cb samples and the remaining half of the values represent coded Cr samples. The
number of bits used to represent each of these samples is PemBitDepthc.

7.4.9.8 Transform tree semantics

split_transform_flag[x0][yO][trafoDepth] specifies whether a block is split into four blocks with half horizontal
and half vertical size for the purpose of transform coding. The array indices x0, y0 specify the location (x0, y0) of the
top-left luma sample of the considered block relative to the top-left luma sample of the picture. The array index
trafoDepth specifies the current subdivision level of a coding block into blocks for the purpose of transform coding.
trafoDepth is equal to 0 for blocks that correspond to coding blocks.

The variable interSplitFlag is derived as follows:

— If max_transform hierarchy depth inter is equal to 0 and CuPredMode[x0][yO0] is equal to MODE INTER and
PartMode is not equal to PART 2Nx2N and trafoDepth is equal to 0, interSplitFlag is set equal to 1.

— Otherwise, interSplitFlag is set equal to 0.
When split_transform_flag[x0][yO][trafoDepth] is not present, it is inferred as follows:

— If one or more of the following conditions are true, the value of split transform_flag[x0][yO][trafoDepth] is
inferred to be equal to 1:

— log2TrafoSize is greater than Log2MaxTrafoSize
— IntraSplitFlag is equal to 1 and trafoDepth is equal to 0
— interSplitFlag is equal to 1
— Otherwise, the value of split_transform_flag[x0][yO][trafoDepth] is inferred to be equal to 0.

cbf luma[x0][yO][trafoDepth] equal to 1 specifies that the luma transform block contains one or more transform
coefficient levels not equal to 0. The array indices x0, y0 specify the location (X0, yO) of the top-left luma sample of
the considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies
the current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is equal to 0
for blocks that correspond to coding blocks.

When cbf luma[x0][yO][trafoDepth] is not present, it is inferred to be equal to 1.

cbf _cb[x0][yO][trafoDepth] equal to 1 specifies that the Cb transform block contains one or more transform
coefficient levels not equal to 0. The array indices x0, yO specify the top-left location (%0, y0) of the considered
transform unit. The array index trafoDepth specifies the current subdivision level of a coding block into blocks for the
purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks.

Rec. ITU-T H.265 (04/2013) 89

When cbf cb[x0][yO][trafoDepth] is not present, the value of cbf cb[x0][yO][trafoDepth] is inferred as follows:

— If trafoDepth is greater than 0 and log2TrafoSize is equal to 2, cbf cb[x0][yO][trafoDepth] is inferred to be
equal to cbf cb[xBase][yBase][trafoDepth — 1]

— Otherwise, cbf cb[x0][yO][trafoDepth] is inferred to be equal to 0.

cbf _cr[x0][yO][trafoDepth] equal to 1 specifies that the Cr transform block contains one or more transform
coefficient levels not equal to 0. The array indices x0, y0 specify the top-left location (x0, y0) of the considered
transform unit. The array index trafoDepth specifies the current subdivision level of a coding block into blocks for the
purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks.

When cbf _cr[x0][yO][trafoDepth] is not present, the value of cbf cr[x0][yO][trafoDepth] is inferred as follows:

— If trafoDepth is greater than 0 and log2TrafoSize is equal to 2, cbf cr[x0][yO][trafoDepth] is inferred to be
equal to cbf cr[xBase][yBase][trafoDepth — 1]

— Otherwise, cbf cr[x0][yO][trafoDepth] is inferred to be equal to 0.

7.4.9.9 Motion vector difference semantics

abs_mvd_greater0_flag| compldx | specifies whether the absolute value of a motion vector component difference is
greater than 0.

abs_mvd_greaterl_flag| compldx | specifies whether the absolute value of a motion vector component difference is
greater than 1.

When abs_mvd_greaterl flag[compldx] is not present, it is inferred to be equal to 0.

abs_mvd_minus2[compldx | plus 2 specifies the absolute value of a motion vector component difference.
When abs mvd minus2[compldx] is not present, it is inferred to be equal to —1.

mvd_sign_flag| compldx | specifies the sign of a motion vector component difference as follows:

— If mvd sign_flag[compldx] is equal to 0, the corresponding motion vector component difference has a positive
value.

— Otherwise (mvd_sign_flag[compldx] is equal to 1), the corresponding motion vector component difference has a
negative value.

When mvd sign_flag[compldx] is not present, it is inferred to be equal to 0.
The motion vector difference IMvd[compldx | for compldx = 0..1 is derived as follows:

IMvd[compldx] =abs_mvd _greater0_flag[compldx] *
(abs_mvd minus2[compldx]+2) * (1 —2 * mvd_sign flag] compldx]) (7-59)

The variable MvdLX[x0][yO][compldx], with X being 0 or 1, specifies the difference between a list X vector
component to be used and its prediction. The value of MvdLX[x0][y0][compldx] shall be in the range of —2"
to 2> — 1, inclusive. The array indices x0, y0 specify the location (x0,y0) of the top-left luma sample of the
considered prediction block relative to the top-left luma sample of the picture. The horizontal motion vector component
difference is assigned compldx = 0 and the vertical motion vector component is assigned compldx = 1.

— IfrefList is equal to 0, MvdLO[x0][yO][compldx] is set equal to IMvd[compldx] for compldx = 0..1.
— Otherwise (refList is equal to 1), MvdL1[x0][y0][compldx] is set equal to IMvd[compldx] for compldx = 0..1.

7.4.9.10 Transform unit semantics

The transform coefficient levels are represented by the arrays TransCoeffLevel[x0][yO][cldx][xC][yC], which are
either specified in clause 7.3.8.11 or inferred as follows. The array indices x0, y0 specify the location (x0, y0) of the
top-left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array
index cldx specifies an indicator for the colour component; it is equal to 0 for Y, 1 for Cb, and 2 for Cr. The array
indices xC and yC specify the transform coefficient location (xC, yC) within the current transform block. When the
value of TransCoeffLevel[x0][yO][cIdx][xC][yC] is not specified in clause 7.3.8.11, it is inferred to be equal to 0.

cu_qp_delta_abs specifies the absolute value of the difference CuQpDeltaVal between the luma quantization
parameter of the current coding unit and its prediction.

cu_qp_delta_sign_flag specifies the sign of CuQpDeltaVal as follows:
— Ifcu_gp delta_sign flag is equal to 0, the corresponding CuQpDeltaVal has a positive value.

90 Rec. ITU-T H.265 (04/2013)

— Otherwise (cu_gp_delta_sign flag is equal to 1), the corresponding CuQpDeltaVal has a negative value.

When cu_qp_delta_sign flag is not present, it is inferred to be equal to 0.

When cu_qp_delta_abs is present, the variables IsCuQpDeltaCoded and CuQpDeltaVal are derived as follows:
IsCuQpDeltaCoded = 1 (7-60)
CuQpDeltaVal = cu_qp_delta _abs * (1 —2 * cu_qp_delta_sign_flag) (7-61)

The value of CuQpDeltaVal shall be in the range of —(26 + QpBdOffsety / 2) to +(25 + QpBdOffsety / 2), inclusive.

7.4.9.11 Residual coding semantics

For intra prediction, different scanning orders are used. The variable scanldx specifies which scan order is used where
scanldx equal to 0 specifies an up-right diagonal scan order, scanldx equal to 1 specifies a horizontal scan order, and
scanldx equal to 2 specifies a vertical scan order. The value of scanldx is derived as follows:

— If CuPredMode[x0][yO0] is equal to MODE INTRA and one or more of the following conditions are true:
— log2TrafoSize is equal to 2.
— log2TrafoSize is equal to 3 and cldx is equal to O.
predModelntra is derived as follows:
— Ifcldx is equal to 0, predModelntra is set equal to IntraPredModeY[x0][yO].
— Otherwise, predModelntra is set equal to IntraPredModeC.
scanldx is derived as follows:
— If predModelntra is in the range of 6 to 14, inclusive, scanldx is set equal to 2.
— Otherwise if predModelntra is in the range of 22 to 30, inclusive, scanldx is set equal to 1.
— Otherwise, scanldx is set equal to 0.
— Otherwise, scanldx is set equal to 0.

transform_skip_flag[x0][yO][cldx] specifies whether a transform is applied to the associated transform block or
not: The array indices x0, yO specify the location (x0, y0) of the top-left luma sample of the considered transform
block relative to the top-left luma sample of the picture. The array index cldx specifies an indicator for the colour
component; it is equal to 0 for luma, equal to 1 for Cb, and equal to 2 for Cr. transform_skip flag[x0][yO][cldx]
equal to 1 specifies that no transform is applied to the current transform block. transform_skip flag[x0][yO][cldx]
equal to 0 specifies that the decision whether transform is applied to the current transform block or not depends on other
syntax elements. When transform_skip flag[x0][yO][cIdx] is not present, it is inferred to be equal to O.

last_sig_coeff x_prefix specifies the prefix of the column position of the last significant coefficient in scanning order
within a transform block. The values of last sig coeff x prefix shall be in the range of 0 to
(log2TrafoSize << 1) — 1, inclusive.

last_sig_coeff y_prefix specifies the prefix of the row position of the last significant coefficient in scanning order
within a transform block. The values of last sig coeff y prefix shall be in the range of 0 to
(log2TrafoSize << 1) — 1, inclusive.

last_sig coeff x_suffix specifies the suffix of the column position of the last significant coefficient in scanning order
within a transform block. The values of last sig coeff x suffix shall be in the range of 0 to
(1 << ((last_sig coeff x prefix >> 1)—1))— 1, inclusive.

The column position of the last significant coefficient in scanning order within a transform block LastSignificantCoeffX
is derived as follows:

— Iflast_sig_coeff x suffix is not present, the following applies:
LastSignificantCoeffX = last_sig_coeff x_prefix (7-62)
— Otherwise (last_sig coeff x suffix is present), the following applies:

LastSignificantCoeffX = (1 << ((last_sig _coeff x prefix >> 1)—-1))* (7-63)
(2 + (last_sig coeff x prefix & 1)) + last sig _coeff x_ suffix

Rec. ITU-T H.265 (04/2013) 91

last_sig coeff y suffix specifies the suffix of the row position of the last significant coefficient in scanning order
within a transform block. The values of last sig coeff y suffix shall be in the range of 0 to
(1 << ((last_sig coeff y prefix >> 1)—1))— 1, inclusive.

The row position of the last significant coefficient in scanning order within a transform block LastSignificantCoeffY is
derived as follows:

— Iflast sig_coeff y suffix is not present, the following applies:
LastSignificantCoeffY = last sig coeff y prefix (7-64)
— Otherwise (last_sig_coeff y suffix is present), the following applies:

LastSignificantCoeffY = (1 << ((last_sig_coeff y prefix >> 1)—1))* (7-65)
(2 + (last_sig_coeff y prefix & 1))+ last sig coeff y suffix

When scanldx is equal to 2, the coordinates are swapped as follows:

(LastSignificantCoeffX, LastSignificantCoeffY) =
Swap(LastSignificantCoeftX, LastSignificantCoeffY) (7-66)

coded_sub_block flag[xS][yS | specifies the following for the sub-block at location (xS, yS) within the current
transform block, where a sub-block is a (4x4) array of 16 transform coefficient levels:

— If coded sub block flag[xS][yS] is equal to 0, the 16 transform coefficient levels of the sub-block at location
(xS, yS) are inferred to be equal to 0.

— Otherwise (coded _sub_block flag[xS][yS] is equal to 1), the following applies:

— If(xS,yS)isequal to (0,0) and (LastSignificantCoeffX, LastSignificantCoeffY) is not equal to (0, 0), at
least one of the 16 sig_coeff flag syntax elements is present for the sub-block at location (xS, yS) .

— Otherwise, at least one of the 16 transform coefficient levels of the sub-block at location (xS, yS) has a non
zero value.

When coded_sub_block flag[xS][yS] is not present, it is inferred as follows:

— If one or more of the following conditions are true, coded_sub_block flag[xS][yS] is inferred to be equal to 1:
— (xS,yS)isequalto(0,0)
— (xS, yS)is equal to (LastSignificantCoeffX >> 2, LastSignificantCoeftY >> 2)

— Otherwise, coded_sub_block flag[xS][yS] is inferred to be equal to 0.

sig_coeff_flag|[xC][yC] specifies for the transform coefficient location (xC, yC) within the current transform block
whether the corresponding transform coefficient level at the location (xC, yC) is non-zero as follows:

— Ifsig_coeff flag[xC][yC] is equal to 0, the transform coefficient level at the location (xC, yC) is set equal to 0.

— Otherwise (sig_coeff flag[xC][yC] is equal to 1), the transform coefficient level at the location (xC, yC) has a
non-zero value.

When sig_coeff flag[xC][yC] is not present, it is inferred as follows:

— If(xC, yC) is the last significant location (LastSignificantCoeffX, LastSignificantCoeffY) in scan order or all of
the following conditions are true, sig_coeff flag[xC][yC] is inferred to be equal to 1:

- (xC&3,yC&3)isequalto(0,0)
— inferSbDcSigCoeffFlag is equal to 1
— coded sub block flag[xS][yS]is equal to 1
— Otherwise, sig_coeff flag[xC][yC] is inferred to be equal to 0.

coeff_abs_level greaterl flag| n | specifies for the scanning position n whether there are transform coefficient levels
greater than 1.

When coeff abs_level greater]l flag[n] is not present, it is inferred to be equal to 0.

coeff _abs_level greater2 flag| n | specifies for the scanning position n whether there are transform coefficient levels
greater than 2.

When coeff abs_level greater2 flag[n] is not present, it is inferred to be equal to 0.

92 Rec. ITU-T H.265 (04/2013)

coeff _sign_flag[n | specifies the sign of a transform coefficient level for the scanning position n as follows:

— Ifcoeff sign flag[n] is equal to 0, the corresponding transform coefficient level has a positive value.

— Otherwise (coeff sign flag[n] is equal to 1), the corresponding transform coefficient level has a negative value.
When coeff sign flag[n] is not present, it is inferred to be equal to 0.

coeff_abs_level remaining| n] is the remaining absolute value of a transform coefficient level that is coded with
Golomb-Rice code at the scanning position n. When coeff abs_level remaining[n] is not present, it is inferred to be
equal to 0.

It is a requirement of bitstream conformance that the value of coeff abs level remaining[n] shall be constrained such
that the corresponding value of TransCoeffLevel[x0][yO][cldx][xC][yC] is in the range of —32768 to 32767,
inclusive.

8 Decoding process

8.1 General decoding process
Input to this process is a bitstream. Output of this process is a list of decoded pictures.

The layer identifier list TargetDecLayerldList, which specifies the list of nuh layer id values, in increasing order of
nuh_layer id values, of the NAL units to be decoded, is specified as follows:

— If some external means, not specified in this Specification, is available to set TargetDecLayerldList,
TargetDecLayerldList is set by the external means.

— Otherwise, if the decoding process is invoked in a bitstream conformance test as specified in clause C.1,
TargetDecLayerldList is set as specified in clause C.1.

— Otherwise, TargetDecLayerlIdList contains only one nuh layer id value that is equal to 0.
The variable HighestTid, which identifies the highest temporal sub-layer to be decoded, is specified as follows:

— If some external means, not specified in this Specification, is available to set HighestTid, HighestTid is set by the
external means.

— Otherwise, if the decoding process is invoked in a bitstream conformance test as specified in clause C.1,
HighestTid is set as specified in clause C.1.

— Otherwise, HighestTid is set equal to sps_max_sub_layers minus].

The sub-bitstream extraction process as specified in clause 10 is applied with the bitstream, HighestTid, and
TargetDecLayerldList as inputs, and the output is assigned to a bitstream referred to as BitstreamToDecode.

The decoding processes specified in the remainder of this clause apply to each coded picture, referred to as the current
picture and denoted by the variable CurrPic, in BitstreamToDecode.

Depending on the value of chroma format idc, the number of sample arrays of the current picture is as follows:
— Ifchroma format idc is equal to 0, the current picture consists of 1 sample array S; .
— Otherwise (chroma_format idc is not equal to 0), the current picture consists of 3 sample arrays S;, Scp, Sc;-

The decoding process for the current picture takes as inputs the syntax elements and upper-case variables from clause 7.
When interpreting the semantics of each syntax element in each NAL unit, the term "the bitstream" (or part thereof, e.g.,
a CVS of the bitstream) refers to BitstreamToDecode (or part thereof).

The decoding process is specified such that all decoders will produce numerically identical cropped decoded pictures.
Any decoding process that produces identical cropped decoded pictures to those produced by the process described
herein (with the correct output order or output timing, as specified) conforms to the decoding process requirements of
this Specification.

When the current picture is a BLA picture that has nal unit type equal to BLA W _LP or is a CRA picture, the
following applies:

— If some external means not specified in this Specification is available to set the variable UseAltCpbParamsFlag to
a value, UseAltCpbParamsFlag is set equal to the value provided by the external means.

— Otherwise, the value of UseAltCpbParamsFlag is set equal to 0.

Rec. ITU-T H.265 (04/2013) 93

When the current picture is an IRAP picture, the following applies:

If the current picture is an IDR picture, a BLA picture, the first picture in the bitstream in decoding order, or the
first picture that follows an end of sequence NAL unit in decoding order, the variable NoRaslOutputFlag is set
equal to 1.

Otherwise, if some external means not specified in this Specification is available to set the wvariable
HandleCraAsBlaFlag to a value for the current picture, the variable HandleCraAsBlaFlag is set equal to the value
provided by the external means and the variable NoRaslOutputFlag is set equal to HandleCraAsBlaFlag.

Otherwise, the variable HandleCraAsBlaFlag is set equal to 0 and the variable NoRaslOutputFlag is set equal to 0.

Depending on the value of separate_colour plane flag, the decoding process is structured as follows:

If separate_colour plane flag is equal to 0, the decoding process is invoked a single time with the current picture
being the output.

Otherwise (separate colour plane flag is equal to 1), the decoding process is invoked three times. Inputs to the
decoding process are all NAL units of the coded picture with identical value of colour plane id. The decoding
process of NAL units with a particular value of colour plane id is specified as if only a CVS with monochrome
colour format with that particular value of colour plane id would be present in the bitstream. The output of each
of the three decoding processes is assigned to one of the 3 sample arrays of the current picture, with the NAL units
with colour plane id equal to 0, 1, and 2 being assigned to S;, Sy, and Sc;, respectively.

NOTE — The variable ChromaArrayType is derived as equal to 0 when separate colour plane flag is equal to 1 and

chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations identical

to that of monochrome pictures (when chroma_format_idc is equal to 0).

The decoding process operates as follows for the current picture CurrPic:

8.2

1. The decoding of NAL units is specified in clause 8.2.

2. The processes in clause 8.3 specify the following decoding processes using syntax elements in the slice
segment layer and above:

— Variables and functions relating to picture order count are derived in clause 8.3.1. This needs to be
invoked only for the first slice segment of a picture.

— The decoding process for RPS in clause 8.3.2 is invoked, wherein reference pictures may be marked as
"unused for reference" or "used for long-term reference". This needs to be invoked only for the first slice
segment of a picture.

— When the current picture is a BLA picture or is a CRA picture with NoRaslOutputFlag equal to 1, the
decoding process for generating unavailable reference pictures specified in clause 8.3.3 is invoked,
which needs to be invoked only for the first slice segment of a picture.

— PicOutputFlag is set as follows:

— If the current picture is a RASL picture and NoRaslOutputFlag of the associated IRAP picture is
equal to 1, PicOutputFlag is set equal to 0.

— Otherwise, PicOutputFlag is set equal to pic_output flag.

— At the beginning of the decoding process for each P or B slice, the decoding process for reference picture
lists construction specified in clause 8.3.4 is invoked for derivation of reference picture list O
(RefPicList0) and, when decoding a B slice, reference picture list 1 (RefPicListl).

3. The processes in clauses 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in all syntax
structure layers. It is a requirement of bitstream conformance that the coded slices of the picture shall contain
slice segment data for every coding tree unit of the picture, such that the division of the picture into slices, the
division of the slices into slice segments, and the division of the slice segments into coding tree units each
forms a partitioning of the picture.

4. After all slices of the current picture have been decoded, the decoded picture is marked as "used for short-term
reference".

NAL unit decoding process

Inputs to this process are NAL units of the access unit containing the current picture.

Outputs of this process are the parsed RBSP syntax structures encapsulated within the NAL units of the access unit
containing the current picture.

94

Rec. ITU-T H.265 (04/2013)

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then parses the
RBSP syntax structure.

8.3 Slice decoding process

8.3.1 Decoding process for picture order count
Output of this process is PicOrderCntVal, the picture order count of the current picture.

Picture order counts are used to identify pictures, for deriving motion parameters in merge mode and motion vector
prediction, and for decoder conformance checking (see clause C.5).

Each coded picture is associated with a picture order count variable, denoted as PicOrderCntVal.

When the current picture is not an IRAP picture with NoRaslOutputFlag equal to 1, the variables prevPicOrderCntLsb
and prevPicOrderCntMsb are derived as follows:

— Let prevTidOPic be the previous picture in decoding order that has Temporalld equal to 0 and that is not a RASL
picture, a RADL picture, or a sub-layer non-reference picture.

— The variable prevPicOrderCntLsb is set equal to slice pic_order cnt Isb of prevTidOPic.

— The variable prevPicOrderCntMsb is set equal to PicOrderCntMsb of prevTidOPic.

The variable PicOrderCntMsb of the current picture is derived as follows:

— If'the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, PicOrderCntMsb is set equal to 0.
— Otherwise, PicOrderCntMsb is derived as follows:

if((slice_pic_order cnt Isb < prevPicOrderCntLsb) &&
((prevPicOrderCntLsb — slice_pic_order cnt Isb) >= (MaxPicOrderCntLsb/2)))
PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-1)
else if((slice_pic_order cnt Isb > prevPicOrderCntLsb) &&
((slice_pic_order ent Isb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb /2)))
PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntLsb
else
PicOrderCntMsb = prevPicOrderCntMsb

PicOrderCntVal is derived as follows:

PicOrderCntVal = PicOrderCntMsb + slice_pic_order cnt Isb (8-2)

NOTE 1 — All IDR pictures will have PicOrderCntVal equal to 0 since slice pic_order cnt Isb is inferred to be 0 for IDR
pictures and prevPicOrderCntLsb and prevPicOrderCntMsb are both set equal to 0.

The value of PicOrderCntVal shall be in the range of —2*' to 2*' — 1, inclusive. In one CVS, the PicOrderCntVal values
for any two coded pictures shall not be the same.

The function PicOrderCnt(picX) is specified as follows:

PicOrderCnt(picX) = PicOrderCntVal of the picture picX (8-3)
The function DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) — PicOrderCnt(picB) (8-4)

The bitstream shall not contain data that result in values of DiffPicOrderCnt(picA, picB) used in the decoding process
that are not in the range of —2" to 2'° — 1, inclusive.
NOTE 2 — Let X be the current picture and Y and Z be two other pictures in the same CVS, Y and Z are considered to be in the
same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.

8.3.2 Decoding process for reference picture set

This process is invoked once per picture, after decoding of a slice header but prior to the decoding of any coding unit
and prior to the decoding process for reference picture list construction for the slice as specified in clause 8.3.3. This
process may result in one or more reference pictures in the DPB being marked as "unused for reference" or "used for
long-term reference".

NOTE 1 — The RPS is an absolute description of the reference pictures used in the decoding process of the current and future
coded pictures. The RPS signalling is explicit in the sense that all reference pictures included in the RPS are listed explicitly.

Rec. ITU-T H.265 (04/2013) 95

"non

A decoded picture in the DPB can be marked as "unused for reference", "used for short-term reference", or "used for
long-term reference", but only one among these three at any given moment during the operation of the decoding
process. Assigning one of these markings to a picture implicitly removes another of these markings when applicable.
When a picture is referred to as being marked as "used for reference", this collectively refers to the picture being
marked as "used for short-term reference" or "used for long-term reference" (but not both).

When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, all reference pictures currently in the
DPB (if any) are marked as "unused for reference".

Short-term reference pictures are identified by their PicOrderCntVal values. Long-term reference pictures are identified
either by their PicOrderCntVal values or their slice_pic_order cnt_Isb values.

Five lists of picture order count values are constructed to derive the RPS. These five lists are PocStCurrBefore,
PocStCurrAfter, PocStFoll, PocLtCurr, and PocLtFoll, with NumPocStCurrBefore, NumPocStCurrAfter,
NumPocStFoll, NumPocLtCurr, and NumPocLtFoll number of elements, respectively. The five lists and the five
variables are derived as follows:

— If the current picture is an IDR picture, PocStCurrBefore, PocStCurrAfter, PocStFoll, PocLtCurr, and PocLtFoll are
all set to be empty, and NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, NumPocLtCurr, and
NumPocLtFoll are all set equal to 0.

— Otherwise, the following applies:

for(i=0,j=0, k=0; i < NumNegativePics[CurrRpsldx] ; i++)
if(UsedByCurrPicSO[CurrRpsldx J[1])
PocStCurrBefore[j++] = PicOrderCntVal + DeltaPocSO[CurrRpsldx][i]
else
PocStFoll[k++] = PicOrderCntVal + DeltaPocSO[CurrRpsIdx][i]
NumPocStCurrBefore = j

for(1=0,j=0;1<NumPositivePics[CurrRpsldx [; i++)
if(UsedByCurrPicS1[CurrRpsldx J[1])
PocStCurrAfter[j++] = PicOrderCntVal + DeltaPocS1[CurrRpsldx][i]
else
PocStFoll[k++] = PicOrderCntVal + DeltaPocS1[CurrRpsIdx][i]
NumPocStCurrAfter =
NumPocStFoll =k (8-5)
for(i=0,j=0,k=0;i<num_long term_sps + num_long term pics; i++) {
pocLt = PocLsbLt[i]
if(delta_poc_msb_present flag[i])
pocLt += PicOrderCntVal — DeltaPocMsbCycleLt[i | * MaxPicOrderCntLsb — slice pic_order cnt Isb
if(UsedByCurrPicLt[1]) {
PocLtCurr] j] = pocLt
CurrDeltaPocMsbPresentFlag[j++] = delta_poc msb_present flag[i]
} else {
PocLtFoll[k] = pocLt
FollDeltaPocMsbPresentFlag[k++] = delta_poc msb present flag[i]
}

i
NumPocLtCurr =]

NumPocLtFoll =k

where PicOrderCntVal is the picture order count of the current picture as specified in clause 8.3.1.

NOTE 2 — A value of CurrRpsldx in the range of 0 to num_short term ref pic_sets — 1, inclusive, indicates that a candidate
short-term RPS from the active SPS is being used, where CurrRpsldx is the index of the candidate short-term RPS into the list of
candidate short-term RPSs signalled in the active SPS. CurrRpsldx equal to num_short _term_ref pic_sets indicates that the
short-term RPS of the current picture is directly signalled in the slice header.

For each i in the range of 0 to NumPocLtCurr — 1, inclusive, when CurrDeltaPocMsbPresentFlag[i] is equal to 1, it is a
requirement of bitstream conformance that the following conditions apply:

— There shall be no j in the range of 0 to NumPocStCurrBefore — 1, inclusive, for which PocLtCurr[i] is equal to
PocStCurrBefore] j].

— There shall be no j in the range of 0 to NumPocStCurrAfter — 1, inclusive, for which PocLtCurr[i] is equal to
PocStCurrAfter| j].

96 Rec. ITU-T H.265 (04/2013)

— There shall be no j in the range of 0 to NumPocStFoll — 1, inclusive, for which PocLtCurr[i] is equal to
PocStFoll[j].

— There shall be no j in the range of 0 to NumPocLtCurr — 1, inclusive, where j is not equal to i, for which
PocLtCurr] 1] is equal to PocLtCurr(j].

For each i in the range of 0 to NumPocLtFoll — 1, inclusive, when FollDeltaPocMsbPresentFlag[i] is equal to 1, it is a
requirement of bitstream conformance that the following conditions apply:

— There shall be no j in the range of 0 to NumPocStCurrBefore — 1, inclusive, for which PocLtFoll[i] is equal to
PocStCurrBefore] j].

— There shall be no j in the range of 0 to NumPocStCurrAfter — 1, inclusive, for which PocLtFoll[i] is equal to
PocStCurrAfter[j].

— There shall be no j in the range of 0 to NumPocStFoll — 1, inclusive, for which PocLtFoll[i] is equal to
PocStFoll[j].

— There shall be no j in the range of 0 to NumPocLtFoll — 1, inclusive, where j is not equal to i, for which
PocLtFoll[i] is equal to PocLtFoll[j].

— There shall be no j in the range of 0 to NumPocLtCurr — 1, inclusive, for which PocLtFoll[i] is equal to
PocLtCurt] j].

For each i in the range of 0 to NumPocLtCurr — 1, inclusive, when CurrDeltaPocMsbPresentFlag[i] is equal to 0, it is a
requirement of bitstream conformance that the following conditions apply:

— There shall be no j in the range of 0 to NumPocStCurrBefore — 1, inclusive, for which PocLtCurr[i] is equal to
(PocStCurrBefore[j | & (MaxPicOrderCntLsb — 1)).

— There shall be no j in the range of 0 to NumPocStCurrAfter — 1, inclusive, for which PocLtCurr[i] is equal to
(PocStCurrAfter[j] & (MaxPicOrderCntLsb — 1)).

— There shall be no j in the range of 0 to NumPocStFoll — 1, inclusive, for which PocLtCurr[i] is equal to
(PocStFoll[j] & (MaxPicOrderCntLsb — 1)).

— There shall be no j in the range of 0 to NumPocLtCurr — 1, inclusive, where j is not equal to i, for which
PocLtCurr] i] is equal to (PocLtCurr] j] & (MaxPicOrderCntLsb — 1)).

For each i in the range of 0 to NumPocLtFoll — 1, inclusive, when FollDeltaPocMsbPresentFlag[i] is equal to 0, it is a
requirement of bitstream conformance that the following conditions apply:

— There shall be no j in the range of 0 to NumPocStCurrBefore — 1, inclusive, for which PocLtFoll[i] is equal to
(PocStCurrBefore[j | & (MaxPicOrderCntLsb — 1)).

— There shall be no j in the range of 0 to NumPocStCurrAfter — 1, inclusive, for which PocLtFoll[i] is equal to
(PocStCurrAfter[j] & (MaxPicOrderCntLsb — 1)).

— There shall be no j in the range of 0 to NumPocStFoll — 1, inclusive, for which PocLtFoll[i] is equal to
(PocStFoll[j] & (MaxPicOrderCntLsb— 1)).

— There shall be no j in the range of 0 to NumPocLtFoll — 1, inclusive, where j is not equal to i, for which
PocLtFoll[i] is equal to (PocLtFoll[j] & (MaxPicOrderCntLsb — 1)).

— There shall be no j in the range of 0 to NumPocLtCurr — 1, inclusive, for which PocLtFoll[i] is equal to
(PocLtCurr] j] & (MaxPicOrderCntLsb — 1)).

The variable NumPocTotalCurr is derived as specified in clause 7.4.7.2. It is a requirement of bitstream conformance
that the following applies to the value of NumPocTotalCurr:

— Ifthe current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0.
— Otherwise, when the current picture contains a P or B slice, the value of NumPocTotalCurr shall not be equal to 0.

The RPS of the current picture consists of five RPS lists; RefPicSetStCurrBefore, RefPicSetStCurrAfter,
RefPicSetStFoll, RefPicSetLtCurr and RefPicSetLtFoll. RefPicSetStCurrBefore, RefPicSetStCurrAfter, and
RefPicSetStFoll are collectively referred to as the short-term RPS. RefPicSetLtCurr and RefPicSetLtFoll are
collectively referred to as the long-term RPS.
NOTE 3 — RefPicSetStCurrBefore, RefPicSetStCurrAfter, and RefPicSetLtCurr contain all reference pictures that may be used
for inter prediction of the current picture and one or more pictures that follow the current picture in decoding order.
RefPicSetStFoll and RefPicSetLtFoll consist of all reference pictures that are not used for inter prediction of the current picture
but may be used in inter prediction for one or more pictures that follow the current picture in decoding order.

Rec. ITU-T H.265 (04/2013) 97

The derivation process for the RPS and picture marking are performed according to the following ordered steps:
1. The following applies:

for(1= 0; i < NumPocLtCurr; i++)
if(!CurrDeltaPocMsbPresentFlag[i])
if(there is a reference picture picX in the DPB with slice_pic_order _cnt_lsb equal to PocLtCurr[i])
RefPicSetLtCurt[i | = picX
else
RefPicSetLtCurr| i] = "no reference picture"
else
if(there is a reference picture picX in the DPB with PicOrderCntVal equal to PocLtCurr[i])
RefPicSetLtCurr[i] = picX
else
RefPicSetLtCurr| i | = "no reference picture" (8-6)
for(1= 0; i <NumPocLtFoll; i++)
if(!FollDeltaPocMsbPresentFlag[i])
if(there is a reference picture picX in the DPB with slice pic_order cnt Isb equal to PocLtFoll[i])
RefPicSetLtFoll[i] = picX
else
RefPicSetLtFoll[i] = "no reference picture"
else
if(there is a reference picture picX in the DPB with PicOrderCntVal equal to PocLtFoll[i])
RefPicSetLtFoll[i] = picX
else
RefPicSetLtFoll[i] = "no reference picture"

2. All reference pictures that are included in RefPicSetLtCurr and RefPicSetLtFoll are marked as "used for long-
term reference".

3. The following applies:

for(1= 0; 1 < NumPocStCurrBefore; i++)
if(there is a short-term reference picture picX in the DPB
with PicOrderCntVal equal to PocStCurrBefore[i])
RefPicSetStCurrBefore[i | = picX
else
RefPicSetStCurrBefore[1] = "no reference picture"

for(1= 0; i < NumPocStCurrAfter; i++)
if(there is a short-term reference picture picX in the DPB
with PicOrderCntVal equal to PocStCurrAfter[i])
RefPicSetStCurrAfter[i | = picX
else
RefPicSetStCurrAfter[i] = "no reference picture” (8-7)

for(1= 0; 1 < NumPocStFoll; i++)
if(there is a short-term reference picture picX in the DPB
with PicOrderCntVal equal to PocStFoll[1])
RefPicSetStFoll[i | = picX
else
RefPicSetStFoll[i | = "no reference picture"

4. All reference pictures in the DPB that are not included in RefPicSetLtCurr, RefPicSetLtFoll,

RefPicSetStCurrBefore, RefPicSetStCurrA fter, or RefPicSetStFoll are marked as "unused for reference".

NOTE 4 — There may be one or more entries in the RPS lists that are equal to "no reference picture" because the corresponding
pictures are not present in the DPB. Entries in RefPicSetStFoll or RefPicSetLtFoll that are equal to "no reference picture" should
be ignored. An unintentional picture loss should be inferred for each entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or
RefPicSetLtCurr that is equal to "no reference picture".

NOTE 5 — A picture cannot be included in more than one of the five RPS lists.
It is a requirement of bitstream conformance that the RPS is restricted as follows:

— There shall be no entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr for which one or
more of the following are true:

— The entry is equal to "no reference picture".

98 Rec. ITU-T H.265 (04/2013)

— The entry is a sub-layer non-reference picture and has Temporalld equal to that of the current picture.
— The entry is a picture that has Temporalld greater than that of the current picture.

There shall be no entry in RefPicSetLtCurr or RefPicSetLtFoll for which the difference between the picture order
count value of the current picture and the picture order count value of the entry is greater than or equal to 2**.

When the current picture is a TSA picture, there shall be no picture included in the RPS with Temporalld greater
than or equal to the Temporalld of the current picture.

When the current picture is an STSA picture, there shall be no picture included in RefPicSetStCurrBefore,
RefPicSetStCurrAfter, or RefPicSetLtCurr that has Temporalld equal to that of the current picture.

When the current picture is a picture that follows, in decoding order, an STSA picture that has Temporalld equal to
that of the current picture, there shall be no picture that has Temporalld equal to that of the current picture included
in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr that precedes the STSA picture in decoding
order.

When the current picture is a CRA picture, there shall be no picture included in the RPS that precedes, in decoding
order, any preceding IRAP picture in decoding order (when present).

When the current picture is a trailing picture, there shall be no picture in RefPicSetStCurrBefore,
RefPicSetStCurrAfter, or RefPicSetLtCurr that was generated by the decoding process for generating unavailable
reference pictures as specified in clause 8.3.3.

When the current picture is a trailing picture, there shall be no picture in the RPS that precedes the associated IRAP
picture in output order or decoding order.

When the current picture is a RADL picture, there shall be no picture included in RefPicSetStCurrBefore,
RefPicSetStCurrAfter, or RefPicSetLtCurr that is any of the following:

— A RASL picture

— A picture that was generated by the decoding process for generating unavailable reference pictures as
specified in clause 8.3.3

— A picture that precedes the associated IRAP picture in decoding order
When sps_temporal id nesting_flag is equal to 1, the following applies:
— Let tIdA be the value of Temporalld of the current picture picA.

— Any picture picB with Temporalld equal to tIdB that is less than or equal to tIdA shall not be included in
RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetLtCurr of picA when there exists a picture
picC that has Temporalld less than tIdB, follows picB in decoding order, and precedes picA in decoding
order.

8.3.3 Decoding process for generating unavailable reference pictures

8.3.3.1 General decoding process for generating unavailable reference pictures

This process is invoked once per coded picture when the current picture is a BLA picture or is a CRA picture with
NoRaslOutputFlag equal to 1.

NOTE - This process is primarily specified only for the specification of syntax constraints for RASL pictures. The entire
specification of the decoding process for RASL pictures associated with an IRAP picture that has NoRaslOutputFlag equal to 1 is
included herein only for purposes of specifying constraints on the allowed syntax content of such RASL pictures. During the
decoding process, any RASL pictures associated with an IRAP picture that has NoRaslOutputFlag equal to 1 may be ignored, as
these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for
output. However, in HRD operations as specified in Annex C, RASL access units may need to be taken into consideration in
derivation of CPB arrival and removal times.

When this process is invoked, the following applies:

For each RefPicSetStFoll[i], with i in the range of 0 to NumPocStFoll — 1, inclusive, that is equal to "no reference
picture", a picture is generated as specified in clause 8.3.3.2, and the following applies:

— The value of PicOrderCntVal for the generated picture is set equal to PocStFoll[1].
— The value of PicOutputFlag for the generated picture is set equal to 0.
— The generated picture is marked as "used for short-term reference".

— RefPicSetStFoll[i] is set to be the generated reference picture.

Rec. ITU-T H.265 (04/2013) 99

— For each RefPicSetLtFoll[i], with i in the range of 0 to NumPocLtFoll — 1, inclusive, that is equal to "no reference
picture", a picture is generated as specified in clause 8.3.3.2, and the following applies:

— The value of PicOrderCntVal for the generated picture is set equal to PocLtFoll[i].

— The value of slice_pic_order cnt Isb for the generated picture is inferred to be equal to (PocLtFoll[i] &
(MaxPicOrderCntLsb — 1)).

— The value of PicOutputFlag for the generated picture is set equal to 0.
— The generated picture is marked as "used for long-term reference".

— RefPicSetLtFoll[i] is set to be the generated reference picture.

8.3.3.2 Generation of one unavailable picture

When this process is invoked, an unavailable picture is generated as follows:

— The value of each element in the sample array S; for the picture is set equal to 1 << (BitDepthy — 1).

— The value of each element in the sample arrays Sc, and S, for the picture is set equal to 1 << (BitDepthc — 1).

— The prediction mode CuPredMode[x][vy] is set equal to MODE_ INTRA for
x =0..pic_ width in luma samples — 1, y =0..pic_height in luma samples — 1.

8.3.4 Decoding process for reference picture lists construction
This process is invoked at the beginning of the decoding process for each P or B slice.

Reference pictures are addressed through reference indices as specified in clause 8.5.3.3.2. A reference index is an
index into a reference picture list. When decoding a P slice, there is a single reference picture list RefPicList0. When
decoding a B slice, there is a second independent reference picture list RefPicListl in addition to RefPicList0.

At the beginning of the decoding process for each slice, the reference picture lists RefPicListO0 and, for B slices,
RefPicListl] are derived as follows:

The variable NumRpsCurrTempList0 is set equal to Max(num_ref idx 10 active minusl + 1, NumPocTotalCurr) and
the list RefPicListTempO is constructed as follows:

rldx=0
while(rldx < NumRpsCurrTempList0) {
for(i=0; 1 < NumPocStCurrBefore && rldx < NumRpsCurrTempList0; rldx++, i++)
RefPicListTempO[rldx] = RefPicSetStCurrBefore[i]
for(i=0; i <NumPocStCurrAfter && rldx < NumRpsCurrTempListO; rldx++, i++) (8-8)
RefPicListTempO[rldx] = RefPicSetStCurrAfter| 1]
for(1=0; 1 <NumPocLtCurr && rldx < NumRpsCurrTempList0; rldx++, i++)
RefPicListTempO[rldx] = RefPicSetLtCurr] i]

}

The list RefPicList0 is constructed as follows:

for(rldx = 0; rldx <= num_ref idx 10 active minusl; rldx++) (8-9)
RefPicList0[rldx] =ref pic list modification flag 10 ? RefPicListTempO[list entry 10[rldx]] :
RefPicListTempO[rldx]

When the slice is a B slice, the variable NumRpsCurrTempListl is set equal to
Max(num_ref idx 11 _active minusl + 1, NumPocTotalCurr) and the list RefPicListTemp]1 is constructed as follows:

rldx =0
while(rldx < NumRpsCurrTempListl) {
for(1= 0; 1 < NumPocStCurrAfter && rldx < NumRpsCurrTempListl; rldx++, i++)
RefPicListTempl[rldx] = RefPicSetStCurrAfter| i]
for(1=0; i <NumPocStCurrBefore && rldx < NumRpsCurrTempListl; rldx++, i++) (8-10)
RefPicListTempl[rldx] = RefPicSetStCurrBefore[i]
for(1=0; 1 <NumPocLtCurr && rldx < NumRpsCurrTempListl; rldx++, i++)
RefPicListTempl[rldx] = RefPicSetLtCurr] i]

100 Rec. ITU-T H.265 (04/2013)

When the slice is a B slice, the list RefPicListl is constructed as follows:

for(rIdx = 0; rldx <= num_ref idx_ 1l active minusl; rldx++) (8-11)
RefPicList][rldx | =ref pic_list modification flag 11 ? RefPicListTemp1[list entry 11[rIdx]]:
RefPicListTempl[rldx]

8.4 Decoding process for coding units coded in intra prediction mode

8.4.1 General decoding process for coding units coded in intra prediction mode
Inputs to this process are:

— a luma location (XxCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current luma coding block.
Output of this process is a modified reconstructed picture before deblocking filtering.

The derivation process for quantization parameters as specified in clause 8.6.1 is invoked with the luma location
(xCb, yCb) as input.

A variable nCbS is set equal to 1 << log2CbSize.

Depending on the values of pcm_flag[xCb][yCb | and IntraSplitFlag, the decoding process for luma samples is
specified as follows:

— Ifpem_flag[xCb][yCb] is equal to 1, the reconstructed picture is modified as follows:

S [xCb+i][yCb+]j]=
pecm_sample luma[(nCbS *j)+1] << (BitDepthy — PcmBitDepthy), with i, j = 0..nCbS — 1 (8-12)

— Otherwise (pcm_flag[xCb][yCb] is equal to 0), if IntraSplitFlag is equal to 0, the following ordered steps apply:

1. The derivation process for the intra prediction mode as specified in clause 8.4.2 is invoked with the luma
location (xCb, yCb) as input.

2. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the luma location
(xCb, yCb), the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the
variable predModelntra set equal to IntraPredModeY[xCb][yCb], and the variable cldx set equal to O as
inputs, and the output is a modified reconstructed picture before deblocking filtering.

— Otherwise (pcm_flag[xCb][yCb] is equal to 0 and IntraSplitFlag is equal to 1), for the variable blkldx proceeding
over the values 0..3, the following ordered steps apply:

1. The variable xPb is set equal to xCb + (nCbS >> 1) * (blkIdx % 2).
2. The variable yPb is set equal to yCb + (nCbS >> 1) * (blkldx /2).

3. The derivation process for the intra prediction mode as specified in clause 8.4.2 is invoked with the luma
location (xPb, yPb) as input.

4. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the luma location
(xPb, yPb), the variable log2TrafoSize set equal to log2CbSize — 1, the variable trafoDepth set equal to 1, the
variable predModelntra set equal to IntraPredModeY[xPb][yPb], and the variable cldx set equal to O as
inputs, and the output is a modified reconstructed picture before deblocking filtering.

Depending on the value of pcm_flag[xCb][yCb], the decoding process for chroma samples is specified as follows:
— Ifpem_flag[xCb][yCb] is equal to 1, the reconstructed picture is modified as follows:
Sco[xCb/2+1][yCb/2+j]=pcm_sample chroma] (nCbS/2*j)+i] <<

(BitDepthe — PcmBitDepthc), with 1, j = 0.nCbS /2 — 1 (8-13)
Sci [xCb/2+1][yCb/2 +j]=pcm _sample chroma] (nCbS/2* (j+nCbS/2))+i] <<
(BitDepthe — PcmBitDepthc), with i, j = 0.nCbS /2 — 1 (8-14)

— Otherwise (pecm_flag[xCb][yCb] is equal to 0), the following ordered steps apply:

1. The derivation process for the chroma intra prediction mode as specified in 8.4.3 is invoked with the luma
location (xCb, yCb) as input, and the output is the variable IntraPredModeC.

Rec. ITU-T H.265 (04/2013) 101

The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location
(xCb/2,yCb/2), the variable log2TrafoSize set equal to log2CbSize — 1, the variable trafoDepth set equal to
0, the variable predModelntra set equal to IntraPredModeC, and the variable cldx set equal to 1 as inputs, and
the output is a modified reconstructed picture before deblocking filtering.

The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location
(xCb/2,yCb/2), the variable log2TrafoSize set equal to log2CbSize — 1, the variable trafoDepth set equal to
0, the variable predModelntra set equal to IntraPredModeC, and the variable cldx set equal to 2 as inputs, and
the output is a modified reconstructed picture before deblocking filtering.

8.4.2 Derivation process for luma intra prediction mode

Input to this process is a luma location (xPb, yPb) specifying the top-left sample of the current luma prediction block
relative to the top-left luma sample of the current picture.

In this process, the luma intra prediction mode IntraPredModeY|[xPb][yPb] is derived.

Table 8-1 specifies the value for the intra prediction mode and the associated names.

Table 8-1 — Specification of intra prediction mode and associated names

Intra prediction mode

Associated name

0 INTRA_PLANAR
1 INTRA_DC
2.34 INTRA_ANGULAR2.INTRA ANGULAR34

IntraPredModeY| xPb][yPb] labelled 0..34 represents directions of predictions as illustrated in Figure 8-1.

18 19 20 21 22 23 24 25 26

A

27 28 29 30 31 32 33 34

[
N

¢t €T vT ST 9T

T

0T

0 : Intra_Planar
1 :Intra_DC

Figure 8-1 — Intra prediction mode directions (informative)

IntraPredModeY[xPb][yPb] is derived by the following ordered steps:

1. The neighbouring locations (xNbA, yNbA) and (xNbB, yNbB) are set equal to (xPb—1,yPb) and
(xPb, yPb — 1), respectively.

102 Rec. ITU-T H.265 (04/2013)

2. For X being replaced by either A or B, the variables candIntraPredModeX are derived as follows:

3.

4.

The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with
the location (xCurr, yCurr) set equal to (xPb, yPb) and the neighbouring location (xNbY, yNbY) set
equal to (xXNbX, yNbX) as inputs, and the output is assigned to availableX.

The candidate intra prediction mode candIntraPredModeX is derived as follows:
— If availableX is equal to FALSE, candIntraPredModeX is set equal to INTRA DC.

— Otherwise, if CuPredMode[xNbX J[yNbX] is not equal to MODE INTRA or
pem_flag[xNbX][yNbX] is equal to 1, candIntraPredModeX is set equal to INTRA DC,

— Otherwise, if X is equal to B and yPb — 1 is less than ((yPb >> CtbLog2SizeY) << CtbLog2SizeY),
candIntraPredModeB is set equal to INTRA_DC.

— Otherwise, candIntraPredModeX is set equal to IntraPredModeY[xNbX][yNbX].

The candModeList[x] with x =0..2 is derived as follows:

If candIntraPredModeB is equal to candIntraPredModeA, the following applies:

— If candIntraPredModeA is less than 2 (i.e., equal to INTRA PLANAR or INTRA DC),
candModeList[x | with x =0..2 is derived as follows:

candModeList[0] = INTRA PLANAR (8-15)

candModeList[1]=INTRA DC (8-16)

candModeList[2] = INTRA ANGULAR26 (8-17)
— Otherwise, candModeList[x] with x =0..2 is derived as follows:

candModeList[0] = candIntraPredModeA (8-18)

candModeList[1] =2 + ((candIntraPredModeA + 29) % 32) (8-19)

candModeList[2 | =2 + ((candIntraPredModeA —2 + 1) % 32) (8-20)

Otherwise (candIntraPredModeB is not equal to candIntraPredModeA), the following applies:

— candModeList[0] and candModeList[1] are derived as follows:
candModeList[0] = candIntraPredModeA (8-21)
candModeList[1 | = candIntraPredModeB (8-22)

— If neither of candModeList{ 0] and candModeList 1] is equal to INTRA PLANAR,
candModeList[2] is set equal to INTRA PLANAR,

— Otherwise, if neither of candModeList[0] and candModeList[1] is equal to INTRA DC,
candModeList[2] is set equal to INTRA_DC,

— Otherwise, candModeList[2] is set equal to INTRA_ ANGULAR?26.

IntraPredModeY[xPb][yPb] is derived by applying the following procedure:

If prev_intra luma pred flag[xPb][yPb] is equal to 1, the IntraPredModeY[xPb][yPb] is set equal to
candModeList[mpm_idx].

Otherwise, IntraPredModeY[xPb][yPb] is derived by applying the following ordered steps:
1) The array candModeList[x], x =0..2 is modified as the following ordered steps:
i. When candModeList[0] is greater than candModeList[1], both values are swapped as follows:
(candModeList[0], candModeList[1]) = Swap(candModeList[0], candModeList[1]) (8-23)
ii. ~ When candModeList[0] is greater than candModeList[2], both values are swapped as follows:
(candModeList[0], candModeList[2]) = Swap(candModeList[0], candModeList[2]) (8-24)
iii. When candModeList[1] is greater than candModeList[2], both values are swapped as follows:
(candModeList[1], candModeList[2]) = Swap(candModeList[1], candModeList[2]) (8-25)
2) IntraPredModeY[xPb][yPb] is derived by the following ordered steps:

Rec. ITU-T H.265 (04/2013) 103

i. IntraPredModeY[xPb][yPb] is set equal to rem_intra luma_pred mode[xPb][yPb].

ii. For i equal to 0 to 2, inclusive, when IntraPredModeY[xPb][yPb | is greater than or equal to
candModeList[i], the value of IntraPredModeY[xPb][yPb] is incremented by one.

8.4.3 Derivation process for chroma intra prediction mode

Input to this process is a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block
relative to the top-left luma sample of the current picture.

Output of this process is the variable IntraPredModeC.

The chroma intra prediction mode IntraPredModeC is derived using intra_chroma pred mode[xCb][yCb] and
IntraPredModeY[xCb][yCb] as specified in Table 8-2.

Table 8-2 — Specification of IntraPredModeC

IntraPredModeY|[xCb |[yCb]
intra_chroma_pred_mode[xCb][yCb]
0 26 10 1 X(0<=X<=34)

0 34 0 0 0 0
1 26 34 26 | 26 26
2 10 10 34 10 10
3 1 1 1 34 1
4 0 26 10 1 X

8.4.4 Decoding process for intra blocks

8.4.4.1 General decoding process for intra blocks
Inputs to this process are:

— asample location (xTb0, yTb0) specifying the top-left sample of the current transform block relative to the top-left
sample of the current picture,

— avariable log2TrafoSize specifying the size of the current transform block,

a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,

— avariable predModelntra specifying the intra prediction mode,

a variable cldx specifying the colour component of the current block.
Output of this process is a modified reconstructed picture before deblocking filtering.

The luma sample location (xTbY, yTbY) specifying the top-left sample of the current luma transform block relative to
the top-left luma sample of the current picture is derived as follows:

(xTbY, yTbY)=(cldx == 0)? (xTb0, yTb0) : (xTb0 << 1,yTb0 << 1) (8-26)

The variable splitFlag is derived as follows:
— Ifcldx is equal to 0, splitFlag is set equal to split transform flag[xTbY][yTbY][trafoDepth].
— Otherwise, if all of the following conditions are true, splitFlag is set equal to 1.

— cldx is greater than 0

— split_transform_flag[xTbY][yTbY][trafoDepth] is equal to 1

— log2TrafoSize is greater than 2
— Otherwise, splitFlag is set equal to 0.
Depending on the value of splitFlag, the following applies:
— If splitFlag is equal to 1, the following ordered steps apply:

104 Rec. ITU-T H.265 (04/2013)

1. The variables xTb1 and yTb1 are derived as follows:
— The variable xTbl is set equal to xTb0 + (1 << (log2TrafoSize —1)).
— The variable yTbl is set equal to yTb0 + (1 << (log2TrafoSize —1)).

2. The general decoding process for intra blocks as specified in this clause is invoked with the location
(xTb0, yTbO0), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

3. The general decoding process for intra blocks as specified in this clause is invoked with the location
(xTbl, yTbO0), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

4. The general decoding process for intra blocks as specified in this clause is invoked with the location
(xTb0, yTbl), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

5. The general decoding process for intra blocks as specified in this clause is invoked with the location
(xTbl, yTbl), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

Otherwise (splitFlag is equal to 0), the following ordered steps apply:
1. The variable nTbS is set equal to 1 << log2TrafoSize.

2. The general intra sample prediction process as specified in clause 8.4.4.2.1 is invoked with the transform block
location (xTb0, yTb0), the intra prediction mode predModelntra, the transform block size nTbS, and the
variable cldx as inputs, and the output is an (nTbS)x(nTbS) array predSamples.

3. The scaling and transformation process as specified in clause 8.6.2 is invoked with the luma location
(xTbY, yTbY), the variable trafoDepth, the variable cldx, and the transform size trafoSize set equal to nTbS
as inputs, and the output is an (nTbS)x(nTbS) array resSamples.

4. The picture reconstruction process prior to in-loop filtering for a colour component as specified in clause 8.6.5
is invoked with the transform block location (xTb0, yTb0), the transform block size nTbS, the variable cldx,
the (nTbS)x(nTbS) array predSamples, and the (nTbS)x(nTbS) array resSamples as inputs.

8.4.4.2 Intra sample prediction

8.4.4.2.1 General intra sample prediction

Inputs to this process are:

a sample location (xTbCmp, yTbCmp) specifying the top-left sample of the current transform block relative to the
top-left sample of the current picture,

a variable predModelntra specifying the intra prediction mode,
a variable nTbS specifying the transform block size,

a variable cldx specifying the colour component of the current block.

Outputs of this process are the predicted samples predSamples[x][y], with x, y = 0..nTbS — 1.

The nTbS * 4 + 1 neighbouring samples p[x][y] that are constructed samples prior to the deblocking filter process,
withx =-1,y=-1..nTbS *2 — 1 and x = 0.nTbS * 2 — 1, y = —1, are derived as follows:

The neighbouring location (xXNbCmp, yNbCmp) is specified by:
(xNbCmp, yNbCmp) = (xTbCmp + x, yTbCmp +y) (8-27)

The current luma location (xTbY, yTbY) and the neighbouring luma location (xNbY, yNbY) are derived as
follows:

(xTbY, yTbY)=(cldx == 0) ? (xTbCmp, yTbCmp) : (xTbCmp << 1, yTbCmp << 1) (8-28)
(xNbY, yNbY)=(cldx == 0)? (xNbCmp, yNbCmp) : (xXNbCmp << 1, yNbCmp << 1) (8-29)

Rec. ITU-T H.265 (04/2013) 105

— The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the current
luma location (xCurr, yCurr) set equal to (xTbY, yTbY) and the neighbouring luma location (xXNbY, yNbY) as
inputs, and the output is assigned to availableN.

— Each sample p[x][y] is derived as follows:

— If one or more of the following conditions are true, the sample p[x][y] is marked as "not available for intra
prediction":

— The variable availableN is equal to FALSE.

— CuPredMode[xNbY][yNbY] is not equal to MODE INTRA and constrained_intra_pred_flag is equal
to 1.

— Otherwise, the sample p[x][y] is marked as "available for intra prediction" and the sample at the location
(xNbCmp, yNbCmp) is assigned to p[x][y |.

When at least one sample p[x [[y] with x=—1,y=—1..nTbS * 2 — 1 and x =0..nTbS * 2 — 1, y =—1 is marked as "not
available for intra prediction", the reference sample substitution process for intra sample prediction in clause 8.4.4.2.2 is
invoked with the samples p[x][y] with x=—1, y=—1..nTbS * 2 -1 and x =0..nTbS * 2 — 1, y=—1, nTbS, and cldx
as inputs, and the modified samples p[x [[y] with x=—1, y=—1.nTbS *2—1 and x=0..nTbS *2 -1, y=—1 as
output.

Depending on the value of predModelntra, the following ordered steps apply:

1. When cldx is equal to 0, the filtering process of neighbouring samples specified in clause 8.4.4.2.3 is invoked
with the sample array p and the transform block size nTbS as inputs, and the output is reassigned to the sample
array p.

2. The intra sample prediction process according to predModelntra applies as follows:

— If predModelntra is equal to INTRA PLANAR, the corresponding intra prediction mode specified in
clause 8.4.4.2.4 is invoked with the sample array p and the transform block size nTbS as inputs, and the
output is the predicted sample array predSamples.

— Otherwise, if predModelntra is equal to INTRA DC, the corresponding intra prediction mode specified in
clause 8.4.4.2.5 is invoked with the sample array p, the transform block size nTbS, and the colour
component index cldx as inputs, and the output is the predicted sample array predSamples.

— Otherwise (predModelntra is in the range of INTRA ANGULAR2..INTRA ANGULAR34), the
corresponding intra prediction mode specified in clause 8.4.4.2.6 is invoked with the intra prediction
mode predModelntra, the sample array p, the transform block size nTbS, and the colour component index
cldx as inputs, and the output is the predicted sample array predSamples.

8.4.4.2.2 Reference sample substitution process for intra sample prediction
Inputs to this process are:

— reference samples p[x][y] with x=—1,y=—1.nTbS*2 -1 and x=0..nTbS *2 — 1, y=—1 for intra sample
prediction,

— atransform block size nTbS,
— avariable cldx specifying the colour component of the current block.

Outputs of this process are the modified reference samples p[x][y] with x=-1,y=-1.nTbS*2 -1 and
x =0..nTbS * 2 — 1, y = —1 for intra sample prediction.

The variable bitDepth is derived as follows:
— Ifcldx is equal to 0, bitDepth is set equal to BitDepthy.
— Otherwise, bitDepth is set equal to BitDepthc.

The values of the samples p[x [[y] with x=—1,y=-1..nTbS * 2 -1 and x =0..nTbS * 2 — 1, y =—1 are modified as
follows:

— If all samples p[x][y] with x=-1,y=—1.nTbS *2—1 and x=0.nTbS *2 -1, y=—1 are marked as "not
available for intra prediction”, the value 1 << (bitDepth — 1) is substituted for the values of all samples p[x][y].

— Otherwise (at least one but not all samples p[x][y] are marked as "not available for intra prediction"), the
following ordered steps are performed:

106 Rec. ITU-T H.265 (04/2013)

1. When p[—1][nTbS *2 —1] is marked as "not available for intra prediction", search sequentially starting
fromx=—1,y=nTbS *2 -1 tox=-1, y=—1, then from x=0,y=—1to x=nTbS *2 -1, y=—1. Once a
sample p[x][y] marked as "available for intra prediction" is found, the search is terminated and the value of
p[x [y]isassigned top[-1][nTbS *2—11].

2. Search sequentially starting from x =—1, y=nTbS *2 -2 to x=—1, y=—1, when p[x][y] is marked as "not
available for intra prediction”, the value of p[x][y + 1] is substituted for the value of p[x][y].

3. Forx=0.nTbS *2 -1, y=—1, when p[x][y] is marked as "not available for intra prediction", the value of
p[x — 1][y] is substituted for the value of p[x][y]

All samples p[x][y] with x=—1,y=—1..nTbS *2 — 1 and x =0..nTbS * 2 — 1, y =—1 are marked as "available for
intra prediction".

8.4.4.2.3 Filtering process of neighbouring samples

Inputs to this process are:

— the neighbouring samples p[x][y], withx=—-1,y=—-1.nTbS *2 -1l andx=0.nTbS *2 -1,y =—1,
— avariable nTbS specifying the transform block size.

Outputs of this process are the filtered samples pF[x][y], with x=-1,y=-1.nTbS*2-1 and
x=0.nTbS*2—-1,y=-1.

The variable filterFlag is derived as follows:
— If one or more of the following conditions are true, filterFlag is set equal to O:
— predModelntra is equal to INTRA DC.
— nTbS is equal 4.
— Otherwise, the following applies:
— The variable minDistVerHor is set equal to Min(Abs(predModelntra — 26), Abs(predModelntra — 10)).
— The variable intraHorVerDistThres[nTbS] is specified in Table §-3.
— The variable filterFlag is derived as follows:
— If minDistVerHor is greater than intraHorVerDistThres[nTbS], filterFlag is set equal to 1.

— Otherwise, filterFlag is set equal to 0.

Table 8-3 — Specification of intraHorVerDistThres[nTbS | for various transform block sizes

nTbS =8 nTbS =16 nTbS =32
intraHorVerDistThres[nTbS | 7 1 0

When filterFlag is equal to 1, the following applies:
— The variable bilntFlag is derived as follows:

— If all of the following conditions are true, bilntFlag is set equal to 1:

strong_intra_smoothing_enabled flag is equal to 1

— nTbS is equal to 32

Abs(p[-1][-1]1+p[nTbS*2—-1][-1]-2*p[nTbS—1][-1])<(1 << (BitDepthy —5))
Abs(p[-1][-1]1+p[-1][nTbS*2—-1]-2*p[—1][nTbS—1])<(1 << (BitDepthy —5))

— Otherwise, bilntFlag is set equal to 0.
— The filtering is performed as follows:

— If bilntFlag is equal to 1, the filtered sample values pF[x [[y] with x=—1,y=-1..63 and x=0..63, y =—1 are
derived as follows:

Rec. ITU-T H.265 (04/2013) 107

pF[-1][-1]=p[-1][—1]
PFL-11[y]1=((63=y)*p[—11[~11+(y+1)*p[—1][63]+32) >> 6 fory=0..62
pF[-1][63]=p[-1][63]
PF[x[-11=((63—x)*p[-11[~1]+(x+1)*p[63][~1]+32) >> 6forx=0.62
pF[63][-1]=p[63][-1]

(8-30)
(8-31)
(8-32)
(8-33)
(8-34)

— Otherwise (bilntFlag is equal to 0), the filtered sample values pF[x][y] withx =-1,y=-1.nTbS *2 —1 and

x =0..nTbS *2 — 1, y =—1 are derived as follows:
pF[-1][—-1]=(p[-11[O0]+2*p[-1][-1]+p[O][-1]+2) >> 2

(8-35)

pF[-11y]l=(p[-1[y+1]+2*p[-1][yl+p[-1]y—1]+2)>> 2fory=0.nTbS *2—-2 (8-36)

pF[~1][nTbS*2—1]=p[~1][nTbS *2 1]

(8-37)

PFLxI[~11=(p[x—11[-1]+2*p[x][-1]+p[x+1][-1]+2) >> 2forx=0.nTbS*2 -2 (8-38)

pF[nTbS *2—-1][-1]=p[nTbS *2—-1][-1]
8.4.4.2.4 Specification of intra prediction mode INTRA_PLANAR
Inputs to this process are:
— the neighbouring samples p[x][y], withx=—1,y=—1.nTbS *2 -l and x=0.nTbS *2 -1,y =—1,
— avariable nTbS specifying the transform block size.
Outputs of this process are the predicted samples predSamples[x][y], with x, y =0..nTbS — 1.
The values of the prediction samples predSamples[x][y], with x, y = 0..nTbS — 1, are derived as follows:

predSamples[x [y]=((nTbS—1—x)*p[—-1][y]+ (x+1)*p[nTbS][—-1]+
(nTbS—1-y)*p[x][-1]+
(y+1)*p[—1][nTbS]+nTbS) >> (Log2(nTbS)+ 1)

8.4.4.2.5 Specification of intra prediction mode INTRA_DC

Inputs to this process are:

— the neighbouring samples p[x][y], withx=—-1,y=-1.nTbS *2 -1l and x=0.nTbS *2 -1,y =—1,
— avariable nTbS specifying the transform block size,

— avariable cldx specifying the colour component of the current block.

Outputs of this process are the predicted samples predSamples[x][y], with x, y =0..nTbS — 1.

(8-39)

(8-40)

The values of the prediction samples predSamples[x][y], with x, y=0..nTbS — 1, are derived by the following

ordered steps:
1. A variable dcVal is derived as follows:

nTbS-1 nThS-1

dcVal = D pIXI-11+ Y. Py 1+ nThS [>> (k+1)
X'=0 y'=0

where k = Log2(nTbS).

2. Depending on the value of the colour component index cldx, the following applies:

— Ifcldx is equal to 0 and nTbS is less than 32, the following applies:
1=(p[-1][0]+2*dcVal+p[O0][-1]+2) > 2
1=(p[x][-1]+3*dcVal+2) >> 2, withx=1..nTbS — 1
1=(p[-1][y]+t3*dcVal+2) >> 2 withy=1..nTbS — 1
]=dcVal, withx, y=1..nTbS — 1

predSamples[0][O
predSamples[x][0
predSamples[0][y
predSamples[x][y
— Otherwise, the prediction samples predSamples[x][y | are derived as follows:

predSamples[x][y] = dcVal, with x, y=0..nTbS — 1

108 Rec. ITU-T H.265 (04/2013)

(8-41)

(8-42)
(8-43)
(8-44)
(8-45)

(8-46)

8.4.4.2.6 Specification of intra prediction mode in the range of INTRA_ANGULAR2.. INTRA_ANGULAR34
Inputs to this process are:

— the intra prediction mode predModelntra,

— the neighbouring samples p[x][y], withx=—-1,y=—-1.nTbS *2 -1 and x=0.nTbS *2 -1,y =—1,

— avariable nTbS specifying the transform block size,

— avariable cldx specifying the colour component of the current block.

Outputs of this process are the predicted samples predSamples[x][y |, with x, y = 0..nTbS — 1.

Figure 8-2 illustrates the total 33 intra angles and Table 8-4 specifies the mapping table between predModelntra and the
angle parameter intraPredAngle.

30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

IRUununm |I||||||A| BN DnnEnmn
30 —

25 =

=N
o o
I

KN
o

'
a

o

A

(&)}

=
o

=
(&3]

8]
o

N
(&)

w
o

Figure 8-2 — Intra prediction angle definition (informative)

Table 8-4 — Specification of intraPredAngle

predModelntra 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

intraPredAngle | - | 32 | 26 | 21 [17 [13 [9 | 5 | 2 | 0 | 2| -5 | -9 |-13|-17|-21|-26

predModelntra | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34

intraPredAngle -32 | =26 | 21 =17 | —13 -9 =5 -2 0 2 5 9 13 17 21 26 32

Table 8-5 further specifies the mapping table between predModelntra and the inverse angle parameter invAngle.

Rec. ITU-T H.265 (04/2013) 109

Table 8-5 — Specification of invAngle

predModelntra 11 12 13 14 15 16 17 18
invAngle —4096 —1638 -910 —630 —482 -390 -315 -256

predModelntra 19 20 21 22 23 24 25 26
invAngle -315 -390 —482 —630 -910 —1638 —4096 -

The values of the prediction samples predSamples[x][y], with x, y = 0..nTbS — 1 are derived as follows:
— If predModelntra is equal or greater than 18, the following ordered steps apply:
1. The reference sample array ref] x] is specified as follows:
— The following applies:
reffx]=p[—-1+x][1], withx =0..nTbS (8-47)
— If intraPredAngle is less than 0, the main reference sample array is extended as follows:
— When (nTbS * intraPredAngle) >> 5 is less than —1,

ref[x][=p[—1][-1+ ((x*invAngle +128) >> 8)],
with x =—1..(nTbS * intraPredAngle) >> 5 (8-48)

— Otherwise,

reffx]=p[—-1+x][—1], withx =nTbS + 1..2 * nTbS (8-49)
2. The values of the prediction samples predSamples|[x][y |, with x, y = 0..nTbS — 1 are derived as follows:

a. The index variable ildx and the multiplication factor iFact are derived as follows:
ildx=((y+1) * intraPredAngle) >> 5 (8-50)
iFact=((y+ 1) * intraPredAngle) & 31 (8-51)

b. Depending on the value of iFact, the following applies:

— IfiFact is not equal to 0, the value of the prediction samples predSamples[x][y] is derived as follows:

predSamples[x [[y] =
((32—iFact) *reff x +ildx + 1]+ iFact *ref[x +ildx + 2]+ 16) >> 5 (8-52)

— Otherwise, the value of the prediction samples predSamples[x][y] is derived as follows:
predSamples[x [y] =ref[x + ildx + 1] (8-53)

c. When predModelntra is equal to 26 (vertical), cldx is equal to 0 and nTbS is less than 32, the following
filtering applies with x =0, y = 0..nTbS — 1:

predSamples[x][y] = Cliply(p[x J[-1]+ ((p[-1][y]=p[-11[-1]) >> 1)) (8-54)
— Otherwise (predModelntra is less than 18), the following ordered steps apply:
1. The reference sample array ref] x] is specified as follows:
— The following applies:
reffx]=p[—-1][-1 +x], with x =0..nTbS (8-55)
— IfintraPredAngle is less than 0, the main reference sample array is extended as follows:
— When (nTbS * intraPredAngle) >> 5 is less than —1,

ref[x]=p[-1+ ((x *invAngle + 128) >> 8)][—1],
with x =—1..(nTbS * intraPredAngle) >> 5 (8-56)

— Otherwise,
reff x |=p[—1][-1 +x], withx =nTbS + 1..2 * nTbS (8-57)

2. The values of the prediction samples predSamples[x][y], with x, y = 0..nTbS — 1 are derived as follows:

110 Rec. ITU-T H.265 (04/2013)

8.5

8.5.1

The index variable ildx and the multiplication factor iFact are derived as follows:
ildk =((x+1) * intraPredAngle) >> 5 (8-58)
iFact=((x+ 1) * intraPredAngle) & 31 (8-59)
Depending on the value of iFact, the following applies:
— [IfiFact is not equal to 0, the value of the prediction samples predSamples[x][y] is derived as follows:

predSamples[x][y] =
((32—iFact) *refl y +ildx + 1] +iFact *reff y +ildx +2]+ 16) >> 5 (8-60)

— Otherwise, the value of the prediction samples predSamples[x][y] is derived as follows:
predSamples[x [[y | =ref[y +ildx + 1] (8-61)

When predModelntra is equal to 10 (horizontal), cIdx is equal to 0 and nTbS is less than 32, the following
filtering applies with x =0..nTbS — 1, y = 0:

predSamples[x [y] = Cliply(p[1][y]+ ((p[x][-1]=p[-1][-1]) >> 1)) (8-62)

Decoding process for coding units coded in inter prediction mode

General decoding process for coding units coded in inter prediction mode

Inputs to this process are:

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current coding block.

Output of this process is a modified reconstructed picture before deblocking filtering.

The derivation process for quantization parameters as specified in clause 8.6.1 is invoked with the luma location
(xCb, yCb) as input.

The variable nCbSy is set equal to 1 << log2CbSize and the variable nCbSc¢ is set equal to 1 << (1og2CbSize —1).

The decoding process for coding units coded in inter prediction mode consists of following ordered steps:

1.

8.5.2

The inter prediction process as specified in clause 8.5.2 is invoked with the luma location (xCb, yCb) and the
luma coding block size log2CbSize as inputs, and the outputs are three arrays predSamples;, predSamplescy,
and predSamplesc;.

The decoding process for the residual signal of coding units coded in inter prediction mode specified in clause
8.5.4 is invoked with the luma location (xCb, yCb) and the luma coding block size 1og2CbSize as inputs, and
the outputs are three arrays resSamples; , resSamplescy, and resSamplesc;.

The reconstructed samples of the current coding unit are derived as follows:

The picture reconstruction process prior to in-loop filtering for a colour component as specified in
clause 8.6.5 is invoked with the luma coding block location (xCb, yCb), the variable nCurrS set equal to
nCbS;, the variable cldx set equal to 0, the (nCbSy)x(nCbS,) array predSamples set equal to predSamples;,
and the (nCbS)x(nCbS,) array resSamples set equal to resSamples; as inputs.

The picture reconstruction process prior to in-loop filtering for a colour component as specified in
clause 8.6.5 is invoked with the chroma coding block location (xCb /2, yCb /2), the variable nCurrS set
equal to nCbSc, the variable cldx set equal to 1, the (nCbSc)x(nCbS¢) array predSamples set equal to
predSamplescy,, and the (nCbSc)x(nCbSc) array resSamples set equal to resSamplescy, as inputs.

The picture reconstruction process prior to in-loop filtering for a colour component as specified in
clause 8.6.5 is invoked with the chroma coding block location (xCb /2, yCb /2), the variable nCurrS set
equal to nCbSc, the variable cldx set equal to 2, the (nCbSc)x(nCbS¢) array predSamples set equal to
predSamplesc;, and the (nCbS¢)x(nCbS¢) array resSamples set equal to resSamplesc; as inputs.

Inter prediction process

This process is invoked when decoding coding unit whose CuPredMode[xCb][yCb] is not equal to MODE INTRA.

Inputs to this process are:

Rec. ITU-T H.265 (04/2013) 111

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current luma coding block.
Outputs of this process are:
— an (nCbSy)x(nCbS,) array predSamples; of luma prediction samples, where nCbS is derived as specified below,

— an (nCbS¢)x(nCbSc) array predSamplesc, of chroma prediction samples for the component Cb, where nCbS¢ is
derived as specified below,

— an (nCbSc)x(nCbSc) array predSamplesc, of chroma prediction samples for the component Cr, where nCbSc is
derived as specified below.

The variable nCbS; is set equal to 1 << log2CbSize and the variable nCbSc is set equal to nCbS; >> 1.
The variable nCbS1; is set equal to nCbS, >> 1.
Depending on the value of PartMode, the following applies:

— If PartMode is equal to PART 2Nx2N, the decoding process for prediction units in inter prediction mode as
specified in clause 8.5.3 is invoked with the luma location (XCb, yCb), the luma location (xBI, yBl) set equal to
(0, 0), the size of the luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS,
the height of the luma prediction block nPbH set equal to nCbS;, and a partition index partldx set equal to 0 as
inputs, and the outputs are an (nCbS;)x(nCbS,) array predSamples; and two (nCbSc)x(nCbSc) arrays
predSamplesc;, and predSamplesc,.

— Otherwise, if PartMode is equal to PART 2NxN, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to nCbS;, the height of the luma
prediction block nPbH set equal to nCbS, >> 1, and a partition index partldx set equal to 0 as inputs, and the
outputs are an (nCbSp)x(nCbS;) array predSamples; and two (nCbSc)x(nCbSc¢) arrays predSamplesc, and
predSamplesc,.

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBI, yBI) set equal to (0, nCbS; >> 1), the size of the
luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS;, the height of the
luma prediction block nPbH set equal to nCbS; >> 1, and a partition index partldx set equal to 1 as inputs,
and the outputs are the modified (nCbS;)x(nCbS,) array predSamples; and the two modified (nCbSc)x(nCbSc)
arrays predSamplesc, and predSamplesc,.

— Otherwise, if PartMode is equal to PART Nx2N, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the Iuma location (xCb, yCb), the luma location (xBl, yBl) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to nCbS; >> 1, the height of the luma
prediction block nPbH set equal to nCbS;, and a partition index partldx set equal to 0 as inputs, and the outputs
are an (nCbSp)x(nCbS;) array predSamples; and two (nCbSc)x(nCbSc) arrays predSamplesq, and
predSamplesc,.

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (nCbSy >> 1, 0), the size of the
luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS, >> 1, the height
of the luma prediction block nPbH set equal to nCbS;, and a partition index partldx set equal to 1 as inputs,
and the outputs are the modified (nCbS;)x(nCbS,) array predSamples; and the two modified (nCbSc)x(nCbSc)
arrays predSamplesc, and predSamplesc;.

— Otherwise, if PartMode is equal to PART 2NxnU, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to nCbS;, the height of the luma
prediction block nPbH set equal to nCbS; >> 2, and a partition index partldx set equal to 0 as inputs, and the
outputs are an (nCbSp)x(nCbS,) array predSamples; and two (nCbSc)x(nCbSc) arrays predSamplesc, and
predSamplesc,.

112 Rec. ITU-T H.265 (04/2013)

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, nCbS; >> 2), the size of the
luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS;, the height of the
luma prediction block nPbH set equal to (nCbS, >> 1)+ (nCbS, >> 2), and a partition index partldx set
equal to 1 as inputs, and the outputs are the modified (nCbS;)x(nCbS;) array predSamples; and the two
modified (nCbS¢)x(nCbSc) arrays predSamplesc, and predSamplesc,.

Otherwise, if PartMode is equal to PART 2NxnD, the following ordered steps apply:

1.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to nCbS;, the height of the luma
prediction block nPbH set equal to (nCbS; >> 1)+ (nCbS; >> 2), and a partition index partldx set equal
to 0 as inputs, and the outputs are an (nCbS;)x(nCbS;) array predSamples; and two (nCbS¢)x(nCbS¢) arrays
predSamplesc, and predSamplesc;.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBl) set equal to
(0,(nCbS. >> 1)+ (nCbS. >> 2)), the size of the luma coding block nCbS;, the width of the luma
prediction block nPbW set equal to nCbS;, the height of the luma prediction block nPbH set equal to
nCbS, >> 2, and a partition index partldx set equal to 1 as inputs, and the outputs are the modified
(nCbSL)x(nCbS,) array predSamples; and the two modified (nCbSc)x(nCbSc) arrays predSamplesc, and
predSamplesc,.

Otherwise, if PartMode is equal to PART nLx2N, the following ordered steps apply:

1.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to nCbS; >> 2, the height of the luma
prediction block nPbH set equal to nCbS;, and a partition index partldx set equal to 0 as inputs, and the outputs
are an (nCbSp)x(nCbSy) array predSamples; and two (nCbSc)x(nCbSc) arrays predSamplesc, and
predSamplesc,.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (nCbS; >> 2, 0), the size of the
luma coding block nCbS;, the width of the Iuma prediction block nPbW set equal to
(nCbSy >> 1)+ (nCbSy >> 2), the height of the luma prediction block nPbH set equal to nCbS;, and a
partition index partldx set equal to 1 as inputs, and the outputs are the modified (nCbS;)x(nCbS,) array
predSamples; and the two modified (nCbS¢)x(nCbS¢) arrays predSamplesc, and predSamplesc;.

Otherwise, if PartMode is equal to PART nRx2N, the following ordered steps apply:

1.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to (nCbS, >> 1)+ (nCbSy >> 2), the
height of the luma prediction block nPbH set equal to nCbS;, and a partition index partldx set equal to 0 as
inputs, and the outputs are an (nCbSp)x(nCbS,) array predSamples; and two (nCbSc)x(nCbSc) arrays
predSamplesc, and predSamplesc;.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBl) set equal to (nCS1 + (nCbSy >> 2),0), the
size of the luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS, >> 2,
the height of the luma prediction block nPbH set equal to nCbS, and a partition index partldx set equal to 1 as
inputs, and the outputs are the modified (nCbS;)x(nCbS;) array predSamples; and the two modified
(nCbS¢)x(nCbSc) arrays predSamplesc, and predSamplesc,.

Otherwise (PartMode is equal to PART NxN), the following ordered steps apply:

1.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, 0), the size of the luma coding
block nCbS;, the width of the luma prediction block nPbW set equal to nCbS, >> 1, the height of the luma
prediction block nPbH set equal to nCbS, >> 1, and a partition index partldx set equal to 0 as inputs, and the
outputs are an (nCbSp)x(nCbS.) array predSamples; and two (nCbSc)x(nCbSc¢) arrays predSamplesc, and
predSamplesc;.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBl) set equal to (nCbS. >> 1, 0), the size of the
luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS; >> 1, the height

Rec. ITU-T H.265 (04/2013) 113

8.5.3
8.5.3.1

of the luma prediction block nPbH set equal to nCbS; >> 1, and a partition index partldx set equal to 1 as
inputs, and the outputs are the modified (nCbSp)x(nCbS;) array predSamples; and the two modified
(nCbS)x(nCbS() arrays predSamplesc, and predSamplesc;.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBI) set equal to (0, nCbSy >> 1), the size of the
luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS; >> 1, the height
of the luma prediction block nPbH set equal to nCbS; >> 1, and a partition index partldx set equal to 2 as
inputs, and the outputs are the modified (nCbS;)x(nCbS;) array predSamples; and the two modified
(nCbS)x(nCbS() arrays predSamplesc, and predSamplesc;.

The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with
the luma location (xCb, yCb), the luma location (xBl, yBl) set equal to (nCbS. >> 1, nCbS; >> 1), the
size of the luma coding block nCbS;, the width of the luma prediction block nPbW set equal to nCbS; >> 1,
the height of the luma prediction block nPbH set equal to nCbS; >> 1, and a partition index partldx set equal
to 3 as inputs, and the outputs are the modified (nCbS;)x(nCbS;) array predSamples; and the two modified
(nCbSc)x(nCbS() arrays predSamplesc, and predSamplesc;.

Decoding process for prediction units in inter prediction mode

General

Inputs to this process are:

a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left

luma sample of the current picture,

— aluma location (xBl, yBI) specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

— avariable nPbW specifying the width of the current luma prediction block,

— avariable nPbH specifying the width of the current luma prediction block,

a variable partldx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are:

— an (nCbSy)x(nCbS,) array predSamples; of luma prediction samples, where nCS;. is derived as specified below,

— an (nCbSc)x(nCbS¢) array predSamplesc, of chroma prediction samples for the component Cb, where nCSc is
derived as specified below,

— an (nCbS¢)x(nCbSc) array predSamplesc, of chroma prediction samples for the component Cr, where nCSc is
derived as specified below.

The variable nCbS; is set equal to nCbS and the variable nCbSc is set equal to nCbS >> 1.

The decoding process for prediction units in inter prediction mode consists of the following ordered steps:

1.

The derivation process for motion vector components and reference indices as specified in clause 8.5.3.2 is
invoked with the luma coding block location (xCb, yCb), the luma prediction block location (xBI, yBl), the
luma coding block size block nCbS, the luma prediction block width nPbW, the luma prediction block height
nPbH, and the prediction unit index partldx as inputs, and the luma motion vectors mvLO and mvL1, the
chroma motion vectors mvCLO and mvCL1, the reference indices refldxL0 and refldxL1, and the prediction
list utilization flags predFlagl.0 and predFlagL1 as outputs.

The decoding process for inter sample prediction as specified in clause 8.5.3.3 is invoked with the luma coding
block location (xCb, yCb), the luma prediction block location (xBl, yBI), the luma coding block size block
nCbS, the luma prediction block width nPbW, the luma prediction block height nPbH, the luma motion vectors
mvL0 and mvL1, the chroma motion vectors mvCL0 and mvCL1, the reference indices refldxL0 and refldxL1,
and the prediction list utilization flags predFlagl.0 and predFlaglL1 as inputs, and the inter prediction samples
(predSamples) that are an (nCbSp)x(nCbS;) array predSamples; of prediction luma samples and two
(nCbS)x(nCbSc) arrays predSamplesc, and predSamplesc, of prediction chroma samples, one for each of the
chroma components Cb and Cr, as outputs.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made
for x =xBl..xBl + nPbW — 1 and y = yBl..yBl + nPbH — 1:

114

Rec. ITU-T H.265 (04/2013)

MvVLO[xCb + x][yCb +y] = mvL0 (8-63)

MvLI[xCb+x][yCb +y] =mvL1 (8-64)
RefldxLO[xCb + x][yCb +y | = refldxL0 (8-65)
RefldxL1[xCb + x][yCb +y] = refldxL1 (8-66)
PredFlagLO[xCb + x][yCb +y | = predFlagL0 (8-67)
PredFlagL1[xCb +x][yCb +y | = predFlagL1 (8-68)

8.5.3.2 Derivation process for motion vector components and reference indices

Inputs to this process are:

a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

a luma location (xBI, yBl) of the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

a variable nCbS specifying the size of the current luma coding block,
two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

a variable partldx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are:

the luma motion vectors mvL0 and mvL]I,
the chroma motion vectors mvCLO0 and mvCL1,
the reference indices refldxL0 and refldxL1,

the prediction list utilization flags predFlagL0 and predFlagL1.

Let (xPb, yPb) specify the top-left sample location of the current luma prediction block relative to the top-left luma
sample of the current picture where xPb = xCb + xBl and yPb = yCb + yBI.

Let the variable currPic and ListX be the current picture and RefPicListX, with X being 0 or 1, of the current picture,
respectively.

The function LongTermRefPic(aPic, aPb, refldx, LX), with X being 0 or 1, is defined as follows:

If the picture with index refldx from reference picture list LX of the slice containing prediction block aPb in the
picture aPic was marked as "used for long term reference" at the time when aPic was the current picture,
LongTermRefPic(aPic, aPb, refldx, LX) is equal to 1.

Otherwise, LongTermRefPic(aPic, aPb, refldx, LX) is equal to 0.

For the derivation of the variables mvL0O and mvL1, refldxLO and refldxL1, as well as predFlagl.0 and predFlagL1, the
following applies:

If merge flag[xPb][yPb] is equal to 1, the derivation process for luma motion vectors for merge mode as
specified in clause 8.5.3.2.1 is invoked with the luma location (xCb, yCb), the luma location (xPb, yPb), the
variables nCbS, nPbW, nPbH, and the partition index partldx as inputs, and the output being the luma motion
vectors mvL0, mvL1, the reference indices refldxL0, refldxL1, and the prediction list utilization flags predFlagL0
and predFlagL1.

Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, and refldxLX, in PRED LX,
and in the syntax elements ref idx 1X and MvdLX, the following applies:

1. The variables refldxL.X and predFlagLX are derived as follows:
- Ifinter pred idc[xPb][yPb]is equal to PRED LX or PRED BI,
refldxLX =ref idx IX[xPb][yPb] (8-69)
predFlagLX =1 (8-70)
— Otherwise, the variables refldxLX and predFlagLX are specified by:
refldxLX =—1 (8-71)

Rec. ITU-T H.265 (04/2013) 115

predFlagLX =0 (8-72)
2. The variable mvdLX is derived as follows:

mvdLX[0]=MvdLX[xPb][yPb][0] (8-73)

mvdLX[1]=MvdLX[xPb J[yPb][1] (8-74)

3. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in
clause 8.5.3.2.5 is invoked with the luma coding block location (xCb, yCb), the coding block size
nCbS, the luma prediction block location (xPb, yPb), the variables nPbW, nPbH, refldxLLX, and the
partition index partldx as inputs, and the output being mvpLX.

4. When predFlaglX is equal to 1, the luma motion vector mvLX is derived as follows:

uLX[0]=(mvpLX[0]+ mvdLX[0]+2')%2'" (8-75)
mvLX[0]=(uLX[0] >= 2")?2(uLX[0]—2"):uLX[0] (8-76)
uLX[1]=(mvpLX[1]+ mvdLX[1]+2"%)%2' (8-77)
mvLX[1]=(uLX[1] >=2")?2(uLX[1]-2"):uLX[1] (8-78)

NOTE — The resulting values of mvLX[0] and mvLX[1] as specified above will always be in the range of —2'°
to 2'° — 1, inclusive.

When ChromaArrayType is not equal to 0 and predFlagLX, with X being 0 or 1, is equal to 1, the derivation process for
chroma motion vectors in clause 8.5.3.2.9 is invoked with mvLX as input, and the output being mvCLX.

8.5.3.2.1 Derivation process for luma motion vectors for merge mode

This process is only invoked when merge flag[xPb][yPb] is equal to 1, where (xPb, yPb) specify the top-left sample
of the current luma prediction block relative to the top-left luma sample of the current picture.

Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

— aluma location (xPb, yPb) of the top-left sample of the current luma prediction block relative to the top-left luma
sample of the current picture,

— avariable nCbS specifying the size of the current luma coding block,

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

— avariable partldx specifying the index of the current prediction unit within the current coding unit.
Outputs of this process are:

— the luma motion vectors mvL0 and mvL1,

— the reference indices refldxL0 and refldxL1,

— the prediction list utilization flags predFlagL0 and predFlagL1.

The location (xOrigP, yOrigP) and the variables nOrigPbW and nOrigPbH are derived to store the values of
(xPb, yPb), nPbW, and nPbH as follows:

(xOrigP, yOrigP) is set equal to (xPb, yPb) (8-79)
nOrigPbW = nPbW (8-80)
nOrigPbH = nPbH (8-81)

When Log2ParMrgLevel is greater than 2 and nCbS is equal to 8, (xPb, yPb), nPbW, nPbH, and partldx are modified
as follows:

(xPb, yPb) = (xCb, yCb) (8-82)
nPbW = nCbS (8-83)
nPbH = nCbS (8-84)
partldx =0 (8-85)

116 Rec. ITU-T H.265 (04/2013)

NOTE — When Log2ParMrgLevel is greater than 2 and nCbS is equal to 8, all the prediction units of the current coding unit share
a single merge candidate list, which is identical to the merge candidate list of the 2Nx2N prediction unit.

The motion vectors mvL0O and mvL1, the reference indices refldxL0 and refldxL1, and the prediction utilization flags
predFlaglL0 and predFlagL1 are derived by the following ordered steps:

1.

The derivation process for merging candidates from neighbouring prediction unit partitions in clause 8.5.3.2.2
is invoked with the luma coding block location (xCb, yCb), the coding block size nCbS, the luma prediction
block location (xPb, yPb), the luma prediction block width nPbW, the luma prediction block height nPbH,
and the partition index partldx as inputs, and the output being the availability flags availableFlagA,,
availableFlagA,, availableFlagB,, availableFlagB,;, and availableFlagB,, the reference indices refldxLXA,,
refldxLXA,, refldxLXB,, refldxLXB,, and refldxLXB,, the prediction list utilization flags predFlagLXA,,
predFlagLXA,, predFlagLXB,, predFlagLXB;, and predFlagLXB,, and the motion vectors mvLXA,,
mvLXA|, mvLXB,, mvLXB;, and mvLXB,, with X being 0 or 1.

The reference indices for the temporal merging candidate, refldxL.XCol, with X being 0 or 1, are set equal to 0.

The derivation process for temporal luma motion vector prediction in clause 8.5.3.2.7 is invoked with the luma
location (xPb, yPb), the luma prediction block width nPbW, the luma prediction block height nPbH, and the
variable refldxLLOCol as inputs, and the output being the availability flag availableFlaglL.0Col and the temporal
motion vector mvLOCol.The variables availableFlagCol, predFlagL.0Col and predFlagl.1Col are derived as
follows:

availableFlagCol = availableFlagL.0Col (8-86)
predFlagl.0Col = availableFlagL.OCol (8-87)
predFlagL1Col =0 (8-88)

When slice_type is equal to B, the derivation process for temporal luma motion vector prediction in clause
8.5.3.2.7 is invoked with the luma location (xPb, yPb), the luma prediction block width nPbW, the luma
prediction block height nPbH, and the variable refldxL1Col as inputs, and the output being the availability flag
availableFlagl.1Col and the temporal motion vector mvL1Col. The variables availableFlagCol and
predFlagl.1Col are derived as follows:

availableFlagCol = availableFlagl.0Col || availableFlagl.1Col (8-89)
predFlagL1Col = availableFlagL.1Col (8-90)
The merging candidate list, mergeCandList, is constructed as follows:

i=0
if(availableFlagA,)
mergeCandList[i++] = A
if(availableFlagB,)
mergeCandList[i++] = B,
if(availableFlagB,)
mergeCandList[i++] =B, (8-91)
if(availableFlagA)
mergeCandList[i++] = Ay
if(availableFlagB,)
mergeCandList[i++] =B,
if(availableFlagCol)
mergeCandList[i++] = Col

The variable numCurrMergeCand and numOrigMergeCand are set equal to the number of merging candidates
in the mergeCandList.

When slice_type is equal to B, the derivation process for combined bi-predictive merging candidates specified
in clause 8.5.3.2.3 is invoked with mergeCandList, the reference indices refldxLON and refldxL 1N, the
prediction list utilization flags predFlagLON and predFlagL 1N, the motion vectors mvLON and mvLIN of
every candidate N in mergeCandList, numCurrMergeCand, and numOrigMergeCand as inputs, and the output
is assigned to mergeCandList, numCurrMergeCand, the reference indices refldxLOcombCand, and
refldxL1combCandy, the prediction list utilization flags predFlaglL.OcombCandy and predFlagl.1combCand,,
and the motion vectors mvLOcombCand, and mvL1combCandy of every new candidate combCandy being
added into mergeCandList. The number of candidates being added, numCombMergeCand, is set equal to
(numCurrMergeCand — numOrigMergeCand). When numCombMergeCand is greater than 0, k ranges from 0
to numCombMergeCand — 1, inclusive.

Rec. ITU-T H.265 (04/2013) 117

8. The derivation process for zero motion vector merging candidates specified in clause 8.5.3.2.4 is invoked with

the mergeCandList, the reference indices refldxLON and refldxL1N, the prediction list utilization flags
predFlagLON and predFlagl.IN, the motion vectors mvLON and mvLIN of every candidate N in
mergeCandList, and numCurrMergeCand as inputs, and the output is assigned to mergeCandList,
numCurrMergeCand, the reference indices refldxLOzeroCand,, and refldxL1zeroCand,, the prediction list
utilization flags predFlagl0OzeroCand,, and predFlagl1zeroCand,,, and the motion vectors mvL0OzeroCand,,
and mvL1zeroCand,, of every new candidate zeroCand,, being added into mergeCandList. The number of
candidates being added, numZeroMergeCand, is set equal to
(numCurrMergeCand — numOrigMergeCand — numCombMergeCand). When numZeroMergeCand is greater
than 0, m ranges from 0 to numZeroMergeCand — 1, inclusive.

9. The following assignments are made with N being the candidate at position merge idx[xOrigP][yOrigP | in

the merging candidate list mergeCandList (N = mergeCandList[merge idx[xOrigP][yOrigP]]) and X
being replaced by 0 or 1:

mvLX[0]=mvLXN[O0] (8-92)
mvLX[1]=mvLXN[1] (8-93)
refldxLX = refldxLXN (8-94)
predFlagLX = predFlagLXN (8-95)

10. When predFlagL0 is equal to 1 and predFlagl1 is equal to 1, and (nOrigPbW + nOrigPbH) is equal to 12, the
following applies:

refldxLL1 =—1 (8-96)
predFlaglL1 =0 (8-97)

8.5.3.2.2 Derivation process for spatial merging candidates

Inputs to this process are:

a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

a variable nCbS specifying the size of the current luma coding block,

a luma location (xPb, yPb) specifying the top-left sample of the current luma prediction block relative to the top-
left luma sample of the current picture,

two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

a variable partldx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are as follows, with X being 0 or 1:

the availability flags availableFlagA,, availableFlagA,, availableFlagB,, availableFlagB,, and availableFlagB, of
the neighbouring prediction units,

the reference indices refldxLXA,, refldxL.XA;, refldxLXB,, refldxL.XB,, and refldxLXB, of the neighbouring
prediction units,

the prediction list utilization flags predFlagLXA,, predFlagLXA;, predFlaglXB,, predFlagLXB,, and
predFlagLXB, of the neighbouring prediction units,

the motion vectors mvLXA,, mvLXA;, mvLXB,, mvLXB;, and mvLXB, of the neighbouring prediction units.

For the derivation of availableFlagA |, refldxLXA, predFlaglL XA, and mvLXA, the following applies:

118

The luma location (xNbA;, yNbA,;) inside the neighbouring luma coding block is set equal to
(xPb—1, yPb+nPbH—-1).

The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location (xPb, yPb),
the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location
(xNbA|, yNbA,), and the partition index partldx as inputs, and the output is assigned to the prediction block
availability flag availableA ;.

When one or more of the following conditions are true, availableA, is set equal to FALSE:

Rec. ITU-T H.265 (04/2013)

— xPb >> Log2ParMrglLevel is equal to xNbA; >> Log2ParMrglLevel and yPb >> Log2ParMrgLevel is
equal to yYNbA; >> Log2ParMrgLevel.

— PartMode of the current prediction unit is equal to PART Nx2N, PART nLx2N, or PART nRx2N, and
partldx is equal to 1.

The variables availableFlagA, refldxL. XA, predFlagl. XA, and mvLXA, are derived as follows:

— IfavailableA, is equal to FALSE, availableFlagA, is set equal to 0, both components of mvLXA, are set equal
to 0, refldxL XA, is set equal to —1 and predFlagL XA, is set equal to 0, with X being 0 or 1.

— Otherwise, availableFlagA, is set equal to 1 and the following assignments are made:

mvLXA; = MvLX[xNbA,][yNbA,] (8-98)
refldxLXA | = RefldxLX[xNbA;][yNbA,] (8-99)
predFlagL XA, = PredFlagLX[xNbA,][yNbA|] (8-100)

For the derivation of availableFlagB,, refldxLXB,, predFlagLXB;, and mvLXB; the following applies:

The luma Ilocation (xNbB;, yNbB;) inside the neighbouring Iuma coding block is set equal to
(xPb+nPbW —1, yPb—1).

The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location (xPb, yPb),
the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location
(xNbBj, yNbBy), and the partition index partldx as inputs, and the output is assigned to the prediction block
availability flag availableB;.

When one or more of the following conditions are true, availableB, is set equal to FALSE:

— xPb >> Log2ParMrgLevel is equal to xNbB; >> Log2ParMrglLevel and yPb >> Log2ParMrgLevel is
equal to yNbB,; >> Log2ParMrgLevel.

— PartMode of the current prediction unit is equal to PART 2NxN, PART 2NxnU, or PART 2NxnD, and
partldx is equal to 1.

The variables availableFlagB, refldxLXB, predFlagLXB;, and mvLXB, are derived as follows:

— If one or more of the following conditions are true, availableFlagB, is set equal to 0, both components of
mvLXB; are set equal to 0, refldxL.XB; is set equal to —1, and predFlagL.XB; is set equal to 0, with X being 0
or 1:

— availableB; is equal to FALSE.

— availableA is equal to TRUE and the prediction units covering the luma locations (xXNbA |, yNbA,) and
(xNbBy, yNbB;) have the same motion vectors and the same reference indices.

— Otherwise, availableFlagB; is set equal to 1 and the following assignments are made:

mvLXB; = MvLX[xNbB,][yNbB;] (8-101)
refldxLXB, = RefldxLX[xNbB,][yNbB;] (8-102)
predFlagLXB, = PredFlagL X[xNbB;][yNbB;] (8-103)

For the derivation of availableFlagB,, refldxLXB,, predFlagLXB,, and mvLXB, the following applies:

The luma Ilocation (xNbBy, yNbB,) inside the neighbouring luma coding block is set equal to
(xPb +nPbW, yPb—1).

The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location (xPb, yPb),
the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location
(xXNbB,, yNbBy), and the partition index partldx as inputs, and the output is assigned to the prediction block
availability flag availableB,.

When xPb >> Log2ParMrgLevel is equal to xNbB, >> Log2ParMrgLevel and yPb >> Log2ParMrgLevel is
equal to yNbB, >> Log2ParMrgLevel, availableB, is set equal to FALSE.

The variables availableFlagB,, refldxLXB,, predFlagl. XB,, and mvLXB,, are derived as follows:

Rec. ITU-T H.265 (04/2013) 119

— If one or more of the following conditions are true, availableFlagB, is set equal to 0, both components of
mvLXB,y are set equal to 0, refldxLXB; is set equal to —1, and predFlagLXB; is set equal to 0, with X being 0
or1:

— availableB, is equal to FALSE.

— availableB, is equal to TRUE and the prediction units covering the luma locations (xNbB;, yNbB;) and
(xNbBy, yNbBy) have the same motion vectors and the same reference indices.

— Otherwise, availableFlagB, is set equal to 1 and the following assignments are made:

mvLXBy=MvLX[xNbB,][yNbB;] (8-104)
refldxLXB, = RefldxLX[xNbB,][yNbBy] (8-105)
predFlagLXB, = PredFlagLX[xNbBy][yNbBy | (8-106)

For the derivation of availableFlagA,, refldxLXA,, predFlagl. XA,, and mvLXA, the following applies:

The Iluma location (xNbA,, yNbA,) inside the neighbouring luma coding block is set equal to
(xPb—1, yPb+nPbH).

The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location (xPb, yPb),
the luma prediction block width nPbW, the luma prediction block height nPbH, the Iuma location
(xNbA, yNbA,), and the partition index partldx as inputs, and the output is assigned to the prediction block
availability flag availableA,.

When xPb >> Log2ParMrgLevel is equal to xXNbA, >> Log2ParMrgLevel and yPb >> Log2ParMrgLevel is
equal to yA, >> Log2ParMrgLevel, availableA, is set equal to FALSE.

The variables availableFlagA,, refldxL. XA, predFlagl. XA, and mvLXA are derived as follows:

— If one or more of the following conditions are true, availableFlagA, is set equal to 0, both components of
mvLXA, are set equal to 0, refldxLXA, is set equal to —1, and predFlaglL. XA, is set equal to 0, with X being 0
orl:

— availableA is equal to FALSE.

— availableA, is equal to TRUE and the prediction units covering the luma locations (xXNbA |, yNbA,) and
(xNbA,, yNbA,) have the same motion vectors and the same reference indices.

— Otherwise, availableFlagA, is set equal to 1 and the following assignments are made:

mvLXA,=MvVLX[xNbA,][yNbA] (8-107)
refldxLXA, = RefldxLX[xNbA,][yYNbA,] (8-108)
predFlagL XA, = PredFlagLX[xXNbA,][yNbA,] (8-109)

For the derivation of availableFlagB,, refldxLXB,, predFlagl. XB,, and mvLXB, the following applies:

120

The luma Ilocation (xNbB,, yNbB,) inside the neighbouring Iuma coding block is set equal to
(xPb—1,yPb—1).

The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location (xPb, yPb),
the luma prediction block width nPbW, the luma prediction block height nPbH, the Iuma location
(xNbB,, yNbB;), and the partition index partldx as inputs, and the output is assigned to the prediction block
availability flag availableB,.

When xPb >> Log2ParMrgLevel is equal to xNbB, >> Log2ParMrglLevel and yPb >> Log2ParMrgLevel is
equal to yNbB, >> Log2ParMrgLevel, availableB, is set equal to FALSE.

The variables availableFlagB,, refldxLXB,, predFlagl. XB,, and mvLXB, are derived as follows:

— If one or more of the following conditions are true, availableFlagB, is set equal to 0, both components of
mvLXB, are set equal to 0, refldxLXB; is set equal to —1, and predFlagLXB, is set equal to 0, with X being 0
orl:

— availableB, is equal to FALSE.

Rec. ITU-T H.265 (04/2013)

— availableA; is equal to TRUE and prediction units covering the luma locations (XNbA |, yNbA,) and
(xNbB,, yNbB,) have the same motion vectors and the same reference indices.

— availableB, is equal to TRUE and the prediction units covering the luma locations (xXNbB;, yNbB;) and
(xNbB,, yNbB,) have the same motion vectors and the same reference indices.

— availableFlagA, + availableFlagA, + availableFlagB, + availableFlagB, is equal to 4.

— Otherwise, availableFlagB, is set equal to 1, and the following assignments are made:

mvLXB, = MvLX[xNbB,][yNbB;] (8-110)
refldxLXB, = RefldxLX[xNbB,][yNbB,] (8-111)
predFlagLXB, = PredFlagLX[xNbB,][yNbB;] (8-112)

8.5.3.2.3 Derivation process for combined bi-predictive merging candidates

Inputs to this process are:

— amerging candidate list mergeCandList,

— the reference indices refldxLON and refldxL1N of every candidate N in mergeCandList,

— the prediction list utilization flags predFlagl. ON and predFlagL 1N of every candidate N in mergeCandList,
— the motion vectors mvLON and mvL1N of every candidate N in mergeCandList,

— the number of elements numCurrMergeCand within mergeCandList,

— the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge
candidate derivation process.

Outputs of this process are:
— the merging candidate list mergeCandList,
— the number of elements numCurrMergeCand within mergeCandList,

— the reference indices refldxLOcombCandy and refldxL.1combCandy of every new candidate combCandy added into
mergeCandList during the invokation of this process,

— the prediction list utilization flags predFlagl.OcombCand, and predFlagl.1combCand, of every new candidate
combCand, added into mergeCandList during the invokation of this process,

— the motion vectors mvLOcombCandy, and mvLIlcombCand; of every new candidate combCandy added into
mergeCandList during the invokation of this process.

When numOrigMergeCand is greater than 1 and less than MaxNumMergeCand, the variable numInputMergeCand is set
equal to numCurrMergeCand, the variable combldx is set equal to 0, the variable combStop is set equal to FALSE, and
the following steps are repeated until combStop is equal to TRUE:

1. The variables 10Candldx and 11CandIdx are derived using combldx as specified in Table 8-6.

2. The following assignments are made, with 10Cand being the candidate at position 10CandIdx and 11Cand being
the candidate at position 11CandIdx in the merging candidate list mergeCandList:

— 10Cand = mergeCandList[10CandIdx]

— 11Cand = mergeCandList[11Candldx]
3. When all of the following conditions are true:

— predFlagL0l0Cand ==

— predFlagL111Cand ==

— (DiffPicOrderCnt(RefPicListO[refldxL.LO10Cand], RefPicList1[refldxL111Cand]) != 0) ||
(mvL0l0Cand !'= mvL111Cand)

the candidate combCand, with k equal to (numCurrMergeCand — numInputMergeCand) is added at the end
of mergeCandList, i.e., mergeCandList] numCurrMergeCand] is set equal to combCandy, and the reference
indices, the prediction list utilization flags, and the motion vectors of combCandy are derived as follows and
numCurrMergeCand is incremented by 1:

Rec. ITU-T H.265 (04/2013) 121

refldxLOcombCand = refldxL.0O10Cand (8-113)

refldxL1combCand, = refldxL111Cand (8-114)
predFlagLOcombCandy = 1 (8-115)
predFlagl.1combCandy = 1 (8-116)
mvLOcombCand,] 0] = mvL0l0Cand[0] (8-117)
mvLOcombCand,[1] =mvL0l0Cand] 1] (8-118)
mvLlcombCand,[0]=mvL111Cand[0] (8-119)
mvL1combCandy[1]=mvL111Cand[1] (8-120)
numCurrMergeCand = numCurrMergeCand + 1 (8-121)

4. The variable combldx is incremented by 1.

5. When combldx is equal to (numOrigMergeCand * (numOrigMergeCand — 1)) or numCurrMergeCand is
equal to MaxNumMergeCand, combStop is set equal to TRUE.

Table 8-6 — Specification of I0CandlIdx and 11CandIdx

combldx 0 1 2 3 4 5 6 7 8 9 10 | 11

10Candldx 0 1 0 2 1 2 0 3 1 3 2 3

11CandlIdx 1 0 2 0 2 1 3 0 3 1 3 2

8.5.3.2.4 Derivation process for zero motion vector merging candidates

Inputs to this process are:

— amerging candidate list mergeCandList,

— the reference indices refldxLON and refldxL1N of every candidate N in mergeCandList,

— the prediction list utilization flags predFlagl. ON and predFlagL 1N of every candidate N in mergeCandList,
— the motion vectors mvLON and mvL1N of every candidate N in mergeCandList,

— the number of elements numCurrMergeCand within mergeCandList.

Outputs of this process are:

— the merging candidate list mergeCandList,

— the number of elements numCurrMergeCand within mergeCandList,

the reference indices refldxLOzeroCand,, and refldxL10zeroCand,, of every new candidate zeroCand,, added into
mergeCandList during the invokation of this process,

— the prediction list utilization flags predFlagl.0zeroCand,, and predFlagl10zeroCand,, of every new candidate
zeroCand,, added into mergeCandList during the invokation of this process,

— the motion vectors mvLOzeroCand,, and mvL10zeroCand,, of every new candidate zeroCand,, added into
mergeCandList during the invokation of this process.

The variable numRefldx is derived as follows:
— Ifslice type is equal to P, numRefldx is set equal to num_ref idx 10 active minusl + 1.

— Otherwise (slice type is equal to B), numRefldx is set equal to Min(num_ref idx 10 active minusl + 1,
num_ref idx 11 active minusl +1).

When numCurrMergeCand is less than MaxNumMergeCand, the variable numlnputMergeCand is set equal to
numCurrMergeCand, the variable zeroldx is set equal to 0, and the following steps are repeated until
numCurrMergeCand is equal to MaxNumMergeCand:

1. For the derivation of the reference indices, the prediction list utilization flags and the motion vectors of the
zero motion vector merging candidate, the following applies:

122 Rec. ITU-T H.265 (04/2013)

— If slice type is equal to P, the candidate zeroCand, with m equal to
(numCurrMergeCand — numInputMergeCand) is added at the end of mergeCandList, i.e.,
mergeCandList] numCurrMergeCand] is set equal to zeroCand,, and the reference indices, the
prediction list utilization flags, and the motion vectors of zeroCand, are derived as follows and
numCurrMergeCand is incremented by 1:

refldxL0zeroCand,, = (zeroldx < numRefldx) ? zeroldx : 0 (8-122)
refldxL1zeroCand,, = —1 (8-123)
predFlagL0zeroCand,, = 1 (8-124)
predFlagl1zeroCand,, = 0 (8-125)
mvLOzeroCand,[0]=0 (8-126)
mvLOzeroCand,[1]=0 (8-127)
mvL1zeroCand,,[0]=0 (8-128)
mvL1zeroCand,[1]=0 (8-129)
numCurrMergeCand = numCurrMergeCand + 1 (8-130)

— Otherwise (slice type 1is equal to B), the candidate zeroCand,, with m equal to
(numCurrMergeCand — numInputMergeCand) is added at the end of mergeCandList, i.e.,
mergeCandList] numCurrMergeCand | is set equal to zeroCand,, and the reference indices, the
prediction list utilization flags, and the motion vectors of zeroCand,, are derived as follows and
numCurrMergeCand is incremented by 1:

refldxLOzeroCand,, = (zeroldx < numRefldx) ? zeroldx : 0 (8-131)
refldxL1zeroCand,, = (zeroldx < numRefldx) ? zeroldx : 0 (8-132)
predFlagl0zeroCand,, = 1 (8-133)
predFlagl1zeroCand,, = 1 (8-134)
mvLOzeroCand,[0]=0 (8-135)
mvL0OzeroCand,,[1]=0 (8-136)
mvL1zeroCand,[0]=0 (8-137)
mvL1zeroCand,,[1]=0 (8-138)
numCurrMergeCand = numCurrMergeCand + 1 (8-139)

2. The variable zeroldx is incremented by 1.

8.5.3.2.5 Derivation process for luma motion vector prediction
Inputs to this process are:

— aluma location (XCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

— avariable nCbS specifying the size of the current luma coding block,

— aluma location (xPb, yPb) specifying the top-left sample of the current luma prediction block relative to the top-
left luma sample of the current picture,

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

— the reference index of the current prediction unit partition refldxLX, with X being 0 or 1,

— avariable partldx specifying the index of the current prediction unit within the current coding unit.
Output of this process is the prediction mvpLX of the motion vector mvLX, with X being 0 or 1.

The motion vector predictor mvpLX is derived in the following ordered steps:

1. The derivation process for motion vector predictor candidates from neighbouring prediction unit partitions in
clause 8.5.3.2.6 is invoked with the luma coding block location (xCb, yCb), the coding block size nCbS, the
luma prediction block location (xPb, yPb), the luma prediction block width nPbW, the luma prediction block

Rec. ITU-T H.265 (04/2013) 123

5.

height nPbH, refldxLX, with X being 0 or 1, and the partition index partldx as inputs, and the availability flags
availableFlaglL. XN and the motion vectors mvLXN, with N being replaced by A or B, as output.

If both availableFlagLXA and availableFlagLXB are equal to 1 and mvLXA is not equal to mvLXB,
availableFlagL. XCol is set equal to 0. Otherwise, the derivation process for temporal luma motion vector
prediction in clause 8.5.3.2.7 is invoked with luma prediction block location (xPb, yPb), the luma prediction
block width nPbW, the luma prediction block height nPbH, and refldxLX, with X being 0 or 1, as inputs, and
with the output being the availability flag availableFlagLXCol and the temporal motion vector predictor
mvLXCol.

The motion vector predictor candidate list, mvpListLX, is constructed as follows:

i=0
if(availableFlagl. XA)
mvpListLX[i++] = mvLXA
if(availableFlagLXB)
mvpListLX][i++] = mvLXB (8-140)
if(availableFlagl. XCol)
mvpListLX[i++] = mvLXCol

The motion vector predictor list is modified as follows:

— When mvLXA and mvLXB have the same value, mvLXB is removed from the list and the variable
numMvpCandLX is set equal to the number of elements within the mvpListLX.

— When numMvpCandLX is less than 2, the following applies repeatedly until numMvpCandLX is equal

to 2:
mvpListLX[numMvpCandLX][0]=0 (8-141)
mvpListLX[numMvpCandLX][1]=0 (8-142)
numMvpCandLX = numMvpCandLX + 1 (8-143)

— When numMvpCandLX is greater than 2, all motion vector predictor candidates mvpListLX[idx | with
idx greater than 1 are removed from the list.

The motion vector of mvpListLX[mvp_1X flag[xPb][yPb]] is assigned to mvpLX.

8.5.3.2.6 Derivation process for motion vector predictor candidates

Inputs to this process are:

a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

a variable nCbS specifying the size of the current luma coding block,

a luma location (xPb, yPb) specifying the top-left sample of the current luma prediction block relative to the top-
left luma sample of the current picture,

two variables nPbW and nPbH specifying the width and the height of the luma prediction block,
the reference index of the current prediction unit partition refldxL. X, with X being 0 or 1,

a variable partldx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are (with N being replaced by A or B):

124

the motion vectors mvLXN of the neighbouring prediction units,

the availability flags availableFlagL. XN of the neighbouring prediction units.

Rec. ITU-T H.265 (04/2013)

B, B | By

A

Ao

Figure 8-3 — Spatial motion vector neighbours (informative)

The variable currPb specifies the current luma prediction block at luma location (xPb, yPb) and the variable currPic
specifies the current picture.

The variable isScaledFlagl. X, with X being 0 or 1, is set equal to 0.

The motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps:

1. The sample location (xNbA,, yNbAy) is set equal to (xPb—1,yPb+nPbH) and the sample location
(xNbA;, yNbA,) is set equal to (xNbA,, yNbA;—1).

2. The availability flag availableFlagL. XA is set equal to 0 and both components of mvLXA are set equal to 0.

3. The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location
(xPb, yPb), the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location
(xNbY, yNbY) set equal to (xNbA,, yNbA,), and the partition index partldx as inputs, and the output is
assigned to the prediction block availability flag availableA,.

4. The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma
location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location
(xPb, yPb), the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location
(xNbY, yNbY) set equal to (xNbA;, yNbA;), and the partition index partldx as inputs, and the output is
assigned to the prediction block availability flag availableA;.

5. When availableA, or availableA is equal to TRUE, the variable isScaledFlaglLX is set equal to 1.
6. The following applies for (xXNbAy, yNbAy) from (xNbA,, yNbA,) to (xXNbA |, yNbA,):
— When availableA is equal to TRUE and availableFlagl. XA is equal to 0, the following applies:

- If PredFlagL X[xNbAy][yNbAy] is equal to 1 and
DiffPicOrderCnt(RefPicListX[RefldxL X[xNbAy][yNbAy]], RefPicListX[refldxLX]) is equal
to 0, availableFlagl. XA is set equal to 1 and the following applies:

mvLXA = MvLX[xNbA,][yNbA,] (8-144)

— Otherwise, when PredFlagLY[xNbAy J[yNbAx] (with Y=1!X) is equal to 1 and
DiffPicOrderCnt(RefPicListY[RefldxLY[xNbAy][yNbAy]], RefPicListX[refldxLX]) is equal
to 0, availableFlagL. XA is set equal to 1 and the following applies:

mvLXA = MvLY[xNbAy][yNbA] (8-145)

7. When availableFlagl. XA is equal to 0, the following applies for (xXNbAy, yNbA,) from (xNbA,, yNbA,) to
(xNbA |, yNbA|) or until availableFlagL XA is equal to 1:

— When availableAy is equal to TRUE and availableFlagl. XA is equal to 0, the following applies:

- If PredFlagL X[xNbAy][yNbAy] is equal to 1 and
LongTermRefPic(currPic, currPb, refldxLX, RefPicListX) is equal to
LongTermRefPic(currPic, currPb, RefldxLX[xNbAy][yNbAy], RefPicListX), availableFlagLXA
is set equal to 1 and the following assignments are made:

mvLXA = MvLX[xNbA,][yNbA,] (8-146)
refldxA = RefldxLX[xNbA,][yNbA] (8-147)
refPicListA = RefPicListX (8-148)

Rec. ITU-T H.265 (04/2013) 125

— Otherwise, when PredFlagLY[xNbAy][yNbAy] (with Y=!X) is equal to 1 and
LongTermRefPic(currPic, currPb, refldxLX, RefPicListX) is equal to
LongTermRefPic(currPic, currPb, RefldxLY[xNbAy][yNbA], RefPicListY), availableFlagl. XA
is set equal to 1 and the following assignments are made:

mvLXA = MvLY[xNbA,][yNbAy] (8-149)

refldxA = RefldxLY[xNbAy][yNbA] (8-150)

refPicListA = RefPicListY (8-151)
— When availableFlagLXA is equal to 1

DiffPicOrderCnt(refPicListA[refldxA], RefPicListX][refldxLX]) is not equal to 0, and both
refPicListA[refldxA] and RefPicListX[refldxLX] are short-term reference pictures, mvLXA is derived

as follows:
tx=(16384+ (Abs(td) >> 1))/td (8-152)
distScaleFactor = Clip3(—4096, 4095, (tb *tx +32) >> 6) (8-153)
mvLXA = Clip3(—32768, 32767, Sign(distScaleFactor * mvLXA) *
((Abs(distScaleFactor * mvLXA)+ 127) >> 8)) (8-154)
where td and tb are derived as follows:
td = Clip3(—128, 127, DiffPicOrderCnt(currPic, refPicListA[refldxA])) (8-155)
tb = Clip3(—128, 127, DiffPicOrderCnt(currPic, RefPicListX[refldxLX])) (8-156)

The motion vector mvLXB and the availability flag availableFlagl. XB are derived in the following ordered steps:

1. The sample locations (xNbBj, yNbB;), (xNbB;, yNbB;), and (xNbB,, yNbB,) are set equal to
(xPb +nPbW, yPb — 1), (xPb + nPbW — 1, yPb — 1), and (xPb — 1, yPb — 1), respectively.

2. The availability flag availableFlagL. XB is set equal to 0 and the both components of mvLXB are set equal to 0.
3. The following applies for (xXNbBy, yNbBy) from (xXNbB,,, yNbBy,) to (xNbB,, yNbB;):

— The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the
luma location (xCb, yCb), the current luma coding block size nCbS, the luma prediction block location
(xPb, yPb), the luma prediction block width nPbW, the luma prediction block height nPbH, the luma
location (xNbY, yNbY) set equal to (xNbBy, yNbBy), and the partition index partldx as inputs, and the
output is assigned to the prediction block availability flag availableBy.

— When availableBy is equal to TRUE and availableFlagL.XB is equal to 0, the following applies:

- If PredFlagL X[xNbBy][yNbBy] is equal to 1, and
DiffPicOrderCnt(RefPicListX[RefldxLX[xNbBy][yNbBy]], RefPicListX][refldxLX]) is equal
to 0, availableFlagL.XB is set equal to 1 and the following assignments are made:

mvLXB = MvLX[xNbB,][yNbBy] (8-157)
refldxB = RefldxL X[xNbBy][yNbBy] (8-158)

— Otherwise, when PredFlagLY[xNbB,][yNbB,] (with Y=!X) is equal to 1 and
DiffPicOrderCnt(RefPicListY[RefldxLY[xNbBy][yNbBy]], RefPicListX[refldxLX]) is equal
to 0, availableFlagLXB is set equal to 1 and the following assignments are made:

mvLXB = MvLY[xNbBy][yNbBy] (8-159)
refldxB = RefldxL Y[xNbBy][yNbBy] (8-160)

4. When isScaledFlagLX is equal to 0 and availableFlagLXB is equal to 1, availableFlagl. XA is set equal to 1
and the following applies:

mvLXA = mvLXB (8-161)

5. When isScaledFlagLX is equal to 0, availableFlagLXB is set equal to 0 and the following applies for
(xNbBy, yNbBy) from (xXNbBy, yNbBy) to (xXNbB,, yNbB;) or until availableFlagl. XB is equal to 1:

— The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the
luma location (xCb, yCb), the current luma coding block size nCbS, the luma location (xPb, yPb), the
luma prediction block width nPbW, the luma prediction block height nPbH, the luma location

126 Rec. ITU-T H.265 (04/2013)

(xNbY, yNbY) set equal to (xNbBy, yNbBy), and the partition index partldx as inputs, and the output is
assigned to the prediction block availability flag availableB,.

When availableBy is equal to TRUE and availableFlagLXB is equal to 0, the following applies:

If PredFlaglL X[xNbBy][yNbBy] is equal to 1 and
LongTermRefPic(currPic, currPb, refldxLX, RefPicListX) is equal to
LongTermRefPic(currPic, currPb, RefldxLX[xNbBy][yNbBy], RefPicListX), availableFlagLXB
is set equal to 1 and the following assignments are made:

mvLXB = MvLX[xNbBy][yNbBy] (8-162)
refldxB = RefldxLX[xNbBy][yNbBy] (8-163)
refPicListB = RefPicListX (8-164)
Otherwise, when PredFlagLY[xNbBy][yNbB,] (with Y =1!X) is equal to 1 and
LongTermRefPic(currPic, currPb, refldxLX, RefPicListX) is equal to

LongTermRefPic(currPic, currPb, RefldxLY| xNbBy][yNbBy], RefPicListY), availableFlagLXB
is set equal to 1 and the following assignments are made:

mvLXB = MvLY[xNbB][yNbBy] (8-165)

refldxB = RefldxLY[xNbBy][yNbB;] (8-166)

refPicListB = RefPicListY (8-167)
When availableFlagl. XB is equal to 1

DiffPicOrderCnt(refPicListB[refldxB], RefPicListX[refldxLX]) is not equal to 0, and both
refPicListB[refldxB] and RefPicListX][refldxLX] are short-term reference pictures, mvLXB is derived

as follows;
tx=(16384 +(Abs(td) >> 1))/td (8-168)
distScaleFactor = Clip3(—4096, 4095, (tb *tx +32) >> 6) (8-169)
mvLXB =Clip3(—32768, 32767, Sign(distScaleFactor * mvLXB) *
((Abs(distScaleFactor * mvLXB) + 127) >> 8)) (8-170)
where td and tb are derived as follows:
td = Clip3(—128, 127, DiffPicOrderCnt(currPic, refPicListB[refldxB])) (8-171)
tb = Clip3(—128, 127, DiffPicOrderCnt(currPic, RefPicListX][refldxLX])) (8-172)

8.5.3.2.7 Derivation process for temporal luma motion vector prediction

Inputs to this process are:

a luma location (xPb, yPb) specifying the top-left sample of the current luma prediction block relative to the top-
left luma sample of the current picture,

two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

a reference index refldxLX, with X being 0 or 1.

Outputs of this process are:

the motion vector prediction mvLXCol,

the availability flag availableFlagLXCol.

The variable currPb specifies the current luma prediction block at luma location (xPb, yPb).

The variables mvLXCol and availableFlagl. XCol are derived as follows:

If slice temporal mvp enabled flag is equal to 0, both components of mvLXCol are set equal to 0 and
availableFlagl. XCol is set equal to 0.

Otherwise, the following ordered steps apply:

Depending on the values of slice_type, collocated from 10 flag, and collocated ref idx, the variable colPic,
specifying the collocated picture, is derived as follows:

Rec. ITU-T H.265 (04/2013) 127

— If slice type is equal to B and collocated from 10 flag is equal to 0, colPic is set equal to
RefPicList1[collocated ref idx].

— Otherwise (slice_type is equal to B and collocated from 10 flag is equal to 1 or slice_type is equal to
P), colPic is set equal to RefPicList0[collocated ref idx].

2. The bottom right collocated motion vector is derived as follows:
xColBr = xPb + nPbW (8-173)
yColBr = yPb + nPbH (8-174)

— If yPb >> CtbLog2SizeY is equal to yColBr >> CtbLog2SizeY, yColBr is less than
pic_height in luma samples, and xColBr is less than pic_width in luma samples, the following
applies:

— The variable colPb specifies the luma prediction block covering the modified location given by
((xColBr >> 4) << 4, (yColBr >> 4) << 4) inside the collocated picture specified by colPic.

— The luma location (xColPb, yColPb) is set equal to the top-left sample of the collocated luma
prediction block specified by colPb relative to the top-left luma sample of the collocated picture
specified by colPic.

— The derivation process for collocated motion vectors as specified in clause 8.5.3.2.8 is invoked with
currPb, colPic, colPb, (xColPb, yColPb), and refldxLX as inputs, and the output is assigned to
mvLXCol and availableFlagLXCol.

— Otherwise, both components of mvLXCol are set equal to 0 and availableFlagL.XCol is set equal to 0.
3. When availableFlagL.XCol is equal to 0, the central collocated motion vector is derived as follows:
xColCtr =xPb + (nPbW >> 1) (8-175)
yColCtr =yPb + (nPbH >> 1) (8-176)

— The variable colPb specifies the luma prediction block covering the modified location given by
((xColCtr >> 4) << 4, (yColCtr >> 4) << 4) inside the colPic.

— The luma location (xColPb, yColPb) is set equal to the top-left sample of the collocated luma
prediction block specified by colPb relative to the top-left luma sample of the collocated picture
specified by colPic.

— The derivation process for collocated motion vectors as specified in clause 8.5.3.2.8 is invoked with
currPb, colPic, colPb, (xColPb, yColPb), and refldxLX as inputs, and the output is assigned to
mvLXCol and availableFlagL. XCol.

8.5.3.2.8 Derivation process for collocated motion vectors

Inputs to this process are:

— avariable currPb specifying the current prediction block,

— avariable colPic specifying the collocated picture,

— avariable colPb specifying the collocated prediction block inside the collocated picture specified by colPic,

— aluma location (xColPb, yColPb) specifying the top-left sample of the collocated luma prediction block specified
by colPb relative to the top-left luma sample of the collocated picture specified by colPic,

— areference index refldxLX, with X being 0 or 1.
Outputs of this process are:

— the motion vector prediction mvLXCol,

— the availability flag availableFlagLXCol.

The variable currPic specifies the current picture.

The arrays predFlagLXCol[x][y], mvLXCol[x][y], and refldxLXCol[x][y] are set equal to the corresponding
arrays of the collocated picture specified by colPic, PredFlagLX[x |[y], MVLX[x][y], and RefldxLX[x][y],
respectively, with X being the value of X this process is invoked for.

The variables mvLXCol and availableFlagl. XCol are derived as follows:

128 Rec. ITU-T H.265 (04/2013)

If colPb is coded in an intra prediction mode, both components of mvLXCol are set equal to 0 and
availableFlagL.XCol is set equal to 0.

Otherwise, the motion vector mvCol, the reference index refldxCol, and the reference list identifier listCol are
derived as follows:

If predFlagLOCol[xColPb][yColPb] is equal to 0, mvCol, refldxCol, and listCol are set equal to
mvL1Col[xColPb][yColPb], refldxL1Col[xColPb][yColPb], and L1, respectively.

Otherwise, if predFlagl.0Col[xColPb][yColPb] is equal to 1 and predFlagl.1Col[xColPb][yColPb] is
equal to 0, mvCol, refldxCol, and listCol are set equal to mvLOCol[xColPb][yColPb],
refldxLOCol[xColPb][yColPb], and LO, respectively.

Otherwise (predFlagL.OCol[xColPb][yColPb] is equal to 1 and predFlagl.1Col[xColPb][yColPb] is equal
to 1), the following assignments are made:

— If DiffPicOrderCnt(aPic, currPic) is less than or equal to 0 for every picture aPic in every reference
picture list of the current slice, mvCol, refldxCol, and listCol are set equal to
mvLXCol[xColPb][yColPb], refldxL.XCol[xColPb][yColPb] and LX, respectively.

— Otherwise, mvCol, refldxCol, and listCol are set equal to mvLNCol[xColPb][yColPb],
refldxLNCol[xColPb][yColPb], and LN, respectively, with N being the value of
collocated from 10 flag.

and mvLXCol and availableFlagL.XCol are derived as follows:

If LongTermRefPic(currPic, currPb, refldxLX, LX) is not equal to LongTermRefPic(colPic, colPb,
refldxCol, listCol), both components of mvLXCol are set equal to 0 and availableFlagL. XCol is set equal to 0.

Otherwise, the variable availableFlaglL. XCol is set equal to 1, refPicListCol[refldxCol] is set to be the picture
with reference index refldxCol in the reference picture list listCol of the slice containing prediction block
currPb in the picture colPic, and the following applies:

colPocDiff = DiffPicOrderCnt(colPic, refPicListCol[refldxCol]) (8-177)
currPocDiff = DiffPicOrderCnt(currPic, RefPicListX[refldxLX]) (8-178)

— If RefPicListX][refldxLX] is a long-term reference picture, or colPocDiff is equal to currPocDiff,
mvLXCol is derived as follows:

mvLXCol = mvCol (8-179)
— Otherwise, mvLXCol is derived as a scaled version of the motion vector mvCol as follows:

tx =(16384+ (Abs(td) >> 1))/td (8-180)
distScaleFactor = Clip3(—4096, 4095, (tb *tx +32) >> 6) (8-181)
mvLXCol = Clip3(—32768, 32767, Sign(distScaleFactor * mvCol) *

((Abs(distScaleFactor * mvCol) + 127) >> 8)) (8-182)

where td and tb are derived as follows:

td = Clip3(—128, 127, colPocDiff) (8-183)
tb = Clip3(—128, 127, currPocDiff) (8-184)

8.5.3.2.9 Derivation process for chroma motion vectors

Input to this process is a luma motion vector mvLX.

Output of this process is a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector.

For the derivation of the chroma motion vector mvCLX, the following applies:

mvCLX[0]=mvLX[0] (8-185)
mvCLX[1]=mvLX[1] (8-186)

Rec. ITU-T H.265 (04/2013) 129

8.5.3.3 Decoding process for inter prediction samples

8.5.3.3.1 General
Inputs to this process are:

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— aluma location (xBl, yBl) specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

— the luma motion vectors mvL0 and mvL]I,

— the chroma motion vectors mvCL0O and mvCL]1,

— the reference indices refldxL.0 and refldxL1,

— the prediction list utilization flags, predFlagL0, and predFlagL1.

Outputs of this process are:

— an (nCbSy)x(nCbS,) array predSamples; of luma prediction samples, where nCbS; is derived as specified below,

— an (nCbSc)x(nCbS¢) array preSamplesc, of chroma prediction samples for the component Cb, where nCbSc is
derived as specified below,

— an (nCbSc)x(nCbS¢) array predSamplesc, of chroma residual samples for the component Cr, where nCbS¢ is derived
as specified below.

The variable nCbS; is set equal to nCbS and the variable nCbS¢ is set equal to nCbS >> 1.

Let predSamplesLO; and predSamplesL1; be (nPbW)x(nPbH) arrays of predicted luma sample values and
predSampleLOc,, predSampleL 1y, predSampleLOc,, and predSampleL1¢, be (nPbW / 2)x(nPbH / 2) arrays of predicted
chroma sample values.

For X being each of 0 and 1, when predFlagL.X is equal to 1, the following applies:

— The reference picture consisting of an ordered two-dimensional array refPicLX; of luma samples and two ordered
two-dimensional arrays refPicLXcy, and refPicLXc, of chroma samples is derived by invoking the process specified
in clause 8.5.3.3.2 with refldxLX as input.

— The arrays predSamplesLX;, predSamplesLXc,, and predSamplesL X, are derived by invoking the fractional
sample interpolation process specified in clause 8.5.3.3.3 with the luma locations (xCb, yCb) and (xBl, yBl), the
luma prediction block width nPbW, the luma prediction block height nPbH, the motion vectors mvLX and mvCLX,
and the reference arrays refPicL. X, refPicL Xy, and refPicLXc; as inputs.

The array predSample; of the prediction samples of luma component is derived by invoking the weighted sample
prediction process specified in clause 8.5.3.3.4 with the luma prediction block width nPbW, the luma prediction block
height nPbH, and the sample arrays predSamplesLO; and predSamplesL1;, and the variables predFlaglL0, predFlagL1,
refldxL0, refldxL1, and cldx equal to 0 as inputs.

The array predSamplec, of the prediction samples of component Cb is derived by invoking the weighted sample
prediction process specified in clause 8.5.3.3.4 with the chroma prediction block width nPbW, set equal to nPbW / 2,
the chroma prediction block height nPbHc, set equal to nPbH /2, the sample arrays predSamplesLOc, and
predSamplesL1cy, and the variables predFlagL0, predFlagl.1, refldxL0, refldxL1, and cldx equal to 1 as inputs.

The array predSamplec, of the prediction samples of component Cr is derived by invoking the weighted sample
prediction process specified in clause 8.5.3.3.4 with the chroma prediction block width nPbW¢; set equal to nPbW / 2,
the chroma prediction block height nPbH¢, set equal to nPbH/2, the sample arrays predSamplesLOc, and
predSamplesL1c,, and the variables predFlagL0, predFlagLl.1, refldxL0, refldxL1, and cldx equal to 2 as inputs.

8.5.3.3.2 Reference picture selection process
Input to this process is a reference index refldxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLX; and two
two-dimensional arrays of chroma samples refPicLXc, and refPicL.Xc,.

130 Rec. ITU-T H.265 (04/2013)

The output reference picture RefPicListX[refldxLX] consists of a pic width in luma samples by
pic_height in luma_samples array of luma samples refPicLX; and two PicWidthInSamplesC by PicHeightInSamplesC
arrays of chroma samples refPicLX¢, and refPicL.Xc;.

The reference picture sample arrays refPicLX;, refPicLXcy, and refPicLXc, correspond to decoded sample arrays Sp,
Sce, and Sc; derived in clause 8.7 for a previously-decoded picture.

8.5.3.3.3 Fractional sample interpolation process

8.5.3.3.3.1 General
Inputs to this process are:

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture

— aluma location (xBl, yBl) specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block

— aluma motion vector mvLX given in quarter-luma-sample units

— achroma motion vector mvCLX given in eighth-chroma-sample units

— the selected reference picture sample arrays refPicLX;, refPicL Xy, and refPicLXc,.

Outputs of this process are:

— an (nPbW)x(nPbH) array predSampleLX; of prediction luma sample values

— two (nPbW / 2)x(nPbH / 2) arrays predSampleL Xy, and predSampleL X, of prediction chroma sample values.

The location (xPb, yPb) given in full-sample units of the upper-left luma samples of the current prediction block
relative to the upper-left luma sample location of the given reference sample arrays is derived as follows:

xPb = xCb + xBl (8-187)
yPb = yCb + yBl (8-188)

Let (xInt, yInt;) be a luma location given in full-sample units and (xFrac;, yFrac,) be an offset given in quarter-
sample units. These variables are used only inside this clause for specifying fractional-sample locations inside the
reference sample arrays refPicLX;, refPicLXcy, and refPicLXc,.

For each luma sample location (xp=0.nPbW — 1,y =0..nPbH —1) inside the prediction luma sample array
predSampleLX, the corresponding prediction luma sample value predSampleLX [x, y.] is derived as follows:

— The variables xInt;, yInt;, xFrac;, and yFrac| are derived as follows:

xIntp =xPb+ (mvLX[0] >> 2)+x. (8-189)
yIntp =yPb+ (mvLX[1] >> 2)+y. (8-190)
xFracp =mvLX[0] & 3 (8-191)
yFracp, =mvLX[1] &3 (8-192)

— The prediction luma sample value predSampleL. X[x;, yi] is derived by invoking the process specified in clause
8.5.3.3.3.2 with (xInty, yInt;), (xFracy, yFrac), and refPicLX as inputs.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in one-
eighth sample units. These variables are used only inside this clause for specifying general fractional-sample locations
inside the reference sample arrays refPicL Xy, and refPicLXc;.

For each chroma sample location (xc =0.nPbW /2 —1,yc=0.nPbH /2 — 1) inside the prediction chroma sample
arrays predSampleL X, and predSampleLXc, the corresponding prediction chroma sample values
predSampleLXcy[Xc, yc] and predSampleLXc,[Xc, yc | are derived as follows:

— The variables xIntc, yIntc, xFracc, and yFracc are derived as follows:

xIntc=(xPb/2)+ (mvCLX[0] >> 3)+Xxc (8-193)
yIntc=(yPb/2)+(mvCLX[1] >> 3)+yc (8-194)
xFracc=mvLX[0] & 7 (8-195)

Rec. ITU-T H.265 (04/2013) 131

yFracc=mvLX[1] & 7 (8-196)

— The prediction sample value predSampleLXcy[Xc, yc | is derived by invoking the process specified in clause
8.5.3.3.3.3 with (xIntc, yIntc), (xFracc, yFracc), and refPicL X, as inputs.

— The prediction sample value predSampleLXc,[Xc, yc] is derived by invoking the process specified in clause
8.5.3.3.3.3 with (xIntc, yIntc), (xFracc, yFracc), and refPicL X, as inputs.

8.5.3.3.3.2 Luma sample interpolation process

Inputs to this process are:

— aluma location in full-sample units (xInt;, yInt;),

— aluma location in fractional-sample units (xFrac;, yFrac),
— the luma reference sample array refPicLX;.

Output of this process is a predicted luma sample value predSampleLX; [xi, yr]

Al Ao | o1 | Doa | Coa | AL Az
Ao Aoo | @00 | oo | Coo | Aro Az
d.po doo | €00 | foo | Goo | dio dyo
h.io hoo | Too | Joo | Koo | 1o hoo
Nio Noo | Poo | Yoo | Too | Nio Nap
A A1 | @01 | o1 | Cox | Ara Azi
Aip Aoz | Qo2 | Doz | Cop | Arz Ay

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation

In Figure 8-4, the positions labelled with upper-case letters A; j within shaded blocks represent luma samples at full-
sample locations inside the given two-dimensional array refPicLX of luma samples. These samples may be used for
generating the predicted luma sample value predSampleLX,[x;, y.]. The locations (XA, j, yA; ;) for each of the
corresponding luma samples A, j inside the given array refPicL X of luma samples are derived as follows:

xA; ;= Clip3(0, pic_width_in_luma_samples — 1, xInt, +1i) (8-197)
yA; ;= Clip3(0, pic_height_in_luma_samples — 1, yInt, +j) (8-198)

The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-pel sample
fractional locations. The luma location offset in fractional-sample units (xFrac;, yFrac,) specifies which of the
generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value

132 Rec. ITU-T H.265 (04/2013)

predSampleLX [x;, yp]. This assignment is as specified in Table 8-7. The value of predSampleLXy[x;, y.] is the
output.

The variables shiftl, shift2, and shift3 are derived as follows:

— The variable shiftl is set equal to BitDepthy — 8, the variable shift2 is set equal to 6, and the variable shift3 is set
equal to 14 — BitDepthy.

Given the luma samples A, j at full-sample locations (XA, j, yAi), the luma samples ag to 1o at fractional sample
positions are derived as follows:

— The samples labelled ag o, boo, o0, doo, hoo, and ngy are derived by applying an 8-tap filter to the nearest integer
position samples as follows:

a00=(~A 30+ 4% A 00— 10%A 1o +58*% Ago+17% Ajg—5* Ayo+Asg) >> shiftl (8-199)
boo=(—As0T4*A 0~ 11%A 1o+40% Agg+40* Ao~ 11 % Ayg+ 4% Aso— Ayy) >> shiftl (8-200)
Coo=(A 20— 5*A 10+ 17% Agg+58* Ao~ 10 * Ayg+4* Ayg—Ayg) >> shiftl (8-201)
doo=(—Ag3+4%Ag 2~ 10% Ag_; +58* Agg+ 17 % Agy =5 * Agy + Ags) >> shiftl (8-202)
hoo=(—Ag3+4%Ag 5~ 11%Ag 1 +40% Agg+40* Ag; — 11 % Ags+4% Ags — Agy) >> shifil (8-203)
N00=(Ag2—5%Ag 1+ 17 % Agg+58 % Agy — 10 * Ags +4 * Ags — Ags) >> shiftl (8-204)

— The samples labelled e, 10,0, Po.0> T0.0, Jo.0» 90.0» 0.0, K00, and 1o are derived by applying an 8-tap filter to the samples
o, bo; and co; with 1 =—3..4 in the vertical direction as follows:

€o=("a3+t4%a,,—10*ag_; +58*agy+ 17 *ag; =5 *ag, +ag;) >> shift2 (8-205)
lpo=(—ap3T4%ay— 11 *ay1+40*agy+40*ag; — 11 *ag, +4 *ag;—aps) >> shift2 (8-200)
Poo=(a02—5*ag1+ 17 *agp+58*ag; —10*ap, +4 *ag;—ap,) >> shift2 (8-207)
foo=("bo3+4*by—10* by +58 *byg+ 17 ¥*bg; —5 * byp +bos) >> shift2 (8-208)
Joo=("bp3+4*by_,—11*by_; +40 *bgy+40*by;— 11 *bgy+4 *by;—bgs) >> shift2 (8-209)
Qoo =1(bo2—5%bg_1+17 *bgo+ 58 *by; =10 * bgy+4 *bys—bps) >> shift2 (8-210)
go=(—Co3+t4*co,—10%*co_; +58*coo+ 17 *coy1 =5 *contco3) >> shift2 (8-211)
koo =(—co—3 T4 *cop— 11 *co_; +40 * coo+40 *coy — 11 *cop+4 *co3—coq) >> shift2 (8-212)
Too=(Co2—5%co1+17*cop+58*co; —10*cop+4*cos—coqa) >> shift2 (8-213)

Table 8-7 — Assignment of the luma prediction sample predSampleLX, [x1, yy. |

xFracL 0 o(ojof1|rj{1ry1{212{212{3(3(3|3
yFracL 0 rj213(0f(1(2(3|0|1(2(3]0]1]2]|3
predSampleLX; [x,yp] | A << shift3 |d|h | n|a|e|i|p|b|f|j|lq|lc|g|k]|T

8.5.3.3.3.3 Chroma sample interpolation process

Inputs to this process are:

— achroma location in full-sample units (xIntc, ylntc),

— achroma location in fractional-sample units (xFracc, yFracc),
— the chroma reference sample array refPicLXc.

Output of this process is a predicted chroma sample value predSampleLXc[Xc, yc |

Rec. ITU-T H.265 (04/2013) 133

hag_ 1 |hbg.1|hco.1 [hdo.1|heg 1| hfo 1 [NGo.1|hho 1

ah.10] Boo | @bogo | @Cop | adoo | @€op | afpo | @doo | @hoo | Bio

bh_1g] bagg | bbgo | bCoo | bdoo | beog | bfog | bYoo | bhoo | baso

ch_10| cago | Choo | CCopo | Cdoo | CE0o | Cfoo | €00 | Choo | CAL0

dh_y o] dago | dbgg | dcog | ddgo | degp | dfpo | dgoo | dhgo | das

eh_yo]eago | ebgo | €Cop | €doo | €€0p | €foo | €000 | €hoo | €10

fhoio| fago | fboo | fCoo | fdoo | feoo | ffoo | f9o0 | Thoo | fa

gh.10] 90,0 | 9000 | 9Co,0 | 9do,o | 9€0,0 | Ifo0 | 9900 | GNoo | 91,0

hh_1ol hago [hbgg | hcop | hdgo | hego | hfoo [hgoo | hhog | hasp

Bos [@bo1 | @Cgq |adoy |@€gq | afor [@Qos | @hos | Bia

Figure 8-5 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for eighth sample chroma interpolation

In Figure 8-5, the positions labelled with upper-case letters B; ; within shaded blocks represent chroma samples at full-
sample locations inside the given two-dimensional array refPicLX¢ of chroma samples. These samples may be used for
generating the predicted chroma sample value predSampleLX¢[X¢, yc]. The locations (xB; j, yB; ;) for each of the
corresponding chroma samples B; j inside the given array refPicLXc of chroma samples are derived as follows:

xB; ;= Clip3(0, (pic_width_in_luma_samples / SubWidthC) — 1, xIntc +1) (8-214)
yBi,j = Clip3(0, (pic_height_in_luma_samples / SubHeightC) — 1, yIntc +j) (8-215)

The positions labelled with lower-case letters within un-shaded blocks represent chroma samples at eighth-pel sample
fractional locations. The chroma location offset in fractional-sample units (xFracc, yFracc) specifies which of the
generated chroma samples at full-sample and fractional-sample locations is assigned to the predicted chroma sample
value predSampleLX¢[Xc, yc]. This assignment is as specified in Table 8-8. The output is the value of
predSampleLX[xc, yc |-

The variables shiftl, shift2, and shift3 are derived as follows:

— The variable shiftl is set equal to BitDepthc — 8, the variable shift2 is set equal to 6, and the variable shift3 is set
equal to 14 — BitDepthc.

Given the chroma samples B; j at full-sample locations (xB; j, yB; j), the chroma samples aby, to hhg, at fractional
sample positions are derived as follows:

— The samples labelled abg, acy, ady, aeo o, afoe, agooe, and ahgy are derived by applying a 4-tap filter to the nearest
integer position samples as follows:

abgo=(—2*B_j o+ 58 * Byy+ 10 * B,y — 2 * B,y) >> shiftl (8-216)
acoo=(—4*B_ 1o+ 54*Byy+ 16 *Byg—2 * Byy) >> shiftl (8-217)
adyo=(—6*B_10+46 * Bog+ 28 * By~ 4 * By,) >> shiftl (8-218)
acoo=(—4*B_1o+36*Byy+36*Byo—4*B,y) >> shiftl (8-219)
afyo=(—4* B0 +28 * Byo+ 46 * By — 6 * By) >> shiftl (8-220)

134 Rec. ITU-T H.265 (04/2013)

agoo = (-2 * B*I,O +16* BO,O + 54 * Bl,() —4* Bz,o) >> ghiftl
aho,() = (-2 * B—I,O +10* B0,0 +58 * Bl,() —2%* Bz’o) >> ghiftl

(8-221)
(8-222)

— The samples labelled bag g, cag, dag, €0, fage, gao, and hagy are derived by applying a 4-tap filter to the nearest

integer position samples as follows:
bagy=(—2*By_ +58 * Bop+ 10 * By; —2 * By,) >> shiftl
cago=(—4*Bo; +54*Boo+ 16 * By; —2 * By,) >> shiftl
dagy=(—6*By_; +46 * Boy+28 * By —4 * By,) >> shiftl
eago=(—4*Bo_1 +36*Boo+36*Bg; —4*Bg,) >> shiftl
fago=(—4*Bo-1 +28 * Bgy+46 * By; — 6 * By,) >> shiftl
ga0=(—2%*Bo_; +16*Boy+ 54 *By; —4 *Bjp) >> shiftl
hagy=(—2*By-; + 10 * Bgp+ 58 * By —2 * By,) >> shiftl

(8-223)
(8-224)
(8-225)
(8-226)
(8-227)
(8-228)
(8-229)

— The samples labelled bXg o, X0, dX0,0, €Xo0,0, £X0.0, X0, and hXgp for X being replaced by b, c, d, e, f, g, and h,
respectively, are derived by applying an 4-tap filter to the intermediate values aXy; with i=—1..2 in the vertical

direction as follows:
bXpo=(—2*aX,-; +58 ¥aXpo+ 10 * aX,; —2 * aX(,) >> shift2
cXoo=(—4*aXo 1+ 54 *aXo+ 16 *aXy; —2 * aX,,) >> shift2
dXoo=(—6 *aX,_; +46 * aXo+28 *aXo; —4 * aXp,) >> shift2
eXoo=(—4*aXo_1+36*aXpo+36*aX,; —4*aX,,) >> shift2
Xoo=(—4*aXo-; +28 ¥ aX(o+46 * aXp; — 6 * aXy,) >> shift2
gXoo=(—2*aXy 1 +16*aXgo+ 54 *aXo; —4 * aXp,) >> shift2
hXpp=(—2*aXo-;+ 10 * aX(o+ 58 * aXp; —2 * aX(,) >> shift2

(8-230)
(8-231)
(8-232)
(8-233)
(8-234)
(8-235)
(8-236)

Table 8-8 — Assignment of the chroma prediction sample predSampleLX¢[xc, yc | for (X, Y) being replaced by

(1,b),(2,¢),(3,d),(4,¢),(5,f),(6,g), and (7, h), respectively

xFracC 0 Oo(o0|O0O]O0O|O0O]O0]O
yFracC 0 1 2 3 4 15| 6 7

predSampleLX¢[xc, yc] | B << shift3 | ba | ca | da | ea | fa | ga | ha

xFracC X X1 X | X | X [|X]| X | X
yFracC 0 1 2 3 4 15| 6 7
predSampleLXC| x¢, yc | aY bY | cY | dY | eY | fY | gY | hY

8.5.3.3.4 Weighted sample prediction process
8.5.3.3.4.1 General

Inputs to this process are:

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,
— two (nPbW)x(nPbH) arrays predSamplesL.O and predSamplesL1,

— the prediction list utilization flags, predFlagL.0, and predFlagL1,

— the reference indices refldxL0 and refldxL1,

— avariable cldx specifying colour component index.

Output of this process is the (nPbW)x(nPbH) array predSamples of prediction sample values.

Rec. ITU-T H.265 (04/2013)

135

The variable bitDepth is derived as follows:

— Ifcldx is equal to 0, bitDepth is set equal to BitDepthy.

— Otherwise, bitDepth is set equal to BitDepthc.

The variable weightedPredFlag is derived as follows:

— Ifslice type is equal to P, weightedPredFlag is set equal to weighted pred flag.

— Otherwise (slice_type is equal to B), weightedPredFlag is set equal to weighted bipred flag.
The following applies:

— If weightedPredFlag is equal to 0, the array predSample of the prediction samples is derived by invoking the default
weighted sample prediction process as specified in clause 8.5.3.3.4.2 with the luma prediction block width nPbW,
the luma prediction block height nPbH, two (nPbW)x(nPbH) arrays predSamplesLO and predSamplesL1, the
prediction list utilization flags predFlagl0 and predFlagl1, and the bit depth bitDepth as inputs.

— Otherwise (weightedPredFlag is equal to 1), the array predSample of the prediction samples is derived by invoking
the weighted sample prediction process as specified in clause 8.5.3.3.4.3 with the luma prediction block width
nPbW, the luma prediction block height nPbH, two (nPbW)x(nPbH) arrays predSamplesLO and predSamplesL1, the
prediction list utilization flags predFlagl.0 and predFlagL1, the reference indices refldxL0O and refldxL1, the colour
component index cldx, and the bit depth bitDepth as inputs.

8.5.3.3.4.2 Default weighted sample prediction process

Inputs to this process are:

two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

two (nPbW)x(nPbH) arrays predSamplesL.0 and predSamplesL1,
— the prediction list utilization flags, predFlagL.0, and predFlagL.1,

a bit depth of samples, bitDepth.
Output of this process is the (nPbW)x(nPbH) array predSamples of prediction sample values.
Variables shiftl, shift2, offsetl, and offset2 are derived as follows:
— The variable shiftl is set equal to 14 — bitDepth and the variable shift2 is set equal to 15 — bitDepth.
— The variable offsetl is derived as follows:
— Ifshiftl is greater than 0, offsetl is set equal to 1 << ('shiftl —1).
— Otherwise (shiftl is equal to 0), offset] is set equal to 0.
— The variable offset2 is set equal to 1 << (shift2 —1).

Depending on the values of predFlagl0 and predFlagll, the prediction samples predSamples[x][y] with
x =0..nPbW — 1 and y = 0..nPbH — 1 are derived as follows:

— If predFlagl0 is equal to 1 and predFlagL1 is equal to 0, the prediction sample values are derived as follows:
predSamples[x][y | = Clip3(0, (1 << bitDepth) — 1, (predSamplesLO[x][y] + offsetl) >> shiftl) (8-237)

— Otherwise, if predFlagl0 is equal to 0 and predFlagL1 is equal to 1, the prediction sample values are derived as
follows:

predSamples[x][y] = Clip3(0, (1 << bitDepth) — 1, (predSamplesL1[x][y] + offsetl) >> shiftl) (8-238)

— Otherwise (predFlagL0 is equal to 1 and predFlagl1 is equal to 1), the prediction sample values are derived as
follows:

predSamples[x][y] = Clip3(0, (1 << bitDepth) —1,
(predSamplesLO[x][y] + predSamplesL1[x][y] + offset2) >> shift2) (8-239)

8.5.3.3.4.3 Explicit weighted sample prediction process

Inputs to this process are:

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,
— two (nPbW)x(nPbH) arrays predSamplesL.0 and predSamplesL1,

136 Rec. ITU-T H.265 (04/2013)

— the prediction list utilization flags, predFlagL0, and predFlagL.1,

the reference indices, refldxL0 and refldxL1,

a variable cldx specifying colour component index,

— abit depth of samples, bitDepth.

Output of this process is the (nPbW)x(nPbH) array predSamples of prediction sample values.
The variable shiftl is set equal to 14 — bitDepth.

The variables log2Wd, 00, o1, and w0, w1 are derived as follows:

— Ifcldx is equal to 0 for luma samples, the following applies:

log2Wd = luma _log2 weight denom + shiftl (8-240)
w0 = LumaWeightLO[refldxLO0] (8-241)
w1 = LumaWeightL1[refldxL1] (8-242)
00 =luma_offset 10[refldxL0]* (1 << (bitDepth—8)) (8-243)
ol =luma offset 11[refldxL1]* (1 << (bitDepth—8)) (8-244)
— Otherwise (cldx is not equal to 0 for chroma samples), the following applies:
log2Wd = ChromalLog2WeightDenom + shiftl (8-245)
w0 = ChromaWeightLO[refldxLO][cldx — 1] (8-2406)
w1 = ChromaWeightL1[refldxL1][cldx — 1] (8-247)
00 = ChromaOffsetLO[refldxLO J[cIldx — 1] * (1 << (bitDepth—8)) (8-248)
0l = ChromaOffsetL1[refldxL1 J[cldx — 1] * (1 << (bitDepth—8)) (8-249)

The prediction sample predSamples[x][y] with x = 0.nPbW — 1 and y = 0..nPbH — 1 are derived as follows:
— Ifthe predFlagl0 is equal to 1 and predFlagL1 is equal to 0, the prediction sample values are derived as follows:

if(log2Wd >= 1)
predSamples[x][y] = Clip3(0, (1 << bitDepth) — 1,
((predSamplesLO[x][y] * w0 + 2"°€2V4" 1) >> 1og2Wd) + 00) (8-250)
else
predSamples[x][y] = Clip3(0, (1 << bitDepth) — 1, predSamplesLO[x][y] * w0 + 00)

— Otherwise, if the predFlagL0 is equal to 0 and predFlagL1 is equal to 1, the prediction sample values are derived as
follows:

if(log2Wd >= 1)
predSamples[x][y] = Clip3(0, (1 << bitDepth) — 1,
((predSamplesL1[x [y]* wl +2"°¢V4" 1) >> Jog2Wd) + ol) (8-251)
else
predSamples[x][y] = Clip3(0, (1 << bitDepth) — 1, predSamplesL1[x][y] * wl + ol)

— Otherwise (predFlaglL0 is equal to 1 and predFlagL1 is equal to 1), the prediction sample values are derived as
follows:

predSamples[x][y] =Clip3(0, (1 << bitDepth) —1,
(predSamplesLO [x][y] * wO + predSamplesL1[x][y] * wl +
((00+o0l+1) << log2Wd)) >> (log2Wd+1)) (8-252)

8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode
8.5.4.1 General
Inputs to this process are:

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current luma coding block.

Rec. ITU-T H.265 (04/2013) 137

Outputs of this process are:

— an (nCbSy)x(nCbS,) array resSamples; of luma residual samples, where nCbS is derived as specified below,

— an (nCbSc)x(nCbSc) array resSamplesc, of chroma residual samples for the component Cb, where nCbSc is derived
as specified below,

— an (nCbS¢)x(nCbSc) array resSamplesc, of chroma residual samples for the component Cr, where nCbSc is derived
as specified below.

The variable nCbS, is set equal to 1 << 1log2CbSize and the variable nCbS¢ is set equal to nCbS; >> 1.

Let resSamples; be an (nCbSy)x(nCbS;) array of luma residual samples and let resSamplesc, and resSamplesc, be two
(nCbS¢)x(nCbSc) arrays of chroma residual samples.

Depending on the value of rqt_root_cbf, the following applies:

If rqt root cbf is equal to 0 or skip flag[xCb][yCb] is equal to 1, all samples of the (nCbSy)x(nCbS,) array

resSamples; and all samples of the two (nCbS¢)x(nCbSc) arrays resSamplesc, and resSamplesc, are set equal to 0.

Otherwise (rqt_root_cbf is equal to 1), the following ordered steps apply:

The decoding process for luma residual blocks as specified in clause 8.5.4.2 below is invoked with the luma
location (xCb, yCb), the luma location (xB0, yB0) set equal to (0, 0), the variable log2TrafoSize set equal
to log2CbSize, the variable trafoDepth set equal to 0, the variable nCbS set equal to nCbS;, and the
(nCbSL)x(nCbSy) array resSamples as inputs, and the output is a modified version of the (nCbSy)x(nCbSy)
array resSamples .

. The decoding process for chroma residual blocks as specified in clause 8.5.4.3 below is invoked with the luma

location (xCb, yCb), the luma location (xB0, yB0) set equal to (0, 0), the variable log2TrafoSize set equal
to log2CbSize, the variable trafoDepth set equal to 0, the variable cldx set equal to 1, the variable nCbS set
equal to nCbSc, and the (nCbS¢)x(nCbSc) array resSamplesc, as inputs, and the output is a modified version of
the (nCbS¢)x(nCbS¢) array resSamplescy.

. The decoding process for chroma residual blocks as specified in clause 8.5.4.3 below is invoked with the luma

location (xCb, yCb), the luma location (xB0O, yB0) set equal to (0, 0), the variable log2TrafoSize set equal
to log2CbSize, the variable trafoDepth set equal to 0, the variable cldx set equal to 2, the variable nCbS set
equal to nCbS¢, and the (nCbSc)x(nCbSc) array resSamplesc; as inputs, and the output is a modified version of
the (nCbS¢)x(nCbS¢) array resSamplesc;.

8.5.4.2 Decoding process for luma residual blocks

Inputs to this process are:

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— a luma location (xB0, yBO0) specifying the top-left sample of the current luma block relative to the top-left sample
of the current luma coding block,

— avariable log2TrafoSize specifying the size of the current luma block,

— avariable trafoDepth specifying the hierarchy depth of the current luma block relative to the luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

an (nCbS)x(nCbS) array resSamples of luma residual samples.

Output of this process is a modified version of the (nCbS)x(nCbS) array of luma residual samples.

Depending on the value of split_transform_flag[xCb + xB0][yCb + yBO0][trafoDepth], the following applies:

— Ifsplit_transform_flag[xCb + xBO0][yCb + yBO][trafoDepth] is equal to 1, the following ordered steps apply:

1.

138

The variables xB1 and yB1 are derived as follows:
— The variable xB1 is set equal to xB0 + (1 << (log2TrafoSize —1)).
— The variable yBl1 is set equal to yBO + (1 << (log2TrafoSize —1)).

The decoding process for luma residual blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB0, yBO), the variable log2TrafoSize set equal to log2TrafoSize — 1, the

Rec. ITU-T H.265 (04/2013)

variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as
inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

3. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB1, yBO), the variable log2TrafoSize set equal to log2TrafoSize — 1, the
variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as
inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

4. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB0, yB1), the variable log2TrafoSize set equal to log2TrafoSize — 1, the
variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as
inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

5. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB1, yB1), the variable log2TrafoSize set equal to log2TrafoSize — 1, the
variable trafoDepth set equal to trafoDepth + 1, the variable nCbS, and the (nCbS)x(nCbS) array resSamples as
inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

Otherwise (split_transform_flag[xCb + xBO0][yCb + yBO][trafoDepth] is equal to 0), the following ordered steps
apply:
1. The variable nTbS is set equal to 1 << log2TrafoSize.

2. The scaling and transformation process as specified in clause 8.6.2 is invoked with the luma location
(xCb + xB0, yCb + yB0), the variable trafoDepth, the variable cldx set equal to 0, and the transform size
trafoSize set equal to nTbS as inputs, and the output is an (nTbS)x(nTbS) array transformBlock.

3. The (nCbS)x(nCbS) residual sample array of the current coding block resSamples is modified as follows:
resSamples[xBO + i, yBO + j] = transformBlock] 1, j], with i=0..nTbS — 1, j=0..nTbS — 1 (8-253)

8.5.4.3 Decoding process for chroma residual blocks

Inputs to this process are:

a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

a luma location (xB0, yB0) specifying the top-left luma sample of the current chroma block relative to the top-left
sample of the current luma coding block,

a variable log2TrafoSize specifying the size of the current chroma block in luma samples,

a variable trafoDepth specifying the hierarchy depth of the current chroma block relative to the chroma coding
block,

a variable cldx specifying the chroma component of the current block,
a variable nCbS specifying the size of the current chroma coding block,

an (nCbS)x(nCbS) array resSamples of chroma residual samples.

Output of this process is a modified version of the (nCbS)x(nCbS) array of chroma residual samples.

The variable splitChromaFlag is derived as follows:

If split_transform_flag[xCb + xB0][yCb + yBO][trafoDepth] is equal to 1 and log2TrafoSize is greater than 3,
splitChromaFlag is set equal to 1.

Otherwise (split_transform_flag[xCb + xB0][yCb + yBO0][trafoDepth] is equal to 0 or log2TrafoSize is equal to
3), splitChromaFlag is set equal to 0.

Depending on the value of splitChromaFlag, the following applies:

If splitChromaFlag is equal to 1, the following ordered steps apply:

1. The variables xB1 and yB1 are derived as follows:
— The variable xB1 is set equal to xB0 + (1 << (log2TrafoSize —1)).
— The variable yBI1 is set equal to yBO + (1 << (log2TrafoSize —1)).

2. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB0, yBO), the variable log2TrafoSize set equal to log2TrafoSize — 1, the

Rec. ITU-T H.265 (04/2013) 139

variable trafoDepth set equal to trafoDepth + 1, the variable cldx, the variable nCbS, and the (nCbS)x(nCbS)
array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

3. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB1, yBO), the variable log2TrafoSize set equal to log2TrafoSize — 1, the
variable trafoDepth set equal to trafoDepth + 1, the variable cldx, the variable nCbS, and the (nCbS)x(nCbS)
array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

4. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB0, yB1), the variable log2TrafoSize set equal to log2TrafoSize — 1, the
variable trafoDepth set equal to trafoDepth + 1, the variable cldx, the variable nCbS, and the (nCbS)x(nCbS)
array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

5. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location
(xCb, yCb), the luma location (xB1, yB1), the variable log2TrafoSize set equal to log2TrafoSize — 1, the
variable trafoDepth set equal to trafoDepth + 1, the variable cldx, the variable nCbS, and the (nCbS)x(nCbS)
array resSamples as inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples.

— Otherwise (splitChromaFlag is equal to 0), the following ordered steps apply:
1. The variable nTbS is set equal to 1 << (log2TrafoSize —1).

2. The scaling and transformation process as specified in clause 8.6.2 is invoked with the luma location
(xCb + xBO0, yCb + yBO0), the variable trafoDepth, the variable cldx, and the transform size trafoSize set equal
to nTbS as inputs, and the output is an (nTbS)x(nTbS) array transformBlock.

3. The (nCbS)x(nCbS) residual sample array of the current coding block resSamples is modified as follows, for
i=0.nTbS —1,j=0.nTbS — 1:

resSamples[(xCb+xB0)/2+1, (yCb+yB0)/2+j]=transformBlock[1, j] (8-254)
8.6 Scaling, transformation and array construction process prior to deblocking filter process

8.6.1 Derivation process for quantization parameters

Input to this process is a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block
relative to the top-left luma sample of the current picture.
In this process, the variable Qpy, the luma quantization parameter Qp'y, and the chroma quantization parameters Qp’cy,

and Qp'c; are derived.

The luma location (xQg, yQg), specifies the top-left luma sample of the current quantization group relative to the
top-left luma sample of the current picture. The horizontal and vertical positions xQg and yQg are set equal to
xCb — (xCb & ((1 << Log2MinCuQpDeltaSize) — 1)) and
yCb — (yCb & ((1 << Log2MinCuQpDeltaSize) — 1)), respectively. The luma size of a quantization group,
Log2MinCuQpDeltaSize, determines the luma size of the smallest area inside a coding tree block that shares the same

dPy prep-
The predicted luma quantization parameter qPy prep is derived by the following ordered steps:
1. The variable qPy prgy is derived as follows:
— If one or more of the following conditions are true, qPy prgy is set equal to SliceQpy:
— The current quantization group is the first quantization group in a slice.
— The current quantization group is the first quantization group in a tile.

— The current quantization group is the first quantization group in a coding tree block row and
entropy_coding_sync_enabled flag is equal to 1.

— Otherwise, qPy prev is set equal to the luma quantization parameter Qpy of the last coding unit in the
previous quantization group in decoding order.

2. The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the
location (xCurr, yCurr) set equal to (xCb, yCb) and the neighbouring location (xXNbY, yNbY) set equal to
(xQg — 1, yQg) as inputs, and the output is assigned to availableA. The variable qPy 4 is derived as follows:

— If one or more of the following conditions are true, qPy 4 is set equal to qPy prev:

— availableA is equal to FALSE.

140 Rec. ITU-T H.265 (04/2013)

— the coding tree block address ctbAddrA of the coding tree block containing the luma coding block
covering the luma location (xQg — 1, yQg) is not equal to CtbAddrInTs, where ctbAddrA is derived as
follows:

xTmp =(xQg—1) >> Log2MinTrafoSize

yTmp =yQg >> Log2MinTrafoSize

minTbAddrA = MinTbAddrZs[xTmp][yTmp]

ctbAddrA = minTbAddrA >> (2 * (CtbLog2SizeY — Log2MinTrafoSize)) (8-255)

— Otherwise, qPy 4 is set equal to the luma quantization parameter Qpy of the coding unit containing the luma
coding block covering (xQg — 1, yQg).

3. The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the
location (xCurr, yCurr) set equal to (xCb, yCb) and the neighbouring location (xXNbY, yNbY) set equal to
(xQg, yQg — 1) as inputs, and the output is assigned to availableB. The variable qPy g is derived as follows:

— If one or more of the following conditions are true, qPy g is set equal to qPy prgv:
— availableB is equal to FALSE.

— the coding tree block address ctbAddrB of the coding tree block containing the luma coding block

covering the luma location (xQg, yQg — 1) is not equal to CtbAddrInTs, where ctbAddrB is derived as
follows:

xTmp =xQg >> Log2MinTrafoSize

yTmp =(yQg—1) >> Log2MinTrafoSize

minTbAddrB = MinTbAddrZs[xTmp][yTmp]

ctbAddrB = minTbAddrB >> (2 * (CtbLog2SizeY — Log2MinTrafoSize)) (8-256)

— Otherwise, qPy g is set equal to the luma quantization parameter Qpy of the coding unit containing the luma
coding block covering (xQg, yQg —1).

4. The predicted luma quantization parameter qPy prep is derived as follows:
Py prep = (qPy o+ qPyg+1) >> 1 (8-257)
The variable Qpy is derived as follows:

Qpy = ((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety)) — QpBdOffsety (8-258)

The luma quantization parameter Qp'y is derived as follows:

Qp'y = Qpy + QpBdOfifsety (8-259)

The variables qPc, and qP; are set equal to the value of Qpc as specified in Table 8-9 based on the index qPiequal to
gPic, and gPic,, respectively, and qPic, and qPic, are derived as follows:

qPi¢p, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qgp_offset + slice cb_qp_offset) (8-260)

qPic; = Clip3(—QpBdOffsetc, 57, Qpy + pps_cr_qp_offset + slice_cr_qp_offset) (8-261)
The chroma quantization parameters for the Cb and Cr components, Qp'cy, and Qp'c;, are derived as follows:

Qp'cy = qPcy + QpBdOffsetc (8-262)

Qp'cr = qPcr + QpBdOfisetc (8-263)

Table 8-9 — Specification of Qpc as a function of qPi

gPi | <30 |30 |31 323334 |35[36]37|38[39]40|41[42]43|>43
Qpc | =qPi [29130313233 [33]34[34|35]|35]36[36]|37]37|=qgPi—6

8.6.2 Scaling and transformation process
Inputs to this process are:

— a luma location (xTbY, yTbY) specifying the top-left sample of the current luma transform block relative to the
top-left luma sample of the current picture,

Rec. ITU-T H.265 (04/2013) 141

— avariable trafoDepth specifying the hierarchy depth of the current block relative to the coding block,
— avariable cldx specifying the colour component of the current block,

— avariable nTbS specifying the size of the current transform block.

Output of this process is the (nTbS)x(nTbS) array of residual samples r with elements r[x][y].

The quantization parameter qP is derived as follows:

— Ifcldx is equal to 0,

qP =Qp'y (8-264)
— Otherwise, if cldx is equal to 1,

qP =Qp'cy (8-265)
— Otherwise (cldx is equal to 2),

qP =Qp'c (8-266)

The (nTbS)x(nTbS) array of residual samples r is derived as follows:

— If cu_transquant_bypass flag is equal to 1, the (nTbS)x(nTbS) array r is set equal to the (nTbS)x(nTbS) array of
transform coefficients TransCoeffLevel[xTbY][yTbY][cldx].

— Otherwise, the following ordered steps apply:

1. The scaling process for transform coefficients as specified in clause 8.6.3 is invoked with the transform block
location (xTbY, yTbY), the size of the transform block nTbS, the colour component variable cldx, and the
quantization parameter qP as inputs, and the output is an (nTbS)x(nTbS) array of scaled transform coefficients
d.

2. The (nTbS)x(nTbS) array of residual samples r is derived as follows:

— If transform_skip flag[xTbY][yTbY][cldx] is equal to 1, the residual sample array values r[x][y]
with x =0..nTbS — 1, y = 0..nTbS — 1 are derived as follows:

ffx][yl=(d[x][y] << 7) (8-267)

= Otherwise (transform_skip flag[xTbY][yTbY][cldx] is equal to 0), the transformation process for
scaled transform coefficients as specified in clause 8.6.4 is invoked with the transform block location
(xTbY, yTbY), the size of the transform block nTbS, the colour component variable cldx, and the
(nTbS)x(nTbS) array of scaled transform coefficients d as inputs, and the output is an (nTbS)x(nTbS)
array of residual samples r.

3. The variable bdShift is derived as follows:
bdShift = (cIdx == 0) ? 20 — BitDepthy : 20 — BitDepthc (8-268)
4. The residual sample values r[x][y] with x = 0..0TbS — 1, y = 0..nTbS — 1 are modified as follows:
ffx][y]=(r[x][y]+(1 << (bdShift—1))) >> bdShift (8-269)

8.6.3 Scaling process for transform coefficients

Inputs to this process are:

a luma location (xTbY, yTbY) specifying the top-left sample of the current luma transform block relative to the
top-left luma sample of the current picture,

a variable nTbS specifying the size of the current transform block,

— avariable cldx specifying the colour component of the current block,

a variable P specifying the quantization parameter.

Output of this process is the (nTbS)x(nTbS) array d of scaled transform coefficients with elements d[x][y].

The variable bdShift is derived as follows:

— Ifcldxis equal to 0,

bdShift = BitDepthy + Log2(nTbS) — 5 (8-270)

142 Rec. ITU-T H.265 (04/2013)

— Otherwise,
bdShift = BitDepthc + Log2(nTbS) — 5 (8-271)
The list levelScale[] is specified as levelScale[k | = { 40, 45, 51, 57, 64, 72 } with k=0..5.

For the derivation of the scaled transform coefficients d[x][y] with x=0..nTbS — 1, y =0..nTbS — 1, the following
applies:

— The scaling factor m[x][y] is derived as follows:
— Ifscaling_list enabled flag is equal to 0,
m[x][y]=16 (8-272)
— Otherwise (scaling_list enabled flag is equal to 1),
m[x][y] = ScalingFactor[sizeld][matrixId [[x][y] (8-273)

Where sizeld is specified in Table 7-3 for the size of the quantization matrix equal to (nTbS)x(nTbS) and matrixId is
specified in Table 7-4 for sizeld, CuPredMode[xTbY][yTbY], and cldx, respectively.

— The scaled transform coefficient d[x][y] is derived as follows:

d[x][y]=Clip3(—32768, 32767, ((TransCoeffLevel[xTbY |[yTbY J[cldx [[x][y] *m[x][y]*
levelScale[qP%6] << (qP/6))+ (1 << (bdShift—1))) >> bdShift) (8-274)

8.6.4 Transformation process for scaled transform coefficients
8.6.4.1 General
Inputs to this process are:

— a luma location (xTbY, yTbY) specifying the top-left sample of the current luma transform block relative to the
top-left luma sample of the current picture,

a variable nTbS specifying the size of the current transform block,

— avariable cldx specifying the colour component of the current block,

an (nTbS)x(nTbS) array d of scaled transform coefficients with elements d[x][y].
Output of this process is the (nNTbS)x(nTbS) array r of residual samples with elements 1| x][y].
Depending on the values of CuPredMode[xTbY][yTbY], nTbS, and cldx, the variable trType is derived as follows:

— If CuPredMode[xTbY][yTbY] is equal to MODE INTRA, nTbS is equal to 4, and cldx is equal to 0, trType is
set equal to 1.

— Otherwise, trType is set equal to 0.
The (nTbS)x(nTbS) array r of residual samples is derived as follows:

1. Each (vertical) column of scaled transform coefficients d[x][y] with x=0.nTbS—1, y=0..nTbS—1 is
transformed to e[x][y] with x=0..nTbS — 1, y=0..nTbS — 1 by invoking the one-dimensional transformation
process as specified in clause 8.6.4.2 for each column x = 0..nTbS — 1 with the size of the transform block nTbS,
the list d[x][y] with y =0..nTbS — 1, and the transform type variable trType as inputs, and the output is the list
e[x][y]withy=0.nTbS — 1.

2. The intermediate sample values g[x [y] with x =0..nTbS — 1, y=0..nTbS — 1 are derived as follows:
gl x][y]=Clip3(—32768,32767, (e[x][y] +64) > T7) (8-275)

3. Each (horizontal) row of the resulting array g[x][y] with x =0.nTbS — 1, y=0..nTbS — 1 is transformed to
r[x][y] with x=0.nTbS—1, y=0.nTbS — 1 by invoking the one-dimensional transformation process as
specified in clause 8.6.4.2 for each row y=0..nTbS — 1 with the size of the transform block nTbS, the list
g[x][y] with x =0..nTbS — 1, and the transform type variable trType as inputs, and the output is the list r[x [y]
with x = 0..nTbS — 1.

8.6.4.2 Transformation process
Inputs to this process are:

— avariable nTbS specifying the sample size of scaled transform coefficients,

Rec. ITU-T H.265 (04/2013) 143

— alist of scaled transform coefficients x with elements X[j], with j = 0..nTbS — 1.

— atransform type variable trType

Output of this process is the list of transformed samples y with elements y[i], with i =0..nTbS — 1.
Depending on the value of trType, the following applies:

— IftrType is equal to 1, the following transform matrix multiplication applies:

nTbS—-1
y[i]= ZtransMatrix[i][j1*x[j] withi=0..nTbS — 1 (8-276)
=0

where the transform coefficient array transMatrix is specified as follows:
transMatrix = (8-277)

{29 55 74 84}
{74 74 0 -74}
{84 -29 -74 55}
{55 -84 74 -29}

— Otherwise (trType is equal to 0), the following transform matrix multiplication applies:

nTbS—-1
yli]= ZtransMatrix[i][j* 25 Log2TOS) 1 4[] with i = 0..nTbS — 1, (8-278)
j=0

where the transform coefficient array transMatrix is specified as follows:
transMatrix[m][n] = transMatrixColOto15[m][n] withm = 0..15, n =0...31 (8-279)
transMatrixColOto15 = (8-280)

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}
90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4}
90 87 80 70 57 43 25 9 -9 -25 -43 -57 -70 -80 -87 -90}
90 82 67 46 22 -4 -31 -54 -73 -85 -90 -88 -78 -61 -38 -13}
89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89}
88 67 31 -13 -54 -82 -90 -78 -46 -4 38 73 90 85 61 22}
87 57 9 -43 -80 -90 -70 -25 25 70 90 80 43 -9 -57 -87}
85 46 -13 -67 -90 -73 -22 38 82 88 54 -4 -61 -90 -78 -31}
83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83}
82 22 -54 -90 -61 13 78 85 31 -46 -90 -67 4 73 88 38}
80 9 -70 -87 -25 57 90 43 -43 -90 -57 25 87 70 -9 -80}
78 -4 -82 -73 13 85 67 -22 -88 -61 31 90 54 -38 -90 -46}
75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75}
73 -31 -90 -22 78 67 -38 -90 -13 82 61 -46 -88 -4 85 54}
70 -43 -87 9 90 25 -80 -57 57 80 -25 -90 -9 87 43 -70}
67 -54 -78 38 85 -22 -90 4 90 13 -88 -31 82 46 -73 -61}
64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64}
61 -73 -46 82 31 -88 -13 90 -4 -90 22 85 -38 -78 54 67}
57 -80 -25 90 -9 -87 43 70 -70 -43 87 9 -90 25 80 -57}
54 -85 -4 88 -46 -61 82 13 -90 38 67 -78 -22 90 -31 -73}
50 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50}
46 -90 38 54 -950 31 61 -88 22 67 -85 13 73 -82 4 78}
43 -90 57 25 -87 70 9 -80 80 -9 -70 87 -25 -57 90 -43}
38 -88 73 -4 -67 90 -46 -31 85 -78 13 61 -90 54 22 -82}
36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36}
31 -78 90 -61 4 54 -88 82 -38 -22 73 -90 67 -13 -46 85}
25 -70 90 -80 43 9 -57 87 -87 57 -9 -43 80 -90 70 -25}
22 -61 85 -90 73 -38 -4 46 -78 90 -82 54 -13 -31 67 -88}
8 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18}
3 -38 61 -78 88 -90 85 -73 54 -31 4 22 -46 67 -82 90}
9 -25 43 -57 70 -80 87 -90 90 -87 80 -70 57 -43 25 -9}
4 -13 22 -31 38 -46 54 -61 67 -73 78 -82 85 -88 90 -90}

e r s Ay A A s 7y A A A s s 7 A 1 s e 7 A 1A A s A A A A A s 7 A A A s

144 Rec. ITU-T H.265 (04/2013)

transMatrix[m][n] = transMatrixCol16to31[m — 16][n] withm=16..31,n=0..31, (8-281)
transMatrixCol16to31 = (8-282)

{

{ 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
{ -4 -13 -22 -31 -38 -46 -54 -61 -67 -73 -78 -82 -85 -88 -90 -90
{-90 -87 -80 -70 -57 -43 -25 -9 9 25 43 57 70 80 87 90
{ 13 38 61 78 88 90 85 73 54 31 4 -22 -46 -67 -82 -90
{ 89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89
{-22 -61 -85 -90 -73 -38 4 46 78 90 82 54 13 -31 -67 -88
{-87 -57 -9 43 80 90 70 25 -25 -70 -90 -80 -43 9 57 87
{ 31 78 90 61 4 -54 -88 -82 -38 22 73 90 67 13 -46 -85
{ 83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83
{-38 -88 -73 -4 67 90 46 -31 -85 -78 -13 61 90 54 -22 -82
{-80 -9 70 87 25 -57 -90 -43 43 90 57 -25 -87 -70 9 80
{ 46 90 38 -54 -90 -31 61 88 22 -67 -85 -13 73 82 4 -78
{ 75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75
{-54 -85 4 88 46 -61 -82 13 90 38 -67 -78 22 90 31 -73
{-70 43 87 -9 -90 -25 80 57 -57 -80 25 90 9 -87 -43 70
{ 61 73 -46 -82 31 88 -13 -90 -4 90 22 -85 -38 78 54 -67
{ 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64
{-67 -54 78 38 -85 -22 90 4 -950 13 88 -31 -82 46 73 -61
{-57 80 25 -90 9 87 -43 -70 70 43 -87 -9 90 -25 -80 57
{ 73 31 -90 22 78 -67 -38 90 -13 -82 61 46 -88 4 85 -54
{ s0 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50
{-78 -4 82 -73 -13 85 -67 -22 88 -61 -31 90 -54 -38 90 -46
{-43 90 -57 -25 87 -70 -9 80 -80 9 70 -87 25 57 -90 43
{ 82 -22 -54 90 -61 -13 78 -85 31 46 -90 67 4 -73 88 -38
{ 36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36
{-85 46 13 -67 90 -73 22 38 -82 88 -54 -4 61 -90 78 -31
{-25 70 -90 80 -43 -9 57 -87 87 -57 9 43 -80 90 -70 25
{ 88 -67 31 13 -54 82 -90 78 -46 4 38 -73 90 -85 61 -22
{ 18 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18
{-90 82 -67 46 -22 -4 31 -54 73 -85 90 -88 78 -61 38 -13
{ -9 25 -43 57 -70 80 -87 90 -90 87 -80 70 -57 43 -25 9
{ 90 -90 88 -85 82 -78 73 -67 61 -54 46 -38 31 -22 13 -4
}

e o St M Mt M S ol St Mt M A Sl Sl Nt M S Sl el Nl Nt S S el el Nl Nl A e el et Nl

8.6.5 Picture construction process prior to in-loop filter process

Inputs to this process are:

a location (xCurr, yCurr) specifying the top-left sample of the current block relative to the top-left sample of the
current picture component,

— avariable nCurrS specifying the size of the current block,
— avariable cldx specifying the colour component of the current block,

— an (nCurrS)x(nCurrS) array predSamples specifying the predicted samples of the current block,

an (nCurrS)x(nCurrS) array resSamples specifying the residual samples of the current block.
Depending on the value of the colour component cldx, the following assignments are made:

— Ifcldx is equal to 0, recSamples corresponds to the reconstructed picture sample array S; and the function clipCidx1
corresponds to Cliply.

— Otherwise, if cldx is equal to 1, recSamples corresponds to the reconstructed chroma sample array Sc, and the
function clipCidx1 corresponds to Cliplc.

— Otherwise (cldx is equal to 2), recSamples corresponds to the reconstructed chroma sample array Sc, and the
function clipCidx1 corresponds to Cliplc.

The (nCurrS)x(nCurrS) block of the reconstructed sample array recSamples at location (xCurr, yCurr) is derived as
follows:

recSamples[xCurr +1][yCurr + j] = clipCidx1(predSamples[i][j] + resSamples[i][j]) (8-283)
with 1= 0..nCurrS — 1, j = 0..nCurrS — 1

Rec. ITU-T H.265 (04/2013) 145

8.7 In-loop filter process
8.7.1 General

The two in-loop filters, namely deblocking filter and sample adaptive offset filter, are applied as specified by the
following ordered steps:

1. For the deblocking filter, the following applies:

— The deblocking filter process as specified in clause 8.7.2 is invoked with the reconstructed picture sample arrays
St, Scv, and S¢; as inputs, and the modified reconstructed picture sample arrays S't, S'cy, and S'c, after
deblocking as outputs.

— The arrays S't, S'cyh, S'c; are assigned to the arrays Sp, Scy,, Scr (which represent the decoded picture),
respectively.

2. When sample_adaptive offset enabled flag is equal to 1, the following applies:

— The sample adaptive offset process as specified in clause 8.7.3 is invoked with the reconstructed picture sample
arrays S;, Scy, and Sc; as inputs, and the modified reconstructed picture sample arrays S';, S'cy, and S'c; after
sample adaptive offset as outputs.

— The arrays S't, S'cy, S'c; are assigned to the arrays Sp, Scp, Scr (Which represent the decoded picture),
respectively.

8.7.2 Deblocking filter process
8.7.2.1 General

Inputs to this process are the reconstructed picture sample arrays prior to deblocking recPicture;, recPicturec,, and
recPicturec,.

Outputs of this process are the modified reconstructed picture sample arrays after deblocking recPicture;, recPicturecy,
and recPicturec,.

The vertical edges in a picture are filtered first. Then the horizontal edges in a picture are filtered with samples modified
by the vertical edge filtering process as input. The vertical and horizontal edges in the coding tree blocks of each coding
tree unit are processed separately on a coding unit basis. The vertical edges of the coding blocks in a coding unit are
filtered starting with the edge on the left-hand side of the coding blocks proceeding through the edges towards the right-
hand side of the coding blocks in their geometrical order. The horizontal edges of the coding blocks in a coding unit are
filtered starting with the edge on the top of the coding blocks proceeding through the edges towards the bottom of the
coding blocks in their geometrical order.

NOTE — Although the filtering process is specified on a picture basis in this specification, the filtering process can be

implemented on a coding unit basis with an equivalent result, provided the decoder properly accounts for the processing
dependency order so as to produce the same output values.

The deblocking filter process is applied to all prediction block edges and transform block edges of a picture, except the
edges that are at the boundary of the picture, for which the deblocking filter process is disabled by
slice_deblocking_filter disabled flag, that coincide with tile boundaries when loop_filter across_tiles enabled flag is
equal to 0, or that coincide with upper or left slice boundaries of slices with
slice_loop _filter across_slices_enabled flag equal to 0. For the transform units and prediction units with luma block
edges less than 8 samples in either vertical or horizontal direction, only the edges lying on the 8x8 sample grid are
filtered.

The edge type, vertical or horizontal, is represented by the variable edgeType as specified in Table 8-10.

Table 8-10 — Name of association to edgeType

edgeType Name of edgeType
0 (vertical edge) EDGE_VER
1 (horizontal edge) EDGE HOR

When slice_deblocking_filter disabled flag of the current slice is equal to 0, for each coding unit with luma coding
block size 1og2CbSize and location of top-left sample of the luma coding block (xCb, yCb), the vertical edges are
filtered by the following ordered steps:

146 Rec. ITU-T H.265 (04/2013)

1. The luma coding block size nCbS is set equal to 1 << log2CbSize.
2. The variable filterLeftCbEdgeFlag is derived as follows:
— If one or more of the following conditions are true, filterLeftCbEdgeFlag is set equal to O:
— The left boundary of the current luma coding block is the left boundary of the picture.

— The left boundary of the current luma coding block is the left boundary of the tile and
loop_filter across_tiles_enabled flag is equal to 0.

— The left boundary of the current luma coding block is the left boundary of the slice and
slice_loop_filter_across_slices_enabled flag is equal to 0.

— Otherwise, filterLeftCbEdgeFlag is set equal to 1.
3. All elements of the two-dimensional (nCbS)x(nCbS) array verEdgeFlags are initialized to be equal to zero.

4. The derivation process of transform block boundary specified in clause 8.7.2.2 is invoked with the luma
location (xCb, yCb), the luma location (xB0,yB0) set equal to (0,0), the transform block size
log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the wvariable
filterLeftCbEdgeFlag, the array verEdgeFlags, and the variable edgeType set equal to EDGE_VER as inputs,
and the modified array verEdgeFlags as output.

5. The derivation process of prediction block boundary specified in clause 8.7.2.3 is invoked with the luma
coding block size log2CbSize, the prediction partition mode PartMode, the array verEdgeFlags, and the
variable edgeType set equal to EDGE VER as inputs, and the modified array verEdgeFlags as output.

6. The derivation process of the boundary filtering strength specified in clause 8.7.2.4 is invoked with the
reconstructed luma picture sample array prior to deblocking recPicture;, the luma location (xCb, yCb), the
luma coding block size log2CbSize, the variable edgeType set equal to EDGE VER, and the array
verEdgeFlags as inputs, and an (nCbS)x(nCbS) array verBs as output.

7. The vertical edge filtering process for a coding unit as specified in clause 8.7.2.5.1 is invoked with the
reconstructed picture sample arrays prior to deblocking recPicture;, recPicturecy,, and recPicturec,, the luma
location (xCb, yCb), the luma coding block size 1og2CbSize, and the array verBs as inputs, and the modified
reconstructed picture sample arrays recPicture;, recPicturecy, and recPicturec;, as outputs.

When slice_deblocking_filter disabled flag of the current slice is equal to 0, for each coding unit with luma coding
block size 1og2CbSize and location of top-left sample of the luma coding block (xCb, yCb), the horizontal edges are
filtered by the following ordered steps:

1. The luma coding block size nCbS is set equal to 1 << log2CbSize.
2. The variable filterTopCbEdgeFlag is derived as follows:
— If one or more of the following conditions are true, the variable filterTopCbEdgeFlag is set equal to 0:
— The top boundary of the current luma coding block is the top boundary of the picture.

— The top boundary of the current luma coding block is the top boundary of the tile and
loop_filter across_tiles enabled flag is equal to 0.

— The top boundary of the current luma coding block is the top boundary of the slice and
slice_loop_filter across_slices enabled flag is equal to 0.

— Otherwise, the variable filterTopCbEdgeFlag is set equal to 1.
3. All elements of the two-dimensional (nCbS)x(nCbS) array horEdgeFlags are initialized to zero.

4. The derivation process of transform block boundary specified in clause 8.7.2.2 is invoked with the luma
location (xCb, yCb), the luma location (xBO,yB0) set equal to (0,0), the transform block size
log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the variable
filterTopCbEdgeFlag, the array horEdgeFlags, and the variable edgeType set equal to EDGE_HOR as inputs,
and the modified array horEdgeFlags as output.

5. The derivation process of prediction block boundary specified in clause 8.7.2.3 is invoked with the luma
coding block size log2CbSize, the prediction partition mode PartMode, the array horEdgeFlags, and the
variable edgeType set equal to EDGE_HOR as inputs, and the modified array horEdgeFlags as output.

6. The derivation process of the boundary filtering strength specified in clause 8.7.2.4 is invoked with the
reconstructed luma picture sample array prior to deblocking recPicture;, the luma location (xCb, yCb), the

Rec. ITU-T H.265 (04/2013) 147

luma coding block size log2CbSize, the variable edgeType set equal to EDGE HOR, and the array
horEdgeFlags as inputs, and an (nCbS)x(nCbS) array horBs as output.

7. The horizontal edge filtering process for a coding unit as specified in clause 8.7.2.5.2 is invoked with the
modified reconstructed picture sample arrays recPicture;, recPicturec,, and recPicturec,, the luma location
(xCb, yCb), the luma coding block size 1og2CbSize and the array horBs as inputs, and the modified
reconstructed picture sample arrays recPicturer, recPicturecy, and recPicturec; as outputs.

8.7.2.2 Derivation process of transform block boundary

Inputs to this process are:

a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

a luma location (xB0, yB0) specifying the top-left sample of the current luma block relative to the top-left sample
of the current luma coding block,

a variable log2TrafoSize specifying the size of the current block,

a variable trafoDepth,

a variable filterEdgeFlag,

a two-dimensional (nCbS)x(nCbS) array edgeFlags,

a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered.

Output of this process is the modified two-dimensional (nCbS)x(nCbS) array edgeFlags.

Depending on the value of split_transform_flag[xCb + xB0][yCb + yBO0][trafoDepth], the following applies:

If split_transform_flag[xCb + xB0][yCb + yBO0][trafoDepth] is equal to 1, the following ordered steps apply:
1. The variables xB1 and yB1 are derived as follows:

— The variable xBl1 is set equal to xBO + (1 << (log2TrafoSize —1)).

— The variable yBl1 is set equal to yBO + (1 << (log2TrafoSize —1)).

2. The derivation process of transform block boundary as specified in this clause is invoked with the luma
location (xCb,yCb), the luma location (xBO0,yB0), the variable log2TrafoSize set equal to
log2TrafoSize — 1, the variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array
edgeFlags, and the variable edgeType as inputs, and the output is the modified version of array edgeFlags.

3. The derivation process of transform block boundary as specified in this clause is invoked with the luma
location (xCb,yCb), the luma location (xBl,yB0), the variable log2TrafoSize set equal to
log2TrafoSize — 1, the variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array
edgeFlags, and the variable edgeType as inputs, and the output is the modified version of array edgeFlags.

4. The derivation process of transform block boundary as specified in this clause is invoked with the luma
location (xCb,yCb), the luma location (xBO0,yB1), the variable log2TrafoSize set equal to
log2TrafoSize — 1, the variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array
edgeFlags, and the variable edgeType as inputs, and the output is the modified version of array edgeFlags.

5. The derivation process of transform block boundary as specified in this clause is invoked with the luma
location (xCb,yCb), the luma location (xBl,yBl1), the variable log2TrafoSize set equal to
log2TrafoSize — 1, the variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array
edgeFlags, and the variable edgeType as inputs, and the output is the modified version of array edgeFlags.

Otherwise (split_transform_flag[xCb + xB0][yCb + yBO][trafoDepth] is equal to 0), the following applies:

— If edgeType 1is -equal to EDGE VER, the wvalue of edgeFlags[xBO][yBO+k] for
k=0..(1 << log2TrafoSize) — 1 is derived as follows:

— IfxBO0is equal to 0, edgeFlags[xBO][yBO + k] is set equal to filterEdgeFlag.
— Otherwise, edgeFlags[xBO][yBO + k] is set equal to 1.

— Otherwise (edgeType is equal to EDGE HOR), the value of edgeFlags[xBO+k] yBO] for
k=0..(1 << log2TrafoSize) — 1 is derived as follows:

— IfyBO0is equal to 0, edgeFlags[xBO + k][yBO] is set equal to filterEdgeFlag.

148 Rec. ITU-T H.265 (04/2013)

— Otherwise, edgeFlags[xBO + k][yBO] is set equal to 1.

8.7.2.3 Derivation process of prediction block boundary
Inputs to this process are:

— avariable log2CbSize specifying the luma coding block size,

a prediction partition mode PartMode,

— atwo-dimensional (nCbS)x(nCbS) array edgeFlags,

a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered.
Output of this process is the modified two-dimensional (nCbS)x(nCbS) array edgeFlags.

Depending on the values of edgeType and PartMode, the following applies for k=0..(1 << log2CbSize) — 1:

— IfedgeType is equal to EDGE_VER, the following applies:

— When PartMode is equal to PART Nx2N or PART NxN, edgeFlags[1 << (1og2CbSize — 1)][k] is set equal
to 1.

— When PartMode is equal to PART nLx2N, edgeFlags[1 << (1og2CbSize —2)][k] is set equal to 1.
— When PartMode is equal to PART nRx2N, edgeFlags[3 * (1 << (1log2CbSize —2))][k] is set equal to 1.
— Otherwise (edgeType is equal to EDGE_HOR), the following applies:

— When PartMode is equal to PART 2NxN or PART NxN, edgeFlags[k][1 << (1og2CbSize — 1)] is set equal
to 1.

— When PartMode is equal to PART 2NxnU, edgeFlags[k][1 << (log2CbSize —2)] is set equal to 1.
— When PartMode is equal to PART 2NxnD, edgeFlags[k][3 * (1 << (1og2CbSize —2))]is set equal to 1.

8.7.2.4 Derivation process of boundary filtering strength
Inputs to this process are:
— aluma picture sample array recPicturey,

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current luma coding block,

— avariable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered,
— atwo-dimensional (nCbS)x(nCbS) array edgeFlags.

Output of this process is a two-dimensional (nCbS)x(nCbS) array bS specifying the boundary filtering strength.
The variables xD;, yDj, XN, and yN are derived as follows:

— IfedgeType is equal to EDGE_VER, xD; is set equal to (i << 3), yDj is set equal to (j << 2), xN is set equal
to (1 << (log2CbSize—3))—1,and yNissetequalto (1 << (1log2CbSize—2))— 1.

— Otherwise (edgeType is equal to EDGE_HOR), xD; is set equal to (i << 2), yD; is set equal to (j << 3), xN is
set equal to (1 << (1log2CbSize—2))—1,and yNissetequalto (1 << (log2CbSize—3))— 1.

For xD; with i = 0..xN and yD; with j = 0..yN, the following applies:
— IfedgeFlags[xD;][yD;] is equal to 0, the variable bS[xD;][yD;] is set equal to 0.
— Otherwise (edgeFlags[xD;][yD;] is equal to 1), the following applies:
— The sample values py and q are derived as follows:

— If edgeType is equal to EDGE_VER, p, is set equal to recPicture.[xCb +xD;— 1][yCb + yD;]
and qq is set equal to recPicture [xCb + xD;][yCb + yD;].

— Otherwise (edgeType is equal to EDGE HOR), p, is set equal to
recPicture [XCb + xD;][yCb + yD; — 1] and Jo is set equal to
recPicture [XCb + xD;][yCb + yD;].

Rec. ITU-T H.265 (04/2013) 149

The variable bS[xD;][yDj] is derived as follows:

— If the sample py or qo is in the luma coding block of a coding unit coded with intra prediction mode,
bS[xD;][yDj] is set equal to 2.

— Otherwise, if the block edge is also a transform block edge and the sample p, or g is in a luma
transform block which contains one or more non-zero transform coefficient levels, bS[xD;][yD;]
is set equal to 1.

— Otherwise, if one or more of the following conditions are true, bS[xD;][yD;] is set equal to 1:

— For the prediction of the luma prediction block containing the sample p, different reference
pictures or a different number of motion vectors are used than for the prediction of the luma
prediction block containing the sample q.

NOTE 1 — The determination of whether the reference pictures used for the two luma prediction
blocks are the same or different is based only on which pictures are referenced, without regard to
whether a prediction is formed using an index into reference picture list 0 or an index into reference
picture list 1, and also without regard to whether the index position within a reference picture list is
different.

NOTE 2 — The number of motion vectors that are used for the prediction of a luma prediction block
with top-left luma sample covering (xPb,yPb), is equal to PredFlagLO[xPb][yPb] +
PredFlagL1[xPb][yPb].

— One motion vector is used to predict the luma prediction block containing the sample p, and
one motion vector is used to predict the luma prediction block containing the sample qy, and
the absolute difference between the horizontal or vertical component of the motion vectors
used is greater than or equal to 4 in units of quarter luma samples.

— Two motion vectors and two different reference pictures are used to predict the luma
prediction block containing the sample p,y, two motion vectors for the same two reference
pictures are used to predict the luma prediction block containing the sample qo, and the
absolute difference between the horizontal or vertical component of the two motion vectors
used in the prediction of the two luma prediction blocks for the same reference picture is
greater than or equal to 4 in units of quarter luma samples.

— Two motion vectors for the same reference picture are used to predict the luma prediction
block containing the sample p,, two motion vectors for the same reference picture are used to
predict the luma prediction block containing the sample qo, and both of the following
conditions are true:

— The absolute difference between the horizontal or vertical component of list 0 motion
vectors used in the prediction of the two luma prediction blocks is greater than or equal
to 4 in quarter luma samples, or the absolute difference between the horizontal or vertical
component of the list 1 motion vectors used in the prediction of the two luma prediction
blocks is greater than or equal to 4 in units of quarter luma samples.

— The absolute difference between the horizontal or vertical component of list 0 motion
vector used in the prediction of the luma prediction block containing the sample p,y and the
list 1 motion vector used in the prediction of the luma prediction block containing the
sample qp is greater than or equal to 4 in units of quarter luma samples, or the absolute
difference between the horizontal or vertical component of the list 1 motion vector used in
the prediction of the luma prediction block containing the sample p, and list 0 motion
vector used in the prediction of the luma prediction block containing the sample qo is
greater than or equal to 4 in units of quarter luma samples.

— Otherwise, the variable bS[xD;][yD;] is set equal to 0.

8.7.2.5 [Edge filtering process

8.7.2.5.1 Vertical edge filtering process

Inputs to this process are:

— the picture sample arrays recPicture;, recPicturecy,, and recPicturec,,

— aluma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current luma coding block,

150

Rec. ITU-T H.265 (04/2013)

an array bS specifying the boundary filtering strength.

Outputs of this process are the modified picture sample arrays recPicture, recPicturecy, and recPicturec,.

The filtering process for edges in the luma coding block of the current coding unit consists of the following ordered
steps:

1. The variable nD is set equal to 1 << (1log2CbSize —3).

2. For xDy equal to k << 3 with k=0..nD — 1 and yD,, equal to m << 2 with m=0..nD * 2 — 1, the following
applies:

— When bS[xDy][yDp,] is greater than 0, the following ordered steps apply:

a. The decision process for luma block edges as specified in clause 8.7.2.5.3 is invoked with the
luma picture sample array recPicture;, the location of the luma coding block (xCb, yCb), the
luma location of the block (xDy, yDy,), a variable edgeType set equal to EDGE_VER, and the
boundary filtering strength bS[xDy][yDy,] as inputs, and the decisions dE, dEp, and dEq, and
the variables [and tc as outputs.

b. The filtering process for luma block edges as specified in clause 8.7.2.5.4 is invoked with the
luma picture sample array recPicture;, the location of the luma coding block (xCb, yCb), the
luma location of the block (xDy, yDy,), a variable edgeType set equal to EDGE_VER, the
decisions dE, dEp, and dEq, and the variables B and tc as inputs, and the modified luma picture
sample array recPicture; as output.

The filtering process for edges in the chroma coding blocks of current coding unit consists of the following ordered
steps:

1. The variable nD is set equal to 1 << (log2CbSize —3).

2. For xDy equal to k << 2 with k=0..nD —1 and yD,, equal to m << 2 with m=0..nD — 1, the following
applies:

— When bS[xD,*2][yDn*2] is equal to 2 and (((xCb/2+xDy) >> 3) << 3) is equal to
xCb / 2 + xDy, the following ordered steps apply:

a. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the
chroma picture sample array recPicturecy, the location of the chroma coding block (xCb /2, yCb/2),
the chroma location of the block (xDy, yD,,), a variable edgeType set equal to EDGE_VER, and a
variable cQpPicOffset set equal to pps cb _qgp offset as inputs, and the modified chroma picture
sample array recPicturecy, as output.

b. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the
chroma picture sample array recPicturec,, the location of the chroma coding block (xCb/2,yCb/2),
the chroma location of the block (xDy, yD,,), a variable edgeType set equal to EDGE VER, and a
variable cQpPicOffset set equal to pps cr gp offset as inputs, and the modified chroma picture
sample array recPicturec, as output.

8.7.2.5.2 Horizontal edge filtering process

Inputs to this process are:

the picture sample arrays recPicture;, recPicturecy, and recPicturec,,

a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

a variable log2CbSize specifying the size of the current luma coding block,

an array bS specifying the boundary filtering strength.

Outputs of this process are the modified picture sample arrays recPicture, recPicturecy, and recPicturec,.

The filtering process for edges in the luma coding block of the current coding unit consists of the following ordered
steps:

1. The variable nD is set equal to 1 << (1og2CbSize —3).

2. For yDy, equal to m << 3 with m=0..nD — 1, and xDy equal to k << 2 with k=0..nD * 2 — 1, the following
applies:

Rec. ITU-T H.265 (04/2013) 151

— When bS[xDy][yDy,] is greater than 0, the following ordered steps apply:

a. The decision process for luma block edges as specified in clause 8.7.2.5.3 is invoked with the luma
picture sample array recPicture;, the location of the luma coding block (xCb, yCb), the luma
location of the block (xDy, yDy,), a variable edgeType set equal to EDGE_HOR, and the boundary
filtering strength bS[xDy][yDy, | as inputs, and the decisions dE, dEp, and dEq, and the variables 3
and tc as outputs.

b. The filtering process for luma block edges as specified in clause 8.7.2.5.4 is invoked with the luma
picture sample array recPicture;, the location of the luma coding block (xCb, yCb), the luma
location of the block (xDy, yDy,), a variable edgeType set equal to EDGE_HOR, the decisions dEp,
dEp, and dEq, and the variables B and tc as inputs, and the modified luma picture sample array
recPicture; as output.

The filtering process for edges in the chroma coding blocks of current coding unit consists of the following ordered
steps:

1. The variable nD is set equal to 1 << (log2CbSize — 3).

2. For yD, equal to m << 2 with m=0..nD — 1 and xDy equal to k << 2 with k=0..nD — 1, the following
applies:

— When bS[xDy*2][yD,*2] is equal to 2 and (((yCb/2+yD,,) >> 3) << 3) is equal to
yCb / 2 + yDy,, the following ordered steps apply:

a. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the
chroma picture sample array recPicturecy, the location of the chroma coding block (xCb /2, yCb/2),
the chroma location of the block (xDy, yDy,), a variable edgeType set equal to EDGE HOR, and a
variable cQpPicOffset set equal to pps cb _qp offset as inputs, and the modified chroma picture
sample array recPicturecy, as output.

b. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the
chroma picture sample array recPicturec,, the location of the chroma coding block (xCb/2,yCb/2),
the chroma location of the block (xDy, yDy,), a variable edgeType set equal to EDGE HOR, and a
variable cQpPicOffset set equal to pps cr gp offset as inputs, and the modified chroma picture
sample array recPicturec, as output.

8.7.2.5.3 Decision process for luma block edges
Inputs to this process are:

— aluma picture sample array recPicturey,

a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— aluma location (xBl, yBI) specifying the top-left sample of the current luma block relative to the top-left sample of
the current luma coding block,

— avariable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered,

a variable bS specifying the boundary filtering strength.

Outputs of this process are:

— the variables dE, dEp, and dEq containing decisions,

— the variables B and tc.

If edgeType is equal to EDGE_VER, the sample values p;\ and q;) withi=0..3 and k = 0 and 3 are derived as follows:
qix = recPicture; [xCb + xBl+1i][yCb + yBl + k] (8-284)
pix = recPicture [xCb + xBl —i1—1][yCb + yBl + k] (8-285)

Otherwise (edgeType is equal to EDGE_HOR), the sample values p;y and q;x with 1= 0..3 and k = 0 and 3 are derived
as follows:

qix = recPicture [xCb + xBl + k][yCb + yBl +1] (8-286)
pix = recPicture; [XCb + xBl+ k][yCb+yBl—i—1] (8-287)

152 Rec. ITU-T H.265 (04/2013)

The variables Qpq and Qpp are set equal to the Qpy values of the coding units which include the coding blocks
containing the sample qo and po o, respectively.

A variable qPy is derived as follows:
qPL=((Qpo+Qpr+1) >> 1) (8-288)

The value of the variable B’ is determined as specified in Table 8-11 based on the luma quantization parameter Q
derived as follows:

Q=Clip3(0, 51, gP. + (slice beta_offset div2 << 1)) (8-289)

where slice_beta offset div2 is the value of the syntax element slice_beta_offset div2 for the slice that contains sample
Jo.0-

The variable f is derived as follows:
B=p"*(1 << (BitDepthy —8)) (8-290)

The value of the variable tc' is determined as specified in Table 8-11 based on the luma quantization parameter Q
derived as follows:

Q=Clip3(0,53,qP. +2*(bS—1)+(slice tc offset div2 << 1)) (8-291)
where slice_tc_offset div2 is the value of the syntax element slice _tc_offset div2 for the slice that contains sample g .
The variable tc is derived as follows:
te=tc' * (1 << (BitDepthy —8)) (8-292)
Depending on the value of edgeType, the following applies:
— IfedgeType is equal to EDGE_VER, the following ordered steps apply:
1. The variables dpq0, dpq3, dp, dq, and d are derived as follows:

dp0 = Abs(p2o =2 * p1o *+ Poo) (8-293)
dp3 = Abs(p23 —2 *pi3+po3) (8-294)
dq0 = Abs(q20 =2 * qi0*+ qoo) (8-295)
dg3 = Abs(a3 — 2 * Qi3 + Gos) (8-296)
dpq0 = dp0 + dq0 (8-297)
dpq3 = dp3 + dq3 (8-298)
dp = dp0 + dp3 (8-299)
dq = dq0 + dg3 (8-300)
d =dpq0 + dpqg3 (8-301)

2. The variables dE, dEp, and dEq are set equal to 0.
3. When d is less than B, the following ordered steps apply:
a. The variable dpq is set equal to 2 * dpq0.

b. For the sample location (xCb + xBl, yCb + yBl), the decision process for a luma sample as specified in
clause 8.7.2.5.6 is invoked with sample values p; g, qip With 1 =0..3, the variables dpq, 3, and tc as inputs,
and the output is assigned to the decision dSam0.

c. The variable dpq is set equal to 2 * dpq3.

d. For the sample location (xCb + xBI, yCb + yB1 + 3), the decision process for a luma sample as specified
in clause 8.7.2.5.6 is invoked with sample values p;s, qi; with i=0..3, the variables dpq, B, and tc as
inputs, and the output is assigned to the decision dSam3.

e. The variable dE is set equal to 1.

f. When dSamo is equal to 1 and dSam3 is equal to 1, the variable dE is set equal to 2.
g. Whendpislessthan (B+ (p >> 1)) >> 3, the variable dEp is set equal to 1.
h. Whendqislessthan (f+(p >> 1)) >> 3, the variable dEq is set equal to 1.

Rec. ITU-T H.265 (04/2013) 153

— Otherwise (edgeType is equal to EDGE_HOR), the following ordered steps apply:

1.

The variables dpq0, dpq3, dp, dq, and d are derived as follows:

dp0 = Abs(pao—2 * p1o+ Poo)
dp3 = Abs(p23—2 *pi13+Pos)
dq0=Abs(q20—2* qi0+ qoo)
dq3=Abs(Q3 —2* Q13+ qos)
dpq0 = dp0 + dq0

dpq3 =dp3 +dq3

dp =dp0 + dp3

dgq=dq0 +dq3

d =dpq0 + dpq3

(8-302)
(8-303)
(8-304)
(8-305)
(8-306)
(8-307)
(8-308)
(8-309)
(8-310)

2. The variables dE, dEp, and dEq are set equal to 0.
3. When d is less than (3, the following ordered steps apply:

a. The variable dpq is set equal to 2 * dpqO.

b. For the sample location (xCb + xBl, yCb + yBl), the decision process for a luma sample as specified in
clause 8.7.2.5.6 is invoked with sample values pg o, P30, qo.0, and s, the variables dpq, B, and tc as inputs,
and the output is assigned to the decision dSam0.

c. The variable dpq is set equal to 2 * dpq3.

d. For the sample location (xCb + xBl + 3, yCb + yB1), the decision process for a luma sample as specified
in clause 8.7.2.5.6 is invoked with sample values po3, P33, qos, and qs3, the variables dpq, B, and tc as
inputs, and the output is assigned to the decision dSam3.

e. The variable dE is set equal to 1.

f. When dSamo is equal to 1 and dSam3 is equal to 1, the variable dE is set equal to 2.

g. Whendpislessthan (B+(p >> 1)) >> 3, the variable dEp is set equal to 1.

h. Whendqislessthan (f+(p >> 1)) >> 3, the variable dEq is set equal to 1.

Table 8-11 — Derivation of threshold variables p’ and tc’ from input Q
Q 10 | 11 |12 [13 | 14 | 15 | 16 | 17 | 18
i 0 8
tc' 0 0 1
Q |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 32|33 |34)|35]36]|37
Bl 9 | 10|11 |12 | 13|14 |15 |16 | 17 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36
tc' | 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
Q |38 (39|40 | 41 |42 | 43 | 44 | 45| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
B’ | 38 |40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | - -
tc' | 5 5 6 6 7 8 9 | 10 | 11 | 13 | 14 | 16 | 18 | 20 | 22 | 24

8.7.2.5.4 Filtering process for luma block edges

Inputs to this process are:

— aluma picture sample array recPicturey,

— a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

154

Rec. ITU-T H.265 (04/2013)

a luma location (xBl, yBl) specifying the top-left sample of the current luma block relative to the top-left sample of
the current luma coding block,

a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered,

the variables dE, dEp, and dEq containing decisions,

the variables and tc.

Output of this process is the modified luma picture sample array recPicture; .

Depending on the value of edgeType, the following applies:

If edgeType is equal to EDGE_VER, the following ordered steps apply:

1. The sample values p;y and q;) with i =0..3 and k = 0..3 are derived as follows:

qix = recPicture [xCb + xBl+1][yCb + yBl + k] (8-311)

pix = recPicture, [XCb + xBl—1—1][yCb + yBl + k] (8-312)

2. When dE is not equal to 0, for each sample location (xCb + xBl, yCb + yBl+k), k=0..3, the following
ordered steps apply:

a. The filtering process for a luma sample as specified in clause 8.7.2.5.7 is invoked with the sample values

Pix.» Qix With 1=0.3, the locations (xP;, yP;) set equal to (xCb+xBl—i—1,yCb+yBl+k) and
(xQ;, yQ;) set equal to (xCb + xBl + i, yCb + yBl + k) with i=0..2, the decision dE, the variables dEp
and dEq, and the variable tc as inputs, and the number of filtered samples nDp and nDq from each side of
the block boundary, and the filtered sample values p;' and g;' as outputs.

When nDp is greater than 0, the filtered sample values p;' with i = 0..nDp — 1 replace the corresponding
samples inside the sample array recPicture; as follows:

recPicture [xCb+xBl—i—1][yCb +yBl+k] =p/ (8-313)

When nDq is greater than 0, the filtered sample values q;' with j =0..nDq — 1 replace the corresponding
samples inside the sample array recPicture; as follows:

recPicture [XCb + xBl+j][yCb + yBl +k] =g (8-314)

Otherwise (edgeType is equal to EDGE_HOR), the following ordered steps apply:

1. The sample values p;y and g with i =0..3 and k = 0..3 are derived as follows:

qix = recPicture [XCb + xBl + k][yCb + yBl +1i] (8-315)

pix = recPicture; [XCb + xBl+k J[yCb + yBl —1—1] (8-316)

2. When dE is not equal to 0, for each sample location (xCb + xBl+ k, yCb +yBl), k=0..3, the following
ordered steps apply:

a. The filtering process for a luma sample as specified in clause 8.7.2.5.7 is invoked with the sample values

Pik» Qix With 1=0.3, the locations (xP;, yP;) set equal to (xCb+xBl+k,yCb+yBl—i—1) and
(xQ;, yQ;) set equal to (xCb + xBl +k, yCb + yBl +1) with i =0..2, the decision dE, the variables dEp
and dEq, and the variable tc as inputs, and the number of filtered samples nDp and nDq from each side of
the block boundary and the filtered sample values p;' and q;' as outputs.

When nDp is greater than 0, the filtered sample values p;' with i = 0..nDp — 1 replace the corresponding
samples inside the sample array recPicture; as follows:

recPicture [xCb + xBl + k [yCb +yBl —i—1]=p; (8-317)

When nDq is greater than 0, the filtered sample values q;' with j =0..nDq — 1 replace the corresponding
samples inside the sample array recPicture as follows:

recPicture [XCb + xBl +k][yCb +yBl +j] =g (8-318)

8.7.2.5.5 Filtering process for chroma block edges

Inputs to this process are:

a chroma picture sample array s’,

Rec. ITU-T H.265 (04/2013) 155

— achroma location (xCb, yCb) specifying the top-left sample of the current chroma coding block relative to the top-
left chroma sample of the current picture,

— a chroma location (xBl, yBl) specifying the top-left sample of the current chroma block relative to the top-left
sample of the current chroma coding block,

— avariable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered,

— avariable cQpPicOffset specifying the picture-level chroma quantization parameter offset.

Output of this process is the modified chroma picture sample array s'.

If edgeType is equal to EDGE_VER, the values p; and q; with 1 = 0..1 and k = 0..3 are derived as follows:
Qix =s[xCb +xBl+1][yCb + yBl + k] (8-319)
pPik=sTxCb+xBl—i—1][yCb+yBl+k] (8-320)

Otherwise (edgeType is equal to EDGE _HOR), the sample values p; and q; with i=0..1 and k=0..3 are derived as
follows:

qx=s[xCb+xBl+k][yCb+yBl+i] (8-321)
pix =s[xCb+xBl+k J[yCb+yBl—-i—1] (8-322)

The variables Qpg and Qpp are set equal to the Qpy values of the coding units which include the coding blocks
containing the sample qg o and pg o, respectively.

The variable Qpc is determined as specified in Table 8-9 based on the index qPi derived as follows:

qPi=((Qpg+Qpp+1) >> 1)+ cQpPicOffset (8-323)

NOTE — The variable cQpPicOffset provides an adjustment for the value of pps_cb_qp_offset or pps_cr_qp_offset, according to
whether the filtered chroma component is the Cb or Cr component. However, to avoid the need to vary the amount of the
adjustment within the picture, the filtering process does not include an adjustment for the value of slice cb_qp offset or
slice_cr_qp_offset.

The value of the variable t¢' is determined as specified in Table 8-11 based on the chroma quantization parameter Q
derived as follows:

Q=Clip3(0, 53, Qpc + 2 + (slice_tc offset div2 << 1)) (8-324)
where slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains sample g .
The variable t¢ is derived as follows:

tc=tc'* (1 << (BitDepthc—8)) (8-325)
Depending on the value of edgeType, the following applies:

— If edgeType is equal to EDGE VER, for each sample location (xCb + xBI, yCb + yBl + k), k = 0..3, the following
ordered steps apply:

1. The filtering process for a chroma sample as specified in clause 8.7.2.5.8 is invoked with the sample values p;,
Qix, With i=0..1, the locations (xCb+xBl—1,yCb+yBl+k) and (xCb+xBl, yCb+yBl+k), and the
variable tc as inputs, and the filtered sample values py’ and qy" as outputs.

2. The filtered sample values py’ and qy’ replace the corresponding samples inside the sample array s’ as follows:
s xCb +xBl][yCb +yBl+k]=q¢ (8-326)
sTxCb+xBl—1][yCb+yBl+k]=p, (8-327)

— Otherwise (edgeType is equal to EDGE_HOR), for each sample location (xCb + xBl + k, yCb + yBl), k=0..3, the
following ordered steps apply:

1. The filtering process for a chroma sample as specified in clause 8.7.2.5.8 is invoked with the sample values
Pik> Qix, With 1= 0..1, the locations (xCb + xBl + k, yCb + yBl — 1) and (xCb + xBI + k, yCb + yBl), and the
variable t¢ as inputs, and the filtered sample values p," and q¢’ as outputs.

2. The filtered sample values py’ and qo’ replace the corresponding samples inside the sample array s as follows:
s xCb +xBl+k][yCb +yBl] =qq’ (8-328)
s[xCb+xBl+k][yCb+yBl—1]=p, (8-329)

156 Rec. ITU-T H.265 (04/2013)

8.7.2.5.6 Decision process for a luma sample

Inputs to this process are:

— the sample values po, ps, qo, and qs,

— the variables dpq, B, and tc.

Output of this process is the variable dSam containing a decision.

The variable dSam is specified as follows:

If dpq is less than (B >> 2), Abs(p; —po) + Abs(qo — q3) is less than (f >> 3), and Abs(pp— qp) is less than
(5*tc+1) >> 1,dSamis set equal to 1.

Otherwise, dSam is set equal to 0.

8.7.2.5.7 Filtering process for a luma sample

Inputs to this process are:

the luma sample values p; and q; with i =0..3,

the luma locations of p; and q;, (xP;, yP;) and (xQ;, yQ;) withi=0..2,

a variable dE,

the variables dEp and dEq containing decisions to filter samples p1 and q1 respectively,

a variable tc.

Outputs of this process are:

— the number of filtered samples nDp and nDq,

— the filtered sample values pi and g;' withi=0.nDp — 1, j=0..nDq — 1.

Depending on the value of dE, the following applies:

— Ifthe variable dE is equal to 2, nDp and nDq are both set equal to 3, and the following strong filtering applies:

po’ =Clip3(po—2 *te,po+2 *te, (p2+2*p1+2*pp+2*qo+q+4) > 3)

pi'=Clip3(p1 =2 *te,p1 +2 *te, (p2+pi+tpo+q+2) > 2)

p2' =Clip3(p2—2 * tc, p2 + 2*tc, (2 *ps +3*pr+p1+po T qo+4) >> 3)

qo' =Clip3(qo—2 *tc, o+ 2 *te, (p1 +2*po+2*q+2*q +q+4) > 3)

Q' =Clip3(qi —2*te, i +2*te, (pot Qo+ i+ +2) >> 2)

@=Clp3(q2=2*tc, 2+ 2 *te, (Po+ Qo+ Q1 +3*qa+2*q3+4) >> 3)

Otherwise, nDp and nDq are set both equal to 0, and the following weak filtering applies:

The following applies:

A=(9*(q=po)=3*(qi—p1)+8) >>4

When Abs(A) is less than tc * 10, the following ordered steps apply:

The filtered sample values py’ and qy’ are specified as follows:
A =Clip3(—tc, tc, A)
po' = Cliply(po+A)

Qo' = Cliply(qo—A)

When dEp is equal to 1, the filtered sample value p;’ is specified as follows:
Ap=Clip3(—(tc >> 1),tc >> L (((p2+pot+1) >> 1)—p;+A)>>1)
pi'=Cliply(p; + Ap)

When dEq is equal to 1, the filtered sample value q;’ is specified as follows:

Aq=Clip3(~(tc >> 1),tc > L(((q+tq+1)>1)-q—A) > 1)

Rec. ITU-T H.265 (04/2013)

(8-330)
(8-331)
(8-332)
(8-333)
(8-334)
(8-335)

(8-336)

(8-337)
(8-338)
(8-339)

(8-340)
(8-341)

(8-342)

157

qi'=Cliply(q1 +Aq) (8-343)
— nDp is set equal to dEp + 1 and nDq is set equal to dEq + 1.
When nDp is greater than 0 and one or more of the following conditions are true, nDp is set equal to 0:
— pem_loop filter disabled flag is equal to 1 and pecm_flag[xPy][yP,] is equal to 1.

— cu_transquant_bypass_flag of the coding unit that includes the coding block containing the sample py is equal
to 1.

When nDq is greater than 0 and one or more of the following conditions are true, nDq is set equal to 0:
— pcm _loop filter disabled flag is equal to 1 and pem_flag[xQ,][yQo] is equal to 1.

— cu_transquant_bypass flag of the coding unit that includes the coding block containing the sample q, is equal
to 1.

8.7.2.5.8 Filtering process for a chroma sample

Inputs to this process are:

— the chroma sample values p; and q; withi=0..1,

— the chroma locations of py and qy, (xPy, yPo) and (xQo, yQo),
— avariable tc.

Outputs of this process are the filtered sample values p,' and qq'.

The filtered sample values p," and qo’ are derived as follows:

A=CIlip3(~te, te, ((((qo—po) << 2)+pi—q+4) >> 3)) (8-344)
po’ = Cliplc(po+A) (8-345)
qo' = Cliplc(qo—A) (8-346)

When one or more of the following conditions are true, the filtered sample value, p,' is substituted by the corresponding
input sample value py:

— pem_loop_filter disabled flag is equal to 1 and pcm_flag[2 * xPy][2 * yPy] is equal to 1.

— cu_transquant_bypass flag of the coding unit that includes the coding block containing the sample p, is equal
to 1.

When one or more of the following conditions are true, the filtered sample value, qo' is substituted by the corresponding
input sample value q:

— pem_loop filter disabled flag is equal to 1 and pcm_flag[2 * xQ,][2 * yQo] is equal to 1.

— cu_transquant_bypass_flag of the coding unit that includes the coding block containing the sample qq is equal
to 1.

8.7.3 Sample adaptive offset process

8.7.3.1 General

Inputs to this process are the reconstructed picture sample arrays prior to sample adaptive offset recPicturer,
recPicturecy,, and recPicturec,.

Outputs of this process are the modified reconstructed picture sample arrays after sample adaptive offset saoPicturey,
saoPicturecy,, and saoPicturec,.

This process is performed on a coding tree block basis after the completion of the deblocking filter process for the
decoded picture.

The sample values in the modified reconstructed picture sample arrays saoPicture;, saoPicturecy,, and saoPicturec, are
initially set equal to the sample values in the reconstructed picture sample arrays recPicture;, recPicturec,, and
recPicturec,.

For every coding tree unit with coding tree block location (rx,ry), where rx=0.PicWidthInCtbsY — 1 and
ry = 0..PicHeightInCtbsY — 1, the following applies:

158 Rec. ITU-T H.265 (04/2013)

— When slice_sao_luma_flag of the current slice is equal to 1, the coding tree block modification process as specified
in clause 8.7.3.2 is invoked with recPicture set equal to recPicturer, cldx set equal to 0, (X, ry), and nCtbS set
equal to CtbSizeY as inputs, and the modified luma picture sample array saoPicture; as output.

— When slice_sao_chroma flag of the current slice is equal to 1, the coding tree block modification process as
specified in clause 8.7.3.2 is invoked with recPicture set equal to recPicturecy,, cldx set equal to 1, (rx, ry), and
nCtbS set equal to (1 << (CtbLog2SizeY — 1)) as inputs, and the modified chroma picture sample array
saoPicturecy, as output.

— When slice_sao_chroma flag of the current slice is equal to 1, the coding tree block modification process as
specified in clause 8.7.3.2 is invoked with recPicture set equal to recPicturec,, cldx set equal to 2, (rx, ry), and
nCtbS set equal to (1 << (CtbLog2SizeY — 1)) as inputs, and the modified chroma picture sample array
saoPicturec, as output.

8.7.3.2 Coding tree block modification process

Inputs to this process are:

— the picture sample array recPicture for the colour component cldx,

— avariable cldx specifying the colour component index,

— apair of variables (rx, ry) specifying the coding tree block location,

— the coding tree block size nCtbS.

Output of this process is a modified picture sample array saoPicture for the colour component cldx.
The variable bitDepth is derived as follows:

— Ifcldx is equal to 0, bitDepth is set equal to BitDepthy.

— Otherwise, bitDepth is set equal to BitDepthc.

The location (xCtb, yCtb), specifying the top-left sample of the current coding tree block for the colour component
cldx relative to the top-left sample of the current picture component cldx, is derived as follows:

(xCtb, yCtb) = (rx * nCtbS, ry * nCtbS) (8-347)
The sample locations inside the current coding tree block are derived as follows:

(xS, ¥Sj)=(xCtb +1i,yCtb+j) (8-348)

(xYi, yYj)=(cldx == 0)?(xS;, ySj): (xS; << 1,yS§; << 1) (8-349)

For all sample locations (xS;, yS;) and (xY;, yY;) with i = 0..nCtbS — 1 and j = 0..nCtbS — 1, depending on the values
of pcm_loop_filter_disabled_flag, pcm_flag[xY;][yY;], and cu_transquant_bypass_flag of the coding unit which
includes the coding block covering recPicture[xS;][yS;], the following applies:

— If one or more of the following conditions are true, saoPicture[xS;][yS;] is not modified:
= pem_loop_filter_disabled_flag and pcm_flag[xY;][yY;] are both equal to 1.
— cu_transquant_bypass_flag is equal to 1.
— SaoTypeldx[cldx][rx][ry] is equal to O.

— Otherwise, if SaoTypeldx[cldx][rx][ry] is equal to 2, the following ordered steps apply:

1. The wvalues of hPos[k] and vPos[k] for k=0.1 are specified in Table8-12 based on
SaoEoClass[cldx][rx][ry].

2. The variable edgeldx is derived as follows:
— The modified sample locations (xS;(, yS;') and (XYy, yYj') are derived as follows:
(xSik', ySi') = (xS; + hPos[k], yS; + vPos[k]) (8-350)
(xYi', yYj')= (cldx == 0) ? (xSi, ySik') : (xSi” << 1, ySj’ << 1) (8-351)

= If one or more of the following conditions for all sample locations (xS;/’, ySi") and (XYy, yYj') with
k =0..1 are true, edgeldx is set equal to 0:

= The sample at location (xSi', ySi') is outside the picture boundaries.

Rec. ITU-T H.265 (04/2013) 159

= The sample at location (xSy, ySjc") belongs to a different slice and one of the following two
conditions is true:

=~ MinTbAddrZs[xY;' >> Log2MinTrafoSize][yY;' >> Log2MinTrafoSize] is less than
MinTbAddrZs[xY; >> Log2MinTrafoSize][yY; >> Log2MinTrafoSize] and
slice_loop_filter_across_slices_enabled_flag in the slice which the sample recPicture[xS;][yS;]
belongs to is equal to 0.

= MinTbAddrZs[xY; >> Log2MinTrafoSize][yY; >> Log2MinTrafoSize] is less than
MinTbAddrZs[xY;' >> Log2MinTrafoSize][yY;' >> Log2MinTrafoSize] and
slice_loop_filter across_slices enabled flag in the slice which the sample
recPicture[xS;"][yS;’] belongs to is equal to 0.

— loop_filter_across_tiles_enabled_flag is equal to 0 and the sample at location (xSy, ySj(') belongs to
a different tile.

— Otherwise, edgeldx is derived as follows:

— The following applies:

edgeldx = 2 + Sign(recPicture[xS;][yS;] — recPicture[xS; + hPos[0]][yS; + vPos[0]]) +
Sign(recPicture[xS;][yS;] — recPicture[xS; + hPos[1]][yS;+ vPos[1]]) (8-352)

— When edgeldx is equal to 0, 1, or 2, edgeldx is modified as follows:
edgeldx = (edgeldx == 2)?0:(edgeldx+1) (8-353)
3. The modified picture sample array saoPicture[xS;][yS;] is derived as follows:

saoPicture[xS;][yS;] =Clip3(0, (1 << bitDepth) — 1, recPicture[xS;][yS;] +
SaoOffsetVal[cldx][rx][ry][edgeldx]) (8-354)
— Otherwise (SaoTypeldx[cldx][rx][ry] is equal to 1), the following ordered steps apply:

1. The variable bandShift is set equal to bitDepth — 5.
2. The variable saoLeftClass is set equal to sao_band_position[cldx][rx][ry].

3. The list bandTable is defined with 32 elements and all elements are initially set equal to 0. Then, four of its
elements (indicating the starting position of bands for explicit offsets) are modified as follows:

for(k=0; k<4; k++)
bandTable[(k + saoLeftClass) & 31]=k+1 (8-355)

4. The variable bandldx is set equal to bandTable[recPicture[xS;][yS;] >> bandShift].
5. The modified picture sample array saoPicture[xS;][yS;] is derived as follows:
saoPicture[xS;][yS;] = Clip3(0, (1 << bitDepth) — 1, recPicture[xS;][yS;] +
SaoOffsetVal[cldx][rx][ry][bandIdx]) (8-356)

Table 8-12 — Specification of hPos and vPos according to the sample adaptive offset class

SaoEoClass[cldx J[rx J[ry] | O 1 213
hPos[0] -1 0|-1| 1
hPos[1] 1] 0] 1|-1
vPos[0] 0|-1]-1|-1
vPos[1] 0] 1] 1| 1

9 Parsing process

9.1 General

Inputs to this process are bits from the RBSP.

160 Rec. ITU-T H.265 (04/2013)

Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in clause 7.3 is equal to ue(v), se(v)
(see clause 9.2), or ae(v) (see clause 9.3).

9.2 Parsing process for 0-th order Exp-Golomb codes
9.2.1 General

This process is invoked when the descriptor of a syntax element in the syntax tables in clause 7.3 is equal to ue(v) or
se(v).

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

Syntax elements coded as ue(v) or se(v) are Exp-Golomb-coded. The parsing process for these syntax elements begins
with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and
counting the number of leading bits that are equal to 0. This process is specified as follows:

leadingZeroBits = —1
for(b = 0; !b; leadingZeroBits++) 9-1)
b =read bits(1)

The variable codeNum is then assigned as follows:
codeNum = 2'eadingZeroBits _ 1 4 read bits(leadingZeroBits) (9-2)

where the value returned from read bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits.
The "prefix" bits are those bits that are parsed as specified above for the computation of leadingZeroBits, and are shown
as either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the computation
of codeNum and are shown as x; in Table 9-1, with i in the range of 0 to leadingZeroBits — 1, inclusive. Each x; is equal
to either 0 or 1.

Table 9-1 — Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)

Bit string form Range of codeNum
1 0
01x 1.2
001 xx 3.6
0001 x;,x;Xg 7..14
0000 1 x3x5X;Xp 15..30
00000 1 x4x3X; X Xg 31..62

Rec. ITU-T H.265 (04/2013) 161

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

Bit string codeNum
1 0
010 1
011 2
00100 3
00101 4
00110 5
00111 6
0001000 7
0001001 8
0001010 9

Depending on the descriptor, the value of a syntax element is derived as follows:
— If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

— Otherwise (the syntax element is coded as se(v)), the value of the syntax element is derived by invoking the
mapping process for signed Exp-Golomb codes as specified in clause 9.2.2 with codeNum as input.

9.2.2 Mapping process for signed Exp-Golomb codes
Input to this process is codeNum as specified in clause 9.2.
Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the
assignment rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element value
0 0
1 1
2 -1
3 2
4 -2
5 3
6 -3
k (D! Ceil(k+2)

162 Rec. ITU-T H.265 (04/2013)

9.3 CABAC parsing process for slice segment data

9.3.1 General

This process is invoked when parsing syntax elements with descriptor ae(v) in clauses 7.3.8.1 through 7.3.8.11.
Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
Output of this process is the value of the syntax element.

The initialization process of the CABAC parsing process as specified in clause 9.3.2 is invoked when starting the
parsing of one or more of the following:

— the slice segment data syntax specified in clause 7.3.8.1
— the coding tree unit syntax specified in clause 7.3.8.2 and the coding tree unit is the first coding tree unit in a tile

— the coding tree unit syntax specified in clause 7.3.8.2, entropy coding_sync_enabled flag is equal to 1, and the
associated luma coding tree block is the first luma coding tree block in a coding tree unit row

The parsing of syntax elements proceeds as follows:
For each requested value of a syntax element a binarization is derived as specified in clause 9.3.3.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in clause 9.3 .4.

In case the request for a value of a syntax element is processed for the syntax element pcm_flag and the decoded value
of pcm_flag is equal to 1, the decoding engine is initialized after the decoding of any pcm_alignment _zero_bit and all
pecm_sample luma and pcm_sample chroma data as specified in clause 9.3.2.5.

The storage process for context variables is applied as follows:

— When ending the parsing of the coding tree unit syntax in clause 7.3.8.2, entropy coding_sync enabled flag is
equal to 1 and CtbAddrInRs % PicWidthInCtbsY is equal to 1, the storage process for context variables as
specified in clause 9.3.2.3 is invoked with TableStateldxWpp and TableMpsValWpp as outputs.

— When ending the parsing of the general slice segment data syntax in clause 7.3.8.1,
dependent_slice segments_enabled flag is equal to 1 and end of slice segment flag is equal to 1, the storage
process for context variables as specified in clause 9.3.2.3 is invoked with TableStateldxDs and TableMpsValDs as
outputs.

The whole CABAC parsing process for a syntax element synEl is illustrated in Figure 9-1.

Rec. ITU-T H.265 (04/2013) 163

CABACParsing(synEl)

First synEl in:
a slice segment | |
atile ||
a CTU row?

Yesj

Initialization

No |

Get Binarization(synEl)

binldx++

Get ctxTable, ctxIdx, and bypassFlag for
binldx

+ No

DecodeBin(ctxTable, ctxIdx, bypassFlag)

(bo, -.-,bbiniax) in
Binarization(synEl)?

synEl == pcm_flag &&

Ye Sj

Initialization of
decoding engine

No |

Last synEl in CTU
or slice segment?

YesT

Storage

No |
|l
)

Figure 9-1 — Illustration of CABAC parsing process for a syntax element synEl (informative)

164 Rec. ITU-T H.265 (04/2013)

9.3.2 Initialization process

9.3.2.1 General

Outputs of this process are initialized CABAC internal variables.

Two coding tree blocks

-

Current
coding tree
block

Left edge of picture Right edge of picture

Figure 9-2 — Spatial neighbour T that is used to invoke the coding tree block availability derivation process
relative to the current coding tree block (informative)

The context variables of the arithmetic decoding engine are initialized as follows:

If the coding tree unit is the first coding tree unit in a tile, the initialization process for context variables is invoked
as specified in clause 9.3.2.2.

Otherwise, if entropy coding sync enabled flag is equal to 1 and CtbAddrInRs % PicWidthInCtbsY is equal to 0,
the following applies:

— The location (xNbT, yNbT) of the top-left luma sample of the spatial neighbouring block T (Figure 9-2) is
derived using the location (x0, y0) of the top-left luma sample of the current coding tree block as follows:

(xNDbT, yNbT) = (x0 + CtbSizeY, y0 — CtbSizeY) (9-3)

— The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the
location (xCurr, yCurr) set equal to (x0, y0) and the neighbouring location (xNbY, yNbY) set equal to
(xXNbT, yNbT) as inputs, and the output is assigned to availableFlagT.

— The synchronization process for context variables is invoked as follows:

— If availableFlagT is equal to 1, the synchronization process for context variables as specified in
clause 9.3.2.4 is invoked with TableStateldxWpp and TableMpsValWpp as inputs.

— Otherwise, the initialization process for context variables is invoked as specified in clause 9.3.2.2.

Otherwise, if CtbAddrInRs is equal to slice_segment address and dependent slice_segment flag is equal to 1, the
synchronization process for context variables as specified in clause 9.3.2.4 is invoked with TableStateldxDs and
TableMpsValDs as inputs.

Otherwise, the initialization process for context variables is invoked as specified in clause 9.3.2.2.

The initialization process for the arithmetic decoding engine is invoked as specified in clause 9.3.2.5.

The whole initialization process for a syntax element synEl is illustrated in the flowchart of Figure 9-3.

Rec. ITU-T H.265 (04/2013) 165

Initialization

First synEl in
independent slice segment | | Yes
tile?
No
First CTU in row && v
entropy_coding_sync_enabled_flag? =
Y
Availability process
for spatial
No neighbouring block T
First CTU m.sllce segment and availableFlagT == 0 Yes)
dependent_slice_segment_flag?
Yes
No
+ A 4
Synchronization of Synchronization of Initializati(l)n of
context variables with context variables with context variables
TableStateldxDs and TableStateldxWpp and
TableMpsValDs TableMpsValWpp

No

\ 4
Initialization of
decoding engine
)
A 4

Figure 9-3 — Illustration of CABAC initialization process (informative)

9.3.2.2 Initialization process for context variables

Outputs of this process are the initialized CABAC context variables indexed by ctxTable and ctxIdx.

Table 9-5 to Table 9-31 contain the values of the 8 bit variable initValue used in the initialization of context variables
that are assigned to all syntax elements in clauses 7.3.8.1 through 7.3.8.11, except end of slice segment flag,

end of sub stream one bit, and pcm_flag.

For each context variable, the two variables pStateldx and valMps are initialized.

NOTE 1 — The variable pStateldx corresponds to a probability state index and the variable valMps corresponds to the value of
the most probable symbol as further described in clause 9.3.4.3.

From the 8 bit table entry initValue, the two 4 bit variables slopeldx and offsetldx are derived as follows:

slopeldx = initValue >> 4
offsetldx = initValue & 15

The variables m and n, used in the initialization of context variables, are derived from slopeldx and offsetldx as follows:

166 Rec. ITU-T H.265 (04/2013)

m = slopeldx * 5 — 45
n = (offsetldx << 3)—16 9-5)

The two values assigned to pStateldx and valMps for the initialization are derived from SliceQpy, which is derived in
Equation 7-40. Given the variables m and n, the initialization is specified as follows:

preCtxState = Clip3(1, 126, ((m * Clip3(0, 51, SliceQpy)) >> 4)+n)
valMps = (preCtxState <= 63)?70:1
pStateldx = valMps ? (preCtxState — 64) : (63 — preCtxState) (9-6)

In Table 9-4, the ctxIdx for which initialization is needed for each of the three initialization types, specified by the
variable initType, are listed. Also listed is the table number that includes the values of initValue needed for the
initialization. For P and B slice types, the derivation of initType depends on the value of the cabac init flag syntax
element. The variable initType is derived as follows:

if(slice type == 1)

initType =0
else if(slice_type == P)

initType = cabac_init flag?2:1 9-7)
else

initType = cabac_init flag? 1:2

Rec. ITU-T H.265 (04/2013) 167

Table 9-4 — Association of ctxIdx and syntax elements for each initializationType in the initialization process

initType
Syntax structure Syntax element ctxTable
0 1 2
sao_merge _left flag Table 9-5
0 1 2
sao_merge up flag
sao()
sao_type idx_luma Table 9-6
. 0 1 2
sao_type idx chroma
coding_quadtree() split_cu_flag[][] Table 9-7 0.2 3.5 6..8
cu_transquant_bypass_flag Table 9-8 0 1 2
cu_skip flag Table 9-9 0.2 3.5
pred mode flag Table 9-10 0 1
coding_unit() part_mode Table 9-11 0 1.4 5.8
prev_intra luma pred flag[][] Table 9-12 0 1 2
intra_chroma pred mode[][] Table 9-13 0 1 2
rqt_root cbf Table 9-14 0 1
merge flag[][] Table 9-15 0 1
merge idx[][] Table 9-16 0 1
prediction_unit() inter_pred idc[][] Table 9-17 0.4 5.9
ref idx 10[][], ref idx 11[][] Table 9-18 0..1 2.3
mvp_l0_flag[][], Table 9-19 0 1
mvp 11 flag[][]
split_transform flag[][][] Table 9-20 0.2 3.5 6..8
transform_tree() cbf luma[][][] Table 9-21 0..1 2.3 4.5
cbf cb[J[1[1, cbf cr[[1[] Table 9-22 0.3 4.7 8..11
abs mvd greater0 flag|[] Table 9-23 0 2
mvd_coding()
abs_mvd _greater] flag]] Table 9-23 1 3
transform_unit() cu_gp delta_abs Table 9-24 0..1 2.3 4.5
transform_skip flag[][][0] Table 9-25 0 1 2
transform_skip flag[][][1] Table 9-25 3 4 5
transform_skip flag[][][2]
last sig_coeff x prefix Table 9-26 0..17 18..35 36..53
residual_coding() last_sig_coeff y prefix Table 9-27 0..17 18..35 36..53
coded sub_block flag[][] Table 9-28 0.3 4.7 8..11
sig_coeff flag[][] Table 9-29 0..41 42.83 84..125
coeff abs level greaterl flag[] | Table 9-30 0..23 24.47 48..71
coeff abs level greater2 flag[] | Table 9-31 0.5 6..11 12..17

NOTE 2 —ctxTable equal to O and ctxldx equal to O are associated with end of slice segment flag,
end of sub stream one bit, and pcm_flag. The decoding process specified in clause 9.3.4.3.5 applies to ctxTable equal to 0 and
ctxldx equal to 0. This decoding process, however, may also be implemented by using the decoding process specified in
clause 9.3.4.3.2. In this case, the initial values associated with ctxTable equal to 0 and ctxIdx equal to 0 are specified to be
pStateldx = 63 and valMps = 0, where pStateldx = 63 represents a non-adapting probability state.

168 Rec. ITU-T H.265 (04/2013)

Table 9-5 — Values of initValue for ctxIdx of sao_merge_left flag and sao_merge_up_flag

ctxIdx of
Initialization sac:gx;ler;gei_l:f;_ﬂz}igaand
variable - ge_up_Tag
(1} 1 2
initValue 153 153 153

Table 9-6 — Values of initValue for ctxIdx of sao_type_idx luma and sao_type_idx_chroma

ctxIdx of
Initialization s:;)gt{pe;l(i]g;hclhm;;l;d
variable —ype_tex_
0 1 2
initValue 200 185 160

Table 9-7 — Values of initValue for ctxIdx of split_cu_flag

Initialization ctxIdx of split_cu_flag
variable 0 1 5 3 4 s . : .
initValue 139 141 157 107 139 126 107 139 126

Table 9-8 — Values of initValue for ctxIdx of cu_transquant_bypass_flag

ctxIdx of
Initialization | cu_transquant_bypass_flag
variable
0 1 2
initValue 154 154 154

Table 9-9 — Values of initValue for ctxIdx of cu_skip_flag

Initialization ctxldx of cu_skip_flag
variable
0 1 2 3 4 5
initValue 197 185 201 197 185 201

Table 9-10 — Values of initValue for ctxIdx of pred_mode_flag

Initialization ctxldx of pred_mode_flag
iabl
variable 0 1
initValue 149 134

Rec. ITU-T H.265 (04/2013) 169

170

Table 9-11 — Values of initValue for ctxIdx of part mode

st ctxldx of part_mode
Initialization -

variable 0 1 3 4 5 6 7 8
initValue 184 154 139 154 154 154 139 154 154

Table 9-12 — Values of initValue for ctxIdx of prev_intra_luma_pred_flag

Initialization ctxIdx of prev_intra_luma_pred_flag
iabl
variable 0 1 2
initValue 184 154 183

Table 9-13 — Values of initValue for ctxIdx of intra_chroma_pred_mode

ctxldx of
Initialization intra_chroma_pred_mode
variable
0 1 2
initValue 63 152 152

Table 9-14 — Values of initValue for ctxIdx of rqt_root_cbf

ctxIdx of
Initialization rqt_root_cbf
variable
0 1
initValue 79 79

Table 9-15 — Value of initValue for ctxIdx of merge flag

Initialization ctxldx of merge_flag
variable
0 1
initValue 110 154

Table 9-16 — Values of initValue for ctxIdx of merge_idx

e e . ctxIdx of merge_idx
Initialization —
iabl
variable 0 1
initValue 122 137

Rec. ITU-T H.265 (04/2013)

Table 9-17 — Values of initValue for ctxIdx of inter_pred_idc

R ctxldx of inter_pred_idc
Initialization - -
variable 0o | 1| 23] a4 |s5]6|7]|8]09
initValue 95 79 63 31 31 95 | 79 | 63 | 31 | 31

Table 9-18 — Values of initValue for ctxIdx of ref idx 10 and ref _idx 11

ere te e ctxIdx of ref idx 10 and ref idx 11
Initialization - - - =

variable 0 1 2 3
initValue 153 153 153 153

Table 9-19 — Values of initValue for ctxIdx of mvp 10 flag and mvp_I11_flag

ctxIdx of mvp_l0_flag
Initialization and mvp_I1_flag
variable
0 1
initValue 168 168

Table 9-20 — Values of initValue for ctxIdx of split_transform_flag

Initialization ctxIdx of split_transform_flag
variable 0 1 2 3 4 5 6 7 8
initValue 153 138 138 124 138 94 224 167 122
Table 9-21 — Values of initValue for ctxIdx of chf luma
e ctxIdx of cbf luma
Initialization -
variable 0 1 2 3 4 5
initValue 111 | 141 | 153 | 111 | 153 | 111
Table 9-22 — Values of initValue for ctxIdx of cbf cb and ¢bf cr
. ctxIdx of cbf cb and cbf cr
Initialization - -
variable o |1 |2 |3 |45 |6 7|89 |10]n
initValue 94 138 | 182 | 154 | 149 | 107 | 167 | 154 | 149 | 92 167 | 154

Rec. ITU-T H.265 (04/2013)

171

Table 9-23 — Values of initValue for ctxIdx of abs_mvd_greater0_flag and abs_mvd_greaterl_flag

ctxIdx of abs_mvd_greater0_flag
Initialization and abs_mvd_greaterl_flag
variable
0 1 2 3
initValue 140 198 169 198

Table 9-24 — Values of initValue for ctxIdx of cu_qp_delta_abs

Initialization ctxIdx of cu_qp_delta_abs
variable 0 1) 3 4 5
initValue 154 154 154 154 154 154

Table 9-25 — Values of initValue for ctxIdx of transform_skip_flag

Initialization ctxIdx of transform_skip_flag
variable 0 1) 3 4 5
initValue 139 | 139 | 139 | 139 | 139 | 139

Table 9-26 — Values of initValue for ctxIdx of last_sig coeff x_prefix

Initialization ctxldx of last_sig_coeff_x_prefix
variable
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17
initValue 110 [110 | 124 | 125 | 140 | 153 | 125 | 127 | 140 | 109 | 111 | 143 | 127 | 111 | 79 | 108 | 123 | 63
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35
initValue 125 | 110 | 94 | 110 | 95 | 79 | 125 | 111 | 110 | 78 | 110 | 111 | 111 | 95 | 94 | 108 | 123 | 108
36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
initValue 125 | 110 | 124 | 110 | 95 | 94 | 125 [191 [111] 79 [125 | 126 | 111 | 111 | 79 | 108 | 123 | 93
Table 9-27 — Values of initValue for ctxIdx of last_sig_coeff y prefix
Initialization ctxIdx of last_sig_coeff y_prefix
variable
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17
initValue 110 | 110 | 124 | 125 | 140 | 153 | 125 | 127 | 140 | 109 | 111 | 143 | 127 | 111 | 79 | 108 | 123 | 63
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35
initValue 125 | 110 | 94 | 110 | 95 | 79 | 125 | 111 | 110 | 78 | 110 | 111 | 111 | 95 | 94 | 108 | 123 | 108
36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
initValue 125 | 110 | 124 | 110 | 95 | 94 | 125 [191 [111] 79 [125 | 126 | 111 | 111 | 79 | 108 | 123 | 93

172 Rec. ITU-T H.265 (04/2013)

Table 9-28 — Values of initValue for ctxIdx of coded_sub_block_flag

s L ctxIdx of coded_sub_block_flag
Initialization - = =

variable o | 1 | 2|3 |45 |6] 78] 9 |10]|mn
initValue 91 171 134 141 121 140 61 154 121 140 61 154

Table 9-29 — Values of initValue for ctxIdx of sig_coeff flag

Initialization ctxIdx of sig_coeff flag

variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[initValue 111 111 125 110 110 94 124 108 124 107 125 141 179 153 125 107
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[initValue 125 141 179 153 125 107 125 141 179 153 125 140 139 182 182 152
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[initValue 136 152 136 153 136 139 111 136 139 111 155 154 139 153 139 123
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
[initValue 123 63 153 166 183 140 136 153 154 166 183 140 136 153 154 166
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
[initValue 183 140 136 153 154 170 153 123 123 107 121 107 121 167 151 183
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
[initValue 140 151 183 140 170 154 139 153 139 123 123 63 124 166 183 140
96 97 98 99 100 | 101 102 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
[initValue 136 153 154 166 183 140 136 153 154 166 183 140 136 153 154 170

112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 122 | 123 | 124 | 125

[initValue 153 138 138 122 121 122 121 167 151 183 140 151 183 140

Table 9-30 — Values of initValue for ctxIdx of coeff _abs_level greaterl flag

Initialization ctxIdx of coeff_abs_level_greaterl_flag
variable
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
initValue 140 92 137 | 138 | 140 | 152 | 138 | 139 | 153 74 149 92 139 | 107 122 152
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
initValue 140 | 179 | 166 | 182 | 140 | 227 | 122 | 197 | 154 | 196 196 167 | 154 | 152 167 182
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
initValue 182 | 134 | 149 | 136 | 153 121 | 136 | 137 | 169 | 194 | 166 167 | 154 | 167 137 182
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
initValue 154 | 196 | 167 | 167 | 154 | 152 | 167 | 182 | 182 | 134 | 149 136 | 153 | 121 136 122
64 65 66 67 68 69 70 71
initValue 169 | 208 | 166 | 167 | 154 | 152 | 167 | 182

Table 9-31 — Values of initValue for ctxIdx of coeff_abs_level greater2_flag

Initialization ctxIdx of coeff_abs_level greater2_flag
variable
0 1 2 3 4 5 6 7 8
initValue 138 153 136 167 152 152 107 167 91
9 10 11 12 13 14 15 16 17
initValue 122 107 167 107 167 91 107 107 167

Rec. ITU-T H.265 (04/2013) 173

9.3.2.3 Storage process for context variables
Inputs to this process are the CABAC context variables indexed by ctxTable and ctxIdx.

Outputs of this process are variables tableStateSync and tableMPSSync containing the values of the variables pStateldx
and valMps used in the initialization process of context variables that are assigned to all syntax elements in clauses
7.3.8.1 through 7.3.8.11, except end_of slice_segment flag, end of sub_stream one_bit, and pcm_flag.

For each context variable, the corresponding entries pStateldx and valMps of tables tableStateSync and tableMPSSync
are initialized to the corresponding pStateldx and valMps.

The storage process for context variables is illustrated in the flowchart of Figure 9-4.

Second CTU in row &&
entropy coding sync enabled flag?

Y651

Storage of context variables in
TableStateldx Wpp and
TableMpsValWpp

No |

end_of slice_segment_flag && Yes
dependent_slice_segments_enabled_flag? 1
Storage of context variables in
TableStateldxDs and
TableMpsValDs
No |

[
«

Figure 9-4 — Illustration of CABAC storage process (informative)

9.3.2.4 Synchronization process for context variables

Inputs to this process are variables tableStateSync and tableMPSSync containing the values of the variables pStateldx
and valMps used in the storage process of context variables that are assigned to all syntax elements in clauses 7.3.8.1
through 7.3.8.11, except end_of slice segment flag, end of sub_stream one bit, and pcm_flag.

Outputs of this process are the initialized CABAC context variables indexed by ctxTable and ctxIdx.

For each context variable, the corresponding context variables pStateldx and valMps are initialized to the corresponding
entries pStateldx and valMps of tables tableStateSync and tableMPSSync.

9.3.2.5 Initialization process for the arithmetic decoding engine

Outputs of this process are the initialized decoding engine registers iviCurrRange and ivlOffset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables ivlCurrRange and ivlOffset. In the
initialization procedure of the arithmetic decoding process, ivlCurrRange is set equal to 510 and ivlOffset is set equal to
the value returned from read bits(9) interpreted as a 9 bit binary representation of an unsigned integer with the most
significant bit written first.

The bitstream shall not contain data that result in a value of ivlOffset being equal to 510 or 511.

174 Rec. ITU-T H.265 (04/2013)

NOTE — The description of the arithmetic decoding engine in this Specification utilizes 16 bit register precision. However, a
minimum register precision of 9 bits is required for storing the values of the variables ivICurrRange and ivlOffset after
invocation of the arithmetic decoding process (DecodeBin) as specified in clause 9.3.4.3. The arithmetic decoding process for a
binary decision (DecodeDecision) as specified in clause 9.3.4.3.2 and the decoding process for a binary decision before
termination (DecodeTerminate) as specified in clause 9.3.4.3.5 require a minimum register precision of 9 bits for the variables
ivlCurrRange and ivlOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in clause 9.3.4.3.4
requires a minimum register precision of 10 bits for the variable ivlOffset and a minimum register precision of 9 bits for the
variable ivlCurrRange.

9.3.3 Binarization process

9.3.3.1 General

Input to this process is a request for a syntax element.

Output of this process is the binarization of the syntax element.

Table 9-32 specifies the type of binarization process associated with each syntax element and corresponding inputs.

The specification of the truncated Rice (TR) binarization process, the k-th order Exp-Golomb (EGk) binarization
process, and the fixed-length (FL) binarization process are given in clauses 9.3.3.2 through 9.3.3.4, respectively. Other
binarizations are specified in clauses 9.3.3.5 through 9.3.3.9.

Table 9-32 — Syntax elements and associated binarizations

Syntax structure Syntax element Binarization
Process Input parameters
slice_segment data() | end of slice segment flag FL cMax = 1
end_of sub_stream_one bit FL cMax = 1
sao() sao_merge_left flag FL cMax =1
sao_merge up flag FL cMax =1
sao_type idx_luma TR cMax = 2, cRiceParam = 0
sao_type_idx_chroma TR cMax =2, cRiceParam = 0
sao_offset abs[][[1[] TR cMax = (1 << (Min(bitDepth, 10)—5)) — 1, cRiceParam =0
sao_offset_sign[][][][] FL cMax =1
sao_band_position[][][] FL cMax =31
sao_eo_class luma FL cMax =3
sao_eo_class_chroma FL cMax =3
coding_quadtree() split_cu_flag[][] FL cMax = 1

Rec. ITU-T H.265 (04/2013) 175

Table 9-32 — Syntax elements and associated binarizations

Syntax structure

Syntax element

Binarization

Process Input parameters
coding_unit() cu_transquant_bypass_flag FL cMax =1
cu_skip flag FL cMax = 1
pred_mode flag FL cMax =1
part_mode 9.3.3.5 (xCb, yCb) = (x0, y0), log2CbSize
pem_flag[][] FL cMax =1
prev_intra_luma pred flag[][] FL cMax =1
mpm_idx[][] TR cMax = 2, cRiceParam = 0
rem_intra_luma_pred_mode[][] FL cMax =31
intra_chroma_pred_mode[][] 9.3.3.6 -
rqt_root_cbf FL cMax = 1
prediction_unit() merge_flag[][] FL cMax =1
merge idx[][] TR cMax = MaxNumMergeCand — 1, cRiceParam = 0
inter_pred_idc[x0][yO] 9.33.7 nPbW, nPbH
ref idx_10[][] TR cMax =num_ref idx_10 active_minusl, cRiceParam = 0
mvp_10_flag[][] FL cMax =1
ref idx _I1[][] TR cMax =num_ref idx_11_active_minusl, cRiceParam = 0
mvp_11_flag[][] FL cMax = 1
transform_tree() split_transform_flag[][][] FL cMax =1
cbf luma[][][] FL cMax = 1
cbf cb[][][] FL cMax =1
cbf er[][][] FL cMax =1
mvd_coding() abs mvd_greater0_flag[] FL cMax = 1
abs_mvd_greaterl flag[] FL cMax = 1
abs_mvd_minus2[] EG1 -
mvd_sign_flag[] FL cMax =1
transform_unit() cu_qp_delta_abs 9.3.3.8 -
cu_gp_delta_sign flag FL cMax =1

176 Rec. ITU-T H.265 (04/2013)

Table 9-32 — Syntax elements and associated binarizations

Syntax structure

Syntax element

Binarization

Process Input parameters

residual_coding() transform_skip flag[][][] FL cMax = 1
last_sig_coeff x_prefix TR cMax = (log2TrafoSize << 1)— I, cRiceParam =0
last_sig_coeff y prefix TR cMax = (log2TrafoSize << 1)— 1, cRiceParam =0
last_sig_coeff x_suffix FL cMax = (1 << ((last_sig coeff x_prefix >> 1)—-1)—1)
last_sig_coeff y suffix FL cMax = (1 << ((last_sig coeff y prefix >> 1)—1)—1)
coded_sub_block flag[][] FL cMax =1
sig_coeff flag[][] FL cMax = 1
coeff abs level greater]l flag]] FL cMax = 1
coeff abs level greater2 flag[| FL cMax =1

coeff abs level remaining|] 9.33.9

current sub-block scan index i, baseLevel

coeff sign_flag[] FL

cMax =1

9.3.3.2 Truncated Rice (TR) binarization process

Input to this process is a request for a TR binarization for a syntax element with value synVal, cMax, and cRiceParam.

Output of this process is the TR binarization of the syntax element.

A TR bin string is a concatenation of a prefix bin string and, when present, a suffix bin string.

For the derivation of the prefix bin string, the following applies:

— The prefix value of synVal, prefixVal, is derived as follows:

prefixVal =synVal >> cRiceParam

— The prefix of the TR bin string is specified as follows:

9-8)

— If prefixVal is less than cMax >> cRiceParam, the prefix bin string is a bit string of length prefixVal + 1
indexed by binldx. The bins for binldx less than prefixVal are equal to 1. The bin with binldx equal to
prefixVal is equal to 0. Table 9-33 illustrates the bin strings of this unary binarization for prefixVal.

— Otherwise, the bin string is a bit string of length cMax >> cRiceParam with all bins being equal to 1.

Table 9-33 — Bin string of the unary binarization (informative)

prefixVal Bin string

0 0

1 10

2 1110

3 1110

4 1|j1|1(1})0

5 1111140
binldk«. [0 |1]|2]3|4]5

Rec. ITU-T H.265 (04/2013)

177

When cMax is greater than synVal, the suffix of the TR bin string is present and it is derived as follows:
— The suffix value of synVal, suffixVal, is derived as follows:
suffixVal = synVal — ((prefixVal) << cRiceParam) (9-9)

— The suffix of the TR bin string is specified by the binary representation of suffixVal.

NOTE - For the input parameter cRiceParam = 0 the TR binarization is exactly a truncated unary binarization and it is always
invoked with a cMax value equal to the largest possible value of the syntax element being decoded.

9.3.3.3 k-th order Exp-Golomb (EGK) binarization process
Inputs to this process is a request for an EGk binarization for a syntax element.
Output of this process is the EGk binarization of the syntax element.

The bin string of the EGk binarization process of a syntax element synVal is specified as follows, where each call of the
function put(X), with X being equal to 0 or 1, adds the binary value X at the end of the bin string:

absV = Abs(synVal)

stopLoop =0
do {
if(absV >= (1 << k)){
put(1)
absV=absV — (1 << k)
k++
}else {
put(0) (9-10)
while(k——)
put((absV >> k) & 1)
stopLoop =1

} while(!stopLoop)
NOTE — The specification for the k-th order Exp-Golomb (EGk) code uses 1's and 0's in reverse meaning for the unary part of
the Exp-Golomb code of 0-th order as specified in clause 9.2.

9.3.3.4 Fixed-length (FL) binarization process
Inputs to this process are a request for a FL binarization for a syntax element and cMax.
Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using a fixedLength-bit unsigned integer bin string of the syntax element value, where
fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binldx = 0 relates
to the most significant bit with increasing values of binldx towards the least significant bit.

9.3.3.5 Binarization process for part_mode

Inputs to this process are a request for a binarization for the syntax element part mode a luma location (xCb, yCb),
specifying the top-left sample of the current luma coding block relative to the top-left luma sample of the current
picture, and a variable log2CbSize specifying the current luma coding block size.

Output of this process is the binarization of the syntax element.

The binarization for the syntax element part mode is specified in Table 9-34 depending on the values of
CuPredMode[xCb][yCb] and log2CbSize.

178 Rec. ITU-T H.265 (04/2013)

Table 9-34 — Binarization for part_mode

Bin string
CuPredMode[xCb][yCb] |part_mode| PartMode Miﬁ%jzb(izsgizzs;e\(log2ChSize == MinCbLog2SizeY
lamp_enabled flag| amp_enabled flag | log2CbSize == 3 | log2CbSize >3
0 PART 2Nx2N | - - 1 1
MODE_INTRA

1 PART NxN - - 0 0

0 PART 2Nx2N | 1 1 1 1

1 PART 2NxN | 01 011 01 01

2 PART Nx2N | 00 001 00 001

3 PART _NxN - - - 000

MODE INTER

4 PART 2NxnU | - 0100 - -

5 PART 2NxnD | - 0101 - -

6 PART nLx2N | - 0000 - -

7 PART nRx2N | - 0001 - -

9.3.3.6 Binarization process for intra_chroma_pred_mode

Input to this process is a request for a binarization for the syntax element intra_chroma pred mode.

Output of this process is the binarization of the syntax element.

The binarization for the syntax element intra_chroma pred mode is specified in Table 9-35.

Table 9-35 — Binarization for intra_chroma_pred_mode

Value of

intra_chroma pred _mode

Bin string

4 0

0 100
1 101
2 110
3 111

9.3.3.7 Binarization process for inter_pred_idc

Inputs to this process are a request for a binarization for the syntax element inter_pred_idc, the current luma prediction
block width nPbW, and the current luma prediction block height nPbH.

Output of this process is the binarization of the syntax element.

The binarization for the syntax element inter pred idc is specified in Table 9-36.

Rec. ITU-T H.265 (04/2013)

179

Table 9-36 — Binarization for inter_pred_idc

Value of Name of Bin string
inter_pred_idc inter_pred_idc | (,phWw +nPbH) != 12 | (nPbW +nPbH) == 12
0 PRED_LO 00 0
1 PRED_L1 01 1
2 PRED_BI 1 -

9.3.3.8 Binarization process for cu_qp_delta_abs
Input to this process is a request for a binarization for the syntax element cu_qgp_delta_abs.
Output of this process is the binarization of the syntax element.

The binarization of the syntax element cu_qp_delta_abs is a concatenation of a prefix bin string and (when present) a
suffix bin string.

For the derivation of the prefix bin string, the following applies:
— The prefix value of cu_qp_delta abs, prefixVal, is derived as follows:
prefixVal = Min(cu_qp_delta_abs, 5) 9-11)

— The prefix bin string is specified by invoking the TR binarization process as specified in clause 9.3.3.2 for
prefixVal with cMax = 5 and cRiceParam = 0.

When prefixVal is greater than 4, the suffix bin string is present and it is derived as follows:
— The suffix value of cu_qgp delta abs, suffixVal, is derived as follows:
suffixVal =cu_qp delta_abs—5 (9-12)

— The suffix bin string is specified by invoking the EGk binarization process as specified in clause 9.3.3.3 for
suffixVal with the Exp-Golomb order k set equal to 0.

9.3.3.9 Binarization process for coeff_abs level remaining

Input to this process is a request for a binarization for the syntax element coeff abs level remaining[n], the current
sub-block scan index i, and baseLevel.

Output of this process is the binarization of the syntax element.
The variables cLastAbsLevel and cLastRiceParam are derived as follows:

— If this process is invoked for the first time for the current sub-block scan index i, cLastAbsLevel and
cLastRiceParam are set equal to 0.

— Otherwise (this process is not invoked for the first time for the current sub-block scan index 1), cLastAbsLevel and
cLastRiceParam are set equal to the values of cAbsLevel and cRiceParam, respectively, that have been derived
during the last invocation of the binarization process for the syntax element coeff abs level remaining as specified
in this clause.

The variable cAbsLevel is set equal to baseLevel + coeff abs level remaining[n].
The variable cRiceParam is derived from cLastAbsLevel and cLastRiceParam as:

cRiceParam = Min(cLastRiceParam + (cLastAbsLevel > (3 * (1 << cLastRiceParam))?1:0),4) (9-13)
The variable cMax is derived from cRiceParam as:

cMax =4 << cRiceParam (9-14)

The binarization of the syntax element coeff abs level remaining[n] is a concatenation of a prefix bin string and
(when present) a suffix bin string.

For the derivation of the prefix bin string, the following applies:

— The prefix value of coeff abs_level remaining[n], prefixVal, is derived as follows:

180 Rec. ITU-T H.265 (04/2013)

prefixVal = Min(cMax, coeff abs_level remaining[n]) (9-15)

— The prefix bin string is specified by invoking the TR binarization process as specified in clause 9.3.3.2 for
prefixVal with the variables cMax and cRiceParam as inputs.

When the prefix bin string is equal to the bit string of length 4 with all bits equal to 1, the suffix bin string is present and
it is derived as follows:

— The suffix value of coeff abs level remaining[n |, suffixVal, is derived as follows:
suffixVal = coeff abs_level remaining[n] — cMax (9-16)

— The suffix bin string is specified by invoking the EGk binarization process as specified in clause 9.3.3.3 for
suffixVal with the Exp-Golomb order k set equal to cRiceParam + 1.

9.3.4 Decoding process flow

9.3.4.1 General
Inputs to this process are all bin strings of the binarization of the requested syntax element as specified in clause 9.3.3.
Output of this process is the value of the syntax element.

This process specifies how each bin of a bin string is parsed for each syntax element. After parsing each bin, the
resulting bin string is compared to all bin strings of the binarization of the syntax element and the following applies:

— Ifthe bin string is equal to one of the bin strings, the corresponding value of the syntax element is the output.

— Otherwise (the bin string is not equal to one of the bin strings), the next bit is parsed.

While parsing each bin, the variable binldx is incremented by 1 starting with binldx being set equal to 0 for the first bin.
The parsing of each bin is specified by the following two ordered steps:

1. The derivation process for ctxTable, ctxldx, and bypassFlag as specified in clause 9.3.4.2 is invoked with
binldx as input and ctxTable, ctxIdx, and bypassFlag as outputs.

2. The arithmetic decoding process as specified in clause 9.3.4.3 is invoked with ctxTable, ctxldx, and
bypassFlag as inputs and the value of the bin as output.

9.3.4.2 Derivation process for ctxTable, ctxIdx and bypassFlag
9.3.4.2.1 General

Input to this process is the position of the current bin within the bin string, binldx.
Outputs of this process are ctxTable, ctxIdx, and bypassFlag.

The values of ctxTable, ctxldx, and bypassFlag are derived as follows based on the entries for binldx of the
corresponding syntax element in Table 9-37:

— If the entry in Table 9-37 is not equal to "bypass", "terminate", and "na", the values of binldx are decoded by
invoking the DecodeDecision process as specified in clause 9.3.4.3.2 and the following applies:

ctxTable is specified in Table 9-4.

— The variable ctxInc is specified by the corresponding entry in Table 9-37 and when more than one value is
listed in Table 9-37 for a binldx, the assignment process for ctxInc for that binldx is further specified in the
clauses given in parenthesis.

— The variable ctxIdxOffset is specified by the lowest value of ctxIdx in Table 9-4 depending on the current
value of initType.

— ctxIdx is set equal to the sum of ctxInc and ctxIdxOffset.
— bypass Flag is set equal to 0.

— Otherwise, if the entry in Table 9-37 is equal to "bypass", the values of binldx are decoded by invoking the
DecodeBypass process as specified in clause 9.3.4.3.4 and the following applies:

— ctxTable is set equal to 0.
— ctxlIdx is set equal to 0.

— bypassFlag is set equal to 1.

Rec. ITU-T H.265 (04/2013) 181

— Otherwise, if the entry in Table 9-37 is equal to "terminate", the values of binldx are decoded by invoking the
DecodeTerminate process as specified in clause 9.3.4.3.5 and the following applies:

— ctxTable is set equal to 0.
— ctxIdx is set equal to 0.
— bypassFlag is set equal to 0.

— Otherwise (the entry in Table 9-37 is equal to "na"), the values of binldx do not occur for the corresponding syntax

element.

Table 9-37 — Assignment of ctxInc to syntax elements with context coded bins

binldx
Syntax element
0 1 2 3 4 >= 5
end of slice segment flag terminate na na na na na
end of sub stream one bit terminate na na na na na
sao_merge left flag 0 na na na na na
sao_merge up flag 0 na na na na na
sao_type idx luma 0 bypass na na na na
sao_type idx chroma 0 bypass na na na na
sao_offset_abs[J[][][] bypass bypass bypass bypass bypass bypass
sao_offset sign[][][1[] bypass na na na na na
sao_band position[][][] bypass bypass bypass bypass bypass bypass
sao_eo class luma bypass bypass bypass na na na
sao_eo_class_chroma bypass bypass bypass na na na
spiiteuMeeL 1] (clausg ’91.,5.4.2.2) na na na na na
cu_transquant_bypass_flag 0 na na na na na
cu_skip_flag 0,1,2 na na na na na
(clause 9.3.4.2.2)

pred mode flag 0 na na na na na
E;Zrzté?soigee = = MinCbLog2SizeY 0 ! 2 bypass na na
E:zrzt(_:rl?s?g: > MinCbLog2SizeY 0 ! 3 bypass na na
pem flag[][] terminate na na na na na
prev_intra luma pred flag[][] 0 na na na na na
mpm_idx[][] bypass bypass na na na na
rem intra_luma pred mode[][] bypass bypass bypass bypass bypass bypass
intra_chroma pred mode[][] 0 bypass bypass na na na
rqt_root_cbf 0 na na na na na
merge flag[][] 0 na na na na na
merge idx[][] 0 bypass bypass bypass na na

. . 1=

inter_pred_idc[x0][yO0] rg élt’]l))l?\rf)t:-] [n)l:(l))ﬁ ;0 : li 4 na na na na
ref idx 10[][] 0 1 bypass bypass bypass bypass
ref idx 11[][] 0 1 bypass bypass bypass bypass
mvp_10 flag[][] 0 na na na na na
mvp 11 flag[][] 0 na na na na na
split_transform flag[][][] 5 — log2TrafoSize na na na na na

182

Rec. ITU-T H.265 (04/2013)

Table 9-37 — Assignment of ctxInc to syntax elements with context coded bins

binldx
Syntax element
0 1 2 3 4 >= 5
cbf cb[][1[] trafoDepth na na na na na
cbf er[J[1[] trafoDepth na na na na na
cbf luma[][][] trafoDepth==0?1:0 na na na na na
abs mvd greaterQ flag[] 0 na na na na na
abs mvd greater]l flag[] 0 na na na na na
abs mvd minus?2[] bypass bypass bypass bypass bypass bypass
mvd_sign flag[] bypass na na na na na
cu gp delta abs 0 1 1 1 1 bypass
cu_qgp delta sign flag bypass na na na na na
transform_skip flag[][1[] 0 na na na na na
last sig coeff x prefix 0..17 (clause 9.3.4.2.3)
last_sig_coeff y prefix 0..17 (clause 9.3.4.2.3)
last sig coeff x suffix bypass bypass bypass bypass bypass bypass
last_sig_coeff y suffix bypass bypass bypass bypass bypass bypass
coded_sub_block flag[][] 0.3 na na na na na
(clause 9.3.4.2.4)
sig_coeff flag[][] 0..41 na na na na na
(clause 9.3.4.2.5)
coeff abs level greater]l flag][] 0.23 na na na na na
(clause 9.3.4.2.6)
coeff abs level greater2 flagf] 0.5 na na na na na
(clause 9.3.4.2.7)
coeff abs level remaining]] bypass bypass bypass bypass bypass bypass
coeff sign flag[| bypass na na na na na

9.3.4.2.2 Derivation process of ctxInc using left and above syntax elements

Input to this process is the luma location (x0, y0) specifying the top-left luma sample of the current luma block relative
to the top-left sample of the current picture.

Output of this process is ctxInc.

The location (xNbL, yNbL) is set equal to (x0 — 1, y0) and the variable availableL, specifying the availability of the
block located directly to the left of the current block, is derived by invoking the availability derivation process for a
block in z-scan order as specified in clause 6.4.1 with the location (xCurr, yCurr) set equal to (x0,y0) and the
neighbouring location (xNbY, yNbY) set equal to (xNbL, yNbL) as inputs, and the output is assigned to availableL.

The location (xXNbA, yNbA) is set equal to (x0, y0 — 1) and the variable availableA specifying the availability of the
coding block located directly above the current block, is derived by invoking the availability derivation process for a
block in z-scan order as specified in clause 6.4.1 with the location (xCurr, yCurr) set equal to (x0,y0) and the
neighbouring location (xNbY, yNbY) set equal to (xNbA, yNbA) as inputs, and the output is assigned to availableA.

The assignment of ctxInc for the syntax elements split cu flag[x0][y0] and cu_skip flag[x0][yO] is specified in
Table 9-38.

Rec. ITU-T H.265 (04/2013) 183

Table 9-38 — Specification of ctxInc using left and above syntax elements

Syntax element condL condA ctxInc

split_cu_flag[x0][y0] CtDepth[xXNbL][yNbL] > cqtDepth CtDepth[xNbA][yNbA] > cqtDepth (condL && availableL) +
(condA && availableA)

cu_skip flag[x0][yO0] cu_skip_flag[xNbL][yNbL] cu_skip flag[xNbA][yNbA] (condL && availableL) +
(condA && availableA)

9.3.4.2.3 Derivation process of ctxInc for the syntax elements last _sig_coeff x_ prefix and last_sig_coeff y prefix

Inputs to this process are the variable binldx, the colour component index cldx, and the transform block size
log2TrafoSize.

Output of this process is the variable ctxInc.
The variables ctxOffset and ctxShift are derived as follows:

— If cldx is equal to 0, ctxOffset is set equal to 3 * (log2TrafoSize —2) + ((log2TrafoSize—1) >> 2) and
ctxShift is set equal to (log2TrafoSize +1) >> 2.

— Otherwise (cldx is greater than 0), ctxOffset is set equal to 15 and ctxShift is set equal to log2TrafoSize — 2.
The variable ctxInc is derived as follows:

ctxInc = (binldx >> ctxShift) + ctxOffset (9-17)

9.3.4.2.4 Derivation process of ctxInc for the syntax element coded_sub_block_flag

Inputs to this process are the colour component index cldx, the current sub-block scan location (xS, yS), the previously
decoded bins of the syntax element coded sub_block flag, and the transform block size log2TrafoSize.

Output of this process is the variable ctxInc.

The variable csbfCtx is derived using the current location (xS, yS), two previously decoded bins of the syntax element
coded sub_block flag in scan order, and the transform block size log2TrafoSize, as follows:

— ¢sbfCtx is initialized with 0 as follows:

csbfCtx =0 (9-18)
— When xS is less than (1 << (log2TrafoSize —2)) — 1, csbfCtx is modified as follows:

csbfCtx += coded _sub_block flag[xS+ 1][yS] (9-19)
— When ySis less than (1 << (log2TrafoSize —2)) — 1, csbfCtx is modified as follows:

csbfCtx += coded sub_block flag[xS][yS+1] (9-20)

The context index increment ctxInc is derived using the colour component index cldx and csbfCtx as follows:
— Ifcldx is equal to 0, ctxInc is derived as follows:

ctxInc = Min(csbfCtx, 1) (9-21)
— Otherwise (cldx is greater than 0), ctxInc is derived as follows:

ctxInc = 2 + Min(csbfCtx, 1) (9-22)
9.3.4.2.5 Derivation process of ctxInc for the syntax element sig_coeff flag

Inputs to this process are the colour component index cldx, the current coefficient scan location (xC, yC), the scan
order index scanldx, and the transform block size log2TrafoSize.

Output of this process is the variable ctxInc.

The variable sigCtx depends on the current location (xC, yC), the colour component index cldx, the transform block
size, and previously decoded bins of the syntax element coded sub block flag. For the derivation of sigCtx, the
following applies:

— Iflog2TrafoSize is equal to 2, sigCtx is derived using ctxIdxMap[] specified in Table 9-39 as follows:
sigCtx = ctxIdxMap[(yC << 2) +xC] (9-23)

184 Rec. ITU-T H.265 (04/2013)

— Otherwise, if xC + yC is equal to 0, sigCtx is derived as follows:
sigCtx =0
— Otherwise, sigCtx is derived using previous values of coded_sub_block flag as follows:
— The sub-block location (xS, yS) is set equal to (xC >> 2,yC >> 2).
— The variable prevCsbf is set equal to 0.
— When xS is less than (1 << (log2TrafoSize —2)) — 1, the following applies:
prevCsbf += coded_sub block flag[xS+ 1][yS]
— When yS is less than (1 << (log2TrafoSize —2)) — 1, the following applies:
prevCsbf += (coded sub block flag[xS][yS+1] << 1)
— The inner sub-block location (xP, yP) is set equal to (xC & 3, yC & 3).
— The variable sigCtx is derived as follows:
— If prevCsbfis equal to 0, the following applies:
sigCtx=(xP+yP ==0)?2:(xP+yP<3)?1:0
— Otherwise, if prevCsbfis equal to 1, the following applies:
sigCtx=(yP == 0)?2:(yP==1)71:0
— Otherwise, if prevCsbf is equal to 2, the following applies:
sigCtx=(xP == 0)?2:(xP ==1)?1:0
— Otherwise (prevCsbf is equal to 3), the following applies:
sigCtx =2
— The variable sigCtx is modified as follows:
— Ifcldx is equal to 0, the following applies:
— When (xS +yS) is greater than 0, the following applies:
sigCtx += 3
— The variable sigCtx is modified as follows:
— Iflog2TrafoSize is equal to 3, the following applies:
sigCtx += (scanldx == 0)?9:15
— Otherwise, the following applies:
sigCtx += 21
— Otherwise (cldx is greater than 0), the following applies:
— Iflog2TrafoSize is equal to 3, the following applies:
sigCtx += 9
— Otherwise, the following applies:
sigCtx += 12
The context index increment ctxInc is derived using the colour component index cIdx and sigCtx as follows:
— Ifcldx is equal to 0, ctxInc is derived as follows:
ctxInc = sigCtx
— Otherwise (cldx is greater than 0), ctxInc is derived as follows:

ctxInc =27 + sigCtx

Rec. ITU-T H.265 (04/2013)

(9-24)

(9-25)

(9-26)

(9-27)

(9-28)

(9-29)

(9-30)

(9-31)

(9-32)

(9-33)

(9-34)

(9-35)

(9-36)

(9-37)

185

Table 9-39 — Specification of ctxIdxMap[i |

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ctxIdxMap|i] 0 1 4 5 2 3 4 5 6 6 8 8 7 7 8

9.3.4.2.6 Derivation process of ctxInc for the syntax element coeff_abs level greaterl flag

Inputs to this process are the colour component index cldx, the current sub-block scan index i, and the current
coefficient scan index n within the current sub-block.

Output of this process is the variable ctxInc.
The variable ctxSet specifies the current context set and for its derivation the following applies:
— If this process is invoked for the first time for the current sub-block scan index i, the following applies:
— The variable ctxSet is initialized as follows:
— If the current sub-block scan index i is equal to 0 or cldx is greater than 0, the following applies:
ctxSet =0 (9-38)
— Otherwise (i is greater than 0 and cldx is equal to 0), the following applies:
ctxSet =2 (9-39)
— The variable lastGreater1Ctx is derived as follows:

— If the current sub-block with scan index i is the first one to be processed in this clause for the current
transform block, the variable lastGreater1 Ctx is set equal to 1.

— Otherwise, the following applies:

— The variable lastGreater1 Ctx is set equal to the value of greater1Ctx that has been derived during the
last invocation of the process specified in this clause for a previous sub-block.

— When lastGreater1 Ctx is greater than 0, the variable lastGreater1Flag is set equal to the value of the
syntax element coeff abs level greater]l flag that has been used during the last invocation of the
process specified in this clause for a previous sub-block and lastGreater1Ctx is modified as follows:

— IflastGreater1Flag is equal to 1, lastGreater1 Ctx is set equal to 0.
— Otherwise (lastGreater1Flag is equal to 0), lastGreater1Ctx is incremented by 1.
— When lastGreater1Ctx is equal to 0, ctxSet is incremented by one as follows:
ctxSet = ctxSet + 1 (9-40)
— The variable greater1Ctx is set equal to 1.

— Otherwise (this process is not invoked for the first time for the current sub-block scan index i), the following
applies:

— The variable ctxSet is set equal to the variable ctxSet that has been derived during the last invocation of the
process specified in this clause.

— The variable greaterlCtx is set equal to the variable greaterlCtx that has been derived during the last
invocation of the process specified in this clause.

— When greaterlCtx is greater than 0, the variable lastGreaterlFlag is set equal to the syntax element
coeff abs level greaterl flag that has been used during the last invocation of the process specified in this
clause and greater1Ctx is modified as follows:

— IflastGreaterlFlag is equal to 1, greater1 Ctx is set equal to O.
— Otherwise (lastGreater1Flag is equal to 0), greater1Ctx is incremented by 1.

The context index increment ctxInc is derived using the current context set ctxSet and the current context greater1Ctx as
follows:

ctxInc = (ctxSet * 4) + Min(3, greater1Ctx) (9-41)

186 Rec. ITU-T H.265 (04/2013)

When cldx is greater than 0, ctxInc is modified as follows:

ctxInc = ctxInc + 16 (9-42)

9.3.4.2.7 Derivation process of ctxInc for the syntax element coeff _abs level greater2 flag

Inputs to this process are the colour component index cldx, the current sub-block scan index i, and the current
coefficient scan index n within the current sub-block.

Output of this process is the variable ctxInc.

The variable ctxSet specifies the current context set and is set equal to the value of the variable ctxSet that has been
derived in clause 9.3.4.2.6 for the same subset i.

The context index increment ctxInc is set equal to the variable ctxSet as follows:
ctxInc = ctxSet (9-43)
When cldx is greater than 0, ctxInc is modified as follows:

ctxInc = ctxInc + 4 (9-44)
9.3.4.3 Arithmetic decoding process

9.3.4.3.1 General

Inputs to this process are ctxTable, ctxIdx, and bypassFlag, as derived in clause 9.3.4.2, and the state variables
ivlCurrRange and ivlOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-5 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index table ctxTable and the ctxIdx are passed to the arithmetic decoding process DecodeBin(ctxTable, ctxIdx), which
is specified as follows:

— If bypassFlag is equal to 1, DecodeBypass() as specified in clause 9.3.4.3.4 is invoked.

— Otherwise, if bypassFlag is equal to 0, ctxTable is equal to 0, and ctxIdx is equal to 0, DecodeTerminate() as
specified in clause 9.3.4.3.5 is invoked.

— Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision() as specified in
clause 9.3.4.3.2 is invoked.

Rec. ITU-T H.265 (04/2013) 187

@codeBin(cthable, ctxIdx, bypassFl@

bypassFlag == 1?

Yes

Y

No DecodeBypass

ctxTable ==
&& ctxldx==07?

Yes:

v

DecodeTerminate

No

v

DecodeDecision(ctxTable, ctxIdx, bypassFlag)

Figure 9-5 — Overview of the arithmetic decoding process for a single bin (informative)

NOTE - Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and
p(1)=1-p(0) of abinary decision (0, 1), an initially given code sub-interval with the range ivICurrRange will be subdivided
into two sub-intervals having range p(0) * ivlCurrRange and ivlCurrRange — p(0) * ivlCurrRange, respectively. Depending on
the decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code
string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the
most probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or
LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability ppg of the LPS and the value of MPS
(valMps), which is either 0 or 1. The arithmetic core engine in this Specification has three distinct properties:

— The probability estimation is performed by means of a finite-state machine with a table-based transition process between
64 different representative probability states { ppps(pStateldx) |0 <= pStateldx < 64 } for the LPS probability pyps. The
numbering of the states is arranged in such a way that the probability state with index pStateldx = 0 corresponds to an LPS
probability value of 0.5, with decreasing LPS probability towards higher state indices.

— The range ivlCurrRange representing the state of the coding engine is quantized to a small set {Q;,...,Q4} of pre-set
quantization values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed
product values of Q;* prps(pStateldx) allows a multiplication-free approximation of the product
ivlCurrRange * pyps(pStateldx).

— For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a
separate simplified encoding and decoding bypass process is used.

9.3.4.3.2 Arithmetic decoding process for a binary decision

9.3.4.3.2.1 General
Inputs to this process are the variables ctxTable, ctxIdx, ivlCurrRange, and ivlOffset.
Outputs of this process are the decoded value binVal, and the updated variables iviCurrRange and ivlOffset.
Figure 9-6 shows the flowchart for decoding a single decision (DecodeDecision):
1. The value of the variable ivlLpsRange is derived as follows:
— Given the current value of ivlICurrRange, the variable qRangeldx is derived as follows:
gRangeldx =(ivlCurrRange >> 6) & 3 (9-45)

— Given qRangeldx and pStateldx associated with ctxTable and ctxIdx, the value of the variable rangeTabLps
as specified in Table 9-40 is assigned to ivlLpsRange:

ivlLpsRange = rangeTabLps[pStateldx][qRangeldx] (9-46)

188 Rec. ITU-T H.265 (04/2013)

2. The variable ivlCurrRange is set equal to ivlCurrRange — iviILpsRange and the following applies:

— If ivlOffset is greater than or equal to iviCurrRange, the variable binVal is set equal to 1 — valMps,
ivlOffset is decremented by ivlCurrRange, and ivlCurrRange is set equal to ivlLpsRange.

— Otherwise, the variable binVal is set equal to valMps.

Given the value of binVal, the state transition is performed as specified in clause 9.3.4.3.2.2. Depending on the current
value of ivlCurrRange, renormalization is performed as specified in clause 9.3.4.3.3.

9.3.4.3.2.2 State transition process

Inputs to this process are the current pStateldx, the decoded value binVal and valMps values of the context variable
associated with ctxTable and ctxIdx.

Outputs of this process are the updated pStateldx and valMps of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateldx and valMps associated with ctxIdx is
derived as follows:

if(binVal == valMps)
pStateldx = transIdxMps(pStateldx)
else { (9-47)
if(pStateldx == 0)
valMps = 1 — valMps
pStateldx = transIdxLps(pStateldx)
}

Table 9-41 specifies the transition rules transldxMps() and transIdxLps() after decoding the value of valMps and

1 — valMps, respectively.
(DecodeDecision(cthable, cthdx))

v
qRangeldx = (ivlCurrRange >> 6) & 3
ivILpsRange = rangeTabL ps[pStateldx][qRangeldx]
ivlCurrRange = ivlCurrRange - ivILpsRange

ivlOffset >=
iviCurrRange?

JYes

binVal = !valMps
ivlOffset = ivlOffset — ivlCurrRange
ivlCurrRange = ivILpsRange

“

binVal = valMps
pStateldx = transIdxMps[pStateldx]

pStateldx == 0?

Y651

valMps = 1 — valMps

No

N
pStateldx = transIdxLps[pStateldx]
[

v

RenormD

Figure 9-6 — Flowchart for decoding a decision

Rec. ITU-T H.265 (04/2013) 189

Table 9-40 — Specification of rangeTabLps depending on the values of pStateldx and qRangeldx

qRangeldx qRangeldx
pStateldx pStateldx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

190 Rec. ITU-T H.265 (04/2013)

Table 9-41 — State transition table

pStateldx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
transIdxLps 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transIldxMps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStateldx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

transIdxLps 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24

transIdxMps 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pStateldx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

transIdxLps 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33

transldxMps 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

pStateldx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

transldxLps 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63

transIdxMps 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

9.3.4.3.3 Renormalization process in the arithmetic decoding engine
Inputs to this process are bits from slice segment data and the variables ivlCurrRange and ivlOffset.
Outputs of this process are the updated variables ivlCurrRange and ivlOffset.

A flowchart of the renormalization is shown in Figure 9-7. The current value of ivlCurrRange is first compared to 256
and further steps are specified as follows:

— IfivlCurrRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished;

— Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within this loop, the value of
ivlCurrRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivIOffset by using read bits(1).

The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to iviCurrRange upon

completion of this process.

ivlCurrRange < 256?

Yes
v

ivlCurrRange = ivlCurrRange << 1
ivlOffset = ivlOffset << 1
ivlOffset = ivlOffset | read_bits(1)

No

Done

Figure 9-7 — Flowchart of renormalization

9.3.4.3.4 Bypass decoding process for binary decisions

Inputs to this process are bits from slice segment data and the variables ivlCurrRange and ivlOffset.

Rec. ITU-T H.265 (04/2013) 191

Outputs of this process are the updated variable ivlOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-8 shows a flowchart of the
corresponding process.

First, the value of ivlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using
read bits(1). Then, the value of ivlOffset is compared to the value of iviCurrRange and further steps are specified as
follows:

— If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 and ivIOffset is
decremented by ivlCurrRange.

— Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0.

The bitstream shall not contain data that result in a value of ivIOffset being greater than or equal to iviCurrRange upon

completion of this process.
DecodeBypass

ivlOffset = ivlOffset << 1
ivlOffset = ivlOffset | read_bits(1)

ivlOffset >=
ivlCurrRange?

NOj

binVal =0

rYes
binVal = 1
ivlOffset = ivlOffset — ivlCurrRange

Done

Figure 9-8 — Flowchart of bypass decoding process

9.3.4.3.5 Decoding process for binary decisions before termination
Inputs to this process are bits from slice segment data and the variables ivlCurrRange and ivlOffset.
Outputs of this process are the updated variables iviCurrRange and ivlOffset, and the decoded value binVal.

This decoding process applies to decoding of end of slice segment flag, end of sub_stream one bit and pcm_flag
corresponding to ctxTable equal to 0 and ctxIdx equal to 0. Figure 9-9 shows the flowchart of the corresponding
decoding process, which is specified as follows:

First, the value of iviCurrRange is decremented by 2. Then, the value of ivlOffset is compared to the value of
iviCurrRange and further steps are specified as follows:

— If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1, no renormalization is
carried out, and CABAC decoding is terminated. The last bit inserted in register ivlOffset is equal to 1. When
decoding end of slice_segment flag, this last bit inserted in register ivIOffset is interpreted as rbsp_stop_one_bit.
When decoding end of sub stream one bit, this last bit inserted in register ivlOffset is interpreted as
alignment_bit equal to one.

— Otherwise (ivlOffset is less than iviCurrRange), the variable binVal is set equal to 0 and renormalization is
performed as specified in clause 9.3.4.3.3.
NOTE - This procedure may also be implemented using DecodeDecision(ctxTable, ctxldx, bypassFlag) with ctxTable =0,
ctxIldx =0 and bypassFlag=0. In the case where the decoded value is equal to 1, seven more bits would be read by
DecodeDecision(ctxTable, ctxldx, bypassFlag) and a decoding process would have to adjust its bitstream pointer accordingly to
properly decode following syntax elements.

192 Rec. ITU-T H.265 (04/2013)

DecodeTerminate

ivlCurrRange = ivlCurrRange — 2

rYes Noj
binVal =1 binVal =0
v
RenormD

Done

Figure 9-9 — Flowchart of decoding a decision before termination

9.3.5 Arithmetic encoding process (informative)

9.3.5.1 General

This clause does not form an integral part of this Specification.
Inputs to this process are decisions that are to be encoded and written.
Outputs of this process are bits that are written to the RBSP.

This informative clause describes an arithmetic encoding engine that matches the arithmetic decoding engine described
in clause 9.3.4.3. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures are called in
the same order. The following procedures are described in this clause: InitEncoder, EncodeDecision, EncodeBypass,
EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and DecodeTerminate,
respectively. The state of the arithmetic encoding engine is represented by a value of the variable ivlLow pointing to the
lower end of a sub-interval and a value of the variable iviCurrRange specifying the corresponding range of that sub-
interval.

9.3.5.2 Initialization process for the arithmetic encoding engine (informative)
This clause does not form an integral part of this Specification.

This process is invoked before encoding the first coding block of a slice segment, and after encoding any
pcm_alignment zero bit and all pcm sample luma and pcm_sample chroma data for a coding unit with pcm_flag
equal to 1.

Outputs of this process are the values ivlLow, ivlCurrRange, firstBitFlag, bitsOutstanding, and BinCountsInNalUnits of
the arithmetic encoding engine.

In the initialization procedure of the encoder, iviLow is set equal to 0, and ivlCurrRange is set equal to 510.
Furthermore, firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to 0.

Depending on whether the current slice segment is the first slice segment of a coded picture, the following applies:

— If the current slice segment is the first slice segment of a coded picture, the counter BinCountsInNalUnits is set
equal to 0.

— Otherwise (the current slice segment is not the first slice segment of a coded picture), the counter
BinCountsInNalUnits is not modified. The value of BinCountsInNalUnits is the result of encoding all the slice
segments of a coded picture that precede the current slice segment in decoding order. After initializing for the first
slice segment of a coded picture as specified in this clause, BinCountsInNalUnits is incremented as specified in
clauses 9.3.5.3, 9.3.5.5, and 9.3.5.6.

NOTE — The minimum register precision required for storing the values of the variables ivlLow and ivlCurrRange after
invocation of any of the arithmetic encoding processes specified in clauses 9.3.5.3, 9.3.5.5, and 9.3.5.6 is 10 bits and 9 bits,
respectively. The encoding process for a binary decision (EncodeDecision) as specified in clause 9.3.5.3 and the encoding

Rec. ITU-T H.265 (04/2013) 193

process for a binary decision before termination (EncodeTerminate) as specified in clause 9.3.5.6 require a minimum register
precision of 10 bits for the variable iviILow and a minimum register precision of 9 bits for the variable iviCurrRange. The bypass
encoding process for binary decisions (EncodeBypass) as specified in clause 9.3.5.5 requires a minimum register precision of
11 bits for the variable ivlLow and a minimum register precision of 9 bits for the variable iviCurrRange. The precision required
for the counters bitsOutstanding and BinCountsInNalUnits should be sufficiently large to prevent overflow of the related
registers. When maxBinCountInSlice denotes the maximum total number of binary decisions to encode in one slice segment and
maxBinCountInPic denotes the maximum total number of binary decisions to encode a picture, the minimum register precision
required for the variables bitsOutstanding and BinCountsInNalUnits is given by Ceil(Log2(maxBinCountInSlice + 1)) and
Ceil(Log2(maxBinCountInPic + 1)), respectively.

9.3.5.3 Encoding process for a binary decision (informative)
This clause does not form an integral part of this Specification.

Inputs to this process are the context index ctxIdx, the value of binVal to be encoded, and the variables iviCurrRange,
ivlILow and BinCountsInNalUnits.

Outputs of this process are the variables ivlCurrRange, ivlLow, and BinCountsInNalUnits.

Figure 9-10 shows the flowchart for encoding a single decision. In a first step, the variable ivlLpsRange is derived as
follows:

Given the current value of ivlCurrRange, iviCurrRange is mapped to the index qRangeldx of a quantized value of
iviCurrRange by using Equation 9-45. The value of qRangeldx and the value of pStateldx associated with ctxIdx are
used to determine the value of the variable rangeTabLps as specified in Table 9-40, which is assigned to ivILpsRange.
The value of ivlCurrRange — ivlLpsRange is assigned to ivlCurrRange.

In a second step, the value of binVal is compared to valMps associated with ctxIdx. When binVal is different from
valMps, ivlCurrRange is added to iviLow and iviCurrRange is set equal to the value ivlLpsRange. Given the encoded
decision, the state transition is performed as specified in clause 9.3.4.3.2.2. Depending on the current value of
ivlCurrRange, renormalization is performed as specified in clause 9.3.5.4. Finally, the variable BinCountsInNalUnits is
incremented by 1.

194 Rec. ITU-T H.265 (04/2013)

(EncodeDecision(cthab]e, ctxIdx, binVal))

v

qRangeldx = (ivlCurrRange >> 6) & 3
ivILpsRange = rangeTabLps[pStateldx][qRangeldx]
ivlCurrRange = ivlCurrRange — iviILpsRange

binVal != valMps?

£YCS
ivlLow = ivILow + ivlCurrRange
ivlCurrRange = ivILpsRange
No
pStateldx !=0? N01
valMps = 1 — valMps
Yes
Y Y
pStateldx = transldxLps[pStateldx] | pStateldx = transIdxMps[pStateldx]
[]
RenormE
v

| BinCountsInNalUnits++ |

Figure 9-10 — Flowchart for encoding a decision

9.3.5.4 Renormalization process in the arithmetic encoding engine (informative)
This clause does not form an integral part of this Specification.
Inputs to this process are the variables ivlCurrRange, ivlLow, firstBitFlag, and bitsOutstanding.

Outputs of this process are zero or more bits written to the RBSP and the updated variables iviCurrRange, iviLow,
firstBitFlag, and bitsOutstanding.

Rec. ITU-T H.265 (04/2013) 195

Renormalization is illustrated in Figure 9-11.

ivlCurrRange < 256? Yes,
No
Yes No Yesl
ivlLow = ivlLow — 256 . .
bitsOutstanding++ iviLow = iviLow =512
v
PutBit(0) PutBit(1)
No |
Y
ivlCurrRange = ivlCurrRange << 1
ivlILow = ivlLow << 1

Done

Figure 9-11 — Flowchart of renormalization in the encoder

The PutBit() procedure described in Figure 9-12 provides carry over control. It uses the function WriteBits(B, N) that
writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes
the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the

encoding process.

PutBit(B)

firstBitFlag 1= 02

rYes Now

firstBitFlag = 0 WriteBits(B, 1)

bitsOutstanding > 0?

Yesl

WriteBits(1 — B, 1)
No bitsOutstanding— —
|

Figure 9-12 — Flowchart of PutBit(B)

9.3.5.5 Bypass encoding process for binary decisions (informative)

This clause does not form an integral part of this Specification.

196 Rec. ITU-T H.265 (04/2013)

Inputs to this process are the variables binVal, ivlLow, ivlCurrRange, bitsOutstanding, and BinCountsInNalUnits.

Output of this process is a bit written to the RBSP and the updated variables ivlLow, bitsOutstanding, and
BinCountsInNalUnits.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the
specification of this process as given in Figure 9-13.

EncodeBypass(binVal)

ivlILow = ivlLow << 1

binVal !=0?

+—Yes

ivlILow = ivlLow + ivICurrRange

ivlLow >= 1024?

Yes PutBit(1)
v No :
PutBit(0) l ivlLow = ivILow — 1024

ivlLow = ivlLow — 512
bitsOutstanding++

A

BinCountsInNalUnits++

Figure 9-13 — Flowchart of encoding bypass

9.3.5.6 Encoding process for a binary decision before termination (informative)
This clause does not form an integral part of this Specification.
Inputs to this process are the variables binVal, iviCurrRange, ivlLow, bitsOutstanding, and BinCountsInNalUnits.

Outputs of this process are zero or more bits written to the RBSP and the updated variables iviLow, iviCurrRange,
bitsOutstanding, and BinCountsInNalUnits.

This encoding routine shown in Figure 9-14 applies to encoding of end of slice segment flag,
end of sub stream one bit, and pcm_flag, all associated with ctxIdx equal to 0.

Rec. ITU-T H.265 (04/2013) 197

GncodeTerminate(binVaD

v

ivlCurrRange = ivlCurrRange — 2

rYes binVal !=0? No—¢
ivlILow = ivlLow + ivlCurrRange RenormE
v

EncodeFlush
[

v

BinCountsInNalUnits++

Figure 9-14 — Flowchart of encoding a decision before termination

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in
Figure 9-15 is applied. In this flushing procedure, the last bit written by WriteBits(B, N) is equal to 1. When encoding
end of slice segment flag, this last bit is interpreted as rbsp stop one bit. When encoding
end of sub stream one bit, this last bit is interpreted as alignment bit equal to one.

< EncodeFlush)

ivlCurrRange =2

v

RenormE

v

PutBit((iviILow >> 9) & 1)

v

WriteBits(((ivILow >> 7) & 3) | 1, 2)

Figure 9-15 — Flowchart of flushing at termination

198 Rec. ITU-T H.265 (04/2013)

9.3.5.7 Byte stuffing process (informative)
This clause does not form an integral part of this Specification.

This process is invoked after encoding the last coding block of the last slice segment of a picture and after
encapsulation.

Inputs to this process are the number of bytes NumBytesInVcINalUnits of all VCL NAL units of a picture, the number
of minimum CUs PicSizeInMinCbsY in the picture, and the number of binary symbols BinCountsInNalUnits resulting
from encoding the contents of all VCL NAL units of the picture.

NOTE - The value of BinCountsInNalUnits is the result of encoding all slice segments of a coded picture. After initializing for
the first slice segment of a coded picture as specified in clause 9.3.5.2, BinCountsInNalUnits is incremented as specified in
clauses 9.3.5.3, 9.3.5.5, and 9.3.5.6.

Outputs of this process are zero or more bytes appended to the NAL unit.

Let the variable k be set equal to Ceil((Ceil(3 * (32 * BinCountsInNalUnits — RawMinCuBits * PicSizeInMinCbsY)
+ 1024) — NumBytesInVcINalUnits) = 3). Depending on the value of k the following applies:

— Ifk s less than or equal to 0, no cabac_zero word is appended to the NAL unit.

— Otherwise (k is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after
encapsulation, where the first two bytes 0x0000 represent a cabac_zero word and the third byte 0x03 represents an
emulation_prevention_three byte.

10 Sub-bitstream extraction process

Inputs to this process are a bitstream, a target highest Temporalld value tldTarget, and a target layer identifier list
layerldListTarget.

Output of this process is a sub-bitstream.

It is a requirement of bitstream conformance for the input bitstream that any output sub-bitstream of the process
specified in this clause with tidTarget equal to any value in the range of 0 to 6, inclusive, and layerldListTarget equal to
the layer identifier list associated with a layer set specified in the active video parameter set shall be a conforming
bitstream.

NOTE 1 — A conforming bitstream contains one or more coded slice segment NAL units with nuh_layer id equal to 0 and
Temporalld equal to 0.

The output sub-bitstream is derived as follows:

— When one or more of the following two conditions are true, remove all SEI NAL units that have nuh layer id
equal to 0 and that contain a non-nested buffering period SEI message, a non-nested picture timing SEI message,
or a non-nested decoding unit information SEI message:

— layerldListTarget does not include all the values of nuh_layer id in all NAL units in the bitstream.

— tldTarget is less than the greatest Temporalld in all NAL units in the bitstream.

NOTE 2 — A "smart" bitstream extractor may include appropriate non-nested buffering picture SEI messages, non-nested
picture timing SEI messages, and non-nested decoding unit information SEI messages in the extracted sub-bitstream,
provided that the SEI messages applicable to the sub-bitstream were present as nested SEI messages in the original
bitstream.

— Remove all NAL units with Temporalld greater than tIdTarget or nuh_layer id not among the values included in
layerIdListTarget.

Rec. ITU-T H.265 (04/2013) 199

Annex A

Profiles, tiers and levels

(This annex forms an integral part of this Recommendation | International Standard.)

Al Overview of profiles, tiers and levels

Profiles, tiers and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the
bitstreams. Profiles, tiers and levels may also be used to indicate interoperability points between individual decoder
implementations.

NOTE 1 - This Specification does not include individually selectable "options" at the decoder, as this would increase
interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to
that profile.

NOTE 2 — Encoders are not required to make use of any particular subset of features supported in a profile.

Each level of a tier specifies a set of limits on the values that may be taken by the syntax elements of this Specification.
The same set of tier and level definitions is used with all profiles, but individual implementations may support a
different tier and within a tier a different level for each supported profile. For any given profile, a level of a tier
generally corresponds to a particular decoder processing load and memory capability.

The profiles that are specified in clause A.3 are also referred to as the profiles specified in Annex A.

A2 Requirements on video decoder capability

Capabilities of video decoders conforming to this Specification are specified in terms of the ability to decode video
streams conforming to the constraints of profiles, tiers and levels specified in this annex. When expressing the
capabilities of a decoder for a specified profile, the tier and level supported for that profile should also be expressed.

Specific values are specified in this annex for the syntax elements general profile idc, general tier flag, and
general_level idc. All other values of general profile idc, general tier flag, and general level idc are reserved for
future use by ITU-T | ISO/IEC.

NOTE — Decoders should not infer that a reserved value of general profile idc between the values specified in this Specification
that this indicates intermediate capabilities between the specified profiles, as there are no restrictions on the method to be chosen
by ITU-T | ISO/IEC for the use of such future reserved values. However, decoders should infer that a reserved value of
general level idc associated with a particular value of general tier flag between the values specified in this Specification
indicates intermediate capabilities between the specified levels of the tier.

A3 Profiles

A.3.1 General

All constraints for PPSs that are specified are constraints for PPSs that are activated when the bitstream is decoded. All
constraints for SPSs that are specified are constraints for SPSs that are activated when the bitstream is decoded.

The variable RawCtuBits is derived as follows:

RawCtuBits = CtbSizeY * CtbSizeY * BitDepthy +
2 * (CtbWidthC * CtbHeightC) * BitDepthc (A-1)

A.3.2 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:

— SPSs shall have chroma_format idc equal to 1 only.

— SPSs shall have bit_depth luma minus8 equal to 0 only.

— SPSs shall have bit depth chroma minus8 equal to 0 only.

— CtbLog2SizeY shall be in the range of 4 to 6, inclusive.

— When a PPS has tiles_enabled flag is equal to 1, it shall have entropy coding_sync_enabled flag equal to 0.

200 Rec. ITU-T H.265 (04/2013)

When a PPS has tiles_enabled flag is equal to 1, ColumnWidthInLumaSamples[i] shall be greater than or equal to
256 for all wvalues of i in the range of O to num tile columns minusl, inclusive, and
RowHeightInLumaSamples[j] shall be greater than or equal to 64 for all values of j in the range of 0 to
num_tile rows minusl, inclusive.

The number of times read_bits(1) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree unit() data
for any coding tree unit shall be less than or equal to 5 * RawCtuBits / 3.

The level constraints specified for the Main profile in clause A.4 shall be fulfilled.

Conformance of a bitstream to the Main profile is indicated by general profile idc being equal to 1 or
general profile _compatibility flag[1] being equal to 1.

NOTE — When general profile compatibility flag[1] is equal to 1, general profile compatibility flag[2] should also be equal
to 1.

Decoders conforming to the Main profile at a specific level (identified by a specific value of general level idc) of a
specific tier (identified by a specific value of general tier flag) shall be capable of decoding all bitstreams for which all
of the following conditions apply:

general profile _compatibility flag[1] is equal to 1.
general _level idc represents a level lower than or equal to the specified level.

general_tier flag represents a tier lower than or equal to the specified tier.

A.3.3 Main 10 profile

Bitstreams conforming to the Main 10 profile shall obey the following constraints:

SPSs shall have chroma_format_idc equal to 1 only.

SPSs shall have bit_depth luma_minus8 in the range of 0 to 2, inclusive.

SPSs shall have bit depth chroma minus8 in the range of 0 to 2, inclusive.

CtbLog2SizeY shall be in the range of 4 to 6, inclusive.

When a PPS has tiles_enabled flag is equal to 1, it shall have entropy coding_sync_enabled flag equal to 0.

When a PPS has tiles_enabled flag is equal to 1, ColumnWidthInLumaSamples[i] shall be greater than or equal to
256 for all wvalues of i in the range of O to num tile columns minusl, inclusive, and
RowHeightInLumaSamples[j] shall be greater than or equal to 64 for all values of j in the range of 0 to
num_tile rows minusl, inclusive.

The number of times read_bits(1) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree unit() data
for any coding tree unit shall be less than or equal to 5 * RawCtuBits / 3.

The level constraints specified for the Main 10 profile in clause A.4 shall be fulfilled.

Conformance of a bitstream to the Main 10 profile is indicated by general profile idc being equal to 2 or
general profile compatibility flag[2] being equal to 1.

Decoders conforming to the Main 10 profile at a specific level (identified by a specific value of general level idc) shall
be capable of decoding all bitstreams for which all of the following conditions apply:

general _profile compatibility flag[1]is equal to 1 or general profile compatibility flag[2]is equal to 1.
general _level idc represents a level lower than or equal to the specified level.

general tier flag represents a tier lower than or equal to the specified tier.

A.3.4 Main Still Picture profile

Bitstreams conforming to the Main Still Picture profile shall obey the following constraints:

The bitstream shall contain only one picture.

SPSs shall have chroma format idc equal to 1 only.

SPSs shall have bit_depth luma minus8 equal to 0 only.
SPSs shall have bit_depth_chroma_minus8 equal to 0 only.

SPSs shall have sps_max_dec pic_buffering minusl[sps_max_sub_layers minusl | equal to 0 only.

Rec. ITU-T H.265 (04/2013) 201

— CtbLog2SizeY shall be in the range of 4 to 6, inclusive.
— When a PPS has tiles_enabled flag is equal to 1, it shall have entropy_coding_sync_enabled flag equal to O.

— When a PPS has tiles_enabled flag is equal to 1, ColumnWidthInLumaSamples| i] shall be greater than or equal to
256 for all wvalues of i in the range of 0O to num tile columns minusl, inclusive, and
RowHeightInLumaSamples|[j] shall be greater than or equal to 64 for all values of j in the range of 0 to
num_tile rows_minusl, inclusive.

— The number of times read bits(1) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree unit() data
for any coding tree unit shall be less than or equal to 5 * RawCtuBits / 3.

— The level constraints specified for the Main Still Picture profile in clause A.4 shall be fulfilled.

Conformance of a bitstream to the Main Still Picture profile is indicated by general profile idc being equal to 3 or
general profile compatibility flag[3] being equal to 1.

Decoders conforming to the Main Still Picture profile at a specific level (identified by a specific value of
general _level idc) shall be capable of decoding all bitstreams for which all of the following conditions apply:

— general profile compatibility flag[3] is equal to 1.
— general level idc represents a level lower than or equal to the specified level.

— general tier flag represents a tier lower than or equal to the specified tier.

A4 Tiers and levels

A.4.1 General tier and level limits

For purposes of comparison of tier capabilities, the tier with general tier flag equal to O is considered to be a lower tier
than the tier with general tier flag equal to 1.

For purposes of comparison of level capabilities, a particular level of a specific tier is considered to be a lower level
than some other level of the same tier when the value of the general level idc of the particular level is less than that of
the other level.

The following is specified for expressing the constraints in this annex:

— Let access unit n be the n-th access unit in decoding order, with the first access unit being access unit 0 (i.e., the 0-
th access unit).

— Let picture n be the coded picture or the corresponding decoded picture of access unit n.
— Let the variable CpbBrVclFactor be equal to 1000.
— Let the variable CpbBrNalFactor be equal to 1100.

Bitstreams conforming to a profile at a specified tier and level shall obey the following constraints for each bitstream
conformance test as specified in Annex C:

a) PicSizeInSamplesY shall be less than or equal to MaxLumaPs, where MaxLumaPs is specified in Table A.1.
b) The value of pic_width_in_luma_samples shall be less than or equal to Sqrt(MaxLumaPs * §).
¢) The value of pic_height in luma samples shall be less than or equal to Sqrt(MaxLumaPs * 8).

d) The value of sps_max_dec pic_buffering minus1[HighestTid] + 1 shall be less than or equal to
MaxDpbSize, which is derived as follows:

if(PicSizeInSamplesY <= (MaxLumaPs >> 2))
MaxDpbSize = Min(4 * maxDpbPicBuf, 16)
else if(PicSizeInSamplesY <= (MaxLumaPs >> 1))
MaxDpbSize = Min(2 * maxDpbPicBuf, 16) (A-2)
else if(PicSizeInSamplesY <= ((3 * MaxLumaPs) >> 2))
MaxDpbSize = Min((4 * maxDpbPicBuf)/3,16)
else
MaxDpbSize = maxDpbPicBuf

where MaxLumaPs is specified in Table A.1 and maxDpbPicBuf is equal to 6.
e) Forlevel 5 and higher levels, the value of CtbSizeY shall be equal to 32 or 64.

202 Rec. ITU-T H.265 (04/2013)

f) The value of NumPocTotalCurr shall be less than or equal to 8.

g) The value of num_tile columns minusl shall be less than MaxTileCols and num_tile rows_minus] shall be

less than MaxTileRows, where MaxTileCols and MaxTileRows are specified in Table A.1.

h) For the VCL HRD parameters, CpbSize[i] shall be less than or equal to CpbBrVclFactor * MaxCPB for at
least one value of i in the range of 0 to cpb_cnt minusl[HighestTid], inclusive, where CpbSize[i] is
specified in clause E.2.3 based on parameters selected as specified in clause C.1 and MaxCPB is specified in
Table A.1 in units of CpbBrVclFactor bits.

i) For the NAL HRD parameters, CpbSize[i] shall be less than or equal to CpbBrNalFactor * MaxCPB for at
least one value of i in the range of 0 to cpb_cnt minusl[HighestTid], inclusive, where CpbSize[i] is
specified in clause E.2.3 based on parameters selected as specified in clause C.1 and MaxCPB is specified in
Table A.1 in units of CpbBrNalFactor bits.

Table A.1 specifies the limits for each level of each tier.

A tier and level to which the bitstream conforms are indicated by the syntax elements general tier flag and
general level idc as follows:

Informative clause A.4.3 shows the effect of these limits on picture rates for several example picture formats.

A4.2

The following is specified for expressing the constraints in this annex:

general tier flag equal to 0 indicates conformance to the Main tier, and general tier flag equal to 1 indicates
conformance to the High tier, according to the tier constraints specified in Table A.1. general tier flag shall be

equal to O for levels below level 4 (corresponding to the entries in Table A.1 marked with "-").

general_level idc shall be set equal to a value of 30 times the level number specified in Table A.1.

Table A.1 — General tier and level limits

e == SEE == = | 2=
< [»n &N [&~ [
e A ~— A o lla) w4 A
e E = g A 2073 3t = %=
~ o & =] o S
2 S8 i i = “a
g = e e e < S
5 2 -t E- £
T e e
g3 < = | 3| £ °
5 | Eg | &
- =7 = 3 jad
-5 e = £ ~
1 - o = =]
® 3
1 36 864 350 - 16 1 1
2 122 880 1500 - 16 1 1
2.1 245 760 3 000 - 20 1 1
3 552 960 6 000 - 30 2 2
3.1 983 040 10 000 - 40 3 3
4 2228224 12 000 30 000 75 5 5
4.1 2228224 20 000 50 000 75 5 5
5 8912 896 25000 | 100000 200 11 10
5.1 8912 896 40 000 | 160 000 200 11 10
5.2 8912 896 60 000 | 240000 200 11 10
6 35651584 60000 | 240000 600 22 20
6.1 35651584 | 120000 | 480 000 600 22 20
6.2 35651584 | 240000 | 800 000 600 22 20

Let the variable fR be set equal to 1 + 300.

Profile-specific level limits for the Main and Main 10 profiles

Rec. ITU-T H.265 (04/2013)

203

Bitstreams conforming to the Main or Main 10 profile at a specified tier and level shall obey the following constraints
for each bitstream conformance test as specified in Annex C:

204

a)

b)

d)

2)

h)

)

The nominal removal time of access unit n (with n greater than 0) from the CPB, as specified in clause C.2.3,
shall satisfy the constraint that AuNominalRemovalTime[n] — AuCpbRemovalTime[n — 1] is greater than
or equal to Max(PicSizeInSamplesY + MaxLumaSr, fR) for the value of PicSizeInSamplesY of picture n — 1,
where MaxLumaSr is the value specified in Table A.2 that applies to picture n — 1.

The difference between consecutive output times of pictures from the DPB, as specified in clause C.3.3, shall
satisfy the constraint that DpbOutputlntervalln] is greater than or equal to
Max(PicSizeInSamplesY + MaxLumaSr, fR) for the value of PicSizeInSamplesY of picture n, where
MaxLumaSr is the value specified in Table A.2 for picture n, provided that picture n is a picture that is output
and is not the last picture of the bitstream that is output.

The removal time of access unit 0 shall satisfy the constraint that the number of slice segments in picture 0 is
less than or equal to Min(MaxSliceSegmentsPerPicture * MaxLumaSr / MaxLumaPs *
(AuCpbRemovalTime[0] — AuNominalRemovalTime[0]) + MaxSliceSegmentsPerPicture *
PicSizelnSamplesY / MaxLumaPs, MaxSliceSegmentsPerPicture), for the value of PicSizeInSamplesY of
picture 0, where MaxSliceSegmentsPerPicture, MaxLumaPs and MaxLumaSr are the values specified in
Table A.1 and Table A.2, respectively, that apply to picture 0.

The difference between consecutive CPB removal times of access units n and n— 1 (with n greater than 0)
shall satisfy the constraint that the number of slice segments in picture n is less than or equal to
Min(MaxSliceSegmentsPerPicture * MaxLumaSr / MaxLumaPs * (AuCpbRemovalTime[n | —
AuCpbRemovalTime[n—1]), MaxSliceSegmentsPerPicture), where = MaxSliceSegmentsPerPicture,
MaxLumaPs and MaxLumaSr are the values specified in Table A.1 and Table A.2, respectively, that apply to
picture n.

For the VCL HRD parameters, BitRate[i] shall be less than or equal to CpbBrVclFactor * MaxBR for at least
one value of i in the range of 0 to cpb_cnt_minus1[HighestTid], inclusive, where BitRate[i] is specified in
clause E.2.3 based on parameters selected as specified in clause C.1 and MaxBR is specified in Table A.2 in
units of CpbBrVclFactor bits/s.

For the NAL HRD parameters, BitRate[i | shall be less than or equal to CpbBrNalFactor * MaxBR for at least
one value of i in the range of 0 to cpb_cnt_minus1[HighestTid], inclusive, where BitRate[i] is specified in
clause E.2.3 based on parameters selected as specified in clause C.1 and MaxBR is specified in Table A.2 in
units of CpbBrNalFactor bits/s.

The sum of the NumBytesInNalUnit variables for access unit 0 shall be less than or equal to
1.5 * (Max(PicSizeInSamplesY, fR * MaxLumaSr) + MaxLumaSr * (AuCpbRemovalTime[0] —
AuNominalRemovalTime[0])) + MinCr for the value of PicSizeInSamplesY of picture 0, where
MaxLumaSr and MinCr are the values specified in Table A.2 that apply to picture 0.

The sum of the NumBytesInNalUnit variables for access unit n (with n greater than 0) shall be less than or
equal to 1.5* MaxLumaSr * (AuCpbRemovalTime[n | — AyCpbRemovalTime[n—1]) + MinCr, where
MaxLumaSr and MinCr are the values specified in Table A.2 that apply to picture n.

The removal time of access unit 0 shall satisfy the constraint that the number of tiles in picture 0 is less than or
equal to Min(MaxTileCols * MaxTileRows * 120 * (AuCpbRemovalTime[0 | —

AuNominalRemovalTime[0 |) + MaxTileCols * MaxTileRows * PicSizeInSamplesY / MaxLumaPs,
MaxTileCols * MaxTileRows), for the value of PicSizeInSamplesY of picture 0, where MaxTileCols and
MaxTileRows are the values specified in Table A.1 that apply to picture 0.

The difference between consecutive CPB removal times of access units n and n — 1 (with n greater than 0)
shall satisfy the constraint that the number of tiles in picture n is less than or equal to

Min(MaxTileCols * MaxTileRows * 120 * (AuCpbRemovalTime[n] — AuCpbRemovalTime[n—1]),
MaxTileCols * MaxTileRows), where MaxTileCols and MaxTileRows are the values specified in Table A.1
that apply to picture n.

Rec. ITU-T H.265 (04/2013)

]

Table A.2 — Tier and level limits for the Main and Main 10 profiles

5 g2z T2z 2z

e =5 FEE ==

3 S X = e U x s =5

= o o= 3= QA

&cE = = e

¢ 3 B ~ - =

g% e =5 S

I

= s

o m =

3 5 | =

8 = =3 =3

= j=d =)

g g

1 552 960 128 - 2
2 3686 400 1500 - 2
2.1 7372 800 3000 - 2
3 16 588 800 6 000 - 2
3.1 33177 600 10 000 - 2
4 66 846 720 12 000 30 000 4
4.1 133 693 440 20 000 50 000 4
5 267 386 880 25000 | 100 000 6
5.1 534 773 760 40 000 | 160 000 8
5.2 1 069 547 520 60 000 | 240000 8
6 1069 547 520 60 000 | 240000 8
6.1 2139095040 | 120000 | 480 000 8
6.2 4278 190 080 | 240000 | 800 000 6

A4.3 Effect of level limits on picture rate for the Main and Main 10 profiles (informative)

This clause does not form an integral part of this Specification.

Informative Tables A.3 and A.4 provide examples of maximum picture rates for the Main and Main 10 profiles for

various picture formats when MinCbSizeY is equal to 64.

Rec. ITU-T H.265 (04/2013)

205

Table A.3 — Maximum picture rates (pictures per second) at level 1 to 4.3 for some example picture sizes

when MinCbSizeY is equal to 64

Level: 1 2 2.1 3 3.1 4 4.1
Max luma picture

size (samples): 36 864 122 880 245760 552960 983 040 2228224 2228224
Max luma sample

rate (samples/sec) 552960 3 686 400 7372800 | 16588800 | 33177600 | 66846720 | 133 693 440

Luma Luma Luma

Format nickname width height | picture size

SQCIF 128 96 16 384 33.7 225.0 300.0 300.0 300.0 300.0 300.0
QCIF 176 144 36 864 15.0 100.0 200.0 300.0 300.0 300.0 300.0
QVGA 320 240 81920 - 45.0 90.0 202.5 300.0 300.0 300.0
525 SIF 352 240 98 304 - 375 75.0 168.7 300.0 300.0 300.0
CIF 352 288 122 880 - 30.0 60.0 135.0 270.0 300.0 300.0
525 HHR 352 480 196 608 - - 375 843 168.7 300.0 300.0
625 HHR 352 576 221184 - - 333 75.0 150.0 300.0 300.0
Q720p 640 360 245 760 - - 30.0 67.5 135.0 272.0 300.0
VGA 640 480 327 680 - - - 50.6 101.2 204.0 300.0
525 4SIF 704 480 360 448 - - - 46.0 92.0 185.4 300.0
525SD 720 480 393216 - - - 42.1 843 170.0 300.0
4CIF 704 576 405 504 - - - 40.9 81.8 164.8 300.0
625 SD 720 576 442 368 - - - 375 75.0 151.1 300.0
480p (16:9) 864 480 458752 - - - 36.1 723 145.7 291.4
SVGA 800 600 532480 - - - 31.1 62.3 125.5 251.0
QHD 960 540 552960 - - - 30.0 60.0 120.8 241.7
XGA 1024 768 786 432 - - - - 42.1 85.0 170.0
720p HD 1280 720 983 040 - - - - 33.7 68.0 136.0
4VGA 1280 960 1228 800 - - - - - 54.4 108.8
SXGA 1280 1024 1310720 - - - - - 51.0 102.0
525 16SIF 1408 960 1351 680 - - - - - 49.4 98.9
16CIF 1408 1152 1622016 - - - - - 412 82.4
4SVGA 1600 1200 1945 600 - - - - - 343 68.7
1080 HD 1920 1080 2088 960 - - - - - 32.0 64.0
2Kx1K 2048 1024 2097 152 - - - - - 31.8 63.7
2Kx1080 2048 1080 2228224 - - - - - 30.0 60.0
4XGA 2048 1536 3145728 - - - - - - -
16VGA 2560 1920 4915200 - - - - - - -
3616x1536 (2.35:1) 3616 1536 5603 328 - - - - - - -
3672x1536 (2.39:1) 3680 1536 5701 632 - - - - - - -
3840x2160 (4*HD) 3840 2160 8355 840 - - - - - - -
4Kx2K 4096 2048 8388 608 - - - - - - R
4096x2160 4096 2160 8912896 - - - - - - -
4096x2304 (16:9) 4096 2304 9437 184 - - - - - - -
7680x4320 7680 4320 33423360 - - - - - - -
8192x4096 8192 4096 33554432 - - - - - - -
8192x4320 8192 4320 35651 584 - - - - - - -

206 Rec. ITU-T H.265 (04/2013)

Table A.4 — Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes
when MinCbSizeY is equal to 64

Level: 5 5.1 5.2 6 6.1 6.2
Max luma picture
size (samples): 8912 896 8912896 8912 896 35651 584 35651 584 35651 584
Max luma sample 267386 8
rate (samples/sec) 80 534773 760 1069 547 520 1069 547 520 | 2139095040 | 4278190 080
Luma Luma Luma
Format nickname width height picture size
SQCIF 128 96 16 384 300.0 300.0 300.0 300.0 300.0 300.0
QCIF 176 144 36 864 300.0 300.0 300.0 300.0 300.0 300.0
QVGA 320 240 81920 300.0 300.0 300.0 300.0 300.0 300.0
525 SIF 352 240 98 304 300.0 300.0 300.0 300.0 300.0 300.0
CIF 352 288 122 880 300.0 300.0 300.0 300.0 300.0 300.0
525 HHR 352 480 196 608 300.0 300.0 300.0 300.0 300.0 300.0
625 HHR 352 576 221184 300.0 300.0 300.0 300.0 300.0 300.0
Q720p 640 360 245760 300.0 300.0 300.0 300.0 300.0 300.0
VGA 640 480 327 680 300.0 300.0 300.0 300.0 300.0 300.0
525 4SIF 704 480 360 448 300.0 300.0 300.0 300.0 300.0 300.0
525SD 720 480 393216 300.0 300.0 300.0 300.0 300.0 300.0
4CIF 704 576 405 504 300.0 300.0 300.0 300.0 300.0 300.0
625 SD 720 576 442 368 300.0 300.0 300.0 300.0 300.0 300.0
480p (16:9) 864 480 458752 300.0 300.0 300.0 300.0 300.0 300.0
SVGA 800 600 532480 300.0 300.0 300.0 300.0 300.0 300.0
QHD 960 540 552 960 300.0 300.0 300.0 300.0 300.0 300.0
XGA 1024 768 786 432 300.0 300.0 300.0 300.0 300.0 300.0
720p HD 1280 720 983 040 272.0 300.0 300.0 300.0 300.0 300.0
4VGA 1280 960 1228 800 217.6 300.0 300.0 300.0 300.0 300.0
SXGA 1280 1024 1310720 204.0 300.0 300.0 300.0 300.0 300.0
525 16SIF 1408 960 1351 680 197.8 300.0 300.0 300.0 300.0 300.0
16CIF 1408 1152 1622016 164.8 300.0 300.0 300.0 300.0 300.0
4SVGA 1600 1200 1945 600 137.4 274.8 300.0 300.0 300.0 300.0
1080 HD 1920 1080 2088 960 128.0 256.0 300.0 300.0 300.0 300.0
2Kx1K 2048 1024 2097 152 127.5 255.0 300.0 300.0 300.0 300.0
2Kx1080 2048 1080 2228224 120.0 240.0 300.0 300.0 300.0 300.0
4XGA 2048 1536 3145728 85.0 170.0 300.0 300.0 300.0 300.0
16VGA 2560 1920 4915200 54.4 108.8 217.6 217.6 300.0 300.0
3616x1536 (2.35:1) 3616 1536 5603 328 47.1 95.4 190.8 190.8 300.0 300.0
3672x1536 (2.39:1) 3680 1536 5701 632 46.8 93.7 187.5 187.5 300.0 300.0
3840x2160 (4*HD) 3840 2160 8355 840 32.0 64.0 128.0 256.0 300.0 300.0
4Kx2K 4096 2048 8388 608 31.8 63.7 127.5 127.5 255.0 300.0
4096x2160 4096 2160 8912 896 30.0 60.0 120.0 120.0 240.0 300.0
4096x2304 (16:9) 4096 2304 9437184 - - - 113.3 226.6 300.0
4096x3072 4096 3072 12582912 - - - 85.0 170.0 300.0
7680x4320 7680 4320 33423360 - - - 32.0 64.0 128.0
8192x4096 8192 4096 33554432 - - - 31.8 63.7 127.5
8192x4320 8192 4320 35651 584 - - - 30.0 60.0 120.0

The following should be noted in regard to the examples shown in Tables A.3 and A.4:

— This Specification is a variable-picture-size specification. The specific listed picture sizes are illustrative examples
only.

— The example luma picture sizes were computed by rounding up the luma width and luma height to multiples of 64
before computing the product of these quantities, to reflect the potential use of MinCbSizeY equal to 64 for these
picture sizes, as pic_width_in_luma samples and pic_height in luma samples are each required to be a multiple

Rec. ITU-T H.265 (04/2013) 207

208

of MinCbSizeY. For some illustrated values of luma width and luma height, a somewhat higher number of pictures
per second can be supported when MinCbSizeY is less than 64.

As used in the examples, "525" refers to typical use for environments using 525 analogue scan lines (of which
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue
scan lines (of which approximately 576 lines contain the visible picture region).

XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka
2CIF aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625
D-1 aka 625 ITU-R BT.601.

Rec. ITU-T H.265 (04/2013)

Annex B

Byte stream format

(This annex forms an integral part of this Recommendation | International Standard.)

B.1 General

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or
all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need
to be identifiable from patterns in the data, such as Rec. ITU-T H.222.0 | ISO/IEC 13818-1 systems or
Rec. ITU-T H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with
the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit
syntax structure contains one start code prefix followed by one nal unit(NumBytesInNalUnit) syntax structure. It may
(and under some circumstances, it shall) also contain an additional zero _byte syntax element. It may also contain one or
more additional trailing zero 8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may
also contain one or more additional leading_zero_8bits syntax elements.

B.2 Byte stream NAL unit syntax and semantics

B.2.1 Byte stream NAL unit syntax

byte stream nal unit(NumBytesInNalUnit) { Descriptor
while(next_bits(24) != 0x000001 && next bits(32) != 0x00000001)
leading_zero_8bits /* equal to 0x00 */ f(8)
if(next_bits(24) != 0x000001)
zero_byte /* equal to 0x00 */ f(8)
start_code_prefix_one_3bytes /* equal to 0x000001 */ f(24)

nal_unit(NumBytesInNalUnit)
while(more data_in_byte stream() && next bits(24) != 0x000001 &&
next bits(32) != 0x00000001)
trailing_zero_8bits /* equal to 0x00 */ f(8)

B.2.2 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in
the byte stream NAL units (see clause 7.4.2.4). The content of each byte stream NAL unit is associated with the same
access unit as the NAL unit contained in the byte stream NAL unit (see clause 7.4.2.4.4).

leading_zero_8bits is a byte equal to 0x00.

NOTE - The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because
(as shown in the syntax diagram of clause B.2.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the
four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start code prefix_one 3bytes) will be
considered to be trailing_zero 8bits syntax elements that are part of the preceding byte stream NAL unit.

zero_byte is a single byte equal to 0x00.
When one or more of the following conditions are true, the zero_byte syntax element shall be present:

— Thenal unit type within the nal unit() syntax structure is equal to VPS_NUT, SPS_NUT or PPS_NUT.

— The byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as
specified in clause 7.4.2.4.4.

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a
start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

Rec. ITU-T H.265 (04/2013) 209

B.3 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax
structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initializes its current position in the byte stream to the beginning
of the byte stream. It then extracts and discards each leading zero 8bits syntax element (when present), moving the
current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that
the next four bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax
structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means)
and the last NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte
stream (which is a zero byte syntax element) is extracted and discarded and the current position in the byte
stream is set equal to the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a start code prefix one 3bytes) is extracted and
discarded and the current position in the byte stream is set equal to the position of the byte following this
three-byte sequence.

3. NumBytesInNalUnit is set equal to the number of bytes starting with the byte at the current position in the byte
stream up to and including the last byte that precedes the location of one or more of the following conditions:

— A subsequent byte-aligned three-byte sequence equal to 0x000000,
— A subsequent byte-aligned three-byte sequence equal to 0x000001,

— The end of the byte stream, as determined by unspecified means.

4. NumBytesInNalUnit bytes are removed from the bitstream and the current position in the byte stream is
advanced by NumBytesInNalUnit bytes. This sequence of bytes is nal unit(NumBytesInNalUnit) and is
decoded using the NAL unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified
means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the
next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts
and discards each trailing_zero_ 8bits syntax element, moving the current position in the byte stream forward
one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream
form the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by
unspecified means).

B.4 Decoder byte-alignment recovery (informative)
This clause does not form an integral part of this Specification.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the
bit-oriented byte alignment detection procedure described in this clause.

A decoder is said to have byte alignment with a bitstream when the decoder has determined whether or not the positions
of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the bitstream, the decoder
may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000 00000001' (31 consecutive
bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte
following a start code prefix. Upon detecting this pattern, the decoder will be byte-aligned with the bitstream and
positioned at the start of a NAL unit in the bitstream.

Once byte aligned with the bitstream, the decoder can examine the incoming bitstream data for subsequent three-byte
sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three byte to be
discarded as specified in clause 7.4.2.

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden zero bit or one of the
three-byte or four-byte sequences that are prohibited in clause 7.4.2), the decoder may consider the detected condition
as an indication that byte alignment may have been lost and may discard all bitstream data until the detection of byte
alignment at a later position in the bitstream as described above in this clause.

210 Rec. ITU-T H.265 (04/2013)

Annex C

Hypothetical reference decoder

(This annex forms an integral part of this Recommendation | International Standard.)

C.1 General
This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams or bitstream subsets are subject to HRD conformance checking for this Specification. The first
type, called a Type I bitstream, is a NAL unit stream containing only the VCL NAL units and NAL units with
nal_unit type equal to FD_NUT (filler data NAL units) for all access units in the bitstream. The second type, called a
Type II bitstream, contains, in addition to the VCL NAL units and filler data NAL units for all access units in the
bitstream, at least one of the following:

— additional non-VCL NAL units other than filler data NAL units,

— all leading_zero_8bits, zero_byte, start code prefix_one 3bytes, and trailing_zero_ 8bits syntax elements that form
a byte stream from the NAL unit stream (as specified in Annex B).

Figure C.1 shows the types of bitstream conformance points checked by the HRD.

Non -VCL NAL units other
VCL NAL units than filler data NAL units

Filler data NAL units
v v 4
Byte stream format
encapsulation
(see Annex B)
\ 4 \ 4 4 v 4 i
Type I HRD Type I HRD Type I HRD
conformance point conformance point when conformance point when
not using using
byte stream format byte stream format

Figure C.1 — Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the
HRD, are specified in the semantic clauses of clause 7, Annexes D and E.

Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter
sets are signalled through the hrd parameters() syntax structure, which may be part of the SPS syntax structure or the
VPS syntax structure.

Multiple tests may be needed for checking the conformance of a bitstream, which is referred to as the bitstream under
test. For each test, the following steps apply in the order listed:

1. An operation point under test, denoted as TargetOp, is selected. The layer identifier list OpLayerldList of
TargetOp consists of the list of nuh layer id values, in increasing order of nuh_layer id values, present in the
bitstream subset associated with TargetOp, which is a subset of the nuh layer id values present in the
bitstream under test. The OpTid of TargetOp is equal to the highest Temporalld present in the bitstream subset
associated with TargetOp.

2. TargetDecLayerldList is set equal to OpLayerldList of TargetOp, HighestTid is set equal to OpTid of
TargetOp, and the sub-bitstream extraction process as specified in clause 10 is invoked with the bitstream
under test, HighestTid, and TargetDecLayerldList as inputs, and the output is assigned to BitstreamToDecode.

3. The hrd parameters() syntax structure and the sub layer hrd parameters() syntax structure applicable to
TargetOp are selected. If TargetDecLayerldList contains all nuh_layer id values present in the bitstream under

Rec. ITU-T H.265 (04/2013) 211

test, the hrd parameters() syntax structure in the active SPS (or provided through an external means not
specified in this Specification) is selected. Otherwise, the hrd_parameters() syntax structure in the active VPS
(or provided through some external means not specified in this Specification) that applies to TargetOp is
selected. Within the selected hrd parameters() syntax structure, if BitstreamToDecode is a Type I bitstream,
the sub layer hrd parameters(HighestTid) syntax structure that immediately follows the condition
"if(vel _hrd parameters present flag)" is selected and the variable NalHrdModeFlag is set equal to 0;
otherwise (BitstreamToDecode is a Type II bitstream), the sub layer hrd parameters(HighestTid) syntax
structure that immediately follows either the condition "if(vel hrd parameters present flag)" (in this case the
variable NalHrdModeFlag is set equal to 0) or the condition "if(nal_hrd parameters_present flag)" (in this
case the variable NalHrdModeFlag is set equal to 1) is selected. When BitstreamToDecode is a Type 1I
bitstream and NalHrdModeFlag is equal to 0, all non-VCL NAL units except filler data NAL units, and all
leading_zero 8bits, zero_byte, start code prefix one 3bytes, and trailing zero 8bits syntax elements that
form a byte stream from the NAL unit stream (as specified in Annex B), when present, are discarded from
BitstreamToDecode, and the remaining bitstream is assigned to BitstreamToDecode.

An access unit associated with a buffering period SEI message (present in BitstreamToDecode or available
through external means not specified in this Specification) applicable to TargetOp is selected as the HRD
initialization point and referred to as access unit 0.

For each access unit in BitstreamToDecode starting from access unit 0, the buffering period SEI message
(present in BitstreamToDecode or available through external means not specified in this Specification) that is
associated with the access unit and applies to TargetOp is selected, the picture timing SEI message (present in
BitstreamToDecode or available through external means not specified in this Specification) that is associated
with the access unit and applies to TargetOp is selected, and when SubPicHrdFlag is equal to 1 and
sub_pic_cpb params_in_pic timing_sei flag is equal to 0, the decoding unit information SEI messages
(present in BitstreamToDecode or available through external means not specified in this Specification) that are
associated with decoding units in the access unit and apply to TargetOp are selected.

A value of SchedSelldx is selected. The selected SchedSelldx shall be in the range of 0 to
cpb_cnt_minusl[HighestTid], inclusive, where cpb_cnt minusl[HighestTid] is found in the
sub_layer hrd parameters(HighestTid) syntax structure as selected above.

When the coded picture in access unit 0 has nal unit type equal to CRA NUT or BLA W _LP, and
irap_cpb_params_present flag in the selected buffering period SEI message is equal to 1, either of the
following applies for selection of the initial CPB removal delay and delay offset:

— If NalHrdModeFlag is equal to 1, the default initial CPB removal delay and delay offset represented by
nal initial cpb_removal delay[SchedSelldx] and nal initial cpb_removal offset[SchedSelldx],
respectively, in the selected buffering period SEI message are selected. Otherwise, the default initial CPB
removal delay and delay offset represented by vcl initial cpb removal delay[SchedSelldx | and
vel initial cpb removal offset[SchedSelldx], respectively, in the selected buffering period SEI message
are selected. The variable DefaultInitCpbParamsFlag is set equal to 1.

— If NalHrdModeFlag is equal to 1, the alternative initial CPB removal delay and delay offset represented
by nal_initial alt cpb_removal delay[SchedSelldx] and
nal_initial alt cpb_removal offset[SchedSelldx], respectively, in the selected buffering period SEI
message are selected. Otherwise, the alternative initial CPB removal delay and delay offset represented by
vel initial alt cpb_removal delay[SchedSelldx] and
vel initial alt cpb_removal offset[SchedSelldx], respectively, in the selected buffering period SEI
message are selected. The variable DefaultlnitCpbParamsFlag is set equal to 0, and the RASL access units
associated with access unit 0 are discarded from BitstreamToDecode and the remaining bitstream is
assigned to BitstreamToDecode.

When sub_pic_hrd params_present flag in the selected hrd parameters() syntax structure is equal to 1, the
CPB is scheduled to operate either at the access unit level (in which case the variable SubPicHrdFlag is set
equal to 0) or at the sub-picture level (in which case the variable SubPicHrdFlag is set equal to 1).

For each operation point under test, the number of bitstream conformance tests to be performed is equal to
n0 * nl * (n2 * 2 + n3) * n4, where the values of n0, nl, n2, n3, and n4 are specified as follows:

212

nO0 is derived as follows:

If BitstreamToDecode is a Type I bitstream, n0 is equal to 1.

Otherwise (BitstreamToDecode is a Type II bitstream), n0 is equal to 2.

nl is equal to cpb_cnt minus1[HighestTid] + 1.

n2 is the number of access units in BitstreamToDecode that each is associated with a buffering period SEI message
applicable to TargetOp and for each of which both of the following conditions are true:

Rec. ITU-T H.265 (04/2013)

— nal unit_type is equal to CRA_ NUT or BLA_ W _LP for the VCL NAL units;

— The associated buffering period SEI message applicable to TargetOp has irap_cpb_params_present flag
equal to 1.

— n3 is the number of access units in BitstreamToDecode BitstreamToDecode that each is associated with a buffering
period SEI message applicable to TargetOp and for each of which one or both of the following conditions are true:

— nal unit type is equal to neither CRA_NUT nor BLA W_LP for the VCL NAL units;

— The associated buffering period SEI message applicable to TargetOp has irap_cpb_params_present flag
equal to 0.

— n4is derived as follows:

— Ifsub _pic_hrd params present flag in the selected hrd parameters() syntax structure is equal to 0, n4 is
equal to 1;

— Otherwise, n4 is equal to 2.

When BitstreamToDecode is a Type II bitstream, the following applies:

— If the sub layer hrd parameters(HighestTid) syntax structure that immediately follows the condition
"if(vel hrd parameters present flag)" is selected, the test is conducted at the Type I conformance point shown in
Figure C.1, and only VCL and filler data NAL units are counted for the input bit rate and CPB storage.

— Otherwise (the sub_layer hrd parameters(HighestTid) syntax structure that immediately follows the condition
"if(nal_hrd parameters present flag)" is selected), the test is conducted at the Type II conformance point shown
in Figure C.1, and all bytes of the Type II bitstream, which may be a NAL unit stream or a byte stream, are
counted for the input bit rate and CPB storage.

NOTE 1 — NAL HRD parameters established by a value of SchedSelldx for the Type II conformance point shown in Figure C.1
are sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C.1 for the same values
of InitCpbRemovalDelay[SchedSelldx], BitRate[SchedSelldx], and CpbSize[SchedSelldx] for the VBR case
(cbr_flag[SchedSelldx | equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow
into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the
time a next picture is scheduled to begin to arrive. For example, when decoding a CV'S conforming to one or more of the profiles
specified in Annex A using the decoding process specified in clauses 2 through 10, when NAL HRD parameters are provided for
the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile conformance in
item f) of clause A.4.2 but also fall within the bounds set for VCL HRD parameters for profile conformance in item e) of
clause A.4.2, conformance of the VCL HRD for the Type I conformance point is also assured to fall within the bounds of item ¢)
of clause A.4.2.

All VPSs, SPSs and PPSs referred to in the VCL NAL units, and the corresponding buffering period, picture timing and
decoding unit information SEI messages shall be conveyed to the HRD, in a timely manner, either in the bitstream (by
non-VCL NAL units), or by other means not specified in this Specification.

In Annexes C, D, and E, the specification for "presence" of non-VCL NAL units that contain VPSs, SPSs, PPSs,
buffering period SEI messages, picture timing SEI messages, or decoding unit information SEI messages is also
satisfied when those NAL units (or just some of them) are conveyed to decoders (or to the HRD) by other means not
specified in this Specification. For the purpose of counting bits, only the appropriate bits that are actually present in the
bitstream are counted.

NOTE 2 — As an example, synchronization of such a non-VCL NAL unit, conveyed by means other than presence in the

bitstream, with the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between
which the non-VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.

When the content of such a non-VCL NAL unit is conveyed for the application by some means other than presence
within the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax
as specified in this Specification.
NOTE 3 — When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the
requirements of this clause based solely on information contained in the bitstream. When the HRD information is not present in
the bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data are
supplied by some other means not specified in this Specification.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB),
and output cropping as shown in Figure C.2.

Rec. ITU-T H.265 (04/2013) 213

Hypothetical stream scheduler
(HSS)

Type I or Type II bitstream

Coded picture buffer (CPB)

Decoding units

Decoding process
(instantaneous)

Reference

pictures Decoded decoding units

Decoded picture buffer (DPB)

Pictures

Output cropping

lOutput cropped pictures
Figure C.2 — HRD buffer model

For each bitstream conformance test, the CPB size (number of bits) is CpbSize[SchedSelldx | as specified in
clause E.2.3, where SchedSelldx and the HRD parameters are specified above in this clause. The DPB size (number of
picture storage buffers) is sps_max_dec pic_buffering minus![HighestTid] + 1.

The variable SubPicHrdPreferredFlag is either specified by external means, or when not specified by external means,
set equal to 0.

When the value of the variable SubPicHrdFlag has not been set by step 8 above in this clause, it is derived as follows:
SubPicHrdFlag = SubPicHrdPreferredFlag && sub pic_hrd params present flag (C-1)

If SubPicHrdFlag is equal to 0, the HRD operates at access unit level and each decoding unit is an access unit.
Otherwise the HRD operates at sub-picture level and each decoding unit is a subset of an access unit.

NOTE 4 — If the HRD operates at access unit level, each time a decoding unit that is an entire access unit is removed from
the CPB. Otherwise (the HRD operates at sub-picture level), each time a decoding unit that is a subset of an access unit is
removed from the CPB. In both cases, each time an entire decoded picture is output from the DPB, though the picture
output time is derived based on the differently derived CPB removal times and the differently signalled DPB output
delays.

The following is specified for expressing the constraints in this annex:

— Each access unit is referred to as access unit n, where the number n identifies the particular access unit. Access unit
0 is selected per step 4 above. The value of n is incremented by 1 for each subsequent access unit in decoding
order.

— Each decoding unit is referred to as decoding unit m, where the number m identifies the particular decoding unit.
The first decoding unit in decoding order in access unit 0 is referred to as decoding unit 0. The value of m is
incremented by 1 for each subsequent decoding unit in decoding order.

NOTE 5 — The numbering of decoding units is relative to the first decoding unit in access unit 0.
— Picture n refers to the coded picture or the decoded picture of access unit n.
The HRD operates as follows:

— The HRD is initialized at decoding unit 0, with the both the CPB and the DPB being set to be empty (the DPB
fullness is set equal to 0).

NOTE 6 — After initialization, the HRD is not initialized again by subsequent buffering period SEI messages.

— Data associated with decoding units that flow into the CPB according to a specified arrival schedule are delivered
by the HSS.

— The data associated with each decoding unit are removed and decoded instantaneously by the instantaneous
decoding process at the CPB removal time of the decoding unit.

214 Rec. ITU-T H.265 (04/2013)

— Each decoded picture is placed in the DPB.

— A decoded picture is removed from the DPB when it becomes no longer needed for inter prediction reference and
no longer needed for output.

For each bitstream conformance test, the operation of the CPB is specified in clause C.2, the instantaneous decoder
operation is specified in clauses 2 through 10, the operation of the DPB is specified in clause C.3, and the output
cropping is specified in clause C.3.3 and clause C.5.2.2.

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and
buffer sizes is specified in clauses E.2.2 and E.3.2. The HRD is initialized as specified by the buffering period SEI
message specified in clauses D.2.2 and D.3.2. The removal timing of decoding units from the CPB and output timing of
decoded pictures from the DPB is specified using information in picture timing SEI messages (specified in
clauses D.2.3 and D.3.3) or in decoding unit information SEI messages (specified in clauses D.2.21 and D.3.21). All
timing information relating to a specific decoding unit shall arrive prior to the CPB removal time of the decoding unit.

The requirements for bitstream conformance are specified in clause C.4, and the HRD is used to check conformance of
bitstreams as specified above in this clause and to check conformance of decoders as specified in clause C.5.

NOTE 7 — While conformance is guaranteed under the assumption that all picture-rates and clocks used to generate the bitstream
match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value.

All the arithmetic in this annex is performed with real values, so that no rounding errors can propagate. For example,
the number of bits in a CPB just prior to or after removal of a decoding unit is not necessarily an integer.

The variable ClockTick is derived as follows and is called a clock tick:
ClockTick = vui_num_units_in_tick + vui_time_scale (C-2)
The variable ClockSubTick is derived as follows and is called a clock sub-tick:

ClockSubTick = ClockTick + (tick divisor minus2 + 2) (C-3)

C.2 Operation of coded picture buffer (CPB)

C.2.1 General

The specifications in this clause apply independently to each set of CPB parameters that is present and to both the Type
I and Type II conformance points shown in Figure C.1, and the set of CPB parameters is selected as specified in
clause C.1.

C.2.2 Timing of decoding unit arrival

If SubPicHrdFlag is equal to 0, the variable subPicParamsFlag is set equal to 0, and the process in specified in the
remainder of this clause is invoked with a decoding unit being considered as an access unit, for derivation of the initial
and final CPB arrival times for access unit n.

Otherwise (SubPicHrdFlag is equal to 1), the process in specified in the remainder of this clause is first invoked with
the variable subPicParamsFlag set equal to 0 and a decoding unit being considered as an access unit, for derivation of
the initial and final CPB arrival times for access unit n, and then invoked with subPicParamsFlag set equal to 1 and a
decoding unit being considered as a subset of an access unit, for derivation of the initial and final CPB arrival times for
the decoding units in access unit n.

The variables InitCpbRemovalDelay[SchedSelldx] and InitCpbRemovalDelayOffset] SchedSelldx | are derived as
follows:

— If one or more of the following conditions are true, InitCpbRemovalDelay[SchedSelldx] and
InitCpbRemovalDelayOffset] SchedSelldx] are set equal to the values of the buffering period SEI message syntax
elements nal_initial_alt cpb removal delay[SchedSelldx] and
nal_initial alt cpb removal offset[SchedSelldx |, respectively, when NalHrdModeFlag is equal to 1, or
vel_initial_alt cpb_removal delay[SchedSelldx] and vel _initial_alt cpb_removal offset[SchedSelldx],
respectively, when NalHrdModeFlag is equal to 0, where the buffering period SEI message syntax elements are
selected as specified in clause C.1:

— Access unit 0 is a BLA access unit for which the coded picture has nal unit type equal to BLA W _RADL or
BLA N LP, and the value of irap_cpb_params_present flag of the buffering period SEI message is equal to
1.

Rec. ITU-T H.265 (04/2013) 215

— Access unit 0 is a BLA access unit for which the coded picture has nal unit type equal to BLA W LPorisa
CRA access unit, and the value of irap cpb_params_present flag of the buffering period SEI message is
equal to 1, and one or more of the following conditions are true:

— UseAltCpbParamsFlag for access unit 0 is equal to 1.
— DefaultInitCpbParamsFlag is equal to 0.

— The value of subPicParamsFlag is equal to 1.

Otherwise, InitCpbRemovalDelay[SchedSelldx] and InitCpbRemovalDelayOffset] SchedSelldx] are set equal to
the values of the buffering period SEI message syntax elements nal initial cpb_removal delay[SchedSelldx] and
nal_initial cpb removal offset[SchedSelldx], respectively, when NalHrdModeFlag is equal to 1, or
vel_initial_cpb_removal delay[SchedSelldx] and wvcl initial cpb_removal offset[SchedSelldx], respectively,
when NalHrdModeFlag is equal to 0, where the buffering period SEI message syntax elements are selected as
specified in clause C.1.

The time at which the first bit of decoding unit m begins to enter the CPB is referred to as the initial arrival time
initArrivalTime[m].

The initial arrival time of decoding unit m is derived as follows:

If the decoding unit is decoding unit O (i.e., m = 0), initArrivalTime[0] =0,
Otherwise (the decoding unit is decoding unit m with m > 0), the following applies:

— Ifcbr flag[SchedSelldx] is equal to 1, the initial arrival time for decoding unit m is equal to the final arrival
time (which is derived below) of decoding unit m — 1, i.e.,

if(!subPicParamsFlag)

initArrivalTime[m] = AuFinalArrivalTime[m — 1] (C-4)
else

initArrivalTime[m | = DuFinalArrivalTime[m — 1]

— Otherwise (cbr_flag[SchedSelldx] is equal to 0), the initial arrival time for decoding unit m is derived as
follows:

if(!subPicParamsFlag)

initArrivalTime[m] = Max(AuFinalArrivalTime[m — 1], initArrivalEarliestTime[m]) (C-5)
else

initArrivalTime[m | = Max(DuFinalArrivalTime[m — 1], initArrivalEarliestTime[m])

where initArrivalEarliestTime[m] is derived as follows:
— The variable tmpNominalRemovalTime is derived as follows:

if(!subPicParamsFlag)

tmpNominalRemovalTime = AuNominalRemovalTime[m] (C-6)
else

tmpNominalRemovalTime = DuNominalRemovalTime[m]

where AuNominalRemovalTime[m] and DuNominalRemovalTime[m] are the nominal CPB removal
time of access unit m and decoding unit m, respectively, as specified in clause C.2.3.

— If decoding unit m is not the first decoding unit of a subsequent buffering period,
initArrivalEarliestTime[m] is derived as follows:

initArrivalEarliestTime[m | = tmpNominalRemovalTime — (InitCpbRemovalDelay[SchedSelldx]
+ InitCpbRemovalDelayOffset[SchedSelldx]) + 90000 (C-7)

— Otherwise (decoding unit m is the first decoding unit of a subsequent buffering period),
initArrivalEarliestTime[m] is derived as follows:

initArrivalEarliestTime[m] = tmpNominalRemovalTime —
(InitCpbRemovalDelay[SchedSelldx]+ 90000) (C-8)

The final arrival time for decoding unit m is derived as follows:

216

if(!subPicParamsFlag)

AuFinalArrivalTime[m] = initArrivalTime[m] + sizelnbits[m] + BitRate[SchedSelldx] (C-9)
else

DuFinalArrivalTime[m | = initArrivalTime[m] + sizelnbits[m | + BitRate[SchedSelldx]

Rec. ITU-T H.265 (04/2013)

where sizelnbits[m] is the size in bits of decoding unit m, counting the bits of the VCL NAL units and the filler data
NAL units for the Type I conformance point or all bits of the Type II bitstream for the Type Il conformance point,
where the Type I and Type II conformance points are as shown in Figure C.1.

The values of SchedSelldx, BitRate[SchedSelldx], and CpbSize[SchedSelldx] are constrained as follows:

— If the content of the selected hrd_parameters() syntax structures for the access unit containing decoding unit m and
the previous access unit differ, the HSS selects a value SchedSelldx1 of SchedSelldx from among the values of
SchedSelldx provided in the selected hrd parameters() syntax structures for the access unit containing decoding
unit m that results in a BitRate[SchedSelldx1] or CpbSize[SchedSelldx1] for the access unit containing
decoding unit m. The value of BitRate[SchedSelldx1] or CpbSize[SchedSelldx1 | may differ from the value of
BitRate[SchedSelldx0] or CpbSize[SchedSelldx0] for the value SchedSelldx0 of SchedSelldx that was in use
for the previous access unit.

— Otherwise, the HSS continues to operate with the previous values of SchedSelldx, BitRate[SchedSelldx] and
CpbSize[SchedSelldx].

When the HSS selects values of BitRate[SchedSelldx] or CpbSize[SchedSelldx] that differ from those of the
previous access unit, the following applies:

— The variable BitRate[SchedSelldx] comes into effect at the initial CPB arrival time of the current access unit.
— The variable CpbSize[SchedSelldx] comes into effect as follows:

— If the new value of CpbSize[SchedSelldx] is greater than the old CPB size, it comes into effect at the initial
CPB arrival time of the current access unit.

— Otherwise, the new value of CpbSize[SchedSelldx] comes into effect at the CPB removal time of the current
access unit.

C.2.3 Timing of decoding unit removal and decoding of decoding unit

The variables InitCpbRemovalDelay[SchedSelldx], InitCpbRemovalDelayOffset] SchedSelldx], CpbDelayOffset,
and DpbDelayOffset are derived as follows:

— If one or more of the following conditions are true, CpbDelayOffset is set equal to the value of the buffering period
SEI message syntax element cpb_delay offset, DpbDelayOffset is set equal to the value of the buffering period
SEI message syntax eclement dpb delay offset, and InitCpbRemovalDelay[SchedSelldx] and
InitCpbRemovalDelayOffset] SchedSelldx] are set equal to the values of the buffering period SEI message syntax
elements nal_initial alt cpb removal delay[SchedSelldx] and
nal initial alt cpb removal offset[SchedSelldx], respectively, when NalHrdModeFlag is equal to 1, or
vel_initial_alt cpb_removal delay[SchedSelldx] and vel initial_alt cpb_removal offset[SchedSelldx],
respectively, when NalHrdModeFlag is equal to 0, where the buffering period SEI message containing the syntax
elements is selected as specified in clause C.1:

— Access unit 0 is a BLA access unit for which the coded picture has nal unit type equal to BLA W _RADL or
BLA N LP, and the value of irap_cpb_params_present flag of the buffering period SEI message is equal to
1.

— Access unit 0 is a BLA access unit for which the coded picture has nal unit type equal to BLA W LPorisa
CRA access unit, and the value of irap cpb params present flag of the buffering period SEI message is
equal to 1, and one or more of the following conditions are true:

— UseAltCpbParamsFlag for access unit 0 is equal to 1.

— DefaultlnitCpbParamsFlag is equal to 0.

— Otherwise, InitCpbRemovalDelay[SchedSelldx | and InitCpbRemovalDelayOffset[SchedSelldx] are set equal to
the values of the buffering period SEI message syntax elements nal_initial cpb_removal delay[SchedSelldx | and
nal_initial cpb_removal offset][SchedSelldx], respectively, when NalHrdModeFlag is equal to 1, or
vel_initial cpb_removal delay[SchedSelldx] and wvcl initial cpb_removal offset] SchedSelldx], respectively,

when NalHrdModeFlag is equal to 0, where the buffering period SEI message containing the syntax elements is
selected as specified in clause C.1, CpbDelayOffset and DpbDelayOffset are both set equal to 0.

The nominal removal time of the access unit n from the CPB is specified as follows:

— If access unit n is the access unit with n equal to 0 (the access unit that initializes the HRD), the nominal removal
time of the access unit from the CPB is specified by:

AuNominalRemovalTime[0] = InitCpbRemovalDelay[SchedSelldx]+ 90000 (C-10)

Rec. ITU-T H.265 (04/2013) 217

Otherwise, the following applies:

When access unit n is the first access unit of a buffering period that does not initialize the HRD, the following
applies:

The nominal removal time of the access unit n from the CPB is specified by:

if(!concatenationFlag) {
baseTime = AuNominalRemovalTime[firstPicInPrevBuffPeriod]
tmpCpbRemovalDelay = AuCpbRemovalDelayVal

} else {
baseTime = AuNominalRemovalTime[prevNonDiscardablePic]
tmpCpbRemovalDelay =
Max((auCpbRemovalDelayDeltaMinus! + 1), (C-1D
Ceil((InitCpbRemovalDelay[SchedSelldx] + 90000 +
AuFinalArrivalTime[n — 1] — AuNominalRemovalTime[n — 1]) + ClockTick)
§

AuNominalRemovalTime(n) = baseTime + ClockTick * (tmpCpbRemovalDelay — CpbDelayOffset)

where AuNominalRemovalTime[firstPicInPrevBuffPeriod] is the nominal removal time of the first access
unit of the previous buffering period, AuNominalRemovalTime[prevNonDiscardablePic | is the nominal
removal time of the preceding picture in decoding order with Temporalld equal to O that is not a RASL,
RADL or sub-layer non-reference picture, AuCpbRemovalDelayVal is the value of AuCpbRemovalDelayVal
derived according to au_cpb_removal delay minusl in the picture timing SEI message, selected as specified
in clause C.1, associated with access unit n, and concatenationFlag and auCpbRemovalDelayDeltaMinus1 are
the values of the syntax elements concatenation flag and au_cpb_removal delay delta minusl, respectively,
in the buffering period SEI message, selected as specified in clause C.1, associated with access unit n.

After the derivation of the nominal CPB removal time and before the derivation of the DPB output time of
access unit n, the values of CpbDelayOffset and DpbDelayOffset are updated as follows:

— If one or more of the following conditions are true, CpbDelayOffset is set equal to the value of the
buffering period SEI message syntax element cpb_delay offset, and DpbDelayOffset is set equal to the
value of the buffering period SEI message syntax element dpb_delay offset, where the buffering period
SEI message containing the syntax elements is selected as specified in clause C.1:

— Access unit n is a BLA access unit for which the coded picture has nal unit type equal to
BLA W _RADL or BLA N LP, and the value of irap_cpb_params present flag of the buffering
period SEI message is equal to 1.

— Access unit n is a BLA access unit for which the coded picture has nal unit type equal to
BLA W _LP or is a CRA access unit, and the value of irap _cpb params present flag of the

buffering period SEI message is equal to 1, and UseAltCpbParamsFlag for access unit n is equal to
1.

— Otherwise, CpbDelayOffset and DpbDelayOffset are both set equal to 0.

When access unit n is not the first access unit of a buffering period, the nominal removal time of the access
unit n from the CPB is specified by:

AuNominalRemovalTime[n | = AuNominalRemovalTime[firstPicInCurrBuffPeriod] +
ClockTick * (AuCpbRemovalDelayVal — CpbDelayOffset) (C-12)

where AuNominalRemovalTime[firstPicInCurrBuffPeriod | is the nominal removal time of the first access
unit of the current buffering period, and AuCpbRemovalDelayVal is the value of AuCpbRemovalDelayVal
derived according to au_cpb_removal delay minusl in the picture timing SEI message, selected as specified
in clause C.1, associated with access unit n.

When SubPicHrdFlag is equal to 1, the following applies:

218

The variable duCpbRemovalDelayInc is derived as follows:

If sub_pic_cpb params_in_pic timing sei flag is equal to 0, duCpbRemovalDelaylnc is set equal to the
value of du_spt cpb removal delay increment in the decoding unit information SEI message, selected as
specified in clause C.1, associated with decoding unit m.

Otherwise, if du_common_cpb_removal delay flag is equal to 0, duCpbRemovalDelaylnc is set equal to the
value of du_cpb_removal delay increment minusl[i]+ 1 for decoding unit m in the picture timing SEI
message, selected as specified in clause C.1, associated with access unit n, where the value of i is O for the

Rec. ITU-T H.265 (04/2013)

first num_nalus in_du minus1[0]+ 1 consecutive NAL units in the access unit that contains decoding unit
m, 1 for the subsequent num nalus_in_du minusl[1]+ 1 NAL units in the same access unit, 2 for the
subsequent num_nalus_in_du minusl[2]+ 1 NAL units in the same access unit, etc.

— Otherwise, duCpbRemovalDelaylnc is set equal to the value of
du_common_cpb_removal delay increment minusl + 1 in the picture timing SEI message, selected as
specified in clause C.1, associated with access unit n.

— The nominal removal time of decoding unit m from the CPB 1is specified as follows, where
AuNominalRemovalTime[n] is the nominal removal time of access unit n:

— If decoding unit m is the last decoding unit in access unit n, the nominal removal time of decoding unit m
DuNominalRemovalTime[m] is set equal to AuNominalRemovalTime[n].

— Otherwise (decoding unit m is not the last decoding unit in access unit n), the nominal removal time of
decoding unit m DuNominalRemovalTime[m] is derived as follows:

if(sub_pic_cpb_params_in pic_timing sei flag)
DuNominalRemovalTime[m | = DuNominalRemovalTime[m+ 1 | —
ClockSubTick * duCpbRemovalDelaylnc (C-13)
else
DuNominalRemovalTime[m] = AuNominalRemovalTime(n) —
ClockSubTick * duCpbRemovalDelayInc

If SubPicHrdFlag is equal to 0, the removal time of access unit n from the CPB is specified as follows, where
AuFinalArrivalTime[n] and AuNominalRemovalTime[n | are the final CPB arrival time and nominal CPB removal
time, respectively, of access unit n:

if(low_delay hrd flag[HighestTid] || AuNominalRemovalTime[n] >= AuFinalArrivalTime[n])
AuCpbRemovalTime[n | = AuNominalRemovalTime[n]
else (C-14)
AuCpbRemovalTime[n | = AuNominalRemovalTime[n] + ClockTick *
Ceil((AuFinalArrivalTime[n] — AuNominalRemovalTime[n]) + ClockTick)
NOTE 1 — When low_delay hrd flag[HighestTid] is equal to 1 and AuNominalRemovalTime[n] is less than
AuFinalArrivalTime[n], the size of access unit n is so large that it prevents removal at the nominal removal time.

Otherwise (SubPicHrdFlag is equal to 1), the removal time of decoding unit m from the CPB is specified as follows:

if(low_delay hrd flag[HighestTid] || DuNominalRemovalTime[m] >= DuFinalArrivalTime[m])
DuCpbRemovalTime[m | = DuNominalRemovalTime[m]

else (C-15)
DuCpbRemovalTime[m | = DuFinalArrivalTime[m]

NOTE 2 — When low_delay hrd flag[HighestTid] is equal to 1 and DuNominalRemovalTime[m] is less than
DuFinalArrivalTime[m], the size of decoding unit m is so large that it prevents removal at the nominal removal time.

If SubPicHrdFlag is equal to 0, at the CPB removal time of access unit n, the access unit is instantaneously decoded.

Otherwise (SubPicHrdFlag is equal to 1), at the CPB removal time of decoding unit m, the decoding unit is
instantaneously decoded, and when decoding unit m is the last decoding unit of access unit n, the following applies:

— Picture n is considered as decoded.

— The final CPB arrival time of access unit n, i.e., AuFinalArrivalTime[n], is set equal to the final CPB arrival time
of the last decoding unit in access unit n, i.e., DuFinal ArrivalTime[m].

— The nominal CPB removal time of access unit n, i.e., AuNominalRemovalTime[n], is set equal to the nominal
CPB removal time of the last decoding unit in access unit n, i.e., DuNominalRemovalTime[m].

— The CPB removal time of access unit n, i.e., AuCpbRemovalTime[m], is set equal to the CPB removal time of the
last decoding unit in access unit n, i.e., DuCpbRemovalTime[m].

C3 Operation of the decoded picture buffer (DPB)

C.3.1 General

The specifications in this clause apply independently to each set of DPB parameters selected as specified in clause C.1.

Rec. ITU-T H.265 (04/2013) 219

The decoded picture buffer contains picture storage buffers. Each of the picture storage buffers may contain a decoded
picture that is marked as "used for reference" or is held for future output. The processes specified in clauses C.3.2, C.3.3
and C.3.4 are sequentially applied as specified below.

C.3.2 Removal of pictures from the DPB

The removal of pictures from the DPB before decoding of the current picture (but after parsing the slice header of the
first slice of the current picture) happens instantaneously at the CPB removal time of the first decoding unit of access
unit n (containing the current picture) and proceeds as follows:

— The decoding process for RPS as specified in clause 8.3.2 is invoked.

— When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 that is not picture 0, the following
ordered steps are applied:

1. The variable NoOutputOfPriorPicsFlag is derived for the decoder under test as follows:

— If the current picture is a CRA picture, NoOutputOfPriorPicsFlag is set equal to 1 (regardless of the
value of no_output_of prior_pics_flag).

— Otherwise, if the value of pic width in luma samples, pic height in luma samples, or
sps_max_dec_pic_buffering minus1[HighestTid | derived from the active SPS is different from the
value of pic_width in luma samples, pic_height in luma samples, or
sps_max_dec_pic_buffering minus1[HighestTid], respectively, derived from the SPS active for the
preceding picture, NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test,
regardless of the value of no_output of prior pics flag.

NOTE - Although setting NoOutputOfPriorPicsFlag equal to no_output of prior pics flag is preferred under
these conditions, the decoder under test is allowed to set NoOutputOfPriorPicsFlag to 1 in this case.

— Otherwise, NoOutputOfPriorPicsFlag is set equal to no_output_of prior pics flag.

2. The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied for the HRD, such that
when the value of NoOutputOfPriorPicsFlag is equal to 1, all picture storage buffers in the DPB are emptied
without output of the pictures they contain, and the DPB fullness is set equal to 0.

— When both of the following conditions are true for any pictures k in the DPB, all such pictures k in the DPB are
removed from the DPB:

— picture k is marked as "unused for reference"

— picture k has PicOutputFlag equal to 0 or its DPB output time is less than or equal to the CPB removal time of
the first decoding unit (denoted as decoding unit m) of the current picture n; i.e., DpbOutputTime[k] is less
than or equal to CpbRemovalTime(m)

— For each picture that is removed from the DPB, the DPB fullness is decremented by one.

C.3.3 Picture output

The processes specified in this clause happen instantaneously at the CPB removal time of access unit n,
AuCpbRemovalTime[n .

When picture n has PicOutputFlag equal to 1, its DPB output time DpbOutputTime[n] is derived as follows, where the
variable firstPicInBufferingPeriodFlag is equal to 1 if access unit n is the first access unit of a buffering period and 0
otherwise:

if(!SubPicHrdFlag) {
DpbOutputTime[n] = AuCpbRemovalTime[n | + ClockTick * picDpbOutputDelay (C-16)
if(firstPicInBufferingPeriodFlag)
DpbOutputTime[n] —= ClockTick * DpbDelayOffset
} else
DpbOutputTime[n] = AuCpbRemovalTime[n | + ClockSubTick * picSptDpbOutputDuDelay

where picDpbOutputDelay is the value of pic_dpb_output delay in the picture timing SEI message associated with
access unit n, and picSptDpbOutputDuDelay is the value of pic_spt dpb output du delay, when present, in the
decoding unit information SEI messages associated with access unit n, or the value of pic_dpb_output du delay in the
picture timing SEI message associated with access unit n when there is no decoding unit information SEI message
associated with access unit n or no decoding unit information SEI message associated with access unit n has
pic_spt dpb_output du_delay present.

220 Rec. ITU-T H.265 (04/2013)

NOTE — When the syntax element pic_spt_dpb_output du_delay is not present in any decoding unit information SEI message
associated with access unit n, the value is inferred to be equal to pic_dpb_output du_delay in the picture timing SEI message
associated with access unit n.

The output of the current picture is specified as follows:

— If PicOutputFlag is equal to 1 and DpbOutputTime[n] is equal to AuCpbRemovalTime[n], the current picture is
output.

— Otherwise, if PicOutputFlag is equal to 0, the current picture is not output, but will be stored in the DPB as
specified in clause C.3.4.

— Otherwise (PicOutputFlag is equal to 1 and DpbOutputTime[n] is greater than AuCpbRemovalTime[n]), the
current picture is output later and will be stored in the DPB (as specified in clause C.3.4) and is output at time
DpbOutputTime[n] unless indicated not to be output by the decoding or inference of
no_output_of prior pics flag equal to 1 at a time that precedes DpbOutputTime[n].

When output, the picture is cropped, using the conformance cropping window specified in the active SPS for the
picture.

When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of the
variable DpbOutputInterval[n] is derived as follows:

DpbOutputinterval[n] = DpbOutputTime[nextPicInOutputOrder] — DpbOutputTime[n] (C-17)

where nextPicInOutputOrder is the picture that follows picture n in output order and has PicOutputFlag equal to 1.

C.3.4 Current decoded picture marking and storage

The process specified in this clause happens instantaneously at the CPB removal time of access unit n,
CpbRemovalTime[n].

The current decoded picture is stored in the DPB in an empty picture storage buffer, the DPB fullness is incremented by
one, and the current picture is marked as "used for short-term reference".

C4 Bitstream conformance
A bitstream of coded data conforming to this Specification shall fulfil all requirements specified in this clause.

The bitstream shall be constructed according to the syntax, semantics, and constraints specified in this Specification
outside of this annex.

The first coded picture in a bitstream shall be an IRAP picture, i.e., an IDR picture, a CRA picture or a BLA picture.
The bitstream is tested by the HRD for conformance as specified in clause C.1.

For each current picture, let the variables maxPicOrderCnt and minPicOrderCnt be set equal to the maximum and the
minimum, respectively, of the PicOrderCntVal values of the following pictures:

— The current picture.

— The previous picture in decoding order that has Temporalld equal to 0 and that is not a RASL picture, a RADL
picture, or a sub-layer non-reference picture.

— The short-term reference pictures in the RPS of the current picture.

— All pictures n that have PicOutputFlag equal to 1, AuCpbRemovalTime[n] less than
AuCpbRemovalTime[currPic], and DpbOutputTime[n] greater than or equal to AuCpbRemovalTime[currPic],
where currPic is the current picture.

All of the following conditions shall be fulfilled for each of the bitstream conformance tests:

1. For each access unit n, with n greater than 0, associated with a buffering period SEI message, let the variable
deltaTime90k[n] be specified as follows:

deltaTime90k[n] = 90000 * (AuNominalRemovalTime[n] — AuFinalArrivalTime[n—1]) (C-18)

The value of InitCpbRemovalDelay[SchedSelldx] is constrained as follows:
— Ifcbr_flag[SchedSelldx] is equal to 0, the following condition shall be true:

InitCpbRemovalDelay[SchedSelldx | <= Ceil(deltaTime90k[n]) (C-19)
— Otherwise (cbr_flag[SchedSelldx] is equal to 1), the following condition shall be true:

Rec. ITU-T H.265 (04/2013) 221

10.

CS
Csa

Floor(deltaTime90k[n]) <= InitCpbRemovalDelay[SchedSelldx] <= Ceil(deltaTime90k[n]) (C-20)

NOTE 1 — The exact number of bits in the CPB at the removal time of each picture may depend on which buffering
period SEI message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified
constraints must be obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the
HRD may be initialized at any one of the buffering period SEI messages.

A CPB overflow is specified as the condition in which the total number of bits in the CPB is greater than the
CPB size. The CPB shall never overflow.

A CPB underflow is specified as the condition in which the nominal CPB removal time of decoding unit m
DuNominalRemovalTime(m) is less than the final CPB arrival time of decoding unit m
DuFinalArrivalTime(m) for at least one value of m. When low_delay hrd flag[HighestTid] is equal to 0, the
CPB shall never underflow.

When SubPicHrdFlag is equal to 1, low_delay hrd flag[HighestTid | is equal to 1, and the nominal removal
time of a decoding unit m of access unit n is less than the final CPB arrival time of decoding unit m (i.e.,
DuNominalRemovalTime[m | < DuFinalArrivalTime[m]), the nominal removal time of access unit n shall be
less than the final CPB arrival time of access unit n (i.e.,
AuNominalRemovalTime[n] < AuFinalArrivalTime[n]).

The nominal removal times of pictures from the CPB (starting from the second picture in decoding order) shall
satisfy the constraints on AuNominalRemovalTime[n] and AuCpbRemovalTime[n] expressed in
clauses A.4.1 through A.4.2.

For each current picture, after invocation of the process for removal of pictures from the DPB as specified in
clause C.3.2, the number of decoded pictures in the DPB, including all pictures n that are marked as "used for
reference", or that have PicOutputFlag equal to 1 and AuCpbRemovalTime[n] Iless than
AuCpbRemovalTime[currPic], where currPic is the current picture, shall be less than or equal to
sps_max_dec pic buffering minus1[HighestTid].

All reference pictures shall be present in the DPB when needed for prediction. Each picture that has
PicOutputFlag equal to 1 shall be present in the DPB at its DPB output time unless it is removed from the DPB
before its output time by one of the processes specified in clause C.3.

For each current picture, the value of maxPicOrderCnt— minPicOrderCnt shall be less than
MaxPicOrderCntLsb / 2.

The value of DpbOutputlnterval[n] as given by Equation C-17, which is the difference between the output time
of a picture and that of the first picture following it in output order and having PicOutputFlag equal to 1, shall
satisfy the constraint expressed in clause A.4.1 for the profile, tier and level specified in the bitstream using the
decoding process specified in clauses 2 through 10.

For each current picture, when sub pic cpb params_in pic timing sei flag is equal to 1, let
tmpCpbRemovalDelaySum be derived as follows:

tmpCpbRemovalDelaySum = 0
for(1=0;1<num_decoding_units_minusl; i++) (C-21)
tmpCpbRemovalDelaySum += du_cpb _removal delay increment minusl[i]+ 1

The value of ClockSubTick * tmpCpbRemovalDelaySum shall be equal to the difference between the nominal
CPB removal time of the current access unit and the nominal CPB removal time of the first decoding unit in the
current access unit in decoding order.

Decoder conformance

General

A decoder conforming to this Specification shall fulfil all requirements specified in this clause.

A decoder claiming conformance to a specific profile, tier and level shall be able to successfully decode all bitstreams
that conform to the bitstream conformance requirements specified in clause C.4, in the manner specified in Annex A,
provided that all VPSs, SPSs and PPSs referred to in the VCL NAL units, and appropriate buffering period and picture
timing SEI messages are conveyed to the decoder, in a timely manner, either in the bitstream (by non-VCL NAL units),
or by external means not specified in this Specification.

When a bitstream contains syntax elements that have values that are specified as reserved and it is specified that
decoders shall ignore values of the syntax elements or NAL units containing the syntax elements having the reserved
values, and the bitstream is otherwise conforming to this Specification, a conforming decoder shall decode the bitstream

222

Rec. ITU-T H.265 (04/2013)

in the same manner as it would decode a conforming bitstream and shall ignore the syntax elements or the NAL units
containing the syntax elements having the reserved values as specified.

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order
conformance.

To check conformance of a decoder, test bitstreams conforming to the claimed profile, tier and level, as specified in
clause C.4 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test
(DUT). All cropped decoded pictures output by the HRD shall also be output by the DUT, each cropped decoded
picture output by the DUT shall be a picture with PicOutputFlag equal to 1, and, for each such cropped decoded picture
output by the DUT, the values of all samples that are output shall be equal to the values of the samples produced by the
specified decoding process.

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only
from the subset of values of SchedSelldx for which the bit rate and CPB size are restricted as specified in Annex A for
the specified profile, tier and level, or with "interpolated" delivery schedules as specified below for which the bit rate
and CPB size are restricted as specified in Annex A. The same delivery schedule is used for both the HRD and the
DUT.

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt minus1[HighestTid]
greater than 0, the decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an
"interpolated" delivery schedule specified as having peak bit rate r, CPB size ¢(r), and initial CPB removal delay
(f(r)=+r) as follows:

o= (r — BitRate[SchedSelldx — 1]) + (BitRate[SchedSelldx] — BitRate[SchedSelldx — 1]), (C-22)
c(r)=o * CpbSize[SchedSelldx]+ (1 — o) * CpbSize[SchedSelldx — 1], (C-23)

f(r) = o * InitCpbRemovalDelay[SchedSelldx] * BitRate[SchedSelldx |+
(1 - o) * InitCpbRemovalDelay[SchedSelldx — 1] * BitRate[SchedSelldx — 1] (C-24)

for any SchedSelldx > 0 and r such that BitRate[SchedSelldx — 1] <= r <= BitRate[SchedSelldx] such that r and
c(r) are within the limits as specified in Annex A for the maximum bit rate and buffer size for the specified profile, tier
and level.

NOTE 1 — InitCpbRemovalDelay[SchedSelldx] can be different from one buffering period to another and have to be re-
calculated.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery
time of the first bit) of picture output is the same for both the HRD and the DUT up to a fixed delay.

For output order decoder conformance, the following applies:

— The HSS delivers the bitstream BitstreamToDecode to the DUT "by demand" from the DUT, meaning that the
HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing.

NOTE 2 — This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest
decoding unit.

— A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the
schedules specified in the bitstream BitstreamToDecode such that the bit rate and CPB size are restricted as
specified in Annex A. The order of pictures output shall be the same for both the HRD and the DUT.

— The HRD CPB size is given by CpbSize[SchedSelldx] as specified in clause E.2.3, where SchedSelldx and the
HRD parameters are selected as specified in clause C.1. The DPB size is given by
sps_max_dec pic_buffering minus1| HighestTid] + 1. Removal time from the CPB for the HRD is the final bit
arrival time and decoding is immediate. The operation of the DPB of this HRD is as described in clauses C.5.2
through C.5.2.3.

C.5.2 Operation of the output order DPB
C.5.2.1 General

The decoded picture buffer contains picture storage buffers. Each of the picture storage buffers contains a decoded
picture that is marked as "used for reference" or is held for future output. The process for output and removal of pictures
from the DPB as specified in clause C.5.2.2 is invoked, followed by the invocation of the process for picture decoding,
marking, additional bumping, and storage as specified in clause C.5.2.3. The "bumping" process is specified in clause
C.5.2.4 and is invoked as specified in clauses C.5.2.2 and C.5.2.3.

Rec. ITU-T H.265 (04/2013) 223

C.5.2.2 Output and removal of pictures from the DPB

The output and removal of pictures from the DPB before the decoding of the current picture (but after parsing the slice
header of the first slice of the current picture) happens instantaneously when the first decoding unit of the access unit
containing the current picture is removed from the CPB and proceeds as follows:

— The decoding process for RPS as specified in clause 8.3.2 is invoked.

— If the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 that is not picture 0, the following
ordered steps are applied:

1. The variable NoOutputOfPriorPicsFlag is derived for the decoder under test as follows:

— If the current picture is a CRA picture, NoOutputOfPriorPicsFlag is set equal to 1 (regardless of the
value of no_output of prior pics_flag).

— Otherwise, if the value of pic width in luma samples, pic_height in luma samples, or
sps_max_dec pic_buffering minus1[HighestTid] derived from the active SPS is different from the
value of pic_width_in_luma samples, pic_height in luma samples, or
sps_max_dec pic_buffering minus1[HighestTid], respectively, derived from the SPS active for the
preceding picture, NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test,
regardless of the value of no_output of prior pics flag.

NOTE - Although setting NoOutputOfPriorPicsFlag equal to no_output of prior pics flag is preferred under
these conditions, the decoder under test is allowed to set NoOutputOfPriorPicsFlag to 1 in this case.

— Otherwise, NoOutputOfPriorPicsFlag is set equal to no_output of prior pics flag.
2. The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied for the HRD as follows:

— If NoOutputOfPriorPicsFlag is equal to 1, all picture storage buffers in the DPB are emptied without
output of the pictures they contain, and the DPB fullness is set equal to 0.

— Otherwise (NoOutputOfPriorPicsFlag is equal to 0), all picture storage buffers containing a picture that is
marked as "not needed for output" and "unused for reference" are emptied (without output), and all non-
empty picture storage buffers in the DPB are emptied by repeatedly invoking the "bumping" process
specified in clause C.5.2.4, and the DPB fullness is set equal to 0.

— Otherwise (the current picture is not an IRAP picture with NoRaslOutputFlag equal to 1), all picture storage
buffers containing a picture which are marked as "not needed for output" and "unused for reference" are emptied
(without output). For each picture storage buffer that is emptied, the DPB fullness is decremented by one. When
one or more of the following conditions are true, the "bumping" process specified in clause C.5.2.4 is invoked
repeatedly while further decrementing the DPB fullness by one for each additional picture storage buffer that is
emptied, until none of the following conditions are true:

— The number of pictures in the DPB that are marked as "needed for output" is greater than
sps_max_num_reorder_pics[HighestTid].

— sps_max_latency_increase plusl[HighestTid] is not equal to 0 and there is at least one picture in the DPB
that is marked as "needed for output" for which the associated variable PicLatencyCount is greater than or
equal to SpsMaxLatencyPictures[HighestTid].

— The number of pictures in the DPB is greater than or equal to
sps_max_dec_pic_buffering minus1[HighestTid | + 1.
C.5.2.3 Picture decoding, marking, additional bumping, and storage

The processes specified in this clause happen instantaneously when the last decoding unit of access unit n containing
the current picture is removed from the CPB.

For each picture in the DPB that is marked as "needed for output", the associated variable PicLatencyCount is set equal
to PicLatencyCount + 1.

The current picture is considered as decoded after the last decoding unit of the picture is decoded. The current decoded
picture is stored in an empty picture storage buffer in the DPB, and the following applies:

— If the current decoded picture has PicOutputFlag equal to 1, it is marked as "needed for output" and its associated
variable PicLatencyCount is set equal to 0.

— Otherwise (the current decoded picture has PicOutputFlag equal to 0), it is marked as "not needed for output".

The current decoded picture is marked as "used for short-term reference".

224 Rec. ITU-T H.265 (04/2013)

When one or more of the following conditions are true, the "bumping" process specified in clause C.5.2.4 is invoked
repeatedly until none of the following conditions are true:

— The number of pictures in the DPB that are marked as "needed for output" is greater than
sps_max_num_reorder pics[HighestTid].

— sps_max latency increase plusl[HighestTid] is not equal to 0 and there is at least one picture in the DPB that is
marked as "needed for output" for which the associated variable PicLatencyCount that is greater than or equal to
SpsMaxLatencyPictures[HighestTid].

C.5.2.4 "Bumping" process

The "bumping" process consists of the following ordered steps:

1. The picture that is first for output is selected as the one having the smallest value of PicOrderCntVal of all
pictures in the DPB marked as "needed for output".

2. The picture is cropped, using the conformance cropping window specified in the active SPS for the picture, the
cropped picture is output, and the picture is marked as "not needed for output".

3. When the picture storage buffer that included the picture that was cropped and output contains a picture marked
as "unused for reference", the picture storage buffer is emptied.

Rec. ITU-T H.265 (04/2013) 225

Annex D

Supplemental enhancement information

(This annex forms an integral part of this Recommendation | International Standard.)

D.1 General
This annex specifies syntax and semantics for SEI message payloads.

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not
required for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to
process this information for output order conformance to this Specification (see Annex C for the specification of
conformance). Some SEI message information is required to check bitstream conformance and for output timing
decoder conformance.

In clause C.5.2, specification for presence of SEI messages are also satisfied when those messages (or some subset of
them) are conveyed to decoders (or to the HRD) by other means not specified in this Specification. When present in the
bitstream, SEI messages shall obey the syntax and semantics specified in clause 7.3.5 and this annex. When the content
of an SEI message is conveyed for the application by some means other than presence within the bitstream, the
representation of the content of the SEI message is not required to use the same syntax specified in this annex. For the
purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted.

226 Rec. ITU-T H.265 (04/2013)

D.2 SEI payload syntax

D.2.1 General SEI message syntax

sei_payload(payloadType, payloadSize) {

Descriptor

if(nal_unit_type == PREFIX SEI NUT)

if(payloadType == 0)

buffering_period(payloadSize)

else if(payloadType == 1)

pic_timing(payloadSize)

else if(payloadType == 2)

pan_scan_rect(payloadSize)

else if(payloadType == 3)

filler_payload(payloadSize)

else if(payloadType == 4)

user_data_registered itu t t35(payloadSize)

else if(payloadType == 5)

user_data_unregistered(payloadSize)

else if(payloadType == 6)

recovery_point(payloadSize)

else if(payloadType == 9)

scene_info(payloadSize)

else if(payloadType == 15)

picture snapshot(payloadSize)

else if(payloadType == 16)

progressive_refinement segment_start(payloadSize)

else if(payloadType == 17)

progressive_refinement _segment_end(payloadSize)

else if(payloadType == 19)

film_grain_characteristics(payloadSize)

else if(payloadType == 22)

post_filter hint(payloadSize)

else if(payloadType == 23)

tone_mapping_info(payloadSize)

else if(payloadType == 45)

frame packing_arrangement(payloadSize)

else if(payloadType == 47)

display_orientation(payloadSize)

else if(payloadType == 128)

structure_of pictures_info(payloadSize)

else if(payloadType == 129)

active_parameter_sets(payloadSize)

else if(payloadType == 130)

decoding_unit_info(payloadSize)

else if(payloadType == 131)

temporal sub layer zero index(payloadSize)

else if(payloadType == 133)

scalable nesting(payloadSize)

else if(payloadType == 134)

Rec. ITU-T H.265 (04/2013)

227

region_refresh_info(payloadSize)

else

reserved_sei_message(payloadSize)

else /* nal unit type == SUFFIX SEI NUT */

if(payloadType == 3)

filler payload(payloadSize)

else if(payloadType == 4)

user data registered itu t t35(payloadSize)

else if(payloadType == 5)

user data unregistered(payloadSize)

else if(payloadType == 17)

progressive refinement segment end(payloadSize)

else if(payloadType == 22)

post _filter hint(payloadSize)

else if(payloadType == 132)

decoded picture hash(payloadSize)

else

reserved_sei_message(payloadSize)

if(more_data_in_payload()) {

if(payload_extension present())

reserved_payload_extension_data u(v)
payload_bit_equal_to_one /* equal to 1 */ f(1)
while(!byte aligned())

payload_bit_equal_to_zero /* equal to 0 */ f(1)

228

Rec. ITU-T H.265 (04/2013)

D.2.2 Buffering period SEI message syntax

buffering_period(payloadSize) { Descriptor
bp_seq_parameter_set_id ue(v)
if(!sub_pic_hrd params present flag)
irap_cpb_params_present_flag u(l)
if(irap_cpb_params_present flag) {
cpb_delay_offset u(v)
dpb_delay_offset u(v)
§
concatenation_flag u(l)
au_cpb_removal_delay_delta_minusl u(v)
if(NalHrdBpPresentFlag) {
for(i=0;1 <= CpbCnt; it++) {
nal_initial cpb_removal delay| i] u(v)
nal_initial cpb_removal offset| i | u(v)
if(sub_pic_hrd params present flag || irap _cpb_params present flag) {
nal_initial_alt_cpb_removal_delay] i | u(v)
nal_initial alt cpb_removal offset| i] u(v)
§
§
}
if(VclHrdBpPresentFlag) {
for(i=0;1 <= CpbCnt; i++) {
vel_initial_cpb_removal_delay| i] u(v)
vel_initial cpb_removal offset[i | u(v)
if(sub_pic_hrd params_present flag || irap _cpb_params_present flag) {
vel_initial_alt_cpb_removal_delay] i | u(v)
vel_initial_alt_cpb_removal offset| i | u(v)

Rec. ITU-T H.265 (04/2013)

229

D.2.3

Picture timing SEI message syntax

pic_timing(payloadSize) { Descriptor
if(frame_field info present flag) {
pic_struct u(4)
source_scan_type u(2)
duplicate_flag u(l)
H
if(CpbDpbDelaysPresentFlag) {
au_cpb_removal_delay minusl u(v)
pic_dpb_output_delay u(v)
if(sub_pic_hrd_params_present_flag)
pic_dpb_output_du_delay u(v)
if(sub_pic_hrd params present flag &&
sub pic cpb params in pic timing sei flag) {
num_decoding units_minusl ue(v)
du_common_cpb_removal_delay_flag u(l)
if(du_common_cpb_removal delay flag)
du_common_cpb_removal_delay_increment_minusl u(v)
for(i=0;1 <= num_decoding_units minusl; i++) {
num_nalus_in_du_minus1[i] ue(v)
if(!du_common_cpb_removal delay flag && i<num_decoding_units minusl)
du_cpb_removal_delay_increment_minusl1[i] u(v)
}
H
}
H
D.2.4 Pan-scan rectangle SEI message syntax
pan_scan_rect(payloadSize) { Descriptor
pan_scan_rect_id ue(v)
pan_scan_rect_cancel_flag u(l)
if(!pan_scan_rect cancel flag) {
pan_scan_cnt_minusl ue(v)
for(1=0;1 <= pan_scan_cnt minusl; i++) {
pan_scan_rect_left_offset[i] se(v)
pan_scan_rect_right_offset[i] se(v)
pan_scan_rect_top_offset[i] se(v)
pan_scan_rect_bottom_offset[i] se(v)
}
pan_scan_rect_persistence flag u(l)

230

Rec. ITU-T H.265 (04/2013)

D.2.5

D.2.7

D.2.8

Filler payload SEI message syntax

filler_payload(payloadSize) {

Descriptor
for(k = 0; k < payloadSize; k++)
ff_byte /* equal to OxFF */ f(8)
}
D.2.6 User data registered by Rec. ITU-T T.35 SEI message syntax
user_data_registered_itu_t_t35(payloadSize) { Descriptor
itu_t_t35_country_code b(8)
if(itu_t_t35_country_code != OxFF)
i=1
else {
itu_t_t35_country_code_extension_byte b(8)
i=2
}
do {
itu_t_t35_payload_byte b(8)
i++
} while(i < payloadSize)
H
User data unregistered SEI message syntax
user_data_unregistered(payloadSize) { Descriptor
uuid_iso_iec_11578 u(128)
for(i=16; 1 < payloadSize; i++)
user_data_payload_byte b(8)
}
Recovery point SEI message syntax
recovery_point(payloadSize) { Descriptor
recovery_poc_cnt se(v)
exact_match_flag u(l)
broken_link flag u(1)
}

Rec. ITU-T H.265 (04/2013) 231

D.2.9 Scene information SEI message syntax

scene_info(payloadSize) { Descriptor
scene_info_present_flag u(l)
if(scene_info_present_flag) {
prev_scene_id_valid_flag u(1)
scene_id ue(v)
scene_transition_type ue(v)
if(scene_transition_type > 3)
second_scene_id ue(v)
}
}
D.2.10 Picture snapshot SEI message syntax
picture_snapshot(payloadSize) { Descriptor
snapshot_id ue(v)
}
D.2.11 Progressive refinement segment start SEI message syntax
progressive_refinement_segment_start(payloadSize) { Descriptor
progressive_refinement_id ue(v)
pic_order_cnt_delta ue(v)
H
D.2.12 Progressive refinement segment end SEI message syntax
progressive_refinement_segment_end(payloadSize) { Descriptor
progressive_refinement_id ue(v)

232

Rec. ITU-T H.265 (04/2013)

D.2.13 Film grain characteristics SEI message syntax

film grain characteristics(payloadSize) { Descriptor
film_grain_characteristics_cancel_flag u(l)
if(!film_grain_characteristics_cancel flag) {
film_grain_model_id u(2)
separate_colour_description_present_flag u(l)
if(separate colour description present flag) {
film_grain_bit_depth_luma_ minus8 u(3)
film_grain_bit_depth_chroma_minus8 u(3)
film_grain_full range flag u(l)
film_grain_colour_primaries u(8)
film_grain_transfer_characteristics u(8)
film_grain_matrix_coeffs u(8)
}
blending_mode_id u(2)
log2_scale_factor u(4)
for(c=0;c<3;ct++)
comp_model present_flag[c] u(l)

for(c=0;c<3;ct+)
if(comp_model present flag[c]) {

num_intensity_intervals_minus1] c] u(g)

num_model_values_minusl| c] u(3)

for(1=0;1 <= num_intensity intervals minusl[c J; i++) {

intensity interval lower_bound| c][i] u(8)
intensity interval upper bound|c][] u(8)
for(j =0;j <= num_model values minusl[c]; j++)
comp_model value[c|[i][]] se(v)
H
}
film_grain_characteristics_persistence_flag u(l)

D.2.14 Post-filter hint SEI message syntax

post_filter_hint(payloadSize) { Descriptor
filter_hint_size_y ue(v)
filter_hint_size x ue(v)
filter_hint_type u(2)

for(cIdx = 0; cIdx < (chroma_format idc == 07?1 :3); cldx++)
for(cy = 0; cy < filter_hint_size_y; cy ++)

for(cx = 0; cx < filter_hint_size_x; cX ++)

filter_hint_value[cldx][cy][cx] se(v)

Rec. ITU-T H.265 (04/2013) 233

D.2.15 Tone mapping information SEI message syntax

tone_mapping_info(payloadSize) { Descriptor
tone_map_id ue(v)
tone_map_cancel flag u(l)
if(!tone_map_cancel flag) {
tone_map_persistence_flag u(l)
coded_data_bit_depth u(8)
target_bit_depth u(8)
tone_map_model id ue(v)
if(tone_map _model id == 0) {
min_value u(32)
max_value u(32)
} else if(tone_map model id == 1) {
sigmoid_midpoint u(32)
sigmoid_width u(32)
} else if(tone_map model id == 2)
for(i=0;1<(1 << target bit depth);it+)
start_of coded_interval[i] u(v)
else if(tone_map model id == 3) {
num_pivots u(16)
for(1=0;1<num_pivots; it+) {
coded_pivot_value[i] u(v)
target pivot value[i] u(v)
}
} else if(tone_map model id == 4) {
camera_iso_speed_idc u(8)
if(camera_iso_speed idc == EXTENDED ISO)
camera_iso_speed_value u(32)
exposure_index_idc u(8)
if(exposure_index idc == EXTENDED_ ISO)
exposure_index_value u(32)
exposure_compensation_value_sign_flag u(1)
exposure_compensation_value_numerator u(16)
exposure_compensation_value_denom_idc u(16)
ref_screen_luminance white u(32)
extended_range white level u(32)
nominal_black_level code_value u(16)
nominal_white_level code_value u(16)
extended_white level code value u(16)

234 Rec. ITU-T H.265 (04/2013)

D.2.16 Frame packing arrangement SEI message syntax

frame packing arrangement(payloadSize) { Descriptor
frame_packing_arrangement_id ue(v)
frame_packing_ arrangement_cancel_flag u(l)
if(!frame packing arrangement cancel flag) {
frame_packing arrangement_type u(7)
quincunx_sampling_flag u(l)
content_interpretation_type u(6)
spatial_flipping_flag u(l)
frame(_flipped_flag u(l)
field_views_flag u(l)
current_frame_is frame(_flag u(l)
frame(_self contained flag u(l)
framel_self contained_flag u(l)
if(!quincunx_sampling flag && frame packing arrangement type != 5) {
frame0_grid_position_x u(4)
frame(_grid_position_y u4)
framel_grid_position_x u(4)
framel_grid position_y u4)
i
frame_packing_arrangement_reserved_byte u(8)
frame_packing_arrangement_persistence_flag u(l)
}
upsampled_aspect_ratio_flag u(l)
}
D.2.17 Display orientation SEI message syntax
display orientation(payloadSize) { Descriptor
display orientation_cancel_flag u(l)
if(!display_orientation_cancel flag) {
hor_flip u(l)
ver_{flip u(l)
anticlockwise rotation u(16)
display_orientation_persistence flag u(l)

Rec. ITU-T H.265 (04/2013)

235

D.2.18 Structure of pictures information SEI message syntax

structure_of pictures_info(payloadSize) { Descriptor
sop_seq_parameter_set_id ue(v)
num_entries_in_sop_minusl ue(v)
for(i=0;1 <= num_entries_in_sop minusl; i++) {
sop_vel nut[i] u(6)
sop_temporal_id[i] u(3)
if(sop_vel nut[i] != IDR_ W _RADL && sop vcl nut[i] != IDR N LP)
sop_short_term_rps_idx[i] ue(v)
if(i>0)
sop_poc_delta[i] se(v)
i
}
D.2.19 Decoded picture hash SEI message syntax
decoded_picture hash(payloadSize) { Descriptor
hash_type u(8)
for(cldx = 0; cldx < (chroma format idc == 07?71 :3); cldx++)
if(hash_type == 0)
for(1=0;1<16; i++)
picture_md5[cldx][1] b(8)
else if(hash type == 1)
picture_crc[cldx] u(16)
else if(hash type == 2)
picture _checksum| cldx | u(32)
}
D.2.20 Active parameter sets SEI message syntax
active_parameter_sets(payloadSize) { Descriptor
active_video_parameter_set id u(4)
self_contained cvs_flag u(1)
no_parameter_set update flag u(l)
num_sps_ids_minusl ue(v)
for(1=0;1 <= num_sps_ids minusl; i++)
active_seq_parameter_set _id[i] ue(v)

236 Rec. ITU-T H.265 (04/2013)

D.2.21 Decoding unit information SEI message syntax

decoding unit info(payloadSize) { Descriptor
decoding_unit_idx ue(v)
if(!sub_pic_cpb_params_in_pic_timing_sei_flag)
du_spt_cpb_removal _delay_increment u(v)
dpb_output_du_delay_present_flag u(l)

if(dpb_output_du_delay_present_flag)

pic_spt_dpb_output_du_delay u(v)

D.2.22 Temporal sub-layer zero index SEI message syntax

temporal sub layer zero index(payloadSize) { Descriptor
temporal_sub_layer_zero_idx u(8)
irap_pic_id u(8)

}

D.2.23 Scalable nesting SEI message syntax

scalable nesting(payloadSize) { Descriptor
bitstream_subset_flag u(1)
nesting_op_flag u(l)
if(nesting_op_flag) {
default op_flag u(l)
nesting num_ops_minusl ue(v)

for(1= default op flag;i <= nesting num_ops_minusl; i++) {

nesting_max_temporal_id_plusl[i] u(3)
nesting_op_idx[i | ue(v)
H
} else {
all_layers_flag u(1)
if(!all_layers flag) {
nesting no_op_max_temporal_id_plusl u(3)
nesting_num_layers minus1 ue(v)
for(1=0;1 <= nesting num_layers minusl; i++)
nesting_layer_id[i] u(6)
H
H
while(!byte aligned())
nesting_zero_bit /* equal to 0 */ u(l)
do

sei_message()

while(more rbsp data())

Rec. ITU-T H.265 (04/2013) 237

D.2.24 Region refresh information SEI message syntax

region_refresh _info(payloadSize) { Descriptor

refreshed_region_flag u(l)

D.2.25 Reserved SEI message syntax

reserved_sei_message(payloadSize) { Descriptor
for(1= 0; i <payloadSize; i++)
reserved_sei_message payload_byte b(8)
}

D.3 SEI payload semantics

D.3.1 General SEI payload semantics

reserved_payload_extension_data shall not be present in bitstreams conforming to this version of this Specification.
However, decoders conforming to this version of this Specification shall ignore the presence and value of
reserved payload extension_data. When present, the length, in bits, of reserved payload extension data is equal to
8 * payloadSize — nEarlierBits — nPayloadZeroBits — 1, where nEarlierBits is the number of bits in the sei_payload()
syntax structure that precede the reserved payload_extension_data syntax element, and nPayloadZeroBits is the number
of payload bit equal to zero syntax elements at the end of the sei_payload() syntax structure.

payload_bit_equal to one shall be equal to 1.

payload_bit_equal to_zero shall be equal to 0.

NOTE 1 — SEI messages with the same value of payloadType are conceptually the same SEI message regardless of whether they
are contained in prefix or suffix SEI NAL units.

NOTE 2 — For SEI messages with payloadType in the range of 0 to 47, inclusive, that are specified in this Specification, the
payloadType values are aligned with similar SEI messages specified in Rec. ITU-T H.264 | ISO/IEC 14496-10.

The semantics and persistence scope for each SEI message are specified in the semantics specification for each
particular SEI message.
NOTE 3 - Persistence information for SEI messages is informatively summarized in Table D.1.

238 Rec. ITU-T H.265 (04/2013)

It is a requirement of bitstream conformance that when a prefix SEI message with payloadType equal to 17 (progressive
refinement segment start) or 22 (post-filter hint) is present in an access unit, a suffix SEI message with the same value

Table D.1 — Persistence scope of SEI messages (informative)

SEI message

Persistence scope

Buffering period

The remainder of the bitstream

Picture timing

The access unit containing the SEI message

Pan-scan rectangle

Specified by the syntax of the SEI message

Filler payload

The access unit containing the SEI message

User data registered by Rec. ITU-T T.35

Unspecified

User data unregistered

Unspecified

Recovery point

Specified by the syntax of the SEI message

Scene information

The access unit containing the SEI message and up to but not
including the next access unit, in decoding order, that contains a
scene information SEI message

Picture snapshot

The access unit containing the SEI message

Progressive refinement segment start

Specified by the syntax of the SEI message

Progressive refinement segment end

The access unit containing the SEI message

Film grain characteristics

Specified by the syntax of the SEI message

Post-filter hint

The access unit containing the SEI message

Tone mapping information

Specified by the syntax of the SEI message

Frame packing arrangement

Specified by the syntax of the SEI message

Display orientation

Specified by the syntax of the SEI message

Structure of pictures information

The set of access units in the CVS that correspond to entries
listed in the SEI message

Decoded picture hash

The access unit containing the SEI message

Active parameter sets

The CVS containing the SEI message

Decoding unit information

The decoding unit containing the SEI message

Temporal sub-layer zero index

The access unit containing the SEI message

Scalable nesting

Depending on the nested SEI messages. Each nested SEI
message has the same persistence scope as if the SEI message
was not nested

Region refresh information

The set of VCL NAL units within the access unit starting from
the VCL NAL unit following the SEI message up to but not
including the VCL NAL unit following the next SEI NAL unit
containing a region refresh information SEI message (if any)

of payloadType shall not be present in the same access unit access unit.

Let prevVclNalUnitInAu of an SEI NAL unit or an SEI message be the preceding VCL NAL unit in decoding order, if
any, in the same access unit, and nextVcINalUnitInAu of an SEI NAL unit or an SEI message be the next VCL NAL
unit in decoding order, if any, in the same access unit. It is a requirement of bitstream conformance that the following

restrictions apply:

An SEI NAL unit containing an active parameter sets SEI message shall contain only one active parameter sets
SEI message and shall not contain any other SEI messages.

When an SEI NAL unit containing an active parameter sets SEI message is present in an access unit, it shall be the
first SEI NAL unit that follows the prevVclNalUnitinAu of the SEI NAL unit and precedes the
nextVclNalUnitlnAu of the SEI NAL unit.

When an SEI NAL unit contains a non-nested buffering period SEI message, a non-nested picture timing SEI
message, or a non-nested decoding unit information SEI message, the SEI NAL unit shall not contain any other

Rec. ITU-T H.265 (04/2013)

SEI message with payloadType not equal to 0 (buffering period), 1 (picture timing), or 130 (decoding unit
information).

When an SEI NAL unit contains a nested buffering period SEI message, a nested picture timing SEI message, or a
nested decoding unit information SEI message, the SEI NAL unit shall not contain any other SEI message with
payloadType not equal to 0 (buffering period), 1 (picture timing), 130 (decoding unit information), or 133
(scalable nesting).

When a non-nested buffering period SEI message is present in an access unit, it shall not follow any other SEI
message that follows the prevVclNalUnitlnAu of the buffering period SEI message and precedes the
nextVclNalUnitInAu of the buffering period SEI message, other than an active parameter sets SEI message.

When a non-nested picture timing SEI message is present in an access unit, it shall not follow any other SEI
message that follows the prevVclNalUnitinAu of the picture timing SEI message and precedes the
nextVclNalUnitlnAu of the picture timing SEI message, other than an active parameter sets SEI message or a non-
nested buffering period SEI message.

When a non-nested decoding unit information SEI message is present in an access unit, it shall not follow any
other SEI message in the same access unit that follows the prevVcINalUnitInAu of the decoding unit information
SEI message and precedes the nextVcINalUnitInAu of the decoding unit information SEI message, other than an
active parameter sets SEI message, a non-nested buffering period SEI message, or a non-nested picture timing SEI
message.

When a nested buffering period SEI message, a nested picture timing SEI message, or a nested decoding unit
information SEI message is contained in a scalable nesting SEI message in an access unit, the scalable nesting SEI
message shall not follow any other SEI message that follows the prevVcINalUnitinAu of the scalable nesting SEI
message and precedes the nextVcINalUnitInAu of the scalable nesting SEI message, other than an active parameter
sets SEI message, a non-nested buffering period SEI message, a non-nested picture timing SEI message, a non-
nested decoding unit information SEI message, or another scalable nesting SEI message that contains a buffering
period SEI message, a picture timing SEI message, or a decoding unit information SEI message.

For a non-nested SEI message, depending on the value of payloadType, the following applies:

If payloadType is equal to 0 (buffering period), 1 (picture timing), or 130 (decoding unit information), the non-
nested SEI message applies to the operation point that has OpTid equal to the greatest value of
nuh_temporal_id plusl among all VCL NAL units in the bitstream, and that has OpLayerldList containing all
values of nuh_layer id in all VCL units in the bitstream.

Otherwise, when payloadType is equal to 2, 3, 6,9, 15, 16, 17, 19, 22, 23, 45,47, 128, 131, or 134 (i.e., one of the
SEI messages that have payloadType not equal to 0, 1, or 130, and that are allowed to be nested SEI messages), the
non-nested SEI message applies to the layer for which the VCL NAL units have nuh_layer id equal to the
nuh_layer id of the SEI NAL unit containing the SEI message.

It is a requirement of bitstream conformance that the following restrictions apply on nesting of SEI messages:

It is

A scalable nesting SEI message shall not be nested in a scalable nesting SEI message.
An active parameter sets SEI message shall not be nested in a scalable nesting SEI message.

When a scalable nesting SEI message contains a buffering period SEI message, a picture timing SEI message, or a
decoding unit information SEI message, the scalable nesting SEI message shall not contain any other SEI message
with payloadType not equal to 0 (buffering period), 1 (picture timing), or 130 (decoding unit information).

When a non-nested SEI message has payloadType equal to 2, 3, 6, 9, 15, 16, 17, 19, 22, 23, 45, 47, 128, 131, or
134 (i.e., one of the SEI messages that have payloadType not equal to 0, 1, or 130, and that are allowed to be
nested SEI messages), the SEI NAL unit containing the non-nested SEI message shall have Temporalld equal to
the Temporalld of the access unit containing the SEI NAL unit.

a requirement of bitstream conformance that the following restrictions apply on the presence of SEI messages

between two VCL NAL units of an access unit:

240

When there is a prefix SEI message that has payloadType equal to 0, 1, 2, 3, 6, 9, 15, 16, 17, 19, 22, 23, 45, 47,
128, 129, or 131 (i.e., one of the prefix SEI messages that are not user data registered by Rec. ITU-T T.35 SEI
message, user data unregistered SEI message, decoding unit information SEI message, scalable nesting SEI
message, or region refresh information SEI message) between two VCL NAL units of an access unit in decoding
order, there shall be a prefix SEI message of the same type in the same access unit preceding the first VCL NAL
unit of the access unit.

Rec. ITU-T H.265 (04/2013)

— When there is a suffix SEI message that has payloadType equal to 3 (filler payload), 17 (progressive refinement
segment end), 22 (post filter hint), or 132 (decoded picture hash) between two VCL NAL units of an access unit in
decoding order, there shall be a suffix SEI message of the same type in the same access unit succeeding the last
VCL NAL unit of the access unit.

It is a requirement of bitstream conformance that the following restrictions apply on repetition of SEI messages:

— For each of the following payloadType values, there shall be less than or equal to 8 identical sei_payload() syntax
structures within an access unit: 0, 1,2, 6,9, 15, 16, 17, 19, 22, 23, 45,47, 128, 129, 131, 132, and 133.

— There shall be less than or equal to 8 identical sei_payload() syntax structures with payloadType equal to 130
within a decoding unit.

— The number of identical sei payload() syntax structures with payloadType equal to 134 in an access unit shall be
less than or equal to the number of slice segments in the access unit.

D.3.2 Buffering period SEI message semantics

A buffering period SEI message provides initial CPB removal delay and initial CPB removal delay offset information
for initialization of the HRD at the position of the associated access unit in decoding order.

The following applies for the buffering period SEI message syntax and semantics:

— The syntax elements initial cpb removal delay length minusl, au cpb removal delay length minusl,
dpb_output_delay length minusl, and sub_pic_hrd params_present flag, and the variables NalHrdBpPresentFlag
and VclHrdBpPresentFlag are found in or derived from syntax elements found in the hrd parameters() syntax
structure that is applicable to at least one of the operation points to which the buffering period SEI message
applies.

— The wvariables CpbSize[i], BitRate[i] and CpbCnt are derived from syntax elements found in the
sub_layer hrd parameters() syntax structure that is applicable to at least one of the operation points to which the
buffering period SEI message applies.

— Any two operation points that the buffering period SEI message applies to having different OpTid values tIdA and
tldB indicate that the values of cpb _cnt minusl[tIdA] and cpb_cnt minusi[tldB] coded in the
hrd parameters() syntax structure(s) applicable to the two operation points are identical.

— Any two operation points that the buffering period SEI message applies to having different OpLayerldList values
layerldListA and layerldListB indicate that the values of nal hrd parameters present flag and
vel _hrd parameters present flag, respectively, for the two hrd parameters() syntax structures applicable to the
two operation points are identical.

— The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the
operation points to which the buffering period SEI message applies.

The presence of buffering period SEI messages for an operation point is specified as follows:

— If NalHrdBpPresentFlag is equal to 1 or VclHrdBpPresentFlag is equal to 1, the following applies for each access
unit in the CVS:

— If the access unit is an IRAP access unit, a buffering period SEI message applicable to the operation point
shall be associated with the access unit.

— Otherwise, if both of the following conditions apply, a buffering period SEI message applicable to the
operation point may or may not be present for the access unit:

— The picture has Temporalld equal to 0.
— The picture is not a RASL, RADL or sub-layer non-reference picture.

— Otherwise, the access unit shall not be associated with a buffering period SEI message applicable to the
operation point.

— Otherwise (NalHrdBpPresentFlag and VclHrdBpPresentFlag are both equal to 0), no access unit in the CVS shall
be associated with a buffering period SEI message applicable to the operation point.
NOTE 1 - For some applications, frequent presence of buffering period SEI messages may be desirable (e.g., for random access
at an IRAP picture or a non-IRAP picture or for bitstream splicing).

bp_seq_parameter_set_id indicates and shall be equal to the sps_seq parameter set id for the SPS that is active for
the coded picture associated with the buffering period SEI message. The value of bp _seq parameter set id shall be
equal to the value of pps_seq parameter set id in the PPS referenced by the slice pic_parameter set id of the slice

Rec. ITU-T H.265 (04/2013) 241

segment headers of the coded picture associated with the buffering period SEI message. The value of
bp_seq parameter set_id shall be in the range of 0 to 15, inclusive.

irap_cpb_params_present flag equal to 1 specifies the presence of the initial alt cpb removal delay[i] and
initial alt cpb_removal offset[i] syntax elements. When not present, the value of irap cpb_params_present flag is
inferred to be equal to 0. When the associated picture is neither a CRA picture nor a BLA picture, the value of
irap_cpb_params_present flag shall be equal to 0.

NOTE 2 — The values of sub_pic_hrd params_present flag and irap cpb_params_present flag cannot be both equal to 1.

cpb_delay offset specifies an offset to be used in the derivation of the nominal CPB removal times of access units
following, in decoding order, the CRA or BLA access unit associated with the buffering period SEI message when the
RASL access units associated with the CRA or BLA access unit are not present. The syntax element has a length in bits
given by au_cpb_removal delay length minusl + 1. When not present, the value of cpb_delay offset is inferred to be
equal to 0.

dpb_delay_offset specifies an offset to be used in the derivation of the DPB output times of the CRA or BLA access
unit associated with the buffering period SEI message when the RASL access units associated with the CRA or BLA
access unit are not present. The syntax element has a length in bits given by dpb output delay length minusl + 1.
When not present, the value of dpb_delay_offset is inferred to be equal to 0.

When the current picture is not the first picture in the bitstream in decoding order, let prevNonDiscardablePic be the
preceding picture in decoding order with Temporalld equal to 0 that is not a RASL, RADL or sub-layer non-reference
picture.

concatenation_flag indicates, when the current picture is not the first picture in the bitstream in decoding order,
whether the nominal CPB removal time of the current picture is determined relative to the nominal CPB removal time
of the preceding picture with a buffering period SEI message or relative to the nominal CPB removal time of the picture
prevNonDiscardablePic.

au_cpb_removal delay_delta_minusl plus 1, when the current picture is not the first picture in the bitstream in
decoding order, specifies a CPB removal delay increment value relative to the nominal CPB removal time of the picture
prevNonDiscardablePic. This syntax element has a length in bits given by au_cpb_removal delay length minusl + 1.

When the current picture contains a buffering period SEI message and concatenation_flag is equal to 0 and the current
picture is not the first picture in the bitstream in decoding order, it is a requirement of bitstream conformance that the
following constraint applies:

— If the picture prevNonDiscardablePic is not associated with a buffering period SEI message, the
au_cpb_removal delay minus]1 of the current picture shall be equal to the au_cpb_removal delay minusl of
prevNonDiscardablePic plus au_cpb_removal delay delta minusl + 1.

- Otherwise, au_cpb_removal delay minus] shall be equal to au_cpb_removal delay delta_minus]1.

NOTE 3 — When the current picture contains a buffering period SEI message and concatenation flag is equal to 1, the
au_cpb_removal delay minusl for the current picture is not used. The above-specified constraint can, under some
circumstances, make it possible to splice bitstreams (that use suitably-designed referencing structures) by simply changing the
value of concatenation_flag from 0 to 1 in the buffering period SEI message for an IRAP picture at the splicing point. When
concatenation_flag is equal to 0, the above-specified constraint enables the decoder to check whether the constraint is satisfied as
a way to detect the loss of the picture prevNonDiscardablePic.

nal_initial cpb_removal _delay[i | and nal _initial alt cpb_removal delay] i] specify the default and the alternative
initial CPB removal delays, respectively, for the i-th CPB when the NAL HRD parameters are in use. The syntax
elements have a length in bits given by initial cpb_removal delay length minusl + 1, and are in units of a 90 kHz
clock. The values of the syntax elements shall not be equal to O and shall be less than or equal
to 90000 * (CpbSize[i] + BitRate[i]), the time-equivalent of the CPB size in 90 kHz clock units.

nal_initial cpb_removal offset[i | and nal_initial alt cpb_removal offset[i | specify the default and the alternative
initial CPB removal offsets, respectively, for the i-th CPB when the NAL HRD parameters are in use. The syntax
elements have a length in bits given by initial cpb_removal delay length minusl + 1 and are in units of a 90 kHz
clock.

Over the entire CVS, the sum of nal initial cpb_removal delay[i] and nal initial cpb_removal offset[i] shall be
constant for each wvalue of i, and the sum of nal initial alt cpb _removal delay[i] and
nal_initial_alt cpb_removal offset[i] shall be constant for each value of i.

vel_initial cpb_removal_delay[i] and vel_initial_alt_cpb_removal_delay][i] specify the default and the alternative
initial CPB removal delays, respectively, for the i-th CPB when the VCL HRD parameters are in use. The syntax
elements have a length in bits given by initial cpb_removal delay length minusl + 1, and are in units of a 90 kHz

242 Rec. ITU-T H.265 (04/2013)

clock. The values of the syntax elements shall not be equal to O and shall be less than or equal
to 90000 * (CpbSize[i] + BitRate[i]), the time-equivalent of the CPB size in 90 kHz clock units.

vel_initial cpb_removal offset[i] and vel_initial_alt_cpb_removal_offset[i | specify the default and the alternative
initial CPB removal offsets, respectively, for the i-th CPB when the VCL HRD parameters are in use. The syntax
elements have a length in bits given by initial cpb removal delay length minusl + 1 and are in units of a 90 kHz
clock.

Over the entire CVS, the sum of vcl initial cpb_removal delay[i] and vcl initial cpb_removal offset[i] shall be
constant for each wvalue of i, and the sum of vcl initial alt cpb _removal delay[i] and
vel_initial_alt cpb_removal offset[i] shall be constant for each value of'i.

NOTE 4 — Encoders are recommended not to include irap_cpb_params_present flag equal to 1 in buffering period SEI messages

associated with a CRA or BLA picture for which at least one of its associated RASL pictures follows one or more of its
associated RADL pictures in decoding order.

D.3.3 Picture timing SEI message semantics

The picture timing SEI message provides CPB removal delay and DPB output delay information for the access unit
associated with the SEI message.

The following applies for the picture timing SEI message syntax and semantics:

— The syntax elements and variable sub_pic_hrd params_present_flag,
sub_pic_cpb_params_in pic_timing_sei flag, au_cpb_removal delay length minusl,
dpb_output_delay length minusl, dpb_output_delay du length minusl,

du_cpb_removal delay increment length minusl, and CpbDpbDelaysPresentFlag are found in or derived from
syntax elements found in the hrd parameters() syntax structure that is applicable to at least one of the operation
points to which the picture timing SEI message applies.

— The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the
operation points to which the picture timing SEI message applies.

NOTE 1 — The syntax of the picture timing SEI message is dependent on the content of the hrd parameters() syntax
structures applicable to the operation points to which the picture timing SEI message applies. These hrd_parameters()
syntax structures are in the VPS and/or the SPS that are active for the coded picture associated with the picture timing SEI
message. When the picture timing SEI message is associated with an IRAP access unit with NoRaslOutputFlag equal to 1,
unless it is preceded by a buffering period SEI message within the same access unit, the activation of the VPS and the SPS
(and, for IRAP pictures with NoRaslOutputFlag equal to 1 that are not the first picture in the bitstream in decoding order,
the determination that the coded picture is an IRAP NoRaslOutputFlag equal to 1) does not occur until the decoding of the
first coded slice segment NAL unit of the coded picture. Since the coded slice segment NAL unit of the coded picture
follows the picture timing SEI message in NAL unit order, there may be cases in which it is necessary for a decoder to
store the RBSP containing the picture timing SEI message until determining the active VPS and the active SPS for the
coded picture, and then perform the parsing of the picture timing SEI message.

The presence of picture timing SEI messages for an operation point is specified as follows:

— If frame field info_present flag is equal to 1 or CpbDpbDelaysPresentFlag is equal to 1, a picture timing SEI
message applicable to the operation point shall be associated with every access unit in the CVS.

— Otherwise, in the CVS there shall be no access unit that is associated with a picture timing SEI message applicable
to the operation point.

pic_struct indicates whether a picture should be displayed as a frame or as one or more fields and, for the display of
frames when fixed pic rate within cvs_ flag is equal to 1, may indicate a frame doubling or tripling repetition period
for displays that use a fixed frame refresh interval equal to DpbOutputElementallnterval[n] as given by Equation E-51.
The interpretation of pic_struct is specified in Table D.2. Values of pic_struct that are not listed in Table D.2 are
reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this
Specification. Decoders shall ignore reserved values of pic_struct.

When present, it is a requirement of bitstream conformance that the value of pic_struct shall be constrained such that
exactly one of the following conditions is true:

— The value of pic_struct is equal to 0, 7, or 8 for all pictures in the CVS.
— The value of pic_struct is equal to 1, 2, 9, 10, 11, or 12 for all pictures in the CVS.
— The value of pic_struct is equal to 3, 4, 5, or 6 for all pictures in the CVS.

When fixed pic_rate_within_cvs_flag is equal to 1, frame doubling is indicated by pic_struct equal to 7, which
indicates that the frame should be displayed two times consecutively on displays with a frame refresh interval equal to
DpbOutputElementallnterval[n] as given by Equation E-51, and frame tripling is indicated by pic_struct equal to 8§,

Rec. ITU-T H.265 (04/2013) 243

which indicates that the frame should be displayed three times consecutively on displays with a frame refresh interval
equal to DpbOutputElementallnterval[n] as given by Equation E-51.
NOTE 2 — Frame doubling can be used to facilitate the display, for example, of 25 Hz progressive-scan video on a 50 Hz
progressive-scan display or 30 Hz progressive-scan video on a 60 Hz progressive-scan display. Using frame doubling and frame
tripling in alternating combination on every other frame can be used to facilitate the display of 24 Hz progressive-scan video on a
60 Hz progressive-scan display.

The nominal vertical and horizontal sampling locations of samples in top and bottom fields for 4:2:0, 4:2:2, and 4:4:4
chroma formats are shown in Figure D.1, Figure D.2, and Figure D.3, respectively.

Association indicators for fields (pic_struct equal to 9 through 12) provide hints to associate fields of complementary
parity together as frames. The parity of a field can be top or bottom, and the parity of two fields is considered
complementary when the parity of one field is top and the parity of the other field is bottom.

When frame field info present flag is equal to 1, it is a requirement of bitstream conformance that the constraints
specified in the third column of Table D.2 shall apply.
NOTE 3 — When frame_field info present flag is equal to 0, then in many cases default values may be inferred or indicated by

other means. In the absence of other indications of the intended display type of a picture, the decoder should infer the value of
pic_struct as equal to 0 when frame _field info_present flag is equal to 0.

source_scan_type equal to 1 indicates that the source scan type of the associated picture should be interpreted as
progressive. source scan_type equal to O indicates that the source scan type of the associated picture should be
interpreted as interlaced. source scan_type equal to 2 indicates that the source scan type of the associated picture is
unknown or unspecified. source_scan_type equal to 3 is reserved for future use by ITU-T | ISO/IEC and shall not be
present in bitstreams conforming to this version of this Specification. Decoders conforming to this version of this
Specification shall interpret the value 3 for source scan_type as equivalent to the value 2.

The following applies to the semantics of source scan_type:

— If general progressive source flag is equal to 0 and general interlaced source flag is equal to 1, the value of
source_scan_type shall be equal to 0 when present, and should be inferred to be equal to 0 when not present.

— Otherwise, if general progressive source flag is equal to 1 and general interlaced source flag is equal to 0, the
value of source scan_type shall be equal to 1 when present, and should be inferred to be equal to 1 when not
present.

— Otherwise, when general progressive source flag is equal to 0 and general interlaced source flag is equal to 0,
the value of source scan_type shall be equal to 2 when present, and should be inferred to be equal to 2 when not
present.

duplicate flag equal to 1 indicates that the current picture is indicated to be a duplicate of a previous picture in output
order. duplicate flag equal to 0 indicates that the current picture is not indicated to be a duplicate of a previous picture
in output order.
NOTE 4 — The duplicate flag should be used to mark coded pictures known to have originated from a repetition process such as
3:2 pull-down or other such duplication and picture rate interpolation methods. This flag would commonly be used when a video
feed is encoded as a field sequence in a "transport pass-through" fashion, with known duplicate pictures tagged by setting
duplicate flag equal to 1.
NOTE 5 — When field seq_flag is equal to 1 and duplicate flag is equal to 1, this should be interpreted as an indication that the
access unit contains a duplicated field of the previous field in output order with the same parity as the current field unless a
pairing is otherwise indicated by the use of a pic_struct value in the range of 9 to 12, inclusive.

244 Rec. ITU-T H.265 (04/2013)

Table D.2 — Interpretation of pic_struct

Value Indicated display of picture Restrictions
0 (progressive) frame field seq_flag shall be 0
1 top field field seq flag shall be 1
2 bottom field field seq_flag shall be 1
3 top field, bottom field, in that order field_seq flag shall be 0
4 bottom field, top field, in that order field seq flag shall be 0
5 top field, bottom field, top field field_seq_flag shall be 0
repeated, in that order
6 bottom field, top field, bottom field field_seq_flag shall be 0
repeated, in that order
7 frame doubling field seq flag shall be 0
fixed pic_rate within_cvs_flag shall be 1
8 frame tripling field_seq_flag shall be 0
fixed pic_rate within_cvs_flag shall be 1
9 top field paired with previous field seq flag shall be 1
bottom field in output order
10 bottom field paired with previous field seq flag shall be 1
top field in output order
11 top field paired with next bottom field_seq flag shall be 1
field in output order
12 bottom field paired with next top field seq flag shall be 1
field in output order

OX
OX

OX
OX

Guide:

X X e 0o 0

X
O

Top
Field

OX

X — Location of luma sample
O — Location of chroma sample

Figure D.1 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields

xXO

2 ol

X X X X X X

Guide:
X — Location of luma sample
O — Location of chroma sample

Rec. ITU-T H.265 (04/2013)

245

X & X & X e

B X & X & X

Top
Field
KX & X & X

Guide:
X — Location of luma sample
O - Location of chroma sample

KX B X & X
Bo_ttom

BOX B X & X

KX & X & X

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure D.2 — Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields

BRI DR -

BRI

Top
Field
RRRYIXIA

Guide:
X — Location of luma sample
O — Location of chroma sample

RRYYIIRIA
Bottom
Field
RRYYIIRIA
YRR

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure D.3 — Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields

au_cpb_removal delay_minusl1 plus 1 specifies the number clock ticks between the nominal CPB removal time of the
access unit associated with the picture timing SEI message and the preceding access unit in decoding order that
contained a buffering period SEI message. This value is also used to calculate an earliest possible time of arrival of
access unit data into the CPB for the HSS. The syntax element is a fixed length code whose length in bits is given by
au_cpb_removal delay length minusl + 1.
NOTE 6 — The value of au cpb _removal delay length minusl that determines the length (in bits) of the syntax element
au_cpb_removal delay minusl1 is the value of au_cpb_removal delay length minusl coded in the VPS or the SPS that is active
for the coded picture associated with the picture timing SEI message, although au cpb_removal delay minusl specifies a
number of clock ticks relative to the removal time of the preceding access unit containing a buffering period SEI message, which
may be an access unit of a different CVS.

The variable AuCpbRemovalDelayMsb of the current picture is derived as follows:

— If the current picture is associated with a buffering period SEI message that is applicable to at least one of the
operation points to which the picture timing SEI message applies, AuCpbRemovalDelayMsb is set equal to 0.

— Otherwise, the following applies:

246 Rec. ITU-T H.265 (04/2013)

— Let maxCpbRemovalDelay be equal to 2*-PP-removaldelay_length minust +1

— Let prevAuCpbRemovalDelayMinusl and prevAuCpbRemovalDelayMsb be set equal to
au_cpb_removal delay minusl and AuCpbRemovalDelayMsb, respectively, of the previous picture in
decoding order that has Temporalld equal to 0, that is not a RASL, RADL or sub-layer non-reference picture,
and that is within the same buffering period as the current picture.

— AuCpbRemovalDelayMsb is derived as follows:

if(au_cpb_removal delay minusl <= prevAuCpbRemovalDelayMinus!)

AuCpbRemovalDelayMsb = prevAuCpbRemovalDelayMsb + maxCpbRemovalDelay (D-1)
else

AuCpbRemovalDelayMsb = prevAuCpbRemovalDelayMsb

The variable AuCpbRemovalDelayVal is derived as follows:
AuCpbRemovalDelayVal = AuCpbRemovalDelayMsb + au_cpb _removal delay minusl + 1 (D-2)

The value of AuCpbRemovalDelayVal shall be in the range of 1 to 2*%, inclusive. Within one buffering period, the
AuCpbRemovalDelayVal values for any two access units shall not be the same.

pic_dpb_output_delay is used to compute the DPB output time of the picture when SubPicHrdFlag is equal to 0. It
specifies how many clock ticks to wait after removal of the last decoding unit in an access unit from the CPB before the
decoded picture is output from the DPB.

NOTE 7 — A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference" or
"used for long-term reference".

The length of the syntax element pic_dpb_output delay is given in bits by dpb_output delay length minusl + 1. When
sps_max_dec_pic_buffering minusl[minTid] is equal to 0, where minTid is the minimum of the OpTid values of all
operation points the picture timing SEI message applies to, pic_dpb_output_delay shall be equal to 0.

The output time derived from the pic_dpb_output delay of any picture that is output from an output timing conforming
decoder shall precede the output time derived from the pic_dpb_output delay of all pictures in any subsequent CVS in
decoding order.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCntVal.

For pictures that are not output by the "bumping" process because they precede, in decoding order, an IRAP picture
with NoRaslOutputFlag equal to 1 that has no_output_of prior pics_flag equal to 1 or inferred to be equal to 1, the
output times derived from pic_dpb_output_delay shall be increasing with increasing value of PicOrderCntVal relative
to all pictures within the same CVS.

pic_dpb_output_du_delay is used to compute the DPB output time of the picture when SubPicHrdFlag is equal to 1. It
specifies how many sub clock ticks to wait after removal of the last decoding unit in an access unit from the CPB before
the decoded picture is output from the DPB.

The length of the syntax element pic_dpb_output du delay is given in bits by
dpb_output_delay du length minusl + 1.

The output time derived from the pic_dpb_output du delay of any picture that is output from an output timing
conforming decoder shall precede the output time derived from the pic_dpb_output du_delay of all pictures in any
subsequent CVS in decoding order.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCntVal.

For pictures that are not output by the "bumping" process because they precede, in decoding order, an an IRAP picture
with NoRaslOutputFlag equal to 1 that has no output of prior pics flag equal to 1 or inferred to be equal to 1, the
output times derived from pic_dpb output du delay shall be increasing with increasing value of PicOrderCntVal
relative to all pictures within the same CVS.

For any two pictures in the CVS, the difference between the output times of the two pictures when SubPicHrdFlag is
equal to 1 shall be identical to the same difference when SubPicHrdFlag is equal to 0.

num_decoding_units_minus1 plus 1 specifies the number of decoding units in the access unit the picture timing SEI
message is associated with. The value of num_decoding_units minus1 shall be in the range of 0 to PicSizeInCtbsY — 1,
inclusive.

Rec. ITU-T H.265 (04/2013) 247

du_common_cpb_removal_delay_flag equal to 1 specifies that the syntax element
du_common_cpb_removal delay increment minusl is present. du common cpb removal delay flag equal to 0
specifies that the syntax element du_common_cpb_removal delay increment minus] is not present.

du_common_cpb_removal_delay increment_minusl plus 1 specifies the duration, in units of clock sub-ticks (see
clause E.2.2), between the nominal CPB removal times of any two consecutive decoding units in decoding order in the
access unit associated with the picture timing SEI message. This value is also used to calculate an earliest possible time
of arrival of decoding unit data into the CPB for the HSS, as specified in Annex C. The syntax element is a fixed length
code whose length in bits is given by du_cpb_removal delay increment length minusl + 1.

num_nalus_in_du_minusl1[i] plus 1 specifies the number of NAL units in the i-th decoding unit of the access unit the
picture timing SEI message is associated with. The value of num_nalus_in_du_minusl][i] shall be in the range of 0 to
PicSizeInCtbsY — 1, inclusive.

The first decoding unit of the access unit consists of the first num nalus_in_du minusl[0]+ 1 consecutive NAL units
in decoding order in the access unit. The i-th (with i greater than 0) decoding unit of the access unit consists of the
num_nalus in_du minusl[i]+ 1 consecutive NAL units immediately following the last NAL unit in the previous
decoding unit of the access unit, in decoding order. There shall be at least one VCL NAL unit in each decoding unit. All
non-VCL NAL units associated with a VCL NAL unit shall be included in the same decoding unit as the VCL NAL
unit.

du_cpb_removal delay increment minusl[i] plus 1 specifies the duration, in units of clock sub-ticks, between the
nominal CPB removal times of the (i+ 1)-th decoding unit and the i-th decoding unit, in decoding order, in the access
unit associated with the picture timing SEI message. This value is also used to calculate an earliest possible time of
arrival of decoding unit data into the CPB for the HSS, as specified in Annex C. The syntax element is a fixed length
code whose length in bits is given by du_cpb_removal delay increment length minusl + 1.

D.3.4 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message syntax elements specify the coordinates of one or more rectangles relative to the
conformance cropping window specified by the active SPS. Each coordinate is specified in units of one-sixteenth luma
sample spacing relative to the luma sampling grid.

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the one or more pan-scan
rectangles (for example, to identify the one or more rectangles as the area to be shown on a particular display device or
as the area that contains a particular actor in the scene). The value of pan_scan rect id shall be in the range of 0
to 232 — 2, inclusive.

Values of pan_scan_rect_id from 0 to 255 and from 512 to 2°' — 1 may be used as determined by the application.
Values of pan_scan_rect_id from 256 to 511 and from 2*' to 2% — 2 are reserved for future use by ITU-T | ISO/IEC.
Decoders encountering a value of pan_scan_rect_id in the range of 256 to 511, inclusive, or in the range of 2°' to
2% -2, inclusive, shall ignore it.

pan_scan_rect_cancel flag equal to | indicates that the SEI message cancels the persistence of any previous pan-scan
rectangle SEI message in output order. pan scan rect cancel flag equal to O indicates that pan-scan rectangle
information follows.

pan_scan_cnt_minusl specifies the number of pan-scan rectangles that are specified by the SEI message.
pan_scan_cnt_minus] shall be in the range of 0 to 2, inclusive.

pan_scan_cnt minusl equal to O indicates that a single pan-scan rectangle is specified that applies to the decoded
pictures that are within the persistency scope of the current SEI message. When field seq flag is equal to 1,
pan_scan_cnt_minus] shall be equal to 0.

pan_scan_cnt minusl equal to 1 indicates that two pan-scan rectangles are specified that apply to the decoded pictures
that are within the persistency scope of the current SEI message and that are associated with picture timing SEI
messages having pic_struct equal to 3 or 4. The first rectangle applies to the first field of a frame in output order and the
second rectangle applies to the second field of a frame in output order, where the output order between two fields in one
frame is as shown in Table D.2 for pic_struct equal to 3 or 4.

pan_scan_cnt _minusl equal to 2 indicates that three pan-scan rectangles are specified that apply to the decoded pictures
that are within the persistency scope of the current SEI message and that are associated with picture timing SEI
messages having pic_struct equal to 5 or 6. The first rectangle applies to the first field of the frame in output order, the
second rectangle applies to the second field of the frame in output order, and the third rectangle applies to a repetition of
the first field as a third field in output order, where the output order of fields in one frame is as shown in Table D.2 for
pic_struct equal to 5 or 6.

248 Rec. ITU-T H.265 (04/2013)

pan_scan_rect_left offset[i], pan_scan_rect_right_offset[i], pan_scan_rect_top_offset[i], and
pan_scan_rect_bottom_offset[i], specify, as signed integer quantities in units of one-sixteenth sample spacing
relative to the luma sampling grid, the location of the i-th pan-scan rectangle. The values of each of these four syntax
elements shall be in the range of —2°' + 1 to 2*' — 1, inclusive.

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to a luma sampling grid, as the
region with horizontal coordinates from 16 * SubWidthC * conf win_left offset + pan_scan rect left offset[i] to
16 * (CtbSizeY * PicWidthInCtbsY — SubWidthC * conf win_right offset) + pan_scan rect right offset[i]— 1 and
with vertical coordinates from 16 *SubHeightC * conf win_top offset + pan_scan rect top offset[i] to

16 * (CtbSizeY * PicHeightInCtbsY — SubHeightC * conf win_bottom_offset) +
pan_scan rect bottom offset[i]—1, inclusive. The wvalue of 16 * SubWidthC * conf win_ left offset +
pan_scan_rect left offset[1] shall be less than or equal to

16 * (CtbSizeY * PicWidthInCtbsY — SubWidthC * conf win right offset) + pan_scan rect right offset[i]— 1, and
the value of 16 * SubHeightC * conf win top offset + pan_scan rect top offset[i] shall be less than or equal to
16 * (CtbSizeY * PicHeightInCtbsY — SubHeightC * conf win_bottom_offset) +
pan_scan_rect bottom offset[i]— 1.

When the pan-scan rectangular area includes samples outside of the conformance cropping window, the region outside
of the conformance cropping window may be filled with synthesized content (such as black video content or neutral
grey video content) for display.

pan_scan_rect_persistence_flag specifies the persistence of the pan-scan rectangle SEI message.

pan_scan_rect persistence flag equal to O specifies that the pan-scan rectangle information applies to the current
decoded picture only.

pan_scan_rect persistence_flag equal to 1 specifies that the pan-scan rectangle information persists in output order until
any of the following conditions are true:

— A new CVS begins.
— The bitstream ends.

— A picture in an access unit containing a pan-scan rectangle SEI message with the same value of pan_scan_rect_id
is output having PicOrderCntVal greater than PicOrderCnt(CurrPic).

D.3.5 Filler payload SEI message semantics
This SEI message contains a series of payloadSize bytes of value OxFF, which can be discarded.

ff byte shall be a byte having the value OxFF.

D.3.6 User data registered by Rec. ITU-T T.35 SEI message semantics

This SEI message contains user data registered as specified in Rec. ITU-T T.35, the contents of which are not specified
in this Specification.

itu_t t35 country_code shall be a byte having a value specified as a country code by Rec. ITU-T T.35 Annex A.

itu_t_t35_country_code_extension_byte shall be a byte having a value specified as a country code by Rec. ITU-T
T.35 Annex B.

itu_t_t35_payload_byte shall be a byte containing data registered as specified in Rec. ITU-T T.35.

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more
bytes of the itu t t35 payload byte, in the format specified by the Administration that issued the terminal provider
code. Any remaining itu_t t35 payload byte data shall be data having syntax and semantics as specified by the entity
identified by the ITU-T T.35 country code and terminal provider code.

D.3.7 User data unregistered SEI message semantics

This SEI message contains unregistered user data identified by a UUID, the contents of which are not specified in this
Specification.

uuid_iso_iec_11578 shall have a value specified as a UUID according to the procedures of ISO/IEC 11578:1996
Annex A.

user_data_payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID
generator.

Rec. ITU-T H.265 (04/2013) 249

D.3.8 Recovery point SEI message semantics

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the CVS.
When the decoding process is started with the access unit in decoding order associated with the recovery point SEI
message, all decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are
indicated to be correct or approximately correct in content. Decoded pictures produced by random access at or before
the picture associated with the recovery point SEI message need not be correct in content until the indicated recovery
point, and the operation of the decoding process starting at the picture associated with the recovery point SEI message
may contain references to pictures unavailable in the decoded picture buffer.

In addition, by use of the broken_link flag, the recovery point SEI message can indicate to the decoder the location of
some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process
was begun at the location of a previous IRAP access unit in decoding order.

NOTE 1 — The broken_link flag can be used by encoders to indicate the location of a point after which the decoding process for
the decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the
pictures that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed
during the generation of the bitstream).

When random access is performed to start decoding from the access unit associated with the recovery point SEI
message, the decoder operates as if the associated picture was the first picture in the bitstream in decoding order, and
the variables prevPicOrderCntLsb and prevPicOrderCntMsb used in derivation of PicOrderCntVal are both set equal to
0.

NOTE 2 — When HRD information is present in the bitstream, a buffering period SEI message should be associated with the

access unit associated with the recovery point SEI message in order to establish initialization of the HRD buffer model after a
random access.

Any SPS or PPS RBSP that is referred to by a picture associated with a recovery point SEI message or by any picture
following such a picture in decoding order shall be available to the decoding process prior to its activation, regardless of
whether or not the decoding process is started at the beginning of the bitstream or with the access unit, in decoding
order, that is associated with the recovery point SEI message.

recovery_poc_cnt specifies the recovery point of decoded pictures in output order. If there is a picture picA that
follows the current picture (i.e., the picture associated with the current SEI message) in decoding order in the CVS and
that has PicOrderCntVal equal to the PicOrderCntVal of the current picture plus the value of recovery poc cnt, the
picture picA is referred to as the recovery point picture. Otherwise, the first picture in output order that has
PicOrderCntVal greater than the PicOrderCntVal of the current picture plus the value of recovery poc_cnt is referred to
as the recovery point picture. The recovery point picture shall not precede the current picture in decoding order. All
decoded pictures in output order are indicated to be correct or approximately correct in content starting at the output
order position of the recovery point picture. The value of recovery poc cnt shall be in the range of
—MaxPicOrderCntLsb / 2 to MaxPicOrderCntLsb / 2 — 1, inclusive.

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order
derived by starting the decoding process at the access unit associated with the recovery point SEI message will be an
exact match to the pictures that would be produced by starting the decoding process at the location of a previous IRAP
access unit, if any, in the bitstream. The value 0 indicates that the match may not be exact and the value 1 indicates that
the match will be exact. When exact match flag is equal to 1, it is a requirement of bitstream conformance that the
decoded pictures at and subsequent to the specified recovery point in output order derived by starting the decoding
process at the access unit associated with the recovery point SEI message shall be an exact match to the pictures that
would be produced by starting the decoding process at the location of a previous IRAP access unit, if any, in the
bitstream.

NOTE 3 — When performing random access, decoders should infer all references to unavailable pictures as references to pictures
containing only intra coding blocks and having sample values given by Y equal to (1 << (BitDepthy — 1)), Cb and Cr both
equal to (1 << (BitDepthc — 1)) (mid-level grey), regardless of the value of exact match flag.

When exact_match flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding
process and is not specified in this Specification.

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the
recovery point SEI message and is assigned further semantics as follows:

— If broken_link flag is equal to 1, pictures produced by starting the decoding process at the location of a previous
IRAP access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to
the access unit associated with the recovery point SEI message in decoding order should not be displayed until the
specified recovery point in output order.

250 Rec. ITU-T H.265 (04/2013)

— Otherwise (broken link flag is equal to 0), no indication is given regarding any potential presence of visual
artefacts.

When the current picture is a BLA picture, the value of broken_link flag shall be equal to 1.

Regardless of the value of the broken_link flag, pictures subsequent to the specified recovery point in output order are
specified to be correct or approximately correct in content.

D.3.9 Scene information SEI message semantics

A scene and a scene transition are herein defined as a set of consecutive pictures in output order.
NOTE 1 — Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label
pictures with scene identifiers and to indicate scene changes. The message specifies how the source pictures for the labelled
pictures were created. The decoder may use the information to select an appropriate algorithm to conceal transmission errors. For
example, a specific algorithm may be used to conceal transmission errors that occurred in pictures belonging to a gradual scene
transition. Furthermore, the scene information SEI message may be used in a manner determined by the application, such as for
indexing the scenes of a video sequence.

A scene information SEI message labels all pictures, in decoding order, from the coded picture to which the SEI
message is associated (inclusive) to the coded picture to which the next scene information SEI message (when present)
in decoding order is associated (exclusive) or (otherwise) to the last picture in the CVS (inclusive). These pictures are
herein referred to as the target pictures.

scene_info_present_flag equal to 0 indicates that the scene or scene transition to which the target pictures belong is
unspecified. scene_info_present flag equal to 1 indicates that the target pictures belong to the same scene or scene
transition.

prev_scene_id_valid_flag equal to O specifies that the scene id value of the picture preceding the first picture of the
target pictures in output order is considered unspecified in the semantics of the syntax elements of this SEI message.
prev_scene_id_valid flag equal to 1 specifies that the scene id value of the picture preceding the first picture of the
target pictures in output order is specified by the previous scene information SEI message in decoding order. When the
previous scene information SEI message is within the same CVS as the current scene information SEI message,
prev_scene_id_valid_flag shall be equal to 1.
NOTE 2 — When a current scene information SEI message is associated with the first picture, in decoding order, of a CVS,
prev_scene_id valid flag equal to 1 indicates that the scene id values of the current scene information SEI message and the
previous scene information SEI message in decoding order can be used to conclude whether their target pictures belong to the
same scene or to different scenes.
NOTE 3 — When CVS B is concatenated to CVS A and CVS A represents a different scene than the scene CVS B represents, it
should be noticed that the scene id value specified for the last picture of CVS A affects the semantics of the scene information
SEI message associated with the first picture, in decoding order, of CVS B, when the SEI message is present. Hence, as part of
such a concatenation operation, the value of prev_scene id valid flag should be set equal to 0 in the scene information SEI
message associated with the first picture, in decoding order, of CVS B, when the SEI message is present.

scene_id identifies the scene to which the target pictures belong. When the value of scene_transition_type of the target
pictures is less than 4, and the previous picture in output order is marked with a value of scene transition type less
than 4, and the value of scene _id is the same as the value of scene id of the previous picture in output order, this
indicates that the source scene for the target pictures and the source scene for the previous picture (in output order) are
considered by the encoder to have been the same scene. When the value of scene_transition_type of the target pictures
is greater than 3, and the previous picture in output order is marked with a value of scene_transition_type less than 4,
and the value of scene_id is the same as the value of scene_id of the previous picture in output order, this indicates that
one of the source scenes for the target pictures and the source scene for the previous picture (in output order) are
considered by the encoder to have been the same scene. When the value of scene_id is not equal to the value of
scene_id of the previous picture in output order, this indicates that the target pictures and the previous picture (in output
order) are considered by the encoder to have been from different source scenes.

The value of scene_id shall be in the range of 0 to 2** — 2, inclusive.

Values of scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 2°' — 1, inclusive, may be used as
determined by the application. Values of scene_id in the range of 256 to 511, inclusive, and in the range of 2°' to
2% -2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of scene_id in the
range of 256 to 511, inclusive, or in the range of 23! to 232 — 2, inclusive, shall ignore it.
NOTE 4 — When the first picture picA, in decoding order, of the coded video sequence vidSeqA represents a different scene than
the last picture, in output order, of the previous coded video sequence and a scene information SEI message is associated with
PicA, the scene_id value of that scene information SEI message should have a random value within the value ranges constrained
above. Subsequent scene id and second scene id values may be selected for example by incrementing the initial randomly
selected scene_id value. Consequently, when concatenating vidSeqA to a coded video sequence vidSeqB, accidental use of the
same scene_id values in videSeqA and vidSeqB is unlikely.

Rec. ITU-T H.265 (04/2013) 251

scene_transition_type specifies in which type of a scene transition (if any) the target pictures are involved. The valid
values of scene_transition_type are specified in Table D.3.

Table D.3 — scene_transition_type values

Value Description

0 No transition
Fade to black
Fade from black

Unspecified transition from or to constant colour

Dissolve
Wipe

Unspecified mixture of two scenes

()30 IR, [N B SN RLOSTY [O3

When scene_transition type is greater than 3, the target pictures include contents both from the scene labelled by its
scene_id and the next scene, in output order, which is labelled by second scene id (see below). The term "the current
scene" is used to indicate the scene labelled by scene_id. The term "the next scene" is used to indicate the scene labelled
by second_scene_id. It is not required for any following picture, in output order, to be labelled with scene id equal to
second_scene_id of the current SEI message.

Scene transition types are specified as follows:

— "No transition" specifies that the target pictures are not involved in a gradual scene transition.

NOTE 5 — When two consecutive pictures in output order have scene_transition_type equal to 0 and different values of
scene_id, a scene cut occurred between the two pictures.

— "Fade to black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a
fade to black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples
of the scene gradually approach 128.

NOTE 6 — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade
to black", the later one, in output order, is darker than the previous one.

— "Fade from black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a
fade from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma
samples of the scene may gradually diverge from 128.

NOTE 7 — When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade
from black", the later one in output order is lighter than the previous one.

— "Dissolve" indicates that the sample values of each target picture (before encoding) were generated by calculating
a sum of co-located weighted sample values of a picture from the current scene and a picture from the next scene.
The weight of the current scene gradually decreases from full level to zero level, whereas the weight of the next
scene gradually increases from zero level to full level. When two pictures are labelled to belong to the same scene
transition and their scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output
order, is less than the weight of the current scene for the previous one, and the weight of the next scene for the later
one, in output order, is greater than the weight of the next scene for the previous one.

— "Wipe" indicates that some of the sample values of each target picture (before encoding) were generated by
copying co-located sample values of a picture in the current scene and the remaining sample values of each target
picture (before encoding) were generated by copying co-located sample values of a picture in the next scene. When
two pictures are labelled to belong to the same scene transition and their scene_transition type is "Wipe", the
number of samples copied from the next scene to the later picture in output order is greater than the number of
samples copied from the next scene to the previous picture.

second_scene _id identifies the next scene in the gradual scene transition in which the target pictures are involved. The
value of second_scene_id shall not be equal to the value of scene_id. The value of second_scene_id shall not be equal to
the value of scene_id in the previous picture in output order. When the next picture in output order is marked with a
value of scene transition_type less than 4, and the value of second scene_id is the same as the value of scene id of the
next picture in output order, this indicates that the encoder considers one of the source scenes for the target pictures and
the source scene for the next picture (in output order) to have been the same scene. When the value of second scene id
is not equal to the value of scene_id or second _scene_id (when present) of the next picture in output order, this indicates
that the encoder considers the target pictures and the next picture (in output order) to have been from different source
scenes.

252 Rec. ITU-T H.265 (04/2013)

When the value of scene_id of a picture is equal to the value of scene_id of the following picture in output order and the
value of scene_transition_type in both of these pictures is less than 4, this indicates that the encoder considers the two
pictures to have been from the same source scene. When the values of scene id, scene transition type and
second_scene id (when present) of a picture are equal to the values of scene id, scene transition type and
second_scene_id (respectively) of the following picture in output order and the value of scene_transition_type is greater
than 0, this indicates that the encoder considers the two pictures to have been from the same source gradual scene
transition.

The value of second_scene_id shall be in the range of 0 to 2°* — 2, inclusive.

Values of second_scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 2*' — 1, inclusive, may be used
as determined by the application. Values of second_scene id in the range of 256 to 511, inclusive, and in the range of
2’! t02% -2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of
second_scene_id in the range of 256 to 511, inclusive, or in the range of 2°! to 2** — 2, inclusive, shall ignore it.

D.3.10 Picture snapshot SEI message semantics

The picture snapshot SEI message indicates that the current picture is labelled for use as determined by the application
as a still-image snapshot of the video content.

snapshot_id specifies a snapshot identification number. snapshot_id shall be in the range of 0 to 2** — 2, inclusive.

Values of snapshot_id in the range of 0 to 255, inclusive, and in the range of 512 to 2*' — 1, inclusive, may be used as
determined by the application. Values of snapshot_id in the range of 256 to 511, inclusive, and in the range of 2°'
to 2*? — 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of snapshot_id in
the range of 256 to 511, inclusive, or in the range of 2*' to 2*% — 2, inclusive, shall ignore it.

D.3.11 Progressive refinement segment start SEI message semantics

The progressive refinement segment start SEI message specifies the beginning of a set of consecutive coded pictures in
decoding order that consists of the current picture and a sequence of one or more subsequent pictures of refinement of
the quality of the current picture, rather than a representation of a continually moving scene.

The tagged set of consecutive coded pictures continues until one of the following conditions is true:
— A new CVS begins.
— The bitstream ends.

— pic_order cnt delta is greater than 0 and the PicOrderCntVal of the next slice to be decoded is greater than
currPicOrderCntVal + pic_order cnt delta, where currPicOrderCntVal is the value of PicOrderCntVal of the
picture in the access unit containing the SEI message.

— A progressive refinement segment end SEI message with the same progressive refinement id as the one in this
SEI message is decoded.

The decoding order of pictures within the tagged set of consecutive pictures should be the same as their output order.

progressive_refinement id specifies an identification number for the progressive refinement operation.
progressive_refinement_id shall be in the range of 0 to 2** — 2, inclusive.

Values of progressive refinement id in the range of 0 to 255, inclusive, and in the range of 512 to 2*' — 1, inclusive,
may be used as determined by the application. Values of progressive refinement id in the range of 256 to 511,
inclusive, and in the range of 2°' to 2**—2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 2*' to 2% — 2,
inclusive, shall ignore it.

pic_order_cnt_delta specifies the last picture in the tagged set of consecutive coded pictures in decoding order as
follows:

— If pic_order cnt delta is equal to 0, the last picture of the tagged set of consecutive coded pictures in decoding
order is the following picture:

— If the CVS contains one or more pictures that follow the current picture in decoding order and are associated
with a progressive refinement segment end SEI message with the same progressive refinement id, the last
picture of the tagged set of consecutive coded pictures in decoding order is the first of these pictures in
decoding order.

— Otherwise, the last picture of the tagged set of consecutive coded pictures in decoding order is the last picture
of the CVS in decoding order.

— Otherwise, the last picture of the tagged set of consecutive coded pictures in decoding order is the following
picture:

Rec. ITU-T H.265 (04/2013) 253

— If the CVS contains one or more pictures that follow the curent picture in decoding order and are associated
with a progressive refinement segment end SEI message with the same progressive refinement id and
precede any picture in the CVS that has PicOrderCntVal greater than
currPicOrderCntVal + pic_order cnt delta, where currPicOrderCntVal is the PicOrderCntVal of the current
picture, the last picture of the tagged set of consecutive coded pictures in decoding order is the first of these
pictures in decoding order.

— Otherwise, if the CVS contains one or more pictures that follow the curent picture in decoding order and have
PicOrderCntVal greater than currPicOrderCntVal + pic_order_cnt_delta, where currPicOrderCntVal is the
PicOrderCntVal of the current picture, the last picture of the tagged set of consecutive coded pictures in
decoding order is the last picture that precedes the first of these pictures in decoding order,

— Otherwise, the last picture of the tagged set of consecutive coded pictures in decoding order is the last picture
of the CVS in decoding order.

The value of pic_order_cnt delta shall be in the range of 0 to 256, inclusive.

D.3.12 Progressive refinement segment end SEI message semantics

The progressive refinement segment end SEI message specifies the end of a set of consecutive coded pictures that has
been labelled by use of a progressive refinement segment start SEI message as an initial picture followed by a sequence
of one or more pictures of the refinement of the quality of the initial picture, and ending with the current picture.

progressive_refinement id specifies an identification number for the progressive refinement operation.
progressive_refinement_id shall be in the range of 0 to 2** — 2, inclusive.

The progressive refinement segment end SEI message specifies the end of any progressive refinement segment
previously started using a progressive refinement segment start SEI message with the same value of
progressive refinement id.

Values of progressive refinement id in the range of 0 to 255, inclusive, and in the range of 512 to 2*' — 1, inclusive,
may be used as determined by the application. Values of progressive refinement id in the range of 256 to 511,
inclusive, and in the range of 2*' to 2% — 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 2*' to 2% — 2,
inclusive, shall ignore it.

D.3.13 Film grain characteristics SEI message semantics

This SEI message provides the decoder with a parameterized model for film grain synthesis.

NOTE 1 - For example, an encoder may use the film grain characteristics SEI message to characterize film grain that was present
in the original source video material and was removed by pre-processing filtering techniques. Synthesis of simulated film grain
on the decoded images for the display process is optional and does not affect the decoding process specified in this Specification.
When synthesis of simulated film grain on the decoded images for the display process is performed, there is no requirement that
the method by which the synthesis is performed be the same as the parameterized model for the film grain as provided in the film
grain characteristics SEI message.

NOTE 2 — The display process is not specified in this Specification.

NOTE 3 — Society of Motion Picture and Television Engineers RDD 5 specifies a film grain simulator based on the information
provided in the film grain characteristics SEI message.

film_grain_characteristics_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any
previous film grain characteristics SEI message in output order. film grain characteristics cancel flag equal to 0
indicates that film grain modelling information follows.

film_grain_model_id identifies the film grain simulation model as specified in Table D.4. The value of
film grain model id shall be in the range of 0 to 1, inclusive. The values of 2 and 3 for film grain model id are
reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this
Specification. Decoders shall ignore film grain characteristic SEI messages with film grain model id equal to 2 or 3.

Table D.4 — film_grain_model_id values

Value Description
0 Frequency filtering
1 Auto-regression

separate_colour_description_present_flag equal to 1 indicates that a distinct colour space description for the film
grain characteristics specified in the SEI message is present in the film grain characteristics SEI message syntax.

254 Rec. ITU-T H.265 (04/2013)

separate_colour_description_present flag equal to 0 indicates that the colour description for the film grain
characteristics specified in the SEI message is the same as for the CVS as specified in clause E.2.1.
NOTE 4 — When separate_colour_description_present flag is equal to 1, the colour space specified for the film grain
characteristics specified in the SEI message may differ from the colour space specified for the coded video as specified in
clause E.2.1.

film_grain_bit_depth luma_minus8 plus 8§ specifies the bit depth used for the luma component of the film grain
characteristics specified in the SEI message. When film_grain_bit depth luma minus8 is not present in the film grain
characteristics SEI message, the value of film grain bit depth luma minus8 is inferred to be equal to
bit _depth luma minus8.

The value of filmGrainBitDepth[0] is derived as follows:
filmGrainBitDepth[0] = film_grain_bit_depth luma minus8 + 8 (D-3)

film_grain_bit_depth_chroma_minus8 plus 8 specifies the bit depth used for the Cb and Cr components of the film
grain characteristics specified in the SEI message. When film grain bit depth chroma minus8 is not present in the
film grain characteristics SEI message, the value of film_grain_bit depth chroma minus8 is inferred to be equal to
bit_depth chroma_minus8.

The value of filmGrainBitDepth[c | for ¢ = 1 and 2 is derived as follows:
filmGrainBitDepth[¢] = film_grain bit depth chroma minus8 + 8, withc =1, 2 (D-4)

film_grain_full range flag has the same semantics as specified in clause E.2.1 for the video full range flag syntax
element, except as follows:

— film_grain_full range flag specifies the colour space of the film grain characteristics specified in the SEI message,
rather than the colour space used for the CVS.

— When film grain full range flag is not present in the film grain characteristics SEI message, the value of
film_grain_full range flag is inferred to be equal to video_full range flag.

film_grain_colour_primaries has the same semantics as specified in clause E.2.1 for the colour primaries syntax
element, except as follows:

— film grain colour primaries specifies the colour space of the film grain characteristics specified in the SEI
message, rather than the colour space used for the CVS.

— When film_grain_colour primaries is not present in the film grain characteristics SEI message, the value of
film _grain_colour_primaries is inferred to be equal to colour primaries.

film_grain_transfer_characteristics has the same semantics as specified in clause E.2.1 for the
transfer_characteristics syntax element, except as follows:

— film_grain_transfer characteristics specifies the colour space of the film grain characteristics specified in the SEI
message, rather than the colour space used for the CVS.

— When film_grain_transfer characteristics is not present in the film grain characteristics SEI message, the value of
film grain transfer characteristics is inferred to be equal to transfer characteristics.

film_grain_matrix_coeffs has the same semantics as specified in clause E.2.1 for the matrix_coeffs syntax element,
except as follows:

— film_grain_matrix_coeffs specifies the colour space of the film grain characteristics specified in the SEI message,
rather than the colour space used for the CVS.

— When film grain matrix coeffs is not present in the film grain characteristics SEI message, the value of
film_grain_matrix_coeffs is inferred to be equal to matrix_coeffs.

— The values allowed for film_grain_matrix_coeffs are not constrained by the value of chroma_format_idc.

The chroma_format idc of the film grain characteristics specified in the film grain characteristics SEI message is
inferred to be equal to 3 (4:4:4).
NOTE 5 — Because the use of a specific method is not required for performing film grain generation function used by the display
process, a decoder may, if desired, down-convert the model information for chroma in order to simulate film grain for other
chroma formats (4:2:0 or 4:2:2) rather than up-converting the decoded video (using a method not specified in this Specification)
before performing film grain generation.

blending_mode_id identifies the blending mode used to blend the simulated film grain with the decoded images as
specified in Table D.5. blending mode_id shall be in the range of 0 to 1, inclusive. The values of 2 and 3 for
blending_mode id are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to
this version of this Specification. Decoders shall ignore film grain characteristic SEI messages with blending mode_id
equal to 2 or 3.

Rec. ITU-T H.265 (04/2013) 255

Table D.5 — blending_mode_id values

Value Description
0 Additive
1 Multiplicative

Depending on the value of blending mode _id, the blending mode is specified as follows:

— Ifblending_mode _id is equal to 0, the blending mode is additive as specified by:

Lgrain[X, ¥, ¢ 1= Clip3(0, (1 << filmGrainBitDepth[¢]) — I, lsccoseal X, y, ¢]+ G X, ¥, ¢ 1) (D-5)
— Otherwise (blending_mode _id is equal to 1), the blending mode is multiplicative as specified by:
Lgrain[X, y, ¢] = Clip3(0, (1 << filmGrainBitDepth[¢]) — 1, Igecoded] X, ¥, ¢] + (D-6)

Round((Ljecoded] X, ¥, €1 * G[X, y,¢c])+((1 << bitDepth[c])—1)))

where Liecoded[X, ¥, €] represents the sample value at coordinates x, y of the colour component ¢ of the decoded image
Ldecodeds G[X, ¥, ¢] is the simulated film grain value at the same position and colour component, filmGrainBitDepth|[¢]
is the number of bits used for each sample in a fixed-length unsigned binary representation of the array Igin[X, y, ¢],
and bitDepth[¢] is specified by:

BitDepthy, ; ¢c=0

. (D-7)
BitDepth, ; c=1,2

bitDepth[¢ | = {

log2_scale_factor specifies a scale factor used in the film grain characterization equations.

comp_model present_flag[c] equal to 0 indicates that film grain is not modelled on the c-th colour component, where
¢ equal to O refers to the luma component, ¢ equal to 1 refers to the Cb component, and ¢ equal to 2 refers to the Cr
component. comp_model present flag[¢] equal to 1 indicates that syntax elements specifying modelling of film grain
on colour component c are present in the SEI message.

num_intensity_intervals_minusl[c] plus | specifies the number of intensity intervals for which a specific set of
model values has been estimated.
NOTE 6 — The intensity intervals may overlap in order to simulate multi-generational film grain.

num_model_values_minusl[c] plus 1 specifies the number of model values present for each intensity interval in
which the film grain has been modelled. The value of num_model values minusl[c | shall be in the range of 0 to 5,
inclusive.

intensity _interval lower_bound| c][i] specifies the lower bound of the interval i of intensity levels for which the set
of model values applies.

intensity_interval_upper_bound] c][i] specifies the upper bound of the interval i of intensity levels for which the set
of model values applies.

Depending on the value of film_grain _model id, the selection of the sets of model values is specified as follows:

— Iffilm_grain_model_id is equal to 0, the average value of each block b of 8x8 samples in lyecoqed, referred as byy,, is
used to select the sets of model values with index s[j] that apply to all the samples in the block:

for(1=0,j=0;1 <= num_intensity intervals minusl[c]; i++)
if(by >= intensity_interval lower_bound[¢][1]
&& by, <= intensity_interval_upper_bound[¢ J[1]) {

s[j]=1 (D-8)
jH+

H

— Otherwise (film_grain_model id is equal to 1), the sets of model values used to generate the film grain are selected
for each sample value in Ijecogeq as follows:

for(i=0,j=0;1 <= num_intensity_intervals_minusl[¢]; i++)
if(Lgecoded] X, ¥, €] >= intensity_interval lower bound[c J[i] &&
Ldecoded] X, ¥, ¢] <= intensity_interval upper bound[c][i]) { (D-9)
s[jl=i
jH+

256 Rec. ITU-T H.265 (04/2013)

Samples that do not fall into any of the defined intervals are not modified by the grain generation function. Samples that
fall into more than one interval will originate multi-generation grain. Multi-generation grain results from adding the
grain computed independently for each intensity interval.

comp_model _value[c][1][j] represents each one of the model values present for the colour component ¢ and the
intensity interval i. The set of model values has different meaning depending on the value of film_grain_model id.

The value of comp_model value[¢][i][]] is constrained as follows, and may be additionally constrained as specified
elsewhere in this clause:

— If film grain model id is equal to 0, comp model value[c][i][j] shall be in the range of 0 to
2ﬁlmGrainBitDepth[c] _ 1’ inclusive.

— Otherwise (film_grain_model id is equal to 1), comp_model value[c][i][j] shall be in the range of
_2(filmGrainBitDepth[¢ | — 1) to 2(filmGrainBitDepth[¢] — 1) __ 1’ inclusive.

Depending on the value of film_grain_model id, the synthesis of the film grain is modelled as follows:

— If film_grain _model id is equal to 0, a frequency filtering model enables simulating the original film grain for
¢=0..2, x =0..PicWidthInSamples; , and y = 0..PicHeightInSamples; as specified by:

G[x,y,c]=(comp model value[c][s][0]*Q[c][X,y]+ comp model value[c][s][5]%*
G[x,y,c—1]) >> log2 scale factor (D-10)

where Q[c] is a two-dimensional random process generated by filtering 16x16 blocks gaussRv with random-value

elements gaussRv;; generated with a normalized Gaussian distribution (independent and identically distributed

Gaussian random variable samples with zero mean and unity variance) and where the value of an element

G[x,y, ¢ — 1] used in the right-hand side of the equation is inferred to be equal to 0 when ¢ — 1 is less than 0.
NOTE 7 — A normalized Gaussian random value can be generated from two independent, uniformly distributed random
values over the interval from 0 to 1 (and not equal to 0), denoted as uRv, and uRv,, using the Box-Muller transformation
specified by:

gaussRv;; = /=2*Ln(uRv,) *Cos(2*n*uRv,) (D-11)

where Ln(x) is the natural logarithm of x (the base-e logarithm, where e is natural logarithm base constant
2.718 281 828...), Cos(x) is the trigonometric cosine function operating on an argument X in units of radians, and 7 is
Archimedes' constant 3.141 592 653 589 793 ...

The band-pass filtering of blocks gaussRv may be performed in the discrete cosine transform (DCT) domain as
follows:

for(y=0;y <16; y++)
for(x =0; x < 16; x++)
if((x <comp_model value[c][s][3] && y <comp_model value[c][s]
x > comp_model value[c][s][1] || y>comp _model value[c][s
gaussRv[x,y =0
filteredRv = IDCT16x16(gaussRv)

where IDCT16x16(z) refers to a unitary inverse discrete cosine transformation (IDCT) operating on a 16x16
matrix argument z as specified by:

IDCT16x16(z)=r*z*r" (D-13)
where the superscript T indicates a matrix transposition and r is the 16x16 matrix with elements r;; specified by:

L _(i==0)?1 N2) Cos(i*(z*j+l)*7zj
Y 4 32

41) 1 (D-12)
[2]

[4]
121

(D-14)

where Cos(x) is the trigonometric cosine function operating on an argument X in units of radians and 7 is
Archimedes' constant 3.141 592 653 589 793 ...
QJ ¢] is formed by the frequency-filtered blocks filteredRv.

NOTE 8 — Coded model values are based on blocks of 16x16, but a decoder implementation may use other block sizes.
For example, decoders implementing the IDCT on 8x8 blocks, should down-convert by a factor of two the set of coded
model values comp _model value[¢][s][i] fori equal to 1..4.

NOTE 9 — To reduce the degree of visible blocks that can result from mosaicing the frequency-filtered blocks filteredRv,
decoders may apply a low-pass filter to the boundaries between frequency-filtered blocks.

Rec. ITU-T H.265 (04/2013) 257

— Otherwise (film_grain_model id is equal to 1), an auto-regression model enables simulating the original film grain
for ¢ =0..2, x = 0..PicWidthInSamples; , and y = 0..PicHeightInSamples; as specified by:

G[x,y,c]=(comp model value[c][s][0]*n[x,y,c]+
comp_model value[c][s][1]1*(G[x—1,y,c]+((comp model value[c][s][4]*G[x,y—1,¢c])
>>
log2 scale factor))+
comp model value[c][s][3]* (((comp model value[c][s][4]*G[x—1,y—1,¢c]) >>
log2 scale factor)+G[x+1,y—1,c])+
comp model value[c][s][5]*(G[x—2,y,c]+
((comp_model value[c][s][4]* comp model value[c|[s][4]*G[x,y—2,c]) >>
(2 *log2 scale factor)))+
comp_model value[c][s][2]*G[x,y,c—1]) >> log2 scale factor (D-15)
where n[X, y, ¢] is a random value with normalized Gaussian distribution (independent and identically distributed
Gaussian random variable samples with zero mean and unity variance for each value of X, y, and c¢) and where the
value of an element G[X, y, ¢] used in the right-hand side of the equation is inferred to be equal to 0 when any of
the following conditions are true:

— xislessthan 0,
— yisless than 0,
— x is greater than or equal to PicWidthInSamples,

— cisless than 0.

comp _model value[¢]J[1][0] provides the first model value for the model as specified by film grain_model id.
comp _model value[¢]J[1][0] corresponds to the standard deviation of the Gaussian noise term in the generation
functions specified in Equations D-10 through D-15.

comp _model value[¢]J[i][1] provides the second model value for the model as specified by film grain_model id.
When film grain model id is equal to 0, comp model value[c][1][1] shall be greater than or equal to 0 and less
than 16.

When not present in the film grain characteristics SEI message, comp _model value[¢][1][1] is inferred as follows:
— Iffilm grain model id is equal to 0, comp model value[c][1][1] is inferred to be equal to 8.

— Otherwise (film_grain_model id is equal to 1), comp _model value[¢ J[1][1] is inferred to be equal to 0.

comp _model value[¢][1][1]is interpreted as follows:

— Iffilm grain model id is equal to 0, comp model value[¢ J[i][|] indicates the horizontal high cut frequency to
be used to filter the DCT of a block of 16x16 random values.

— Otherwise (film_grain_model id is equal to 1), comp model value[c][i][1] indicates the first order spatial
correlation for neighbouring samples (x — 1,y)and (x,y —1).

comp_model value[¢]J[i][2] provides the third model value for the model as specified by film_ grain model id.
When film_grain_model id is equal to 0, comp _model value[c][i][2] shall be greater than or equal to 0 and less
than 16.

When not present in the film grain characteristics SEI message, comp_model value[¢][i][2] is inferred as follows:

— If film grain model id is equal to 0, comp model value[c][i][2] 1is inferred to be equal to
comp _model value[c][i1][1]

— Otherwise (film_grain_model _id is equal to 1), comp _model value[¢][1][2] is inferred to be equal to 0.

comp_model value[¢][i][2] is interpreted as follows:

— Iffilm_grain_model id is equal to 0, comp_model value[¢][i][2] indicates the vertical high cut frequency to be
used to filter the DCT of a block of 16x16 random values.

— Otherwise (film_grain_model id is equal to 1), comp model value[¢ J[1][2] indicates the colour correlation
between consecutive colour components.

comp_model value[¢][i][3] provides the fourth model value for the model as specified by film grain model id.
When film_grain_model id is equal to 0, comp_model value[¢ J[1][3] shall be greater than or equal to 0 and less
than or equal to comp _model value[cJ[1][1].

When not present in the film grain characteristics SEI message, comp model value[¢][i][3] is inferred to be equal
to 0.

258 Rec. ITU-T H.265 (04/2013)

comp_model value[¢][i][3] is interpreted as follows:

— If film_grain_model id is equal to 0, comp_model value[¢][i][3] indicates the horizontal low cut frequency to
be used to filter the DCT of a block of 16x16 random values.

— Otherwise (film_grain_model id is equal to 1), comp model value[¢][i][3] indicates the first order spatial
correlation for neighbouring samples (x — 1, y—1)and (x+ 1,y —1).

comp_model value[¢ J[i][4] provides the fifth model value for the model as specified by film grain model id.
When film_grain_model id is equal to 0, comp_model value[¢][1][4] shall be greater than or equal to 0 and less
than or equal to comp_model value[cJ[1][2].

When not present in the film grain characteristics SEI message, comp model value[¢][i][4] is inferred to be equal
to film grain_model id.

comp_model value[¢][i][4] is interpreted as follows:

— If film_grain_model id is equal to 0, comp _model value[¢][i][4] indicates the vertical low cut frequency to be
used to filter the DCT of a block of 16x16 random values.

— Otherwise (film_grain_model id is equal to 1), comp model value[c][i][4] indicates the aspect ratio of the
modelled grain.

comp _model value[¢][1][5] provides the sixth model value for the model as specified by film grain_model id.

When not present in the film grain characteristics SEI message, comp model value[¢ J[i][5] is inferred to be equal
to 0.

comp_model value[¢ J[i][5] is interpreted as follows:

— If film_grain_model id is equal to 0, comp model value[¢ J[i][5] indicates the colour correlation between
consecutive colour components.

— Otherwise (film_grain_model id is equal to 1), comp _model value[¢][i][5] indicates the second order spatial
correlation for neighbouring samples (x,y —2)and (x —2,y).

film_grain_characteristics_persistence_flag specifies the persistence of the film grain characteristics SEI message.

film_grain_characteristics_persistence flag equal to 0 specifies that the film grain characteristics SEI message applies
to the current decoded picture only.

film_grain_characteristics_persistence flag equal to 1 specifies that the film grain characteristics SEI message persists
in output order until any of the following conditions are true:

— A new CVS begins.

— The bitstream ends.

— A picture in an access unit containing a film grain characteristics SEI message is output having PicOrderCnt()
greater than PicOrderCnt(CurrPic).

D.3.14 Post-filter hint SEI message semantics

This SEI message provides the coefficients of a post-filter or correlation information for the design of a post-filter for
potential use in post-processing of the current picture after it is decoded and output to obtain improved displayed
quality.

filter_hint_size y specifies the vertical size of the filter coefficient or correlation array. The value of filter hint size y
shall be in the range of 1 to 15, inclusive.

filter_hint_size x specifies the horizontal size of the filter coefficient or correlation array. The value of
filter hint size x shall be in the range of 1 to 15, inclusive.

filter_hint_type identifies the type of the transmitted filter hints as specified in Table D.6. The value of filter hint type
shall be in the range of 0 to 2, inclusive. The value of filter hint type equal to 3 is reserved for future use by
ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders shall
ignore post-filter hint SEI messages having filter hint type equal to 3.

Rec. ITU-T H.265 (04/2013) 259

Table D.6 — filter_hint_type values

Value Description
0 Coefficients of a 2D-FIR filter
1 Coefficients of two 1D-FIR filters
2 Cross-correlation matrix

filter _hint_value[cldx][cy][cx] specifies a filter coefficient or an element of a cross-correlation matrix between the
original and the decoded signal with 16-bit precision. The value of filter hint value[cldx][cy][cx] shall be in the
range of —2*' + 1 to 2*' — 1, inclusive. cIdx specifies the related colour component, cy represents a counter in vertical
direction, and cx represents a counter in horizontal direction. Depending on the value of filter hint type, the following
applies:

— If filter hint type is equal to 0, the coefficients of a 2-dimensional FIR filter with the size of
filter_hint size y * filter _hint size x are transmitted.

— Otherwise, if filter_hint_type is equal to 1, the filter coefficients of two 1-dimensional FIR filters are transmitted. In
this case, filter hint size y shall be equal to 2. The index cy equal to O specifies the filter coefficients of the
horizontal filter and cy equal to 1 specifies the filter coefficients of the vertical filter. In the filtering process, the
horizontal filter is applied first and the result is filtered by the vertical filter.

— Otherwise (filter hint type is equal to 2), the transmitted hints specify a cross-correlation matrix between the
original signal s and the decoded signal s'.

NOTE 1 — The normalized cross-correlation matrix for a related colour component identified by cldx with the size of
filter_hint size y * filter hint size x is defined as follows:

h-1 w-1
Z z s(m, n) *s’(m + cy — OffsetY, n + cx — OffsetX)

m=0n=0

1
(2 8+bitDepth __ 1 2 g h*w

(D-16)

filter_hint_value(cldx, cy, cx) =

where s denotes array of samples of the colour component cldx of the original picture, s’ denotes corresponding array of
the decoded picture, h denotes the vertical height of the related colour component, w denotes the horizontal width of the
related colour component, bitDepth denotes the bit depth of the colour component, OffsetY is equal to
(filter_hint size y >> 1), OffsetX is equal to (filter hint size x >> 1), 0 <= cy <filter_hint size y and
0 <= cx <filter hint_size x.

NOTE 2 — A decoder can derive a Wiener post-filter from the cross-correlation matrix of original and decoded signal and
the auto-correlation matrix of the decoded signal.

D.3.15 Tone mapping information SEI message semantics

This SEI message provides information to enable remapping of the colour samples of the output decoded pictures for
customization to particular display environments. The remapping process maps coded sample values in the RGB colour
space (specified in Annex E) to target sample values. The mappings are expressed either in the luma or RGB colour
space domain, and should be applied to the luma component or to each RGB component produced by colour space
conversion of the decoded image accordingly.

tone_map_id contains an identifying number that may be used to identify the purpose of the tone mapping model. The
value of tone_map_id shall be in the range of 0 to 2** — 2, inclusive.

Values of tone_map_id from 0 to 255 and from 512 to 2*' — 1 may be used as determined by the application. Values of
tone_map_id from 256 to 511, inclusive, and from 2°' to 2% —2, inclusive are reserved for future use by ITU-
T | ISO/IEC. Decoders shall ignore all tone mapping information SEI messages containing a value of tone map _id in
the range of 256 to 511, inclusive, or in the range of 23! to 2%2 -2, inclusive, and bitstreams shall not contain such
values.

NOTE 1 — The tone_map_id can be used to support tone mapping operations that are suitable for different display scenarios. For
example, different values of tone_map_id may correspond to different display bit depths.

tone_map_cancel_flag equal to 1 indicates that the tone mapping information SEI message cancels the persistence of
any previous tone mapping information SEI message in output order. tone map cancel flag equal to 0 indicates that
tone mapping information follows.

tone_map_persistence_flag specifies the persistence of the tone mapping information SEI message.

260 Rec. ITU-T H.265 (04/2013)

tone_map_persistence flag equal to 0 specifies that the tone mapping information applies to the current decoded picture
only.

tone_map_persistence flag equal to 1 specifies that the tone mapping information persists in output order until any of
the following conditions are true:

— A new CVS begins.

— A picture in an access unit containing a tone mapping information SEI message with the same value of
tone_map_id is output having PicOrderCntVal greater than PicOrderCnt(CurrPic).

coded_data_bit_depth specifies the BitDepthy for interpretation of the luma component of the associated pictures for
purposes of interpretation of the tone mapping information SEI message. When tone mapping information SEI
messages are present that have coded data bit depth that is not equal to BitDepthy, these refer to the hypothetical
result of a transcoding operation performed to convert the coded video to the BitDepthy corresponding to the value of
coded data bit depth.

The value of coded data bit_depth shall be in the range of 8 to 14, inclusive. Values of coded data bit depth from 0
to 7 and from 15 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all tone mapping SEI
messages that contain a coded data bit depth in the range of 0 to 7, inclusive, or in the range of 15 to 255, inclusive,
and bitstreams shall not contain such values.

target_bit_depth specifies the bit depth of the output of the dynamic range mapping function (or tone mapping
function) described by the tone mapping information SEI message. The tone mapping function specified with a
particular target bit depth is suggested to be reasonable for all display bit depths that are less than or equal to the
target bit depth.

The value of target bit depth shall be in the range of 1 to 16, inclusive. Values of target bit depth equal to 0 and in the
range of 17 to 255, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all tone mapping
SEI messages that contain a value of target bit depth equal to 0 or in the range of 17 to 255, inclusive, and bitstreams
shall not contain such values.

tone_map_model _id specifies the model utilized for mapping the coded data into the target bit depth range. Values
greater than 4 are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this
version of this Specification. Decoders shall ignore all tone mapping SEI messages that contain a value of
tone_map model id greater than 4, and bitstreams shall not contain such values.
NOTE 2 — A tone_map_model id of 0 corresponds to a linear mapping with clipping; a tone_map _model id of 1 corresponds to
a sigmoidal mapping; a tone_map_model_id of 2 corresponds to a user-defined table mapping, and a tone_map_model id of 3
corresponds to a piece-wise linear mapping, tone_map_model_id of 4 corresponds to luminance dynamic range information.

min_value specifies the RGB sample value that maps to the minimum value in the bit depth indicated by
target bit depth. It is used in combination with the max_value parameter. All sample values in the decoded picture that
are less than or equal to min_value, after conversion to RGB as necessary, are mapped to this minimum value in the
target bit depth representation.

max_value specifies the RGB sample value that maps to the maximum value in the bit depth indicated by
target bit depth. It is used in combination with the min_value parameter. All sample values in the decoded picture that
are greater than or equal to max_value, after conversion to RGB as necessary, are mapped to this maximum value in the
target bit depth representation.

When present, max_value shall be greater than or equal to min_value.

sigmoid_midpoint specifies the RGB sample value of the coded data that is mapped to the centre point of the
target bit depth representation. It is used in combination with the sigmoid_width parameter.

sigmoid_width specifies the distance between two coded data values that approximately correspond to the 5% and 95%
values of the target bit depth representation, respectively. It is used in combination with the sigmoid midpoint
parameter and is interpreted according to the following function:

Htarget_bit_depth _ (D-17)
—6*(i — sigmoid_midpoi nt)j

f(i)=Round

1+
eXp(sigmoid_width

where f(i) denotes the function that maps an RGB sample value i from the coded data to a resulting RGB sample value
in the target bit_depth representation.

start_of coded_interval[i] specifies the beginning point of an interval in the coded data such that all RGB sample
values that are greater than or equal to start of coded interval[i] and less than start of coded interval[i+ 1] are

Rec. ITU-T H.265 (04/2013) 261

mapped to i in the target bit depth representation. The value of start of coded_interval[2 €24 | js equal to

peoded daw.bit deph - The number of bits used for the representation of the start of coded interval is
((coded data bit depth+7) >> 3) << 3,

num_pivots specifies the number of pivot points in the piece-wise linear mapping function without counting the two
default end pOlntS, (0’ 0) and (zcoded_data_bit_depth _ 1’ 2target_bit_depth _ 1)

coded_pivot_value[i] specifies the value in the coded data bit depth corresponding to the i-th pivot point. The
number of bits used for the representation of the coded_pivot value is ((coded data bit depth+7)>>3) << 3.

target_pivot_value[i | specifies the value in the reference target bit depth corresponding to the i-th pivot point. The
number of bits used for the representation of the target pivot value is ((target bit depth+7) >> 3) << 3.

camera_iso_speed_idc indicates the camera ISO speed for daylight illumination as specified in ISO 12232, interpreted
as specified in Table D.7. When camera iso_speed idc indicates EXTENDED ISO, the ISO speed is indicated by
camera_iso_speed value.

camera_iso_speed_value indicates the camera ISO speed for daylight illumination as specified in ISO 12232 when
camera_iso_speed idc indicates EXTENDED ISO. The value of camera iso_speed value shall not be equal to 0.

exposure_index_idc indicates the exposure index setting of the camera as specified in ISO 12232, interpreted as
specified in Table D.7. When exposure index idc indicates EXTENDED ISO, the exposure index is indicated by
exposure_index_value.

The values of camera iso_speed idc and exposure index idc in the range of 31 to 254, inclusive, are reserved for
future use by ITU-T | ISO/IEC, and shall not be present in bitstreams conforming to this version of this Specification.
Decoders conforming to this version of this Specification shall ignore tone mapping SEI messages that contain these
values.

exposure_index_value indicates the exposure index setting of the camera as specified in ISO 12232 when
exposure_index_idc indicates EXTENDED ISO. The value of exposure index_value shall not be equal to 0.

262 Rec. ITU-T H.265 (04/2013)

Table D.7 — Interpretation of camera_iso_speed_idc and exposure_index_idc

camera_iso_speed_idc or Indicated value
exposure_index idc

0 Unspecified
1 10

2 12

3 16

4 20

5 25

6 32

7 40

8 50

9 64

10 80

11 100

12 125

13 160

14 200

15 250

16 320

17 400

18 500

19 640

20 800

21 1000
22 1250
23 1600
24 2000
25 2500
26 3200
27 4000
28 5000
29 6400
30 8000

31..254 Reserved

255 EXTENDED ISO

exposure_compensation_value_sign_flag, when applicable as specified below, specifies the sign of the variable
ExposureCompensationValue that indicates the exposure compensation value setting used for the process of image
production.

exposure_compensation_value_numerator, when applicable as specified below, specifies the numerator of the
variable ExposureCompensationValue that indicates the exposure compensation value setting used for the process of
image production.

exposure_compensation_value_denom_idc, when not equal to 0, specifies the denominator of the variable
ExposureCompensationValue that indicates the exposure compensation value setting used for the process of image
production.

Rec. ITU-T H.265 (04/2013) 263

When exposure compensation value denom idc is present and not equal to 0, the variable
ExposureCompensationValue is derived from exposure_compensation_value sign_flag,
exposure_compensation_value numerator and exposure_compensation_value denom_idc.
exposure_compensation_value sign flag equal to O indicates that the ExposureCompensationValue is positive.
exposure_compensation_value sign flag equal to 1 indicates that the ExposureCompensationValue is negative. When
ExposureCompensationValue is positive, the image is indicated to have been further sensitized through the process of
production, relative to the recommended exposure index of the camera as specified in ISO 12232. When
ExposureCompensationValue is negative, the image is indicated to have been further desensitized through the process
of production, relative to the recommended exposure index of the camera as specified in ISO 12232.

When exposure _compensation value denom idc is present and not equal to 0, the variable
ExposureCompensationValue is derived as follows:

ExposureCompensationValue = (1 —2 * exposure _compensation_value sign flag) *
exposure_compensation_value numerator +
exposure_compensation_value denom_idc (D-18)

The value of ExposureCompensationValue is interpreted in units of exposure steps such that an increase of 1 in
ExposureCompensationValue corresponds to a doubling of exposure in units of lux-seconds. For example, the exposure
compensation value equal to +1+2 at the production stage may be indicated by setting
exposure_compensation_value sign flag to 0, exposure compensation value numerator to 1, and
exposure_compensation_value denom_idc to 2.

When exposure compensation_value denom_idc is present and equal to 0, the exposure compensation value is
indicated as unknown or unspecified.

ref _screen_luminance white indicates the reference screen brightness setting for the nominal white level used for
image production process in units of candela per square metre.

extended_range white level indicates the luminance dynamic range for extended dynamic-range display of the
associated pictures, after conversion to the linear light domain for display, expressed as an integer percentage relative to
the nominal white level. The value of extended range white level should be greater than or equal to 100.

nominal_black level code value indicates the luma sample value of the associated decoded pictures to which the
nominal black level is assigned. For example, when coded data bit depth is equal to 8, video_full range flag is equal
to 0, and matrix_coeffs is equal to 1, nominal black level luma_code value should be equal to 16.

nominal_white level code value indicates the luma sample value of the associated decoded pictures to which the
nominal white level is assigned. For example, when coded_data bit depth is equal to 8, video_full range flag is equal
to 0, and matrix_coeffs is equal to 1, nominal white level luma code value should be equal to 235. When present, the
value of nominal white level luma code value shall be greater than nominal black level luma code value.

extended_white_level code_value indicates the luma sample value of the associated decoded pictures to which the
white level associated with an extended dynamic range is assigned. When present, the value of
extended white level luma_code value shall be greater than or equal to nominal white level luma code value.

D.3.16 Frame packing arrangement SEI message semantics

This SEI message informs the decoder that the output cropped decoded picture contains samples of multiple distinct
spatially packed constituent frames that are packed into one frame using an indicated frame packing arrangement
scheme. This information can be used by the decoder to appropriately rearrange the samples and process the samples of
the constituent frames appropriately for display or other purposes (which are outside the scope of this Specification).

This SEI message may be associated with pictures that are either frames (when field seq flag is equal to 0) or fields
(when field seq flag is equal to 1). The frame packing arrangement of the samples is specified in terms of the sampling
structure of a frame in order to define a frame packing arrangement structure that is invariant with respect to whether a
picture is a single field of such a packed frame or is a complete packed frame.

When general non_packed constraint flag is equal to 1 for a CVS, there shall be no frame packing arrangement SEI
messages in the CVS.

frame_packing_arrangement id contains an identifying number that may be used to identify the usage of the frame
packing arrangement SEI message. The value of frame packing_arrangement_id shall be in the range of 0 to 2*% -2,
inclusive.

Values of frame packing_arrangement_id from 0 to 255 and from 512 to 2*' — 1 may be used as determined by the
application. Values of frame_packing_arrangement id from 256 to 511 and from 2°' to 2°% — 2 are reserved for future
use by ITU-T | ISO/IEC. Decoders shall ignore all frame packing arrangement SEI messages containing a value of

264 Rec. ITU-T H.265 (04/2013)

frame_packing_arrangement id in the range of 256 to 511, inclusive, or in the range of 2*' to 2* — 2, inclusive, and
bitstreams shall not contain such values.

frame_packing_arrangement cancel flag equal to 1 indicates that the frame packing arrangement SEI message
cancels the persistence of any previous frame packing arrangement SEI message in output order.
frame packing_arrangement cancel flag equal to 0 indicates that frame packing arrangement information follows.

frame_packing_arrangement_type indicates the type of packing arrangement of the frames as specified in Table D.8.

Table D.8 — Definition of frame packing_arrangement_type

Value Interpretation

3 Each component plane of the decoded frames contains a side-by-side packing arrangement of
corresponding planes of two constituent frames as illustrated in Figure D.4, Figure D.5, and Figure D.8.

4 Each component plane of the decoded frames contains a top-bottom packing arrangement of
corresponding planes of two constituent frames as illustrated in Figure D.6 and Figure D.7.

5 The component planes of the decoded frames in output order form a temporal interleaving of alternating
first and second constituent frames as illustrated in Figure D.9.

NOTE 1 - Figure D.4 to Figure D.8 provide typical examples of rearrangement and upconversion processing for various packing
arrangement schemes. Actual characteristics of the constituent frames are signalled in detail by the subsequent syntax elements of
the frame packing arrangement SEI message. In Figure D.4 to Figure D.8, an upconversion processing is performed on each
constituent frame to produce frames having the same resolution as that of the decoded frame. An example of the upsampling
method to be applied to a quincunx sampled frame as shown in Figure D.§ is to fill in missing positions with an average of the
available spatially neighbouring samples (the average of the values of the available samples above, below, to the left and to the
right of each sample to be generated). The actual upconversion process to be performed, if any, is outside the scope of this
Specification.

NOTE 2 — When the output time of the samples of constituent frame 0 differs from the output time of the samples of constituent
frame 1 (i.e., when field views flag is equal to 1 or frame packing arrangement type is equal to 5) and the display system in
use presents two views simultaneously, the display time for constituent frame 0 should be delayed to coincide with the display
time for constituent frame 1. (The display process is not specified in this Specification.)

NOTE 3 — When field views flag is equal to 1 or frame packing arrangement type is equal to 5, the value 0 for
fixed pic_rate within _cvs_flag is not expected to be prevalent in industry use of this SEI message.

NOTE 4 — frame packing_arrangement type equal to 5 describes a temporal interleaving process of different views.

All other values of frame packing arrangement type are reserved for future use by ITU-T | ISO/IEC. It is a
requirement of bitstream conformance that bitstreams conforming to this version of this Specification shall not contain
such other values of frame packing arrangement type. Decoders shall ignore frame packing arrangement SEI
messages that contain reserved values of frame packing arrangement type.

quincunx_sampling_flag equal to 1 indicates that each colour component plane of each constituent frame is quincunx
sampled as illustrated in Figure D.8, and quincunx_sampling flag equal to 0 indicates that the colour component planes
of each constituent frame are not quincunx sampled.

When frame packing arrangement type is equal to 5, it is a requirement of bitstream conformance that
quincunx_sampling_flag shall be equal to 0.

NOTE 5 — For any chroma format (4:2:0, 4:2:2, or 4:4:4), the luma plane and each chroma plane is quincunx sampled as
illustrated in Figure D.8 when quincunx_sampling_flag is equal to 1.

content_interpretation_type indicates the intended interpretation of the constituent frames as specified in Table D.9.
Values of content interpretation type that do not appear in Table D.9 are reserved for future specification by ITU-T |
ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders shall ignore
frame packing arrangement SEI messages that contain reserved values of content_interpretation_type.

For each specified frame packing arrangement scheme, there are two constituent frames that are referred to as frame 0
and frame 1.

Rec. ITU-T H.265 (04/2013) 265

Table D.9 — Definition of content_interpretation_type

Value Interpretation
0 Unspecified relationship between the frame packed constituent frames
1 Indicates that the two constituent frames form the left and right views of a stereo view scene, with

frame 0 being associated with the left view and frame 1 being associated with the right view

2 Indicates that the two constituent frames form the right and left views of a stereo view scene, with
frame 0 being associated with the right view and frame 1 being associated with the left view

NOTE 6 — The value 2 for content interpretation type is not expected to be prevalent in industry use of this SEI message.
However, the value was specified herein for purposes of completeness.

spatial_flipping flag equal to 1, when frame packing arrangement type is equal to 3 or 4, indicates that one of the
two constituent frames is spatially flipped relative to its intended orientation for display or other such purposes.

When frame packing_arrangement type is equal to 3 or 4 and spatial flipping_flag is equal to 1, the type of spatial
flipping that is indicated is as follows:

— Ifframe packing arrangement type is equal to 3, the indicated spatial flipping is horizontal flipping.
— Otherwise (frame packing arrangement type is equal to 4), the indicated spatial flipping is vertical flipping.

When frame packing arrangement type is not equal to 3 or 4, it is a requirement of bitstream conformance that
spatial_flipping_flag shall be equal to 0. When frame packing_arrangement_type is not equal to 3 or 4, the value 1 for
spatial_flipping_flag is reserved for future use by ITU-T | ISO/IEC. When frame packing arrangement type is not
equal to 3 or 4, decoders shall ignore the value 1 for spatial flipping flag.

frame0_flipped_flag, when spatial flipping flag is equal to 1, indicates which one of the two constituent frames is
flipped.

When spatial flipping_flag is equal to 1, frameO flipped flag equal to 0 indicates that frame O is not spatially flipped
and frame 1 is spatially flipped, and frame0O flipped flag equal to 1 indicates that frame O is spatially flipped and
frame 1 is not spatially flipped.

When spatial_flipping_flag is equal to 0, it is a requirement of bitstream conformance that frame0 flipped flag shall be
equal to 0. When spatial flipping_flag is equal to 0, the value 1 for spatial flipping flag is reserved for future use by
ITU-T | ISO/IEC. When spatial _flipping_flag is equal to 0, decoders shall ignore the value of frame0 flipped flag.

field_views_flag equal to 1 indicates that all pictures in the current CVS are coded as fields, all fields of a particular
parity are considered a first constituent frame, and all fields of the opposite parity are considered a second constituent
frame. It is a requirement of bitstream conformance that the field views flag shall be equal to 0, the value 1 for
field views_flag is reserved for future use by ITU-T | ISO/IEC, and decoders shall ignore the value of field views_flag.

current_frame is frame0 flag equal to 1, when frame packing arrangement is equal to 5, indicates that the current
decoded frame is constituent frame 0 and the next decoded frame in output order is constituent frame 1, and the display
time of the constituent frame 0 should be delayed to coincide with the display time of constituent frame 1.
current_frame is frame0 flag equal to 0, when frame packing arrangement is equal to 5, indicates that the current
decoded frame is constituent frame 1 and the previous decoded frame in output order is constituent frame 0, and the
display time of the constituent frame 1 should not be delayed for purposes of stereo-view pairing.

When frame packing arrangement_type is not equal to 5, the constituent frame associated with the upper-left sample of
the decoded frame is considered to be constituent frame 0 and the other constituent frame is considered to be constituent
frame 1. When frame packing arrangement type is not equal to 5, it is a requirement of bitstream conformance that
current_frame is_frame(_flag shall be equal to 0. When frame_packing_arrangement_type is not equal to 5, the value 1
for current frame is frameO flag is reserved for future wuwse by ITU-T | [ISO/IEC. When
frame packing arrangement type is not equal to 5, decoders shall ignore the value of current frame is frameQ flag.

frame0_self contained_flag equal to 1 indicates that no inter prediction operations within the decoding process for the
samples of constituent frame 0 of the CVS refer to samples of any constituent frame 1. frameO self contained flag
equal to O indicates that some inter prediction operations within the decoding process for the samples of constituent
frame 0 of the CVS may or may not refer to samples of some constituent frame 1. Within a CVS, the value of
frame0_self contained flag in all frame packing arrangement SEI messages shall be the same.

framel_self contained_flag equal to 1 indicates that no inter prediction operations within the decoding process for the
samples of constituent frame 1 of the CVS refer to samples of any constituent frame 0. framel self contained flag

266 Rec. ITU-T H.265 (04/2013)

equal to O indicates that some inter prediction operations within the decoding process for the samples of constituent
frame 1 of the CVS may or may not refer to samples of some constituent frame 0. Within a CVS, the value of
framel self contained flag in all frame packing arrangement SEI messages shall be the same.

When quincunx_sampling_flag is equal to 0 and frame packing arrangement type is not equal to 5, two (X,y)
coordinate pairs are specified to determine the indicated luma sampling grid alignment for constituent frame 0 and
constituent frame 1, relative to the upper left corner of the rectangular area represented by the samples of the
corresponding constituent frame.

NOTE 7 — The location of chroma samples relative to luma samples can be indicated by the chroma_sample loc type top field
and chroma_sample loc type bottom_field syntax elements in the VUI parameters.

frame0_grid_position_x (when present) specifies the x component of the (x,y) coordinate pair for constituent
frame 0.

frame0_grid_position_y (when present) specifies the y component of the (x,y) coordinate pair for constituent
frame 0.

framel_grid_position_x (when present) specifies the x component of the (x,y) coordinate pair for constituent
frame 1.

framel_grid_position_y (when present) specifies the y component of the (x,y) coordinate pair for constituent
frame 1.

When quincunx_sampling_flag is equal to 0 and frame packing arrangement type is not equal to 5 the (x,y)
coordinate pair for each constituent frame is interpreted as follows:

— If the (x,y) coordinate pair for a constituent frame is equal to (0, 0), this indicates a default sampling grid
alignment specified as follows:

— If frame packing arrangement type is equal to 3, the indicated position is the same as for the (x,y)
coordinate pair value (4, 8), as illustrated in Figure D.4.

— Otherwise (frame packing arrangement type is equal to 4), the indicated position is the same as for the
(%, y) coordinate pair value (8, 4), as illustrated in Figure D.6.

— Otherwise, if the (x, y) coordinate pair for a constituent frame is equal to (15, 15), this indicates that the sampling
grid alignment is unknown or unspecified or specified by other means not specified in this Specification.

— Otherwise, the x and y elements of the (x,y) coordinate pair specify the indicated horizontal and vertical
sampling grid alignment positioning to the right of and below the upper left corner of the rectangular area
represented by the corresponding constituent frame, respectively, in units of one sixteenth of the luma sample grid
spacing between the samples of the columns and rows of the constituent frame that are present in the decoded
frame (prior to any upsampling for display or other purposes).

NOTE 8 — The spatial location reference information frame0 grid position_x, frame0_grid position_y, framel grid position_x,
and framel grid position_y is not provided when quincunx sampling_flag is equal to 1 because the spatial alignment in this
case is assumed to be such that constituent frame 0 and constituent frame 1 cover corresponding spatial areas with interleaved
quincunx sampling patterns as illustrated in Figure D.8.

frame_packing_arrangement reserved_byte is reserved for future use by ITU-T | ISO/IEC. It is a requirement of
bitstream conformance that the value of frame packing arrangement reserved byte shall be equal to 0. All other values
of frame packing arrangement reserved byte are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore
the value of frame packing_arrangement reserved byte.

frame_packing_arrangement persistence flag specifies the persistence of the frame packing arrangement SEI
message.

frame packing arrangement persistence flag equal to O specifies that the frame packing arrangement SEI message
applies to the current decoded frame only.

frame packing arrangement persistence flag equal to 1 specifies that the frame packing arrangement SEI message
persists in output order until any of the following conditions are true:

— A new CVS begins.
— The bitstream ends.

— A frame in an access unit containing a frame packing arrangement SEI message with the same value of
frame packing arrangement id is output having PicOrderCntVal greater than PicOrderCnt(CurrPic).

upsampled_aspect_ratio_flag equal to | indicates that the sample aspect ratio (SAR) indicated by the VUI parameters
of the SPS identifies the SAR of the samples after the application of an upconversion process to produce a higher

Rec. ITU-T H.265 (04/2013) 267

resolution frame from each constituent frame as illustrated in Figure D.4 to Figure D.8. upsampled aspect ratio flag
equal to O indicates that the SAR indicated by the VUI parameters of the SPS identifies the SAR of the samples before
the application of any such upconversion process.

NOTE 9 — The default display window parameters in the VUI parameters of the SPS can be used by an encoder to indicate to a
decoder that does not interpret the frame packing arrangement SEI message that the default display window is an area within
only one of the two constituent frames.

NOTE 10 — The SAR indicated in the VUI parameters should indicate the preferred display picture shape for the packed decoded
frame output by a decoder that does not interpret the frame packing arrangement SEI message. When
upsampled_aspect ratio_flag is equal to 1, the SAR produced in each upconverted colour plane is indicated to be the same as the
SAR indicated in the VUI parameters in the examples shown in Figure D.4 to Figure D.8. When upsampled aspect ratio_flag is
equal to 0, the SAR produced in each colour plane prior to upconversion is indicated to be the same as the SAR indicated in the
VUI parameters in the examples shown in Figure D.4 to Figure D.8.

X X X X X[X|X|X|X[X|X]|X
X X X X XX |X|X|X|X|X]|X
X X X X U - X[X|X|X|X[X|X]|X
conversion
P X X X X » p A P X | X | XX | X|X|X|X
- processing ”
X X X X XX |X|X|X[|X|X]|X
X X X X XX |X|X|X|X|X]|X
X X X X X[X|X|X|X[|X|X]|X
XXX X]@]9|@|@ x| x| [x] [x X[x[x[x[x[x][x]x
X|X|X|x|o|o|o|O s s of col
X|X|X|X|OolO|O|O coripmopn:toplt;igrof Upconverted color
K X[R]X|©]9]2|@ Slsin constituent frame 0 component plane of
RRRRGGGEIG packing et constituent frame 0
rearrangement
X|X|X|Xx|o|o|o|O
XX X|xjojojjio]o ol ol Jof Jo o[of[ofofofofo]o
XA R[X[O]|Q]O)@ ol [o] o] |o olo|olo|o|o|o]o
Interleaved color o o o o olo|o|o|Oo|lO|O]|O
component plane of o o o o olololololoo]o
side-by-side packed »> 0| |o| |o| |o »| Upconversion » o|ofo|o|olo]o]o
decoded frame processing
o o o o ojlo|lojo|o|o|O|O
o o o o ojlo|lojo|o|o|O|O
o o o o ojlo|lojo|o|o|0O|O
Samples of color Upconverted color
component plane of component plane of
constituent frame 1 constituent frame 1

Figure D.4 — Rearrangement and upconversion of side-by-side packing arrangement with
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0,
and (x, y) equal to (0, 0) or (4, 8) for both constituent frames

268 Rec. ITU-T H.265 (04/2013)

X X X X X | X[X|[X|X]|X]|X]|X
X X X X X | X[X|[X|X|X]|X]X
X X X X - X | X[X|[X|X]|X]|X]|X
—p | X X X X > Upconver'smn P X | X | X[X|X|X]|X]|X
processing
X X X X X | X[X[X|X|X]|X]X
X X X X X | X[X[X|X|X]|X]X
X X X X X | X[X[X|X|X]|X]|X
XX x| xj00j0]|° X X X X X[X[x [x[x][x]|x]x
X|X|X|X|o|O|O|O s les of col
X[X|X|X|Oo|O|O|O conawg](fnZito plgﬁgrof Upconverted color
x|[x[x|x[o|o]o]o Side-by-side constituent frame 0 component plane of
xIx xIxlolololo packing o constituent frame 0
rearrangemem
X|X|X|X|o|Oo|O|O
XXX X]|©|O|Q|© of Jo] Jof Jo of[oJo[o]oJo]o]o
X|[X|x|x[o]o|o|o ol |o] [o] |o ololo|o|o|ofo|o
Interleaved color (0] o o (0] O|0|O0|0O|O|O|O|O
component plane of o o o o ololo]lo]olololo
side-by-side packed L >0 5 5 5 » Upconve(SIon »ololololo|olo|o
decoded frame processing
e} o o o olo|o|o|lo|o|o|O
e} o o o o|lo|o|o|lo|o|o]|O
e} o o o olo|o|o|lo|o|o|O
Samples of color Upconverted color
component plane of component plane of
constituent frame 1 constituent frame 1

Figure D.5 — Rearrangement and upconversion of side-by-side packing arrangement with
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0,
(x,y) equal to (12, 8) for constituent frame 0, and (x, y) equal to (0, 0) or (4, 8) for constituent frame 1

X|X|X|X|X|X]|X]|X X | X | X[X|X[X]|X|X
X|X|X[X|X[X]|X|X
X|X|X|X|X|X]|X]|X U - X | X | X[X|X[X]|X|X
. pconversion ~
P - X | X | X[X|X[X]|X|X
- processing ”
X | X[X|X[X[X|X|X X|X|X[X|X[X]|X|X
X | X | X[X|X[X]|X|X
X | X[X|X[X[X|X|X X|X|X[X|X[X]|X|X
X|X|X[X|X[X]|X|X
X | X | X[X|X[X]|X|X
X|X|X[X|X[X]|X|X
Samples of color
X|X|X[X|X[X]X|X
AR KRR component plane of Upconveriedl colorf
Top-bottom constituent frame 0 component plane o
ololololo|lo|o]o > packing o constituent frame 0
rearrangement
o|o|o|o|o|o|O|O
o|o|o|o|o|o|O|O
olo|o|o|o|O|O|O o|o|o|o|o|o|O|O
o|o|o|o|o|o|O|O
o|o|o|o|o|o|o|O
Interleavec:colorf o|o|o[o]ofo[ofo olo|o|o]o]o]o]o
“topbotiom packed Upcomversi HEEEEEEE
- . pconversion .
decoded frame -3 0|0|0|0|0|O|O|O > ez » O0|O0|0|O|O|O|O|O
o|o|o|o|o|o|O|O
o|lo|o|o|o|o|O|O o|o|o|o|o|o|O|O
o|o|o|o|o|o|O|O
Samples of color Upconverted color
component plane of component plane of
constituent frame 1 constituent frame 1

Figure D.6 — Rearrangement and upconversion of top-bottom packing arrangement with
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0,
and (x, y) equal to (0, 0) or (8, 4) for both constituent frames

Rec. ITU-T H.265 (04/2013) 269

Upconversion
processing

\ 4

XX | X|X|X|X|X]|X

Samples of color
component plane of
Top-bottom constituent frame 0

x [x[x[xx[x[x]x
x| x| x[x[x|x|x]x
x x| x[x[x|x|x]x
x x| x[x[x[x|x]x
ololo|ofo]o]|o]o
ololo|ofo]o]o]o
oloJofoJo]o]o]0o
olofoJo]o]o]o]o

Interleaved color
component plane of a

top-bottom packed

decoded frame

packing —
rearrangement

\ 4

Upconversion
processing

XX | X[X[X]|X]|X]|X

XX | X[X[X]|X]|X]|X
XX | X[X[X]|X]|X]|X
X|X| X[X[X|X|X]|X
XX | X[X[X|X]|X]|X
XX | X[X[X]|X]|X]|X
XX | X[X[X]|X]|X]|X

XX | X[X[X]|X]|X]|X

Upconverted color

component plane of
constituent frame 0

Samples of color
component plane of
constituent frame 1

\ 4

O|0|O0|O|O|0O|O
O|0|O0|O|O|0O|O
O|O0|O0|O|O|O|O
[eXNelNelNol el Nol o]
o|0|0|0|0O|0|O

o|0o|O0|0O|O|O|0O|O

O 0|0|0|0O|0O|O|O
O|O0|O0|0|O|O|O|O

O0O|0|0|0O0|O

Upconverted color

component plane of
constituent frame 1

Figure D.7 — Rearrangement and upconversion of top-bottom packing arrangement with
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0,
(x,y) equal to (8, 12) for constituent frame 0, and (x, y) equal to (0, 0) or (8, 4) for constituent frame 1

X X X X XXX |X|X|X|X|X
X X X X XXX | X|X|X|X|X
X X X X - XXX |X|X|X|X|X
— | X X X X > Ugf:cr;v;rii';n P X | X | X|X|X|X[X]|X
X X X X XXX | X|X|X|X|X
X X X X XX | X[X|X|X|X|xX
X X X X XXX | X|X|X|X|X
X|X|X|x|o|o|o|O X X X X XXX |X|X|X|X|X
XX[R|X|@|9]|2|@ Samples of color Upconverted color
X|X|X|x|o|o|Oo|O component plane of compgnentplaneof
X|X|x|x|o|lo|o|o Side-by-side constituent frame 0 constituent frame 0
quincunx packing e
X|X|[X|X|0]|0|0|0 rearrangement
X|X|x|x|o|o|Oo|O
X|X|X|X|o|o|O|O o o o o ojlojo|o|o|o|O|0O
X|X|x|x|o|o|Oo|O o o o o olojo|o|o|o|O|O
Side-by-side packed color © © © © 9|9|@|9|°|9|@|®
component plane of a o o o o . 0/0|0|O0|O0|O|0O|O
decoded frame with —>» o] |o| |o| |o | UesneEen »/o|ololofo|o|o]o
quincunx sampling o o o o DIoCESSNg ololololololo]|o
o o o o olojo|o|o|o|0O|O
o o o o ojlojo|o|o|o|O|0O

Figure D.8 — Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling

Samples of color
component plane of
constituent frame 1

component plane of
constituent frame 1

Upconverted color

(frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1)

270 Rec. ITU-T H.265 (04/2013)

2N+2

N
P4

[o]oJoJo]o]o]o]o
. . ololo]o Samples of color
Sequentially decoded frames with SToToToToToToTol Iolololo component plane of
temporal interleaving frame arrangement o[o[o[o[o[oo[o] [o]o[o|o constituent frames 0
ol0o|O0|O|O|O|O|O o|o|o|0
Polofo]ofofoofo] [o]o]ofo
> el Bl Bl Bl
2N+3 ol0o|O0|O|O|O|O|O o|o|o|0
ol0o|O0|O|O|O|O|O o|o|o|o
2N+2 [XXX XX [x[x]x o|o|o]oo]o]o]fo
X|X|X|[X ol0|O0|O|0O|0O|O|O
¥
2N+1 [oJofolofoJofoo] [x[x|x[x
N olofo]| [x[x[x[x Temporal 2N+3
[XIXIX[XTXTX[X[X} oToTo| [x[x[x[x P | interleaving fem—
SEeEEEEE EPAR] 1% o|o|o X|[x[x|x decomposition 2N+1 \x\x\x\xxxxx
toToiototetelo iiii olofo]| [x[x|x[x XX [x[x Samples of color
o[o[o]o]o]ofo]o] [x[x|x|X ggg X[XXX XIX|X|X XX | X| X Jg xIX|X X component plane of
olofofo[olofolo] [x[x[X[X| I5ToTo XIX|X|X XX | X| X JgxIx|x|x constituent frames 1
FIelelele) e
X|[X|X|[X
o|o|o|o|o|o|0|O x| x|x|x P x [XXX [x[x][x]x X[X [x[x
o|0|O|O|O|O|0O|0O
el) fle e
XX [X|X[X]|X]|X[X

\

Figure D.9 — Rearrangement of a temporal interleaving frame arrangement
(frame_packing_arrangement_type equal to 5)

D.3.17 Display orientation SEI message semantics

When the associated picture has PicOutputFlag equal to 1, the display orientation SEI message informs the decoder of a
transformation that is recommended to be applied to the cropped decoded picture prior to display.

display_orientation_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous
display orientation SEI message in output order. display orientation cancel flag equal to O indicates that display
orientation information follows.

hor_flip equal to 1 indicates that the cropped decoded picture should be flipped horizontally for display. hor flip equal
to 0 indicates that the decoded picture should not be flipped horizontally.

When hor_flip is equal to 1, the cropped decoded picture should be flipped as follows for each component Z equal to Y,
Cb, and Cr, letting dZ be the final cropped array of output samples for the component Z:

for(x = 0; x < croppedWidthZ; x++)
for(y = 0; y < croppedHeightZ; y++)
dZ[x][y]=Z][croppedWidthZ - x—1][y] (D-19)

Where croppedWidthZ is the width of the component Z of the cropped decoded picture in samples, croppedHeightZ is
the height of the component Z of the cropped decoded picture in samples, and Z[x][y] and dZ[x][y] are the sample
value before and after the horizontal flipping, respectively, for the sample at the location (x, y) of the component Z of
the cropped decoded picture.

ver_flip equal to 1 indicates that the cropped decoded picture should be flipped vertically (in addition to any horizontal
flipping when hor_flip is equal to 1) for display. ver flip equal to 0 indicates that the decoded picture should not be
flipped vertically.

When ver_flip is equal to 1, the cropped decoded picture should be flipped as follows for each component Z equal to Y,
Cb, and Cr, letting dZ be the final cropped array of output samples for the component Z:

for(x = 0; x < croppedWidthZ; x++)
for(y = 0; y < croppedHeightZ; y++)
dZ[x][y]1=Z[x][croppedWidthZ —y — 1] (D-20)

Where croppedWidthZ is the width of the component Z of the cropped decoded picture in samples, croppedHeightZ is
the height of the component Z of the cropped decoded picture in samples, and Z[x][y] and dZ[x][y] are the sample
value before and after the vertical flipping, respectively, for the sample at the location (x, y) of the component Z of the
cropped decoded picture.

anticlockwise_rotation specifies the recommended anticlockwise rotation of the decoded picture (after applying
horizontal or vertical flipping when hor_flip or ver flip is set) prior to display. The decoded picture should be rotated
by 360 * anticlockwise_rotation + 2'® degrees (2 * 7 * anticlockwise rotation + 2'® radians, where © is Archimedes'
Constant 3.141 592 653 589 793 ...) in the anticlockwise direction prior to display. For example, anticlockwise rotation

Rec. ITU-T H.265 (04/2013) 271

equal to 0 indicates no rotation and anticlockwise rotation equal to 16 384 indicates 90 degrees (+ 2 radians) rotation
in the anticlockwise direction.
NOTE - It is possible for equivalent transformations to be expressed in multiple ways using these syntax elements. For example,
the combination of having both hor flip and ver flip equal to 1 with anticlockwise rotation equal to 0 can alternatively be
expressed by having both hor flip and ver_flip equal to 1 with anticlockwise rotation equal to 0x8000000, and the combination
of hor_flip equal to 1 with ver flip equal to 0 and anticlockwise rotation equal to 0 can alternatively be expressed by having
hor_flip equal to 0 with ver_flip equal to 1 and anticlockwise_rotation equal to 0x8000000.

display_orientation_persistence_flag specifies the persistence of the display orientation SEI message.

display orientation persistence flag equal to O specifies that the display orientation SEI message applies to the current
decoded picture only.

display orientation persistence flag equal to 1 specifies that the display orientation SEI message persists in output
order until one or more of the following conditions are true:

— A new CVS begins.
— The bitstream ends.

— A picture in an access unit containing a display orientation SEI message is output having PicOrderCntVal greater
than PicOrderCnt(CurrPic).

D.3.18 Structure of pictures information SEI message semantics

The structure of pictures information SEI message provides information for a list of entries, some of which correspond
to a series of pictures in decoding order in the CVS.

The first entry in the structure of pictures information SEI message corresponds to the current picture. When there is a
picture in the CVS that has PicOrderCntVal equal to the variable entryPicOrderCnt[i] as specified below, the entry i
corresponds to a picture in the CVS. The decoding order of the pictures in the CVS that correspond to entries in the
structure of pictures information SEI message corresponds to increasing values of i in the list of entries.

Any picture in the CVS that has PicOrderCntVal equal to entryPicOrderCnt[i] for any i in the range of 0 to
num_entries_in_sop_minusl, inclusive, shall correspond to an entry in the list of entries.

The structure of pictures information SEI message shall not be present in a CVS for which the active SPS has
long_term_ref pics present flag equal to 1 or num_short term ref pic_sets equal to 0.

The structure of pictures information SEI message shall not be present in any access unit that has Temporalld greater
than 0 or contains a RASL, RADL or sub-layer non-reference picture. Any picture in the CVS that corresponds to an
entry other than the first entry described in the structure of pictures information SEI message shall not be an IRAP
picture.

sop_seq_parameter_set_id indicates and shall be equal to the sps _seq parameter set_id value of the active SPS. The
value of sop_seq_parameter set_id shall be in the range of 0 to 15, inclusive.

num_entries_in_sop_minusl plus 1 specifies the number of entries in the structure of pictures information SEI
message. num_entries_in_sop_minus] shall be in the range of 0 to 1023, inclusive.

sop_vcl nut[i], when the i-th entry corresponds to a picture in the CVS, indicates and shall be equal to the
nal unit type value of the picture corresponding to the i-th entry.

sop_temporal _id[i], when the i-th entry corresponds to a picture in the CVS, indicates and shall be equal to the
Temporalld value of the picture corresponding to the i-th entry. The value of 7 for sop_temporal id[i] is reserved for
future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification.
Decoders shall ignore structure of pictures information SEI messages that contain the value 7 for sop temporal id[1i].

sop_short_term_rps_idx[i], when the i-th entry corresponds to a picture in the current CVS, indicates and shall be
equal to the index, into the list of candidate short-term RPSs included in the active SPS, of the candidate short-term
RPS used by the picture corresponding to the i-th entry for derivation of the short-term reference picture set.
sop_short term rps_idx[i] shall be in the range of 0 to num_short term ref pic sets — 1, inclusive.

sop_poc_delta[i] is used to specify the value of the variable entryPicOrderCnt[i] for the i-th entry described in the
structure of pictures information SEI message. sop poc delta[i] shall be in the range of
(—MaxPicOrderCntLsb) / 2 + 1 to MaxPicOrderCntLsb / 2 — 1, inclusive.

The variable entryPicOrderCnt][i] is derived as follows:

entryPicOrderCnt[0] = PicOrderCnt(currPic)
for(i=1;1 <= num_entries_in_sop _minusl; i++)
entryPicOrderCnt[i] = entryPicOrderCnt[i — 1]+ sop_poc_delta[i] (D-21)

272 Rec. ITU-T H.265 (04/2013)

where currPic is the current picture.

D.3.19 Decoded picture hash SEI message semantics

This message provides a hash for each colour component of the decoded picture in the current access unit.
NOTE 1 — The decoded picture hash SEI message is a suffix SEI message.

Prior to computing the hash, the decoded picture data are arranged into one or three strings of bytes called
pictureData[cldx] of lengths datalen[cldx] as follows:

for(cIdx = 0; cldx < (chroma_format idc == 0)? 1:3; cldx++) {
if(cldx == 0) {
compWidth[cldx] =pic_width_in_luma samples
compHeight[cldx | = pic_height_in_luma_samples
compDepth[cldx | = BitDepthy
} else {
compWidth[cldx] = pic_width_in luma samples / SubWidthC
compHeight[cldx] = pic_height_in_luma_samples / SubHeightC
compDepth[cldx | = BitDepthc (D-22)
}
iLen=0
for(1=0;1<compWidth[cIdx] * compHeight[cldx]; it++) {
pictureData[clIdx][iLent+] = component[cldx][i] & 0xFF
if(compDepth[cldx] > 8)
pictureData[cldx][iLen++] = component[cldx [[i] >> 8§

H
datalen[cldx] =iLen

}

where component[cIdx][i] is an array in raster scan of decoded sample values in two's complement representation.

hash_type indicates the method used to calculate the checksum according to Table D.10. Values of hash_type that are
not listed in Table D.10 are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams
conforming to this version of this Specification. Decoders shall ignore decoded picture hash SEI messages that contain
reserved values of hash_type.

Table D.10 — Interpretation of hash_type

hash_type Method
0 MDS (RFC 1321)
1 CRC
2 Checksum

picture_md5] cldx][i] is the 16-byte MDS5 hash of the cldx-th colour component of the decoded picture. The value of
picture_md5[cldx][i] shall be equal to the value of digestVal[cldx] obtained as follows, using the MDS5 functions
defined in RFC 1321:

MD5Init(context)
MD5Update(context, pictureData[cldx], datalen[cldx]) (D-23)
MD5Final(digestVal[cldx], context)

picture_crc| cldx | is the cyclic redundancy check (CRC) of the colour component cldx of the decoded picture. The
value of picture_cre[cldx] shall be equal to the value of crcVal[cldx] obtained as follows:

crc = OxFFFF
pictureData[cIdx][datalLen[cldx]]=0
pictureData[cIdx][datalen[cldx]+1]=0
for(bitldx = 0; bitldx < (dataLen[cldx] +2) * §; bitldx++) {
dataByte = pictureData[cldx][bitldx >> 3]
creMsb=(crc >> 15) & 1
bitVal = (dataByte >> (7 — (bitldx & 7))) & 1
crc =(((crc << 1)+ bitVal) & OXFFFF)~ (crcMsb * 0x1021)

H
crcVal[cldx] = crc (D-24)

Rec. ITU-T H.265 (04/2013) 273

NOTE 2 — The same CRC specification is found in Rec. ITU-T H.271.

picture_checksum|[cldx | is the checksum of the colour component cldx of the decoded picture. The value of
picure_checksum[cldx] shall be equal to the value of checksumVal[cIdx] obtained as follows:

sum =0
for(y = 0; y <compHeight[cldx |; y++)
for(x = 0; x < compWidth[cldx]; x++) {
xorMask = (x & OxFF)~ (y & OxFF)~ (x >> 8) " (y >> 8)
sum = (sum + ((component[cldx][y * compWidth[cldx]+ x] & OxFF) * xorMask)) &
OxFFFFFFFF
if(compDepth[cldx] > 8)
sum = (sum + ((component[cldx][y * compWidth[cIldx] +x] >> 8)" xorMask)) &
OxFFFFFFFF

}
checksumVal[cldx] = sum (D-25)

D.3.20 Active parameter sets SEI message semantics

The active parameter sets SEI message indicates which VPS is active for the VCL NAL units of the access unit
associated with the SEI message. The SEI message may also provide information on which SPS is active for the VCL
NAL units of the access unit associated with the SEI message, and other information related to parameter sets.

active_video_parameter_set id indicates and shall be equal to the value of the vps video parameter set id of the
VPS that is referred to by the VCL NAL units of the access unit associated with the SEI message. The value of
active_video parameter set id shall be in the range of 0 to 15, inclusive.

self contained_cvs_flag equal to 1 indicates that each parameter set that is (directly or indirectly) referenced by any
VCL NAL unit of the CVS that is not a VCL NAL unit of a RASL picture is present within the CVS at a position that
precedes, in decoding order, any NAL wunit that (directly or indirectly) references the parameter set.
self contained cvs flag equal to 0 indicates that this property may or may not apply.

no_parameter_set update flag equal to 1 indicates that there is no parameter set update in the CVS, i.e., each VPS in
the CVS is an exact copy of the previous VPS in decoding order in the bitstream that has the same value of
vps_video parameter_set id, when present; each SPS in the CVS is an exact copy of the previous SPS in decoding
order in the bitstream that has the same value of sps_seq parameter set id, when present; and each PPS in the CVS is
an exact copy of the previous PPS in decoding order in the bitstream that has the same value of
pps_pic_parameter set id, when present. no_parameter set update flag equal to 0 indicates that there may or may not
be parameter set update in the CVS.
NOTE - If no_parameter_set_update flag equal to 1 is indicated for each CVS in a bitstream, i.e., there is no parameter set
update in the bitstream, it is possible to transmit all parameter sets out-of-band before sending the first VCL NAL unit of the
bitstream or to place all parameter sets at the beginning of the bitstream. Otherwise, out-of-band transmission of all parameter
sets before sending VCL NAL units is not possible.

num_sps_ids_minus1 plus 1 indicates and shall be equal to the number of SPSs that are referred to by the VCL NAL
units of the access unit associated with the active parameter sets SEI message. In bitstreams conforming to this version
of this Specification, num_sps_ids_minus] shall be equal to 0. Although the value of num_sps_ids_minus]1 is required
to be equal to 0 in this version of this Specification, decoders shall allow other values of num_sps_ids_minusl in the
range of 0 to 15, inclusive, to appear in the syntax.

active_seq_parameter_set_id[O] indicates and shall be equal to the value of the sps_seq parameter set id of the SPS
that is referred to by the VCL NAL units of the access unit associated with the SEI message. The value of
active_seq_parameter_set id[0] shall be in the range of 0 to 15, inclusive. The syntax elements
active_seq_parameter_set id[i] for i greater than O are reserved for future use by by ITU-T | ISO/IEC. Although the
value of num_sps_ids_minusl1 is required to be equal to 0 in bitstreams conforming to this version of this Specification,
decoders shall allow values of active_seq parameter set id[i] in the range of 0 to 15, inclusive, to appear in the syntax
for i greater than 0, and shall ignore the presence and values of syntax elements active seq parameter set id[i] for i
greater than 0.

D.3.21 Decoding unit information SEI message semantics

The decoding unit information SEI message provides CPB removal delay information for the decoding unit associated
with the SEI message.

The following applies for the decoding unit information SEI message syntax and semantics:

— The syntax elements sub pic hrd params present flag, sub pic_cpb params in pic timing sei flag, and
dpb_output_delay du length minusl, and the variable CpbDpbDelaysPresentFlag are found in or derived from

274 Rec. ITU-T H.265 (04/2013)

syntax elements in the hrd_parameters() syntax structure that is applicable to at least one of the operation points to
which the decoding unit information SEI message applies.

— The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the
operation points to which the decoding unit information SEI message applies.

The presence of decoding unit information SEI messages for an operation point is specified as follows:

— If CpbDpbDelaysPresentFlag is equal to 1, sub pic_hrd params present flag is equal to 1, and
sub_pic_cpb params_in_pic_timing_sei flag is equal to 0, one or more decoding unit information SEI messages
applicable to the operation point shall be associated with each decoding unit in the CVS.

— Otherwise, if CpbDpbDelaysPresentFlag is equal to 1, sub pic_hrd params present flag is equal to 1, and
sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 1, one or more decoding unit information SEI messages
applicable to the operation point may or may not be associated with each decoding unit in the CVS.

— Otherwise (CpbDpbDelaysPresentFlag is equal to 0 or sub_pic_hrd params present flag is equal to 0), in the CVS
there shall be no decoding unit that is associated with a decoding unit information SEI message applicable to the
operation point.

The set of NAL units associated with a decoding unit information SEI message consists, in decoding order, of the SEI
NAL unit containing the decoding unit information SEI message and all subsequent NAL units in the access unit up to
but not including any subsequent SEI NAL unit containing a decoding unit information SEI message. Each decoding
unit shall include at least one VCL NAL unit. All non-VCL NAL units associated with a VCL NAL unit shall be
included in the decoding unit containing the VCL NAL unit.

decoding_unit_idx specifies the index, starting from 0, to the list of decoding units in the current access unit, of the
decoding unit associated with the decoding unit information SEI message. The value of decoding_unit idx shall be in
the range of 0 to PicSizeInCtbsY — 1, inclusive.

A decoding unit identified by a particular value of duldx includes and only includes all NAL units associated with all
decoding unit information SEI messages that have decoding unit idx equal to duldx. Such a decoding unit is also
referred to as associated with the decoding unit information SEI messages having decoding_unit_idx equal to duldx.

For any two decoding units duA and duB in one access unit with decoding unit idx equal to duldxA and duldxB,
respectively, where duldxA is less than duldxB, duA shall precede duB in decoding order.

A NAL unit of one decoding unit shall not be present, in decoding order, between any two NAL units of another
decoding unit.

du_spt_cpb_removal delay_increment specifies the duration, in units of clock sub-ticks, between the nominal CPB
times of the last decoding unit in decoding order in the current access unit and the decoding unit associated with the
decoding unit information SEI message. This value is also used to calculate an earliest possible time of arrival of
decoding unit data into the CPB for the HSS, as specified in Annex C. The syntax element is represented by a fixed
length code whose length in bits is given by du cpb_removal delay increment length minusl + 1. When the decoding
unit associated with the decoding unit information SEI message is the last decoding unit in the current access unit, the
value of du_spt_cpb_removal delay increment shall be equal to 0.

dpb_output_du_delay present flag equal to 1 specifies the presence of the pic_spt dpb_output du delay syntax
element in the decoding unit information SEI message. dpb_output du_delay present flag equal to O specifies the
absence of the pic_spt dpb_output du delay syntax element in the decoding unit information SEI message.

pic_spt_dpb_output_du_delay is used to compute the DPB output time of the picture when SubPicHrdFlag is equal
to 1. It specifies how many sub clock ticks to wait after removal of the last decoding unit in an access unit from the CPB
before the decoded picture is output from the DPB. When not present, the value of pic spt dpb output du delay is
inferred to be equal to pic_dpb_output du_delay.

The length of the syntax element pic spt dpb output du delay is given in bits by
dpb_output delay du length minusl + 1.

It is a requirement of bitstream conformance that all decoding unit information SEI messages that are associated with
the same access unit, apply to the same operation point, and have dpb_output du delay present flag equal to 1 shall
have the same value of pic_spt_dpb_output du_delay.

The output time derived from the pic_spt dpb output du delay of any picture that is output from an output timing
conforming decoder shall precede the output time derived from the pic_spt_dpb_output du_delay of all pictures in any
subsequent CVS in decoding order.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCntVal.

Rec. ITU-T H.265 (04/2013) 275

For pictures that are not output by the "bumping" process because they precede, in decoding order, an IRAP picture
with NoRaslOutputFlag equal to 1 that has no_output of prior pics flag equal to 1 or inferred to be equal to 1, the
output times derived from pic_spt_dpb_output du_delay shall be increasing with increasing value of PicOrderCntVal
relative to all pictures within the same CVS.

For any two pictures in the CVS, the difference between the output times of the two pictures when SubPicHrdFlag is
equal to 1 shall be identical to the same difference when SubPicHrdFlag is equal to 0.

D.3.22 Temporal sub-layer zero index SEI message semantics

The temporal sub-layer zero index SEI message provides information that can assist the decoder for detection of
missing coded pictures that have Temporalld equal to 0 and are not RASL pictures, RADL pictures, or sub-layer non-
reference pictures.

When a temporal sub-layer zero index SEI message is present in the current access unit and the current access unit is
not an IRAP access unit, a temporal sub-layer zero index SEI message shall also be present in the preceding access unit
in decoding order with Temporalld equal to 0.

temporal_sub_layer_zero_idx indicates a temporal sub-layer zero index as follows:

— If the Temporalld of the current access unit is equal to 0, temporal_sub layer zero idx indicates the temporal sub-
layer zero index for the current access unit.

— Otherwise, temporal_sub _layer zero idx indicates the temporal sub-layer zero index of the preceding access unit
in decoding order with Temporalld equal to 0.

When the bitstream contains a preceding access unit in decoding order that has Temporalld equal to 0 and the contained
picture is not a RASL picture, a RADL picture, or a sub-layer non-reference picture, and that preceding access unit has
an associated temporal sub-layer zero index SEI message, the variable prevTslOIdx is set equal to the value of
temporal sub_layer zero idx that is associated with that preceding access unit.

The following constraints apply to the value of temporal sub layer zero idx:
— Ifthe current access unit is an IRAP access unit, temporal_sub layer zero_idx shall be equal to 0.
— Otherwise, the following applies:

— If the current picture has Temporalld equal to 0 and is not a RASL picture, a RADL picture, or a sub-layer
non-reference picture, temporal _sub _layer zero idx shall be equal to (prevTsl0Idx + 1) % 256.

— Otherwise, temporal sub layer zero idx shall be equal to prevTsl0Idx.

irap pic_id is an IRAP access unit identifier. When the current access unit is not the first access unit in the bitstream in
decoding order and the preceding IRAP access unit in decoding order has an associated temporal sub-layer zero index
SEI message, the following constraints apply to the value of irap pic_id:

— If the current access unit is an IRAP access unit, irap_pic_id shall differ in value from the value of irap_pic_id of
the temporal sub-layer zero index SEI message of the preceding IRAP access unit in decoding order.
NOTE -1t is suggested for the value of irap pic id to be set to a random value (subject to the constraints specified
herein), to minimize the likelihood of duplicate values appearing in the bitstream due to picture losses or splicing
operations.

— Otherwise, irap_pic_id shall be equal to the value of irap_pic_id of the temporal sub-layer zero index SEI message
of the preceding IRAP access unit in decoding order.

D.3.23 Scalable nesting SEI message semantics

The scalable nesting SEI message provides a mechanism to associate SEI messages with bitstream subsets
corresponding to various operation points or with specific layers or sub-layers.

A scalable nesting SEI message contains one or more SEI messages.

bitstream_subset_flag equal to 0 specifies that the SEI messages contained in the scalable nesting SEI message apply
to specific layers or sub-layers. bitstream_subset flag equal to 1 specifies that the SEI messages contained in the
scalable nesting SEI message apply to one or more sub-bitstreams resulting from a sub-bitstream extraction process as
specified in clause 10 with inputs based on the syntax elements of the scalable nesting SEI message as specified below.

When a buffering period SEI message, a picture timing SEI message, or a decoding unit information SEI message is
contained in the scalable nesting SEI message, bitstream_subset_flag shall be equal to 1.

Depending on the value of bitstream_subset flag, the layers or sub-layers, or the operation points to which the SEI
messages contained in the scalable nesting SEI message apply are specified by deriving the lists nestinglLayedIdList[i]
and the variables maxTemporalld[i | based on syntax element values as specified below.

276 Rec. ITU-T H.265 (04/2013)

nesting_op_flag equal to 0 specifies that the list nestingLayerldList[O] is specified by all layers flag and, when
present, nesting_layer id[i] for all i values in the range of 0 to nesting num_layers minusl, inclusive, and that the
variable maxTemporalld[0] is specified by nesting no op max temporal id plusl. nesting op flag equal to 1
specifies that the list nestinglayerldList{i] and the variable maxTemporalld[i] are specified by
nesting_ num_ops_minusl, default_op_flag, nesting_max_temporal id plusl[i], when present, and
nesting_op_idx[i], when present.

default_op flag equal to 1 specifies that maxTemporalld[0] is equal to nuh_temporal id plusl of the current SEI
NAL unit minus 1 and that nestingLayerldList[0] contains all integer values in the range of 0 to nuh_layer id of the
current SEI NAL unit, inclusive, in increasing order of the values.

nesting_num_ops_minusl plus 1 minus default op flag specifies the number of the following nesting op idx[1]
syntax elements. The value of nesting_ num_ops_minus1 shall be in the range of 0 to 1023, inclusive.

If nesting_op_flag is equal to 0, the variable nestingNumOps is set equal to 1. Otherwise, the variable nestingNumOps
is set equal to nesting num_ops_minusl + 1.

nesting_max_temporal_id plus1[i] is used to specify the variable maxTemporalld[i]. The value of
nesting_max_temporal id plus1[i] shall be greater than or equal to nuh_temporal id plusl of the current SEI NAL
unit. The variable maxTemporalld] i] is set equal to nesting_max_temporal_id plusl[i]— 1.

nesting_op_idx[i] is used to specify the list nestingLayerldList[i]. The value of nesting_ops_idx[i] shall be in the
range of 0 to 1023, inclusive.

The list nestingLayerIdList[i] is set equal to the OpLayerlIdList of the nesting op_idx[i]-th layer set specified by the
active VPS.

all_layers_flag equal to O specifies that the list nestingLayerIdList[0] is specified by nesting layer id[i] for all i
values in the range of 0 to nesting num layers minusl, inclusive. all layers flag equal to 1 specifies that the list
nestingLayerIdList[O] consists of all values of nuh_layer id present in the current access unit that are greater than or
equal to nuh_layer id of the current SEI NAL unit, in increasing order of the values.

nesting_no_op_max_temporal_id_plusl minus 1 specifies the value of maxTemporalld[0] when nesting_op_flag is
equal to 0 and all layers flag is equal to 0. The value of nesting no op max_temporal id plusl shall not be equal to 0.

nesting num_layers minusl plus 1 specifies the number of the following nesting_layer id[i] syntax elements. The
value of nesting num_layers_minus] shall be in the range of 0 to 63, inclusive.

nesting_layer_id[i] specifies the i-th nuh_layer id value included in the list nestingLayerIdList[O].

For any i and j in the range of 0 to nesting num_layers minusl, inclusive, with i less than j, nesting layer id[i] shall
be less than nesting_layer id[j].

The list nestingLayerIdList[0] is set to consist of nesting layer id[i] for all i values in the range of 0 to
nesting_num_layers_minusl, inclusive, in inceasing order of i values.

When bitstream_subset_flag is equal to 0, the SEI messages contained in the scalable nesting SEI message apply to the
sets of layers or sub-layers subLayerSet| i] for all i values in the range of 0 to nestingNumOps — 1, inclusive, where the
VCL NAL units of the layers or sub-layers in each set subLayerSet[i | have nuh_layer id values that are included in the
list nestingLayerIdListSet[i | and Temporalld values that are in the range of the Temporalld of the current SEI NAL
unit to maxTemporalld][i], inclusive.

When bitstream_subset_flag is equal to 1, the SEI messages contained in the scalable nesting SEI message apply to sub-
bitstreams subBitstream[i | for all i values in the range of 0 to nestingNumOps — 1, inclusive, where each sub-bitstream
subBitstream[i] is the output of the sub-bitstream extraction process of clause 10 with the bitstream,
maxTemporalld[i], and nestingLayerIdList[i] as inputs.

nesting_zero_bit shall be equal to 0.
D.3.24 Region refresh information SEI message semantics

The region refresh information SEI message indicates whether the slice segments that the current SEI message applies
to belong to a refreshed region of the current picture (as defined below).

An access unit that is not an IRAP access unit and that contains a recovery point SEI message is referred to as a gradual
decoding refresh (GDR) access unit, and its corresponding picture is referred to as a GDR picture. The access unit
corresponding to the indicated recovery point picture is referred to as the recovery point access unit

If there is a picture that follows the GDR picture in decoding order in the CVS and that has PicOrderCntVal equal to the
PicOrderCntVal of the GDR picture plus the value of recovery poc cnt in the recovery point SEI message, let the

Rec. ITU-T H.265 (04/2013) 277

variable lastPicInSet be the recovery point picture. Otherwise, let lastPicInSet be the picture that immediately precedes
the recovery point picture in output order. The picture lastPicInSet shall not precede the GDR picture in decoding order.

Let gdrPicSet be the set of pictures starting from a GDR picture to the picture lastPicInSet, inclusive, in output order.
When the decoding process is started from a GDR access unit, the refreshed region in each picture of the gdrPicSet is
indicated to be the region of the picture that is correct or approximately correct in content, and, when lastPicInSet is the
recovery point picture, the refreshed region in lastPicInSet covers the entire picture.

The slice segments to which a region refresh information SEI message applies consist of all slice segments within the
access unit that follow the SEI NAL unit containing the region refresh information SEI message and precede the next
SEI NAL unit containing a region refresh information SEI message (if any) in decoding order. These slice segments are
referred to as the slice segments associated with the region refresh information SEI message.

Let gdrAuSet be the set of access units corresponding to gdrPicSet. A gdrAuSet and the corresponding gdrPicSet are
referred to as being associated with the recovery point SEI message contained in the GDR access unit.

Region refresh information SEI messages shall not be present in an access unit unless the access unit is included in a
gdrAuSet associated with a recovery point SEI message. When any access unit that is included in a gdrAuSet contains
one or more region refresh information SEI messages, all access units in the gdrAuSet shall contain one or more region
refresh information SEI messages.

refreshed_region_flag equal to 1 indicates that the slice segments associated with the current SEI message belong to
the refreshed region in the current picture. refreshed region flag equal to 0 indicates that the slice segments associated
with the current SEI message may not belong to the refreshed region in the current picture.

When one or more region refresh information SEI messages are present in an access unit and the first slice segment of
the access unit in decoding order does not have an associated region refresh information SEI message, the value of
refreshed region flag for the slice segments that precede the first region refresh information SEI message is inferred to
be equal to 0.

When lastPicInSet is the recovery point picture, and any region refresh SEI message is included in a recovery point
access unit, the first slice segment of the access unit in decoding order shall have an associated region refresh SEI
message, and the value of refreshed region flag shall be equal to 1 in all region refresh SEI messages in the access unit.

When one or more region refresh information SEI messages are present in an access unit, the refreshed region in the
picture is specified as the set of CTUs in all slice segments of the access unit that are associated with region refresh
information SEI messages that have refreshed region_flag equal to 1. Other slice segments belong to the non-refreshed
region of the picture.

It is a requirement of bitstream conformance that when a dependent slice segment belongs to the refreshed region, the
preceding slice segment in decoding order shall also belong to the refreshed region.

Let gdrRefreshedSliceSegmentSet be the set of all slice segments that belong to the refreshed regions in the gdrPicSet.
When a gdrAuSet contains one or more region refresh information SEI messages, it is a requirement of bitstream
conformance that the following constraints all apply:

— The refreshed region in the first picture included in the corresponding gdrPicSet in decoding order that contains
any refreshed region shall contain only coding units that are coded in an intra coding mode.

— For each picture included in the gdrPicSet, the syntax elements in gdrRefreshedSliceSegmentSet shall be
constrained such that no samples or motion vector values outside of gdrRefreshedSliceSegmentSet are used for
inter prediction in the decoding process of any samples within gdrRefreshedSliceSegmentSet.

— For any picture that follows the picture lastPicInSet in output order, the syntax elements in the slice segments of
the picture shall be constrained such that no samples or motion vector values outside of
gdrRefreshedSliceSegmentSet are used for inter prediction in the decoding process of the picture other than those
of the other pictures that follow the picture lastPicInSet in output order.

D.3.25 Reserved SEI message semantics

The reserved SEI message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. It is a
requirement of bitstream conformance that bitstreams shall not contain reserved SEI messages until and unless the use
of such messages has been specified by ITU-T | ISO/IEC. Decoders shall ignore reserved SEI messages.

278 Rec. ITU-T H.265 (04/2013)

Annex E

Video usability information

(This annex forms an integral part of this Recommendation | International Standard.)

E.1 General
This annex specifies syntax and semantics of the VUI parameters of the SPSs.

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming
decoders are not required to process this information for output order conformance to this Specification (see Annex C
for the specification of output order conformance). Some VUI parameters are required to check bitstream conformance
and for output timing decoder conformance.

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of
them) are conveyed to decoders (or to the HRD) by other means not specified in this Specification. When present in the
bitstream, VUI parameters shall follow the syntax and semantics specified in this annex. When the content of VUI
parameters is conveyed for the application by some means other than presence within the bitstream, the representation
of the content of the VUI parameters is not required to use the same syntax specified in this annex. For the purpose of
counting bits, only the appropriate bits that are actually present in the bitstream are counted.

Rec. ITU-T H.265 (04/2013) 279

E.2

E.2.1

VUI syntax

VUI parameters syntax
vui_parameters() { Descriptor
aspect_ratio_info_present_flag u(l)
if(aspect_ratio_info_present flag) {
aspect_ratio_idc u(8)
if(aspect_ratio_idc == EXTENDED SAR) {
sar_width u(16)
sar_height u(16)
H
H
overscan_info_present_flag u(1)
if(overscan_info_present flag)
overscan_appropriate_flag u(1)
video_signal type present flag u(l)
if(video_signal type present flag) {
video_format u(3)
video_full range flag u(1)
colour_description_present_flag u(l)
if(colour_description_present_flag) {
colour_primaries u(8)
transfer_characteristics u(8)
matrix_coeffs u(8)
H
H
chroma_loc_info_present flag u(1)
if(chroma_loc_info present flag) {
chroma_sample_loc_type_top_field ue(v)
chroma_sample loc_type bottom_field ue(v)
H
neutral_chroma_indication_flag u(l)
field_seq_flag u(1)
frame_field_info_present_flag u(l)
default_display_window_flag u(1)
if(default_display_window_flag) {
def_disp_win_left offset ue(v)
def disp_win_right offset ue(v)
def_disp_win_top_offset ue(v)
def disp_win_bottom_offset ue(v)
H
vui_timing_info_present_flag u(l)
if(vui_timing_info present flag) {
vui_num_units_in_tick u(32)
vui_time_scale u(32)
vui_poc_proportional to_timing flag u(l)
if(vui_poc_proportional to timing flag)
vui_num_ticks_poc_diff one minusl ue(v)

280

Rec. ITU-T H.265 (04/2013)

vui_hrd parameters_present_flag

u(l)

if(vui_hrd parameters present flag)

hrd_parameters(1, sps_max_sub_layers minus])

!

bitstream_restriction_flag u(1)

if(bitstream_restriction_flag) {
tiles_fixed_structure_flag u(l)
motion_vectors_over_pic_boundaries_flag u(l)
restricted_ref pic_lists flag u(1)
min_spatial_segmentation_idc ue(v)
max_bytes per_pic_denom ue(v)
max_bits_per_min_cu_denom ue(v)
log2_max mv_length horizontal ue(v)

ue(v)

log2_max_mv_length_vertical

Rec. ITU-T H.265 (04/2013)

281

E.2.2 HRD parameters syntax

hrd parameters(commonInfPresentFlag, maxNumSubLayersMinus1) { Descriptor
if(commonInfPresentFlag) {
nal _hrd_parameters_present flag u(l)
vel_hrd_parameters_present_flag u(l)
if(nal_hrd parameters present flag || vcl hrd parameters present flag){
sub_pic_hrd params_present_ flag u(l)
if(sub_pic_hrd params_present flag) {
tick_divisor_minus2 u(8)
du_cpb_removal _delay_increment length minusl u(s)
sub_pic_cpb_params_in_pic_timing_sei_flag u(l)
dpb_output_delay _du_length_minusl u(s)
j
bit_rate_scale u(4)
cpb_size scale u(4)
if(sub_pic_hrd params_present flag)
cpb_size_du_scale u(4)
initial cpb_removal delay length _minusl u(s)
au_cpb_removal delay_length minusl u(s5)
dpb_output_delay_length_minusl u(s)
j
}
for(i=0;1 <= maxNumSubLayersMinusl; i++) {
fixed pic_rate_general flag[i] u(l)
if(!fixed pic rate_general flag[i])
fixed pic_rate_within_cvs_flag[i] u(l)
if(fixed pic _rate within_cvs flag[i])
elemental_duration_in_tc_minusl1[i] ue(v)
else
low_delay hrd_flag[i] u(l)
if(low_delay hrd flag[i])
cpb_cnt_minus1[i] ue(v)

if(nal hrd parameters present flag)

sub_layer hrd parameters(i)

if(vel hrd parameters present flag)

sub_layer hrd parameters(i)

282

Rec. ITU-T H.265 (04/2013)

E.2.3 Sub-layer HRD parameters syntax

sub layer hrd parameters(subLayerld) { Descriptor
for(1=0;1 <= CpbCnt; i++) {

bit_rate value minusl|[i] ue(v)

cpb_size value minusl[i] ue(v)

if(sub_pic_hrd params_present flag) {
cpb_size_du_value minusl[i] ue(v)
bit_rate_du_value_minus1[i] ue(v)

}

cbr_flag[i] u(l)

E.3 VUI semantics

E.3.1 VUI parameters semantics

aspect_ratio_info_present flag equal to 1 specifies that aspect ratio_idc is present. aspect ratio_info present flag
equal to 0 specifies that aspect_ratio_idc is not present.

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E.1 shows the meaning of
the code. When aspect ratio_idc indicates EXTENDED_ SAR, the sample aspect ratio is represented by sar width :
sar_height. When the aspect ratio_idc syntax element is not present, aspect_ratio_idc value is inferred to be equal to 0.
Values of aspect_ratio_idc in the range of 17 to 254, inclusive, are reserved for future use by ITU-T | ISO/IEC and shall
not be present in bitstreams conforming to this version of this Specification. Decoders shall interpret values of
aspect_ratio_idc in the range of 17 to 254, inclusive, as equivalent to the value 0.

Rec. ITU-T H.265 (04/2013) 283

Table E.1 — Interpretation of sample aspect ratio indicator

aspect_ratio_idc Sample aspect (informative)
ratio Examples of use
0 Unspecified
1 1:1 7680x4320 16:9 frame without horizontal overscan
("square") 3840x2160 16:9 frame without horizontal overscan
1280x720 16:9 frame without horizontal overscan
1920x1080 16:9 frame without horizontal overscan (cropped from
1920x1088)
640x480 4:3 frame without horizontal overscan
2 12:11 720x576 4:3 frame with horizontal overscan
352x288 4:3 frame without horizontal overscan
3 10:11 720x480 4:3 frame with horizontal overscan
352x240 4:3 frame without horizontal overscan
4 16:11 720x576 16:9 frame with horizontal overscan
528x576 4:3 frame without horizontal overscan
5 40:33 720x480 16:9 frame with horizontal overscan
528x480 4:3 frame without horizontal overscan
6 24:11 352x576 4:3 frame without horizontal overscan
480x576 16:9 frame with horizontal overscan
7 20:11 352x480 4:3 frame without horizontal overscan
480x480 16:9 frame with horizontal overscan
8 32:11 352x576 16:9 frame without horizontal overscan
80:33 352x480 16:9 frame without horizontal overscan
10 18:11 480x576 4:3 frame with horizontal overscan
11 15:11 480x480 4:3 frame with horizontal overscan
12 64:33 528x576 16:9 frame without horizontal overscan
13 160:99 528x480 16:9 frame without horizontal overscan
14 4:3 1440x1080 16:9 frame without horizontal overscan
15 3:2 1280x1080 16:9 frame without horizontal overscan
16 2:1 960x1080 16:9 frame without horizontal overscan
17..254 Reserved
255 EXTENDED SAR

NOTE 1 - For the examples in Table E.1, the term "without horizontal overscan" refers to display processes in which the display
area matches the area of the cropped decoded pictures and the term "with horizontal overscan" refers to display processes in
which some parts near the left and/or right border of the cropped decoded pictures are not visible in the display area. As an
example, the entry "720x576 4:3 frame with horizontal overscan" for aspect ratio idc equal to 2 refers to having an area of
704x576 luma samples (which has an aspect ratio of 4:3) of the cropped decoded frame (720x576 luma samples) that is visible in
the display area.

NOTE 2 — For the examples in Table E.1, the frame spatial resolutions shown as examples of use would be the dimensions of the
conformance cropping windo