ITU-T

G.8151/Y.1374

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (07/2012)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – MPLS over Transport aspects

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects – Transport

Management aspects of the MPLS-TP network element

Recommendation ITU-T G.8151/Y.1374

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300-G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
Ethernet over Transport aspects	G.8000-G.8099
MPLS over Transport aspects	G.8100-G.8199
Quality and availability targets	G.8200-G.8299
Service Management	G.8600-G.8699
ACCESS NETWORKS	G.9000-G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.8151/Y.1374

Management aspects of the MPLS-TP network element

Summary

Recommendation ITU-T G.8151/Y.1374 addresses management aspects of the MPLS transport profile (MPLS-TP) capable network element containing transport functions of one or more of the layer networks of the MPLS-TP network. The management of the MPLS-TP layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. The management functions for fault management, configuration management, performance monitoring, and security management are specified.

The 2012 revision of this Recommendation aligns with the MPLS-TP architecture and requirements jointly developed by IETF and ITU-T, and provides the specification for managing MPLS-TP network elements (NEs) that support the OAM protocol neutral equipment functionality as defined in Recommendation ITU-T G.8121/Y.1381.

History

Edition	Recommendation	Approval	Study Group
1.0	ITU-T G.8151/Y.1374	2007-10-22	15
2.0	ITU-T G.8151/Y.1374	2012-07-22	15
2.1	ITU-T G.8151/Y.1374 (2012) Amd.1	2012-10-29	15

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

1	Scope	
2	Refere	ences
3	Defini	tions
	3.1	Terms defined elsewhere
	3.2	Terms defined in this Recommendation
4	Abbre	viations and acronyms
5	Conve	entions
6	MPLS	-TP management architecture
	6.1	MPLS-TP network management architecture
	6.2	MPLS-TP equipment management architecture
	6.3	Information flows over management points (MP)
7	Fault ((maintenance) management
	7.1	Fault management applications
	7.2	Fault management functions
8	Config	guration management
	8.1	Hardware
	8.2	Software
	8.3	Protection switching
	8.4	Trail termination
	8.5	Adaptation
	8.6	Diagnostic
	8.7	Connection
	8.8	DEG thresholds
	8.9	XXX_Reported
	8.10	Alarm severity
	8.11	Alarm reporting control (ARC)
	8.12	PM thresholds
	8.13	TCM activation
0	8.14	Date and Time
9		nting management
10		mance management
	10.1	Performance management applications
	10.2	Performance monitoring functions
11	Securi	ty management
Bibli	ography	

Recommendation ITU-T G.8151/Y.1374

Management aspects of the MPLS-TP network element

1 Scope

This Recommendation addresses management aspects of the MPLS transport profile (MPLS-TP) capable network element containing transport functions of one or more of the layer networks of the MPLS-TP network. The management of the MPLS-TP layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. In this version of the Recommendation, fault management, configuration management, performance management, and security management are specified. Accounting management is for further study.

The generic requirements for managing transport network elements are specified in [ITU-T G.7710] and the requirements for the management of equipment used in networks supporting an MPLS-TP are specified in [b-IETF RFC 5951]. This Recommendation specifies the requirements for managing the following MPLS-TP specific equipment functional blocks, which are defined in [ITU-T G.8121]:

- MPLS-TP layer connection function;
- MPLS-TP layer trail termination functions;
- MPLS-TP server to MPLS-TP client adaptation functions;
- MPLS-TP server to Ethernet client adaptation functions;
- SDH server to MPLS-TP client adaptation functions;
- PDH server to MPLS-TP client adaptation functions;
- OTN server to MPLS-TP client adaptation functions.

The management of the adaptation of other clients and servers with respect to MPLS-TP is for further study.

This Recommendation also describes the management network organizational model for communication between an element management layer (EML) operations system and the MPLS-TP equipment management function within an MPLS-TP network element.

The architecture described in this Recommendation for the management of MPLS-TP transport networks is based upon the following considerations:

- The management view of network element functional elements should be uniform whether
 those elements form part of an inter-domain interface or part of an intra-domain interface.
 Those properties necessary to form such a uniform management view are to be included in
 this Recommendation.
- MPLS-TP layer network entities (MTLNE) refer to trail termination, adaptation and connection functions as described in [ITU-T G.8110.1].
- A network element may only contain MPLS-TP layer network entities.
- A network element may contain both MPLS-TP layer network entities (MTLNE) and client layer network entities (CLNE).
- Client layer entities are managed as part of their own logical domain (e.g., Ethernet management network).
- CLNE and MTLNE may or may not share a common message communication function (MCF) and management application function (MAF) depending on application.
- CLNE and MTLNE may or may not share the same agent.

This Recommendation provides a representation of the MPLS-TP technology using the methodologies that have been used for other transport technologies (e.g., SDH, OTN and Ethernet).

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.805]	Recommendation ITU-T G.805 (2000), Generic functional architecture of transport networks.
[ITU-T G.806]	Recommendation ITU-T G.806 (2009), Characteristics of transport equipment – Description methodology and generic functionality.
[ITU-T G.7041]	Recommendation ITU-T G.7041/Y.1303 (2008), <i>Generic framing procedure (GFP)</i> .
[ITU-T G.7710]	Recommendation ITU-T G.7710/Y.1701 (2007) and Corrigendum 1 (2009), Common equipment management function requirements.
[ITU-T G.7712]	Recommendation ITU-T G.7712/Y.1703 (2010), Architecture and specification of data communication network.
[ITU-T G.8110.1]	Recommendation ITU-T G.8110.1/Y.1370.1 (2011), Architecture of the Multi-Protocol Label Switching transport profile layer network.
[ITU-T G.8113.1]	Recommendation ITU-T G.8113.1/Y.1372.1 (2012), <i>Operations, administration and maintenance mechanism for MPLS-TP in packet transport networks</i> .
[ITU-T G.8113.2]	Recommendation ITU-T G.8113.2/Y.1372.2 (2012), <i>Operations</i> , administration and maintenance mechanisms for MPLS-TP networks using the tools defined for MPLS.
[ITU-T G.8121]	Recommendation ITU-T G.8121/Y.1381 (2012), Characteristics of MPLS-TP network equipment functional blocks.
[ITU-T M.20]	Recommendation ITU-T M.20 (1992), Maintenance philosophy for telecommunication networks.
[ITU-T M.3010]	Recommendation ITU-T M.3010 (2000) and Amendments, <i>Principles</i> for a telecommunications management network.
[ITU-T M.3013]	Recommendation ITU-T M.3013 (2000), Considerations for a telecommunications management network.
[ITU-T M.3100]	Recommendation ITU-T M.3100 (2005), Generic network information model.
[ITU-T X.700]	Recommendation ITU-T X.700 (1992), Management framework for Open Systems Interconnection (OSI) For CCITT Applications.
[ITU-T X.701]	Recommendation ITU-T X.701 (1997), Information technology – Open Systems Interconnection – Systems management overview.

[ITU-T X.733] Recommendation ITU-T X.733 (1992) and Amendments, *Information*

technology – Open Systems Interconnection – Systems Management:

Alarm reporting function.

[ITU-T X.735] Recommendation ITU-T X.735 (1992) and Amendments, *Information*

technology – Open Systems Interconnection – Systems management:

Log control function.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

- **3.1.1** agent: [ITU-T X.701].
- **3.1.2** alarm reporting: [ITU-T M.3100].
- **3.1.3** alarm reporting control (ARC): [ITU-T M.3100].
- **3.1.4** atomic function (AF): [ITU-T G.806].
- **3.1.5** data communication network (DCN): [ITU-T G.7712].
- **3.1.6** local craft terminal (LCT): [ITU-T G.7710].
- **3.1.7 managed entity**: [ITU-T M.3100].
- **3.1.8** managed object (MO): [ITU-T X.700].
- **3.1.9** managed object class (MOC): [ITU-T X.701].
- **3.1.10** management application function (MAF): [ITU-T G.7710].
- **3.1.11** management interface: [ITU-T M.3100].
- 3.1.12 management point (MP): [ITU-T G.806].
- **3.1.13** manager: [ITU-T X.701].
- **3.1.14** message communication function (MCF): [ITU-T M.3013].
- **3.1.15 network element (NE)**: [ITU-T M.3010].
- **3.1.16 network element function (NEF)**: [ITU-T M.3010].
- **3.1.17** operations system (OS): [ITU-T M.3010].
- **3.1.18** operations system function (OSF): [ITU-T M.3010].
- **3.1.19** persistence interval: [ITU-T M.3100].
- **3.1.20** qualified problem: [ITU-T M.3100].
- **3.1.21 Q-Interface**: [ITU-T M.3010].
- **3.1.22** reset threshold report: [ITU-T M.3100].
- **3.1.23 threshold report**: [ITU-T M.3100].
- **3.1.24** timed interval: [ITU-T M.3100].
- **3.1.25** workstation function (WF): [ITU-T M.3010].

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

- **3.2.1 MPLS-TP management network (MT.MN)**: An MPLS-TP management network is a subset of a TMN that is responsible for managing those parts of a network element that contain MPLS-TP layer network entities. A MT.MN may be subdivided into a set of MPLS-TP management subnetworks.
- **3.2.2 MPLS-TP management subnetwork (MT.MSN)**: An MPLS-TP management subnetwork (MT.MSN) consists of a set of separate embedded control channels (ECC) and associated intra-site data communication links which are interconnected to form a data communications network (DCN) within any given MPLS-TP transport topology. For MPLS-TP, the physical channel supporting the ECC is the MPLS-TP management communication channel (MCC) as defined in [ITU-T G.7712]. A MT.MSN represents a MPLS-TP specific local communication network (LCN) portion of a network operator's overall data communication network or TMN.
- **3.2.3 MPLS-TP Network Element (MT.NE)**: That part of a network element that contains entities from one or more MPLS-TP layer networks. A MT.NE may therefore be a standalone physical entity or a subset of a network element. It supports at least network element functions (NEF) and may also support an operations system function (OSF). It contains managed objects (MO), a message communication function (MCF) and a management application function (MAF). The functions of a MT.NE may be contained within an NE that also supports other layer networks. These layer network entities are considered to be managed separately from MPLS-TP entities. As such they are not part of the MT.MN or MT.MSN.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AcSL Accepted Signal Label

AF Atomic Function

AIS Alarm Indication Signal

ALM Alarm reporting

ARC Alarm Reporting Control

CLNE Client Layer Network Entity

CP Connection Point

CtrlP Control Plane

DCN Data Communication Network

ECC Embedded Communication Channel

EMF Equipment Management Function

FCAPS Fault management, Configuration management, Account management,

Performance management and Security management

GNE Gateway Network Element

IP Internet Protocol

LAN Local Area Network

LCN Local Communication Network

LCT Local Craft Terminal

MAF Management Application Function

MCC Management Communication Channel

MCF Message Communication Function

MD Mediation Device
MF Mediation Function

MI Management Information

MIB Management Information Base

MN Management Network

MO Managed Object

MOC Managed Object Class

MP Management Point
MgmtP Management Plane

MPLS Multi-Protocol Label Switching

MPLS-TP MPLS Transport Profile

MSN Management Subnetwork

MT.C MPLS-TP Channel layer

MT.MN MPLS-TP MN

MT.MSN MPLS-TP MSN

MT.NE MPLS-TP NE

MT.P MPLS-TP Path layer

MT.S MPLS-TP Section layer

MTM-n MPLS-TP Transport Module layer n

NALM No Alarm reporting

NALM-CD No Alarm reporting, Count Down

NALM-NR No Alarm reporting, Not Ready

NALM-QI No Alarm reporting, Qualified Inhibit

NALM-TI No Alarm reporting, Timed Inhibit

NE Network Element

NEF Network Element Function

NEL Network Element Layer

OAM Operations, Administration, Maintenance

OAM&P Operations, Administration, Maintenance and Provisioning

OS Operations System

OSF Operations System Function

OSI Open Systems Interconnection

PMC Performance Monitoring Clock

QoS Quality of Service

SCC Signalling Communication Channel

RTC Real Time Clock

TCM Tandem Connection Monitoring

TMN Telecommunication Management Network

WAN Wide Area Network

WS Workstation

WTR Wait To Restore

5 Conventions

In this Recommendation, MT.MN stands for MPLS-TP management network, MT.MSN for MPLS-TP management subnetwork, MT.NE for MPLS-TP NE, MT.C for MPLS-TP channel layer, MT.P for MPLS-TP path layer, and MT.S for MPLS-TP section layer.

6 MPLS-TP management architecture

See clause 6 of [ITU-T G.7710] for the generic architecture for managing transport equipment. MPLS-TP specific management architecture is described below.

6.1 MPLS-TP network management architecture

The transport layer network architecture of MPLS-TP is described in [ITU-T G.8110.1]. The management of the MPLS-TP layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client.

6.1.1 Relationship between TMN, MT.MN and MT.MSN

The MPLS-TP management network (MT.MN) may be partitioned into MPLS-TP management subnetworks (MT.MSNs). The inter-relationship between a management network, its subnetworks and a TMN as generically described in clause 6 of [ITU-T G.7710] is applicable to MPLS-TP.

6.1.2 Access to the MT.MSN

See clause 6.1.2 of [ITU-T G.7710] for the generic requirements.

6.1.3 MT.MSN requirements

See clause 6.1.3 of [ITU-T G.7710] for the generic requirements.

In addition all MT.NEs must support message communication functions (MCFs). The MCF of an MT.NE initiates/terminates (in the sense of the lower protocol layers), forwards, or otherwise processes management messages over MCCs, or over other DCN interfaces. In addition:

- All MT.NEs are required to terminate the MT.S-MCCs. In OSI terms, this means that each NE must be able to perform the functions of an end system.
- MT.NEs may also be required to forward management messages between ports according
 to routing control information held in the MT.NE. In OSI terms, this means that some
 MT.NEs may be required to perform the functions of an intermediate system.
- In addition to supporting interfaces for the MT.S-MCC, a MT.NE may also be required to support other DCN interfaces, which may include MT.P-MCCs or MT.C-MCCs or an Ethernet DCN interface.

The use of the MT.P-MCCs and MT.C-MCCs for management communications is within the scope of this Recommendation.

6.1.4 MT.MSN data communication network

Refer to clause 6.1.4 of [ITU-T G.7710] for the generic requirements.

6.1.4.1 Management communication channel

The MT.MN supports three management communication channels (MCCs):

- 1) $MT.S-MCC (MCC_S)$.
- 2) $MT.P-MCC (MCC_P)$.
- 3) $MT.C-MCC (MCC_C)$.

The general MT.S-, MT.P-, and MT.C-MCCs are described in [ITU-T G.7712].

Figure 6-1 illustrates a network scenario consisting of two operators. Operator B provides an MT.P service to operator A (i.e., Operator B transports the MT.P signal that begins and ends operator A's domain). According to [ITU-T G.8110.1], the MCC_P and the MCC_C signals passed transparently through operator B's network.

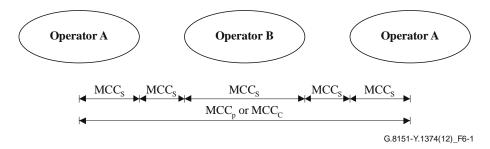


Figure 6-1 – MCC scenarios

The physical layer is terminated in every network element and its related adaptation function provides the MT.S signals as well as the MCC_S. Hence, the MCC_S cannot cross administrative domains. Figures 6-1, 6-2 and 6-3 illustrate scenarios where the MCC_P and MCC_C are transported transparently through operator B's domain (The operator B network elements are not shown in Figures 6-2 and 6-3). In these scenarios it is possible that operator B may use the MCC_S within its own domain for the management of its domain.

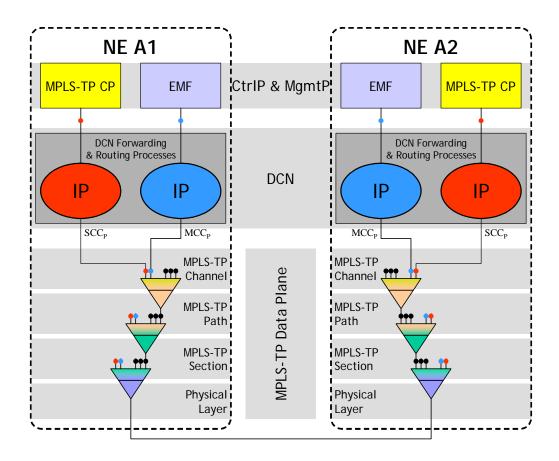


Figure 6-2 – MCC_P scenario example 1

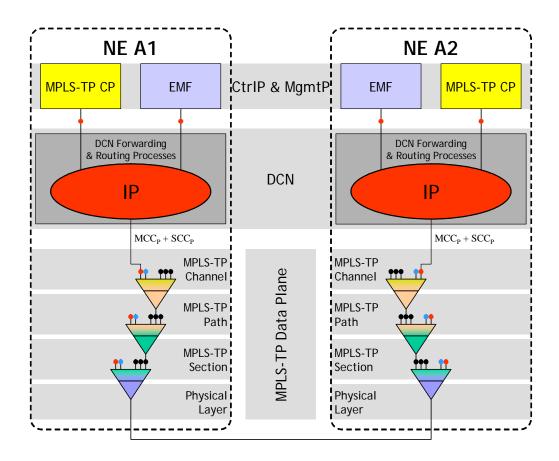


Figure 6-3 – MCC_P scenario example 2

6.1.4.2 MCC physical characteristics

The MT.S-, MT.C- and MT.P-MCCs are logical elements within the MPLS-TP transport module (MTM-n). The MCC provides general management communications between two MPLS-TP network elements with access to the MT.S, MT.P, and MT.C characteristic information respectively. The MT.S-, MT.P-, or MT.C-MCC is provided by the MPLS-TP OAM function at section, path, or channel layer as described in [ITU-T G.7712] or by any other ECC of the MPLS-TP transport network.

The MT.S management communication channel (MCC_S) shall operate as a single message channel between MT.S termination points. The bit rate of the MCC_S shall be configurable.

The MT.P management communication channel (MCC_P) shall operate as a single message channel between any network elements that terminate the MT.P layer. The MCC_P is transported transparently through MT.NEs that only terminates the MT.S layer and forwards the MT.P signal. The bit rate of the MCC_P shall be configurable.

The MT.C management communication channel (MCC_C) shall operate as a single message channel between any network elements that terminate the MT.C layer. The MCC_C is transported transparently through MT.NEs that only terminates the MT.S layer or the MT.S and MT.P layers and forwards the MT.C signal. The bit rate of the MCC_C shall be configurable.

6.1.4.3 MCC data link layer protocol

The MCC data link protocols for management applications are under study for [ITU-T G.7712].

6.1.5 Management of DCN

See clause 6.1.5 of [ITU-T G.7710] for the generic requirements.

6.1.6 Remote log-in

See clause 6.1.6 of [ITU-T G.7710] for the generic requirements.

6.1.7 Relationship between technology domains

See clause 6.1.7 of [ITU-T G.7710] for the generic requirements.

6.2 MPLS-TP equipment management architecture

This clause provides an overview of the minimum functions which are required to support inter-vendor/network communications and single-ended maintenance of MT.NEs within an MSN, or between communicating peer MT.NEs across a network interface. Single-ended maintenance is the ability to access remotely located MT.NEs to perform maintenance functions (see the performance management applications, clause 10.1 of [ITU-T G.7710]).

It should be noted that the management functions have been categorized according to the classifications given in [ITU-T X.700].

Detailed specifications of the management functions, in terms of managed objects classes, attributes and message specification are for further study.

The MPLS-TP equipment management function (EMF) (see Figure 6-4) provides the means through which the MPLS-TP network element function (NEF) is managed by an internal or external manager. If a network element (NE) contains an internal manager, this manager will be part of the MPLS-TP EMF.

The MPLS-TP EMF interacts with the other atomic functions (refer to [ITU-T G.8121]) by exchanging information across the MP reference points. See [ITU-T G.806] and [ITU-T G.8121] for more information on atomic functions and on MPs. The MPLS-TP EMF contains a number of functions that provide a data reduction mechanism on the information received across the MP reference points. The outputs of these functions are available to the agent via the network element resources and management application functions (MAF) which represent this information as managed objects.

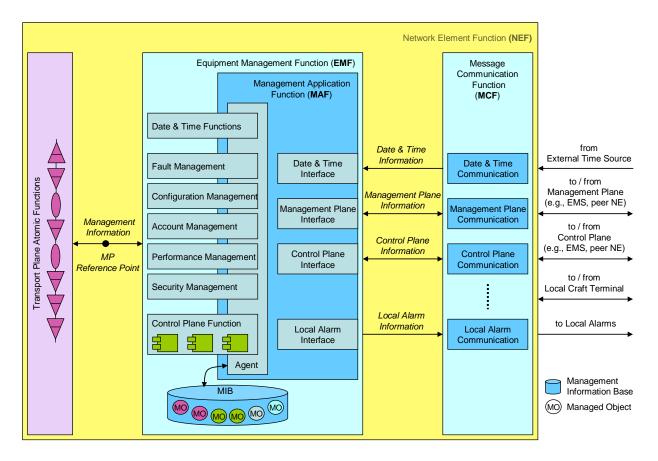


Figure 6-4 –MPLS-TP equipment management function

Network element resources provide event processing and storage. The MAF processes the information provided to and by the NE resources. The agent converts this information to management messages and responds to management messages from the manager by performing the appropriate operations on the managed objects.

This information to and from the agent is passed across the V reference point to the message communication function (MCF).

6.3 Information flows over management points (MP)

The information flows described in this clause are functional. The existence of these information flows in the equipment will depend on the functionality provided by the MPLS-TP NE and the options selected.

The information flow over the MP reference points that arises from anomalies and defects detected in the atomic functions is described in specific details for each atomic function in [ITU-T G.8121].

The information flow over the MP reference points that arises from provisioning and reporting data is described in specific details for each atomic function in [ITU-T G.8121]. The information listed under the input column refers to the provisioning data that is passed from the MPLS-TP EMF to the atomic functions. The information listed under the output column refers to the reports passed to the MPLS-TP EMF from the atomic functions.

7 Fault (maintenance) management

Fault management is a set of functions which enables the detection, isolation and correction of abnormal operation of the telecommunication network and its environment. It provides facilities for the performance of the maintenance phases from [ITU-T M.20]. The quality assurance measurements for fault management include component measurements for reliability, availability and survivability.

7.1 Fault management applications

See [ITU-T G.7710] for a description of the basic fault management applications.

7.1.1 Supervision

The supervision process describes the way in which the actual occurrence of a disturbance or fault is analysed with the purpose of providing an appropriate indication of performance and/or detected fault condition to maintenance personnel. The supervision philosophy is based on the concepts underlying the functional model of [ITU-T G.805], [ITU-T G.8110.1], and the alarm reporting function of [ITU-T X.733].

The five basic supervision categories are related to transmission, quality of service, processing, equipment, and environment. These supervision processes are able to declare fault causes, which need further validation before the appropriate alarm is reported. See [ITU-T G.7710] for additional discussion of these categories.

The MT.NE shall indicate to the OS when a termination point is no longer able to supervise the signal (e.g., implementing equipment has a fault or loss of power).

7.1.1.1 Transmission supervision

See clause 7.1.1.1 of [ITU-T G.7710] for a description of transmission supervision.

For MT.NE, the defects that must be monitored for the purpose of transmission supervision are defined in clause 6.1 of [ITU-T G.8121].

The atomic function associated failure conditions are listed in clause 7.2.1.

7.1.1.2 Quality of service supervision

See [ITU-T G.7710] for a description of quality of service supervision.

7.1.1.3 Processing supervision

See [ITU-T G.7710] for a description of processing supervision.

7.1.1.4 Hardware supervision

See [ITU-T G.7710] for a description of equipment supervision.

7.1.1.5 Environment supervision

See [ITU-T G.7710] for a description of environmental supervision.

7.1.2 Validation

See [ITU-T G.7710] for a description of fault cause validation.

7.1.3 Alarm handling

7.1.3.1 Severity assignment

See [ITU-T G.7710] for a description of severity categories.

7.1.3.2 Alarm reporting control

Alarm reporting control (ARC) provides an automatic in-service provisioning capability.

The following ARC states may be specified for a managed entity:

ALM Alarm reporting; alarm reporting is turned on.

NALM No alarm reporting; alarm reporting is turned off.

NALM-CD No alarm reporting, count down; This is a substate of NALM-QI and performs the

persistence timing count down function when the managed entity is qualified

problem free.

NALM-NR No alarm reporting, not ready; This is a substate of NALM-QI and performs a wait

function until the managed entity is qualified problem free.

NALM-QI No alarm reporting, qualified inhibit; Alarm reporting is turned off until the

managed entity is qualified problem free for a specified persistence interval.

NALM-TI No alarm reporting, timed inhibit; alarm reporting is turned off for a specified

timed interval.

Alarm reporting may be turned off (using NALM, NALM-TI, or NALM-QI) on a per-managed entity basis to allow sufficient time for customer testing and other maintenance activities in an "alarm free" state. Once a managed entity is ready, alarm reporting is automatically turned on (to ALM). The managed entity may be automatically turned on either by using NALM-TI or NALM-QI and allowing the resource to transition out automatically, or by invoking first the NALM state from an EMS and when maintenance activity is done, invoking the ALM state. This later automation is carried out by the EMS. For further details relating to ARC see [ITU-T M.3100].

7.1.3.3 Reportable failures

See [ITU-T G.7710] for a description of reportable failures.

7.1.3.4 Alarm reporting

Alarm surveillance is concerned with the detection and reporting of relevant events and conditions which occur in the network. In a network, events and conditions detected within the equipment and incoming signals should be reportable. In addition, a number of events external to the equipment should also be reportable. Alarms are indications that are automatically generated by an NE as a result of the declaration of a failure. The OS shall have the ability to define which events and conditions generate autonomous reports, and which shall be reported on request.

The following alarm-related functions shall be supported:

- 1. Autonomous reporting of alarms
- 2. Request for reporting of all alarms
- 3. Reporting of all alarms
- 4. Allow or inhibit of autonomous alarm reporting
- 5. Reporting on request status of allow or inhibit alarm reporting
- 6. Reporting of protection switch events.

7.1.3.4.1 Local reporting

See [ITU-T G.7710] for a description of local reporting.

7.1.3.4.2 TMN reporting

See [ITU-T G.7710] for a description of TMN reporting.

7.2 Fault management functions

Figure 7-1 contains the functional model of fault management inside the MPLS-TP EMF. This model is consistent with the alarm flow functional model, specified in [ITU-T M.3100]. It must be noted that it does not address configuration aspects relating to fault management, the full ARC functional model, nor does it define where all possible event report parameters get assigned. Figure 7-1 is intended only to illustrate which well-known functions are impacted by ARC, and which are not, and to provide a generalized alarm flow view.

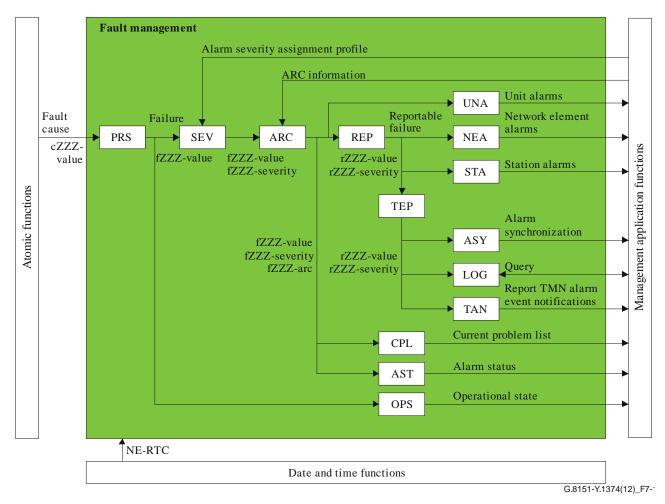


Figure 7-1 – Fault management within the MPLS-TP NEF

7.2.1 Fault cause persistency function – PRS

The defect correlations provide a data reduction mechanism on the fault and performance monitoring primitives' information presented at the MP reference points.

The equipment management function within the network element performs a persistency check on the fault causes (that are reported across the MP reference points) before it declares a fault cause a failure. In addition to the transmission failures, hardware failures with signal transfer interruption are also reported at the input of the fault cause function for further processing. See Figure 7-2.

Symbol

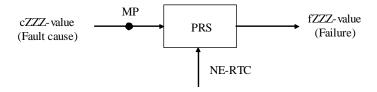


Figure 7-2 – Fault cause persistency function

For MT.NE that supports the following functions specified in [ITU-T G.8121], the EMF PRS process shall support the persistency check for the fault causes listed in Table 7-1.

Inputs and outputs

Table 7-1 – Inputs/outputs for the fault cause persistency function

Atomic function ([ITU-T G.8121])	Input	Output
MT_TT_Sk	cSSF	fSSF
	cLCK	fLCK
	cLOC	fLOC
	cMMG	fMMG
	cUNM	fUNM
	cUNP	fUNP
	cUNC	fUNC
	cDEG	fDEG
	cRDI	fRDI
Sn/MT_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cEXM	fEXM
	cUPM	fUPM
Sn-X-L/MT_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cEXM	fEXM
	cUPM	fUPM
Sm/MT_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cEXM cUPM	fEXM fUPM
Sm-X-L/MT_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cEXM cUPM	fEXM fUPM
D. A.KT. A. GI		
Pq/MT_A_Sk	cPLM	fPLM
	cLFD cEXM	fLFD fEXM
	cUPM	fUPM
	COLIVI	101 101

Table 7-1 – Inputs/outputs for the fault cause persistency function

Atomic function ([ITU-T G.8121])	Input	Output
Pq-X-L/MT_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cEXM	fEXM
	cUPM	fUPM
ODUkP/MT_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cEXM	fEXM
	cUPM	fUPM
ODUkP-X-L/MT_A_Sk	cVcPLM	fVcPLM
	cLFD	fLFD
	cEXM	fEXM
	cUPM	fUPM

See [ITU-T G.7710] for the mapping of failure (fXXX) to the generic probable cause to be used in alarm reporting.

Process

The equipment management function within the network element performs a persistency check on the fault causes before it declares a fault cause a failure.

A transmission failure (fXXX) shall be declared if the fault cause persists continuously for 2.5 ± 0.5 s. The failure shall be cleared if the fault cause is absent continuously for 10 ± 0.5 s.

The specific set of failures associated with each atomic function is listed in Table 7-1.

The failure declaration and clearing shall be time stamped. The time-stamp shall indicate the time at which the fault cause is activated at the input of the fault cause persistency (i.e., defect-to-failure integration) function, and the time at which the fault cause is deactivated at the input of the fault cause persistency function.

7.2.2 Severity assignment function – SEV

See [ITU-T G.7710] for a description of the severity assignment function.

7.2.3 Alarm reporting control function – ARC

The alarm report control (ARC) function allows a management system to control the alarm reporting on a managed entity basis as defined in [ITU-T M.3100].

The alarms that can be controlled with this function are defined for each atomic function in [ITU-T G.8121].

The following ARC states may be specified for a managed entity:

ALM Alarm reporting; alarm reporting is turned on.

NALM No alarm reporting; alarm reporting is turned off.

NALM-CD No alarm reporting, count down; this is a substate of NALM-QI and performs the

persistence timing count down function when the managed entity is qualified

problem free.

NALM-NR No alarm reporting, not ready; this is a substate of NALM-QI and performs a wait

function until the managed entity is qualified problem free.

NALM-QI No alarm reporting, qualified inhibit; alarm reporting is turned off until the

managed entity is qualified problem free for a specified persistence interval.

NALM-TI No alarm reporting, timed inhibit; alarm reporting is turned off for a specified timed interval.

The ALM state is required for all managed entities that can detect alarms.

In addition at least one of the states: NALM, NALM-TI or NALM-QI must be supported.

If NALM-QI is supported, then NALM-NR is required and NALM-CD is optional.

For MT.NE that supports the following functions specified in [ITU-T G.8121], the EMF ARC process shall support the ARC function for the failures listed in Table 7-2.

Table 7-2 – ARC specifications for MPLS-TP

Atomic function	Qualified problems	QoS reporting	Default state value
MT_TT_Sk	fSSF	For further study	ALM
	fLCK		
	fLOC		
	fMMG		
	fUNM		
	fUNP		
	fUNC		
	fDEG		
	fRDI		
Sn/MT_A_Sk	fPLM	For further study	ALM
	fLFD		
	fEXM fUPM		
C., X. I. AMT. A. Cl.		F f 1 1	ATAG
Sn-X-L/MT_A_Sk	fPLM fLFD	For further study	ALM
	fEXM		
	fUPM		
Sm/MT_A_Sk	fPLM	For further study	ALM
	fLFD		
	fEXM		
	fUPM		
Sm-X-L/MT_A_Sk	fPLM	For further study	ALM
	fLFD		
	fEXM fUPM		
Da/MT A Cl	fPLM	For further study	ALM
Pq/MT_A_Sk	fLFD	For further study	ALM
	fEXM		
	fUPM		
Pq-X-L/MT_A_Sk	fPLM	For further study	ALM
	fLFD		
	fEXM		
	fUPM		

Table 7-2 – ARC specifications for MPLS-TP

Atomic function	Qualified problems	QoS reporting	Default state value
ODUkP/MT_A_Sk	fPLM fLFD fEXM fUPM	For further study	ALM
ODUkP-X-L/MT_A_Sk	fVcPLM fLFD fEXM fUPM	For further study	ALM

7.2.4 Reportable failure function – REP

See [ITU-T G.7710] for a description of the reportable failure function.

7.2.5 Unit alarms function – UNA

See [ITU-T G.7710] for a description of the unit alarms function.

7.2.6 Network element alarms function – NEA

See [ITU-T G.7710] for a description of the network element alarms function.

7.2.7 Station alarms function – STA

See [ITU-T G.7710] for a description of the station alarms function.

7.2.8 TMN event pre-processing function – TEP

See [ITU-T G.7710] for a description of the TMN event pre-processing function.

7.2.9 Alarm synchronization function – ASY

See [ITU-T G.7710] for a description of the alarm synchronization function.

7.2.10 Logging function – LOG

Alarm history management is concerned with the recording of alarms. Historical data shall be stored in registers in the NE. Each register contains all the parameters of an alarm message.

Registers shall be readable on demand or periodically. The OS can define the operating mode of the registers as wrapping or stop when full. The OS may also flush the registers or stop recording at any time.

NOTE-Wrapping is the deletion of the earliest record to allow a new record when a register is full. Flushing is the removal of all records in the register. See [ITU-T X.735] for additional details.

See [ITU-T G.7710] for a description of the logging function.

7.2.11 TMN alarm event notification function – TAN

See [ITU-T G.7710] for a description of the TMN alarm event notification function.

7.2.12 Current problem list function – CPL

See [ITU-T G.7710] for a description of the current problem list function.

7.2.13 Alarm status function – AST

See [ITU-T G.7710] for a description of the alarm status function.

7.2.14 Operational state function – OPS

See [ITU-T G.7710] for a description of the operational state function.

For MT.NE that supports the following functions specified in [ITU-T G.8121], the EMF OPS process shall support the failures listed in Table 7-3, which lists the failures that could influence the operational state of the related objects.

Table 7-3 – Operational state function input and output signals for MPLS-TP

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled)
MT_TT_Sk	fSSF	Enabled
	fLCK	Enabled
	fLOC	Enabled
	fMMG	Enabled
	fUNM	Enabled
	fUNP	Enabled
	fUNC	Enabled
	fDEG	Enabled
	fRDI	Enabled
		Enabled
Sn/MT_A_Sk	fPLM	Enabled
	fLFD fEXM	Enabled Enabled
	fUPM	Enabled
C X I A CI		
Sn-X-L/MT_A_Sk	fPLM fLFD	Enabled Enabled
	fEXM	Enabled
	fUPM	Enabled
Sm/MT_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fEXM	Enabled
	fUPM	Enabled
Sm-X-L/MT_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fEXM	Enabled
	fUPM	Enabled
Pq/MT_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fEXM	Enabled
	fUPM	Enabled
Pq-X-L/MT_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fEXM fullm	Enabled Enabled
00771007	fUPM	
ODUkP/MT_A_Sk	fPLM	Enabled
	fLFD fEXM	Enabled Enabled
	fUPM	Enabled Enabled
	TOTIVI	Enaulou

Table 7-3 – Operational state function input and output signals for MPLS-TP

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled)
ODUkP-X-L/MT_A_Sk	fVcPLM	Enabled
	fLFD	Enabled
	fEXM	Enabled
	fUPM	Enabled

7.2.15 External events

For further study.

8 Configuration management

See [ITU-T G.7710] for the generic requirements for configuration management. MPLS-TP specific specifications, if needed, are explicitly described.

8.1 Hardware

See [ITU-T G.7710] for a description of hardware management.

8.2 Software

See [ITU-T G.7710] for a description of software management.

8.3 Protection switching

See [ITU-T G.7710] for a description of the generic management requirements for protection switching. The MPLS-TP specific management requirements will be provided after the protection switching process is defined in [ITU-T G.8121].

8.4 Trail termination

See [ITU-T G.7710] for a description of trail termination management.

This function allows a user to provision and monitor the operation of the MPLS-TP trail termination process.

The MI signals listed in the table(s) of this clause are communicated between the EMF and the MPLS-TP trail termination process across the management point within the MT.NE.

For MT.NE that supports the MT_TT function specified in [ITU-T G.8121], the EMF shall support the following management functions for the MI listed in Table 8-1:

- Provisioning the trail termination management information.
- Retrieving the trail termination management information.
- Notifying the changes of the trail termination management information.
- Receiving the monitored trail termination management information.

Table 8-1 – Provisioning and reporting for termination functions

MI signal	Value range	Default value		
MT_TT_So Provisioning				
MT_TT_So_MI_GAL_Enable	True, false	(Note 4)		
MT_TT_So_MI_TTLVALUE	0255	255		
MT_TT_So_MI_MEG_ID	String; values are OAM protocolspecific	(Note 1)		
MT_TT_So_MI_MEP_ID	String; values are OAM protocolspecific	(Note 1)		
MT_TT_So_MI_CC_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		
MT_TT_So_MI_RDI_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		
MT_TT_So_MI_CC_Enable	True, false	False		
MT_TT_So_MI_CVp_Enable	True, false (Note 3)	False		
MT_TT_So_MI_CC_CoS	0, 1, 2, 3, 4, 5, 6, 7	7		
MT_TT_So_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	100 ms		
MT_TT_So_MI_LMp_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		
MT_TT_So_MI_LMp_Enable [1M _{LMp}]	True, false	False		
MT_TT_So_MI_LMp_Period [1M _{LMp}]	100 ms, 1 s, 10 s	100 ms		
$ \begin{bmatrix} MT_TT_So_MI_LMp_CoS[1\\ M_{LMp}] \end{bmatrix} $	0, 1, 2, 3, 4, 5, 6, 7	_		
MT_TT_So_MI_DMp_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		
MT_TT_So_MI_DMp_Enable [1M _{DMp}]	True, false	False		
MT_TT_So_MI_DMp_Period [1M _{DMp}]	100 ms, 1 s, 10 s	100 ms		
MT_TT_So_MI_DMp_Test_ ID[1M _{DMp}]	(Note 2)	_		
MT_TT_So_MI_DMp_CoS [1M _{DMp}]	0, 1, 2, 3, 4, 5, 6, 7	_		
MT_TT_So_MI_DMp_Length [1M _{DMp}]	Non-negative integer representing number of bytes for the length of the padding TLV.	0		
MT_TT_So_MI_1DMp_OAM _Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		
MT_TT_So_MI_1DMp_ Enable[1M _{1DMp}]	True, false	False		
MT_TT_So_MI_1DMp_Period [1M _{1DMp}]	100 ms, 1 s, 10 s	100 ms		

Table 8-1 – Provisioning and reporting for termination functions

MI signal	Value range	Default value
MT_TT_So_MI_1DMp_Test_ ID[1M _{1DMp}]	(Note 2)	_
MT_TT_So_MI_1DMp_CoS [1M _{1DMp}]	0, 1, 2, 3, 4, 5, 6, 7	_
MT_TT_So_MI_1DMp_ Length[1M _{1DMp}]	Non-negative integer representing number of bytes for the length of the padding TLV.	0
MT_TT_So_MI_SLp_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_So_MI_SLp_Enable [1M _{SLp}]	True, false	False
MT_TT_So_MI_SLp_Period [1M _{SLp}]	100 ms, 1 s, 10 s	100 ms
MT_TT_So_MI_SLp_Test_ID [1M _{SLp}]	(Note 2)	_
MT_TT_So_MI_SLp_CoS [1M _{SLp}]	0, 1, 2, 3, 4, 5, 6, 7	-
MT_TT_So_MI_SLp_Length [1M _{SLp}]	Non-negative integer representing number of bytes for the length of the padding TLV.	0
	MT_TT_Sk Provisioning	
MT_TT_Sk_MI_GAL_Enable	True, false	(Note 4)
MT_TT_Sk_MI_MEG_ID	String; values are OAM protocol-specific	(Note 2)
MT_TT_Sk_MI_PeerMEP_ID	String; values are OAM protocol-specific	Empty list
MT_TT_Sk_MI_CC_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_RDI_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_CC_Enable	True, false	False
MT_TT_Sk_MI_CVp_Enable	True, false (Note 3)	False
MT_TT_Sk_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	100 ms
MT_TT_Sk_MI_CC_CoS	0, 1, 2, 3, 4, 5, 6, 7	7
MT_TT_Sk_MI_Get_SvdCC	Last received CC frame(s) that caused defect	_
MT_TT_Sk_MI_LMp_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_LMp_Enable [1M _{LMp}]	True, false	False
MT_TT_Sk_MI_LMp_CoS [1M _{LMp}]	0, 1, 2, 3, 4, 5, 6, 7	-

Table 8-1 – Provisioning and reporting for termination functions

MI signal	Value range	Default value
MT_TT_Sk_MI_LM_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	10
MT_TT_Sk_MI_LM_M	2-10	10
MT_TT_Sk_MI_LM_ DEGTHR	0% 100%; see Table 7-1 of [ITU-T G.806]	30%
MT_TT_Sk_MI_LM_TFMIN	FFS	FFS
MT_TT_Sk_MI_1second	_	_
MT_TT_Sk_MI_DMp_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_DMp_Enable [1M _{DMp}]	True, false	False
$\begin{array}{c} \text{MT_TT_Sk_MI_DMp_CoS} \\ [1\text{M}_{\text{DMp}}] \end{array}$	0, 1, 2, 3, 4, 5, 6, 7	_
MT_TT_Sk_MI_1DMp_ OAM_Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_1DMp_ Enable[1M _{1DMp}]	True, false	False
MT_TT_Sk_MI_1DMp_Test_ ID[1M _{1DMp}]	(Note 2)	_
MT_TT_Sk_MI_SLp_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_SLp_Enable [1M _{SLp}]	True, false	False
MT_TT_Sk_MI_SLp_CoS [1M _{SLp}]	0, 1, 2, 3, 4, 5, 6, 7	_
MT_TT_Sk_MI_AIS_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk_MI_LCK_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MT_TT_Sk Reporting		
MT_TT_Sk_MI_SvdCC	Last received CC packet(s) that causes the defect	_

NOTE 1 - A value must be provided at provisioning.

NOTE 2 – The Test ID field is optional when this proactive measurement tool is used.

NOTE 3 – The combination of MT_TT_So_MI_CC_Enable = false and MT_TT_So_MI_CVp_Enable = true is not allowed.

NOTE 4 – MI_GAL_Enable must be set to true on LSPs, to false on PWs using CW, and to true on Sections. Setting it to true on PWs not using CW is for further study.

8.5 Adaptation

See clause 8.5 of [ITU-T G.7710] for a description of adaptation management.

An access point that has multiple adaptation functions connected to it, thereby allowing different clients to be transported via the server signal, requires a mechanism for the selection of the active client.

This function allows a user to provision and monitor the operation of the MPLS-TP adaptation processes.

The MI signals listed in the following table are communicated between the EMF and the adaptation processes across the management point within the MPLS-TP NE.

For MT.NE that supports the adaptation functions specified in [ITU-T G.8121], the EMF shall support the following management functions for the MI listed in Table 8-2 below:

- Provisioning the flow forwarding management information.
- Retrieving the flow forwarding management information.
- Notifying the changes of the flow forwarding management information.

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
	MT/MT_A_So Provisioning	1
MT/MT_A_So_MI_Admin_State	LCK, normal	Normal
MT/MT_A_So_MI_Label[1M]	$16 \text{ to } (2^{20} - 1)$	(Note 2)
MT/MT_A_So_MI_LSPType [1M]	E-LSP, L-LSP	(Note 1)
MT/MT_A_So_MI_CoS[1M]	(Note 1)	(Note 1)
MT/MT_A_So_MI_PHB2EXP Mapping[1M]	(Note 1)	(Note 1)
MT/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 2)
MT/MT_A_So_MI_LCK_Period [1M]	1 s, 1 min	1 s
MT/MT_A_So_MI_LCK_CoS [1M]	07	7
MT/MT_A_So_MI_GAL_Enable [1M]	True, false	(Note 3)
	MT/MT_A_Sk Provisioning	
MT/MT_A_Sk_MI_Admin_State	LCK, normal	Normal
MT/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
MT/MT_A_Sk_MI_LSPType [1M]	E-LSP, L-LSP	(Note 1)
MT/MT_A_Sk_MI_CoS[1M]	(Note 1)	(Note 1)
MT/MT_A_Sk_MI_ TC2PHBMapping[1M]	(Note 1)	(Note 1)
MT/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 2)
MT/MT_A_Sk_MI_AIS_Period [1M]	1 s, 1 min	1 s
MT/MT_A_Sk_MI_AIS_CoS [1M]	07	7
MT/MT_A_Sk_MI_LCK_Period [1M]	1 s, 1 min	1 s

 $\label{lem:continuous} Table~8-2-Provisioning~and~reporting~for~adaptation~functions$

MI signal	Value range	Default value
MT/MT_A_Sk_MI_LCK_CoS [1M]	07	7
MT/MT_A_Sk_MI_GAL_Enable [1M]	True, false	(Note 3)
	MTDi/MT_A_Sk Provisioning	
MTDi/MT_A_Sk_MI_DS_MP_ Type (Note 4)	MEP, MIP	-
	MT/ETH_A_So Provisioning	
MT/ETH_A_So_MI_Admin_State	LCK, normal	Normal
MT/ETH_A_So_MI_FCSEnable	True, false	True
MT/ETH_A_So_MI_CWEnable	True, false	True
MT/ETH_A_So_MI_SQUse	True, false	False
MT/ETH_A_So_MI_PRI2CoS Mapping	(Note 1)	(Note 1)
MT/ETH_A_So_MI_MEP_MAC*	6 byte unicast MAC address	_
MT/ETH_A_So_MI_Client_MEL*	07	7
MT/ETH_A_So_MI_LCK_Period*	1 s, 1 min	1 s
MT/ETH_A_So_MI_LCK_Pri*	07	7
MT/ETH_A_So_MI_MEL*	07	7
	MT/ETH_A_Sk Provisioning	
MT/ETH_A_Sk_MI_FCSEnable	True, false	True
MT/ETH_A_Sk_MI_CWEnable	True, false	False
MT/ETH_A_Sk_MI_SQUse	True, false	False
MT/ETH_A_Sk_MI_CoS2PRI Mapping	(Note 1)	(Note 1)
MT/ETH_A_Sk_MI_MEL* (NOTE - * ETH OAM related)	07	7
MT/ETH_A_Sk_MI_Admin_State	LCK, normal	Normal
MT/ETH_A_Sk_MI_LCK_Period*	1 s, 1 min	1 s
MT/ETH_A_Sk_MI_LCK_Pri*	07	7
MT/ETH_A_Sk_MI_Client_MEL*	07	7
MT/ETH_A_Sk_MI_MEP_MAC*	6 byte unicast MAC address	_
MT/ETH_A_Sk_MI_AIS_Pri*	07	7
MT/ETH_A_Sk_MI_AIS_Period*	1 s, 1 min	1 s
MT/SCC_A_So Provisioning		
MT/SCC_A_So_MI_Active	True, false	True
MT/SCC_A_So_MI_ECC_CoS	07	7
MT/SCC_A_So_MI_GAL_Enable	True, false	(Note 3)

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value		
	MT/SCC_A_Sk Provisioning			
MT/SCC_A_Sk_MI_Active	True, false	True		
MT/SCC_A_Sk_GAL_Enable	True, false	(Note 3)		
	MT/MCC_A_So Provisioning			
MT/MCC_A_So_MI_Active	True, false	True		
MT/MCC_A_So_MI_ECC_CoS	07	7		
MT/MCC_A_So_MI_GAL_Enable	True, false	(Note 3)		
	MT/MCC_A_Sk Provisioning			
MT/MCC_A_Sk_MI_Active	True, false	True		
MT/MCC_A_Sk_MI_GAL_Enable	True, false	(Note 3)		
	Sn/MT_A_So Provisioning			
Sn/MT_A_So_MI_SCCType	0255	32		
Sn/MT_A_So_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)		
Sn/MT_A_So_MI_LSPType[1M]	E-LSP, L-LSP	_		
Sn/MT_A_So_MI_CoS[1M]	07	_		
Sn/MT_A_So_PHB2TCMapping [1M]	(Note 1)	_		
Sn/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	_		
	Sn/MT_A_Sk Provisioning			
Sn/MT_A_Sk_MI_SCCType	0255	32		
Sn/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)		
Sn/MT_A_Sk_MI_LSPType[1M]	E-LSP, L-LSP	(Note 1)		
Sn/MT_A_Sk_MI_CoS[1M]	(Note 1)	(Note 1)		
Sn/MT_A_Sk_MI_TC2PHB Mapping[1M]	(Note 1)	(Note 1)		
Sn/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)		
Sn/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s		
Sn/MT_A_Sk_MI _LCK_CoS[1M]	07	_		
Sn/MT_A_Sk_MI_LCK_OAM_Too 1 [1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		
Sn/MT_A_Sk_MI _Admin_State	LCK, normal	Normal		
Sn/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s		
Sn/MT_A_Sk_MI _AIS_CoS[1M]	07	-		
Sn/MT_A_Sk_MI _AIS_OAM_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A		

 $\label{lem:continuous} Table~8-2-Provisioning~and~reporting~for~adaptation~functions$

MI signal	Value range	Default value
Sn/MT_A_Sk_MI _GAL_enable[1M]	True, false	(Note 3)
	Sn/MT_A_Sk Reporting	
Sn/MT_A_Sk_MI_AcSL (see Table 9-11 of G.707)	0255	_
Sn/MT_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
Sn/MT_A_Sk_MI_LastValidUPI (see Table 6-3 of [ITU-T G.7041])	0255	_
2	Sn-X-L/MT_A_So Provisioning	
Sn-X-L/MT_A_So_MI_SCCType (see Table 6-3 of [ITU-T G.7041])	0255	32
Sn-X- L/MT_A_So_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
Sn-X- L/MT_A_So_MI_LSPType[1M]	E-LSP, L-LSP	_
Sn-X-L/MT_A_So_MI_CoS[1M]	07	(Note 1)
Sn-X- L/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)
Sn-X- L/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 1)
	Sn-X-L/MT_A_Sk Provisioning	
Sn-X-L/MT_A_Sk_MI_SCCType (see Table 6-3 of [ITU-T G.7041])	0255	32
Sn-X- L/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
Sn-X- L/MT_A_Sk_MI_LSPType[1M]	E-LSP, L-LSP	_
Sn-X-L/MT_A_Sk_MI_CoS[1M]	07	(Note 1)
Sn-X- L/MT_A_Sk_MI_TC2PHBMapping [1M]	(Note 1)	(Note 1)
Sn-X- L/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)
Sn-X-L/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s
Sn-X-L/MT_A_Sk_MI _LCK_CoS[1M]	07	_

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
Sn-X-L/MT_A_Sk_MI _LCK_OAM_Tool [1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
Sn-X-L/MT_A_Sk_MI _Admin_State	LCK, normal	Normal
Sn-X-L/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s
Sn-X-L/MT_A_Sk_MI _AIS_CoS[1M]	07	-
Sn-X-L/MT_A_Sk_MI _AIS_OAM_Tool [1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
Sn-X-L /MT_A_Sk_MI _GAL_Enable [1M]	True, false	(Note 3)
	Sn-X-L/MT_A_Sk Reporting	
Sn-X-L/MT_A_Sk_MI_AcSL (see Table 9-11 of G.707)	0255	_
Sn-X-L/MT_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
Sn-X- L/MT_A_Sk_MI_LastValidUPI (see Table 6-3 of [ITU-T G.7041])	0255	_
	Sm/MT_A_So Provisioning	
Sm/MT_A_So_MI_SCCType	0255	32
Sm/MT_A_So_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
Sm/MT_A_So_MI_LSPType [1M]	E-LSP, L-LSP	_
Sm/MT_A_So_MI_CoS[1M]	07	_
Sm/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)
Sm/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 1)
	Sm/MT_A_Sk Provisioning	
Sm/MT_A_Sk_MI_SCCType	0255	32
Sm/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
Sm/MT_A_Sk_MI_LSPType [1M]	E-LSP, L-LSP	_
Sm/MT_A_Sk_MI_CoS[1M]	07	
Sm/MT_A_Sk_MI_TC2PHB Mapping[1M]	(Note 1)	(Note 1)
Sm/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)
Sm/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value	
Sm/MT_A_Sk_MI _LCK_CoS[1M]	07	_	
Sm/MT_A_Sk_MI _LCK_OAM_Tool [1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
Sm/MT_A_Sk_MI_Admin_State	LCK, normal	Normal	
Sm/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s	
Sm/MT_A_Sk_MI _AIS_CoS[1M]	07	_	
Sm/MT_A_Sk_MI _AIS_OAM_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
Sm/MT_A_Sk_MI _GAL_Enable[1M]	True, false	(Note 3)	
	Sm/MT_A_Sk Reporting		
Sm/MT_A_Sk_MI_AcSL (see Table 9-12 and Table 9-13 of G.707)	0255	-	
Sm/MT_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_	
Sm/MT_A_Sk_MI_LastValidUPI (see Table 6-3 of [ITU-T G.7041])	0255	-	
S	m-X-L/MT_A_So Provisioning		
Sm-X-L/MT_A_So_MI_SCCType	0255	32	
Sm-X- L/MT_A_So_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)	
Sm-X- L/MT_A_So_MI_LSPType[1M]	E-LSP, L-LSP	-	
Sm-X- L/MT_A_So_MI_CoS[1M]	07	-	
Sm-X- L/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)	
Sm-X- L/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 1)	
Sm-X-L/MT_A_Sk Provisioning			
Sm-X-L/MT_A_Sk_MI_SCCType	0255	32	
Sm-X- L/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)	
Sm-X- L/MT_A_Sk_MI_LSPType[1M]	E-LSP, L-LSP	_	
Sm-X- L/MT_A_Sk_MI_CoS[1M]	07	_	

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value	
Sm-X- L/MT_A_Sk_MI_TC2PHBMapping [1M]	(Note 1)	(Note 1)	
Sm-X- L/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)	
Sm-X-L/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s	
Sm-X-L/MT_A_Sk_MI _LCK_CoS[1M]	07	_	
Sm-X-L/MT_A_Sk_MI _LCK_OAM_Tool [1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
Sm-X-L/MT_A_Sk_MI _Admin_State	LCK, normal	Normal	
Sm-X-L/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s	
Sn-X-L/MT_A_Sk_MI _AIS_CoS[1M]	07	_	
Sm-X-L/MT_A_Sk_MI _AIS_OAM_Tool [1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
Sm-X-L/MT_A_Sk_MI _GAL_Enable[1M]	True, false	(Note 3)	
	Sm-X-L/MT_A_Sk Reporting		
Sm-X-L/MT_A_Sk_MI_AcSL	0255	_	
Sm-X-L/MT_A_Sk_MI_AcEXI	015	_	
Sm-X- L/MT_A_Sk_MI_LastValidUPI	0255	_	
	Pq/MT_A_So Provisioning		
Pq/MT_A_So_MI_SCCType	0255	32	
Pq/MT_A_So_MI_Label[1M]	$16 \text{ to } (2^{20} - 1)$	(Note 2)	
Pq/MT_A_So_MI_LSPType[1M]	E-LSP, L-LSP	_	
Pq/MT_A_So_MI_CoS[1M]	07	_	
Pq/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)	
Pq/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 1)	
Pq/MT_A_Sk Provisioning			
Pq/MT_A_Sk_MI_SCCType	0255	32	
Pq/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)	
Pq/MT_A_Sk_MI_LSPType[1M]	E-LSP, L-LSP	_	
Pq/MT_A_Sk_MI_CoS[1M]	07	_	
Pq/MT_A_Sk_MI_TC2PHB Mapping[1M]	(Note 1)	(Note 1)	

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
Pq/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)
Pq/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s
Pq/MT_A_Sk_MI _LCK_CoS[1M]	07	_
Pq/MT _A_Sk_MI _LCK_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
Pq/MT_A_Sk_MI _Admin_State	LCK, normal	Normal
Pq/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s
Pq/MT_A_Sk_MI _AIS_CoS[1M]	07	_
Pq/MT _A_Sk_MI _AIS_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
Pq/MT _A_Sk_MI_GAL_Enable [1M]	True, false	(Note 3)
	Pq/MT_A_Sk Reporting	
Pq/MT_A_Sk_MI_AcSL (see clause 2.1.2 of G.832)	07	_
Pq/MT_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
Pq/MT_A_Sk_MI_LastValidUPI (see Table 6-3 of [ITU-T G.7041))	0255	_
I	Pq-X-L/MT_A_So Provisioning	
Pq-X-L/MT_A_So_MI_SCCType	0255	32
Pq-X- L/MT_A_So_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
Pq-X- L/MT_A_So_MI_LSPType[1M]	E-LSP, L-LSP	-
Pq-X-L/MT_A_So_MI_CoS[1M]	o7	_
Pq-X- L/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)
Pq-X- L/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 1)
I	Pq-X-L/MT_A_Sk Provisioning	
Pq-X-L/MT_A_Sk_MI_SCCType	0255	32
Pq-X- L/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
Pq-X- L/MT_A_Sk_MI_LSPType[1M]	E-LSP, L-LSP	_

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
Pq-X-L/MT_A_Sk_MI_CoS[1M]	07	_
Pq-X- L/MT_A_Sk_MI_TC2PHBMapping [1M]	(Note 1)	(Note 1)
Pq-X- L/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)
Pq-X-L/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s
Pq-X-L/MT_A_Sk_MI _LCK_CoS[1M]	07	_
Pq-X-L/MT _A_Sk_MI _LCK_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
Pq-X-L/MT_A_Sk_MI _Admin_State	LCK, normal	Normal
Pq-X-L/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s
Pq-X-LMT_A_Sk_MI _AIS_CoS[1M]	07	_
Pq-X-L/MT _A_Sk_MI _AIS_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
Pq-X-L//MT _A_Sk_MI _GAL_Enable[1M]	True, false	(Note 3)
	Pq-X-L/MT_A_Sk Reporting	
Pq-X-L/MT_A_Sk_MI_AcSL	07	_
Pq-X-L/MT_A_Sk_MI_AcEXI	015	_
Pq-X- L/MT_A_Sk_MI_LastValidUPI	0255	_
	DDUkP/MT_A_So Provisioning	
ODUkP/MT_A_So_MI_Active	True, false	False
ODUkP/MT_A_So_MI_SCCType	0255	32
ODUkP/MT_A_So_MI_Label [1M]	16 to $(2^{20} - 1)$	(Note 2)
ODUkP/MT_A_So_MI_LSPType [1M]	E-LSP, L-LSP	_
ODUkP/MT_A_So_MI_CoS[1M]	07	_
ODUkP/MT_A_So_PHB2TC Mapping[1M]	(Note 1)	(Note 1)
ODUkP/MT_A_So_MI_QoS EncodingMode[1M]	A, B	(Note 1)
(DDUkP/MT_A_Sk Provisioning	
ODUkP/MT_A_Sk_MI_Active	True, false	False
ODUkP/MT_A_Sk_MI_SCCType	0255	32

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
ODUkP/MT_A_Sk_MI_Label [1M]	16 to $(2^{20} - 1)$	(Note 2)
ODUkP/MT_A_Sk_MI_LSPType [1M]	E-LSP, L-LSP	_
ODUkP/MT_A_Sk_MI_CoS[1M]	07	_
ODUkP/MT_A_Sk_MI_TC2PHB Mapping[1M]	(Note 1)	(Note 1)
ODUkP/MT_A_Sk_MI_QoS DecodingMode[1M]	A, B	(Note 1)
ODUkP/MT_A_Sk_MI _LCK_Period[1M]	1 s, 1 min	1 s
ODUkP/MT_A_Sk_MI_LCK_CoS [1M]	07	_
ODUkP/MT _A_Sk_MI	[G.8113.1],	N/A
_LCK_Tool[1M]	[G.8113.2]	
ODUkP/MT_A_Sk_MI_Admin_ State	LCK, normal	Normal
ODUkP/MT_A_Sk_MI_AIS_Period [1M]	1 s, 1 min	1 s
ODUkP/MT_A_Sk_MI_AIS_CoS [1M]	07	_
ODUkP/MT _A_Sk_MI _AIS_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
ODUkP/MT_A_Sk_MI_GAL_ Enable[1M]	True, false	(Note 3)
	ODUkP/MT_A_Sk Reporting	
ODUkP/MT_A_Sk_MI_AcPT (see Table 15-8 of G.709)	0255	_
ODUkP/MT_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
ODUkP/MT_A_Sk_MI_LastValid UPI (see Table 6-3 of [ITU-T G.7041])	0255	_
OD	UkP-X-L/MT_A_So Provisioning	
ODUkP-X-L/MT_A_So_MI_Active	True, false	False
ODUkP-X- L/MT_A_So_MI_SCCType	0255	32
ODUkP-X- L/MT_A_So_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
ODUkP-X- L/MT_A_So_MI_LSPType[1M]	E-LSP, L-LSP	-
ODUkP-X- L/MT_A_So_MI_CoS[1M]	07	_

 $\label{lem:continuous} Table~8-2-Provisioning~and~reporting~for~adaptation~functions$

MI signal	Value range	Default value
ODUkP-X- L/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)
ODUkP-X- L/MT_A_So_MI_QoSEncoding Mode[1M]	A, B	(Note 1)
OD	UkP-X-L/MT_A_Sk Provisioning	
ODUkP-X-L/MT_A_Sk_MI_Active	True, false	False
ODUkP-X- L/MT_A_Sk_MI_SCCType	0255	32
ODUkP-X- L/MT_A_Sk_MI_Label[1M]	16 to $(2^{20} - 1)$	(Note 2)
ODUkP-X- L/MT_A_Sk_MI_LSPType[1M]	E-LSP, L-LSP	_
ODUkP-X- L/MT_A_Sk_MI_CoS[1M]	07	_
ODUkP-X-L/MT _A_Sk_MI _LCK_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
ODUkP-X- L/MT_A_Sk_MI_TC2PHBMapping [1M]	(Note 1)	(Note 1)
ODUkP-X- L/MT_A_Sk_MI_QoSDecoding Mode[1M]	A, B	(Note 1)
ODUkP-X- L/MT_A_Sk_MI_LCK_Period [1M]	1 s, 1 min	1 s
ODUkP-X- L/MT_A_Sk_MI_LCK_CoS[1M]	07	_
ODUkP-X-L/MT _A_Sk_MI _AIS_Tool[1M]	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
ODUkP-X-L/MT_A_Sk_MI_ Admin_State	LCK, normal	Normal
ODUkP-X-L/MT_A_Sk_MI_AIS_ Period[1M]	1 s, 1 min	1 s
ODUkP-X- L/MT_A_Sk_MI_AIS_CoS[1M]	07	(Note 3)
ODUkP-X-L/MT _A_Sk_MI_GAL_Enable[1M]	True, false	_
0	DUkP-X-L/MT_A_Sk Reporting	
ODUkP-X- L/MT_A_Sk_MI_AcVcPT (see Table 15-8 of G.709)	0255	_

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ODUkP-X- L/MT_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_	
ODUkP-X- L/MT_A_Sk_MI_LastValidUPI (see Table 6-3 of [ITU-T G.7041])	0255	_	
	ETH/MT_A_So Provisioning		
ETH/MT_A_So_MI_Label [1M]	16 to $(2^{20} - 1)$	(Note 2)	
ETH/MT_A_So_MI_ LSPType[1M]	E-LSP, L-LSP	(Note 1)	
ETH/MT_A_So_MI_CoS[1M]	(Note 1)	(Note 1)	
ETH/MT_A_So_PHB2TCMapping [1M]	(Note 1)	(Note 1)	
ETH/MT_A_So_MI_ QoSEncodingMode[1M]	A, B	(Note 2)	
ETH/MT_A_So_MI_Etype			
ETH/MT_A_Sk Provisioning			
ETH/MT_A_Sk_MI _LCK _Enable[1M]	true, false	true	
ETH/MT_A_Sk_MI _LCK _Period[1M]	1 s, 1 min	1 s	
ETH/MT_A_Sk_MI _LCK _CoS[1M]	07	7	
ETH/MT_A_Sk_MI _Admin_State	LCK, Normal	Normal	
ETH/MT_A_Sk_MI_AIS_Enable [1M]	true, false	true	
ETH/MT_A_Sk_MI _AIS_Period[1M]	1 s, 1 min	1 s	
ETH/MT_A_Sk_MI _AIS_CoS[1M]	07	7	

NOTE 1 – According to [ITU-T G.8121].

NOTE 2 – A value must be provided at provisioning.

NOTE 3 – MI_GAL_Enable must be set to true on LSPs, to false on PWs using CW, and to true on Sections. Setting it to true on PWs not using CW is for further study.

NOTE 4 – This MI should be properly configured by the EMF on the basis of the MPLS-TP connection configuration within the node but not exposed to the operator as a configuration parameter in the NE/EMS management interface. See clause 9.4.2.2.2 of [ITU-T G.8121] and its Appendix I for examples of configuration of this MI.

8.6 Diagnostic

This clause provides the requirements for the management of the MT diagnostic trail termination functions (MTDe_TT).

For MT.NE that supports the MTDe_TT function specified in [ITU-T G.8121], the EMF shall support the following management functions for the MIs listed in Table 8-3 below:

- Provisioning the trail termination management information.
- Retrieving the trail termination management information.
- Notifying the changes of the trail termination management information.
- Receiving the monitored trail termination management information.

Table 8-3 – Provisioning and reporting for diagnostic trail termination function

MI signal	Value range	Default value	
MTDe_TT_So Provisioning			
MTDe_TT_So_MI_GAL_Enable	True, false	(Note 3)	
MTDe_TT_So_MI_TTLVALUE	0255	255	
MTDe_TT_So_MI_CV_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
MTDe_TT_So_MI_CV_Series (Note 6)			
MTDe_TT_So_MI_1TH_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
MTDe_TT_So_MI_1TH_Start (CoS, Length, Period)	CoS: 07 Length: 0L (Note 5) Period: For further study	Default value of Length: 0	
MTDe_TT_So_MI_1TH_ Terminate	_	_	
MTDe_TT_So_MI_LMo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
MTDe_TT_So_MI_LMo_Start (CoS, Period) [1MLMo]	CoS: 07 Period: 100 ms, 1 s, 10 s	_	
MTDe_TT_So_MI_LMo_ Terminate[1M _{LMo}]	_	_	
MTDe_TT_So_MI_DMo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
MTDe_TT_So_MI_DMo_Start (CoS, Test_ID, Length, Period) [1M _{DMo}]	CoS: 07 Test_ID: (Note 2) Length: 0L (Note 5) Period: 1 s, 10 s, 1 min	Default value of Length: 0 Default value of Period: 1 min	
MTDe_TT_So_MI_DMo_ Terminate[1M _{DMo}]	_	_	
MTDe_TT_So_MI_1DMo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ diagnostic \ trail \ termination \ function$

MI signal	Value range	Default value
MTDe_TT_So_MI_1DMo_Start (CoS, Test_ID, Length, Period) [1M _{1DMo}]	CoS: 07 Test_ID: (Note 2) Length: 0L (Note 5) Period: 100 ms, 1 s, 10 s	Default value of Length: 0
MTDe_TT_So_MI_1DMo_ Terminate[1M _{1DMo}]	_	_
MTDe_TT_So_MI_SLo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MTDe_TT_So_MI_SLo_Start (CoS, Test_ID, Length, Period) [1M _{SLo}]	CoS: 07 Test_ID: (Note 2) Length: 0L (Note 5) Period: 0.1 ms, 0.5 ms, 1 ms, 3.3 ms, 10 ms, 100 ms	Default value of Length: 0 Default value of Period: 10 ms
MTDe_TT_So_MI_SLo_ Terminate[1M _{SLo}]	-	_
MTDe_TT_So_MI_Admin_State	LCK, Normal	Normal
MTDe_TT_So_MI_Lock_Intsruct _Enable	true, false	true
	MTDe_TT_So Reporting	
MTDe_TT_So_MI_CV_Series_ Result (Note 6)	_	_
MTDe_TT_So_MI_1TH_Result (Sent)	_	_
MTDe_TT_So_MI_LMo_Result (N_TF, N_LF, F_TF, F_LF) [1M _{LMo}]	_	
MTDe_TT_So_MI_DMo_Result (count,B_FD[], F_FD[], N_FD[]) [1M _{DMo}]	_	_
MTDe_TT_So_MI_SLo_Result (N_TF, N_LF, F_TF, F_LF) [1M _{SLo}]	_	_
	MTDe_TT_Sk Provisioning	
MTDe_TT_Sk_MI_GAL_Enable	True, false	(Note 3)
MTDe_TT_Sk_MI_CV_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MTDe_TT_Sk_MI_1TH_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A
MTDe_TT_Sk_MI_1TH_Start	_	_
MTDe_TT_Sk_MI_1TH_ Terminate		
MTDe_TT_Sk_MI_LMo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A

Table 8-3 – Provisioning and reporting for diagnostic trail termination function

MI signal	Value range	Default value	
MTDe_TT_Sk_MI_DMo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
MTDe_TT_Sk_MI_1DMo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
MTDe_TT_Sk_MI_1DMo_Start (Test_ID)[1M _{1DMo}]	(Note 2)	_	
MTDe_TT_Sk_MI_1DMo_ Terminate[1M _{1DMo}]	_	_	
MTDe_TT_Sk_MI_SLo_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
	MTDe_TT_Sk Reporting		
MTDe_TT_Sk_MI_1TH_Result (REC, CRC, BER, OO)	_	_	
MTDe_TT_Sk_MI_1DMo_Result (count, N_FD[])[1M _{DMo}]]	_		
MTDe_TT_Sk_MI_Admin_State_ Request	Trigger to LCK, Trigger to Normal	_	
MTDi_TT_So Provisioning			
MTDi_TT_So_MI_GAL_Enable	True, false	(Note 3)	
MTDi_TT_So_MI_TTLVALUE	0255	255	
MTDe_TT_So_MI_MIP_ID	String; values are OAM protocol-specific	(Note 1)	
MTDi_TT_So_MI_CV_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
	MTDi_TT_Sk Provisioning		
MTDi_TT_Sk_MI_GAL_Enable	True, false	(Note 3)	
MTDe_TT_Sk_MI_MIP_ID	String; values are OAM protocol-specific	(Note 1)	
MTDi_TT_Sk_MI_CV_OAM_ Tool	[ITU-T G.8113.1], [ITU-T G.8113.2]	N/A	
NOTE 1. A value must be provided at provisioning			

NOTE 1 - A value must be provided at provisioning.

NOTE 2 – The Test ID field is optional when this proactive measurement tool is used.

NOTE 3 – MI_GAL_Enable must be set to true on LSPs, to false on PWs using CW, and to true on

Sections. Setting it to true on PWs not using CW is for further study.

NOTE 4 – The value of n depends on implementation, e.g., 2^{32} .

NOTE 5 – The value of L depends on implementation, e.g., 2^{32} .

NOTE 6 – The CV_Series_Result parameters are OAM protocol-specific.

8.7 Connection

See clause 8.6 of [ITU-T G.7710] for a description of connection management.

This function allows a user to provision the operation of an MPLS-TP Connection process.

The MI signals listed in this clause are communicated from the EMF to the connection process through the management point.

For MT.NE that supports the MT_C function specified in [ITU-T G.8121], the EMF shall support the following management functions for the MIs listed in Table 8-4 below:

- Provisioning the trail termination management information.
- Retrieving the trail termination management information.
- Notifying the changes of the trail termination management information.

Table 8-4 – Provisioning and reporting for connection functions

MI signal	Value range	Default value	
MT_C Provisioning (Per matrix connection)			
MT_C_MI_ConnectionType	Protected, unprotected	Unprotected	
MT_C_MI_Return_CP_ID	NULL (for unidirectional), or the Connection point (CP) identifier (for bidirectional)		
MT_C_MI_ConnectionPortIds	Set of connection point identifiers	-	
NOTE – According to [ITU-T G.8121].			

8.8 DEG thresholds

For further study.

8.9 XXX_Reported

See clause 8.8 of [ITU-T G.7710] for a description of XXX_Reported management.

Table 8-5 below provides the MI signals that need to be provisioned for consequential defect/failure.

Table 8-5 – Consequential defect/failure related provisioning

MI signal	Value range	Default value
MI_SSF_Reported	True, false	False
MI_BDI_Reported	True, false	False

8.10 Alarm severity

See clause 8.9 of [ITU-T G.7710] for a description of alarm severity.

8.11 Alarm reporting control (ARC)

See clause 8.10 of [ITU-T G.7710] for a description of alarm report control.

8.12 PM thresholds

For further study.

8.13 TCM activation

For further study.

8.14 Date and Time

The Date and Time functions within the MPLS-TP EMF comprise the local real time clock (RTC) function and the performance monitoring clock (PMC) function. The message communication function within the MPLS-TP NEF shall be capable of setting the local real time clock function.

The date and time values are incremented by a free running local clock, or by an external timing source. The FCAPS functions need date and time information, for example, to time stamp event reports. They obtain this information from the Date and Time function.

8.14.1 Date and Time applications

Clause 8.13.1 of [ITU-T G.7710] identifies three Date and Time applications. These are:

- Time stamping.
- Performance monitoring clock signals.
- Activity scheduling.

The MPLS-TP NEF functional requirements for these applications are specified in the following clauses.

8.14.1.1 Time-stamping

See clause 8.13.1.1 of [ITU-T G.7710] for a description of the time-stamping application.

8.14.1.2 Performance monitoring clock signals

See clause 8.13.1.2 of [ITU-T G.7710] for a description of the PMC signals.

8.14.1.3 Activity scheduling

See clause 8.13.1.3 of [ITU-T G.7710] for a description of the activity scheduling.

8.14.2 Date and Time functions

There are three Date and Time functions defined. The local real time clock (RTC) function is required for time stamping and activity scheduling. The local real time clock alignment function is required for aligning the clock with an external time reference. The performance monitoring clock (PMC) function, in addition to RTC, is typical for digital counter measurements.

8.14.2.1 Local real time clock function

The local real time clock function is specified in clause 8.13.2.1 of [ITU-T G.7710].

8.14.2.2 Local real time clock alignment function with external time reference

The local real time clock alignment function with external time reference is specified in clause 8.13.2.2 of [ITU-T G.7710].

8.14.2.3 Performance monitoring clock function

The performance monitoring clock function is specified in clause 8.13.2.3 of [ITU-T G.7710].

9 Accounting management

For further study.

10 Performance management

See clause 10 of [ITU-T G.7710] for the generic requirements for performance management. MPLS-TP specific management requirements are described below.

10.1 Performance management applications

See clause 10.1 of [ITU-T G.7710] for the generic description for performance management applications.

10.2 Performance monitoring functions

See clause 10.2 of [ITU-T G.7710] for generic requirements of performance monitoring functions. MPLS-TP NE shall provide the following PM management information (see Table 10-1).

Table 10-1 – PM management information

PM Management Information	ITU-T G.8121 Function
MT_TT_Sk_MI_pN_LF	
MT_TT_Sk_MI_pN_TF	
MT_TT_Sk_MI_pF_LF	
MT_TT_Sk_MI_pF_TF	
MT_TT_Sk_MI_pF_DS	
MT_TT_Sk_MI_pN_DS	MT TT CL
MT_TT_Sk_MI_pB_FD	MT_TT_Sk
MT_TT_Sk_MI_pB_FDV	
MT_TT_Sk_MI_pN_FD	
MT_TT_Sk_MI_pN_FDV	
MT_TT_Sk_MI_pF_FD	
MT_TT_Sk_MI_pF_FDV	
MT/ETH_A_Sk_MI_pFCSErrors	MT/ETH_A_Sk

The EMF shall support the following functions:

Notifying of the PM management information.

11 Security management

See [ITU-T G.7710] for a description of security management.

Bibliography

[b-IETF RFC 5951]	IETF RFC 5951 (2010).	, MPLS-TP Network	Management Requiremen	ts.
-------------------	-----------------------	-------------------	-----------------------	-----

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Numbering, naming and addressing	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems