ITU-T

G.7042/Y.1305

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU **Amendment 2** (08/2005)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Data over Transport – Generic aspects – General SERIES Y: GLOBAL INFORMATION

INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects - Transport

Link capacity adjustment scheme (LCAS) for virtual concatenated signals

Amendment 2

ITU-T Recommendation G.7042/Y.1305 (2004) – Amendment 2

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
General	G.7000-G.7099
Transport network control aspects	G.7700-G.7799
ETHERNET OVER TRANSPORT ASPECTS	G.8000-G.8999
ACCESS NETWORKS	G.9000-G.9999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation G.7042/Y.1305

Link capacity adjustment scheme (LCAS) for virtual concatenated signals
Amendment 2
Summary
This amendment clarifies the G.7042/Y.1305 LCAS wait-to-restore and hold-off SDL diagrams.

Source

Amendment 2 to ITU-T Recommendation G.7042/Y.1305 (2004) was approved on 22 August 2005 by ITU-T Study Group 15 (2005-2008) under the ITU-T Recommendation A.8 procedure.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words 'shall ' or some other obligatory language such as 'must' and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

		Page
1)	Summary	1
2)	Clause 6.1 Methodology	1
3)	Clause A.1 LCAS Protocol	2
4)	Clause A.3 Procedures state diagrams	2
5)	New Appendix II	2

ITU-T Recommendation G.7042/Y.1305

Link capacity adjustment scheme (LCAS) for virtual concatenated signals

Amendment 2

1) Summary

Change the Summary:

This Recommendation specifies a methodology for dynamically and hitlessly change (i.e., increase and decrease) the capacity of a container that is transported in a generic transport network (e.g., over SDH or OTN network using Virtual Concatenation). In addition, the methodology also provides survivability capabilities, automatically decreasing the capacity if a member experiences a failure in the network, and increasing the capacity when the network fault is repaired.

With the following text:

This Recommendation specifies a methodology for dynamically changing (i.e., increasing and decreasing) the capacity of a container that is transported in a generic transport network (e.g., over SDH or OTN network using Virtual Concatenation). In general, this change of capacity does not affect the traffic. In addition, the methodology also provides survivability capabilities, automatically decreasing the capacity if a member experiences a failure in the network, and increasing the capacity when the network fault is repaired.

2) Clause 6.1 Methodology

Change clause 6.1:

LCAS in the virtual concatenation source and sink adaptation functions provides a control mechanism to hitless increase or decrease the capacity of a VCG link to meet the bandwidth needs of the application. It also provides the capability of temporarily removing member links that have experienced a failure. The LCAS assumes that in cases of capacity initiation, increase or decrease, the construction or destruction of the end-to-end path of each individual member is the responsibility of the Network and Element Management Systems. A VCG capacity increase or decrease can be initiated at either end. However, the initiation of a VCG capacity decrease at the Sk may result in temporary loss of data, see 6.5.

With the following text:

LCAS in the virtual concatenation source and sink adaptation functions provides a control mechanism to hitlessly increase or decrease the capacity of a VCG link to meet the bandwidth needs of the application. Hitless bandwidth modification can only be achieved when the transmission of the active members belonging to the VCG, before and after the bandwidth modification, is error-free (see Appendix II for details). It also provides the capability of temporarily removing member links that have experienced a failure. The LCAS assumes that in cases of capacity adjustment (i.e., creation, increase, decrease or deletion), the construction or destruction of the end-to-end path of each individual member is the responsibility of the Network and Element Management Systems. A VCG capacity increase or decrease can be initiated at either end. However, the initiation of a VCG capacity decrease at the Sk may result in temporary loss of data, see 6.5.

3) Clause A.1 LCAS Protocol

Change first paragraph of clause A.1:

The operation of LCAS is unidirectional. This means that in order to bidirectionally add or remove members, the procedure has to be repeated in the opposite direction. Note that these actions are independent of each other and are, therefore, not required to be synchronized. The scheme allows hit-less addition and removal of bandwidth under control of a management system. Additionally, LCAS will autonomously remove failed members temporarily from the group. When the failure condition is remedied. LCAS will add the member back into the group. The removal of a member due to path layer failures will, in general, not be hit-less for the service carried over the virtual concatenated group. The autonomous addition, after a failure is repaired, is hit-less.

With the following text:

The operation of LCAS is unidirectional. This means that in order to bidirectionally add or remove members, the procedure has to be repeated in the opposite direction. Note that these actions are independent of each other and are, therefore, not required to be synchronized. When the transmission of members belonging to the VCG is error-free, the scheme allows hit-less addition and removal of bandwidth under control of a management system. Additionally, LCAS will autonomously remove failed members temporarily from the group. When the failure condition is remedied, LCAS will add the member back into the group. The removal of a member due to path layer failures will, in general, not be hit-less for the service carried over the virtual concatenated group. The autonomous addition, after a failure is repaired, is hit-less.

4) Clause A.3 Procedures state diagrams

Add the following note under Figure A.6 (HO procedure):

NOTE – There are particular circumstances that cause non-hit-less bandwidth modifications under hold-off periods. A description of the issue is described in Appendix II.

5) New Appendix II

Add the following new appendix:

Appendix II

Non-hit-less bandwidth modifications during hold-off periods

II.1 Introduction

SDL diagram for the hold-off procedure described in clause A.3 shows as possible input signal the MI-REMOVE command only, causing other inputs, that are not explicitly depicted, to be discarded. The LCAS state machine will, therefore, not act on CTRL words received during the hold-off periods, thus impacting the traffic.

II.2 Removal of a group member at source

The removal action at source does not require synchronization between source and sink state machines and is, therefore, already performed at the source before signalling the change to the sink. Since the source already excluded the member from carrying payload, the sink should be able to react to this change immediately, even if it is currently in the hold-off state. If not, client payload will be lost until the timer expires.

II.3 TSD conditions raised while performing ADD commands

When performing a member's addition at Sink, a CTRL=ADD is received. Sink state will, therefore, move to the OK state and signal MST=OK to the source. The source will then move the member to the NORM state, signals CTRL=NORM/EOS and starts sending payload on this member. If, meanwhile, TSD is raised at the sink, the sink will have started a hold-off timer and is not able to react to the CTRL=NORM/EOS. Client payload will be lost until the timer expires.

II.4 Proposed enhanced HO procedure

Even if the above-mentioned events are very limited in time and are characterized by a very low probability of occurrence, the HO procedure described in clause A.3 could optionally be enhanced in order to allow hit-less capacity adjustments also in particular cases affected by transmission errors. The HO procedure SDL diagram to override the issue is reported below.

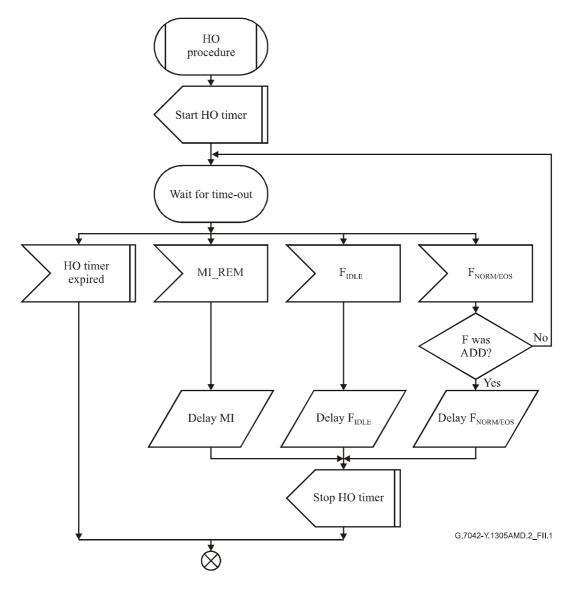


Figure II.1/G.7042/Y.1305 - Optionally enhanced hold-off procedure SDL diagram

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Numbering, naming and addressing	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems