

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – Principal characteristics of multiplexing equipment for the synchronous digital hierarchy

Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks

Amendment 4: Text additions to add the required OSM256.4/RSn_A adaptation function for OSM256.4 interface support

Recommendation ITU-T G.783 (2006) - Amendment 4

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
General	G.700–G.709
Coding of voice and audio signals	G.710–G.729
Principal characteristics of primary multiplex equipment	G.730–G.739
Principal characteristics of second order multiplex equipment	G.740–G.749
Principal characteristics of higher order multiplex equipment	G.750–G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760–G.769
Operations, administration and maintenance features of transmission equipment	G.770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780-G.789
Other terminal equipment	G.790–G.799
	a
DIGITAL NETWORKS	G.800–G.899
DIGITAL NETWORKS DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.800–G.899 G.900–G.999
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-	G.900–G.999
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.900–G.999 G.1000–G.1999
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS TRANSMISSION MEDIA CHARACTERISTICS	G.900–G.999 G.1000–G.1999 G.6000–G.6999
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS TRANSMISSION MEDIA CHARACTERISTICS DATA OVER TRANSPORT – GENERIC ASPECTS	G.900–G.999 G.1000–G.1999 G.6000–G.6999 G.7000–G.7999

For further details, please refer to the list of ITU-T Recommendations.

Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks

Amendment 4

Text additions to add the required OSM256.4/RSn_A adaptation function for OSM256.4 interface support

Summary

Amendment 4 to Recommendation ITU-T G.783 (2006) contains text additions to add the required **OSM256.4/RSn_A** adaptation function for OSM256.4 interface support.

History

Edition	Recommendation	Approval	Study Group	Unique ID ¹
1.0	ITU-T G.783	1990-12-14	XV	<u>11.1002/1000/979-en</u>
2.0	ITU-T G.783	1994-01-20	15	<u>11.1002/1000/980-en</u>
3.0	ITU-T G.783	1997-04-08	15	<u>11.1002/1000/4022-en</u>
4.0	ITU-T G.783	2000-10-06	15	<u>11.1002/1000/5175-en</u>
4.1	ITU-T G.783 (2000) Cor. 1	2001-03-15	15	<u>11.1002/1000/5438-en</u>
4.2	ITU-T G.783 (2000) Amd. 1	2002-06-13	15	<u>11.1002/1000/6056-en</u>
4.3	ITU-T G.783 (2000) Cor. 2	2003-03-16	15	<u>11.1002/1000/6266-en</u>
5.0	ITU-T G.783	2004-02-06	15	<u>11.1002/1000/7061-en</u>
5.1	ITU-T G.783 (2004) Cor. 1	2004-06-13	15	<u>11.1002/1000/7328-en</u>
5.2	ITU-T G.783 (2004) Amd. 1	2005-07-14	15	<u>11.1002/1000/8540-en</u>
6.0	ITU-T G.783	2006-03-29	15	<u>11.1002/1000/8759-en</u>
6.1	ITU-T G.783 (2006) Amd. 1	2008-05-22	15	<u>11.1002/1000/9371-en</u>
6.2	ITU-T G.783 (2006) Amd. 2	2010-03-09	15	<u>11.1002/1000/10400-en</u>
6.3	ITU-T G.783 (2006) Amd. 3	2012-02-13	15	<u>11.1002/1000/11486-en</u>
6.4	ITU-T G.783 (2006) Amd. 4	2013-08-29	15	<u>11.1002/1000/11983-en</u>

¹ To access the Recommendation, type into the address line on the web browser the URL http://handle.itu.int/ followed by the unique ID, for example <u>http://handle.itu.int/11.1002/1000/11830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

Page

Scope 1 1) 2) References..... 1 3) Abbreviations and acronyms 1 4) Text modifications in clause 9.2.3.2.... 1 5) New clause 9.3.3 and subclauses 3 Text modification in clause 10.2.1.1 6 6)

Recommendation ITU-T G.783

Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks

Amendment 4

Text additions to add the required OSM256.4/RSn_A adaptation function for OSM256.4 interface support

1) Scope

Amendment 4 contains modified text to be added to complete this Recommendation in respect of STM256 multi-lane distribution interfaces.

2) References

Add the following reference to clause 2:

[ITU-T G.959.1] Recommendation ITU-T G.959.1 (2012), *Optical transport network physical layer interfaces*.

3) Abbreviations and acronyms

Add the following abbreviation to clause 4:

CID Consecutive Identical Digit

4) Text modifications in clause 9.2.3.2

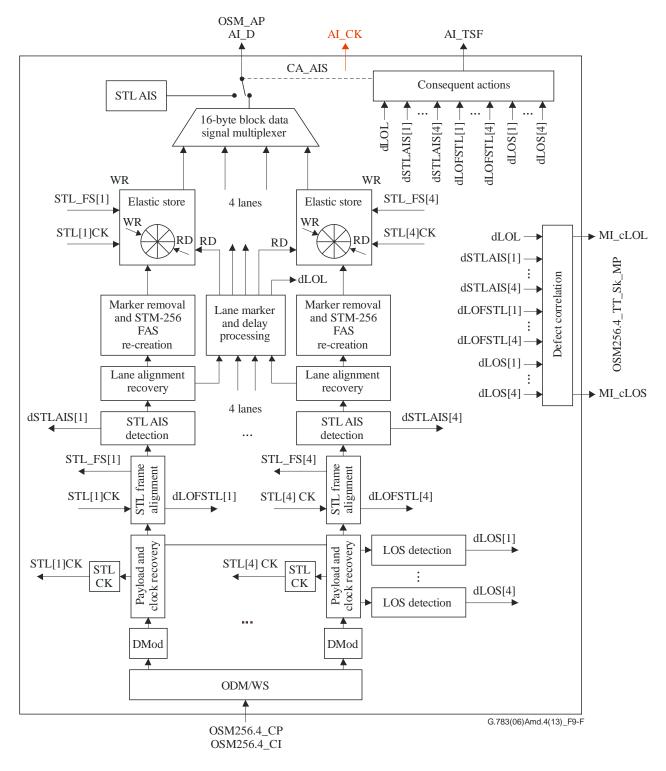
a) Modify Table 9c in clause 9.2.3.2 and add the text concerning the clock generator process, as shown below:

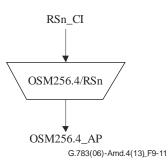
Input(s)	Output(s)
OSM256.4_TCP	OSM256.4_AP :
OSM256.4_CI	OSM256.4_AI_D
	<u>OSM256.4_AI_CK</u>
	OSM256.4_AI_TSF
	OSM256.4_TT_Sk_MP
	OSM256.4_TT_Sk_MI_cLOS
	OSM256.4_TT_Sk_MI_cLOL

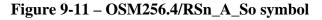
Table 9c – OSM256.4_TT_Sk inputs and outputs

<u>Clock generator: The process shall generate the OSM256.4_AP clock from the incoming lane clock.</u> <u>One of the four recovered STL clocks signals can be selected and output as a single clock towards</u> <u>the OSM256.4_AP.</u>

b) Modify Figure 9f (as shown in red) in clause 9.2.3.2 to include the recovered clock as part of the STM256.4_AP access point signals.




Figure 9f – OSM256.4_TT_Sk processes


5) New clause 9.3.3 and subclauses

Add the following new clauses containing additional new adaptations for multi-lane distribution:

- 9.3.3 STM- 256 multi-lane optical section to regenerator section adaptation OSM256.4/RSn_A
- 9.3.3.1 STM-256 optical section to regenerator section adaptation source OSM256.4/RSn_A _So

Symbol

Interfaces

Table 9-11 - OSM256.4/RSn_	Α	So input	and	output	signals
		_oo mpuu	anu	Juiput	Signais

Input	Output
RSn_CI_Data RSn_CI_Clock RSn_CI_FS	OSM256.4_AP OSM256.4_AI_Data OSM256.4_AI_CK
	OSM256.4_AI_FS

Processes

This function provides line coding for STM-N signals according to [ITU-T G.959.1].

This function limits the output jitter on the clock information in the OSM256.4_AI_Data signal as given in Tables 9-6 and 9-7, scaled as described below when measured over a 60-second interval.

Jitter generation for SDH regenerator: An SDH regenerator, shall, on its STM-N output, not generate jitter in excess of the values in Tables 9-6 and 9-7 for the serial STM256 structure. The frequencies of the related jitter limit values of the optical per lane signals are scaled down by the factor of 4 with respect to the STM256 values given in Tables 9-6 and 9-7.

Note that frequency downscaling leads to the fact that the UIp-p amplitude is also scaled up by the factor of 4 in terms of nanoseconds.

On this basis, a deployed regenerator shall not generate jitter on its OSM256.4 output in excess of those values, with the down-scaled frequencies and up-scaled amplitude as given above, in nanoseconds.

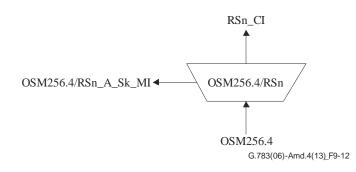
Defects

None.

Consequent actions

None.

Defect correlations


None.

Performance monitoring

None.

9.3.3.2 STM-N optical section to regenerator section adaptation sink OSM256.4/RSn_A_Sk

Symbol

Interfaces

Table 9-12 - OSM256.4/RSn_A_Sk input and output signals

Inputs	Outputs
OSM256.4_AI_Data OSM256.4_AI_CK OSM256.4_AI_TSF	RSn_CI_Data RSn_CI_Clock RSn_CI_FS RSn_CI_SSF OSM256.4/RSn_A_Sk_MI_cLOF
	OSM256.4/RSn_A_Sk_MI_pOFS

Processes

The OSM256.4_AI_Data signal, with its contained timing, is received by the OSM256.4_AP from the OSM256.4_TT_Sk function. The OSM256.4/RSn function processes this signal to form data and associated timing at the RSn_CP. The function also recovers frame alignment and identifies the frame start positions in the data of the RSn_CP. The framed STM-256 data and timing are presented at the RSn_CP.

Regeneration: The function shall operate with a maximum BER of 10^{-12} when any combination of the following signal conditions exists at the input:

- an input optical power level within the range specified in [ITU-T G.959.1];
- jitter modulation applied to the input signal as specified in [ITU-T G.825];
- the input signal bit rate has a value in the range 256×155520 kbit/s ± 20 ppm.

NOTE – The frequency and jitter/wander tolerance might be further constrained by the requirements of the client layers.

To ensure adequate immunity against the presence of consecutive identical digits (CID) in the STM-N signal, the function shall comply with the specification in clause 15.1.4.

The function shall process the signal so that in the absence of input jitter, the intrinsic jitter at the STM-N output interface (in a regenerative repeater) shall not exceed the values specified in clause 15.1.2. For the multi-lane case, the frequencies of the related jitter limit values of the optical per lane signals are scaled down by the factor of 4 in respect to the STM256 values. The frequency downscaling leads to the fact that the absolute UIp-p amplitude is also scaled up by the factor of 4 in terms of nanoseconds.

The function shall process the signal so that the jitter transfer (measured between an STM-N input and STM-N output in a regenerative repeater) shall be as specified in clause 15.1.3.

For the multi-lane case, the frequencies of the related jitter limit values of the optical per lane signals are scaled down by the factor of 4 in respect to the STM256 values. The frequency downscaling leads to the fact that the UIp-p amplitude is also scaled up by the factor of 4 in terms of nanoseconds.

The frame alignment process is described in clause 8.2.1.

Defects

dLOF: see clause 6.2.5.1.

Consequent actions

The function shall perform the following consequent actions:

aAIS \leftarrow dLOF or AI_TSF

 $aSSF \leftarrow dLOF \text{ or } AI_TSF$

On declaration of an aAIS, the function shall output an all-ONEs (AIS) signal – complying to the frequency limits for this interface – within 250 μ s; on clearing of aAIS, the function shall output normal data within 250 μ s.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause. This fault cause shall be reported to the SEMF.

 $cLOF \leftarrow dLOF and (not AI_TSF)$

Performance monitoring

The function shall perform the following performance monitoring primitives processing:

Any second with at least one OOF event shall be reported as a pOFS (optional in [ITU-T G.784]).

6) **Text modification in clause 10.2.1.1**

Modify clause 10.2.1.1, adding the text indicated below to Table 10-1 and by adding the additional paragraph to the "Processes" section of the clause, as shown below:

Inputs	Outputs		
RSn_AI_Data RSn_AI_Clock RSn_AI_FrameStart RSn_TT_So_MI_TxTI	RSn_CI_Data RSn_CI_Clock <u>RSn_CI_Fs (Note)</u>		
<u>NOTE – The RSn_CI_Fs (RSn frame start signal) is optional for support of OSM256.4 interfaces for frame start forwarding to the OSM256.4 TT_So and not a generic requirement.</u>			

Table 10-1 – RSn TT So function inputs and outputs

Processes

Data at the RSn_AP is an STM-N signal as defined in [ITU-T G.707] having a valid multiplex section overhead (MSOH) and E1, D1-D3, F1 and NU bytes. However, the bytes A1, A2, B1, and JO are indeterminate in this signal. A1, A2, B1, and JO bytes are set in accordance with [ITU-T G.707] as part of the RSn_TT function to give a fully formatted STM-N data and associated timing at the RSn_CP. After these bytes have been set, the RSn_TT function scrambles the STM-N signal before it is presented to the RSn_CP. Scrambling is performed according to clause 8.1.1 and [ITU-T G.707].

A1, A2: Frame alignment bytes A1 and A2 are generated and inserted in the first row of the RSOH according to [ITU-T G.707].

J0: Regenerator Section trace information (RSn_TT_So_MI_TxTI) derived from reference point RSn_TT_MP is placed in J0 byte position. The RS trace format is described in [ITU-T G.707].

B1: The error monitoring byte B1 is allocated in the STM-N for a regenerator section bit error monitoring function. This function shall be a bit interleaved parity 8 (BIP-8) code using even parity as defined in [ITU-T G.707]. The BIP-8 is computed over all bits of the previous STM-N frame at the RSn_CP after scrambling. The result is placed in byte B1 position of the RSOH before scrambling.

FS forwarding: For the RSn TT So with n=256 towards OSM256.4 interfaces, this is an optional process supporting the forwarding of the frame start to the OSM256.4/RSn_A _So to be made available at the OSM256.4_TT_So.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems