Improved impulse noise protection for DSL transceivers

Recommendation ITU-T G.998.4
<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL TELEPHONE CONNECTIONS AND CIRCUITS</td>
<td>G.100–G.199</td>
</tr>
<tr>
<td>GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-TRANSMISSION SYSTEMS</td>
<td>G.200–G.299</td>
</tr>
<tr>
<td>INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES</td>
<td>G.300–G.399</td>
</tr>
<tr>
<td>GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES</td>
<td>G.400–G.449</td>
</tr>
<tr>
<td>COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY</td>
<td>G.450–G.499</td>
</tr>
<tr>
<td>TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS</td>
<td>G.600–G.699</td>
</tr>
<tr>
<td>DIGITAL TERMINAL EQUIPMENTS</td>
<td>G.700–G.799</td>
</tr>
<tr>
<td>DIGITAL NETWORKS</td>
<td>G.800–G.899</td>
</tr>
<tr>
<td>DIGITAL SECTIONS AND DIGITAL LINE SYSTEM</td>
<td>G.900–G.999</td>
</tr>
<tr>
<td>General</td>
<td>G.900–G.909</td>
</tr>
<tr>
<td>Parameters for optical fibre cable systems</td>
<td>G.910–G.919</td>
</tr>
<tr>
<td>Digital sections at hierarchical bit rates based on a bit rate of 2048 kbit/s</td>
<td>G.920–G.929</td>
</tr>
<tr>
<td>Digital line transmission systems on cable at non-hierarchical bit rates</td>
<td>G.930–G.939</td>
</tr>
<tr>
<td>Digital line systems provided by FDM transmission bearers</td>
<td>G.940–G.949</td>
</tr>
<tr>
<td>Digital line systems</td>
<td>G.950–G.959</td>
</tr>
<tr>
<td>Digital section and digital transmission systems for customer access to ISDN</td>
<td>G.960–G.969</td>
</tr>
<tr>
<td>Optical fibre submarine cable systems</td>
<td>G.970–G.979</td>
</tr>
<tr>
<td>Optical line systems for local and access networks</td>
<td>G.980–G.989</td>
</tr>
<tr>
<td>Access networks</td>
<td>G.990–G.999</td>
</tr>
<tr>
<td>MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS</td>
<td>G.1000–G.1999</td>
</tr>
<tr>
<td>TRANSMISSION MEDIA CHARACTERISTICS</td>
<td>G.6000–G.6999</td>
</tr>
<tr>
<td>DATA OVER TRANSPORT – GENERIC ASPECTS</td>
<td>G.7000–G.7999</td>
</tr>
<tr>
<td>PACKET OVER TRANSPORT ASPECTS</td>
<td>G.8000–G.8999</td>
</tr>
<tr>
<td>ACCESS NETWORKS</td>
<td>G.9000–G.9999</td>
</tr>
</tbody>
</table>

For further details, please refer to the list of ITU-T Recommendations.
Recommendation ITU-T G.998.4

Improved impulse noise protection for DSL transceivers

Summary

Recommendation ITU-T G.998.4 specifies techniques beyond those defined in the existing ITU-T digital subscriber line (DSL) Recommendations ITU-T G.992.3, ITU-T G.992.5, and ITU-T G.993.2 to provide enhanced protection against impulse noise or to increase the efficiency of providing impulse noise protection (INP).

NOTE – This publication includes the clarification of the definition of actual INP that was approved as ITU-T G.998.4 (2010) Corrigendum 1 (2010-11).

History

<table>
<thead>
<tr>
<th>Edition</th>
<th>Recommendation</th>
<th>Approval</th>
<th>Study Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>ITU-T G.998.4</td>
<td>2010-06-11</td>
<td>15</td>
</tr>
<tr>
<td>1.1</td>
<td>ITU-T G.998.4 (2010) Cor. 1</td>
<td>2010-11-29</td>
<td>15</td>
</tr>
</tbody>
</table>
FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.
Table of Contents

1 Scope .. 1
2 References ... 1
3 Definitions .. 2
4 Abbreviations and acronyms .. 2
5 Overview .. 3
6 Functional Reference model ... 4
7 TPS-TC function ... 6
 7.1 ATM TPS-TC .. 6
 7.2 PTM TPS-TC with 64/65-octet encapsulation ... 8
8 Retransmission functions .. 9
 8.1 DTU framer .. 9
 8.2 Retransmission multiplexer ... 14
 8.3 Transmitter retransmission state machine ... 14
 8.4 Retransmission Return Channel (RRC) .. 14
 8.5 Roundtrip .. 16
 8.6 Retransmission control parameters ... 17
9 PMS-TC function ... 19
 9.1 Scrambler ... 19
 9.2 FEC ... 19
 9.3 Latency paths multiplexer .. 19
 9.4 Framing parameters .. 20
 9.5 Impulse noise protection ... 24
10 PMD function .. 26
 10.1 Definition of MTBE ... 26
 10.2 General definition of signal-to-noise ratio margin ... 26
 10.3 Definition of MTBE_min ... 27
 10.4 Accelerated testing of MTBE ... 27
11 Operation, Administration and Maintenance (OAM) Management function 27
 11.1 Configuration parameters ... 27
 11.2 Test parameters ... 31
 11.3 OAM line-related primitives .. 33
 11.4 Performance Monitoring Parameters .. 33
 11.5 Channel initialization policies ... 35
12 DTU counters .. 36
13 On-line Reconfiguration (OLR) ... 36

Rec. ITU-T G.998.4 (06/2010)
Annex A – Support of ITU-T G.998.4 with ITU-T G.992.3 ... 37
 A.1 Specific requirements .. 37
 A.2 Initialization .. 37
 A.3 Management plane procedures .. 46
Annex B – Support of ITU-T G.998.4 with ITU-T G.992.5 ... 49
 B.1 Specific requirements .. 49
 B.2 Initialization .. 49
 B.3 Management plane procedures .. 50
Annex C – Support of ITU-T G.998.4 with ITU-T G.993.2 ... 51
 C.1 Specific requirements .. 51
 C.2 Initialization .. 52
 C.3 Management plane procedures .. 61
Appendix I – Transmit state machine ... 65
 I.1 Reference transmit state machine .. 65
 I.2 Last chance retransmission state machine ... 66
Appendix II – Motivation of MTBE accelerated test ... 67
Bibliography .. 69
Recommendation ITU-T G.998.4

Improved impulse noise protection for DSL transceivers

1 Scope

This Recommendation specifies techniques beyond those defined in the existing ITU-T digital subscriber line (DSL) Recommendations ITU-T G.992.3 [1], ITU-T G.992.5 [2], and ITU-T G.993.2 [3] to provide enhanced protection against impulse noise or to increase the efficiency of providing impulse noise protection (INP).

Impulse noise is a noise event of limited duration that can degrade one or more transmitted symbols. Unlike the various types of continuous noise found on DSLs, impulse noise has a short duration and may repeat, either randomly or periodically. Impulse noise that does not appear to repeat periodically but occur as unpredictable events is termed SHINE (Single high impulse noise event). Impulse noise caused by noise from electrical mains and thus repeats at a constant period related to the local AC power frequency is termed REIN (Repetitive electrical impulse noise).

Impulse Noise Protection techniques are, in general, techniques used by a DSL transceiver to protect against the effects of impulse noise on the transmitted signal. Existing ITU-T DSL Recommendations specify techniques to ameliorate impulse noise effects. Among these methods are the use of Forward Error Correction (FEC) coding and interleaving.

This Recommendation specifies a physical layer retransmission method for enhancing INP, with annexes specifically providing the details required for implementation of these techniques for transceivers supporting Recommendation ITU-T G.992.3, ITU-T G.992.5, and ITU-T G.993.2. Methods for enhancing INP by techniques other than physical layer retransmission are for further study.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

3 Definitions

This Recommendation defines the following terms:

3.1 aggregate data rate (ADR): the sum of aggregate data rates per latency over all latency paths and over the RRC. If retransmission is enabled, the aggregate data rate in the latency path #1 is the sum of the net data rate plus the overhead rate due to the DTU framer and the aggregate data rate in the latency path #0 is the overhead rate. The aggregate data rate of the RRC is the rate excluding the overhead of the Golay code. The aggregate data rate is the rate at the A-reference point.

3.2 expected throughput (ETR): the rate available in Showtime at the α/β-reference point, assuming full protection against an impulse noise environment corresponding to the Impulse Noise environment as described by parameters in the MIB.

3.3 forward direction: the direction of transmission of the DTUs.

3.4 impulse noise protection (INP): the number of consecutive DMT symbols as seen at the δ-reference point, for which errors can be completely corrected by the Retransmission function, regardless of the number of errors within the errored DMT symbols.

3.5 impulse protection against repetitive electrical impulse noise (INP_REIN): the number of consecutive DMT symbols that are corrupted by REIN, as seen at the δ-reference point, for which errors can be completely corrected by the retransmission function, regardless of the number of errors within the errored DMT symbols.

3.6 line rate (LR): the data rate at the U-interface.

3.7 net data rate (NDR): the data rate at the α/β-reference point of the bearer channel mapped in latency path #1, assuming that no retransmissions occur.

3.8 overhead rate (OR): the rate assigned to the overhead channel carried in latency path #0.

3.9 repetitive electrical impulse noise (REIN): a type of electrical noise encountered on digital subscriber lines. It is evident as a continuous and periodic stream of short impulse noise events. Individual REIN impulses commonly have duration less than 1 millisecond. REIN is commonly coupled from electrical power cables appliances drawing power from the AC electrical power network, having a repetition rate of twice the AC power frequency (100 or 120 Hz).

3.10 return direction: the direction of transmission of acknowledgements (in the RRC) of received DTUs.

3.11 single high impulse noise event (SHINE): a type of electrical noise encountered on digital subscriber lines. SHINE generally arises as a periodic stream of impulses with effectively random inter-arrival time and impulse length both inversely related to intensity. Generally the term SHINE is associated with large impulses with duration in the range milliseconds to seconds.

3.12 total data rate (TDR): the sum of total data rate per latency over all latency paths and the rate of the RRC including its FEC overhead (Golay). This is the rate at the C-reference point.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- ATM: Asynchronous Transfer Mode
- ATU-C: Central Office ADSL2/ADSL2plus Transceiver Unit
- ATU-R: Remote ADSL2plus Transceiver Unit
- CRC: Cyclic Redundancy Check
- DMT: Discrete Multi-Tone
5 Overview

This Recommendation shall be implemented in conjunction with one of the following ITU-T Recommendations, referred as "associated Recommendations": ITU-T G.992.3 (ADSL2), ITU-T G.992.5 (ADSL2plus), or ITU-T G.993.2 (VDSL2).

The main body specifies the elements that are independent of the Associated Recommendation that include:

- Data path and the retransmission return channel for the transmission direction for which retransmission is enabled.
- Management and control of the retransmission function.

The annexes specify the elements that are dependent on the Associated Recommendation that includes:

- Requirements on the data path specific to the Associated Recommendation.
- Changes to the initialization of the Associated Recommendation.
- Changes to the EOC messages.

A transceiver compliant with this Recommendation shall support the main body, one of the Associated Recommendations and the respective annex.
6 Functional Reference model

Figure 6-1 shows the functional reference model for the case where retransmission is enabled in both transmission directions.

In the forward direction, only one bearer channel (#0) is active. Octets from the bearer channel are encapsulated in Data Transfer Units (DTUs). DTUs are stored in a retransmission queue after transmission. A DTU multiplexer will select either a new DTU or a DTU from the retransmission queue for transmission over the α2-reference point.

The PMS-TC contains two latency paths and a Retransmission Request Channel (RRC). Latency path 0 contains only overhead data, while latency path 1 contains only DTUs (i.e., octets coming over the α2-reference point). The RRC carries acknowledgments for received DTUs. The latency paths are scrambled and encoded using a Reed-Solomon code. The RRC is encoded using an extended Golay code. The output bits from the latency paths and the RRC are multiplexed into a data frame that is transferred to the PMD over the δ-reference point.

Figure 6-2 shows the functional reference model in the forward direction when retransmission is enabled in a single direction. This functional reference model is identical to the one described in Figure 6-1, with the exception that there is no RRC.
Figure 6-2 – Reference model in the forward direction when retransmission is enabled in a single direction

Figure 6-3 shows the functional reference model in the return direction when retransmission is enabled in a single direction. The functional reference model for the TPS-TC is identical to the TPS-TC functional model in the applicable associated Recommendation (ITU-T G.992.3, ITU-T G.992.5 or ITU-T G.993.2). The PMS-TC consists of one latency path and the RRC. The functional model of the latency paths is identical to that in the applicable associated Recommendation (ITU-T G.992.3, ITU-T G.992.5 or ITU-T G.993.2). The RRC is multiplexed with the output of the latency paths into a data frame that is transferred to the PMD over the δ-reference point.

Figure 6-3 – Reference model in the return direction when retransmission is enabled in a single direction
In the reference model of Figure 6-1 and Figure 6-2, the retransmission queue is shown to be located between the TPS-TC and scrambler only for the purpose of defining the data transmission unit (DTU) frame structure that is described in clause 8 below. It is noted that the DTU frame structure is defined such that it is transparent to the location of the retransmission queue where the queue may be placed at one layer in the transceiver structure and interoperate with another device having the queue located in a different layer.

7 TPS-TC function

Transceivers complying with this Recommendation shall support either the ATM TC or PTM TC with 64/65-octet encapsulation or both.

7.1 ATM TPS-TC

The ATM TC shall be as specified in the associated ITU-T Recommendation related to ADSL2, ADSL2plus or VDSL2 with the exception that the ATM payload scrambler as defined in clause K.2.8 of ITU-T G.992.3 and ITU-T G.993.2 shall be disabled and with the inclusion of control parameters as specified in the following clauses. Modifications to the control parameters of the associated ITU-T Recommendations are specified in Annexes A, B and C.

7.1.1 Control parameters specific to ITU-T G.998.4

The ATM TPS-TC control parameters specific to ITU-T G.998.4 are defined in Table 7-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETR_{min}</td>
<td>Minimum allowed value for ETR in kbit/s.</td>
</tr>
<tr>
<td>ETR_{max}</td>
<td>Maximum allowed value for ETR in kbit/s.</td>
</tr>
<tr>
<td>net_{max}</td>
<td>Maximum allowed value for NDR in kbit/s.</td>
</tr>
<tr>
<td>INP_{min}</td>
<td>Minimum impulse noise protection (INP) against SHINE in DMT symbols.</td>
</tr>
<tr>
<td>$SHINE_{\text{ratio}}$</td>
<td>The loss of rate in a 1 second interval expressed as a fraction of NDR due to a SHINE impulse noise environment expected by the operator to occur at a probability acceptable for the services.</td>
</tr>
<tr>
<td>$INP_{\text{min, rein}}$</td>
<td>Minimum impulse protection against electrical repetitive impulse noise (REIN) in DMT symbols.</td>
</tr>
<tr>
<td>$iat_{\text{rein, flag}}$</td>
<td>Configuration flag indicating the inter-arrival time of REIN. The flag shall be set to 0 if the inter-arrival time is derived from a REIN at 100 Hz. The flag shall be set to 1 if the inter-arrival time is derived from a REIN at 120 Hz. (Notes 1, 2).</td>
</tr>
<tr>
<td>$delay_{\text{max}}$</td>
<td>Maximum delay (see clause 8.1.6) in ms.</td>
</tr>
<tr>
<td>$delay_{\text{min}}$</td>
<td>Minimum delay (see clause 8.1.6) in ms.</td>
</tr>
</tbody>
</table>
Table 7-1 – Control parameters of the ATM TPS-TC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>leftr_thresh</td>
<td>The threshold used to declare leftr defects (see clause 11.3.3) expressed in fraction of the NDR. The value 0 is a special value to indicate that the receiver shall use a special value for declaring leftr defect. The minimum valid threshold to declare leftr is ETR/2. The receiver shall ignore threshold values that are less than the minimum and shall use ETR/2 for declaring leftr defect instead (see clause 11.3.3).</td>
</tr>
<tr>
<td>CIpolicy</td>
<td>The channel initialization policy used for this bearer channel.</td>
</tr>
</tbody>
</table>

NOTE 1 – This parameter is not relevant if the INP_min_rein is set to 0.
NOTE 2 – The REIN periodicity is derived from the assumption of 2 equally spaced impulses per AC cycle of 50 Hz or 60 Hz. Consideration of cases where the 2 impulses are not equally spaced is for further study.

7.1.2 Valid configurations

A valid configuration of the ATM TPS-TC shall consist of the configuration of each control parameter with one of their valid values specified in Table 7-2.

Table 7-2 – Valid configurations of ATM TPS-TC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETR_min</td>
<td>The valid values are all multiples of 8 from 0 to the maximum of the valid values of the minimum net data rate specified in the associated Recommendation.</td>
</tr>
<tr>
<td>ETR_max</td>
<td>The valid values are all multiples of 8 from 0 to the maximum of the valid values of the maximum net data rate specified in the associated Recommendation.</td>
</tr>
<tr>
<td>net_max</td>
<td>The valid values are all multiples of 8 from 0 to the maximum of the valid values of the maximum net data rate specified in the associated Recommendation.</td>
</tr>
<tr>
<td>INP_min</td>
<td>The valid values are all integers from 0 to 63 for system with a sub-carrier spacing of 4.3125 kHz. The valid values are all integers from 0 to 127 for system with a sub-carrier spacing of 8.625 kHz.</td>
</tr>
<tr>
<td>SHINEratio</td>
<td>The valid values are all multiples of 0.001 from 0 to 0.1.</td>
</tr>
<tr>
<td>INP_min_rein</td>
<td>The valid values are all integers from 0 to 7 for system with a sub-carrier spacing of 4.3125 kHz. The valid values are all integers from 0 to 13 for system with a sub-carrier spacing of 8.625 kHz.</td>
</tr>
<tr>
<td>iat_rein_flag</td>
<td>The valid values are 0 and 1.</td>
</tr>
<tr>
<td>delay_max</td>
<td>The valid values are all integers from 1 to 63.</td>
</tr>
<tr>
<td>delay_min</td>
<td>The valid values are all integers from 0 to 63.</td>
</tr>
<tr>
<td>leftr_thresh</td>
<td>The valid values are all multiples of 0.01 from 0.01 to 0.99.</td>
</tr>
<tr>
<td>CIpolicy</td>
<td>The valid value is 0.</td>
</tr>
</tbody>
</table>
7.1.3 Mandatory configurations

The mandatory configurations of the TPS-TC to support are a subset of the valid configurations. They shall consist of the configuration of each control parameter with one of their mandatory values specified in the Table 7-3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETR_{\min}</td>
<td>The mandatory values shall be all multiples of 8 from 0 to the maximum of the mandatory values of the minimum net data rate specified in the associated Recommendation.</td>
</tr>
<tr>
<td>ETR_{\max}</td>
<td>The mandatory values shall be all multiples of 8 from 0 to the maximum of the mandatory values of the maximum net data rate specified in the associated Recommendation.</td>
</tr>
<tr>
<td>net_{\max}</td>
<td>The mandatory values shall be all multiples of 8 from 0 to the maximum of the mandatory values of the maximum net data rate specified in the associated Recommendation.</td>
</tr>
<tr>
<td>INP_{\min}</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>$SHINEratio$</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>INP_{\min_rein}</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>$iat_{_rein_flag}$</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>$delay_{_max}$</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>$delay_{_min}$</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>$letr_{_thresh}$</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>CI_{policy}</td>
<td>All valid values shall be supported.</td>
</tr>
</tbody>
</table>

7.2 PTM TPS-TC with 64/65-octet encapsulation

The PTM TC with 64/65-octet encapsulation shall be as specified in the associated ITU-T Recommendation with the inclusion of control parameters as specified in the following clauses. Modifications to the control parameters of the associated ITU-T Recommendations are specified in Annexes A, B and C.

7.2.1 Control parameters specific to ITU-T G.998.4

The control parameters of the PTM TPS-TC specific to ITU-T G.998.4 are the same as for the ATM TPS-TC (see Table 7-1).

7.2.2 Valid configurations

The valid configurations of the control parameters of the PMS TPS-TC specific to ITU-T G.998.4 shall be the same as for the ATM TPS-TC (see Table 7-2).

7.2.3 Mandatory configurations

The mandatory configurations of the control parameters of the PMS TPS-TC specific to ITU-T G.998.4 shall be the same as for the ATM TPS-TC (see Table 7-3).
8 Retransmission functions

8.1 DTU framer

Each DTU shall contain an integer number of 53-byte ATM cells (data or idle cells) or an integer number of 64/65-octet PTM codewords and the following octets:

- One octet containing the Sequence Identifier (SID).
- One octet containing the Time Stamp (TS).
- W octets containing overhead for an 8-bit CRC.
- V octets containing the padding bytes.

The content of the SID and TS are specified in clause 8.1.5 and clause 8.1.6. The content of the W octets to insert the 8-bit CRC are specified in the clauses on the DTU framing. The content of the padding octets is vendor discretionary. The number of padding octets per DTU, V, shall be chosen by the receiver during initialization.

The DTU shall be mapped into, and synchronized with, an integer number, Q, of RS codewords. Therefore, the following general relationship between the number of payload octets per Reed-Solomon codeword, H (see Table 9-2), and the number of RS codewords per DTU, Q, holds:

$$ (Q \times H - 2 - V - W) = A \times 53 \text{ for ATM} $$
$$ (Q \times H - 2 - V - W) = A \times 65 \text{ for PTM} $$

A is the integer number of ATM cells or PTM codewords.

The transmitter shall support the framing structure without a CRC as described in clause 8.1.1.

In addition, the transmitter shall indicate during initialization support of one of the DTU structures described in clause 8.1.2, clause 8.1.3 and clause 8.1.4. The DTUs structures described in clause 8.1.2, clause 8.1.3 and clause 8.1.4 contain an additional 8-bit CRC to facilitate detection of errors at the TPS-TC. W is the number of bytes that are inserted when a CRC is added to the DTU.

During initialization, the receiver shall select either the DTU structure without CRC or the DTU structure with CRC that was indicated as being supported by the transmitter during initialization.

The DTU size in DMT symbols is $S \times Q$. For operation with the line in the L0 state, both transmitter and receiver shall support all $S \times Q$ values in the range 0.5 to 4.

The valid configuration structures are described in clause 8.1.1, clause 8.1.2, clause 8.1.3 and clause 8.1.4.

8.1.1 DTU framer without CRC-8 (Framing type 1)

DTU Framing type 1 shall not contain an 8-bit CRC ($W=0$). The SID, TS, and padding octets shall be mapped first in this order followed by the A ATM cells or 64/65-octet codewords. The SID octet shall be mapped into the first octet of a RS codeword. The following relationship between the number of payload octets per Reed-Solomon codeword, H, and the number of RS codewords per DTU, Q, holds:

$$ (Q \times H - 2 - V) = A \times 53 \text{ for ATM} $$
$$ (Q \times H - 2 - V) = A \times 65 \text{ for PTM} $$

The Figure 8-1 outlines the assembly of a DTU with Framing type 1 and its synchronization with RS codewords.
8.1.2 DTU framer with CRC-8 (Framing type 2)

In this mode, the DTU structure is the same as in clause 8.1.1 with an additional 8-bit CRC inserted at the end of the DTU (i.e., \(W=1 \)). This CRC shall be computed before the scrambling over the payload octets, the SID, the TS and the padding octets of the DTU. The 8-bit CRC shall be generated as the CRC of the PMS-TC defined in clause 9.5.2.3/G.993.2. The SID shall be mapped into the first octet of a Reed-Solomon codeword. Figure 8-2 outlines the assembly of a DTU with Framing type 2 and its synchronization with RS codewords.

Figure 8-2 – Structure of DTU with CRC at the tail (Framing type 2) and synchronization with RS codewords
The following relationship holds between the Q, H, A and V for the DTU structure with CRC (W=1).

\[
(Q \cdot H - 3 - V) = A \cdot 53 \text{ for ATM} \\
(Q \cdot H - 3 - V) = A \cdot 65 \text{ for PTM}
\]

8.1.3 DTU framer with CRC-8 (Framing type 3)

In this mode, the DTU structure is that described in clause 8.1.1 with an 8-bit CRC inserted as the first octet of the DTU. This CRC shall be computed before scrambling over the payload octets, the SID, the TS and padding octets of the DTU previously transferred across the α_2/β_2-reference point. The 8-bit CRC shall be generated as the CRC of the PMS-TC defined in clause 9.5.2.3 of ITU-T G.993.2. The 8-bit CRC shall be mapped into the first octet of a Reed-Solomon codeword.

The bytes following the CRC byte shall be the SID, TS, and padding octets followed by the sequence of A ATM cells or 64/65-octet codewords.

Figure 8-3 outlines the assembly of a DTU with Framing type 3 and its synchronization with RS codewords.

8.1.4 DTU framer with CRC-8 (Framing type 4)

In this mode, the DTU structure is that described in clause 8.1.1 with an 8-bit CRC inserted as the first byte of the DTU. The CRC shall be computed before scrambling over the payload octets, the SID, the TS and the padding octets of the DTU previously transferred across the α_2/β_2-reference point. The 8-bit CRC shall be generated as the CRC of the PMS-TC defined in clause 9.5.2.3 of ITU-T G.993.2. The 8-bit CRC shall be mapped into the first octet of a Reed-Solomon codeword. The number of octets that are inserted per DTU by this method is SEQ_1. The framing parameters shall be chosen such that they meet the following constraints:

- $W = SEQ_1$, with $SEQ_1 = 2$ for ADSL and $SEQ_1 = 8$ for VDSL,
\[M_1 \times Q \times G_1 = T_1 \times SEQ_1, \] with:
- \(G_1 = 1 \) if \(SEQ_1 = 2 \),
- \(T_1/M_1 \) an integer if \(SEQ_1 = 8 \)
- \(H = M_1 \times (B_{10} + \lceil G_1 / T_1 \rceil) \), with \(G_1 = 1 \) if \(SEQ_1 = 2 \)

where \(SEQ_1, M_1, G_1, \) and \(T_1 \) correspond to the \(SEQ_p, M_p, G_p, T_p \) in the associated Recommendation for latency path \(p=1 \), \(B_{10} \) corresponds to the \(B_{pn} \) in the associated Recommendation for latency path \(p=1 \) and frame bearer \(n=0 \), and \(\lceil x \rceil \) denotes ceiling of \(x \).

With the above framer settings, additional \(W-1 \) octets are inserted into the DTU. The value of the additional octets shall be \(FF_{16} \). \(W \) shall be equal to 2 if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5 and shall be equal to 8 if the associated Recommendation is ITU-T G.993.2. When \(G_1 = 1 \), the extra bytes are inserted at equal distance.

The octets following the 8-bit CRC are the SID, TS, and padding octets followed by the sequence of \(A \) ATM cells or 64/65-octet codewords with the \(FF_{16} \) octets inserted in proper locations in the DTU. The distribution of the \(W \) octets among \(T_1 \) MDFs shall be executed according to clause 9.5.2.1 of ITU-T G.993.2 with \(G_1 = 1 \) if \(W = 2 \). The DTU with CRC and corresponding \(FF_{16} \) octet is mapped into and synchronized with \(Q \) RS codewords as depicted in the Figure 8-4 for \(W = 2, Q = 2, M_1 = 2 \).

The following relationship holds between the \(Q, H, A, V, \) and \(W \) for the DTU structure with CRC.

\[
(Q \cdot H - 2 - W - V) = A \times 53 \text{ for ATM}
\]

\[
(Q \cdot H - 2 - W - V) = A \times 65 \text{ for PTM}
\]

NOTE – The location of the \(W = 8 \) bytes is chosen such that they coincide with the location of the bytes in a VDSL2 OH frame carrying OH frame type 2, when the OH frame coincides with the DTU. The location of the \(W = 2 \) bytes is chosen such that they coincide with the location of the bytes in an ADSL2 OH frame according to Table 7-14 with \(SEQ_1 = 2 \), when the OH frame coincides with the DTU.
8.1.5 Sequence identifier (SID)

The SID octet in each DTU identifies the DTU in the transmission sequence. The transmitter increments the SID for every newly framed DTU. Retransmitted DTUs shall have the same SID as for their first transmission. The SID octet shall be initialized to \(00_{16}\) and this shall be the SID of the first DTU transmitted in Showtime. Upon reaching an SID value of \(FF_{16}\), the following SID value shall be \(00_{16}\).

8.1.6 Time stamp

The time stamp is used in two functionalities:

1. The time stamp shall be used to control the \(\alpha_1-\beta_1\) delay of the DTU and its associated data payload.
2. The time stamp may be used to reduce the delay jitter between the transmitter and receiver \(\gamma\) interfaces.

The time reference (also referred to as the DMT Symbol ID) is the count of all DMT symbols, i.e., data symbols and sync symbols, transmitted over the line after entering Showtime.

The time stamp byte of a DTU shall contain the value of the time reference modulo 255 of the DMT symbol that shall contain the first bit of this DTU, assuming that no retransmission event occurs between the framing of the DTU and its transmission over the line.

The value \(FF_{16}\) (255) in the TS octet is reserved.

1. In general, the time stamp byte (TS) in each DTU is used both for lines in a bonding group and for lines without bonding:

 To control the maximum \(\alpha_1-\beta_1\) delay of the DTU, and its associated data payload, the configuration parameter \(delay_max\) shall be the upper limit for the delay that is added to the transmission delay only caused by retransmissions. Here the receiver and/or the transmitter shall identify and discard all DTUs whose payload cannot be transferred over the \(\beta_1\)-reference point at the receiver without violating the \(delay_max\) limit. The time stamp shall be the criterion for discarding the DTUs.

 The processing delay between the U-interface and the retransmission sub-layer of the receiver (\(\beta_2\)-reference point) in the retransmission data path direction shall be excluded from consideration for \(delay_max\) in the retransmission data path direction.

 NOTE – Consequently, the end-to-end delay between the \(\alpha_1\)-reference point and the \(\beta_1\)-reference point may exceed the value of \(delay_max\) by the amount of the processing delay in the transmitter and receiver.

 To reduce the delay variation from the \(\gamma\)-interface on the transmit side to the \(\gamma\)-interface at the receiver:

 1. Outlet shaping in the receiver shall be supported.
 2. The delay between the \(\gamma\)-interface and \(\alpha_1\)-reference point and the delay between the \(\beta_1\)-reference point and \(\gamma\)-interface shall be independent of the retransmissions of DTUs.

 The configuration parameter \(delay_min\) shall be the lower limit for the delay that is added to the transmission delay caused by retransmissions only. The time stamp shall be used by the outlet shaping function to determine when the payload of the DTU shall be sent to the \(\beta_1\)-reference point to meet the delay limits. The outlet shaping function shall minimize the additional delay that may be introduced above \(delay_min\), and shall never exceed \(delay_max\).

 NOTE – Due to limited receiver retransmission queue memory (see Annex A.1.1, B.1.1 and C.1.1) an XTU may need to limit the net data rate in order to comply with the \(delay_min\) limit.

2. If the XTU is configured as part of a bonding group, it is required that the differential delay in the physical layer between all the bonded lines in one group remains bounded.
NOTE – The differential delay requirements of the governing bonding specification (e.g., ITU-T G.998.1 for ATM Bonding or ITU-T G.998.2 for PTM bonding) need to be met on all lines in a bonded group.

8.2 Retransmission multiplexer

Every $H \times Q$ bytes (as related to the aggregate data rate of latency path #1), a DTU shall be transferred across the α^2-reference point. The retransmission multiplexer selects the kind of DTU to be transferred. The DTU shall be either a new DTU taken from the DTU framer or a previously transmitted DTU taken from the retransmission queue. The control of the selection is done by a transmitter retransmission state machine based on the content of the RRC and on the requirements of INP, and delays configured on the bearer transported in the latency path.

8.3 Transmitter retransmission state machine

In the transmitter any DTU that is not acknowledged shall be retransmitted if the constraint of the maximal delay is met. The exact time when a DTU is retransmitted is implementation specific but the transmitter shall ensure that at least NRET (see clause 8.6.4) retransmissions of the same DTU are possible without violating the maximal delay constraint. DTUs that have been acknowledged need not be retransmitted again, even if requested by the receiver.

8.4 Retransmission Return Channel (RRC)

The retransmission return channel is used to acknowledge the DTUs. It consists in 24 bits multiplexed with the latency paths every data frame. The RRC payload contains three fields:

1. A field of 5 bits, AbsoluteDTUCountLsbs, that contains the LSbs of the absolute number of the last received DTU. The absolute number of a DTU is the count of all DTUs (new or retransmitted, with or without error) received prior to this DTU since entering Showtime. For the first received DTU upon entering Showtime, AbsoluteDTUCountLsbs shall be zero.

2. A field of 2 bits, Nack$[k]$ ($k=0,1$), that indicates the status of the two last received DTUs. Nack$[0]$ indicates the status of the last received DTU and Nack$[1]$ indicates the status of the penultimate received DTU. Nack$[k]=0$ if the DTU is acknowledged, otherwise Nack$[k]=1$.

3. A field of 5 bits, ConsecutiveGoodDTUs, that indicates:
 - if Nack$[1]=0$, this field indicates the number of DTUs prior to the penultimate received DTU that are acknowledged;
 - if Nack$[1]=1$, this field indicates the number of consecutive DTUs acknowledged, where the consecutive DTUs are counted starting from lb (see clause 8.6) DTUs preceding the penultimate received DTU.

Those fields are protected by 12 bits of redundancy. The overall structure is depicted in the Figure 8-5.

![Figure 8-5 – Structure and content of the RRC codeword](image)

The data is transported in the RRC codeword LSB first, i.e.:

\[
\text{RrcCodeword}[4:0] = \text{AbsoluteDTUCountLsbs}[4:0] \\
\text{RrcCodeword}[6:5] = \text{Nack}[1:0]
\]
Rec. ITU-T G.998.4 (06/2010)

RrcCodeword[11:7] = ConsecutiveGoodDTUs[4:0]

NOTE – With a 4 kHz symbol rate, the rate of the RRC is 96 kbit/s.

Examples of evaluations of ConsecutiveGoodDTus are shown in Figure 8-6.

Example A: RRC = | ConsecutiveGoodDTUs = 28 | NACK[1]=1 | NACK[0]=0 | AbsoluteDTUCountlsb = n+1 |

Example B: RRC = | ConsecutiveGoodDTUs = 27 | NACK[1]=0 | NACK[0]=0 | AbsoluteDTUCountlsb = n+1 |

8.4.1 RRC field initialization
A virtual extension shall be created for the received DTUs where it is assumed that 33 DTUs have been received correctly before entering Showtime, without the need for retransmission.

8.4.2 Extended Golay Code Description
The redundancy bits of the RRC codeword, [b₁₂ b₁₃ ... b₂₃], shall contain the check bits of the modified extended (24,12) Golay code.

For a 12-bit data message transmitted RRC frame, the Golay redundancy bits [b₁₃ b₁₄ ... b₂₃] shall be computed using the following operation in GF(2):

\[C(D) = M(D) \times D^{11} \text{ modulo } G(D), \]

where \(D \) is the delay operator, and

\[M(D) = b₀D^{11} + b₁D^{10} + \ldots + b₁₀D + b₁₁ \]

is the data message polynomial,

\[G(D) = D^{11} + D^9 + D^7 + D^6 + D^5 + D + 1 \]
is the generator polynomial,

\[C(D) = b_{17}D^{10} + b_{18}D^9 + b_{22}D^8 + b_{21}D^7 + b_{14}D^5 + b_{19}D^4 + b_{23}D^3 + b_{20}D^2 + b_{15}D + b_{16} \]

is the parity check polynomial.

The bit \(b_{12} \) is the overall parity bit computed in GF(2) as:

\[b_{12} = \sum_{k=0}^{11} b_k + \sum_{k=13}^{23} b_k \]

8.5 Roundtrip

The roundtrip in each direction is split into two parts: one due to the transmitter of the DTUs, called transmitter half-roundtrip and noted \(HRT_{tx} \), and one due to the receiver of the DTUs, called receiver half roundtrip and noted \(HRT_{rx} \). Both half roundtrips have a part expressed in DMT symbol noted \(HRT_{tx}^S \) and \(HRT_{rx}^S \), and a part computed in DTU noted \(HRT_{tx}^D \) and \(HRT_{rx}^D \).

The symbol part of the receiver half roundtrip, \(HRT_{rx}^S \), is defined as the maximal time in DMT symbol measured at the U-interface between the last received bit of the DTU with absolute number \(k + HRT_{rx}^D \) and the transmission of the first RRC containing information on the DTU with absolute number \(k \). The value is rounded up to the nearest integer.

The symbol part of the transmitter half roundtrip, \(HRT_{tx}^S \), is defined as the maximal time in DMT symbol measured at the U-interface between the reception of the first RRC containing the request for retransmission of the DTU with absolute number \(k \) and the first bit of the DTU transmitted \(HRT_{tx}^D \) DTUs before the actual retransmission of the DTU transmitted with the absolute number \(k \). This value assumes that the retransmitted DTU is sent as soon as possible, i.e., is not delayed by the transmit state machine, and is not delayed by the transmission of the current DTU over the U-interface. The value is rounded up to the nearest integer.

Both \(HRT_{rx}^S \) and \(HRT_{tx}^S \) values are computed assuming that no sync symbol is transmitted in any direction from the transmission of the DTU with absolute number \(k \) and its retransmission.

From the definition of the half roundtrips, the minimal size of the transmit queue \(Q_{tx,\text{min}} \) is computed as:

\[Q_{tx,\text{min}} = \left[\frac{HRT_{tx}^S + HRT_{rx}^S + 1}{Q \times S_1} \right] + HRT_{tx}^D + HRT_{rx}^D + 1 \]

This relationship is illustrated in the Figure 8-7.

NOTE – The additional symbol in the round up function takes into account the potential mis-alignment of the sync symbols between the upstream and downstream direction. This extra symbol could be removed if the sync symbols in the direction of DTU transmission are aligned with the sync symbols in the RRC direction in a range from \(-HRT_{rx}^S + \left[HRT_{rx}^D + 1 \right] \times Q \times S_1 \) to \(HRT_{tx}^S + \left[HRT_{tx}^D \times Q \times S_1 \right] - 1 \) DMT symbols, where a positive value indicates that the sync symbol in the direction of DTU transmission is sent after the sync symbol in the RRC direction.
The full roundtrip time (RTT) including the receiver and transmitter contribution, expressed in milliseconds, is given by:

$$\text{RTT} = \frac{Q_{tx,min} \times Q \times S_1}{f_s}$$

where f_s is the data symbol rate expressed in ksymbols/s.

8.6 Retransmission control parameters

8.6.1 Control parameters

The retransmission control parameters are defined in Table 8-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FramingType</td>
<td>Type of DTU framing.</td>
</tr>
<tr>
<td>Q</td>
<td>Number of Reed-Solomon codewords per DTU.</td>
</tr>
<tr>
<td>V</td>
<td>Number of padding octets per DTU.</td>
</tr>
<tr>
<td>HRT_{tx}^S</td>
<td>The symbol part of the transmitter half roundtrip expressed in DMT symbols as defined in clause 8.5.</td>
</tr>
<tr>
<td>HRT_{tx}^D</td>
<td>The DTU part of the transmitter half roundtrip expressed in DTUs as defined in clause 8.5.</td>
</tr>
<tr>
<td>HRT_{rx}^S</td>
<td>The symbol part of the receiver half roundtrip expressed in DMT symbols as defined in clause 8.5.</td>
</tr>
<tr>
<td>HRT_{rx}^D</td>
<td>The DTU part of the receiver half roundtrip expressed in DMT symbols as defined in clause 8.5.</td>
</tr>
<tr>
<td>Q_{rx}</td>
<td>Delay in DTU between two consecutive transmissions of the same DTU assumed by the receiver for the reference state machine.</td>
</tr>
<tr>
<td>lb</td>
<td>Look back value (see clause 8.4).</td>
</tr>
</tbody>
</table>

8.6.2 Valid configurations

A valid configuration of the retransmission function shall consist in the configuration of each control parameter with one of their valid values specified in the Table 8-2.
Table 8-2 – Valid configuration of the retransmission function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>FramingType</td>
<td>The valid values are 1, 2, 3 and 4.</td>
</tr>
<tr>
<td>HRT_{tx}^S</td>
<td>The valid values are any integer from 0 to 15 if the associated Recommendation is ITU-T G.992.3, ITU-T G.992.5 or ITU-T G.993.2 except for profile 30a. The valid values are all multiple of 2 from 0 to 30 if the associated Recommendation is ITU-T G.993.2 with profile 30a.</td>
</tr>
<tr>
<td>HRT_{tx}^D</td>
<td>The valid values are any integer from 0 to 2.</td>
</tr>
<tr>
<td>HRT_{rx}^S</td>
<td>The valid values are any integer from 1 to 16 if the associated Recommendation is ITU-T G.992.3, ITU-T G.992.5 or ITU-T G.993.2 except for profile 30a. The valid values are all multiple of 2 from 2 to 32 if the associated Recommendation is ITU-T G.993.2 with profile 30a.</td>
</tr>
<tr>
<td>HRT_{rx}^D</td>
<td>The valid values are any integer from 0 to 2.</td>
</tr>
<tr>
<td>Q_{tx}</td>
<td>The valid values are any integer from 1 to 63. Valid configuration shall be compatible with the memory as defined in the associated annex.</td>
</tr>
<tr>
<td>lb</td>
<td>The valid values are any integer from 1 to 31. Valid configuration shall be such that (lb \leq \min(31, Q_{tx})).</td>
</tr>
</tbody>
</table>

8.6.3 Mandatory configurations

The mandatory configurations of the retransmission function to support are a subset of the valid configurations. They shall consist in the configuration of each control parameter with one of their mandatory values specified in the Table 8-3.

Table 8-3 – Mandatory configuration of the retransmission function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>FramingType</td>
<td>The transmitter shall support FramingType 1 and at least one of the FramingType 2, 3, and 4.</td>
</tr>
<tr>
<td>Q_{tx}</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>lb</td>
<td>All valid values shall be supported.</td>
</tr>
</tbody>
</table>

8.6.4 Selection of parameter values

A reference transmit state machine is defined to allow the receiver to derive the settings of the retransmission path \((H, Q, V, R, L)\) and the queue delay \((Q_{tx})\). Those settings are based on the following constraints:

– The constraints on the delays: \(\text{delay_min}, \text{delay_max} \).
– The constraints on the impulse noise: \(\text{INP_min}, \text{INP_min_rein} \) and \(\text{iat_rein_flag} \).
– The constraints on the noise: \(\text{SNR_margin} \).
– The constraints on the rate.

NOTE – The receiver should take precautions to be robust against non-stationary RFI.
The reference transmit state machine retransmits any unacknowledged DTU a fixed number of DTUs, Q_{tx}, after the last transmission of the same DTU. An unacknowledged DTU is not retransmitted after the first transmission of the same DTU plus $delay_{max}$. Consequently, no more than $NRET = \left\lfloor \frac{delay_{max} \times fs}{Q_{tx} \times Q \times S} \right\rfloor$ retransmissions of the same DTU is possible with the reference transmit state machine.

The actual INP reported by the transmitter depends on the actual transmitter state machine. The actual transmitter state machine may retransmit DTUs at intervals different from Q_{tx} DTUs. Examples of these state machines can be found in Appendix I. They may differ from the values computed from the formula derived from the reference state machine. The value of the actual INP reported in the MIB shall be that derived by the transmitter.

9 PMS-TC function

The PMS-TC functional model consists of two latency paths. However, the multiplexing of overhead data and user data shall be restricted as described below.

Latency path #0 shall contain only the overhead channel and no user data (i.e., $B_{0n}=0$). This latency path supports FEC and interleaving. Only a reduced number of combinations of L, N, R, and D shall be allowed for this latency path. These combinations are specified in the respective annexes.

Latency path #1 shall carry user data only for bearer #0 (i.e., $B_{1n}=0$ for $n \neq 0$) and shall be protected by retransmission. Latency path #1 shall use the DTU framing as described in clause 8.1 and clause 8.2.

Clause 9.3 describes the multiplexing of the two latency paths and the RRC.

9.1 Scrambler

The PMS-TC scrambler for the latency path #1 shall be identical to the PMS-TC scrambler specified in the associated Recommendation (clause 9.2 of ITU-T G.993.2, clause 7.7.1.3 of ITU-T G.992.3) but its state shall be reset to all ZEROS at the first bit of each DTU. The scrambler is reset so that the first two octets of each DTU are identical before or after scrambling. For DTU with Framing type 1 and 2, this allows to decode the SID and TS at the receiver before descrambling.

9.2 FEC

The FEC shall be the same as in ITU-T G.992.3, ITU-T G.992.5, and ITU-T G.993.2.

9.3 Latency paths multiplexer

The RRC shall be mapped first on the data frame. Then, the latency paths shall be mapped with the order compliant with the associated Recommendation. The multiplexing of the RRC and latency paths is depicted in the Figure 9-1 for ITU-T G.993.2 and Figure 9-2 for ITU-T G.992.3 and ITU-T G.992.5.
9.4 Framing parameters

The framing parameters for the two latency paths are given in the sections below. Two types of framing parameters are defined:

- Primary framing parameters: the parameters that are exchanged during initialization.
- Derived framing parameters: parameters that can be computed using the primary parameters as input. The derived parameters can be used to verify data rates or additional constraints on the validity of the primary parameters.

9.4.1 Primary Parameters

The primary parameters are shown in Table 9-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{pn}</td>
<td>The number of octets per MDF from bearer channel n in latency path p. The actual number of octets in an MDF in latency path 1 can vary between $B_{1n}^\text{V-W-2}$ and $B_{1n}^\text{+1}$, depending on the DTU framing type.</td>
</tr>
<tr>
<td>FramingType</td>
<td>The DTU framing structure (Note 1).</td>
</tr>
<tr>
<td>Q</td>
<td>The number of RS codewords per DTU (Note 1).</td>
</tr>
<tr>
<td>V</td>
<td>The number of padding bytes per DTU (Note 1).</td>
</tr>
<tr>
<td>R_p</td>
<td>The number of redundancy octets per Reed-Solomon codewords in the latency path p (Note 2).</td>
</tr>
<tr>
<td>M_p</td>
<td>Number of MDFs per Reed-Solomon codeword (Note 2).</td>
</tr>
<tr>
<td>L_p</td>
<td>The number of bits from latency path p transmitted in each data symbol (Note 2).</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>G_p</td>
<td>The total number of overhead octets in an OH sub-frame (Note 3).</td>
</tr>
<tr>
<td>T_p</td>
<td>The number of MDFs that carry G_p overhead octets.</td>
</tr>
</tbody>
</table>

NOTE 1 – This parameter only applies to latency path #1.

NOTE 2 – Latency path #0 contains only overhead traffic. The valid values of this parameter in latency path #0 shall be restricted as described in the annexes.

NOTE 3 – This parameter is undefined if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5. In this case, the equivalent parameter assumes a special value of 0 or 1 (see Table 9-3).

9.4.2 Derived Parameters

The derived parameters are shown in Table 9-2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| W | DTU overhead octets related to CRC insertion:
- $W=0$ for $FramingType = 1$
- $W=1$ for $FramingType = 2$ or 3
- $W=2$ for $FramingType = 4$ when the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5
- $W=8$ for $FramingType = 4$ when the associated Recommendation is ITU-T G.993.2 |

| N_{FECp} | The Reed-Solomon codeword size:
$$N_{FEC1} = M_1 \times B_{T0} + \left[\frac{G_1}{T_1} \right] + R_1$$
$$N_{FEC0} = M_0 \times \left[\frac{G_0}{T_0} \right] + R_0$$
by convention, $\left[\frac{G_1}{T_1} \right]$ is equal to 1 if $G_1 = T_1 = 0$. |

| H | The number of payload bytes per Reed-Solomon codeword in a DTU:
$$H = N_{FEC1} - R_1$$ |

| S_p | The number of data symbols per Reed-Solomon codeword for latency path p:
$$S_p = \frac{8 \times N_{FECp}}{L_p}$$ |

| $DTUframingOH$ | The relative overhead due to the DTU framing:
$$V + W + 2 \over Q \times H$$ |

| f_{DMT} | The rate of transmission of DMT symbols in kHz.
- $f_{DMT} = 4.3125 \times 16/17 \text{ kHz}$ if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5.
- f_{DMT} is as specified in clause 10.4.4 of ITU-T G.993.2 if the associated Recommendation is ITU-T G.993.2. |
Table 9-2 – Derived framing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_s)</td>
<td>The rate of transmission of data symbols in kHz.</td>
</tr>
<tr>
<td></td>
<td>– (f_s = 4 \text{ kHz}) if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5.</td>
</tr>
<tr>
<td></td>
<td>– (f_s) is as specified in clause 10.4.4 of ITU-T G.993.2 if the associated Recommendation is ITU-T G.993.2.</td>
</tr>
<tr>
<td>(TDR_p)</td>
<td>The total data rate per latency path in kbit/s: (TDR_p = L_p \times f_s)</td>
</tr>
<tr>
<td>(TDR)</td>
<td>The total data rate in kbit/s: (TDR = \sum_p TDR_p + 24 \times f_s) if the RRC is present in this direction. (TDR = \sum_p TDR_p) if the RRC is absent in this direction.</td>
</tr>
<tr>
<td>(NDR_p)</td>
<td>The net data rate per latency path: If retransmission is enabled, (NDR_i = L_i \times f_s \times \frac{H}{N} \times (1 - D\text{TUframingOH})), and (NDR_0 = 0). If retransmission is disabled, the net data rate per latency is defined in the associated Recommendation.</td>
</tr>
<tr>
<td>(OR_p)</td>
<td>The overhead rate per latency path: If retransmission is enabled, (OR_0 = 8 \times f_s \times \frac{G_0 \times M_0}{S_0 \times T_0}), and (OR_1 = 0). If retransmission is disabled, the overhead rate per latency path is defined in the associated Recommendation.</td>
</tr>
<tr>
<td>(ADR_p)</td>
<td>The aggregate data rate per latency path: (ADR_p = NDR_p + OR_p \text{kbit/s}).</td>
</tr>
<tr>
<td>(ADR)</td>
<td>The aggregate data rate: (ADR = \sum_p ADR_p + 12 \times f_s \text{kbit/s}) if the RRC is present in this direction. (ADR = \sum_p ADR_p \text{kbit/s}) if the RRC is absent in this direction.</td>
</tr>
<tr>
<td>(RTxOH)</td>
<td>The retransmission overhead needed to protect against the worst-case impulse noise environment as configured in the MIB and stationary noise. (RTxOH = REIN_{\text{OH}} + SHINE_{\text{OH}} + STAT_{\text{OH}}) with (REIN_{\text{OH}} = \frac{\text{INP}{\text{min_rein}}}{Q \times S_i} + 1 \times Q \times S_i \times \left(\frac{f{\text{DMT}}}{f_{\text{REIN}}} \right)^{-1}) with (f_{\text{REIN}}), the repetition frequency of REIN in kHz. If (\text{INP}{\text{min_rein}} = 0) then (REIN{\text{OH}} = 0). (SHINE_{\text{OH}} = \text{SHINE_ratio}). (STAT_{\text{OH}} = 10^{-4}).</td>
</tr>
</tbody>
</table>
Table 9-2 – Derived framing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETR_u</td>
<td>The unlimited version of expected throughput in kbit/s: $(1−RTxOH)×NDR$</td>
</tr>
<tr>
<td>ETR</td>
<td>The expected throughput in kbit/s: $ETR = \min(ETR_u, ETR_{\text{max}})$</td>
</tr>
</tbody>
</table>

9.4.3 Valid configurations

The valid values of the framing parameters and any additional constraints are shown in Table 9-3.

Table 9-3 – Valid configurations of framing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{pm}</td>
<td>The valid values of B_{10} are any integer from 0 to 254. The valid value of B_{00}, B_{01}, B_{11} is 0.</td>
</tr>
<tr>
<td>$FramingType$</td>
<td>The valid values are 1, 2, 3 or 4, corresponding to Framing types 1 to 4 (see clause 8.1.1 – clause 8.1.4).</td>
</tr>
<tr>
<td>Q</td>
<td>The valid values of Q are any integer from 1 to 64 if the associated Recommendation is ITU-T G.993.2. The valid values of Q are any integer from 1 to 16 if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5. Furthermore, valid configurations of Q shall be such that $0.5 \leq Q \times S_1 \leq 4$ in L_0 state.</td>
</tr>
<tr>
<td>V</td>
<td>The valid values of V are any integer from 0 to 15.</td>
</tr>
<tr>
<td>R_p</td>
<td>The valid values of R_1 are 0, 2, 4, 8, 10, 12, 14 or 16. The valid values of R_0 are defined in Annexes A, B and C.</td>
</tr>
<tr>
<td>M_p</td>
<td>The valid value of M_1 is 1 for $FramingType = 1, 2, 3$. The valid value of M_1 is specified in clause 8.1.4 for $FramingType = 4$.</td>
</tr>
<tr>
<td>L_p</td>
<td>The valid values of L_1 are the same as the valid values of the latency path #0 specified in the associated Recommendation. The valid values of L_0 are defined in Annexes A, B and C.</td>
</tr>
<tr>
<td>G_p</td>
<td>The valid values of G_0 are defined in Annex C if the associated Recommendation is ITU-T G.993.2. The valid value of G_0 is 1 if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5. The valid value of G_1 is 0 for $FramingType = 1, 2, 3$. The valid values of G_1 are defined in clause 8.1.4 for $FramingType = 4$.</td>
</tr>
<tr>
<td>T_p</td>
<td>The valid values of T_0 are defined in Annexes A, B and C. The valid value of T_1 is 0 for $FramingType = 1, 2, 3$. The valid values of T_1 are defined in clause 8.1.4 for $FramingType = 4$.</td>
</tr>
<tr>
<td>N_{FEC_p}</td>
<td>The valid values of N_{FEC} are any integer from 1 to 255 if the associated Recommendation is ITU-T G.992.3 or ITU-T G.992.5. The valid values of N_{FEC} are any integer from 32 to 255 if the associated Recommendation is ITU-T G.993.2. The valid values of N_{FEC} are defined in Annexes A, B and C.</td>
</tr>
<tr>
<td>S_1</td>
<td>The valid values are the same as the valid values of the latency path #0 specified in the associated Recommendation.</td>
</tr>
</tbody>
</table>
9.4.4 Mandatory configurations

The mandatory values of the framing parameters are shown in Table 9-4. Mandatory applies to support at the transmitter.

Table 9-4 – Mandatory configurations of the framing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{pn}</td>
<td>All valid values shall be supported.</td>
</tr>
<tr>
<td>FramingType</td>
<td>For a transmitter, $FramingType=1$ shall be supported, as well as at least one of the other $FramingType$ values (2, 3 or 4). For a receiver, either Framing type 1 or all of Framing types 2, 3, and 4 shall be supported.</td>
</tr>
<tr>
<td>Q</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>V</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>R_p</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>M_p</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>L_p</td>
<td>All valid values of L_0 shall be supported. The mandatory values of L_1 shall be the same as the mandatory values of the latency path #0 specified in the associated Recommendation.</td>
</tr>
<tr>
<td>G_p</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>T_p</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>N_{FECp}</td>
<td>All valid values shall be supported</td>
</tr>
<tr>
<td>S_1</td>
<td>The mandatory values shall be the same as the mandatory values specified of the latency path #0 specified in the associated Recommendation.</td>
</tr>
</tbody>
</table>

9.5 Impulse noise protection

During initialization, the receiver shall select values for the framing parameters that guarantee protection against the worst-case impulse noise environment defined by the associated MIB parameters.

These MIB parameters are:

- INP_{min}: Minimum impulse noise protection against SHINE impulses, expressed in DMT symbols at the δ-reference point;
- $INP_{\text{min rein}}$: Minimum impulse noise protection against REIN impulses, expressed in DMT symbols at the δ-reference point;
- f_{REIN}: the repetition frequency of REIN expressed in kHz. Only two values (0.1 and 0.12 kHz) are possible and configured through $iat_{\text{rein flag}}$.

A worst-case impulse noise environment assumes that:

- every impulse causes retransmission of all DTUs that overlap with the impulse;
- every impulse is maximum length (either INP_{min} or $INP_{\text{min rein}}$ DMT symbols depending on the type of impulse);
- SHINE impulses are assumed to be isolated.

To derive the framer settings, the receiver shall assume the transmitter reference model described in clause 8.6.4 and the worst case impulse noise environment.

The following sections list the constraints on the framing parameters that have to be met to meet the required condition. The constraints will be different depending on whether the impulse noise...
environment consists of a single type of impulse (either REIN or SHINE) or an impulse noise environment consisting of both REIN and SHINE.

9.5.1 SHINE-only or REIN-only impulse noise environment

When the noise environment consists of only a single type of impulse, the framing parameters shall meet the constraints given below. In these formulas, INP_{min} should be interpreted as either $INP_{min} \text{(describing the SHINE INP)}$ or $INP_{min_rein} \text{(describing the REIN INP)}$, depending on the type of noise environment.

1. Retransmission transmit queue roundtrip constraint:

$$Q_{tx} \geq \left[\frac{HRT_{tx}^S + HRT_{Rx}^S + 1}{S_1 \times Q} \right] + HRT_{tx}^D_{TU} + HRT_{Rx}^D_{TU} + 1$$

2. Retransmission rescheduling FIFO at receiver. There shall be an integer $N_{ret} \geq 1$ such that the two following constraints are met:

 a. $N_{ret} \times Q_{tx} \times S_1 \times Q \leq \left(delayMax \times f_{DMT} \right) - \left(delayMax \times f_{sync} \right)$

 b. $N_{ret} \times Q_{tx} \geq \left[\frac{INP_{min}}{S_1 \times Q} \right] + 1$

3. If INP_{min_rein} is greater than 0, an additional REIN constraint is included:

$$N_{ret} \times Q_{tx} \leq \left((\frac{f_{DMT}}{f_{REIN}} - INP_{min_rein}) - \left((\frac{1}{f_{REIN}} - \frac{INP_{min_rein}}{f_{DMT}}) \times f_{sync} \right) \right) \times \frac{1}{S_1 \times Q} - 1$$

In the above equations, f_{sync} is the repetition rate of the sync symbol in kHz.

NOTE – The retransmission provides a correction to SHINE pulses of length INP_{min} with an inter-arrival greater than $delay_max + (S_1 \times Q \times Q_{tx})/f_s$.

9.5.2 Mixed SHINE and REIN impulse noise environment

When the noise environment consists of a mix of REIN and SHINE impulse noise, the framing parameters shall meet the constraints given below.

1. Retransmission transmit queue roundtrip constraint:

$$Q_{tx} \geq \left[\frac{HRT_{tx}^S + HRT_{Rx}^S + 1}{S_1 \times Q} \right] + HRT_{tx}^D_{TU} + HRT_{Rx}^D_{TU} + 1$$

2. Retransmission rescheduling FIFO at receiver. There shall be an integer $N_{ret} \geq 2$ and an integer $k \geq 1$ such that the following two constraints are met:

 a. $N_{ret} \times Q_{tx} \times S_1 \times Q \leq \left(delayMax \times f_{DMT} \right) - \left(delayMax \times f_{sync} \right)$

 b. $\left(N_{ret} \times Q_{tx} \times \left[\frac{INP_{min_rein}}{S_1 \times Q} \right] + 1 \right) \times S_1 \times Q \leq \left[\frac{k \times f_{DMT}}{f_{REIN}} \right] - \left[\frac{k \times f_{sync}}{f_{REIN}} \right]$ and

 c. $N_{ret} \times Q_{tx} \geq \left((\frac{(k-1) \times f_{DMT}}{f_{REIN}} + INP_{min_rein}) - \left((\frac{(k-1) \times INP_{min_rein}}{f_{DMT}}) \times f_{sync} \right) \right) \times \frac{1}{S_1 \times Q} + 1$

3. Reference transmit state machine REIN constraint:

$$\left(Q_{tx} + \left[\frac{INP_{min_rein}}{S_1 \times Q} \right] + 1 \right) \times S_1 \times Q \leq \left[\frac{f_{DMT}}{f_{REIN}} \right] - \left[\frac{f_{sync}}{f_{REIN}} \right]$$
Reference transmit state machine SHINE constraint:

\[
\left\lfloor \frac{\text{INP}_{\text{min}}}{S_1 \times Q} \right\rfloor + 1 \leq (N_{\text{retrans}} - 1) \times Q_{\text{tx}}
\]

In the above equations, \(f_{\text{sync}} \) is the repetition rate of the sync symbol in kHz.

NOTE – The retransmission provides a correction to SHINE pulses of length \(\text{INP}_{\text{min}} \) with an inter-arrival greater than \(\text{delay}_{\text{max}} + (S_1 \times Q \times Q_{\text{tx}})/f_s \).

10 PMD function

The PMD function shall be compliant with the associated Recommendation, except for the provisions given below.

10.1 Definition of MTBE

MTBE (Mean Time between Error Events) is the average number of seconds between two error events. An error event is defined as a block of one or more consecutive uncorrected DTUs.

In stationary noise, one can assume that each error event consist of a single corrupted DTU. In that case, MTBE can be calculated as:

\[
\text{MTBE} = \left(\frac{\text{Measurement _ Time}}{\text{Number _ of _ uncorrected _ DTUs}} \right)
\]

where:

- \(\text{MTBE} \) is expressed in seconds
- \(\text{Measurement _ Time} \) is expressed in seconds
- \(\text{Number _ of _ uncorrected _ DTUs} \) is the number of DTUs that are detected in error at the receiver and have not been corrected by a retransmission. (See DTU counter rtx-uc in clause 12)
- \(f_s \) is the data symbol rate in ksymbols/s.

This calculation is only valid under the assumption of stationary noise.

10.2 General definition of signal-to-noise ratio margin

If retransmission is used in a given direction, the reference MTBE is defined at the 1 dB signal-to-noise ratio margin working point.

Therefore the signal-to-noise ratio margin is equal to 1 dB plus the maximum increase (scalar gain, in dB) of the reference noise PSD (at all relevant frequencies), for which the MTBE of the active TPS-TC stream is not lower than the minimum MTBE (MTBE_min, see clause 10.3) specified for this TPS-TC stream, without any change of PMD parameters (e.g., bits and gains) and PMS-TC parameters (e.g., \(L_p \), FEC parameters) and with EFTR (see clause 11.2.2) \(\geq \) ETR. The MTBE is referenced to the output of the PMS-TC function after retransmission (i.e., the \(\alpha_1/\beta_1 \)-reference point).

During testing of the signal-to-noise ratio margin, only stationary noise shall be applied (i.e., no impulse noise shall be present).

The definition of the reference noise PSD depends on the control parameter SNRM_MODE as defined in ITU-T G.992.3, ITU-T G.992.5 or ITU-T G.993.2 respectively.
10.3 Definition of MTBE_min
The minimum MTBE (MTBE_min) is defined as 14400 seconds (corresponding to an average of one error event in four hours).
NOTE – This value is taken from Broadband Forum TR-126 [B1], corresponding to HDTV quality.

10.4 Accelerated testing of MTBE
In order to facilitate testing, a special test mode is defined, in which retransmissions shall not be requested by the receiver nor sent autonomously by the transmitter. This test shall be performed in the presence of stationary noise only. The remote side shall enter the test mode upon EOC request (see clause A.3.1.3.1 and clause C.3.1.3.1).

The test mode shall be selected with setting RTX_ENABLE = RTX_TESTMODE. The remote end shall be forced into this state by sending a Diagnostic Command through the EOC.

\(P_{DTU} \) is defined as the Probability that a DTU-Container is corrupted, i.e., a DTU is not received correctly in a single transmission. In this test mode it can be calculated from the DTU counters as:

\[
P_{DTU} = \left(\frac{\text{Number of uncorrected DTUs}}{\text{Measurement Time}/T_{DTU}} \right)
\]

where:
- \(\text{Measurement Time} \) is expressed in seconds
- \(T_{DTU} \) is the time duration of a DTU expressed in seconds
- \(\text{Number of uncorrected DTUs} \) is the number of DTUs that are detected in error at the receiver and as a consequence of absence of retransmission are detected as uncorrected. Therefore, the \(\text{Number of uncorrected DTUs} \) equals the \(\text{Number of errored DTUs} \).

In this accelerated test, the requirement for \(P_{DTU} \) is:

\[
P_{DTU} \leq \frac{8.333 \times 10^{-3}}{\sqrt{f_s}} \times (T_{DTU _in_DMT})^{1/2}
\]

where \(f_s \) is the symbol rate in Hz.
NOTE – Appendix II provides the calculations motivating this requirement.

11 Operation, Administration and Maintenance (OAM) Management function

11.1 Configuration parameters

11.1.1 Minimum expected throughput (MINETR_RTX)

The MINETR_RTX is a configuration parameter used to derive the control parameter \(ETR_min \) which specifies the minimum allowed value for the expected throughput rate \(ETR \) (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.

The downstream and upstream values of MINETR_RTX shall be configured in the CO-MIB.

The values range from 0 to the highest valid value of the minimum net data rate specified in the associated Recommendation, in steps of 1000 bit/s.

The control parameter \(ETR_min \) is derived by rounding up MINETR_RTX to the next multiple of 8 kbit/s.
11.1.2 Maximum expected throughput (MAXETR_RTX)
The MAXETR_RTX is a configuration parameter used to derive the control parameter ETR_{max} which specifies the maximum allowed value for the expected throughput rate ETR (see clause 7).

It is used in the definition of ETR as a limiting value.

The downstream and upstream values of MAXETR_RTX shall be configured in the CO-MIB.

The values range from 0 to the highest valid value of the maximum net data rate specified in the associated Recommendation, in steps of 1000 bit/s.

The control parameter ETR_{max} is derived by rounding down MAXETR_RTX to the next multiple of 8 kbit/s if $ETR_{min} \leq ETR_{max}$ after rounding for the corresponding direction. Otherwise, ETR_{max} is set to $ETR_{max} = ETR_{min}$.

11.1.3 Maximum Net Data Rate (MAXNDR_RTX)
The MAXNDR_RTX is a configuration parameter used to derive the control parameter net_{max} which specifies the maximum allowed value for the net data rate NDR (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.

The downstream and upstream values of MAXNDR_RTX shall be configured in the CO-MIB.

The values range from 0 to the highest valid value of the maximum net data rate specified in the associated Recommendation, in steps of 1000 bit/s.

The value of MAXNDR_RTX is rounded down to the next multiple of 8 kbit/s to obtain net_{max}.

11.1.4 Maximum delay (DELAYMAX_RTX)
The DELAYMAX_RTX is a configuration parameter used to derive the control parameter $delay_{max}$ which specifies the maximum allowed delay for retransmission (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.

The downstream and upstream values of DELAYMAX_RTX shall be configured in the CO-MIB.

The values range from 1 to 63 ms in steps of 1 ms.

The control parameter $delay_{max}$ shall be set to the same value as the configuration parameter DELAYMAX_RTX.

11.1.5 Minimum delay (DELAYMIN_RTX)
The DELAYMIN_RTX is a configuration parameter used to derive the control parameter $delay_{min}$ which specifies the minimum allowed delay for retransmission (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.

The downstream and upstream values of DELAYMIN_RTX shall be configured in the CO-MIB.

The values range from 0 to 63 ms in steps of 1 ms.

The control parameter $delay_{min}$ shall be set to the same value as the configuration parameter DELAYMIN_RTX.

11.1.6 Minimum impulse noise protection against SHINE for systems using 4.3125 kHz subcarrier spacing (INPMIN_SHINE_RTX)
The INPMIN_SHINE_RTX is a configuration parameter that, for the case of subcarrier spacing of 4.3125 kHz, is used to derive the control parameter INP_{min} which specifies the minimum impulse noise protection against SHINE (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.
The downstream and upstream values of INPMIN_SHINE_RTX shall be configured in the CO MIB.
The values range from 0 to 63 DMT symbols of 4.3125 kHz in steps of 1 DMT.
The control parameter \(INP_min \) shall be set to the same value as the configuration parameter INPMIN_SHINE_RTX.

11.1.7 Minimum impulse noise protection against SHINE for systems using 8.625 kHz subcarrier spacing (INPMIN8_SHINE_RTX)

The INPMIN8_SHINE_RTX is a configuration parameter that, for the case of subcarrier spacing of 8.625 kHz, is used to derive the control parameter \(INP_min \) which specifies the minimum impulse noise protection against SHINE (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.
The downstream and upstream values of INPMIN8_SHINE_RTX shall be configured in the CO MIB.
The values range from 0 to 127 DMT symbols of 8.625 kHz in steps of 1 DMT.
The control parameter \(INP_min \) shall be set to the same value as the configuration parameter INPMIN8_SHINE_RTX.

11.1.8 SHINERATIO_RTX

The SHINERATIO_RTX is a configuration parameter used to derive the control parameter \(SHINEratio \), which is used in the definition of the expected throughput rate (\(ETR \)) (see clause 7).
The downstream and upstream values shall be configured in the CO-MIB.
The values range from 0 to 0.1 in increments of 0.001.
NOTE – Typically, the detailed characteristics of the SHINE impulse noise environment are not known in advance by the operator. Therefore, it is expected that this parameter will be set by the operator using empirical methods.
The control parameter \(SHINEratio \) shall be set to the same value as the configuration parameter SHINERATIO_RTX.

11.1.9 Minimum impulse noise protection against REIN for systems using 4.3125 kHz subcarrier spacing (INPMIN_REIN_RTX)

The INPMIN_REIN_RTX is a configuration parameter that, for the case of subcarrier spacing of 4.3125 kHz, is used to derive the control parameter \(INP_min \) which specifies the minimum impulse noise protection against REIN (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.
The downstream and upstream values of INPMIN_REIN_RTX shall be configured in the CO MIB.
The values range from 0 to 7 DMT symbols of 4.3125 kHz in steps of 1 DMT.
The control parameter \(INP_min \) shall be set to the same value as the configuration parameter INPMIN_REIN_RTX.

11.1.10 Minimum impulse noise protection against REIN for systems using 8.625 kHz subcarrier spacing (INPMIN8_REIN_RTX)

The INPMIN8_REIN_RTX is a configuration parameter that, for the case of subcarrier spacing of 8.625 kHz, is used to derive the control parameter \(INP_min \) which specifies the minimum impulse noise protection against REIN (see clause 7).

It is used in the Channel Initialization Policy and on-line reconfiguration procedures.
The downstream and upstream values of INPM8_IN8_REIN_REAL shall be configured in the CO MIB.

The values range from 0 to 13 DMT symbols of 8.625 kHz in steps of 1 DMT.

The control parameter \textit{INP_min} shall be set to the same value as the configuration parameter INPM8_IN8_REIN_REAL.

11.1.11 REIN Inter-arrival time for retransmission (IAT_IN8_REIN_REAL)

The IAT_IN8_REIN_REAL is a configuration parameter that is used to derive the control parameter \textit{iat_rein_flag} which specifies the REIN inter-arrival time (see clause 7).

It is used in the Channel Initialization Policy and online reconfiguration procedures.

The downstream and upstream values of IAT_IN8_REIN_REAL shall be configured in the CO MIB.

The values are 0 and 1.

The control parameter \textit{iat_rein_flag} shall be set to the same value as the configuration parameter IAT_IN8_REIN_REAL.

11.1.12Threshold for declaring "leftr" defect (LEFTR_THRESH)

The LEFTR_THRESH is a configuration parameter that is used to derive the control parameter \textit{leftr_thresh}, which specifies the fraction of NDR that shall be used as the threshold for declaring leftr defects (see clause 7).

The downstream and upstream values of LEFTR_THRESH shall be configured in the CO-MIB.

The valid range for LEFTR_THRESH is from 0.01 to 0.99 with a granularity of 0.01 and a special value indicating that ETR shall be used as the threshold for declaring leftr detects.

The control parameter \textit{leftr_thresh} shall be set to the same value as the configuration parameter LEFTR_THRESH. The special value of LEFTR_THRESH shall be mapped to \textit{leftr_thresh} = 0.

The minimum valid threshold for declaring leftr defect is ETR/2. The receiver shall use ETR/2 in the case the threshold is configured to a value less than ETR/2 by the operator.

11.1.13 Retransmission Mode (RTX_MODE)

The RTX_MODE is a configuration parameter used to control activation of retransmission during initialization.

This parameter has 4 valid values:

0: RTX_FORBIDDEN: ITU-T G.998.4 retransmission not allowed.

1: RTX_PREFERRED: ITU-T G.998.4 retransmission is preferred by the operator.
(i.e., if ITU-T G.998.4 RTX capability is supported by both XTU’s, the XTU’s shall select ITU-T G.998.4 operation for this direction).

2: RTX_FORCED: Force the use of the ITU-T G.998.4 retransmission.
(i.e., if ITU-T G.998.4 RTX capability in this direction is not supported by both XTU’s or not selected by the XTU’s, an initialization failure shall result).

NOTE – Due to the optionality of ITU-T G.998.4 retransmission in upstream direction, the use of RTX_FORCED in upstream may lead to initialization failure, even if the XTU is supporting ITU-T G.998.4 (in downstream).

3: RTX_TESTMODE: Force the use of the ITU-T G.998.4 retransmission in the test mode described in clause 10.4.
(i.e., if ITU-T G.998.4 RTX capability is not supported by both XTU’s or not selected by the XTU’s, an initialization failure shall result).
11.2 Test parameters

A number of general ITU-T G.998.4 specific test parameters are specified in the following clauses.

The test parameters are calculated/measured by the transmit or receive function and shall be reported on request to the near-end Management Entity. The near-end Management Entity shall send the test parameter value to the far-end Management Entity on request during Showtime, using the Test Parameter Read EOC commands defined in the annexes.

The following test parameters shall be passed on request from the receive PMS-TC function to the near-end ME:
- Expected throughput (ETR).
- Actual delay of retransmission ($delay_{act_RTX}$).

The following test parameters shall be passed on request from the transmit PMS-TC function to the near end ME:
- Actual impulse noise protection against SHINE (INP_{act_SHINE}).
- Actual impulse noise protection against REIN (INP_{act_REIN}).

11.2.1 Expected throughput (ETR)

The test parameter expected throughput (ETR) is defined in Table 9-2 as:

$$ETR = \min(ETRu, ETR_{\max}) \text{kbit/s}$$

where:

$ETRu$ is the unlimited version of ETR given by

$$ETRu = (1 - RTxOH) \times NDR$$

It shall be calculated by the receiver during initialization and updated upon OLR.

The RTxOH (see Table 9-2) is the expected rate loss, expressed as a fraction of Net Data Rate (NDR), due to combined effect of:
- impulse noise protection against worst-case REIN impulses as described by the configuration parameters INPMIN_REIN_RTX and IAT_REIN_RTX in the CO-MIB;
- impulse noise protection against worst-case SHINE as described by the configuration parameters INPMIN_SHINE_RTX and SHINERATIO_RTX in the CO-MIB;
- overhead due to correction of stationary noise errors.

The valid values are all integers from 0 to the maximum of the valid values of the maximum net data rate specified in the associated Recommendation values.

The test-parameter ETR shall be represented as a 32-bit unsigned integer expressing the value of ETR in kbit/s. This data format supports a granularity of 1 kbit/s.

The test parameter ETR shall be mapped on the reporting parameter "Actual Data Rate". The downstream and upstream values shall be reported in the CO-MIB.

11.2.2 Error-free throughput ($EFTR$)

The error-free throughput ($EFTR$) is defined as the average bit-rate, calculated during a 1 second time window, at the β1-reference point, of bits originating from DTU's that have been detected to contain no error at the moment of crossing the β1-reference point. The 1 second time windows that are consecutive and non-overlapping. As a result of this definition, $EFTR \leq NDR$.

The $EFTR$ shall be measured in Showtime by the receiver.

The $EFTR$ shall be calculated every second.
The $EFTR$ is not a test parameter directly reported to the ME, but is indirectly used in the definition of related parameter $EFTR_{min}$ and $leftr$ defects.

11.2.3 Actual INP against SHINE (INP_act_SHINE)

The test parameter INP_act_SHINE is defined as the actual INP against SHINE of the latency path with retransmission under following specific conditions:

Assuming impulse noise protection against REIN equal to INP_{min_rein}

Assuming $EFTR \geq ETR$

NOTE – If the reference transmit state machine is used by the transmitter (clause 8.6.4), the actual INP against SHINE of the latency path with retransmission is the greatest value of INP_{min} that is compatible with the constraints defined in clause 9.5.1 or clause 9.5.2 and the above specific conditions.

It shall be calculated by the transmitter during initialization and updated upon OLR.

The test parameter INP_act_SHINE shall be represented as a 16-bit unsigned integer expressing the value in fractions of DMT symbols with a granularity of 0.1 symbols.

The valid range is from 0 to 204.6. The special value 204.7 indicates a value of 204.7 or higher.

NOTE – The linear format is chosen for simplicity reason and does not imply any future accuracy requirements.

The test parameter INP_act_SHINE shall be mapped on the reporting parameter $ACTINP$. The downstream and upstream values shall be reported in the CO-MIB.

11.2.4 Actual INP against REIN (INP_act_REIN)

The test parameter INP_act_REIN is defined as the minimum of

1) the actual INP against REIN of the latency path with retransmission under the following specific conditions:
 - Assuming impulse noise protection against SHINE equal to INP_{min_SHINE}.
 - Assuming $EFTR \geq ETR$; and

NOTE – If the reference transmit state machine is used by the transmitter (clause 8.6.4), the actual INP against REIN of the latency path with retransmission is the greatest value of INP_{min_rein} that is compatible with the constraints defined in clause 9.5.1 or clause 9.5.2 and the above specific conditions.

2) the actual INP in the latency path carrying the overhead channel.

It shall be calculated by the transmitter during initialization and updated upon OLR.

The test parameter INP_act_REIN shall be represented as a 8 bit unsigned integer expressing the value in fractions of DMT symbols with a granularity of 0.1 symbols.

The range is from 0 to 25.4. The special value 25.5 indicates a value of 25.5 or higher.

NOTE – The linear format is chosen for simplicity reason and does not imply any future accuracy requirements.

The test parameter INP_act_REIN shall be mapped on the reporting parameter $ACTINP_REIN$. The downstream and upstream values shall be reported in the CO-MIB.

11.2.5 Actual Delay RTX ($delay_act_RTX$)

If retransmission is used in a given transmit direction, the test parameter $delay_act_RTX$ is defined as the actual value of the time-independent component of the delay between the α_1 and β_1-reference points due to the retransmission functionality. This can be calculated as the minimum possible instantaneous delay between the α_1 and β_1-reference points, based on the actual settings of the framing parameters.

It shall be calculated by the receiver during initialization and updated upon OLR.
The test parameter \textit{delay_act_RTX} is coded in ms (rounded to the nearest ms) and shall be represented as an 8-bit unsigned integer. Valid values are between 0 and 63 ms.

The test parameter \textit{delay_act_RTX} shall be mapped on the reporting parameter "Actual Delay". The downstream and upstream values shall be reported in the CO-MIB.

11.3 OAM line-related primitives

11.3.1 Near-end anomalies

The following near-end anomalies are redefined with respect to the definition in the associated Recommendations. They are only defined for the latency path #1 carrying the DTUs:

- Forward error correction \textit{fec-p} (with p=1): A \textit{fec-p} anomaly occurs on any received Reed-Solomon codewords corrected by the FEC even if this Reed-Solomon codeword is part of DTU that is discarded or corrected by a retransmission. This anomaly is not asserted if errors are detected and are not correctable.

- Cyclic redundancy check \textit{crc-p} (with p=1): As there is no CRC on the latency path carrying the DTUs, the \textit{crc-p} anomaly is redefined by the detection of at least one uncorrected DTU per 17 ms time interval.

\textbf{NOTE} – \textit{crc-p} should not be confused with CRC-8 in DTU Framing types 2, 3 and 4.

\textbf{NOTE} – The CV and ES are derived as per the associated Recommendation from the redefined \textit{crc-p} anomaly and other anomalies or defects. The SES is derived as per the associated Recommendation from the redefined \textit{crc-p} anomaly and other anomalies or defects, with the addition of ITU-T G.998.4 seflr defect.

No defect, anomaly and failure are defined for the latency path carrying the overhead channel.

11.3.2 Far-end anomalies

No far-end anomalies are defined in this Recommendation.

11.3.3 Near-end defects

The low error-free throughput rate \textit{(leftr)} defect is defined as follows:

- When \textit{leftr_thresh} is set to the value different from 0:
 \begin{align*}
 \text{A leftr defect occurs when } & EFTR < \max(leftr_thresh \times NDR, ETR / 2) \\
 \text{A leftr defect terminates when } & EFTR \geq \max(leftr_thresh \times NDR, ETR / 2)
 \end{align*}

- When \textit{leftr_thresh} is set to the special value of 0:
 \begin{align*}
 \text{A leftr defect occurs when } & EFTR < 0.998 \times ETR \\
 \text{A leftr defect terminates when } & EFTR \geq 0.998 \times ETR
 \end{align*}

The severe loss of error-free throughput rate \textit{(seflr)} defect occurs when \textit{EFTR}<$ETR/2$ and terminates when \textit{EFTR}$\geq ETR/2$.

11.3.4 Far-end defects

No far-end defects are defined in this Recommendation.

11.4 Performance Monitoring Parameters

A number of general ITU-T G.998.4 specific performance monitoring parameters are specified in the following clauses.

The performance monitoring parameters are measured by the receive function and shall be reported on request to the near-end Management Entity. The near-end Management Entity shall send the parameter value to the far-end Management Entity on request during Showtime, using the Management Counter Read EOC command defined in the annexes.
The following performance monitoring parameters shall be passed on request from the receive PMS-TC function to the near-end ME:

- Two counters
 - leftr defect seconds counter
 - Error-free bits counter
- One parameter
 - Minimum error-free throughput (EFTR\(_{\text{min}}\)) parameter.

11.4.1 "leftr" defect seconds counter
This is a near-end counter of seconds with a near-end "leftr" defect present.

It is a 32-bit wrap-around counter. The counter shall be reset at power-on. The counters shall not be reset with a link state transition and shall not be reset when read.

The upstream value shall be reported in the CO-MIB as a near-end value.

The downstream value shall be reported in the CO-MIB as a far-end value.

11.4.2 Error-free bits counter
This is a near-end counter counting the number of error-free bits passed over the \(\beta_1\)-reference point, divided by \(2^{16}\). Error-free bits are bits originating from DTU's that have been detected to contain no error at the moment of crossing the \(\beta_1\)-reference point.

It is a 32-bit wrap-around counter. The counter shall be reset at power-on. The counters shall not be reset with a link state transition and shall not be reset when read.

The upstream value shall be reported in the CO-MIB as a near-end value.

The downstream value shall be reported in the CO-MIB as a far-end value.

11.4.3 Minimum error-free throughput (EFTR\(_{\text{min}}\)) parameter
The performance monitoring parameter minimum error-free throughput (EFTR\(_{\text{min}}\)) is defined as the minimum of the EFTR observed since the last reading of the EFTR\(_{\text{min}}\) via an EOC command over the U-interface.

The EFTR\(_{\text{min}}\) shall be measured in Showtime by the receiver.

The valid values are all integers from 0 to the maximum of the valid values of the maximum net data rate specified in the associated Recommendation values.

The performance monitoring parameter EFTR\(_{\text{min}}\) shall be represented as a 32-bit unsigned integer expressing the value of EFTR\(_{\text{min}}\) in kbit/s. This data format supports a granularity of 1 kbit/s.

The previous value of EFTR\(_{\text{min}}\) shall be reported in the EOC if no EFTR measurement has been done since the last reading of EFTR\(_{\text{min}}\).

NOTE – The above requirement covers the case that two retrievals of EFTR\(_{\text{min}}\) over the EOC take place in less than 1 second, and in which no new EFTR measurement is available, since the EFTR is only updated on 1 second interval.

Although this parameter EFTR\(_{\text{min}}\) is reported via the management counter read eoc command, this performance monitoring parameter is not a counter. Therefore, the requirements of ITU-T G.992.3, ITU-T G.993.2 and ITU-T G.997.1 applicable to counters in general do not apply to this parameter.

The parameter reported to the CO-MIB over the Q-interface, MINEFTR, is defined as the minimum of the EFTR observed over the 15 min or 24 hour accumulation period.

The XTU-C shall retrieve the far-end EFTR\(_{\text{min}}\) over the U interface, to calculate the MINEFTR as defined on the Q interface.
NOTE – The frequency of retrieval over the U-interface is left to the implementation as necessary for accurate monitoring.

The upstream value shall be reported in the CO-MIB as a near-end value.

The downstream value shall be reported in the CO-MIB as a far-end value.

11.5 Channel initialization policies

The method used by the receiver to select the values of transceiver parameters described in this clause is implementation dependent. However, within the limit of the total data rate provided by the local PMD, the selected values shall meet all of the constraints communicated by the transmitter prior to the Channel Analysis & Exchange phase, including:

- Message overhead data rate ≥ Minimum message overhead data rate.
- ETR ≥ ETR_min.
- Impulse noise protection at least against a combined threat of worst-case REIN impulses as described by the CO-MIB parameters INPmin_REIN and IAT_REIN_flag and of worst-case SHINE impulses as described by the CO-MIB parameter INPmin.
- Minimum delay ≤ Delay ≤ Maximum delay.
- SNR Margin ≥ TARSNRM.

If within these constraints, the receiver is unable to select a set of configuration parameters, then the transmitter shall enter the SILENT state instead of the Showtime state at the completion of the initialization procedures.

Within those constraints, the receiver shall select the values as to optimize in the priority given in the priority list below. The Channel Initialization Policy applies only for the selection of the values exchanged during initialization, and does not apply during Showtime.

The following Channel Initialization policy is defined:

- Policy ZERO if CIpolicyn=0, then:
 1) Maximize the ETR until a limit of ETR_max
 2) Maximize the NDR until a limit of net_max
 3) Maximize margin until MAXSNRM
 4) Minimize excess margin with respect to the maximum SNR margin MAXSNRM through gain adjustments (see clause 10.3.4.2 of ITU-T G.993.2). Other control parameters may be used to achieve this (e.g., MAXMASK, see clause 7.2.3 of ITU-T G.993.2).
Support of Channel Initialization Policy 0 is mandatory.

The CI\textit{policy}\textsubscript{a} parameter values other than 0 are reserved for use by the ITU-T.

12 **DTU counters**

For trouble-shooting and testing of the retransmission functionality, three DTU counters are defined to monitor the retransmissions:

- counter of uncorrected DTU (rtx-uc): this is a counter that is incremented each time a DTU is detected in error and has not been corrected by one or more retransmissions within the \textit{delay_max} constraint;
- counter of corrected DTU (rtx-c): this is a counter that is incremented each time a DTU has been detected in error and has been successfully corrected by a retransmission;
- counter of retransmitted DTU by the transmitter (rtx-tx): this is a counter that is incremented each time a DTU has been retransmitted by the transmitter. Multiple retransmission of the same DTU is counted as many times as it has been retransmitted.

Those counters are 32 bit values with wrap-around and shall be maintained by the xTU. They shall be available upon request over the EOC. The counters shall be reset at power-on. The counters shall not be reset upon a link state transition and shall not be reset when read.

13 **On-line Reconfiguration (OLR)**

Any On-line Reconfiguration (OLR) resulting in data rate change is for further study. OLR type 1 shall be as specified in the associated ITU-T Recommendation: ITU-T G.992.3, ITU-T G.992.5 or ITU-T G.993.2.
Annex A

Support of ITU-T G.998.4 with ITU-T G.992.3

A.1 Specific requirements

For ITU-T G.992.3, retransmission is defined only for the downstream direction (i.e., DTUs are transmitted only in the downstream direction and the RRC is transmitted only in the upstream direction).

A.1.1 Memory

The size of the transmit retransmission queue in the CO is limited to the half of the downstream interleaver delay in bytes, i.e.:

\[Q_{tx} \times Q \times H \leq 8001 \text{ octets for ITU-T G.992.3} \]

where \(Q_{tx} \) is the length of the transmit retransmission queue in DTUs.

The minimum memory for the receiver retransmission queue shall be identical to the amount of the memory for the related transmit queue.

The maximal DTU size in octets (\(Q \times H \)) shall be 1024.

A.1.2 Overhead channel access (supplements clause 7.8.2 of ITU-T G.992.3)

The overhead channel shall be included in the latency path #0 as specified in ITU-T G.992.3 for MSG\(_\text{LP}=0 \) with the additional constraints on the latency path #0:

- \(L_0 \) shall be a multiple of 8.
- \(T_0 = 1 \).
- \(B_{0n} \) shall be equal to 0.
- \(R_0 \) shall be equal to 16. \(N_{\text{FEC},0} \) shall be greater or equal to 32.
- Valid \(D_0 \) shall be 1, 2, or 4.
- The INP\(_0\) (INP of the latency path as defined in Table 7-7 of ITU-T G.992.3) shall be at least 7.
- The following relationship shall hold between \(N_0, D_0 \) and \(L_0 \) to insure robustness to REIN at 120 Hz.

\[
\frac{8 \times N_{\text{FEC},0} \times D_0}{L_0} \leq \left\lfloor \frac{f_{\text{DMT}}}{120\text{Hz}} \right\rfloor - 1 = 32 \text{ with } f_{\text{DMT}} \text{ the symbol rate } 4312.5*16/17 \text{ Hz.}
\]

A.2 Initialization

A.2.1 ITU-T G.994.1 Phase (replaces clause K.x.10 of ITU-T G.993.2)

This clause describes the change to the ITU-T G.994.1 messages of ITU-T G.992.3 to support ITU-T G.998.4 in conjunction with ITU-T G.992.3.

During the ITU-T G.994.1 Phase, only the selection of the ATM TPS-TC function is made. The ATM TPS-TC shall be configured during the Channel Analysis Phase via the C/R-MSG1 messages and during Exchange Phase via the C/R-PARAMS messages.

During the ITU-T G.994.1 Phase, only the selection of the PTM TPS-TC function is made, together with the configuration for use of pre-emption and short packets. The remaining parameters of the PTM TPS-TC shall be configured during the Channel Analysis Phase via the C-MSG1/R-MSG1 messages and during Exchange Phase via the C-PARAMS/R-PARAMS messages.
A.2.1.1 ITU-T G.994.1 Capability list message

An SPar(2) bit Downstream ATM TPS-TC #0 RETX is added to each of the operating mode Annexes A/L, B, I, J, and M of ITU-T G.992.3 to indicate support of retransmission in the downstream direction for ATM TPS-TC #0.

An SPar(2) bit Downstream PTM TPS-TC #0 RETX is added to each of the operating mode Annexes A/L, B, I, J, and M of ITU-T G.992.3 to indicate support of retransmission in the downstream direction for PTM TPS-TC #0.

The ATU-C shall set the Spar(2) bit "Downstream ATM TPS-TC #0 RETX" to ONE in the CL message to indicate the CO-MIB enables retransmission in the downstream direction and the ATU-C supports ATM retransmission in the downstream direction.

The ATU-C shall set the Spar(2) bit "Downstream PTM TPS-TC #0 RETX" to ONE in the CL message to indicate the CO-MIB enables retransmission in the downstream direction and the ATU-C supports PTM retransmission in the downstream direction.

The ATU-R shall set the Spar(2) bit "Downstream ATM TPS-TC #0 RETX" to ONE in the CLR message to indicate the ATU-R supports ATM retransmission in the downstream direction.

The ATU-R shall set the Spar(2) bit "Downstream PTM TPS-TC #0 RETX" to ONE in the CLR message to indicate the ATU-R supports PTM retransmission in the downstream direction.

This information for an ATM-TC function is represented using a block of ITU-T G.994.1 information as shown in Table A.1.

<table>
<thead>
<tr>
<th>Spar(2) bit</th>
<th>Definition of related Npar(3) octets</th>
<th>Definition of the parameter block of Npar(3) octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream ATM TPS-TC #0 RETX</td>
<td>A block of Npar(3) octets as defined below describing the capabilities of the downstream ATM-TC function #0, if present.</td>
<td>A parameter block of 1 octet reserved by the ITU-T.</td>
</tr>
</tbody>
</table>

This information for a PTM-TC function is represented using a block of ITU-T G.994.1 information as shown in Table A.2.

<table>
<thead>
<tr>
<th>Spar(2) bit</th>
<th>Definition of related Npar(3) octets</th>
<th>Definition of the parameter block of Npar(3) octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream PTM TPS-TC #0 RETX</td>
<td>A block of Npar(3) octets as defined below describing the capabilities of the downstream PTM-TC function #0, if present.</td>
<td>A parameter block of 1 octet indicating the support for pre-emption and short packets.</td>
</tr>
</tbody>
</table>

A.2.1.2 ITU-T G.994.1 Mode select message

If and only if the "Downstream ATM TPS-TC #0 RETX" Spar(2) bit is set to ONE in the last previous CL and CLR message, the "Downstream ATM TPS-TC #0 RETX" Spar(2) bit may be set to ONE in the MS message. It shall be set to ZERO otherwise.

If and only if the "Downstream PTM TPS-TC #0 RETX" Spar(2) bit is set to ONE in the last previous CL and CLR message, the "Downstream PTM TPS-TC #0 RETX" Spar(2) bit may be set to ONE in the MS message. It shall be set to ZERO otherwise.
No more than one of the "Downstream ATM TPS-TC #0 RETX" and "Downstream PTM TPS-TC #0 RETX" Spar(2) bits shall be set to ONE. If both bits are set in both the last previous CL message and the last previous CLR message, the selection of setting either the "Downstream ATM TPS-TC #0 RETX" or the "PTM-TC DS #0 RETX" Spar(2) bit to ONE is done by the entity transmitting the MS message.

If the "Downstream ATM TPS-TC #0 RETX" or the "Downstream PTM TPS-TC #0 RETX" Spar(2) bit is set to ONE in the MS message, then all "Downstream STM TPS-TC #n", "Downstream ATM TPS-TC #n", and "Downstream PTM TPS-TC #n" Spar(2) bits (for \(n = 0, 1, 2, \) and 3) shall be set to ZERO in the MS message.

If the "Downstream PTM TPS-TC #0 RETX" Spar(2) bit is set to ONE, then the PTM TPS-TC shall operate according to Annex N of ITU-T G.992.3, with use short packets and pre-emption enabled if and only if the related Downstream PTM TPS-TC #0 RETX" Npar(3) bit is set ONE.

A.2.1.2.1 ATU-C behaviour in case of RTX_ENABLE = FORCED

If the parameter RTX_ENABLE is set to the value "FORCED" in the CO-MIB, and in the ITU-T G.994.1 mode select message both the downstream ATM TPS-TC #0 RETX and the downstream PTM TPS-TC #0 RETX Spar(2) bits are set to ZERO, the ATU-C transmitter shall enter the C-SILENT1 state upon completion of the ITU-T G.994.1 phase.

This is to be considered as an initialization failure. The initialization failure count shall be incremented and an initialization failure cause value 6 shall be indicated in the MIB. This failure code shall be generated by the ATU-C.

A.2.2 TPS-TC configuration in Channel Analysis Phase (replaces clause 6.2.2 of ITU-T G.992.3)

This clause describes the change to the channel analysis messages of the initialization of ITU-T G.992.3 to support ITU-T G.998.4 in conjunction with ITU-T G.992.3.

The C-MSG1 message shall include the TPS-TC information specified in Table A.3. The TPS-TC information contains the requirement on the configuration of the downstream bearer #0 mapped into the retransmission path.

<table>
<thead>
<tr>
<th>Octet number</th>
<th>PMS-TC format bits ([8 \times i + 7 \text{ to } 8 \times i + 0])</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 0</td>
<td>[aaaa aaaa] bit 7 to 0</td>
<td>The bits aaaa aaaa give the LSB of the minimum throughput rate of the downstream bearer #0 ((ETR_{min})) expressed in multiple of 8 kbit/s.</td>
</tr>
<tr>
<td>Octet 1</td>
<td>[aaaa aaaa] bit 15 to 8</td>
<td>The bits aaaa aaaa give the MSB of the minimum throughput rate of the downstream bearer #0 ((ETR_{min})) expressed in multiple of 8 kbit/s.</td>
</tr>
<tr>
<td>Octet 2</td>
<td>[bbbb bbbb] bit 7 to 0</td>
<td>The bits bbbb bbbb give the LSB of the maximum throughput rate of the downstream bearer #0 ((ETR_{max})) expressed in multiple of 8 kbit/s.</td>
</tr>
<tr>
<td>Octet 3</td>
<td>[bbbb bbbb] bit 15 to 8</td>
<td>The bits bbbb bbbb give the MSB of the maximum throughput rate of the downstream bearer #0 ((ETR_{max})) expressed in multiple of 8 kbit/s.</td>
</tr>
<tr>
<td>Octet 4</td>
<td>[cccc cccc] bit 7 to 0</td>
<td>The bits cccc cccc give the LSB of the maximum net data rate of the downstream bearer #0 ((net_{max})) expressed in multiple of 8 kbit/s.</td>
</tr>
</tbody>
</table>
Table A.3 – Format for TPS-TC C-MSG1 information

<table>
<thead>
<tr>
<th>Octet number [i]</th>
<th>PMS-TC format bits [8 × 1 + 7 to 8 × 1 + 0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 5</td>
<td>[cccc cccc] bit 15 to 8</td>
<td>The bits cccc cccc give the MSB of the maximum net data rate of the downstream bearer #0 (net_max) expressed in multiple of 8 kbit/s.</td>
</tr>
<tr>
<td>Octet 6</td>
<td>[00dd dddd] bit 7 to 0</td>
<td>The bits dd dddd give the minimal impulse noise protection (INP_min) of the downstream bearer #0 (INP_min) expressed in DMT symbols.</td>
</tr>
<tr>
<td>Octet 7</td>
<td>[eeee eeee] bit 7 to 0</td>
<td>The bits eeee eeee give the value of the SHINE ratio expressed in unit of 0.001.</td>
</tr>
<tr>
<td>Octet 8</td>
<td>[000f 0ggg] bit 7 to 0</td>
<td>The bits ggg give the minimal impulse noise protection against REIN of the downstream bearer #0 (INP_min_rein) expressed in DMT symbols. The bit f contain the periodicity of REIN of the bearer #0 (iat_rein_flag). If f equals 0, the periodicity of REIN is 100Hz. If f equals 1, the periodicity of REIN is 120 Hz.</td>
</tr>
<tr>
<td>Octet 9</td>
<td>[00hh hhhh] bit 7 to 0</td>
<td>The bits hh hhhh gives the maximum delay of the downstream bearer #0 (delay_max) expressed in ms.</td>
</tr>
<tr>
<td>Octet 10</td>
<td>[00ii iii] bit 7 to 0</td>
<td>The bits ii iii gives the minimum delay of the downstream bearer #0 (delay_min) expressed in ms.</td>
</tr>
<tr>
<td>Octet 11</td>
<td>[0jjj jjjj] bit 7 to 0</td>
<td>The bits jjjj jjjj give the left threshold value for downstream bearer #0 (left_thresh) expressed in one hundredth multiples of NDR.</td>
</tr>
<tr>
<td>Octet 12</td>
<td>[0000 00kk] bit 7 to 0</td>
<td>The bits kk give the CI policy for downstream bearer #0.</td>
</tr>
</tbody>
</table>

NOTE: When retransmission is enabled (in the downstream), only one bearer channel shall be supported in the downstream and upstream directions.

A.2.3 PMS-TC configuration in Channel Analysis Phase (replaces clause 7.10.2 of ITU-T G.992.3)

A.2.3.1 C-MSG1 Message

The format of the PMS-TC information transmitted in the C-MSG1 message shall be as described in Table A.4.
Table A.4 – Format for PMS-TC C-MSG1 information

<table>
<thead>
<tr>
<th>Octet number [i]</th>
<th>PMS-TC format bits [8 × I + 7 to 8 × I + 0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 0</td>
<td>[0000 00aa]</td>
<td>The bits aa give the supported DTU framing type with CRC-8 by the ATU-C:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aa = 00 Reserved by ITU-T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aa = 01 indicates support of DTU Framing type 2 (see clause 8.1.2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aa = 10 indicates support of DTU Framing type 3 (see clause 8.1.3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aa = 11 indicates support of DTU Framing type 4 (see clause 8.1.4).</td>
</tr>
<tr>
<td>Octet 1</td>
<td>[00dd ssss] bit 7 to 0</td>
<td>The bits ssss and dd give the transmitter half roundtrip of the ATU-C. The bits ssss contain the part in DMT symbols coded as integer from 0 to 15 and the bits dd contain the part in DTU coded as integer from 0 to 3.</td>
</tr>
<tr>
<td>Octet 2</td>
<td>[0000 bbbb] bit 7 to 0</td>
<td>The bits bbbb contain the transmitter supported maximum 1/S value for the latency path with retransmission function. This maximum 1/S shall equal (n+1), with n coded as an unsigned 4-bit value bbbb, in the 0 to 15 range. When retransmission is enabled, this value supersedes the maximum 1/S value exchanged with the "S_{min}" field in the PMS-TC capabilities list in ITU-T G.994.1.</td>
</tr>
</tbody>
</table>

A.2.3.2 R-MSG1 message

The format of the PMS-TC information transmitted in the R-MSG1 message shall be as described in Table A.5.

Table A.5 – Format for PMS-TC R-MSG1 information

<table>
<thead>
<tr>
<th>Octet number [i]</th>
<th>PMS-TC format bits [8 × I + 7 to 8 × I + 0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 0</td>
<td>[0add ssss] bit 7 to 0</td>
<td>The bits ssss and dd give the receiver half roundtrip of the ATU-R. The bits ssss contain the part in DMT symbols coded as integer from 0 to 15 and the bits dd contain the part in DTU coded as integer from 0 to 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The bit a indicates the value of CPARAMS_INP_FLAG. CPARAMS_INP_FLAG = 1 indicates that the C-PARAMS symbols are repeated (2 × INP_min_rein + 1) times. CPARAMS_INP_FLAG = 0 indicates no repetition.</td>
</tr>
</tbody>
</table>

A.2.4 PMS-TC configuration in Exchange Phase (supplements clause 7.10.3 of ITU-T G.992.3)

A.2.4.1 R-PARAMS Message

The format of the PMS-TC information transmitted in the R-PARAMS message (Table 7-21 of ITU-T G.992.3) shall be replaced by the format described in Table A.6. The length of the PMS-TC information transmitted in the R-PARAMS message is not changed.
Table A.6 – Format for PMS-TC R-PARAMS information

<table>
<thead>
<tr>
<th>Octet number [i]</th>
<th>PMS-TC format bits [8 × I + 7 to 8 × I + 0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 0</td>
<td>[p fff 0000] bit 7 to 0</td>
<td>The bits fff encode the initialization success/failure code as defined in clause 7.10.3 of ITU-T G.992.3. The bit p is the probing bit. A value 1 indicates that the current initialization is used for automode probing. A value 0 indicates that the current initialization is normal initialization.</td>
</tr>
<tr>
<td>Octet 1</td>
<td>[0001 1111] bit 7 to 0</td>
<td>Reserved by ITU-T</td>
</tr>
<tr>
<td>Octet 2</td>
<td>[1111 1111] bit 7 to 0</td>
<td>Reserved by ITU-T</td>
</tr>
<tr>
<td>Octet 3</td>
<td>[gggg gggg] bit 7 to 0</td>
<td>The bits gggggggg encode the value of MSGC, the number of octets in the message based portion of the overhead structure. The latency path #0 is used to transport the message based overhead information.</td>
</tr>
<tr>
<td>Octet 4</td>
<td>[hhhh hhhh] bit 7 to 0</td>
<td>The bits hhhhhhhh give the number of octets from bearer #0 per Mux Data Frame being transported in latency path #1 with retransmission function, B_{10}.</td>
</tr>
<tr>
<td>Octet 5-7</td>
<td>[0000 0000] bit 7 to 0</td>
<td>Reserved by ITU-T</td>
</tr>
<tr>
<td>Octet 8</td>
<td>[0000 0000] bit 7 to 0</td>
<td>The bits mmmmmmmm give the value of M_p for latency path #0. They are always present.</td>
</tr>
<tr>
<td>Octet 9</td>
<td>[tttt tttt] bit 7 to 0</td>
<td>The bits tttttttt give the value of T_p for latency path #0. They are always present.</td>
</tr>
<tr>
<td>Octet 10</td>
<td>[rrrr 0DDD] bit 7 to 0</td>
<td>The bits rrrr0DDD give the value of R_p and D_p for latency path #0. The rrr and DDD bits are coded as defined in Table 7-18. They are always present.</td>
</tr>
<tr>
<td>Octet 11</td>
<td>[llll llll] bit 7 to 0</td>
<td>The bits llllllll give the LSB of the value of L_p for latency path #0. They are always present.</td>
</tr>
<tr>
<td>Octet 12</td>
<td>[llll llll] bit 15 to 8</td>
<td>The bits llllllll give the MSB of the value of L_p for the latency path #0. These are always present.</td>
</tr>
<tr>
<td>Octet 13</td>
<td>[0000 0000] bit 7 to 0</td>
<td>The bits mmmmmmmm give the value of M_p for latency path #1. They are always present. The value shall be set to 1 for DTU Framing type 1, 2 and 3.</td>
</tr>
<tr>
<td>Octet 14</td>
<td>[tttt tttt] bit 7 to 0</td>
<td>The bits tttttttt give the value of T_p for latency path #1. They are always present. They shall be set to zero in case of DTU Framing type 1, 2 and shall be set to Q in case of DTU Framing type 3.</td>
</tr>
<tr>
<td>Octet 15</td>
<td>[rrrr 0DDD] bit 7 to 0</td>
<td>The bits rrrr0DDD give the value of R_p and D_p for latency path #1. The rrr and DDD bits are coded as defined in Table 7-18. They are always present.</td>
</tr>
<tr>
<td>Octet 16</td>
<td>[llll llll] bit 7 to 0</td>
<td>The bits llllllll give the LSB of the value of L_p for latency path #1. They are always present.</td>
</tr>
<tr>
<td>Octet 17</td>
<td>[llll llll] bit 15 to 8</td>
<td>The bits llllllll give the MSB of the value of L_p for the latency path #1. These are always present.</td>
</tr>
</tbody>
</table>
Table A.6 – Format for PMS-TC R-PARAMS information

<table>
<thead>
<tr>
<th>Octet number [i]</th>
<th>PMS-TC format bits [8 × I + 7 to 8 × I + 0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 18</td>
<td>[0000 00aa] bit 7 to 0</td>
<td>The bits aa gives the selected DTU framing type. It shall be coded as: The selected DTU framing type, it shall be coded as aa=00, DTU Framing type 1 (see clause 8.1.1) aa=01, DTU Framing type 2 (see clause 8.1.2) aa=10, DTU Framing type 3 (see clause 8.1.3) aa=11, DTU Framing type 4 (see clause 8.1.4) The receiver shall select a framing type supported by the transmitter.</td>
</tr>
<tr>
<td>Octet 19</td>
<td>[0qqq qqqq] bits 7 to 0</td>
<td>The number of Reed-Solomon codeword per DTU. 1 ≤ Q ≤ 16.</td>
</tr>
<tr>
<td>Octet 20</td>
<td>[0000 vvvv] bit 7 to 0</td>
<td>The number of padding octets per DTU. 0 ≤ V ≤ 15.</td>
</tr>
<tr>
<td>Octet 21</td>
<td>[jjjj jjjj] bits 7 to 0</td>
<td>Delay in DTU between two consecutive transmissions of a DTU used by the receiver in the reference state machine. 1 ≤ QTx ≤ 63.</td>
</tr>
<tr>
<td>Octet 22</td>
<td>[000n nnnn] bit 7 to 0</td>
<td>The bits nnnn encode the value of the look back value (lb) of the RRC channel.</td>
</tr>
<tr>
<td>Octets 23-27</td>
<td>[0000 0000] bit 7 to 0</td>
<td>Reserved by ITU-T</td>
</tr>
</tbody>
</table>

A.2.4.2 C-PARAMS Message

Octets 18 – 27 of the PMS-TC information transmitted in the C-PARAMS message (Table 7-21 of ITU-T G.992.3) shall be set as described in Table A.7. The length of the PMS-TC information transmitted in the C-PARAMS message is not changed.

Table A.7 – Format for modified PMS-TC C-PARAMS information

<table>
<thead>
<tr>
<th>Octet number [i]</th>
<th>PMS-TC format bits [8 × I + 7 to 8 × I + 0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets 18-22</td>
<td>[0000 0000] bit 7 to 0</td>
<td>Reserved by ITU-T</td>
</tr>
<tr>
<td>Octets 23-27</td>
<td>[0000 0000] bit 7 to 0</td>
<td>Reserved by ITU-T</td>
</tr>
</tbody>
</table>

Furthermore, Octet 0 bits fff (see Table 7-21 of ITU-T G.992.3), which encode the initialization success/failure code, shall be based on the Channel Initialization Policies defined in this Recommendation instead of the policies of G.992.3.

Additionally, if delay_max is lower than the actual roundtrip (see clause 8.6), then an initialization failure shall be indicated by setting Initialization status to 0102 (Configuration not feasible on the line). The actual roundtrip depends on line independent XTU-C and XTU-R characteristics, and on line dependent DTU sizes and data rates.

If a non-zero success/failure code is set by one of the ATUs,
- the initialization failure count shall be incremented,
- the other bits in the PMS-TC PARMAS information shall be set to 0, and
- the transmitter shall enter the SILENT state (see Annex D of ITU-T G.992.3) instead of the Showtime state at the completion of the initialization procedures.
A.2.5 Initialization messages

A.2.5.1 C-MSG1 (supplements clause 8.13.5.1.1 of ITU-T G.992.3)

Table 8-37 of ITU-T G.992.3 shall be replaced with Table A.8.

<table>
<thead>
<tr>
<th>Part of message</th>
<th>Length (bits or symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>32</td>
</tr>
<tr>
<td>Npmd</td>
<td>160</td>
</tr>
<tr>
<td>Npms</td>
<td>24</td>
</tr>
<tr>
<td>Ntps</td>
<td>104</td>
</tr>
<tr>
<td>Nmsg</td>
<td>288</td>
</tr>
<tr>
<td>CRC</td>
<td>16</td>
</tr>
<tr>
<td>LEN_C-MSG1</td>
<td>336</td>
</tr>
</tbody>
</table>

A.2.5.2 R-MSG1 (supplements clause 8.13.5.2.3 of ITU-T G.992.3)

Table 8-38 of ITU-T G.992.3 shall be replaced with Table A.9.

<table>
<thead>
<tr>
<th>Part of message</th>
<th>Length (bits or symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>32</td>
</tr>
<tr>
<td>Npmd</td>
<td>32</td>
</tr>
<tr>
<td>Npms</td>
<td>8</td>
</tr>
<tr>
<td>Ntps</td>
<td>0</td>
</tr>
<tr>
<td>Nmsg</td>
<td>40</td>
</tr>
<tr>
<td>CRC</td>
<td>16</td>
</tr>
<tr>
<td>LEN_R-MSG1</td>
<td>88</td>
</tr>
</tbody>
</table>

A.2.5.3 C-PARAMS (replaces clause 8.13.6.1.4 of ITU-T G.992.3)

The C-PARAMS state is of fixed length. In this state, the ATU-C shall transmit \(\text{LEN_C-PARAMS} \) C-PARAMS symbols to modulate the C-PARAMS message and CRC at \(2 \times N\text{SC}_C-PARAMS \) bits per symbol. The value \(N\text{SC}_C-PARAMS \) shall be defined as the number of subcarriers to be used for modulation of the C-PARAMS message as indicated by the ATU-R in the R-MSG2 message. The impulse noise protection of the C-PARAMS message shall be equal to \(\text{INP}_C-PARAMS= \text{INP}_{\text{min_rein}} \times C-PARAMS_\text{INP_FLAG} \), where the \(C-PARAMS_\text{FLAG} \) is as indicated by the ATU-R in the R-MSG2 message. The value \(\text{LEN_C-PARAMS} \) shall be defined as (length of the C-PARAMS message and CRC in bits) multiplied by \(2 \times \text{INP}_C-PARAMS +1 \), divided by \(2 \times N\text{SC}_C-PARAMS \) and rounded to the higher integer.

Table A.10 lists the length of the C-PARAM message summed over TPS-TC, PMS-TC and PMD layers. The TPS-TC, PMS-TC and PMD bits each correspond to an even number of octets.
The C-PARAMS message, \(m \), is defined by:

\[
m = \{ tps_{Ntps-1}, \ldots, tps_0, pms_{Npms-1}, \ldots, pms_0, pmd_{Npmd-1}, \ldots, pmd_0 \} = \{ m_{Nmsg-1}, \ldots, m_0 \}
\]

The C-PARAMS message conveys 3 sets of parameters, related to TPS-TC, PMS-TC and PMD configuration. TPS-TC parameters are conveyed in the bits \(tps_{Ntps-1} \) to \(tps_0 \) and are defined in clause 6. PMS-TC parameters are conveyed in the bits \(pms_{Npms-1} \) to \(pms_0 \) and are defined in clause 7. PMD parameters are conveyed in the bits \(pmd_{Npmd-1} \) to \(pmd_0 \) and are defined in clause 8.

PMS-TC parameters include the framer configuration parameters. PMD parameters include the bits and gains table for the upstream subcarriers.

A CRC shall be appended to the message. The 16 CRC bits shall be computed from the Nmsg message \(m \) bits in the same way as the CRC bits are calculated for the C-MSG-FMT message.

If the number of message and CRC bits to be transmitted is not an integer multiple of the number of bits per symbol (i.e., not a multiple of \(2 \times NSC_{C-PARAM} \)), then the message and CRC bits shall be further padded with zero bits such that the overall number of bits to be transmitted is equal to

\[
(2 \times NSC_{C-PARAM} \times LEN_{C-PARAM}) / (2 \times INP_{C-PARAMS} + 1).
\]

The C-PARAMS message bits (along with the CRC bits and the padding bits) shall be scrambled using the following equation:

\[
d'_n = d_n \oplus d'_{n-18} \oplus d'_{n-23}
\]

where \(d_n \) is the \(n \)-th input to the scrambler (first input is \(d_1 \));

and \(d'_n \) is the \(n \)-th output from the scrambler (first output is \(d'_1 \));

and the scrambler is initialized to \(d'_n = 1 \) for \(n < 1 \).

The bits to be transmitted shall be input into the scrambler equation least significant bit first (\(m_0 \) first and \(m_{Nmsg-1} \) last, followed by \(c_0 \) first and \(c_{15} \) last, followed by padding bits, if present). By construction of the scrambler, the scrambler output bits \(d'_n \) to \(d'_{18} \) are equal to \(m_0 \) to \(m_{17} \) respectively.

The output of the scrambler shall be transmitted at \((2 \times NSC_{C-PARAM}) \) bits per C-PARAMS symbol (the first bit output of the scrambler is transmitted first, and so on). Bit pairs shall be mapped onto subcarriers in ascending order of subcarrier index and using the same 4-QAM modulation as defined in Table 8-36 of ITU-T G.992.3 for C-REVERB symbols. Each C-PARAMS symbol shall be repeated and transmitted \((2 \times INP_{C-PARAMS} + 1) \) times.
The C-PARAMS symbol shall contain only the *NSC_C-PARAM* subcarriers (carrying the message bits) and the C-TREF pilot tone. The other subcarriers shall be transmitted at no power (i.e., $X_i = Y_i = 0$).

The C-TREF pilot may be part of the set of *NSC-PARAMS* subcarriers (carrying the message bits). In this case, the C-TREF pilot shall be modulated with message bits. Otherwise, it shall be modulated with the fixed \{0, 0\} 4-QAM constellation point.

The C-PARAMS state shall be followed by the C-REVERB7.

A.3 **Management plane procedures**

A.3.1 **Test Parameter Read commands (supplements clause 9.4.1.10 of ITU-T G.992.3)**

Four test parameters are added to Table 9-30 of ITU-T G.992.3 as described in Table A.11.

- The parameter with ID=4116 contains the actual INP against SHINE as derived by the far-end transmitter. It is represented as an unsigned 16-bit integer in multiple of 0.1. This parameter shall be available from the ATU-C through a Single Read command.

- The parameter with ID=4216 contains the actual INP against REIN as derived by the far-end transmitter. It is represented as an unsigned 8-bit integer in multiple of 0.1. This parameter shall be available from the ATU-C through a Single Read command.

- The parameter with ID=4316 contains the actual ETR as derived by the far-end receiver. It is represented as an unsigned 32-bit integer in multiple of 1 kbit/s. This parameter shall be available from the ATU-R through a Single Read command.

- The parameter with ID=4416 contains the actual delay as derived by the far-end receiver. It is represented as an unsigned 8-bit integer in multiple of 1 ms. This parameter shall be available from the ATU-R through a Single Read command.

<table>
<thead>
<tr>
<th>Test parameter ID</th>
<th>Test parameter name</th>
<th>Length for single read</th>
<th>Length for multiple read</th>
<th>Length for block read</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116</td>
<td>Far-end RTX Transmitter Actual Impulse Noise protection against SHINE (INP_act_SHINE)</td>
<td>2 octets</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4216</td>
<td>Far-end RTX Transmitter Actual Impulse Noise protection against REIN (INP_act_REIN)</td>
<td>1 octet</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4316</td>
<td>RTX Receiver Expected Throughput (ETR)</td>
<td>4 octets</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4416</td>
<td>RTX Receiver Actual Delay (delay_act_RTX)</td>
<td>1 octet</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

A.3.2 **Management counter read commands (supplements clause 9.4.1.6 of ITU-T G.992.3)**

Replace Table 9-19 of ITU-T G.992.3 and Table 9-20 of ITU-T G.992.3 with Table A.12 and Table A.13, respectively.
The field "EFTR_min" contains the EFTR_min as derived by the far-end receiver. It is represented as an unsigned 32-bit integer in multiple of 1 kbit/s. This field shall be present in the response from the ATU-R if retransmission is enabled in downstream direction. Although this parameter is reported via the management counter eoc commands, this performance monitoring parameter is not a counter. Therefore, the requirements of ITU-T G.992.3 and ITU-T G.997.1 applicable to counters in general do not apply to this parameter.

Table A.12 – Management counter read command transmitted by the responder

<table>
<thead>
<tr>
<th>Message length (Octets)</th>
<th>Element name (Command)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 4 × Nc for PMS-TC and variable for TPS-TC</td>
<td>81_16 followed by: all the PMS-TC counter values, followed by all the TPS-TC counter values. All other octet values are reserved by ITU-T.</td>
</tr>
</tbody>
</table>

NOTE – Nc is the number of counters related to the PMS-TC, Nc=14 in the report on the downstream direction and Nc=8 in the report on the upstream direction.

Table A.13 – ATU management counter values

<table>
<thead>
<tr>
<th>PMD & PMS-TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter of the FEC-0 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of the FEC-1 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of the CRC-0 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of the CRC-1 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of rtx-tx (Note 3)</td>
</tr>
<tr>
<td>Counter of rtx-c (Note 2)</td>
</tr>
<tr>
<td>Counter of rtx-uc (Note 2)</td>
</tr>
<tr>
<td>FEC errored seconds counter</td>
</tr>
<tr>
<td>Errored seconds counter</td>
</tr>
<tr>
<td>Severely errored seconds counter</td>
</tr>
<tr>
<td>LOS errored seconds counter</td>
</tr>
<tr>
<td>Unavailable errored seconds counter</td>
</tr>
<tr>
<td>Counter of "lefr" defect seconds (Note 2)</td>
</tr>
<tr>
<td>Counter of error free bits (Note 2)</td>
</tr>
<tr>
<td>EFTR_min (Note 2)</td>
</tr>
</tbody>
</table>
Table A.13 – ATU management counter values

<table>
<thead>
<tr>
<th>TPS-TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters for TPS-TC #0</td>
</tr>
</tbody>
</table>

NOTE 1 – The ATU-R shall include the fields of the FEC and CRC anomalies for the latency path #0 and #1; the FEC and CRC of the latency path #0 shall be vendor discretionary. The ATU-C shall include only the fields of the FEC and CRC anomalies for the latency path #0.

NOTE 2 – These counters shall be included only in the ATU-R to ATU-C report on the downstream direction.

NOTE 3 – This counter shall be included only in the ATU-C to ATU-R report on the upstream direction.

A.3.3 Diagnostic commands and responses (supplements clause 9.4.1.2 of ITU-T G.992.3)

Replace Table 9-10 of ITU-T G.992.3 with the Table A.14.

Table A.14 – woc Commands transmitted by the ATU-C

<table>
<thead>
<tr>
<th>Message length (Octets)</th>
<th>Element name (Command)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>01 hex Perform Self Test</td>
</tr>
<tr>
<td>2</td>
<td>02 hex Update Test Parameters</td>
</tr>
<tr>
<td>2</td>
<td>03 hex Start TX Corrupt CRC</td>
</tr>
<tr>
<td>2</td>
<td>04 hex End TX Corrupt CRC</td>
</tr>
<tr>
<td>2</td>
<td>05 hex Start RX Corrupt CRC</td>
</tr>
<tr>
<td>2</td>
<td>06 hex End RX Corrupt CRC</td>
</tr>
<tr>
<td>2</td>
<td>07 hex Enter RTX TESTMODE</td>
</tr>
<tr>
<td>2</td>
<td>08 hex Leave RTX TESTMODE</td>
</tr>
<tr>
<td>2</td>
<td>80 hex ACK</td>
</tr>
</tbody>
</table>

All other octet values are reserved by the ITU-T.

A.3.3.1 Retransmission test mode

A special test mode is defined for accelerated testing of the MTBE (see clause 10.4). A Diagnostic command is defined to enter or leave the mode during Showtime.

Upon reception of the Enter RTX_TESTMODE command, the ATU-R shall acknowledge it with an ACK response. Afterwards, the ATU-R shall acknowledge all received DTUs.

Upon reception of the Leave RTX_TESTMODE command, the ATU-R shall resume its normal behaviour of retransmission.
Annex B

Support of ITU-T G.998.4 with ITU-T G.992.5

B.1 Specific requirements

For ITU-T G.992.5, retransmission is defined only for the downstream direction (i.e., DTUs are transmitted only in the downstream direction and the RRC is transmitted only in the upstream direction).

B.1.1 Memory

The size of the transmit retransmission queue in the CO is limited to the half of the downstream interleaver delay in bytes, i.e.:

– If the ATU-C indicates in C-MSG1 support of a transmit retransmission queue size up to 12000 octets (see clause B.3.1), then the ATU-R shall select Q_{tx}, Q and H such that:

$$Q_{tx} \times Q \times H \leq 12000 \text{ octets for ITU-T G.992.5},$$

– Otherwise, the ATU-R shall select Q_{tx}, Q and H such that:

$$Q_{tx} \times Q \times H \leq 8001 \text{ octets for ITU-T G.992.5},$$

where Q_{tx} is the length of the transmit retransmission queue in DTUs.

The minimum memory for the receiver retransmission queue shall be identical to the amount of the memory for the related transmit queue.

The maximal DTU size in octet ($Q \times H$) shall be 1024.

B.1.2 Overhead Channel

The overhead channel shall be configured as specified in clause A.1.2.

B.2 Initialization

This clause describes the change to the messages of the initialization of ITU-T G.992.5 to support ITU-T G.998.4 in conjunction with ITU-T G.992.5.

The messages of the initialization shall be modified as specified in clause A.2 except that the octet 2 of Table A.4 shall be replaced by the octet 2 of Table B.1. The length of the C-MSG1 (LEN_C_MSG1) is $336 + NSCds/4$ or 336 depending, respectively, on whether or not windowing is applied.
Table B.1 – Format for PMS-TC C-MSG1 information

<table>
<thead>
<tr>
<th>Octet number</th>
<th>PMS-TC format bits ([8 \times 1 + 7 \text{ to } 8 \times 1 + 0])</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet 2</td>
<td>([c000 \text{ bbbb}]) bit 7 to 0</td>
<td>The bits bbbb contain the transmitter supported maximum 1/S value for the latency path with retransmission function. This maximum 1/S shall equal ((n+1)), with (n) coded as an unsigned 4-bit value bbbb, in the 0 to 15 range. When retransmission is enabled, this value supersedes the maximum 1/S value exchanged with the "(S_{\text{min}})" field in the PMS-TC capabilities list in: ITU-T G.994.1. The bit c gives the maximum supported size of the transmit retransmission queue. It is coded to 0 if a maximal size of 8001 bytes is supported and is coded to 1 if a maximal size of 12000 bytes is supported.</td>
</tr>
</tbody>
</table>

B.3 Management plane procedures

Management plane procedures shall be as specified in clause A.3.
Annex C

Support of ITU-T G.998.4 with ITU-T G.993.2

C.1 Specific requirements

C.1.1 Memory

If retransmission is enabled in both downstream and upstream directions, the sum of the memory sizes of the DS and US transmit retransmission queues is limited to the maximum available interleaving memory at one side defined for the profile in use (\(MAXDELAYOCTET\)) minus the memory needed at one side for the latency path carrying the overhead channel. The memory is constrained by the formula:

\[
Q_{tx,US} \times Q_{US} \times H_{US} + Q_{tx,DS} \times Q_{DS} \times H_{DS} \leq (MAXDELAYOCTET - MemOH)/2
\]

where \(MemOH\) is the interleaver-deinterleaver delay in bytes of the latency path carrying the overhead channel.

The VTU-O shall support downstream and the VTU-R shall support upstream transmit retransmission queue sizes up to the maximum of the constraint given above.

If the retransmission is enabled only in one direction, the sum of the memory used for the transmit queue and the memory use for the interleaver in the reverse direction is limited to the maximum available interleaving memory at one side defined for the profile in use minus the memory needed at one side for the latency path carrying the overhead channel.

If retransmission is enabled only in DS, the memory is constrained by the formula:

\[
(D_{p,US}^{-1}) \times (N_{p,US}^{-1})/2 + Q_{tx,US} \times Q_{US} \times H_{US} \leq (MAXDELAYOCTET - MemOH)/2
\]

The VTU-O shall support downstream transmit retransmission queue sizes and the VTU-R shall support upstream interleaver delay up to the maximum of the constraint given above.

If retransmission is enabled only in US, the memory is constrained by the formula:

\[
(D_{p,DS}^{-1}) \times (N_{p,DS}^{-1})/2 + Q_{tx,US} \times Q_{US} \times H_{US} \leq (MAXDELAYOCTET - MemOH)/2
\]

The VTU-O shall support downstream interleaver delay and the VTU-R shall support upstream transmit retransmission queue sizes up to the maximum of the constraint given above.

The minimum memory for the receiver retransmission queue shall be identical to the amount of the memory for the related transmit queue of the same direction.

The maximal DTU size in octets (\(Q \times H\)) shall be equal to the value given in Table C.1 depending on the profile and direction.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Maximal DTU size ((Q \times H))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downstream</td>
</tr>
<tr>
<td>8a,8b,8c,8d</td>
<td>2048 bytes</td>
</tr>
<tr>
<td>12a</td>
<td>2048 bytes</td>
</tr>
<tr>
<td>17a</td>
<td>3072 bytes</td>
</tr>
<tr>
<td>30a</td>
<td>3072 bytes</td>
</tr>
</tbody>
</table>
C.1.2 Overhead channel

If the ROC is enabled in O-TPS, the overhead channel shall use the ROC as specified in ITU-T G.993.2.

If ROC is disabled in O-TPS or is not supported by either the VTU-O or the VTU-R, the overhead channel shall use the framing parameters as they are derived for the ROC (see framer constraint limitations in Table 12-47 of ITU-T G.993.2) with the following configuration:

- \(\text{SNRMOFFSET-ROC} = 0 \, \text{dB} \),
- \(\text{INPMIN-ROC} = \max(\text{INPMIN}_\text{REIN}, 2) \),

with the exception that sub-carriers loaded with the bits of the overhead channel may share sub-carriers loaded with the bits of the latency path #1.

C.2 Initialization

Support of ITU-T G.998.4 in VDSL2 is realized through the "ITU-T G.998.4 parameter field" in the various VDSL2 initialization messages, as specified in ITU-T G.993.2 Amendment 5 [4]. This clause defines the contents of the ITU-T G.998.4 parameter field for the relevant initialization messages. When an initialization message is not included in the subsections below, the ITU-T G.998.4 parameter field for that message shall be a single byte with value 0016.

C.2.1 VTU-O messages

C.2.1.1 O-MSG 1

The O-MSG 1 message contains the capabilities of the VTU-O. The ITU-T G.998.4 parameter field for O-MSG 1 shall be structured as shown in Table C.2.

<table>
<thead>
<tr>
<th>Octet</th>
<th>Contents</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parameter field length</td>
<td>1 byte</td>
<td>Total number of data bytes in ITU-T G.998.4 parameter field.</td>
</tr>
<tr>
<td>2</td>
<td>Retransmission support</td>
<td>1 byte [0000 000u]</td>
<td>Indicates support of upstream retransmission at the VTU-O.</td>
</tr>
<tr>
<td>3</td>
<td>DTU options</td>
<td>1 byte [0000 0cba]</td>
<td>Indicates the optional framing types supported by the VTU-O transmitter.</td>
</tr>
<tr>
<td>4</td>
<td>VTU-O Half-roundtrip Tx</td>
<td>1 byte [00ddssss]</td>
<td>VTU-O transmitter half-roundtrip delay.</td>
</tr>
<tr>
<td>5</td>
<td>VTU-O half-roundtrip Rx</td>
<td>1 byte [00ddssss]</td>
<td>VTU-O receiver half roundtrip delay.</td>
</tr>
<tr>
<td>6</td>
<td>DS ((1/S)_{max})</td>
<td>1 byte [0eeeeeee]</td>
<td>Maximum 1/S value supported by the VTU-O in the downstream direction when retransmission is enabled.</td>
</tr>
<tr>
<td>7</td>
<td>US ((1/S)_{max})</td>
<td>1 byte [0eeeeeee]</td>
<td>Maximum 1/S value supported by the VTU-O in the upstream direction when retransmission is enabled.</td>
</tr>
</tbody>
</table>

Field #1 "Parameter field length" indicates the number of data bytes in the ITU-T G.998.4 parameter field. The data bytes are the bytes following this length indicator byte (i.e., all bytes in the ITU-T G.998.4 parameter field counting from the penultimate byte). This byte is included to allow CPEs that do not support ITU-T G.998.4 to still correctly parse O-MSG1.
Field #2 "Retransmission support" indicates the upstream retransmission capability of the VTU-O. The field shall be coded as a single byte [0000 000u], where:
- u = 0 indicates that retransmission is not supported in the upstream direction.
- u = 1 indicates that retransmission is supported in the upstream direction.

Note that support for downstream retransmission is implied if the VTU-O includes a ITU-T G.998.4 parameter field that has a non-zero number of data bytes in it.

Field #3 "DTU options" indicates which of the optional DTU framing types are supported by the VTU-O transmitter. The field shall be coded as a single byte [0000 0abc], where:
- a = 1 indicates support of DTU Framing type 2 (see clause 8.1.2).
- b = 1 indicates support of DTU Framing type 3 (see clause 8.1.3).
- c = 1 indicates support of DTU Framing type 4 (see clause 8.1.4).

At least one of the bits a, b or c shall be set to 1 when retransmission is supported in the downstream direction.

Field #4 "VTU-O Half-roundtrip Tx" contains the half-roundtrip delay of the VTU-O transmitter. The field shall be coded as a single byte [00ddssss], where:
- ssss is a four-bit number indicating the part of the delay in DMT symbols for the profiles with 4.3125 kHz sub-carrier spacing or in multiple of 2 DMT symbols for the profiles with 8.625 kHz sub-carrier spacing.
- dd is a two-bit number indicating the part of the delay in DTU.

Field #5 "VTU-O Half-roundtrip Rx" contains the half-roundtrip delay of the VTU-O receiver. The field shall be coded as a single byte [00ddssss], where:
- ssss is a four-bit number indicating the part of the delay in DMT symbols for the profiles with 4.3125 kHz sub-carrier spacing or in multiple of 2 DMT symbols for the profiles with 8.625 kHz sub-carrier spacing.
- dd is a two-bit number indicating the part of the delay in DTU.

Field #6 "DS (1/S)_{max} with RTX" contains the maximal 1/S value supported by the VTU-O in the downstream direction when retransmission is enabled in this direction downstream. The field shall be coded as an unsigned 8-bit value with a range from 1 to 64 in steps of 1. When retransmission is enabled in downstream, this value supersedes the value of "DS (1/S)_{max}" exchanged in the PMS-TC capabilities field of O-MSG 1.

Field #7 "US (1/S)_{max} with RTX" contains the maximal 1/S value supported by the VTU-O in the upstream direction when retransmission is enabled in upstream. The field shall be coded as an unsigned 8-bit value with a range from 1 to 64 in steps of 1. When retransmission is enabled in upstream, this value supersedes the value of "US (1/S)_{max}" exchanged in the PMS-TC capabilities field of O-MSG 1.

When retransmission is enabled, all other parameter values exchanged in the remainder of O-MSG 1 shall keep their original meaning (as defined in ITU-T G.993.2), unless indicated otherwise above.

C.2.1.2 O-TPS

The O-TPS message conveys the TPS-TC configuration for both the upstream and the downstream directions. It is based on the capabilities that were indicated in O-MSG 1 and R-MSG 2. The ITU-T G.998.4 parameter field for O-TPS shall be structured as shown in Table C.3.
<table>
<thead>
<tr>
<th>Octet</th>
<th>Contents</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parameter field length</td>
<td>1 byte</td>
<td>Total number of data bytes in ITU-T G.998.4 parameter field.</td>
</tr>
<tr>
<td>2</td>
<td>Retransmission enabled</td>
<td>1 byte [0000 00ud]</td>
<td>Indicates whether retransmission is enabled or disabled (per transmission direction).</td>
</tr>
<tr>
<td>3</td>
<td>Downstream ETR_max</td>
<td>2 bytes</td>
<td>Extension of the bearer channel descriptor containing the maximum ETR in the downstream direction.</td>
</tr>
<tr>
<td>4</td>
<td>Downstream ETR_min</td>
<td>2 bytes</td>
<td>Extension of the bearer channel descriptor containing the minimum ETR in the downstream direction.</td>
</tr>
<tr>
<td>5</td>
<td>Downstream minimum delay</td>
<td>1 byte</td>
<td>Extension of bearer channel descriptor containing the downstream minimum delay requirement for the downstream bearer channel (Note).</td>
</tr>
<tr>
<td>6</td>
<td>Downstream INP_min_REIN and iat_REIN_flag</td>
<td>1 byte [f00mmmmm]</td>
<td>Extension of bearer channel descriptor containing the downstream minimum INP against REIN and REIN inter-arrival time in the downstream direction.</td>
</tr>
<tr>
<td>7</td>
<td>Downstream SHINEratio</td>
<td>1 byte</td>
<td>Value of the downstream SHINEratio.</td>
</tr>
<tr>
<td>8</td>
<td>Upstream minimum delay</td>
<td>1 byte</td>
<td>Extension of bearer channel descriptor containing the upstream minimum delay requirement for the upstream bearer channel (Note).</td>
</tr>
<tr>
<td>9</td>
<td>Upstream INP_min_REIN and iat_REIN_flag</td>
<td>1 byte [f00mmmmm]</td>
<td>Extension of bearer channel descriptor containing the upstream minimum INP against REIN and REIN inter-arrival time in the downstream direction.</td>
</tr>
<tr>
<td>10</td>
<td>Downstream lefr_thresh</td>
<td>1 byte [0000 000p]</td>
<td>The bits iii iii gives lefr_thresh value for downstream.</td>
</tr>
<tr>
<td>11</td>
<td>CI policy</td>
<td>1 byte [0000 000p]</td>
<td>Downstream channel initialization policy.</td>
</tr>
</tbody>
</table>

NOTE – When retransmission is enabled in either downstream or upstream or both, only one bearer channel shall be supported in upstream and downstream.

Field #1 "Parameter field length" indicates the number of data bytes in the ITU-T G.998.4 parameter field. The data bytes are the bytes following this length indicator byte (i.e., all bytes in the ITU-T G.998.4 parameter field counting from the penultimate byte). This byte is included to allow CPEs that do not support ITU-T G.998.4 to still correctly parse O-TPS.

Field #2 "Retransmission enabled" indicates whether retransmission is enabled in the upstream and downstream directions. The field shall be coded as a single byte [0000 00ud], where:
- \(u = 0 \) indicates that retransmission is not enabled in the upstream direction.
- \(u = 1 \) indicates that retransmission is enabled in the upstream direction.
- \(d = 0 \) indicates that retransmission is not enabled in the downstream direction.
- \(d = 1 \) indicates that retransmission is enabled in the downstream direction.
If retransmission is not enabled in the downstream direction, the remaining bytes of the ITU-T G.998.4 parameter field that pertain to downstream transmission shall be set to zero at the transmitter and ignored at the receiver.

If retransmission is not enabled in the upstream direction, the bytes of the ITU-T G.998.4 parameter field that pertain to upstream transmission shall be set to zero at the transmitter and ignored at the receiver.

Field #3 "Downstream ETR_max" contains the ETR_{max} as defined in clause 7 for the downstream bearer channel. The field shall be coded as a 16-bits unsigned integer with the data rate in multiple of 8 kbit/s.

Field #4 "Downstream ETR_min" contains the ETR_{min} as defined in clause 7 for the downstream bearer channel. The field shall be coded as a 16-bits unsigned integer with the data rate in multiple of 8 kbit/s.

Field #5 "Downstream minimum delay" contains the minimum delay requirement ($delay_{min}$) for the downstream bearer channel. The field shall be coded as a single byte. Valid values are defined in Table 7-2.

Field #6 "Downstream INP_min_REIN and iat_REIN_flag" contains the minimum INP and the inter-arrival time that shall be assumed for REIN protection in the downstream direction. The field shall be coded as a single byte [f00m mmmm], where:

- mmmmm is a five-bit number containing the minimum required INP protection against REIN pulses in the downstream direction ($INP_{min_{REIN}}$). Valid values are defined in Table 7-2.
- f is a flag that indicates the frequency of the REIN pulses, where:
 - f = 0 indicates a repetition frequency of REIN of 100 Hz ($iat_{REIN_flag} = 0$).
 - f = 1 indicates a repetition frequency of REIN of 120 Hz ($iat_{REIN_flag} = 1$).

Field #7 "SHINEratio" contains the $SHINE_{ratio}$ for downstream transmission. The value of $SHINE_{ratio}$ is obtained by multiplying the 8-bit value with 0.001. The valid values are defined in Table 7-2.

Field #8 "Upstream minimum delay" contains the minimum delay requirement for the upstream bearer channel. The field shall be coded as a single byte. The valid values are defined in Table 7-2. This information can be used by the VTU-R in the transmitter reference state machine.

Field #9 "Upstream INP_min_REIN and iat_REIN_flag" contains the minimum INP and the inter-arrival time that shall be assumed for REIN protection in the upstream direction. The field shall be coded as a single byte [f00m mmmm], where:

- mmmmm is a five-bit number containing the minimum required INP protection against REIN pulses in the upstream direction ($INP_{min_{REIN}}$). The valid values are defined in Table 7-2.
- f is a flag that indicates the frequency of the REIN pulses, where:
 - f = 0 indicates a repetition frequency of REIN of 100 Hz ($iat_{REIN_flag} = 0$).
 - f = 1 indicates a repetition frequency of REIN of 120 Hz ($iat_{REIN_flag} = 1$).

Field #10 "Downstream leftr_thresh" contains the threshold for declaring leftr detects for downstream transmission. The value of LEFTR_THRESH is obtained by multiplying the 7-bit value with 0.01. The valid values are defined in Table 7-2. A special value of 0 indicates that ETR shall be used as the threshold for leftr detects.
Field #11 "CI policy" indicates the Channel Initialization policy that shall be used in the downstream direction. It shall be coded as [0000 000p], where:

- \(p = 0 \) to indicate that CI policy 0 shall be used.
- \(p = 1 \) reserved by ITU-T.

When retransmission is enabled in the downstream direction, the remaining parameter values exchanged in O-TPS shall keep their original meaning (as defined in ITU-T G.993.2), with the following exceptions:

- The field \(\text{net_min}_n \) in the downstream bearer channel descriptor (see Table 12-42 of ITU-T G.993.2) shall be set to 0.
- The field \(\text{net_max}_n \) in the downstream bearer descriptor shall contain the downstream \(\text{net_max} \) as defined in clause 7.
- The field \(\text{INP_min}_n \) in the Impulse noise protection field of the downstream bearer channel (see Table 12-42 of ITU-T G.993.2) shall contain the downstream Minimum impulse noise protection as defined in clause 7.
- The CI policy bit of the TPS-TC options field of the downstream bearer channel descriptor (see Table 12-42 of ITU-T G.993.2) shall be ignored and superseded by the information contained in the ITU-T G.998.4 parameter field of O-TPS.
- The field Maximum interleaving delay of the downstream bearer channel descriptor shall contain the downstream \(\text{delay_max} \) as defined in Table 7-2.

When retransmission is enabled in the upstream direction, the remaining parameter values exchanged in O-TPS shall keep their original meaning (as defined in ITU-T G.993.2), with the following exceptions:

The field \(\text{net_min}_n \) in the upstream bearer channel descriptor (see Table 12-42 of ITU-T G.993.2) shall be set to 0.

The field \(\text{net_max}_n \) in the upstream bearer descriptor shall contain the upstream \(\text{net_max} \) as defined in clause 7.

The field \(\text{INP_min}_n \) in the Impulse noise protection field of the upstream bearer channel (see Table 12-42 of ITU-T G.993.2) shall contain the upstream Minimum impulse noise protection as defined in Table 7-2.

The CI policy bit of the TPS-TC options field of the upstream bearer channel descriptor (see Table 12-42 of ITU-T G.993.2) shall be ignored and superseded by the information contained in the ITU-T G.998.4 parameter field of O-TPS.

The field Maximum interleaving delay of the upstream bearer channel descriptor shall contain the upstream \(\text{delay_max} \) as defined in Table 7-2.

C.2.1.3 O-PMS

The O-PMS message conveys the initial PMS-TC parameters that shall be used in the upstream direction during Showtime. The ITU-T G.998.4 parameter field for O-PMS shall be structured as shown in Table C.4.

If retransmission is not enabled in the upstream direction (as indicated in the ITU-T G.998.4 parameter field of O-TPS), the ITU-T G.998.4 parameter field of O-PMS may be left empty by the VTU-O (i.e., consist of a single byte with value 0) and shall be ignored at the VTU-R.
Table C.4 – ITU-T G.998.4 parameter field for O-PMS

<table>
<thead>
<tr>
<th>Octet</th>
<th>Field</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parameter field length</td>
<td>1 byte</td>
<td>Total number of data bytes in ITU-T G.998.4 parameter field.</td>
</tr>
<tr>
<td>2</td>
<td>DTU options</td>
<td>[0000 00aa]</td>
<td>Selected DTU framing type in the upstream direction.</td>
</tr>
<tr>
<td>3</td>
<td>Q</td>
<td>1 byte</td>
<td>The number of Reed-Solomon codewords per DTU in the upstream direction.</td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>1 byte</td>
<td>The number of padding octets per DTU in the upstream direction.</td>
</tr>
<tr>
<td>5</td>
<td>Q_{tx}</td>
<td>1 byte</td>
<td>Delay in DTU between two consecutive transmissions of a DTU.</td>
</tr>
<tr>
<td>6</td>
<td>lb</td>
<td>1 byte</td>
<td>Look-back value used to calculate the values communicated in the RRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>carrying the requests for upstream retransmission, i.e., in the RRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>transmitted in the downstream direction.</td>
</tr>
</tbody>
</table>

Field #1 "Parameter field length" indicates the number of data bytes in the ITU-T G.998.4 parameter field. The data bytes are the bytes following this length indicator byte (i.e., all bytes in the ITU-T G.998.4 parameter field counting from the penultimate byte). This byte is included to allow CPEs that do not support ITU-T G.998.4 to still correctly parse O-PMS.

Field #2 "DTU options" indicates which of the optional DTU framing types shall be used in the upstream direction. The field is coded as [0000 00aa], where:
- aa=00 indicates that DTU Framing type 1 (see clause 8.1.1) shall be used.
- aa=01 indicates that DTU Framing type 2 (see clause 8.1.2) shall be used.
- aa=10 indicates that DTU Framing type 3 (see clause 8.1.3) shall be used.
- aa=11 indicates that DTU Framing type 4 (see clause 8.1.4) shall be used.

The selected value shall be consistent with the support of the optional framing types at the VTU-R as indicated in R-MSG2.

Field #3 "Q" indicates the number of Reed-Solomon codewords per DTU in the upstream direction. Q shall take a value in the range from 1 to 64 (inclusive).

Field #4 "V" indicates the number of padding octets per DTU in the upstream direction. V shall take a value between 0 and 15 (inclusive).

Field #5 "Q_{tx}" indicates the delay (in number of DTUs) between two consecutive upstream transmissions of the same DTU in the transmitter reference state machine assumed by the VTU-O. Q_{tx} shall take a value in the range from 1 to 64 (inclusive).

Field #6 "lb" contains the look-back value used to calculate the values communicated in the RRC carrying the requests for upstream retransmission, i.e., in the RRC transmitted in the downstream direction. "lb" shall take values in the range from 1 to 31.

When retransmission is enabled in the upstream direction, the remaining parameter values exchanged in O-PMS shall keep their original meaning (as defined in ITU-T G.993.2), with the following exceptions:
- The fields F, I and D of the of the latency path #1 shall be set to 0 and ignored by the receiver.
- The field max_delay_octetUS,0 shall indicate the maximal number of octets allocated to the de-interleaver in the latency path #0.
The field max_delay_octetUS,1 shall indicate the maximal number of octets allocated to the upstream receive retransmission queue.

When retransmission is enabled in the downstream direction, the remaining parameter values exchanged in O-PMS shall keep their original meaning (as defined in ITU-T G.993.2), with the following exceptions:

- The field max_delay_octetDS,0 specifies the maximum interleaver delay that the VTU-R shall be allowed to use to de-interleave the data stream in downstream latency path #0.
- The field max_delay_octetDS,1 shall indicate the maximal number of octets allocated to the downstream transmit retransmission queue. If max_delay_octetDS,1 is set to the special value FFFFFF16, max_delay_octetDS,0 shall contain the sum of the number of octets allocated to the interleaver of the overhead channel and to the downstream transmit retransmission queue. The split of number of octets between the interleaver and the queue is left to the VTU-R.

C.2.1.4 O-PMD

The O-PMD message conveys the initial PMD parameter settings that shall be used in the upstream direction during Showtime. The ITU-T G.998.4 parameter field of this message is empty (i.e., consist of a single byte with value 0016).

The initialization status reported in field #5 shall be based on the Channel Initialization Policies defined in this Recommendation instead of the policies of ITU-T G.993.2.

Additionally, if delay_max is lower than the actual roundtrip (see clause 8.6), an initialization failure shall be indicated by setting Initialization status to 8216 (Configuration not feasible on the line). The actual roundtrip depends on line independent XTU-C and XTU-R characteristics, and on line dependent DTU sizes and data rates.

Furthermore, when the VTU-O supports ITU-T G.998.4, the field "initialization status" in O-PMD can take the value 8616, in addition to the valid values listed in ITU-T G.993.2.

Initialization status shall be set to 8616 if ITU-T G.998.4 Retransmission mode was not selected while RTX_ENABLE = FORCED.

In case of initialization failure:

- the initialization failure count shall be incremented
- all values in Fields #2 to #4 of O-PMD shall be set to 0, and
- the VTU-O shall return to L3 link state instead of L0 link state at the completion of the initialization procedures.

This failure code shall be generated by the VTU-O.

C.2.2 VTU-R messages

C.2.2.1 R-MSG 2

The R-MSG 2 message conveys VTU-R capabilities to the VTU-O. The ITU-T G.998.4 parameter field for R-MSG2 shall be structured as shown in Table C.5.
<table>
<thead>
<tr>
<th>Octet</th>
<th>Field</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parameter field length</td>
<td>1 byte</td>
<td>Total number of data bytes in ITU-T G.998.4 parameter field (Note 1).</td>
</tr>
<tr>
<td>2</td>
<td>Upstream Retransmission support</td>
<td>1 byte [0000 000u]</td>
<td>Indicates support of upstream retransmission at the VTU-R.</td>
</tr>
<tr>
<td>3</td>
<td>DTU options</td>
<td>1 byte [0000 0cba]</td>
<td>Indicates the optional framing types supported by the VTU-R transmitter.</td>
</tr>
<tr>
<td>4</td>
<td>VTU-R Half-roundtrip Tx</td>
<td>1 byte [00ddssss]</td>
<td>VTU-R transmitter half-roundtrip delay.</td>
</tr>
<tr>
<td>5</td>
<td>VTU-R half-roundtrip Rx</td>
<td>1 byte [00ddssss]</td>
<td>VTU-R receiver half roundtrip delay.</td>
</tr>
<tr>
<td>6</td>
<td>US ((1/S)_{\text{max}})</td>
<td>1 byte [0eeeee]</td>
<td>Maximum (1/S) value supported by the VTU-R in the upstream direction when retransmission is enabled in upstream.</td>
</tr>
<tr>
<td>7</td>
<td>DS ((1/S)_{\text{max}})</td>
<td>1 byte [0eeeee]</td>
<td>Maximum (1/S) value supported by the VTU-R in the downstream direction when retransmission is enabled in downstream.</td>
</tr>
<tr>
<td>8</td>
<td>Maximum upstream net data rate</td>
<td>2 bytes</td>
<td>Maximum net data rate supported by the VTU-R in the upstream direction when retransmission is enabled.</td>
</tr>
</tbody>
</table>

NOTE 1 – If the VTU-R does not support retransmission in either transmission direction, the number of data bytes may be zero.

Field #1 "Parameter field length" indicates the number of data bytes in the ITU-T G.998.4 parameter field. The data bytes are the bytes following this length indicator byte (i.e., all bytes in the ITU-T G.998.4 parameter field counting from the penultimate byte). This byte is included to allow VTU-Os that do not support ITU-T G.998.4 to still correctly parse R-MSG2.

Field #2 "Retransmission support" indicates the retransmission capabilities of the VTU-R. It shall be coded as a single byte [0000 000u], where:
- \(u = 0\) indicates that retransmission is not supported in the upstream direction.
- \(u = 1\) indicates that retransmission is supported in the upstream direction.

Note that support for downstream retransmission is implied if the VTU-R includes an ITU-T G.998.4 parameter field that has a non-zero number of data bytes in it.

Field #3 "DTU options" indicates which of the optional DTU framing types are supported by the VTU-R transmitter. The field shall be coded as a single byte [0000 0abc], where:
- \(a = 1\) indicates support of DTU Framing type 2 (see clause 8.1.2).
- \(b = 1\) indicates support of DTU Framing type 3 (see clause 8.1.3).
- \(c = 1\) indicates support of DTU Framing type 4 (see clause 8.1.4).

At least one of the bits a, b or c shall be set to 1 when retransmission is supported in the upstream direction.

Field #4 "VTU-R Half-roundtrip Tx" contains the half-roundtrip delay of the VTU-R transmitter. The field shall be coded as a single byte [00ddssss], where:
- \(ssss\) is a four-bit number indicating the part of the delay in DMT symbols for the profiles with 4.3125 kHz sub-carrier spacing or in multiple of 2 DMT symbols for the profiles with 8.625 kHz sub-carrier spacing.
dd is a two-bit number indicating the part of the delay in DTU.

Field #5 "VTU-R Half-roundtrip Rx" contains the half-roundtrip delay of the VTU-R receiver. The field shall be coded as a single byte [00ddssss], where:

- ssss is a four-bit number indicating the part of the delay in DMT symbols for the profiles with 4.3125 kHz sub-carrier spacing or in multiple of 2 DMT symbols for the profiles with 8.625 kHz sub-carrier spacing.
- dd is a two-bit number indicating the part of the delay in DTU.

Field #6 "US \(\frac{1}{S}\)max" contains the maximal \(\frac{1}{S}\) value supported by the VTU-R in the upstream direction when retransmission is enabled in upstream. The field shall be coded as an unsigned 8-bit value with a range from 1 to 64 in steps of 1. When retransmission is enabled in upstream, this value supersedes the value of "US \(\frac{1}{S}\)max" exchanged in the PMS-TC capabilities field of R-MSG 2.

Field #7 "DS \(\frac{1}{S}\)max" contains the maximal \(\frac{1}{S}\) value supported by the VTU-R in the downstream direction when retransmission is enabled in downstream. The field shall be coded as an unsigned 8-bit value with a range from 1 to 64 in steps of 1. When retransmission is enabled in downstream, this value supersedes the value of "DS \(\frac{1}{S}\)max" exchanged in the PMS-TC capabilities field of R-MSG 2.

Field #8 "Maximum upstream net data rate" contains the maximal upstream net data rate supported by the VTU-R in upstream when retransmission is enabled in this direction. This field shall be coded as an unsigned 16-bit value with the rate in multiple of 8 kbit/s.

When retransmission is enabled, all other parameter values exchanged in R-MSG 2 shall keep their original meaning (as defined in ITU-T G.993.2), unless indicated otherwise above.

C.2.2.2 R-PMS

The R-PMS message conveys the initial PMS-TC parameter settings that shall be used in the downstream direction during Showtime. The ITU-T G.998.4 parameter field for R-PMS shall be structured as shown in Table C.6.

If retransmission is not enabled in the downstream direction (as indicated in O-TPS), the ITU-T G.998.4 parameter field of R-PMS may be left empty by the VTU-R transmitter (i.e., consist of a single byte with value 0) and shall be ignored at the receiver.

<table>
<thead>
<tr>
<th>Octet</th>
<th>Field</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parameter field length</td>
<td>1 byte</td>
<td>Total number of data bytes in ITU-T G.998.4 parameter field.</td>
</tr>
<tr>
<td>2</td>
<td>DTU options</td>
<td>[0000 00aa]</td>
<td>Selected DTU framing type in the downstream direction.</td>
</tr>
<tr>
<td>3</td>
<td>Q</td>
<td>1 byte</td>
<td>The number of Reed-Solomon codewords per DTU in the downstream direction.</td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>1 byte</td>
<td>The number of padding octets per DTU in the downstream direction.</td>
</tr>
<tr>
<td>5</td>
<td>Qtx</td>
<td>1 byte</td>
<td>Delay in DTU between two consecutive transmissions of a DTU.</td>
</tr>
<tr>
<td>6</td>
<td>lb</td>
<td>1 byte</td>
<td>Look-back value used to calculate the values communicated in the RRC carrying the requests for downstream retransmission, i.e., in the RRC transmitted in the upstream direction.</td>
</tr>
</tbody>
</table>
Field #1 "Parameter field length" indicates the number of data bytes in the field (i.e., counting from the penultimate byte). This field is included to allow a VTU-O that doesn't support ITU-T G.998.4 to still correctly parse R-PMS.

Field #2 "DTU options" indicates which of the optional DTU framing types shall be used in the downstream direction. The field is coded as [0000 00aa], where:
- aa=00 indicates that DTU Framing type 1 (see clause 8.1.1) shall be used.
- aa=01 indicates that DTU Framing type 2 (see clause 8.1.2) shall be used.
- aa=10 indicates that DTU Framing type 3 (see clause 8.1.3) shall be used.
- aa=11 indicates that DTU Framing type 4 (see clause 8.1.4) shall be used.

Field #3 "Q" indicates the number of Reed-Solomon codewords per DTU in the downstream direction. Q shall take a value in the range from 1 to 64 (inclusive).

Field #4 "V" indicates the number of padding octets per DTU in the downstream direction. V shall take a value between 0 and 15 (inclusive).

Field #5 "Qtx" indicates the delay (in number of DTUs) between two consecutive downstream transmissions of the same DTU in the transmitter reference state machine assumed by the VTU-R. Qtx shall take a value in the range from 1 to 64 (inclusive).

Field #6 "lb" contains the look-back value used to calculate the values communicated in the RRC carrying the requests for upstream retransmission, i.e., in the RRC transmitted in the downstream direction. "lb" shall take values in the range from 1 to 31.

When retransmission is enabled in the downstream direction, the remaining parameter values exchanged in R-PMS shall keep their original meaning (as defined in ITU-T G.993.2), with the following exceptions:

The fields F, I and D of the of the latency path #1 shall be set to 0 and ignored by the receiver.

C.3 Management plane procedures

C.3.1 Test Parameter Read commands

Four test parameters have been added to Table 11-27 of ITU-T G.993.2 as described in Table C.7.

The parameter with ID=4116 contains the actual INP against SHINE as derived by the far-end transmitter. It is represented as an unsigned 16-bit integer in multiple of 0.1. This parameter shall be included in the response of a VTU to a Single Read command if retransmission is enabled in its transmit direction.

The parameter with ID=4216 contains the actual INP against REIN as derived by the far-end transmitter. It is represented as an unsigned 8-bit integer in multiple of 0.1. This parameter shall be included in the response of a VTU to a Single Read command if retransmission is enabled in its transmit direction.

The parameter with ID=4316 contains the actual ETR as derived by the far-end receiver. It is represented as an unsigned 32-bit integer in multiple of 1 kbit/s. This parameter shall be included in the response of a VTU to a Single Read command if retransmission is enabled in its receive direction.

The parameter with ID=4416 contains the actual delay as derived by the far-end receiver. It is represented as an unsigned 8-bit integer in multiple of 1 ms. This parameter shall be in the response of a VTU to a Single Read command if retransmission is enabled in its receive direction.
Table C.7 – Additional PMD test parameter ID values and length of responses

<table>
<thead>
<tr>
<th>Test parameter ID</th>
<th>Test parameter name</th>
<th>Length for Single Read (octets)</th>
<th>Length for Multiple Read (octets)</th>
<th>Length for Block Read (octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116</td>
<td>Far-end RTX Transmitter Actual Impulse Noise protection against SHINE (INP_act_SHINE)</td>
<td>2 octets</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4216</td>
<td>Far-end RTX Transmitter Actual Impulse Noise protection against REIN (INP_act_REIN)</td>
<td>1 octet</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4316</td>
<td>RTX Receiver Expected Throughput (ETR)</td>
<td>4 octets</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>4416</td>
<td>RTX Receiver Actual Delay (delay_act_RTX)</td>
<td>1 octet</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

C.3.1.2 Management counter read commands and responses

Replace Table 11-16 of ITU-T G.993.2 and Table 11-17 of ITU-T G.993.2 with Table C.8 and Table C.9, respectively.

The field "EFTR_min" contains the $EFTR_min$ as derived by the far-end receiver. It is represented as an unsigned 32-bit integer in multiple of 1 kbit/s. This field shall be present in the response from the VTU if retransmission is enabled in its receive direction. Although this parameter is reported via the management counter eoc commands, this performance monitoring parameter is not a counter. Therefore, the requirements of ITU-T G.993.2 and ITU-T G.997.1 applicable to counters in general do not apply to this parameter.

Table C.8 – Management counter read responses sent by the responding VTU

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (Octets)</th>
<th>Octet number</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>variable</td>
<td>2</td>
<td>81,16 (Note 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 to $2 + 4 \times Nc$</td>
<td>octets for all of the PMS-TC counter values (Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3 + 4 \times 13$ and above</td>
<td>octets for all of the TPS-TC counter values (Note 2)</td>
</tr>
</tbody>
</table>

NOTE 1 – All other values for octet number 2 are reserved by the ITU-T.

NOTE 2 – N_c is the number of counters for the PMS-TC. $N_c = 14$ if retransmission is enabled only in the receive direction. $N_c = 8$ if retransmission is enabled only in the transmit direction. $N_c = 15$ if retransmission is enabled in both directions, $N_c = 7$ if retransmission is disabled in both directions.
Table C.9 – VTU management counters

<table>
<thead>
<tr>
<th>PMS-TC counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter of the FEC-0 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of the FEC-1 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of the CRC-0 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of the CRC-1 anomalies (Note 1)</td>
</tr>
<tr>
<td>Counter of rtx-tx (Note 3)</td>
</tr>
<tr>
<td>Counter of rtx-c (Note 2)</td>
</tr>
<tr>
<td>Counter of rtx-uc (Note 2)</td>
</tr>
<tr>
<td>FEC errored seconds counter</td>
</tr>
<tr>
<td>Errored seconds counter</td>
</tr>
<tr>
<td>Severely errored seconds counter</td>
</tr>
<tr>
<td>los errored seconds counter</td>
</tr>
<tr>
<td>Unavailable errored seconds counter</td>
</tr>
<tr>
<td>Counter of "lefr" defect seconds (Note 2)</td>
</tr>
<tr>
<td>Counter of error free bits (Note 2)</td>
</tr>
<tr>
<td>EFTR_min (Note 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPS-TC counters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters for TPS-TC #0</td>
</tr>
</tbody>
</table>

NOTE 1 – If reported for a direction where retransmission is enabled, the VTU shall include the fields of the FEC and CRC anomalies for the latency path #0 and #1; the FEC and CRC for the latency path #0 shall be vendor discretionary. If reported for a direction where retransmission is disabled, the VTU shall include only the fields of the FEC and CRC anomalies for the latency path #0.

NOTE 2 – These counters shall be included if the report is from a VTU with retransmission enabled in the receiver.

NOTE 3 – This counter shall be included if the report is from a VTU with retransmission enabled in the transmitter.

C.3.1.3 Diagnostic commands and responses

Replace Table 11-8 of ITU-T G.993.2 with the Table C.10.

Table C.10 – Diagnostic commands sent by the VTU-O

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (Octets)</th>
<th>Octet number</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform Self-test</td>
<td>2</td>
<td>2</td>
<td>01_{16} (Note)</td>
</tr>
<tr>
<td>Update Test Parameters</td>
<td>2</td>
<td>2</td>
<td>02_{16} (Note)</td>
</tr>
<tr>
<td>Start TX Corrupt CRC</td>
<td>2</td>
<td>2</td>
<td>03_{16} (Note)</td>
</tr>
<tr>
<td>End TX Corrupt CRC</td>
<td>2</td>
<td>2</td>
<td>04_{16} (Note)</td>
</tr>
<tr>
<td>Start RX Corrupt CRC</td>
<td>2</td>
<td>2</td>
<td>05_{16} (Note)</td>
</tr>
</tbody>
</table>
Table C.10 – Diagnostic commands sent by the VTU-O

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (Octets)</th>
<th>Octet number</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>End RX Corrupt CRC</td>
<td>2</td>
<td>2</td>
<td>06₁₆ (Note)</td>
</tr>
<tr>
<td>Enter RTX_TESTMODE</td>
<td>2</td>
<td>2</td>
<td>07₁₆ (Note)</td>
</tr>
<tr>
<td>Leave RTX_TESTMODE</td>
<td>2</td>
<td>2</td>
<td>08₁₆ (Note)</td>
</tr>
</tbody>
</table>

NOTE – All other values for octet number 2 are reserved by the ITU-T.

C.3.1.3.1 Retransmission test mode

A special test mode is defined for accelerated testing of the MTBE (see clause 10.4). A Diagnostic command is defined to enter or leave the mode during Showtime.

Upon reception of the Enter RTX_TESTMODE command, the VTU-R shall acknowledge it with an ACK response. Afterwards, the VTU-R shall acknowledge all received DTUs if retransmission is enabled in the downstream direction and shall stop retransmitting any DTU if retransmission is enabled in upstream.

Upon reception of the Leave RTX_TESTMODE command, the VTU-R shall resume the normal behaviour of retransmission in the direction where it is enabled.
Appendix I

Transmit state machine

1.1 Reference transmit state machine

NOTE – The equations derived below for the reference transmit state machine assume a transmission of data symbols at a frequency f_s without insertion of sync symbols.

The reference transmit state machine retransmits unacknowledged DTUs exactly Q_{tx} DTUs after the last transmission of the same DTUs. An unacknowledged DTU is not retransmitted more than $\text{delay}_{\text{max}}$ after the first transmission of the same DTU. Therefore, the maximum size of the receive buffer expressed in number of DTUs ($Q_{rx,max}$) can be derived from $\text{delay}_{\text{max}}$ as:

$$Q_{rx,max} = \left\lfloor \frac{\text{Delay}_{\text{max}} \cdot f_s}{S \cdot Q} \right\rfloor$$

Likewise, to meet the minimum delay requirement $\text{delay}_{\text{min}}$, the minimum size of the receive buffer expressed in number of DTUs ($Q_{rx,min}$) can be derived from $\text{delay}_{\text{min}}$ as:

$$Q_{rx,max} = \left\lfloor \frac{\text{Delay}_{\text{min}} \cdot f_s}{S \cdot Q} \right\rfloor$$

The informative transmit state machine has no limitation on the number of retransmissions per unit of time.

Figure I.1 – Example of multiple retransmissions of DTU with SID=0 and $2.Q_{tx} \leq Q_{rx,max} < 3.Q_{tx}$

With the reference transmit state machine, the longest impulse (expressed in DMT symbols) that can be corrected in the absence of REIN (i.e., $\text{INP}_{\text{REIN min}} = 0$) is:

$$\text{INP} = \begin{cases} (\text{ret} \times Q_{tx} - 1) \times S \times Q & \text{if } Q_{tx} \geq \text{roundtrip}_{\text{DTU}} \\ 0 & \text{otherwise} \end{cases}$$

where $\text{roundtrip}_{\text{DTU}} = \left[\frac{HRT_{\text{tx}} + HRT_{\text{rx}}}{S \cdot Q} \right] + HRT_{\text{tx}}^{\text{DTU}} + HRT_{\text{rx}}^{\text{DTU}} + 1$ is the total roundtrip in DTU.

Nret is the maximum number of retransmissions within the maximum delay constraint, as defined in clause 8.6.4.

If REIN protection is required (i.e., $\text{INP}_{\text{REIN min}} > 0$), the INP is given by:

$$\text{INP} = \left[((\text{Nret} - 1) \times Q_{tx} - 1) \times S \times Q \right]$$

provided that the following conditions are met:

(i) $\text{Nret} \geq 2$

(ii) $Q_{tx} \geq \text{roundtrip}_{\text{DTU}}$
If any of the above conditions are not met, the INP is 0.

1.2 Last chance retransmission state machine

If a DTU, situated anywhere in the TX retransmission buffer, would exceed the \(\text{delay_max} \) constraint, because it is to be retransmitted later than the next outgoing DTU-container, then, the DTU is retransmitted in the next outgoing container and is marked as acknowledged. No other changes are necessary in the buffer. The transmitted DTU is not fed into the beginning of the queue. This last chance retransmission is made, even though, a previous retransmission could not have been acknowledged at that time. Scheduled (re)transmissions of other DTUs are delayed by one DTU-Container. Figure I.2 depicts such a scheme.

![Diagram of a last chance retransmission state machine](image)

Figure I.2 – A pictorial representation of a last chance retransmission state machine

A last chance retransmission state machine provides the highest achievable impulse noise protection of \(\text{INP_min} \sim \text{delay_max} \).
Appendix II

Motivation of MTBE accelerated test

This appendix provides motivation for the P_{DTU} requirement in the accelerated test for MTBE.

Stationary noise can trigger retransmissions depending on the noise level. It can be assumed that the probability that a DTU is corrupted due to stationary noise is identical for all retransmissions of the same DTU. That is because the time between the retransmissions is large compared to effects from the Viterbi decoder.

When considering an environment with only stationary noise, the MTBE after retransmission can be calculated as:

$$MTBE_{RET} = \frac{T_{DTU}}{(P_{DTU})^{M_{RET}+1}}$$

Where:

- $MTBE_{RET}$ is the MTBE after retransmissions, expressed in seconds
- P_{DTU} is the Probability that a DTU is corrupted, i.e., a DTU is not received correctly in a single transmission
- T_{DTU} is the time duration of a DTU expressed in seconds
- M_{RET} is the number of retransmissions allowed for additional robustness against stationary noise errors. This is the number of retransmissions that the system can support in addition to the number of retransmissions that are needed to meet the various impulse noise protection requirements.

Inversely, for a given required $MTBE_{RET}$, the required P_{DTU} can be calculated as:

$$P_{DTU} = \left(\frac{T_{DTU}}{MTBE_{RET}}\right)^{\frac{1}{M_{RET}+1}}$$

In this version of Recommendation ITU-T G.998.4, it is assumed that $M_{RET} = 1$. Operation conditions which allow further optimization of the performance are for further study. In this case, we have:

$$P_{DTU} = \left(\frac{T_{DTU}}{MTBE_{RET}}\right)^{\frac{1}{2}}$$

We further assume that $MTBE_{RET} = 14400$ seconds (see clause 10.3). With this, we get:

$$P_{DTU} = \left(\frac{T_{DTU _in _DMT}}{14400 \times f_s}\right)^{\frac{1}{2}} = \frac{8.3333 \times 10^{-3}}{\sqrt{f_s}} \times (T_{DTU _in _DMT})^{\frac{1}{2}}$$

Where:

- f_s is the symbol rate in Hz
- $T_{DTU _in _DMT}$ is the duration of the DTU expressed in DMT symbols. This is identical to $Q \times S_1$.

As specified in clause 8.1, $T_{DTU _in _DMT}$ can vary between $\frac{1}{2}$ and 4 DMT symbols.

Table II.1 shows some example numerical values of P_{DTU} for a selection of different DTU sizes.
Table II.1 – Value of P_{DTU} as function of DTU duration

<table>
<thead>
<tr>
<th>$T_{DTU_{in_{DMT}}}$</th>
<th>P_{DTU} for $f_s=4000$</th>
<th>P_{DTU} for $f_s=8000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.9317×10^{-4}</td>
<td>0.6588×10^{-4}</td>
</tr>
<tr>
<td>1</td>
<td>1.3176×10^{-4}</td>
<td>0.9317×10^{-4}</td>
</tr>
<tr>
<td>2</td>
<td>1.8634×10^{-4}</td>
<td>1.3176×10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>2.6352×10^{-4}</td>
<td>1.8634×10^{-4}</td>
</tr>
</tbody>
</table>

The retransmission overhead due to a correction of stationary noise ($STAT_{OH}$, see Table 9-2) is approximately equal to P_{DTU}. In Table 9-2, this value is approximated as a single value 10^{-4}, independent of DTU size and symbol rate. This value is consistent with the range of values shown in Table II.1.
Bibliography

<table>
<thead>
<tr>
<th>Series</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Organization of the work of ITU-T</td>
</tr>
<tr>
<td>D</td>
<td>General tariff principles</td>
</tr>
<tr>
<td>E</td>
<td>Overall network operation, telephone service, service operation and human factors</td>
</tr>
<tr>
<td>F</td>
<td>Non-telephone telecommunication services</td>
</tr>
<tr>
<td>G</td>
<td>Transmission systems and media, digital systems and networks</td>
</tr>
<tr>
<td>H</td>
<td>Audiovisual and multimedia systems</td>
</tr>
<tr>
<td>I</td>
<td>Integrated services digital network</td>
</tr>
<tr>
<td>J</td>
<td>Cable networks and transmission of television, sound programme and other multimedia signals</td>
</tr>
<tr>
<td>K</td>
<td>Protection against interference</td>
</tr>
<tr>
<td>L</td>
<td>Construction, installation and protection of cables and other elements of outside plant</td>
</tr>
<tr>
<td>M</td>
<td>Telecommunication management, including TMN and network maintenance</td>
</tr>
<tr>
<td>N</td>
<td>Maintenance: international sound programme and television transmission circuits</td>
</tr>
<tr>
<td>O</td>
<td>Specifications of measuring equipment</td>
</tr>
<tr>
<td>P</td>
<td>Terminals and subjective and objective assessment methods</td>
</tr>
<tr>
<td>Q</td>
<td>Switching and signalling</td>
</tr>
<tr>
<td>R</td>
<td>Telegraph transmission</td>
</tr>
<tr>
<td>S</td>
<td>Telegraph services terminal equipment</td>
</tr>
<tr>
<td>T</td>
<td>Terminals for telematic services</td>
</tr>
<tr>
<td>U</td>
<td>Telegraph switching</td>
</tr>
<tr>
<td>V</td>
<td>Data communication over the telephone network</td>
</tr>
<tr>
<td>X</td>
<td>Data networks, open system communications and security</td>
</tr>
<tr>
<td>Y</td>
<td>Global information infrastructure, Internet protocol aspects and next-generation networks</td>
</tr>
<tr>
<td>Z</td>
<td>Languages and general software aspects for telecommunication systems</td>
</tr>
</tbody>
</table>