Series H: Audiovisual and Multimedia Systems
Infrastructure of audiovisual services – Communication procedures

Gateway Control Protocol: TCP support packages

Recommendation ITU-T H.248.89
ITU-T H-SERIES RECOMMENDATIONS

AUDIOVISUAL AND MULTIMEDIA SYSTEMS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Recommendation Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS</td>
<td>H.100–H.199</td>
</tr>
<tr>
<td>INFRASTRUCTURE OF AUDIOVISUAL SERVICES</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>H.200–H.219</td>
</tr>
<tr>
<td>Transmission multiplexing and synchronization</td>
<td>H.220–H.229</td>
</tr>
<tr>
<td>Systems aspects</td>
<td>H.230–H.239</td>
</tr>
<tr>
<td>Communication procedures</td>
<td>H.240–H.259</td>
</tr>
<tr>
<td>Coding of moving video</td>
<td>H.260–H.279</td>
</tr>
<tr>
<td>Related systems aspects</td>
<td>H.280–H.299</td>
</tr>
<tr>
<td>Systems and terminal equipment for audiovisual services</td>
<td>H.300–H.349</td>
</tr>
<tr>
<td>Directory services architecture for audiovisual and multimedia services</td>
<td>H.350–H.359</td>
</tr>
<tr>
<td>Quality of service architecture for audiovisual and multimedia services</td>
<td>H.360–H.369</td>
</tr>
<tr>
<td>Telepresence</td>
<td>H.420–H.429</td>
</tr>
<tr>
<td>Supplementary services for multimedia</td>
<td>H.450–H.499</td>
</tr>
<tr>
<td>MOBILITY AND COLLABORATION PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>Overview of Mobility and Collaboration, definitions, protocols and procedures</td>
<td>H.500–H.509</td>
</tr>
<tr>
<td>Mobility for H-Series multimedia systems and services</td>
<td>H.510–H.519</td>
</tr>
<tr>
<td>Mobile multimedia collaboration applications and services</td>
<td>H.520–H.529</td>
</tr>
<tr>
<td>Security for mobile multimedia systems and services</td>
<td>H.530–H.539</td>
</tr>
<tr>
<td>Security for mobile multimedia collaboration applications and services</td>
<td>H.540–H.549</td>
</tr>
<tr>
<td>Mobility interworking procedures</td>
<td>H.550–H.559</td>
</tr>
<tr>
<td>Mobile multimedia collaboration inter-working procedures</td>
<td>H.560–H.569</td>
</tr>
<tr>
<td>BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES</td>
<td></td>
</tr>
<tr>
<td>Broadband multimedia services over VDSL</td>
<td>H.610–H.619</td>
</tr>
<tr>
<td>Advanced multimedia services and applications</td>
<td>H.620–H.629</td>
</tr>
<tr>
<td>Ubiquitous sensor network applications and Internet of Things</td>
<td>H.640–H.649</td>
</tr>
<tr>
<td>IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV</td>
<td></td>
</tr>
<tr>
<td>General aspects</td>
<td>H.700–H.719</td>
</tr>
<tr>
<td>IPTV terminal devices</td>
<td>H.720–H.729</td>
</tr>
<tr>
<td>IPTV middleware</td>
<td>H.730–H.739</td>
</tr>
<tr>
<td>IPTV application event handling</td>
<td>H.740–H.749</td>
</tr>
<tr>
<td>IPTV metadata</td>
<td>H.750–H.759</td>
</tr>
<tr>
<td>IPTV multimedia application frameworks</td>
<td>H.760–H.769</td>
</tr>
<tr>
<td>IPTV service discovery up to consumption</td>
<td>H.770–H.779</td>
</tr>
<tr>
<td>Digital Signage</td>
<td>H.780–H.789</td>
</tr>
<tr>
<td>E-HEALTH MULTIMEDIA SERVICES AND APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>Interoperability compliance testing of personal health systems (HRN, PAN, LAN and WAN)</td>
<td>H.820–H.859</td>
</tr>
<tr>
<td>Multimedia e-health data exchange services</td>
<td>H.860–H.869</td>
</tr>
</tbody>
</table>

For further details, please refer to the list of ITU-T Recommendations.
Recommendation ITU-T H.248.89

Gateway Control Protocol: TCP support packages

Summary
The transmission control protocol (TCP) is a connection-oriented IP transport protocol, which leads to specific requirements on ITU-T H.248 support for the control of bearer procedures related to the establishment and release of TCP connections, as well as the MG internal interworking of TCP packets. Recommendation ITU-T H.248.89 provides ITU-T H.248 packages for support of TCP, complemented by models, considerations of package mode operations and signalling flows.

History

<table>
<thead>
<tr>
<th>Edition</th>
<th>Recommendation</th>
<th>Approval</th>
<th>Study Group</th>
<th>Unique ID*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>ITU-T H.248.89</td>
<td>2014-10-14</td>
<td>16</td>
<td>11.1002/1000/12240</td>
</tr>
</tbody>
</table>

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.
FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU-Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2015

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Applicability statements</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Package-less TCP connection control</td>
<td>1</td>
</tr>
<tr>
<td>2 References</td>
<td>2</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Terms defined elsewhere</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Terms defined in this Recommendation</td>
<td>4</td>
</tr>
<tr>
<td>4 Abbreviations and acronyms</td>
<td>4</td>
</tr>
<tr>
<td>5 Conventions</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Naming of stream endpoints and terminations</td>
<td>5</td>
</tr>
<tr>
<td>5.2 TCP bearer</td>
<td>6</td>
</tr>
<tr>
<td>5.3 TCP bearer control</td>
<td>6</td>
</tr>
<tr>
<td>5.4 TCP endpoint</td>
<td>6</td>
</tr>
<tr>
<td>6 Motivation use cases and models</td>
<td>7</td>
</tr>
<tr>
<td>6.1 Bearer connection network use cases</td>
<td>7</td>
</tr>
<tr>
<td>6.2 Bearer connection model</td>
<td>8</td>
</tr>
<tr>
<td>7 TCP basic connection control package</td>
<td>10</td>
</tr>
<tr>
<td>7.1 Properties</td>
<td>11</td>
</tr>
<tr>
<td>7.2 Events</td>
<td>13</td>
</tr>
<tr>
<td>7.3 Signals</td>
<td>14</td>
</tr>
<tr>
<td>7.4 Statistics</td>
<td>15</td>
</tr>
<tr>
<td>7.5 Error codes</td>
<td>15</td>
</tr>
<tr>
<td>7.6 Procedures</td>
<td>15</td>
</tr>
<tr>
<td>8 TCP-specific stream endpoint interlinkage procedures</td>
<td>19</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>8.2 Procedures</td>
<td>19</td>
</tr>
<tr>
<td>9 TCP retransmission metrics package</td>
<td>21</td>
</tr>
<tr>
<td>9.1 Properties</td>
<td>21</td>
</tr>
<tr>
<td>9.2 Events</td>
<td>21</td>
</tr>
<tr>
<td>9.3 Signals</td>
<td>21</td>
</tr>
<tr>
<td>9.4 Statistics</td>
<td>21</td>
</tr>
<tr>
<td>9.5 Error codes</td>
<td>22</td>
</tr>
<tr>
<td>9.6 Procedures</td>
<td>22</td>
</tr>
<tr>
<td>10 Package-less TCP control</td>
<td>23</td>
</tr>
<tr>
<td>10.1 Package-less TCP control in other ITU-T H.248.x-Recommendations</td>
<td>23</td>
</tr>
<tr>
<td>10.2 Principal ITU-T H.248 control steps for communication establishment</td>
<td>24</td>
</tr>
<tr>
<td>10.3 Release of TCP connection</td>
<td>27</td>
</tr>
</tbody>
</table>
11 Security considerations

Annex A – State modelling for TCP bearer connection endpoints

A.1 Introduction and purpose

A.2 Original state model for TCP bearer connection endpoints

A.3 Simplified state model for ITU-T H.248-based TCP basic connection control

A.4 State models versus TCP modes of operation

Appendix I – Sample use-cases of TCP connection control

I.1 Use case #1: WebRTC to NGN/IMS interworking function with termination of transport security by MG

Appendix II – Example call flows

II.1 Overview

II.2 Basic TCP bearer connection control

II.3 Extended TCP bearer connection control

Appendix III – Illustration of the TCP basic connection control package protocol semantics

III.1 Overview

III.2 Conventions

III.3 Establishment of TCP bearer connections

III.4 Release of TCP bearer connections

Appendix IV – Illustration of the TCP-specific interlinkage procedures

IV.1 Overview

IV.2 Conventions

IV.3 Usage of stream endpoint interlinkage capability

IV.4 Usage of Oneway Release Indicator property

IV.5 Combined consideration of both properties

Appendix V – Relation to similar ITU-T H.248 packages

V.1 Overview of TCP related packages

V.2 ITU-T Q.1950

V.3 ITU-T H.248.67

V.4 ITU-T H.248.84

V.5 ITU-T H.248.43 and ITU-T H.248.79

Bibliography
Recommendation ITU-T H.248.89

Gateway Control Protocol: TCP support packages

1 Scope

In scope of this Recommendation are ITU-T H.248 IP media gateway TCP-based bearer interfaces. Such an ITU-T H.248 MG provides various functions for processing of TCP/IP packets, TCP payload data and is involved in functions related to TCP protocol control information (based on TCP header flags). This Recommendation focuses primarily on the aspect of TCP connection control, which comprises the establishment and release of TCP bearer connections.

The Recommendation considers:

– connection models with a single or multiple TCP bearer connection endpoints within an ITU-T H.248 context;
– establishment, through-connection and release behaviour in case of end-to-end TCP bearer connections across two ITU-T H.248 TCP terminations ("a so-called ITU-T H.248 TCP media stream");
– different ITU-T H.248 control models.

Further, this Recommendation provides information on existing ITU-T H.248 tools with respect to other TCP support functions.

1.1 Applicability statements

Table 1 summarizes all possible TCP-based interfaces of ITU-T H.248 entities (under the assumption of an underlying IP network) and their relevance for this Recommendation.

Table 1 – Principal TCP-based interfaces of ITU-T H.248 entities and their relevance for this Recommendation

<table>
<thead>
<tr>
<th>TCP-based transport</th>
<th>ITU-T H.248 entity</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call control interface (e.g., SIP)</td>
<td>MGC</td>
<td>Out of scope of this Recommendation.</td>
</tr>
<tr>
<td>Gateway control interface (ITU-T H.248)</td>
<td>MGC, MG</td>
<td>Out of scope of this Recommendation. Possible ITU-T H.248 transport modes are indicated by [ITU-T H.248.67]. Usage of a TCP-based ITU-T H.248 transport mode would be typically specified by an ITU-T H.248 profile (as part of clause 6.12 in the profile definition template (see Appendix III in [ITU-T H.248.1])).</td>
</tr>
<tr>
<td>Bearer interface</td>
<td>MG</td>
<td>Within the scope of this Recommendation.</td>
</tr>
</tbody>
</table>

1.2 Package-less TCP connection control

Figure 1 summarizes the methods for ITU-T H.248-based TCP connection control (at the MG bearer interface). The required approach for TCP connection control concerning the TCP proxy mode and TCP to non-TCP interworking is based on package-defined ITU-T H.248 elements introduced by this Recommendation. However, the package-less option should be used in the stateless TCP interworking configurations TCP relay and TCP merge mode (see clause 10.1). Furthermore, the package-less option is required for transparent forwarding of TCP traffic. TCP transparent forwarding covers both TCP protocol control information ("the TCP header") and TCP payload data, and is typically
characteristic of the application-agnostic TCP relay mode and application-agnostic TCP merge mode (after TCP connection establishment).

Figure 1 – Overview: Methods for ITU-T H.248-based TCP connection control

The usage of some SDP elements is appropriate in package-based TCP connection control, as long as their semantics do not contradict the ITU-T H.248 elements. The bearer type indication 'TCP' is always required (see clause 10.2.3). The SDP "a=setup" attribute is also used in the package-based approach.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 TCP packet [ITU-T H.248.84]: IP datagram (also known as IP packet) carrying a (single) TCP segment in the payload.

NOTE – Such a L4/L3 PDU is also known as TCP/IP packet (briefly TCP packet).

3.1.2 transparent forwarding [ITU-T H.248.88]: MG packet forwarding behaviour with the characteristic of Lx-PDU integrity. This is a unidirectional characteristic of a Lx-PDU flow.

3.1.3 transport (TCP) proxy (translator) mode [ITU-T H.248.84] (see clause I.4.1 in [b-ETSI TR 183 068]) (also known as Back-to-Back TCP Endpoint (B2BTE) mode): Stateful forwarding of TCP packets in terms of full protocol termination. The end-to-end TCP connection is
partitioned in two TCP connection legs by the BGF. Each H.248 Stream endpoint provides a stateful TCP connection state machine.

NOTE – The term proxy mode is similar as used for HTTP proxy, FTP proxy, SIP proxy, etc.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 TCP proxy types

The basic TCP proxy mode is defined in clause 3.1.3. The following TCP proxy types are useful for the various TCP services as supported by ITU-T H.248 MGs.

The TCP proxy may be an

- **Application-aware** TCP proxy (the MG knows the protocol (stack) carried by TCP packets);
- **Application-agnostic** TCP proxy (the MG is unaware of the TCP payload content).

A TCP proxy may implement the full TCP connection states (stateful) or a sub-set of those states (light).

Example: "application-agnostic, stateful TCP proxy" mode.

3.2.2 TCP transparent forwarding

MG packet forwarding behaviour with the characteristic of *TCP-PDU integrity* (Notes 1 and 2). This is a unidirectional characteristic of a TCP-PDU flow.

NOTE 1 – A TCP-PDU is related to a TCP packet (see [ITU-T H.248.84]), which comprises TCP protocol control information (TCP header) and TCP payload data.

NOTE 2 – Definition based on clause 3.1.2, i.e., the characteristic of *PDU integrity* comprises the properties of *bit integrity* and *data integrity* (see also clauses 3.2.3, 3.1.1 and 3.1.2 in [ITU-T H.248.88]).

NOTE 3 – There is the characteristic of *TCP packet integrity* in the context of "TCP transparent forwarding". The MG might be TCP aware, e.g., support of TCP-related statistics or event detection would not violate transparent forwarding behaviour.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- **B2BIH** Back-to-Back IP Host
- **B2BTE** Back-to-Back TCP Endpoint
- **BCP** Bearer Control Protocol
- **BGF** Border Gateway Function
- **BICC** Bearer Independent Call Control
- **BNC** Backbone Network Connection
- **DTLS** Datagram Transport Layer Security
- **FTP** File Transfer Protocol
- **GCP** Gateway Control Protocol
- **HTTP** Hypertext Transfer Protocol
- **ICE** Interactive Connectivity Establishment
- **ICMP** Internet Control Message Protocol
- **IMS** IP Multimedia Subsystem
- **IP** Internet Protocol
- **IPv4** Internet Protocol version 4
IPv6 Internet Protocol version 6
IPR IP Router
IWF Interworking Function
LCD Local Control Descriptor
LD Local Descriptor
MG Media Gateway
MGC Media Gateway Controller
MIB Management Information Base
MPTCP Multipath TCP
MSRP Message Session Relay Protocol
MTU Maximum Transmission Unit
NAT Network Address Translation
NAT-T NAT Traversal
NGN Next Generation Network
NPT Network Prefix Translation
PMTUD Path MTU Discovery
RD Remote Descriptor
RTP Real-Time Transport Protocol
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SEP (ITU-T H.248) Stream Endpoint
SEPP SEP Pair
SIP Session Initiation Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
UE User Equipment
WEBRTC Web-Based Real-Time Communication services

5 Conventions

5.1 Naming of stream endpoints and terminations
The abbreviation Ln denotes a protocol layer "n", e.g., L3 for protocol layer 3.

The notations "Tx" and "Tx(Sy)" are used for naming of terminations and stream endpoints (SEP) respectively, with
– "Tx" as TerminationID value;
– "Sy" as StreamID value and
– numerical variables x and y.
5.2 TCP bearer

In this Recommendation, the term **TCP bearer connection** refers to a TCP connection in the network user plane. There might be also a TCP connection between MGC and MG in case of a TCP-based ITU-T H.248 transport mode [ITU-T H.248.67]. This connection is not is scope of this Recommendation.

NOTE – This relates to the so called backbone network connection (BNC) concept in [ITU-T Q.1950], which is referred by clause 7.

5.3 TCP bearer control

There are connection control information flows for TCP bearer connections in the network user plane (e.g., IP media/data/bearer plane) and in ITU-T H.248 signalling. Figure 2 outlines the used conventions for the differentiation of both control flows.

![Figure 2 – Conventions for TCP bearer control](image)

5.4 TCP endpoint

The notion of endpoint represents different concepts; see Figure 3.

![Figure 3 – Conventions for TCP endpoint types](image)

Usage in:

- **ITU-T H.248 control**: ITU-T H.248 terminations/stream endpoints with TCP processing are denoted as TCP-enabled terminations or stream endpoints (SEP), respectively;
user plane (TCP): a TCP bearer connection endpoint represents an "(N)-connection-endpoint" according to [ITU-T X.200]. This concept comprises a terminator (i.e., TCP protocol termination) plus a service access point (i.e., L4+ access).

The SEP subject of the packages and procedures of this Recommendation may or may not act as a TCP bearer connection endpoint:

- The TCP basic connection control package (clause 7) assumes a SEP that is a TCP bearer connection endpoint.
- The interlinkage procedures described in clause 8 using tools specified in [ITU-T H.248.92] assume a SEP or SEP pair that is (are) TCP bearer connection endpoint(s).
- The use of TCP retransmission metrics package (clause 9) is applicable both for SEPs that are TCP bearer connection endpoints and for SEPs that are not.

6 Motivation use cases and models

6.1 Bearer connection network use cases

There are three fundamental use cases from the perspective of ITU-T H.248 MGs and the TCP bearer connection control (see Figure 4):

- Use case #1.1: An ITU-T H.248 IP-IP MG located in the middle of an end-to-end TCP connection. There are two interconnected ITU-T H.248 SEPs (a TCP stream endpoint pair, TCP SEPP) within the ITU-T H.248 context and, from an overall network perspective, two cases can be distinguished:
 - Use case #1.1.1: there is a single, continuous end-to-end TCP connection, any interim ITU-T H.248 IP-IP MG does not fully terminate the TCP protocol; this use case relates to a TCP relay or merge mode behaviour of the MG (see [ITU-T H.248.84]);
 - Use case #1.1.2: the end-to-end TCP connection is divided in two separate TCP connection segments, the ITU-T H.248 IP-IP MG provides complete TCP protocol terminations towards the remote TCP bearer connection endpoints; this use case relates to the TCP proxy mode behaviour of the MG;
- Use case #1.2 is a TCP to non-TCP interworking scenario. In this case, the ITU-T H.248 MG acts as a single TCP endpoint.

The following use cases are for further study:

- Use case #2: multipath TCP (MPTCP) and ITU-T H.248 MG involvement.
- Use case #3: multiple TCP bearer connection endpoint models such as applied by media servers (e.g., an [ITU-T H.248.69] based MSRP switch).

Figure 4 illustrates the primary network use cases.
Figure 4 – Bearer connection network use cases with TCP stream endpoints

The TCP connection control aspect is the primary scope of this Recommendation and some general conclusions are described in Table 2.

<table>
<thead>
<tr>
<th>Use case</th>
<th>TCP connection control aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>TCP connection establishment (and release) is true end-to-end, meaning that the TCP connection control procedures at the two ITU-T H.248 SEPs are tightly coupled. E.g., an incoming TCP connection establishment request (i.e. a TCP SYN packet) from remote endpoint X would lead to an immediate forwarding of that "bearer connection control request" towards remote endpoint Y. This relates to a TCP relay and merge-mode scenario.</td>
</tr>
<tr>
<td>1.1.2</td>
<td>TCP connection establishment (and release) is decoupled from end-to-end perspective. This looks like a back-to-back TCP endpoint as given by TCP proxy mode. The TCP bearer connection control procedures are independent for each SEP.</td>
</tr>
<tr>
<td>1.2</td>
<td>The ITU-T H.248 MG provides an IP host function for a single TCP connection endpoint.</td>
</tr>
</tbody>
</table>

6.2 Bearer connection model

All protocol elements and procedures described in this Recommendation are described in a connection model with up to two ITU-T H.248 terminations (Note – there might be one or multiple stream endpoint pairs (SEPP) in case of two terminations). However, they can be applied in connection models with more than two ITU-T H.248 terminations. In addition, no assumptions are made regarding either the lower layer protocols beneath the TCP layer (IPv4 or IPv6) or the upper layer protocols being carried by the TCP payload. This allows the use of the Recommendation's procedures in various connection models and use cases such as illustrated in the subclauses.

6.2.1 Model for a context with a single TCP termination

Figure 5 details the generic connection-model where a TCP-enabled termination is connected to a single non-TCP enabled termination. This model relates to use case #1.2.
Figure 5 – Two-termination context with a single TCP termination only

6.2.2 Model for a context with two TCP terminations

Figure 6 represents the general model for use case category #1.1. The type of interworking function (IWF) determines the particular MG behaviour concerning TCP handling (see clause 6.2.3).

Figure 6 – Two-TCP termination context

6.2.3 Model with focus on context-internal interworking function

Figure 7 depicts interworking functions within a two-termination context with scope on example interworking functions.

Figure 7 – Two-termination context with context-internal interworking function
The IWF is principally a context-level function, associated to a particular SEPP (here: SEPs T1(S1) and T2(S1)). In the scope of this Recommendation are TCP bearer traffic processing functions (inclusive L4 IWFs), such as:

1. Cut-through characteristic: when the two SEPs are interconnected for enabled traffic flow.
2. BCP (for TCP) information of one SEP as possible stimuli for procedures at a partner SEP, or not. For example, an incoming TCP connection release triggers an outgoing TCP connection release.
3. TCP transparent forwarding: Only the application-agnostic TCP relay mode (i.e., without any L4+ IWF) supports TCP transparent forwarding. Both the TCP merge and TCP proxy mode modify TCP header information, which contradicts TCP transparent forwarding. However, a TCP merge mode usually behaves transparently in the data transfer phase.

L3 IWF is not in scope of this Recommendation. However, TCP modes have usually a dependency on L3 IWF modes:

– The full protocol termination as part of the TCP proxy mode implies two separate, addressable IP transport endpoints, which are only subject of the B2BIH mode.
 ○ The TCP relay mode and TCP merge modes may use an underlying IP Router mode, a B2BIH mode of L3 IWF or a NAT-less mode according to [b-ETSI TR 183 068].

L4+ IWF is not in scope of this Recommendation. However, L4+ IWF may require or be dependent on certain types of L4 IWF:

– Transparent forwarding of TCP-SDUs (i.e., TCP payload data): transparent forwarding is in principle feasible for all TCP modes, unless a specific L4+ IWF impacts bit integrity.
– MSRP switch [ITU-T H.248.69]: this Recommendation could interact with [ITU-T H.248.69] because the MSRP switch relates to an "application-aware, stateful TCP proxy" type.
– MSRP relay [IETF RFC 4976]: the MSRP relay function could be provided by an ITU-T H.248 gateway as part of an application-aware TCP relay or application-aware, lightweight TCP proxy. [ITU-T H.248.69] itself does not provide explicit information concerning an "MGC controlled MSRP relay".
– Bearer-level ALG [ITU-T H.248.78]: a B-ALG service could be enabled for TCP traffic, which would imply the processing of TCP-SDUs (i.e., the TCP payload data). A B-ALG is in principle feasible for all kind of TCP modes (because processing the unstructured octet stream is carried in the TCP payload, which does not require the protocol termination of the TCP). Thus, a B-ALG inherently is characterized by non-transparent TCP forwarding.
– Transport level security [ITU-T H.248.90]: TLS transparent forwarding may be supported by all TCP modes, but TLS/TCP-to-TCP interworking implies an application-aware TCP proxy mode.

7 TCP basic connection control package

Package name: TCP basic connection control package

Package ID: tcpbcc (0x0115)

Description: This package provides the functionality to establish and release a TCP bearer connection.

NOTE – The package design follows conceptually the generic bearer connection (gb) package according to clause A.6 of [ITU-T Q.1950] by using an event/signal-based approach for connection establishment/release control.

Exceptions:
a) bearer modification is not required for TCP;
b) bearer release: uses a package-defined codepoint instead of element g/cause.

Furthermore, the package supports bi- and unidirectional TCP bearer connection release procedures.

Version: 1
Extends: None

7.1 Properties

7.1.1 Incoming bearer connection establishment blocking

Property name: Incoming bearer connection establishment blocking
Property ID: bceeb (0x0001)
Description: This property defines the MG availability to accept or reject incoming TCP bearer connection establishment procedures.

NOTE 1 – See Annex A concerning a state model based illustration.

NOTE 2 – This capability might be relevant for the prevention of other TCP processing behaviour such as "TCP relay" or "TCP merge" modes (see [ITU-T H.248.84]).

Type: Enumeration
Possible values: See Table 3.

<table>
<thead>
<tr>
<th>Value</th>
<th>MG behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>"blocked"</td>
<td>Bearer resources are prepared (i.e., resources for TCP endpoint are reserved and allocated to ITU-T H.248 termination/SEP); TCP role: not determined; prevents assumption of server role; TCP connection state = "CLOSED" (Figure A.1); ITU-T H.248 counterpart state = "BLOCKED" (Figure A.3); Any incoming TCP packet shall be silently discarded (e.g., TCP-SYN requests shall not be acknowledged), there is no state transitioning from "CLOSED" (Note 3). No outgoing TCP bearer connection control procedures are affected.</td>
</tr>
<tr>
<td>(0x0001)</td>
<td>o Signal EstBNC (clause 7.3.1): start 3-way handshake by sending of TCP-SYN; TCP client role is effectively assigned. o Start 3-way handshake by sending of TCP-SYN triggered by an interlinkage procedure [ITU-T H.248.92]; SEP adopts TCP client role.</td>
</tr>
</tbody>
</table>
"unblocked" (0x0002) | MG shall be ready for incoming TCP bearer connection control procedures;
| TCP role: not determined but prepares for a TCP server role effectively ("TCP Passive Open") (Note 4);
| o Incoming TCP-SYN: TCP server role is confirmed, 3-way handshake proceeded;
| Any outgoing TCP bearer connection control procedures are not affected:
| o Signal EstBNC (clause 7.3.1): start 3-way handshake by sending of TCP-SYN; TCP client role is effectively assigned.
| o Start 3-way handshake by sending of TCP-SYN triggered by an interlinkage procedure [ITU-T H.248.92]; SEP adopts TCP client role.

| TCP connection state: transitioning from "CLOSED" to "LISTEN" (Figure A.1);
| ITU-T H.248 counterpart state = "IDLE" (Figure A.3);

NOTE 3 – This semantic is analogous to SDP codepoint "a=setup:holdconn", see [IETF RFC 4145].

NOTE 4 – This semantic could be correlated with SDP codepoint "a=setup:actpass", see [IETF RFC 4145].

Default:
"Unblocked" (in order to be consistent with the default behaviour as in [ITU-T H.248.84]).

NOTE 5 – ITU-T H.248 profile specifications could redefine other default values.

Examples: ITU-T H.248 profiles for

1. MGs with support of "TCP proxy" mode only may choose default value "blocked" due to fully separated establishment procedures towards both remote TCP endpoints;
2. MGs with additional support of "TCP relay" and "TCP merge" modes may choose default value "unblocked" in order not to miss any incoming TCP connection establishment requests ("early media").

Defined in: LocalControl

Characteristics: Read/Write

7.1.2 **Oneway Release Indicator**

<table>
<thead>
<tr>
<th>Property name:</th>
<th>Oneway Release Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property ID:</td>
<td>ori (0x0002)</td>
</tr>
<tr>
<td>Description:</td>
<td>This property defines the behaviour in the MG in case a TCP-FIN is received for an established TCP connection. It instructs the MG whether to send a TCP-FIN.</td>
</tr>
<tr>
<td>Type:</td>
<td>Boolean</td>
</tr>
<tr>
<td>Possible values:</td>
<td>Table 4 defines the protocol semantic per value.</td>
</tr>
</tbody>
</table>
Table 4 – Semantic of property ori

<table>
<thead>
<tr>
<th>Value</th>
<th>MG semantic for TCP bearer connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>Indicate the duplex closure of the TCP bearer connection by sending a TCP-FIN autonomously.</td>
</tr>
<tr>
<td>True</td>
<td>Keep the TCP bearer connection in the half-closed state, i.e. the MG shall not generate the TCP-FIN autonomously. The MGC explicitly releases the TCP bearer connection via signal tcpbcc/RelBNC.</td>
</tr>
</tbody>
</table>

Default: False
Defined in: LocalControl
Characteristics: Read/Write

7.2 Events

7.2.1 TCP connection state change ("BNC change")

Event name: TCP connection state change
Event ID: BNCChange (0x0001)
Description: This event occurs whenever a change to a (TCP) bearer network connection occurs. For example, a bearer has been established or a bearer has been released.

The event is related to the simplified state transitioning model (in contrast to [IETF RFC 793]) described in Annex A.

NOTE – The event design is aligned with event gb/BNCChange according clause A.6.2.1 of [ITU-T Q.1950] by using an event/signal-based approach for connection establishment/release control.

7.2.1.1 EventsDescriptor parameters

7.2.1.1.1 Type of state change

Parameter name: Type of state change
Parameter ID: Type (0x0001)
Description: The type of state transitioning, given by the state after the transition.
Type: Sub-list of Enumeration
Optional: Yes
Possible values: Table 5 defines the protocol semantic per value.

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
<th>Final state (Figure A.2)</th>
<th>Semantic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est</td>
<td>[0x01]</td>
<td>Bearer Established</td>
<td>ESTABLISHED Notify MGC successful TCP bearer establishment.</td>
</tr>
<tr>
<td>Rel</td>
<td>[0x05]</td>
<td>Bearer Released</td>
<td>IDLE Notify MGC successful TCP bearer release.</td>
</tr>
</tbody>
</table>

NOTE – The numerical codepoint assignments are aligned with [ITU-T Q.1950].

Default: Est, Rel

7.2.1.2 ObservedEventsDescriptor parameters

7.2.1.2.1 Type of state change

Parameter name: Type of state change
Parameter ID: Type (0x0001)
Description: This is used to indicate what change has occurred to the TCP bearer connection.
Type: Enumeration
Optional: No
Possible values: Est [0x01] Bearer Established
Rel [0x05] Bearer Released
Default: None

7.3 Signals

The signals are related to the simplified state transitioning model (in contrast to [IETF RFC 793]) described in Annex A.

7.3.1 Establish (BNC)

Signal name: Establish BNC
Signal ID: EstBNC (0x0001)
Description: This signal triggers the bearer control function to start bearer establishment (i.e., this signal is used to initiate the TCP bearer connection establishment: the MG takes the TCP client role, sends a TCP SYN segment and completes the TCP active OPEN ("three-way handshake" procedures).

This signal only takes effect in ITU-T H.248 connection states IDLE and BLOCKED (and would be replied by an error code when in ITU-T H.248 connection state ESTABLISHED).
7.3.1.1 Additional parameters
None.

7.3.2 Release (BNC)

Signal name: Release BNC
Signal ID: RelBNC (0x0002)
Description: This signal triggers the bearer control function to send bearer release (i.e., this signal is used to initiate the TCP closure procedure(s): the MG sends a TCP FIN segment and completes the associated handshake procedure).

This signal only takes effect in ITU-T H.248 connection state ESTABLISHED (and would be replied by an error code when in ITU-T H.248 connection states BLOCKED or IDLE).

Signal type: Brief
Duration: Not applicable

7.3.2.1 Additional parameters
None.

7.4 Statistics
None.

7.5 Error codes
None.

7.6 Procedures

7.6.1 TCP endpoint creation

The MGC is responsible for creating a TCP connection enabled SEP in the MG. This is indicated via the ITU-T H.248 interface by using the SDP "m=" line according the rules as specified in clause 13.4 in [ITU-T H.248.84].

The MG shall reserve "TCP bearer resources" (such as a "TCP connection state machine") and allocates them to the SEP. The TCP endpoint role (client/server) is not determined yet.

NOTE – This functionality is synonymous to the "bearer type indication" semantic as defined by the BNC Characteristics property (BNCChar) of the bearer characteristics package (BCP), see clause A.3.1.1 of [ITU-T Q.1950].

7.6.2 TCP endpoint role assumption

The TCP role (client or server) is primarily relevant during the establishment phase of communication (of perspective of ITU-T H.248 gateways). The MGC does not explicitly assign the SEP a TCP role; it is an incoming or outgoing establishment that leads to the assumption of a TCP role. The SEP is prepared for an incoming or outgoing establishment since the moment it is created with an appropriate media descriptor.

The MGC may prevent the assumption of a server role by setting the bceb property to "blocked". The MGC may effectively request the SEP to assume the client role by sending the EstBNC signal. The SEP may also assume the client role as consequence of interlinkage procedures [ITU-T H.248.92]. If these procedures are allowed, the SEP may assume a client role e.g., as consequence of an incoming
Table 6 – TCP endpoint role assumption (at establishment phase)

<table>
<thead>
<tr>
<th>No.</th>
<th>ITU-T H.248 indication</th>
<th>MG behaviour:</th>
<th>TCP role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1) ITU-T H.248 SEP state "blocked", due to explicit signalling of bceb property.</td>
<td>Any incoming TCP packet shall be silently discarded.</td>
<td>Not yet determined</td>
</tr>
<tr>
<td>2</td>
<td>2) ITU-T H.248 SEP state "unblocked" either due to explicit signalling of bceb property or correspondent default value.</td>
<td>Incoming TCP SYN leads to subsequent completion of 3-way handshake.</td>
<td>Server role</td>
</tr>
<tr>
<td>3</td>
<td>ITU-T H.248 signal EstBNC. Value of bceb property not relevant.</td>
<td>Start of 3-way handshake for TCP connection establishment.</td>
<td>Client role</td>
</tr>
<tr>
<td>4</td>
<td>Interlinkage procedures allowed according to [ITU-T H.248.92]. Value of bceo property not relevant (although this or similar properties may be relevant at the incoming side of the interlinkage).</td>
<td>An interlinkage establishment procedure [ITU-T H.248.92], e.g., an incoming TCP establishment procedure in the associated SEP leads to the start of 3-way handshake for TCP connection establishment.</td>
<td>Client role</td>
</tr>
</tbody>
</table>

Furthermore, a TCP endpoint role assumption is only meaningful if the TCP-enabled ITU-T H.248 termination/SEP provides an actual TCP endpoint representation, which depends on the TCP mode of operation. Table 7 provides a summary.

Table 7 – State models versus TCP modes of operation

<table>
<thead>
<tr>
<th>TCP mode</th>
<th>TCP endpoint role</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) TCP to non-TCP interworking</td>
<td>either TCP ACTIVE or PASSIVE OPEN</td>
<td>Due to complete protocol termination of TCP.</td>
</tr>
<tr>
<td>b) TCP to TCP in TCP relay mode</td>
<td>none</td>
<td>Due to TCP bearer connection establishment packets transparently forwarded (stateless).</td>
</tr>
<tr>
<td>c) TCP to TCP in TCP merge mode</td>
<td>only TCP PASSIVE OPEN</td>
<td>Due to an end-to-end TCP simultaneous open emulation.</td>
</tr>
<tr>
<td>d) TCP to TCP in TCP proxy mode</td>
<td>either TCP ACTIVE or PASSIVE OPEN</td>
<td>Due to an end-to-end TCP simultaneous open emulation.</td>
</tr>
</tbody>
</table>

7.6.3 TCP bearer connection establishment

If the SEP assumes the client role, as result of an EstBNC signal or of an interlinkage procedure [ITU-T H.248.92], the MG shall initiate and complete the TCP connection setup (3-way handshake) without any further involvement of the MGC.

If the SEP assumes the server role, as result of an incoming TCP SYN, and being allowed to do so by the MGC by having the bceb property set to "unblocked", the MG shall complete the TCP connection setup handshake without any further involvement of the MGC.

The MGC may arm events tcpbce/BNCChange and g/cause (in ITU-T H.248 connection state IDLE) in order to be notified about successful or unsuccessful TCP bearer connection establishment.

The end of the TCP bearer connection establishment phase is summarized in Table 8.
Table 8 — TCP bearer establishment – Results

<table>
<thead>
<tr>
<th>TCP role</th>
<th>Result of TCP bearer connection establishment</th>
<th>MGC notification?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP client (i.e., outgoing establishment side)</td>
<td>Successful</td>
<td>Successful establishment may be notified to the MGC depending on subscription of event and parameter value tcpbcc/BNCCChange[Type=[Est]].</td>
</tr>
<tr>
<td></td>
<td>Unsuccessful</td>
<td>Unsuccessful establishment may be indicated to the MGC via a corresponding ServiceChange procedure or event g/cause.</td>
</tr>
<tr>
<td>TCP server (i.e., incoming establishment side)</td>
<td>Successful</td>
<td>As per client side.</td>
</tr>
<tr>
<td></td>
<td>Unsuccessful</td>
<td>As per client side.</td>
</tr>
</tbody>
</table>

7.6.4 TCP application data transfer

7.6.4.1 MG external

The TCP bearer connection is ready for application data transfer when remote and local TCP endpoints are both transitioned to TCP connection state "ESTAB".

The StreamMode property of the LocalControl Descriptor affects the application data flow rather than the TCP control information used to establish or close the TCP connection. The requested MG behaviour is defined in Table 9.

Table 9 – Impact of StreamMode on TCP bearer traffic at external MG interface

<table>
<thead>
<tr>
<th>Traffic direction</th>
<th>StreamMode settings</th>
<th>MG behaviour:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing</td>
<td>Sending enabled (i.e., values SendOnly, SendRecv, LoopBack)</td>
<td>All TCP packets sent</td>
</tr>
<tr>
<td></td>
<td>Sending disabled (i.e., values RecvOnly, Inactive)</td>
<td>Only TCP packets with active usage of TCP SYN, FIN, RST and PSH information are sent. Optional piggybacked data is sent.</td>
</tr>
<tr>
<td>Incoming</td>
<td>Receiving enabled (i.e., values RecvOnly, SendRecv, LoopBack)</td>
<td>All TCP packets accepted</td>
</tr>
<tr>
<td></td>
<td>Receiving disabled (i.e., values SendOnly, Inactive)</td>
<td>Only TCP packets with active usage of TCP SYN, FIN, RST and PSH information are accepted. Optional piggybacked data is accepted.</td>
</tr>
</tbody>
</table>

TCP provides the application the capability to affect the data application transfer through the PSH- and the URG-flag. The usage of these flags is application specific and therefore must be specified in the application specific procedures.

7.6.4.2 MG internal

This clause is only relevant for ITU-T H.248 contexts with TCP SEPP(s), as outlined in clause 6.2.3.

Application data may be received at a SEP in time where the other SEP of the context is not yet able to process or send the application data. The behaviour of the MG in such a situation is implementation and/or application dependent.

The interlinkage capability as profiled by clause 8 may be used to align establishment procedures in both SEPs. This may increase the likelihood that application data received in one SEP is not lost.
7.6.5 TCP bearer connection release

7.6.5.1 Characteristic of TCP bearer connection release

This package only supports bidirectional TCP bearer connection release. Consequently, two TCP half-close procedures shall be performed, resulting in a four-way handshake (see e.g., clause III.4). The transitioning from ITU-T H.248 state ESTABLISHED to IDLE of the local TCP bearer connection endpoint is only done after the successful processing of both TCP half-close procedures.

7.6.5.2 Incoming or outgoing TCP bearer connection release procedure

The TCP bearer connection endpoint shall perform an outgoing TCP bearer connection release procedures when indicated via signal RelBNC by the MGC.

The local TCP bearer connection endpoint shall be able to process incoming TCP bearer connection release requests (TCP-FIN packet) at any point in time (whilst in ITU-T H.248 state ESTABLISHED).

7.6.5.3 MG bearer plane procedures

7.6.5.3.1 MGC initiated release (outgoing side)

In order to initiate an outgoing TCP bearer connection release, the local TCP bearer connection endpoint requires an explicit indication from the MGC via signal RelBNC by the MGC (Table 10).

Table 10 – MG bearer plane procedures (outgoing side)

<table>
<thead>
<tr>
<th>MG bearer plane procedure</th>
<th>Result</th>
<th>MGC notification?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts first TCP half-close by sending TCP-FIN. Awaits TCP-FIN-ACK and TCP-FIN of second TCP half-close. Subsequent confirmation by a TCP-FIN-ACK. Transition to connection state ITU-T H.248 IDLE (TCP ‘CLOSED’).</td>
<td>Successful</td>
<td>The MGC default assumption is a “successfully released bearer connection” however it may be explicitly notified via the optionally \textit{BNCC}hange event, \textit{ObservedEventsDescriptor} parameter codepoint \textit{Type=Rel}.</td>
</tr>
<tr>
<td></td>
<td>Unsuccessful</td>
<td>There are following options: 1. Via event \textit{g/cause} (Note 1) 2. Via error code 3. Via event \textit{adid/ipstop} (see [ITU-T H.248.40]) (Note 2)</td>
</tr>
</tbody>
</table>

NOTE 1 – Not all generic codepoints are applicable for TCP.
NOTE 2 – Background: there could be still media activity in case of unsuccessful bearer release. Hence, this event could principally be used to indicate a "hanging TCP connection".

See Appendix III.4.2 for example traffic flows.

7.6.5.3.2 Bearer initiated release (incoming side)

The local TCP bearer connection endpoint shall be able to process incoming TCP bearer connection release requests (TCP-FIN packet) at any point in time (whilst in ITU-T H.248 state ESTABLISHED). The TCP-FIN packet is the start event for TCP bearer connection release (Table 11).

See Appendix III.4.1 for example traffic flows.
Table 11 – MG bearer plane procedures (incoming side)

<table>
<thead>
<tr>
<th>MG bearer plane procedure</th>
<th>Result</th>
<th>MGC notification?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awaits first TCP half-close by detection of incoming TCP-FIN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsequent acknowledgment as well as start of second TCP half-close procedures. Transition to connection state ITU-T H.248 Idle (TCP ’CLOSED’) after reception of TCP FIN-ACK.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful</td>
<td></td>
<td>See Table 5</td>
</tr>
<tr>
<td>Unsuccessful</td>
<td></td>
<td>There are the following options:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Via event g/cause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Via event adid/ipstop</td>
</tr>
</tbody>
</table>

7.6.6 Path MTU Discovery

Path MTU discovery (PMTUD) is normally started after successful establishment of TCP bearer connections, see [IETF RFC 1191] (TCP-over-IPv4), [IETF RFC 1981] (TCP-over-IPv6) and [b-IETF RFC 2923] (TCP specific problems with PMTUD). It is expected that bearer plane PMTUD procedures be completely hidden to the MGC.

PMTUD procedures may result in error conditions, such as received ICMP errors from remote side. Whether such situations should lead to error notifications of the MGC by the MG is for further studies.

7.6.7 Interaction of TCP-retransmissions with traffic control functions

Retransmissions of unacknowledged TCP segment leads to an inherent increase of the consumed transport capacity. There might be therefore possible side effects and interactions with traffic control functions, such as traffic policing or traffic shaping.

7.6.7.1 Interaction with traffic policing: IP byterate policing according to [ITU-T H.248.53]

Such a traffic policer entity is enforced at the ingress side of a TCP SEP. The traffic policer function shall consider all incoming TCP packets, without distinction between first sent or retransmitted TCP data.

8 TCP-specific stream endpoint interlinkage procedures

8.1 Introduction

Property interlinkage topology (linktopo) from clause 7.1.1 of [ITU-T H.248.92] may be used for extended TCP connection control procedures at establishment or release phase. This clause defines TCP-specific stream endpoint interlinkage procedures.

Concerning TCP bearer connection release, the Oneway Release Indicator (property tcpbcc/ori, see clause 7.1.2) may interact with "release interlinkage". All combinations are considered in the subclauses below.

8.2 Procedures

8.2.1 TCP bearer connection establishment

8.2.1.1 Stream endpoint pair interlinkage disabled

If property seplink/linktopo is not used (or disabled per default), then the incoming TCP bearer connection establishment procedure shall be identical to base package tcpbcc procedures.

NOTE – Clause IV.3.1 provides signalling examples.

8.2.1.2 Stream endpoint pair interlinkage enabled

The interlinkage property seplink/linktopo may be enabled for TCP establishment (see example ITU-T H.248 syntax in Table 12), then the incoming TCP bearer connection establishment request shall be propagated to the partner SEP, triggering there an outgoing TCP-SYN.
NOTE – Clause IV.3.2 provides signalling examples.

Table 12 – TCP bearer connection establishment – Interlinkage enabled

<table>
<thead>
<tr>
<th>ITU-T H.248 encoding (shortened command)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGC to MG: MEGACO/3 [11.9.19.65]:54321 Transaction = 1 { Context = 1 { Add = ip/1/$/$ { ; Termination T1 Media { Stream = 1 { ; SEP S1 LocalControl { seplink/linktopo = ["<interlinkedSEP>:TCP:TCP:est"] } } } } }</td>
<td>Interlinkage (for stream S1) is enabled from termination T1 to termination T2 (given by property parameter value "interlinkedSEP").</td>
</tr>
</tbody>
</table>

8.2.2 TCP bearer connection release

Only relevant for incoming TCP bearer connection release requests from MG external bearer interface. Outgoing procedures are not affected.

8.2.2.1 Stream endpoint pair interlinkage disabled and Oneway release indicator disabled

If parameter <release> in property seplink/linktopo is not used (or disabled per default) and the property ori is set to False:

- the incoming TCP bearer connection release procedure shall be not propagated to the partner SEP;
- the incoming TCP bearer connection release procedure shall lead to a bidirectional TCP bearer connection release, hence identical to base package tcpbcc procedures.

8.2.2.2 Stream endpoint pair interlinkage enabled and Oneway release indicator disabled

The interlinkage property seplink/linktopo is enabled for TCP release (see Table 13) and the property ori is set to False:

- the incoming TCP bearer connection release request shall be propagated to the partner SEP, triggering there an outgoing TCP-FIN;
- the incoming TCP bearer connection release procedure shall lead to a bidirectional TCP bearer connection release, hence identical to the tcpbcc package procedures.

NOTE – Appendix IV.5.3 provides signalling examples.

8.2.2.3 Stream endpoint pair interlinkage disabled and Oneway release indicator enabled

If parameter <release> in property seplink/linktopo is not used (or disabled per default) and the property ori is set to True:

- the incoming TCP bearer connection release procedure shall not be propagated to the partner SEP;
- the incoming TCP bearer connection release procedure shall lead to a one TCP bearer connection release (so called TCP half closure).

8.2.2.4 Stream endpoint pair interlinkage enabled and Oneway release indicator enabled

If the interlinkage property seplink/linktopo is enabled for TCP release (see Table 13), and the ori property is set to True,

- the incoming TCP bearer connection release request shall be propagated to the partner SEP, triggering there an outgoing TCP-FIN.
the incoming TCP bearer connection release procedure shall lead to a one TCP bearer connection release (so called TCP half closure).

NOTE – Appendix IV.5.3 provides signalling examples.

Table 13 – TCP bearer connection release – Interlinkage and Oneway release indicator enabled

<table>
<thead>
<tr>
<th>ITU-T H.248 encoding (shortened command)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGC to MG: MEGACO/3 [11.9.19.65]:54321 Transaction = 1 { Context = 1 { Add = ip/1/$/$ { ; Termination T1 Media { Stream = 1 { ; SEP S1 LocalControl { seplink/linktopo = ["<interlinkedSEP>:TCP:TCP:rel"] tcpbcc/ori = ON } } } } } }</td>
<td>Both release related capabilities are enabled.</td>
</tr>
</tbody>
</table>

9 TCP retransmission metrics package

- **Package name:** TCP retransmission metrics package
- **Package ID:** tcprm (0x0116)
- **Description:** This package is used to support explicit octet and packet count statistics for the TCP bearer protocol, related to TCP retransmission traffic. The statistics are applicable for all TCP modes of operation, as long as the MG is aware that the ITU-T H.248 Stream carries TCP traffic.
 - **Version:** 1
 - **Extends:** None

9.1 Properties
None.

9.2 Events
None.

9.3 Signals
None.

9.4 Statistics

9.4.1 Retransmitted TCP Octets Sent
- **Statistic name:** Retransmitted TCP Octets Sent
- **Statistic ID:** tcpros (0x0001)
- **Description:** This Statistic provides the number of retransmitted octets sent on the Termination or Stream since the Termination or Stream has existed and the Statistic has been set. The octets represent the egress retransmitted TCP packets of all TCP flows of an ITU-T H.248 Stream.
It is the total number of octets (i.e., including TCP header) retransmitted in TCP packets. At the Termination level, it is equal to the sum of the egress TCP flows over all Streams.

NOTE – The semantic of this TCP metric is similar with the managed object tcpEStatsPerfOctetsRetrans of the TCP MIB [IETF RFC 4898].

Type: Unsigned Integer
Possible values: Any non-negative value
Level: Either

9.4.2 Retransmitted TCP Packets Sent

Statistic name: Retransmitted TCP Packets Sent
Statistic ID: tcprps (0x0002)
Description: Provides the number of retransmitted packets sent on the Termination or Stream since the statistic has been set. The packets represent the egress retransmitted TCP packets of all TCP flows of an ITU-T H.248 Stream.

It is the total number of TCP packets, inclusive of TCP connection establishment, data transfer and connection release phases. At the Termination level, it is equal to the sum of the egress TCP flows over all Streams.

NOTE – The semantic of this TCP metric is similar with the managed object tcpRetransSegs of the TCP MIB [IETF RFC 4022].

Type: Unsigned Integer
Possible values: Any non-negative value
Level: Either

9.5 Error codes

None.

9.6 Procedures

9.6.1 Overview – "TCP retransmission traffic" and connection models

Connection models with a single TCP-enabled termination/SEP are uncontroversial. The scope here is therefore on connection models with more than one termination/SEP. Figure 8 illustrates an example with a TCP-enabled stream endpoint pair (SEPP). ITU-T H.248 tcprm statistics are activated on SEP_{T2(S1)}, thus only the traffic direction from X to Y is relevant.
Figure 8 – "TCP retransmission traffic" in (TCP, TCP) connection models

There are two fundamental configurations for a TCP-enabled SEPP:

1. TCP merge or TCP relay mode: TCP retransmission traffic originates in X only; or
2. TCP proxy mode: TCP retransmission traffic only originates in SEP T2(S1).

However, the tcprm statistics are applicable to both scenarios.

9.6.2 Egress TCP traffic – Statistic "Retransmitted TCP Packets Sent"

Every outgoing, retransmitted TCP packet, sent from an ITU-T H.248 TCP Stream/Termination, is counted by Statistic tcprm/tcprps.

9.6.3 Egress TCP traffic – Statistic "Retransmitted TCP Octets Sent"

The measurement represents the volume of TCP retransmission of all TCP flows of an ITU-T H.248 Stream, i.e., across all outgoing, retransmitted TCP packets according to Statistic tcprm/tcpros.

9.6.4 Derived statistics

The ITU-T H.248 statistics of this package together with other TCP related statistics (such as from [ITU-T H.248.84]) allow the derivation of other TCP performance metrics. This clause provides one example.

9.6.4.1 Performance metric "TCP efficiency"

This metric is defined in clause 4.2 in [b-IETF RFC 6349] according to the following equation:

\[\text{TCP efficiency} \% = \frac{\text{Transmitted bytes} - \text{Retransmitted bytes}}{\text{Transmitted bytes}} \times 100 \]

Metric TCP efficiency for an ITU-T H.248 stream/termination could be calculated (by the MGC), using the two ITU-T H.248 statistics TCP Octets Sent (tcptv/tcpos, see clause 10.4.1 of [ITU-T H.248.84]) and Retransmitted TCP Octets Sent (tcprm/tcpros).

10 Package-less TCP control

10.1 Package-less TCP control in other ITU-T H.248.x-Recommendations

Pure SDP is used for the establishment of TCP bearer connection control by following Recommendations:

- [ITU-T H.248.69]: for MSRP-over-TCP bearers in MSRP switch configurations;
- [ITU-T H.248.84], clause 13: TCP merge and TCP relay mode configurations.

The (H.248) Property-based control method (according to clauses 7 to 9) is applied for stateful TCP handling by the MG, which covers TCP to non-TCP interworking (i.e., one SEP realizes a TCP endsystem mode), TCP-to-TCP interworking in TCP proxy mode and context configurations with more than two TCP-enabled ITU-T H.248 terminations which are interconnected.
10.2 Principal ITU-T H.248 control steps for communication establishment

10.2.1 Overview

Figure 9 indicates possible ITU-T H.248 control steps concerning the establishment of TCP connections in environments demanding NAT traversal support.

1: Creation SEP / SEPP

2: Bearer type (L4/L3) indication to SEP: "TCP/IP"

3: Block / unblock L4 bearer control procedures at SEP

4: Start IP transport connection establishment procedure ("TCP Open")

5: Local L4/L3 NAT traversal support

6: Successfully established IP transport connection (State "ESTABLISHEDTcp")

7: Local L4 + NAT traversal support

8: Active communication phase (i.e., transfer of application data)

It is apparent that some steps might be combined (e.g., 1 and 2) and that specific steps might be optional (e.g., 3, 5, 7).

Table 14 provides an inventory of possible control elements from ITU-T H.248 perspective. The column "H.248/SDP element" refers to "package-less TCP control".
Table 14 – ITU-T H.248 control steps and possible control elements

<table>
<thead>
<tr>
<th>ITU-T H.248 control step</th>
<th>ITU-T H.248 property</th>
<th>H.248/SDP element</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment phase: "IP transport connection establishment"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Creation SEP / SEPP</td>
<td>ADD.req/MOD.req command</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bearer type (L4/L3) indication to SEP</td>
<td>Indirect: package elements used from TCP-related ITU-T H.248 packages</td>
<td>"m="-line <proto> (clause 13.4 of [ITU-T H.248.84] and clause 6.2 of [ITU-T H.248.69])</td>
</tr>
<tr>
<td>3</td>
<td>Block / Unblock L4 Bearer Control Procedures at SEP</td>
<td>Property: tcpbcct/becb</td>
<td>"a=setup:holdconn"</td>
</tr>
<tr>
<td>4</td>
<td>Start IP Transport Connection Establishment Procedure ("TCP Open")</td>
<td>TCP proxy mode: Event: tcpbcct/BNCCChange Signal: tcpbcct/EstBNC</td>
<td>TCP proxy mode: not possible due to [ITU-T H.248.84] "a=setup:" semantics for LD/RD usage</td>
</tr>
<tr>
<td>5</td>
<td>Local L4/L3 NAT traversal support</td>
<td>[ITU-T H.248.37]</td>
<td>"a=setup:" for [ITU-T H.248.84] NAT-T</td>
</tr>
<tr>
<td>6</td>
<td>Successfully established IP Transport Connection (State "EstablishedTCP")</td>
<td>Event: tcpbcct/BNCCChange</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>Local L4+ NAT traversal support</td>
<td>[ITU-T H.248.78]</td>
<td>e.g., "a=msrp-cema" Note 2</td>
</tr>
<tr>
<td>Communication phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Active communication phase (i.e., transfer of application data)</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1 – The SDP "m=" line <proto> element allows the indication of a) a single protocol or b) a protocol stack (i.e., multiple protocol layers). The protocol stack based value is inherently ambiguous in case of the requirement in indicating a particular protocol layer out of the stack. This is a well-known issue of this element.

NOTE 2 – The SDP based indication seems to be principally deficient ("application protocol specific SDP"), whereas [ITU-T H.248.78] supports the flexibility of different application protocols.

10.2.2 Step 1: TCP-enabled termination/stream endpoint creation

Not SDP related, based on ITU-T H.248 Command request.

10.2.3 Step 2: Bearer type indication "TCP"

The 'TCP' bearer type must be included according to the SDP-based method as defined by clause 7.6.1. This is applicable for both the package-less and the package-based approaches.

The SDP "m="-line <proto> element may or may not contain upper layer protocol information (above the TCP layer), leading to application-aware or application-agnostic indications.

TCP provides a bidirectional communication service, hence the SDP "m="-line <proto> values need to be consistent in the LD/RD concerning the L4 indication of 'TCP'.

10.2.4 Step 3: Block / Unblock TCP bearer control procedures at SEP

Block / Unblock TCP bearer control procedures at SEP are not supported by SDP, thus property tcpbcc/bceb required.

NOTE – [IETF RFC 4145] SDP codepoint "a=setup:holdconn" is intended to hold TCP bearer connection establishment, however, it is semantically unclear how an ITU-T H.248 MG should process any incoming TCP traffic.

10.2.5 Step 4: Start TCP connection establishment procedure ("TCP Open")

When the SEP performs full TCP protocol termination (TCP proxy mode and TCP to non-TCP interworking), the [IETF RFC 4145] SDP "a=setup" attribute cannot be used to derive the semantic of a "TCP active OPEN" or "TCP passive OPEN" procedure since it is mandatory to set the attribute to "actpass" as the indication of the TCP mode. Thus the use of this method (usage of values "active" and "passive" in the "a=setup" attribute) in cases where TCP protocol termination is required (as package-less approach) is deprecated. Furthermore:

- In a TCP active OPEN that method does not allow delayed establishment.
- If the SDP "m=" line <proto> element also contains other protocol layers (e.g., TLS, DTLS), the "a=setup" attribute may also trigger or influence the connection establishment at the upper layer.

The use of the signal tcpbcc/EstBNC triggers an immediate TCP bearer connection establishment. The use of this signal also implies TCP protocol termination, which is not applicable to a TCP relay and TCP merge mode.

The TCP proxy mode configuration implies a packaged-based approach and if the SDP "a=setup" attribute is used in the LD/RD then the SDP "a=setup" value settings shall be according to [ITU-T H.248.84], Table 1. Likewise for TCP to non-TCP interworking.

10.2.5.1 Potential benefits of a package based approach for bearer establishment

The package based approach offers services that might be of interest for specific TCP-based communication services and network solutions:

- Capability to monitor the TCP bearer establishment or lack of it with the tcpbcc/BNCCChange event;
- Capability to control, e.g., delay, the timing of a TCP bearer establishment procedure with the tcpbcc/EstBNC signal and tcpbcc/bceb property;
- Capability to block incoming TCP bearer establishment requests;
- Capability to decouple TCP bearer establishment procedures and upper layer bearer establishment procedures.

10.2.6 Step 5: Local L4/L3 NAT traversal support

Basically, local L4/L3 NAT traversal support is controlled via [ITU-T H.248.37], [ITU-T H.248.50] or/and [ITU-T H.248.84], but could be complemented by SDP-based signalling e.g., in case of "ICE for TCP" [b-IETF RFC 6544].

10.2.7 Step 6: Reporting successfully established TCP connection

Reporting successfully established TCP connection is not possible via SDP, thus event tcpbcc/BNCCChange is required.

10.2.8 Step 7: Local L4+ NAT traversal support

Local L4+ NAT traversal support is not possible via SDP for general L4+ NAT-T, thus [ITU-T H.248.78] is required.
NOTE – Some application-specific L4+ NAT-T support functions could be associated with application-specific SDP information, however, this is out of scope of this Recommendation.

10.2.9 Step 8: Active communication phase
Control of functions during the active communication phase (such as performance measurements or application data inactivity detection for TCP) is out of scope of the SDP.

10.3 Release of TCP connection
The release of a TCP connection is not possible via SDP. The hard removal of a TCP-enabled stream endpoint via an ITU-T H.248 MODify req or SUBtract req command would lead to a complete release of MG level TCP resources but may not always ensure a correct and complete TCP closure handshake with the remote TCP bearer connection endpoint. Usage of signal tcpbcc/RelBNC removes the TCP resources but keeps other resources associated with the SEP. This represents a benefit of the package-based approach in the TCP proxy case, especially in TCP to non-TCP scenarios.

11 Security considerations
The primary focus of this Recommendation is the ITU-T H.248-based control of establishment and release of TCP bearer connections. Especially the establishment phase is critical from a security perspective due to a plethora of well-known attack scenarios, see e.g., [b-Bellovin1989] and [b-CPNI-TCP] and the references cited by these publications.

The IETF was (and is still active) developing extensions and practices in order to enhance security for TCP, e.g., [b-IETF RFC 5925] or [b-IETF RFC 6528].

The ITU-T H.248 MG could be consequently subject of a TCP security threat itself (particularly when terminating the TCP protocol, i.e., "TCP endpoint" or "TCP proxy" mode), or forward TCP traffic related to potential attacks of downstream network equipment.

In order to minimize any risk:
- the MGC could actively
 - monitor the TCP bearer connection establishment by requesting notification about successfully established TCP-enabled terminations/stream endpoints;
 - delay/block TCP data transfer as long as the TCP bearer connection establishment process is ongoing;
- the MG could be used for countering security attacks by enforcing policy rules on TCP/IP packets according e.g.,
 - the filtering guidelines by clause 9.1.2.1 of [ITU-T H.248.79]; or
 - a more advanced policing using DPI [b-ITU-T H.248.86].

Any concrete considerations concerning the overall security architecture, trust models, network protection, etc. should be subject of the applied ITU-T H.248 profile specification.
Annex A

State modelling for TCP bearer connection endpoints

(This annex forms an integral part of this Recommendation.)

A.1 Introduction and purpose

The TCP basic connection control package (clause 7) is tightly coupled to a state model, because the event (tcpbce/BNCCChange) and signal (tcpbce/EstBNC) are related to state transitioning behaviour. The detailed user plane state model for TCP is given by [IETF RFC 793]. However, a simplified view is sufficient from perspective of ITU-T H.248 gateway control procedures.

The underlying state model of package tcpbce is described by this annex.

A.2 Original state model for TCP bearer connection endpoints

The principle model for TCP is comprised of 12 states and defined by Figure 6 of [IETF RFC 793], see Figure A.1.

![TCP connection state diagram][1]

Figure A.1 – TCP connection state diagram [IETF RFC 793]

A.3 Simplified state model for ITU-T H.248-based TCP basic connection control

The TCP basic connection control package makes a couple of assumptions, primarily:

- **Bearer establishment:**
 - neglects TCP simultaneous open;
 - interim states of 3-way handshake are not needed;

- **Bearer release:**
 - one-way closure not considered;
 - all interim states between the transitioning from TCP states ESTAB to CLOSED are not needed.
The resulting simplified model is depicted by Figure A.2:

![Figure A.2 – Simplified state model for ITU-T H.248-based TCP basic connection control](image)

There are two remaining states, called IDLE and ESTABLISHED in the ITU-T H.248 state model. Signal tcpbcc/EstBNC is used for triggering state changes by the MGC, event tcpbcc/BNCChange indicates successfully completed state transitions to the MGC. In more detail, transitioning completed:

- to state ESTABLISHED when TCP-ACK (as third element of TCP three-way handshakes)
 - received for incoming TCP bearer connection establishment procedure; and
 - sent for outgoing TCP bearer connection establishment procedure
- to state IDLE when TCP-FIN-ACK (as fourth element of two TCP half-closures)
 - received for incoming TCP bearer connection release procedure; and
 - sent for outgoing TCP bearer connection release procedure.

The MGC may block the establishment of an incoming TCP bearer connection request, e.g., whilst TCP role assignment is yet unclear or during ongoing call control signalling procedures, etc. This blockage results in a third state BLOCKED from an ITU-T H.248 perspective, see Figure A.3.

NOTE – The concept of blocking/unblocking of bearer connection procedures is a known concept from BICC (see e.g., [b-ITU-T Q.2630.1]).
A.4 State models versus TCP modes of operation

Support of different TCP modes of operations is primarily driven by resource related cost factors and performance aspects. The amount of required MG resources nearly correlates with the number of considered TCP connection states. Table A.1 provides an overview about state modeling versus TCP modes.

Table A.1 – State models versus TCP modes of operation

<table>
<thead>
<tr>
<th>State model</th>
<th>TCP relay</th>
<th>TCP merge</th>
<th>TCP proxy (light)</th>
<th>TCP proxy (full)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalling plane (ITU-T H.248 model)</td>
<td></td>
<td></td>
<td>See Figures A.2 or A.3</td>
<td></td>
</tr>
<tr>
<td>Bearer plane (considered TCP connection states)</td>
<td>0 ["stateless"]</td>
<td>2 (Note 1)</td>
<td>2 ≤ ... < 12 (Note 2)</td>
<td>12 (see Figure A.1)</td>
</tr>
</tbody>
</table>

NOTE 1 – The MG roughly needs to keep track of transitioning from TCP state "CLOSED" to "ESTAB".

NOTE 2 – The lightweight TCP proxy mode is not detailed further.
Appendix I

Sample use-cases of TCP connection control

(This appendix does not form an integral part of this Recommendation.)

I.1 Use case #1: WebRTC to NGN/IMS interworking function with termination of transport security by MG

This use case shows an MG that provides a transport layer interworking function between a WebRTC-based data application and a UE located in a NGN or IMS network. This is an example for "TCP to non-TCP" interworking (according to use case #1.2 in clause 6.1).

Background:

Web-based real-time communication services (WebRTC) include non-media (data) applications, which are using a datagram connection for data transport (see [b-IETF rtcweb-data]). The selected protocol solution results in a hierarchical protocol layering (data-over-SCTP-over-DTLS-over-ICE/UDP), driven by NAT traversal complexity, multiplexing and security related aspects.

The considered data applications (by WebRTC) would use legacy TCP transport in non-WebRTC IP network environments. ITU-T is currently developing a Recommendation that will address several variants of ITU-T H.248 WebRTC gateways positioned for WebRTC interworking scenarios.

The setup of termination T2 is controlled by the TCP connection control package while the setup of termination T1 is out of scope of this Recommendation.

Figure I.1 – Use-case #1: WebRTC to IMS interworking function
Appendix II

Example call flows

(This appendix does not form an integral part of this Recommendation.)

II.1 Overview

The following example call flows illustrate the typical behaviour for basic TCP connection establishment and release. The establishment behaviour is related to the TCP mode of operation.

II.1.1 Mode type: application agnostic TCP-proxy

The MGC needs to assign the TCP mode of operation to an ITU-T H.248 context. This is fundamentally based on SDP information elements according to clause 13.5 of ITU-T H.248.84.

The MGC could use also additional explicit ITU-T H.248 signalling elements for the SEP individual assignment of TCP client/server roles, via the indication of incoming or outgoing TCP bearer connection establishment procedures, using the tcpbcc package capabilities as defined by this Recommendation, see example in clause II.2.2.

II.2 Basic TCP bearer connection control

II.2.1 Network configuration

The call flow is based on the network configuration as shown in Figure II.1:

Figure II.1 – Configuration "application agnostic TCP-proxy"

The use case shows an MG with two SEPs (labelled as T1(S1) and T2(S1)) configured in an application agnostic TCP-proxy mode. The configuration and the call flow are characterized as follows:

- MGC strict control of the TCP bearer endpoints on both terminations
- Stream endpoint T1(S1): TCP-server, i.e., providing incoming TCP bearer establishment procedures ("TCP passive open" according [IETF RFC 793])
- Stream endpoint T2(S1): TCP-client, i.e., providing outgoing TCP bearer establishment procedures ("TCP active open" according [IETF RFC 793])
– TCP-connection for both terminations are setup in parallel
– TCP-connection released by remote TCP-endpoint of termination T1; application data may still flow from UE-Y to UE-X.

II.2.2 Establishment

Figure II.2 illustrates a traffic flow example concerning the establishment of an end-to-end TCP connection between UE-X and UE-Y, which relates to two TCP connection segments from ITU-T H.248 MG perspective (due to TCP proxy mode).

The example traffic flow indicates parts of application control signalling (here SIP/SDP with scope on SDP Offer/Answer information), gateway control signalling (ITU-T H.248) and bearer plane traffic (here TCP packets for connection establishment).

The MGC follows an early reservation strategy of MG resources, thus initiates the creation of a "TCP-TCP" context in the MG already during still ongoing capability negotiations at application control level. In order to prevent accidental TCP state transitioning in the MG due to "too early TCP media", the MGC decides to block explicitly TCP bearer connection establishment (via property tcpbce/bceeb).

As soon as application control signalling allows, the MGC enforces incoming (at SEP T1(S1)) and outgoing (at SEP T2(S1)) TCP bearer connection establishment procedures.

The MGC requests to be notified of successfully established TCP bearer connection segments by setting the tcpbce/BNCchange event in this example.

The signalling scenario is termed as "MGC strictly controlled" due to the fact that only the TCP basic connection control package is used. The interlinkage capability (according to [ITU-T H.248.92]) as described in clause 8 would tightly couple both TCP connection control procedures, see clause IV.3.2.
NOTE 1 – SDP-based TCP information shall not trigger TCP bearer connection control procedures!

NOTE 2 – RD could be either removed, or provide already the bearer type indication (for TCP).

NOTE 3 – The establishment procedures for the two TCP connection segments towards UE-X and UE-Y are both independent.

Figure II.2 – Traffic flow example for an MGC strictly controlled TCP bearer connection establishment using the TCP-proxy mode

II.2.3 Release

Figure II.3 illustrates the traffic flow for the use case when the MGC does not know which remote TCP endpoint initiates TCP CLOSE procedures. Further, the default case of a bidirectional TCP bearer connection release is described. The MGC subscribes to event `tcpbcco/BNCChange` in order to be notified about release activities. It may be reminded that the notification is only issued when the local SEP has successfully transitioned to ITU-T H.248 connection state IDLE.
Figure II.3 – Traffic flow example for an incoming TCP bearer connection release, explicitly propagated by the MGC in outgoing direction

Figure II.4 provides another release example: the MGC enforces a TCP bearer release by initiating parallel TCP bearer connection release procedures towards both remote TCP endpoints X and Y.

Figure II.4 – Traffic flow example for outgoing TCP bearer connection release procedures towards both remote TCP endpoints X and Y
II.3 Extended TCP bearer connection control

II.3.1 Establishment

This use case applies to the same configuration as the previous use case depicted in Figure II.2. There is no necessity for explicit TCP bearer establishment control by the MGC in this example, because e.g., of lacking NAT traversal support, or application specific, or security dedicated requirements. The direction of TCP bearer establishment is also unimportant from MGC point of view. The MGC only wants to wait with TCP establishment as long as application control level capability negotiations become stable, hence the MGC initially blocks possible establishment. Later on, TCP bearer establishment is unblocked and the interlinkage at the concerned stream endpoint pair is enabled, in both directions in the example of Figure II.5.

The notification of successful TCP bearer establishment is again an optional feature, up to the MGC level application/service control logic.

Figure II.5 – Traffic flow example for an extended TCP bearer connection establishment

II.3.2 Release

Figure II.6 provides an example for an MG autonomous release of the TCP bearer connection. The MGC enables interlinkage in both traffic directions in this example, e.g., because the MGC does not know which remote TCP endpoint is initiating a TCP release.
Figure II.6 – Traffic flow example for an extended TCP bearer connection release
Appendix III

Illustration of the TCP basic connection control package protocol semantics
(This appendix does not form an integral part of this Recommendation.)

III.1 Overview
The tcpbcc package (clause 7) defines the basic TCP bearer connection control with scope on support for establishment and release. The illustrated use cases are abstracted examples.

III.2 Conventions
An ITU-T H.248 context with a single SEPP; only one SEP (labelled as T1(S1)) is considered. The MG bearer interface (TCP) is highlighted besides the ITU-T H.248 interface.
Furthermore all Figures indicate possible Event notifications to the MGC by the MG. The particular event(s) would be related to state changes of the local TCP bearer connection endpoint.

III.3 Establishment of TCP bearer connections

III.3.1 Successful establishment – Terminating side
See Figure III.1, termed as use case (E.1):

![Figure III.1 - Successful establishment – Terminating side](image)

Optional MGC steps:
* "1", i.e., default value "unblocked" would be applied.
* "4" ("8"), i.e., when the MGC does not want to be notified about successful establishment

NOTE 1 – Abstracted ITU-T H.248 commands, also replies are not shown.
NOTE 2 – Implies "TCP server" role assignment to SEP T1(S1).

Figure III.1 – Successful establishment – Terminating side
The MGC explicitly blocks incoming TCP traffic handling (1). The MG discards any incoming TCP traffic (2). The MGC unblocks the SEP (3) and subscribes for state transitioning related to TCP bearer connection establishment (4). There is an incoming TCP bearer connection establishment procedure, given by a TCP three-way handshake (5, 6, 7). The TCP-ACK (7) leads to an H.248 state transition from IDLE to ESTABLISHED, which again leads to the notification of the MGC (8).
III.3.2 Successful establishment – Originating side

See Figure III.2, use case (E.2).

Figure III.2 – Successful establishment – Originating side

This scenario is similar to the previous one, with the exception of the following behaviour:

- MGC triggers outgoing TCP bearer connection establishment by signal *EstBNC* (4); and
- a corresponding TCP three-way handshake (5, 6, 7) in the opposite direction.
III.3.3 Unsuccessful establishment

Figure III.3 illustrates principle unsuccessful establishment scenarios.

The TCP three-way handshake is basically not completed, either in the incoming (see scenario (E.1), clause III.3.1) or outgoing (see scenario (E.2), clause III.3.2) direction. The ITU-T H.248 state remains in IDLE. The MGC may explicitly supervise the establishment process (1), see also clause 7.6.5.3.1.

The MG is able to detect unsuccessful establishment in this example, e.g., due to received TCP protocol control information (2).
III.4 Release of TCP bearer connections

III.4.1 Successful release – Terminating side

See Figure III.4, termed as use case (R.1).

NOTE 1 – Abstracted ITU-T H.248 commands, also replies are not shown.

Figure III.4 – Successful release – Terminating side

The MGC wants to be notified of successfully release TCP bearer connection (1). The MG receives a TCP-FIN (2) which starts a TCP bearer connection release by the remote TCP endpoint. The MG acknowledges the release requests (3) and initiates the closure of the other TCP traffic direction (4). The second TCP half-closure procedures is completed by (5), which leads to an ITU-T H.248 state transition from ESTABLISHED to IDLE, and the notification of the MGC (6).
III.4.2 Successful release – Originating side

See Figure III.5, use cases (R.2) illustrates an outgoing, bidirectional TCP bearer connection release.

R.2) Use case "Outgoing bearer release":

![Diagram showing successful release process]

Figure III.5 – Successful release – Originating side

III.4.3 Unsuccessful release

An unsuccessful TCP bearer connection release procedure (Figure III.6) implies that the MG still remains in ITU-T H.248 state ESTABLISHED and that the MGC could possibly suspect a yet to be established TCP bearer connection. There are multiple options how such protocol deadlocks could be resolved. The situation is cleared in this example by the subtraction of the termination by the MGC (1).

R.3) Use case "Unsuccessful bearer release":

![Diagram showing unsuccessful release process]

Figure III.6 – Unsuccessful release
Appendix IV

Illustration of the TCP-specific interlinkage procedures

(This appendix does not form an integral part of this Recommendation.)

IV.1 Overview
Clause 8 describes TCP-specific stream endpoint interlinkage procedures based on [ITU-T H.248.92]. The effect of the interlinkage capability is illustrated in clause IV.3 ([ITU-T H.248.92] property seplink/linktopo applied on TCP; only the inter-SEP interlinkage variant is used). Clause IV.4 illustrates the application of the OneWay release indicator (property tcpbccl/ori). Clause IV.5 describes examples of combined usage of both capabilities.

The illustrated use cases represent just a few examples. An exhaustive consideration of all possible combinations is out of scope.

IV.2 Conventions
An ITU-T H.248 context with a single SEPP, given by SEPs T1(S1) and T2(S1), is considered. The two properties (seplink/linktopo and tcpbccl/ori) are related to individual SEPs (as opposed to Context-level properties); however, the scope is on SEP T1(S1) property settings only.

Furthermore, all Figures indicate possible Event notifications to the MGC by the MG. The particular event(s) are not discussed, but could be for instance related to state changes of the local TCP bearer connection endpoint(s) (as defined by the tcpbccl package).

IV.3 Usage of stream endpoint interlinkage capability
Property seplink/linktopo is defined in clause 7.1.1 of [ITU-T H.248.92] and TCP-specific interlinkage procedures are defined in clause 8. Interlinkage may be used for TCP bearer connection establishment and release procedures.

IV.3.1 Property "seplink/linktopo" not used for interlinkage
There will be decoupled SEPs in case of unused interlinkage (abstracted by semantic FALSE in Figure IV.1), i.e., reflects the semantic of the tcpbccl package. From the perspective of the MG, there are two separate TCP bearer connection segments: the two segments related to TCP connections \(X \leftrightarrow MG\ (SEP_{T1(S1)})\), and \(Y \leftrightarrow MG\ (SEP_{T2(S1)})\).
Figure IV.1 – Property "seplink/linktopo" not used for interlinkage

Here: an incoming TCP bearer connection establishment request (via TCP-SYN) or release request (via TCP-FIN) at SEP T1(S1) does not affect SEP T2(S1).

Figure IV.2 illustrates correspondent example TCP bearer establishment signalling scenarios:

Usage of SEPP Interlinkage: TCP bearer connection establishment/release – Incoming request – Property "seplink/linktopo not used"
Figure IV.2 – Signalling example for TCP bearer connection establishment, property "seplink/linktopo" not used for interlinkage

It may be emphasized that the seplink/linktopo setting at SEP T2(S1) does not have any impact in these scenarios.

If an incoming TCP bearer connection establishment request from remote X should also lead to establishment procedures towards remote TCP endpoint Y, then the MGC needs to be involved (see E.1 in the example).

IV.3.2 Property "seplink/linktopo" enabled for establishment and release

A property value setting of seplink/linktopo equal to "<interlinkedSEP>:TCP:TCP:est.rel" leads to a forwarding of the TCP bearer connection control request within a SEPP (see Figure IV.3.).
The TCP open and closure procedures, when initiated by remote TCP endpoints (X or Y), could now have an end-to-end scope. E.g., the three-way handshake for TCP bearer connection establishment or a TCP half-closure for oneway TCP bearer connection release would be led by remote TCP endpoints (X, Y) and forwarded via the SEPP, under the condition that both \textit{seplink/linktopo} properties (of \textit{SEP} T1(S1) and \textit{SEP} T2(S1)) would be enabled for interlinkage.

Figure IV.4 illustrates correspondent signalling scenarios at the example of TCP bearer establishment:
It may be emphasized that the seplink/linktopo setting at SEP T2(S1) does not have any impact in these scenarios (because the property only considers incoming procedures at SEP T1(S1)).

IV.4 Usage of Oneway Release Indicator property

Property tcpbcclori is defined in clause 7.1.2. The property affects only TCP bearer connection release procedures.

IV.4.1 Property "ori = FALSE"

See Figure IV.5. Semantic FALSE implies base package behaviour, i.e., a complete TCP bearer connection release.
Here: an incoming TCP bearer connection release request (via TCP-FIN) at SEP\textsubscript{T1(S1)} triggers an immediate TCP half-closure of the reverse direction towards X, but does not affect SEP\textsubscript{T2(S1)}.

IV.4.2 Property "ori = TRUE"

Semantic TRUE results in a one-way TCP bearer connection release, see Figure IV.6.
Figure IV.6 – Property "ori = TRUE"

IV.5 Combined consideration of both properties

Only TCP bearer connection release (due to ori property) needs to be considered.

IV.5.1 Property settings: "ori = FALSE" and "seplink/linktopo" enabled for release

See Figure IV.7. The ori property codepoint leads to a complete TCP bearer connection release between MG and remote TCP endpoint X, and the seplink/linktopo property codepoint results in an initiation of a TCP half-closure procedure from SEP_T2(S1) towards remote TCP endpoint Y. Whether the entire TCP bearer connection with Y will be completely released depends on remote TCP endpoint Y.
Figure IV.7 – Property settings: "ori = FALSE" and "seplink/linktopo" enabled for release

IV.5.2 Property settings: "ori = TRUE" and "seplink/linktopo" enabled for release

See Figure IV.8. The ori property codepoint leads to an oneway TCP bearer connection release only between MG and remote TCP endpoint X, and the seplink/linktopo property codepoint results again in an initiation of a TCP half-closure procedure from SEP_{T2(S1)} towards remote TCP endpoint Y. Whether the entire TCP bearer connection with Y will be completely released depends on remote TCP endpoint Y.
Usage of both \texttt{tcepec} properties: TCP bearer connection release – Incoming request – Property settings: "ori = TRUE" and "seplink/linktopo enabled at T1 for release"

Figure IV.8 – Property settings: "ori = TRUE" and "seplink/linktopo" enabled for release
Figure IV.9 summarizes the impact of both properties (NOTE – Only enabled seplink/linktopo depicted; unused interlinkage does not provide any new information).

Use case (C.1): the incoming TCP bearer connection release request from remote TCP endpoint X is propagated on the other side to remote TCP endpoint Y, and the tcpbcc package behaviour of a bidirectional TCP connection release towards X.

Use case (C.2): Property ori enforces a TCP half-closure in the direction to X, and seplink/linktopo the start of TCP bearer connection release towards Y.
Appendix V

Relation to similar ITU-T H.248 packages

(This appendix does not form an integral part of this Recommendation.)

V.1 Overview of TCP related packages

There are some existing packages which either are defined for TCP or could be theoretically reused for TCP, see Figure V.1.

![Figure V.1 – Overview of TCP related packages](image)

The specific relation to this Recommendation is described below.

V.2 ITU-T Q.1950

This Recommendation introduces 11 ITU-T H.248 packages for usage in so-called Bearer-Independent Call Control type of network architectures. Two out of the eleven could be principally applied (with extensions) for TCP networks:
V.2.1 Package 'gb' (generic bearer connection)
TCP is a connection-oriented protocol, which implies a connection state model (see Figure 6 in [IETF RFC 793]) in the bearer connection endpoints. This is a common characteristic with the gb package (Table V.1).

Table V.1 – Q.1950-defined ITU-T H.248 packages – gb package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic bearer connection package</td>
<td>The gb package provides control elements for such stateful bearer technologies, which implies basic stimuli for the bearer control signalling protocol as well as a basic connection state concept. The bearer connection endpoint models supports also incoming and outgoing bearer control protocol procedures, which is e.g., required for the modelling of active/pasive open (or close) procedures or client/server behaviour.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation:

The TCP connection state model could be basically mapped on the underlying gb package state model. The gb package could be used for the majority of TCP connection control procedures.

Open/differences:
- TCP explicitly supports simultaneous bearer connection establishment and release, which would be so-called collision scenarios in case of the gb package.
- TCP bearer connection release: unidirectional concept (called half close), whereas the gb package considers bi-directionality only.

V.2.2 Package 'bcp' (bearer characteristics)
The notion of bearer characteristics relates to a particular (or multiple) protocol layer(s) in the bearer plane (see Table V.2):

Table V.2 – Q.1950-defined ITU-T H.248 packages – bcp package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearer characteristics package</td>
<td>The existing bcp package supports an initial set of bearer technologies such as RTP/IP for IP-based networks. However, bearer type "TCP" is not supported.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation:

Usage of the gb package would imply the need for an explicit bearer type indication such as supported by the bcp package.

Open/differences:
- A new version or an extension package with additional codepoints would be required (at least bearer type "TCP", but possibly also "TLS", "TLS/TCP", "DTLS", "SCTP", "DCCP").
- Instead of the Property-based bearer type indication (via bcp package) at LCD level exists the alternative of the SDP-based bearer type indication (via "m=" line element proto) at LD/RD level.
- Use case TLS-over-TCP: the establishment/release of the TCP connection and the TLS session could be controlled via the gb package. The bearer connection control procedures at TCP and TLS level could be temporarily decoupled, which would imply the modification of the bcp/BNCChar property value, a scenario originally out of scope of the bcp package.

V.2.3 Package 'bnct' (bearer network connection cut through)
See Table V.3.
Table V.3 – Q.1950-defined ITU-T H.248 packages – bnct package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearer network connection cut through package</td>
<td>The MG can indicate whether the cut through will occur "early" or "late", which are effectively related to bearer control protocol signalling events. Early relates to the bearer cutting-through on the establishment. Late refers to cutting-through on the confirmation.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation

The aspect of "cut-through" control is relevant for TCP as well, perhaps even more important due to a) the assured transport characteristic of TCP (e.g., handling of acknowledgments, loss, retransmission) and ITU-T H.248 MG TCP modes (such as relay, merge or proxy).

Questions for clarification:
- The explicit cut-through semantic might be also an implicit capability of TCP modes.
- Unclear is the interaction with StreamMode property settings?

Understanding:
The "BNC Cut through" package does not actually control cut through, i.e., from clause A.4.5 of [ITU-T Q.1950]: The MGC can ask the MG using the BNCCT property as to when the cut through of a particular bearer will occur. The MG can indicate whether the cut through will occur "early" or "late". Early relates to the bearer cutting-through on the establishment. Late refers to cutting-through on the confirmation. The BNCCT property in this package does not actually order the cut through nor does it indicate when the Cut-through has occurred.

Furthermore, clause 4.4.10 of [ITU-T Q.1950] BNC-cut-through-capability: Used by the bearer interworking function (BIWF) to inform the call state machine (CSM) of the bearer cut-through capability (i.e., commits resources on the receipt of a Bearer SetupReq or confirm).

The transactions in [ITU-T Q.1950] show that the usage depends on the BICC call setup direction i.e., forward direction. See also clause 7.2.1.2.2 of [b-ITU-T Q.1902.4].

There is also no interaction with ITU-T H.248 StreamMode settings. See [b-ITU-T Q.Supp.32] for call flows showing the interaction. There is also more of a discussion on the use of the Cut-through capability in clause 5.3.2 of [b-ITU-T Q.Supp.32], step 9.

Conclusion:
No relation to this Recommendation.

V.2.4 Package 'ri' (reuse idle)

See Table V.4.

Table V.4 – Q.1950-defined ITU-T H.248 packages – ri package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuse idle package</td>
<td>The ri/RII property is used by the MG to indicate to the MGC that an idle bearer is to be reused.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation:

Reuse of existing TCP connections is a supported concept, such as in SIP networks by [IETF RFC 4145]. See also clause 13.6 of [ITU-T H.248.84].

Open/differences:
- Possible models of MG-level TCP resources, e.g.,:
 - resource component "TCP local source/destination transport address";
 - resource component "TCP local stateful bearer connection endpoint" which would imply the TCP connection state machine;
Table V.4 – Q.1950-defined ITU-T H.248 packages – ri package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ resource component "end-to-end TCP bearer connection", based on the n-tuple of local and remote transport source/destination addresses and connection state;</td>
<td>- The semantic of reuse idle bearer would be then dependent on the agreed TCP resource model. It might be even transparent for the MG. Understanding: The reuse of idle procedures is a BICC Network option. Annex B of [b-ITU-T Q.1902.4] describes the overall procedures. MLPP (multi-level precedence and preemption) is a service that supports the reuse of IDLE bearers (i.e., clause 9 of [b-ITU-T Q.850]). [b-IETF RFC 4411] discusses the use of this cause with respect to SIP and, in summary, it says that it is not valid in an IP environment. The Reuse idle package is used within the framework of a call control that supports an application (i.e., MLPP) that has re-use logic. The RII property is used in conjunction with the BNC-ID etc. to choose an existing bearer (i.e., bearer independent situations). Whereas the SDP "a=connection" attribute is really a flag to use an existing bearer because you do not want to release it rather than selecting an idle TCP connection i.e., can be used in "bearer dependent" situations. Conclusion: Whilst it is possible to reuse a TCP connection, there is not any real relation of this ITU-T Q.1950 package to this Recommendation.</td>
</tr>
</tbody>
</table>

V.3 ITU-T H.248.67

V.3.1 Package 'trm' (GCP transport mode indication)

See Table V.5.

Table V.5 – ITU-T H.248.67-defined ITU-T H.248 package – trm package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCP transport mode indication package</td>
<td>Related to the ITU-T H.248 Control Association, which may use TCP-based transport modes.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation

None: [ITU-T H.248.67] and this Recommendation are both diametrically opposed. TCP usage for the ITU-T H.248 signalling interface is out of scope of this Recommendation.

V.4 ITU-T H.248.84

The TCP enabled SEP will be activated through the indication of the TCP-proxy mode as defined in [ITU-T H.248.84]. This Recommendation only defines properties that are needed on top of [ITU-T H.248.84] for the control of a TCP enabled SEP.

This Recommendation does not define TCP-related statistics and events that are already covered by [ITU-T H.248.84]. Whenever needed, the statistics and events of the related package as defined by [ITU-T H.248.84] must be used.
V.4.1 Package-independent procedures for NAT-T with TCP bearers

See Table V.6.

Table V.6 – ITU-T H.248.84-defined package-independent procedures for NAT-T with TCP bearers

<table>
<thead>
<tr>
<th>Procedures</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Clause 13 of [ITU-T H.248.84] | a) Indication of IP transport protocol 'TCP'
b) Indication of 'TCP mode' for ITU-T H.248 MG |

Possible relation to this Recommendation

To a):
– Normative for SDP-based bearer type indication "TCP".
To b):
– The TCP merge mode could be used as NAT traversal service. The TCP modes as such could interact with TCP connection control. E.g., the tcpcc package would be not required (and should be not used) for TCP connection establishment when NAT-T is used (because it provides already end-to-end TCP connection establishment (NOTE – TCP connection release is different).

V.4.2 Package 'tcphp' (TCP hole punching)

See Table V.7.

Table V.7 – ITU-T H.248.84-defined ITU-T H.248 package – tcphp package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP hole punching package</td>
<td>NAT traversal support service for TCP.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation

Orthogonal to this Recommendation; the tcphp package could be used in conjunction with this Recommendation.

V.4.3 Package 'teptv' (TCP traffic volume metrics)

See Table V.8.

Table V.8 – ITU-T H.248.84-defined ITU-T H.248 package – teptv package

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP traffic volume metrics package</td>
<td>Support of octet and packet count statistics for TCP bearer protocol.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation

Performance monitoring is an orthogonal application; hence, the ITU-T H.248 statistics could be basically used in conjunction with this Recommendation.
V.4.4 Package ‘tcpccm’ (TCP connection control metrics)
See Table V.9.

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP connection control metrics package</td>
<td>Statistics related to the establishment process of the TCP bearer connections.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation
Basically, all three statistics could be used.

V.4.5 Package ‘tcpcqm’ (TCP connection quality metrics)
See Table V.10.

<table>
<thead>
<tr>
<th>Package name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP connection quality metrics package</td>
<td>Additional statistic related to the establishment process of TCP bearer connections.</td>
</tr>
</tbody>
</table>

Possible relation to this Recommendation
The round-trip time based statistic may be used as well.

V.4.6 Inventory of TCP functions and their possible impact on ITU-T H.248 TCP gateways
See Table V.11.

<table>
<thead>
<tr>
<th>Inventory in:</th>
<th>Purpose:</th>
</tr>
</thead>
</table>
| Appendix II/ [ITU-T H.248.84] | – TCP Functions versus ITU-T H.248 TCP Modes of Operation, in ten areas:
– Basic Capabilities
– Topology Hiding
– Protocol Encryption
– Security
– Application Data Inactivity Detection
– Interactions with other policy rules
– Performance measurements & statistics"
– Connection keep alive support
– Add-on’s to TCP
– IP layer operations |

Possible relation to this Recommendation:
This informative analysis is principally valid as well.

V.5 ITU-T H.248.43 and ITU-T H.248.79
[ITU-T H.248.43] and [ITU-T H.248.79] are related to the filtering of TCP traffic. See overview in clause 9 of [ITU-T H.248.79].
Bibliography

[b-ETSI TR 183 068] ETSI TR 183 068 v3.1.1, Telecommunications and Internet Converged Services and Protocols for Advanced Networks (TISPAN): Guidelines on using Ia H.248 profile for control of Border Gateway Functions (BGF); Border Gateway Guidelines.

[b-IETF RFC 2923] IETF RFC 2923 (1990), TCP Problems with Path MTU Discovery.

<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Organization of the work of ITU-T</td>
</tr>
<tr>
<td>D</td>
<td>General tariff principles</td>
</tr>
<tr>
<td>E</td>
<td>Overall network operation, telephone service, service operation and human factors</td>
</tr>
<tr>
<td>F</td>
<td>Non-telephone telecommunication services</td>
</tr>
<tr>
<td>G</td>
<td>Transmission systems and media, digital systems and networks</td>
</tr>
<tr>
<td>H</td>
<td>Audiovisual and multimedia systems</td>
</tr>
<tr>
<td>I</td>
<td>Integrated services digital network</td>
</tr>
<tr>
<td>J</td>
<td>Cable networks and transmission of television, sound programme and other multimedia signals</td>
</tr>
<tr>
<td>K</td>
<td>Protection against interference</td>
</tr>
<tr>
<td>L</td>
<td>Construction, installation and protection of cables and other elements of outside plant</td>
</tr>
<tr>
<td>M</td>
<td>Telecommunication management, including TMN and network maintenance</td>
</tr>
<tr>
<td>N</td>
<td>Maintenance: international sound programme and television transmission circuits</td>
</tr>
<tr>
<td>O</td>
<td>Specifications of measuring equipment</td>
</tr>
<tr>
<td>P</td>
<td>Terminals and subjective and objective assessment methods</td>
</tr>
<tr>
<td>Q</td>
<td>Switching and signalling</td>
</tr>
<tr>
<td>R</td>
<td>Telegraph transmission</td>
</tr>
<tr>
<td>S</td>
<td>Telegraph services terminal equipment</td>
</tr>
<tr>
<td>T</td>
<td>Terminals for telematic services</td>
</tr>
<tr>
<td>U</td>
<td>Telegraph switching</td>
</tr>
<tr>
<td>V</td>
<td>Data communication over the telephone network</td>
</tr>
<tr>
<td>X</td>
<td>Data networks, open system communications and security</td>
</tr>
<tr>
<td>Y</td>
<td>Global information infrastructure, Internet protocol aspects and next-generation networks</td>
</tr>
<tr>
<td>Z</td>
<td>Languages and general software aspects for telecommunication systems</td>
</tr>
</tbody>
</table>