CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS
General aspects of digital transmission systems; terminal equipments
General

SYNCHRONOUS MULTIPLEXING STRUCTURE

NOTES

1 CCITT Recommendation G.709 was published in Fascicle III.4 of the *Blue Book*. This file is an extract from the *Blue Book*. While the presentation and layout of the text might be slightly different from the *Blue Book* version, the contents of the file are identical to the *Blue Book* version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

© ITU 1988, 2007

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.
The CCITT,

considering

(a) that Recommendation G.707 describes the advantages offered by a synchronous digital hierarchy and multiplexing method and specifies a set of synchronous digital hierarchy bit rates;

(b) that Recommendation G.708 specifies
 – the general principles and frame structure of the network node interface (NNI) for the synchronous digital hierarchy;
 – the overall frame size of 9 rows × 270 columns and section overhead (SOH) definition and its byte allocation;
 – arrangements for international synchronous interconnection of STM-1s;

(c) that Recommendations G.707, G.708 and G.709 form a coherent set of specifications for the synchronous digital hierarchy and NNI,

recommends

that the formats for mapping multiplexing elements into the STM-1 at the Network Node Interface (NNI) and the method of multiplexing to STM-N shall be as described in this Recommendation.

1 Basic multiplexing structure

Descriptions of the various multiplexing elements are given in Recommendation G.708.

The relationships between the various multiplexing elements are shown in Figure 1-1/G.709. The detailed multiplexing structure is described in the following sections.

FIGURE 1-1/G.709
Multiplexing structure
2 Mapping formats and multiplexing method

2.1 Mapping and multiplexing up to STM-1

2.1.1 Mapping of VC-4 into AU-4

The STM-1 mapping format for transporting one VC-4 in an AU-4 is shown in Figure 2-1/G.709. The VC-4 consists of a 9-row by 261-column payload structure; the first column of the VC-4 is devoted to path overhead (POH). The payload of the VC-4 shown in Figure 2-1/G.709 is a single C-4. Other possible VC-4 payloads include a single 139 264 kbit/s signal in a C-4, four VC-31s (shown in Figure 2-2/G.709 and carried in four TU-31s), three VC-32s (shown in Figure 2-3/G.709 and carried in three TU-32s), and a group of either 21 TUG-21s or 16 TUG-22s (shown in Figure 2-4/G.709).

The STM-1 format shown in Figure 2-1/G.709 consists of an AU-4 plus section overhead (SOH). The VC-4 does not have a fixed phase with respect to the AU-4 (and the STM-1); therefore, the location of the first byte of the VC-4 with respect to the AU-4 frame is given by the AU-4 pointer. Note that the AU-4, including the AU-4 pointer, has a fixed location in the STM-1 frame.

![Figure 2-1/G.709](Image)

Note — See Figures 5-4/G.709 and 5-5/G.709 for detailed mapping structure.

FIGURE 2-1/G.709

Mapping of VC-4 into an STM-1

2.1.2 Mapping of four VC-31s into AU-4

The STM-1 mapping format for transporting four VC-31s in an AU-4 is shown in Figure 2-2/G.709. Each TU-31 consists of a 9-row by 64-column payload structure plus six bytes of POH plus a three-byte TU-31 pointer. The payload of the VC-31 shown in Figure 2-22/G.709 is a single C-31. Other possible VC-31 payloads include a single 34 368 kbit/s signal in a C-31 (shown in Figure 5-10/G.709) or a group of either five TUG-21s or four TUG-22s (shown in Figure 2-5/G.709).

The four VC-31s are carried independently in the 261-column VC-4. Each of the VC-31s does not have a fixed phase with respect to the start of the VC-4. Therefore, the location of the first byte of each VC-31 with respect to the VC-4 POH is given by a 3-byte TU-31 pointer (H1, H2, H3). These four TU-31 pointers reside in a fixed location in the VC-4 as shown in Figure 2-2/G.709.

As described in § 2.1.1, the phase of the VC-4 with respect to the AU-4 is given by the AU-4 pointer.

Fascicle III.4 – Rec. G.709
2.1.3 Mapping of three VC-32s into AU-4

The STM-1 mapping format for transporting three VC-32s in an AU-4 is shown in Figure 2-3/G.709. Each TU-32 consists of a 9-row by 84-column payload structure plus one column of POH and one 3-byte TU-32 pointer. The payload of the VC-32 shown in Figure 2-3/G.709 is a single C-32. Other possible VC-32 payloads include a single 44,736 kbit/s signal in a C-32 or a group of seven TUG-21s (shown in Figure 2-5/G.709).
The three VC-32s are carried independently in the 261-column VC-4. Each of the VC-32s does not have a fixed phase with respect to the start of the VC-4. Therefore, the location of the first byte of each VC-32 with respect to the VC-4 POH is given by a 3-byte TU-32 pointer (H1, H2, H3). These three TU-32 pointers reside in a fixed location in the VC-4 as shown in Figure 2-3/G.709; 36 fixed stuff bytes are also required in the VC-4.

As described in § 2.1.1, the phase of the VC-4 with respect to the AU-4 is given by the AU-4 pointer.

2.1.4 Mapping of TUG-2s into AU-4

The STM-1 mapping format transporting TUG-21s and TUG-22s into an AU-4 is shown in Figure 2-4/G.709. The AU-4 can carry a group of either 21 TUG-21s or 16 TUG-22s.

The TUG-21 payload structure has 9 rows and 12 columns. When used to transport TUG-21s, the VC-4 consists of one column of VC-4 POH, eight columns of fixed stuff, and a remaining 252-column payload structure. The 21 TUG-21s are mapped into this 9-row by 252-column structure using a fixed phase with respect to the VC-4. The TUG-21s are single byte interleaved as shown in Figure 2-4/G.709.

The TUG-22 payload structure has 9 rows and 16 columns. The VC-4 consists of one column of VC-4 POH, four columns of fixed stuff and 256 payload columns when used to carry the 16 TUG-22s. The TUG-22s are single byte interleaved into the 9-row by 256-column structure.

As described in § 2.1.1, the phase of the VC-4 with respect to the AU-4 is given by the AU-4 pointer.
2.1.5 Mapping of four AU-31s into STM-1

The STM-1 mapping format for transporting four VC-31s within four AU-31s is shown in Figure 2-6/G.709. A VC-31 is defined to be a 9-row by 64-column payload structure, plus six bytes of POH, located in row 1 to 6 of the first column, according to the figure.
Each AU-31 pointer has a fixed phase with respect to the STM-1 frame. As shown in Figure 2-6/G.709, the four AU-31 pointers are located in columns 11 to 14, rows 1 to 3 of the STM-1, one pointer in each column. Columns 11 to 270 of the STM-1 are divided between each of the AU-31s; thus, each AU-31 occupies alternately every fourth column.

The phase of each VC-31 is not fixed with respect to its AU-31. Therefore, the location of the first byte of each VC-31 with respect to the AU-31 frame is given by AU-31 pointer (H1, H2, H3). The payload of the VC-31 shown in Figure 2-6/G.709 is a single C-31. Other possible VC-31 payloads include a single 34,368 kbit/s signal in a C-31 and a group of five TUG-21s or four TUG-22s (shown in Figure 2-5/G.709).

2.1.6 Mapping of three AU-32s into STM-1

The STM-1 mapping format for transporting three VC-32s within three AU-32s is shown in Figure 2-7/G.709. A VC-32 is defined to be a 9-row by 85-column payload structure, with the first column consisting of VC-32 POH. When mapped into its AU-32, two columns of fixed stuff are added to each VC-32 payload to make it equal the AU-32 payload capacity. These two fixed stuff columns are fixed with respect to the VC-32 POH and are inserted between columns 29 and 30, and between columns 57 and 58 of the VC-32.

Each AU-32 pointer has a fixed phase with respect to the STM-1 frame. As shown in Figure 2-7/G.709, the three AU-32 pointers are located in the fourth row of the first nine columns of the STM-1 frame, between the bytes of the SOH. The remaining 261 columns of the STM-1 are divided between each of the AU-32s; thus, each AU-32 occupies alternately every third column of the 261. AU-32 number one consists of three bytes of AU-32 pointer, plus STM-1 columns 10, 13, 16, ... where columns 1 through 9 contain the SOH and the AU-32 pointers.

The phase of each VC-32 (plus fixed stuff columns) is not fixed with respect to its AU-32. Therefore, the locations of the first byte of each VC-32 with respect to the AU-32 frame is given by the AU-32 pointer (H1, H2, H3). The payload of the VC-32 shown in Figure 2-7/G.709 is a single C-32. Other possible VC-32 payloads include a single 44,736 kbit/s signal into a C-32 (shown in Figure 5-8/G.709) and a group of seven TUG-21s (shown in Figure 2-5/G.709).
2.1.7 **Mapping of TUGs into a VC**

Figure 2-5/G.709 shows the schematic mapping of TUG-2s into a VC-3. The details of these mappings are given in § 5; this section presents the general multiplexing principles involved.

The VC-31 consists of six bytes of VC-31 POH plus a 9-row by 64-column payload structure. This payload structure can be used to carry five TUG-21s or four TUG-22s. The individual TUG-2 has a fixed location in the VC-31 frame; this is shown schematically in Figure 2-5/G.709.

The VC-32 consists of nine bytes of VC-32 POH plus a 9-row by 84-column payload structure. This payload structure can be used to carry seven TUG-21s. Again, the individual TUG-21 has a fixed location in the VC-32 frame.

Each TUG-21 can carry a single VC-21 or four VC-11s or three VC-12s. Each TUG-22 can carry a single VC-22 or four VC-12s or five VC-11s. The VCs do not have a fixed phase with respect to the VC-3 POH; TU pointers are used to indicate the position of the VCs in the TUG frame.

2.2 **STM-N multiplexing**

2.2.1 **STM-N frame format**

The STM-N signal is formed by single byte interleaving N STM-1 signals. The STM-N frame structure is depicted in Figure 2-8/G.709.

![STM-N frame](image)

Note — Refer to Figure 3-4/G.708 for SOH byte allocations.

The first byte of the STM-N signal shall be the first A1 framing byte from STM-1 No. 1 followed sequentially by the first A1 byte from STM-1 No. 2 through No. N. The first bit to be transmitted shall be the most significant bit of the first A1 framing byte from STM-1 No. 1.

Before byte interleaving STM-1 signals to form an STM-N signal, all of the SOH and the AU-\(n\) (\(n = 3\) or 4) pointers in the signals to be interleaved must be 125 µs frame aligned. The alignment is accomplished by adjusting the values of the AU-\(n\) pointers to reflect the new relative positions of the VC-\(n\)s.

Note that is is permitted to mix STM-1s containing AU-3s and STM-1s containing AU-4s in the same STM-N.
2.2.2 **STM-N interleaving**

If an STM-N level signal is input to a byte interleaver with STM-M level output (M > N), N bytes of each STM-N are consecutively placed on the output STM-M signal. This method of interleaving is illustrated in Figure 2-9/G.709 where STM-X, STM-Y and STM-Z (X + Y + Z = M) inputs are sequentially interleaved to form an STM-M output.

![Figure 2-9/G.709](image)

STM-N byte interleaving (N = X, Y, Z)

2.2.3 **Concatenated STM-1s**

STM-1 signals can be concatenated together to form an STM-Nc which can transport payloads requiring greater than one C-4 capacity. A concatenation indication, used to show that this multi-C-4 payload carried in a single VC-4-Nc should be kept together, is contained in the AU-4 pointer. See § 3.4 for details.

2.3 **Maintenance signals**

2.3.1 **Section maintenance signals**

The section alarm indication signal (AIS) is detected as an all 1s in bits 6, 7, 8 of byte K2 after descrambling.

Far end receive failure (FERF) is to return an indication to the transmitting STM-N MUX that the receiving STM-N MUX has detected an incoming section failure or is receiving section AIS.

FERF is detected by a 110 code in bit positions 6, 7 and 8 of the K2 APS byte after descrambling.

2.3.2 **Path maintenance signals**

The VC-n (n = 3, 4) unequipped indication is an all 0s VC-n path signal label after descrambling. This code indicates to VC-n terminating equipment that the VC-n is intentionally unoccupied so that alarms can be inhibited. This code is generated as an all 0s VC-n path signal label and a valid VC-n path BIP-8 (byte B3); the VC-n payload is unspecified.

An alarm indication signal (AIS) is a signal sent downstream as an indication that an upstream failure has been detected and an alarm generated. The TU-n (n = 1, 2, 3) path AIS is specified as all 1s in the entire TU-n, including the TU-n pointer. Similarly, the AU-n (n = 3, 4) path AIS is specified as all 1s in the entire AU-n, including the AU-n pointer. All path AISs are carried within STM-N signals having valid SOH.

The path status byte (G1) is used to convey the terminating path status and performance to the originator of a VC-n (n = 3 or 4). Bits 1 through 4 convey the count of errors detected using the path BIP-8 code. This code has nine legal values, 0-8. The remaining seven possible values should be interpreted as zero errors.
2.4 **Timing recovery**

The STM-N (N ≥ 1) signal must have sufficient bit timing content at the NNI. A suitable bit pattern, which prevents a long sequence of 1s and 0s, is provided by using a scrambler. Its operation shall be functionally identical to that of a frame synchronous scrambler of sequence length 127 operating at the line rate.

The generating polynomial shall be \(1 + x^6 + x^7\). Figure 2-10/G.709 gives a functional diagram of the frame synchronous scrambler.

![Figure 2-10/G.709](image)

Frame synchronous scrambler (functional diagram)

The scrambler shall be reset to 1111111 on the most significant bit of the byte following the last byte of the first row of the STM-N SOH. (This is the most significant bit of the \(9 \times N + 1\) transmitted byte of the STM-N; see Figure 2-8/G.709.) This bit, and all subsequent bits to be scrambled, shall be added modulo 2 to the output from the \(x^7\) position of the scrambler. The scrambler shall run continuously throughout the complete STM-N frame.

The first row of the STM-N SOH (9 × N bytes, including the A1 and A2 framing bytes) shall not be scrambled.

Note – Care should be taken in selecting the binary content of the bytes reserved for national use and which are excluded from the scrambling process of the STM-N signal, to ensure that long sequences of 1s or 0s do not occur.

2.5 **Conceptual steps for STM-N assembly**

For a better understanding of the detailed structure of the STM-N frame shown in Figure 2-8/G.709, the conceptual steps required to assemble the STM-N frames in the direct (non-nested) arrangement are listed:

1) Each VC-\(n\) (\(n = 3\) or 4) has either six or nine bytes devoted to path overhead (POH) functions. Of these, the BIP-8 error check byte (B3) is calculated over the entire contents of the VC-\(n\) and the result is placed in the B3 byte of the following frame.

 If it is appropriate, the VC-\(n\) unequipped signal consisting of an all 0s pattern for the VC-\(n\) is inserted. (See § 2.3.)

2) After all of the required VC-\(n\)s have been assembled, AU-\(n\) pointer values are calculated so as to frame align all of the AU-\(n\)s within a single STM-N frame.

 If the contents of the VC-\(n\) are lost due to an equipment or other failure, the AU-\(n\) path AIS signal is inserted into the AU-\(n\). The AU-\(n\) path AIS is defined in § 2.3.

3) The SOH bytes are then added to the STM-N frame. It is convenient to consider the last five rows of the SOH first. Of the \(N \times 45\) such SOH bytes, \(N \times 9\) are allocated to the \(N \times 3\) B2, \(N \times 3\) Z1 and \(N \times 3\) Z2 bytes. Thus, each STM-1 has a full complement (3) of these bytes in the STM-N. The remaining STM-N SOH bytes in the last five rows (K1 and K2, D4-D12 and E2) are limited to the first STM-1 in any STM-N signal. The content of the unused SOH bytes of STM-1 No. 2 through No. N are for national use.

4) The \(N \times 3\) B2 bytes of an STM-N contain a bit interleaved parity \(N \times 24\) (BIP-\(N \times 24\)) code using even parity which is calculated across the entire previous STM-N frame excluding the first three rows of SOH.

5) A line signal failure would result in the insertion of a section AIS at this point in the assembly of an STM-N (see § 2.3).
6) The remaining bytes of SOH contained in the first three rows (27 × N bytes) of the STM-N are added next. Of these, the B1, E1, F1, D1-D3 bytes are present only in STM-1 No. 1 of any STM-N signal. The content of the unused SOH bytes of STM-1 No. 2 through No. N are for national use.

7) The STM-1s are then byte interleaved to form an STM-N, as described in § 2.2.2, and subsequently serialized and scrambled as described in § 2.4.

8) The final operation is the calculation of a BIP-8 code over the entire STM-N bit stream on a frame-by-frame basis. The result is loaded into byte B1 of STM-1 No. 1 in the following frame when the SOH is loaded.

3 Pointer

3.1 AU pointer

The AU pointer provides a method of allowing flexible and dynamic alignment of the VC within the AU frame.

Dynamic alignment means that the VC is allowed to “float” within the AU frame. Thus the pointer is able to accommodate differences not only in the phases of the VC and SOH, but in the frame rates as well.

3.1.1 AU pointer location

The AU-4 pointer is contained in bytes H1, H2 and H3 as shown in Figure 3-1/G.709. The three individual AU-32 pointers are contained in three separate H1, H2 and H3 bytes as shown in Figure 3-2/G.709. Likewise the four individual AU-31 pointers are contained in four separate H1, H2 and H3 bytes as shown in Figure 3-3/G.709.

FIGURE 3-1/G.709
AU-4 pointer offset numbering

a) Y byte = 1001SS11 (S bits are unspecified).

b) All 1s byte.
FIGURE 3-2/G.709
AU-32 pointer offset numbering

FIGURE 3-3/G.709
AU-31 pointer offset numbering

a) Two NPI bytes form a 16 bit sequence 1001SS1111100000 (8 bits are unspecified).
b) All 1s byte.
3.1.2 **AU pointer value**

The pointer contained in H1 and H2 designates the location of the bytes where the VC begins. The two bytes allocated to the pointer function can be viewed as one word as shown in Figure 3-4/G.709. The last 10 bits (bits 7-16) of the pointer word carry the pointer value. The two S bits (bits 5 and 6) indicate the AU type.

As illustrated in Figure 3-4/G.709, the AU-4 pointer value is a binary number with a range of 0 to 782 which indicates the offset between the pointer and the first byte of the VC. As shown in Figure 3-1/G.709, the H1 and H2 bytes contain the pointer value while the position which the pointer indicates is the very first byte of the consecutive three bytes. Figure 3-4/G.709 also indicates two additional valid pointers: the concatenation indication (CI) and the null pointer indication (NPI). The CI is indicated by 1001 in bits 1-4, with bits 5-6 unspecified, and ten 1s in bits 7-16. The NPI is indicated by 1001 in bits 1-4, with bits 5-6 unspecified, and five 1s in bits 7-11 followed by five 0s in bits 12-16.

As illustrated in Figure 3-4/G.709, the AU-32 pointer value is also a binary number with a range of 0 to 782. Since there are three AU-32s in the STM-1, each AU-32 has its own associated H1, H2 and H3 bytes. In Figure 3-2/G.709, the H bytes are shown in sequence. The first H1, H2, H3 set refers to the first AU-32, and the second set to the second AU-32, and so on. The same is true for the information bytes. For the AU-32s, each pointer operates independently.

Likewise, as illustrated in Figure 3-4/G.709, the AU-31 pointer value is a binary number with a range of 0 to 581. Since there are four AU-31s in the STM-1, each AU-31 has its own associated H1, H2 and H3 bytes. In Figure 3-3/G.709, the H bytes are shown in sequence. The first H1, H2, H3 set refers to the first AU-31, the second set to the second AU-31, and so on. The same is true for the information bytes. For the AU-31s, each pointer operates independently.

In all cases, the STM-1 SOH and AU pointer bytes are not counted in the offset. For example, in an AU-4, the pointer value of 0 indicates that the VC starts in the byte location that immediately follows the last H3 byte, whereas an offset of 87 indicates that the VC starts three bytes after the K2 byte.
3.1.3 Frequency justification

If there is a frequency offset between the frame rate of the SOH and that of the VC, then the pointer value will be incremented or decremented as needed, accompanied by a corresponding positive or negative justification byte or bytes. Consecutive pointer operations must be separated by at least three frames (i.e. every fourth frame) in which the pointer value remains constant.

If the frame rate of the VC is too slow with respect to that of the SOH, then the alignment of the VC must periodically slip back in time and the pointer value must be incremented by one. This operation is indicated by inverting bits 7, 9, 11, 13 and 15 (I-bits) of the pointer word to allow 5-bit majority voting at the receiver. Three positive justification bytes appear immediately after the last H3 byte in the AU-4 frame containing inverted I-bits. Subsequent pointers will contain the new offset. This is illustrated in Figure 3-5/G.709.

For AU-32 frames, a positive justification byte appears immediately after the associated H3 byte of the individual AU-32 frame containing inverted I-bits. Subsequent pointers will contain the new offset. This is illustrated in Figure 3-6/G.709. The same is true for AU-31 as shown in Figure 3-7/G.709.

If the frame rate of the VC is too fast with respect to that of the SOH, then the alignment of the VC must periodically be advanced in time and the pointer value must be decremented by one. This operation is indicated by inverting bits 8, 10, 12, 14 and 16 (D-bits of the pointer word to allow 5-bit majority voting at the receiver. Three negative justification bytes appear in the H3 bytes in the AU-4 frame containing inverted D-bits. Subsequent pointers will contain the new offset. This is illustrated in Figure 3-8/G.709.

For AU-32 frames, a negative justification byte appears in the H3 byte of the individual AU-32 frame containing inverted D-bits. Subsequent pointers will contain the new offset. This is illustrated in Figure 3-9/G.709. The same is true for AU-31 as shown in Figure 3-10/G.709.
FIGURE 3-6/G.709
AU-32 pointer adjustment operation – positive justification

↑: Indicates pointer operating on VC-32 No. 3
FIGURE 3-7/G.709
AU-32 pointer adjustment operation – positive justification

- Two NPI bytes form a 16 bit sequence 1001S1111100000 (S bits are unspecified).
- All 1s byte.
- Indicates pointer operating on VC-31 No. 4.
FIGURE 3-8/G.709
AU-4 pointer adjustment operation – negative justification

1) Y byte = 1001SS11 (S bits are unspecified).
2) All 1s byte.
FIGURE 3-9/G.709

AU-32 pointer adjustment operation – negative justification

†: Indicates pointer operating on the VC-32 No. 3.
FIGURE 3-10/G.709
AU-31 pointer adjustment operation – negative justification

a) Two NPI bytes form a 16 bit sequence 1001SS111100000 (S bits are unspecified).
b) All 1s byte.
↑: Indicates pointer operating on VC-31 No. 4.
3.1.4 **New data flag**

Bits 1-4 (N-bits) of the pointer word carry a new data flag (NDF) which allows an arbitrary change of the pointer value if that change is due to a change in the payload.

Four bits are allocated to the flag to allow error correction. The decoding may be performed by accepting NDF enabled if at least three bits match. Normal operation is indicated by a 0110 code in the N-bits. NDF is indicated by inversion of the N-bits to 1001. The new alignment is indicated by the pointer value accompanying the NDF and takes effect at the offset indicated. NDF should be enabled when the pointer value transits between its normal value and the CI or NPI.

3.1.5 **Pointer generation**

The following summarizes the rules for generating the AU pointers.

1) During normal operation, the pointer locates the start of the VC within the AU frame. The NDF is set to 0110.

2) The pointer value can only be changed by rules 3, 4 or 5.

3) If a positive justification is required, the current pointer value is sent with the I-bits inverted and the subsequent positive justification opportunity is filled with dummy information. Subsequent pointers contain the previous pointer value incremented by one. No subsequent increment or decrement operation is allowed for at least three frames following this operation.

4) If a negative justification is required, the current pointer value is sent with the D-bits inverted and the subsequent negative justification opportunity is overwritten with actual data. Subsequent pointers contain the previous pointer value decremented by one. No subsequent increment or decrement operation is allowed for at least three frames following this operation.

5) If the alignment of the VC changes for any reason other than rules 3 or 4, the new pointer value shall be sent accompanied by NDF set to 1001. The NDF only appears in the first frame that contains the new values. The new location of the VC begins at the first occurrence of the offset indicated by the new pointer. No subsequent increment or decrement operation is allowed for at least three frames following this operation.

3.1.6 **Pointer interpretation**

The following summarizes the rules for interpreting the AU pointers.

1) During normal operation, the pointer locates the start of the VC within the AU frame.

2) Any variation from the current pointer value is ignored unless a consistent new value is received three times consecutively or it is preceded by one of rules 3, 4 or 5.

3) If the majority of the I-bits of the pointer word are inverted, a positive justification operation is indicated. Subsequent pointer values shall be incremented by one.

4) If the majority of the D-bits of the pointer word are inverted, a negative justification operation is indicated. Subsequent pointer values shall be decremented by one.

5) If the NDF is set to 1001, then the coincident pointer value shall replace the current one at the offset indicated by the new pointer value regardless of the state of the receiver.

3.2 **TU-3 pointers**

There are two types of TU-3 pointers: TU-31 and TU-32. The TU-3 pointer provides a method of allowing flexible and dynamic alignment of VC-3 within the TU-3 frame, independent of the actual contents of the VC. Dynamic alignment means that the VC-3 is allowed to “float” within the TU-3 frame.

3.2.1 **TU-3 pointer location**

Three individual TU-32 pointers are contained in the three separate H1, H2 and H3 bytes as shown in Figure 3-11/G.709. Four individual TU-31 pointers are contained in the four separate H1, H2 and H3 bytes as shown in Figure 3-12/G.709.
3.2.2 **TU-3 pointer value**

The TU-3 pointer value contained in H1 and H2 designates the location of the byte where the VC-3 begins. The two bytes allocated to the pointer function can be viewed as one word as shown in Figure 3-4/G.709. The last ten bits (bits 7-16) of the pointer word carry the pointer value. The two S bits (bits 5 and 6) indicate the TU type.

The TU-32 pointer value is a binary number with a range of 0-764 which indicates the offset between the pointer and the first byte of the VC-32 as shown in Figure 3-11/G.709.

The TU-31 pointer value is a binary number with a range of 0-581 which indicates the offset between the pointer and the first byte of the VC-31 as shown in Figure 3-12/G.709.
3.2.3 Frequency justification

If there is a frequency offset between the TU-3 frame rate and that of the VC-3, then the pointer value will be incremented or decremented as needed accompanied by a corresponding positive or negative justification byte. Consecutive pointer operations must be separated by at least three frames in which the pointer value remains constant.

If the frame rate of the VC-3 is too slow with respect to that of the TU-3 frame rate, then the alignment of the VC must periodically slip back in time and the pointer must be incremented by one. This operation is indicated by inverting bits 7, 9, 11, 13 and 15 (I-bits) of the pointer word to allow 5-bit majority voting at the receiver. A positive justification byte appears immediately after the individual H3 byte in the TU-3 frame containing inverted I-bits. Subsequent TU-3 pointers will contain the new offset.

If the frame rate of the VC-3 is too fast with respect to that of the TU-3 frame rate, then the alignment of the VC must be periodically advanced in time and the pointer must be decremented by one. This operation is indicated by inverting bits 8, 10, 12, 14 and 16 (D-bits) of the pointer word to allow 5-bit majority voting at the receiver. A negative justification byte appears in the individual H3 byte in the TU-3 frame containing inverted D-bits. Subsequent TU-3 pointers will contain the new offset.

3.2.4 New data flag

Bits 1-4 (N-bits) of the pointer word carry a NDF which allows an arbitrary change of the value of the pointer if that change is due to a change in the VC-3.

Four bits are allocated to the flag to allow for error correction. The decoding may be performed by accepting NDF enabled if at least three bits match. Normal operation is indicted by a 0110 code in the N-bits; NDF is indicated by inversion of the N-bits to 1001. The new alignment is indicated by the pointer value accompanying the NDF and takes effect at the offset indicated.

3.2.5 Pointer generation

The following summarizes the rules for generating the TU-3 pointers.

1) During normal operation, the pointer locates the start of the VC-3 within the TU-3 frame. The NDF is set to 0110.

2) The pointer value can only be changed by rules 3, 4 or 5.

3) If a positive justification is required, the current pointer value is sent with the I-bits inverted and the subsequent positive justification opportunity is filled with dummy information. Subsequent pointers contain the previous pointer value incremented by one. No subsequent increment or decrement operation is allowed for at least three frames following this operation.

4) If a negative justification is required, the current pointer value is sent with the D-bits inverted and the subsequent negative justification opportunity is overwritten with actual data. Subsequent pointers contain the previous pointer value decremented by one. No subsequent increment or decrement operation is allowed for at least three frames following this operation.

5) If the alignment of the VC changes for any reason other than rules 3 or 4, the new pointer value shall be sent accompanied by the NDF set to 1001. The NDF only appears in the first frame that contains the new value. The new VC location begins at the first occurrence of the offset indicated by the new pointer. No subsequent increment or decrement operation is allowed for at least three frames following this operation.

3.2.6 Pointer interpretation

The following summarizes the rules for interpreting the TU-3 pointers.

1) During normal operation the pointer locates the start of the VC-3 within the TU-3 frame.

2) Any variation from the current pointer value is ignored unless a consistent new value is received three times consecutively or it is preceded by one of rules 3, 4 or 5.

3) If the majority of the I-bits of the pointer word are inverted, a positive justification is indicated. Subsequent pointer values shall be incremented by one.
4) If the majority of the D-bits of the pointer word are inverted, a negative justification is indicated. Subsequent pointer values shall be decremented by one.

5) If the NDF is set to 1001, then the coincident pointer value shall replace the current one at the offset indicated by the new pointer value regardless of the state of the receiver.

3.3 **TU-1/TU-2 pointers**

The TU-1 pointer is only used with floating mapping. Floating and locked modes of operation are described in § 5.2.

The TU-1 and TU-2 pointers provide a method of allowing flexible and dynamic alignment of the VC-1/VC-2 within the TU-1 and TU-2 multiframe, independent of the actual contents of the VC.

3.3.1 **TU-1/TU-2 pointer location**

The TU-1/TU-2 pointers are contained in the V1 and V2 bytes as illustrated in Figure 3-13/G.709.
3.3.2 TU-1/TU-2 pointer value

The TU pointer word is shown in Figure 3-14/G.709.

The pointer value (bits 7-16) is a binary number which indicates the offset from V2 to the first byte of the VC-1/VC-2. The range of the offset is different for each of the TU sizes as illustrated in Figure-3-15/G.709. Note that the pointer bytes are not counted in the offset calculation.

FIGURE 3-14/G.709
TU-1/TU-2 pointer coding
FIGURE 3-15/G.709
TU pointer offsets

V1 PTR1
V2 PTR2
V3 PTR3 (action)
V4 Reserved

TU-11
78
103
25
26
51
52
77
104

TU-12
105
139
0
34
35
69
70

TU-21
321
427
0
106
107
213
214
320

TU-22
429
571
0
142
143
285
286
428

Negative justification opportunity
Positive justification opportunity
3.3.3 **TU-1/TU-2 multiframe indication byte**

TU-1/TU-2 multiframe indication byte (H4) relates to the lowest level of multiplexing structure and indicates a variety of different multiframe for use by certain payloads. Specifically it provides:

- 500 µs (4-frame) multiframe identifying frames containing TU-1/TU-2 pointers in the floating TU-1/TU-2 mode, and reserved byte locations in the locked TU-1 mode;
- 2 ms (16-frame) multiframe for byte synchronous out-slot-signalling for 2048 kbit/s payloads in the locked TU-1 mode;
- 3 ms (24-frame) multiframe for byte synchronous out-slot-signalling for 1544 kbit/s payloads in the locked TU-1 mode.

The coding of the H4 byte is illustrated in Figures 3-16/G.709 to 3-18/G.709.

FIGURE 3-16/G.709

TU multiframe indicator byte (H4)
<table>
<thead>
<tr>
<th>Bit</th>
<th>Frame</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 00 00 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00 00 00 00 0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>00 01 00 01 0 0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>00 01 00 01 1 1</td>
<td>3</td>
<td>500 µs TU multiframe</td>
</tr>
<tr>
<td>00 10 00 10 0 0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>00 10 00 10 1 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>01 00 01 11 0 0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01 00 01 11 1 1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>01 01 10 00 0 0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>01 01 10 00 1 1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>01 10 10 10 0 0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>01 10 10 10 1 1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10 00 11 10 0 0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10 00 11 10 1 1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>10 01 11 11 0 0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>10 01 11 11 1 1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10 11 00 00 0 0</td>
<td>16</td>
<td>2 ms 2048 kbit/s signalling cycle</td>
</tr>
<tr>
<td>10 11 00 00 1 1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>11 00 00 01 0 0</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>11 00 00 01 1 1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>11 01 01 01 0 0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11 01 01 01 1 1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>11 10 01 11 0 0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>11 10 01 11 1 1</td>
<td>23</td>
<td>3 ms 1544 kbit/s signalling cycle</td>
</tr>
<tr>
<td>00 00 10 00 0 0</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>00 00 10 00 1 1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>00 01 10 01 0 0</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>00 01 10 01 1 1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>00 10 11 00 0 0</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>00 10 11 00 1 1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>01 00 11 10 0 0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>01 00 11 10 1 1</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>01 01 00 00 0 0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>01 01 00 00 1 1</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>01 10 00 01 0 0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>01 10 00 01 1 1</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>10 00 01 00 0 0</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>10 00 01 00 1 1</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>10 01 01 11 0 0</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>10 01 01 11 1 1</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>10 10 10 00 0 0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>10 10 10 00 1 1</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>11 00 10 11 0 0</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>11 00 10 11 1 1</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>11 01 11 10 0 0</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>11 01 11 10 1 1</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>11 10 11 11 0 0</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>11 10 11 11 1 1</td>
<td>47</td>
<td>6 ms = cycle repeat time</td>
</tr>
</tbody>
</table>

Note — The full H4 coding sequence is mandatory in locked TU mode, and optional in floating TU mode.

FIGURE 3-17/G.709
TU multiframe indicator byte (H4) full coding sequence
For network elements that operate only in the floating TU-1/TU-2 mode, a simplified multiframe alignment byte may be used. The simplified version provides only the 500 µs multiframe. The 2 or 3 ms multiframe of any signalling within floating TU-1s is indicated by per-TU multiframe indicators carried within the TU-1. Figure 3-13/G.709 shows the VC-1/VC-2 mapping in the multiframed TU-1/TU-2.

A converter from locked to floating TUs is permitted to pass H4 through transparently. A converter from floating to locked TUs must recover and align the multiframe from all of the floating TUs, and thus can transmit any convenient full multiframe on the locked TU side.

3.3.4 TU-1/TU-2 frequency justification

The TU-1/TU-2 pointer is used to frequency justify the VC-1/VC-2 exactly the same way that the TU-3 pointer is used to frequency justify the VC-3. A positive justification opportunity immediately follows the V3 byte. Additionally, V3 serves as the negative justification opportunity such that when the opportunity is taken, V3 is overwritten by data. This is also shown in Figure 3-15/G.709. The indication of whether or not a justification opportunity has been taken is provided by the I- and D-bits of the pointer in the current TU multiframe. The value contained in V3 when not being used for a negative justification is not defined. The receiver is required to ignore the value contained in V3 whenever it is not used as negative justification.

3.3.5 TU-1/TU-2 sizes

Bits 5 and 6 of TU-1/TU-2 pointer indicate the size of the TU. Four sizes are currently provided as shown in Table 3-1/G.709.

<table>
<thead>
<tr>
<th>Size (binary)</th>
<th>Designation</th>
<th>TU pointer range (in 500 µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>TU-22</td>
<td>0 to 571</td>
</tr>
<tr>
<td>00</td>
<td>TU-21</td>
<td>0 to 427</td>
</tr>
<tr>
<td>10</td>
<td>TU-12</td>
<td>0 to 139</td>
</tr>
<tr>
<td>11</td>
<td>TU-11</td>
<td>0 to 103</td>
</tr>
</tbody>
</table>

Note that this technique is only used at the TU-1/TU-2 levels.
3.3.6 **New data flag (NDF)**

Bits 1-4 (N-bits) of the pointer word carry an NDF. It is the mechanism which allows an arbitrary change of the value of a pointer, and possibly also the size of the TU, if that change is due to a change in the payload. If the change includes a change in size then, implicitly, there must be a simultaneous new data transition in all of the TUs in the TUG-21.

As with the TU-3 pointer NDF, the normal value is 0110 (transmitted), and the value 1001 (received exactly) indicates a new alignment for the VC, and possibly a new size. If a new size is indicated, then all TU pointers (1 to 4) in the TUG-21 must simultaneously indicate NDF with the same new size. The new alignment, and possibly size, is indicated by the pointer value and size value accompanying the NDF and takes effect at the offset indicated. The NDF should be enabled when the pointer value transits between its normal value and the concatenation indication (CI).

3.3.7 **TU concatenation**

TU-2s may be concatenated to form a TU-2-mc (concatenated m × TU-2s) to carry payloads requiring a capacity of more than a C-21 (for the TU-21 case) or C-22 (for the TU-22 case). A CI (1001 in bits 1-4, bits 5-6 unspecified, and all 1s in bits 7-16 of the TU-2 pointer) is used to show that this multi-C-2 payload, carried in a single VC-2-mc (concatenated m × VC-2), must be kept together.

Note that the TU-2 is carried in a TUG-2 as shown in Figure 5-4/G.709 and Figure 5-5/G.709.

If a TU-2 pointer contains the concatenation indication, then the pointer processor determines that this TU-2 is concatenated to the previous TU-2, and all operations indicated by the previous TU-2 pointer are to be performed on this TU-2 as well.

3.3.8 **TU pointer generation and interpretation**

The rules for generating and interpreting the TU-1/TU-2 pointer for the VC-1/VC-2 are an extension to the rules provided in §§ 3.2.5 and 3.2.6 for the TU-3 pointer with the following modifications:

1) The term TU-3 is replaced with TU-1/TU-2 and the term VC-3 is replaced with VC-1/VC-2.

2) Additional pointer generation rule 6: If the size of the TU within a TUG-21 is to change, then an NDF, as described in rule 5, is to be sent in all TUs of the new size in the group simultaneously.

3) Additional pointer interpretation rule 6: If an NDF of 1001 and an arbitrary new size of TU are received simultaneously in all of the TUs within a TUG-21, then the coincident pointers and sizes shall replace the current ones immediately.

3.4 **Pointer operation for STM-1 concatenation**

A concatenation indication contained in the AU-4 pointer is used to show that the STM-1 is part of an STM-Nc.

The AU-4 within the first STM-1 of an STM-Nc shall have a normal range of pointer values. All subsequent AU-4s within the grouped STM-Nc shall have their pointer values set to 1001 in bits 1-4, bits 5-6 unspecified, and all 1s in bits 7-16. Since this value does not indicate a valid offset, the pointer processors shall interpret this value to mean that they shall perform the same operations as performed on the first AU-4 of the grouped STM-Nc. The NDF must be set when changing a pointer to/from the concatenation value.

3.4.1 **Pointer generation**

The following additional pointer generation rule shall apply for AU-4 pointers:

If an STM-Nc signal is being transmitted, a pointer is generated for the AU-4 within the first STM-1 only. The concatenation indication is generated in place of the other pointers; all operations indicated by the AU-4 pointer in the first STM-1 apply to each STM-1 in the STM-Nc.
3.4.2 **Pointer interpretation**

The following additional pointer interpretation rule shall apply for AU-4 pointers:

If the pointer contains the concatenation indication, then the operations performed on the STM-1 are identical to those performed on the first STM-1 within the STM-Nc. Rules 3 and 4 of § 3.1.6 do not apply to this pointer.

4 Path overhead

4.1 VC-1/VC-2 path overhead

The first byte in the VC-1/VC-2 pointed to by the TU-1/TU-2 pointer is the VC-1/VC-2 path overhead byte. This byte is designated as V5.

This byte provides the functions of error checking, signal, label and path status of the VC-1/VC-2 paths. The bit assignments of the VC-1/VC-2 POH are specified in the following paragraphs and are illustrated in Figure 4-1/G.709.

V5 is used only in floating mode VC-1/VC-2s and is designated as an R-byte in locked mode VC-1/VC-2s. Floating mode and locked mode operation is described in § 5.8.

Bits 1 and 2 are used for error performance monitoring. A bit interleaved parity (BIP) scheme is specified. Bit 1 is set such that parity of all odd number bits (1, 3, 5 and 7) in all bytes in the previous VC-1/VC-2 is even and bit 2 is set similarly for the even number bits (2, 4, 6 and 8). Note that the calculation of the BIP-2 includes the VC-1/VC-2 POH bytes but excludes the TU-1/TU-2 pointers.

Bit 3 is a VC-1/VC-2 path far-end-block-error (FEBE) indication that is set to 1 and sent back towards a VC-1/VC-2 path originator if one or more errors were detected by the BIP-2, and is otherwise set to 0.

Bit 4 is unused (X). The receiver is required to ignore the value of this bit.

Bits 5 through 7 provide a VC-1/VC-2 signal label. Eight binary values are possible in these three bits. Value 0 indicates “VC-1/VC-2 path unequipped”, and value 1 indicates “VC-1/VC-2 path equipped - non-specific payload”. The remaining six values are reserved to be defined as required in specific VC-1/VC-2 mappings. Any value received, other than 0, indicates an equipped VC-1/VC-2 path.

Bit 8 is a VC-1/VC-2 path remote alarm indication. This bit is set to a 1 if either a TU-1/TU-2 path alarm indication signal (AIS) or a signal failure condition is being received, otherwise it is set to 0. The VC-1/VC-2 path remote alarm indication is sent back by the VC-1/VC-2 assembler.

![Figure 4-1/G.709](image)

Note — VC path overhead is defined only in VC-21 No. 1 of VC-21-me.

FIGURE 4-1/G.709
VC-1/VC-2 path overhead (V5)
4.2 VC-3/VC-4 path overhead

The VC-3/VC-4 POH will be assigned to and remain with the payload until the payload is demultiplexed and will be used for functions that are necessary in transporting all VC-3/VC-4. Note that this does not preclude the allocation of other overhead in specific mappings (such as justification control for mapping asynchronous 44.736 kbit/s signals). That type of overhead is payload specific whereas the POH defined in this section is payload independent.

The VC-4/VC-32 POH consists of nine bytes denoted J1, B2, C2, G1, F2, H4, Z1-Z3. The VC-31 POH consists of six bytes denoted J1, B3, C2, G1, G2, H4.

4.2.1 VC-3/VC-4 path trace (J1)

This is the first byte in the VC; its location is indicated by the associated AU/TU pointer. This byte is used to repetitively transmit a 64 byte, fixed length string so that a path receiving terminal can verify its continued connection to the intended transmitter. The content of the message is not constrained by this standard since it is assumed to be user programmable at both transmit and receive ends.

4.2.2 Path BIP-8 (B3)

One byte is allocated in each VC-3 or VC-4 for a path error monitoring function. This function shall be a BIP-8 code using even parity. The path BIP-8 is calculated over all bits of the previous VC-3 or VC-4 before scrambling. The computed BIP-8 is placed in the B3 byte of the VC-3 or VC-4 before scrambling.

4.2.3 Signal label (C2)

One byte is allocated to indicate the composition of the VC-3/VC-4. Of the 256 possible binary values, two are defined here and the remaining 254 values are reserved to be defined as required in specific VC-3/VC-4 mappings.

- Value 0 indicates “VC-3/VC-4 path unequipped”. This value shall be originated if the section is complete but there is no VC-3/VC-4 path originating equipment.
- Value 1 indicates “VC-3/VC-4 path equipped - non-specific payload”. This value can be used for all payloads that need no further differentiation, or that achieve differentiation by other means such as messages from an operations system.

Note that any value received, other than value 0, constitutes an ”equipped” condition.

4.2.4 Path status (G1)

One byte is allocated to convey back to a VC-3/VC-4 path originator the path terminating status and performance. This feature permits the status and performance of the complete duplex path to be monitored at either end, or at any point along that path. As illustrated in Figure 4-2/G.709, bits 1 through 4 convey the count of interleaved-bit blocks that have been detected in error by the path BIP-8 code (B3). This count has nine legal values, namely 0-8 errors. The remaining seven possible values represented by these four bits can only result from some unrelated condition and shall be interpreted as zero errors. VC-3/VC-4 path remote alarm indication is sent back by the VC-3/VC-4 assembler whenever the VC-3/VC-4 assembler is not receiving a valid signal. The VC-3/VC-4 path remote alarm indication is bit 5, which is set to one to indicate VC-3/VC-4 path remote alarm and is otherwise set to zero. The specific received conditions under which VC-3/VC-4 path remote alarm is initiated are path AIS, signal failure conditions or path tracer mismatch. Bits 6, 7 and 8 are not used.

4.2.5 Path user channel (F2)

One byte is allocated for user communication purposes between path elements.

4.2.6 Multiframe indicator (H4)

This byte provides a generalized multiframe indicator for payloads. Currently, this indicator is only used for TUG-structured payloads as described in § 3.3.3.

4.2.7 Spare (Z3-Z5)

Three bytes are allocated for future, as yet undefined, purposes. These bytes have no defined value. The receiver is required to ignore the value contained in these bytes.
5 Mapping of tributaries into VCs

Accommodation of asynchronous and synchronous tributaries presently defined in Recommendation G.702 shall be possible. At the TU-1/TU-2 level, asynchronous accommodation utilizes only the floating mode, whereas synchronous accommodation utilizes both the locked and the floating mode.

Figure 5-1/G.709 shows TU-1 and TU-2 sizes and formats.

5.1 Mapping of tributaries into VC-4

5.1.1 Asynchronous 139 264 kbit/s

One 139 264 kbit/s signal can be mapped into a VC-4 container of an STM-1 frame as shown in Figures 5-2/G.709 and 5-3/G.709.

The VC-4 container consists of nine bytes (1 column) path overhead (POH) plus a 9 row by 260 column payload structure as shown in Figure 5-2/G.709.

This payload can be used to carry one 139 264 kbit/s signal:

- Each of the nine rows is partitioned into 20 blocks, consisting of 13 bytes each (Figure 5-2/G.709).
- In each row one justification opportunity (S) bit and five justification control (C) bits are provided (Figure 5-3/G.709).
- The first byte of one block consists of:
 i) eight information (I) bits (byte W), or
 ii) eight fixed stuff (R) bits (byte Y), or
 iii) one justification control (C) bits, plus five fixed fixed stuff (R) bits, plus two overhead (O) bits (byte X), or
 iv) six information (I) bits, plus one justification opportunity (S) bit, plus one fixed stuff (R) bit, (byte Z).
- The last 12 bytes of one block consists of information bits (I).

The sequence of all these bytes is shown in Figure 5-3/G.709.

The overhead (O) bits are reserved for further overhead communication purposes.

The set of five justification control (C) bits in every row is used to control the corresponding justification opportunity (S) bit. C C C C C = 0 0 0 0 0 indicates that the S bit is an information bit, whereas C C C C C = 1 1 1 1 1 indicates that the S bit is a justification bit. Majority vote should be used to make the justification decision in the desynchronizer for protection against single and double bit errors in the C bits.

The value contained in the S bit when used as justification bit is not defined. The receiver is required to ignore the value contained in this bit whenever it is used as a justification bit.
FIGURE 5-1/G.709
TU-1 and TU-2 sizes and formats

Note — The TU pointer bytes (V1-V4) are located in byte 1 (using a four-frame multiframe).
FIGURE 5-2/G.709
Mapping of VC-4 into STM-1 and block structure of VC-4
for asynchronous 139264 kbit/s mapping

FIGURE 5-3/G.709
Mapping of asynchronous 139264 kbit/s tributary into VC-4

Note — This figure shows one row of the nine-row VC-4 container structure.
5.1.2 **TUG-22**

Sixteen TUG-22s can be mapped into a VC-4. This is illustrated in three-dimensional form in a) of Figure 5-4/G.709 and in linear form in b) of Figure 5-4/G.709.

Note: For clarity in the figure, only one TUG-22 has been shown (indicated by the shaded slice). The other TUG-22s are mapped into the VC-4 in the same way.

a)

FIGURE 5-4/G.709

Mapping of TUG-22 into VC-4
5.1.3 **TUG-21**

Twenty-one TUG-21s can be mapped into a VC-4. This is shown in three-dimensional form in a) of Figure 5-5/G.709 and in linear form in b) of Figure 5-5/G.709.

Note — For clarity in the figure, only one TUG-21 has been shown (indicated by the shaded slice). The other TUG-21s are mapped into the VC-4 in the same way.

FIGURE 5-5/G.709
Mapping of TUG-21 into VC-4
5.1.4 **TU-32**

Three TU-32s can be mapped into a VC-4. This is illustrated in Figure 5-6/G.709.

5.1.5 **TU-31**

Four TU-31s can be mapped into a VC-4. This is illustrated in Figure 5-7/G.709.
5.2 **Mapping of tributaries into VC-32**

5.2.1 **Asynchronous 44 736 kbit/s**

One 44 736 kbit/s signal can be mapped into a VC-32, as shown in Figure 5-8/G.709.

The VC-32 consists of nine subframes every 125 µs. Each subframe consists of one byte of VC-3 POH, 621 data bits, a set of five justification control bits, one justification opportunity bit and two overhead communication channel bits. The remaining bits are fixed stuff (R) bits. The O bits are reserved for future overhead communication purposes.

The set of five justification control (C) bits is used to control the justification opportunity (S) bit. $C_1 C_2 C_3 C_4 C_5 = 0 0 0 0 0$ indicates that the S bit is a data bit, whereas $C_1 C_2 C_3 C_4 C_5 = 1 1 1 1 1$ indicates that S bit is a justification bit. Majority vote should be used to make the justification decision in the desynchronizer for protection against single and double bit errors in the C bits.

The value contained in the S bit when used as justification bits is not defined. The receiver is required to ignore the value contained in this bit whenever it is used as a justification bit.

![Diagram](image.png)
FIGURE 5-8/709

Mapping of an asynchronous 44 736 kbit/s tributary into a VC-32
5.2.2 **TUG-21**

Seven TUG-21s can be mapped into a VC-32. This is illustrated in Figure 5-9/G.709. The figure also illustrates the formation of the TUG-21 from TU-11, TU-12 and TU-21.

![Diagram of TUG-21 mapping into VC-32](image)

FIGURE 5-9/G.709
Mapping of TUG-21s into VC-32

5.3 **Mapping of tributaries into VC-31**

5.3.1 **Asynchronous 34 368 kbit/s**

One 34 368 kbit/s signal can be mapped into a VC-31 as shown in Figure 5-10/G.709.

In addition to the VC-31 POH, the VC-31 consists of a payload of 9×64 bytes every 125 µs. This payload is divided in three subframes, each subframe divided in 12 sectors and consisting of:

- 1431 information (I) bits.
- two sets of five justification control bits (C_1, C_2).
- two justification opportunity bits (S_1, S_2).
- 93 fixed stuff bits (R).

Two sets (C_1, C_2) of five justification control bits are used to control the two justification opportunity bits S_1 and S_2 respectively.

$C_1 \ C_2 \ C_1 \ C_1 = 0 \ 0 \ 0 \ 0 \ 0$ indicates that S_1 is a data bit while $C_1 \ C_1 \ C_1 \ C_1 = 1 \ 1 \ 1 \ 1 \ 1$ indicates that S_1 is a justification bit. C_2 bits control S_2 in the same way. Majority vote should be used to make the justification decision in the desynchronizer for protection against single and double bit errors in the C bits.
The value contained in \(S_1 \) and \(S_2 \) when they are justification bits is not defined. The receiver is required to ignore the value contained in these bits whenever they are used as justification bits.

Note – The same mapping could be used for bit or byte synchronous 34 368 kbit/s. In these cases, \(S_1 \) bit should be a fixed stuff and the \(S_2 \) bit an information bit. By setting the \(C_1 \) bits to 1 and the \(C_2 \) bits to 0, a common desynchronizer could be used for both asynchronous and synchronous 34 368 kbit/s.

![Diagram of Mapping of an asynchronous 34 368 kbit/s tributary into a VC-31]

FIGURE 5-10/G.709

Mapping of an asynchronous 34 368 kbit/s tributary into a VC-31

5.3.2 **TUG-22**

Four TUG-22s can be mapped into a VC-31. This is illustrated in Figure 5-11/G.709. The figure also illustrates the formation of the TUG-22 from TU-11, TU-12 and TU-22.

5.3.3 **TUG-21**

Five TUG-21s can be mapped into a VC-31. This is illustrated in Figure 5-12/G.709. The figure also illustrates the formation of the TUG-21 from TU-11, TU-12 and TU-21.

5.4 **Mapping of tributaries into VC-22**

5.4.1 **Asynchronous 8448 kbit/s**

One 8448 kbit/s signal can be mapped into a VC-22. Figure 5-13/G.709 shows this over a period of 500 µs.

In addition to the VC-22 POH, the VC-22 consists of:

- 4220 information (I) bits.
- 24 justification control bits (\(C_1, C_2 \)).
- eight justification opportunity bits (\(S_1, S_2 \)).
- 316 fixed stuff (R) bits.
FIGURE 5-11/G.709
Mapping of TUG-21s into a VC-31

FIGURE 5-12/G.709
Mapping of TUG-21s into a VC-31

Note — Columns 2, 18, 34 and 50 are fixed stuff.
Two sets (C₁, C₂) of three justification control bits are used to control the two justification opportunity bits S₁ and S₂ respectively.

C₁ C₁ C₁ = 0 0 0 indicates that S₁ is a data bit while C₁ C₁ C₁ = 1 1 1 indicates that S₁ is a justification bit. C₂ bits control S₂ in the same way. Majority vote should be used to make the justification decision in the desynchronizer for protection against single bit error in the C bits.

The value contained in S₁ and S₂ when they are justification bits is not defined. The receiver is required to ignore the value contained in these bits whenever they are used as justification bits.

![Diagram](image)

FIGURE 5-13/G.709
Mapping of an asynchronous 8448 kbit/s tributary into a VC-22

5.4.2 **Synchronous 8448 kbit/s**

One bit or byte synchronous 8448 kbit/s signal can be mapped into a VC-22. Figure 5-14/G.709 shows this over a period of 500 µs.

Note – A common desynchronizer can be used for both asynchronous and synchronous mappings.
5.5 Mapping of tributaries into VC-21

5.5.1 Asynchronous 6312 kbit/s

One 6312 kbit/s signal can be mapped into a VC-21. Figure 5-15/G.709 shows this over a period of 500 µs.

In addition to the VC-2 POH, the VC-21 consists of 3152 data bits, 24 justification control bits, eight justification opportunity bits and 32 overhead communication channel bits. The remaining bits are fixed stuff (R). The O bits are reserved for future overhead communication purposes.

Two sets (C₁, C₂) of three justification control bits are used to control the two justification opportunities S₁ and S₂ respectively. C₁ C₁ C₁ = 0 0 0 indicates that S₁ is a data bit while C₁ C₁ C₁ = 1 1 1 indicates that S₁ is a justification bit. C₂ controls S₂ in the same way. Majority vote should be used to make the justification decision in the desynchronizer for protection against single bit errors in the C bits.

The value contained in S₁ and S₂ when they are justification bits is not defined. The receiver is required to ignore the value contained in these bits whenever they are used as justification bits.

5.5.2 Bit synchronous 6312 kbit/s

The bit synchronous mapping for 6312 kbit/s tributary is shown in Figure 5-16/G.709.

Note that a common desynchronizer can be used for both asynchronous and bit synchronous mapping.
FIGURE 5-15/G.709
Mapping of asynchronous 6312 kbit/s tributary

FIGURE 5-16/G.709
Mapping of bit synchronous 6312 kbit/s tributary
5.5.3 *Byte synchronous 6312 kbit/s*

Under study.

5.6 *Mapping of tributaries into VC-12*

5.6.1 *Asynchronous 2048 kbit/s*

One 2048 kbit/s signal can be mapped into a VC-12. Figure 5-17/G.709 shows this over a period of 500 μs.

In addition to the VC-1 POH, the VC-12 consists of 1023 data bits, six justification control bits, two justification bits and eight overhead communication channel bits. The remaining bits are fixed stuff (R) bits. The O bits are reserved for future overhead communication purposes.

Two sets (C1, C2) of three justification control bits are used to control the two justification opportunities S1 and S2 respectively. C1 C1 C1 = 0 0 0 indicates that S1 is a data bit while C1 C1 C1 = 1 1 1 indicates that S1 is a justification bit. C2 controls S2 in the same way. Majority vote should be used to make the justification decision in the desynchronizer for protection against single bit errors in the C bits.

The value contained in S1 and S2 when they are justification bits is not defined. The receiver is required to ignore the value contained in these bits whenever they are used as justification bits.

![FIGURE 5-17/G.709](image)

Mapping of asynchronous 2048 kbit/s tributary
5.6.2 Bit synchronous 2048 kbit/s

The bit synchronous mapping for 2048 kbit/s tributaries is shown in Figure 5-18/G.709.

Note that a common desynchronizer can be used for both asynchronous and bit synchronous mappings.

![Bit synchronous mapping for 2048 kbit/s tributary](image_url)

FIGURE 5-18/G.709

Bit synchronous mapping for 2048 kbit/s tributary

5.6.3 Byte synchronous mapping for 2048 kbit/s

Figure 5-19/G.709 shows byte synchronous mapping for 30-channel 2048 kbit/s tributaries employing Channel Associated Signalling (CAS). Signalling is carried in byte 19. The signalling assignments are shown in Figure 5-20/G.709.

The S1, S2, S3 and S4 bits contain the signalling for the 30 × 64 kbit/s channels. The phase of the signalling bits is indicated in the P1 and P0 bits in floating TU mode, and in the multiframe indicator byte (H4) in locked TU mode. This is illustrated in Figure 5-20/G.709.

Byte synchronous mapping of 31 channel tributaries is shown in Figure 5-21/G.709. Byte 19 carries tributary channel 16.
FIGURE 5-19/G.709
Byte synchronous mapping for 2048 kbit/s tributary
(30 channel with channel associated signalling)

FIGURE 5-20/G.709
Out-slot signalling assignments
(30-channel signalling operations)
FIGURE 5-21/G.709
Byte synchronous mapping for 2048 kbit/s tributary
(31 channel with common channel signalling)

R: Fixed stuff bit(s)
R*: May be used for timeslot 0 if required
P_1P_0 00 at the start of the signalling frame on the first byte of the signalling frame
5.7 Mapping of tributaries into VC-11

5.7.1 Asynchronous 1544 kbit/s

One 1544 kbit/s signal can be mapped into a VC-11. Figure 5-22/G.709 shows this over a period of 500 µs.

In addition to the VC-1 POH, the VC-11 consists of 771 data bits, six justification control bits, two justification opportunity bits and eight overhead communication channel bits. The remaining bits are fixed stuff (R) bits. The eight O bits are reserved for future communication purposes.

Two sets (C₁, C₂) of three justification control bits are used to control the two justification opportunities, S₁ and S₂ respectively. C₁ C₁ C₁ = 0 0 0 indicates that S₁ is a data bit while C₁ C₁ C₁ = 1 1 1 indicates that S₁ is a justification bit. C₂ controls S₂ in the same way. Majority vote should be used to make the justification decision in the desynchronizer for protection against single bit errors in the C bits.

The value contained in S₁ and S₂ when they are justification bits is not defined. The receiver is required to ignore the value contained in these bits whenever they are used as justification bits.

![Diagram](image)

FIGURE 5-22/G.709
Mapping of asynchronous 1544 kbit/s tributary
5.7.2 Bit synchronous 1544 kbit/s

The bit synchronous mapping for 1544 kbit/s tributaries is shown in Figure 5-23/G.709.

Note that a common desynchronizer can be used for both asynchronous and bit synchronous mappings.

FIGURE 5-23/G.709
Bit synchronous mapping for 1544 kbit/s tributary
5.7.3 **Byte synchronous mapping for 1544 kbit/s**

The byte synchronous mapping for 1544 kbit/s is depicted in Figure 5-24/G.709.

The S1, S2, S3, and S4 bits contain the signalling for the 24 × 64 kbit/s channels. The phase of the signalling bits can be indicated in the P1 and P0 bits in floating TU mode, and in the multiframe indicator byte (H4) in locked mode. This is illustrated in Figure 5-25/G.709. The usage of the PP bits has options, because the common signalling method and another channel associated signalling method (e.g. Recommendation G.704, §§ 3.1.3 and 3.2.3) do not need the PP bits. The operations of the alternative channel associated signalling method is shown in Figure 5-26/G.709.
FIGURE 5-25/G.709

Out-slot signalling assignments

(24-channel signalling operations)
<table>
<thead>
<tr>
<th>Frame number</th>
<th>n</th>
<th>n+1</th>
<th>n+2</th>
<th>n+3</th>
<th>n+4</th>
<th>n+5</th>
<th>n+6</th>
<th>n+7</th>
</tr>
</thead>
</table>
| Use of S_i bit
($i = 1, 2, 3, 4$)
(See Note 1) | F_s | Y_1 | Y_2 | Y_3 | Y_4 | Y_5 | Y_6 | X |
| | (See Note 2) | (See Note 3) | (See Note 5) |

Note 1 — Each S_i ($i = 1, 2, 3, 4$) constitutes an independent signalling multiframe over eight frames. S_i includes the phase indicator in itself, so that the PP bits can not be used for the phase indicator.

Note 2 — The F_s bit is either alternate 0, 1 or the following 48 bit digital pattern:

$$A1010110110 0000011001 1010100111 0011110110 10000101$$

For the 48-bit digital pattern, the A bit is usually fixed to state 1 and is reserved for optional use. The pattern is generated according to the following primitive polynomial (refer to Recommendation X.66):

$$x^3 + x^4 + 1$$

Note 3 — Y_j bit ($j = 1$ to 6) carries channel associated signalling or maintenance information. When the 48 bit pattern is adopted as F_s frame alignment signal, each Y_j bit ($j = 1$ to 6) can be multiframeed, as follows:

$$Y_{j1}, Y_{j2}, \ldots, Y_{j12}$$

Y_{j1} bit carries the following 16-bit frame alignment pattern generated according to the same primitive polynomial as for the 48-bit pattern:

$$A011101011011000$$

The A bit is usually fixed to 1 and is reserved for optional use. Each Y_{j2} ($i = 2$ to 12) bit carries channel associated signalling for sub-rate circuits and/or maintenance information.

Note 4 — S_i bits (F_s, Y_1, \ldots, Y_6 and X) all at state 1 indicate Alarm Indication Signal (AIS) for six 64 kbit/s channels.

Note 5 — The X bit is usually fixed to state 1. When backward AIS for six 64 kbit/s channels is required to be sent, the X bit is set to state 0.

FIGURE 5-26/G.709

Out-slot signalling assignments (24-channel signalling operations)
5.8 Floating and locked mode conversion

There are two possible multiplexing modes of the TU structures: floating and locked.

In the floating TU mode four consecutive 125 µs VC-n frames are organized into a 500 µs multiframe, the phase of which is indicated by the multiframe indicator byte (H4) in the VC-n POH. This 500 µs TU multiframe is shown in Figure 3-13/G.709.

Locked TU mode of transport is a fixed mapping of synchronous structured payloads into a VC-n. This provides a direct correspondence between subtending tributary information and the location of that information within the VC-n. Since the tributary information is fixed and immediately identifiable with respect to the TU-n or AU-n pointer associated with the VC-n, no TU pointers are available for payload usage.

Figure 5-27/G.709 illustrates the conversion between floating and locked TU modes for each of the four TU sizes. Note that certain bytes (R) in the current set of mapping are not used in the floating mode in order that those mappings can be used in both floating and locked modes. Since the V1-V4 and V5 bytes are reserved, the 500 µs TU multiframe is unnecessary. Therefore the role of the multiframe indicator byte (H4) in locked mode is to define 2 and 3 ms signalling frames for byte synchronous mappings.

![Conversion between floating and locked TU modes](FIGURE 5-27/G.709)
ITU-T RECOMMENDATIONS SERIES

<table>
<thead>
<tr>
<th>Series</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Organization of the work of the ITU-T</td>
</tr>
<tr>
<td>B</td>
<td>Means of expression: definitions, symbols, classification</td>
</tr>
<tr>
<td>C</td>
<td>General telecommunication statistics</td>
</tr>
<tr>
<td>D</td>
<td>General tariff principles</td>
</tr>
<tr>
<td>E</td>
<td>Overall network operation, telephone service, service operation and human factors</td>
</tr>
<tr>
<td>F</td>
<td>Non-telephone telecommunication services</td>
</tr>
<tr>
<td>G</td>
<td>Transmission systems and media, digital systems and networks</td>
</tr>
<tr>
<td>H</td>
<td>Audiovisual and multimedia systems</td>
</tr>
<tr>
<td>I</td>
<td>Integrated services digital network</td>
</tr>
<tr>
<td>J</td>
<td>Transmission of television, sound programme and other multimedia signals</td>
</tr>
<tr>
<td>K</td>
<td>Protection against interference</td>
</tr>
<tr>
<td>L</td>
<td>Construction, installation and protection of cables and other elements of outside plant</td>
</tr>
<tr>
<td>M</td>
<td>TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits</td>
</tr>
<tr>
<td>N</td>
<td>Maintenance: international sound programme and television transmission circuits</td>
</tr>
<tr>
<td>O</td>
<td>Specifications of measuring equipment</td>
</tr>
<tr>
<td>P</td>
<td>Telephone transmission quality, telephone installations, local line networks</td>
</tr>
<tr>
<td>Q</td>
<td>Switching and signalling</td>
</tr>
<tr>
<td>R</td>
<td>Telegraph transmission</td>
</tr>
<tr>
<td>S</td>
<td>Telegraph services terminal equipment</td>
</tr>
<tr>
<td>T</td>
<td>Terminals for telematic services</td>
</tr>
<tr>
<td>U</td>
<td>Telegraph switching</td>
</tr>
<tr>
<td>V</td>
<td>Data communication over the telephone network</td>
</tr>
<tr>
<td>X</td>
<td>Data networks and open system communications</td>
</tr>
<tr>
<td>Y</td>
<td>Global information infrastructure and Internet protocol aspects</td>
</tr>
<tr>
<td>Z</td>
<td>Languages and general software aspects for telecommunication systems</td>
</tr>
</tbody>
</table>