UIT-T

G.783

SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT (03/2006)

SERIE G: SISTEMAS Y MEDIOS DE TRANSMISIÓN, SISTEMAS Y REDES DIGITALES

Equipos terminales digitales – Características principales de los equipos múltiplex de la jerarquía digital síncrona

Características de los bloques funcionales del equipo de la jerarquía digital síncrona

Recomendación UIT-T G.783

RECOMENDACIONES UIT-T DE LA SERIE G SISTEMAS Y MEDIOS DE TRANSMISIÓN, SISTEMAS Y REDES DIGITALES

	G 100 G 100
CONEXIONES Y CIRCUITOS TELEFÓNICOS INTERNACIONALES	G.100-G.199
CARACTERÍSTICAS GENERALES COMUNES A TODOS LOS SISTEMAS ANALÓGICOS DE PORTADORAS	G.200–G.299
CARACTERÍSTICAS INDIVIDUALES DE LOS SISTEMAS TELEFÓNICOS INTERNACIONALES DE PORTADORAS EN LÍNEAS METÁLICAS	G.300–G.399
CARACTERÍSTICAS GENERALES DE LOS SISTEMAS TELEFÓNICOS INTERNACIONALES EN RADIOENLACES O POR SATÉLITE E INTERCONEXIÓN CON LOS SISTEMAS EN LÍNEAS METÁLICAS	G.400–G.449
COORDINACIÓN DE LA RADIOTELEFONÍA Y LA TELEFONÍA EN LÍNEA	G.450-G.499
CARACTERÍSTICAS DE LOS MEDIOS DE TRANSMISIÓN	G.600-G.699
EQUIPOS TERMINALES DIGITALES	G.700-G.799
Generalidades	G.700-G.709
Codificación de señales analógicas mediante modulación por impulsos codificados (MIC)	G.710-G.719
Codificación de señales analógicas mediante métodos diferentes de la MIC	G.720-G.729
Características principales de los equipos múltiplex primarios	G.730-G.739
Características principales de los equipos múltiplex de segundo orden	G.740-G.749
Características principales de los equipos múltiplex de orden superior	G.750-G.759
Características principales de los transcodificadores y de los equipos de multiplicación de circuitos digitales	G.760–G.769
Características de operación, administración y mantenimiento de los equipos de transmisión	G.770-G.779
Características principales de los equipos múltiplex de la jerarquía digital síncrona	G.780-G.789
Otros equipos terminales	G.790-G.799
REDES DIGITALES	G.800-G.899
SECCIONES DIGITALES Y SISTEMAS DIGITALES DE LÍNEA	G.900-G.999
CALIDAD DE SERVICIO Y DE TRANSMISIÓN – ASPECTOS GENÉRICOS Y ASPECTOS RELACIONADOS AL USUARIO	G.1000–G.1999
CARACTERÍSTICAS DE LOS MEDIOS DE TRANSMISIÓN	G.6000-G.6999
DATOS SOBRE CAPA DE TRANSPORTE – ASPECTOS GENÉRICOS	G.7000-G.7999
ASPECTOS RELATIVOS A LOS PROTOCOLOS EN MODO PAQUETE SOBRE LA CAPA DE TRANSPORTE	G.8000-G.8999
REDES DE ACCESO	G.9000-G.9999

Para más información, véase la Lista de Recomendaciones del UIT-T.

Recomendación UIT-T G.783

Características de los bloques funcionales del equipo de la jerarquía digital síncrona

Resumen

Esta Recomendación especifica los componentes y la metodología que deben emplearse para especificar la funcionalidad de elementos de red en la jerarquía digital síncrona (SDH); no especifica un equipo SDH individual como tal.

Esta Recomendación forma parte de una serie de Recomendaciones que abarcan la funcionalidad completa de equipo de red. Estas Recomendaciones son las Recs. UIT-T G.806 [13] (Convenios y funciones de equipo genéricas), G.783, G.705 (Funciones PDH) [5], G.781 [9] (Funciones de sincronización), G.784 (Función de gestión) [10], I.732 [21] (Funciones ATM) y sigue los principios definidos en la Rec. UIT-T G.803 [11].

La presente Recomendación especifica una colección de bloques de construcción básicos y un conjunto de reglas que permiten combinarlos para describir un equipo de transmisión digital. La colección comprende los bloques de construcción funcionales necesarios para especificar completamente la estructura funcional genérica de la jerarquía digital síncrona. Para que los equipos sean conformes a la presente Recomendación debe ser posible describirlos como una interconexión de un subconjunto de estos bloques funcionales contenidos en esta Recomendación. La interconexión de estos bloques debe obedecer a las reglas de combinación dadas.

El método de especificación se basa en la descomposición funcional del equipo en funciones atómicas y funciones compuestas. La descripción es genérica y no implica una determinada partición física de funciones. Los flujos de información de entrada/salida asociados con los bloques funcionales se utilizan para definir las funciones de los bloques y se consideran flujos funcionales, no físicos.

No todas las funciones atómicas definidas en la presente Recomendación son necesarias para todas las aplicaciones. Diferentes subconjuntos de funciones atómicas pueden agruparse de diferentes formas de acuerdo con las reglas de combinación especificadas en esta Recomendación para proporcionar diferentes capacidades. Los operadores de red y los suministradores de equipo podrán escoger las funciones que habrán de implementarse para cada aplicación.

Orígenes

La Recomendación UIT-T G.783 fue aprobada el 29 de marzo de 2006 por la Comisión de Estudio 15 (2005-2008) del UIT-T por el procedimiento de la Recomendación UIT-T A.8.

PREFACIO

La UIT (Unión Internacional de Telecomunicaciones) es el organismo especializado de las Naciones Unidas en el campo de las telecomunicaciones. El UIT-T (Sector de Normalización de las Telecomunicaciones de la UIT) es un órgano permanente de la UIT. Este órgano estudia los aspectos técnicos, de explotación y tarifarios y publica Recomendaciones sobre los mismos, con miras a la normalización de las telecomunicaciones en el plano mundial.

La Asamblea Mundial de Normalización de las Telecomunicaciones (AMNT), que se celebra cada cuatro años, establece los temas que han de estudiar las Comisiones de Estudio del UIT-T, que a su vez producen Recomendaciones sobre dichos temas.

La aprobación de Recomendaciones por los Miembros del UIT-T es el objeto del procedimiento establecido en la Resolución 1 de la AMNT.

En ciertos sectores de la tecnología de la información que corresponden a la esfera de competencia del UIT-T, se preparan las normas necesarias en colaboración con la ISO y la CEI.

NOTA

En esta Recomendación, la expresión "Administración" se utiliza para designar, en forma abreviada, tanto una administración de telecomunicaciones como una empresa de explotación reconocida de telecomunicaciones.

La observancia de esta Recomendación es voluntaria. Ahora bien, la Recomendación puede contener ciertas disposiciones obligatorias (para asegurar, por ejemplo, la aplicabilidad o la interoperabilidad), por lo que la observancia se consigue con el cumplimiento exacto y puntual de todas las disposiciones obligatorias. La obligatoriedad de un elemento preceptivo o requisito se expresa mediante las frases "tener que, haber de, hay que + infinitivo" o el verbo principal en tiempo futuro simple de mandato, en modo afirmativo o negativo. El hecho de que se utilice esta formulación no entraña que la observancia se imponga a ninguna de las partes.

PROPIEDAD INTELECTUAL

La UIT señala a la atención la posibilidad de que la utilización o aplicación de la presente Recomendación suponga el empleo de un derecho de propiedad intelectual reivindicado. La UIT no adopta ninguna posición en cuanto a la demostración, validez o aplicabilidad de los derechos de propiedad intelectual reivindicados, ya sea por los miembros de la UIT o por terceros ajenos al proceso de elaboración de Recomendaciones.

En la fecha de aprobación de la presente Recomendación, la UIT ha recibido notificación de propiedad intelectual, protegida por patente, que puede ser necesaria para aplicar esta Recomendación. Sin embargo, debe señalarse a los usuarios que puede que esta información no se encuentre totalmente actualizada al respecto, por lo que se les insta encarecidamente a consultar la base de datos sobre patentes de la TSB en la dirección http://www.itu.int/ITU-T/ipr/.

© UIT 2007

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

ÍNDICE

1	Alcan	20
2		encias
		nos y definiciones
3		•
4	Abreviaturas, siglas o acrónimos	
5		nios
	5.1	Nombres de capas de transmisión específicas de la SDH
	5.2	Calidad de funcionamiento y fiabilidad
6	Supervisión	
	6.1	Modo punto de terminación de camino y modo puerto
	6.2	Defectos
	6.3	Acciones consiguientes
	6.4	Correlaciones de defectos
_	6.5	Filtro de supervisión de la calidad de funcionamiento en un segundo
7	Flujo	de información (XXX_MI) a través de los puntos de referencia XXX_MP
8		sos genéricos
	8.1	Procesos de codificación de línea y aleatorización
	8.2	Procesos de alineación
	8.3	Procesos de supervisión de la calidad de la señal
	8.4	Procesos de corrección de BIP
9	Capa o	de sección física STM-N (N = 1, 4, 16, 64, 256)
	9.1	Funciones de conexión
	9.2	Funciones de terminación
	9.3	Funciones de adaptación
	9.4	Funciones de subcapa (no aplicables)
10	Capa o	de sección de regeneración STM-N (N = 1, 4, 16, 64, 256)
	10.1	Funciones de conexión
	10.2	Funciones de terminación
	10.3	Funciones de adaptación
	10.4	Funciones de subcapa
11	Capa o	de sección múltiplex STM-N (N = 1, 4, 16, 64, 256)
	11.1	Funciones de conexión
	11.2	Funciones de terminación
	11.3	Funciones de adaptación.
	11.4	Funciones de subcapa
12	Capa o	de trayecto VC-n (Sn) (n = 4-X, 4, 3-X, 3)
	12.1	Funciones de conexión
	12.2	Funciones de terminación

			Pa
	12.3	Funciones de adaptación.	
	12.4	Funciones de subcapa	
	12.5	Funciones de concatenación virtual.	
13	Capa de	e trayecto VC-m (Sm) (m = 2, 12, 11)	
	13.1	Funciones de conexión	
	13.2	Funciones de terminación	
	13.3	Funciones de adaptación.	
	13.4	Funciones de subcapa	
	13.5	Funciones de concatenación virtual.	
14	Funcion	nes de temporización	
15	Especif	icación de fluctuación de fase y fluctuación lenta de fase	
	15.1	Interfaces STM-N	
	15.2	Interfaces PDH	
	15.3	Medición de la fluctuación de fase y de la fluctuación lenta de fase	
16	Función	n de acceso de tara (OHA, overhead access function)	
Anex	o A – Alg	goritmo para la detección de puntero	
	A.1	Interpretación del puntero	
	A.2	Cabidas útiles concatenadas	
	A.3	Flujograma de procesamiento de punteros	
Apén	dice I – E	Ejemplo de utilización del octeto F1	
-		Canal de comunicaciones de datos (DCC)	
		Modelo funcional de regenerador STM-16 (ejemplo)	
-			
-		Regenerador transparente STM-N.	
Apén		Verificación de la inmunidad del equipo SDH a la aparición de dígitos os consecutivos	
	V.1	Información general	
	V.2	Método	
∆ nén		Funcionamiento de la indicación de defecto distante mejorada	
преп	VI.1	Trayectos VC-4-Xc/VC-4/VC-3	
	VI.1	Trayectos VC-2/VC-12/VC-11	
	VI.2 VI.3	Funciones de interfuncionamiento	
A nán		 Análisis de la acumulación de fluctuación de fase del regenerador 	
zpen		4 y modelo de referencia hipotético	
	VII.1	Introducción	
	VII.2	Modelo de referencia hipotético del regenerador STM-64	
	VII.3	Modelo para la simulación de la acumulación de fluctuación de fase de un regenerador STM-64 (tipo A), análisis y resultados	

Recomendación UIT-T G.783

Características de los bloques funcionales del equipo de la jerarquía digital síncrona

1 Alcance

La presente Recomendación especifica una colección de bloques de construcción básicos y un conjunto de reglas que permiten combinarlos para describir un equipo de transmisión digital. La colección comprende los bloques de construcción funcionales necesarios para especificar completamente la estructura funcional genérica de la jerarquía digital síncrona. Los bloques de construcción se representan en la figura 1-1. Para que los equipos sean conformes a la presente Recomendación debe ser posible describirlos como una interconexión de un subconjunto de estos bloques funcionales contenidos en esta Recomendación. La interconexión de estos bloques debe obedecer a las reglas de combinación dadas.

Esta Recomendación define los componentes y la metodología que deben emplearse para especificar el proceso SDH; no define un equipo SDH individual como tal.

El método de especificación se basa en la descomposición funcional del equipo en funciones atómicas y funciones compuestas. El equipo se describe por su especificación funcional de equipo (EFS, *equipment functional specification*), que indica las funciones atómicas y las funciones compuestas que lo constituyen, su interconexión, así como cualquier objetivo global de calidad de funcionamiento (por ejemplo, retardo de transferencia, disponibilidad, etc.).

La estructura interna de la implementación de esta funcionalidad (diseño de equipo) no tiene que ser idéntica a la estructura del modelo funcional en tanto en cuanto todos los detalles del comportamiento observable desde el exterior cumplan la EFS.

La funcionalidad del equipo es consecuente con la estructura de multiplexación SDH presentada en la Rec. UIT-T G.707/Y.1322.

Los equipos construidos antes de la elaboración de la presente versión revisada de esta Recomendación pudieran no ser conformes a esta Recomendación en todos los detalles.

Un equipo que normalmente haya sido declarado conforme a esta Recomendación pudiera no cumplir todos los requisitos cuando interfuncione con un equipo antiguo que no sea conforme a esta Recomendación.

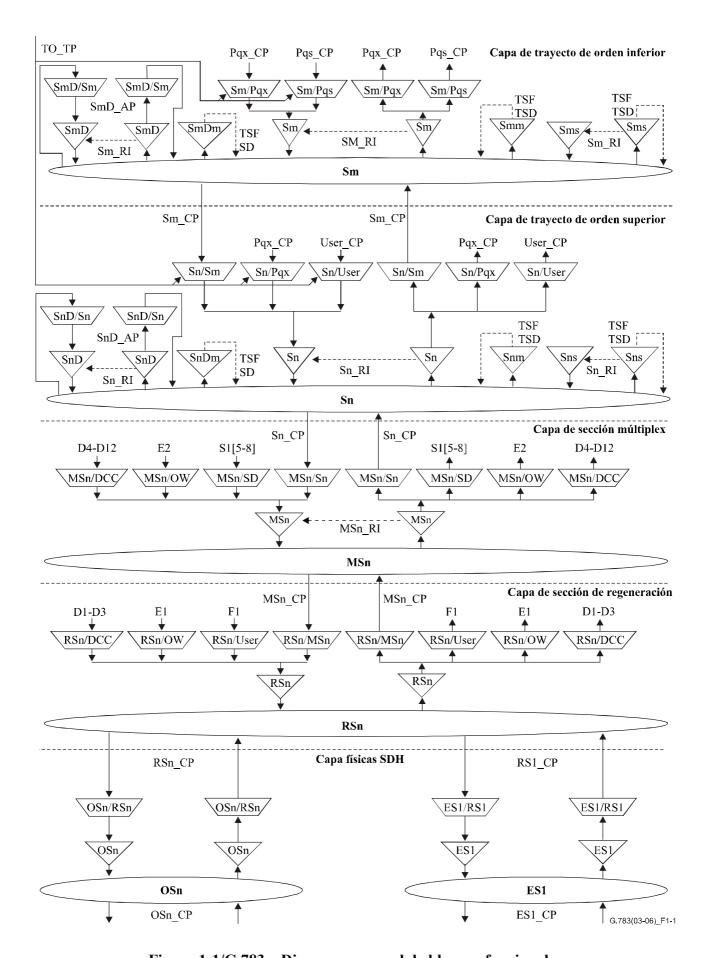


Figura 1-1/G.783 – Diagrama general de bloques funcionales

2 Referencias

Las siguientes Recomendaciones del UIT-T y otras referencias contienen disposiciones que, mediante su referencia en este texto, constituyen disposiciones de la presente Recomendación. Al efectuar esta publicación, estaban en vigor las ediciones indicadas. Todas las Recomendaciones y otras referencias son objeto de revisiones por lo que se preconiza que los usuarios de esta Recomendación investiguen la posibilidad de aplicar las ediciones más recientes de las Recomendaciones y otras referencias citadas a continuación. Se publica periódicamente una lista de las Recomendaciones UIT-T actualmente vigentes. En esta Recomendación, la referencia a un documento, en tanto que autónomo, no le otorga el rango de una Recomendación.

- [1] Recomendación UIT-T G.664 (2006), Procedimientos y requisitos de seguridad óptica para sistemas ópticos de transporte.
- [2] Recomendación UIT-T G.691 (2006), Interfaces ópticas para los sistemas monocanal STM-64 y otros sistemas de la jerarquía digital síncrona con amplificadores ópticos.
- [3] Recomendación UIT-T G.703 (2001), Características físicas y eléctricas de las interfaces digitales jerárquicas.
- [4] Recomendación UIT-T G.704 (1998), Estructuras de trama síncrona utilizadas en los niveles jerárquicos 1544, 6312, 2048, 8448 y 44 736 kbit/s.
- [5] Recomendación UIT-T G.705 (2000), Características de los bloques funcionales de equipos de la jerarquía digital presiócrona.
- [6] Recomendación UIT-T G.707/Y.1322 (2003), *Interfaz de nodo de red para la jerarquía digital síncrona*.
- [7] Recomendación UIT-T G.743 (1988), Equipo múltiplex digital de segundo orden que funciona a 6312 kbit/s y utiliza justificación positiva.
- [8] Recomendación UIT-T G.752 (1988), Características de los equipos múltiplex digitales basados en la velocidad binaria de segundo orden de 6312 kbit/s, con justificación positiva.
- [9] Recomendación UIT-T G.781 (1999), Funciones de capas de sincronización.
- [10] Recomendación UIT-T G.784 (1999), Gestión de la jerarquía digital síncrona.
- [11] Recomendación UIT-T G.803 (2000), Arquitectura de redes de transporte basadas en la jerarquía digital síncrona.
- [12] Recomendación UIT-T G.805 (2000), Arquitectura funcional genérica de las redes de transporte.
- [13] Recomendación UIT-T G.806 (2006), Características del equipo de transporte Metodología de descripción y funcionalidad genérica.
- [14] Recomendación UIT-T G.813 (2003), Características de temporización de relojes subordinados de equipos de la jerarquía digital síncrona.
- [15] Recomendación UIT-T G.823 (2000), Control de la fluctuación de fase y de la fluctuación lenta de fase en las redes digitales basadas en la jerarquía de 2048 kbit/s.
- [16] Recomendación UIT-T G.824 (2000), Control de la fluctuación de fase y de la fluctuación lenta de fase en las redes digitales basadas en la jerarquía de 1544 kbit/s.
- [17] Recomendación UIT-T G.825 (2000), Control de la fluctuación de fase y de la fluctuación lenta de fase en las redes digitales basadas en la jerarquía digital síncrona.
- [18] Recomendación UIT-T G.831 (2000), Capacidades de gestión de las redes de transporte basadas en la jerarquía digital síncrona.

- [19] Recomendación UIT-T G.841 (1998), Tipos y características de las arquitecturas de protección para redes de la jerarquía digital síncrona.
- [20] Recomendación UIT-T G.957 (2006), Interfaces ópticas para equipos y sistemas relacionados con la jerarquía digital síncrona.
- [21] Recomendación UIT-T I.732 (2000), Características funcionales del equipo del modo de transferencia asíncrono.
- [22] Recomendación UIT-T M.3010 (2000), Principios para una red de gestión de las telecomunicaciones.
- [23] Recomendación UIT-T O.172 (2005), Aparato de medida de la fluctuación de fase y de la fluctuación lenta de fase para sistemas digitales basados en la jerarquía digital síncrona.
- [24] Recomendación UIT-T G.780/Y.1351 (2004), *Términos y definiciones para las redes de jerarquía digital síncrona*.
- [25] Recomendación UIT-T G.870/Y.1352 (2004), *Términos y definiciones para redes ópticas de transporte*.
- [26] Recomendación UIT-T G.7041/Y.1303 (2005), Procedimiento de entramado genérico.

3 Términos y definiciones

NOTA 1 – Las siguientes definiciones son pertinentes en el contexto de las Recomendaciones relacionadas con la SDH.

NOTA 2 – Las referencias a las señales G.703 tienen por objeto indicar solamente las señales PDH, y no una interfaz STM-1 eléctrica. Se ha utilizado la notación G.703 (PDH) para expresar esta interpretación.

- **3.1** arquitectura (de protección) 1 + 1: Véase la Rec. UIT-T G.870/Y.1352 [25].
- 3.2 arquitectura (de protección) 1:n ($n \ge 1$): Véase la Rec. UIT-T G.870/Y.1352 [25].
- **3.3** punto de acceso (AP, access point): Véase la Rec. UIT-T G.805 [12].
- **3.4** camino/trayecto/sección/conexión de subred/conexión de red activo: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.5** función de adaptación (A, adaptation function): Véase la Rec. UIT-T G.805 [12].
- **3.6** información adaptada (AI, adapted information): Véase la Rec. UIT-T G.805 [12].
- **3.7** unidad administrativa (AU, administrative unit): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.8 grupo de unidades administrativas (AUG, administrative unit group)**: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.9** alarma: Véase la Rec. UIT-T G.806 [13].
- **3.10** todos UNOS: Véase la Rec. UIT-T G.806 [13].
- **3.11** anomalía: Véase la Rec. UIT-T G.806 [13].
- **3.12 función atómica**: Véase la Rec. UIT-T G.806 [13].
- **3.13 AUn-AIS**: Véase la Rec. UIT-T G.707/Y.1322 [6].
- **3.14** interrupción automática del láser (ALS, automatic laser shutdown): Véase la Rec. UIT-T G.664 [1].
- **3.15** conmutación automática de protección (APS, automatic protection switching): Véase la Rec. UIT-T G.780/Y.1351 [24].
- 3.16 tipo de camino/conexión bidireccional: Véase la Rec. UIT-T G.806 [13].
- 4 Rec. UIT-T G.783 (03/2006)

- 3.17 conmutación (de protección) bidireccional: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.18** paridad de entrelazado de bits (BIP, bit interleaved parity): Véase la Rec. UIT-T G.780/Y.1351 [24] ("BIP-X").
- 3.19 tipo de conexión en difusión: Véase la Rec. UIT-T G.806 [13].
- **3.20** información característica (CI, characteristic information): Véanse las Recs. UIT-T G.805 [12] y G.806 [13].
- 3.21 capa de cliente/servidor: Véase la Rec. UIT-T G.806 [13].
- **3.22 conexión**: Véase la Rec. UIT-T G.805 [12].
- **3.23** función de conexión (C, connection function): Véase la Rec. UIT-T G.806 [13].
- **3.24** matriz de conexión (CM, connection matrix): Véase la Rec. UIT-T G.806 [13].
- **3.25** punto de conexión (CP, connection point): Véase la Rec. UIT-T G.806 [13].
- 3.26 consolidación: Véase la Rec. UIT-T G.806 [13].
- 3.27 elemento de servicio común de información de gestión (CMISE, common management information service element): Véase la Rec. UIT-T X.710 | ISO/CEI 9595.
- **3.28 función compuesta**: Véase la Rec. UIT-T G.806 [13].
- **3.29** canal de comunicaciones de datos (DCC, data communications channel): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.30 defecto**: Véase la Rec. UIT-T G.806 [13].
- **3.31 desincronizador**: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.32** tráfico suplementario: Véase la Rec. UIT-T G.841 [19].
- **3.33 fallo**: Véase la Rec. UIT-T G.806 [13].
- **3.34** avería: Véase la Rec. UIT-T G.806 [13].
- 3.35 causa de fallo: Véase la Rec. UIT-T G.806 [13].
- **3.36 función**: Véase la Rec. UIT-T G.806 [13].
- **3.37** agrupación: Véase la Rec. UIT-T G.806 [13].

Es posible agrupar trayectos de contenedor virtual, trayectos de nivel 12 (VC-12) por tipo de servicio, por destino, o por categoría de protección en trayectos VC-4 que pueden ser gestionados en consecuencia. También es posible agrupar trayectos VC-4, de acuerdo con criterios similares, en el módulo de transporte síncrono (STM).

- **3.38 tiempo de liberación**: Véase la Rec. UIT-T G.870/Y.1352 [25].
- **3.39 capa**: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.40** información de gestión (MI, management information): Véase la Rec. UIT-T G.806 [13].
- **3.41** punto de gestión (MP, management point): Véase la Rec. UIT-T G.806 [13].
- **3.42** sección múltiplex (MS, multiplex section): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.43** señal de indicación de alarma de sección múltiplex (MS-AIS, multiplex section alarm indication signal): Véase la Rec. UIT-T G.707/Y.1322 [6].
- **3.44** indicación de defecto distante de sección múltiplex (MS-RDI, multiplex section remote defect indication): Véase la Rec. UIT-T G.707/Y.1322 [6].
- **3.45 tara de sección múltiplex (MSOH, multiplex section overhead)**: Véase la Rec. UIT-T G.780/Y.1351 [24].

- 3.46 conexión de red (NC, network connection): Véase la Rec. UIT-T G.805 [12].
- **3.47 función de elemento de red (NEF,** *network element function*): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.48** interfaz de nodo de red (NNI, network node interface): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.49** tráfico normal: Véase la Rec. UIT-T G.841 [19].
- **3.50 fallo de la señal de salida (OSF,** *outgoing signal fail*): Véase la Rec. UIT-T G.870/Y.1352 [25].
- **3.51** acceso a tara (OHA, overhead access): Véase la Rec. UIT-T G.870/Y.1352 [25].
- **3.52 trayecto**: Véase la Rec. UIT-T G.806 [13].
- 3.53 tara de trayecto (POH, path overhead): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.54** evento de justificación de puntero (PJE, pointer justification event): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.55 proceso**: Véase la Rec. UIT-T G.806 [13].
- **3.56** camino/trayecto/sección/conexión de subred/conexión de red de protección: Véase la Rec. UIT-T G.841 [19].
- **3.57 punto de referencia**: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.58** sección de regeneración (RS, regenerator section): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.59** indicación de defecto distante (RDI, remote defect indication): Véase la Rec. UIT-T G.806 [13].
- **3.60** indicación de error distante (REI, remote error indication): Véase la Rec. UIT-T G.806 [13].
- **3.61** información distante (RI, remote information): Véase la Rec. UIT-T G.806 [13].
- **3.62** punto distante (RP, remote point): Véase la Rec. UIT-T G.806 [13].
- **3.63** tara de sección de regeneración (RSOH, regenerator section overhead): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.64 sección**: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.65** degradación de señal de servidor (SSD, server signal degrade): Véase la Rec. UIT-T G.806 [13].
- **3.66 fallo de señal de servidor (SSF, server signal fail)**: Véase la Rec. UIT-T G.806 [13].
- **3.67** degradación de señal (SD, signal degrade): Véase la Rec. UIT-T G.806 [13].
- **3.68** fallo de señal (SF, signal fail): Véase la Rec. UIT-T G.806 [13].
- **3.69** conexión de subred (SNC, sub-network connection): Véase la Rec. UIT-T G.805 [12].
- 3.70 VC no equipado de supervisión: Véase la Rec. UIT-T G.707/Y.1322 [6].
- **3.71** módulo de transporte síncrono (STM, synchronous transport module): Véase la Rec. UIT-T G.780/Y.1351 [24].
- 3.72 red de gestión de las telecomunicaciones (RGT): Véase la Rec. UIT-T M.3010 [22]
- **3.73** punto de conexión de terminación (TCP, termination connection point): Véase la Rec. UIT-T G.806 [13].

- **3.74** información de temporización (TI, timing information): Véase la Rec. UIT-T G.806
- [13].
- **3.75** punto de temporización (TP, timing point): Véase la Rec. UIT-T G.806 [13].
- **3.76 camino**: Véase la Rec. UIT-T G.805 [12].
- **3.77 degradación de señal de camino (TSD,** *trail signal degrade*): Véase la Rec. UIT-T G.806 [13].
- 3.78 fallo de señal de camino (TSF, trail signal fail): Véase la Rec. UIT-T G.806 [13].
- **3.79** función de terminación de camino (TT, trail termination function): Véase la Rec. UIT-T G.806 [13].
- 3.80 retardo de tránsito: Véase la Rec. UIT-T G.806 [13].
- **3.81** unidad afluente (TU-m, tributary unit): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.82 TUm-AIS**: Véase la Rec. UIT-T G.707/Y.1322 [6].
- **3.83** contenedor virtual (VC-n, virtual container): Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.84** camino/trayecto/sección/conexión de subred/conexión de red de trabajo: Véase la Rec. UIT-T G.841 [19].
- **3.85 VC no equipado**: Véase la Rec. UIT-T G.707/Y.1322 [6].
- **3.86 bit no definido**: Véase la Rec. UIT-T G.780/Y.1351 [24].
- **3.87** octeto no definido: Véase la Rec. UIT-T G.780/Y.1351 [24].
- 3.88 tipo de camino/conexión unidireccional: Véase la Rec. UIT-T G.806 [13].
- 3.89 conmutación (de protección) unidireccional: Véase la Rec. UIT-T G.780/Y.1351 [24].
- 3.90 tiempo de espera de restablecimiento: Véase la Rec. UIT-T G.870/Y.1352 [25].

4 Abreviaturas, siglas o acrónimos

En esta Recomendación se utilizan las siguientes abreviaturas, siglas o acrónimos.

- A Función de adaptación (adaptation function)
- AcSL Etiqueta de señal aceptada (accepted signal label)
- AcTI Identificador de traza aceptado (accepted trace identifier)
- ADM Multiplexor de adición/supresión (add-drop multiplexer)
- AI Información adaptada (adapted information)
- AIS Señal de indicación de alarma (alarm indication signal)
- ALS Interrupción automática del láser (automatic laser shutdown)
- AP Punto de acceso (access point)
- APS Conmutación de protección automática (automatic protection switching)
- APSD Corte automático de potencia (automatic power shutdown)
- ATM Modo de transferencia asíncrono (asynchronous transfer mode)
- AU Unidad administrativa (administrative unit)
- AUG Grupo de unidades administrativas (*administrative unit group*)
- AU-n Unidad administrativa, nivel n (*administrative unit, level n*)

BBER Tasa de bloques con errores de fondo (background block error ratio)

BER Tasa de errores en los bits (bit error ratio)

BIP Paridad de entrelazado de bits (bit interleaved parity)

C Función de conexión (connection function)

CI Información característica (characteristic information)

CK Reloj (*clock*)

CM Matriz de conexión (*connection matrix*)

CMISE Elemento de servicio común de información de gestión (common management

information service element)

CP Punto de conexión (connection point)

CRC Verificación por redundancia cíclica (cyclic redundancy check)

CRC-N Verificación por redundancia cíclica, anchura N (cyclic redundancy check, width N)

CSES Segundos consecutivos con muchos errores (*consecutive severely errored seconds*)

D Datos (data)

DCC Canal de comunicaciones de datos (data communications channel)

DEC Decremento (decrement)

DEG Degradado (degraded)

DEGTHR Umbral degradado (degraded threshold)

DS Segundo con defecto (defect second)

DXC Conexión cruzada digital (digital cross connect)

E0 Señal de interfaz eléctrica 64 kbit/s (electrical interface signal 64 kbit/s)

E11 Señal de interfaz eléctrica 1544 kbit/s (*electrical interface signal 1544 kbit/s*)

E12 Señal de interfaz eléctrica 2048 kbit/s (electrical interface signal 2048 kbit/s)

E22 Señal de interfaz eléctrica 8448 kbit/s (*electrical interface signal 8448 kbit/s*)

E31 Señal de interfaz eléctrica 34 368 kbit/s (*electrical interface signal 34 368 kbit/s*)

E32 Señal de interfaz eléctrica 44 736 kbit/s (*electrical interface signal 44 736 kbit/s*)

E4 Señal de interfaz eléctrica 139 264 kbit/s (*electrical interface signal 139 264 kbit/s*)

EBC Cómputo de bloques con error (errored block count)

EDC Código de detección de errores (error detection code)

EDCV Violación de código de detección de errores (error detection code violation)

EMF Función de gestión de equipos (*equipment management function*)

EQ Equipo (equipment)

Eq Señal eléctrica del tipo de la Rec. UIT-T G.703, orden de velocidad binaria q (q = 11,

12, 21, 22, 31, 32, 4) (ITU-T Rec. G.703 type electrical signal, bit rate order q (q = 11,

12, 21, 22, 31, 32, 4))

ES Sección eléctrica (electrical section)

ES Segundo con errores (*errored second*)

ES1 Sección eléctrica, nivel 1 (electrical section, level 1)

ExSL Etiqueta de señal esperada (expected signal label)

ExTI Identificador de traza esperado (expected trace identifier)

F B Bloque de extremo distante (far-end block)

F DS Segundo con defectos de extremo distante (far-end defect second)

F EBC Cómputo de bloques con errores en el extremo distante (far-end errored block count)

FAS Señal de alineación de trama (frame alignment signal)

FEC Corrección de errores en recepción (forward error correction)

FIFO Primero en entrar, primero en salir (first in first out)

FM Gestión de averías (fault management)
 FOP Fallo de protocolo (failure of protocol)
 FS Conmutación forzada (forced switch)

FS Señal de comienzo de trama (frame start signal)

HO Orden superior (higher order)

HOVC Contenedor virtual de orden superior (higher order virtual container)

HP Trayecto de orden superior (higher order path)

ID Identificador

IEC Cómputo de errores de entrada (*incoming error count*)

IF Estado en trama (in frame state)

INC Incremento

IncAIS AIS de entrada (*incoming AIS*)

LC Conexión de enlace (*link connection*)

LO Enclavamiento (*lockout*)

LO Orden inferior (lower order)

LOA Pérdida de alineación (loss of alignment); término genérico para LOF, LOM, LOP

LOF Pérdida de trama (loss of frame)

LOM Pérdida de multitrama (loss of multiframe)

LOP Pérdida de puntero (loss of pointer)
LOS Pérdida de la señal (loss of signal)

LOVC Contenedor virtual de orden inferior (lower order virtual container)

LP Trayecto de orden inferior (*lower order path*)

LTC Pérdida de conexión en cascada (loss of tandem connection)

LTI Pérdida de todas las referencias de temporización entrantes (loss of all incoming timing

references)

MC Conexión de matriz (matrix connection)

MCF Función de comunicaciones de mensajes (message communications function)

MI Información de gestión (management information)

MND Miembro no alineable en multitrama (member not deskewable)

MON Supervisado (monitored)

MP Punto de gestión (management point)

MRTIE Máximo error relativo en el intervalo de tiempo (maximum relative time interval error)

MS Conmutación manual (manual switch)

MS Sección múltiplex (multiplex section)

MSB Bit más significativo (most significant bit)

MSn Capa de sección múltiplex, nivel n (n = 1, 4 16) (multiplex section layer, level n (n = 1,

4, 16))

MSnP2fsh Anillo de protección compartida a 2 fibras de sección múltiplex STM-N (STM-N

multiplex section 2-fibre shared protection ring)

MSnP4fsh Anillo de protección compartida a 4 fibras de sección múltiplex STM-N (STM-N

multiplex section 4-fibre shared protection ring)

MSOH Tara de sección múltiplex (multiplex section overhead)

MSP Protección de sección múltiplex (multiplex section protection)

MST (señal de) Estatus de miembro (member status (signal))

MSU Señal de miembro no disponible (member signal unavailable)

MTIE Máximo error en el intervalo de tiempo (maximum time interval error)

N_B Bloque de extremo cercano (near-end block)

N BBE Error de bloque de fondo en el extremo cercano (near-end background block error)

N DS Segundo con defecto en el extremo cercano (near-end defect second)

N EBC Cómputo de bloque con errores en el extremo cercano (near-end errored block count)

NC Conexión de red (network connection)

N.C. No conectado (not connected)

NDF Bandera de nuevos datos (new data flag)

NE Elemento de red (network element)

NEF Función de elemento de red (network element function)

NMON No supervisado (not monitored)

NNI Interfaz de nodo de red (network node interface)

NU Uso nacional (national use)

NUT Tráfico no protegido ininterrumpible (non-preemptible unprotected traffic)

OAM Operación, administración y mantenimiento (operation, administration and

maintenance)

ODI Indicación de defecto saliente (outgoing defect indication)

OEI Indicación de error saliente (outgoing error indication)

OF B Bloque en el extremo distante de salida (*outgoing far-end block*)

OF BBE Bloque con errores de fondo en el extremo distante de salida (outgoing far-end

background block error)

OF DS Segundo con defectos en el extremo distante de salida (outgoing far-end defect second)

OF_EBC Cómputo de bloques con errores en el extremo distante de salida (*outgoing far-end errored block count*)

OFS Segundo fuera de trama (*out-of-frame second*)

OHA Acceso de tara (overhead access)

ON B Bloque en el extremo cercano de salida (*outgoing near-end block*)

ON_BBE Bloque con errores de fondo en el extremo cercano de salida (*outgoing near-end background block error*)

ON_DS Segundo con defectos en el extremo cercano de salida (outgoing near-end defect second)

ON_EBC Cómputo de bloques con errores de extremo cercano de salida (*outgoing near-end errored block count*)

OOF Fuera de trama (out of frame)

OS Sección óptica (optical section)

OSF Fallo de la señal de salida (outgoing signal fail)

OSn Capa de sección óptica, nivel n (n = 1, 4, 16) (optical section layer, level n (n = 1, 4, 16))

OW Circuito (*orderwire*)

P0x Capa a 64 kbit/s (transparente) (64 kbit/s layer (transparent))

P11x Capa a 1544 kbit/s (transparente) (1544 kbit/s layer (transparent))

P12s Capa de trayecto PDH a 2048 kbit/s con estructura de trama de 125 µs síncrona de acuerdo con la Rec. UIT-T G.704 (2048 kbit/s PDH path layer with synchronous 125 µs frame structure according to ITU-T Rec. G.704)

P12x Capa a 2048 kbit/s (transparente) (2048 kbit/s layer (transparent))

P21x Capa a 6312 kbit/s (transparente) (6312 kbit/s layer (transparent))

P22e Capa de trayecto PDH a 8448 kbit/s con 4 a 2048 kbit/s plesiócrona (8448 kbit/s PDH path layer with 4 plesiochronous 2048 kbit/s)

P22x Capa a 8448 kbit/s (transparente) (8448 kbit/s layer (transparent))

P31e Capa de trayecto PDH a 34 368 kbit/s con 4 a 8448 kbit/s plesiócrona (34 368 kbit/s PDH path layer with 4 plesiochronous 8448 kbit/s)

P31s Capa de trayecto PDH a 34 368 kbit/s con estructura de trama de 125 µs síncrona de acuerdo con la Rec. UIT-T G.832 (34 368 kbit/s PDH path layer with synchronous 125 µs frame structure according to ITU-T Rec. G.832)

P31x Capa a 34 368 kbit/s (transparente) (34 368 kbit/s layer (transparent))

P32x Capa a 44 736 kbit/s (transparente) (44 736 kbit/s layer (transparent))

P4a Capa de trayecto PDH a 139 264 kbit/s con 3 a 44 736 kbit/s plesiócrona (139 264 kbit/s PDH path layer with 3 plesiochronous 44 736 kbit/s)

P4e Capa de trayecto PDH a 139 264 kbit/s con 4 a 34 368 kbit/s plesiócrona (139 264 kbit/s PDH path layer with 4 plesiochronous 34 368 kbit/s)

P4s Capa de trayecto PDH a 139 264 kbit/s con estructura de trama de 125 μs, síncrona, de acuerdo con la Rec. UIT-T G.832 (139 264 kbit/s PDH path layer with synchronous 125 μs frame structure according to ITU-T Rec. G.832)

P4x Capa a 139 264 kbit/s (transparente) (139 264 kbit/s layer (transparent))

PC Transportado de cabida útil (payload-carrying)

PDH Jerarquía digital plesiócrona (plesiochronous digital hierarchy)

PG Generador de puntero (pointer generator)

PJC Cómputo de justificación de puntero (pointer justification count)

PJE Evento de justificación de puntero (pointer justification event)

PLCR Pérdida parcial de capacidad en recepción (partial loss of capacity receive)

PLCT Pérdida parcial de capacidad en transmisión (partial loss of capacity transmit)

PLM Desadaptación de cabida útil (payload mismatch)

PM Supervisión de la calidad de funcionamiento (*performance monitoring*)

POH Tara de trayecto (path overhead)

PP Procesador de puntero (pointer processor)

Pq Capa de trayecto PDH, orden de velocidad binaria q (q = 11, 12, 21, 22, 31, 32, 4)

(PDH path layer, bit rate order q (q = 11, 12, 21, 22, 31, 32, 4))

PRC Reloj de referencia primario (*primary reference clock*)

ProvM Miembro aprovisionado (provisioned member)

PS Conmutación de protección (protection switching)

PSE Evento de conmutación de protección (protection switch event)

PTR Puntero (pointer)

RDI Indicación de defecto distante (remote defect indication)

REI Indicación de error distante (remote error indication)

RGT Red de gestión de las telecomunicaciones

RI Información distante (remote information)

RP Punto distante (remote point)

RS Sección de regeneración (regenerator section)

RSn Capa de sección de regeneración, nivel n (n = 1, 4, 16) (regenerator section layer,

level n (n = 1, 4, 16)

RSOH Tara de sección de regeneración (regenerator section overhead)

RxSL Etiqueta de señal recibida (received signal label)

RxTI Identificador de traza recibida (received trace identifier)

S11 Capa de trayecto VC-11 (VC-11 path layer)

S11D Subcapa de conexión en cascada VC-11 (VC-11 tandem connection sublayer)

S11P Subcapa de protección de trayecto VC-11 (VC-11 path protection sublayer)

S12 Capa de trayecto VC-12 (VC-12 path layer)

S12D Subcapa de conexión en cascada VC-12 (VC-12 tandem connection sublayer)

S12P Subcapa de protección de trayecto VC-12 (VC-12 path protection sublayer)

S2 Capa de trayecto VC-2 (VC-2 path layer)

S₂D Subcapa de conexión en cascada VC-2 (VC-2 tandem connection sublayer) S₂P Subcapa de protección de trayecto VC-2 (VC-2 path protection sublayer) S3 Capa de trayecto VC-3 (VC-3 path layer) S₃D Subcapa de conexión en cascada VC-3 que utiliza la definición de TCM de acuerdo con el anexo D/G.707/Y.1322 (opción 2) (VC-3 tandem connection sublayer using TCM definition according to Annex D/G.707/Y.1322 (option 2)) S₃P Subcapa de protección de trayecto VC-3 (VC-3 path protection sublayer) Subcapa de conexión en cascada VC-3 que utiliza la definición de TCM de acuerdo con S₃T el anexo C/G.707/Y.1322 (opción 1) (VC-3 tandem connection sublayer using TCM definition according to Annex C/G.707/Y.1322 (option 1)) **S4** Capa de travecto VC-4 (VC-4 path layer) Subcapa de conexión en cascada VC-4 que utiliza la definición de TCM de acuerdo con S4D el anexo D/G.707/Y.1322 (opción 2) (VC-4 tandem connection sublayer using TCM definition according to Annex D/G.707/Y.1322 (option 2)) S4P Subcapa de protección de trayecto VC-4 (VC-4 path protection sublayer) S4T Subcapa de conexión en cascada VC-4 que utiliza la definición de TCM de acuerdo con el anexo C/G.707/Y.1322 (opción 1) (VC-4 tandem connection sublayer using TCM definition according to Annex C/G.707/Y.1322 (option 1)) SD Degradación de señal (signal degrade) **SDH** Jerarquía digital síncrona (synchronous digital hierarchy) **SDXC** Conexión cruzada de la jerarquía digital síncrona (synchronous digital hierarchy crossconnect) **SEC** Reloj de equipo de SDH (SDH equipment clock) **SEMF** Función de gestión de equipo síncrono (synchronous equipment management function) Segundo con muchos errores (severely errored second) SES SF Fallo de señal (signal fail) Sk Sumidero (sink) Sm Capa VC-m de orden inferior (m = 11, 12, 2) (lower order VC-m layer (m = 11, 12, 2)) SmD Subcapa de conexión en cascada VC-m (m = 11, 12, 2) (VC-m (m = 11, 12, 2) tandem connection sublayer) Monitor no intrusivo de capa de travecto VC-m (m = 11, 12, 2) (VC-m (m = 11, 12, 2) Smm *path layer non-intrusive monitor*) SmP Subcapa de protección de trayecto VC-m (m = 11, 12, 2) (VC-m (m = 11, 12, 2) path *protection sublayer*) Capa de trayecto VC-m (m = 11, 12, 2) no equipada con supervisión (VC-m (m = 11, Sms 12, 2) path layer supervisory-unequipped) Capa VC-n de orden superior (n = 3, 4, 4-Xc) o capa VC-3 de orden inferior (higher Sn order VC-n layer (n = 3, 4, 4-Xc) or lower order VC-3 layer) **SNC** Conexión de subred (sub-network connection) SNC/I Protección de conexión de subred con supervisión inherente (inherently monitored *sub-network connection protection*)

SNC/N Protección de conexión de subred con supervisión no intrusiva (non-intrusively monitored sub-network connection protection)

SNC/S Protección de conexión de subred con supervisión de subcapa (conexión en cascada) ((sublayer (tandem connection) monitored sub-network connection protection)

SnD Subcapa de conexión en cascada VC-n (n = 3, 4, 4-Xc) que utiliza la definición de TCM de acuerdo con el anexo D/G.707/Y.1322 (opción 2) (VC-n (n = 3, 4, 4-Xc) tandem connection sublayer using TCM definition according to Annex D/G.707/Y.1322 (option 2))

Snm Monitor no intrusivo de capa de trayecto VC-n (n = 3, 4, 4-Xc) (*VC-n* (n = 3, 4, 4-Xc) path layer non-intrusive monitor)

SnP Subcapa de protección de trayecto VC-n (n = 3, 4, 4-Xc) (VC-n (n = 3, 4, 4-Xc) path protection sublayer)

Sns Supervisión de capa de trayecto VC-n (n = 3, 4, 4-Xc) no equipada (VC-n (n = 3, 4, 4-Xc) $path\ layer\ supervisory-unequipped$)

SnT Subcapa de conexión en cascada VC-n (n = 3, 4, 4-Xc) que utiliza la definición de TCM de acuerdo con el anexo C/G.707/Y.1322 (opción 1) (VC-n (n = 3, 4, 4-Xc) tandem connection sublayer using TCM definition according to Annex C/G.707/Y.1322 (option 1))

So Fuente (source)

SOH Tara de sección (section overhead)

SPRING Anillo de protección compartida (shared protection ring)

SQ Indicador de secuencia (sequence indicator)

SQM Discordancia de indicador de secuencia (sequence indicator mismatch)

SSD Degradación de señal de servidor (server signal degrade)

SSF Fallo de señal de servidor (server signal fail)

SSM Mensaje de estado de sincronización (synchronization status message)

SSU Unidad de suministro de sincronización (synchronization supply unit)

STM Módulo de transporte síncrono (synchronous transport module)

TCM Monitor de conexión en cascada (tandem connection monitor)

TCP Punto de conexión de terminación (termination connection point)

TD Degradación de transmisión (transmit degrade)

TF Fallo de transmisión (transmit fail)

TFAS Señal de alineación de trama de identificador de traza de camino (*trail trace identifier frame alignment signal*)

TI Información de temporización (timing information)

TIM Discordancia de identificador de traza (trace identifier mismatch)

TLCR Pérdida total de capacidad en recepción (total loss of capacity receive)

TLCT Pérdida total de capacidad en transmisión (total loss of capacity transmit)

TP Punto de temporización (timing point)

TPmode Modo punto de terminación (termination point mode)

TS Intervalo de tiempo (time slot)

TSD Degradación de señal de camino (trail signal degrade)

TSF Fallo de señal de camino (trail signal fail)

TSL Etiqueta de señal de camino (trail signal label)

TT Función de terminación de camino (trail termination function)

TTI Identificador de traza de camino (trail trace identifier)

TTP Punto de terminación de camino (trail termination point)

TTs Función de supervisión de terminación de camino (trail termination supervisory

function)

TU Unidad afluente (tributary unit)

TUG Grupo de unidades afluentes (*tributary unit group*)

TUG-m Grupo de unidades afluentes, nivel m (*tributary unit group, level m*)

TU-m Unidad afluente, nivel m (*tributary unit, level m*)

TxSL Etiqueta de señal transmitida (transmitted signal label)

TxTI Identificador de traza transmitido (transmitted trace identifier)

UMST MST inesperada (persistente) ((persistent) unexpected MST)

UNEQ No equipado (unequipped)

UNI Interfaz usuario-red (user network interface)

USR Canales de usuario (user channels)

VC Contenedor virtual (virtual container)

VCG Grupo de concatenación virtual (virtual concatenation group)

VC-n Contenedor virtual, nivel n (*virtual container, level n*)
VLI Información VCAT/LCAS (*VCAT/LCAS information*)

VP Trayecto virtual (virtual path)

W Trabajo (working)

WTR Espera para restauración (wait to restore)

5 Convenios

Para la metodología y los convenios genéricos, véase la cláusula 5/G.806 [13].

5.1 Nombres de capas de transmisión específicas de la SDH

Los nombres de las capas relacionadas con la SDH son:

ESn Sección eléctrica STM-N (n = 1)

OSn Sección óptica STM-N (n = 1, 4, 16, 64, 256)

RSn Sección de regeneración STM-N (n = 1, 4, 16, 64, 256)

MSn Sección múltiplex STM-N (n = 1, 4, 16, 64, 256)

Sn Trayecto VC-n (n = 3, 4, 4-Xc)

SnP Subcapa de protección de camino VC-n (n = 3, 4, 4-Xc)

- SnD Trayecto VC-n, subcapa de conexión en cascada (n = 3, 4, 4-Xc) que utiliza la definición de TCM de acuerdo con el anexo D/G.707/Y.1322 (opción 2) [6]
- SnT Trayecto VC-n, subcapa de conexión en cascada (n = 3, 4, 4-Xc) que utiliza la definición de TCM de acuerdo con el anexo C/G.707/Y.1322 (opción 1)
- Sm Trayecto VC-m (m = 11, 12, 2)
- SmD Trayecto VC-m, subcapa de conexión en cascada (m = 11, 12, 2)
- Pqs Datos de usuario asíncronos en la PDH (q = 11 para 1,5 Mbit/s, q = 12 para 2 Mbit/s). Esta capa se define en la Rec. UIT-T G.705 [5]. Las adaptaciones a la SDH se definen en la presente Recomendación.
- Pqx Datos de usuario PDH (q = 11 para 1,5 Mbit/s, q = 12 para 2 Mbit/s, q = 2 para 6 Mbit/s, q = 31 para 34 Mbit/s, q = 32 para 45 Mbit/s, q = 4 para 140 Mbit/s). Esta capa se define en la Rec. UIT-T G.705. Las adaptaciones a la SDH se definen en la presente Recomendación.

5.2 Calidad de funcionamiento y fiabilidad

Para las especificaciones relativas al retardo de tránsito, tiempo de respuesta, disponibilidad y fiabilidad, y seguridad del transmisor óptico, véase la cláusula 9/G.806.

6 Supervisión

El comportamiento genérico para procesos de supervisión se describe en la cláusula 6/G.806.

6.1 Modo punto de terminación de camino y modo puerto

Véase 6.1/G.806.

6.2 Defectos

6.2.1 Supervisión de la continuidad

Los defectos de supervisión de la continuidad genéricos se describen en 6.2.1/G.806. Los defectos de supervisión de la continuidad específicos de la SDH se describen más adelante.

6.2.1.1 Defecto de pérdida de señal (dLOS, loss of signal defect)

Interfaces ópticas STM-N: Este parámetro debe tomar el valor "señal entrante ausente" cuando el nivel de potencia de la señal entrante en el receptor ha descendido a un nivel que corresponde a una condición de error de grado elevado. Este parámetro se supervisa con el objeto de indicar:

- i) sea un fallo del transmisor,
- ii) sea un corte del trayecto óptico.

NOTA – Ésta es una especificación funcional que sólo se refiere a la calidad de la señal entrante. No implica necesariamente la medición de la potencia óptica ni de la tasa de errores en los bits (BER). Los requisitos de temporización para la detección del defecto LOS están dentro de la esfera de las normas regionales. Un ejemplo es el siguiente: Se produce un defecto LOS cuando se detecta la ausencia de transiciones en la señal entrante (antes de la desaleatorización) durante el tiempo T, siendo $2,3 \le T \le 100 \,\mu s$. El defecto LOS desaparece cuando transcurre un periodo de tiempo igual o mayor que $125 \,\mu s$ o $2,5 \,T'$ en el cual no se haya producido ningún intervalo de longitud T' sin transiciones, siendo $2,3 \le T' \le 100 \,\mu s$.

Interfaces eléctricas STM-1:

Opción 1: Se detecta un defecto LOS cuando la señal entrante "no contiene transiciones", es decir, cuando el nivel de la señal es inferior o igual a un nivel de 35 dB por debajo del nominal durante N intervalos de impulso consecutivos, siendo 10 ≤ N ≤ 255. El defecto LOS ha desaparecido cuando la señal entrante contiene "transiciones", es decir, cuando el

nivel de la señal es igual o mayor que un nivel de 15 dB por debajo del nominal, durante N intervalos de impulso consecutivos, siendo $10 \le N \le 255$. Una señal con "transiciones" corresponde a una señal codificada en CMI.

Opción 2: Se produce un defecto LOS cuando no se detecta ninguna transición en la señal entrante (antes de la desaleatorización) durante un periodo de tiempo T, siendo 2,3 ≤ T ≤ 100 μs. El defecto LOS ha desaparecido cuando ha transcurrido un periodo de tiempo mayor que 125 μs o 2,5 T' que no contenga intervalos de longitud T' sin transiciones, siendo 2,3 ≤ T' ≤ 100 μs.

6.2.2 Supervisión de la conectividad

Todos los procesos de supervisión de la conectividad son genéricos y se describen en 6.2.2/G.806.

6.2.3 Supervisión de la calidad de la señal

Todos los procesos de supervisión de la calidad de la señal son genéricos y se describen en 6.2.3/G.806.

6.2.4 Supervisión del tipo de cabida útil

Todos los procesos de supervisión del tipo de cabida útil de la señal son genéricos y se describen en 6.2.4/G.806.

6.2.5 Supervisión de la alineación

Los defectos de supervisión de la alineación genéricos se describen en 6.2.5/G.806. Los defectos de supervisión de la alineación específicos de la SDH se describen más adelante.

6.2.5.1 Defecto de pérdida de trama (dLOF, loss of frame defect)

Señales STM-N: Si el estado OOF persiste durante 3 ms, se declarará un estado de pérdida de trama (LOF). En previsión del caso de estados OOF intermitentes, el temporizador integrador no se reiniciará a cero hasta que la condición en trama se haya mantenido continuamente durante 3 ms. Una vez que el proceso ha pasado al estado LOF, saldrá de este estado cuando la condición en trama se mantenga continuamente durante más de 3 ms.

6.2.5.2 Defecto de pérdida de multitrama (dLOM, loss of multiframe defect) del HOVC

Si el proceso de alineación de multitrama (véase 8.2.2) se encuentra en el estado OOM y la multitrama H4 no se recupera dentro de m tramas VC-3/4, se declarará un defecto dLOM. Una vez que el proceso ha pasado al estado dLOM, saldrá de este estado cuando se recupere la multitrama (el proceso de alineación de multitrama pasa al estado en trama IM).

m estará comprendido en la gama de 8 a 40 y no es configurable.

6.2.5.3 Defecto de pérdida de puntero (dLOP, loss of pointer defect)

dLOP de AU-n: Véase el anexo A.

dLOP de TU-m: Véase el anexo A.

6.2.5.4 Defecto de pérdida de multitrama (dLOM) para concatenación virtual VC-3/4

Si cualquiera de los dos procesos de alineación de multitrama está en el estado fuera de multitrama (OOM1 u OOM2) (véase 8.2.5.1) y la totalidad de la multitrama de dos etapas H4 no se recupera dentro de m tramas VC-3/4, se declarará un defecto dLOM. Una vez en el estado dLOM, se saldrá del mismo cuando ambos procesos de alineación de multitrama estén en el estado en multitrama (IM1 e IM2).

m deberá estar en la gama de 40 a 80 y no es configurable.

6.2.5.5 Defecto de pérdida de multitrama (dLOM) para concatenación virtual VC-1/2

Si cualquiera de los dos procesos de alineación de multitrama (multitrama de tara extendida en 8.2.3.1 o multitrama de contador de tramas de concatenación virtual en 8.2.5.2) está en el estado OOM y la totalidad de la multitrama de dos etapas de concatenación virtual no se ha recuperado dentro de m tramas VC-1/2, se declarará un defecto dLOM. Una vez en el estado dLOM, se saldrá del mismo cuando ambos procesos de alineación de multitrama estén en el estado en multitrama (estado IM).

m deberá estar en la gama de 200 a 400 y no es configurable.

NOTA 1 – No está definido un dLOM para la multitrama de tara extendida (etiqueta de señal extendida) solamente. De acuerdo con 8.2.3.2, si falta una multitrama (estado OOM) se producirá un dPLM.

NOTA 2 – La pérdida de multitrama TCM está cubierta por el defecto dLTC definido en la Rec. UIT-T G.806.

6.2.6 Supervisión de la señal de mantenimiento

Los defectos de supervisión de la señal de mantenimiento genéricos se describen en 6.2.6/G.806. Los defectos de supervisión de la señal de mantenimiento específicos de la SDH se describen más adelante.

6.2.6.1 Defecto de AIS (dAIS, AIS defect)

dAIS de MS-n: Véase 6.2.6.2/G.806.

dAIS de AU-n: Véase el anexo A.

dAIS de TU-m: Véase el anexo A.

6.2.7 Supervisión de protocolo

Todos los procesos de supervisión de protocolo son genéricos y se describen en 6.2.7/G.806.

6.3 Acciones consiguientes

Todas las acciones consiguientes son genéricas y se describen en 6.3/G.806.

6.4 Correlaciones de defectos

Todas las correlaciones de defectos son genéricas y se describen en 6.4/G.806.

6.5 Filtro de supervisión de la calidad de funcionamiento en un segundo

Los cómputos de supervisión de la calidad de funcionamiento en un segundo genéricos se describen en 6.5/G.806. Los cómputos específicos de la SDH se describen más adelante.

6.5.1 Cómputo de justificación de puntero (pPJC+, pPJC-)

Un cómputo de justificación de puntero positiva (pPJC+, *positive pointer justification count*) es un cómputo del número de incrementos de puntero generados en un periodo de un segundo.

Un cómputo de justificación de puntero negativa (pPJC-, negative pointer justification count) es un cómputo del número de decrementos de puntero generados en un periodo de un segundo.

NOTA – pPJC es la entrada para el cómputo de eventos de justificación de puntero (PJE) de 15 minutos y de 24 horas.

7 Flujo de información (XXX MI) a través de los puntos de referencia XXX MP

Para una descripción genérica del flujo de información, véase la cláusula 7/G.806. El flujo de información específico de la SDH se describe en las funciones atómicas aplicables.

8 Procesos genéricos

8.1 Procesos de codificación de línea y aleatorización

El tratamiento genérico de la codificación de línea y la aleatorización se describe en 8.1/G.806. En esa descripción se incluye la aleatorización específica de la SDH. La codificación de línea para señales eléctricas se describe en la Rec. UIT-T G.703 [3].

8.1.1 Aleatorización y desaleatorización de STM-N

La aleatorización y desaleatorización se efectúan de acuerdo con la Rec. UIT-T G.707/Y.1322. Los siguientes octetos están excluidos de la aleatorización y desaleatorización:

- Para STM-0, los tres octetos de la primera fila de la tara RSOH (A1, A2, J0).
- Para STM-N (N = 1, 4, 16, 64), la primera fila de la tara RSOH (octetos 9 × N, incluidos A1, A2, J0 y octetos reservados para uso nacional o una futura normalización internacional).
- Para STM-256, los octetos 64 A1 y 64 A2 en la primera fila de la tara RSOH.

8.2 Procesos de alineación

La descripción genérica de los procesos de alineación se presenta en 8.2/G.806. Los procesos de alineación específicos de la SDH se describen más adelante.

8.2.1 Alineación de trama de STM-N

La alineación de trama se encontrará buscando los octetos A1, A2 (véase la Rec. UIT-T G.707/Y.1322) contenidos en la señal STM-N. El esquema de alineación de trama buscado puede ser un subconjunto de los octetos A1 y A2 contenidos en la señal STM-N. La señal de trama se comprobará continuamente con respecto a la posición de comienzo de trama supuesta para la alineación. Si el proceso se encuentra en el estado en trama (IF, *in-frame-state*), el tiempo máximo de detección del estado fuera de trama (OOF, *out-of-frame*) será de 625 μs para cualquier señal no entramada tomada al azar. El algoritmo utilizado para comprobar la alineación de trama será tal que, en condiciones normales, una tasa de errores de 10⁻³ (con una distribución de tipo Poisson) no producirá un OOF falso más de una vez en 6 minutos. Si el proceso se encuentra en el estado OOF, el tiempo máximo de alineación de trama será de 250 μs para una señal exenta de errores sin esquemas de entramado imitados. El algoritmo utilizado para salir del estado OOF será tal, que la probabilidad de una recuperación falsa de la trama con cualquier señal no entramada tomada al azar no será superior a 10⁻⁵ para cada intervalo de 250 μs.

8.2.2 Alineación de multitrama de VC-1, VC-2 de orden inferior

Si la estructura TUG de HOVC contiene TUG-2s, la fase de comienzo de (multi)trama de 500 µs se recuperará efectuando la alineación de multitrama sobre los bits 7 y 8 del octeto H4. Se supondrá que se ha pasado al estado fuera de multitrama (OOM, *out-of-multiframe*) cuando se detecta un error en la secuencia de los bits 7 y 8 de H4. Se supondrá que se ha recuperado la alineación de multitrama y que se ha pasado al estado en multitrama (IM), cuando en cuatro tramas VC-n consecutivas se encuentra una secuencia H4 exenta de errores.

8.2.3 Alineación de multitrama con tara extendida de VC-1, VC-2 de orden inferior

La tara extendida para VC-1 y VC-2 proporciona un conjunto de códigos de señal (de 8 bits) extendidos y transporta información de trama y de secuencia para concatenación virtual. Esta tara se transporta en una multitrama con una longitud 32 multitramas, en los bits K4[1, 2]. Esto proporciona 64 bits para una tara adicional transmitida cada 16 ms.

8.2.3.1 Generación y recuperación de la multitrama

La tara extendida se utiliza en funciones de adaptación Sm/cliente que emplean códigos de etiqueta de señal extendida y en función de adaptación Sm/Sm-X para concatenación virtual.

Sentido hacia la fuente: El indicador de comienzo de multitrama "0111 1111 110" se inserta en los primeros 11 bits de la secuencia de multitrama K4[1]. Los restantes 21 bits de la secuencia de multitrama K4[1] están disponibles para transportar tara extendida, pero se definen de tal manera que no aparezcan ocho unos consecutivos en los 21 bits restantes. No es necesario efectuar este proceso para señales que no contienen ninguna tara extendida.

Sentido hacia el sumidero: Se recuperará una secuencia de bits de K4[1] para la alineación de multitrama de tara extendida. La alineación de multitrama se encontrará buscando el esquema "0111 1111 110" en K4[1]. La alineación de la señal se comprobará continuamente con respecto a la posición supuesta de comienzo de multitrama.

Se considera que se ha perdido la alineación de trama (y que se ha pasado al estado fuera de multitrama (OOM)) cuando se detectan dos FAS consecutivas con errores (esto es, un error en cada FAS).

Se considera que se ha recuperado la alineación de trama (y que se ha pasado el estado en multitrama (IM)) cuando se encuentra una FAS sin errores.

Sólo es necesario efectuar este proceso cuando ha de recibirse tara extendida. Actualmente, incluye lo siguiente:

- La función sumidero de adaptación Sm/Sm-X cuando deba recibirse una señal con concatenación virtual (véanse 8.2.5.2 y 13.5.1.2).
- Las funciones sumidero de adaptación Sm/cliente cuando se espera una etiqueta de señal extendida y el código de escape de etiqueta de señal extendida "101" aparece en V5[5-7].

8.2.3.2 Inserción y recuperación de etiqueta de señal extendida

Las etiquetas de señal extendidas son insertadas y recuperadas por funciones de adaptación Sm/cliente que utilizan códigos de etiqueta de señal extendida.

Sentido hacia la fuente: La multitrama de tara extendida se genera como se describe en 8.2.3.1. El código de escape de etiqueta de señal extendida "101" se transmite en V5[5-7]. El código de etiqueta de señal extendida de 8 bits se transmite como bits [12-19] de la secuencia de multitrama K4[1]. El bit 20 de la secuencia de multitrama K4[1] se transmite como cero, para que las etiquetas de señal extendidas no puedan imitar el indicador de comienzo de multitrama.

Sentido hacia el sumidero: Las funciones sumidero de adaptación Sm/cliente que espera un código de etiqueta de señal extendida recuperarán primero el código de etiqueta de señal de 3 bits de V5[5-7]. En base a V5[5-7] se ejecutan las siguientes acciones:

- Se declarará el defecto dUNEQ de acuerdo con 6.2.1.3/G.806.
- 001 Se aceptará el código "Equipado no específico" de acuerdo con 6.2.4.2/G.806.
- Se recuperará la multitrama de tara extendida como se describe en 8.2.3.1. Si el proceso de recuperación de multitrama se encuentra en el estado OOM, se declarará el defecto dPLM. Si el proceso de recuperación de multitrama se encuentra en el estado IM, la etiqueta de señal se recuperará de los bits [12-19] de la secuencia de multitrama K4[1]. Se declarará dPLM de acuerdo con 6.2.4.2/G.806 si la etiqueta de señal aceptada no concuerda con la etiqueta de señal esperada.
- Otro Se declarará dPLM de acuerdo con 6.2.4.2/G.806.

8.2.4 Alineación de multitrama de conexión en cascada

VC-3, VC-4: La alineación de multitrama se efectuará sobre los bits 7 y 8 del octeto N1 para recuperar las señales TTI, RDI y ODI transportadas dentro de los bits multientramados. La señal de alineación de multitrama se encontrará buscando el esquema "1111 1111 1111 1110" en los bits 7 y 8 del octeto N1. La alineación de la señal se comprobará continuamente con respecto a la posición supuesta de comienzo de multitrama.

NOTA – El proceso de alineación de trama antes descrito para los VC-4 y VC-3 sólo es aplicable para la opción 2 de TCM.

VC-11, VC-12, VC-2: Se efectuará alineación de multitrama sobre los bits 7 y 8 del octeto N2 para recuperar las señales TTI, RDI y ODI transportadas en los bits multientramados. La alineación de multitrama se encontrará buscando el esquema "1111 1111 1110" en los bits 7 y 8 del octeto N2. La alineación de la señal se comprobará continuamente con respecto a la posición supuesta de comienzo de multitrama.

Se considera que se ha perdido la alineación de trama y que se ha pasado al estado fuera de multitrama (OOM) cuando se detectan dos FAS consecutivas con errores (esto es, un error en cada FAS).

Se considera que se ha recuperado la alineación de trama y que se ha pasado el estado en multitrama (IM) cuando se encuentra una FAS sin errores.

8.2.5 Alineación de multitrama para concatenación virtual

8.2.5.1 Alineación de multitrama para concatenación virtual de VC-3, VC-4

Sentido hacia la fuente: La multitrama de dos etapas se genera como se define en la Rec. UIT-T G.707/Y.1322. En la primera etapa se utilizan los bits 5-8 del octeto 4, para la indicación de multitrama MFI1. MFI1 se incrementa con cada trama y el cómputo va de 0 a 15. En la segunda etapa se utilizan los bits 1-4 del octeto H4 de la trama 0 (bits 1-4) y 1 (bits 5-8) de la primera etapa de multitrama para la indicación de multitrama MFI2. MFI2 se incrementa una vez con cada multitrama de la primera etapa y el cómputo va de 0 a 255. La multitrama global resultante tiene una longitud de 4096 tramas (= 512 ms).

Sentido hacia el sumidero: La función recuperará la multitrama de 512 ms de dos etapas:

Etapa 1 de la multitrama:

La función recuperará la primera etapa de la multitrama (16 tramas) efectuando alineación de multitrama sobre la indicación de multitrama MFI1 en los bits 5 a 8 del octeto H4. Se supondrá que se ha pasado al estado fuera de multitrama de la etapa 1 (OOM1, *out-of-multiframe of stage 1*) cuando se haya detectado un error en la secuencia MFI1. Se supondrá que se ha recuperado la alineación de multitrama de la etapa 1 y que se ha pasado al estado en multitrama (IM1) cuando se encuentra una secuencia MFI1 sin errores en cuatro tramas VC-4 consecutivas.

Etapa 2 de la multitrama:

La función recuperará la segunda etapa de la multitrama (256 tramas) efectuando alineación de multitrama sobre la indicación MFI2 en los bits 1 a 4 del octeto H4 de las tramas 0 y 1 de la primera etapa de la multitrama. Se supone que se ha pasado una vez al estado fuera de multitrama de la etapa 2 (OOM2, *out-of-multiframe of stage 2*) cuando se detecta un error en la secuencia de MFI2 o cuando la primera etapa de la multitrama se encuentra en el estado fuera de multitrama (OOM1). La recuperación de la segunda multitrama comenzará tan pronto como la primera etapa de la multitrama pase al estado en multitrama (IM1). Se supondrá que se ha recuperado la alineación de multitrama de la etapa 2 y que se ha pasado al estado en multitrama (IM2), cuando en dos tramas VC-3/4 consecutivas se encuentra una secuencia MFI2 sin errores.

8.2.5.2 Alineación de multitrama para concatenación virtual de VC-11, VC-12, VC-2

En la alineación de multitrama para la concatenación virtual de VC-11, VC-12 y VC-2 de acuerdo con la Rec. UIT-T G.707/Y.1322 se utiliza la tara extendida para contener un contador de tramas de 5 bits y un número secuencial de 6 bits. El contador de tramas de 5 bits proporciona una detección de retardo diferencial de 512 ms contando 32 veces la velocidad de la multitrama de tara extendida de 16 ms. Esta alineación la efectúan las funciones de adaptación Sm/Sm-X.

Sentido hacia la fuente: Si la multitrama de tara extendida no está ya presente en Sm-X_CI, se generará de acuerdo con 8.2.3.1. En otro caso, se utilizará la estructura de multitrama de tara extendida existente. La función insertará el número de trama como un valor de contador de 5 bits que aumenta en una unidad con cada multitrama de tara extendida (16 ms), en los bits 1-5 de la secuencia de multitrama K4[2]. El número secuencial de concatenación virtual se insertará en los bits 6-11 de la secuencia de multitrama K4[2]. El número secuencial para Sm[i] es i-1.

NOTA – Puesto que todas las aplicaciones normalizadas de concatenación virtual son para cabidas útiles que utilizan códigos de etiqueta de señal extendida, la multitrama de tara extendida ya estará presente en la Sm-X_CI que habrá sido generada por la función fuente de adaptación Sm/cliente para la inserción de la etiqueta de señal extendida.

Sentido hacia el sumidero: La multitrama de tara extendida se recupera de acuerdo con 8.2.3.1. El número de trama de concatenación virtual se recupera de los bits 1-5 de la secuencia de multitrama K4[2]. El proceso se encontrará en el estado fuera de multitrama (OOM) cuando el proceso de alineación de multitrama de tara extendida esté en el estado OOM, o cuando se encuentre un error en los números de trama recibido y esperado, en los bits 1-5 de la secuencia K4[2]. El proceso pasa al estado IM cuando el proceso de multitrama de tara extendida está en el estado IM y se recuperan dos números de trama consecutivos sin errores. El número secuencial se recupera de los bits 6-11 de la secuencia K4[2]. Se acepta un nuevo número secuencial si la secuencia recibida tiene el mismo valor en n multitramas de tara extendida consecutivas, siendo $3 \le n \le 10$. El número secuencial aceptado se compara con el número secuencial esperado con miras a detectar el defecto dSQM.

8.3 Procesos de supervisión de la calidad de la señal

Los procesos de supervisión de la calidad de la señal genéricos se describen en 8.3/G.806. Los procesos específicos de la SDH se describen más adelante.

8.3.1 Determinación de las violaciones de la BIP de una conexión en cascada

VC-3, VC-4: La paridad de bit par se calculará para cada bit n de cada octeto del HOVC precedente y se comparará con el bit n de B3 recuperado de la trama actual (n = 1 a 8 inclusive). Una diferencia entre el valor de B3 calculado y el valor de B3 recuperado se considerará una prueba de que se ha producido más de un error en el bloque de cálculo (ON_B). La magnitud (valor absoluto) de la diferencia entre este número calculado de errores y el número de errores escrito en el cómputo de errores a la entrada IEC (véase el cuadro D.5/G.707/Y.1322 [6]) en la fuente de terminación de camino se utilizará para determinar la característica de error de la conexión en cascada para cada VC-n transmitido (figura 8-1). Si la magnitud de esta diferencia es 1 o más, se ha detectado un bloque TC con errores (N_B).

NOTA – Los datos B3 y la cuenta IEC leída de la trama actual se aplican a la trama precedente.

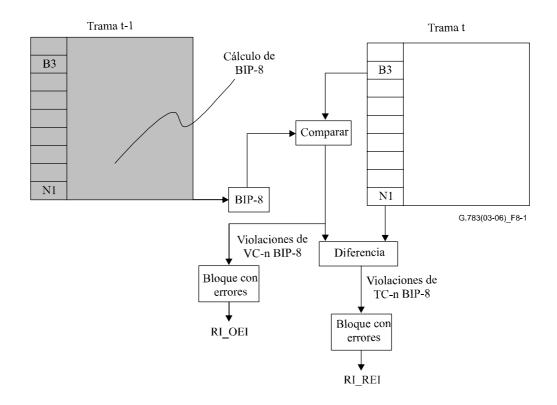


Figura 8-1/G.783 – Cálculo y comparación de TC-n y BIP-8

VC-11, VC-12, VC-2: La BIP-2 se calcula para cada par de bits de cada octeto del VC-11/VC-12/VC-2 precedente incluido V5 y se compara con los bits 1 y 2 de V5 recuperados de la trama actual (véase la figura 8-2). Una diferencia entre los valores de BIP-2 calculados y recuperados se considera una prueba de que se ha producido más de un error (ON_B) en el bloque de cálculo. Además, la BIP-2 actual se compara con la BIP-2 recuperada de los bits 1 y 2 de N2. Una diferencia distinta de cero indica que el VC-m ha sido corrompido en la conexión en cascada. En este caso, se detecta un bloque TC con errores (N_B).

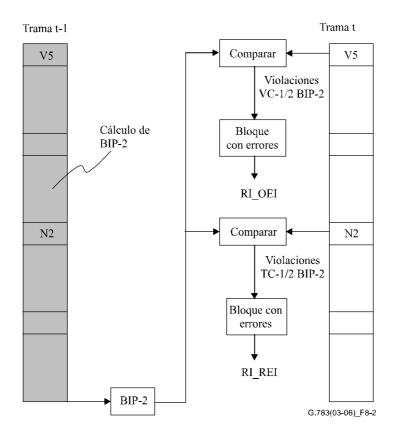


Figura 8-2/G.783 – Cálculo y comparación de TC-1/2 y VC-11/VC-12/VC-2 BIP-2

8.3.2 Determinación del código de error a la entrada de una conexión en cascada

La BIP-8 par se calculará para cada bit n de cada octeto del VC-n (n = 3, 4) precedente incluido B3 y se comparará con el octeto B3 recuperado de la trama actual. Una diferencia entre los valores calculados y recuperados de BIP-8 se considerará una prueba de que se ha producido más de un error en el bloque de cálculo, y se insertará en los bits 1 a 4 del octeto N1 (véanse la figura 8-3, cuadro C.1/G.707/Y.1322 y el cuadro D.2/G.707/Y.1322). Si está presente una condición SF, se insertará un código descrito en los cuadros C.1/G.707/Y.1322 (TCM opción 1) o D.2/G.707/Y.1322 (TCM opción 2) en los bits 1 a 4 del octeto N1, en lugar del número de violaciones BIP-8 entrantes.

NOTA – Cero violaciones BIP-8 detectadas en la señal entrante de la conexión en cascada se codificará con un código de IEC todos CEROS. Esto permite utilizar este campo de IEC en el extremo final de TC como un diferenciador entre un VC no equipado entrante de TC y una TC no equipada.

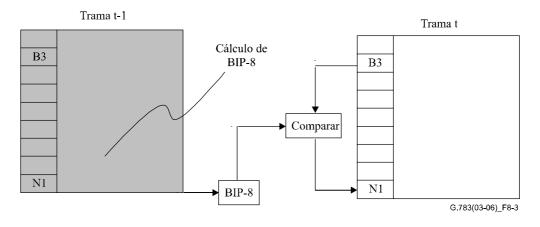


Figura 8-3/G.783 – Cálculo e inserción de la IEC de TC-n

8.4 Procesos de corrección de BIP

B3 (BIP-8) y V5[1-2] (BIP-2) se compensarán mediante la adición/supresión de la tara de conexión en cascada (N1, N2) de acuerdo con el proceso de corrección de la BIP que se muestra en 8.4/G.806.

9 Capa de sección física STM-N (N = 1, 4, 16, 64, 256)

A continuación se describen las funciones atómicas que definen la capa de interfaz física SDH. Se describen las características físicas y lógicas de las interfaces ópticas y eléctricas del equipo SDH utilizado en el ES1_CP u OSn_CP (siendo n = 1, 4, 16, 64, 256) como se define en las Recs. UIT-T G.703 [3], G.707/Y.1322 [6], G.957 [20] y G.691 [2] (véanse las figuras 9-1 y 9-2).

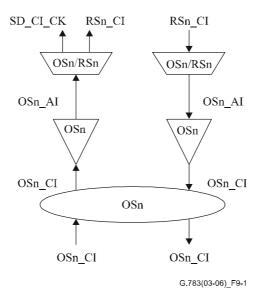


Figura 9-1/G.783 – Funciones atómicas de la sección óptica STM-N

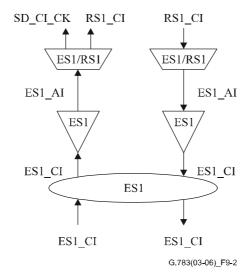


Figura 9-2/G.783 – Funciones atómicas de la sección eléctrica STM-1

CP de capa de sección eléctrica/óptica STM-N:

La información característica OSn_CI o ES1_CI en el CP de la capa es una señal digital, óptica o eléctrica (codificada), de una potencia, velocidad binaria, anchura de impulso y longitud de onda definidas. Se define una gama de esas señales características:

Las señales de interfaz óptica se definen en las Recs. UIT-T G.957 y G.691. Las señales de interfaz eléctrica se definen en la Rec. UIT-T G.703.

9.1 Funciones de conexión

No es aplicable. No hay funciones de conexión definidas para esta capa.

9.2 Funciones de terminación

9.2.1 Terminación de camino de sección óptica STM-N OSn TT

9.2.1.1 Fuente de terminación de camino de sección óptica STM-N OSn-Xy.z TT So

NOTA 1 – Xy.z será un valor del conjunto de códigos de aplicación definidos en las Recs. UIT-T G.957 y G.691: {I-1, S-1.1, S-1.2, L-1.1, L-1.2, L-1.3, I-4, S-4.1, S-4.2, L-4.1, L-4.2, L-4.3, V-4.1, V-4.2, V-4.3, U-4.2, U-4.3, I-16, S-16.1, S-16.2, L-16.1, L-16.2, L-16.3, V-16.1, V-16.2, V-16.3, U-16.2, U-16.3, S-64.1, S-64.2, S-64.3, L-64.1, L-64.2, L-64.3, V-64.1, V-64.2, V-64.3}. Los códigos de aplicación para STM-256 quedan en estudio.

Símbolo

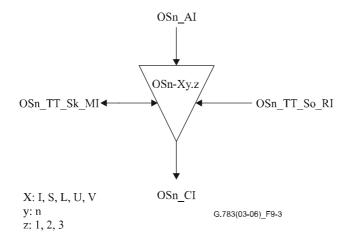


Figura 9-3/G.783 – Símbolo de OSn-Xy.z TT So

Interfaces

Cuadro 9-1/G.783 – Señales de entrada y de salida OSn-Xy.z TT So

Entradas	Salida
OSn_AI_Data OSn_RI_LOS	OSn_CI_Data

NOTA 1 – OSn RI LOS es utilizado por el mecanismo, si está soportado (véase la Rec. UIT-T G.664).

NOTA 2 – La definición de OSn TT So MI para interfaces con amplificadores ópticos queda en estudio.

NOTA 3 – La definición de OSn TT So MI para el mecanismo APSD queda en estudio.

Procesos

La función de terminación acondiciona los datos para la transmisión por el medio óptico y los presenta en el OSn_CP.

Características ópticas: La función generará una señal óptica STM-N que satisfará las características Xy.z definidas en las Recs. UIT-T G.957 o G.691.

Seguridad del transmisor óptico: véase la Rec. UIT-T G.664 [1].

Defectos

Ninguno.

NOTA 2 – Los defectos TF y TD han sido definidos en anteriores versiones de esta Recomendación, y en la Rec. UIT-T G.958 ya no se necesita que sean detectados e informados como defectos y alarmas relacionados con la transmisión. La tecnología ha madurado desde la introducción de la SDH, y los transmisores ópticos han alcanzado una fiabilidad similar a la de otros componentes del equipo. Los problemas en los transmisores ópticos deben ser supervisados de acuerdo con los principios específicos del equipo e informados como parte de un fallo de una unidad que puede ser reemplazada en el lugar.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

9.2.1.2 Fuente de terminación de camino de sección óptica STM-N OSn-Xy.z TT Sk

NOTA – Xy.z será un valor del conjunto de códigos de aplicación definidos en las Recs. UIT-T G.957 y G.691: {I-1, S-1.1, S-1.2, L-1.1, L-1.2, L-1.3, I-4, S-4.1, S-4.2, L-4.1, L-4.2, L-4.3, V-4.1, V-4.2, V-4.3, U-4.2, U-4.3, I-16, S-16.1, S-16.2, L-16.1, L-16.2, L-16.3, V-16.1, V-16.2, V-16.3, U-16.2, U-16.3, S-64.1, S-64.2, S-64.3, L-64.1, L-64.2, L-64.3, V-64.1, V-64.2, V-64.3}. Los códigos de aplicación para STM-256 quedan en estudio.

Símbolo

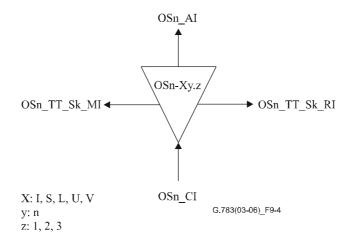


Figura 9-4/G.783 – Símbolo de OSn-Xy.z TT Sk

Interfaces

Cuadro 9-2/G.783 – Señales de entrada y de salida OSn-Xy.z TT Sk

Entradas	Salidas	
OSn_CI_Data	OSn_AI_Data	
	OSn_AI_TSF	
OSn_TT_Sk_MP_PortMode	OSn_RI_LOS	
	OSn_TT_Sk_MI_cLOS	
NOTA – OSn RI LOS es utilizado por el mecanismo APSD, si está soportado (véase la		
Rec. UIT-T G.664).		

Procesos

La señal STM-N en el OSn_CP es una señal formatada y acondicionada de manera similar (como se describe en 8.4) que se degradada dentro de determinados límites debido a la transmisión a través del medio físico.

Esta función recupera la señal STM-N óptica transmitida por cables ópticos. Las características físicas de la señal en la interfaz se definen en las Recs. UIT-T G.957 o G.691.

La función convertirá la señal STM-N recibida, que normalmente satisface las características Xy.z definidas en las Recs. UIT-T G.957 o G.691, en la señal OSn AI interna.

El funcionamiento del modo puerto se describe en 6.1/G.806.

Seguridad del transmisor óptico: véase la Rec. UIT-T G.664.

Defectos

dLOS: véase 6.2.1.1.

Acciones consiguientes

aTSF \leftarrow dLOS

aRI LOS ← dLOS

Correlaciones de defectos

cLOS \leftarrow dLOS y MON

Supervisión de la calidad de funcionamiento

Ninguna.

9.2.2 Terminación de camino de sección eléctrica STM-1 (ES1 TT)

9.2.2.1 Fuente de terminación de camino de sección eléctrica STM-1 (ES1_TT_So)

Símbolo

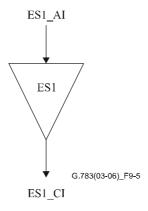


Figura 9-5/G.783 – Símbolo de ES1_TT_So

Interfaces

Cuadro 9-3/G.783 – Señales de entrada y de salida ES1_TT_So

Entrada	Salida
ES1_AI_Data	ES1_CI_Data

Procesos

Esta función genera la señal eléctrica de capa de sección intraestación STM-1 como se describe en la Rec. UIT-T G.703.

Forma del impulso: La función cumplirá el requisito definido en la Rec. UIT-T G.703.

Tensión cresta a cresta: La función cumplirá el requisito definido en la Rec. UIT-T G.703.

Tiempo de subida: La función cumplirá el requisito definido en la Rec. UIT-T G.703.

Par(es) en cada sentido de transmisión: La función cumplirá el requisito definido en la Rec. UIT-T G.703.

Pérdida de retorno a la salida: La función cumplirá el requisito definido en la Rec. UIT-T G.703.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

9.2.2.2 Sumidero de terminación de camino de sección eléctrica STM-1 (ES1_TT_Sk)

Símbolo

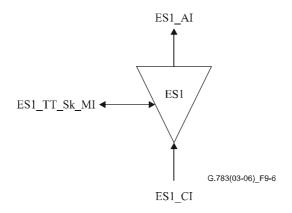


Figura 9-6/G.783 – Símbolo de ES1_TT_Sk

Interfaces

Cuadro 9-4/G.783 – Señales de entrada y de salida ES1_TT_Sk

Entradas	Salidas
ES1_CI_Data	ES1_AI_Data ES1_AI_TSF
ES1_TT_Sk_MI_PortMode	ES1_TT_Sk_MI_cLOS

Procesos

Esta función recupera la señal eléctrica de capa de sección intraestación STM-1 definida en la Rec. UIT-T G.703 [3].

Pérdida de retorno a la entrada: La función cumplirá el requisito definido en la Rec. UIT-T G.703.

Modo puerto: La función tendrá un modo puerto como se especifica en 6.1/G.806.

NOTA – El estado AUTO del proceso modo puerto es facultativo.

Defectos

dLOS: véase 6.2.1.1.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aTSF ← dLOS

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa de avería más probable. Esta causa de avería se informará a la SEMF.

 $cLOS \leftarrow dLOS y MON$

Supervisión de la calidad de funcionamiento

Ninguna.

9.3 Funciones de adaptación

9.3.1 Adaptación de sección óptica STM-N a sección de regeneración OSn/RSn_A

9.3.1.1 Fuente de adaptación de sección óptica STM-N a sección de regeneración OSn/RSn_A_So

Símbolo

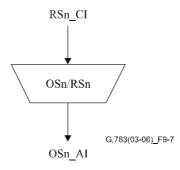


Figura 9-7/G.783 – Símbolo de OSn/RSn_A_So

Interfaces

Cuadro 9-5/G.783 – Señales de entrada y de salida OSn/RSn A So

Entradas	Salida
RSn_CI_Data RSn_CI_Clock	OSn_AI_Data

Procesos

Esta función proporciona codificación de línea para señales STM-N de acuerdo con las Recs. UIT-T G.957 o G.691.

Esta función limita la fluctuación de fase a la salida en la información de reloj de la señal OSn AI Data como se indica en los cuadros 9-6 y 9-7 medida en un intervalo de 60 segundos.

Generación de fluctuación de fase para regenerador SDH: Un tipo de regenerador DSH, instalado en redes optimizadas para la jerarquía de 2048 kbit/s no generará, en su salida STM-N, una fluctuación de fase en exceso de los valores indicados en el cuadro 9-6.

Cuadro 9-6/G.783 – Generación de fluctuación de fase para regeneradores STM-N tipo A en redes basadas en la jerarquía de 2048 kbit/s

Interfaz	Banda d (frecuencias en (Not	Amplitud cresta a cresta	
	Paso alto (kHz)	Paso bajo (MHz) -60 dB/dec	(UI) (Notas 2 y 3)
STM-1 óptica	0,5	1,3	0,30
	65	1,3	0,10
STM-4 óptica	1	5	0,30
	250	5	0,10
STM-16 óptica	5	20	0,30
	1000	20	0,10
STM-64 óptica	20	80	0,30
	4000	80	0,10
STM-256 óptica	En estudio	En estudio	En estudio
(Nota 4)	16 000	320	0,10

NOTA 1 – Las funciones de transferencia de los filtros de medición paso alto y paso bajo se definen en la cláusula 5/G.825.

NOTA 2 – Para STM-1: 1 UI = 6,43 ns

Para STM-4: 1 UI = 1,61 ns Para STM-16: 1 UI = 0,40 ns Para STM-64: 1 UI = 0,10 ns Para STM-256: 1 UI = 0,025 ns

NOTA 3 – El tiempo de medición y los criterios de paso/fallo se definen en la cláusula 5/G.825.

NOTA 4 – Los valores para STM-256 son provisionales y no están presentes en la Rec. UIT-T G.825 en el momento de la publicación de la versión de la presente Recomendación.

Un regenerador STM-N (N = 1, 4, 16, 64) instalado en una red optimizada para la jerarquía de 1544 kbit/s en particular, que incluye las velocidades de 1544 kbit/s, 6312 kbit/s y 44 736 kbit/s, no generará, en su salida STM-N, una fluctuación de fase que exceda los valores indicados en el cuadro 9-7.

Cuadro 9-7/G.783 – Generación de fluctuación de fase para regeneradores STM-N en redes basadas en la jerarquía de 1544 kbit/s

To A confirm	Banda d (frecuencias en	Límite		
Interfaz	Paso alto (kHz)	Paso bajo (MHz) -60 dB/dec	(Notas 1, 2 y 3)	
STM-1 óptica	12	1,3	0,1 UIpp/0,01 UIrms	
STM-4 óptica	12	5	0,1 UIpp/0,01 UIrms	
STM-16 óptica	12	20	0,1 UIpp/0,01 UIrms	
STM-64 óptica	20	80	0,30 UIpp	
	4000	80	0,10 UIpp	
STM-256 óptica	En estudio	En estudio	En estudio	

NOTA 1 – Tanto los límites de fluctuación de fase cresta cresta como rms deberán cumplirse simultáneamente para las velocidades STM-1, STM-4 y STM-16 (no son aplicables a STM-64).

NOTE 2 - Para STM-1: 1 UI = 6,43 ns

Para STM-4: 1 UI = 1,61 ns Para STM-16: 1 UI = 0,40 ns Para STM-64: 1 UI = 0,10 ns Para STM-256: 1 UI = 0,025 ns

NOTA 3 – El tiempo de medición y los criterios de paso/fallo se definen en la cláusula 5/G.825.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

9.3.1.2 Sumidero de adaptación de sección óptica STM-N a sección de regeneración OSn/RSn A Sk

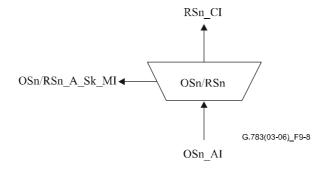


Figura 9-8/G.783 - Símbolo de OSn/RSn A Sk

Cuadro 9-8/G.783 – Señales de entrada y de salida OSn/RSn A Sk

Entradas	Salidas
OSn_AI_Data OSn_AI_TSF	RSn_CI_Data RSn_CI_Clock RSn_CI_FS RSn_CI_SSF OSn/RSn_A_Sk_MI_cLOF OSn/RSn_A_Sk_MI_pOFS

Procesos

La señal OSn_AI_Data, con la temporización que contiene, es recibida de la función OSn_TT_Sk por el OSn_AP. La función OSn/RSn procesa esta señal para formar datos y temporización asociada en el RSn_CP. La función recupera también la alineación de trama e identifica las posiciones de comienzo de trama en los datos del RSn_CP. Los datos STM-N entramados y la temporización se presentan en el RSn_CP.

Regeneración: La función trabajará con una BER máxima de valor por determinar cuando exista a la entrada cualquier combinación de las siguientes condiciones de señal:

- cualquier nivel de potencia óptica de entrada dentro de la gama especificada en las Recs. UIT-T G.957 o G.691;
- la señal de entrada se ve afectada por una fluctuación de fase como se especifica en la Rec. UIT-T G.825;
- la velocidad binaria de la señal de entrada está comprendida en la gama de $N \times 155\,520~kbit/s \pm 20~ppm$.

NOTA – Las tolerancias de frecuencia y de fluctuación de fase/fluctuación lenta de fase podrían estar aún más limitadas por los requisitos de las capas de cliente.

Para asegurar una inmunidad adecuada contra la presencia de dígitos idénticos consecutivos (CID, consecutive identical digits) en la señal STM-N, la función cumplirá la especificación indicada en 15.1.4.

La función procesará la señal de tal manera que, en ausencia de fluctuación de fase a la entrada, la fluctuación d fase intrínseca en la interfaz de salida STM-N (en un repetidor regenerador) no será superior a los valores especificados en 15.1.2.

La función procesará la señal de tal manera que la transferencia de fluctuación de fase (medida entre una entrada STM-N y una salida STM-N de un repetidor regenerador) sea la especificada en 15.1.3.

El proceso de alineación de trama se describe en 8.2.1.

Defectos

dLOF: véase 6.2.5.1.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aAIS \leftarrow dLOF o AI TSF

 $aSSF \leftarrow dLOF \circ AI TSF$

Al declararse una aAIS, la función presentará a la salida una señal todos UNOS (AIS) – conforme a los límites de frecuencia para esta interfaz – dentro de 250 µs; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 µs.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa de avería más probable. Esta causa de avería se informará a la SEMF.

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento:

En cualquier periodo de un segundo, al menos un evento OOF se informará como un pOFS (facultativo en la Rec. UIT-T G.784 [10]).

9.3.2 Adaptación de sección eléctrica STM-1 a sección de regeneración ES1/RS1 A

9.3.2.1 Fuente de adaptación de sección eléctrica STM-1 a sección de regeneración ES1/RS1 A So

Símbolo

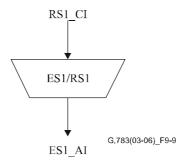


Figura 9-9/G.783 – Símbolo de ES1/RS1 A So

Interfaces

Cuadro 9-9/G.783 – Señales de entrada y de salida ES1/RS1 A So

Entradas	Salida
RS1_CI_Data RS1_CI_Clock	ES1_AI_Data

Procesos

Esta función proporciona codificación CMI para señales STM-1 de acuerdo con la Rec. UIT-T G.703.

Esta función limita la fluctuación de fase a la salida en la información de reloj de la señal ESI_AI_Data, medida en un intervalo de 60 segundos en una gama de 65 kHz a 1,3 MHz, a menos de 0,075 UIpp (1 UI = 6,43 ns).

NOTA – La fluctuación de fase y la fluctuación lenta de fase a frecuencias inferiores a 65 kHz las determina la fuente de temporización de equipo síncrono; véase la Rec. UIT-T G.781 [9].

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

9.3.2.2 Sumidero de adaptación de sección eléctrica STM-1 a sección de regeneración (ES1/RS1 A Sk)

Símbolo

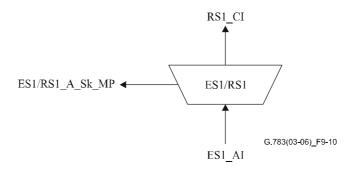


Figura 9-10/G.783 – Símbolo de ES1/RS1_A_Sk

Interfaces

Cuadro 9-10/G.783 – Señales de entrada y de salida ES1/RS1_A_Sk

Entradas	Salidas
ES1_AI_Data ES1_AI_TSF	RS1_CI_Data RS1_CI_Clock RS1_CI_FS RS1_CI_SSF ES1/RS1_A_Sk_MI_cLOF ES1/RS1_A_Sk_MI_pOFS

Procesos

La señal ES1_AI_Data, con la temporización que contiene, es recibida de la función ES1_TT_Sk por el ES1_AP. La función ES1/RS1 procesa esta señal para formar datos y temporización asociada en el ES1_CP. Esta función recupera además la alineación de trama e identifica las posiciones de comienzo de trama en los datos del RS1_CP. Los datos STM-N entramados y la temporización se presentan en el ES1_CP.

Regeneración: La función trabajará sin errores cuando exista a la entrada cualquier combinación de las siguientes condiciones de señal:

- un nivel de amplitud eléctrica de entrada con cualquier valor definido en la Rec. UIT-T G.703;
- la señal de entrada se ve afectada por una fluctuación de fase de cualquier valor definido en la Rec. UIT-T G.825 [17];
- la velocidad binaria de la señal de entrada está comprendida en la gama de $155\,520\,\,\mathrm{kbit/s}\pm20\,\,\mathrm{ppm}$.

NOTA – Las tolerancias a la frecuencia y a la fluctuación de fase/fluctuación lenta de fase podrían ser limitada aún más por los requisitos de las capas de cliente.

Decodificación CMI: La función efectuará el proceso de decodificación CMI de acuerdo con la Rec. UIT-T G.703.

Alineación de trama: El proceso de alineación de trama STM-N se describe en 8.2.1.

Defectos

dLOF: véase 6.2.5.1.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aAIS \leftarrow dLOF

aSSF ← dLOF

Si se detecta una pérdida de trama (LOF, *loss of frame*), se presentará a la salida de la señal de datos una señal lógica todos UNOS (AIS) en un plazo correspondiente a dos tramas (250 μs). Una vez desaparecidas las mencionadas condiciones de defecto, la señal lógica todos UNOS se suprimirá en un plazo correspondiente a dos tramas (250 μs).

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa de avería más probable. Esta causa de avería se informará a la SEMF.

cLOF ← dLOF y (no AI_TSF)

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento:

En cualquier periodo de un segundo, al menos un evento OOF se informará como un pOFS (facultativo en la Rec. UIT-T G.784).

9.4 Funciones de subcapa (no aplicables)

No hay funciones de subcapa aplicables a esta cláusula.

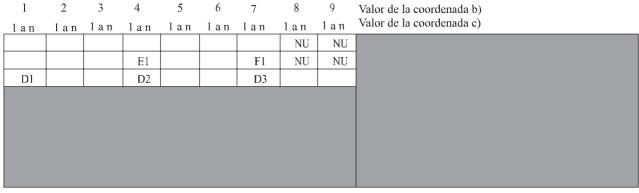
Capa de sección de regeneración STM-N (N = 1, 4, 16, 64, 256)


Los datos en CP de la capa de sección de regeneración (RS CI) están estructurados con temporización codireccional y una longitud de trama de 125 µs. El formato se muestra en las figuras 10-1 a 10-3 (véase también la figura 10-4).

La RS CI está constituida por los octetos de alineación de trama A1, A2, el octeto de traza de RS J0, el octeto de BIP-8 B1, el octeto de circuito de servicio E1, el octeto de usuario RS F1, los octetos de DCC de RS D1-D3 y los octetos NU, así como la CI de MS como se define en la Rec. UIT-T G.707/Y.1322 [6].

1 1 a n	2 1 a n	3 1 a n	4 1 a n	5 1 a n	6 1 a n	7 1 a n	8 1 a n	9 1 a n	(Valor de la coordenada b) (Valor de la coordenada c)
Al	Al	A1	A2	A2	A2	ЈО	NU	NU	
B1			E1			F1	NU	NU	
D1			D2			D3			

G.783(03-06)_F10-1


Figura 10-1/G.783 – Formato de datos de CI de sección de regeneración STM-N (N = 1, 4, 16, 64) en formato S(b, c)

NOTA – El número de octetos de A1 y A2 es conforme a la Rec. UIT-T G.707/Y.1322.

G.783(03-06)_F10-2

Figura 10-2/G.783 – Formato de datos de CI de sección de regeneración STM-256 en formato S(b, c)

NOTA – Los octetos D1-D3, J0, B1, E1 y F1 sólo están presentes en las columnas S(a, b, 1).

G.783(03-06)_F10-3

Figura 10-3/G.783 – Formato de datos de AI de sección de regeneración en formato S(b, c)

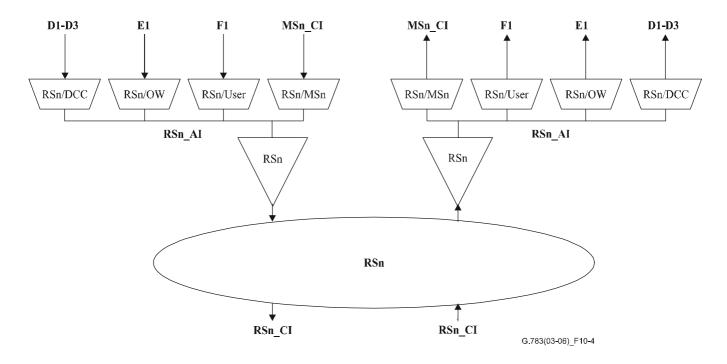


Figura 10-4/G.783 – Funciones de sección de regeneración

10.1 Funciones de conexión

No aplicable.

10.2 Funciones de terminación

10.2.1 Terminación de camino de sección de regeneración STM-N RSn TT

La función RSn_TT actúa como una fuente y un sumidero para la tara de sección de regeneración (RSOH, *regenerator section overhead*). Una sección de regeneración es una entidad de mantenimiento entre dos funciones RSn TT inclusive.

NOTA – En los regeneradores, los octetos A1, A2 y J0 pueden ser relevados (es decir, pasados transparentemente a través del regenerador) en lugar de ser terminados y generados como se describe más adelante. Véase el apéndice IV.

10.2.1.1 Fuente de terminación de camino de sección de regeneración RSn_TT_So Símbolo

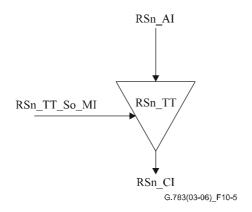


Figura 10-5/G.783 – Símbolo de RSn_TT So

Cuadro 10-1/G.783 – Entradas y salidas de la función RSn TT So

Entradas	Salidas
RSn_AI_Data RSn_AI_Clock RSn_AI_FrameStart RSn_TT_So_MI_TxTI	RSn_CI_Data RSn_CI_Clock

Procesos

Los datos en el RSn_AP están constituidos por una señal STM-N tal como se define en la Rec. UIT-T G.707/Y.1322 que tiene una tara de sección múltiplex (MSOH, *multiplex section overhead*) válida y octetos E1, D1-D3, F1 y NU. Sin embargo, los octetos A1, A2, B1 y J0 no están determinados en esta señal. Los octetos A1, A2, B1 y J0 se fijan de acuerdo con la Rec. UIT-T G.707/Y.1322 como parte de la función RSn_TT para proporcionar datos STM-N totalmente formatados y temporización asociada en el RSn_CP. Después de fijados estos octetos, la función RSn_TT aleatoriza la señal STM-N antes de que ésta sea presentada al RSn_CP. La aleatorización se efectúa de acuerdo con 8.1.1 y con la Rec. UIT-T G.707/Y.1322.

A1, A2: Los octetos de alineación de trama A1 y A2 se generan, y se insertan en la primera fila de la tara RSOH, de acuerdo con la Rec. UIT-T G.707/Y.1322.

J0: La información de traza de sección de regeneración (RSn_TT_So_MI_TxTI) derivada del punto de referencia RSn_TT_MP se inserta en la posición de octeto J0. El formato de traza de RS se describe en la Rec. UIT-T G.707/Y.1322.

B1: El octeto de supervisión de errores B1 se asigna en la STM-N para una función de supervisión de errores de bit en la sección de regeneración. Esta función será un código de paridad con entrelazado de bits 8 (BIP-8, *bit interleaved parity 8*) que utiliza paridad par como se define en la Rec. UIT-T G.707/Y.1322. La BIP-8 se calcula sobre todos los bits de la anterior trama STM-N, en el RSn_CP, después de la aleatorización. El resultado se inserta en la posición de octeto B1 de la RSOH antes de la aleatorización.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.2.1.2 Sumidero de terminación de camino de sección de regeneración STM-N RSn TT Sk

Símbolo

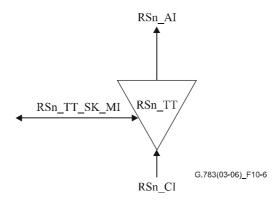


Figura 10-6/G.783 – Símbolo de RSn_TT_Sk

Interfaces

Cuadro 10-2/G.783 – Entradas y salidas de la función RSn TT Sk

Entradas	Salidas
RSn CI Data	RSn AI Data
RSn CI Clock	RSn AI Clock
RSn_CI_FrameStart	RSn_AI_FrameStart
RSn_CI_SSF	RSn_AI_TSF
RSn_TT_Sk_MI_ExTI	RSn_TT_Sk_MI_AcTI
RSn_TT_Sk_MI_TPmode	RSn_TT_Sk_MI_cTIM
RSn_TT_Sk_MI_TIMdis	RSn_TT_Sk_MI_cSSF
RSn_TT_Sk_MI_TIMAISdis	RSn_TT_Sk_MI_pN_EBC
RSn_TT_Sk_MI_ExTImode	RSn_TT_Sk_MI_pN_DS
RSn_TT_Sk_MI_1second	
RSn_TT_Sk_MI_SSF_Reported	

Procesos

Esta función supervisa la señal STM-N en búsqueda de errores RS, y recupera el estado de terminación de camino de RS. Extrae los octetos de tara independiente de la cabida útil (J0, B1) de la información característica de la capa RSn.

Desaleatorización

La función desaleatorizará la señal STM-N entrante. El funcionamiento del desaleatorizador es conforme a 8.1.1 y la Rec. UIT-T G.707/Y.1322.

J0: Los octetos J0 (traza de trayecto RS) se recuperan de la RSOH en el RSn_CP. Si se detecta una discordancia del identificador de traza de RS (RSn_TT_Sk_MI_cTIM), se informará a través del punto de referencia RS_TT_MP. El valor aceptado de J0 (RSn_TT_Sk_MI_AcTI) también está disponible en el RS_TT_MP. Para una descripción del tratamiento de la discordancia de identificador de traza (JO), véase 6.2.2.2/G.806.

B1: La paridad de bit par se calcula para cada bit n de cada octeto de la trama STM-N precedente aleatorizada y se compara con el bit n de B1 recuperado de la trama actual (n = 1 a 8 inclusive). Para el caso de STM-1, una diferencia entre los valores calculados y recuperados de B1 se considera una prueba de que se ha producido un bloque con errores (nN_B). Para los casos de STM-4, STM-16, STM-64 y STM-256, la definición de bloque con errores queda en estudio.

Defectos

dTIM: véase 6.2.2.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

```
aAIS \leftarrow CI_SSF o (dTIM y no TIMAISdis)
```

aTSF ← CI_SSF o (dTIM y no TIMAISdis)

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería. Esta causa se informará a la SEMF.

```
cTIM \leftarrow dTIM y MON
```

cSSF ← CI SSF y SSF Reported y MON

Supervisión de la calidad de funcionamiento

La función tratará las siguientes primitivas de supervisión de la calidad de funcionamiento como sigue:

$$pN_DS \leftarrow CI_SSF o dTIM o dEQ$$

pN EBC $\leftarrow \Sigma nN B$

10.3 Funciones de adaptación

- 10.3.1 Adaptación de sección de regeneración STM-N a sección múltiplex STM-N RSn/MSn_A
- 10.3.1.1 Fuente de adaptación de sección de regeneración STM-N a sección múltiplex STM-N RSn/MSn_A_So

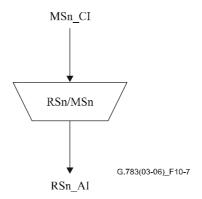


Figura 10-7/G.783 – Símbolo de RSn/MSn A So

Cuadro 10-3/G.783 – Entradas y salidas de la función RSn/MSn A So

Entradas	Salidas
MSn_CI_Data MSn_CI_Clock MSn_CI_FrameStart MSn_CI_SSF	RSn_AI_Data RSn_AI_Clock RSn_AI_FrameStart

Procesos

La función multiplexa los datos MSn_CI en las posiciones de octeto de STM-N definidas en la Rec. UIT-T G.707/Y.1322.

Defectos

Ninguno.

Acciones consiguientes

aAIS \leftarrow CI SSF

NOTA – Si CI_SSF no está conectada (cuando RSn/MSn_A_So está conectada a MSn_TT_So), se supone que SSF es falso.

Al declararse aAIS, la función presentará a la salida la señal todos UNOS dentro de 250 μ s; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 μ s. La frecuencia de la señal todos UNOS estará dentro de la frecuencia del nivel de la STM-N \pm 20 ppm.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.1.2 Sumidero de adaptación de sección de regeneración STM-N a sección múltiplex STM-N RSn/MSn A Sk

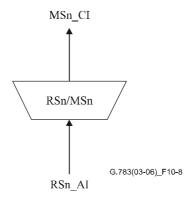


Figura 10-8/G.783 – Símbolo de RSn/MSn A Sk

Cuadro 10-4/G.783 – Entradas y salidas de la función RSn/MSn_A_Sk

Entradas	Salidas
RSn_AI_Data	MSn_CI_Data
RSn_AI_Clock	MSn_CI_Clock
RSn_AI_FrameStart	MSn_CI_FrameStart
RSn_AI_TSF	MSn_CI_SSF

Procesos

La función separa datos MSn_CI de RSn_AI como se muestra en las figuras 10-1 a 10-3.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.2 Adaptación de sección de regeneración STM-N a DCC RSn/DCC A

10.3.2.1 Fuente de adaptación de sección de regeneración STM-N a DCC RSn/DCC_A_So Símbolo

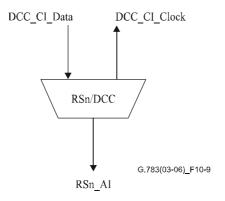


Figura 10-9/G.783 – Símbolo de RSn/DCC_A_So

Cuadro 10-5/G.783 – Entradas y salidas de la función RSn/DCC A So

Entradas	Salidas
DCC_CI_Data RSn_AI_Clock RSn_AI_FrameStart	RSn_AI_Data DCC_CI_Clock

Procesos

Los datos DCC se insertan consecutivamente en las posiciones de octeto D1-D3 de la RSOH. Estos octetos están asignados a comunicación de datos y se utilizarán como un canal de mensajes a 192 kbit/s para mantenimiento, control, supervisión, administración y otras necesidades de comunicación entre funciones RSn_TT. Este canal está disponible para mensajes generados interna o externamente, y para mensajes específicos del fabricante. Se utilizará una pila de protocolos como la definida en la Rec. UIT-T G.784 [10].

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.2.2 Sumidero de adaptación de sección de regeneración STM-N a DCC RSn/DCC_A_Sk

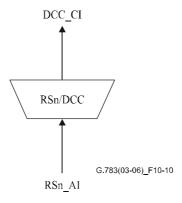


Figura 10-10/G.783 – Símbolo de RSn/DCC A Sk

Cuadro 10-6/G.783 – Entradas y salidas de la función RSn/DCC A Sk

Entradas	Salidas
RSn_AI_Data RSn_AI_Clock	DCC_CI_Data DCC_CI_Clock
RSn_AI_FrameStart RSn_AI_TSF	DCC_CI_SSF

Procesos

Los datos DCC se recuperan consecutivamente de los octetos D1-D3 de la RSOH.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.3 Adaptación de sección de regeneración STM-N a circuito de servicio RSn/OW A

10.3.3.1 Fuente de adaptación de sección de regeneración STM-N a circuito de servicio RSn/OW_A_So

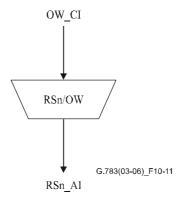


Figura 10-11/G.783 – Símbolo de RSn/OW_A_So

Cuadro 10-7/G.783 – Entradas y salidas de la función RSn/OW_A_So

Entradas	Salida
OW_CI_Data OW_CI_Clock OW_CI_FrameStart	RSn_AI_Data

Procesos

El circuito de servicio se inserta en la posición de octeto E1 de la RSOH. Es un canal facultativo a 64 kbit/s sin restricciones y está reservado para comunicación vocal entre elementos de red.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.3.2 Sumidero de adaptación de sección de regeneración STM-N a circuito de servicio RSn/OW A Sk

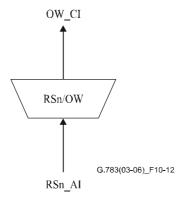


Figura 10-12/G.783 - Símbolo de RSn/OW_A_Sk

Cuadro 10-8/G.783 – Entradas y salidas de la función RSn/OW A Sk

Entrada	Salidas
RSn_AI_Data	OW_CI_Data OW_CI_Clock OW_CI_FrameStart

Procesos

El circuito de servicio se recupera de la posición de octeto E1 de la RSOH.

Defectos

Ninguno.

Acciones consiguientes

 $aSSF \leftarrow AI_TSF$

aAIS \leftarrow AI TSF

Al declararse aAIS, la función presentará a la salida la señal todos UNOS (AIS) – dentro de los límites de frecuencia para esta señal (una velocidad binaria en la gama de 64 kbit/s \pm 100 ppm) dentro de dos tramas (250 μ s). Al desaparecer las mencionadas condiciones de fallo, se suprimirá la señal todos UNOS dentro de dos tramas (250 μ s).

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.4 Adaptación de sección de regeneración STM-N a canal de usuario RSn/User A

10.3.4.1 Fuente de adaptación de sección de regeneración STM-N a canal de usuario RSn/User A So

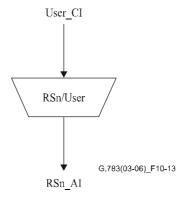


Figura 10-13/G.783 – Símbolo de RSn/User A So

Cuadro 10-9/G.783 – Entradas y salidas de la función RSn/User A So

Entradas	Salida
User_CI_Data User_CI_Clock	RSn_AI_Data

Procesos

Los datos de usuario se insertan en la posición de octeto F1 de la RSOH. El canal libre a 64 kbit/s está reservado para el proveedor de red (por ejemplo, para operaciones de red). El acceso al octeto F1 es facultativo en regeneradores. Las especificaciones de canal de usuario quedan en estudio. Una utilización especial, como la identificación de una sección averiada en un modo de respaldo simple cuando el sistema de soporte de operaciones no está implantado o no está funcionando queda en estudio. En el apéndice I se presenta un ejemplo de tal utilización.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.4.2 Sumidero de adaptación de sección de regeneración STM-N a canal de usuario RSn/User_A_Sk

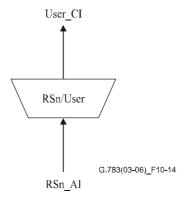


Figura 10-14/G.783 – Símbolo de RSn/User A Sk

Cuadro 10-10/G.783 – Entradas y salidas de la función RSn/User A Sk

Entradas	Salidas
RSn_AI_Data RSn_AI_Clock RSn_AI_FrameStart RSn_AI_TSF	User_CI_Data User_CI_Clock User_CI_SSF

Procesos

Los datos de usuario se recuperan de la posición de octeto F1 de la RSOH.

Defectos

Ninguno.

Acciones consiguientes

$$aSSF \ \leftarrow \ AI_TSF$$

aAIS
$$\leftarrow$$
 AI_TSF

Al declararse aAIS, la función presentará a la salida la señal todos UNOS (AIS), dentro de los límites de frecuencia para esta señal (una velocidad binaria en la gama de 64 kbit/s \pm 100 ppm), dentro de dos tramas (250 μ s). Una vez desaparecidas las mencionadas condiciones de fallo, se suprimirá la señal todos UNOS dentro de dos tramas (250 μ s).

Correlaciones de defectos

Ninguno.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.5 Adaptación de sección de regeneración STM-N a octetos auxiliares RSn/AUX_A

Ciertos octetos RSOH están actualmente reservados para uso nacional, uso dependiente del medio, o normalización internacional, como se define en la Rec. UIT-T G.707/Y.1322. Se puede ganar acceso a uno o más de estos octetos por medio de la función RSn/AUX_A. Los octetos no utilizados en la primera fila de la señal STM-N, que no son aleatorizados para transmisión, se fijarán a 10101010 cuando no se utilicen para una determinada finalidad. No se define ningún esquema para los otros octetos no utilizados cuando no se empleen para una determinada finalidad.

- 10.3.6 Adaptación de sección de regeneración STM-N (N ≥ 16) a sección múltiplex STM-N, que soporta corrección de errores en recepción (FEC)
- 10.3.6.1 Adaptación de sección de regeneración STM-N (N ≥ 16) a sección múltiplex STM-N, transparente a la corrección de errores en recepción (FEC)
- 10.3.6.1.1 Función fuente de adaptación de sección de regeneración STM-N (N ≥ 16) a sección múltiplex STM-N, transparente a la corrección de errores en recepción (FEC) RSn/MSF_A _So

Símbolo

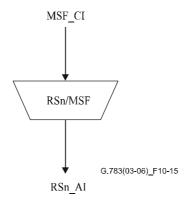


Figura 10-15/G.783 – Símbolo de RSn/MSF_A_So

Interfaces

Cuadro 10-11/G.783 – Señales de entrada y de salida RSn/MSF_A_So

Entradas	Salidas
MSF_CI_D MSF_CI_CK MSF_CI_FS MSF_CI_SSF	RSn_AI_D RSn_AI_CK RSn_AI_FS

Procesos

La función multiplexa los datos MSF_CI en las posiciones de octeto de STM-N definidas en la Rec. UIT-T G.707/Y.1322 y como se muestra en la figura 10-16.

Definición de MSF_CI == MS_CI + FEC

A1	A1	A1	A1	A1	A1	A2	1	A2	A2	A2	A2	A2	Ј0	Z0	X	X	X	X	Payload ₁
В1	P1 ₁	Δ	Δ	Δ	Δ	E1	I	P1 ₁	Δ	Δ		P1 ₁	F1	X	X	X	X	X	Payload ₂
D1	P1 ₂	Δ	Δ	Δ	Δ	D2	I	P1 ₂	Δ	Δ		P1 ₂	D3	P1 ₃		P1 ₃		Q1 P	3 Payload ₃
Н1	Н1	Н1	H1	Н1	H1	Н2	J	H2	Н2	Н2	Н2	Н2	НЗ	Н3	нз	Н3	нз	Н3	Payload ₄
B2	B2	B2	B2	В2	B2	K1	F	P1 ₄		P1 ₄		P1 ₄	K2	P1 ₅		P1 ₅		P1 ₅	Payload ₅
D4	D13-D60					D5							D6	P1 ₆		P1 ₆		P1 ₆	Payload ₆
D7	D61-D108					D8							D9	P1 ₇		P1 ₇		P1 ₇	Payload ₇
D10	D109-D156					D11							D12	P1 ₈		P1 ₈		P1 ₈	Payload ₈
S1	P1 ₉		P1 ₉		P1 ₉		M0	M1					E2	X	X	X	X	X	Payload ₉

NOTA – FEC para la fila n (octetos de paridad $P1_n$) abarca Payload_n (n = 1, ..., 9).

FEC para la fila 3 abarca también octetos Q1.

FEC para las filas 4, ..., 9 abarca también la MSOH en las filas 4, ..., 9 respectivamente.

FEC para la fila 5 excluye octetos de paridad P14.

M0 no está presente para STM-16, es facultativo para STM-64 y está incluido en STM-256.

D13-D156 sólo están presentes en STM-256.

Figura 10-16/G.783 – Definición de MSF_CI

Defectos

Ninguno.

Acciones consiguientes

aAIS
$$\leftarrow$$
 CI SSF

Al declararse aAIS, la función presentará a la salida una señal todos UNOS dentro de 250 μ s; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 μ s. La frecuencia de la señal todos UNOS estará dentro de la frecuencia del nivel STM-N \pm 20 ppm.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.6.1.2 Función sumidero, transparente a FEC, de adaptación de sección de regeneración STM-N (N ≥ 16) a sección múltiplex STM-N RSn/MSF A Sk

Símbolo

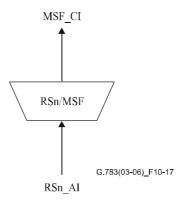


Figura 10-17/G.783 – Símbolo de RSn/MSF A Sk

Interfaces

Cuadro 10-12/G.783 – Señales de entrada y de salida de RSn/MSF A Sk

Entradas	Salidas						
RSn_AI_D	MSF_CI_D						
RSn_AI_CK	MSF_CI_CK						
RSn_AI_FS	MSF_CI_FS						
RSn AI TSF	MSF CI SSF						

Procesos

La función separa datos MSF CI de RSn AI como se muestra en la figura 10-16.

MSF AIS == MSn-AIS y además todos los bits FEC y FSI se fijan a "1"

Defectos

Ninguno.

Acciones consiguientes

aSSF
$$\leftarrow$$
 AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.6.2 Función fuente de generación de FEC para adaptación de sección de regeneración STM-N (N ≥ 16) a sección múltiplex STM-N RSn/MSn-fec A So

Símbolo

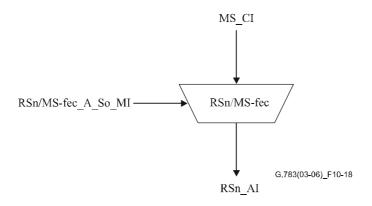


Figura 10-18/G.783 – Símbolo de RSn/MS-fec_A_So

Interfaces

Cuadro 10-13/G.783 – Señales de entrada y de salida RSn/MS-fec_A_So

Entradas	Salidas
MSn_CI_D MSn_CI_CK MSn_CI_FS MSn_CI_SSF	RSn_AI_D RSn_AI_CK RSn_AI_FS
RS/MS-fec_A_So_MI_FEC RS/MS-fec_A_So_MI_Delay	

Procesos

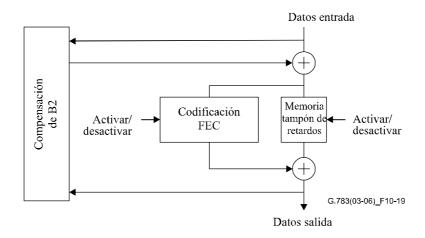


Figura 10-19/G.783 – Proceso de codificación FEC

La compensación de B2 corregirá la BIP de MSF de acuerdo con 8.4/G.806. Obsérvese que el cálculo FEC se realiza después de la compensación B2 e incluye la B2 compensada tal como muestra la figura 10-19a.

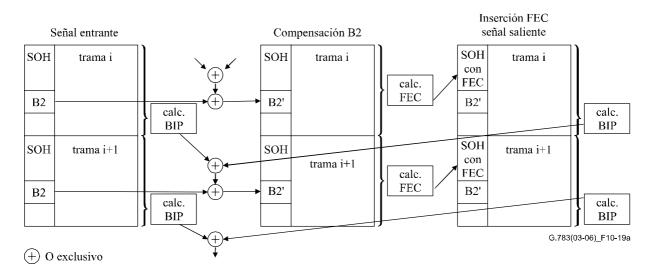


Figura 10-19a/G.783 – Compensación B2 y cálculo FEC

Defectos

Ninguno.

Acciones consiguientes

 $aAIS \quad \leftarrow \ CI \ SSF$

Al declararse aAIS, la función presentará a la salida una señal todos UNOS dentro de 250 μ s; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 μ s. La frecuencia de la señal todos UNOS estará dentro de la frecuencia del nivel de STM-N \pm 20 ppm.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.3.6.2.1 Función sumidero de generación de FEC para adaptación de sección de regeneración STM-N (N ≥ 16) a sección múltiplex STM-N RSn/MSn-fec A Sk

Símbolo

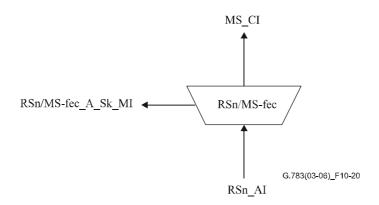


Figura 10-20/G.783 - Símbolo de RSn/MS-fec A Sk

Interfaces

Cuadro 10-14/G.783 – Señales de entrada y de salida RSn/MS_fec_A_Sk

Entradas	Salidas
RSn AI D	MSn CI D
RSn_AI_CK	MSn_CI_CK
RSn_AI_FS	MSn_CI_FS
RSn_AI_TSF	MSn_CI_SSF
	RS/MS-fec_A_Sk_MI_Delay

Procesos

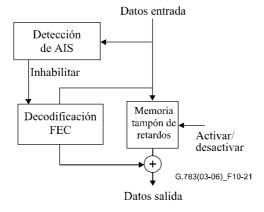


Figura 10-21/G.783 - Proceso de decodificación FEC

Corrección – memorias tampón de retardos.

La indicación de estado de FEC (FSI, *FEC status indication*) controla el decodificador FEC; la señal "activar" habilitará el proceso de decodificación FEC. La comprobación de persistencia para FSI se define en A.6.2.3/G.707/Y.1322.

DEG queda en estudio.

Defectos

MSFdAIS: véase 6.2.4.1.2/G.707/Y.1322.

MSFdAIS detectado inhabilitará la decodificación FEC.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

10.4 Funciones de subcapa

No aplicable.

11 Capa de sección múltiplex STM-N (N = 1, 4, 16, 64, 256)

Los datos en el CP de la capa de sección múltiplex están estructurados en octetos con temporización codireccional y una longitud de trama de $125~\mu s$. El formato se muestra en las figuras 11-1 y 11-2 (véase también la figura 11-3).

La CI de MS está constituida por el octeto B2 para BIP-24, el octeto E2 para circuito de servicio, los octetos K1/K2 para APS, los octetos D4-D12 para DCC de MS, el octeto S1 para SSM y los octetos NU, así como la CI de Sn definida en la Rec. UIT-T G.707/Y.1322 [6].

1	2	3	4	3	O	/	0	9	(vaioi de coordenada b)
1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	(Valor de coordenada c)
H1	Y/H1	Y/H1	H2	1/H2	1/H2	Н3	Н3	Н3	
B2	B2	B2	K1			K2			
D4	D13-D60		D5			D6			
D7	D61-D108		D8			D9			
D10	D109-D156		D11			D12			
S1				M0 M1		E2	NU	NU	

NOTA 1 – M0 no está presente para MS0, MS1, MS4 y MS16. M0 es facultativo para STM-64. M0 es obligatorio para STM-256. NOTA 2 – D13-D156 sólo están presentes en MS256.

Figura 11-1/G.783 – Formato de datos de CI de sección múltiplex

1	2	3	4	5	6	7	8	9	(Valor de coordenada b)
1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	1 a n	(Valor de coordenada c)
H1	Y/H1	Y/H1	H2	1/H2	1/H2	H3	H3	H3	
			K1			K2			
D4	D13-D60		D5			D6			
D7	D61-D108		D8			D9			
D10	D109-D156		D11			D12			
S1						E2	NU	NU	

NOTA – D13-D156 sólo están presentes en MS256.

Figura 11-2/G.783 – Formato de datos de AI de sección múltiplex

Figura 11-3/G.783 – Funciones de sección múltiplex

11.1 Funciones de conexión

No aplicable.

11.2 Funciones de terminación

11.2.1 Terminación de camino de sección múltiplex STM-N MSn TT

La función MSn_TT actúa como una fuente y un sumidero para los octetos B2, M0 y M1 y para los bits 6 a 8 del octeto K2 de la tara de sección múltiplex (MSOH).

11.2.1.1 Fuente de terminación de camino de sección múltiplex STM-N MSn_TT_So Símbolo

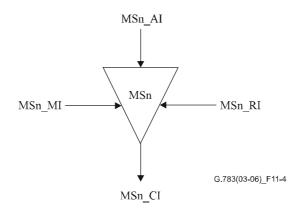


Figura 11-4/G.783 – Símbolo de MSn_TT_So

Interfaces

Cuadro 11-1/G.783 – Entradas y salidas de la función MSn TT So

Entradas	Salidas
MSn_AI_Data MSn_AI_Clock MSn_AI_FrameStart MSn_RI_RDI MSn_RI_REI MSn_MI_M0_Generated	MSn_CI_Data MSn_CI_Clock MSn_CI_FrameStart

Procesos

Los datos en el MSn_AP están constituidos por una señal STM-N, definida en la Rec. UIT-T G.707/Y.1322, que tiene una cabida útil estructurada como se especifica en la Rec. UIT-T G.707/Y.1322, pero con los octetos B2, M0 y M1 de la MSOH indeterminados y octetos de la RSOH indeterminados. Los octetos B2, M0 y M1 se fijan de acuerdo con la Rec. UIT-T G.707/Y.1322 como parte de la función MSn_TT_So. Los datos STM-N resultantes y la temporización asociada se presentan en el MSn CP.

B2: El octeto B2 de supervisión de errores se asigna en la STM-N para una función de supervisión de errores de bit en una sección múltiplex. Esta función será un código de paridad de entrelazado de bits (BIP-24N) que utiliza paridad par como se define en la Rec. UIT-T G.707/Y.1322. La BIP-24N se calcula sobre todos los bits (salvo los pertenecientes a los octetos RSOH) de la anterior trama STM-N y se insertan en las respectivas posiciones 3 × N del octeto B2 de la actual trama STM-N.

M0, **M1**: El número de errores detectados por la supervisión de B2 en el lado sumidero (véase 6.5.1/G.806) se transfiere al lado fuente mediante la aREI y se codifica en la MS-REI (octeto M1 para MS0, MS1, MS4, MS16, o MS64, octetos M0 y M1 para MS64 o MS256) de acuerdo con 9.2.2.14/G.707/Y.1322. Tras la detección de un número de errores en la función sumidero de terminación, la función fuente de terminación de camino habrá insertado ese valor en los bits REI dentro de 1 ms.

K2[6-8]: Estos bits representan el estado de defecto del MSn_TT_Sk asociado. Al declararse/ desaparecer aRDI en la función sumidero de terminación, la función fuente de terminación de camino habrá insertado/suprimido el código RDI (110/000) dentro de 1 ms.

Defectos

Ninguno.

Acciones consiguientes

Si se detecta un defecto MS-AIS en el MSn_AP (véase 11.2.1.2) en el lado sumidero, se transfiere al lado fuente mediante la aRDI (parte de la MSn_RI) y se aplicará MS-RDI dentro de 1 ms a la salida de la señal de datos, en el punto de referencia MSn_CP. MS-RDI se define como una señal STM-N con el código 110 en las posiciones de bit 6, 7 y 8 del octeto K2. Al desaparecer el defecto, la función presentará a la salida datos normales dentro de 1 ms.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.2.1.2 Sumidero de terminación de camino de sección múltiplex STM-N MSn_TT_Sk

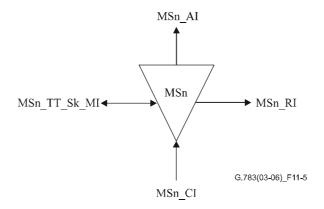


Figura 11-5/G.783 – Símbolo de MSn_TT_Sk

Cuadro 11-2/G.783 – Entradas y salidas de la función MSn TT Sk

Entradas	Salidas
MSn CI Data	MSn AI Data
MSn_CI_Clock	MSn_AI_Clock
MSn_CI_FrameStart	MSn_AI_FrameStart
MSn_CI_SSF	MSn_AI_TSF
MSn_TT_Sk_MI_DEGM	MSn_AI_TSD
MSn_TT_Sk_MI_DEGTHR	MSn_RI_RDI
MSn_TT_Sk_MI_DEG_X	MSn_RI_REI
MSn_TT_Sk_MI_EXC_X	MSn_TT_Sk_MI_cEXC
MSn_TT_Sk_MI_TPMode	MSn_TT_Sk_MI_cAIS
MSn_TT_Sk_MI_1second	MSn_TT_Sk_MI_cDEG
MSn_TT_Sk_MI_AIS_Reported	MSn_TT_Sk_MI_cRDI
MSn_TT_Sk_MI_RDI_Reported	MSn_TT_Sk_MI_cSSF
MSn_TT_Sk_MI_SSF_Reported	MSn_TT_Sk_MI_pNEBC
MSn_TT_Sk_MI_M1_ignored	MSn_TT_Sk_MI_pFEBC
MSn_TT_Sk_MI_M0_ignored	MSn_TT_Sk_MI_pNDS
	MSn_TT_Sk_MI_pFDS

Procesos

La MSn_CI se recibe en el punto de referencia MSn_CP. La función MSn_TT recupera los octetos B2, M0, M1 y K2[6-8]. A continuación, los datos STM-N y la temporización asociada se presentan en el punto de referencia MSn_AP.

B2: Los 3 × N octetos B2 de supervisión de errores se recuperan de la MSOH. Se calcula un código BIP-24N para la trama STM-N. El valor calculado de BIP-24N para la trama actual se compara con los octetos B2 recuperados de la trama siguiente y los errores se informan en el punto de referencia MSn_TT_MP como un cómputo de 1 segundo (pN_EBC). Los errores BIP-24N son también procesados dentro de la función MSn_TT para detectar el defecto degradación de señal (SD, *signal degrade*). El proceso para la detección de la degradación de señal se describe en 6.2.3.1/G.806 [13].

M0, M1: La información MS-REI se decodifica de acuerdo con la Rec. UIT-T G.707/Y.1322 a partir del octeto M1 (para MS0, MS1, MS4, MS16 o MS64) o a partir de los octetos M0 y M1 (para MS64 o MS256) y se informa como un cómputo de 1 segundo (pF_EBC) en el MSn_TT_MP. Si M1_ignored es verdadero, se obligará a nF_B a tomar el valor "0"; si M1_ignored es falso, nF_B será igual al valor en REI.

NOTA – M1_ignored es un parámetro suministrado por el operador para indicar si el octeto M0/M1 está o no soportado en la señal STM-N entrante. Si M0/M1 está soportado, M1_ignored deberá fijarse a falso; de lo contrario, M1_ignored deberá fijarse a verdadero.

Defectos

dAIS: véase 6.2.6.2/G.806. dRDI: véase 6.2.6.3/G.806. dDEG: véase 6.2.3.1.1/G.806.

dEXC: véase 6.2.3.1.1/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

```
aAIS ← dAIS

aRDI ← dAIS

aREI ← "número de violaciones de código de detección de errores"

aTSF ← dAIS

aTSD ← dDEG

aTSFprot ← aTSF o dEXC
```

Si se detecta el defecto MS-AIS, se aplicará una señal de datos de todos UNOS lógica (AIS) en el punto de referencia MSn_AP dentro de 250 µs. Al desaparecer la mencionada condición de defecto, se suprimirá la señal de todos UNOS lógica dentro de 250 µs.

Si se detecta MS-AIS, se aplicará una condición de fallo de señal de camino (TSF, *trail signal fail*) en el punto de referencia MSn_AP dentro de 250 μs. Al desaparecer las mencionadas condiciones de efecto, se suprimirá la condición de fallo de señal de camino dentro de 250 μs.

Si se detecta MS-DEG, se aplicará una condición de degradación de señal de camino (TSD, *trail signal degrade*) en el MSn_AP dentro de 250 µs. Al desaparecer la mencionada condición de defecto, se suprimirá la condición TSD dentro de 250 µs.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería. Esta causa se informará a la SEMF.

```
cSSF ← CI_SSF y SSF_Reported y MON

cAIS ← dAIS y (no CI_SSF) y AIS_Reported y MON

cDEG ← dDEG y MON

cRDI ← dRDI y RDI_Reported y MON

cEXC ← dEXC y MON
```

Supervisión de la calidad de funcionamiento

La función tratará las siguientes primitivas relacionadas con la calidad de funcionamiento como sigue:

```
\begin{array}{lll} pN\_DS & \leftarrow \ aTSF \ o \ dEQ \\ pF\_DS & \leftarrow \ dRDI \\ pN\_EBC & \leftarrow \ \Sigma nN\_B \\ pF\_EBC & \leftarrow \ \Sigma nF\_B \end{array}
```

11.3 Funciones de adaptación

11.3.1 Adaptación de capa de sección múltiplex STM-N a capa Sn MSn/Sn_A

Esta función proporciona adaptación de trayectos de orden superior a unidades administrativas (AU, *administrative units*), ensamblado y desensamblado de grupos de AU, multiplexación y demultiplexación con entrelazado de octetos, y generación, interpretación y procesamiento de punteros.

11.3.1.1 Fuente de adaptación de capa de sección múltiplex STM-N a capa Sn MSn/Sn_A_So Símbolo

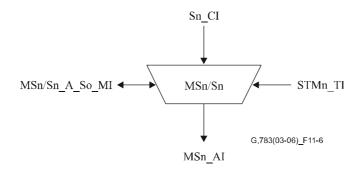


Figura 11-6/G.783 – Símbolo de MSn/Sn_A_So

Interfaces

Cuadro 11-3/G.783 – Entradas y salidas de la función MSn/Sn A So

Entradas	Salidas
Sn CI Data	MSn AI Data
Sn_CI_Clock	MSn_AI_Clock
Sn_CI_FrameStart	MSn_AI_FrameStart
Sn_CI_SSF	MSn/Sn_A_So_MI_pPJE+
STMn_TI_Clock	MSn/Sn_A_So_MI_pPJE-
STMn_TI_FrameStart	
MSn/Sn_A_So_MI_Active	

Procesos

La función procesador de puntero (PP, *pointer processor*) acomoda la fluctuación lenta de fase y el desplazamiento plesiócrono en la señal recibida con respecto a la referencia de temporización de equipo síncrono. Esta función puede ser nula en algunas aplicaciones en las que la referencia de temporización se deriva de la señal STM-N entrante, es decir, temporización de bucle, o si el contenedor HP es generado con la misma fuente de temporización que la sección múltiplex.

La función PP puede ser modelada como una memoria tampón de datos que se escribe con datos, temporizada a partir del reloj de VC recibido, y leída por un reloj VC derivado del punto de referencia STMn TP (véase la Rec. UIT-T G.781 [9]). Cuando la velocidad del reloj de escritura es mayor que la velocidad del reloj de lectura, la memoria tampón se llena gradualmente y viceversa. Los umbrales superior e inferior de ocupación de la memoria tampón determinan cuándo se debe producir el ajuste del puntero. La memoria tampón tiene que reducir la frecuencia de los ajustes de puntero en la red. La asignación, en la memoria tampón de procesador de puntero, para el espaciamiento del umbral de histéresis de puntero debe ser al menos de 12 octetos para AU-4 y al menos de 4 octetos para AU-3 (lo que corresponde a un máximo error relativo en el intervalo de tiempo (MRTIE, maximum relative time interval error) de 640 ns entre el punto de referencia STMn TP y la señal de línea STM-N entrante). Cuando los datos en la memoria tampón rebasan el umbral superior para un VC determinado, el desplazamiento de trama asociado se reduce en un octeto para un VC-3 o en tres octetos para un VC-4 y el número correspondiente de octetos son leídos de la memoria tampón. Cuando los datos en la memoria tampón están por debajo del umbral más bajo para un VC determinado, el desplazamiento de trama asociado se incrementa en un octeto para un VC-3 o en tres octetos para un VC-4 y se cancela el número correspondiente de oportunidades de lectura.

Es posible detectar la degradación de la sincronización de la red supervisando los incrementos y decrementos de puntero. Se cuentan los eventos de justificación de puntero (PJE, *pointer justification events*) salientes, es decir, los valores de puntero que han sido aumentados o disminuidos, y se informan en el punto de referencia MSn/Sn_A_MP para el filtrado de la supervisión de la calidad de funcionamiento. Los cómputos de PJE se han de informar separadamente para incrementos (eventos positivos) y decrementos (eventos negativos) de puntero. PJE sólo tiene que ser informado para una AU-3/4 seleccionada de una señal STM-N.

Los trayectos de orden superior en Sn_CP se hacen corresponder con las AU que están incorporadas en grupos AU. N de estas AUG tienen entrelazado de octetos para formar una cabida útil de STM-N en MSn_AP. El proceso de entrelazado de octetos será el especificado en la Rec. UIT-T G.707/Y.1322. La información de desplazamiento de trama es utilizada por la función PG para generar punteros de acuerdo con las reglas de generación de puntero de la Rec. UIT-T G.707/Y.1322. Los datos STM-N en el MSn_AP se sincronizan a la temporización del punto de referencia STMn_TP.

Defectos

Ninguno.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

$$aAIS \leftarrow CI SSF$$

Cuando se aplica una señal todos UNOS en el punto de referencia Sn_CP, se aplicará una señal todos UNOS (AU-AIS) en el punto de referencia MSn_AP dentro de dos tramas (250 µs). Al desaparecer la señal todos UNOS en Sn_CP, la señal todos UNOS (AU-AIS) será terminada dentro de dos tramas (250 µs).

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Cada segundo, el número de incrementos de justificación de puntero generados dentro de ese segundo se contará como la pPJE+. Cada segundo, el número de decrementos de justificación de puntero generados dentro de ese segundo se contará como la pPJE-.

11.3.1.2 Sumidero de adaptación de capa de sección múltiplex STM-N a capa Sn MSn/Sn A Sk

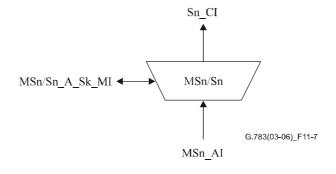


Figura 11-7/G.783 – Símbolo de MSn/Sn A Sk

Cuadro 11-4/G.783 – Entradas y salidas de la función MSn/Sn A Sk

Entradas	Salidas
MSn_AI_Data MSn_AI_Clock	Sn_CI_Data Sn_CI_Clock
MSn_AI_FrameStart	Sn_CI_FrameStart
MSn_AI_TSF MSn/Sn A Sk MI AIS Reported	Sn_CI_SSF MSn/Sn A Sk MI cAIS
MSn/Sn_A_So_MI_Active	MSn/Sn_A_Sk_MI_cLOP

Procesos

El algoritmo para la detección de puntero se define en el anexo A. El interpretador de puntero puede detectar dos condiciones de defecto:

- pérdida de puntero (LOP, loss of pointer);
- AU-AIS.

Si se detecta una de estas dos condiciones de defecto, se aplicará una señal todos UNOS lógica (AIS) en el punto de referencia Sn_CP dentro de dos tramas (250 µs). Al desaparecer estos defectos, se suprimirá la señal todos UNOS dentro de dos tramas dos tramas (250 µs). Estos defectos serán informados en el punto de referencia MS/Sn_A_MP para el filtrado de alarma en la función de gestión del equipo síncrono.

Cabe señalar que una falta de concordancia persistente entre el tipo AU previsto y recibido resultará en un defecto LOP y también en que las estructuras de AU-3 y AU-4 puedan ser diferenciadas comprobando los octetos Y en la zona del puntero.

Las cabidas útiles de Sn recibidas en el MSn_AP son desentrelazadas y se recupera la fase de los VC-3/VC-4/VC-4-Xc utilizando los punteros AU. Este último proceso debe prever el caso de desplazamiento de trama continuamente variable, que se produce cuando la señal STM-N recibida ha sido derivada de una fuente que es plesiócrona con la referencia de reloj local. El algoritmo para la interpretación de puntero figura en A.3.

Defectos

64

dAIS: Véase anexo A. dLOP: Véase anexo A.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aAIS \leftarrow dAIS o dLOP aSSF \leftarrow dAIS o dLOP

Cuando está presente una condición SF en el MSn_AP, se aplicará una condición SF en el Sn_CP dentro de 250 µs. Al desaparecer la condición de defecto mencionada en el MSn_AP, se suprimirá la condición SF dentro de 250 µs.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería. Esta causa se informará a la SEMF.

cAIS ← dAIS y (no AI_TSF) y AIS_Reported cLOP ← dLOP

Supervisión de la calidad de funcionamiento

Ninguna.

11.3.2 Adaptación de sección múltiplex STM-N a DCC (MSn/DCC_A)

La función de adaptación MSn/DCC_A multiplexa los octetos D4-D12 de la tara de sección múltiplex (MSOH) en la MSn_AI en el sentido hacia la fuente y demultiplexa los octetos D4-D12 de la MSn_AI en el sentido hacia el sumidero. Para STM-256, la función de adaptación MS256/DCCX_A multiplexa los octetos D13-D156 de una MSOH en la MS256_AI en el sentido hacia la fuente y demultiplexa los octetos D13-D156 de la MS256_AI en el sentido hacia el sumidero.

11.3.2.1 Fuente de adaptación de sección múltiplex STM-N a DCC MSn/DCC_A_So Símbolo

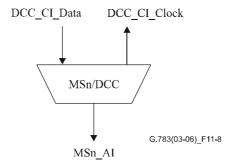


Figura 11-8/G.783 – Símbolo de MSn/DCC A So

Interfaces

Cuadro 11-5/G.783 – Entradas y salidas de la función MSn/DCC A So

Entradas	Salidas
DCC_CI_Data STM-N_TI_FrameStart STM-N_TI_Clock	MSn_CI_Data DCC_CI_Clock

Procesos

Los datos DCC son insertados consecutivamente en las posiciones de octeto D4 a D12 de la MSOH. Estos octetos deben considerarse como un canal individual a 576 kbit/s basado en mensajes para alarmas, mantenimiento, control, supervisión, administración y otras necesidades de comunicación. El canal está disponible para mensajes generados interna y externamente, y para mensajes específicos del fabricante. La pila de protocolos utilizada se ajustará a la Rec. UIT-T G.784.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.3.2.2 Sumidero de adaptación de sección múltiplex STM-N a DCC MSn/DCC_A_Sk

Símbolo

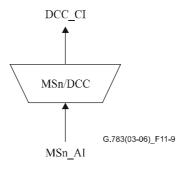


Figura 11-9/G.783 – Símbolo de MSn/DCC_A_Sk

Interfaces

Cuadro 11-6/G.783 – Entradas y salidas de la función MSn/DCC_A_Sk

Entradas	Salidas
MSn_AI_Data MSn_AI_Clock MSn_AI_FrameStart MSn_AI_TSF	DCC_CI_Data DCC_CI_Clock DCC_CI_SSF

Procesos

Los datos DCC se recuperan consecutivamente de las posiciones de octeto D4 a D12 de la MSOH.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.3.2.3 Fuente de adaptación de sección múltiplex STM-256 a DCCX MS256/DCCX_A_So Símbolo

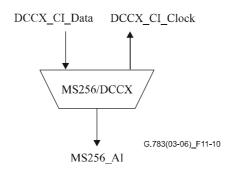


Figura 11-10/G.783 – Símbolo de MS256/DCCX_A_So

Interfaces

Cuadro 11-7/G.783 – Entradas y salidas de la función MS256/DCCX A So

Entradas	Salidas				
DCCX_CI_Data STM-256_TI_FrameStart STM-256_TI_Clock	MS256_CI_Data DCCX_CI_Clock				

Procesos

Los datos DCCX se insertan consecutivamente en las posiciones de octeto D13 a D156 de la MSOH. Estos octetos deben considerarse como un canal individual a 9216 kbit/s basado en mensajes para alarmas, mantenimiento, control, supervisión, administración y otras necesidades de comunicación. El canal está disponible para mensajes generados interna y externamente, y para mensajes específicos del fabricante. La pila de protocolos utilizada se ajustará a la Rec. UIT-T G.784.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

11.3.2.4 Sumidero de adaptación de sección múltiplex STM-256 a DCCX MS256/DCCX A Sk

Símbolo

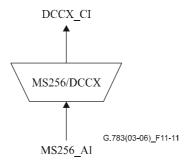


Figura 11-11/G.783 – Símbolo de MS256/DCCX_A_Sk

Interfaces

Cuadro 11-8/G.783 – Entradas y salidas de la función MS256/DCCX A Sk

Entradas	Salida				
MS256_AI_Data MS256_AI_Clock MS256_AI_FrameStart MS256_AI_TSF	DCCX_CI_Data DCCX_CI_Clock DCCX_CI_SSF				

Procesos

Los datos DCCX se recuperan consecutivamente de las posiciones de octeto D13 a D156 de la MSOH.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.3.3 Adaptación de sección múltiplex STM-N a circuito de servicio MSn/OW A

La función de adaptación MSn/OW_A multiplexa los octetos E2 de la tara de sección múltiplex (MSOH) en la MSn_AI en el sentido hacia la fuente y demultiplexa los octetos E2 de la MSn_AI en el sentido hacia el sumidero.

11.3.3.1 Fuente de adaptación de sección múltiplex STM-N a circuito de servicio MSn/OW_A_So

Símbolo

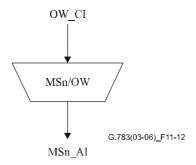


Figura 11-12/G.783 – Símbolo de MSn/OW A So

Interfaces

Cuadro 11-9/G.783 – Entradas y salidas de la función MSn/OW_A_So

Entradas	Salida
OW_CI_Data OW_CI_Clock OW_CI_FrameStart	MSn_AI_Data

Procesos

El circuito de servicio se inserta en la posición de octeto E2. Es un canal a 64 kbit/s sin restricciones, facultativo, y reservado para comunicaciones vocales entre ubicaciones terminales.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

11.3.3.2 Sumidero de adaptación de sección múltiplex STM-N a circuito de servicio MSn/OW_A_Sk

Símbolo

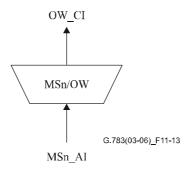


Figura 11-13/G.783 – Símbolo de MSn/OW A Sk

Interfaces

Cuadro 11-10/G.783 – Entradas y salidas de la función MSn/OW A Sk

Entradas	Salidas				
MSn_AI_Data MSn_AI_Clock	OW_CI_Data OW_CI_Clock				
MSn_AI_FrameStart MSn_AI_TSF	OW_CI_FrameStart OW_CI_SSF				

Procesos

El circuito de servicio se recupera de la posición de octeto E2 de la MSOH.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

aAIS \leftarrow AI TSF

Al declararse aAIS, la función presentará a la salida la señal todos UNOS (AIS), dentro de los límites de frecuencia para esta señal (una velocidad binaria en la gama de $64 \text{ kbit/s} \pm 100 \text{ ppm}$), dentro de dos tramas (250 µs). Al desaparecer las mencionadas condiciones de fallo, la señal todos UNOS se suprimirá dentro de dos tramas dos tramas (250 µs).

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.3.4 Adaptación de sección múltiplex STM-N a distribución de sincronización MSn/SD A

11.3.4.1 Fuente de adaptación de sección múltiplex STM-N a distribución de sincronización MSn/SD A So

Esta función se describe en la Rec. UIT-T G.781 [9].

11.3.4.2 Sumidero de adaptación de sección múltiplex STM-N a distribución de sincronización MSn/SD_A_Sk

Esta función se describe en la Rec. UIT-T G.781.

11.3.5 Adaptación de capa de sección múltiplex STM-N a capa S4-Xc MSn/S4-Xc_A

11.3.5.1 Fuente de adaptación de capa de sección múltiplex STM-N a capa S4-Xc MSn/S4-Xc A So

Queda en estudio.

11.3.5.2 Sumidero de adaptación de capa de sección múltiplex STM-N a capa S4-Xc MSn/S4-Xc A Sk

Queda en estudio.

11.3.6 Adaptación de sección múltiplex STM-N a octetos auxiliares MSn/AUX_A

Ciertos octetos MSOH están reservados actualmente para uso nacional, para uso que depende de los medios o para normalización internacional futura, según se define en la Rec. UIT-T G.707/Y.1322. Se puede ganar acceso a uno o más de estos octetos por medio de la función MSn/AUX_A. No se especifica ningún esquema para los otros octetos no utilizados cuando no se emplean para una finalidad determinada.

11.4 Funciones de subcapa

11.4.1 Funciones de protección de camino lineal de sección múltiplex STM-N

Véanse las figuras 11-14 y 11-15.

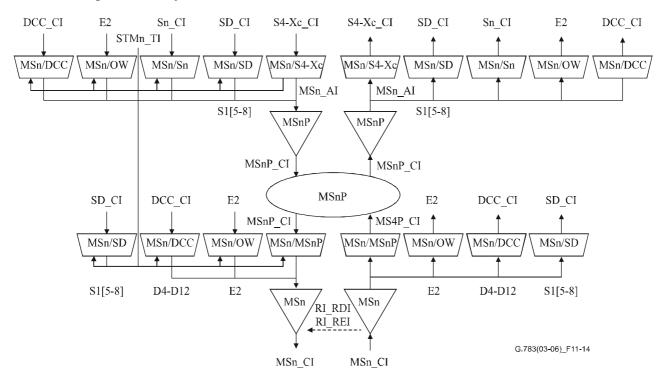
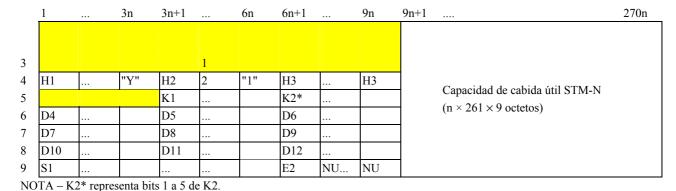



Figura 11-14/G.783 – Funciones de protección de camino lineal de sección múltiplex STM-N

La función MSP proporciona protección para la señal STM-N contra fallos asociados al canal dentro de una sección múltiplex, es decir, las funciones de capa RS, funciones de capa de sección física y el medio físico desde una función MSn_TT donde se inserta tara de sección a otra función MSn_TT donde termina esa tara.

Figura 11-15/G.783 – MSnP CI D

Las funciones MSP en ambos extremos trabajan de la misma manera, supervisando los fallos de las señales STM-N, evaluando el estado del sistema habida cuenta de las prioridades de condiciones de fallo y de las peticiones de conmutadores externos y distantes, y conmutando el canal apropiado a la sección de protección. Las dos secciones MSP comunican entre sí a través de un protocolo de bits definido para los octetos MSP (octetos K1 y K2 en la MSOH de la sección de protección). Este protocolo se describe en 7.1/G.841, para las distintas arquitecturas y modos de conmutación de protección.

NOTA 1 – La utilización del protocolo MSP descrito en 7.1/G.841 y en esta cláusula en secciones múltiplex largas, tales como sistemas de satélite, sistemas de cable submarino, sistemas de relevadores radioeléctricos y sistemas de transmisión con un gran número de regeneradores o amplificadores ópticos puede resultar en tiempos de conmutación más largos debido al tiempo de propagación adicional introducido por la sección física. Por consiguiente, en algunas aplicaciones, puede no ser posible satisfacer el objetivo de red de un tiempo de conmutación de 50 ms.

NOTA 2 – A fin de facilitar el interfuncionamiento de equipos de diferentes capacidades, se recomienda que los equipos que soporten las arquitecturas 1:1 también soporten arquitecturas 1+1.

El flujo de señales asociado con la función MSP se describe con referencia al cuadro 11-11. La función recibe parámetros de control y peticiones de conmutación externas en el punto de referencia MSnP_C_MP procedentes de la función de gestión de equipos síncronos y presenta a la salida indicadores de estado en el MSnP_C_MP para función de gestión de equipos síncronos, como resultado de instrucciones de conmutación descritas en 7.1.2/G.841 o en B.2/G.841.

11.4.1.1 Conexión de protección de camino lineal de sección múltiplex STM-N (MSnP_C) Símbolo

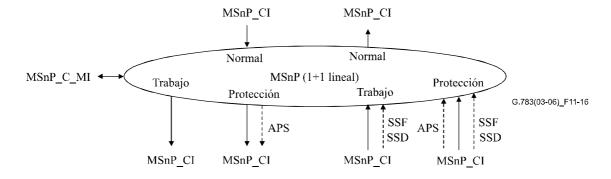


Figura 11-16/G.783 – Símbolo de MSnP1+1_C

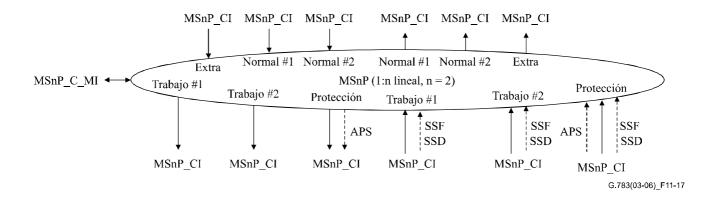


Figura 11-17/G.783 – Símbolo de MSnP1:n_C

Cuadro 11-11/G.783 – Entradas y salidas de la función MSnP_C

Entradas	Salidas						
Para puntos de conexión W y P: MSnP_CI_Data	Para puntos de conexión W y P: MSnP_CI_Data						
MSnP_CI_Clock MSnP_CI_FrameStart MSnP_CI_SSF	MSnP_CI_Clock MSnP_CI_FrameStart						
MSnP_CI_SSD MSnP_C_MI_SFpriority MSnP_C_MI_SDpriority							
Para puntos de conexión N y E: MSnP_CI_Data MSnP_CI_Clock MSnP_CI_FrameStart	Para puntos de conexión N y E: MSnP_CI_Data MSnP_CI_Clock MSnP_CI_FrameStart MSnP_CI_SSF						
Por cada función: MSnP_CI_APS MSnP_C_MI_SWtype MSnP_C_MI_EXTRAtraffic MSnP_C_MI_WTRTime MSnP_C_MI_EXTCMD	Por cada función: MSnP_CI_APS MSnP_C_MI_cFOP						
NOTA – Quedan en estudio las señales que informan estado de protección.							

Procesos

Los datos en el MSn_AP están constituidos por una señal STM-N, temporizada a partir del punto de referencia STMn_TP, con los octetos MSOH y RSOH no determinados.

En el sentido hacia la fuente para una arquitectura 1+1, la señal recibida en el MSn_AP de la función MSn/Sn_A conecta en puente permanentemente el MSn_AP con las funciones MSn_TT de trabajo y de protección. Para la arquitectura 1:n, la señal recibida en el MSn_AP de cada MSn/Sn_A de trabajo se pasa del MSn_AP a su MSn_TT correspondiente. La señal procedente de MSn/Sn_A de tráfico suplementario (si se provee) se conecta al MSn_TT de protección. Cuando se necesita un puente para proteger un canal de trabajo, la señal de MSn_AP de MSn/Sn_A de trabajo conecta en puente el MSn_AP con el MSn_TT de protección y el canal de tráfico suplementario es terminado.

En el sentido hacia el sumidero, las señales STM-N entramadas (datos) cuyos octetos RSOH y MSOH ya han sido recuperados se presentan en el punto de referencia MSn_AP junto con las referencias de temporización entrantes. Se reciben también las condiciones de fallo SF y SD en el punto de referencia MSn_AP de todas las funciones MSn_TT.

En condiciones normales, MSnP_C pasa los datos y la temporización de las funciones MSn_TT de trabajo a sus correspondientes funciones MSn/Sn_A de trabajo en el punto de referencia MSn_AP. Los datos y la temporización de la sección de protección pasan a la MSn/Sn_A de tráfico suplementario, si se proporciona en una arquitectura MSP 1:n, y de lo contrario son terminados.

Si se ha de realizar una conmutación, los datos y la temporización recibidos de MSn_TT de protección en el punto de referencia MSn_AP se conmutan a la función MSn/Sn_A de canal de trabajo apropiado en el MSn_AP, y la señal recibida del MSn_TT de trabajo en el MSn_AP es terminada.

Criterios para la iniciación de la conmutación

La conmutación de protección automática se basa en las condiciones de fallo de las secciones de trabajo y de protección. Estas condiciones, fallo de señal (SF, *signal fail*) y degradación de señal (SD), son proporcionadas por las funciones MSn_TT en el MSn_AP. La detección de estas condiciones se describe en 11.2.

La conmutación de protección puede ser iniciada también por instrucciones de conmutación recibidas a través de la función de gestión de equipo síncrono.

Tiempo de conmutación

Véase la Rec. UIT-T G.841.

Conmutación de restablecimiento

En el modo inverso de funcionamiento, el canal de trabajo será restablecido, es decir, la señal en la sección de protección será conmutada de nuevo a la sección de trabajo, cuando la sección de trabajo se haya recuperado del fallo. El restablecimiento permite que otros canales de trabajo con fallos o un canal de tráfico suplementario utilicen la sección de protección.

Para evitar el funcionamiento frecuente de la conmutación de protección debido a un fallo intermitente (por ejemplo, fluctuación de la BER alrededor del umbral SD), una sección que sufre un fallo deberá pasar de esa condición a la condición de libre de averías (es decir, la BER deberá retornar a un nivel inferior a un umbral de restablecimiento). Después que la sección que ha sufrido un fallo satisface este criterio, transcurrirá un periodo de tiempo fijo antes de que sea utilizada por un canal de trabajo. Este periodo, denominado tiempo de espera para restauración (WTR, *wait to restore*), estará comprendido en la gama de 1-12 minutos y debe ser posible fijarlo. Una condición SF o SD prevalecerá sobre WTR.

Defectos

Ninguno.

Acciones consiguientes

Cuando no se ha de conectar tráfico suplementario ni una entrada de señal de tráfico normal a la salida de la señal de protección, se conectará una señal todos UNOS, una señal Sn no equipada, una entrada de señal de trabajo u otra señal de prueba adecuada, a la salida de la sección de protección.

Correlaciones de defectos

cFOP ← véase la Rec. UIT-T G.841

Supervisión de la calidad de funcionamiento

11.4.1.2 Terminación de camino de protección de sección múltiplex MSnP TT

11.4.1.2.1 Fuente de terminación de camino de protección de sección múltiplex STM-N MSnP_TT_So

Símbolo

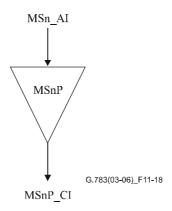


Figura 11-18/G.783 - Símbolo de MSnP TT So

Interfaces

Cuadro 11-12/G.783 - Entradas y salidas de la función MSnP TT So

Entradas	Salidas				
MSn_AI_Data	MSnP_CI_Data				
MSn_AI_Clock	MSnP_CI_Clock				
MSn_AI_FrameStart	MSnP_CI_FrameStart				

Procesos

No se requiere procesamiento de información en la MSnP_TT_So, pues la MSn_AI a su salida es idéntica a la MSnP_CI a su entrada.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

11.4.1.2.2 Sumidero de terminación de camino de protección de sección múltiplex STM-N MSnP_TT_Sk

Símbolo

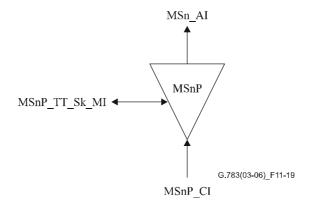


Figura 11-19/G.783 – Símbolo de MSnP_TT_Sk

Interfaces

Cuadro 11-13/G.783 – Entradas y salidas de la función MSnP_TT_Sk

Entradas	Salidas
MSnP CI Data	MSn AI Data
MSnP_CI_Clock	MSn_AI_Clock
MSnP_CI_FrameStart	MSn_AI_FrameStart
MSnP_CI_SSF	MSn_AI_TSF
MSnP_TT_Sk_MI_SSF_Reported	MSnP_TT_Sk_MI_cSSF

Procesos

La función MSnP_TT_Sk informa, como parte de la capa MSn, el estado del camino MSn protegido. Si todas las conexiones están indisponibles, la MSnP_TT_Sk informa la condición fallo de la señal del camino protegido.

Defectos

Ninguno.

Acciones consiguientes

aTSF \leftarrow CI SSF

Correlaciones de defectos

 $cSSF \leftarrow CI SSF y SSF Reported$

Supervisión de la calidad de funcionamiento

11.4.1.3 Adaptación de protección de camino lineal de sección múltiplex STM-N MSn/MSnP A

11.4.1.3.1 Fuente de adaptación de sección múltiplex STM-N a capa de protección de sección múltiplex STM-N MSn/MSnP_A_So

Símbolo

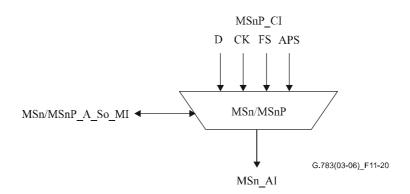


Figura 11-20/G.783 – Símbolo de MSn/MSnP_A_So

Interfaces

Cuadro 11-14/G.783 – Entradas y salidas de la función MSn/MSnP A So

Entradas	Salidas				
MSnP_CI_Data MSnP_CI_Clock MSnP_CI_FrameStart MSnP_CI_APS	MSn_AI_Data MSn_AI_Clock MSn_AI_FrameStart				

Procesos

La función mutiplexará la señal APS de MS1 (octetos K1 y K2 generados de acuerdo con las reglas indicadas en 7.1.1/G.841) y la señal de datos MS1 en el punto de acceso MS1. Este proceso es obligatorio para la sección de protección y puede efectuarse también para una o más secciones de trabajo.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

11.4.1.3.2 Sumidero de adaptación de sección múltiplex STM-N a capa de protección de sección múltiplex STM-N MSn/MSnP A Sk

Símbolo

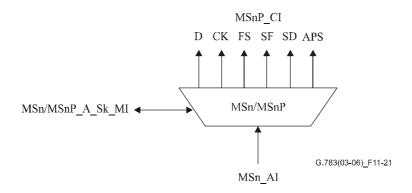


Figura 11-21/G.783 - Símbolo de MSn/MSnP A Sk

Interfaces

Cuadro 11-15/G.783 – Entradas y salidas de la función MSn/MSnP A Sk

Entradas	Salidas
MSn AI Data	MSnP CI Data
MSn_AI_Clock	MSnP_CI_Clock
MSn AI FrameStart	MSnP CI FrameStart
MSn_AI_TSF	MSnP_CI_SSF
MSn_AI_TSD	MSnP_CI_SSD
	MSnP_CI_APS (sólo para señal de protección)

Procesos

La función extraerá los 13 bits APS, bits K1[1-8] y K2[1-5], de la señal MS1_AI_D. Se aceptará un nuevo valor cuando se reciba el mismo valor en tres tramas consecutivas. Este valor se presentará a la salida mediante MS1P_CI_APS. Este proceso sólo es obligatorio para la sección de protección. La función deberá poder ignorar los octetos APS procedentes de la sección o las secciones de trabajo.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

aSSD \leftarrow AI TSD

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

11.4.2 Funciones de anillo de protección compartida a 2 fibras de sección múltiplex STM-N

En esta cláusula se especifican las funciones atómicas de subcapa de protección SPRING de sección múltiplex STM-N a 2 fibras y el modelo funcional de protección SPRING de sección múltiplex a 2 fibras (véase la figura 11-22).

Las características de este esquema de protección, el protocolo de protección y el funcionamiento se especifican en la Rec. UIT-T G.841.

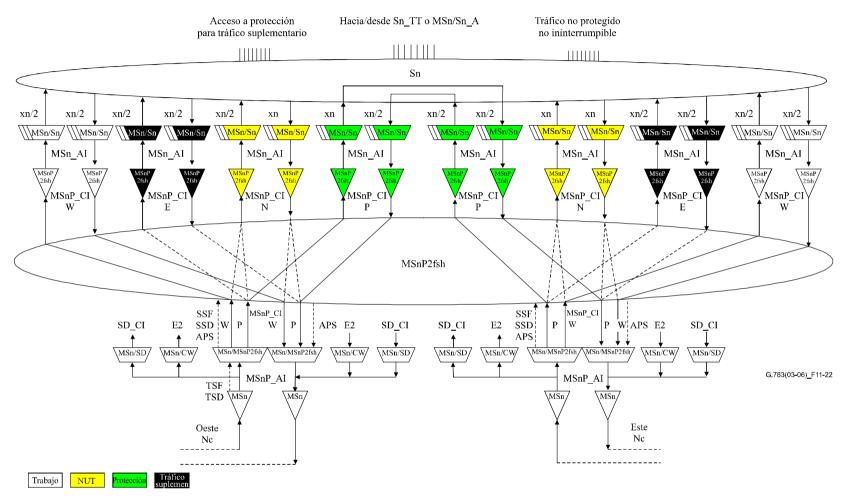


Figura 11-22/G.783 – Modelo de anillo de protección compartida a 2 fibras de sección múltiplex STM-n (trabajo: AUG #1 a AUG #n/2, protección AUG #(n/2 + 1) a AUG #n)

11.4.2.1 Conexión de anillo de protección compartida a 2 fibras de sección múltiplex STM-N MSnP2fsh C

Símbolo

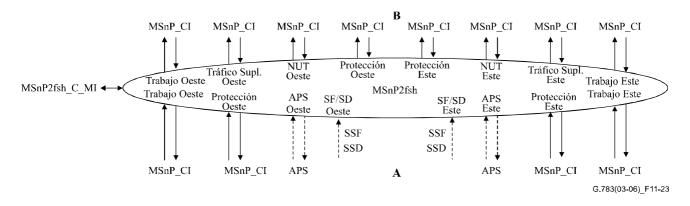


Figura 11-23/G.783 – Símbolo de MSnP2fsh C

Interfaces

Cuadro 11-16/G.783 – Señales de entrada y de salida MSnP2fsh C

MSnP2fsh_CI_Dw	Para puntos de conexión A Oeste y A Este:
MSnP2fsh_CI_CK MSnP2fsh_CI_FS MSnP2fsh_CI_SSF MSnP2fsh_CI_SSD MSnP2fsh_CI_APS	MSnP2fsh_CI_Dw MSnP2fsh_CI_Dp MSnP2fsh_CI_CK MSnP2fsh_CI_FS MSnP2fsh_CI_APS Para puntos de conexión B Oeste y B Este: MSnP2fsh_CI_Dw
MSnP2fsh_CI_Dw MSnP2fsh_CI_Dp MSnP2fsh_CI_De MSnP2fsh_CI_Dn MSnP2fsh_CI_CK	MSnP2fsh_CI_CKw MSnP2fsh_CI_FSw MSnP2fsh_CI_SSFw MSnP2fsh_CI_Dp MSnP2fsh_CI_CKp MSnP2fsh_CI_FSp MSnP2fsh_CI_FSp MSnP2fsh_CI_SSFp
MSnP2fsh_CI_MI_NUTraffic MSnP2fsh_C_MI_WTRTime MSnP2fsh_C_MI_EXTCMD MSnP2fsh_C_MI_RingNodeID MSnP2fsh_C_MI_RingMap	MSnP2fsh_CI_De MSnP2fsh_CI_CKe MSnP2fsh_CI_FSe MSnP2fsh_CI_SSFe MSnP2fsh_CI_Dn MSnP2fsh_CI_CKn MSnP2fsh_CI_FSn MSnP2fsh_CI_FSn

Procesos

La función puede encaminar (conectar por puente y seleccionar) las señales del grupo de trabajo y las señales del grupo de protección entre sus puntos de conexión (entradas/salidas) como se especifica en la Rec. UIT-T G.841, funcionamiento del anillo de protección compartida a 2 fibras.

NOTA 1 – El modelo funcional es un modelo de tipo máximo; el tráfico suplementario y las entradas y salidas relacionadas con el tráfico NUT pueden no estar presentes en un equipo real.

Las siguientes conexiones matriciales pueden ser soportadas (véase el cuadro 11-17):

conexiones en funcionamiento normal (sin avería):

$$Ww\ A \leftrightarrow Ww\ B$$

We
$$A \leftrightarrow We B$$

$$Pw \ A \leftrightarrow Pw \ B$$

Pe
$$A \leftrightarrow Pe B$$

conexiones para trafico suplementario:

Pw
$$A \leftrightarrow Ew B$$

Pe
$$A \leftrightarrow Ee B$$

conexiones para tráfico NUT:

$$Pw_A \leftrightarrow Nw_B$$

$$Ww_A \leftrightarrow Nw_B$$

Pe
$$A \leftrightarrow Ne$$
 B

We
$$A \leftrightarrow Ne$$
 B

conexiones en funcionamiento de protección (con avería):

Pw
$$A \leftrightarrow We B$$

Pe
$$A \leftrightarrow Ww B$$

– silenciamiento:

Pw A
$$[TSx] \leftarrow todos UNOS (AIS)$$

$$Pe_A [TSx] \leftarrow todos UNOS (AIS)$$

generación no equipada:

Pw A
$$[TSx] \leftarrow HOVC$$
 no equipado

$$Pe_A [TSx] \leftarrow HOVC$$
 no equipado

– APS:

$$APSw \leftrightarrow APSe$$
 (APS pasante)

fuente en APSw

fuente en APSe

Símbolos utilizados:

$$y = w$$
 (oeste), e (este)

$$Z = A, B$$

TSx: AU-4 TimeSlot
$$\#x$$
 (x = 1..n)

Cuadro 11-17/G.783 – Conexiones de matrices de tráfico MSnP2fsh C

C	onevi	nes	Salidas											
de	Conexiones de matrices		A				В							
C	le tráf	ico	Ww	Pw	We	Pe	Ww	Ew	Pw	Nw	We	Ee	Pe	Ne
		Ww					X			X				
		Pw						X	X	X	X			
	A	We									X			X
		Pe					X					X	X	X
%		Ww	X			X								
Entradas		Ew		X										
ntr		Pw		X										
X	В	Nw	X	X										
	В	We		X	X									
		Ee				X								
		Pe				X								
		Ne			X	X								

En el sentido hacia el sumidero (figura 11-23, de A a B), la salida de señal en el punto de conexión MSnP2fsh B de trabajo Oeste (Este) puede ser la señal recibida a través de la capacidad A de trabajo Oeste (Este) asociada, o a través de la capacidad A de protección Este [Oeste]; esto se determina por las condiciones SF, SD (vehiculadas mediante señales CI_SSF, CI_SSD), las instrucciones externas y la información vehiculada mediante la señal APS.

En el sentido hacia la fuente, las salidas A de trabajo se conectan a las entradas B de trabajo asociadas o al tráfico NUT asociado. Las salidas A de protección se conectan a un generador local de VC no equipado, a una entrada de tráfico suplementario, a una entrada de tráfico NUT, o a una de las entradas de trabajo en B como se muestra en las figuras 11-24 a 11-27.

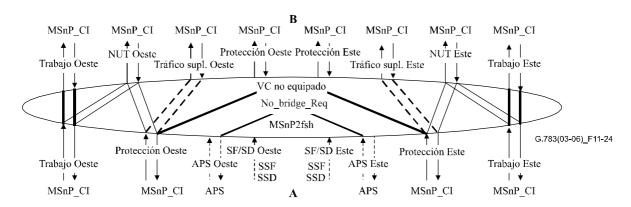


Figura 11-24/G.783 – Conexiones matriciales en un elemento de red dentro de un anillo sin avería (las líneas de puntos representan el caso de soporte de tráfico suplementario)

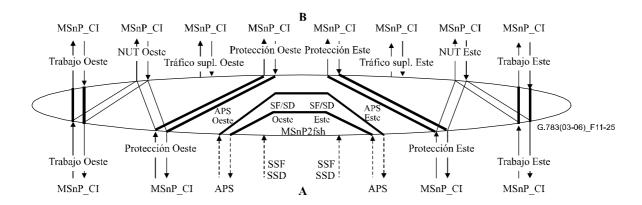


Figura 11-25/G.783 – Conexiones matriciales en un elemento de red no adyacente a una avería

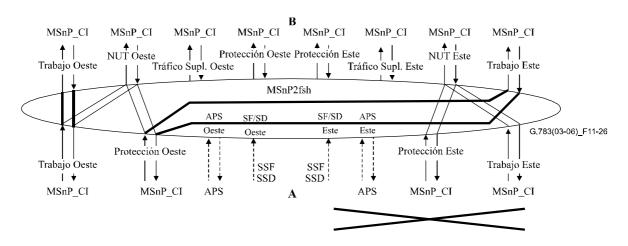


Figura 11-26/G.783 – Conexiones matriciales en un elemento de red adyacente a una avería en su lado Este

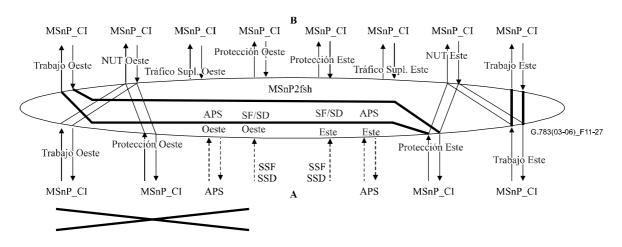


Figura 11-27/G.783 – Conexiones matriciales en un elemento de red adyacente a una avería en su lado Oeste

NOTA 2 – La Rec. UIT-T G.841 expresa que las AU de protección, cuando no se están utilizando (para tráfico suplementario o tráfico de trabajo) pueden servir de fuente para señales de VC no equipado. Esto se efectuará en estas funciones MSnP2fsh_C, pues en la Rec. UIT-T G.841 también se indica que las funciones Sn_C (S4-4c_C) tienen conexiones matriciales permanentes para la capacidad de intervalo de tiempo de protección. La protección se proporciona por un esquema de protección de capa MS y no debe influir en las

capas de cliente. En el modelo funcional, la capa MSn conoce la estructura múltiplex del trayecto HOVC, y puede controlar la inserción de señales de HOVC no equipado.

Si está soportado tráfico no protegido ininterrumpible (NUT, non-preemptible unprotected traffic), canales seleccionados en la anchura de banda A de trabajo y sus correspondientes canales A de protección pueden suministrarse como canales no protegidos ininterrumpibles. Los restantes canales A de trabajo están todavía protegidos por los correspondientes canales A de protección. El efecto que se produce en un canal no protegido ininterrumpible seleccionado es que la conmutación de anillo en ese canal queda inhabilitada en todas las partes del anillo. Los canales no protegidos ininterrumpibles no tienen protección APS.

NOTA 3 – Cuando se suministra una AU-4 para el soporte de tráfico NUT, durante el funcionamiento de protección, la matriz de protección MSnP2fsh_C no modifica las conexiones para esta AU-4, y las conexiones se dejan sin modificación en todas las partes del anillo, para esta AU-4.

Funcionamiento de protección MS

El proceso de protección de camino de anillo de protección compartida MS a 2 fibras funcionará como se especifica en la Rec. UIT-T G.841.

Defectos

Quedan en estudio.

Acciones consiguientes

La función generará un AUG con una señal VC-n [VC-4-4c] no equipado (más un puntero AU-n [AU-4-4c] válido) para cada intervalo de tiempo de protección que no se esté utilizando.

La función insertará la señal todos UNOS (AIS) (silenciamiento) para un AUG [AU-4-4c] dentro de intervalos de tiempo de protección que, en otro caso, estarían incorrectamente conectados.

Correlaciones de defectos

Quedan en estudio.

Supervisión de la calidad de funcionamiento

Queda un estudio.

- 11.4.2.2 Funciones de terminación de camino de anillo de protección compartida a 2 fibras de sección múltiplex STM-N
- 11.4.2.2.1 Fuente de terminación de camino de anillo de protección compartida a 2 fibras de sección múltiplex STM-N MSnP2fsh TT So

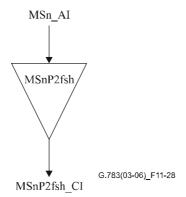


Figura 11-28/G.783 – Símbolo de MSnP2fsh_TT_So

Cuadro 11-18/G.783 – Señales de entrada y de salida MSnP2fsh TT So

Entradas	Salidas				
MSnP2fsh_AI_D	MSnP2fsh_CI_D				
MSnP2fsh_AI_CK	MSnP2fsh_CI_CK				
MSnP2fsh_AI_FS	MSnP2fsh_CI_FS				

Procesos

No se requiere procesamiento de información en la MSnP2fsh_TT_So, pues la MSn_AI en su salida es idéntica a la MSnP2fsh_CI en su entrada.

Defectos

Ninguno.

Acciones consiguientes

Ninguna

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.4.2.2.2 Sumidero de terminación de camino de anillo de protección compartida a 2 fibras de sección múltiplex STM-N MSnP2fsh_TT_Sk

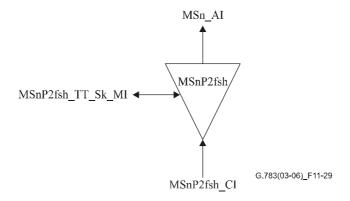


Figura 11-29/G.783 - Símbolo de MSnP2fsh TT Sk

Cuadro 11-19/G.783 – Señales de entrada y de salida MSnP2fsh TT Sk

Entradas	Salidas
MSnP2fsh CI D	MSn AI D
MSnP2fsh CI CK	MSn AI CK
MSnP2fsh_CI_FS	MSn_AI_FS
MSnP2fsh_CI_SSF	MSn_AI_TSF
MSnP2fsh_TT_Sk_MI_SSF_Reported	MSnP2fsh_TT_Sk_MI_cSSF

Procesos

La función MSnP2fsh_TT_Sk informa, como parte de la capa MSn, el estado del camino MSn protegido. Si todas las conexiones están indisponibles, la función MSnP2fsh_TT_Sk informa la condición de fallo de señal de camino protegido. Esto sólo es aplicable a la capacidad de trabajo.

Defectos

Ninguno.

Acciones consiguientes

aTSF ← CI SSF

Correlaciones de defectos

cSSF ← CI_SSF y SSF_Reported

Supervisión de la calidad de funcionamiento

Ninguna.

11.4.2.3 Funciones de adaptación de anillo de protección compartida a 2 fibras de sección múltiplex STM-N

11.4.2.3.1 Fuente de adaptación de sección múltiplex STM-N a anillo de protección compartida a 2 fibras de sección múltiplex STM-N MSn/MSnP2fsh A So

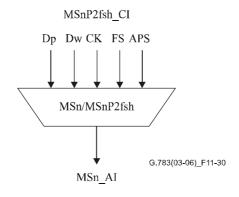


Figura 11-30/G.783 – Símbolo de MSn/MSnP2fsh A So

Cuadro 11-20/G.783 – Señales de entrada y de salida MSn/MSnP2fsh A So

Entradas	Salidas
MSnP2fsh_CI_Dw MSnP2fsh_CI_Dp MSnP2fsh_CI_CK MSnP2fsh_CI_FS MSnP2fsh_CI_APS	MSn_AI_D MSn_AI_CK MSn_AI_FS

Procesos

La función multiplexará dos grupos de señales (CI_Dw, CI_Dp) en la cabida útil MSn (n intervalos de tiempo de AUG). La señal de grupo de trabajo se multiplexará en los intervalos de tiempo 1 a n/2 de AUG y la señal de grupo de protección se multiplexará en los intervalos de tiempo (n/2 + 1) a n de AUG.

La función hará corresponder la señal APS de anillo de protección compartida a 2 fibras MSn a octetos K1 y K2.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.4.2.3.2 Sumidero de adaptación de sección múltiplex STM-N a anillo de protección compartida a 2 fibras de sección múltiplex STM-N MSn/MSnP2fsh A Sk

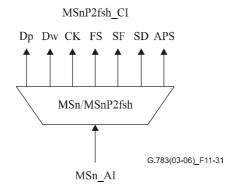


Figura 11-31/G.783 – Símbolo de MSn/MSnP2fsh_A_Sk

Cuadro 11-21/G.783 – Señales de entrada y de salida MSn/MSnP2fsh A Sk

Entradas	Salidas
MSn_AI_D	MSnP2fsh_CI_Dw
MSn_AI_CK	MSnP2fsh_CI_Dp
MSn_AI_FS	MSnP2fsh_CI_CK
MSn_AI_TSF	MSnP2fsh_CI_FS
MSn_AI_TSD	MSnP2fsh_CI_SSF
	MSnP2fsh_CI_SSD
	MSnP2fsh_CI_APS

Procesos

La función dividirá la cabida útil MSn (es decir, n intervalos de tiempo AUG) en dos grupos; el grupo de trabajo, que contiene los intervalos de tiempo AUG 1 a n/2 y el grupo de protección, que contiene los intervalos de tiempo AUG (n/2 + 1) a n. El grupo de trabajo se presentará a la salida en MSnP2fsh_CI_Dw y el grupo de protección se presentará a la salida en MSnP2fsh_CI_Dp.

K1, K2: La función extraerá los 16 bits APS K1[1-8] y K2[1-8] de la señal MSn_AI_D. Se aceptará un nuevo valor cuando se reciba el mismo valor en tres tramas consecutivas. Este valor se presentará a la salida mediante MSnP2fsh_CI_APS.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

aSSD \leftarrow AI TSD

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.4.3 Funciones de anillo de protección compartida a 4 fibras de sección múltiplex STM-N

En esta cláusula se especifican las funciones atómicas de la subcapa de protección SPRING de MS de STM-N a 4 fibras y el modelo funcional de protección SPRING de MS a 4 fibras (véase la figura 11-32).

Las características de este esquema de protección, el protocolo de protección y el funcionamiento se especifican en la Rec. UIT-T G.841 [19].

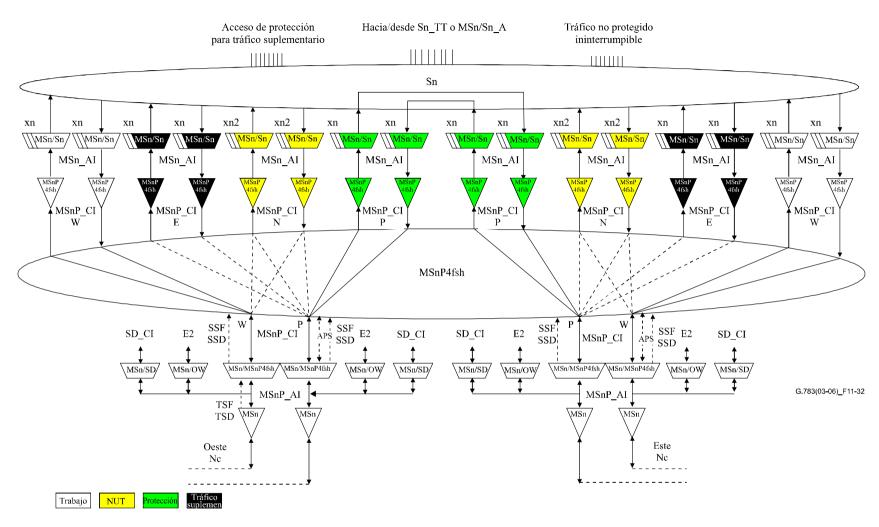


Figura 11-32/G.783 – Modelo de anillo de protección compartida a 4 fibras de sección múltiplex STM-N (2 fibras para trabajo y 2 fibras para protección)

11.4.3.1 Conexión de anillo de protección compartida a 4 fibras de sección múltiplex STM-N MSnP4fsh C

Símbolo

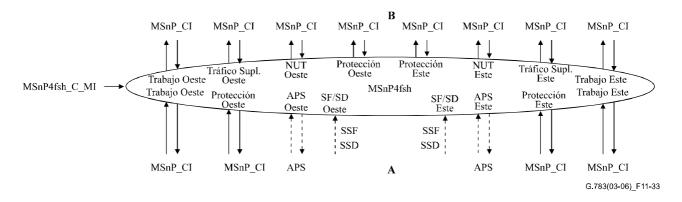


Figura 11-33/G.783 – Símbolo de MSnP4fsh_C

Interfaces

Cuadro 11-22/G.783 – Señales de entrada y de salida MSnP4fsh C

Entradas	Salidas				
Para puntos de conexión A Oeste y A Este: MSnP4fsh_CI_Dw MSnP4fsh_CI_Dp MSnP4fsh_CI_CK MSnP4fsh_CI_FS MSnP4fsh_CI_SSF MSnP4fsh_CI_SSD MSnP4fsh_CI_APS Para puntos de conexión B Oeste y B Este: MSnP4fsh_CI_Dw MSnP4fsh_CI_Dp MSnP4fsh_CI_Dp MSnP4fsh_CI_De MSnP4fsh_CI_Dn MSnP4fsh_CI_Dn MSnP4fsh_CI_Dn MSnP4fsh_CI_CK MSnP4fsh_CI_CK	Para puntos de conexión A Oeste y A Este:: MSnP4fsh_CI_Dw MSnP4fsh_CI_Dp MSnP4fsh_CI_CK MSnP4fsh_CI_FS MSnP4fsh_CI_APS Para puntos de conexión B Oeste y B Este: MSnP4fsh_CI_Dw MSnP4fsh_CI_CKw MSnP4fsh_CI_FSw MSnP4fsh_CI_FSw MSnP4fsh_CI_SSFw MSnP4fsh_CI_Dp MSnP4fsh_CI_Dp MSnP4fsh_CI_CKp MSnP4fsh_CI_FSp MSnP4fsh_CI_FSp MSnP4fsh_CI_FSp MSnP4fsh_CI_SSFp				
MSnP4fsh_CI_MI_EXTRAtraffic MSnP4fsh_CI_MI_NUTraffic MSnP4fsh_C_MI_WTRTime MSnP4fsh_C_MI_EXTCMD MSnP4fsh_C_MI_RingNodeID MSnP4fsh_C_MI_RingMap	MSnP4fsh_CI_De MSnP4fsh_CI_Cke MSnP4fsh_CI_Fse MSnP4fsh_CI_SSFe MSnP4fsh_CI_Dn MSnP4fsh_CI_CKn MSnP4fsh_CI_FSn MSnP4fsh_CI_FSn				

Procesos

La función puede encaminar (conectar por puente y seleccionar) señales de trabajo y de protección entre sus puntos de conexión (entradas/salidas) como se especifica en la Rec. UIT-T G.841, funcionamiento de anillo de protección compartida a 4 fibras de sección múltiplex.

NOTA 1 – El modelo funcional es un modelo de tipo máximo; el tráfico suplementario correspondiente y las entradas y salidas de NUT pueden no estar presentes en un equipo real.

Son conexiones matriciales que pueden ser soportadas (véase el cuadro 11-23):

conexiones en funcionamiento normal (sin avería):

$$Ww\ A \leftrightarrow Ww\ B$$

We
$$A \leftrightarrow We B$$

$$Pw \ A \leftrightarrow Pw \ B$$

Pe
$$A \leftrightarrow Pe B$$

conexiones para tráfico suplementario:

Pw
$$A \leftrightarrow Ew B$$

Pe
$$A \leftrightarrow Ee B$$

conexiones para NUT:

$$Pw_A \leftrightarrow Nw_B$$

$$Ww_{-}A \leftrightarrow Nw_{-}B$$

Pe
$$A \leftrightarrow Ne B$$

We
$$A \leftrightarrow Ne$$
 B

- conexiones en funcionamiento de protección (con avería):

Pw
$$A \leftrightarrow We$$
 B (conmutación de anillo)

Pe
$$A \leftrightarrow Ww B$$
 (conmutación de anillo)

Pe
$$A \leftrightarrow We$$
 B (conmutación de intervalo)

silenciamiento:

Pw A
$$[TSx] \leftarrow todos UNOS (AIS)$$

Pe A
$$[TSx] \leftarrow todos UNOS (AIS)$$

generación no equipada:

Pw A
$$[TSx] \leftarrow HOVC$$
 no equipado

Pe A
$$[TSx] \leftarrow HOVC$$
 no equipado

– APS:

$$APSw \leftrightarrow APSe$$
 (APS pasante)

fuente en APSw

fuente en APSe

NOTA 2 – El protocolo APS sólo está activo en fibras que transportan canales de protección.

Símbolos utilizados:

$$y = w \text{ (oeste)}, e \text{ (este)}$$

$$Z = A, B$$

TSx: AU-4 TimeSlot
$$\#x$$
 (x = 1..n)

Cuadro 11-23/G.783 – Conexiones matriciales de tráfico MSnP4fsh C

Conexiones de matrices		Salidas												
		A				В								
d	de tráfico		Ww	Pw	We	Pe	Ww	Ew	Pw	Nw	We	Ee	Pe	Ne
		Ww					X			X				
		Pw					X (comn. de interv.)	X	X	X	X (comn. de anillo)			
	A	We									X			X
		Pe					X (comn. de anillo)				X (comn. de interv.)	X	X	X
Entradas		Ww	X	X (comn. de interv.)		X (comn. de anillo)								
		Ew		X										
		Pw		X										
	В	Nw	X	X										
	Б	We		X (comn. de anillo)	X	X (comn. de interv.)								
		Ee				X								
		Pe				X								
		Ne			X	X								

En el sentido hacia el sumidero (figura 11-33, de A a B), la salida de señal en el punto de conexión MSnP4fsh B de trabajo Oeste [Este] puede ser la señal recibida a través de la capacidad A de trabajo Oeste [Este] asociada, o a través de la capacidad A de protección Oeste [Este] (conmutación de intervalo), o a través de la capacidad A de protección Este [Oeste] (conmutación de anillo); esto se determina por las condiciones SF, SD (vehiculadas mediante señales CI_SSF, CI_SSD), las instrucciones externas y la información vehiculada mediante la señal APS.

En el sentido hacia la fuente, las salidas A de trabajo se conectan a las entradas B de trabajo asociadas, o al tráfico NUT asociado. Las salidas A de protección se conectan a un generador local de VC no equipado, entrada de tráfico suplementario, entrada de tráfico NUT o a una de las entradas de trabajo en B como se muestra en las figuras 11-34 a 11-37.

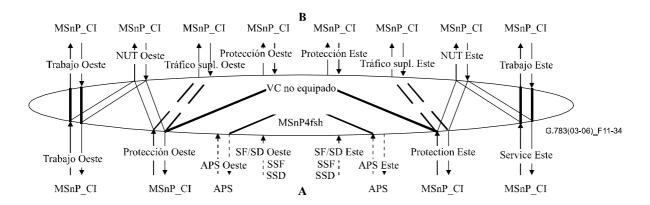


Figura 11-34/G.783 – Conexiones matriciales en un elemento de red dentro de un anillo a 4 fibras sin avería, las líneas de puntos representan el caso de soporte de tráfico suplementario

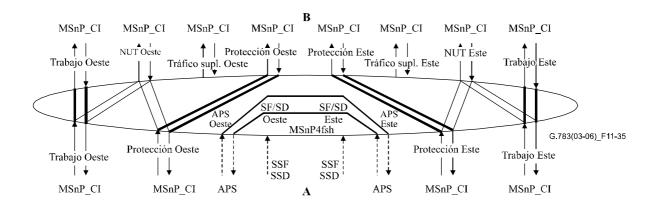


Figura 11-35/G.783 – Conexiones matriciales en un elemento de red no adyacente a una avería

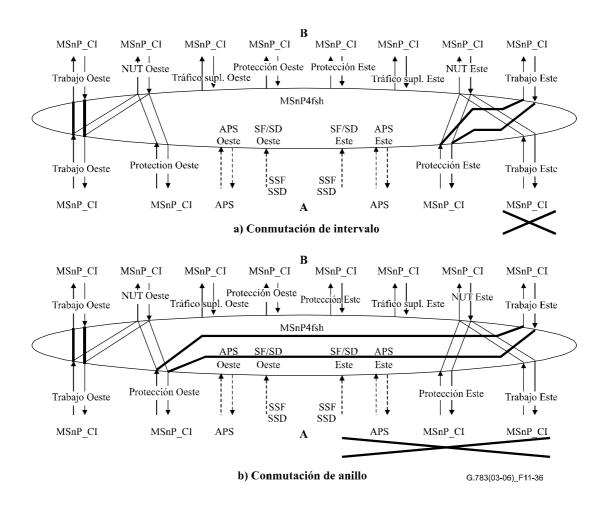


Figura 11-36/G.783 – Conexiones matriciales en un elemento de red adyacente a una avería en su lado Este

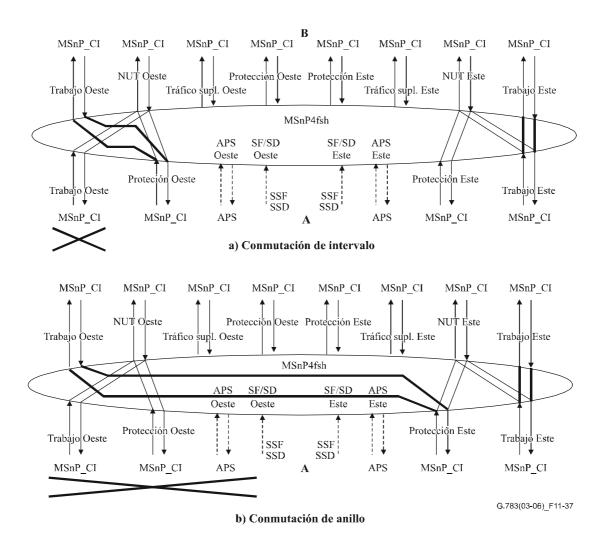


Figura 11-37/G.783 – Conexiones matriciales en un elemento de red adyacente a una avería en su lado Oeste

NOTA 3 – La Rec. UIT-T G.841 expresa que las AU de protección que no se están utilizando (para tráfico suplementario o tráfico de trabajo) pueden servir de fuente para señales VC no equipado. Esto deberá efectuarse en estas funciones MSnP4fsh_C, pues la Rec. UIT-T G.841 también muestra que las funciones Sn_C (S4-4c_C) tienen conexiones matriciales permanentes para la capacidad de intervalo de tiempo de protección. La protección se proporciona en forma de esquema de protección de capa MS y no debe influir en las capas de cliente. En el modelo funcional, la capa MSn conoce la estructura múltiplex de trayecto HOVC, y puede controlar la inserción de la señal HOVC no equipado.

Si está soportado NUT, entonces, en cada intervalo, canales seleccionados en la anchura de banda de trabajo y sus correspondientes canales de protección pueden ser proporcionados como canales no protegidos ininterrumpibles. Los restantes canales de trabajo están todavía protegidos, tanto en conmutación de intervalo como en conmutación de anillo, por sus correspondientes canales de protección. El efecto en un canal no protegido ininterrumpibles seleccionado es el siguiente (véase la Rec. UIT-T G.841):

- la conmutación de anillo se inhabilita para ese canal en todos los lugares del anillo (como en el caso del anillo a dos fibras);
- la conmutación de intervalo se inhabilita para ese canal en el intervalo proporcionado.

Los canales no protegidos ininterrumpibles no tienen protección APS.

NOTA 4 – Cuando se proporciona un AU-4 para el soporte de NUT, la conexión matricial MSnP2fsh_C no modifica las conexiones para este AU-4 durante el funcionamiento de protección.

Funcionamiento de protección MS: El proceso de protección de camino de anillo de protección compartida MS a 4 fibras se efectuará como se especifica en la Rec. UIT-T G.841.

Defectos

Quedan en estudio.

Acciones consiguientes

La función generará un AUG con señal VC-n [VC-4-4c] no equipado (más un puntero AU-n [AU-4-4c] válido) para cada intervalo de tiempo de protección cuando el intervalo de tiempo de protección no se esté utilizando.

La función insertará todos UNOS (AIS) (silenciamiento) para un AUG [AU-4-4c] en los intervalos de tiempo de protección que, en otro caso, serían conectados incorrectamente.

Correlaciones de defectos

Quedan en estudio.

Supervisión de la calidad de funcionamiento

Oueda en estudio.

11.4.3.2 Funciones de terminación de camino de anillo de protección compartida a 4 fibras de sección múltiplex STM-N

11.4.3.2.1 Fuente de terminación de camino de anillo de protección compartida a 4 fibras de sección múltiplex STM-N MSnP4fsh_TT_So

Símbolo

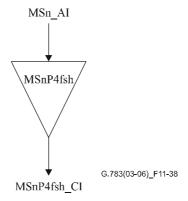


Figura 11-38/G.783 – Símbolo de MSnP4fsh TT So

Interfaces

Cuadro 11-24/G.783 – Señales de entrada y de salida MSnP4fsh TT So

Entradas	Salidas
MSnP4fsh AI D	MSnP4fsh CI D
MSnP4fsh_AI_CK	MSnP4fsh_CI_CK
MSnP4fsh_AI_FS	MSnP4fsh_CI_FS

Procesos

No se requiere procesamiento de información en la MSnP4fsh_TT_So, pues la MSn_AI en su salida es idéntica a la MSnP4fsh_CI en su entrada.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.4.3.2.2 Sumidero de terminación de camino de anillo de protección compartida a 4 fibras de sección múltiplex STM-N MSnP4fsh_TT_Sk

Símbolo

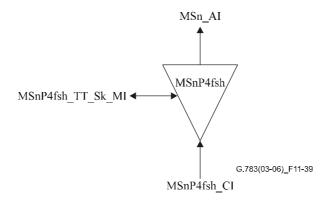


Figura 11-39/G.783 – Símbolo de MSnP4fsh TT Sk

Interfaces

Cuadro 11-25/G.783 – Señales de entrada y de salida MSnP4fsh TT Sk

Entradas	Salidas
MSnP4fsh CI D	MSn AI D
MSnP4fsh_CI_CK	MSn_AI_CK
MSnP4fsh_CI_FS	MSn_AI_FS
MSnP4fsh_CI_SSF	MSn_AI_TSF
MSnP4fsh_TT_Sk_MI_SSF_Reported	MSnP4fsh_TT_Sk_MI_cSSF

Procesos

La función MSnP4fsh_TT_Sk informa, como parte de la capa MSn, el estado del camino MSn protegido. Si todas las conexiones están indisponibles, la MSnP4fsh_TT_Sk informa la condición de fallo de señal de camino protegido. Esto sólo es aplicable a la capacidad de trabajo.

Defectos

Ninguno.

Acciones consiguientes

aTSF ← CI SSF

Correlaciones de defectos

cSSF ← CI_SSF y SSF_Reported

Supervisión de la calidad de funcionamiento

Ninguna.

- 11.4.3.3 Funciones de adaptación de anillo de protección compartida a 4 fibras de sección múltiplex STM-N
- 11.4.3.3.1 Sección multiplex STM-N a fuente de adaptación de anillo de protección compartida a 4 fibras de sección múltiplex STM-N MSn/MSnP4fsh A So

Símbolo

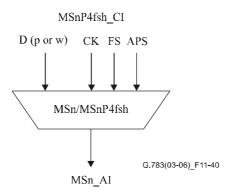


Figura 11-40/G.783 – Símbolo de MSn/MSnP4fsh_A_So

Interfaces

Cuadro 11-26/G.783 – Señales de entrada y de salida MSn/MSnP4fsh A So

Entradas	Salidas
MSnP4fsh CI Dw	MSn AI D
MSnP4fsh_CI_Dp	MSn_AI_CK
MSnP4fsh CI CK	MSn AI FS
MSnP4fsh_CI_FS	
MSnP4fsh_CI_APS (en fibras que transportan	
canales de protección)	

Procesos

En fibras que transportan señales de canales de protección: La función mutiplexará las señales CI_Dp en la cabida útil MSn (n intervalos de tiempo AUG). La función hará corresponder la señal APS de anillo de protección compartida a 4 fibras de MSn a los octetos K1 y K2.

En fibras que transportan señales de canales de trabajo: La función multiplexará las señales CI_Dw en la cabida útil MSn (n intervalos de tiempo AUG).

Defectos

Ninguno.

Acciones consiguientes

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

11.4.3.3.2 Sumidero de adaptación de anillo de protección compartida a 4 fibras de sección múltiplex STM-N MSn/MSnP4fsh A Sk

Símbolo

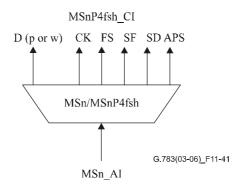


Figura 11-41/G.783 – Símbolo de MSn/MSnP4fsh A Sk

Interfaces

Cuadro 11-27/G.783 – Señales de entrada y de salida MSn/MSnP4fsh A Sk

Entradas	Salidas
MSn_AI_D MSn_AI_CK MSn_AI_FS MSn_AI_TSF MSn_AI_TSD	MSnP4fsh_CI_Dw o MSnP4fsh_CI_Dp MSnP4fsh_CI_CK MSnP4fsh_CI_FS MSnP4fsh_CI_SSF MSnP4fsh_CI_SSD MSnP4fsh_CI_APS (en fibras que transportan señales de canales de protección)

Procesos

En fibras que transportan señales de canales de protección: La función extraerá la cabida útil MSn (es decir, n intervalos de tiempo AUG). Los n AUG de protección se presentarán a la salida en MSnP4fsh_CI_Dp. La función extraerá los 16 bits APS K1[1-8] y K2[1-8] de la señal MSn_AI_D. Se aceptará un nuevo valor cuando se reciba el mismo valor en tres tramas consecutivas. Este valor se presentará a la salida mediante MSnP4fsh_CI_APS.

En fibras que transportan señales de canales de trabajo: La función extraerá la cabida útil MSn (es decir, n intervalos de tiempo AUG). Los n AUG de trabajo se presentarán a la salida en MSnP4fsh_CI_Dw.

Defectos

Ninguno.

Acciones consiguientes

 $aSSF \leftarrow AI_TSF$

 $aSSD \leftarrow AI_TSD$

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12 Capa de trayecto VC-n (Sn) (n = 4-X, 4, 3-X, 3)

La estructura lógica de VC-4 y VC-3 se define en 7.1/G.707/Y.1322 [6]. Las estructuras para la concatenación virtual de VC-3s o VC-4s y concatenación contigua de VC-4s se define en la cláusula 11/G.707/Y.1322.

La figura 12-1 ilustra un conjunto de funciones atómicas para las capas de trayecto VC-n. En el punto de acceso (Sn AP) están soportadas las siguientes cabidas útiles:

- cabida útil VC-3 (9×84 octetos por trama);
- cabida útil VC-4 (9×260 octetos por trama);
- cabida útil VC-3-X ($X \ge 1$, $X \times 9 \times 84$ octetos por trama);
- cabida útil VC-4-X ($X \ge 1$, $X \times 9 \times 260$ octetos por trama).

La información característica soportada en el punto de conexión puede ser un VC-3, un VC-4, o un VC-4- \times C (X = 4, 16, 64, 256).

Las cabidas útiles VC-3-X pueden transportarse utilizando X VC-3s con concatenación virtual. Los VC-3s se designan colectivamente como un VC-3-Xv. Después de la función fuente de adaptación S3-Xv, cada VC-3 se transporta de manera independiente hasta que todos los X VC-3 lleguen a la función sumidero de adaptación S3-Xv.

Las cabidas útiles VC4-X pueden transportarse sea utilizando X VC-4s con concatenación virtual, sea utilizando un solo VC-4-Xc en los casos de X = 4, 16, 64, 256. Cuando se emplea concatenación virtual, los VC-4s se designan colectivamente por VC-4-Xv. Después de la función fuente de adaptación VC-4-Xv, cada VC-4 se transporta independientemente hasta que todos los X VC-4s lleguen a la función sumidero de adaptación S4-Xv.

La figura 12-1 muestra que más de una función de adaptación existentes en la capa Sn pueden conectarse a un punto de acceso Sn-X. En tales casos se permite que un subconjunto de estas funciones de adaptación se activen conjuntamente, pero una sola función fuente de adaptación puede tener acceso a un determinado intervalo de tiempo. El acceso al mismo intervalo de tiempo por otras funciones fuente de adaptación será denegado. A diferencia de lo que sucede en el sentido hacia la fuente, las funciones sumidero de adaptación pueden ser activadas todas juntas. Esto puede provocar detecciones e informes de averías. Para evitar esto se puede desactivar una función sumidero de adaptación.

NOTA 1 – Si una sola función de adaptación está conectada a un AP, será activada. Si una o más funciones de otro tipo están conectadas al mismo AP que tiene acceso al mismo intervalo de tiempo, una de las funciones del conjunto estará activa.

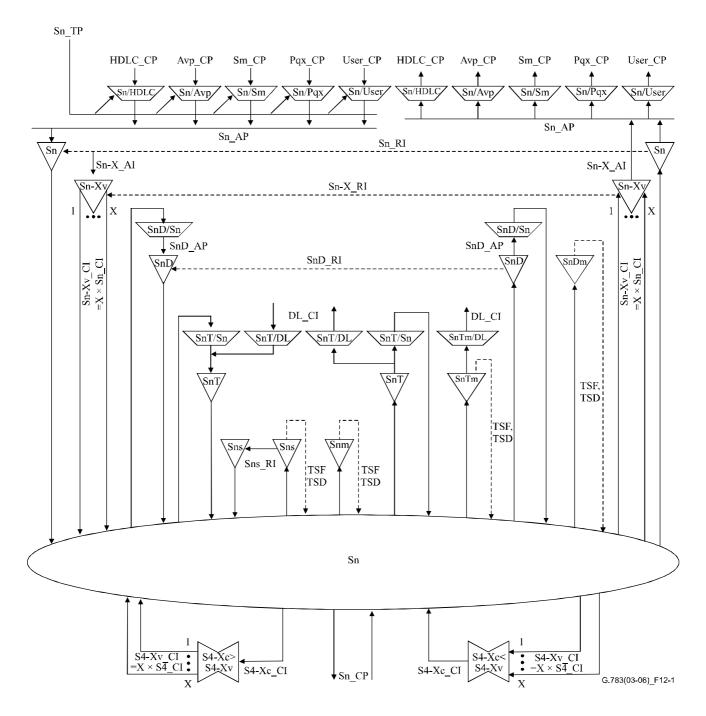
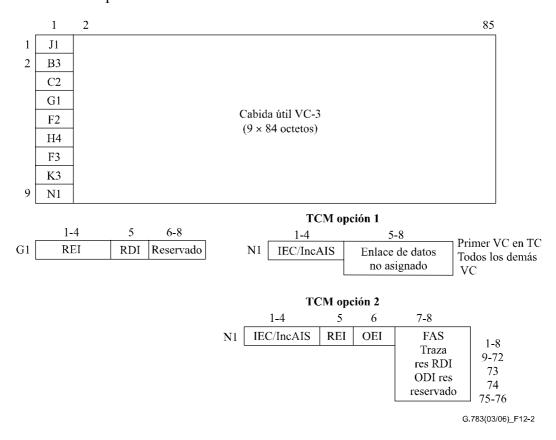
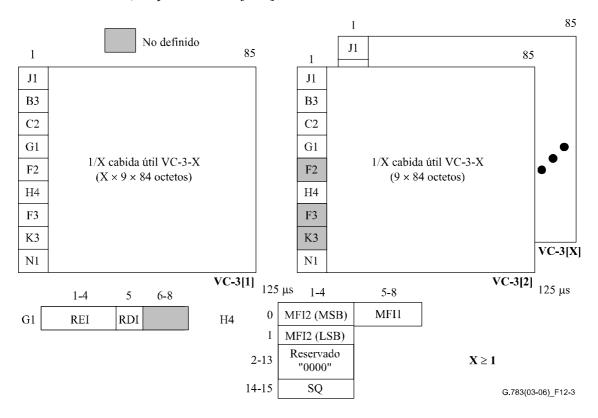



Figura 12-1/G.783 – Funciones atómicas de la capa de trayecto VC-n

Información característica de la capa Sn

La información característica Sn_CI tiene temporización codireccional y está estructurada en octetos con una trama de 125 μs .

S3_CI se muestra en la figura 12-2. Su formato está caracterizado como la tara de terminación de camino VC-3 en los octetos J1, B3 y G1 como se define en la Rec. UIT-T G.707/Y.1322, más la información adaptada S3 que se presenta en la subcláusula siguiente. Como una alternativa, puede ser una señal de no ocupado como se define en la Rec. UIT-T G.707/Y.1322.



NOTA – Los bits 6 a 7 de G1 están reservados para la utilización facultativa de RDI mejorada, descrita en el apéndice VI.

Figura 12-2/G.783 – S3_CI_D

Un camino VC-3 concatenado puede transportarse a través de conexiones VC-3 virtuales concatenadas (VC-3-Xv). Para un camino VC-3-X soportado por una conexión virtual concatenada VC-3-Xv, están autorizados todos los valores $1 \le X \le 256$. La CI de un VC-3-Xv (S3-Xv_CI_D) consiste en X veces S3_CI (véase la figura 12-3). El octeto H4 se genera como se define en la Rec. UIT-T G.707/Y.1322. La correspondencia de S3-X_AI a S3-Xv_CI se efectúa como se muestra en la figura 12-4.

NOTA 2 – Los octetos F2, F3 y K3 de VC-3[2..X] no están definidos.

NOTA - Los bits 6 a 7 de G1 están reservados para la utilización facultativa de RDI mejorada, descrita en el apéndice VI.

Figura 12-3/G.783 – S3-Xv_CI_D

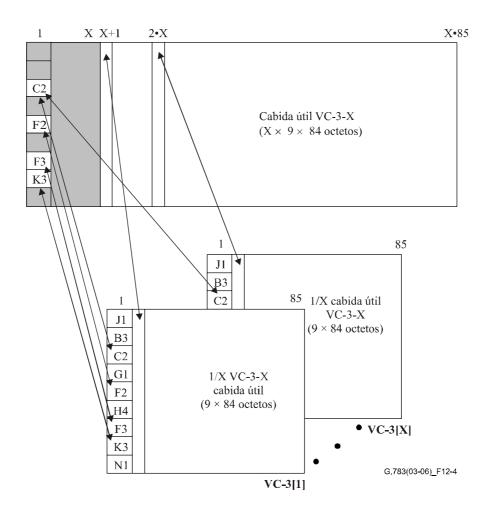
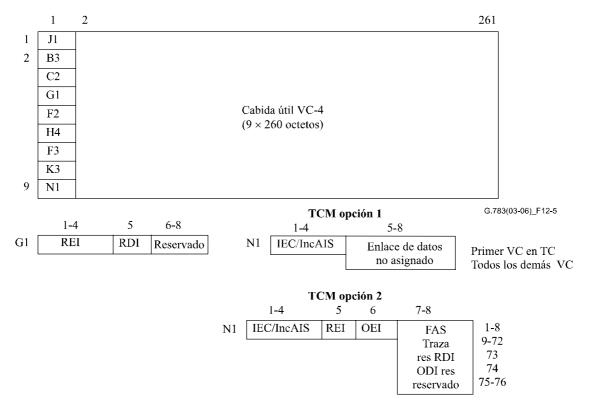



Figura 12-4/G.783 – Correspondencia de S3-X_AI_D a S3-Xv_CI_D

S4_CI se muestra en la figura 12-5. Su formato está caracterizado como la tara de terminación de camino VC-4 en los octetos J1, B3 y G1 como se define en la Rec. UIT-T G.707/Y.1322, más la información adaptada S4 presentada en la subcláusula siguiente. Como una alternativa, puede ser una señal de no equipado como se define en la Rec. UIT-T G.707/Y.1322.

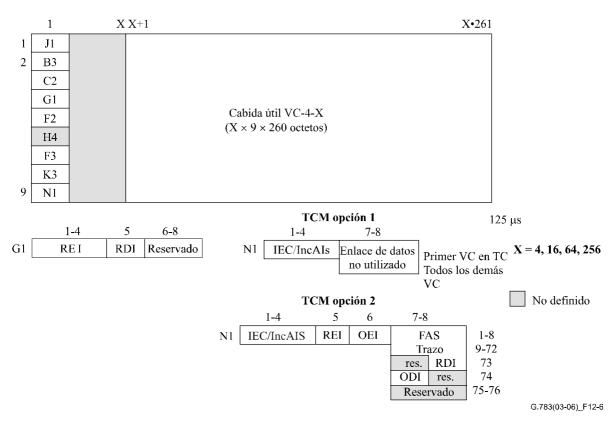
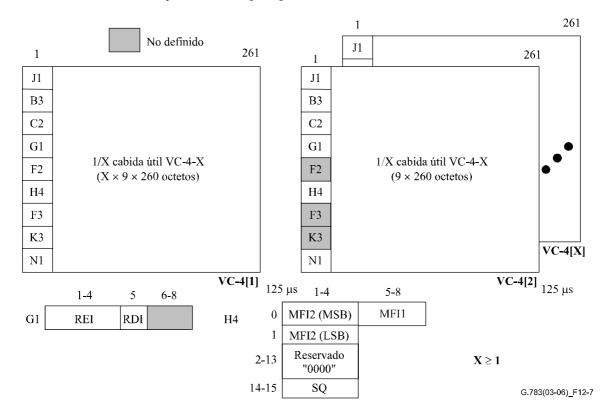

NOTA – Los bits 6 a 7 de G1 están reservados para la utilización facultativa de RDI mejorada, descrita en el apéndice VI.

Figura 12-5/G.783 – S4 CI D

Un camino concatenado VC-4 puede transportarse a través de conexiones concatenadas contiguas VC-4 (VC-4-Xc) o de conexiones concatenadas virtuales VC-4 (VC-4-Xv). Si el camino VC-4-X concatenado está soportado por una conexión concatenada contigua VC-4-Xc, los valores permitidos para X son 4, 16, 64 y 256. Si el camino VC-4-X concatenado está soportado por una conexión concatenada virtual VC-4-Xv, todos los valores de $1 \le X \le 256$ están permitidos.

La CI de una señal VC-4-Xc (S4-Xc_CI_D) está estructurada en octetos con una trama de 125 µs (véase la figura 12-6). Su formato está caracterizado como S4-X_AI, más la tara de terminación VC-4 en las ubicaciones J1, B3 y G1 como se define en la Rec. UIT-T G.707/Y.1322.

NOTA 3 – H4 no se utiliza en VC-4-Xc.



NOTA – Los bits 6 a 7 de G1 están reservados para la utilización facultativa de RDI mejorada, descrita en el apéndice VI.

Figura 12-6/G.783 – S4-Xc_CI_D

La CI de un VC-4-Xv (S4-Xv_CI_D) consiste en X veces S4_CI (véase la figura 12-7). El octeto H4 se genera como se define en la Rec. UIT-T G.707/Y.1322. La correspondencia de S4-X_AI a S4-Xv_CI se efectúa como se muestra en la figura 12-8.

NOTA 4 – Los octetos F2, F3 y K3 de VC-4[2..X] no están definidos.

NOTA – Los bits 6 a 7 de G1 están reservados para la utilización facultativa de RDI mejorada, descrita en el apéndice VI.

Figura 12-7/G.783 - S4-Xv CI D

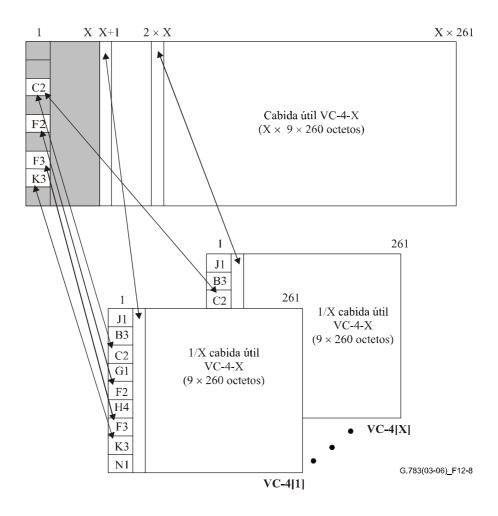
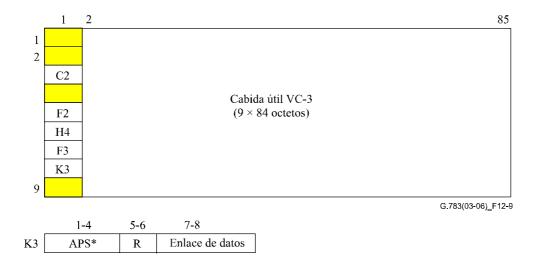



Figura 12-8/G.783 – Correspondencia de S4-X_AI_D a S4-Xv_CI_D

Información adaptada de capa Sn

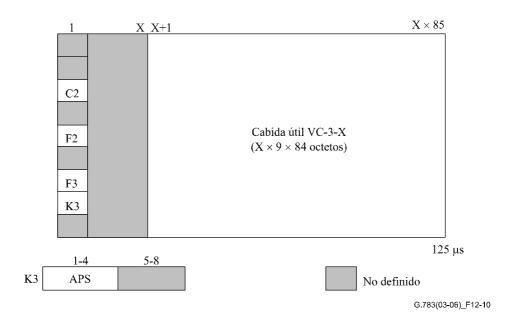
La información adaptada está estructurada en octetos con una trama de 125 µs.

S3_AI se muestra en la figura 12-9. Representa información de capa de cliente adaptada, constituida por información de capa de cliente, la etiqueta de señal, e información específica de cliente combinada con canales de usuario de un octeto F2 y F3. En el caso de que la señal haya pasado la subcapa de protección de camino (S3P), Sn_AI tiene bits (1 a 4) APS definidos en el octeto K3.

NOTA – Los bits 7 y 8 de K3 se asignan como enlace de datos de trayecto; su valor no está definido cuando la S3_CI no haya sido procesada en una función atómica de enlace de datos de trayecto.

Figura 12-9/G.783 – S3_AI_D

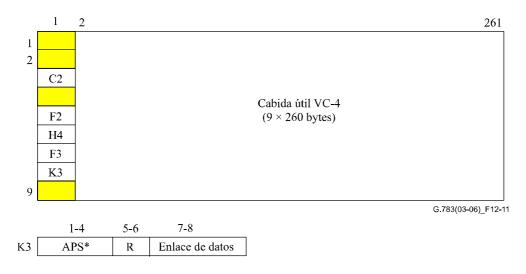
S3-X_AI se muestra en la figura 12-10. Representa información de capa de cliente adaptada, constituida por X × 756 octetos para información de capa de cliente, la etiqueta de señal octeto C2, y los dos octetos de canal de usuario de trayecto F2/3 como se define en la Rec. UIT-T G.707/Y.1322. En el caso de que la señal haya pasado la subcapa de protección de camino, S3-X_AI tiene bits (1 a 4) APS definidos en el octeto K3.


NOTA 5 – La señal APS no ha sido definida; podría requerirse una señal APS con múltiples tramas.

NOTA 6 – Los bits 1 a 4 del octeto K3 no están definidos cuando la señal S3-X_AI no haya sido procesada en una función de conexión de protección de camino Sn-XP C.

NOTA 7 – Los octetos F2 y F3 no están definidos cuando las funciones de adaptación que sirven de fuente a estos octetos no están presentes en el elemento de red.

Un VC-3-X comprende una de las siguientes cabidas útiles:


- una señal de tren de paquetes de un cliente con correspondencia GFP a $X \times 48$ 348 kbit/s.

NOTA – Los bits 7 y 8 de K3 se asignan como enlace de datos de trayecto; su valor no está definido cuando la CI no haya sido procesada en una función atómica de enlace de datos de trayecto.

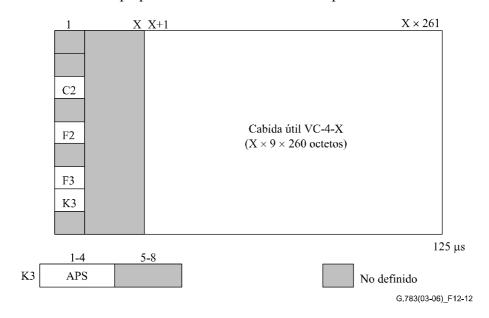
Figura 12-10/G.783 – S3-X AI D

S4_AI se muestra en la figura 12-11. Representa información de capa de cliente adaptada, constituida por información de capa de cliente, la etiqueta de señal, e información específica de cliente combinadas con los canales de usuario de un octeto F2 y F3. En caso de que la señal haya pasado la subcapa de protección de camino (S4P), Sn_AI tiene bits (1 a 4) APS definidos en el octeto K3.

NOTA – Los bits 7 y 8 se asignan como enlace de datos de trayecto; su valor no está definido cuando la S4 CI no haya sido procesada en una función atómica de enlace de datos de trayecto.

Figura 12-11/G.783 - S4 AI D

S4- X_AI se muestra en la figura 12-12. Representa información de capa de cliente adaptada, constituida por $X \times 2340$ octetos para información de capa de cliente, la etiqueta de señal octeto C2, y los dos octetos de canal de usuario de trayecto F2/3 como se define en la Rec. UIT-T G.707/Y.1322. En el caso de que la señal haya pasado la subcapa de protección de camino, S4- X_AI tiene bits (1 a 4) APS definidos en el octeto K3.


NOTA 8 – La señal APS no ha sido definida; podría requerirse una señal APS con múltiples tramas.

NOTA 9 – Los bits 1 a 4 del octeto K3 no están definidos cuando la señal S4-X_AI no haya sido procesada en una función de conexión de protección de camino Sn-XP C.

NOTA 10 – Los octetos F2 y F3 no están definidos cuando las funciones de adaptación que sirven de fuente a estos octetos no están presentes en el elemento de red.

Un VC-4-X comprende una de las siguientes cabidas útiles:

una señal de tren de paquetes de un cliente con correspondencia GFP a $X \times 149760$ kbit/s.

NOTA – Los bits 7 y 8 de K3 se asignan como enlace de datos de trayecto; su valor no está definido cuando la CI no haya sido procesada en una función atómica de enlace de datos de trayecto.

Figura 12-12/G.783 – S4-X_AI_D

Funciones de capa

Sn_C	Función de conexión de capa VC-n	
Sn_TT	Función de terminación de camino de capa VC-n	
Snm_TT	Función de monitor no intrusivo de VC-n	
Sns_TT	Función de terminación no equipada con supervisión de VC-n	
Sn/Sm_A	Funciones de adaptación de capa VC-n a capa VC-m	
SnP_C	Función de conexión de protección de camino lineal de capa VC-n	
SnP_TT	Función de terminación de camino de protección de camino lineal de capa VC-n	
Sn/SnP_A	Función de adaptación de protección de camino lineal de capa VC-n	
Sn/User_A	Función de adaptación de capa VC-n a datos de usuario	
Sn/Pqx A	Función de adaptación de capa VC-n a capa Pqx	

SnD_TT	Función de terminación de conexión en cascada VC-n (opción 2)
SnD/Sn_A	Función de adaptación de conexión en cascada VC-n (opción 2) a capa VC-n
SnDm_TT	Función de monitor no intrusivo de conexión en cascada VC-n (opción 2)
SnT_TT	Función de terminación de conexión en cascada VC-n (opción 1)
SnT/Sn_A	Función de adaptación de conexión en cascada VC-n (opción 1) a capa VC-n
SnTm_TT	Función de monitor no intrusivo de conexión en cascada VC-n (opción 1)
SnT/DL_A	Función de adaptación de conexión en cascada VC-n (opción 1) a enlace de datos
Sn-X_TT	Función de terminación de camino de capa VC-n-X
$Sn-Xv/Sn-X_A$	Función de adaptación de capa VC-n-Xv a VC-n-X
S4-Xc⇔S4-Xv I	Función de interfuncionamiento de concatenación de VC-4-Xc a VC-4-Xv

12.1 Funciones de conexión

12.1.1 Conexión de capa VC-n Sn C

Sn_C es la función que asigna VC-n (n = 3, 4, 4-Xc) en sus puertos de entrada a VC-n en sus puertos de salida.

El proceso de conexión es Sn_C una función unidireccional como se muestra en la figura 12-13. Los formatos de señal en los puertos de entrada y de salida de la función son similares, y sólo se diferencian en la secuencia lógica de los VC-n. Como el proceso no influye en la naturaleza de la información característica de la señal, el punto de referencia a ambos lados de la función Sn_C es el mismo, como también se muestra en la mencionada figura 12-13.

Los VC-n entrantes en el Sn_CP se asignan a la capacidad de VC-n saliente disponible en el Sn_CP. Se aplicará un VC-n no equipado a cualquier VC-n saliente que no esté conectado a un VC-n entrante.

Símbolo

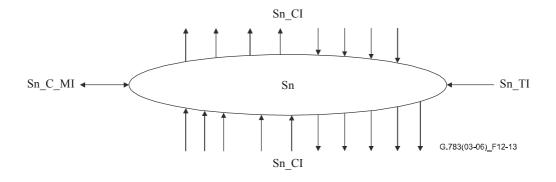


Figura 12-13/G.783 – Símbolo de Sn C

Interfaces

Cuadro 12-1/G.783 – Señales de entrada y de salida Sn C

Entradas	Salidas	
Por Sn CP, n × por función:	Por Sn CP, m × por función:	
Sn_CI_Data	Sn_CI_Data	
Sn_CI_Clock	Sn_CI_Clock	
Sn_CI_FrameStart	Sn_CI_FrameStart	
Sn_CI_SSF	Sn_CI_SSF	
Sn_AI_TSF		
Sn_AI_TSD		
1 v nor función:		
1 × por función: Sn TI Clock		
Sn TI FrameStart		
Por punto de conexión de entrada y de salida:		
Sn_C_MI_ConnectionPortIds		
Por conexión matricial:		
Sn_C_MI_ConnectionType		
Sn_C_MI_Directionality		
Por grupo do protoggión SNC:		
Por grupo de protección SNC: Sn C MI PROTtype		
Sn C MI OPERtype		
Sn C MI WTRtime		
Sn C MI Hotime		
Sn_C_MI_EXTCMD		
NOTA – Quedan en estudio las señales que informan estado de protección.		

Procesos

En la función Sn_C, la información característica de capa VC-n se encamina entre puntos conexión de entrada (terminación) ((T)CPs) y de salida (T)CPs por medio conexiones matriciales. Pueden asignarse (T)CPs dentro de un grupo de protección.

NOTA 1 – En esta Recomendación no se especifica el número de señales de entrada/salida, ni la conectividad. Eso es propio de los elementos de red. En el apéndice I/G.806 se presentan ejemplos de Sn C.

La figura 12-1 presenta un subconjunto de funciones atómicas que pueden conectarse a esta función de conexión VC-n: funciones de terminación de camino VC-n, función de sumidero de terminación de camino de monitor no intrusivo de VC-m, funciones de terminación de camino de supervisión no equipada de VC-n, funciones de terminación y adaptación de camino de conexión en cascada VC-n. Además, funciones de adaptación en las capas de servidor de VC-n (por ejemplo MS1 o MS4) se conectarán a esta función de conexión VC-n.

Encaminamiento: La función podrá conectar una determinada entrada a una determinada salida mediante el establecimiento de una conexión matricial entre esa entrada y esa salida. Podrá suprimir una conexión matricial establecida.

Cada conexión (matricial) en la función Sn C se deberá caracterizar por lo siguiente:

Tipo de conexión:	no protegido, protegido 1 + 1 (protección SNC/I, SNC/N o SNC/S)
Sentido del tráfico:	unidireccional, bidireccional
Puntos de conexión de entrada y de salida:	conjunto de puntos de conexión

NOTA 2 – Las conexiones en difusión se tratan como conexiones distintas al mismo CP de entrada.

NOTA 3 – Cuando la función Sn_C de un elemento de red soporta conexiones matriciales protegidas 1 + 1, esta función puede contener en cualquier instante, o bien todas las conexiones matriciales no protegidas, o bien todas las conexiones matriciales protegidas 1 + 1, o bien una combinación de conexiones matriciales no protegidas y protegidas 1 + 1. El conjunto efectivo de conexiones matriciales y tipos de conexión y sentidos de tráfico asociados es un parámetro operacional controlado por la gestión de red.

Siempre que no se active ni se requiera ninguna acción de conmutación de protección, será posible introducir los siguientes cambios en (la configuración de) una conexión sin afectar a la CI que pasa por ella:

- adición y supresión de protección;
- adición y supresión de conexiones a/desde una conexión en difusión;
- cambio de unos tipos de funcionamiento a otros;
- cambio de periodo de espera de restablecimiento (WTR);
- cambio de "hold-off time".

Generación de VC no equipado: La función generará una señal una señal de VC-n no equipado, como se define en la Rec. UIT-T G.707/Y.1322.

Defectos

Ninguno.

Acciones consiguientes

Si una salida de esta función no está conectada a una de sus entradas, la función conectará el VC-n no equipado (con comienzo de trama (FS) válido y SSF = falso) a la salida.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.1.1.1 Proceso de protección de conexión de subred VC-n

NOTA 1 – Este proceso está activo en la función Sn_C tantas veces como conexiones matriciales protegidas 1 + 1 existan.

El mecanismo de protección de conexión de subred VC-n se describe en la Rec. UIT-T G.841.

La figura 12-14 presenta las funciones atómicas que intervienen en la protección de conexión de subred (SNC). En la parte inferior izquierda están representados los dos pares de funciones de adaptación (de trabajo y de protección) (MSn/Sn_A). Encima de ellos se encuentran las funciones de supervisión no intrusiva (Snm_TT_Sk); en caso de SNC/I, estas funciones no están presentes. A la derecha se encuentran, o bien las funciones de terminación de camino (Sn_TT), o las funciones de adaptación (MSn/Sn_A), dependiendo de que el camino Sn se termine en el mismo punto en que se termina la protección de SNC o en un punto ulterior.

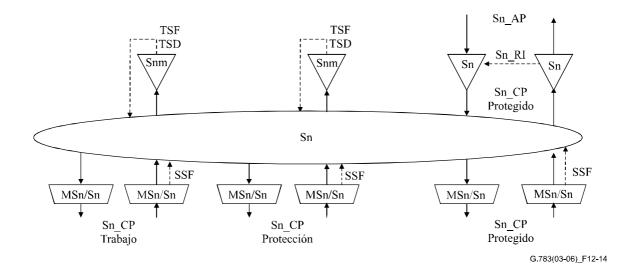


Figura 12-14/G.783 – Funciones atómicas de protección de SNC/N de VC-n

La función Sn_C puede proporcionar protección del camino contra defectos asociados al canal dentro de una conexión de (sub)red.

Las funciones Sn_C en ambos extremos actúan de la misma manera, supervisando la subred en búsqueda de defectos, evaluando el estado del sistema habida cuenta de las prioridades de condiciones de defecto y las peticiones de conmutación externas, y conmutando el canal adecuado a la conexión de (sub)red de protección.

El flujo de señales asociado con el proceso de protección de SNC, Sn_C, se describe con referencia a las figuras 12-15 y 12-16. El proceso de protección Sn_C recibe parámetros de control y peticiones de conmutación externas en el punto de referencia Sn_C_MP desde la función de gestión de equipo síncrono y presenta a la salida en el Sn_C_MP indicadores para la función de gestión de equipo síncrono, como resultado de instrucciones de conmutación descritas en la Rec. UIT-T G.841.

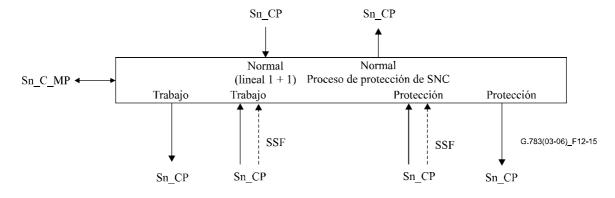


Figura 12-15/G.783 – Proceso de protección de conexión de subred (SNC/I) con supervisión inherente de VC-n

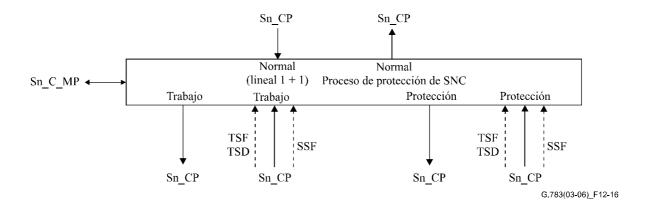


Figura 12-16/G.783 – Proceso de protección de conexión de subred (SNC/N) con supervisión no intrusiva de VC-n

Sentido hacia la fuente

Los datos en el Sn_CP están constituidos por una señal de camino.

Para una arquitectura de 1 + 1, la señal recibida en el Sn_CP proveniente de la función MSn/Sn_A (o Sn_TT) está conectada en puente permanentemente en el Sn_CP a las funciones de trabajo y de protección MSn/Sn_A.

NOTA 2 – La función atómica conectada en el Sn_CP a Sn_C es MSn/Sn_A o Sn_TT. Cuando la señal de camino termina en este elemento de red, será conectada en el Sn_CP a un Sn_TT; en los demás casos, será conectada en el Sn_CP a MSn/Sn_A (para transporte ulterior).

Sentido hacia el sumidero

Las señales de camino entramadas (datos) son presentadas en el Sn_CP junto con las referencias de temporización entrantes. Las condiciones de defectos SSF (y TSF y TSD) son recibidas también en el Sn CP de todas las funciones MSn/Sn A (o Snm TT Sk).

Para la protección SNC/I (figuras 12-14 y 12-15) las señales de camino pasan a las funciones MSn/Sn_A. Las señales SSF de MSn/Sn_A_Sk son utilizadas por el proceso de protección Sn C SNC.

Para la protección SNC/N (figuras 12-14 y 12-16) las señales de camino son difundidas a la función Snm_TT_Sk para la supervisión no intrusiva del camino. Las señales TSF y TSD resultantes son utilizadas por el proceso de protección Sn C SNC en vez de la señal SSF procedente de MSn/Sn A.

En condiciones normales, Sn_C pasa los datos y la temporización de las funciones MSn/Sn_A de trabajo a la función MSn/Sn_A (o Sn_TT) en el Sn_CP. Se terminan los datos y la temporización de la conexión de (sub)red de protección.

Si se ha de efectuar una conmutación, los datos y la temporización recibidos de la función MSn/Sn_A de protección en el Sn_CP se conmutan a la función MSn/Sn_A (o Sn_TT) en el SnP C, y no se reenvía la señal recibida de la MSn/Sn A de trabajo en el Sn CP.

Criterios de iniciación de conmutación

La conmutación de protección automática se basa en las condiciones de defecto de las conexiones de (sub)red de trabajo y de protección. Estas condiciones son para SNC/I: el fallo de señal de servidor (SSF), para SNC/N: el fallo de la señal de camino (TSF) y la degradación de la señal de camino (TSD). La detección de estas condiciones se describe en 11.3.1.2 para MSn/Sn_A_Sk y en 12.2.2 para Snm_TT_Sk.

La conmutación de protección puede ser iniciada también por instrucciones de conmutación recibidas a través de la función de gestión de equipo síncrono. Véanse los criterios de iniciación de conmutación descritos en la Rec. UIT-T G.841.

Tiempo de conmutación

Véase la Rec. UIT-T G.841.

Conmutación de restablecimiento

En el modo inverso de funcionamiento, el canal de trabajo será restablecido, es decir, la señal en la conexión de (sub)red de protección será conmutada a la conexión de (sub)red de trabajo, cuando la conexión de (sub)red de trabajo se haya recuperado de la avería.

Para evitar el funcionamiento frecuente de la conmutación de protección debido a una avería intermitente, una conexión de (sub)red que ha fallado deberá recuperarse y quedar libre de averías. Después de que la conexión de (sub)red que ha fallado haya satisfecho este criterio, deberá transcurrir un periodo de tiempo fijo antes de que sea utilizada de nuevo por un canal de trabajo. Este periodo, denominado tiempo de espera para restauración (WTR), estará comprendido en la gama de 1-12 minutos y deberá ser posible fijarlo. Una condición SSF, TSF, o TSD prevalecerá sobre el WTR.

12.2 Funciones de terminación

12.2.1 Terminación de camino de capa VC-n Sn TT

La función Sn_TT_So crea un VC-n (n = 3, 4, 4-Xc) en el Sn_CP generando POH y añadiéndola a un contenedor C-n proveniente del Sn_AP. En el sentido opuesto de transmisión, termina la POH y la procesa para determinar el estado de los atributos de trayecto definidos. Los formatos de POH se definen en la Rec. UIT-T G.707/Y.1322.

Los datos en el Sn_AP adoptan la forma de un contenedor C-n (n = 3, 4, 4-Xc) que está sincronizado a la referencia de temporización Sn_TP.

La información adaptada síncronamente en forma de contenedores (datos) síncronos y la correspondiente información de desplazamiento de trama del contenedor (desplazamiento de trama) se reciben en el Sn AP.

12.2.1.1 Fuente de terminación de camino de capa VC-n Sn TT So

Esta función añade octetos de supervisión de errores y de tara de estado al Sn AP.

Los datos en el Sn_AP son un VC-n (n = 3, 4, 4-Xc) con una cabida útil descrita en la Rec. UIT-T G.707/Y.1322, pero con los octetos de POH: (J1, B3, G1) de VC-3/VC-4/VC-4-Xc, no determinados. Estos octetos de POH se fijan como parte de la función Sn_TT, y el VC-n completo se reenvía al Sn CP.

Símbolo

Figura 12-17/G.783 - Símbolo de Sn_ TT So

Interfaces

Cuadro 12-2/G.783 – Señales de entrada y de salida Sn TT So

Entradas	Salidas
Sn AI Data	Sn CI Data
Sn_AI_Clock	Sn_CI_Clock
Sn AI FrameStart	Sn CI FrameStart
Sn RI RDI	
Sn_RI_REI	
Sn_TT_So_MI_TxTI	

Procesos

J1: El identificador de traza de camino debe ser generado. Su valor se deriva del punto de referencia Sn_TT_So_MP. El formato de la traza de trayecto se describe en 6.2.2.2/G.806.

B3: La paridad de entrelazado de bits (BIP-8) se calcula sobre todos los bits del VC-n precedente y se inserta en la posición de octeto B3.

G1[1-4]: El número de errores indicado en RI_REI se codifica en la REI (bits 1 a 4 del octeto G1). Tras la detección de un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en los bits REI dentro de 1 ms

G1[5]: Tras la declaración/desaparición de aRDI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido la indicación RDI dentro de 1 ms.

G1[6-7]: Los bits 6 y 7 del octeto G1 están reservados para la utilización facultativa de RDI mejorada (E-RDI), descrita en el apéndice VI. Si no se utiliza esta opción, los bits 6 y 7 se fijarán a 00 u 11.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.2.1.2 Sumidero de terminación de camino de capa VC-n Sn TT Sk

Esta función supervisa el VC-n (n = (3, 4, 4-Xc)) en búsqueda de errores, y recupera el estado de terminación de camino. Extrae los octetos/bits (J1, G1, B3) de tara independientes de la cabida útil, de la información característica de capa VC-n.

Símbolo

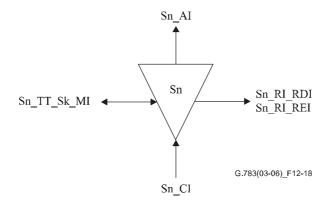


Figura 12-18/G.783 – Símbolo de Sn_TT_Sk

Interfaces

Cuadro 12-3/G.783 – Señales de entrada y de salida Sn TT Sk

Entradas	Salidas
Sn_CI_Data	Sn_AI_Data
Sn_CI_Clock	Sn_AI_Clock
Sn_CI_FrameStart	Sn_AI_FrameStart
Sn_CI_SSF	Sn_AI_TSF
Sn_TT_Sk_MI_TPmode	Sn_AI_TSD
Sn_TT_Sk_MI_ExTI	Sn_RI_RDI
Sn_TT_Sk_MI_RDI_Reported	Sn_RI_REI
Sn_TT_Sk_MI_SSF_Reported	Sn_TT_Sk_MI_cTIM
Sn_TT_Sk_MI_DEGTHR	Sn_TT_Sk_MI_cUNEQ
Sn_TT_Sk_MI_DEGM	Sn_TT_Sk_MI_cEXC
Sn_TT_Sk_MI_EXC_X	Sn_TT_Sk_MI_cDEG
Sn_TT_Sk_MI_DEG_X	Sn_TT_Sk_MI_cRDI
Sn_TT_Sk_MI_1second	Sn_TT_Sk_MI_cSSF
Sn_TT_Sk_MI_TIMdis	Sn_TT_Sk_MI_AcTI
Sn_TT_Sk_MI_TIMAISdis	Sn_TT_Sk_MI_pN_EBC
	Sn_TT_Sk_MI_pF_EBC
	Sn_TT_Sk_MI_pN_DS
	Sn_TT_Sk_MI_pF_DS

Procesos

J1: El identificador de traza de camino se recupera de la tara POH de VC-n en el Sn_CP y se procesa como se especifica en 6.2.2.2/G.806. El valor aceptado de J1 también está disponible en el Sn_TT_Sk_MP. Para una descripción más detallada del tratamiento de la discordancia de identificador de traza, véase 6.2.2.2/G.806.

C2: El defecto no equipado se trata como se describe en 6.2.1.3/G.806.

B3: El octeto de supervisión de errores B3 en el Sn_CP será recuperado. Se calcula BIP-8 para la trama VC-n. El valor BIP-8 calculado para la trama actual se compara con el octeto B3 recuperado de la trama siguiente. El proceso para detectar excesivos errores y degradaciones de la señal se describe en 6.2.3.1/G.806.

G1[1-4]: Se recuperará la REI, y las primitivas de calidad de funcionamiento derivadas deberán informarse en el Sn_TT_Sk_MP.

G1[5]: El defecto RDI se trata como se describe en 6.2.6.3/G.806.

G1[6-7]: Los bits 6 y 7 del octeto G1 están reservados para la utilización facultativa de RDI mejorada (E-RDI, *enhanced-RDI*), descrita en el apéndice VI. Si no se utiliza esta opción, el contenido de los bits 6 y 7 del octeto G1 no se tendrá en cuenta.

N1: El octeto de operador de red N1 se define para fines de supervisión de TC. Esta función no lo tendrá en cuenta.

K3[5-8]: Estos bits no están definidos y la función no los tendrá en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG y dRDI de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aAIS ← dUNEQ o (dTIM y no TIMAISdis)

aRDI ← CI_SSF o dUNEQ o dTIM

aREI ← "número de violaciones de código de detección de errores"

aTSF ← CI_SSF o dUNEQ o (dTIM y no TIMAISdis)

aTSFprot ← aTSF o dEXC

aTSD ← dDEG
```

Al declararse aAIS, la función presentará a la salida la señal todos UNOS (AIS) dentro de los límites de frecuencia para esta señal dentro de 2 tramas (250 µs). Al desaparecer las mencionadas condiciones de fallo, se suprimirá la señal todos UNOS dentro de 2 tramas (250 µs).

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF ← CI_SSF y SSF_Reported y MON

cUNEQ ← dUNEQ y MON

cTIM ← dTIM y (no dUNEQ) y MON

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y (no dUNEQ) y (no dTIM o TIMAISdis) y MON y RDI Reported
```

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

```
\begin{array}{lll} pN\_DS & \leftarrow & CI\_SSF \ o \ dUNEQ \ o \ dTIM \ o \ dEQ \\ pF\_DS & \leftarrow & dRDI \\ pN\_EBC & \leftarrow & \sum nN\_B \\ pF\_EBC & \leftarrow & \sum nF\_B \end{array}
```

12.2.2 Monitor no intrusivo de capa VC-n

Se definen dos versiones de monitor no intrusivo.

La versión 1 sólo es aplicable a la supervisión de VC equipados. No puede utilizarse para la supervisión de VC no equipados de medios de supervisión, ya que el defecto no equipado estará constantemente activo y, en consecuencia, activa TSF y suprime otros defectos.

La versión 2 es aplicable a la supervisión de VC equipados y no equipados de medios de supervisión, ya que el defecto no ocupado está correlacionado con un identificador de traza aceptado de todos ceros.

12.2.2.1 Monitor no intrusivo de capa VC-n, versión 1 Snm1 TT Sk

La versión 1 de la función de supervisión de tara de trayecto sólo es aplicable a la supervisión de VC equipados.

Esta función supervisa el VC-n (n = (3, 4, 4-Xc)) en búsqueda de errores, y recupera el estado de terminación de camino. Extrae los octetos/bits (J1, G1, B3) de tara independientes de la cabida útil, de la información característica de capa VC-n.

Símbolo

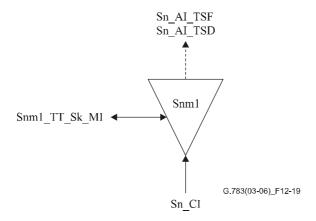


Figura 12-19/G.783 – Símbolo de Snm1 TT Sk

Interfaces

Cuadro 12-4/G.783 – Señales de entrada y de salida Snm1 TT Sk

Entradas	Salidas
Sn_CI_Data	Sn_AI_TSF
Sn CI Clock	Sn AI TSD
Sn CI FrameStart	Snm1 TT Sk MI cTIM
Sn CI SSF	Snm1 TT Sk MI cUNEQ
Snm1_TT_Sk_MI_TPmode	Snm1_TT_Sk_MI_cDEG
Snm1_TT_Sk_MI_ExTI	Snm1_TT_Sk_MI_cEXC
Snm1 TT Sk MI RDI Reported	Snm1 TT Sk MI cRDI
Snm1_TT_Sk_MI_SSF_Reported	Snm1_TT_Sk_MI_cSSF
Snm1_TT_Sk_MI_DEGTHR	Snm1_TT_Sk_MI_AcTI
Snm1 TT Sk MI DEGM	Snm1 TT Sk MI pN EBC
Snm1 TT Sk MI EXC X	Snm1 TT Sk MI pF EBC
Snm1_TT_Sk_MI_DEG_X	Snm1_TT_Sk_MI_pN_DS
Snm1_TT_Sk_MI_1second	Snm1_TT_Sk_MI_pF_DS
Snm1_TT_Sk_MI_TIMdis	_

Procesos

J1: El identificador de traza de camino se recupera de la tara POH de VC-n en el Sn_CP. El valor aceptado de J1 está también disponible en el Snm1_TT_Sk_MP. Para una descripción más detallada del tratamiento de la discordancia de identificador de traza, véase 6.2.2.2/G.806.

C2: Se recuperarán los bits de etiqueta de señal en el Sn_CP. Para una descripción más detallada del tratamiento del defecto no equipado, véase 6.2.1.3/G.806. La función detectará una condición AIS de VC (VC-AIS) supervisando PSL de VC en búsqueda del código "1111 1111". Para una descripción más detallada del tratamiento del defecto AIS de VC, véase 6.2.6.2/G.806.

B3: El octeto B3 se recupera de la POH de VC-n en el Sn_CP. Se calcula BIP-8 para la trama VC-n. El valor de BIP-8 calculado para la trama actual se compara con el octeto B3 recuperado de la trama siguiente. El proceso para la detección de excesivos errores y degradaciones de la señal se describe en 6.2.3.1/G.806.

G1[1-4]: Se recuperará la REI, y las primitivas de calidad de funcionamiento derivadas deberán informarse en el Snm1 TT Sk MP.

G1[5]: El tratamiento del defecto RDI se describe en 6.2.6.3/G.806.

G1[6-7]: Estos bits están reservados para la utilización facultativa de la RDI mejorada, descrita, en el apéndice VI. Si esta función no se utiliza, estos bits no se tienen en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG, dAIS y dRDI de acuerdo con la especificación en 6.4/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

aTSF ← CI SSF o dAIS o dUNEQ o (dTIM y no TIMAISdis)

 $aTSFprot \leftarrow dEXC o aTSF$

 $aTSD \leftarrow dDEG$

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF ← (CI SSF o dAIS) y MON y SSF Reported
```

cUNEQ ← dUNEQ y MON

 $cTIM \leftarrow dTIM y (no dUNEQ) y MON$

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y (no dUNEQ) y (no dTIM o TIMAISdis) y MON y RDI Reported

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

```
pN DS ← CI SSF o dAIS o dUNEQ o dTIM o dEQ
```

 $pF DS \leftarrow dRDI$

$$\begin{array}{ll} pN_EBC & \leftarrow \; \sum nN_B \\ pF \; EBC & \leftarrow \; \sum nF \; B \end{array}$$

12.2.2.2 Monitor no intrusivo de capa VC-n, versión 2, Snm2_TT_Sk

La versión 2 de la función de monitor de la tara de trayecto es aplicable a la supervisión de VC equipados y no equipados de medios de supervisión.

Esta función supervisa el VC-n (n = (3, 4, 4-Xc)) en búsqueda de errores, y recupera el estado de terminación de camino. Extrae los octetos/bits (J1, G1, B3) de tara independientes de la cabida útil, de la información característica de capa VC-n.

Símbolo

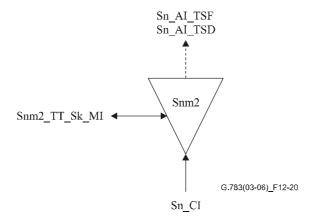


Figura 12-20/G.783 – Símbolo de Snm2_TT_Sk

Interfaces

Cuadro 12-5/G.783 – Señales de entrada y de salida Snm2 TT Sk

Entradas	Salidas
Sn CI Data	Sn AI TSF
Sn CI Clock	Sn AI TSD
Sn_CI_FrameStart	Snm2_TT_Sk_MI_cTIM
Sn CI SSF	Snm2 TT Sk MI cUNEQ
Snm2 TT Sk MI TPmode	Snm2 TT Sk MI cDEG
Snm2_TT_Sk_MI_ExTI	Snm2_TT_Sk_MI_cEXC
Snm2_TT_Sk_MI_RDI_Reported	Snm2_TT_Sk_MI_cRDI
Snm2_TT_Sk_MI_DEGTHR	Snm2_TT_Sk_MI_cSSF
Snm2_TT_Sk_MI_DEGM	Snm2_TT_Sk_MI_AcTI
Snm2_TT_Sk_MI_EXC_X	Snm2_TT_Sk_MI_pN_EBC
Snm2_TT_Sk_MI_DEG_X	Snm2_TT_Sk_MI_pF_EBC
Snm2_TT_Sk_MI_1second	Snm2_TT_Sk_MI_pN_DS
Snm2_TT_Sk_MI_TIMdis	Snm2_TT_Sk_MI_pF_DS
Snm2_TT_Sk_MI_SSF_Reported	

Procesos

J1: El identificador de traza de camino se recupera de la POH de VC-n en el Sn_CP. El valor aceptado de J1 está también disponible en el Snm2_TT_Sk_MP. Para una descripción más detallada del tratamiento de la discordancia del identificador de traza, véase 6.2.2.2/G.806.

C2: Se recuperarán los bits de etiqueta de señal en el Sn_CP. Para una descripción más detallada del tratamiento del defecto no equipado, véase 6.2.1.3/G.806. La función detectará la condición AIS de VC (VC-AIS) supervisando PSL de VC en búsqueda del código "1111 1111". Para una descripción más detallada del tratamiento del defecto AIS de VC, véase 6.2.6.2/G.806.

B3: El octeto B3 se recupera de la POH de VC-n en el Sn_CP. BIP-8 se calcula para la trama VC-n. El valor BIP-8 calculado para la trama actual se compara con el octeto B3 recuperado de la trama siguiente. El proceso para la detección de excesivos errores y degradaciones de la señal se describe en 6.2.3.1/G.806.

G1[1-4]: Se recuperará la REI, y las primitivas de calidad de funcionamiento derivadas deberán informarse en el Snm2 TT Sk MP.

G1[5]: El defecto RDI se trata como se describe en 6.2.6.3/G.806.

G1[6-7]: Estos bits están reservados para la utilización facultativa de la RDI mejorada (E-RDI), descrita en el apéndice VI. Si no se utiliza esta función, estos bits no se tienen en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG, dAIS y dRDI de acuerdo con la especificación en 6.4/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aTSF \leftarrow CI_SSF o dAIS o (dUNEQ y (AcTI = todos "0")) o (dTIM y no TIMAISdis)
aTSFprot \leftarrow dEXC o aTSF \leftarrow dDEG
```

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cUNEO ←
              dUNEQ y (AcTI = todos "0") y MON
cTIM
              dTIM y no (dUNEQ y (AcTI = todos "0")) y MON
         \leftarrow
cEXC
              dEXC y (no dTIM o TIMAISdis) y MON
         \leftarrow
cDEG
         \leftarrow
              dDEG y (no dTIM o TIMAISdis) y MON
              dRDI y no (dUNEQ y (AcTI = todos "0")) y (no dTIM o TIMAISdis) y MON y
cRDI
              RDI Reported
cSSF
              (CI SSF o dAIS) y MON y SSF Reported
```

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

```
\begin{array}{ll} pN\_DS & \leftarrow & CI\_SSF \ o \ dAIS \ o \ (dUNEQ \ y \ (AcTI = todos \ "0") \ o \ dTIM \ o \ dEQ \\ \\ pF\_DS & \leftarrow & dRDI \\ \\ pN\_EBC & \leftarrow & \sum nN\_B \\ \\ pF\_EBC & \leftarrow & \sum nF\_B \end{array}
```

12.2.3 Terminación no equipada de supervisión de capa VC-n Sns_TT

La función Sns_TT crea un VC-n en el Sn_CP generando POH y añadiéndola a un contenedor C-n no definido. En el sentido opuesto de transmisión termina la POH y la procesa para determinar el estado de los atributos de trayecto definidos. Los formatos de POH se definen en la Rec. UIT-T G.707/Y.1322.

NOTA – La función Sns TT (n = (3, 4, 4-Xc)) genera y supervisa señales de no equipado con supervisión.

12.2.3.1 Fuente de terminación no equipada con supervisión de capa VC-n Sns TT So

Esta función genera octetos de supervisión de error y de tara de estado para un VC-n (n = (3, 4, 4-Xc)) no definido.

Símbolo

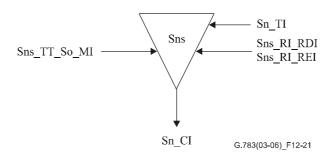


Figura 12-21/G.783 – Símbolo de Sns_TT_So

Interfaces

Cuadro 12-6/G.783 – Señales de entrada y de salida Sns TT So

Entradas	Salidas
Sn_RI_RDI Sn_RI_REI	Sn_CI_Data Sn_CI_Clock
Sn_TI_Clock Sn_TI_FrameStart	Sn_CI_FrameStart
Sns_TT_So_MI_TxTI	

Procesos

Se debe generar un VC-n (n = (3, 4, 4-Xc)) no definido.

C2: La etiqueta de señal 0000 0000 (no equipado) debe insertarse en el VC-n.

J1: Debe generarse el identificador de traza de camino. Su valor se deriva del punto de referencia Sn_TT_So_MP. El formato de traza de trayecto se describe en 6.2.2.2/G.806.

B3: La paridad de entrelazado de bits (BIP-8) se calcula sobre todos los bits del VC-n precedente y se coloca en la posición de octeto B3.

G1[1-4]: El número de errores indicado en RI_REI se codifica en la REI (bits 1 a 4 del octeto G1). Al detectarse un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en los bits dentro de 1 ms.

G1[5]: Tras la declaración/desaparición de aRDI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido la indicación RDI dentro de 1 ms.

G1[6-7]: Estos bits están reservados para la utilización facultativa de RDI mejorada (E-RDI), descrita en el apéndice VI. Si no se utiliza esta opción, estos bits se fijarán a 00 u 11.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.2.3.2 Sumidero de terminación no equipada de supervisión de capa VC-n Sns_TT_Sk

Símbolo

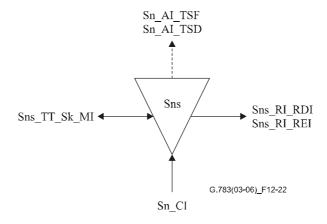


Figura 12-22/G.783 – Símbolo de Sns_TT_Sk

Interfaces

Cuadro 12-7/G.783 – Señales de entrada y de salida Sns TT Sk

Entradas	Salidas
Sn CI Data	Sn AI TSF
Sn_CI_Clock	Sn_AI_TSD
Sn_CI_FrameStart	Sn_RI_RDI
Sn_CI_SSF	Sn_RI_REI
Sns_TT_Sk_MI_TPmode	Sns_TT_Sk_MI_cTIM
Sns_TT_Sk_MI_ExTI	Sns_TT_Sk_MI_cUNEQ
Sns_TT_Sk_MI_RDI_Reported	Sns_TT_Sk_MI_cDEG
Sns_TT_Sk_MI_SSF_Reported	Sns_TT_Sk_MI_cEXC
Sns_TT_Sk_MI_DEGTHR	Sns_TT_Sk_MI_cRDI
Sns_TT_Sk_MI_DEGM	Sns_TT_Sk_MI_cSSF
Sns_TT_Sk_MI_EXC_X	Sns_TT_Sk_MI_AcTI
Sns_TT_Sk_MI_DEG_X	Sns_TT_Sk_MI_pN_EBC
Sns_TT_Sk_MI_1second	Sns_TT_Sk_MI_pF_EBC
Sns_TT_Sk_MI_TIMdis	Sns_TT_Sk_MI_pN_DS
	Sns_TT_Sk_MI_pF_DS

Procesos

J1: El identificador de traza de camino se recupera de la POH de VC-n en el Sn_CP y se trata como se especifica en 6.2.2.2/G.806. El valor aceptado de J1 está también disponible en el Sn_TT_Sk_MP. Para una descripción más detallada del tratamiento de la discordancia de identificador de traza, véase 6.2.2.2/G.806.

C2: Se recuperará la etiqueta de señal en el Sn_CP. Obsérvese que en el sentido de transmisión hacia el sumidero, Sns_TT siempre espera una etiqueta de señal de no ocupado. Para una descripción más detallada del tratamiento del defecto no equipado, véase 6.2.1.3/G.806.

B3: Se recuperará el octeto B3 de supervisión de errores en el Sn_CP. Se calcula el valor de BIP-8 para la trama VC-n. El valor calculado de BIP-8 para la trama actual se compara con el octeto B3 recuperado de la trama siguiente. El proceso para la detección de excesivos errores y degradaciones de la señal se describe en 6.2.3.1/G.806.

G1[1-4]: Se recuperará la REI y las primitivas de calidad de funcionamiento derivadas deberán informarse en el Sns TT Sk MP.

G1[5]: El defecto RDI se trata como se describe en 6.2.6.3/G.806.

G1[6-7]: Estos bits están reservados para la utilización facultativa de RDI mejorada (E-RDI), descrita en el apéndice VI. Si no se utiliza esta opción, estos bits no se tendrán en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG y dRDI de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

aRDI \leftarrow SSF o dTIM

aREI ← "número de violaciones de código de detección de errores"

aTSF \leftarrow CI SSF o (dTIM y no TIMAISdis)

 $aTSFprot \leftarrow aTSF \circ dEXC$

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

cSSF ← CI SSF y SSF Reported y MON

cUNEQ ← dTIM y (AcTI = todos CEROS) y dUNEQ y MON

 $cTIM \leftarrow dTIM y (no (dUNEQ y AcTI = todos CEROS)) y MON$

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y (no dTIM o TIMAISdis) y MON y RDI Reported

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

$$\begin{array}{lll} pN_DS & \leftarrow & CI_SSF \ o \ dTIM \ o \ dEQ \\ \\ pF_DS & \leftarrow & dRDI \\ \\ pN_EBC & \leftarrow & \sum nN_B \\ \\ pF_EBC & \leftarrow & \sum nF_B \end{array}$$

12.3 Funciones de adaptación

12.3.1 Adaptación de capa VC-n a capa VC-m Sn/Sm_A

La Sn/Sm_A proporciona la funcionalidad primaria dentro de la Sn/Sm_A, (m =11, 12, 2 \u00e9 3; n = 3 \u00e9 4). Define el procesamiento de puntero TU, y puede dividirse en tres funciones:

- generación de puntero;
- interpretación de puntero;
- justificación de frecuencia.

La S4/S11*_A proporciona la funcionalidad de interfuncionamiento para el transporte de VC-11 de orden inferior en VC-4 a través de TU-12. Define el procesamiento de puntero TU, y puede dividirse en cuatro funciones:

- adición y supresión de octetos de relleno,
- generación de puntero,
- interpretación de puntero,
- justificación de frecuencia.

El formato de los punteros TU, los papeles que éstos desempeñan en el procesamiento, y las correspondencias de VC se describen en la Rec. UIT-T G.707/Y.1322.

La función Sn/Sm A también actúa como una fuente y un sumidero de octetos H4 y C2.

12.3.1.1 Fuente de adaptación de capa VC-n a capa VC-m Sn/Sm A So

Símbolo

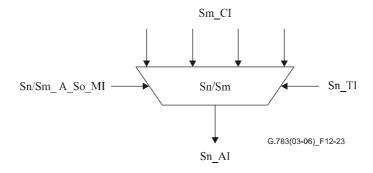


Figura 12-23/G.783 - Símbolo de Sn/Sm A So

Interfaces

Cuadro 12-8/G.783 – Señales de entrada y de salida Sn/Sm A So

Entradas	Salidas
Sm_CI_Data	Sn_AI_Data
Sm_CI_Clock	Sn_AI_Clock
Sm_CI_FrameStart	Sn_AI_FrameStart
Sm_CI_MultiFrameSync	
Sn_TI_Clock	
Sn_TI_FrameStart	
Sn/Sm_A_So_MI_Active	

Procesos

La función Sn/Sm_A ensambla los VC de orden inferior m (m = 11, 12, 2, 3) como TU-m en VC de orden superior n (n = 3 \acute{o} 4).

En el caso de la función S4/S11*_A_So, se añaden 36 octetos de relleno al contenedor VC-11 de acuerdo con 10.1.6/G.707/Y.1322.

El desplazamiento de tramas en los octetos entre un VC de orden inferior y un VC de orden superior se indica por un puntero TU que se asigna a ese VC de orden inferior. El método de generación de puntero se describe en la Rec. UIT-T G.707/Y.1322. Los datos LOVC en Sm_CP están sincronizados con la temporización del punto de referencia TP.

La función PP acomoda la fluctuación lenta de fase y el desplazamiento plesiócrono en la señal recibida con respecto a la referencia de temporización de equipo síncrono. La función PP se puede modelar como una memoria tampón de datos que se escribe con datos, temporizada a partir del reloj VC recibido y que se lee por un reloj VC derivado del punto de referencia SN_TP. Cuando la velocidad del reloj de escritura excede de la velocidad del reloj de lectura, la memoria tampón se llena gradualmente y viceversa. Los umbrales de ocupación superior e inferior de la memoria tampón determinan cuándo se deben efectuar ajustes de puntero. La memoria tampón tiene que reducir la frecuencia de ajustes de puntero en una red. La asignación en la memoria tampón de procesador de puntero para el espaciamiento de umbral de histéresis debe ser al menos 4 octetos para TU-3s y al menos 2 octetos para TU-1s y TU-2s. Cuando los datos en la memoria tampón rebasan el umbral superior para un determinado VC, el desplazamiento de trama asociado se disminuye en un octeto y se lee un octeto suplementario de la memoria. Cuando los datos en la memoria tampón están por debajo del umbral inferior de un determinado VC, el desplazamiento de trama asociado aumenta en un octeto y se cancela la oportunidad de lectura. El procesamiento de puntero en la función MSn/Sn A se describe en 11.3.1.

H4: Se genera un indicador de multitrama, que se describe en la Rec. UIT-T G.707/Y.1322, y se coloca en la posición del octeto H4.

C2: La información de etiqueta de señal, que se deriva directamente del tipo de función de adaptación, se coloca en la posición de octeto C2.

Defectos

Ninguno.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aAIS \leftarrow CI SSF

Cuando se aplica una señal todos UNOS (AIS) en el Sm_CP, se aplicará la señal todos UNOS (TU-AIS) en el Sn_AP dentro de 2 (multi)tramas. Al terminar la señal todos UNOS en el Sm_CP, la señal todos UNOS (TU-AIS) será terminada dentro de 2 (multi)tramas.

Correlación de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.1.2 Sumidero de adaptación de capa VC-n a capa VC-m Sn/Sm A Sk

Símbolo

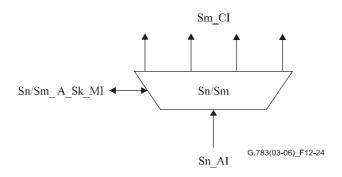


Figura 12-24/G.783 – Símbolo de Sn/Sm A Sk

Interfaces

Cuadro 12-9/G.783 – Señales de entrada y de salida Sn/Sm_A_Sk

Entradas	Salidas
Sn_AI_Data	Sm_CI_Data
Sn_AI_Clock	Sm_CI_Clock
Sn_AI_FrameStart	Sm_CI_FrameStart
Sn_AI_TSF	Sm_CI_MFS
Sn/Sm A Sk MI Active	Sm CI SSF
	Sn/Sm A Sk MI AcSL
	Sn/Sm A Sk MI cPLM
	Sn/Sm_A_Sk_MI_cLOM

Procesos

La función S4/Sm_A_Sk desensambla el VC-4 en VCs de orden inferior m (m = 11, 12, 2, 3), y realiza la alineación de multitrama, si es necesario. S3/Sm_A_Sk desensambla el VC-3 en VCs de orden inferior m (m = 11, 12, 2), y realiza la alineación de multitrama, si es necesario.

En el caso de la función S4/S11*_A_Sk, ésta elimina los 36 octetos de relleno de los contenedores VC-12 de acuerdo con 10.1.6/G.707/Y.1322 para recuperar el VC-11. Debe señalarse que esta acción puede provocar una discrepancia entre los informes PM en una S12m_TT_Sk y una S11_TT_Sk para un camino VC-11.

El puntero TU de cada VC de orden inferior se decodifica para proporcionar información sobre el desplazamiento de tramas en los octetos entre el VC de orden superior y cada VC de orden inferior. El método de interpretación de puntero se describe en la Rec. UIT-T G.707/Y.1322. Este proceso debe permitir ajustes continuos de puntero cuando la frecuencia del reloj del nodo donde se

ensambló TU es diferente de la referencia de reloj local. La diferencia de frecuencia entre estos relojes influye en el tamaño requerido de la memoria tampón de datos, cuya función se describe a continuación.

La función realizará la interpretación de puntero TU como se especifica en el anexo A para recuperar la fase de trama LOVC dentro de HOVC. El intérprete de puntero puede detectar dos condiciones de defecto:

- pérdida de puntero (LOP);
- TU-AIS

Obsérvese que una falta de concordancia persistente entre el tipo TU previsto y el recibido provocará un defecto de pérdida de puntero (LOP).

C2: El octeto C2 se recupera del puerto VC-n en el Sn_AP. Si se detecta dPLM (véase 6.2.4.2/G.806), esto se informará a través del punto de referencia Sn/Sm_A_Sk_MP. El valor aceptado de C2 está disponible también en Sn/Sm_A_Sk_MP.

NOTA – Los criterios de aceptación y la especificación de detección de defectos de la etiqueta de señal quedan en estudio.

H4: Cuando las cabidas útiles requieren alineación de multitrama, se deriva un indicador de multitrama del octeto H4 y la alineación de multitrama se realiza como se define en 8.2.2. El indicador de multitrama se utiliza además para derivar el defecto LOM (véase 6.2.5.2).

Defectos

dAIS - véase el anexo A.

dLOP - véase el anexo A.

dLOM – véase 6.2.5.2.

dPLM - véase 6.2.4.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

para VC-3:

aAIS ← dPLM o dAIS o dLOP

aSSF \leftarrow dPLM o dAIS o dLOP

para VC-11/VC-12/VC-2:

aAIS ← dPLM o dLOM o dAIS o dLOP

aSSF \leftarrow dPLM o dLOM o dAIS o dLOP

Al declararse aAIS, se aplicará una señal todos UNOS lógica (AIS) en el Sm_CP dentro de 2 (multi)tramas. Al desaparecer estas aAIS, la señal todos UNOS se suprimirá dentro de 2 (multi)tramas.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cPLM ← dPLM y (no AI_TSF)

para VC-3:

cAIS ← dAIS y (no AI_TSF) y (no dPLM) y AIS Reported
```

 $cLOP \leftarrow dLOP y (no dPLM)$

para VC-11/VC-12/VC-2:

cLOM ← dLOM y (no AI_TSF) y (no dPLM)

cAIS ← dAIS y (no AI_TSF) y (no dPLM) y (no dLOM) y AIS_Reported

 $cLOP \leftarrow dLOP y (no dPLM) y (no dLOM)$

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.2 Adaptación de capa VC-n a capa Pqx Sn/Pqx_A

La Sn/Pqx_A (n = (3 ó 4), q = (31, 32 ó 4)) funciona en el puerto de acceso a una red o subred síncrona y adapta datos de usuario para el transporte en el dominio síncrono. La función Sn/Pqx_A actúa también como una fuente y un sumidero para la información dependiente de la cabida útil de POH. La función Sn/Pqx_A hace corresponder directamente las señales (PDH) G.703 a un contenedor virtual de nivel n.

Las funciones de adaptación se definen para cada uno de los niveles de las jerarquías plesiócronas existentes. Cada función de adaptación define la manera en que una señal de usuario puede hacerse corresponder a una gama de contenedores síncronos C-m de tamaño adecuado. Los tamaños de contenedor se han elegido con miras a facilitar la correspondencia de diversas señales plesiócronas con contenedores de nivel n; véase el cuadro 12-1. En la Rec. UIT-T G.707/Y.1322 se da una descripción detallada de la correspondencia de datos de usuario a contenedores.

Cuadro 12-10/G.783 - Tamaños de contenedor

Función atómica	Capa de servidor	Capa de cliente	Etiqueta de señal	Tamaño de contenedor
S3/P31x_A	S3	P31x	0000 0100	C-3
S3/P32x_A	S3	P32x	0000 0100	C-3
S4/P4x_A	S4	P4x	0001 0010	C-4

12.3.2.1 Fuente de adaptación de capa VC-n a capa Pqx Sn/Pqx A So

Símbolo

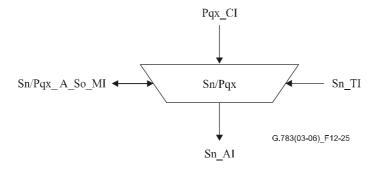


Figura 12-25/G.783 - Símbolo de Sn/Pqx A So

Interfaces

Cuadro 12-11/G.783 – Señales de entrada y de salida Sn/Pqx_A_So

Entradas	Salidas
Pqx_CI_Data	Sn_AI_Data
Pqx_CI_Clock	Sn_AI_Clock
Sn_TI_Clock	Sn_AI_FrameStart
Sn_TI_FrameStart	
Sn/Pqx_A_So_MI_Active	

Procesos

Los datos en Pqx_CP constituyen el tren de información de usuario. La temporización de los datos se entrega también como temporización en el CP. Los datos se adaptan de acuerdo con una de las funciones de adaptación mencionadas anteriormente, lo que comprende la sincronización y correspondencia del tren de información con un contenedor según se describe en la Rec. UIT-T G.707/Y.1322 y la adición de funciones dependientes de la cabida útil.

El contenedor se pasa a Sn_AP como datos junto con el desplazamiento de trama que representa el desplazamiento de la trama de contenedor con respecto al punto de referencia Sn_TP. Este desplazamiento de trama está limitado por los requisitos de la capa de cliente; por ejemplo, para el equipo SDH, la temporización de la capa de cliente se define en la Rec. UIT-T G.813.

C2: La etiqueta de señal se insertará de acuerdo con el tipo de correspondencia utilizada por la función de adaptación (véase el cuadro 12-10).

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.2.2 Sumidero de adaptación de capa VC-n a capa Pqx Sn/Pqx A Sk

Símbolo

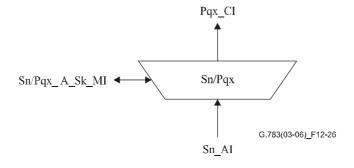


Figura 12-26/G.783 – Símbolo de Sn/Pqx A Sk

Interfaces

Cuadro 12-12/G.783 – Señales de entrada y de salida Sn/Pqx A Sk

Entradas	Salidas
Sn AI Data	Pqx CI Data
Sn_AI_Clock	Pqx_CI_Clock
Sn_AI_FrameStart	Sn/Pqx_A_Sk_MI_cPLM
Sn_AI_TSF	Sn/Pqx_A_Sk_MI_AcSL
Sn/Pqx_A_Sk_MI_Active	

Procesos

Los datos del tren de información de Sn_AP se presentan como un contenedor junto con el desplazamiento de trama. El tren de información de usuario se recupera del contenedor junto con el reloj asociado adecuado para la temporización de línea afluente y se pasa al punto de referencia Pqx_CP como datos y temporización. Esto comprende la descorrespondencia y la desincronización descritas en la Rec. UIT-T G.707/Y.1322 y la información dependiente de la cabida útil.

C2: Se recupera la etiqueta de señal, octeto C2. Para una descripción más amplia del procesamiento de etiqueta de señal, véase 6.2.4.2/G.806.

Defectos

La función detectará los defectos dPLM de acuerdo con la especificación en 6.2.4.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aAIS \leftarrow AI TSF o dPLM

aSSF \leftarrow AI TSF o dPLM

Cuando se aplica AIS en Sn_AP o se detecta un defecto dPLM (falta de concordancia entre el valor de etiqueta de señal esperado y el valor recibido), la función de adaptación generará una señal todos UNOS (AIS) de acuerdo con las Recomendaciones pertinentes de la serie G.700.

NOTA – En el caso de interfaz a 45 Mbit/s, la señal AIS se define en la Rec. UIT-T M.20.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería. Esta causa se informará a la SEMF.

$$cPLM \leftarrow dPLM y (no AI TSF)$$

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.3 Adaptación de capa VC-n a canal de usuario Sn/User A

12.3.3.1 Fuente de adaptación de capa VC-n a canal de usuario Sn/User_A_So

Símbolo

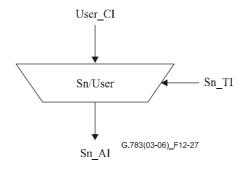


Figura 12-27/G.783 – Símbolo de Sn/User_A_So

Interfaces

Cuadro 12-13/G.783 – Señales de entrada y de salida Sn/User A So

Entradas	Salida
User_CI_Data User_CI_Clock Sn_TI_CK	Sn_AI_Data

Procesos

Los datos de usuario se insertan en las posiciones de octeto F2/F3 de la POH. Estos octetos se asignan para fines de comunicación de usuario y se utilizarán como canales libres a 64 kbit/s.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.3.2 Sumidero de adaptación de capa VC-n a canal de usuario Sn/User_A_Sk

Símbolo

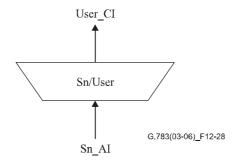


Figura 12-28/G.783 – Símbolo de Sn/User A Sk

Interfaces

Cuadro 12-14/G.783 – Señales de entrada y de salida Sn/User_A_Sk

Entradas	Salidas
Sn_AI_Data Sn_AI_Clock Sn_AI_FrameStart Sn_AI_TSF	User_CI_Data User_CI_Clock User_CI_SSF

Procesos

Los datos de usuario se recuperan de las posiciones de octeto F2/F3 de la POH.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

aAIS \leftarrow AI TSF

Al declararse aAIS, la función presentará a la salida la señal todos UNOS (AIS) dentro de los límites de frecuencia para esta señal (una velocidad binaria en la gama de $64 \text{ kbit/s} \pm 100 \text{ ppm}$) dentro de 2 tramas (250 µs). Al desaparecer las mencionadas condiciones de fallo, se suprimirá la señal todos UNOS dentro de dos tramas (250 µs).

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.4 Adaptación de capa VC-n a ATM VP Sn/Avp A

12.3.4.1 Fuente de adaptación de capa VC-n a ATM VP Sn/Avp_A_So

Esta función se describe en la Rec. UIT-T. I.732.

12.3.4.2 Sumidero de adaptación de capa VC-n a ATM VP Sn/Avp A Sk

Esta función se describe en la Rec. UIT-T. I.732.

12.3.5 Adaptación de capa VC-n a HDLC Sn/HDLC A

12.3.5.1 Fuente de adaptación de capa VC-n a HDLC Sn/HDLC A So

Por determinar.

12.3.5.2 Sumidero de adaptación de capa VC-n a HDLC Sn/HDLC A Sk

Por determinar

12.3.6 Función de adaptación VC-4-X a ODUk (S4-X/ODUk A) (X=17, k=1 o X=68, k=2)

Las funciones de adaptación VC-4-X a ODUk realizan la adaptación entre la información adaptada de la capa S4-X concatenada y la información característica de las señales ODUk. Se soportan los siguientes pares de X y k:

Cuadro 12-15/G.783 – Relación entre VC-4 concatenados y ODU de OTN

Señal SDH	Señal OTN	Función de adaptación
VC-4-17	ODU1	S4-17/ODU1_A
VC-4-68	ODU2	S4-68/ODU2_A

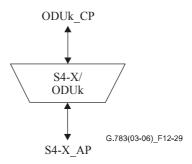


Figura 12-29/G.783 – Función S4-X/ODUk A

12.3.6.1 Función de fuente de adaptación VC-4-X a ODUk (S4-X/ODUk_A_So) (X=17, k=1 o X=68, k=2)

La función S4-X/ODUk_A_So añade señales de comienzo de trama y multitrama a la ODUk, aleatoriza la señal de manera asíncrona, establece su correspondencia con la señal C-4-X concatenada, incluida la información de control de justificación y añade la tara de VC-4-X específica de la cabida útil (byte C2).

El flujo de información y procesamiento de la función S4-X/ODUk_A_So se define de acuerdo con la figuras 12-30 y 12-31.

Símbolo

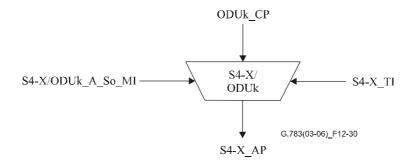


Figura 12-30/G.783 – Función S4-X/ODUk_A_So

Interfaces

Cuadro 12-16/G.783 – Señales de entrada y de salida S4-X/ODUk A So

Entradas	Salidas
ODUk_CP:	S4-X_AP:
ODUk_CI_CK ODUk_CI_D ODUk_CI_FS ODUk_CI_MFS	S4-X_AI_ClocK S4-X_AI_Data S4-X_AI_FrameStart
S4-X_TP: S4-X_TI_ClocK S4-X_TI_FrameStart	
S4-X/ODUk_A_So _MP: S4-X/ODUk_A_So _MI_Active	

Procesos

Activación:

La función S4-X/ODUk_A_So alcanzará el punto de acceso cuando esté activada (MI_Active es verdadero). En cualquier otro caso, no alcanzará el punto de acceso.

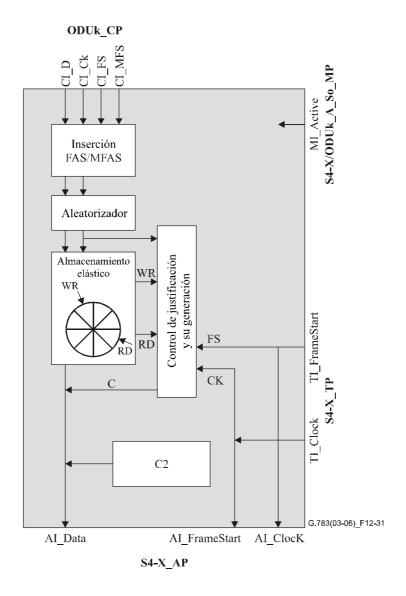


Figura 12-31/G.783 - Procesos S4-X/ODUk A So

Procesos

Inserción FAS/MFAS: La función ampliará la ODUk con una tara de alineación de trama (FAS y MFAS) en los bytes 1 a 7 de la fila 1, como se indica en 10.7/G.707/Y.1322 y 15.6.2/G.709/Y.1331. Los bytes 8 a 14 de la fila 1 se ponen a todos ceros.

Aleatorizador: La función aleatorizará la señal utilizando un aleatorizador con autosincronismo con polinomio generador $x^{43}+1$, como se define en 10.7/G.707/Y.1322.

Correspondencia, justificación de frecuencia y adaptación de velocidad binaria:

La función proporcionará un proceso de almacenamiento elástico (memoria tampón) para la señal cliente ODUk. La señal de datos ODUk_CI_D se escribirá en la memoria tampón bajo el control del correspondiente reloj de entrada. Los datos se leerán de la memoria tampón y se introducirán en los bytes D y S de la trama C4-X bajo el control del reloj S4-X y las decisiones de justificación definidas en 10.7.1/G.707/Y.1322 para la correspondencia con ODU1, y las definidas en 10.7.2/G.707/Y.1322 para la correspondencia con ODU2.

Habrá de obtenerse una decisión de justificación para cada subbloque. Cada decisión de justificación conllevará su correspondiente acción negativa o de no justificación. Al ejecutarse una acción de justificación negativa, se leerá de la memoria tampón un byte de datos adicional. Los datos ODUk se escribirán en el byte S. Si no se realizan acciones de justificación, no se escribirán datos ODUk en el byte S.

Las decisiones de justificación determinan el error de fase que introduce la función.

Tamaño de la memoria tampón: En presencia de fluctuación de fase, como se especifica en la Rec. UIT-T G.8251 y una frecuencia en la gama $239/(239 - k) * 4^{(k-1)} * 2 488 320 \text{ kHz} \pm 20 \text{ ppm}$, este procedimiento de correspondencia no introducirá ningún error. La histéresis de memoria tampón máxima y, por consiguiente, el error de fase máximo introducido, serán los que aparecen en el cuadro 12-17.

Cuadro 12-17/G.783 – Histéresis de memoria tampón máxima

Correspondencia	Histéresis de memoria tampón máxima
ODU1 → VC-4-17v	1 byte
ODU2 → VC-4-68v	1 byte

C: La función generará los bits de control de justificación que se definen en 10.7.1/G.707/Y.1322 para ODU1 y 10.7.2/G.707/Y.1322 para ODU2, de acuerdo con la decisión de justificación (negativa, ninguna) del subbloque. Insertará la información de control de justificación en el bit 8 de los cinco bytes J del subbloque en que se ejecuta la justificación. Los bits restantes (R) del byte J se pondrán a todos 0. Los cinco bytes J del subbloque tendrán el mismo valor.

C2: La función insertará el código "0010 0000" (correspondencia asíncrona de ODU) en la posición de byte C2 de la tara VC-4-X como se define en 9.3.1.3/G.707/Y.1322.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defecto

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.6.2 Función de sumidero de adaptación VC-4-X a ODUk (S4-X/ODUk_A_Sk) (X=17, k=1 o X=68, k=2)

La función S4-X/ODUk_A_Sk extrae la tara S4-X específica de la cabida útil (C2) y supervisa la recepción del tipo de cabida útil correcto. Deshace la correspondencia de las señales ODUk y C4-X utilizando la información de control de justificación (tara C). Desaleatoriza la ODUk y determina la estructura de la trama y la multitrama.

El flujo de información y el procesamiento de la función S4-X/ODUk_A_Sk se define en las figuras 12-32 y 12-33.

Símbolo

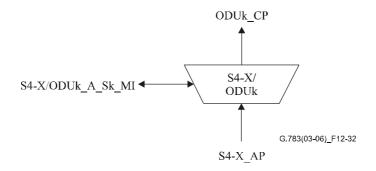


Figura 12-32/G.783 – Función S4-X/ODUk_A_Sk

Interfaces

Cuadro 12-18/G.783 – Señales de entrada y salida S4-X/ODUk_A_Sk

Entradas	Salidas
S4-X_AP:	ODUk_CP:
S4-X_AI_ClocK S4-X_AI_Data S4-X_AI_FrameStart S4-X_AI_TSF	ODUk_CI_CK ODUk_CI_D ODUk_CI_FS ODUk_CI_MFS ODUk_CI_SSF
S4-X/ODUk_A_Sk_MP:	S4-X/ODUk_A_Sk_MP:
S4-X/ODUk_A_Sk_MI_Active	S4-X/ODUk_A_Sk_MI_cPLM S4-X/ODUk_A_Sk_MI_AcSL S4-X/ODUk_A_Sk_MI_cLOFLOM

Procesos

Activación:

La función S4-X/ODUk_A_Sk alcanzará el punto de acceso cuando esté activada (MI_Active es verdadero). En cualquier otro caso, no alcanzará el punto de acceso.

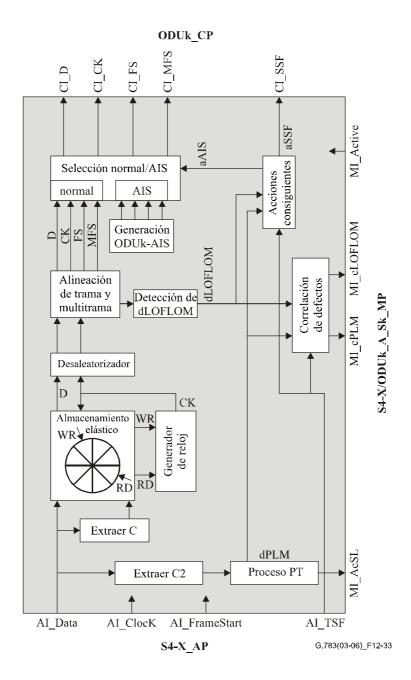


Figura 12-33/G.783 – Procesos S4-X/ODUk_A_Sk

Procesos

C2/PT: La función extraerá la etiqueta de señal de la tara C2 de VC-4-X, como se define en 6.2.4.2/G.806. El valor de etiqueta de señal aceptado está disponible en el MP (MI_AcSL) y se utiliza para la detección de defectos PLM.

C: La función interpretará la información de control de justificación C del bit 8 de los bytes J como se define en 10.7.1/G.707/Y.1322 para ODU1 y 10.7.2/G.707/Y.1322 para ODU2, con el objetivo de determinar la acción de justificación (negativa, ninguna) para el subbloque. Se utiliza una decisión por mayoría de 3 de 5. Se ignoran los bits R de los bytes J.

Descorrespondencia, generación de reloj CBR: La función proporcionará un proceso de memoria elástica (memoria tampón). Los datos ODUk se escribirán en la memoria tampón de los bytes D y S en la trama C-4-X, como se define en 10.7.1/G.707/Y.1322 para ODU1 y 10.7.2/G.707/Y.1322 para ODU2. La extracción de información de los bytes S de cada subbloque se efectuará bajo control de la información de control de justificación de dicho subbloque. Los datos ODUk (CI_D) se leerán de la memoria tampón bajo control del reloj ODUk (CI_CK).

Tras una acción de justificación negativa, se escribirá una vez un byte de datos adicional en la memoria tampón. Los datos ODUk se leerán del byte S. Si no se realizan acciones de justificación, no se leerán datos ODUk del byte S.

Proceso de alisado y limitación de la fluctuación de fase: La función proporcionará procesos de alisado de reloj y de almacenamiento elástico (memoria tampón). Se escribirá la señal de datos $239/(239 - k) * 4^{(k-1)} * 2 488 320 \text{ kbit/s } (k = 1,2)$ en la memoria tampón bajo el control del reloj de entrada (distribuido en intervalos) asociado (con una exactitud de frecuencia de $\pm 4,6$ ppm). La señal de datos se leerá de la memoria tampón bajo control de un reloj alisado (uniformemente espaciado) $239/(239 - k) * 4^{(k-1)} * 2 488 320 \text{ kbit/s} \pm 20 \text{ ppm}$ (la velocidad se determina por la señal ODUk a la entrada de la S4-X/ODUk_A_So distante). El desincronizador tiene una anchura de banda de cerca de 5 Hz.

Se aplican los parámetros de reloj, incluidos los requisitos de fluctuación de fase y de fluctuación lenta de fase, como se define en el anexo A/G.8251 (reloj ODCp).

Tamaño de la memoria tampón: En presencia de fluctuación de fase, como se especifica en la Rec. UIT-T G.8251, y de una frecuencia dentro de la gama $239/(239 - k) * 4^{(k-1)} * 2 488 320 kbit/s <math>\pm 20$ ppm, este proceso de desincronización no introducirá ningún error.

Tras un escalón de frecuencia de la señal transportada de 239/(239 – k) * 4^(k-1) * 2 488 320 kbit/s (por ejemplo, debido a la recepción de ODUk_CI procedente de una nueva ODUk_TT_So en el extremo distante o la supresión de una señal AIS ODU con un desplazamiento de frecuencia) habrá un tiempo máximo de recuperación de 1 ms, transcurrido el cual este proceso no generará ningún error en los bits.

Desaleatorizador: La función desaleatorizará la señal ODUk con un desaleatorizador con autosincronismo de polinomio $x^{43}+1$, como se define en 10.7/G.707/Y.1322.

Alineación de trama y multitrama: La función realizará la alineación de trama y multitrama que se describe en 8.2.3/G.798.

ODUk-AIS: La función generará las señales ODUk-AIS como se define en 16.5.1/G.709/Y.1331. El reloj, el inicio de la trama y el inicio de la multitrama serán independientes del reloj entrante. El reloj debe estar dentro de la gama $239/(239 - k) * 4^{(k-1)} * 2 488 320 \text{ kHz} \pm 20 \text{ ppm}$. Se aplican los requisitos de fluctuación de fase y fluctuación lenta de fase que se definen en el anexo A/G.8251 (reloj ODCa).

Selector: La señal normal puede sustituirse por la señal ODUk-AIS. Se selecciona ODUk-AIS si aAIS es verdadero.

Defectos

La función detectará dPLM y dLOFLOM.

dPLM: Véase 6.2.4.2/G.806. El tipo de cabida útil previsto es "0010 0000" (correspondencia asíncrona de ODU), como se define en 9.3.1.3/G.707/Y.1322.

dLOFLOM: Véase 6.2.5.3/G.798.

Acciones consiguientes

aSSF ← AI TSF o dPLM o dLOFLOM o (no MI Active)

aAIS ← AI TSF o dPLM o dLOFLOM o (no MI Active)

Tras la declaración de aAIS, la función emitirá un patrón/señal de TODO UNOS dentro de las dos tramas siguientes. Tras la eliminación de aAIS, el patrón/señal TODO UNOS será suprimido dentro de las dos tramas siguientes y se emitirán datos normales. El reloj AIS, el inicio de la trama y de la multitrama serán independientes del reloj entrante, el inicio de trama y el inicio de multitrama

entrante. El reloj AIS debe estar dentro de la gama $239/(239 - k) * 4^{(k-1)} * 2 488 320 \text{ kHz} \pm 20 \text{ ppm}$. Se aplican los requisitos de fluctuación de fase y fluctuación lenta de fase que se definen en el anexo A/G.8251 (reloj ODCa).

Correlaciones de defectos

 $cPLM \leftarrow dPLM y (no AI TSF)$

 $cLOFLOM \leftarrow dLOFLOM y (no dPLM) y (no AI TSF)$

Supervisión de la calidad de funcionamiento

Ninguna.

12.3.7 Función de adaptación de VC-n a señal del cliente (Sn/<client>_A)

En la cláusula 8.5/G.806 [13] y en la Rec. UIT-T G.7041/Y.1303 [26] se describe esta función de adaptación utilizando correspondencias del GFP.

12.4 Funciones de subcapa

12.4.1 Funciones de protección de camino de capa VC-n

El mecanismo de protección de camino VC se describe en la Rec. UIT-T G.841.

La función SnP_C proporciona protección del camino contra defectos relacionados con el canal en un camino desde una fuente de terminación de camino a un sumidero de terminación de camino. En las figuras 12-34 y 12-35 se presenta la subcapa de protección de camino. Obsérvese que la función Sn/User_A puede estar ausente, o puede estar conectada antes o después de las funciones de protección SnP_C. Cuando está conectada antes de SnP_C (véase la figura 12-34) el transporte del canal de usuario no está protegido. Cuando está conectada después de SnP_C (véase la figura 12-35), el transporte del canal de usuario está protegido. La protección se efectúa en la función de conexión de subcapa (SnP_C).



Figura 12-34/G.783 – Funciones de subcapa de protección de camino de capa VC-n (canal de usuario no protegido)

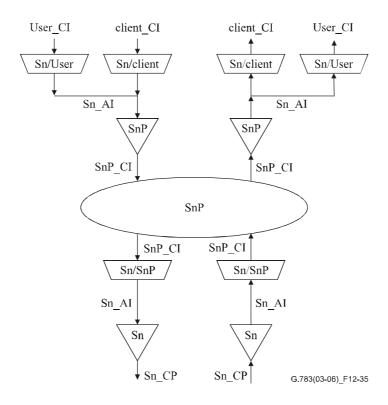


Figura 12-35/G.783 – Funciones de subcapa de protección de camino de capa VC-n (canal de usuario protegido)

Las funciones SnP_C en ambos extremos funcionan de la misma manera, supervisando señales VC-n (n = (3, 3-X, 4, o 4-X)) en búsqueda de defectos, evaluando el estado del sistema habida cuenta las prioridades de condiciones de defecto y de las peticiones de conmutación distante externas, y seleccionando la señal del camino adecuado. Las dos funciones SnP_C pueden comunicarse entre sí mediante un protocolo basado en bits, definido para el octeto K3 de información característica SnP_C en la POH del trayecto de protección. Este protocolo se describe en la Rec. UIT-T G.841.

En la figura 12-36 se explica la función de protección de VC-n. Los trayectos de trabajo y de protección se muestran en las figuras 12-37 a 12-40.

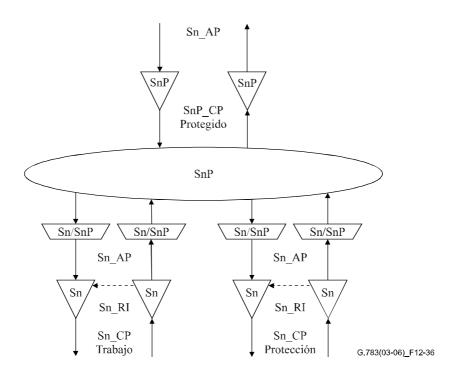
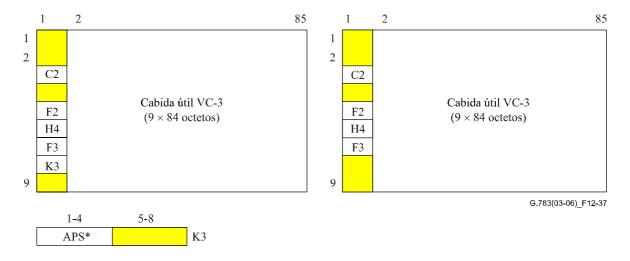
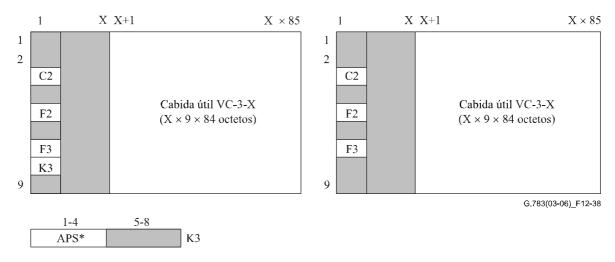




Figura 12-36/G.783 – Funciones atómicas de protección de camino lineal de VC-n

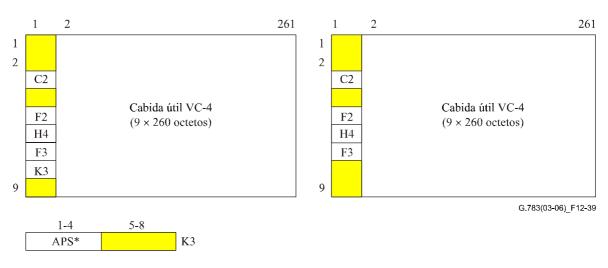

NOTA – La presencia/ausencia de F2/F3 en S3P_CI_D depende de la ubicación de la función S3/User_A.

Figura 12-37/G.783 – S3P_AI_D (izquierda) y S3P_CI_D (derecha)

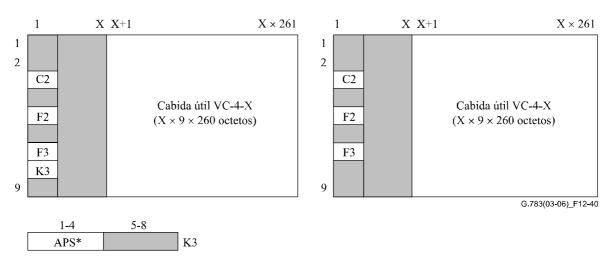

NOTA – La presencia/ausencia de F2/F3 en S3-XP_CI_D depende de la ubicación de la función S3-X/User_A.

Figura 12-38/G.783 – S3-XP_AI_D (izquierda) y S3-XP_CI_D (derecha)

NOTA – La presencia/ausencia de F2/F3 en S4P_CI_D depende de la ubicación de la función S4/User_A.

Figura 12-39/G.783 – S4P_AI_D (izquierda) y S4P CI D (derecha)

NOTA – La presencia/ausencia de F2/F3 en S4-XP_CI_D depende de la ubicación de la función S4-X/User_A.

Figura 12-40/G.783 – S4-XP_AI_D (izquierda) y S4-XP_CI_D (derecha)

12.4.1.1 Función de conexión de protección de camino de capa VC-n SnP C

La función SnP_C recibe parámetros de control y peticiones de conmutación externas en el punto de referencia SnP_C_MP desde la función de gestión de equipo síncrono y presenta a la salida indicadores de estado en el SnP_C_MP destinados a la función de gestión de equipo síncrono, como resultado de instrucciones de conmutación descritas en la Rec. UIT-T G.841.

Símbolo

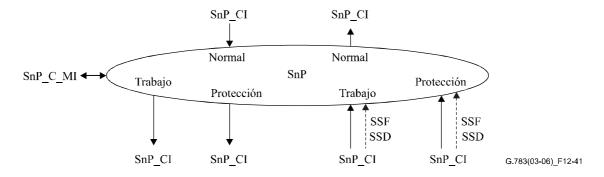


Figura 12-41/G.783 – Símbolo de SnP C

Interfaces

Cuadro 12-19/G.783 – Señales de entrada y de salida SnP_C

Entradas	Salidas
Para puntos de conexión W y P:	Para puntos de conexión W y P:
Sn_AI_Data	Sn_AI_Data
Sn_AI_Clock	Sn_AI_Clock
Sn_AI_FrameStart	Sn_AI_FrameSstart
Sn_AI_SSF	
Sn_AI_SSD	Para punto de conexión N:
	Sn_AI_Data
Para punto de conexión N:	Sn_AI_Clock
Sn_AI_Data	Sn_AI_FrameStart
Sn_AI_Clock	Sn_AI_SSF
Sn_AI_FrameStart	
	Para punto de conexión P:
Para punto de conexión P:	Sn_AI_APS
Sn_AI_APS	
SnP_C_MI_OPERType	
SnP_C_MI_WTRTime	
SnP_C_MI_HOTime	
SnP_C_MI_EXTCMD	
NOTA – Las señales de informe de estado de protección quedan en estudio.	

Procesos

Sentido hacia la fuente

Los datos en el SnP_CP están constituidos por una señal de camino, temporizada desde el punto de referencia Sn TP con octetos POH de capa Sn no determinados.

Para una arquitectura de 1 + 1, la señal recibida en el Sn_CP de la función de terminación de camino de protección SnP_TT_So está conectada en puente permanentemente en el Sn_AP con ambas funciones Sn_TT, de trabajo y de protección.

La información APS generada de acuerdo con las reglas de la Rec. UIT-T G.841 se presenta en el SnP_CP al camino de protección. Esta información APS puede ser presentada también a las funciones de terminación de camino de protección de caminos de trabajo (SnP TT So).

Sentido hacia el sumidero

Las señales (datos) de camino entramadas, SnP_CI, cuyos octetos POH de camino han sido ya recuperados por SnP_TT_Sk, se presentan en el SnP_CP junto con las referencias de temporización entrantes. En el SnP_CP se reciben también las condiciones de defecto SSF y SSD provenientes de todas las funciones SnP_TT_Sk.

La información APS recuperada de la función de adaptación del camino de protección (Sn/SnP_A_Sk) se presenta en el SnP_CP. Las funciones de adaptación del camino de trabajo pueden presentar también esta información APS al SnP_C, que debe ser capaz de pasar por alto esta información recibida de las funciones de adaptación de trabajo.

En condiciones normales, SnP_C pasa los datos, la temporización y el fallo de señal recibidos de las funciones Sn/SnP_A_Sk de trabajo a la SnP_TT_Sk correspondiente en el SnP_TCP. Los datos, la temporización y el fallo de la señal del trayecto de protección no son reenviados.

En condiciones de avería en el trayecto de trabajo, SnP_C pasa los datos, temporización y fallo de la señal de la función Sn/SnP_A_Sk de protección a la correspondiente SnP_TT_Sk en el SnP_CP. La señal recibida del Sn/SnP_A_Sk de trabajo no se reenvía.

Criterios de iniciación de conmutación

La conmutación de protección automática se basa en las condiciones TSF y TSD de los trayectos de trabajo y de protección. La detección de estas condiciones se describe en 12.2.1.2.

La conmutación de protección puede ser iniciada también por instrucciones de conmutación recibidas a través de la función de gestión de equipo síncrono. Véase la Rec. UIT-T G.841.

Tiempo de conmutación

Véase la Rec. UIT-T G.841.

Conmutación de restablecimiento

La conmutación de restablecimiento es una función relacionada con la operación inversa, cuando el trayecto de trabajo se ha recuperado del defecto. No es aplicable a la protección de camino VC que sólo soportar funcionamiento no reversible. En la Rec. UIT-T G.841 figura la descripción de la conmutación de protección unidireccional 1 + 1 reversible.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.1.2 Terminación de camino de protección de camino de capa VC-n SnP TT

12.4.1.2.1 Fuente de terminación de camino de protección de camino de capa VC-n SnP_TT_So

Símbolo

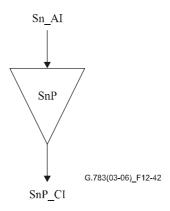


Figura 12-42/G.783 – Símbolo de SnP_TT_So

Interfaces

Cuadro 12-20/G.783 – Señales de entrada y de salida SnP TT So

Entradas	Salidas
Sn_AI_Data	SnP_CI_Data
Sn_AI_Clock	SnP_CI_Clock
Sn_AI_FrameStart	SnP_CI_FrameStart

Procesos

En la SnP_TT_So no se requiere procesamiento de información, pues la Sn_AI a su salida es idéntica a la SnP_CI.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.1.2.2 Sumidero de terminación de camino de protección de camino de capa VC-n SnP_TT_Sk

Símbolo

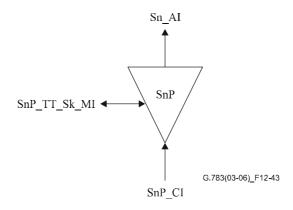


Figura 12-43/G.783 – Símbolo de SnP_TT_Sk

Interfaces

Cuadro 12-21/G.783 – Señales de entrada y de salida SnP_TT_Sk

Entradas	Salidas
SnP CI Data	SnP AI Data
SnP CI Clock	SnP AI Clock
SnP_CI_FrameStart	SnP_AI_FrameStart
SnP_CI_SSF	SnP_AI_TSF
SnP_TT_Sk_MI_SSF_Reported	SnP_TT_Sk_MI_cSSF

Procesos

La función SnP_TT_Sk informa, como parte de la capa Sn, el estado del camino Sn protegido. Si todos los caminos están indisponibles, la SnP_TT_Sk informa la condición de fallo de señal del camino protegido.

Defectos

Ninguno.

Acciones consiguientes

aTSF \leftarrow CI SSF

Correlaciones de defectos

 $cSSF \ \leftarrow \ CI_SSF \ y \ SSF_Reported$

Supervisión de la calidad de funcionamiento

12.4.1.3 Adaptación de camino VC-n a capa de protección de camino VC-n Sn/SnP_A

12.4.1.3.1 Fuente de adaptación de camino VC-n a capa de protección de camino VC-n Sn/SnP_A_So

Símbolo

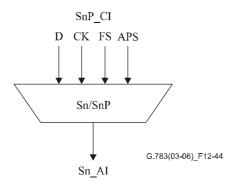


Figura 12-44/G.783 – Símbolo de Sn/SnP A So

Interfaces

Cuadro 12-22/G.783 – Señales de entrada y de salida Sn/SnP_A_So

Entradas	Salidas
Sn_AI_Data Sn_AI_Clock Sn_AI_FrameStart Sn_AI_APS	Sn_AI_Data Sn_AI_Clock Sn_AI_FrameStart

Procesos

La función multiplexará la señal APS de Sn y la señal de datos de Sn para formar la Sn AP.

K3[1-4]: La inserción de la señal APS queda en estudio. Este proceso sólo se requiere para la protección de camino.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.1.3.2 Sumidero de adaptación de camino VC-n a capa de protección de camino VC-n Sn/SnP_A_Sk

Símbolo

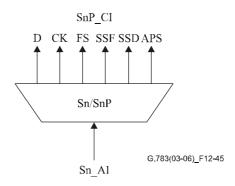


Figura 12-45/G.783 – Símbolo de Sn/SnP_A_Sk

Interfaces

Cuadro 12-23/G.783 – Señales de entrada y de salida Sn/SnP_A_Sk

Entradas	Salidas
Sn_AI_Data	Sn_AI_Data
Sn_AI_Clock	Sn_AI_Clock
Sn_AI_FrameStart	Sn_AI_FrameStart
Sn_AI_TSF	Sn_AI_SSF
Sn_AI_TSD	Sn_AI_SSD
	Sn_AI_APS (sólo para señal de
	protección)

Procesos

La función extraerá la señal SnP CI D de la señal SnP AI D y la presentará a la salida.

K3[1-4]: La extracción y el tratamiento de la persistencia de la señal APS queda en estudio. Este proceso sólo se requiere para el camino de protección.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

aSSD \leftarrow AI TSD

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.2 Funciones de subcapa de conexión en cascada, opción 2

En la Rec. UIT-T G.707/Y.1322 se definen dos opciones para la supervisión de la conexión en cascada de orden superior, designadas por "opción 1" y "opción 2". Las funciones definidas en esta cláusula soportan la opción 2.

NOTA – El servicio podría resultar afectado cuando se activa TCM en una conexión existente.

12.4.2.1 Terminación de camino de conexión en cascada VC-n SnD TT

Esta función actúa como una fuente y un sumidero para la tara de conexión en cascada VC-n (TCOH, *tandem connection overhead*) descrita en el anexo D/G.707/Y.1322 (opción 2 del protocolo de supervisión de conexión en cascada).

12.4.2.1.1 Fuente de terminación de camino de conexión en cascada VC-n SnD_TT_So Símbolo

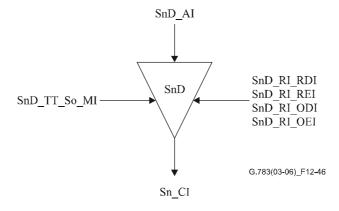


Figura 12-46/G.783 - Símbolo de SnD TT So

Interfaces

Cuadro 12-24/G.783 – Señales de entrada y de salida SnD_TT_So

Entradas	Salidas
SnD AI Data	Sn CI Data
SnD AI Clock	Sn CI Clock
SnD_AI_FrameStart	Sn_CI_FrameStart
SnD_AI_SF	
SnD_RI_RDI	
SnD_RI_REI	
SnD_RI_ODI	
SnD_RI_OEI	
SnD_TT_So_MI_TxTI	

Procesos

N1[1-4]: Véase 8.3.2.

N1[8][73]: La función insertará el código RDI de TC. Tras la declaración/desaparición de aRDI en la función de sumidero de terminación de camino, la función de fuente de terminación de camino habrá insertado/suprimido el código RDI dentro de 20 ms.

NOTA - N1[x][y] designa el bit x (x = 7, 8) del octeto N1 en la trama y (y = 1..76) de la multitrama de 76 tramas.

N1[5]: La función insertará el valor RI_REI en el bit REI. Al detectarse un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en el bit REI dentro de 20 ms.

N1[7][74]: La función insertará el código ODI. Al declararse/desaparecer aODI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido el código ODI dentro de 20 ms.

N1[6]: La función insertará el valor RI_OEI en el bit OEI. Tras la detección de un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en el bit OEI dentro de 20 ms.

N1[7-8]: La función insertará lo siguiente en el canal N1[7-8] de múltiples tramas:

- la señal de alineación de trama (FAS) "1111 1111 1110" en bits FAS en las tramas 1 a 8;
- el identificador de traza de TC, recibido a través del punto de referencia SnD_TT_So_MP (MI_TxTI), en los bits de ID de traza de TC en las tramas 9 a 72;
- las señales RDI (N1[8][73]) y ODI (N1[7][74]); y
- todos ceros en los seis bits reservados en las tramas 73 a 76.

B3: La función corregirá la BIP-8 de VC-n (en B3) de acuerdo con la regla formulada en D.4/G.707/Y.1322, y como se especifica en 8.4/G.806.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.4.2.1.2 Sumidero de terminación de camino de conexión en cascada VC-n SnD TT Sk

Símbolo

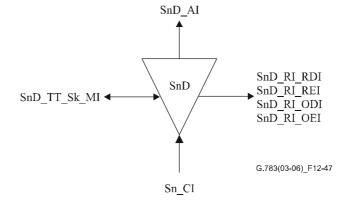


Figura 12-47/G.783 – Símbolo de SnD TT Sk

Interfaces

Cuadro 12-25/G.783 – Señales de entrada y de salida SnD_TT_Sk

Entradas	Salidas
Sn_CI_Data Sn_CI_Clock Sn_CI_FrameStart Sn_CI_SSF SnD_TT_Sk_MI_ExTI SnD_TT_Sk_MI_RDI_Reported SnD_TT_Sk_MI_ODI_Reported SnD_TT_Sk_MI_SSF_Reported SnD_TT_Sk_MI_AIS_Reported SnD_TT_Sk_MI_TIMdis SnD_TT_Sk_MI_DEGM SnD_TT_Sk_MI_DEGTHR SnD_TT_Sk_MI_Isecond SnD_TT_Sk_MI_TPmode	SnD_AI_Data SnD_AI_Clock SnD_AI_FrameStart SnD_AI_TSF SnD_AI_TSD SnD_AI_OSF SnD_RI_RDI SnD_RI_RDI SnD_RI_ODI SnD_RI_OEI SnD_TT_Sk_MI_cLTC SnD_TT_Sk_MI_cTIM SnD_TT_Sk_MI_cUNEQ SnD_TT_Sk_MI_cDEG SnD_TT_Sk_MI_cDEG SnD_TT_Sk_MI_cODI SnD_TT_Sk_MI_cSF SnD_TT_Sk_MI_CSF SnD_TT_Sk_MI_CINCAIS SnD_TT_Sk_MI_ACTI SnD_TT_Sk_MI_PN_EBC SnD_TT_Sk_MI_PN_EBC SnD_TT_Sk_MI_PN_DS SnD_TT_Sk_MI_PN_DS SnD_TT_Sk_MI_PN_DS SnD_TT_Sk_MI_PN_DS
	SnD_TT_Sk_MI_pON_EBC SnD_TT_Sk_MI_pOF_EBC
	SnD_TT_Sk_MI_pON_DS SnD_TT_Sk_MI_pOF_DS

Procesos

Violaciones de TC EDC: Véase 8.3.1.

N1[1-4]: La función extraerá el código de errores de entrada (IEC, *incoming error code*) y aceptará el código recibido sin ulterior procesamiento.

N1[7-8][9-72]: El identificador de traza de camino recibido se recuperará de la tara de identificador de traza de camino de conexión en cascada. El valor aceptado del identificador de traza TC está disponible también en el SnD TT Sk MP.

N1[1-4]: La función extraerá el código AIS de entrada.

N1[5], N1[8][73]: Se extraerá la información transportada en los bits REI, RDI del octeto N1 para poder efectuar el mantenimiento en un solo extremo de un camino de conexión en cascada bidireccional. REI se utilizará para supervisar la característica de error en el sentido opuesto de transmisión y RDI se utilizará para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto distante, y "0" indica el estado de funcionamiento normal.

N1[6], N1[7][74]: Se extraerá la información transportada en los bits OEI, ODI del octeto N1 para poder efectuar el mantenimiento unilateral (intermedio) del VC-n que sale del camino de conexión en cascada. OEI se utilizará para supervisar la característica de error del otro sentido de transmisión,

y ODI para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto saliente, y un "0" indica el estado de funcionamiento normal.

N1[7-8]: Alineación de multitrama: véase 8.2.4.

N1: La función terminará el canal N1 insertando un esquema todos CEROS.

B3: La función compensará la BIP-8 del VC-n en el octeto B3 de acuerdo con el algoritmo definido en el sentido hacia la fuente.

Defectos

La función detectará los defectos dUNEQ, dLTC, dTIM, dDEG, dRDI, dODI, dIncAIS de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

aAIS ← dUNEQ o dTIM o dLTC

aTSF ← CI SSF o dUNEQ o dTIM o dLTC

 $aTSD \leftarrow dDEG$

aRDI ← CI SSF o dUNEQ o dTIM o dLTC

aREI \leftarrow N_B (bloque TC-n con errores)

aODI ← CI SSF o dUNEQ o dTIM o dIncAIS o dLTC

aOEI ← ON B (bloque VC-n saliente con errores)

aOSF ← CI SSF o dUNEQ o dTIM o dLTC o IncAIS

La función insertará la señal todos UNOS (AIS) dentro de 250 µs después de la generación de la petición de AIS y dejará de insertarla dentro de 250 µs después que se ha suprimido la petición de AIS.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF \leftarrow CI SSF y SSF Reported y MON
```

cIncAIS ← dIncAIS y (no CI SSF) y (no dLTC) y (no dTIM) y AIS Reported y MON

 $cUNEQ \leftarrow dUNEQ y MON$

 $cLTC \leftarrow (no dUNEQ) y dLTC y MON y (no CI SSF)$

 $cTIM \leftarrow (no dUNEQ) y (no dLTC) y dTIM y MON$

 $cDEG \leftarrow (no dTIM) y (no dLTC) y dDEG y MON$

cRDI ← (no dUNEQ) y (no dTIM) y (no dLTC) y dRDI y RDI Reported y MON

cODI ← (no dUNEQ) y (no dTIM) y (no dLTC) y dODI y ODI Reported y MON

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

 $\begin{array}{lll} pN_DS & \leftarrow & aTSF \ o \ dEQ \\ pF_DS & \leftarrow & dRDI \\ pN_EBC & \leftarrow & \sum nN_B \\ pF_EBC & \leftarrow & \sum nF_B \\ pON_DS & \leftarrow & aODI \ o \ dEQ \\ pOF_DS & \leftarrow & dODI \\ pON_EBC & \leftarrow & \sum nON_B \end{array}$

pOF EBC $\leftarrow \sum nOF B$

12.4.2.2 Monitor no intrusivo de conexión en cascada VC-n SnDm_TT_Sk

Esta función puede utilizarse para realizar lo siguiente:

- 1) mantenimiento unilateral de la TC supervisando en un nodo intermedio, mediante el empleo de información distante (RDI, REI);
- 2) ayuda en localización de averías dentro del camino de TC, supervisando defectos del extremo cercano;
- 3) supervisión de la calidad de funcionamiento de VC en el punto de salida de la TC (salvo los defectos de conectividad antes de la TC) utilizando información saliente distante (ODI, OEI);
- 4) aplicación de la función de monitor no intrusivo dentro de la protección de SNC/S.

Esta función actúa como un monitor no intrusivo para la tara de conexión en cascada VC-n (TCOH) descrita en el anexo D/G.707/Y.1322 (opción 2 del protocolo de supervisión de conexión en cascada).

Símbolo

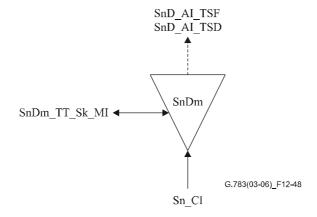


Figura 12-48/G.783 – Símbolo de SnDm_TT_Sk

Interfaces

Cuadro 12-26/G.783 – Señales de entrada y de salida SnDm TT Sk

Entradas	Salidas
Sn CI Data	SnD AI TSF
Sn_CI_Clock	SnD_AI_TSD
Sn_CI_FrameStart	SnDm_TT_Sk_MI_cLTC
Sn_CI_SSF	SnDm_TT_Sk_MI_cTIM
SnDm_TT_Sk_MI_ExTI	SnDm_TT_Sk_MI_cUNEQ
SnDm_TT_Sk_MI_RDI_Reported	SnDm_TT_Sk_MI_cDEG
SnDm_TT_Sk_MI_ODI_Reported	SnDm_TT_Sk_MI_cRDI
SnDm_TT_Sk_MI_SSF_Reported	SnDm_TT_Sk_MI_cODI
SnDm_TT_Sk_MI_AIS_Reported	SnDm_TT_Sk_MI_cIncAIS
SnDm_TT_Sk_MI_TIMdis	SnDm_TT_Sk_MI_cSSF
SnDm_TT_Sk_MI_DEGM	SnDm_TT_Sk_MI_AcTI
SnDm_TT_Sk_MI_DEGTHR	SnDm_TT_Sk_MI_pN_EBC
SnDm_TT_Sk_MI_1second	SnDm_TT_Sk_MI_pF_EBC
SnDm_TT_SK_MI_TPmode	SnDm_TT_Sk_MI_pN_DS
	SnDm_TT_Sk_MI_pF_DS
	SnDm_TT_Sk_MI_pON_EBC
	SnDm_TT_Sk_MI_pON_DS
	SnDm_TT_Sk_MI_pOF_EBC
	SnDm_TT_Sk_MI_pOF_DS

Procesos

Violaciones de TC EDC: Véase 8.3.1.

N1[1-4]: La función extraerá el código de errores de entrada (IEC) y aceptará el código recibido sin ulterior procesamiento.

N1[7-8][9-72]: El identificador de traza de camino recibido se recuperará de la tara de identificador de traza de camino de conexión en cascada. El valor aceptado del identificador de traza TC está disponible también en el SnDm TT Sk MP.

N1[1-4]: La función extraerá el código AIS de entrada.

N1[5], N1[8][73]: Se extraerá la información transportada en los bits REI, RDI del octeto N1 para poder efectuar el mantenimiento unilateral de un camino de conexión en cascada bidireccional. REI se utilizará para supervisar la característica de error en el sentido opuesto de transmisión y RDI se utilizará para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto distante, y un "0" indica el estado de funcionamiento normal.

N1[6], N1[7][74]: Se extraerá la información transportada en los bits OEI, ODI del octeto N1 para poder efectuar el mantenimiento unilateral (intermedio) del VC que sale del camino de conexión en cascada. OEI (nOF_B) se utilizará para supervisar la característica de error en el sentido opuesto de transmisión, y ODI para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto saliente, y un "0" indica el estado de funcionamiento normal.

N1[7-8]: Alineación de multitrama: véase 8.2.4.

Defectos

La función detectará los defectos dUNEQ, dLTC, dTIM, dDEG, dRDI, dODI, dIncAIS de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aTSF \leftarrow CI_SSF o dUNEQ o dTIM o dLTC aTSD \leftarrow dDEG
```

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF
              CI SSF y SSF Reported y MON
cUNEQ ←
              dUNEQ y MON
cLTC
              (no dUNEQ) y dLTC y MON y (no CI SSF)
         \leftarrow
              dIncAIS y (no CI SSF) y (no dLTC) y (no dTIM) y AIS Reported y MON
cIncAIS ←
cTIM
              (no dUNEQ) y (no dLTC) y dTIM y MON
         \leftarrow
cDEG
              (no dTIM) y (no dLTC) y dDEG y MON
         \leftarrow
              (no dUNEQ) y (no dTIM) y (no dLTC) y dRDI y RDI Reported y MON
cRDI
cODI
              (no dUNEQ) y (no dTIM) y (no dLTC) y dODI y ODI Reported y MON
```

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

```
\begin{array}{lll} pN\_DS & \leftarrow \ aTSF \ o \ dEQ \\ pF\_DS & \leftarrow \ dRDI \\ pN\_EBC & \leftarrow \ \sum \ nN\_B \\ pF\_EBC & \leftarrow \ \sum \ nF\_B \\ pON\_DS & \leftarrow \ CI\_SSF \ o \ dUNEQ \ o \ dTIM \ o \ dIncAIS \ o \ dLTC \ o \ dEQ \\ pON\_EBC & \leftarrow \ \sum \ nON\_B \\ pOF\_DS & \leftarrow \ dODI \\ pOF\_EBC & \leftarrow \ \sum \ nOF\_B \end{array}
```

12.4.2.3 Adaptación de conexión en cascada VC-n a VC-n SnD/Sn A

Esta función actúa como una fuente y un sumidero para la adaptación de capa Sn a subcapa SnD. Esta función es aplicable a redes que soportan la opción 2 del protocolo de supervisión de conexión en cascada VC-n descrita en el anexo D/G.707/Y.1322.

12.4.2.3.1 Fuente de adaptación de conexión en cascada VC-n a VC-n SnD/Sn_A_So

Símbolo

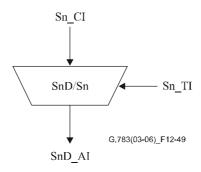


Figura 12-49/G.783 – Símbolo de SnD/Sn_A_So

Interfaces

Cuadro 12-27/G.783 – Señales de entrada y de salida SnD/Sn A So

Entradas	Salidas
Sn CI Data	SnD AI Data
Sn_CI_Clock	SnD_AI_Clock
Sn_CI_FrameStart	SnD_AI_FrameStart
Sn_CI_SSF	SnD_AI_SF
Sn_TI_CK	

Procesos

NOTA 1 – La función no tiene medios para verificar la existencia de una conexión en cascada dentro de la señal entrante. No están soportadas conexiones en cascada anidadas.

La función sustituirá la señal de comienzo de trama entrante por una señal generada localmente (es decir, paso a "régimen libre") si se recibe un VC todos UNOS (AIS) (es decir, esta función sustituye un VC entrante todos UNOS por una señal VC-AIS).

NOTA 2 – Esta sustitución de la señal de comienzo de trama de entrada (no válida) provoca la generación de un puntero válido en la función MSn/Sn_A.

Defectos

Ninguno.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aSSF
$$\leftarrow$$
 CI SSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.2.3.2 Sumidero de adaptación de conexión en cascada VC-n a VC-n SnD/Sn_A_Sk

Símbolo

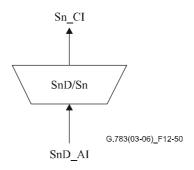


Figura 12-50/G.783 – Símbolo de SnD/Sn_A_Sk

Interfaces

Cuadro 12-28/G.783 – Señales de entrada y de salida SnD/Sn A Sk

Entradas	Salidas
SnD_AI_Data SnD_AI_Clock SnD_AI_FrameStart SnD_AI_OSF	Sn_CI_Data Sn_CI_Clock Sn_CI_FrameStart Sn_CI_SSF

Procesos

La función restablecerá la condición de comienzo de trama no válida si existía a la entrada de la conexión en cascada.

NOTA 1 – Además, la condición de comienzo de trama no válida se activa cuando se produce una condición de defecto de conectividad de conexión en cascada que provoca la inserción de todos UNOS (AIS) en SnD TT.

Defectos

Ninguno.

Acciones consiguientes

Esta función ejecutará las siguientes acciones consiguientes:

 $AIS \leftarrow AI OSF$

aSSF ← AI OSF

NOTA 2 – CI SSF = verdadero provocará la generación de AU-AIS por la función MSn/Sn A.

La función insertará la señal todos UNOS (AIS) dentro de 250 µs después que se ha suprimido la petición de AIS.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.3 Funciones de subcapa de conexión en cascada, opción 1

En la Rec. UIT-T G.707/Y.1322 se definen actualmente dos opciones para la supervisión de la conexión en cascada de orden superior, designadas por "opción 1" y "opción 2". Las funciones definidas en esta cláusula soportan la opción 1 para un solo VC-n de orden superior.

12.4.3.1 Terminación de camino de conexión en cascada VC-n SnT TT

Esta función actúa como una fuente y un sumidero para la tara de conexión en cascada VC-n (TCOH) descrita en el anexo C/G.707/Y.1322 (Opción 1 del protocolo de supervisión de conexión en cascada).

12.4.3.1.1 Fuente de terminación de camino de conexión en cascada VC-n SnT_TT_So

Símbolo

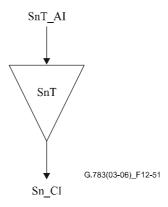


Figura 12-51/G.783 – Símbolo de SnT_TT_So

Interfaces

Cuadro 12-29/G.783 – Señales de entrada y de salida SnT TT So

Entradas	Salidas
SnT_AI_Data SnT_AI_Clock SnT_AI_FrameStart SnT_AI_SF	Sn_CI_Data Sn_CI_Clock Sn_CI_FrameStart

Procesos

N1[1-4]: Véase 8.3.2.

B3: La función corregirá la BIP-8 de VC-n (en B3) de acuerdo con la regla formulada en C.5/G.707/Y.1322 y como se especifica en 8.4/G.806.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Supervisión de la calidad de funcionamiento

Ninguna.

12.4.3.1.2 Sumidero de terminación de camino de conexión en cascada VC-n SnT_TT_Sk Símbolo

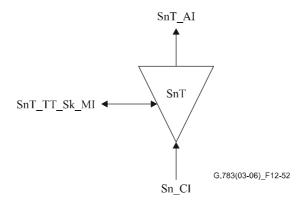


Figura 12-52/G.783 – Símbolo de SnT_TT_Sk

Interfaces

Cuadro 12-30/G.783 – Señales de entrada y de salida SnT TT Sk

Entradas	Salidas
Sn CI Data	SnT AI Data
Sn CI Clock	SnT AI Clock
Sn_CI_FrameStart	SnT_AI_FrameStart
Sn_CI_SSF	SnT_AI_TSF
SnT_TT_Sk_MI_DEGM	SnT_AI_TSD
SnT_TT_Sk_MI_DEGTHR	SnT_AI_OSF
SnT_TT_Sk_MI_1second	SnT_TT_Sk_MI_cUNEQ
SnT_TT_Sk_MI_TPmode	SnT_TT_Sk_MI_cDEG
SnT_TT_Sk_MI_AIS_Reported	SnT_TT_Sk_MI_cIncAIS
	SnT_TT_Sk_MI_pN_EBC
	SnT_TT_Sk_MI_pN_DS

Procesos

Violaciones de TC EDC: Véase 8.3.1.

N1[1-4]: La función extraerá el código de errores de entrada (IEC) y aceptará el código recibido sin ulterior procesamiento.

N1[1-4]: La función extraerá el código AIS de entrada.

N1[1-4]: La función terminará el canal N1[1-4] insertando un esquema todos CEROS.

Defectos

La función detectará los defectos dUNEQ, dDEG, dIncAIS conforme a la especificación que figura en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

 $aTSF \leftarrow CI SSF$

 $aTSD \leftarrow dDEG$

aOSF ← CI SSF o dIncAIS

La función insertará la señal todos UNOS (AIS) dentro de 250 µs a partir de la generación de la petición AIS, y dejará de insertarla dentro de 250 µs a partir de la desaparición de la petición AIS.

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

cIncAIS ← dIncAIS y (no CI_SSF) y AIS_Reported y MON

 $cUNEQ \leftarrow dUNEQ y MON$

 $cDEG \leftarrow dDEG y MON$

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

 $pN_DS \leftarrow aTSF \circ dEQ$

pN EBC $\leftarrow \sum nN B$

12.4.3.2 Monitor no intrusivo de conexión en cascada VC-n SnTm TT Sk

Esta función actúa como un monitor no intrusivo para la tara de conexión en cascada VC-n (TCOH) descrita en el anexo C/G.707/Y.1322 (opción 1 del protocolo de supervisión de conexión en cascada).

Esta función puede utilizarse para ayudar a localizar averías en un camino TC supervisando defectos del extremo cercano

Símbolo

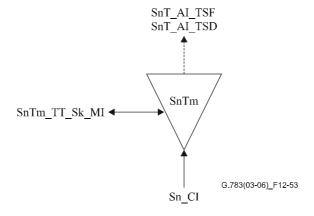


Figura 12-53/G.783 – Símbolo de SnTm TT Sk

Interfaces

Cuadro 12-31/G.783 – Señales de entrada y de salida SnTm TT Sk

Entradas	Salidas
Sn_CI_SSF SnTm_TT_Sk_MI_DEGM SnTm_TT_Sk_MI_DEGTHR	SnT_AI_TSF SnT_AI_TSD SnTm_TT_Sk_MI_cUNEQ SnTm_TT_Sk_MI_cDEG SnTm_TT_Sk_MI_cIncAIS SnTm_TT_Sk_MI_pN_EBC SnTm_TT_Sk_MI_pN_DS

Procesos

Violaciones de EDC de TC: Véase 8.3.1.

N1[1-4]: La función extraerá el código de errores de entrada (IEC) y aceptará el código recibido sin procesamiento ulterior.

N1[1-4]: La función extraerá el código AIS de entrada.

Defectos

La función detectará los defectos dUNEQ, dDEG, dIncAIS de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

aTSF ← CI_SSF

aTSD \leftarrow dDEG

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

cUNEQ ← dUNEQ y MON

cIncAIS ← dIncAIS y (no CI_SSF) y AIS_Reported y MON

 $cDEG \leftarrow dDEG y MON$

Supervisión de la calidad de funcionamiento

La función aplicará el siguiente procesamiento de primitivas de la calidad de funcionamiento (véase 6.5/G.806). Estas primitivas se informarán a la SEMF.

 $pN_DS \leftarrow aTSF \circ dEQ$ $pN EBC \leftarrow \sum nN B$

12.4.3.3 Adaptación de conexión en cascada VC-n a VC-n SnT/Sn A

Esta función actúa como una fuente y un sumidero para la adaptación de capa Sn a subcapa SnT. Esta función es aplicable a redes que soportan la opción 1 de del protocolo de supervisión de conexión en cascada VC-n, descrita en el anexo C/G.707/Y.1322.

12.4.3.3.1 Fuente de adaptación de conexión en cascada VC-n a VC-n SnT/Sn_A_So Símbolo

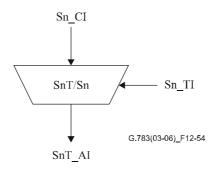


Figura 12-54/G.783 – Símbolo de SnT/Sn_A_So

Interfaces

Cuadro 12-32/G.783 – Señales de entrada y de salida SnT/Sn A So

Entradas	Salidas
Sn CI Data	SnT AI Data
Sn_CI_Clock	SnT_AI_Clock
Sn_CI_FrameStart	SnT_AI_FrameStart
Sn_CI_SSF	SnT_AI_SSF
Sn_TI_CK	

Procesos

NOTA 1 – La función no tiene medios para verificar la existencia de una conexión en cascada dentro de la señal de entrada. No están soportadas conexiones en cascada anidadas.

La función sustituirá la señal de comienzo de trama de entrada por una señal generada localmente (es decir paso a "régimen libre") si se recibe un VC todos UNOS (AIS) (es decir, esta función sustituye un VC entrante todos UNOS por una señal VC-AIS).

NOTA 2 – Como resultado de esta sustitución de la señal de comienzo de trama entrante (no válida) se genera un puntero válido en la función MSn/Sn_A.

Defectos

Ninguno.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aSSF
$$\leftarrow$$
 CI SSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.3.3.2 Sumidero de adaptación de conexión en cascada VC-n a VC-n SnT/Sn_A_Sk Símbolo

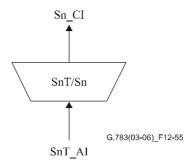


Figura 12-55/G.783 – Símbolo de SnT/Sn_A_Sk

Interfaces

Cuadro 12-33/G.783 – Señales de entrada y de salida SnT/Sn A Sk

Entradas	Salidas
SnT_AI_Data SnT_AI_Clock SnT_AI_FrameStart SnT_AI_OSF	Sn_CI_Data Sn_CI_Clock Sn_CI_FrameStart Sn_CI_SSF

Procesos

La función restablecerá la condición de comienzo de trama no válida si existía a la entrada de la conexión en cascada.

NOTA 1 – Además, la condición de comienzo de trama no válida se activa cuando se produce una condición de defecto de conectividad de conexión en cascada que provoca la inserción de todos UNOS (AIS) en SnT TT.

N1[5-8]: La función terminará N1[5-8] insertando un esquema todos CEROS.

B3: La función corregirá la BIP-8 del VC-n en el octeto B3 de acuerdo con el algoritmo especificado en 8.4/G.806.

Defectos

Ninguno.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes:

aAIS \leftarrow AI OSF

 $aSSF \leftarrow AI OSF$

NOTA 2 – CI SSF = verdadero provocará la generación de AU-AIS por la función MSn/Sn A.

La función insertará la señal todos UNOS (AIS) dentro de 250 µs después de la generación de petición AIS, y dejará de insertarla dentro de 250 µs después que se ha suprimido la petición de AIS.

Correlaciones de defectos

Supervisión de la calidad de funcionamiento

Ninguna.

12.4.3.4 Adaptación de conexión en cascada VC-n a enlace de datos SnT/DL_A

La función de adaptación SnT/DL_A es aplicable a redes que soportan el enlace de datos (DL, *data link*) de la opción 1 de supervisión de la conexión en cascada VC-n, descrita en el anexo C/G.707/Y.1322. La función de adaptación SnT/DL_A inserta los bits 5-8 del octeto N1 de la TCOH en la SnT_AI en el sentido hacia la fuente, y recupera la información proveniente de SnT AI en el sentido hacia el sumidero.

12.4.3.4.1 Fuente de adaptación de conexión en cascada VC-n a enlace de datos SnT/DL_A_So Símbolo

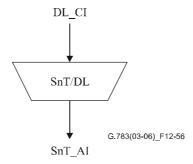


Figura 12-56/G.783 – Símbolo de SnT/DL_A_So

Interfaces

Cuadro 12-34/G.783 – Señales de entrada y de salida SnT/DL A So

Entradas	Salidas
DL_CI_Data	SnT_AI_Data
SnT_AI_FrameStart	DL_CI_Clock
SnT_AI_Clock	

Procesos

Los bits del enlace de datos (DL) se derivan de la función de comunicaciones de mensajes DL y se insertan en los bits 5-8 de N1. Los bits se utilizarán como se describe en el anexo C/G.707/Y.1322. El enlace de datos es un canal por el que se transmiten mensajes para el soporte del mantenimiento de la conexión en cascada.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.4.3.4.2 Sumidero de adaptación de conexión en cascada VC-n a enlace de datos SnT/DL_A_Sk

Símbolo

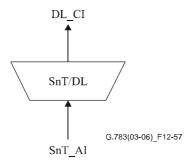


Figura 12-57/G.783 – Símbolo de SnT/DL_A_Sk

Interfaces

Cuadro 12-35/G.783 – Señales de entrada y de salida SnT/DL A Sk

Entradas	Salidas
SnT_AI_Data SnT_AI_Clock SnT_AI_FrameStart SnT_AI_TSF	DL_CI_Data DL_CI_Clock DL_CI_SSF

Procesos

Los bits DL N1[5-8] se recuperan de la TCOH y se pasan a la función de comunicaciones DL.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.4.3.5 Adaptación de conexión en cascada VC-n a enlace de datos para supervisión no intrusiva SnTm/DL A Sk

Esta función actúa como un monitor no intrusivo para el enlace de datos (DL) de tara de conexión en cascada VC-n, descrito en el anexo C/G.707/Y.1322 (opción 1).

Símbolo



Figura 12-58/G.783 – Símbolo de SnTm/DL_A_Sk

Interfaces

Cuadro 12-36/G.783 – Señales de entrada y de salida SnTm/DL A Sk

Entradas	Salidas
SnTm_AI_Data SnTm_AI_Clock SnTm_AI_FrameStart SnTm_AI_TSF	DL_CI_Data DL_CI_Clock DL_CI_SSF

Procesos

La información de enlace de datos (DL) contenida en los bits 5-8 del octeto N1 se recupera de la SnTm_AI y se pasa a la función de comunicaciones DL.

Defectos

Ninguno.

Acciones consiguientes

aSSF \leftarrow AI TSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.5 Funciones de concatenación virtual

12.5.1 Funciones de capa de trayecto VC-n con concatenación virtual Sn-Xv (n = 3, 4; $X \ge 1$)

12.5.1.1 Función de terminación de camino de capa VC-n-Xv Sn-Xv TT

La función Sn-Xv_TT se descompone como se define en la Rec. UIT-T G.803 [11] y se muestra en la figura 12-59.

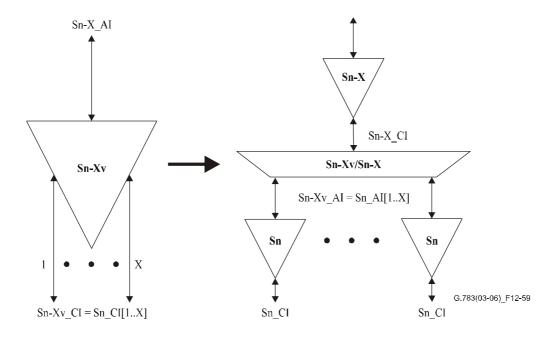


Figura 12-59/G.783 – Descomposición de la función Sn-Xv TT

Las funciones Sn_TT son funciones normales de terminación de camino VC-n, definidas en 12.2.1.

12.5.1.1.1 Función de fuente de adaptación VC-n-Xv/VC-n-X Sn-Xv/Sn-X_A_So Símbolo

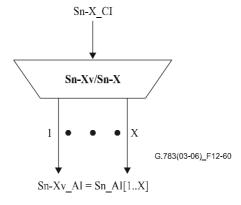


Figura 12-60/G.783 – Símbolo de Sn-Xv/Sn-X_A_So

Interfaces

Cuadro 12-37/G.783 – Señales de entrada y de salida Sn-Xv/Sn-X_A_So

Entradas	Salidas
Sn-X_CI_D	$Sn-Xv_AI_D = Sn_AI[1X]_D$
Sn-X_CI_CK	$Sn-Xv_AI_CK = Sn_AI[1X]_CK$
Sn-X_CI_FS	$Sn-Xv_AI_FS = Sn_AI[1X]_FS$

Procesos

Esta función efectuará la distribución de la Sn-X_CI entrante a X VC-n para formar la Sn-Xv_AI (= $Sn_AI[1..X]$). Se permite cualquier valor de $X \ge 1$.

Procesos de distribución

La Sn- X_CI se distribuirá a $X \times VC$ -n como se muestra en la figura 12-4 para S3- X_CI y en la figura 12-8 para S4- X_CI .

Cabida útil

Comenzando por la columna X + 1, la cabida útil se distribuirá a la X VC-n como se define en el cuadro 12-38.

Cuadro 12-38/G.783 – Correspondencia de cabida útil Sn-X → Sn-Xv

Columna Sn-X_CI	Número Sn_AI	Columna Sn_AI
X + 1	1	2
$2 \times X$	X	2
$2 \times X + 1$	1	3
261/85 × X	X	261/85

C2: El octeto C2 entrante se insertará en VC-n[1..X].

F2: El octeto F2 entrante se insertará en VC-n[1]. F2 de VC-n[2..X] se fijará a 00h.

F3: El octeto F3 entrante se insertará en VC-n[1]. F3 de VC-n[2..X] se fijará a 00h.

K3: El octeto K3 entrante se insertará en VC-n[1]. K3 de VC-n[2..X] se fijará a 00h.

Proceso de multitrama (H4[5-8], H4[1-4][0-1]): Véase 8.2.5.1.

Proceso de secuencia (H4[1-4][14-15])

Se insertará un número secuencial (SQ) individual en cada VC-n como se define en la Rec. UIT-T G.707/Y.1322. El número secuencial para VC-n[y] es y - 1.

H4[1-4][2-13]: Estos bits están reservados para futura utilización y se fijarán a "0000".

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.5.1.1.2 Función de sumidero de adaptación VC-n-Xv/VC-n-X Sn-Xv/Sn-X_A_Sk Símbolo

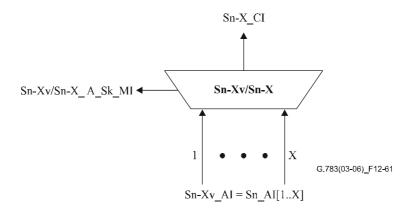


Figura 12-61/G.783 – Símbolo de Sn-Xv/Sn-X_A_Sk

Interfaces

Cuadro 12-39/G.783 – Señales de entrada y de salida Sn-Xv/Sn-X A Sk

Entradas	Salidas
$Sn-Xv_AI_D = Sn_AI[1X]_D$ $Sn-Xv_AI_CK = Sn_AI[1X]_CK$ $Sn-Xv_AI_FS = Sn_AI[1X]_FS$ $Sn-Xv_AI_TSF = Sn_AI[1X]_TSF$	Sn-X_CI_D Sn-X_CI_CK Sn-X_CI_FS Sn-X_CI_SSF Sn-Xv/Sn-X_A_Sk_MI_cLOM[1X] Sn-Xv/Sn-X_A_Sk_MI_cSQM[1X] Sn-Xv/Sn-X_A_Sk_MI_cLOA Sn-Xv/Sn-X_A_Sk_MI_AcSQ[1X]

Procesos

Esta función efectuará la alineación de los VC-n individuales.

Proceso de multitrama (H4[5-8], H4[1-4][0-1]): Véase 8.2.5.1.

Proceso de secuencia (H4[1-4][14-15])

El número secuencial (SQ, sequence number) recibido se recuperará del octeto H4, bits 1-4 de la multitrama 14 y 15. Se pondrá disposición como AcSQ[y] para fines de gestión de red. Un nuevo número secuencial es aceptado si la secuencia recibida tiene el mismo valor en m multitramas consecutivas de la primera etapa, siendo $3 \le m \le 10$.

Procesos de alineación

La función alineará los VC-n individuales a un comienzo común de multitrama si AI_TSF, dLOM o dSQM no está activo para cualquier VC-n individual. El proceso de alineación cubrirá un retardo diferencial de al menos 125 µs. Si la alineación tiene éxito, el VC-n-X se recupera de los X VC-n. La columna de la tara se recupera del VC-n número 1. En el cuadro 12-40 se presenta la correspondencia de columnas de cabida útil de VC-n individuales al VC-n-X.

Cuadro 12-40/G.783 - Correspondencia de cabida útil Sn-Xv a Sn-X

Número Sn_AI	Columna Sn_AI	Columna Sn-X_CI
1	2	X + 1
	3	$2 \times X + 1$
	261 u 85	260 u 84 × X + 1
2	2	X + 2
	261 u 85	$260 \text{ u } 84 \times \text{X} + 2$
•••		
X	261 u 85	2

Defectos

Defecto de pérdida de multitrama (dLOM): Véase 6.2.5.4.

Defecto de pérdida de secuencia (dSQM, loss of sequence defect): Se detectará dSQM si el número secuencial aceptado (AcSQ, accepted sequence number) no concuerda con el número secuencial esperado (ExSQ, expected sequence number). Se eliminará dSQM si AcSQ concuerda con ExSQ. El ExSQ de VC-n[y] es y -1.

Pérdida de alineación (dLOA, loss of alignment): Se detectará dLOA si el proceso de alineación no efectúa la alineación de los VC-n individuales con respecto a un comienzo común de multitrama (por ejemplo, se activa dLOA si el retardo diferencial excede el tamaño de la memoria tampón de alineación). Los detalles quedan en estudio.

Acciones consiguientes

```
aAIS \leftarrow dLOM[1..X] o dSQM[1..X] o dLOA
aSSF \leftarrow AI TSF[1..X] o dLOM[1..X] o dSQM[1..X] o dLOA
```

Al declararse aAIS, la función presentará a la salida la señal todos UNOS dentro de 250 µs; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 µs.

Correlaciones de defectos

```
 \begin{aligned} cLOM[n] &\leftarrow dLOM[n] \ y \ (no \ AI\_TSF[n]) \\ cSQM[n] &\leftarrow dSQM[n] \ y \ (no \ dLOM[n]) \ y \ (no \ AI\_TSF[n]) \\ cLOA &\leftarrow dLOA \ y \ (no \ dSQM[1..X]) \ y \ (no \ dLOM[1..X]) \ y \ (no \ AI \ TSF[1..X]) \end{aligned}
```

Supervisión de la calidad de funcionamiento

12.5.1.1.3 Función de fuente de terminación de camino VC-n-X Sn-X_TT_So Símbolo

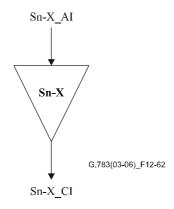


Figura 12-62/G.783 – Símbolo de Sn-X_TT_So

Interfaces

Cuadro 12-41/G.783 – Señales de entrada y de salida Sn-X_TT_So

Entradas	Salidas
Sn-X_AI_D Sn-X_AI_CK	Sn-X_CI_D Sn-X_CI_CK
Sn-X_AI_FS	Sn-X_CI_FS

Procesos

Ninguno.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

12.5.1.1.4 Función de sumidero de terminación de capa VC-n-X Sn-X_TT_Sk

Símbolo

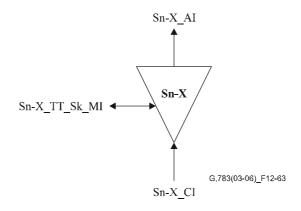


Figura 12-63/G.783 – Símbolo de Sn-X_TT_Sk

Interfaces

Cuadro 12-42/G.783 – Señales de entrada y de salida Sn-X_TT_Sk

Entradas	Salidas
Sn-X_CI_D	Sn-X_AI_D
Sn-X_CI_CK Sn-X_CI_FS	Sn-X_AI_CK Sn-X_AI_FS
Sn-X_CI_SSF	Sn-X_AI_TSF
Sn-X_TT_Sk_MI_SSF_Reported	Sn-X_TT_Sk_MI_cSSF

Procesos

Ninguno.

Defectos

Ninguno.

Acciones consiguientes

aTSF \leftarrow CI SSF

Correlaciones de defectos

cSSF ← CI SSF y SSF Reported

Supervisión de la calidad de funcionamiento

12.5.2 Funciones de interfuncionamiento

12.5.2.1 Función de interfuncionamiento de VC-4-Xc a VC-4-Xv S4-Xc>S4-Xv_I Símbolo

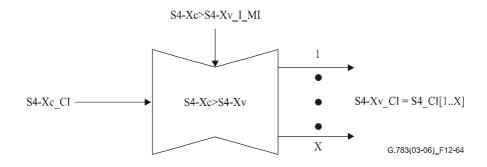


Figura 12-64/G.783 – Símbolo de S4-Xc>S4-Xv_I

Interfaces

Cuadro 12-43/G.783 – Señales de entrada y de salida S4-Xc>S4-Xv_I

Entradas	Salidas
S4-Xc_CI_D S4-Xc_CI_CK S4-Xc_CI_FS S4-Xc_CI_SSF S4-Xc>S4-Xv_I_MI_TxTI[2X]	S4-Xv_CI_D = S4_CI[1X]_D S4-Xv_CI_CK = S4_CI[1X]_CK S4-Xv_CI_FS = S4_CI[1X]_FS S4-Xv_CI_SSF = S4_CI[1X]_SSF
S4-Xc>S4-Xv_I_MI_TxTI[2X] S4-Xc>S4-Xv_I_MI_TIEn	

Procesos

Esta función convertirá la S4-Xc_CI entrante en la S4-Xv_CI (= S4_CI[1..X]) saliente. Están permitidos valores de X = 4, 16, 64, 256. Quedan en estudio valores de X más elevados.

Cabida útil

La zona de cabida útil VC-4-Xc (C-4-Xc) se insertará en la cabida útil VC-4-Xv como se define en el cuadro 12-44.

Cuadro 12-44/G.783 – Correspondencia de cabida útil S4-Xc CI → S4-Xv CI

Columna S4-Xc_CI	Número S4_CI	Columna S4_Xv_CI
X + 1	1	2
$2 \times X$	X	2
$2 \times X + 1$	1	3
261 × X	X	261

J1: El octeto del VC-4-Xc se insertará en el primer VC-4 de la señal VC-4-Xv. Para todos los demás VC-4 de la VC-4-Xv se insertará una traza J1 individual TxTI[n] si la inserción de traza está habilitada (TIEn = verdadero). Si la inserción de traza no está habilitada (TIEn = falso) se insertará el octeto VC-4-Xc.

B3: Se calculará la BIP-8 para VC-4-Xc de la trama n – 1. Se comparará con el correspondiente B3 de la trama n para determinar el número de errores de bit. Se calculará la BIP-8 para cada VC-4 individual de la trama n – 1 del VC-4-Xv. Para el primer VC-4 del VC-4-Xv se invertirán tantos bits de la BIP-8 cuantos errores de bit se hayan detectado en el VC-4-Xc antes de la inserción en el correspondiente octeto B3 de la trama n. Esto puede realizarse por un proceso de O exclusivo como se muestra en la figura 12-65. La BIP-8 de todos los demás VC-4 se insertará en el correspondiente octeto B3 de la trama n sin ninguna modificación.

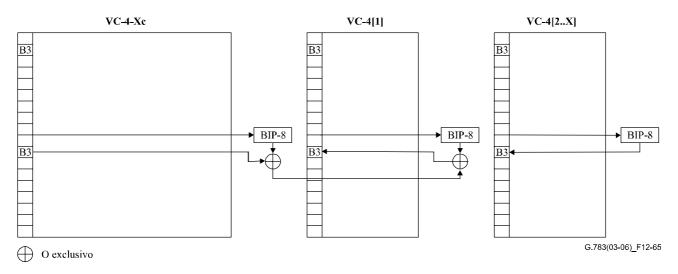


Figura 12-65/G.783 – Procesamiento de B3

C2: El octeto del VC-4-Xc se insertará en todos los VC-4 individuales de la señal VC-4-Xv.

G1[1-4]: Los bits 1 a 4 (REI) de la VC-4-Xc se insertarán en los bits 1 a 4 del primer VC-4 del VC-4-Xv. Los bits 1 a 4 de todos los demás VC-4 de la señal VC-4-Xv se pondrán a 0.

G1[5]: El bit 5 (RDI) del VC-4-Xc se insertará en el bit 5 de todos los demás VC-4 del VC-4-Xv.

G1[6-7]: La utilización facultativa de la RDI mejorada se describe en el apéndice VI.

G1[8]: Los bits 8 del VC-4-Xc se insertarán en el bit 8 de todos los VC-4 del VC-4-Xv.

F2: El octeto F2 del VC-4-Xc se insertará en el primer VC-4 de la señal VC-4-Xv. Los octetos F2 de todos los demás VC-4 del VC-4-Xv se fijarán a 00h.

F3: El octeto F3 del VC-4-Xc se insertará en el primer VC-4 de la señal VC-4-Xv. Los octetos F3 de todos los demás VC-4 del VC-4-Xv se fijarán a 00h.

K3: El octeto K3 de la VC-4-Xc se insertará en el primer VC-4 de la señal VC-4-Xv. Los octetos K3 de todos los demás VC-4 de VC-4-Xv se fijarán a 00h.

N1[1-4]: Si los bits 1 a 4 (IEC) de la VC-4-Xc contienen el código "1110" (AIS entrante), los bits 1 a 4 de todos los demás VC-4 de VC-4-Xv se fijarán a "1110"". Si los bits 1 a 4 (IEC) de VC-4-Xc contienen el código "0000" (parte de TC no equipada), los bits 1 a 4 de todos los VC-4 de VC-4-Xv se fijarán a "0000". En otro caso, los bits 1 a 4 de VC-4-Xc se insertarán en los bits 1 a 4 del primer VC-4 de VC-4-Xv, y los bits 1 a 4 de todos los demás VC-4 de VC-4-Xv se fijarán a un IEC de 0 ("1001").

Proceso de multitrama (H4[5-8], H4[1-4][0-1]): Véase 8.2.5.1.

Proceso de la secuencia (H4[1-4][14-15])

Se insertará un número secuencial SQ individual en cada VC-4 como se define en la Rec. UIT-T G.707/Y.1322. El número secuencial para VC-4[y] es y - 1.

H4[1-4][2-13]: Estos bits están reservados para una futura utilización y se fijarán a "0000".

N1[5-8]: Los bits 5 a 8 de VC-4-Xc se copian en los bits 5 a 8 de todos los VC-4 de VC-4-Xv.

Defectos

Ninguno.

Acciones consiguientes

aAIS
$$\leftarrow$$
 CI_SSF
aSSF[n] \leftarrow CI_SSF

Al declararse aAIS, la función presentará a la salida la señal todos UNOS dentro de 250 μs; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 μs.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

12.5.2.2 Función de interfuncionamiento VC-4-Xv a VC-4-Xc S4-Xv>S4-Xc I

Símbolo

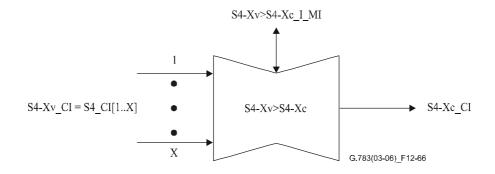


Figura 12-66/G.783 – Símbolo de S4-Xv>S4-Xc I

Interfaces

Entradas Salidas S4-Xv CI D = S4 CI[1..X] DS4-Xc CI D S4-Xv CI CK = S4 CI[1..X] CkS4-Xc CI CK S4-Xv CI FS = S4 CI[1..X] FSS4-Xc CI FS S4-Xv CI SSF = S4 CI[1..X] SSFS4-Xc CI SSF S4-Xv>S4-Xc I MI TPmode S4-Xv>S4-Xc I MI cTIM[1..X] S4-Xv>S4-Xc I MI SSF Reported S4-Xv>S4-Xc I MI cUNEQ[1..X] S4-Xv>S4-Xc_I_MI_ExTI[1..X] S4-Xv>S4-Xc_I _MI_cSSF[1..X] S4-Xv>S4-Xc I 1second S4-Xv>S4-Xc I MI AcTI[1..X]

S4-Xv>S4-Xc_I _MI_cLOM[1..X] S4-Xv>S4-Xc_I _MI_cSQM[1..X] S4-Xv>S4-Xc_I _MI_cLOA S4-Xv>S4-Xc_I _MI_AcSQ[1..X]

Cuadro 12-45/G.783 – Señales de entrada y de salida S4-Xv>S4-Xc I

Procesos

Esta función convertirá la S4-Xv_CI (= S4_CI[1..X]) entrante en la S4-Xc_CI saliente. Los procesos principales se muestran en la figura 12-67.

Están permitidos valores de X = 4, 16, 64, 256. Quedan en estudio valores de X más elevados.

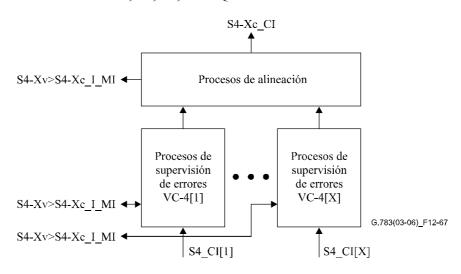


Figura 12-67/G.783 – Procesos principales de S4-Xv>S4-Xc I

Procesos de supervisión de errores [n = 1..X]

S4-Xv>S4-Xc I TIMdis[1..X]

Estos procesos se efectúan para cada VC-4 individual.

J1: El identificador de traza de camino recibido RxTI[n] se recuperará del octeto J1 y se pondrá a disposición como AcTI[n] para fines de gestión de red. El proceso de detección de aplicación y aceptación y discordancia se efectuará como se especifica en 6.2.2.2/G.806.

NOTA 1-Si no hay trazas individuales configuradas para VC-4[2...X] en la función S4-xc>S4-Xv_I, las trazas esperadas para VC-4[2...X] se fijarán de modo que sean idénticas a la traza esperada del primer VC-4, o la supervisión de traza se inhabilitará para estos VC-4.

C2: Se recuperarán los bits de etiqueta de señal. Para una descripción más detallada del procesamiento del defecto no equipado, véase 6.2.1.3/G.806. La función detectará una condición de defecto AIS VC (dAIS) supervisando el VC PSL en búsqueda del código "1111 1111". Para una descripción más detallada del procesamiento del defecto VC AIS, véase 6.2.6.2/G.806.

NOTA 2 – dUNEQ y dAIS no provocarán acciones consiguientes.

Proceso de multitrama (H4[5-8], H4[1-4][0-1]): Véase 8.2.5.1.

Proceso de secuencia (H4[1-4][14-15])

El número secuencial (SQ) recibido se recuperará del octeto H4, bits 1-4 en las multitramas 14 y 15. Se pondrá a disposición como AcSQ[y] para fines de gestión de red. Un nuevo número secuencial es aceptado si la secuencia recibida tiene el mismo valor en m multitramas consecutivas de la primera etapa, siendo $3 \le m \le 10$.

Proceso de alineación

La función alineará los VC-4 individuales con respecto a un comienzo común de multitrama si CI_SSF, dTIM, dLOM o dSQM no está activo para cualquier VC-4 individual. El proceso de alineación cubrirá un retardo diferencial de al menos 125 μs.

La función efectuará el siguiente tratamiento de la cabida útil y la tara si la alineación es posible.

Cabida útil

La zona de cabida útil VC-4-Xv (C-4-Xc) se insertará en la zona de cabida útil VC-4-Xc como se define en el cuadro 12-46.

Cuadro 12-46/G.783 – Correspondencia de cabida útil S4-Xv_CI → S4-Xc_CI

S4-Xv_CI		Columna SA Va CI
Columna S4_CI	Número S4_CI	Columna S4-Xc_CI
2	1	X + 1
2	X	$2 \times X$
3	1	$2 \times X + 1$
261	X	261 × X

J1: El octeto del primer VC-4 de VC-4-Xv se insertará en VC-4-Xc.

B3: Se calculará la BIP-8 para cada VC-4 de la trama n-1 de VC-4-Xv y se comparará con el correspondiente B3 de la trama n para determinar los errores de bit en cada VC-4. Los errores de bit de todos los VC-4 de VC-4-Xc se sumarán entre sí y el resultado se limitará a 8. Se calculará la BIP-8 para VC-4-Xc trama n-1. Se invertirán tantos bits de la BIP-8 cuantos sean indicados por el anterior resultado, antes de insertarlos en el correspondiente octeto B3 de la trama n. (Véase la figura 12-68.)

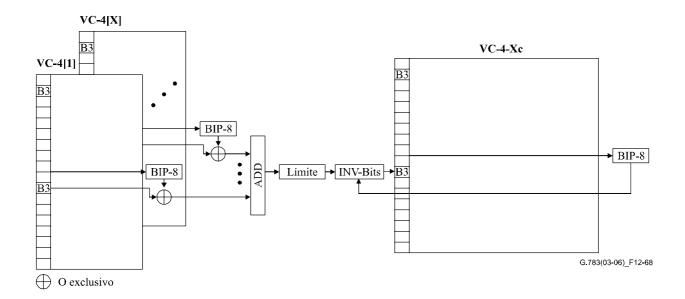


Figura 12-68/G.783 – Procesamiento de B3

C2: El octeto del primer VC-4 de VC-4-Xv se insertará en VC-4-Xc.

G1[1-4]: Los valores REI (bits 1 a 4) de todos los VC-4 de VC-4-Xv se sumarán entre sí. El resultado se limitará a 8 y se insertará en los bits 1 a 4 de VC-4-Xc.

G1[5]: Si el bit 5 (RDI) de cualquier VC-4 de VC-4-Xv contiene el código "1", el bit 5 de G1 para VC-4-Xc se fijará a "1".

G1[6-7]: La utilización facultativa de la RDI mejorada se describe en el apéndice VI.

G1[8]: El bit 8 del primer VC-4 de VC-4-Xv se insertará en el bit 8 de VC-4-Xc.

F2: El octeto F2 del primer VC-4 de VC-4-Xv se insertará en VC-4-Xc.

H4: El octeto de VC-4-Xc se fijará 0.

F3: El octeto F3 del primer VC-4 de VC-4-Xv se insertará en VC-4-Xc.

K3: El octeto K3 del primer VC-4 de VC-4-Xv se insertará en VC-4-Xc.

N1[1-4]: Si los bits 1 a 4 (IEC) de cualquier VC-4 de VC-4-Xv contienen el código "1110" (AIS entrante), los bits 1 a 4 de VC-4-Xc se fijarán a "1110". Si los bits 1 a 4 (IEC) del primer VC-4 de VC-4-Xv contiene el código "0000" (TC no equipada), los bits 1 a 4 de VC-4-Xc se fijarán a "0000". En otro caso, los valores IEC (bits 1 a 4) de todos los VC-4 de VC-4-Xv se sumarán entre sí. El resultado se limitará a 8 y se insertará como IEC en los bits 1 a 4 de VC-4-Xc.

N1[5-8]: Los bits 5 a 8 del primer VC-4 de VC-4-Xv se insertarán en los bits 5 a 8 de VC-4-Xc.

Defectos

La función detectará los defectos dUNEQ, dAIS y dTIM para cada VC-4 individual de acuerdo con la especificación en 6.2/G.806. Deberá ser posible inhabilitar la detección de la discordancia del identificador de traza (TIMdis).

Defecto de pérdida de multitrama (dLOM): Véase 6.2.5.4.

Defecto de pérdida de secuencia (dSQM): Se detectará dSQM si el número secuencial aceptado (AcSQ) no concuerda con el número secuencial esperado (ExSQ). Se eliminará dSQM si AcSQ concuerda con ExSQ. El ExSQ de VC-4[y] es y - 1.

Pérdida de alineación (dLOA): Se detectará dLOA si el proceso de alineación no puede efectuar la alineación de los VC-4 individuales con respecto a un comienzo común de multitrama (por ejemplo, se activa dLOA si el retardo diferencial excede el tamaño de la memoria tampón de alineación). Los detalles quedan en estudio.

Acciones consiguientes

```
aAIS \leftarrow dTIM[1..X] o dLOM[1..X] o dSQM[1..X] o dLOA
aSSF \leftarrow CI SSF[1..X] o dTIM[1..X] o dLOM[1..X] o dSQM[1..X] o dLOA
```

Al declararse aAIS, la función presentará a la salida la señal todos UNOS dentro de 250 µs; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 µs.

Correlaciones de defectos

Supervisión de la calidad de funcionamiento

Ninguna.

12.5.3 Funciones de capa de trayecto VC-n concatenado virtual Sn-Xv-L (n = 3, 4; $X \ge 1$) capaz de LCAS

Las funciones de capa de trayecto VC-n concatenado virtual (Sn-Xv-L, n = 3, 4) son ejemplificaciones de las funciones genéricas definidas en 10.1/G.806 (P-Xv-L), con algunos aspectos particulares propios de la tecnología.

Las definiciones en la presente cláusula hacen referencia a las correspondientes definiciones de función genérica en 10.1/G.806 y especifican los aspectos propios de la tecnología cuando sea necesario.

12.5.3.1 Función de terminación de camino de capa VC-n-Xv-L, Sn-Xv-L TT

La descomposición de la función Sn-Xv-L_TT se define en 10.1.1/G.806 y se muestra en la figura 12-69.

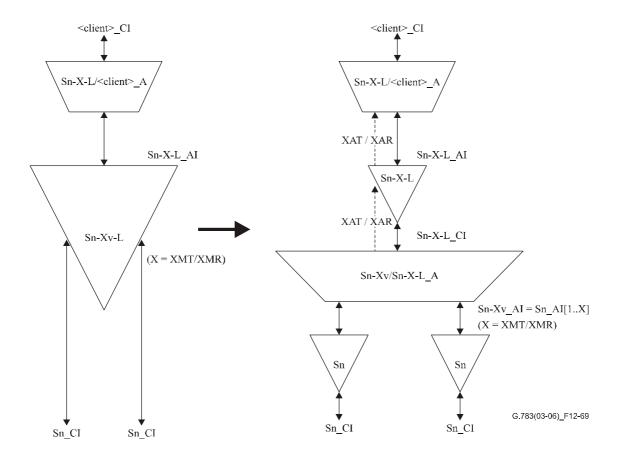


Figura 12-69/G.783 – Descomposición de la función Sn-Xv-L TT

La descomposición de esta función es la misma que la de la correspondiente función genérica P-Xv-L TT definida en 10.1.1/G.806, con los siguientes aspectos propios de la tecnología:

- El trayecto "P-" es la capa Sn-.
- Las funciones Sn_TT son las funciones normales de terminación de camino VC-n definidas en 12.2.1.
- X_{MT} , $X_{MR} \le 256$, de acuerdo con las definiciones en 11.2/G.707/Y.1322.

12.5.3.1.1 Función de fuente de adaptación VC-n-Xv/VC-n-X-L, Sn-Xv/Sn-X-L_A_So Símbolo

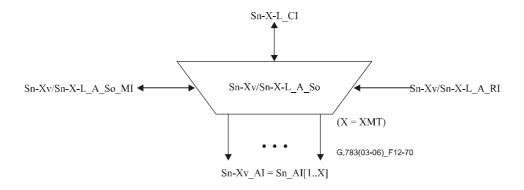


Figura 12-70/G.783 - Símbolo de Sn-Xv/Sn-X-L A So

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_So definida en 10.1.1.1/G.806, con los siguientes aspectos específicos de la tecnología:

- La capa de trayecto "P-" es la capa Sn-.
- MST_Range = 0... 255 (que corresponde a la gama definida en 11.2/G.707/Y.1322).

Procesos

Las definiciones de procesos para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_So definida en 10.1.1.1/G.806, con los siguientes aspectos específicos de la tecnología:

Extracción de OH

La información de tara extraída _CI_OH consta de los siguientes octetos VC-n-X POH: C2, F2, F3, K3.

Desentrelazado (proceso de distribución)

El proceso de distribución será el siguiente:

Empezando por la columna 1, la señal Sn-X-L_CI_D se distribuirá al X_{AT} VC-n como se define en el cuadro 12-47.

Cuadro 12-47/G.783 – Correspondencia para la distribución de Sn-X

Columna Sn-X-L_CI_D	Número de salida de desentrelazado	Columna de salida de desentrelazado
1	1	1
X_{AT}	X_{AT}	1
$X_{AT} + 1$	1	2
•••		
$2 \times X_{AT}$	X_{AT}	2
$2 \times X_{AT} + 1$	1	3
$261/85 \times X_{AT}$	X_{AT}	261/85

Obsérvese que esta correspondencia es uniforme en toda columna de tara y cabida útil del trayecto. Obsérvese también que es equivalente a la definida en el cuadro 12-38 para las columnas de cabida útil.

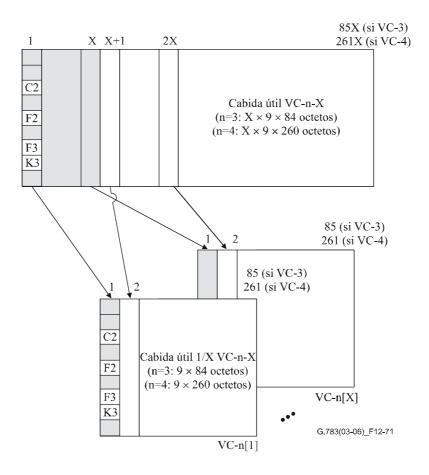


Figura 12-71/G.783 – Proceso de entrelazado Sn-Xv/Sn-X-L_A_So

Para las salidas $X_{AT}+1$, $X_{AT}+2$, ..., X_{MT} , este bloque inserta una señal todos ceros con la velocidad y el formato de una señal VC-n.

"Conmutador 1" (asignación de números secuenciales)

Para todas las salidas que no transportan cabida útil (_PC[s]=0) este proceso inserta una señal todos CEROS con la velocidad y el formato de una señal VC-n.

Inserción de VLI

La información VLI consiste en el valor del octeto H4, y tiene la codificación definida en 11.2/G.707/Y.1322 para el octeto de tara.

Ensamblado de VLI y CRC

La información VLI consiste en el valor del octeto H4, y tiene la codificación definida en 11.2/G.707/Y.1322 para el octeto de tara. El código CRC utilizado es la CRC-8 definida en 11.2/G.707/Y.1322.

Cualquiera que sea el valor de MI_LCASEnable, todos los campos de la estructura multitrama H4 que no se utilicen se fijarán inicialmente a cero.

Inserción de OH

La información de tara _CI_OH insertada consiste en los siguientes octetos VC-n POH: C2, F2, F3, K3.

Defectos

Véase 10.1.1.1/G.806.

Acciones consiguientes

Véase 10.1.1.1/G.806.

Correlaciones de defectos

Véase 10.1.1.1/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.1/G.806.

12.5.3.1.2 Función de sumidero de adaptación VC-n-Xv/VC-n-X-L, Sn-Xv/Sn-X-L A Sk

Símbolo

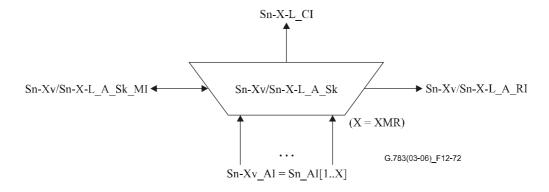


Figura 12-72/G.783 – Símbolo de Sn-Xv/Sn-X-L_A_Sk

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_Sk definida en 10.1.1.2/G.806, con los siguientes aspectos específicos de la tecnología:

- La capa de trayecto "P-" es la capa Sn-.
- MST_Range = 0..., 255 (corresponde a la gama definida en 11.2/G.707/Y.1322).

Procesos

Las definiciones de procesos para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_Sk definida en 10.1.1.2/G.806, con los siguientes aspectos específicos de la tecnología:

Extracción de MFI

El proceso de alineación de multitrama será conforme a 8.2.5.1.

La salida _MFI[i] consiste en una palabra de 12 bits con el valor de la MFI contenido en la posición de octeto H4 de AI_D[i]. Si AI_TSF[i]=verdadero, la salida _MFI[i] de este proceso será una palabra de 12 bits todos UNOS.

La detección de dLOM[i] para cada miembro se efectuará como se describe en Defectos más adelante.

Extracción de VLI, TSx

La información VLI consiste en el valor del octeto H4, y tiene la codificación definida en 11.2/G.707/Y.1322 para el octeto de tara.

Si _TSF[i] es falso y dMND[i] es falso, la salida _VLI[i] de este proceso es el valor del octeto H4 a la entrada de este proceso.

Si _TSF[i] es verdadero o dMND[i] es verdadero, la salida _VLI[i] de este proceso será un octeto con todos unos.

VLI desensamblado y CRC

La información VLI consiste en el valor del octeto H4, y tiene la codificación definida en 11.2/G.707/Y.1322 para el octeto de tara. El código de CRC utilizado es la CRC-8 definida en 11.2/G.707/Y.1322.

"Proceso de entrelazado"

El proceso de recuperación será el siguiente:

Empezando por la columna 1, la señal Sn-X-L_CI se recuperará a partir del X_{AR} VC-n como se define en el cuadro 12-48.

Cuadro 12-48/G.783 – Correspondencia para la recuperación de Sn-X-L

Número de entrada de entrelazado	Columna de entrada de entrelazado	Columna Sn-X-L_CI
1	1	1
	•••	
X_{AR}	1	X_{AR}
1	2	$X_{AR} + 1$
X_{AR}	2	$2 \times X_{AR}$
1	3	$2 \times X_{AR} + 1$
X_{AR}	261/85	$261/85 \times X_{AR}$

Obsérvese que esta correspondencia es uniforme en toda columna de tara y de cabida útil de trayecto. Obsérvese también que esta correspondencia es equivalente a la definida en el cuadro 12-40 para las columnas de cabida útil. En particular, obsérvese que la columna POH (columna 1) de la señal Sn-X-L_CI se obtendrá a partir de la columna POH de la entrada 1 del entrelazador, la cual será, a su vez, el miembro transportador de cabida útil con el número secuencial más bajo.

Defectos

Defecto de pérdida de multitrama (dLOM): Véase 6.2.5.4.

Defecto de pérdida de secuencia (dSQM): Véase 10.1.1.2/G.806.

Miembro no "alineable en multitrama" (dMND): Véase 10.1.1.2/G.806.

Pérdida de alineación (dLOA): Véase 10.1.1.2/G.806.

Acciones consiguientes

Véase 10.1.1.2/G.806.

Al declararse aAIS, la función presentará a su salida la señal todos UNOS dentro de 250 µs; cuando se elimina aAIS, la función presentará a su salida datos normales dentro de 250 µs. La velocidad binaria de la señal todos UNOS será consistente con el valor de _X_{AR} calculado por el proceso que interviene.

Correlaciones de defectos

Véase 10.1.1.2/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.2/G.806.

12.5.3.1.3 Función de fuente de terminación de camino VC-n-X-L capaz de LCAS Sn-X-L_TT_So

Símbolo



Figura 12-73/G.783 - Símbolo de Sn-X-L TT So

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-X-L TT So definida en 10.1.1.3/G.806, con los siguientes aspectos específicos de la tecnología:

• La capa de trayecto "P-" es la capa Sn-.

Procesos

Véase 10.1.1.3/G.806.

Defectos

Véase 10.1.1.3/G.806.

Acciones consiguientes

Véase 10.1.1.3/G.806.

Correlaciones de defectos

Véase 10.1.1.3/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.3/G.806.

12.5.3.1.4 Función de sumidero de terminación de camino de capa VC-n-X-L capaz de LCAS, Sn-X-L TT Sk

Símbolo

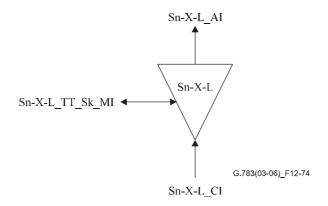


Figura 12-74/G.783 – Símbolo de Sn-X-L_TT_Sk

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-X-L_TT_Sk definida en 10.1.1.4/G.806, con los siguientes aspectos específicos de la tecnología:

• La capa de trayecto "P-" es la capa Sn-.

Procesos

Véase 10.1.1.4/G.806.

Defectos

Véase 10.1.1.4/G.806.

Acciones consiguientes

Véase 10.1.1.4/G.806.

Correlaciones de defectos

Véase 10.1.1.4/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.4/G.806.

13 Capa de trayecto VC-m (Sm) (m = 2, 12, 11)

Las capas de trayecto VC-m son las capas de trayecto VC-2, VC-12 y VC-11. Además, las señales Sm-Xv (m = 2, 12, 11) virtualmente concatenadas pueden transportarse distribuyendo la señal en X señales Sm individuales. (Véase la figura 13-1.)

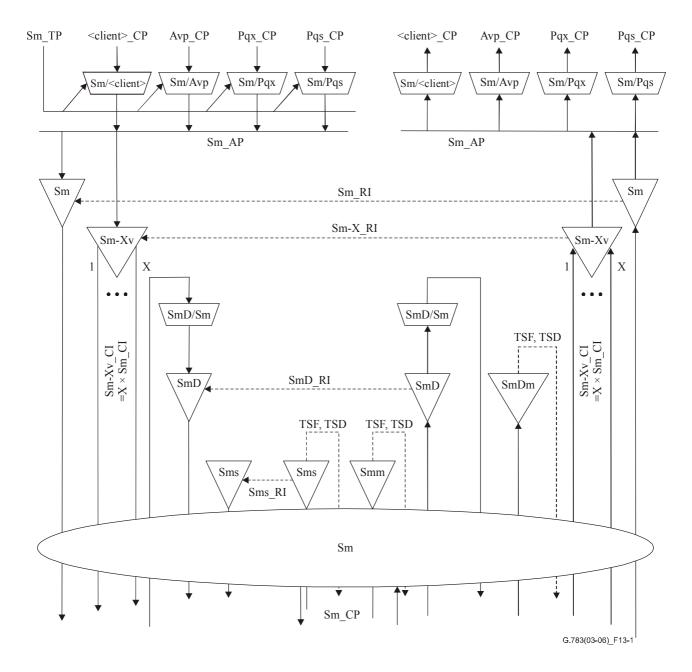
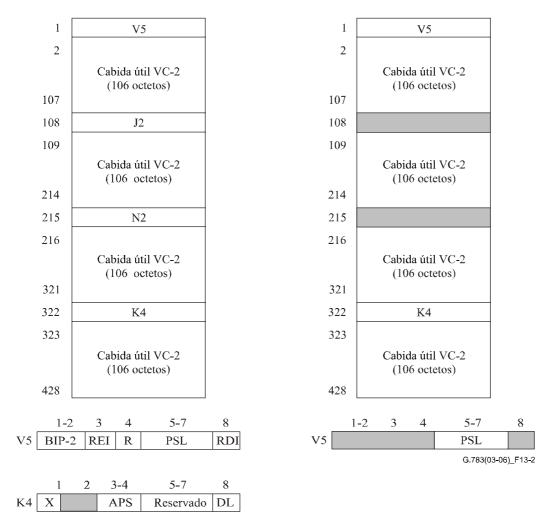


Figura 13-1/G.783 – Funciones atómicas de capa de trayecto VC-m


Información característica de capa Sm

La información característica Sm_CI tiene temporización codireccional y está estructurada en octetos con una trama de 500 μ s, como se muestra en las figuras 13-2 a 13-7, tramas de la izquierda. Su formato está caracterizado como la tara de terminación de camino VC-m (m = (11, 12, 2)) en los octetos V5 y J2, como se define en la Rec. UIT-T G.707/Y.1322, más la información adaptada que se presenta en la siguiente subcláusula. Como una alternativa, puede ser una señal de no equipado como se define en la Rec. UIT-T G.707/Y.1322.

Para el caso de una señal en la subcapa de conexión en cascada, la información característica tiene definida una tara de terminación de camino de conexión en cascada Sm en la ubicación N2 como se muestra en las figuras 13-3, 13-5 y 13-7.

Información adaptada de capa Sm

La información adaptada (AI) está estructurada en octetos con una trama de 500 µs como se muestra en las figuras 13-2 a 13-7, tramas de la derecha. Representa la información de capa de cliente adaptada, que está constituida por la información de capa de cliente, la etiqueta de señal, y la información específica de cliente. Para el caso en que la señal haya pasado la subcapa de protección de camino (SmP), la Sm_AI tiene bits (3 a 4) APS definidos en el octeto K4.

NOTA 1 – El bit 4 del octeto V5 está reservado. Actualmente, su valor no está definido.

NOTA 2 – Los bits 5 a 7 del octeto K4 están reservados para la utilización facultativa descrita en el apéndice VII/G.707/Y.1322.

NOTA 3 – El bit 8 de K4 está asignado como enlace de datos de trayecto; su valor no estará definido cuando la S2_CI no haya sido procesada en una función atómica de subcapa de enlace de datos de trayecto.

Figura 13-2/G.783 – S2_CI_D (izquierda) y S2_AI_D (derecha)

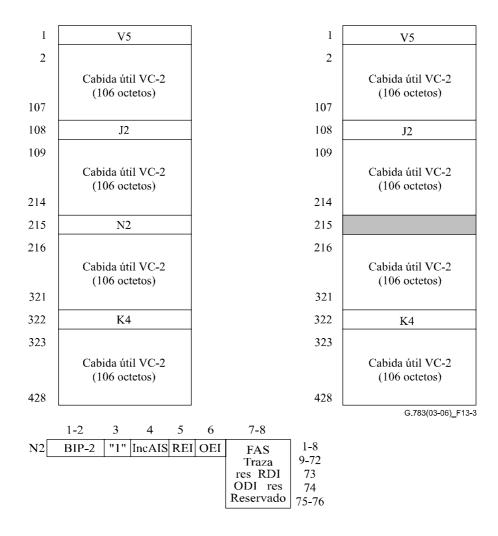
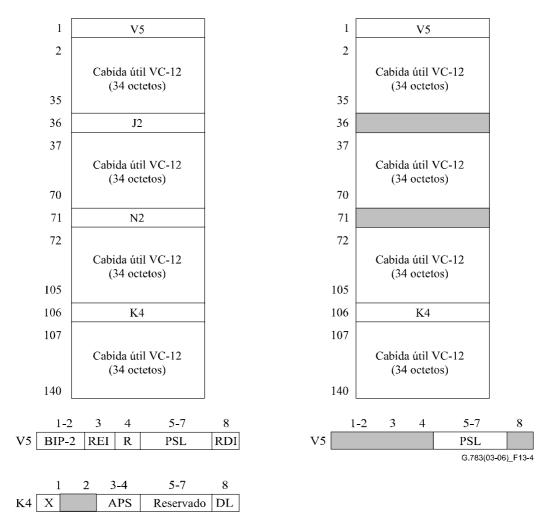



Figura 13-3/G.783 – S2_CI_D (izquierda) con N2 definido y S2D_AI_D (derecha)

NOTA 1 – El bit 4 del octeto V5 está reservado. Actualmente, su valor no está definido.

NOTA 2 – Los bits 5 a 7 del octeto K4 están reservados para la utilización facultativa descrita en el apéndice VII/G.707/Y.1322.

NOTA 3 – El bit 8 de K4 está asignado como enlace de datos de trayecto; su valor no estará definido cuando la S12 CI no haya sido procesada en una función atómica de subcapa de enlace de datos de trayecto.

Figura 13-4/G.783 – S12_CI_D (izquierda) y S12_AI_D (derecha)

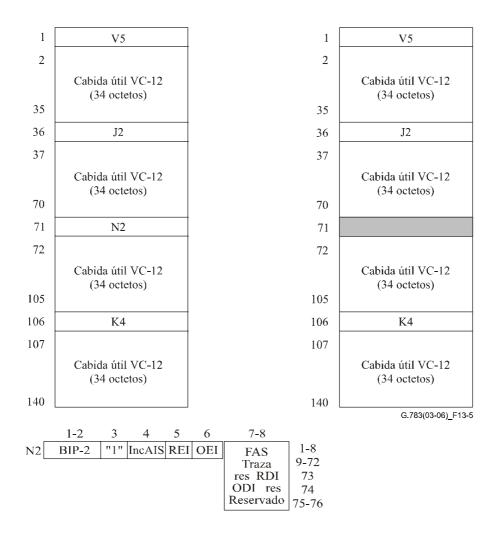
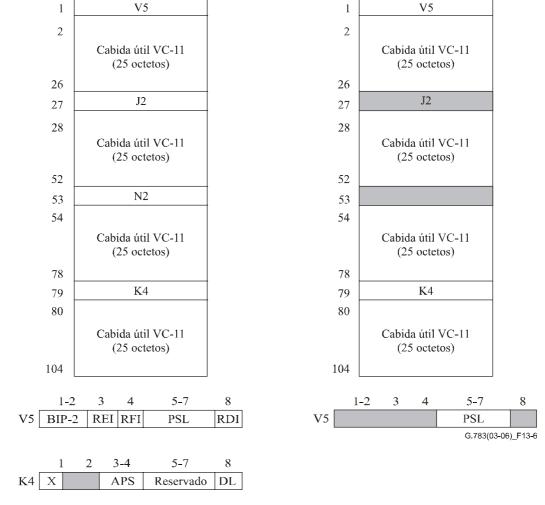



Figura 13-5/G.783 – S12_CI_D (izquierda) con N2 definido y S12D_AI_D (derecha)

NOTA 1 – El bit 4 del octeto V5 está definido como RFI en el caso de correspondencia síncrona de octeto a 1544 kbit/s con VC-11. En correspondencia de otro tipo, por ejemplo correspondencia asíncrona, este bit se fija a "0".

NOTA 2 – Los bits 5 a 7 del octeto K4 están reservados para la utilización facultativa descrita en el apéndice VII/G.707/Y.1322.

NOTA 3 – El bit 8 de K4 está asignado como enlace de datos de trayecto; su valor no estará definido cuando la S11_CI no haya sido procesada en una función atómica de subcapa de enlace de datos de trayecto.

Figura 13-6/G.783 – S11_CI_D (izquierda) y S11_AI_D (derecha)

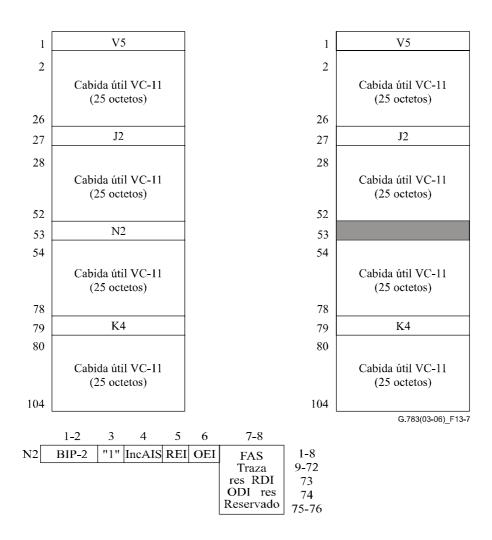


Figura 13-7/G.783 – S11_CI_D (izquierda) con N2 definido y S11D_AI_D (derecha)

Funciones de capa

Sm_C	Función de conexión de capa VC-m
Sm_TT	Función de terminación de camino de capa VC-m
Smm_TT	Función de monitor no intrusivo VC-m
Sms_TT	Función de terminación no equipada de supervisión VC-m
Sm/Pq_A	Funciones de adaptación de capa VC-m a capa Pq
SmP_C	Función de conexión de protección de camino lineal VC-m
SmP_TT	Función de terminación de camino de protección lineal VC-m
Sm/User_A	Función de adaptación de capa VC-m a datos de usuario
Sm/RFI_A	Función de adaptación de capa VC-m a indicación de fallo distante
Sm/SmP_A	Función de adaptación de capa VC-m a protección de camino lineal VC-m
SmD_TT	Función de terminación de camino de conexión en cascada VC-m
SmD/Sm_A	Función de adaptación de conexión en cascada VC-m a VC-m
SmDm_TT	Función de monitor no intrusivo de conexión en cascada VC-m
Sm-X_TT	Función de terminación de camino de capa VC-m-X
Sm/Sm-X_A	Función de adaptación de capa VC-m a capa VC-m-X

13.1 Funciones de conexión

13.1.1 Conexión de capa VC-m Sm_C

Sm_C es la función que asigna los VC de nivel m (m = 11, 12, 2) en sus puertos de entrada a los VC de nivel m en sus puertos de salida.

El proceso de conexión Sm_C es una función unidireccional que se ilustra en la figura 13-8. Los formatos de señal en los puertos de entrada y de salida de la función son similares, y difieren solamente en la secuencia lógica de los VC-m. Como el proceso no influye en la naturaleza de la información característica de la señal, el punto de referencia en ambos lados de la función Sm_C es el mismo, como se ilustra en la figura 13-8.

Los VC-m entrantes en el Sm_CP se asignan a la capacidad de VC-m saliente disponible en el Sm_CP.

Se aplicará un VC-m no equipado a cualquier VC-m saliente que no esté conectado a un VC-m entrante.

Símbolo

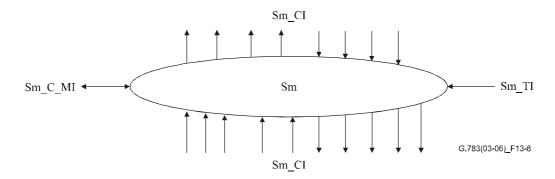


Figura 13-8/G.783 – Símbolo de Sm_C

Interfaces

Cuadro 13-1/G.783 – Señales de entrada y de salida Sm C

Entradas	Salidas	
Por Sm_CI, n × para la función:	Por Sm_CI, m × por función:	
Sm_CI_Data	Sm_CI_Data	
Sm_CI_Clock	Sm_CI_Clock	
Sm_CI_FrameStart	Sm_CI_FrameStart	
Sm_CI_SSF	Sm_CI_SSF	
Sm_AI_TSF		
Sm_AI_TSD		
1 × nonfonción.		
1 × por función:		
Sm_TI_Clock Sm_TI_FrameStart		
Siii_11_FrameStart		
Por punto de conexión de entrada y		
salida:		
Sm C MI ConnectionPortIds		
Por conexión matricial:		
Sm_C_MI_ConnectionType		
Sm_C_MI_Directionality		
Por grupo de protección SNC:		
Sm_C_MI_PROTtype		
Sm_C_MI_OPERtype		
Sm_C_MI_WTRtime		
Sm_C_MI_HOtime		
Sm_C_MI_EXTCMD		
NOTA – Las señales de informe de estado de protección quedan en estudio.		

Procesos

En la función Sm_C, la información característica de capa VC-m se encamina entre puntos de conexión de entrada (terminación) ((T)CP) y de salida (T)CP por medio de conexiones matriciales. Los (T)CP pueden ser asignados dentro de un grupo de protección.

NOTA 1 – En esta Recomendación no se especifica el número de señales de entrada/salida de la función de conexión ni la conectividad. Ésta es una propiedad de cada elemento de red. Los ejemplos de configuraciones Sm_C son iguales a los ejemplos de Sn_C que aparecen en el apéndice I/G.806, salvo que hacen referencia a Sm_CP en vez de a Sn_CP.

La figura 13-1 presenta un subconjunto de las funciones atómicas que se pueden conectar a esta función de conexión VC-m: funciones de terminación de camino VC-m, función de sumidero de terminación de camino de monitor no intrusivo VC-m, funciones de terminación de camino de supervisión no equipada VC-m, funciones de terminación y de adaptación de camino de conexión en cascada VC-m. Además, las funciones de adaptación en las capas de servidor VC-n (por ejemplo, VC-4 o VC-3) se conectarán a esta función de conexión VC-m.

Encaminamiento: La función podrá conectar una entrada específica con una salida específica mediante el establecimiento de una conexión matricial entre la salida y la entrada especificadas y podrá suprimir una conexión matricial establecida.

Cada conexión (matricial) en la función Sm C debe estar caracterizada por:

Tipo de conexión:	No protegida, protegida 1 + 1 (protección SNC/I, SNC/N o SNC/S)
Sentido del tráfico:	Unidireccional, bidireccional
Puntos de conexión de entrada y salida:	Fijación de punto de conexión

NOTA 2 – Las conexiones en difusión se tratan como conexiones distintas a un mismo CP de entrada.

NOTA 3 – Cuando un elemento de red soporta conexiones matriciales protegidas 1 + 1 en su función Sm_C, esta función puede contener en cualquier momento, o bien la totalidad de las conexiones matriciales no protegidas, o bien la totalidad de las conexiones matriciales protegidas 1 + 1, o bien una combinación de conexiones matriciales no protegidas y protegidas 1 + 1. El conjunto efectivo de conexiones matriciales y los correspondientes tipos de conexión y sentidos de transmisión es un parámetro operacional controlado por gestión de red.

A condición de que ninguna acción de conmutación de protección esté activada/solicitada, será posible efectuar los siguientes cambios en (la configuración de) una conexión sin perturbar la CI que pasa por la conexión:

- adición y supresión de protección;
- adición y supresión de conexiones a/desde una conexión en difusión;
- cambio de un tipo de operación a otro;
- cambio de periodo de espera de restablecimiento (WTR);
- cambio de tiempo de obtención.

Generación de VC no equipado: La función generará una señal VC-m no equipada, como se especifica en la Rec. UIT-T G.707/Y.1322.

Defectos

Ninguno.

Acciones consiguientes

Si una salida de esta función no está conectada a una de sus entradas, la función conectará el VC-m no equipado (con comienzo de trama válido (FS) y SSF = falso) a la salida.

Correlación de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.1.1.1 Proceso de protección de conexión de subred VC-m

NOTA 1 – Este proceso se activa en la función Sm_C tantas veces cuantas conexiones matriciales protegidas 1 + 1 existan.

El mecanismo de protección de conexión de subred VC-m se describe en la Rec. UIT-T G.841.

La figura 13-9 muestra las funciones atómicas que participan en la protección de SNC. En la parte inferior izquierda se muestran los dos pares de funciones de adaptación (trabajo y protección) (Sn/Sm_A). Por encima están las funciones de supervisión no intrusiva (Smm_TT_Sk) que no están presentes en caso de SNC/I. A la derecha se muestran las funciones de terminación de camino (Sm_TT) o las funciones de adaptación (Sn/Sm_A) según que el camino Sm esté terminado en el mismo punto en que termina la protección SNC o en un punto posterior.

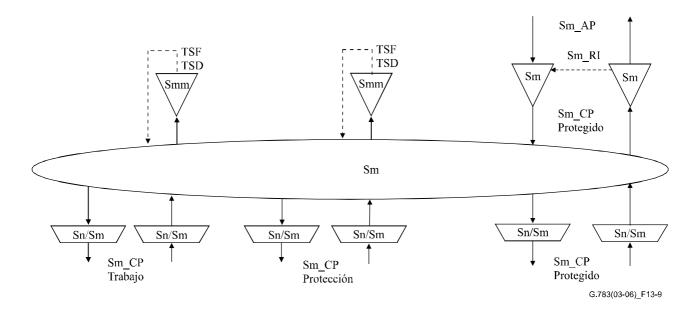


Figura 13-9/G.783 – Funciones atómicas de protección VC-m SNC/N

La función Sm_C puede proporcionar protección al camino contra los defectos asociados al canal dentro de una conexión de (sub)red.

La función Sm_C en ambos extremos actúa de la misma manera, supervisando los defectos de las conexiones de subred de orden inferior, evaluando el estado del sistema habida cuenta de las prioridades de condiciones de defectos y de peticiones de conmutación externas, y conmutando el canal apropiado a la conexión de subred de protección.

El flujo de señales asociado con el proceso de protección Sm_C SNC se describe en las figuras 13-10 y 13-11. El proceso de protección Sm_C SNC recibe parámetros de control y peticiones de conmutación externa en el punto de referencia Sm_C_MP provenientes de la función de gestión de equipo síncrono y genera indicadores de estado en el Sm_C_MP para la función de gestión de equipo síncrono, como resultado de las instrucciones de conmutación descritas en la Rec. UIT-T G.841.

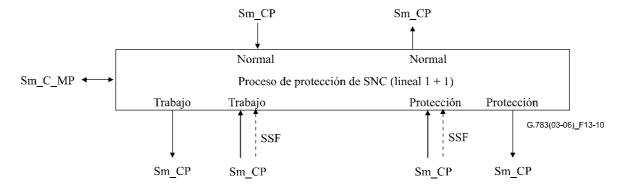


Figura 13-10/G.783 – Proceso de protección de conexión de subred con supervisión inherente de VC-m (SNC/I)

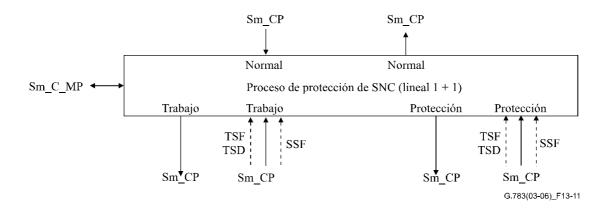


Figura 13-11/G.783 – Proceso de protección de conexión de subred con supervisión no intrusiva de VC-m (SNC/N)

Sentido hacia la fuente

Los datos en el Sm CP están constituidos por una señal de camino VC-m.

Para una arquitectura de 1 + 1, la señal recibida en el Sm_CP de la función Sn/Sm_A (o Sm_TT) está conectada en puente permanentemente en el Sm_CP a las funciones Sn/Sm_A de trabajo y a las de protección.

NOTA 2 – El elemento básico conectado en el Sm_CP a la Sm_C es Sn/Sm_A o Sm_TT. Cuando la señal VC-m es terminada en este elemento de red, será conectada en el Sm_CP a Sm_TT; en los demás casos, será conectada en el Sm_CP a Sn/Sm_A (para transporte ulterior).

Sentido hacia el sumidero

Las señales (datos) de camino entramadas, Sm_CI, se presentan en el Sm_CP junto con las referencias de temporización entrantes. Las condiciones de defectos SSF (y TSF y TSD) se reciben también en el Sm_CP de todas las funciones Sn/Sm_A (o Smm_TT_Sk, m = (11, 12, 2)).

Para la protección SNC/I (véase la figura 13-10) las señales de camino pasan las funciones Sn/Sm_A. Las señales SSF provenientes de Sn/Sm_A_Sk son utilizadas por el proceso de protección Sm_C SNC.

Para la protección SNC/N (véase la figura 13-11) las señales de camino son difundidas a la función Smm_TT_Sk para supervisión no intrusiva del camino. Las señales TSF y TSD resultantes son utilizadas por el proceso de protección Sm C SNC en vez de la señal SSF procedente de Sn/Sm A.

En condiciones normales, Sm_C transfiere los datos y la temporización de las funciones Sn/Sm_A de trabajo a la función Sn/Sm_A (o Sm_TT) en el Sm_CP. Los datos y la temporización recibidos de la conexión de (sub)red de protección no son reenviados.

Si se ha de efectuar una conmutación, los datos y la temporización recibidos de la Sn/Sm_A de protección en el Sm_CP se conmutan a la función Sn/Sm_A (o Sm_TT) en el Sm_CP, y no se reenvía la señal recibida de Sn/Sm A de trabajo en el Sm CP.

Criterios de iniciación de conmutación

La conmutación de protección automática se basa en las condiciones de defecto de las conexiones de subred de trabajo y de protección. Estas condiciones se refieren al fallo de señal de servidor SNC/I (SSF), el fallo de señal de camino SNC/N (TSF) y la degradación de señal de camino (TSD). La detección de estas condiciones se describe en 11.3.1 para Sn/Sm_A y en 12.2.2 para Smm_TT_Sk, m = (11, 12, 2).

La conmutación de protección puede ser iniciada también por instrucciones de conmutación recibidas a través de la función de gestión de equipo síncrono. Véanse los criterios de iniciación de conmutación descritos en la Rec. UIT-T G.841.

Tiempo de conmutación

Véase la Rec. UIT-T G.841 [19].

Conmutación de restablecimiento

En el modo reversible de funcionamiento, el canal de trabajo será restablecido (es decir, la señal en la conexión de (sub)red de protección se conmutará a la conexión de (sub)red de trabajo, cuando la conexión de (sub)red de trabajo se haya recuperado de la avería).

Para evitar frecuentes conmutaciones de protección debidas a una avería intermitente, una conexión de (sub)red que haya fallado debe estar libre de averías. Después que la conexión de (sub)red que haya fallado satisfaga este criterio, deberá transcurrir un periodo de tiempo fijo antes de que sea utilizada de nuevo por un canal de trabajo. Este periodo, denominado periodo de espera al restablecimiento (WTR), estará comprendido en la gama de 1-12 minutos y debe ser posible fijarlo. Una condición SSF, TSF o TSD prevalecerá sobre WTR.

13.2 Funciones de terminación

13.2.1 Terminación de camino de capa VC-m Sm TT

La función de fuente de Sm_TT crea un VC-m (m = 11, 12, 2) en el Sm_CP generando POH y añadiéndola a un contenedor C-m procedente del Sm_AP. En el sentido opuesto de transmisión, termina la POH y la procesa para determinar el estado de los atributos de trayecto definidos. Los formatos de POH se describen en la Rec. UIT-T G.707/Y.1322.

Los datos en el Sm_AP adoptan la forma de un contenedor C-m (m = 1, 2) que está sincronizado con la referencia de temporización Sm TP.

La información adaptada síncronamente en forma de contenedores (datos) síncronos y la información de desplazamiento de trama de contenedor asociada (desplazamiento de trama) se reciben en el Sm AP.

13.2.1.1 Fuente de terminación de camino de capa VC-m Sm TT So

Esta función añade bits de supervisión de errores y de tara de estado al Sm AP.

Los datos en el Sm_AP son VC-m (m = 11, 12, 2) que tiene una cabida útil según se describe en la Rec. UIT-T G.707/Y.1322, pero con los octetos POH de VC-m no determinados: J2, V5. Estos octetos POH se fijan como parte de la función Sm TT y el VC-m completo se reenvía al Sm CP.

Símbolo

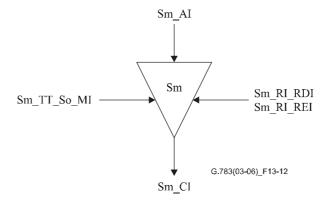


Figura 13-12/G.783 – Símbolo de Sm TT So

Interfaces

Cuadro 13-2/G.783 – Señales de entrada y de salida Sm TT So

Entradas	Salidas
Sm_AI_Data Sm_AI_Clock	Sm_CI_Data Sm_CI_Clock
Sm_AI_FrameStart	Sm_CI_FrameStart
Sm_RI_RDI Sm_RI_REI	
Sm_TT_So_MI_TxTI	

Procesos

J2: Se generará el identificador de traza de camino. Su valor se deriva del punto de referencia Sm_TT_So_MP. El formato de traza de camino se describe en 6.2.2.2/G.806.

V5[1, 2]: En el Sm_CP, la BIP-2 se calculará sobre los datos de la trama anterior, y el resultado se transmitirá en los bits 1 y 2 del octeto V5.

V5[3]: El número de errores indicados en RI_REI se codifica en el bit REI. Tras la detección de un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en el bit REI dentro de 4 ms.

V5[8]: Cuando RI_RDI está activo, la indicación RDI se enviará en el bit 8 del octeto V5. Tras la declaración/desaparición de aRDI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido el código RDI dentro de 4 ms.

K4[5-7]: Reservados para utilización facultativa de la RDI mejorada (E-RDI) descrita en el apéndice VI. Si no se utiliza esta opción, los bits 5-7 del octeto K4 se fijarán a "000" o "111".

N2: Este octeto no está definido.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.2.1.2 Sumidero de terminación de camino de capa VC-m Sm TT Sk

Esta función supervisa el VC-m (m = (11, 12 ó 2)) en búsqueda de errores, y recupera el estado de terminación de camino. Extrae los octetos/bits de tara independiente de la cabida útil (J2, V5[1-2], V5[3], V5[5-7], V5[8]) de la información característica de capa VC-m.

Símbolo

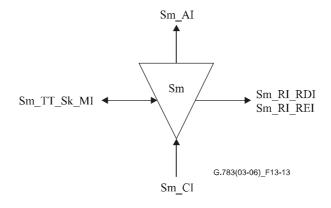


Figura 13-13/G.783 – Símbolo de Sm_TT_Sk

Interfaces

Cuadro 13-3/G.783 – Señales de entrada y de salida Sm TT Sk

Entradas	Salidas
Sm_CI_Data	Sm_AI_Data
Sm_CI_Clock	Sm_AI_Clock
Sm_CI_FrameStart	Sm_AI_FrameStart
Sm_CI_SSF	Sm_AI_TSF
Sm_TT_Sk_MI_TPmode	Sm_AI_TSD
Sm_TT_Sk_MI_ExTI	Sm_RI_RDI
Sm_TT_Sk_MI_RDI_Reported	Sm_RI_REI
Sm_TT_Sk_MI_SSF_Reported	Sm_TT_Sk_MI_cTIM
Sm_TT_Sk_MI_DEGTHR	Sm_TT_Sk_MI_cUNEQ
Sm_TT_Sk_MI_DEGM	Sm_TT_Sk_MI_cEXC
Sm_TT_Sk_MI_EXC_X	Sm_TT_Sk_MI_cDEG
Sm_TT_Sk_MI_DEG_X	Sm_TT_Sk_MI_cRDI
Sm_TT_Sk_MI_1second	Sm_TT_Sk_MI_cSSF
Sm_TT_Sk_MI_TIMdis	Sm_TT_Sk_MI_AcTI
Sm_TT_Sk_MI_TIMAISdis	Sm_TT_Sk_MI_pN_EBC
	Sm_TT_Sk_MI_pN_DS
	Sm_TT_Sk_MI_pF_EBC
	Sm_TT_Sk_MI_pF_DS

Procesos

J2: El identificador de traza de camino se recupera de POH de VC-m en el Sm_CP y se trata como se especifica en 6.2.2.2/G.806. El valor aceptado de J2 está disponible también en el Sm_TT_Sk_MP. Para una descripción más amplia del tratamiento de la discordancia de identificador de traza, véase 6.2.2.2/G.806.

V5[5-7]: El defecto no equipado se trata como se describe en 6.2.1.3/G.806.

V5[1, 2]: Se recuperarán los bits de supervisión de errores en el Sm_CP. Se calcula la BIP-2 para la trama VC-m. El valor de BIP-2 calculado para la trama actual se compara con los bits 1 y 2 recuperados de la trama siguiente.

El proceso para detectar excesivos errores y degradaciones de la señal se describe en 6.2.3.1/G.806.

V5[3]: Se recuperará la REI, y las primitivas de calidad de funcionamiento derivadas deberán informarse en el Sm_TT_Sk_MP.

V5[8]: El defecto RDI se trata como se describe en 6.2.6.3/G.806.

N2: El octeto de operador de red se define para la supervisión de TC. Esta función no tendrá en cuenta este octeto.

K4[5-7]: Estos bits están reservados para la utilización facultativa de la RDI mejorada (E-RDI), descrita en el apéndice VI. Si no se utiliza esta opción, no se tendrá en cuenta el contenido de estos bits.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG y dRDI de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aAIS \leftarrow dUNEQ o (dTIM y no TIMAISdis)
```

aRDI \leftarrow CI SSF o dUNEQ o dTIM

aREI ← "número de violaciones de código de detección de errores"

aTSF ← CI SSF o dUNEQ o (dTIM y no TIMAISdis)

aTSFprot ← aTSF o dEXC

 $aTSD \leftarrow dDEG$

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

cSSF ← CI SSF y MON y SSF Reported

 $cUNEQ \leftarrow dUNEQ y MON$

 $cTIM \leftarrow dTIM y (no dUNEQ) y MON$

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y (no dUNEQ) y (no dTIM o TIMAISdis) y MON y RDI Reported

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

pN DS \leftarrow CI SSF o dUNEQ o dTIM o dEQ

 $pF DS \leftarrow dRDI$

pN EBC $\leftarrow \Sigma$ nN B

pF EBC $\leftarrow \Sigma nF B$

NOTA – Pudiera existir una divergencia entre informes de supervisión de la calidad de funcionamiento en una S12m_TT_Sk y en una S11_TT_Sk para un camino VC-11 (véase lo referente a S4/S11*_A).

13.2.2 Monitor no intrusivo de capa VC-m

Se definen dos versiones del monitor no intrusivo de VC-m.

La versión 1 sólo es aplicable a la supervisión de las VC-m equipadas. No puede utilizarse para la supervisión de VC no equipados con medios supervisión, pues el defecto no equipado estará constantemente activo y, en consecuencia, activará TSF y suprimirá otros defectos.

La versión 2 es aplicable a la supervisión de VC equipados y no equipados con medios de supervisión, ya que el defecto no equipado está correlacionado con un identificador de traza aceptado de todos ceros.

13.2.2.1 Monitor no intrusivo de capa VC-m, versión 1 Smm1 TT Sk

La versión 1 de las funciones de supervisión de tara de trayecto VC-m sólo es aplicable a la supervisión de VC equipados con medios de supervisión.

Esta función supervisa la VC-m (m = (11, 12 ó 2)) en búsqueda de errores, y recupera el estado de terminación de camino. Extrae los octetos/bits de tara independiente de la cabida útil (J2, V5[1-2], V5[3], V5[5-7], V5[8]), de la información característica de capa VC-m.

Símbolo

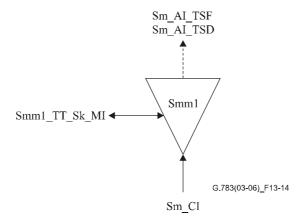


Figura 13-14/G.783 – Símbolo de Smm1 TT Sk

Interfaces

Cuadro 13-4/G.783 – Señales de entrada y de salida Smm1 TT Sk

Entradas	Salidas
Sm CI Data	Sm AI TSF
Sm_CI_Clock	Sm_AI_TSD
Sm CI FrameStart	Smm1 TT Sk MI cTIM
Sm CI SSF	Smm1 TT Sk MI cUNEQ
Smm1_TT_Sk_MI_TPmode	Smm1_TT_Sk_MI_cDEG
Smm1_TT_Sk_MI_ExTI	Smm1_TT_Sk_MI_cEXC
Smm1_TT_Sk_MI_RDI_Reported	Smm1_TT_Sk_MI_cRDI
Smm1_TT_Sk_MI_SSF_Reported	Smm1_TT_Sk_MI_cSSF
Smm1_TT_Sk_MI_DEGTHR	Smm1_TT_Sk_MI_AcTI
Smm1_TT_Sk_MI_DEGM	Smm1_TT_Sk_MI_pN_EBC
Smm1_TT_Sk_MI_EXC_X	Smm1_TT_Sk_MI_pF_EBC
Smm1_TT_Sk_MI_DEG_X	Smm1_TT_Sk_MI_pN_DS
Smm1_TT_Sk_MI_1second	Smm1_TT_Sk_MI_pF_DS
Smm1_TT_Sk_MI_TIMdis	_ _

Procesos

J2: El identificador de traza de camino se recupera de la POH del VC-m en el Sm_CP. El valor aceptado del J2 está disponible también en el Smm1_TT_Sk_MP. Para una descripción más amplia del tratamiento de la discordancia de identificador de traza, véase 6.2.2.2/G.806.

V5[5-7]: Se recuperará la etiqueta de señal en el Sm_CP. Para una descripción más amplia del tratamiento de defectos no equipados, véase 6.2.1.3/G.806. La función detectará una condición AIS VC (VC-AIS) supervisando el VC SL en búsqueda del código "111". Para una descripción más amplia del tratamiento del defecto VC AIS, véase 6.2.6.2/G.806.

V5[1, 2]: Se recuperarán los bits de supervisión de errores en el Sm_CP. Se calcula BIP-2 para la trama VC-m. El valor de BIP-2 calculado para la trama actual se compara con los bits 1 y 2 recuperados de la trama siguiente.

El proceso para detectar excesivos errores y degradación de la señal a partir del octeto V5 bits [1, 2] se describe en 6.2.3.1/G.806.

V5[3]: Se recuperará REI en el bit 3 y las primitivas de funcionamiento derivadas se deben informar en el Smm1 TT MP. Véase más adelante.

V5[8]: La información RDI de trayecto en el bit 8 se recuperará y se informará en el Smm1_TT_Sk_MP. Para una descripción más amplia del tratamiento de defectos RDI, véase 6.2.6.3/G.806.

N2: El octeto de operador de red se define para la supervisión de TC. Esta función no lo tendrá en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG, dAIS y dRDI de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806).

```
aTSF ← CI_SSF o dAIS o dUNEQ o (dTIM y no TIMAISdis)
aTSFprot ← dEXC o aTSF
```

 $aTSD \leftarrow dDEG$

Correlaciones de defectos

La función realizará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF ← (CI SSF o dAIS) y SSF Reported y MON
```

 $cUNEQ \leftarrow dUNEQ y MON$

 $cTIM \leftarrow dTIM y (no dUNEQ) y MON$

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y (no dUNEQ) y (no dTIM o TIMAISdis) y MON y RDI Reported

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

 $pN_DS \leftarrow CI_SSF \text{ o dUNEQ o dTIM o dEQ}$ $pF_DS \leftarrow dRDI$ $pN_BC \leftarrow \Sigma nN_B$

pF EBC $\leftarrow \Sigma \text{ nF B}$

NOTA – Pudiera haber una divergencia entre informes PM en una S12m1_TT_Sk y en una S11_TT_Sk para un camino VC-11 (véase lo referente a S4/S11* A).

13.2.2.2 Monitor no intrusivo de capa VC-m, versión 2, Smm2 TT Sk

La versión 2 de las funciones de monitor de tara de trayecto VC-m es aplicable a la supervisión de VC equipados y no equipados de medios de supervisión.

Esta función supervisa el VC-m (m = (11, 12 ó 2)) en búsqueda de errores, y recupera el estado de terminación de camino. Extrae los octetos/bits de tara independientes de la cabida útil (J2, V5[1-2], V5[3], V5[5-7], V5[8]), de la información característica de la capa VC-m.

Símbolo

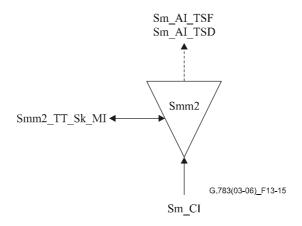


Figura 13-15/G.783 – Símbolo de Smm2 TT Sk

Interfaces

Cuadro 13-5/G.783 – Señales de entrada y de salida Smm2_TT_Sk

Entradas	Salidas
Sm_CI_Data	Sm_AI_TSF
Sm_CI_Clock	Sm_AI_TSD
Sm CI FrameStart	Smm2 TT Sk MI cTIM
Sm_CI_SSF	Smm2_TT_Sk_MI_cUNEQ
Smm2_TT_Sk_MI_TPmode	Smm2_TT_Sk_MI_cDEG
Smm2_TT_Sk_MI_ExTI	Smm2_TT_Sk_MI_cEXC
Smm2 TT Sk MI RDI Reported	Smm2 TT Sk MI cRDI
Smm2_TT_Sk_MI_DEGTHR	Smm2_TT_Sk_MI_cSSF
Smm2_TT_Sk_MI_DEGM	Smm2_TT_Sk_MI_AcTI
Smm2 TT Sk MI EXC X	Smm2 TT Sk MI pN EBC
Smm2_TT_Sk_MI_DEG_X	Smm2_TT_Sk_MI_pF_EBC
Smm2_TT_Sk_MI_1second	Smm2_TT_Sk_MI_pN_DS
Smm2_TT_Sk_MI_TIMdis	Smm2_TT_Sk_MI_pF_DS
Smm2_TT_Sk_MI_SSF_Reported	

Procesos

J2: El identificador de traza de camino se recupera de POH de VC-m en el Sm_CP. El valor aceptado de J2 está disponible también en el Smm2_TT_Sk_MP. Para una descripción más amplia del tratamiento de la discordancia del identificador de traza, véase 6.2.2.2/G.806.

V5[5-7]: Se recuperará la etiqueta de señal en el Sm_CP. Para una descripción más amplia del tratamiento de defectos no equipados, véase 6.2.1.3/G.806. La función detectará una condición AIS VC (VC-AIS) supervisando el VC SL en búsqueda del código "111". Para una descripción más amplia del tratamiento del defecto VC AIS, véase 6.2.6.2/G.806.

V5[1, 2]: Se recuperarán los bits de supervisión de errores en el Sm_CP. Se calcula BIP-2 para la trama VC-m. El valor de BIP-2 calculado para la trama actual se compara con los bits 1 y 2 recuperados de la trama siguiente.

El proceso para detectar excesivos errores y degradaciones de la señal a partir del octeto V5 bits [1, 2] se describe en 6.2.3.1/G.806.

V5[3]: Se recuperará REI en el bit 3 y las primitivas de funcionamiento derivadas se deben informar en el Smm2 TT MP. Véase más adelante.

V5[8]: La información RDI de trayecto en el bit 8 se recuperará y se informará en el Smm2_TT_Sk_MP. Para una descripción más amplia del tratamiento de defectos RDI, véase 6.2.6.3/G.806.

N2: El octeto de operador de red se define para la supervisión de TC. Esta función no lo tendrá en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG, dAIS y dRDI de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806).

```
aTSF \leftarrow CI_SSF o dAIS o (dUNEQ y (AcTI = todos "0")) o (dTIM y no TIMAISdis)
aTSFprot \leftarrow dEXC o aTSF
aTSD \leftarrow dDEG
```

arsb \ abld

Correlaciones de defectos

La función realizará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cUNEQ ← dUNEQ y (AcTI = todos "0") y MON

cTIM ← dTIM y no (dUNEQ y (AcTI = todos "0")) y MON

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y no (dUNEQ y (AcTI = todos "0")) y (no dTIM o TIMAISdis) y MON y RDI_Reported

cSSF ← (CI_SSF o dAIS) y MON y SSF_Reported
```

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

pN DS ← CI SSF o dAIS o (dUNEQ y (AcTI = todos "0")) o dTIM o dEQ

 $pF DS \leftarrow dRDI$

pN EBC $\leftarrow \Sigma$ nN B

pF EBC $\leftarrow \Sigma nF B$

NOTA – Pudiera haber una divergencia entre informes PM en una S12m2_TT_Sk y en una S11_TT_Sk para un camino VC-11 (véase lo referente a S4/S11* A).

13.2.3 Terminación no equipada con supervisión de capa VC-m Sms TT

La función Smm_TT crea un VC-m (m = (11, 12, 2)) en el Sm_CP generando POH y añadiéndola a un contenedor C-m no definido. En el sentido opuesto de transmisión, termina la POH y la procesa para determinar el estado de los atributos de trayecto definidos. Los formatos de POH se definen en la Rec. UIT-T G.707/Y.1322.

NOTA – La función Sms_TT (m = (11, 12, 2)) genera y supervisa señales no equipadas de supervisión.

13.2.3.1 Fuente de terminación no equipada de supervisión de capa VC-m Sms TT So

Esta función genera octetos de supervisión de errores y de tara de estado para un VC-m (m = (11, 12 ó 2)) no definido.

Símbolo

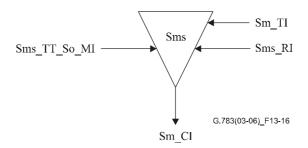


Figura 13-16/G.783 – Símbolo de Sms TT So

Interfaces

Cuadro 13-6/G.783 – Señales de entrada y de salida Sms TT So

Entradas	Salidas
Sms_RI_RDI	Sm CI Data
Sms_RI_REI	Sm_CI_Clock
Sm_TI_Clock	Sm_CI_FrameStart
Sm_TI_FrameStart	
Sms_RI_RDI	
Sms_RI_REI	
Sms_TT_So_MI_TxTI	

Procesos

Se debe generar un VC-m no definido ($m = (11, 12 \circ 2)$).

V5[5-7]: La etiqueta de señal 000 (no equipada) se debe insertar en el VC-m.

J2: Se debe generar el identificador de traza de camino. Su valor se deriva del punto de referencia Sms_TT_MP. El formato de traza de camino se describe en 6.2.2.2/G.806.

V5[1, 2]: Se calculará BIP-2 en los datos en el Sms_AP en la trama anterior y el resultado se transmitirá en los bits 1 y 2 del octeto V5.

V5[3]: El número de errores indicado en RI_REI se codifica en REI. Al detectarse un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en el bit REI dentro de 4 ms.

V5[8]: El bit 8 del octeto V5, una indicación RDI, se pondrá a "1/0" al activarse/desaparecer RI_RDI. Al declararse/desaparecer aRDI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido el código RDI dentro de 4 ms.

K4[5-7]: La función insertará el código "000" o "111" en los bits 5, 6 y 7 del octeto K4.

NOTA – El soporte de la aplicación RDI mejorada queda en estudio.

N2: Se debe insertar 00000000 en el octeto TCM.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.2.3.2 Sumidero de terminación no equipada de supervisión de capa VC-m Sms TT Sk

Esta función supervisa los errores de VC-m (m = (11, 12 ó 2)) y recupera el estado de terminación de camino. Extrae los octetos/bits de tara independientes de la cabida útil (J2, V5[1-2], V5[3], V5[5-7], V5[8]), de la información característica de capa VC-m.

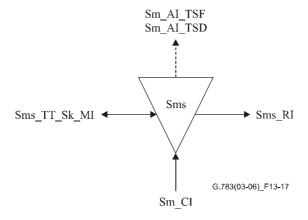


Figura 13-17/G.783 – Símbolo de Sms TT Sk

Cuadro 13-7/G.783 – Señales de entrada y de salida Sms TT Sk

Entradas	Salidas
Sm_CI_Data	Sm_AI_TSF
Sm_CI_Clock	Sm_AI_TSD
Sm_CI_FrameStart	Sm_RI_RDI
Sm_CI_SSF	Sm_RI_REI
Sms_TT_Sk_MI_TPmode	Sms_TT_Sk_MI_cTIM
Sms_TT_Sk_MI_ExTI	Sms_TT_Sk_MI_cUNEQ
Sms_TT_Sk_MI_RDI_Reported	Sms_TT_Sk_MI_cDEG
Sms_TT_Sk_MI_SSF_Reported	Sms_TT_Sk_MI_cEXC
Sms_TT_Sk_MI_DEGTHR	Sms_TT_Sk_MI_cRDI
Sms_TT_Sk_MI_DEGM	Sms_TT_Sk_MI_cSSF
Sms_TT_Sk_MI_EXC_X	Sms_TT_Sk_MI_AcTI
Sms_TT_Sk_MI_DEG_X	Sms_TT_Sk_MI_pN_EBC
Sms_TT_Sk_MI_1second	Sms_TT_Sk_MI_pF_EBC
Sms_TT_Sk_MI_TIMdis	Sms_TT_Sk_MI_pN_DS
	Sms_TT_Sk_MI_pF_DS

Procesos

J2: El identificador de traza de camino se recupera de POH de VC-m en el Sm_CP. El valor aceptado del identificador de traza de camino está disponible también en el Sms_TT_MP. Para una descripción más amplia del tratamiento de la discordancia de identificador de traza, véase 6.2.2.2/G.806.

V5[5-7]: Se recuperará la etiqueta de señal en el Sm_CP. Obsérvese que en el sentido hacia el sumidero Sms_TT se espera siempre una etiqueta de señal no equipada. Para una descripción más amplia del tratamiento de defectos no equipados, véase 6.2.1.3/G.806.

V5[1, 2]: Se recuperarán los bits de supervisión de errores en el Sm_CP. Se calcula BIP-2 para la trama VC-m. El valor de BIP-2 calculado para la trama actual se compara con los bits 1 y 2 recuperados de la trama siguiente.

El proceso para detectar excesivos errores y degradación de la señal a partir de BIP-2 se describe en 6.2.3.1/G.806.

V5[3]: Se recuperará REI y las primitivas de funcionamiento derivadas se deben informar en los Sms TT MP. Véase más adelante.

V5[8]: La información RDI de trayecto se recuperará y se informará en los Sms_TT_MP. Para una descripción más amplia del tratamiento de defectos RDI, véase 6.2.6.3/G.806.

K4[5-7] La función podrá no tener en cuenta el contenido de los bits 5, 6 y 7 del octeto K4.

NOTA – El soporte de la aplicación RDI mejorada queda en estudio.

N2: El octeto de operador de red se define para la supervisión de TC. Esta función no lo tendrá en cuenta.

Defectos

La función detectará los defectos dUNEQ, dTIM, dEXC, dDEG y dRDI de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aRDI \leftarrow CI SSF o dTIM
```

aREI ← "número de violaciones de código de detección de errores"

aTSF \leftarrow CI SSF o (dTIM y no TIMAISdis)

aTSFprot ← aTSF o dEXC

 $aTSD \leftarrow dDEG$

Correlaciones de defectos

La función efectuará las siguientes correlaciones de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF \qquad \leftarrow \quad CI\_SSF \ y \ SSF\_Reported \ y \ MON
```

cUNEQ ← dTIM y (AcTI = todos CEROS) y dUNEQ y MON

cTIM ← dTIM y (no (dUNEQ y AcTI = todos CEROS)) y MON

cEXC ← dEXC y (no dTIM o TIMAISdis) y MON

cDEG ← dDEG y (no dTIM o TIMAISdis) y MON

cRDI ← dRDI y (no dTIM o TIMAISdis) y MON y RDI Reported

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Las primitivas de supervisión de la calidad de funcionamiento se informarán a la SEMF.

```
pN\_DS \qquad \leftarrow \quad CI\_SSF \ o \ dTIM \ o \ dEQ
```

 $pF DS \leftarrow dRDI$

 $pN_EBC \leftarrow \Sigma nN_B$

pF EBC $\leftarrow \Sigma nF B$

13.3 Funciones de adaptación

13.3.1 Adaptación de capa VC-m a capa Pqx y a capa Pqs Sm/Pqx_A, Sm/Pqs_A

Sm/Pqx_A o Sm/Pqs_A (m = (11, 12, 2), q = (11, 12, 21)) opera en el puerto de acceso a una red o una subred síncrona y adapta datos de usuario para el transporte en el dominio síncrono. La función Sm/Pqx_A o Sm/Pqs_A actúa también como una fuente y un sumidero para la información dependiente de la cabida útil de POH. Para datos de usuario asíncronos, la adaptación de VC-m implica justificación de bits. La función Sm/Pqx_A o Sm/Pqs_A hace corresponder señales G.703 (PDH) a VC-m, que puede subsiguientemente hacerse corresponder a contenedores de orden superior.

Se definen funciones de adaptación para cada uno de los niveles en las jerarquías plesiócronas existentes. Cada función de adaptación define la manera en la cual una señal de usuario puede hacerse corresponder a uno de los contenedores de una gama de contenedores síncronos C-m de tamaño apropiado. Se han elegido tamaños de contenedor para facilitar la correspondencia de diversas combinaciones de tamaños a contenedores de orden superior; véase el cuadro 13-8. En la Rec. UIT-T G.707/Y.1322 figuran especificaciones detalladas de la correspondencia de datos de usuarios a contenedores.

Cuadro 13-8/G.783 – Tamaños de contenedores

Funciones atómicas	Capa de servidor	Capa de cliente	Etiqueta de señal	Tamaño de contenedor	Tipo de correspondencia
S11/P11x-bit_A	S11	P11x	011	C-11	sincronismo de bits
S11/P11s-b_A_Sk S11/P11s-x_A_So	S11	P11s	100	C-11	sincronismo de octetos
S11/P11x_A	S11	P11x o P11s	010	C-11	asíncrona
S12/P12s-b_A_So S12/P12s-x_A_Sk	S12	P12s	100	C-12	sincronismo de octetos
S12/P12x_A	S12	P12x o P12s	010	C-12	asíncrona
S2/P21x_A	S2	P21x	010	C-2	asíncrona

13.3.1.1 Fuente de adaptación de capa VC-m a capa Pqx y a capa Pqs Sm/Pqx_A_So, Sm/Pqs_A_So

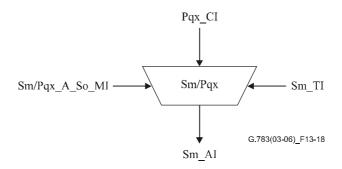


Figura 13-18/G.783 – Símbolo de Sm/Pqx_A_So

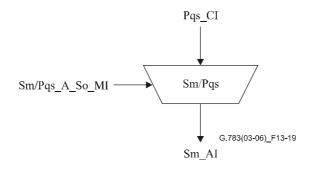


Figura 13-19/G.783 – Símbolo de Sm/Pqs_A_So

Cuadro 13-9/G.783 – Señales de entrada y de salida Sm/Pqx A So

Entradas	Salidas
Pqx CI Data	Sm AI Data
Pax CI Clock	Sm AI Clock
Sm TI Clock	Sm AI FrameStart
Sm TI FrameStart	
Sm/Pqx_A_So_MI_Active	

Cuadro 13-10/G.783 – Señales de entrada y de salida Sm/Pqs A So

Entradas	Salidas
Pqs_CI_Data Pqs_CI_Clock Pqs_CI_FrameStart Sm/Pqs_A_So_MI_Active	Sm_AI_Data Sm_AI_Clock Sm_AI_FrameStart

Procesos

Los datos en Pqx_CP (o Pqs_CP) constituyen el tren de información de usuario. La temporización de los datos se entrega también como temporización en el CP. Los datos se adaptan de acuerdo con una de las funciones de adaptación mencionadas anteriormente. Esto supone la sincronización y correspondencia del tren de información en un contenedor como se describe en la Rec. UIT-T G.707/Y.1322 y la adición de funciones dependientes de la cabida útil.

El contenedor se pasa al Sm_AP como datos junto con el desplazamiento de trama que representa el desplazamiento de la trama de contenedor con respecto al punto de referencia Sm_TP. En correspondencia síncrona de octetos, el desplazamiento de trama se obtiene del alineador de trama asociado en la función de capa PDH (E11/P11s_A_Sk o E12/P12s_A_Sk). Este desplazamiento de trama está limitado por los requisitos de la capa de cliente; por ejemplo, para el equipo SDH, la temporización de la capa de cliente se especifica en la Rec. UIT-T G.813. En otras correspondencias, se puede generar internamente un desplazamiento fijo conveniente.

V5[5-8]: La etiqueta de señal se insertará en los bits 5, 6 y 7 del octeto V5 de acuerdo con el tipo de correspondencia utilizado por la función de adaptación; véase el cuadro 13-8.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.3.1.2 Sumidero de adaptación de capa VC-m a capa Pqx y a capa Pqs Sm/Pqx_A_Sk, Sm/Pqs_A_Sk

Símbolo

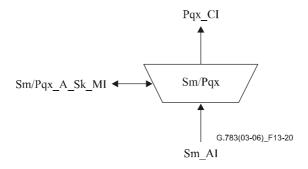
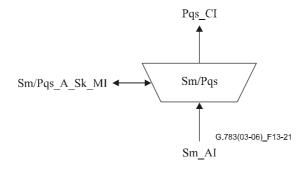



Figura 13-20/G.783 – Símbolo de Sm/Pqx_A_Sk

 $Figura~13\text{-}21/G.783 - Símbolo~de~Sm/Pqs_A_Sk$

Interfaces

Cuadro 13-11/G.783 – Señales de entrada y de salida Sm/Pqx_A_Sk

Entradas	Salidas
Sm AI Data	Pqx CI Data
Sm_AI_Clock	Pqx_CI_Clock
Sm_AI_FrameStart	Sm/Pqx_A_Sk_MI_cPLM
Sm_AI_TSF	Sm/Pqx_A_Sk_MI_AcSL
Sm/Pqx_A_Sk_MI_Active	

Cuadro 13-12/G.783 – Señales de entrada y de salida Sm/Pqs_A_Sk

Entradas	Salidas
Sm_AI_Data Sm_AI_Clock Sm_AI_FrameStart Sm_AI_TSF Sm/Pqs_A_Sk_MI_Active	Pqs_CI_Data Pqs_CI_Clock Sm/Pqs_A_Sk_MI_cPLM Sm/Pqs_A_Sk_MI_AcSL

Procesos

Los datos del tren de información en el Sm_AP se presentan como un contenedor junto con desplazamiento de trama. El tren de información de usuario se recupera del contenedor junto con el reloj asociado adecuado para la temporización de línea afluente y pasa al punto de referencia Pqx_CP (o Pqs_CP) como datos y temporización. Esto supone la descorrespondencia y desincronización descritas en la Rec. UIT-T G.707/Y.1322 y la información dependiente de la cabida útil.

NOTA – Se pueden requerir otras señales del Sm_CP para generar información de tara y de mantenimiento para señales (PDH) G.703 con correspondencia síncrona de octetos. Este aspecto queda en estudio.

V5[5-7]: Se recupera la etiqueta de señal en los bits 5, 6 y 7 del octeto V5. Para una descripción más amplia del tratamiento de etiqueta de señal, véase 6.2.4.2/G.806.

Defectos

La función detectará los defectos dPLM de acuerdo con la especificación en 6.2.4.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

aAIS \leftarrow AI_TSF o dPLM

aSSF \leftarrow AI TSF o dPLM

Cuando se aplica AIS en el Sm_AP, o se detecta un defecto dPLM (falta de concordancia entre el valor esperado de etiqueta de señal y el valor recibido), la función de adaptación generará una señal todos UNOS (AIS) de acuerdo con las Recomendaciones pertinentes de la serie G.700.

Correlaciones de defectos

La función efectuará la siguiente correlación de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

 $cPLM \leftarrow dPLM y (no AI TSF)$

Supervisión de la calidad de funcionamiento

Ninguna.

13.3.2 Adaptación de capa VC-m a ATM VP Sm/Avp A

13.3.2.1 Fuente de adaptación de capa VC-m a ATM VP Sm/Avp A So

Esta función se describe en la Rec. UIT-T I.732 [21].

13.3.2.2 Sumidero de adaptación de capa VC-m a ATM VP Sm/Avp_A_Sk

Esta función se describe en la Rec. UIT-T I.732.

13.3.3 Adaptación de capa VC-m a RFI Sm/RFI_A

El tratamiento del bit de indicación de fallo distante (RFI, remote failure indication) (bit 4 de V5) queda en estudio.

13.3.4 Función de adaptación de VC-m a señal de cliente (Sm/<cli>ent> A)

En la cláusula 8.5/G.806 [13] y en la Rec. UIT-T G.7041/Y.1303 [26] se describe esta función de adaptación utilizando correspondencias del GFP.

13.4 Funciones de subcapa

13.4.1 Funciones de protección de camino de capa VC-m

La conmutación de protección de camino de VC-m se describe en la Rec. UIT-T G.841.

La función SmP_C proporciona protección del camino contra defectos asociados al canal dentro de un camino desde la fuente de terminación de camino hasta el sumidero de terminación de camino. En la figura 13-22 se muestra la subcapa de protección de camino. La estructuración en subcapas se realiza en el Sm_AP creando la subcapa SmP. La protección se efectúa en el punto de conexión estructurado en subcapa (SmP CP).

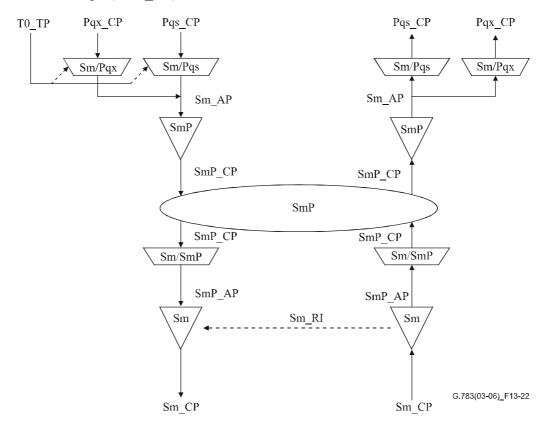


Figura 13-22/G.783 – Funciones de subcapa de protección de camino lineal VC-m

Las funciones SmP_C en ambos extremos operan de la misma manera, supervisando los defectos de VC-m (m = (11, 12, 2)), evaluando el estado del sistema habida cuenta de las prioridades de condiciones de defectos y de las peticiones de conmutación externas y distantes, y seleccionando la señal del trayecto apropiado. Ambas funciones SmP_C pueden comunicar entre sí a través de un protocolo basado en bits definido para los octetos de información característica SmP_C (octeto K4 en la POH del trayecto de protección). Este protocolo se describe en la Rec. UIT-T G.841.

En la figura 13-23 se muestra la función de protección de camino. Las líneas de trabajo y de protección se muestran en las figuras 13-24 a 13-26.

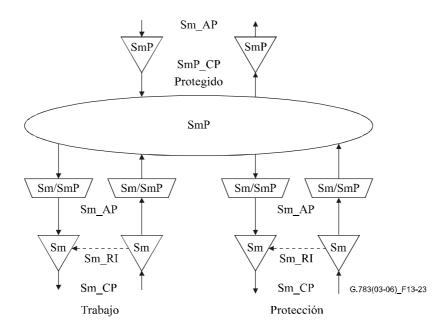


Figura 13-23/G.783 – Funciones atómicas de protección de camino lineal VC-m

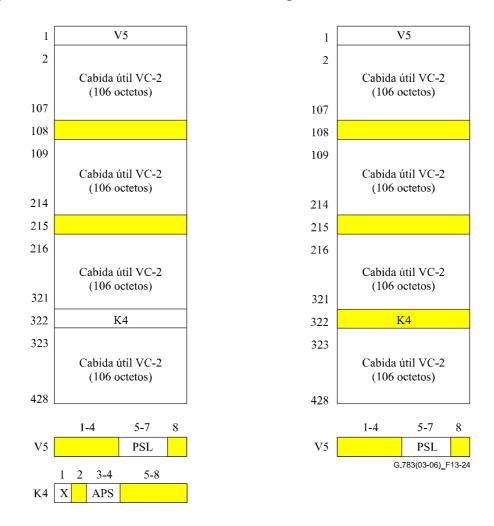


Figura 13-24/G.783 – S2P AI D (izquierda) y S2P CI D (derecha)

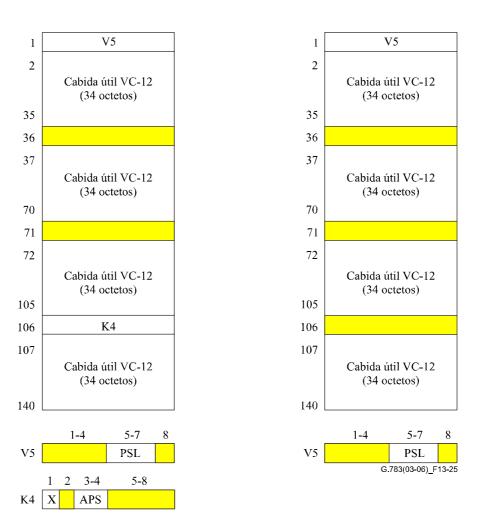
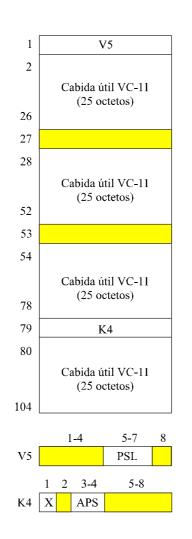



Figura 13-25/G.783 – S12P_AI_D (izquierda) y S12P_CI_D (derecha)

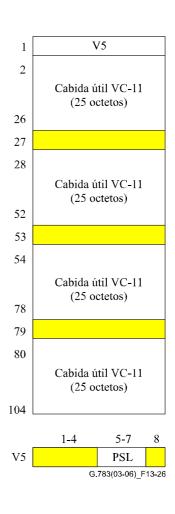


Figura 13-26/G.783 – S11P AI D (izquierda) y S11P CI D (derecha)

13.4.1.1 Conexión de protección de camino de capa VC-m SmP C

La función SmP_C recibe parámetros de control y peticiones de conmutación externas en el punto de referencia SmP_C_MP procedentes de la función de gestión de equipo síncrono y genera indicadores de estado en el SmP_C_MP para la función de gestión de equipo síncrono, como resultado de las instrucciones de conmutación descritas en la Rec. UIT-T G.841.

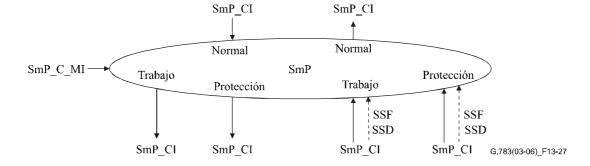


Figura 13-27/G.783 – Símbolo de SmP_C

Cuadro 13-13/G.783 – Señales de entrada y de salida SmP_C

Entradas	Salidas	
Para puntos de conexión W y P:	Para puntos de conexión W y P:	
SmP CI Data	SmP CI Data	
SmP_CI_Clock	SmP_CI_Clock	
SmP_CI_FrameStart	SmP_CI_FrameStart	
SmP_CI_SSF		
SmP_CI_SSD	Para punto de conexión N:	
	SmP_CI_Data	
Para punto de conexión N:	SmP_CI_Clock	
SmP_CI_Data	SmP_CI_FrameStart	
SmP_CI_Clock	SmP_CI_SSF	
SmP_CI_FrameStart		
	Para punto de conexión P:	
Para punto de conexión P:	SmP_CI_APS	
SmP_CI_APS		
SmP_C_MI_OPERType		
SmP_C_MI_WTRTime		
SmP_C_MI_HOTime		
SmP_C_MI_EXTCMD		
NOTA – Las señales que informan estado de protección quedan en estudio.		

Procesos

Sentido hacia la fuente

Los datos en el SmP_CP están constituidos por una señal de camino, temporizada a partir del punto de referencia Sm TP, con los octetos POH de capa Sm no determinados.

Para la arquitectura de 1 + 1, la señal recibida en el SmP_CP de la función de terminación de camino de protección (SmP_TT_So) está conectada en puente permanentemente en el SmP_CP a ambas funciones de terminación de camino, de protección y de trabajo (SmP_TT_So).

La información APS generada de acuerdo con las reglas de la Rec. UIT-T G.841 se presenta en el SmP_CP al camino de protección. Esta señal APS se puede presentar también a la terminación de camino de protección de caminos de trabajo (SmP_TT_So).

Sentido hacia el sumidero

Las señales (datos) de camino entramadas, SmP_CI, cuyos octetos POH de camino de orden inferior ya han sido recuperados por Sm_TT_Sk, se presentan en el SmP_CP junto con las referencias de temporización entrantes. Las condiciones de defecto SSF y SSD se reciben también en el SmP_CP, de todas las funciones Sm_TT_Sk.

La información APS recuperada de la función de adaptación de camino de protección (Sm/SmP_A_Sk) se presenta en el SmP_CP. Las funciones de adaptación de camino de trabajo pueden presentar también estos octetos al SmP_C. El SmP_C podrá no tener en cuenta estos octetos de las funciones de adaptación de trabajo.

En condiciones normales, SmP_C pasa los datos, la temporización y el fallo de la señal de las funciones Sm/SmP_A_Sk de trabajo a las correspondientes funciones SmP_TT_Sk en el SmP_TCP. Los datos y la temporización del camino de protección no se reenvían.

Cuando hay una condición de avería en el trayecto de trabajo, SmP_C pasa los datos, la temporización y el fallo de la señal de la función Sm/SmP_A_Sk de protección a la correspondiente función SmP TT Sk en el SmP TCP. La señal recibida de Sm/SmP A Sk de trabajo no se reenvía.

Criterios de iniciación de conmutación

La conmutación de protección automática se basa en las condiciones TSF y TSD de los trayectos de trabajo y de protección. La detección de estas condiciones se describe en 13.2.1.2.

La conmutación de protección puede ser iniciada también por instrucciones de conmutación recibidas a través de la función de gestión de equipo síncrono. Véanse los criterios de conmutación descritos en la Rec. UIT-T G.841.

Tiempo de conmutación

Véase la Rec. UIT-T G.841.

Conmutación de restablecimiento

La conmutación de restablecimiento es una función relacionada con el funcionamiento reversible, cuando el trayecto de trabajo se ha recuperado del defecto. No es aplicable a la protección de camino que soporte solamente el funcionamiento no reversible. Véase la descripción de la conmutación de protección unidireccional 1 + 1 reversible en la Rec. UIT-T G.841.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.1.2 Terminación de camino de protección de camino de capa VC-m SmP TT

13.4.1.2.1 Fuente de terminación de camino de protección de camino de capa VC-m SmP TT So

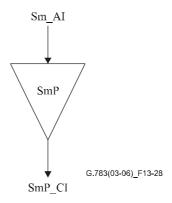


Figura 13-28/G.783 – Símbolo de SmP TT So

Cuadro 13-14/G.783 – Señales de entrada y de salida SmP_TT_So

Entradas	Salidas
SmP_AI_Data	SmP_CI_Data
SmP_AI_Clock	SmP_CI_Clock
SmP_AI_FrameStart	SmP_CI_FrameStart

Procesos

No se requiere procesamiento de la información en el SmP_TT_So porque la Sm_AI en su salida es idéntica a la SmP_CI.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.1.2.2 Sumidero de terminación de camino de protección de camino de capa VC-m SmP_TT_Sk

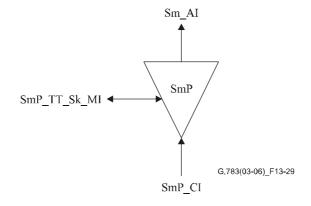


Figura 13-29/G.783 – Símbolo de SmP TT Sk

Cuadro 13-15/G.783 – Señales de entrada y de salida SmP TT Sk

Entradas	Salidas
SmP CI Data	SmP AI Data
SmP_CI_Clock	SmP_AI_Clock
SmP_CI_FrameStart	SmP_AI_FrameStart
SmP_CI_SSF	SmP_AI_TSF
SmP_TT_Sk_MI_SSF_Reported	SmP_TT_Sk_MI_cSSF

Procesos

La función SmP_TT_Sk informa, como parte de la capa Sm, el estado del camino Sm protegido. Cuando todos los caminos están indisponibles, SmP_TT_Sk informa la condición de fallo de señal del camino protegido.

Defectos

Ninguno.

Acciones consiguientes

aTSF \leftarrow CI SSF

Correlaciones de defectos

cSSF ← CI_SSF y SFF_Reported

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.1.3 Adaptación de camino VC-m a capa de protección de camino VC-m Sm/SmP A

13.4.1.3.1 Fuente de adaptación de camino VC-m a capa de protección de camino VC-m Sm/SmP A So

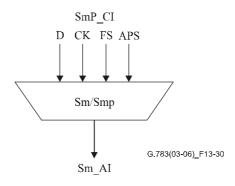


Figura 13-30/G.783 – Símbolo de Sm/SmP A So

Cuadro 13-16/G.783 – Señales de entrada y de salida Sm/SmP A So

Entradas	Salidas
SmP_AI_Data SmP_AI_Clock SmP_AI_FrameStart SmP_AI_APS	SmP_CI_Data SmP_CI_Clock SmP_CI_FrameStart

Procesos

La función multiplexará la señal Sm APS y la señal de datos Sm en el Sm_AP.

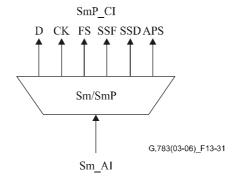
K4[3, 4]: La inserción de la señal APS queda en estudio. Este proceso sólo se requiere para el camino de protección.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.


Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.1.3.2 Sumidero de adaptación de camino VC-m a capa de protección de camino VC-m Sm/SmP_A_Sk

 $Figura~13\text{-}31/G.783 - Símbolo~de~Sm/SmP_A_Sk$

Cuadro 13-17/G.783 – Señales de entrada y de salida Sm/SmP A Sk

Entradas	Salidas
SmP AI Data	SmP CI Data
SmP AI Clock	SmP CI Clock
SmP AI FrameStart	SmP CI FrameStart
SmP AI TSF	SmP CI SSF
SmP SI TSD	SmP_CI_SSD
	SmP_CI_APS (sólo para señal de protección)

Procesos

La función extraerá la señal SmP_CI_D de la señal SmP_AI_D y la presentará a la salida.

K4[3, 4]: La extracción de la señal APS y el tratamiento de su persistencia quedan en estudio. Este proceso sólo se requiere para el camino de protección.

Defectos

Ninguno.

Acciones consiguientes

 $aSSF \ \leftarrow \ AI_TSF$

 $aSSD \leftarrow AI TSD$

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.2 Funciones de subcapa de conexión en cascada VC-m

NOTA – El servicio podría verse afectado cuando se activara la supervisión de la conexión en cascada (TCM) en una conexión existente.

13.4.2.1 Terminación de camino de conexión en cascada VC-m SmD TT

Esta función actúa como una fuente y un sumidero de la tara de conexión en cascada VC-m (TCOH) descrita en el anexo E/G.707/Y.1322 [6] en el caso de VC-1/2.

13.4.2.1.1 Fuente de terminación de camino de conexión en cascada VC-m SmD_TT_So Símbolo

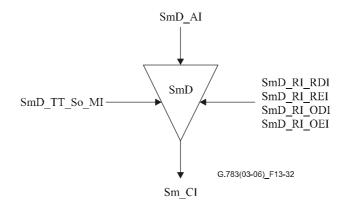


Figura 13-32/G.783 – Símbolo de SmD TT So

Interfaces

Cuadro 13-18/G.783 – Señales de entrada y de salida SmD_TT_So

Entradas	Salidas
SmD AI Data	Sm CI Data
SmD_AI_Clock	Sm_CI_Clock
SmD_AI_FrameStart	Sm_CI_FrameStart
SmD_AI_SF	
SmD_RI_RDI	
SmD_RI_REI	
SmD_RI_ODI	
SmD_RI_OEI	
SmD_TT_So_MI_TxTI	

Procesos

N2[8][73]: La función insertará el código TC RDI. Al declararse/desaparecer aRDI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido el código RDI dentro de 80 ms.

N2[3]: La función insertará un "1" en este bit.

N2[4]: La función insertará un código AIS de entrada en este bit. Si AI_SF es verdadero, este bit se pondrá al valor "1"; en los demás casos, se insertará el valor "0".

N2[5]: La función insertará el valor RI_REI en el bit REI. Al detectarse un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en el bit REI dentro de 80 ms.

N2[7][74]: La función insertará el código ODI. Al declararse/desaparecer ODI en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado/suprimido el código ODI dentro de 80 ms.

N2[6]: La función insertará el valor RI_OEI en el bit OEI. Tras la detección de un número de errores en la función de sumidero de terminación, la función de fuente de terminación de camino habrá insertado ese valor en el bit OEI dentro de 80 ms.

N2[7-8]: La función insertará en el canal N2[7-8] organizado en múltiples tramas:

- la señal de alineación de trama (FAS) "1111 1111 1110" en los bits FAS de las tramas 1 a 8;
- el identificador de traza TC, recibido a través del punto de referencia SmD_TT_So_MP, en los bits de ID de traza TC en las tramas 9 a 72;
- las señales TC RDI (N2[8][73]) y ODI (N2[7][74]); y
- todos ceros en los seis bits reservados de las tramas 73 a 76.

V5[1-2]: La función corregirá VC-1/2 BIP-2 (en los bits 1 y 2 del octeto V5) como se especifica en 8.4/G.806.

N2[1-2]: La función calculará una BIP-2 sobre los VC que salen, e insertará este valor en BIP-2 de TC en la trama siguiente (véase la figura 13-33).

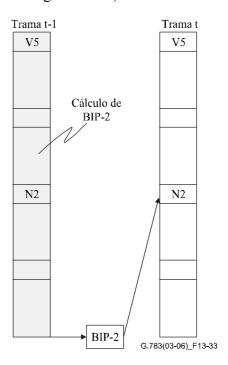


Figura 13-33/G.783 – Cálculo e inserción de la BIP-2 de TC

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.2.1.2 Sumidero de terminación de camino de conexión en cascada VC-m SmD_TT_Sk Símbolo

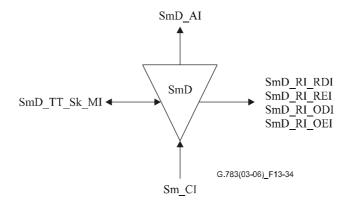


Figura 13-34/G.783 – Símbolo de SmD_TT_Sk

Interfaces

Cuadro 13-19/G.783 – Señales de entrada y de salida SmD_TT_Sk

Entradas	Salidas
Sm CI Data	SmD AI Data
Sm CI Clock	SmD AI Clock
Sm CI FrameStart	SmD AI FrameStart
Sm CI SSF	SmD AI TSF
SmD TT Sk MI ExTI	SmD AI TSD
SmD_TT_Sk_MI_RDI_Reported	SmD AI OSF
SmD_TT_Sk_MI_ODI_Reported	SmD_RI_RDI
SmD_TT_Sk_MI_SSF_Reported	SmD_RI_REI
SmD_TT_Sk_MI_AIS_Reported	SmD_RI_ODI
SmD_TT_Sk_MI_TIMdis	SmD_RI_OEI
SmD_TT_Sk_MI_DEGM	SmD_TT_Sk_MI_cLTC
SmD_TT_Sk_MI_DEGTHR	SmD_TT_Sk_MI_cTIM
SmD_TT_Sk_MI_1second	SmD_TT_Sk_MI_cUNEQ
SmD_TT_Sk_MI_TPmode	SmD_TT_Sk_MI_cDEG
	SmD_TT_Sk_MI_cRDI
	SmD_TT_Sk_MI_cODI
	SmD_TT_Sk_MI_cSSF
	SmD_TT_Sk_MI_cIncAIS
	SmD_TT_Sk_MI_AcTI
	SmD_TT_Sk_MI_pN_EBC
	SmD_TT_Sk_MI_pF_EBC
	SmD_TT_Sk_MI_pN_DS
	SmD_TT_Sk_MI_pF_DS
	SmD_TT_Sk_MI_pON_EBC
	SmD_TT_Sk_MI_pOF_EBC
	SmD_TT_Sk_MI_pON_DS
	SmD_TT_Sk_MI_pOF_DS

Procesos

N2[1-2]: Véase 8.3.1.

N2[7-8][9-72]: El identificador de traza de camino recibido se recuperará de la tara de identificador de traza de camino de conexión en cascada. El valor aceptado del identificador de traza TC está disponible también en el SmD TT MP.

N2[4]: La función extraerá el código AIS de entrada.

N2[5], N2[8][73]: La información transportada en los bits REI, RDI del octeto N2 se extraerá para efectuar el mantenimiento unilateral de un camino de conexión en cascada bidireccional. REI se utilizará para supervisar la característica de error en el sentido opuesto de transmisión y RDI se utilizará para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto distante y un "0" indica el estado de funcionamiento normal.

N2[6], N2[7][74]: Se extraerá la información transportada en los bits OEI y ODI del octeto N2 para el mantenimiento unilateral (intermedio) del VC-1/2 que sale del camino de conexión en cascada. OEI (OF_B) se utilizará para supervisar la característica de error en el sentido opuesto de transmisión y ODI para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto saliente y un "0" indica el estado de funcionamiento normal.

N2[7-8]: Alineación de multitrama: Véase 8.2.4.

V5[1-2]: Se calcula BIP-2 para cada par de bits de cada octeto del VC-1/2 precedente, incluido V5, y se compara con el bit N2 y con el bit 2 de V5 recuperados de la trama actual. Una diferencia entre los valores de BIP-2 calculados y recuperados se considera como una prueba de que se han producido uno o más errores (ON_B) en el bloque de cálculo.

N2: La función terminará el canal N2 insertando un esquema todos CEROS.

V5[1-2]: La función compensará VC-1/2 BIP-2 en los bits 1 y 2 del octeto V5 de acuerdo con el algoritmo definido en el sentido hacia la fuente.

Defectos

La función detectará los defectos dUNEQ, dLTC, dTIM, dDEG, dRDI, dODI e IncAIS de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función ejecutará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aAIS ← dUNEQ o dTIM o dLTC
```

aOSF ← CI SSF o dUNEQ o dTIM o dLTC o IncAIS

aTSF ← CI SSF o dUNEQ o dTIM o dLTC

aTSD ← dDEG

aRDI ← CI_SSF o dUNEQ o dTIM o dLTC

 $aREI \leftarrow nN B$

aODI ← CI SSF o dUNEQ o dTIM o IncAIS o dLTC

aOEI ← nON B

La función insertará la señal todos UNOS (AIS) dentro de 1 ms después de la generación de petición de AIS y dejará de insertarla dentro de 1 ms después que se haya suprimido la petición AIS.

Correlaciones de defectos

La función ejecutará la siguiente correlación de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF
               CI SSF y SSF Reported y MON
         \leftarrow
cIncAIS ←
               dIncAIS y (no CI SSF) y (no dLTC) y (no dTIM) y AIS Reported y MON
cUNEO ←
               dUNEQ y MON
cLTC
         \leftarrow
               (no dUNEQ) y dLTC y (no CI SSF)
cTIM
               dTIM y (no dUNEQ) y (no dLTC) y MON
         \leftarrow
cDEG
               dDEG y (no dTIM) y (no dLTC) y MON
         \leftarrow
cRDI
               dRDI y (no dUNEQ) y (no dTIM) y (no dLTC) y MON y RDI Reported
cODI
               dODI y (no dUNEQ) y (no dTIM) y (no dLTC) y MON y ODI Reported
         \leftarrow
```

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Estas primitivas se informarán a la SEMF.

```
\begin{array}{lll} pN\_DS & \leftarrow & aTSF \ o \ dEQ \\ pF\_DS & \leftarrow & dRDI \\ pN\_EBC & \leftarrow & \Sigma \ nN\_B \\ pF\_EBC & \leftarrow & \Sigma \ nF\_B \\ pON\_DS & \leftarrow & aODI \ o \ dEQ \\ pOF\_DS & \leftarrow & dODI \\ pON\_EBC & \leftarrow & \Sigma \ nON\_B \\ pOF \ EBC & \leftarrow & \Sigma \ nOF \ B \end{array}
```

13.4.2.2 Monitor no intrusivo de conexión en cascada VC-m SmDm TT Sk

Esta función se utiliza para efectuar lo siguiente:

- 1) mantenimiento unilateral de la TC por supervisión en un nodo intermedio mediante el empleo de información distante (RDI, REI);
- 2) ayuda a la localización de averías dentro del camino de TC, supervisión de defectos del extremo cercano;
- 3) supervisión de la calidad de funcionamiento de VC en el punto de salida de TC (salvo los defectos de conectividad antes de la TC) mediante el empleo de información distante saliente (ODI, OEI);
- 4) aplicación de una función de monitor no intrusivo dentro de la protección SNC/S.

Esta función actúa como un monitor no intrusivo para la tara de conexión en cascada VC-m (TCOH) descrita en el anexo E/G.707/Y.1322 en caso de VC-1/2.

Los flujos de información asociados con la función SmD/Sm_A se describen con referencia a la figura 13-35.

Símbolo

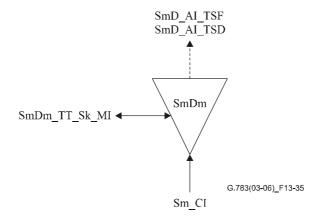


Figura 13-35/G.783 – Símbolo de SmDm_TT_Sk

Interfaces

Cuadro 13-20/G.783 – Señales de entrada y de salida SmDm TT Sk

Entradas	Salidas
Sm_CI_Data	SmD_AI_TSF
Sm_CI_Clock	SmD_AI_TSD
Sm_CI_FrameStart	SmDm_TT_Sk_MI_cLTC
Sm_CI_SSF	SmDm_TT_Sk_MI_cTIM
SmDm_TT_Sk_MI_ExTI	SmDm_TT_Sk_MI_cUNEQ
SmDm_TT_Sk_MI_RDI_Reported	SmDm_TT_Sk_MI_cDEG
SmDm_TT_Sk_MI_ODI_Reported	SmDm_TT_Sk_MI_cRDI
SmDm_TT_Sk_MI_SSF_Reported	SmDm_TT_Sk_MI_cODI
SmDm_TT_Sk_MI_AIS_Reported	SmDm_TT_Sk_MI_cSSF
SmDm_TT_Sk_MI_TIMdis	SmDm_TT_Sk_MI_cIncAIS
SmDm_TT_Sk_MI_DEGM	SmDm_TT_Sk_MI_AcTI
SmDm_TT_Sk_MI_DEGTHR	SmDm_TT_Sk_MI_pN_EBC
SmDm_TT_Sk_MI_1second	SmDm_TT_Sk_MI_pF_EBC
SmDm_TT_Sk_MI_TPmode	SmDm_TT_Sk_MI_pN_DS
	SmDm_TT_Sk_MI_pF_DS
	SmDm_TT_Sk_MI_pON_DS
	SmDm_TT_Sk_MI_pON_EBC
	SmDm_TT_Sk_MI_pOF_EBC
	SmDm_TT_Sk_MI_pOF_DS

Procesos

N2[1-2]: Véase 8.3.1.

N2[7-8][9-72]: El identificador de traza de camino recibido se recuperará de la tara de identificador de traza de camino de conexión en cascada. El valor aceptado de identificador de traza TC está disponible también en el SmDm_TT_MP. El proceso de detección de falta de concordancia se especifica a continuación.

N2[4]: La función extraerá el código AIS de entrada.

N2[5], N2[8][73]: Se extraerá la información transportada en los bits REI, RDI del octeto N2 para el mantenimiento unilateral de un camino de conexión en cascada bidireccional. REI se utilizará para supervisar la característica de error en el sentido opuesto de transmisión, y RDI se utilizará

para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto distante, y un "0" indica el estado de funcionamiento normal.

N2[6], N2[7][74]: Se extraerá la información transportada en los bits OEI y ODI del octeto N2 para el mantenimiento unilateral (intermedio) del VC-1/2 que sale del camino de conexión en cascada. OEI (OF_B) se utilizará para supervisar la característica de error en el sentido opuesto de transmisión, y ODI para proporcionar información sobre el estado del receptor distante. Un "1" indica un estado de indicación de defecto saliente, y un "0" indica el estado de funcionamiento normal.

N2[7-8]: Véase 8.2.4.

Defectos

La función detectará los defectos dUNEQ, dLTC, dTIM, dDEG, dRDI, dODI, dIncAIS de acuerdo con la especificación en 6.2/G.806.

Acciones consiguientes

La función efectuará las siguientes acciones consiguientes (véase 6.3/G.806):

```
aTSF \leftarrow CI_SSF o dUNEQ o dTIM o dLTC aTSD \leftarrow dDEG
```

Correlaciones de defectos

La función realizará la siguiente correlación de defectos para determinar la causa más probable de la avería (véase 6.4/G.806). Esta causa se informará a la SEMF.

```
cSSF
              CI SSF y SSF Reported y MON
cUNEO ←
              dUNEQ y MON
cLTC
        \leftarrow
              (no dUNEQ) y dLTC y (no CI SSF)
cIncAIS ←
              dIncAIS y (no CI SSF) y (no dLTC) y (no dTIM) y AIS Reported y MON
cTIM
              (no dUNEQ) y (no dLTC) y dTIM y MON
         \leftarrow
              (no dTIM) y (no dLTC) y dDEG y MON
cDEG
cRDI
              (no dUNEQ) y (no dTIM) y (no dLTC) y dRDI y MON y RDI Reported
         \leftarrow
              (no dUNEQ) y (no dTIM) y (no dLTC) y dODI y MON y ODI Reported
cODI
```

Supervisión de la calidad de funcionamiento

La función tratará como sigue las primitivas de supervisión de la calidad de funcionamiento (véase 6.5/G.806). Estas primitivas se reenviarán a la SEMF.

```
pN DS
           ← aTSF o dEQ
pF DS
                dRDI
           \leftarrow \Sigma nN B
pN EBC
pF EBC
               \Sigma nF B
pON DS
                CI SSF o dUNEQ o dTIM o IncAIS o dLTC o dEQ
pON EBC ←
                Σ nON B
pOF DS
                dODI
           \leftarrow
pOF EBC \leftarrow \Sigma nOF B
```

13.4.2.3 Adaptación de conexión en cascada VC-m a VC-m SmD/Sm A

Esta función actúa como una fuente y un sumidero para la adaptación de capa Sm a subcapa SmD. Esta función es aplicable a redes que soportan la opción 2 de protocolo de supervisión de conexión en cascada VC-m descrita en el anexo E/G.707/Y.1322 en el caso de VC-1/2.

13.4.2.3.1 Fuente de adaptación de conexión en cascada VC-m a VC-m SmD/Sm_A_So Símbolo

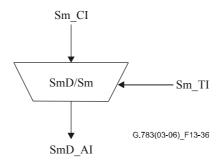


Figura 13-36/G.783 – Símbolo de SmD/Sm_A_So

Interfaces

Cuadro 13-21/G.783 – Señales de entrada y de salida SmD/Sm A So

Entradas	Salidas
Sm CI Data	SmD AI Data
Sm_CI_Clock	SmD_AI_Clock
Sm_CI_FrameStart	SmD_AI_FrameStart
Sm_CI_SSF	SmD_AI_SSF
Sm_TI_Clock	

Procesos

NOTA 1 – La función no tiene medios para verificar la existencia de una conexión en cascada dentro de la señal entrante. No están soportadas conexiones en cascada anidadas.

La función sustituirá la señal de comienzo de trama por una señal generada localmente (es decir, pasa a "régimen libre") si se recibe todos UNOS (AIS) VC (es decir, esta función sustituye un VC entrante todos UNOS por una señal VC-AIS).

NOTA 2 – Esta sustitución de la señal de comienzo de trama entrante (no válida) provoca la generación de un puntero válido en la función Sn/Sm_A_So.

Defectos

Ninguno.

Acciones consiguientes

Esta función ejecutará las siguientes acciones consiguientes.

aSSF \leftarrow CI SSF

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.4.2.3.2 Sumidero de adaptación de conexión en cascada VC-m a VC-m SmD/Sm A Sk

Símbolo

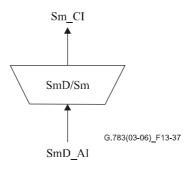


Figura 13-37/G.783 – Símbolo de SmD/Sm A Sk

Interfaces

Cuadro 13-22/G.783 – Señales de entrada y de salida SmD/Sm A Sk

Entradas	Salidas
SmD_AI_Data	Sm_CI_Data
SmD_AI_Clock	Sm_CI_Clock
SmD_AI_FrameStart	Sm_CI_FrameStart
SmD_AI_OSF	Sm_CI_SSF

Procesos

Esta función restablecerá la condición de comienzo de trama no válida (es decir, aSSF de salida = verdadero) si existía en la entrada de la conexión en cascada.

NOTA 1 – Además, la condición de comienzo de trama no válido se activa cuando aparece una condición de defecto de conectividad de conexión en cascada que produce la inserción de todos UNOS (AIS) en la SmD TT.

Defectos

Ninguno.

Acciones consiguientes

aAIS \leftarrow AI OSF

 \leftarrow AI OSF aSSF

NOTA 2 - CI SSF = verdadero tendrá por consecuencia la generación de TU-AIS por la función SmD/Sm A Sk.

La función insertará la señal todos UNOS (AIS) dentro de 1 ms después de la generación de la petición AIS, y dejará de insertarla dentro de 1 ms después que se haya suprimido la petición AIS.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.5 Funciones de concatenación virtual

13.5.1 Funciones de capa de trayecto VC-m virtuales concatenadas Sm-Xv (m = 11, 12, 2; $X \ge 1$)

13.5.1.1 Función de terminación de camino de capa VC-m-Xv Sm-Xv_TT

La descomposición de la función Sm-Xv_TT se define en la Rec. UIT-T G.803 y se muestra en la figura 13-38.

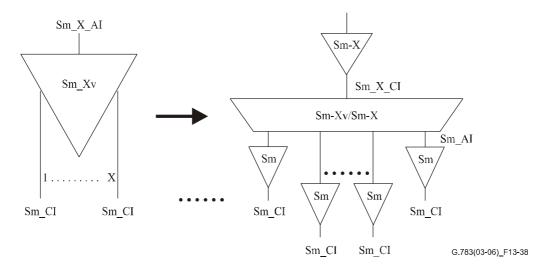


Figura 13-38/G.783 – Descomposición de la función Sm Xv TT (m = 11, 12, 2)

Para S11_Xv 1 \leq X \leq 64, S12_Xv 1 \leq X \leq 64, S2_Xv 1 \leq X \leq 64.

13.5.1.1.1 Función fuente de terminación de camino de capa Sm-Xv Sm-X_TT_So Símbolo

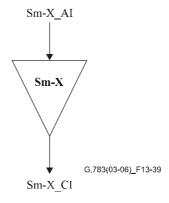


Figura 13-39/G.783 – Símbolo de Sm-X_TT_So

Cuadro 13-23/G.783 – Señales de entrada y de salida Sm-X_TT_So

Entradas	Salidas
Sm-X_AI_D Sm-X_AI_CK	Sm-X_CI_D Sm-X_CI_CK
Sm-X_AI_FS	Sm-X_CI_FS

Procesos

Ninguno.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.5.1.1.2 Función de sumidero de terminación de camino de capa Sm-Xv Sm-X_TT_Sk

Símbolo

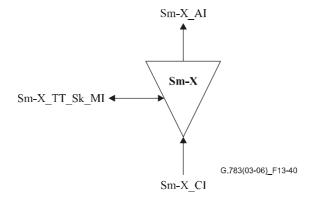


Figura 13-40/G.783 – Símbolo de Sm-X_TT_Sk

Interfaces

Cuadro 13-24/G.783 – Señales de entrada y de salida Sm-X TT Sk

Entradas	Salidas
Sm-X_CI_D Sm-X_CI_CK Sm-X_CI_FS Sm-X_CI_SSF Sm-X_TT_Sk_MI_SSF_Reported	Sm-X_AI_D Sm-X_AI_CK Sm-X_AI_FS Sm-X_TT_Sk_MI_cSSF

Procesos

Informe de estado de fallo de señal.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

 $cSSF \leftarrow CI SSF y SSF Reported$

Supervisión de la calidad de funcionamiento

Ninguna.

13.5.1.2 Funciones de adaptación de camino de capa Sm-Xv Sm/Sm-X A

13.5.1.2.1 Función de fuente de adaptación de camino de capa Sm-Xv Sm/Sm-X A So

Símbolo

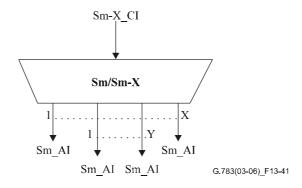


Figura 13-41/G.783 – Símbolo de Sm/Sm-X_A_So

Interfaces

Cuadro 13-25/G.783 – Señales de entrada y de salida Sm/Sm-X A So

Entradas	Salidas
Sm-X_CI_D Sm-X_CI_CK	Sm_AI[1X]_D Sm_AI[1X]_CK
Sm-X_CI_FS	Sm_AI[1X]_FS

Procesos

Esta función efectuará la distribución de la Sm-X_CI entrante a X Sm_AI e insertará la tara de concatenación virtual para formar la Sm_AI[1..X].

Proceso de distribución

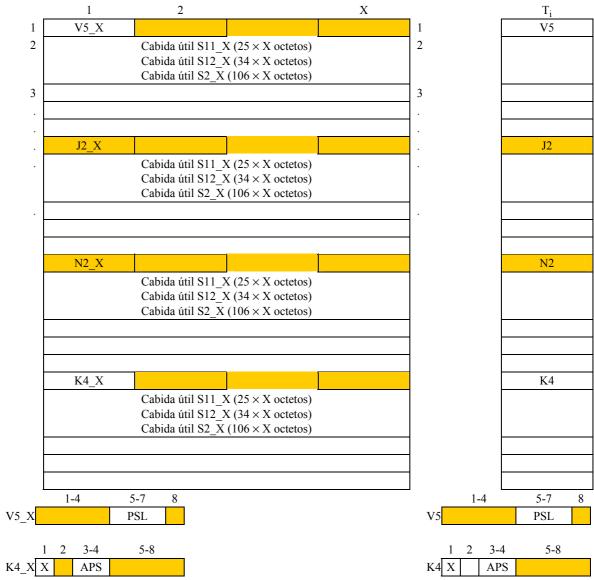


Figura 13-42/G.783 – Sm_X_CI_D (izquierda) y Sm_AI_D (derecha)

La función de distribución efectúa una operación de desentrelazado de 8 bits (o desentrelazado de octeto) de la señal entrante; 8 bits/1 octeto se hacen corresponder a la cabida útil de señal T_i , los siguientes 8 bits/1 octeto se hacen corresponder a la cabida útil de señal T_{i+1} , y así sucesivamente. T_i , T_{i+1} , etc. pertenecen al grupo efectivo y no se suprimen temporalmente. Los bits $V_5X[5-7]$ (PSL) se copian en cada señal individual T_i . Los bits $K_4X[3-4]$ (APS) se copian en cada señal individual T_i . Si una etiqueta de señal extendida está presente en $K_4X[1]$, se copia en cada señal individual T_i .

Cabida útil

K4[1, 2]: Alineación y secuencia de multitrama; véase 8.2.5.2.

Defectos

Ninguno.

Acciones consiguientes

Ninguna.

Correlaciones de defectos

Ninguna.

Supervisión de la calidad de funcionamiento

Ninguna.

13.5.1.2.2 Función de sumidero de adaptación de camino de capa Sm-Xv Sm/Sm-X_A_Sk Símbolo

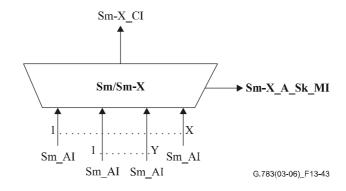


Figura 13-43/G.783 – Símbolo de Sm/Sm-X_A_Sk

Interfaces

Cuadro 13-26/G.783 – Señales de entrada y de salida Sm/Sm-X A Sk

Entradas	Salidas
Sm_AI[1X]_D Sm_AI[1X]_CK Sm_AI[1X]_FS Sm-X_AI_TSF	Sm-X_CI_D Sm-X_CI_CK Sm-X_CI_FS Sm-X_A_Sk_MI_cLOM[1X] Sm-X_A_Sk_MI_cSQM[1X] Sm-X_A_Sk_MI_cLOA Sm-X_A_Sk_MI_AcSQ[1X]

Procesos

Esta función efectuará la supervisión y recuperará el estado de las X Sm individuales que forman la Sm-X CI, la alineación de las X Sms, y recuperará la Sm-X AI saliente.

Proceso de colección

La función de colección efectúa una operación de desentrelazado de 8 bits (o de 1 octeto) de las señales entrantes; 8 bits/1 octeto de la señal T_i se hacen corresponder a la cabida útil Sm-X, los siguientes 8 bits/1 octeto se toman de la señal T_{i+1} , y así sucesivamente. T_i , T_{i+1} , etc. pertenecen al grupo efectivo y no se suprimen temporalmente.

Los bits V5_X[5-7] (PSL) se copian de la señal T_j. Los bits K4[1] (etiqueta de señal extendida) y K4_X[3-4] (APS) se copian de la señal T_j. El valor de j queda en estudio.

Procesos de alineación de multitrama: Véase 8.2.5.2.

Procesos de alineación de Sm individuales

La función alineará los Sm individuales con respecto a un comienzo común de multitrama si CI_SSF, dLOM o dSQM no está activo para cualquier Sm individual. El proceso de alineación abarcará al menos un retardo diferencial de 125 µs.

Defectos

Defecto de pérdida de multitrama (dLOM): Véase 6.2.5.5.

Defecto de pérdida de secuencia (dSQM): Se detectará dSQM si el número secuencial aceptado (AcSQ) no concuerda con el número secuencial esperado (ExSQ). Se eliminará dSQM si AcSQ concuerda con ExSQ. El ExSQ de Sm[n] es n-1.

Defecto de pérdida de alineación (dLOA): Se detectará dLOA si el proceso de alineación no puede efectuar la alineación de los Sms individuales con respecto a un comienzo común de multitrama (por ejemplo, se activa dLOA si el retardo diferencial es mayor que el tamaño de la memoria tampón de alineación). Los detalles quedan en estudio.

Acciones consiguientes

```
aAIS \leftarrow dLOM[1..X] o dSQM[1..X] o dLOA
aTSF \leftarrow CI SSF[1..X] o dLOM[1..X] o dSQM[1..X] o dLOA
```

Al declararse aAIS, la función presentará a la salida una señal todos UNOS dentro de 250 µs; al desaparecer aAIS, la función presentará a la salida datos normales dentro de 250 µs.

Correlaciones de defectos

```
 \begin{aligned} cLOM[n] &\leftarrow dLOM[n] \ y \ (no \ AI\_TSF[n]) \\ cSQM[n] &\leftarrow dSQM[n] \ y \ (no \ dLOM[n]) \ y \ (no \ AI\_TSF[n]) \\ cLOA &\leftarrow dLOA \ y \ (no \ dSQM[1..X]) \ y \ (no \ dLOM[1..X]) \ y \ (no \ AI\_TSF[1..X]) \end{aligned}
```

Supervisión de la calidad de funcionamiento

El proceso de supervisión de la calidad de funcionamiento queda en estudio.

13.5.2 Funciones de capa de trayecto VC-m concatenado virtual capaz de LCAS, Sm-Xv-L $(m = 11, 12, 2; X \ge 1)$

Las funciones de capa de trayecto VC-m concatenado virtual (Sm-Xv-L, m = 11, 12, 2) son ejemplificaciones de las funciones definidas en 10.1/G.806 (P-Xv-L), caracterizadas por algunos aspectos específicos de la tecnología.

Las definiciones en la presente cláusula hacen referencia a definiciones de funciones genéricas adecuadas en 10.1/G.806 y especifican los aspectos propios de la tecnología cuando sea necesario.

13.5.2.1 Función de terminación de camino de capa VC-m-Xv-L Sm-Xv-L TT

La función Sm-Xv-L_TT se descompone como se define en 10.1.1/G.806 y se muestra en la figura 13-44.

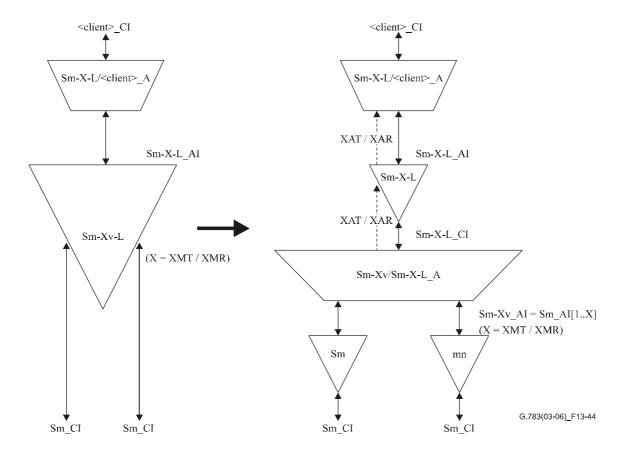


Figura 13-44/G.783 – Descomposición de la función Sm-Xv_L

La descomposición de esta función es la misma que la de la correspondiente función genérica P-Xv-L_TT definida en 10.1.1/G.806, con los siguientes aspectos propios de la tecnología:

- La capa de trayecto "P-" es la capa Sm.
- Las funciones Sm_TT son las funciones normales de terminación de camino VC-m definidas en 13.2.1.
- X_{MT} , $X_{MR} \le 64$, de acuerdo con las definiciones en 11.4/G.707/Y.1322.

13.5.2.1.1 Función de fuente de adaptación VC-m-Xv/VC-m-X-L, Sm-Xv/Sm-X-L_A_So Símbolo

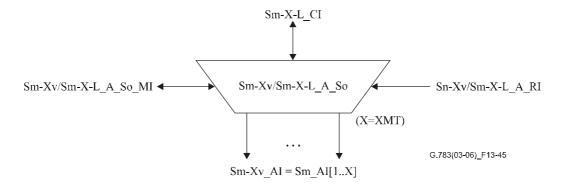


Figura 13-45/G.783 – Símbolo de Sm-Xv/Sm-X-L A So

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_So definida en 10.1.1.1/G.806, con los siguientes aspectos propios de la tecnología:

- El trayecto de capa "P-" es la capa Sm.
- MST Range = 0..., 63 (corresponde a la gama definida en 11.4/G.707/Y.1322).

Procesos

Las definiciones de proceso para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_So definida en 10.1.1.1/G.806, con los siguientes aspectos propios de la tecnología:

Extracción de OH

La información de tara extraída _CI_OH consiste en los siguientes octetos VC-m-X POH: V5[5-7] (PSL), K4[1][12-19] (ESL), K4[3-4] (APS).

NOTA – Si en un K4[1] no está presente una ESL (etiqueta de señal extendida), el proceso "Extracción de OH" propagará el valor por defecto 0x08 ("correspondencia en desarrollo", véase 9.3.2.4/G.707/Y.1322).

Desentrelazado (proceso de distribución)

El proceso de distribución será el siguiente:

Empezando por la columna 1, la señal Sm-X-L_CI_D se distribuirá a los X_{AT} VC-m como se define en el cuadro 13-27.

Cuadro 13-27/G.783 – Correspondencia para la distribución de Sm-X

Columna Sm-X-L_CI_D	Número de salida de desentrelazado	Columna de salida de desentrelazado
1	1	1
X_{AT}	X_{AT}	1
$X_{AT} + 1$	1	2
$2 \times X_{AT}$	X_{AT}	2
$2 \times X_{AT} + 1$	1	3
$107/35/26 \times X_{AT}$	X_{AT}	107/35/26

Obsérvese que esta correspondencia es uniforme en toda columna de tara de trayecto y cabida útil. Obsérvese también que es equivalente a la definida en la figura 13-42.

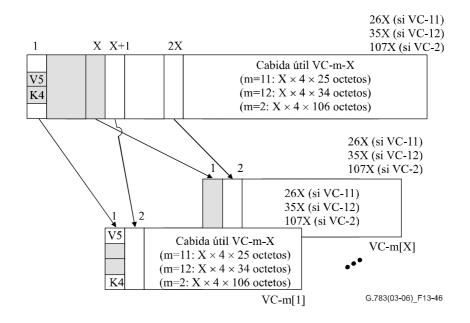


Figura 13-46/G.783 – Proceso de desentrelazado Sm-Xv/Sm-X-L_A_So

Para todas las salidas $X_{AT}+1$, $X_{AT}+2$, ..., X_{MT} este bloque inserta una señal todos CEROS con la velocidad y el formato de una señal VC-m.

- "Conmutador 1" (asignación de números secuenciales)

Para todas las salidas que no transportan cabida útil (_PC[s]=0) este proceso inserta una señal todos CEROS con la velocidad y el formato de una señal VC-m.

Inserción de VLI

La información VLI consiste en el valor de K4[1][1-11] (MFAS) y K4[2], y tiene la codificación definida en 11.4/G.707/Y.1322 para esos bits de tara.

Ensamblado de VLI y CRC

La información VLI consiste en el valor de K4[1][1-11] (MFAS) y K4[2], y tiene la codificación definida en 11.4/G.707/Y.1322 para esos bits de tara. El código de CRC utilizado es la CRC-3 definida en 11.4/G.707/Y.1322.

Cualquiera que sea el valor de MI_LCASEnable, a todos los campos de la multitrama K4[2] que no hayan sido utilizados se les fijará inicialmente el valor cero.

Inserción de OH

La información de tara insertada _CI_OH consiste en los siguientes octetos VC-m POH: V5[5-7] (PSL), K4[1][12-19] (ESL), K4[3-4] (APS).

Defectos

Véase 10.1.1.1/G.806.

Acciones consiguientes

Véase 10.1.1.1/G.806.

Correlaciones de defectos

Véase 10.1.1.1/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.1/G.806.

13.5.2.1.2 Función de sumidero de adaptación VC-m-Xv/VC-m-X-L Sm-Xv/Sm-X-L_A_Sk Símbolo

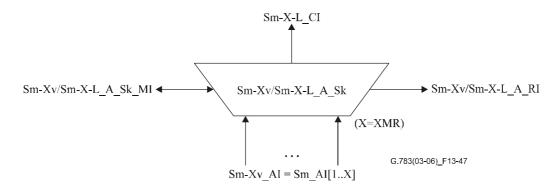


Figura 13-47/G.783 – Símbolo de Sm-Xv/Sm-X-L_A_Sk

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_Sk definida en 10.1.1.2/G.806, con los siguientes aspectos propios de la tecnología:

- El trayecto de capa "P-" es la capa Sm.
- MST Range = 0..., 63 (corresponde a la gama definida en 11.4/G.707/Y.1322).

Procesos

Las definiciones de procesos para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_A_Sk definida en 10.1.1.2/G.806, con los siguientes aspectos propios de la tecnología:

Extracción de MFI

El proceso de alineación de multitrama será conforme a 8.2.5.2.

La salida _MFI[i] consiste en una palabra de 10 bits, en la que los 5 bits menos significativos contienen el valor actual de la multitrama K4[1] (0-31) y los 5 bits más significativos el valor de la MFI contenido en el K4[2][1-5] de AI_D[i]. Si AI_TSF[i]=verdadero, la salida _MFI[i] de este proceso será una palabra de 10 bits todos unos.

La detección de dLOM[i] para cada miembro se efectuará como se indica en Defectos más adelante.

Extracción de VLI, TSx

La información VLI consiste en el valor de K4[1][1-11] (MFAS) y K4[2], y tiene la codificación definida en 11.4/G.707/Y.1322 para esos bits de tara.

Si _TSF[i] es falso y dMND[i] is falso, la salida _VLI[i] de este proceso es el valor de K4[1][1-11] (MFAS) y K4[2] a la salida del proceso.

Si _TSF[i] es verdadero o dMND[i] es verdadero, la salida _VLI[i] de este proceso será una secuencia todos unos.

Desensamblado de VLI y CRC

La información VLI consiste en el valor de K4[1][1-11] (MFAS) y K4[2], y tiene la codificación definida en 11.4/G.707/Y.1322 para esos bits de tara. El código de CRC utilizado es la CRC-3 definida en 11.4/G.707/Y.1322.

"Proceso de entrelazado"

El proceso de recuperación será el siguiente:

Empezando por la columna 1, la señal Sm-X-L_CI se recuperará a partir del X_{AR} VC-m como se define en el cuadro 13-28.

Cuadro 13-28/G.783 – Correspondencia para la recuperación de Sm-X-L

Número de entrada de entrelazado	Columna de entrada de entrelazado	Columna de Sm-X-L_CI
1	1	1
X_{AR}	1	X_{AR}
1	2	$X_{AR} + 1$
X_{AR}	2	$2 \times X_{AR}$
1	3	$2 \times X_{AR} + 1$
X _{AR}	26/35/107	$26/35/107 \times X_{AR}$

Obsérvese que esta correspondencia es uniforme en toda columna de tara de trayecto y cabida útil. Obsérvese también que es equivalente a la definida en 13.5.1.2.2. Obsérvese asimismo, en particular, que la columna POH (columna 1) de la señal Sm-X-L_CI se obtendrá a partir de la columna POH procedente de la entrada 1 del entrelazador, la que a su vez será el miembro transportador de cabida útil con el número secuencial más bajo.

Defectos

Defecto de pérdida de multitrama (dLOM): Véase 6.2.5.5.

Defecto de pérdida de secuencia (dSQM): Véase 10.1.1.2/G.806.

Miembro no "alineable en multitrama" (dMND): Véase 10.1.1.2/G.806.

Pérdida de alineación (dLOA): Véase 10.1.1.2/G.806.

Acciones consiguientes

Véase 10.1.1.2/G.806.

Al declararse aAIS, la función presentará a la salida una señal todos UNOS dentro de 250 µs; cuando se elimina la aAIS, la función presentará a la salida datos normales dentro de 250 µs. La velocidad binaria de la señal todos UNOS será consistente con el valor de _X_{AR} calculado por el proceso que interviene.

Correlaciones de defectos

Véase 10.1.1.2/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.2/G.806.

13.5.2.1.3 Función de fuente de terminación de camino VC-m-X-L capaz de LCAS Sm-X-L_TT_So

Símbolo

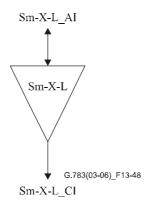


Figura 13-48/G.783 – Símbolo de Sm-X-L_TT_So

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_TT_So definida en 10.1.1.3/G.806, con los siguientes aspectos propios de la tecnología:

• El trayecto de capa "P-" es la capa Sm.

Procesos

Véase 10.1.1.3/G.806.

Defectos

Véase 10.1.1.3/G.806.

Acciones consiguientes

Véase 10.1.1.3/G.806.

Correlaciones de defectos

Véase 10.1.1.3/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.3/G.806.

13.5.2.1.4 Función de sumidero de terminación de camino de capa VC-m-X-L capaz de LCAS Sm-X-L_TT_Sk

Símbolo

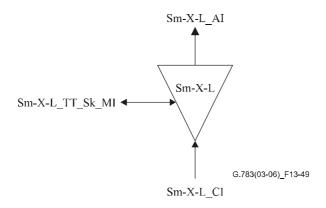


Figura 13-49/G.783 – Símbolo de Sm-X-L_TT_Sk

Interfaces

Las interfaces para esta función son las mismas que para la correspondiente función genérica P-Xv/P-X-L_TT_Sk definida en 10.1.1.4/G.806, con los siguientes aspectos propios de la tecnología:

• El trayecto de capa "P-" es la capa Sm.

Procesos

Véase 10.1.1.4/G.806.

Defectos

Véase 10.1.1.4/G.806.

Acciones consiguientes

Véase 10.1.1.4/G.806.

Correlaciones de defectos

Véase 10.1.1.4/G.806.

Supervisión de la calidad de funcionamiento

Véase 10.1.1.4/G.806.

14 Funciones de temporización

Las funciones de la capa de sincronización se describen en la Rec. UIT-T G.781 [9].

15 Especificación de fluctuación de fase y fluctuación lenta de fase

15.1 Interfaces STM-N

15.1.1 Tolerancia de fluctuación de fase a la entrada

La tolerancia de fluctuación de fase en los terminales de línea y regeneradores SDH que se utilizan en los sistemas de línea, incluidos los regeneradores de tipo A, se define en las funciones atómicas OSn/RSn_A_Sk (véase 9.3.1.2) o ES1/RS1_A_Sk (véase 9.3.2.2). Como parte de los requisitos de tolerancia de fluctuación de fase aplicada a la señal de entrada que se especifica en la

Rec. UIT-T G.825. La parte superior de la banda de las máscaras de tolerancia de fluctuación de fase sinusoidal G.825 se muestra en la figura 15-2, con los parámetros especificados en el cuadro 15-1, para cada nivel STM-N.

Los terminales de línea y regeneradores SDH que se utilizan en sistemas de línea que disponen únicamente de regeneradores de tipo B, o en sistemas de línea sin regeneradores, pueden tener una tolerancia de fluctuación de fase reducida. Estos equipos tolerarán, como mínimo, la fluctuación de fase de entrada aplicada según la máscara de la figura 15-2, con los valores de los parámetros especificados en el cuadro 15-1a, para cada nivel STM-N. El equipo SDH con tolerancia de fluctuación de fase reducida puede requerir cierta reducción de fluctuación de fase en el caso de que siga a una cadena de regeneradores de tipo A.

Nivel STM-N A₄ (UI) f_2 (kHz) f_3 (kHz) A_3 (UI) 1,2 STM-1 1.5 0.15 12 STM-4 1,5 0,15 1,2 12 1.2 12 STM-16 1,5 0.15 STM-64 Por determinar Por determinar Por determinar Por determinar STM-256 Por determinar Por determinar Por determinar Por determinar

Cuadro 15-1a/G.783 – Parámetros de tolerancia de fluctuación de fase reducida

15.1.2 Generación de fluctuación de fase a la salida

La generación de fluctuación de fase a la salida en señales STM-N se define en la función MSn-LC_A_So (véase la Rec. UIT-T G.781), la función OSn/RSn_A_ So (véase 9.3.1.1), o en la función ES1/RS1 A So (véase 9.3.2.1).

15.1.3 Transferencia de fluctuación de fase y de fluctuación lenta de fase

Función de transferencia de fluctuación de fase para equipo terminal SDH:

Las características de transferencia de fluctuación de fase de una pareja de entrada y salida SDH sólo son aplicables en el caso de que esta señal de entrada haya sido seleccionada como la fuente de sincronización por la función de conexión NS-C especificada en la Rec. UIT-T G.781. En este caso, la característica de transferencia se especifica en la función de adaptación de reloj SD/NS-xxx A So de la Rec. UIT-T G.781.

Especificación de transferencia de fluctuación de fase para regeneradores SDH:

La función de transferencia de fluctuación de fase se define como la razón de la fluctuación de fase en la señal STM-N que aparece en la salida a la fluctuación de fase aplicada a la señal STM-N en la entrada, en función de la frecuencia.

La función de transferencia de fluctuación de fase de un regenerador SDH de tipo A estará por debajo de la curva representada en la figura 15-1, con los parámetros especificados para el tipo A en el cuadro 15-2 para cada velocidad binaria, cuando se aplica una fluctuación de fase de forma sinusoidal de un nivel no superior al de la máscara de la figura 15-2, con los parámetros especificados en el cuadro 15-1.

La función de transferencia de fluctuación de fase de un regenerador SDH de tipo B deberá estar por debajo de la curva representada en la figura 15-1, con los parámetros especificados para el tipo B en el cuadro 15-2 para cada velocidad binaria, cuando se aplica una fluctuación de fase de forma sinusoidal de un nivel no superior al de la máscara de la figura 15-2 con los parámetros especificados en el cuadro 15-1a.

En la figura 15-1 y el cuadro 15-2, la medición de la fluctuación de fase se efectúa en la gama de frecuencias f_L a f_H . La frecuencia inferior f_L se fija a $f_C/100$ (donde f_C es la frecuencia de esquina) y f_H se define como lo que sea menor entre $100*f_C$ o la frecuencia máxima especificada para la función de filtro paso bajo para la medición de la fluctuación de fase a cada una de las velocidades definidas (frecuencia –3 dB superior en la columna banda de medición del cuadro 9-6 – Generación de fluctuación de fase para regeneradores STM-N tipo A en redes basadas en 2048 kbit/s, y el cuadro 9-7, Generación de fluctuación de fase para regeneradores STM-N en redes basadas en 1544 kbit/s). Generalmente se acepta que la fluctuación de fase por encima de f_H es insignificante en relación con la acumulación de la fluctuación de fase del regenerador, y que bajos niveles de generación de fluctuación de fase en la especificación pueden confundirse fácilmente con una medición de la transferencia de fluctuación de fase en la especificación cuando se trata de medir la transferencia de fluctuación de fase a altos niveles de atenuación de entrada/salida (es decir, por debajo de –40 dB). Los límites para f_L y $f_C/100$ siempre incluirán la frecuencia a que se produce la punta de ganancia máxima, y el hecho de limitar las mediciones de la transferencia de fluctuación de fase a frecuencias entre f_L y f_H limita el tiempo de prueba.

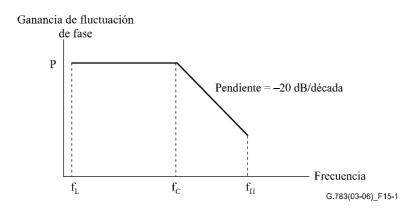
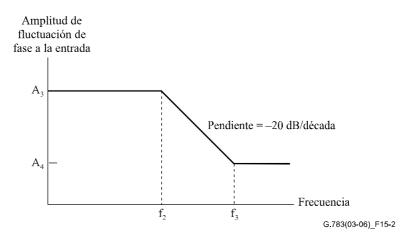



Figura 15-1/G.783 – Transferencia de fluctuación de fase

NOTA – Los valores para A_3 , A_4 , f_2 y f_3 se han tomado de la Rec. UIT-T G.825 y se recapitulan en el cuadro 15-1.

Figura 15-2/G.783 – Parte superior de la banda de la máscara de tolerancia de fluctuación de fase de forma sinusoidal (para el tipo A, de conformidad con la Rec. UIT-T G.825)

Cuadro 15-1/G.783 – Valores de parámetros para la figura 15-2

Nivel STM	A ₃ (UI)	A ₄ (UI)	f ₂ (kHz)	f ₃ (kHz)	Referencia
STM-1 óptica	1,5	0,15	6,5	65	Cuadro 3/G.825 Figura 1/G.825
STM-1 eléctrica (Nota 1)	1,5	0,075	3,3	65	Cuadro 4/G.825 Figura 2/G.825
STM-1 eléctrica (Nota 2)	1,5	0,15	6,5	65	Cuadro 4/G.825 Figura 1/G.825
STM-4	1,5	0,15	25	250	Cuadro 5/G.825 Figura 3/G.825
STM-16	1,5	0,15	100	1000	Cuadro 6/G.825 Figura 4/G.825
STM-64	1,5	0,15	400	4000	Cuadro 7/G.825 Figura 5/G.825
STM-256	Por determinar	Por determinar	Por determinar	Por determinar	Por determinar

NOTA 1 – Estos valores son aplicables a redes SDH optimizadas para la jerarquía 2048 kbit/s.

NOTA 2 – Estos valores son aplicables a redes SDH optimizadas para la jerarquía 1544 kbit/s.

Cuadro 15-2/G.783 – Parámetros de transferencia de fluctuación de fase

Nivel STM-N (tipo)	$f_{ m L}\left({ m kHz} ight)$	$f_{\mathrm{C}}\left(\mathrm{kHz}\right)$	f _H (kHz)	P (dB)
STM-1 (A)	1,3	130	1 300	0,1
STM-1 (B)	0,3	30	1 300	0,1
STM-4 (A)	5	500	5 000	0,1
STM-4 (B)	0,3	30	3 000	0,1
STM-16 (A)	20	2 000	20 000	0,1
STM-16 (B)	0,3	30	3 000	0,1
STM-64 (A)	10	1 000	80 000	0,1
STM-64 (B)	Por determinar	Por determinar	Por determinar	Por determinar
STM-256 (A)	Por determinar	Por determinar	Por determinar	Por determinar
STM-256 (B)	Por determinar	Por determinar	Por determinar	Por determinar

15.1.4 Prueba de la dependencia con respecto al esquema

Las señales STM-N contienen regiones, dentro del tren de datos, en las cuales la probabilidad de que se produzcan errores de bit es mayor, debido a la estructura de los datos en esas regiones.

Pueden identificarse tres casos distintos:

- errores resultantes del cierre del diagrama de ojo, ya que el nivel medio de la señal, en el equipo, tiende a variar con la densidad del esquema como consecuencia de la presencia de acoplamientos de corriente no deseados ("fluctuación lenta de fase de la corriente continua");
- 2) errores que se producen cuando el circuito de recuperación de la temporización falla al tratar de puentear regiones de datos que contienen muy poca información de temporización en forma de transiciones de datos;

arrores que se producen por el fallo del circuito de recuperación de la temporización antes indicado en 2), pero agravados por la aparición de la primera fila de los octetos de tara de sección STM-N que preceden a un periodo de bajo contenido de temporización (estos octetos tienen un bajo contenido de datos, sobre todo para los valores grandes de N).

En el apéndice V se describe un posible método para verificar la insensibilidad de los equipos SDH a los dígitos idénticos consecutivos (CID).

15.2 Interfaces PDH

15.2.1 Tolerancia de fluctuación de fase y de fluctuación lenta de fase a la entrada

La tolerancia de fluctuación de fase y de fluctuación lenta de fase a la entrada para las señales basadas en la jerarquía 2048 kbit/s se especifica en la Rec. UIT-T G.823. La tolerancia de fluctuación de fase y de fluctuación lenta de fase a la entrada para las señales basadas en la jerarquía a 1544 kbit/s se especifica en las Recs. UIT-T G.824, G.743 y G.752. Las funciones de sincronización pueden utilizar la señal PDH como una fuente de referencia de sincronización (véase la Rec. UIT-T G.781). Para este caso, en la Rec. UIT-T G.813 se especifican parámetros y límites adicionales.

NOTA – Puede ser necesario especificar separadamente la transmisión y la recepción para sistemas capaces de funcionar con equipos de distintos fabricantes.

15.2.2 Transferencia de fluctuación de fase y de fluctuación lenta de fase

Como mínimo, se deben cumplir los requisitos de transferencia de fluctuación de fase especificados en cualquier Recomendación relativa a los equipos plesiócronos.

NOTA 1 – La transferencia de fluctuación de fase y de fluctuación lenta de fase del equipo puede ser difícil de especificar para sistemas capaces de funcionar con equipos de distintos fabricantes. Puede ser más fácil especificar la transferencia de fluctuación de fase y de fluctuación lenta de fase del desincronizador.

NOTA 2 – Las especificaciones mencionadas no son suficientes para asegurar que el equipo SDH proporcione una atenuación global adecuada de la fluctuación de fase y de la fluctuación lenta de fase. Concretamente, la atenuación de la fluctuación de fase y de la fluctuación lenta de fase que se producen debido a los ajustes de puntero decodificados impone requisitos más estrictos a la característica de transferencia del desincronizador SDH.

15.2.3 Generación de fluctuación de fase y de fluctuación lenta de fase

15.2.3.1 Fluctuación de fase y fluctuación lenta de fase debidas a la correspondencia de afluentes

La fluctuación de fase debida a la correspondencia de afluentes (PDH) G.703 en contenedores, descrita en la Rec. UIT-T G.707/Y.1322, se debe especificar como la amplitud cresta a cresta en una determinada banda de frecuencias en un determinado intervalo de medición. Los límites para cada interfaz de afluente (PDH) G.703 y las respectivas características de filtro para la fluctuación de fase debida a la correspondencia de los afluentes se muestran en el cuadro 15-3.

NOTA – La fluctuación de fase debida a la correspondencia de afluentes se mide cuando no hay ajustes de puntero. La fluctuación de fase a la salida de un sincronizador a 2048 kbit/s, cuando no hay fluctuación de fase a la entrada ni actividad de puntero, no deberá rebasar 0,35 UI cresta a cresta, cuando se mide a través de un filtro paso bajo de 10 Hz digital (que representa un desincronizador ideal) seguido por un filtro de medición que tiene una frecuencia de esquina paso alto de 20 Hz y una pendiente de 20 dB/década.

La fluctuación lenta de fase a la salida se debe especificar como MTIE junto con su primera y segunda derivadas con respecto al tiempo.

Estos requisitos deberán cumplirse cuando la frecuencia de entrada de la interfaz PDH es constante dentro de los límites —a ppm a +a ppm con respecto a la frecuencia nominal. El valor de "a" se define en las secciones pertinentes de la Rec. UIT-T G.703.

15.2.3.2 Fluctuación de fase y fluctuación lenta de fase debida a ajustes de puntero

La fluctuación de fase y la fluctuación lenta de fase producidas por ajustes de puntero decodificados se debe atenuar suficientemente para asegurar que no se degrada el funcionamiento de las redes plesiócronas existentes.

15.2.3.3 Fluctuación de fase y fluctuación lenta de fase combinadas, debidas a correspondencia de afluentes y ajustes de puntero

La fluctuación de fase combinada debida a correspondencia de afluentes y ajustes de puntero se debe especificar como una amplitud cresta a cresta en una determinada banda de frecuencias, con aplicación de secuencias de prueba de ajustes de puntero especificadas, representativas, durante un intervalo de medición dado. Este intervalo depende de la duración de la secuencia de prueba y del número de repeticiones. Un aspecto esencial que se debe considerar en la especificación de los efectos de ajustes de puntero en las interfaces (PDH) G.703 es la demarcación entre fluctuación de fase y fluctuación lenta de fase. Por consiguiente, son esenciales las características del filtro paso alto que, para fines de medición, se especifican en 9.3.2/O.172. Los límites para cada interfaz de afluente (PDH) G.703 y la característica correspondiente del filtro para la fluctuación de fase combinada se muestran en el cuadro 15-4, sobre la base de las secuencias de prueba de puntero indicadas en la figura 15-3.

Con el fin de acondicionar el procesador de puntero y preparar el equipo para la secuencia de prueba, es necesario aplicar secuencias de inicialización y de regularización. En el caso de secuencias aisladas y en ráfagas, el procesador de puntero no debe absorber los movimientos del puntero e impedir que influyan en la fluctuación de fase en la señal afluente demultiplexada. En el caso de secuencias periódicas, el procesador de puntero debe estar en la condición de estado estacionario en la que estaría si los movimientos continuos de puntero hubiesen estado siempre presentes. Para secuencias de prueba aisladas y en ráfagas, el periodo de inicialización debe consistir en ajustes de puntero aplicados a una velocidad que rebase la de la secuencia de prueba, pero que sea inferior a tres ajustes de puntero por segundo, en el mismo sentido que la secuencia de prueba subsiguiente. El periodo de inicialización debe durar como mínimo hasta que se detecte una respuesta en la fluctuación de fase medida en la señal afluente demultiplexada. Después del periodo de inicialización, se recomienda un periodo de regularización de 30 segundos en el que no hay actividad de puntero en la señal de prueba. Para secuencias de prueba periódicas (continuas y salteadas), se recomienda que se utilice un periodo de inicialización mínimo de 60 segundos. Se recomienda un periodo de regularización de 30 segundos durante el cual se aplica la secuencia periódica de modo que se mantenga la condición de estado estacionario. Si es necesario, el periodo se debe ampliar para incluir un número entero de secuencias completas.

A los efectos de los requisitos de 15.2.3.3.1 relativos a la fluctuación lenta de fase a 1544 kbit/s, el MTIE se mide utilizando un filtro paso bajo de primer orden de 100 Hz. Se utiliza un filtro paso bajo de 100 Hz porque el intervalo mínimo de observación para las mediciones del MTIE es de 1 ms. A los efectos de los requisitos de la fluctuación lenta de fase a 44 736 kbit/s de 15.2.3.3.2, el MTIE se mide utilizando un filtro paso bajo de primer orden de 10 Hz con una velocidad de muestreo de 30 o más muestras/s.

Los valores de los cuadros 15-3 y 15-4 sólo son válidos si todos los elementos de red que proporcionan el trayecto se mantienen en sincronización. Los requisitos indicados anteriormente no se aplican en condiciones de pérdida de sincronización de la red SDH.

La frecuencia del afluente PDH es independiente de la frecuencia de sincronización SDH.

Los requisitos se cumplirán cuando la frecuencia de entrada de la interfaz PDH es constante dentro de los límites –a ppm a +a ppm con respecto a la frecuencia nominal. El valor de "a" se define en las cláusulas pertinentes de la Rec. UIT-T G.703.

Los filtros paso alto de medición de los cuadros 15-3 y 15-4 tienen una característica de primer orden y un régimen de disminución de 20 dB/década. Los filtros paso bajo de medición tienen una característica Butterworth uniformizada al máximo y un régimen de disminución de –60 dB/década (para velocidades binarias STM-N y velocidades binarias PDH basadas en la jerarquía 2048 kbit/s) o –20 dB/década (para velocidades binarias PDH basadas en la jerarquía 1544 kbit/s). La Rec. UIT-T O.172 [23] contiene más especificaciones sobre la respuesta de frecuencia de la función de medición de la fluctuación de fase, tales como las relativas a la exactitud de los filtros de medición y a los polos de filtro adicionales permitidos.

Cuadro 15-3/G.783 – Especificación de la generación de fluctuación de fase debida a la correspondencia de señales afluentes

	Características de los filtros		Máxima fluctuación de fase cresta a cresta			
Interfaz (PDH) G.703		(Nota 2)	(Nota 2)		Correspondencia	
	f1 paso alto	f3 paso alto	f4 paso bajo	f1-f4	f3-f4	
1544 kbit/s	10 Hz 20 dB/déc	8 kHz	40 kHz -20 dB/déc	0,7 (Nota 3) (A ₀)	(Nota 1)	
2048 kbit/s	20 Hz 20 dB/déc	18 kHz (700 Hz) 20 dB/déc	100 kHz -60 dB/déc	(Nota 1)	0,075 UI	
6312 kbit/s	(Nota 1)	(Nota 1)	(Nota 1)	(Nota 1)	(Nota 1)	
34 368 kbit/s	100 Hz 20 dB/déc	10 kHz 20 dB/déc	800 kHz -60 dB/déc	(Nota 1)	0,075 UI	
44 736 kbit/s	10 Hz	30 kHz	400 kHz -20 dB/déc	0,40 UI (A ₀) (Nota 3)	(Nota 1)	
139 264 kbit/s	200 Hz 20 dB/déc	10 kHz 20 dB/déc	3500 kHz -60 dB/déc	(Nota 1)	0,075 UI	

NOTA 1 – Estos valores quedan en estudio.

NOTA 2 – El valor de frecuencia indicado entre paréntesis sólo se aplica a determinadas interfaces nacionales. Para más información sobre las características de filtrado, véase la Rec. UIT-T O.172 [23].

NOTA 3 – Para asegurar la interoperabilidad sincronizador/desincronizador, el mecanismo de correspondencia deberá satisfacer el siguiente requisito. El mecanismo de relleno que genera los bits C (bits de control de justificación) se implementará de tal manera que, dado un desincronizador filtro paso bajo de un solo polo de 40 Hz con una punta de ganancia no superior a 0,1 dB, la fluctuación lenta de fase debida a la correspondencia cumplirá el requisito pertinente de este cuadro.

Cuadro 15-4/G.783 – Especificación de la generación de fluctuación de fase combinada

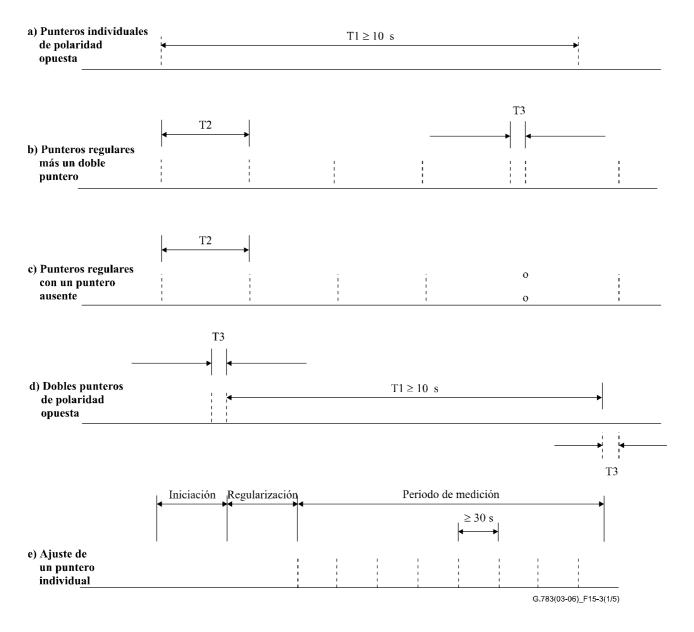
	Características de los filtros (Notas 4, 8)			Máxima fluctuación de fase cresta a cresta	
Interfaz (PDH) G.703		(110tas 4, 6)		Combinada	
()	f1 paso alto	f3 paso alto	f4 paso bajo	f1-f4	f3-f4
1544 kbit/s	10 Hz 20 dB/déc	8 kHz	40 kHz -20 dB/déc	(Nota 9) (Nota 5)	(Nota 1)
2048 kbit/s	20 Hz 20 dB/déc	18 kHz (700 Hz) 20 dB/déc	100 kHz -60 dB/déc	0,4 UI (Nota 2)	0,075 UI (Nota 2)
6312 kbit/s	(Nota 1)	(Nota 1)	(Nota 1)	(Nota 1)	(Nota 1)
34 368 kbit/s	100 Hz 20 dB/déc	10 kHz 20 dB/déc	800 kHz -60 dB/déc	0,4 UI 0,75 UI (Nota 3)	0,075 UI (Nota 3)
44 736 kbit/s	10 Hz	30 kHz	400 kHz -20 dB/déc	(Nota 9) (Nota 6)	(Nota 1)
139 264 kbit/s	200 Hz 20 dB/déc	10 kHz 20 dB/déc	3500 kHz -60 dB/déc	0,4 UI 0,75 UI (Notas 3 y 7)	0,075 UI (Notas 3 y 7)

NOTA 1 – Estos valores quedan en estudio.

NOTA 2 – El límite corresponde a las secuencias de puntero en la figura 15-3 a, b, c. T2 > 0.75 s T3 = 2 ms.

NOTA 3 – Los límites de 0,4 UI y 0,075 UI corresponden a secuencias de puntero de la figura 15-3 a, b, c. El límite de 0,75 UI corresponde a la secuencia de puntero de la figura 15-3 d. Los valores de T2 y T3 quedan en estudio. Se supone que los ajustes de puntero de polaridades opuestas están bien separados en el tiempo, es decir, que los periodos entre ajustes son mayores que la constante de tiempo del desincronizador.

NOTA 4 – El valor de frecuencia indicado entre paréntesis sólo se aplica a determinadas interfaces nacionales.


NOTA 5 – El requisito para un solo ajuste de puntero (figura 15-3 e) es A0 + 0.6 UI. El requisito para periódico (continuo y 26/1) sin punteros añadidos o cancelados (figura 15-3 h, j) es 1,3 UI. El requisito para periódico (continuo y 26/1) con punteros añadidos o cancelados (figura 15-3 h, j) es 1,9 UI. En la figura 15-3 h y 15-3 j, T4 = 2 ms y 1 s $\leq T5 < 10$ s.

NOTA 6 – El requisito para un solo ajuste de puntero (figura 15-3 e) es A0 + 0.3 UI. El requisito para periódico (continuo y 87/3) sin punteros añadidos o cancelados (figura 15-3 g, h) es 1.0 UI. El requisito para periódico (continuo y 87/3) con punteros añadidos o cancelados (figura 15-3 g, h) es 1.3 UI. El requisito para una ráfaga de ajustes de puntero (figura 15-3 f) es 1.3 UI. El requisito para una ráfaga de ajustes de puntero en un estado transitorio de fase (figura 15-3 i) es 1.2 UI. En las figura 15-3 f, g y h, 1.4 = 0.5 ms y 1.4 = 0

NOTA 7 – La secuencia de punteros de la figura 15-3 g sólo es aplicable en los niveles AU-3 y AU-4. Los valores de fluctuación de fase y de fluctuación lenta de fase quedan en estudio.

NOTA 8 – Para más información sobre las características de los filtros, véase la Rec. UIT-T O.172.

NOTA 9 – A_0 es la fluctuación de fase combinada cuando no está aplicada ninguna secuencia de punteros.

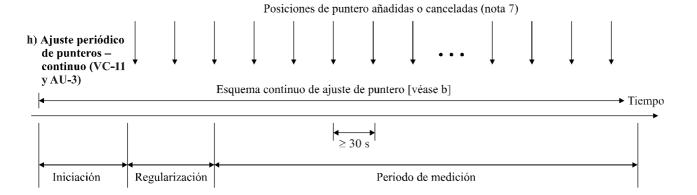
NOTA 1 – La fluctuación de fase de salida de cabida útil se define como la máxima fluctuación de fase en todo el periodo de medición.

NOTA 2 – Para cabidas útiles de nivel AU-3, los ajustes se aplicarán a los punteros de nivel STM-N. Para cabidas útiles de nivel VC, los ajustes se aplicarán a los punteros de nivel TU.

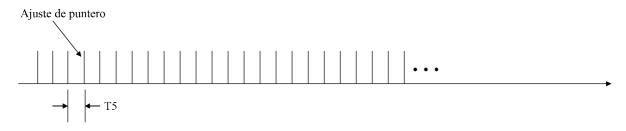
NOTA 3 – La integridad de los datos de la totalidad de la cabida útil se mantendrá a través de la red SDH.

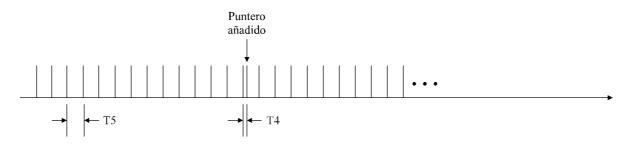
NOTA 4 – Tanto en el caso de secuencias aisladas como en el de ráfagas de secuencias, se realizarán pruebas separadas, primeramente con todos los ajustes de puntero positivos y después con todos los ajustes de puntero negativos.

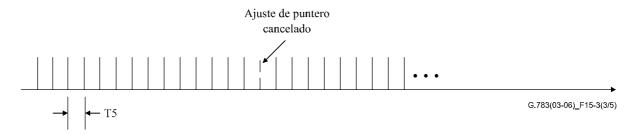
NOTA 5 – En el caso de secuencias periódicas, T5 es constante para cada medición y se determina por la magnitud del desplazamiento de frecuencia entre el VC y su portadora (trayecto de orden superior para los VC de orden inferior y STM-N para los VC de orden superior). T5 variará en la gama indicada en las notas 6 y 7 del cuadro 15-4.


NOTA 6 – Todas las pruebas periódicas se realizarán con desplazamientos de frecuencia positivos y con desplazamientos de frecuencia negativos.

NOTA 7 – En el caso de secuencias periódicas, se realizarán pruebas separadas, primeramente con ajustes de punteros añadidos y después con ajustes de punteros cancelados.


Figura 15-3/G.783 – Secuencias de prueba de punteros (hoja 1 de 5)


Figura 15-3/G.783 – Secuencias de prueba de punteros (hoja 2 de 5)


h – Parte 1: Esquema global

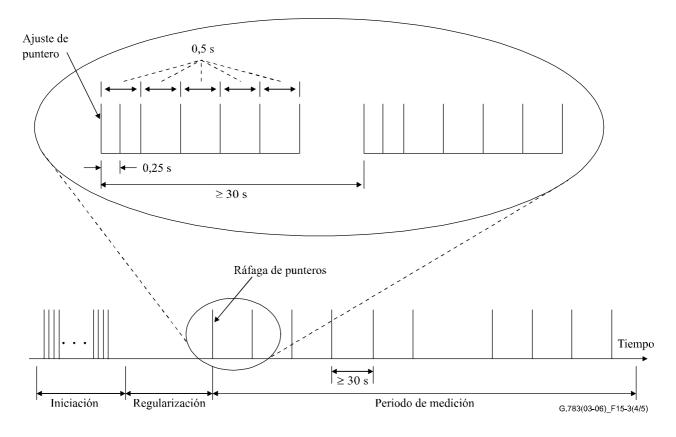
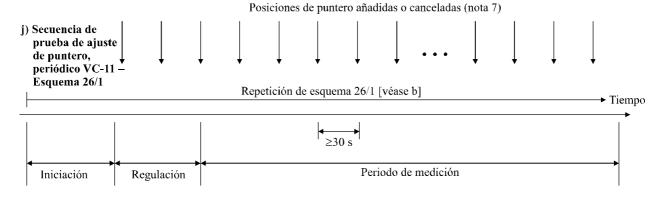
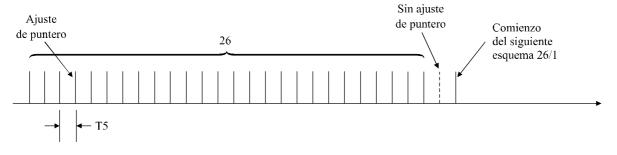
h – Parte 2: Esquema continuo

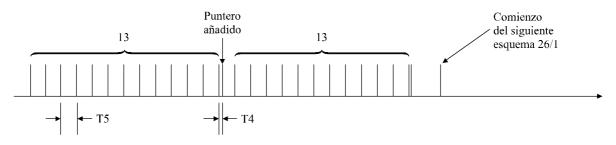
h – Parte 3: Posición de inserción

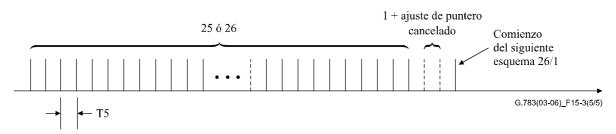
h - Parte 4: Posición de cancelación

Figura 15-3/G.783 – Secuencias de prueba de punteros (hoja 3 de 5)

i) Secuencia de prueba de ajuste de puntero en un estado transitorio de fase


Figura 15-3/G.783 – Secuencias de prueba de punteros (hoja 4 de 5)


j – Parte 1: Esquema global

j – Parte 2: Esquema 26/1

j – Parte 3: Posición de inserción

j - Parte 4: Posición de cancelación

Figura 15-3/G.783 – Secuencias de prueba de punteros (hoja 5 de 5)

15.2.3.3.1 Fluctuación lenta de fase de la señal a 1544 kbit/s

15.2.3.3.1.1 Fluctuación lenta de fase a 1544 kbit/s causada por el proceso de correspondencia

La fluctuación lenta de fase de una señal de cabida útil a 1544 kbit/s procedente de una isla SDH debida al proceso de correspondencia asíncrono y a la generación de fluctuación lenta de fase de los relojes será menor que los valores indicados en el cuadro 15-5 y se ilustra en la máscara de la figura 15-4 para el caso de ausencia de ajustes de puntero, ausencia de fluctuación lenta de fase en la señales de sincronización, y ausencia de fluctuación de fase y de fluctuación lenta de fase en la entrada de cabida útil a 1544 kbit/s en la isla SDH.

Cuadro 15-5/G.783 – MTIE debido al proceso de correspondencia de señales a 1544 kbit/s (incluye los efectos del reloj de NE en la correspondencia y en el desincronizador)

Tiempo en segundos	MTIE en nanosegundos
0,001326 < S < 0,0115	MTIE < 61 000 * S
S > 0,0115	MTIE < 700

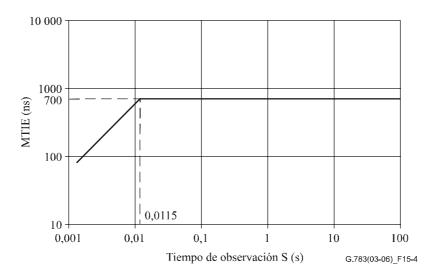


Figura 15-4/G.783 – MTIE debido a la correspondencia de señales a 1544 kbit/s

15.2.3.3.1.2 Fluctuación lenta de fase causada por ajustes de puntero

La actividad de ajuste de puntero SDH en una red está en función de las características de sincronización de esa red. El ruido de las señales de sincronización (o ruido de reloj) causa variaciones en el contenido de la memoria tampón del procesador de punteros, como consecuencia de lo cual se produce una fluctuación lenta de fase de la señal de cabida útil. Dado que los parámetros estadísticos de los ajustes de puntero pueden presentar grandes variaciones, se ha elaborado un conjunto de secuencias de prueba para simular adecuadamente el efecto de la actividad de ajuste de puntero de la red sobre la fluctuación lenta de fase a la salida de los desincronizadores

15.2.3.3.1.2.1 Ajustes de punteros individuales

El MTIE en señales de cabida útil a 1544 kbit/s procedentes de una isla SDH será menor que los valores indicados en el cuadro 15-6 e ilustrados en la máscara de la figura 15-5 cuando la secuencia de prueba de ajuste de puntero descrita en la figura 15-3 e se aplica al PTE final y no hay fluctuación de fase ni fluctuación lenta de fase en la entrada a 1544 kbit/s a la isla SDH. Estos

valores de MTIE no incluyen los efectos de la fluctuación lenta de fase debida a la correspondencia, ni la fluctuación lenta de fase en señales de sincronización para los elementos de red.

Cuadro 15-6/G.783 – Especificación de MTIE a 1544 kbit/s para ajustes de punteros individuales

Tiempo en segundos	MTIE en nanosegundos
0,001326 < S < 0,0164	MTIE < 61 000 * S
0.0164 > S > 0.93	MTIE < 925 + 4600 * S
S > 0,93	MTIE < 5200

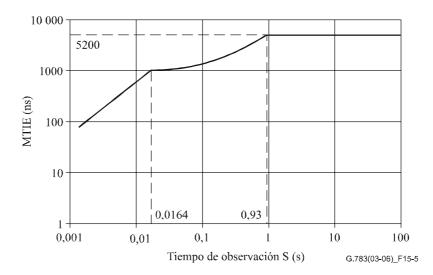


Figura 15-5/G.783 – MTIE para ajuste de puntero individual a 1544 kbit/s

15.2.3.3.1.2.2 Ajustes de puntero periódicos

El MTIE en señales de cabida útil a 1544 kbit/s procedentes de una isla SDH será menor que los valores indicados en el cuadro 15-7 e ilustrados en la máscara de la figura 15-6 cuando la secuencia de prueba de ajuste de puntero descrita en la figura 15-3 h (Parte 2) y 15-3 j (Parte 2) se aplica al PTE final y no hay fluctuación de fase ni fluctuación lenta de fase aplicadas a la entrada de la isla SDH. Estos valores MTIE no incluyen los efectos de la fluctuación lenta de fase debida a la correspondencia, ni la fluctuación lenta de fase en las señales de sincronización para los elementos de red.

Cuadro 15-7/G.783 – Especificación de MTIE a 1544 kbit/s para ajustes de puntero periódicos

Tiempo en segundos	MTIE en nanosegundos
0,001326 < S < 0,0164	MTIE < 61 000 * S
0,0164 > S > 1,97	MTIE < 925 + 4600 * S
S > 1,97	MTIE < 10 000

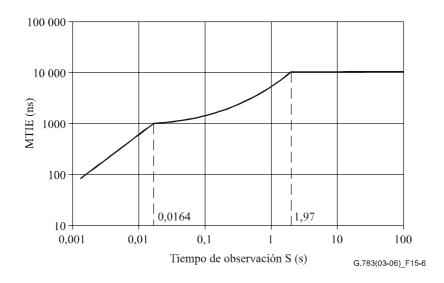


Figura 15-6/G.783 – MTIE para ajuste de puntero a 1544 kbit/s periódico

15.2.3.3.2 Fluctuación lenta de fase de la señal a 44 736 kbit/s

15.2.3.3.2.1 Fluctuación lenta de fase de la señal a 44 736 kbit/s debida a la correspondencia

La fluctuación lenta de fase en una señal de cabida útil a 44 736 kbit/s procedente de una isla SDH, debida al proceso de correspondencia asíncrona y a la generación de fluctuación lenta de fase de los relojes, será menor que los valores indicados en el cuadro 15-8 e ilustrados en la máscara de la figura 15-7 para el caso en que haya ajustes de puntero, no haya fluctuación lenta de fase en la señales de sincronización, y no haya fluctuación de fase ni fluctuación lenta de fase en la entrada de la cabida útil a 44 736 kbit/s en la isla SDH.

Cuadro 15-8/G.783 – MTIE debido a la correspondencia de la señal a 44 736 kbit/s (incluye los efectos del reloj de NE en la correspondencia y en el desincronizador)

Tiempo en segundos	MTIE en nanosegundos
S < 0,1	N/A (región de fluctuación de fase)
0.1 < S < 0.25	20
0,25 < S < 1	53 * S + 7
1 < S < 10	37 * S^1/2 + 23
10 < S < 100	140

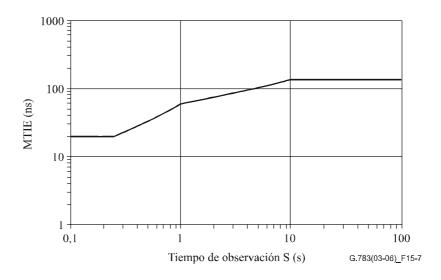


Figura 15-7/G.783 – MTIE debido a la correspondencia de la señal a 44 736 kbit/s (incluye los efectos del reloj de NE sobre la correspondencia y el desincronizador)

15.2.3.3.2.2 Fluctuación lenta de fase de la señal a 44 736 kbit/s causada por ajustes de puntero

La actividad de ajuste de puntero SDH en una red está en función de las características de sincronización de esa red. El ruido de las señales de sincronización (o ruido de reloj) causa variaciones en el contenido de la memoria tampón del procesador de punteros, como consecuencia de lo cual se produce una fluctuación lenta de fase de la señal de cabida útil. Dado que los parámetros estadísticos de los ajustes de punteros pueden presentar grandes variaciones, se ha elaborado un conjunto de secuencias de prueba para simular adecuadamente el efecto de la actividad de ajuste de puntero de la red sobre la fluctuación lenta de fase a la salida de los desincronizadores.

15.2.3.3.2.2.1 Ajustes de punteros individuales

El MTIE en señales de cabida útil a 44 736 kbit/s procedentes de una isla SDH será menor que los valores indicados en el cuadro 15-9 e ilustrados en la máscara de la figura 15-8 cuando la secuencia de prueba de ajuste de puntero descrita en la figura 15-3 e se aplica al PTE final y no hay fluctuación de fase ni fluctuación lenta de fase a la entrada de la señal a 44 736 kbit/s en la isla SDH. Estos valores de MTIE no incluyen los efectos de la fluctuación lenta de fase debida a la correspondencia, ni la fluctuación lenta de fase en señales de sincronización para los elementos de red.

Cuadro 15-9/G.783 – Especificación de MTIE de señales a 44 736 kbit/s para ajustes de punteros individuales AU-3

Tiempo en segundos	MTIE en nanosegundos
S < 0,1	N/A (región de fluctuación de fase)
0.1 < S < 0.18	945 * S
0,18 < S < 100	170 (nota)

NOTA – Los valores de MTIE para las secuencias de punteros no continuas permiten niveles de MTIE de 170 ns/puntero. El nivel de MTIE es más alto que el nivel teórico de MTIE/puntero de 160 ns para tener en cuenta las sobreoscilaciones del desincronizador errores de fuga de fase y otros efectos del movimiento de puntero de desincronizador.

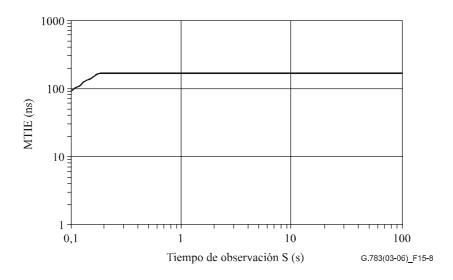


Figura 15-8/G.783 – Máscara MTIE para ajuste de puntero individual AU-3

15.2.3.3.2.2.2 Ráfagas de ajustes de puntero

El MTIE en señales de cabida útil a 44 736 kbit/s procedentes de islas SDH debe ser menor que los valores indicados en el cuadro 15-10 e ilustrados en la máscara de la figura 15-9 cuando la secuencia de prueba de ajuste de puntero descrita en la figura 15-3 f se aplica al PTE final y no hay fluctuación de fase ni fluctuación lenta de fase de la señal a 44 736 kbit/s en la entrada a la isla SDH. Estos valores de MTIE no incluyen los efectos de la fluctuación lenta de fase debidos a la correspondencia, ni la fluctuación lenta de fase en las señales de sincronización para los elementos de red.

Cuadro 15-10/G.783 – Especificación de MTIE de la señal a 44 736 kbit/s para ráfagas de tres ajustes de puntero de AU-3

Tiempo en segundos	MTIE en nanosegundos
S < 0,1	N/A (región de fluctuación de fase)
0.1 < S < 0.28	1820 * S
0,28 < S < 100	510 (nota)

NOTA – Los valores de MTIE asignados para secuencias de punteros no continuas permiten niveles de MTIE de 170 ns/puntero, o 510 ns para la ráfaga de tres ajustes de puntero AU-3. El nivel de MTIE es más alto que el nivel teórico de MTIE/puntero de 160 ns para tener en cuenta las sobreoscilaciones del desincronizador, errores de fuga de fase y otros efectos del movimiento de puntero de desincronizador.

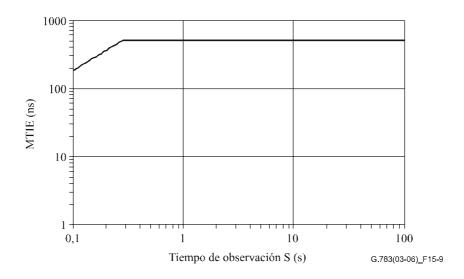


Figura 15-9/G.783 – Máscara de MTIE para una ráfaga de tres ajustes de puntero

15.2.3.3.2.2.3 Ráfagas de ajustes de puntero en un estado transitorio de fase

El MTIE en señales de cabida útil a 44 736 kbit/s procedentes de islas SDH debe ser menor que los valores indicados en el cuadro 15-11 e ilustrados en la máscara de la figura 15-10 cuando la secuencia de prueba de ajuste de puntero descrita en la figura 15-3 i se aplica al PTE final y no hay fluctuación de fase ni fluctuación lenta de fase a la entrada de la señal a 44 736 kbit/s en la isla SDH. Estos valores de MTIE no incluyen los efectos de la fluctuación lenta de fase debida a la correspondencia, ni la fluctuación lenta de fase en las señales de sincronización para los elementos de red

Cuadro 15-11/G.783 – Especificación de MTIE de la señal a 44 736 kbit/s para una ráfaga de ajustes de puntero AU-3 en estado transitorio de fase

Tiempo en segundos	MTIE en nanosegundos	
S < 0,1	N/A (región de fluctuación de fase)	
0.1 < S < 0.70	1650 * S	
0,70 < S < 100	1155 (nota)	

NOTA – Los valores de MTIE asignados para las secuencias de punteros no continuas permiten niveles de MTIE de 165 ns/puntero para la ráfaga de ajustes de puntero en estado transitorio de fase. El nivel de MTIE es más alto que el nivel teórico de MTIE/puntero de 160 ns para tener en cuenta las sobreoscilaciones del desincronizador, errores de fuga de fase, y otros efectos del desincronizador. El margen por puntero permitido en este caso es menor que en los casos de punteros individuales o de ráfaga de tres ajustes de puntero, porque en este esquema hay siete punteros y cabe esperar que los errores de fase acumulativos sean menores.

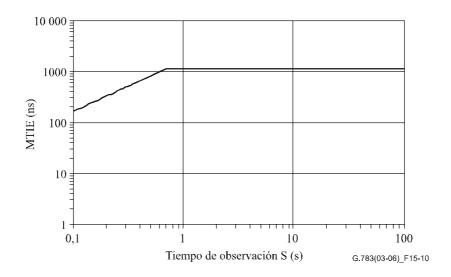


Figura 15-10/G.783 – Máscara de MTIE para ráfaga de ajustes de puntero en estado transitorio de fase

15.2.3.3.2.2.4 Ajustes de puntero periódicos

El MTIE en señales de cabida útil a 44 736 kbit/s procedentes de islas SDH debe ser menor que los valores indicados en el cuadro 15-12 e ilustrados en la máscara de la figura 15-11 cuando la secuencia de prueba de ajuste de puntero descrita en la figura 15-3 g y 15-3 h (Partes 1 y 2) se aplica al PTE final y no hay fluctuación de fase ni fluctuación lenta de fase a la entrada de la isla SDH. Los ajustes de adición de puntero y de cancelación de puntero a que se hace referencia en la figura 15-3 g y 15-3 h (Partes 3 y 4) no se han aplicado. Estos valores de MTIE no incluyen los efectos de la fluctuación lenta de fase debida a la correspondencia, ni de la fluctuación lenta de fase en las señales de sincronización para los elementos de red.

Cuadro 15-12/G.783 – Especificación de MTIE a 44 736 kbit/s para ajustes de puntero AU-3 periódicos

Tiempo en segundos	MTIE en nanosegundos	
S < 0,1	N/A (región de fluctuación de fase)	
0.1 < S < 0.44	1830 * S	
0,44 < S < 100	800	

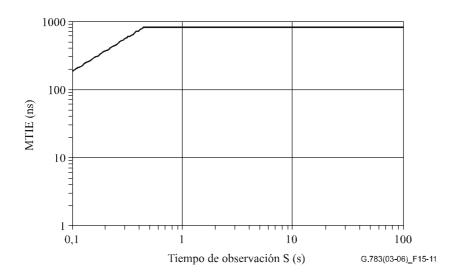


Figura 15-11/G.783 – Máscara de MTIE para ajustes de puntero periódicos

15.3 Medición de la fluctuación de fase y de la fluctuación lenta de fase

Una instrumentación conforme a la Rec. UIT-T O.172 [23] es adecuada para la medición de la fluctuación de fase y la fluctuación lenta de fase en los sistemas SDH.

NOTA – La Rec. UIT-T O.172 incluye especificaciones de conjuntos de pruebas para la medición de afluentes SDH que funcionan a velocidades binarias PDH, donde los requisitos de los conjuntos de pruebas son más restrictivos que los aplicables únicamente a sistemas PDH. Por consiguiente, en las interfaces PDH de los sistemas SDH debe utilizarse una instrumentación conforme a la Rec. UIT-T O.172.

La descripción funcional para la medición de la fluctuación de fase a la salida en una interfaz digital se presenta en la Rec. UIT-T O.172. Para la medición de la fluctuación de fase combinada, debida a la correspondencia y debida a la fluctuación de fase de los punteros, se debe utilizar el procedimiento de prueba que comprende los periodos de iniciación y de regularización, descrito en 15.2.3.3. El apéndice III/O.172 proporciona más información sobre la configuración del conjunto de pruebas y la capacidad para realizar pruebas mediante secuencias de punteros.

Los límites indicados en las cláusulas precedentes representan los niveles máximos admisibles de fluctuación de fase en las interfaces de equipo para las condiciones definidas y cuando las mediciones se efectúan durante un determinado periodo de tiempo. En general, la fluctuación de fase se mide en un periodo de 60 segundos. Sin embargo, cuando se mide la fluctuación de fase combinada, es decir la debida a la correspondencia y la causada por el movimiento de los punteros, utilizando las secuencias de prueba definidas en 15.2.3.3, el periodo de medición depende de la secuencia de prueba utilizada. Si es necesario, el periodo de medición se extiende para que comprenda un número entero de secuencias completas.

16 Función de acceso de tara (OHA, overhead access function)

En los equipos SDH puede ser necesario proporcionar acceso de una manera integrada a funciones de tara de transmisión. Este aspecto se debe estudiar en el UIT-T.

Una determinada función de acceso de tara que se puede incluir en los elementos de red SDH es la función de circuito de servicio, que se utiliza para proporcionar, al personal de mantenimiento, comunicación verbal entre elementos de red SDH.

La función de circuito de servicio del bloque OHA aceptará los octetos E1 y E2 procedentes de las funciones RSn/OW_A y MSn/OW_A y los presentará como canales de datos en una o más interfaces externas como se describe en el cuadro 16-1.

La utilización de interfaces de circuito de servicio multiplexadas para los NE que terminan varios canales de circuito de servicio queda en estudio.

Cuadro 16-1/G.783 – Interfaz de circuito de servicio

Velocidad binaria (kbit/s)	Interfaz normalizada	Sincronización	Estructura de trama
64	Rec. UIT-T G.703	Codireccional	El bit 1 del octeto E1/E2 de la trama STM-N corresponde al bit 1 del canal a 64 kbit/s

Anexo A

Algoritmo para la detección de puntero

A.1 Interpretación del puntero

A.1.1 AU-n/AU-4-Xc

El algoritmo de procesamiento de puntero puede ser modelado por una máquina con un número finito de estados. Dentro del algoritmo de interpretación de puntero se definen tres estados (que se muestran en la figura A.1):

- NORM_state (estado normal);
- AIS_state (estado AIS);
- LOP state (estado LOP).

Las transiciones entre los estados serán eventos (indicaciones) consecutivos, por ejemplo, tres indicaciones AIS consecutivas para pasar del estado normal al estado AIS. La clase y número de indicaciones consecutivas que activan una transición se eligen de modo que el comportamiento sea estable e insensible a errores de bit.

La única transición que tiene lugar al producirse un solo evento es la del AIS_state al NORMAL state después de recibir una NDF habilitada con un valor de puntero válido.

Debe señalarse que, como el algoritmo sólo contiene transiciones basadas en indicaciones consecutivas, las indicaciones no válidas recibidas no consecutivamente no activan las transiciones al LOP_state.

Se definen los siguientes eventos (indicaciones):

_	Norm_point:	NDF normal Y	valor de desplazamiento	dentro de la gama.
---	-------------	--------------	-------------------------	--------------------

– NDF enable: NDF habilitada Y valor de desplazamiento dentro de la gama.

- AIS ind: 111111111111111.

Incr ind: NDF normal Y mayoría de bits D invertidos Y no mayoría de bits I

invertidos Y anterior NDF enable, incr ind o decr ind sucedieron más de

tres veces.

– Decr ind: NDF normal Y mayoría de bits D invertidos Y no mayoría de bits I

invertidos Y anterior NDF_enable, incr_ind o decr_ind sucedieron más de

tres veces.

- Inv point: Cualquier otro O norm point con valor de desplazamiento no igual a

desplazamiento activo.

NOTA 1 – Desplazamiento activo se define como la fase actual aceptada del VC en el NORM state y no está definido en los otros estados.

NOTA 2 – NDF habilitada es igual a 1001, 0001, 1101, 1011, 1000.

NOTA 3 – NDF normal es igual a 0110, 1110, 0010, 0100, 0111.

Las transiciones indicadas en el diagrama de estados se definen como sigue:

Inc ind/dec ind: Ajuste de desplazamiento (indicación de incremento o decremento).

 $3 \times \text{norm point}$: Tres indicaciones norm point iguales consecutivas.

NDF enable: Una sola indicación NDF enable. $3 \times AIS$ ind: Tres indicaciones AIS consecutivas.

 $N \times inv$ point: N inv point consecutivas ($8 \le N \le 10$).

 $N \times NDF$ enable: N NDF enable consecutivas ($8 \le N \le 10$).

NOTA 4 - Las transiciones de NORM a NORM no representan cambios de estado, sino que implican cambios de desplazamiento.

NOTA $5-3 \times \text{norm}$ point tiene precedencia sobre N × inv point.

NOTA 6 - Anteriores versiones de esta Recomendación requerían la concordancia de los bits ss en la definición de Norm point, NDF enable, Incr ind y Decr ind como parte del algoritmo para detección de puntero. Se ha considerado que estos bits ss no son necesarios para el algoritmo de detección de puntero.

A.1.2 TU-n

El algoritmo de procesamiento de puntero puede modelarse mediante una máquina de estados finitos. En el algoritmo de interpretación de puntero se definen tres estados (como se muestra en la figura A.1):

- NORM state.
- AIS state.
- LOP state.

Las transiciones entre los estados serán eventos (indicaciones) consecutivos, por ejemplo tres indicaciones AIS consecutivas para pasar del NORM state al AIS state. El tipo y el número de indicaciones consecutivas que provocan una transición se han elegido de tal manera que el comportamiento sea estable e insensible a errores de bit.

La única transición que tiene lugar al producirse un solo evento es la del AIS state al NORMAL state después de recibir una NDF habilitada con un valor de puntero válido.

Debe señalarse que, como el algoritmo sólo contiene transiciones basadas en indicaciones consecutivas, las indicaciones no válidas recibidas no consecutivamente no activan las transiciones al LOP state.

Se definen los siguientes eventos (indicaciones):

Norm point: NDF normal Y correspondencia de bits ss bits Y valor de desplazamiento

dentro de la gama.

NDF enable: NDF habilitada Y correspondencia de bits ss Y valor de desplazamiento

dentro de la gama.

AIS ind: 111111111 111111111.

NDF normal Y correspondencia de bits ss y mayoría de bits I invertidos Y Incr ind:

no mayoría de bits D invertidos Y anterior NDF enable, incr ind o decr ind

sucedieron más de 3 veces.

Decr ind: NDF normal Y correspondencia de bits ss Y mayoría de bits D invertidos Y

no mayoría de bits I invertidos Y anterior NDF enable, incr ind o decr ind

sucedieron más de 3 veces.

- Inv_point: Cualquier otro O norm_point con valor de desplazamiento no igual a

desplazamiento activo.

NOTA 1 – Desplazamiento activo se define como la fase actual aceptada del VC en el NORM_state y no está definido en los otros estados.

NOTA 2 – NDF habilitada es igual a 1001, 0001, 1101, 1011, 1000.

NOTA 3 – NDF normal es igual a 0110, 1110, 0010, 0100, 0111.

Las transiciones indicadas en el diagrama de estado se definen como sigue:

Inc ind/dec ind: Ajuste de desplazamiento (indicación de incremento o decremento).

- 3 × norm point: Tres indicaciones norm point iguales consecutivas.

– NDF_enable: Una sola indicación NDF_enable.

- 3 × AIS ind: Tres indicaciones AIS consecutivas.

- N × inv point: N inv point consecutivas $(8 \le N \le 10)$.

- N × NDF enable: N NDF enable consecutivas $(8 \le N \le 10)$.

NOTA 4 – Las transiciones de NORM a NORM no representan cambios de estado, sino que implican cambios de desplazamiento.

NOTA $5-3 \times \text{norm_point}$ tiene precedencia sobre N x inv_point.

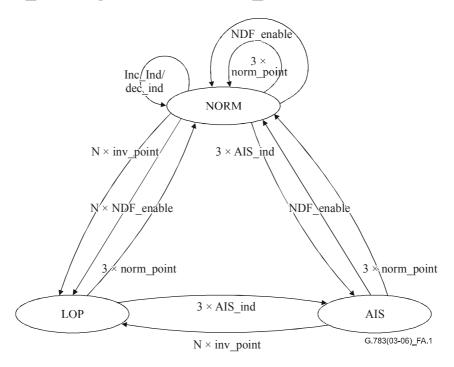


Figura A.1/G.783 – Diagrama de estados de interpretación de puntero

A.2 Cabidas útiles concatenadas

En caso de concatenaciones contiguas, el algoritmo para verificar la presencia de un indicador de concatenación en vez de un puntero normal se puede describir convenientemente de la misma manera que para un puntero normal. Esto se muestra en el diagrama de estados de la figura A.2. También en este caso se han descrito tres estados:

CONC_state (estado CONC);

- LOPC state (estado LOPC);
- AISC state (estado AISC).

Se definen los siguientes eventos (indicaciones):

- Conc ind: NDF habilitada + dd 1111111111.
- AIS_ind: 111111111111111.
- Inv point: Cualquier otro.

NOTA – Los bits dd no están especificados en la Rec. UIT-T G.707/Y.1322 y por consiguiente no cuentan para el algoritmo.

Las transiciones indicadas en el diagrama de estados se definen como sigue:

- 3 × AIS ind: Tres indicaciones AIS consecutivas.
- $N \times \text{inv_point}$: N inv_point consecutivas ($8 \le N \le 10$).
- 3 × conc ind: Tres conc ind consecutivas.

Un defecto en una o más de las AU y TU de una cabida útil concatenada tiene por consecuencia la detección de un defecto en la cabida útil concatenada. Se pueden informar dos tipos de defectos:

- Pérdida de puntero.
- AIS de trayecto.

El defecto pérdida de puntero se define como una transición del intérprete de puntero del estado normal al estado LOP o al estado AIS, o una transición del estado CONC al estado LOPC o al estado AISC en cualquier AU/TU concatenadas. Si el intérprete de puntero está en el estado AIS y los indicadores de concatenación de todas las AU/TU concatenadas están en el estado AISC, se informará un defecto AU/TU-AIS.

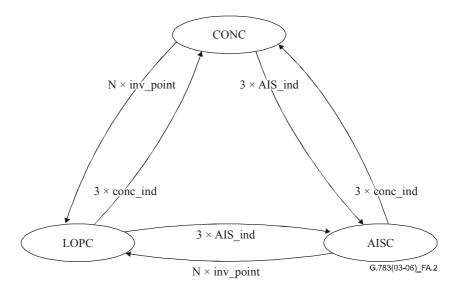
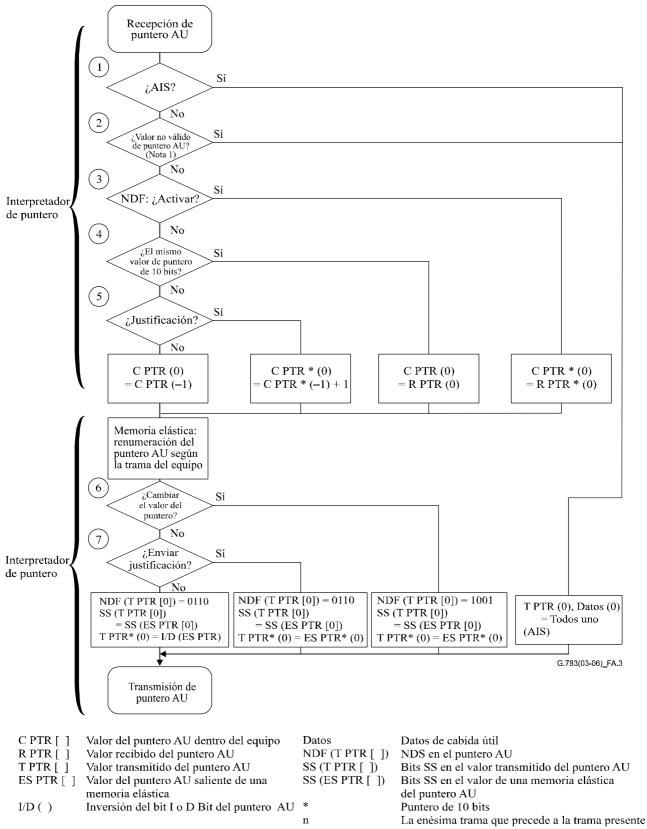



Figura A.2/G.783 – Diagrama de estados de indicador de concatenación

A.3 Flujograma de procesamiento de punteros

El mecanismo de procesamiento de punteros se ilustra como un flujograma en la figura A.3.

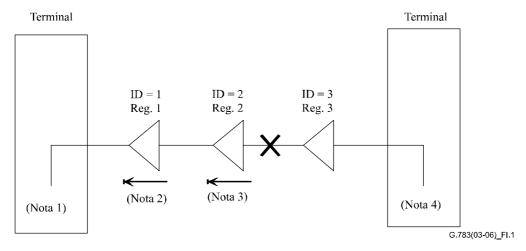

NOTA 1 – La indicación de concatenación (CI, concatenation indication) debe ser interpretada en este punto. Según las reglas de la Rec. UIT-T G.707/Y.1322, el primer AU-4 de un AU-4-Xc será interpretado con el flujograma; los punteros de los otros AU-4 contienen bits CI, y el procesador de puntero efectuará la misma operación que la realizada sobre el pimer AU-4. NOTA 2 – Puntero AU: NDF, SS, puntero 10 bits.

Figura A.3/G.783 – Flujograma de procesamiento de punteros

Apéndice I

Ejemplo de utilización del octeto F1

La Rec. UIT-T G.784 [10] describe la utilización de los canales de comunicación de datos (DCC, data communications channels) para el mantenimiento de la red SDH, incluidos los regeneradores. Para introducir regeneradores eficaces con relación al costo, este apéndice muestra un ejemplo de la utilización del octeto F1 para identificar una sección con fallos en una cadena de secciones de regeneración. Cuando un regenerador detecta un fallo en su sección, inserta su número de regenerador y estado de su fallo en el octeto F1. La figura I.1 ilustra el procedimiento y la figura I.2 muestra la definición del octeto F1.

- NOTA 1 El terminal recibe las alarmas del regenerador y las informa.
- NOTA 2 Si el estado del regenerador es normal, debe transferir el octeto F1 recibido hacia el destino sin ningún cambio.
- NOTA 3 Si el regenerador 2 detecta LOS, LOF, SD(B1) o ERR MON en el lado hacia el origen, envía el número de regenerador y la información de estado al lado destino utilizando el octeto F1. Estas alarmas se definen como sigue:
- LOF o LOS Pérdida de trama o pérdida de señal.
- SD(B1) Señal degradada calculada por el octeto B1.

Si se utilizan los procedimientos SD(B1) o ERR MON, es necesario mejorar la función RSn_TT en relación con el cálculo de B1.

- ERR MON * Detección de errores mediante la supervisión del octeto B1.
- NOTA 4 Normal es insertado en el octeto F1 por el terminal.

Figura I.1/G.783 – Cadena de secciones de regeneración

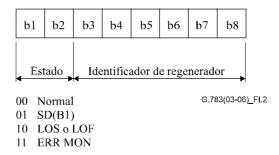


Figura I.2/G.783 – Definición del octeto F1

Apéndice II

Canal de comunicaciones de datos (DCC)

La utilización del canal de comunicaciones de datos (DCC) depende de la estrategia de mantenimiento del operador de red y de la situación específica. No siempre será necesario utilizar este canal, pues es posible ejecutar por otros medios las funciones requeridas.

Hay dos maneras de utilizar el DCC:

- i) utilización de los octetos D1 a D3 situados en la RSOH (DCC_R) y accesibles en regeneradores y otros elementos de red;
- ii) utilización de los octetos D4 a D12 (y D13 a D156 en el caso de STM-256) situados en la MSOH (DCC_M) y no accesibles en los regeneradores. Otra forma de proporcionar estos octetos es a través de la función MCF, o de la función OHA. La utilización concreta de estos octetos queda en estudio.

Estos canales se basan en mensajes y proporcionan comunicaciones entre elementos de red. Se pueden utilizar para el soporte de comunicaciones entre ubicaciones y la red de gestión de las telecomunicaciones. En las figuras II.1 y II.2 se presentan dos ejemplos.

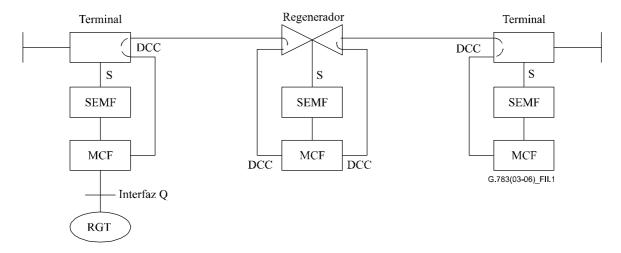


Figura II.1/G.783 – Configuración de sistema lineal SDH

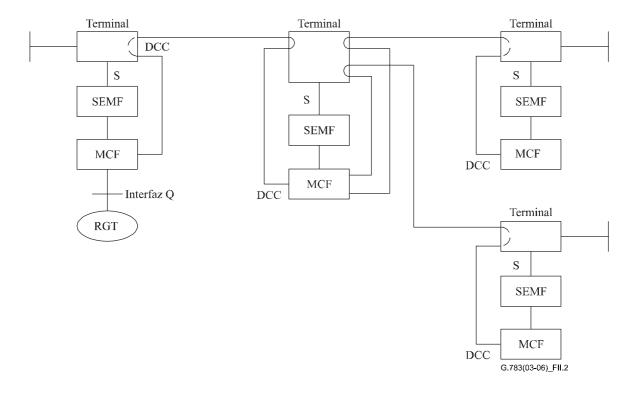


Figura II.2/G.783 - Configuración de árbol SDH

Apéndice III

Modelo funcional de regenerador STM-16 (ejemplo)

La figura III.1 muestra la combinación de funciones atómicas que representa la parte transporte de un elemento de red de regenerador STM-16. En este ejemplo están soportados un canal DCC, un circuito de servicio, y un canal de usuario; no se muestran las funciones atómicas de sección física del circuito de servicio (E0) ni el canal de usuario (E0 o V11).

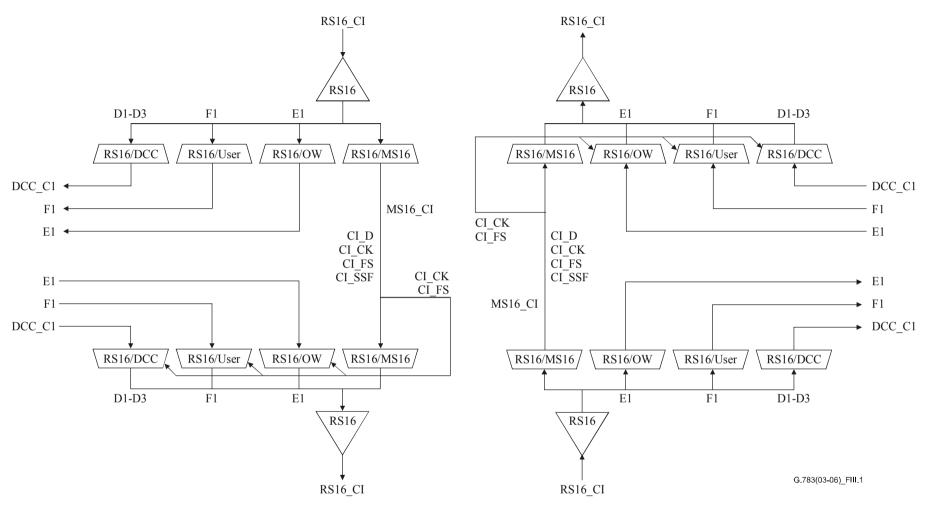


Figura III.1/G.783 – Modelo de regenerador STM-16 (soporta DCC, OW, USR)

Apéndice IV

Regenerador transparente STM-N

En los regeneradores, los octetos A1, A2 y J0 pueden ser relevados (es decir, pasados transparentemente a través del regenerador) en lugar de ser terminados y generados.

En funcionamiento normal, cuando RSn_CI_SSF está inactivo (esto es, cuando el proceso se encuentra en la condición en trama):

- Los octetos A1, A2, J0 y Z0 son, o bien generados, o relevados. El relevo de los octetos de alineación de trama recibidos reduce el retardo de la detección de la condición fuera de trama (OOF) y de la recuperación tras un fallo en una cadena de secciones de regeneración. La capacidad de seccionalización de las averías no es afectada por el hecho de que B1 sea recalculado para cada sección de regeneración. Desde el punto de vista de la gestión, es preferible que todos los regeneradores de un sistema de línea sean conformes a uno u otro criterio.
- E1 y F1 se toman de la OHA; facultativamente, estos octetos pueden ser relevados.
- D1-D3 se toman de la función de comunicaciones de mensajes (MCF).
- Los octetos para uso nacional y los octetos reservados para futura normalización internacional en la RSOH son relevados, o generados.

Cuando RSn_CI_SSF está activo (es decir, cuando se ha perdido la alineación de trama):

- A1, A2, J0 y Z0 son generados;
- B1 es generado como se describe en la presente Recomendación;
- E1 y F1 se toman de la OHA;
- D1-D3 se toman de la MCF;
- los octetos para uso nacional y los octetos reservados para futura normalización internacional en la RSOH son generados.

Cuando OSn/RSn_A_Sk está en la condición OOF (pero no en un estado de fallo), todos los octetos RSOH pueden ser relevados.

Apéndice V

Verificación de la inmunidad del equipo SDH a la aparición de dígitos idénticos consecutivos

V.1 Información general

En el apéndice II/G.957 [20] se presenta un medio para probar la insensibilidad de componentes a la aparición de dígitos idénticos consecutivos (CID). La prueba está prevista para su aplicación a los componentes receptor óptico y recuperación de reloj y está optimizada para esos fines. No puede utilizarse en sistemas SDH.

En este apéndice se presenta, como una alternativa, una prueba que puede utilizarse en sistemas SDH. No es tan restrictiva como la mencionada en primer término, pero tiene la ventaja de utilizar una trama STM-N válida, por lo que puede emplearse en sistemas SDH.

V.2 Método

V.2.1 Generación del esquema para la prueba CID

Un método que puede utilizarse para verificar la insensibilidad (o inmunidad) de los equipos SDH a la aparición de dígitos idénticos consecutivos consiste en proporcionar la señal todos unos o todos ceros utilizando un trayecto de orden superior con una cabida útil fijada a la inversa del esquema del aleatorizador para un número especificado de bits. Provisionalmente, se ha propuesto 72 bits como el límite para equipos SDH. Los punteros AU deben fijarse de manera que la POH quede colocada inmediatamente después de la SOH. El cuadro V.1 indica el tipo de cabida útil y la señal con el número máximo de CID que pueden generarse para cada tipo de interfaz (véanse también las figuras V.1 a V.3).

La parte de la trama STM-N que no contiene el esquema CID debe contener un esquema tal que, después de la aleatorización, aparezcan igual número de 1 y de 0. Los valores de los bits que preceden o suceden al esquema CID deben ser opuestos a los del esquema CID. Para STM-0, el esquema CID sólo debe aplicarse cada segunda trama, para lograr que el periodo de regularización de la recuperación del reloj sea suficientemente largo. Para STM-N, $N \ge 1$, puede aplicarse el esquema CID de ceros en una trama y el esquema CID de unos en la trama siguiente.

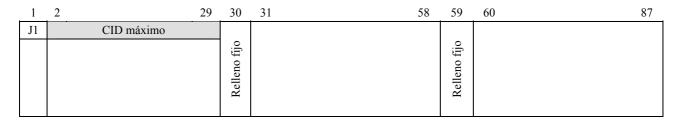


Figura V.1/G.783 – CID máximo para VC-3 en STM-0

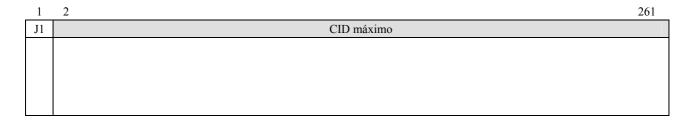


Figura V.2/G.783 – CID máximo para VC-4 en STM-1

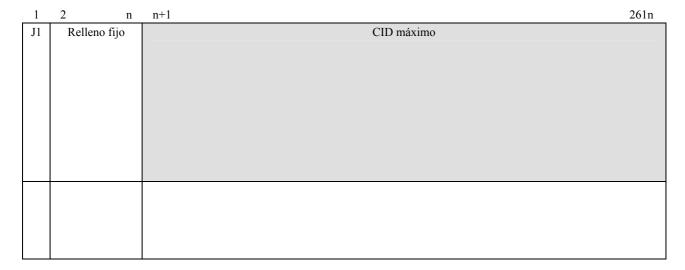


Figura V.3/G.783 – CID máximo para VC-4-Nc en STM-N

Cuadro V.1/G.783 – Cabidas útiles inversas de VC (después de la aleatorización) para prueba CID

Interfaz	Cabida útil para prueba CID	CID máximo
STM-0	VC-3	224
STM-1	VC-4	2080
STM-4	VC-4-4c	8320
STM-16	VC-4-16c	33 280
STM-64	VC-4-64c	133 120
STM-256	VC-4-256c	532 480

V.2.2 Interpretación

El sistema SDH sometido a prueba debe tener la generación de la MS REI habilitada, el trayecto HO configurado como bidireccional, y la TIM inhabilitada. Facultativamente, el sistema SDH podría tener el VC-n transconectado en retorno al puerto sobre el que se efectúa la prueba, pero esto no es necesario.

El equipo de prueba supervisa la señal STM-N en búsqueda de MS-REI, MS-RDI, HO-REI y HO-RDI. La aparición de cualquiera de estos defectos o anomalías es una indicación de que el sistema SDH sometido a prueba no ha reaccionado a la CID de la longitud generada.

Facultativamente, el equipo de prueba puede comparar el VC-n/VC-4-Nc recibido con el transmitido.

NOTA – Si el equipo de prueba tiene dificultades para alinear la trama a la señal STM-N, puede ser necesario suprimir la transconexión en retorno al puerto.

Apéndice VI

Funcionamiento de la indicación de defecto distante mejorada

Como una opción, el equipo puede proporcionar una diferenciación adicional entre defecto de cabida útil (PLM), defectos de servidor (AIS, LOP) y defectos de conectividad (TIM, UNEQ). En este apéndice se explican los detalles de esa opción.

VI.1 Trayectos VC-4-Xc/VC-4/VC-3

Para la fuente de terminación de camino de capa VC-n, Sn_TT_So, se asigna el octeto G1 para transportar en retorno, a una fuente de terminación VC-4-Xc/VC-4/VC-3, el estado y la calidad de funcionamiento del camino completo. Como se describe en el apéndice VII/G.707/Y.1322, los bits 5 a 7 del octeto G1 pueden utilizarse para proporcionar una indicación de defecto distante mejorada (E-RDI, *enhanced remote defect indication*). Si se utiliza esta opción E-RDI, los códigos del cuadro VII.1/G.707/Y.1322 [6] se utilizarán para G1[5-7].

Para el sumidero de terminación de camino de capa VC-n, Sn_TT_Sk, si se utiliza la opción E-RDI, el octeto G1[5-7] se interpretará como se describe en el cuadro VII.2/G.707/Y.1322.

VI.2 Trayectos VC-2/VC-12/VC-11

Para la fuente de terminación de camino de capa VC-m, Sm_TT_So, los bits 5-7 del octeto K4 pueden utilizarse para proporcionar una indicación de defecto distante mejorada (E-RDI). Si se utiliza esta opción E-RDI, los códigos del cuadro VII.3/G.707/Y.1322 se utilizarán para K4[5-7].

Para el sumidero de terminación de camino de capa VC-m, Sm_TT_Sk, si se utiliza la opción E-RDI, el octeto K4[5-7] se interpretará como se describe en el cuadro VII.4/G.707/Y.1322.

VI.3 Funciones de interfuncionamiento

VI.3.1 VC-4-Xc a VC-4-Xv

Si se utiliza la opción E-RDI:

G1[5-7]: Los bits 5 a 7 (RDI mejorada) del VC-4-Xc se insertarán en los bits 5 a 7 de todos los VC-4 del VC-4-Xv.

VI.3.2 VC-4-Xv a VC-4-Xc

G1[5-7]: Los bits 5 a 7 (RDI mejorada) de todos los VC-4 del VC-4-Xv se compararán con la lista de prioridades definida en el cuadro VI.1. El valor con la prioridad más alta se insertará en los bits 5 a 7 del VC-4-Xc.

Prioridad	G1[5 7]	E-RDI
8 (la más baja)	000	Ningún defecto distante
7	001	Ningún defecto distante
6	011	Ningún defecto distante
5	010	Defecto de cabida útil E-RDI
4	110	Defecto de conectividad E-RDI
3	100	Defecto de servidor E-RDI
2	111	Defecto de servidor E-RDI
1 (la más alta)	101	Defecto de servidor E-RDI

Cuadro VI.1/G.783 - Prioridades E-RDI

Apéndice VII

Análisis de la acumulación de fluctuación de fase del regenerador STM-64 y modelo de referencia hipotético

VII.1 Introducción

En este apéndice se describe en detalle el modelo de referencia hipotético (HRM, *hypothetical reference model*) y los análisis de la acumulación de fluctuación de fase en que se basaron los requisitos relativos a la generación de fluctuación de fase del STM-64 (tipo A) indicados en los cuadros 9-6 y 9-7 y los requisitos relativos a la transferencia de la fluctuación de fase del STM-64 (tipo A) indicados en el cuadro 15-2. Los análisis muestran que estos requisitos de generación y transferencia de la fluctuación de fase en este HRM son consistentes con las especificaciones de la fluctuación de fase a la salida del STM-64 (es decir, en la interfaz de red) en el cuadro 1/G.825.

Los análisis de la acumulación de fluctuación de fase se efectuaron en realidad para cadenas de regeneradores 3R de OTU2 en la OTN (véase la Rec. UIT-T G.8251). Los modelos de simulación y los análisis de acumulación de fluctuación de fase están ampliamente documentados en el apéndice IV/G.8251. Los resultados para cadenas de regeneradores 3R de OTU2 pueden aplicarse a cadenas de regeneradores STM-64 porque:

- 1) las velocidades de OTU2 y STM-64 son muy similares, es decir, presentan una diferencia de aproximadamente 7,6%, y
- 2) los parámetros importantes como el ancho de banda de los filtros de medición de la fluctuación de fase, el ancho de banda para la transferencia de la fluctuación de fase y el grado de curtosis de la ganancia, otros puntos de corte de frecuencia en el modelo de simulación, y límites de la fluctuación de fase son iguales en ambos casos.

Por esta razón, no es necesario repetir aquí los detalles del modelo de simulación y los análisis presentados en el apéndice IV/G.8251. En su lugar, se presenta un resumen del modelo de simulación y se hace referencia a los resultados de interés en el apéndice IV/G.8251; el presente apéndice se concentra en la aplicación de los resultados al caso del STM-64.

El HRM del regenerador STM-64 se describe en VII.2, y el modelo de simulación, los análisis y resultados se presentan en VII.3.

VII.2 Modelo de referencia hipotético del regenerador STM-64

El modelo de referencia hipotético (HRM) para la acumulación de fluctuación de fase del regenerador STM-64 (tipo A) se muestra en la figura VII.1. El HRM consiste en 50 regeneradores conectados en cascada, y se supone que cada uno de ellos satisface los requisitos de generación de fluctuación de fase del STM-64 (tipo A) indicados en los cuadros 9-6 y 9-7 (los requisitos de generación de fluctuación de fase para el STM-64 (tipo A) son los mismos en ambos cuadros) y los requisitos de transferencia de fluctuación de fase del STM-64 (tipo A) del cuadro 15-2. Los 50 regeneradores están precedidos por un reloj de equipo SDH (SEC, *SDH equipment clock*; véase la Rec. UIT-T G.813), que también se supone que cumple los requisitos de generación de fluctuación de fase indicados en los cuadros 9-6 y 9-7 (obsérvese que los requisitos de generación de fluctuación de fase del SEC para el STM-64 no se especifican en la Rec. UIT-T G.813; la velocidad más alta para la que se especifican requisitos de generación de fluctuación de fase a la salida en el extremo de la cadena de 50 regeneradores esté dentro de los límites de la fluctuación de fase a la salida del STM-64 (es decir, dentro de los límites de la fluctuación de fase para la red) indicados en el cuadro 1/G.825.

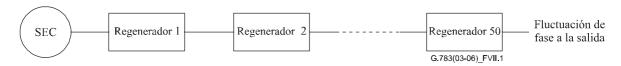


Figura VII.1/G.783 – Modelo de referencia hipotético para la acumulación de fluctuación de fase de un regenerador STM-64 (tipo A)

VII.3 Modelo para la simulación de la acumulación de fluctuación de fase de un regenerador STM-64 (tipo A), análisis y resultados

El requisito de generación de fluctuación de fase del STM-64 (tipo A) es (véanse los cuadros 9-6 y 9-7):

- 1) 0,3 UIpp medida a frecuencias de 20 kHz a 80 MHz (banda ancha); y
- 2) 0,1 UIpp medida de 4 MHz a 80 MHz (banda alta) (véase el cuadro 9-6).

Es idéntico al requisito de generación de fluctuación de fase para los regeneradores 3R de OTU2 en la OTN especificado en la Rec. UIT-T G.8251 (véase el cuadro A.2/G.8251). El requisito de fluctuación de fase a la salida de la interfaz de red para el STM-64 especificado en la Rec. UIT-T G.825 es (véase el cuadro 1/G.825):

1) 1,5 UIpp medida en frecuencias de 20 kHz a 80 MHz (banda ancha); y

2) 0,15 UIpp medida de 4 MHz a 80 MHz (banda alta). Es idéntico al requisito de fluctuación de fase a la salida de la interfaz de red para OTU2 en la OTN especificado en la Rec. UIT-T G.8251 (véase el cuadro 1/G.8251).

Las velocidades de línea de STM-64 y OTU2 son muy similares (la segunda excede a la primera por un factor de 255/237 = 1,076 (véase el cuadro 7-1/G.709/Y.1331). Por tanto, la acumulación de fluctuación de fase en cadenas de regeneradores de STM-64 y de regeneradores 3R de OTU2 que tienen el mismo ancho de banda de transferencia de fluctuación de fase y el mismo grado de curtosis de la ganancia debe ser la misma (porque todos los demás parámetros de interés son los mismos).

Se han realizado análisis de la acumulación de fluctuación de fase para cadenas de regeneradores 3R en la OTN, que están documentados en el apéndice IV/G.8251. Los análisis se realizaron utilizando dos modelos independientes (pero consistentes), que dieron resultados similares, y también están documentados en el apéndice IV/G.8251. Ambos modelos se basan en una cadena de bucles enganchados en fase (PLL, phase-locked loops). El primero de los dos modelos (véase IV.2/G.8251), sobre el cual se proporcionan más detalles, considera la generación de ruido en el detector de fase (PD, phase-detector), el oscilador controlado por tensión (VCO, voltage-controlled oscillator), y el receptor óptico situado justamente antes de la entrada al PLL. El ruido de VCO se modela como una combinación de modulación de fase blanca (WPM, white phase modulation) y modulación de frecuencia blanca (WFM, white frequency modulation) utilizando el modelo Leeson (véase la referencia [5] del apéndice IV/G.8251). Las otras fuentes de ruido se modelan como WPM. Se desarrollaron modelos tanto para la acumulación sistemática como para la acumulación aleatoria de fluctuación de fase; sin embargo, la acumulación de fluctuación de fase para los regeneradores 3R de OTUk en la Rec. UIT-T G.8251 (y también para los regeneradores STM-64) es aleatoria porque los llenados de las memorias intermedias de los regeneradores sucesivos no están correlacionados unos con otros (se supone que cada regenerador incluye un circuito de recuperación de reloj de banda ancha, seguido de un filtro de banda más estrecha, y hay algún almacenamiento en memoria tampón para el procesamiento de la tara). Los modelos son implementados en el dominio de la frecuencia, y por tanto, producen fluctuación de fase rms más bien que fluctuación de fase cresta a cresta; sin embargo, se supone que la relación entre la fluctuación de fase cresta a cresta y la fluctuación de fase rms es constante. Si bien el modelo presupone una relación constante, no es necesario saber el valor de esta constante para evaluar la acumulación de fluctuación de fase. Dado que los requisitos proporcionan la relación entre la fluctuación de fase a la salida y la generación de fluctuación de fase (1,5/0,3 = 5 para banda ancha y 0,15/0,1 = 1,5 para banda alta), sólo es necesario verificar que la acumulación de fluctuación de fase no excede este valor.

La acumulación de fluctuación de fase normalizada se define como la relación entre la fluctuación de fase cresta a cresta (o la fluctuación de fase media cuadrática (rms), pues se ha supuesto que entre la fluctuación de fase cresta a cresta y la rms existe una relación constante) a la salida después de *N* regeneradores y la fluctuación de fase cresta a cresta a la salida después de un regenerador (lo último es la generación de fluctuación de fase, y lo primero es el límite de red). Los resultados indicados en la Rec. UIT-T G.8251 muestran que la acumulación de fluctuación de fase normalizada alcanza su mayor valor en los casos de:

- 1) ruido de VCO con una baja Q de oscilador, y por tanto un importante componente de ruido WFM; y
- 2) ruido WPM de receptor óptico.

Estos dos casos son similares porque el ruido de VCO percibe una función de transferencia de filtro paso alto con una frecuencia de esquina igual al ancho de banda del PLL. Si la entrada de ruido es WFM, ello equivale a tener WPM con un integrador; el integrador convierte la función de transferencia paso alto en una función de transferencia paso bajo. El resultado se parece al obtenido en el caso de ruido de receptor óptico, es decir, cuando la WPM percibe una función de

transferencia paso bajo. La acumulación de ruido en estos casos es mayor que en los otros casos porque en esos otros casos la generación de ruido está más próxima a la WPM con una función de transferencia paso alto; el ruido generado en un regenerador es filtrado de manera efectiva por las funciones de transferencia paso bajo de regeneradores subsiguientes.

Los resultados de la acumulación de fluctuación de fase en el caso de ruido de VCO, para Q igual a 30, 100 y 535, se dan en la figura IV.2-4b/G.8251 para un ancho de banda de regenerador de 8 MHz y en la figura IV.2-6b/G.8251 para un ancho de banda de regenerador de 1 MHz. Para un ancho de banda de regenerador de 8 MHz, la figura IV.2-4b indica que la acumulación de fluctuación de fase normalizada de 1,5 se alcanza después de aproximadamente 10 regeneradores para Q = 30 y de aproximadamente 15 regeneradores para Q = 100. El modelo de referencia hipotético (HRM) de OTN para la acumulación de fluctuación de fase de regenerador consta de 50 regeneradores 3R (véase el apéndice III/G.8251). La acumulación de fluctuación de fase para un ancho de banda de 8 MHz y Q = 30 ó 100 está comprendida entre 1,5 y 2 después de 50 regeneradores. Por tanto, el límite de red para la fluctuación de fase en banda alta en una OTU2 no se cumple en el caso del HRM de OTN y un ancho de banda de regenerador de 8 MHz. Para la OTN se encontró que si se elige un ancho de banda de 1 MHz para la OTU2 se obtendría una acumulación de fluctuación de fase aceptable. Estos resultados se muestran en la figura IV.2-6b/G.8251; para un ancho de banda de regenerador de 1 MHz, la acumulación de fluctuación de fase normalizada está muy próxima a 1,0 después de 50 regeneradores (de hecho, la acumulación de fluctuación de fase normalizada es aproximadamente 1,2 después de 200 regeneradores para Q = 30, y menor para valores más altos de Q). Además, la figura IV.2-6b muestra que la acumulación de fluctuación de fase normalizada en la banda ancha es aproximadamente 3,2 después de 50 regeneradores 3R para Q = 30 y 100, y aproximadamente 4,8 después de 100 regeneradores 3R para Q = 30 y 100. Esto significa que los requisitos de límite de red para la fluctuación de fase en la banda ancha se cumplen también con el HRM de 50 regeneradores. La fluctuación de fase real en la banda ancha será algo menor, pues el resultado indicado en el apéndice IV/G.8251 muestra que si el requisito de generación de fluctuación de fase en la banda ancha se satisface justamente, la relación de caso más desfavorable entre la generación de fluctuación de fase en la banda ancha y en la banda alta (caso más desfavorable entre todos los modelos de ruido aquí considerados) es aproximadamente 1,25. Se permite que la fluctuación de fase generada realmente en la banda ancha sea el triple de la generada en la banda alta (0,3 y 0,1 respectivamente); por tanto, la acumulación de fluctuación de fase en la banda ancha será inferior al límite de red por un factor adicional de 1,25/3,0.

Los mencionados resultados indicaron que, si bien un ancho de banda de transferencia de 8 MHz para regeneradores OTU2 no proporcionarían una acumulación de fluctuación de fase aceptable, un ancho de banda de 1 MHz sí la proporcionaría. Sobre esta base, el ancho de banda de transferencia de fluctuación de fase para OTU2 (específicamente el ancho de banda ODCr para OTU2) se especificó como 1 MHz en el cuadro A.5/G.8251.

La velocidad para STM-64 está muy próxima a la velocidad para OTU2 (esta última excede la primera por un factor de aproximadamente 7,6%; véase lo anteriormente expuesto). Asimismo, los requisitos de generación de fluctuación de fase para STM-64 (tipo A), opciones 1 y 2, y regeneradores OTU2 son los mismos. Además, los límites de red para la fluctuación de fase en los casos de STM-64 y OTU2 son los mismos. Por tanto, si se opta por que el ancho de banda de transferencia de la fluctuación de fase y el grado de curtosis de la ganancia para regeneradores STM-64 (tipo A) sean los mismos que para regeneradores 3R de OTU2 (es decir, 1 MHz y 0,1 dB, respectivamente), la acumulación de fluctuación de fase con los respectivos HRM, formados por el mismo número de regeneradores, debe ser aproximadamente la misma en ambos casos. Como la acumulación de fluctuación de fase para OTU2 con un HRM de 50 regeneradores es aceptable con los parámetros antes mencionados, la acumulación de fluctuación de fase para el STM-64 (tipo A) con un HRM de 50 regeneradores también será aceptable con esos parámetros.

SERIES DE RECOMENDACIONES DEL UIT-T

Serie A	Organización del trabajo del UIT-T
Serie D	Principios generales de tarificación
Serie E	Explotación general de la red, servicio telefónico, explotación del servicio y factores humanos
Serie F	Servicios de telecomunicación no telefónicos
Serie G	Sistemas y medios de transmisión, sistemas y redes digitales
Serie H	Sistemas audiovisuales y multimedia
Serie I	Red digital de servicios integrados
Serie J	Redes de cable y transmisión de programas radiofónicos y televisivos, y de otras señales multimedia
Serie K	Protección contra las interferencias
Serie L	Construcción, instalación y protección de los cables y otros elementos de planta exterior
Serie M	Gestión de las telecomunicaciones, incluida la RGT y el mantenimiento de redes
Serie N	Mantenimiento: circuitos internacionales para transmisiones radiofónicas y de televisión
Serie O	Especificaciones de los aparatos de medida
Serie P	Calidad de transmisión telefónica, instalaciones telefónicas y redes locales
Serie Q	Conmutación y señalización
Serie R	Transmisión telegráfica
Serie S	Equipos terminales para servicios de telegrafía
Serie T	Terminales para servicios de telemática
Serie U	Conmutación telegráfica
Serie V	Comunicación de datos por la red telefónica
Serie X	Redes de datos, comunicaciones de sistemas abiertos y seguridad
Serie Y	Infraestructura mundial de la información, aspectos del protocolo Internet y Redes de la próxima generación
Serie Z	Lenguajes y aspectos generales de soporte lógico para sistemas de telecomunicación