ITU-T

OF ITU

G.8261.1/Y.1361.1 TELECOMMUNICATION STANDARDIZATION SECTOR

Amendment 1 (05/2014)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – Synchronization, quality and availability targets

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE. INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects - Transport

Packet delay variation network limits applicable to packet-based methods (Frequency synchronization)

Amendment 1: Revision to clause 8 on packet delay variation

Recommendation ITU-T G.8261.1/Y.1361.1 (2012) -Amendment 1

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000–G.8999
Ethernet over Transport aspects	G.8000–G.8099
MPLS over Transport aspects	G.8100-G.8199
Synchronization, quality and availability targets	G.8200-G.8299
Service Management	G.8600–G.8699
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.8261.1/Y.1361.1

Packet delay variation network limits applicable to packet-based methods (Frequency synchronization)

Amendment 1

Revision to clause 8 on packet delay variation

Summary

Amendment 1 to Recommendation ITU-T G.8261.1/Y.1361.1 provides a revision of clause 8 (PDV network limit).

History

Edition	Recommendation	Approval	Study Group	Unique ID [*]
1.0	ITU-T G.8261.1/Y.1361.1	2012-02-13	15	<u>11.1002/1000/11522</u>
1.1	ITU-T G.8261.1/Y.1361.1 (2012) Amd. 1	2014-05-14	15	11.1002/1000/12190

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Recommendation ITU-T G.8261.1/Y.1361.1

Packet delay variation network limits applicable to packet-based methods (Frequency synchronization)

Amendment 1

Revision to clause 8 on packet delay variation

1 Clause 8 (PDV network limit)

Replace clause 8 with the following:

8 PDV network limit

The packet delay variation network limit given in this clause represents the maximum permissible levels of packet delay variation at the interface C shown in Figure 3.

In general, these network limits are compatible with the minimum tolerance to packet delay variation that all PEC-S-F equipment are required to provide.

NOTE 1 - It should be recognized that, as a result of some network performance degradations, failure conditions, maintenance actions and other events the PDV network limits might not be met. During these exceptional infrequent conditions and for a short settling period afterwards the slave clock is not required to meet the performance objectives that are specified in [ITU-T G.8263]. The length of the required settling period is for further study.

NOTE 2 – The PEC embedded within the end application, as shown after the connection C2 in Figure 3 is for further study in [ITU-T G.8263].

Note that the PDV network limit specified in this clause assumes that the network equipment composing the hypothetical reference model generates a controlled amount of PDV. It is known that some network equipment may generate excessive PDV and may potentially exceed these PDV network limits. What constitutes a controlled amount of PDV, how to determine if network equipment is suitable for consideration in the hypothetical reference models defined in this Recommendation, or in a reduced hypothetical reference model, as well as how to evaluate the level of PDV generated by network equipment, is for further study.

8.1 HRM-1 network limit

8.1.1 Network limit

The packet delay variation network limit at point C of Figure 3 for the HRM-1 shown in Figure 1 is defined as follows:

With window interval W = 200 s and fixed cluster range $\delta = 150 \ \mu$ s starting at the floor delay, the network transfer characteristic quantifying the proportion of delivered packets that meet the delay criterion should satisfy:

FPP
$$(n, W, \delta) \ge 1\%$$

That is, the floor packet percentage must exceed 1%.

This means that for any window interval of 200 s at least 1% of transmitted timing packets will be received within a fixed cluster, starting at the observed floor delay and having a range of 150 μ s.

1

NOTE 1 – The selection method (using sliding, overlapping or jumping windows) applicable to the network limit specified in this Recommendation is for further study.

NOTE 2 – The number of packets received within the fixed cluster range depends on the nominal packet rate. For example, with a nominal packet rate of one packet per second, FPP > 1% implies that two or more packets will be received within the fixed cluster range in each 200 s interval. The number of packets in a selection window is important for considering the tolerance limit of a slave clock.

For more details on the measurement methodology refer to clause I.5 of [ITU-T G.8260].

This network limit can be applied independently on the forward or the reverse direction of a packet timing flow. Consideration of the combined effect of both directions is for further study.

Other PDV metrics emulating the behaviour of a packet slave clock are currently under study and might be used in the future for specifying the PDV network limits in a less conservative way. Some information can be found in clause I.4 of [ITU-T G.8260].

NOTE 3 – A packet slave clock tolerating this PDV limit is defined in [ITU-T G.8263].

8.1.2 Networks with lower packet delay variation

Clause 8.1.1 specifies the network limit for HRM-1. Many HRM-1 networks may exhibit much lower packet delay variation than indicated by this limit and therefore it is considered very conservative. For instance, some measurements on HRM-1 networks show that FPP $(n, W, \delta) \ge 1\%$ is respected when considering $\delta = 75 \ \mu s$.

This corresponds to a scenario where the PDV generated by the traffic carried over the network is engineered according to certain rules for transport networks. The rules to meet this network performance are for further study. Nevertheless, networks that are designed to meet the requirement specified in clause 8.1.1 need not be changed.

To accommodate exceptional conditions (e.g., infrequent congestion (overload) of multiple links simultaneously), the FPP (n, 200, 75 µs) may not be met within the following constraints when:

- there are no more than 4 periods over a 24 hour duration where there are less than 1% of packets within the 75 μs FPP cluster range (these are termed "congestion periods");
- there are at least 900 seconds between the end of a congestion period and the start of the next congestion period; and
- an individual congestion period does not exceed 200 seconds in length; and
- the PDV network limit of HRM-1 is still satisfied during all periods of the measurement, including during the periods of congestion (i.e., $FPP(n,200,150 \ \mu s) > =1\%$).

It is the responsibility of the operator to decide if its network fits within this scenario.

NOTE – A packet slave clock optimized for these networks but not tolerating the PDV limits defined in clause 8.1.1 is for further study

8.2 HRM-2 network limit

The packet delay variation network limits for the HRM-2 are for further study. For HRM-2, different limits may apply, and may use different metrics.

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems