International Telecommunication Union

ITU-T F.746.11

TELECOMMUNICATION (08/2020)
STANDARDIZATION SECTOR
OF ITU

SERIES F: NON-TELEPHONE TELECOMMUNICATION
SERVICES

Multimedia services

Interfaces for intelligent question answering
system

Recommendation ITU-T F.746.11

Intsrnational
Telsocommunication
Unilon

ITU-T F-SERIES RECOMMENDATIONS
NON-TELEPHONE TELECOMMUNICATION SERVICES

TELEGRAPH SERVICE
Operating methods for the international public telegram service
The gentex network
Message switching
The international telemessage service
The international telex service
Statistics and publications on international telegraph services
Scheduled and leased communication services
Phototelegraph service
MOBILE SERVICE
Mobile services and multidestination satellite services
TELEMATIC SERVICES
Public facsimile service
Teletex service
Videotex service
General provisions for telematic services
MESSAGE HANDLING SERVICES
DIRECTORY SERVICES
DOCUMENT COMMUNICATION
Document communication
Programming communication interfaces
DATA TRANSMISSION SERVICES
MULTIMEDIA SERVICES
ISDN SERVICES
UNIVERSAL PERSONAL TELECOMMUNICATION
ACCESSIBILITY AND HUMAN FACTORS

F.1-F.19
F.20-F.29
F.30-F.39
F.40-F.58
F.59-F.89
F.90-F.99
F.100-F.104
F.105-F.109

F.110-F.159

F.160-F.199
F.200-F.299
F.300-F.349
F.350-F.399
F.400-F.499
F.500-F.549

F.550-F.579
F.580-F.599
F.600-F.699
F.700-F.799
F.800-F.849
F.850-F.899
F.900-F.999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T F.746.11

Interfaces for intelligent question answering system

Summary

Recommendation ITU-T F.746.11 describes interfaces for the intelligent question answering service
framework (Recommendation ITU-T F.746.3). This Recommendation also defines the interfaces
among functional modules to support the intelligent question answering service, which provides
advanced functions to generate answers for the user's question in a natural language. The scope of this
Recommendation is focused on describing interfaces and functional features for natural language
processing function, question analysis function, candidate answer generation function, and answer
inference/generation function of intelligent question answering system.

History

Edition Recommendation Approval Study Group Unique ID*
1.0 ITU-T F.746.11 2020-08-13 16 11.1002/1000/14328
Keywords

Natural language processing, QA intelligent system, QA interfaces QA metadata, question answering.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web
browser, followed by the Recommendation’s unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.

Rec. ITU-T F.746.11 (08/2020) i

http://handle.itu.int/11.1002/1000/14328
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1ISO and IEC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other
obligatory language such as "must™ and the negative equivalents are used to express requirements. The use of
such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB
patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of ITU.

ii Rec. ITU-T F.746.11 (08/2020)

http://www.itu.int/ITU-T/ipr/

Table of Contents
Page

DTINIIONS ..o
3.1 Terms defined EISEWNEIEoooeeeeeeee
3.2 Terms defined in this Recommendation..........oooovveveecccc,

ADbDreviations and aCrONYIMScoiiiiiieiie e e e nreas
(@00 11Y7=] 11 o] SRRSO
OVEIVIBW ..ttt bbb e bt a e b e bt e s s b e et e e sbeehe e beennenbeenbeenne s
Functional components of intelligent question answering Service..........c.ccocevevvnvnene
Interfaces for natural language ProCeSSINGcccvveiveiiieiie e

© 0O N o O b

Interfaces for QUESTION ANAIYSISooiiiiiiie e

O N A W NN N NN DN PP P P

10 Interfaces for candidate anSWer generationcccocvevveeieeiieesie s

[EEN
o

11 Interfaces for answer iNference/generation.............coveeierenenise s

[EEN
N

Annex A — Class API for intelligent question answering SYSteMccccoveveveeiiveeieesineesieennns
Al Class API for question analySiS...........cooveieieiereneiiseeeee s
A2 Class API for candidate answer generation.............cocooererereeieenenenieseseennns
A3 Class API for answer inference/generationccoceveverieneeienenene e

N N -
o NN

Rec. ITU-T F.746.11 (08/2020) iii

Recommendation ITU-T F.746.11

Interfaces for intelligent question answering system

1 Scope

This Recommendation addresses the descriptions for interfaces among modules and functions related
to intelligent question answering systems. In particular, the scope of this Recommendation includes
interfaces and functional features for the following modules of the intelligent question answering
system:

— Natural language processing,

- Question analysis,

- Candidate answer generation,

— Answer inference/generation.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published. The reference to a document within this
Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-TF.746.3] Recommendation ITU-T F.746.3 (2015), Intelligent question answering service
framework.

[ITU-TF.746.7] Recommendation ITU-T F.746.7 (2018), Metadata for an intelligent question
answering service.

[ITU-T H.703] Recommendation ITU-T H.703 (2016), Enhanced user interface framework for
IPTV terminal devices.

3 Definitions

3.1 Terms defined elsewhere
This Recommendation uses the following terms defined elsewhere:

3.1.1 named entity recognition [ITU-T F.746.3]: A function that recognizes named entities such
as PLO which are people, locations and organizations from the sentences. The PLO can be
decomposed into more specific named entities depending on the applications.

3.1.2 natural language processing [ITU-T F.746.3]: A method that analyses text in natural
languages through several processes such as part-of- speech recognition, syntactic analysis and
semantic analysis.

3.1.3 semantic analysis [ITU-T F.746.3]: A function that recognizes the semantic relations among
the words around predicates that exist in the same sentence. The semantic analysis function then
generates a semantic predicate argument structure (PAS).

3.1.4 speech [ITU-T H.703]: Speech is the vocalized form of human communication.

3.1.5 syntactic analysis [ITU-T F.746.3]: A function that analyses sentence structures and
generates dependency relations among words based on dependency grammars.

Rec. ITU-T F.746.11 (08/2020) 1

3.1.6 knowledge base [ITU-T F.746.7]: A collection of knowledge resources that consist of
structured and unstructured data. The knowledge base is used to provide information to the various
applications that are related to information provisioning such as QA systems and search systems.

3.1.7 question answering [ITU-T F.746.7]: A system that provides answers in a natural language
to questions which are in the natural language form by analysing the questions and all the knowledge
resources that are available to the system.

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms
This Recommendation uses the following abbreviations and acronyms:

DB Data Base

ID Identifier

IQAS Intelligent Question Answering Service
IR Information Retrieval

KB Knowledge Base

LAT Lexical Answer Type

NE Named Entity

NLP Natural Language Processing

NNG Noun General

PAS Predicate Argument Structure

PLO People, Location, Organization

POS Part of Speech

QA Question Answering

SAT Semantic Answer Type

UIMA Unstructured Information Management Architecture
\AY} Verb

XML extensible Mark-up Language

5 Conventions
None.
6 Overview

Intelligent question answering (QA) system is an advanced function to generate answers for the user's
question in a natural language.

Figure 1 presents the exemplary QA architecture. The QA system consists of several functional
blocks: Natural language processing, question analysis, candidate answer generation, answer
inference and generation functional blocks.

2 Rec. ITU-T F.746.11 (08/2020)

Candidate
answer
generation

Confidence Best answer
calculation generation
———————

Answer Answer
inference generation

Question
analysis

(C A)
Question QUESthn
4|\ < decomposition 7

Answer

"

(Question

understanding
"

T

(Natural

language e “‘.j 4 EES ‘
rocessin, i i
P 2, : F.746.11(20)_FO1

Figure 1 — Example of a QA architecture [ITU-T F.746.3]

This Recommendation addresses interfaces among modules and functions related to intelligent
question answering services to present details of data and operation functions. [ITU-T F.746.3] and
[ITU-T F.746.7] have specified some elements and metadata that are applicable to intelligent question
answering services.

This Recommendation selects basic interfaces among modules and functions from these
specifications that are applicable to intelligent question answering services. Names of
elements/attributes and functional entities are quoted as they are in the specifications, to distinguish
the relationship among the standards.

7 Functional components of intelligent question answering service

[ITU-T F.746.7] gives the definition for major functional components for intelligent question answering
service (IQAS). IQAS functional components are basically composed of natural language processing,
question analysis, candidate answer generation, answer inference and answer generation functional blocks
as follows:

— Natural language processing functional block, which supports natural language processing
on the QA server,

- Question analysis functional block, which supports question analysis on the terminal,

— Candidate answer generation functional block, which supports candidate answer
generation by searching information in various data bases (DBs),

- Answer inference/generation functional block, which supports answer inference based on
feature normalization and ranking of candidate answers and best answer generation on the
terminal.

Rec. ITU-T F.746.11 (08/2020) 3

Question

v

Natural
language
understanding

v

Question
entailment

Question
decomposition

Question
analysis

IR-based
passage
retrieval

candidate
retrieval

v

| Answer candidates generation ‘

v

Answer candidates reduction ‘

v

] | Answer verification ‘
Answer constraints *

axiom proving |

Answer type |
axiom proving

Answer confidence reasoning ‘

v

Answer, confidence, source

F.746.11(20)_F02

Figure 2 — Information flow of functional blocks in IQAS system [ITU-T F.746.7]

8 Interfaces for natural language processing

This clause specifies interfaces for natural language processing (NLP) function. The NLP module
consists of part of speech (POS) analysis, named entity (NE) analysis, dependency analysis, semantic
role labelling and ellipsis recovery. The natural language processing function analyses user's
questions as well as target documents for knowledge extraction using the semantic and syntactic
analysis technology.

The information flow of natural language processing is described in Figure 3 as sequentially
connected submodules which analyse input documents to generate one best main result for each
processing sub-module.

POS NE Dependency Sel;nelmtlc Ellipsis
analysis analysis analysis lab:lleing recovery

F.746.11(20)_F03

Figure 3 — Information flow of natural language processing

Table 8-1 illustrates the functional description and summarizes the input/output of each submodule
for the natural language processing module.

4 Rec. ITU-T F.746.11 (08/2020)

Table 8-1 — Interfaces of functional blocks for natural language processing module

such as people, locations,
organizations (PLO) and
others from the sentences.

in N-doc

Functional blocks Function description Input Output

POS analysis To recognize parts of speech | Input sentence POS tagged
in the sentences and assign sentence in N-doc
relevant POS tags structure
considering contextual
meaning of the target
sentences.

NE analysis To recognize named entities | POS tagged sentence | NE tagged sentence

in N-doc structure

Dependency analysis

To analyse sentence
structures and generate
dependency relations among
words based on dependency
grammars.

POS/NE tagged
sentence in N-doc

Dependency
marked sentence
components in
N-doc structure

Semantic role labelling

To recognize the semantic
relations among the words
around predicates that exist
in the same sentence and
assign roles to the analysed
semantic entities.

N-doc marked with
POS/NE/Dependency

Semantic roles for
each component
stored in N-doc
structure

Ellipsis recovery

To detect the ellipsis in a
sentence and replace them
with relevant noun phrases
for the input sentences.

N-doc with previous
analysis results

N-doc filled with
recovered entities
as a list

The boxes below present example class API for the POS analysis submodule. The input is a structure
called "N_doc structure™ of the input sentence. The output of this module is the unit of words with

assigned POS tags.

The input of the POS analysis submodule is exemplified in the following box.

{

"sentence": [

{

"id" .

}

}

"text":
teams against each other in the Olympic games ",
"word":

"Olympic Tug of war is an Olympic program that pits two
"morp": [],

Output of the POS analysis is exemplified in the following box. The output is the N-Doc structure
which stores the words and results of the POS analysis.

{

"sentence": [

{

"id" .

"text":

"Tug of war is an Olympic program that pits two teams
against each other in the Olympic games.",
"morp":

Rec. ITU-T F.746.11 (08/2020) 5

{"id": O,
"weight":
{"id": 1,
10,
{"id": 2,
"weight":
{"id": 3,
"weight":

"id": 4,
"weight":
{"id": 5,

"weight":
{"id": 6,
"weight":
{"id": 7,
"weight":
{"id": 8,
"weight":

nidv:. 9,
"weight":
{"id": 10,

"weight":
{"id": 11,
"weight":

"lemma":
"lemma":
"weight":
"lemma":
"lemma":
"lemma":
"lemma":
"lemma":
"lemma":

"lemma":

"lemma":

"OlympiC", "type" . "NNG",
0.9},

" Tug of war",
.07016006},

"in", "type":
0.0332677},

" Olympic",

"type": "NNG",
0
A1 JKB" ,
"type": "NNG",
0.9},

"an" ,
0.153407},
"program",
0.0789692},
"pits",
0.0822907},
"teams",
0.152575}%,
"against",
0.137686},
"each",

"type" . "JKB",

"type" . "NNG",

"type" . "W",

"type" . "NNG",

"type" . " JKO" ,

"type": "VV",
0.9},

"lemma": "other",
0.184941},
"lemma": "Olympic",
0.9},

"type" . "ETM",

"type" : "NNG",

"position":

"position":
"position":
"position":
"position":
"position":

"position":

"position":

0,
"position":
22,

26,
35,

42,
54,

58,

"position": 64,
"position": 68,
"position": 74,

78,

{"id": 12, "lemma": "games", "type": "NNG", "position": 88,

"weight": 0.135556}, 1,
"word": [

{"id": 0, "text": "Olympic""type": "", "begin": 0, "end": 0},

{"id": 1, "text": " Tug of war", "type": "", "begin": 1,
"end": 2},

{"id": 2, "text": "Olympicll, "type": "", "begin": 3, "end":
4},

{"id": 3, "text": "Program", "type": "", "begin": 5, "end":
6},

{"id": 4, "text": "pitsll, "type": "", "begin": 7, "end": 8},

{"id": 5, "text": "teams", "type": "", "begin": 9, "end": 10},

{"id": 6, "text": "Olympic", "type": "", "begin": 11, "end":
11},

{"id": 7, "text": " games", "type": "", "begin": 12, "end":

12},

]

Rec. ITU-T F.746.11 (08/2020)

9

Interfaces for question analysis

This clause specifies interfaces for a user question analysis function. The question analysis module
as shown in Figure 4 analyses questions which are input in a natural language by the user, understands
the user's intention, and recognizes various information on the answers that should be presented as
the output of the intelligent question answering system.

Question decomposition

Sentence
based
Question question split

| ¥

. Sub-question Question
Yes IF based N :
Question type < g Sl . o » relation type ——»
entailment : . question split . ;
classification classification
! Y
: v t
i Sub-question {OD, OC, QF AT,
: relation QT AC, QIF}
i recognition
| Sub-questions
1
I
I
|
[uestion analysis
! Complex Q ¥
1 H .
| questions QDomain . QFocus QIF generation
classification detection
i ATYP‘? AConstraint recognition
QClass recognition
: : R AME " || Comparison |
classification LAT detection | FRAME || :
o SAT | Definition || Negation |
— classification
* | Apposition || Time |
QTopic | Language || Location |
detection

F.746.11(20)_F04

Figure 4 — Sub-modules for question analysis [ITU-T F.746.7]

The question analysis module consists of the following functional blocks:

Question decomposition and recognition of sub-question relations,
Question type classification,

Recognition of question focus, answer type, and reliability,
Question topic detection.

Axioms of
individual
facts

Table 9-1 describes the functional description and summarises the input/output of each functional
block for the question analysis module.

Rec. ITU-T F.746.11 (08/2020)

7

Table 9-1 — Interfaces functional blocks for question analysis module

Functional blocks

Function description

Input

Output

Question decomposition and
recognition of sub-question

To decompose a question
based on its sentence

Question focus,
lexical answer type

Sub question
information and

relations structure and meaning. (LAT), relation information
To recognize the NLP-analysed
decomposed sub-question question
types and relations among
them.

Question type classification | To define question types Question, Pre-defined
based on QA strategies NLP-analysed guestion types
depending on the domain. guestion

To classify the gquestion
types.

Recognition of question
focus, answer type, and
reliability

To recognize question focus
for the words or phrases
which can be replaced by
answer candidates.

To assign the required
answer types for lexical
answer types (LAT) and
semantic answer types
(SAT).

NLP-analysed
question,

rule dictionary for
answer type
recognition

Recognized
question focus and
answer type (LAT
and SAT)

Question topic detection

To recognize major entities
in the question sentence and
detect the core topic of the
guestion.

Question,
NLP-analysed
question, Title list of
on-line
encyclopaedias

Core topic of
guestion

The functional block "Question decomposition and recognition of sub-question relations” divides a
question based on its sentence structure and meaning and does the function of recognizing sub-
question types and relations among them. To do this decomposition, question decomposition types
are pre-defined as shown in Table 9-2.

Table 9-2 — Question decomposition types

Decomposition types Description
QD_Pa Sub-questions are in parallel relations.
QD _Pa_Se Sub-questions are separate and in parallel relations.
QD_Ne Sub-questions are in nested relations.
One question is nested in another question.
QD_Ne_Se Sub-questions are in nested relations.
They are separate questions.
QD_None The question is not decomposable.
QD_None_Se The non-decomposable questions are separated.

8 Rec. ITU-T F.746.11 (08/2020)

The following text presents example class API for a functional block "Question decomposition and
recognition of sub-question relations”. The input is N_doc structure of user's question and LAT vector
of the original question. The output of this block is the sub-question relation vector and question
decomposition information vector.

Class API for question analysis module is presented in clause A.1.

10 Interfaces for candidate answer generation

This clause specifies interfaces for a candidate answer generation function. A candidate answer
generation module performs the index and search functions on the document collections and generates
candidate answers from the input query using search results and various databases such as a
structured/unstructured knowledge base as described in Figures 5 and 6.

The answer candidate generation block generates all possible answer candidates from the
structured/unstructured resources based on the question and question division information.

The answer linguistic axiom prover block selects candidate answers for the evidence collection target
through answer type and answer constraint axiom proving.

The answer evidence retrieval and contextual axiom prover collects evidences for the answers and
verifies the axiom for the contexts.

Class API for candidate answer generation is found in clause A.2.

r-r-—-——™—-—-—=-—=-—=-—-—=—=-—=-—=—=—=—=—=—=—=—=——=—=——=—%=— |
| |
Answer i
Question ! Ansyet linguistic Anstvf:r C\;ldcgcc | Answer Best
. retrieval an S
.~ —lp{ candidate > & > ! »{| confidence
understanding | . axiom contextual axiom I L answer
generation reasoning
| prover prover I
| 1
Understagding candidate Reduction Verification Confidence
— —_— — —_—
0 T A A A | A

| |
______________________________ F.746.11(20)_F05

Figure 5 — Sub-blocks for the candidate answer generation module

Rec. ITU-T F.746.11 (08/2020) 9

Question WiseQA controller .
A Natural language question
. P nswer, .
WiseQA client confidence Answer confidence Question analysis Info Question
reasoner (Question axioms) analyzer
Merger
Question IR-based
analysis Info _| Answer N
candidate | Entity, property-based Dr g;’;un;zgt
Answer candidates | generator
QIF-based
Question axioms, Linguistic axiom prover
answer candidates
Answer type axiom prover)NWN
Scored (Inductive/deductive) . o| Answer
answer candidates . resource
Answer constraint axiom o
prover (Inductive/deductive)

Question axioms
feasible answer candidates

L

Evidence passages Answer evidence retriever

Question axioms
feasible answer candidates Contextual axiom prover
evidence passages

Inductive contextual

axiom prover va_\] -
; ®| Answer
Scored evidence passage . .
p g Abductive contextual ® resource
axiom prover e

Deductive contextual
axiom prover

F.746.11(20)_F06

Figure 6 — Candidate answer generation module in QA system

11 Interfaces for answer inference/generation

This clause specifies interfaces for candidate answer generation function. The function of answer
inference and the generation module is to decide and generate the best answer by measuring
reliabilities of the answer candidates using the query axiom, the filtered answer candidates, and the
reasoned answer candidates as features to determine ranks of the answer candidates, based on the
calculated reliability. The answer candidates are filtered and reasoned out based on a similarity
between the query axiom and the answer candidates and by using an inductive, deductive or an
abductive reasoning.

The inference and generation modules compare a threshold value with a reliability ratio of a best
answer candidate to the second-best answer candidate, readjusting the determined ranks according to
the result of the comparison, and detecting the best answer candidate, determined through the
readjustment, as a final answer of the question answering service.

Class APIs for answer inference/generation are presented in clause A.3.

10 Rec. ITU-T F.746.11 (08/2020)

Table 11-1 — Interfaces of functional blocks for answer inference/generation module

Functional blocks Function description Input Output
Reliability measuring To measure reliabilities of Top N answer Ranked list of Top
the answer candidates using | candidates N answer
the query axiom, the filtered | Evidence feature candidates
answer candidates, the vector Confidence

reasoned answer candidates.
To determine ranks of the
answer candidates, based on
the calculated reliability.

Source information

Best answer generation

To compare a threshold
value of a best answer
candidate to the second-best
answer candidate.

To readjust the determined
ranks according to a result
of the comparison.

To generate the best answer
candidate as the final
answer.

Ranked list of Top N
answer candidates

Confidence
Source information

Data structure of the
answer candidates

If threshold met,
best answer
produced, otherwise
no answer

Rec. ITU-T F.746.11 (08/2020) 11

Annex A

Class API for intelligent question answering system
(This annex forms an integral part of this Recommendation.)

This annex describes class API for intelligent question answering system for each module.

Al Class API for question analysis

A.1.1 Class API for QDecomposition
This clause provides information for the class API for QDecomposition.

Class Name ‘

QDecomposition

Description ‘

Natural language question decomposition, recognition of decomposition type, sub-question type, sub-
question relations

Include files ’

#include "QAnalHeader/QDecomposition.h"
#include "QAnalHeader/NDocUtil.h"
#include "QAnalHeader/RegEx.h"

#include "QAnalHeader/QStruct.h"
#include "QAnalHeader/QAnalRSCMng.h"

Member Variables

/**

Question Decomposition Type)

*/

typedef enum Question Decomposition Type {
QD Pa, /**questions in parallel*/
QD Ne, /**nested questions*/
QD None, /**<not decomposable*/

} eQDType;

/**

SubQuestion Type

*/

typedef enum SubQuestion Type {
SQT Fact, /**<fact type*/
SQT RelFact, /**<related fact type (association inference type) */
SQT Question, /**<question type*/

SQT InnerQ, /**<Nested, Inner Question*/
SQT OuterQ /**<Nested, outer Question*/
} eSQType;
/**
Relation of the sub-questions
*/
typedef enum SubQ Relations
{
SQR_And, /**<and relation*/
SQR Dep, /**<dependency relation*/
SQR None, /**<no relation*/
SQR SUPPORT /**<answer constraint relation*/
}eSQRelation;

/**

12 Rec. ITU-T F.746.11 (08/2020)

doc structure to store information about the sub-questions
*/
typedef struct QDecomposition Info
{
unsigned int 1ID;/**<SubQ ID*/
string strSubQ;/**<SubQ string*/
int iStartPos;/**<start position of the original question*/
int iEndPos;/**< end position of the original question */
eSQType subQType;/**<SubQ Type*/
string strSubQType; /**<SubQ Type string*/
sQAnal Unit gAnalUnit;/**<analysis result of SubQ */
FrameStruct gSFrame;/**<question semantic frame list*/
}QDecomp Info;

/**
Sub-question relation structure
*/
typedef struct SubQ Relation Triple
{
unsigned int 1ID1;/**<SubQ ID1*/
unsigned int 1ID2;/**<SubQ ID2*/
eSQRelation relation;/**<relation between SubQ IDland ID2 */
string strRelation; /**< relation string between SubQ ID1 and ID2 */
}sSQ Relation;

/**
Analysis structure for the sub question
*/
typedef struct QAnal Info
{
string strOrgQuestion;/**<question string*/
sQAnal Unit orgQUnit;/**<info on original question*/
eQDType gDecompType;/**<sub-question type*/
vector<sSQ Relation> vSubQRelation;/**<relation information*/
vector<QDecomp Info> vSubQInfo;/**<information on the sub-question*/
double dQH Weight;/**<question assumption reliability*/
}sQAnal Info;

private:
CQAnalRSCMng *pRscMng;/**<question resource manager handle*/

Member Functions
public:

CQDecomposition (void) ;

~CQDecomposition (void) ;
private:

vector<QDecomp Info> Split Question (sQAnal Unit &sQAnal Info);
/**<function to divide into sub-questions */
void SubQuestions Classifier (vector<QDecomp Info> &vSubQs, sQAnal Unit
sQAnal Info); /**<function to classify sub-questions into question types */

eQDType Recognize SubQ Relations (vector<QDecomp Info> vSubQs,
vector<sSQ Relation> &vSubQRel); /**<function to recognize relations between
sub-questions */

vector<unsigned int> GetSubQSentIDs (sQAnal Unit sQAnal Info);

bool IsQuesitonByRule (string strTaggedSent); /**<function to decide if
the question is detected based on the question pattern*/

vector<sQF Info> GetQFsInSubQ (QDecomp Info sSubQ, vector<sQF Info>
vOrgQFInfo); /**<function to get question focus from sub-questions */
vector<sLAT Info> GetLATsInSubQ (QDecomp Info sSubQ, vector<sLAT Info>
vOrgLATInfo); /**<function to get question lextical answer type (LAT) from
sub-questions */

Rec. ITU-T F.746.11 (08/2020) 13

A.1.2 Class_API for question type classification
This clause provides information for the Class_API for question type classification.

Class Name ‘

CQClassifier

Description ‘

Core class for classifying questions

Include files ‘

#include "QAnalHeader/ Classifier Rules.h"
#include "QAnalHeader/ Classifier ML.h"
#include "QAnalHeader/ QAnalRSCMng.h"

Member Variables ‘

protected:
CQAnalRSCMng *pRscMng;/**<Resource manager handle*/

Member Functions

public:
/** fuction for registering Resource manager handle */
virtual void SetRscMng (CQAnalRSCMng * pRscManager) = 0;

/**function for recognizing question types */
virtual vector<sQAnal CQT> QClassifer(string strFeatures, string
strTaggedQ, bool bIsMC, bool bIsCB);

/**feature extraction function for machine learning Classification */
virtual string ExtractFeatures(string strQ, N Doc ndoc);

protected:
/**Function for a hybrid Lexico-Semantic Rule and machine learning result
*/
vector<sQAnal CQT> HybridCQT (vector<sQAnal CQT> vRuleCQTs,
vector<sQAnal CQT> vMLCQTs) ;

Class Name ‘

CQClassifier_Rules

Description ‘

Core class for classifying questions by rule-based method

Include files ‘

#include "QAnalHeader/Classifier Rules.h"
#include "QAnalHeader/QAnalRSCMng.h"
#include "QAnalHeader/RegEx.h"

Member Variables ‘

private:
CQAnalRSCMng *pRscMng;
vector<sCQTRules> vRules; /**rule dictionary for classification*/

Member Functions ‘

public:
CClassifier Rules (void);
~CClassifier Rules(void);

protected:

/** Registration for the resource handler and classification rules */

14 Rec. ITU-T F.746.11 (08/2020)

void SetRscMng Rules (CQAnalRSCMng *pRscManager, vector<sCQTRules>
&vClassifier Rules);

/** classification function for rule-based function */
virtual vector<sQAnal CQT> Classifier Rules(string strTaggedQ, bool
bIsMC, bool bIsCB);

private:
/** function to find question classification candidates based on rules */
vector<sQAnal CQT> GetCQTCandidates (string strTaggedQ, bool bIsMC, bool
bIsCB) ;

/** function to integrate classified question types based on rules */
void UnifyingCandidates (vector<sQAnal CQT> &vCandidates);

Class Name ‘

CQClassifier ML \

Description ‘

Core class for classifying questions by machine learning method |

Include files ‘

#include "QAnalHeader/Classifier ML.h"
#include "QAnalHeader/QAnalRSCMng.h"

Member Variables ‘

private:
CQAnNnalRSCMng *pRscMng;/
CRF_MODEL *pCRFHandle;/**<QAT machine learning model instance */

Member Functions ‘

public:
CClassifier ML(void);
~CClassifier ML (void);

protected:
/** Registration for the resource handler and classification ML */
void SetRscMng ML (CQAnalRSCMng * pRscManager, CRF MODEL *crf model) ;

/** classification function based on ML */
virtual vector<sQAnal CQT> Classifier ML(string strFeatures);

public:

/** function for CQT classification based on features */
void ClassifyCQT (string strFeature, vector<sQAnal CQT> &vReturnCQT);

/** function to extract QT features for ML */
string ExtractQTFeature (N _Doc ndoc);

string ExtractBiGramFeature (N _Doc ndoc) ;
string ExtractSymbolFeature (N Doc ndoc) ;
string ExtractLastWordFeature (N Doc ndoc);

Class Name ‘

CQClassifier_ AForm

Description ‘

Question classification class according to the answer type

Include files ‘

#include "QAnalHeader/QClassifier.h"

Rec. ITU-T F.746.11 (08/2020) 15

#include "QAnalHeader/QAnalRSCMng.h"
#include "QAnalHeader/QClassifier AFrom.h"

Member Variables

Member Functions

public:
CQClassifier AForm(void);
~CQClassifier AForm(void);

void SetRscMng (CQAnalRSCMng * pRscManager) ;
/** function to recognize CQT */

sQAnal CQT QClassifer (string strQ, N Doc ndoc, string strTaggedQ, bool
bIsMC, bool bIsCB);

Class Name ‘

CQClassifier_Sem
Description ‘

Question classification class based on semantic feature of the question

Include files ‘

#include "QAnalHeader/QClassifier.h"
#include "QAnalHeader/QAnalRSCMng.h"
#include "QAnalHeader/QClassifier sem.h"

Member Variables

Member Functions

public:
CQClassifier Sem(void);
~CQClassifier Sem(void);

void SetRscMng (CQAnalRSCMng * pRscManager) ;

/** function to recognize question types (CQT) for questions */
vector<sQAnal CQT> QClassifer (string strQ, N Doc ndoc, string strTaggedQ,
bool bIsMC, bool bIsCB);

/** function to map the question classification results onto string */
void MappingStrQType (vector<sQAnal CQT> &vResult);

A.1.3 Class_API for recognition of question focus, answer type and reliability

This clause provides information for the Class_API for recognition of question focus, answer type
and reliability.

Class Name ‘
CQAnalLAT
Description ‘

Lexical answer type recognition module Class

Include files ‘

#include "QAnalHeader/QAnalRSCMng.h"
#include "QAnalHeader/QAnalLAT Rules.h"
#include "QAnalHeader/QAnalLAT ML.h"
Member Variables ‘

CQAnalRSCMng *pRscMng;

//SAT recognition based on rules-module handle

16 Rec. ITU-T F.746.11 (08/2020)

CQAnalLAT Rules *pRuleLAT;

// SAT recognition based on ML-module handle
CQAnalLAT ML *pMLLAT;

Member Functions

void SetRscMng (CQAnalRSCMng * pRscManager) ;

/** function to recognize lexical answer types for a question */

vector<sLAT Info> RecognizeLAT (string strQ, N Doc ndoc, vector<sQT Info>

vQTs, string strTaggedQ) ;

/** to get the LAT analysis handle based on rule-based method */
CQAnalLAT ML *GetQAnalLAT ML Handle() { return this->pMLLAT; };

protected:
/** function to hybrid Lexico-Semantic Rule and ML results */
vector<sLAT Info> HybridLAT (vector<sLAT Info> vRulelATs,
vector<sLAT Info> vMLLATS) ;

private:
void EraseStopWordInLATs (vector<sLAT Info> &vReturnLAT);

Function Name

RecognizeLAT

Class Name |

CQANalLAT

Description ‘

Function to recognize lexical answer type for a given question

Syntax ‘

vector<sLAT _Info> RecognizeLAT(string strQ, N_Doc ndoc, vector<sQT _Info> vQTs, string
strTaggedQ);

Return Value ‘

vector<sLAT Info> - Recognized LAT candidates vector

Parameters |

@param string strQ — original question string

@param N_Doc d — language analysis result of the question

@param vector<sQT _Info> vQTs — question type information recognized in a question
@param string strTaggedQ — input string for rule matching

Function Name ‘

GetQAnalLAT_ML_Handle

Class Name ‘

CQAnalLAT

Description ‘

Function to get the handle of ML based LAT results

Syntax ‘

CQAnNalLAT_ML *GetQAnalLAT_ML_Handle();

Return Value ‘

CQAnalLAT ML *

Parameters ‘

Rec. ITU-T F.746.11 (08/2020)

17

Function Name ‘

HybridLAT

Class Name ‘

CQAnalLAT

Description ‘

Hybrid function of Lexico-Semantic Rule and ML results

Syntax ‘

vector<sLAT_Info> HybridLAT (vector<sLAT _Info> vRuleLATS, vector<sLAT_Info> VMLLATS);

Return Value ‘

vector<sLAT Info>

Parameters |

@param vector<sLAT _Info> vRuleLATSs — rule-based LAT result
@param vector<sLAT _Info> vMLLATSs — ML based LAT result

Class Name ‘

CQAnalSAT

Description ‘

SAT recognition class

Include files ‘

#include "QAnalHeader/QAnalRSCMng.h"
#include "QAnalHeader/QAnalSAT Rules.h"
#include "QAnalHeader/QAnalSAT ML.h"

Member Variables ‘

CQOAnalRSCMng *pRscMng;
CQAnalSAT Rules *pRuleSAT;
CQAnalSAT ML *pMLSAT;

Member Functions ‘

void SetRscMng (CQAnalRSCMng * pRscManager) ;

/** function to recognize Semantic answer type for a question*/
vector<sSAT Info> RecognizeSAT (string strQ, N Doc ndoc, vector<sQT Info>
vQTs, string strTaggedQ) ;

/** function to get SAT analysis handle based on ML */
CQAnalSAT ML *GetQAnalSAT ML Handle() { return this->pMLSAT; };

/** function to get SAT analysis handle based on rules */
CQAnalSAT Rules *GetQAnalSAT Rule Handle() { return this->pRuleSAT; };

protected:
/** function to hybrid Lexico-Semantic Rule and ML results */
vector<sSAT Info> HybridSAT (vector<sSAT Info> vRuleSATs,
vector<sSAT Info> vMLSATs) ;

/**function to expand the recognized SAT */
void ExpansionSAT (vector<sSAT Info> &vSATs);

18 Rec. ITU-T F.746.11 (08/2020)

Function Name

Class Name

CQAnalSAT

Description ‘

Function to recognize SAT for a question

Syntax ‘

vector<sSAT _Info> RecognizeSAT(string strQ, N_Doc ndoc, vector<sQT_Info> vQTs, string
strTaggedQ);

Return Value |

vector<sSAT Info> - recognized SAT results

Parameters |

@param string strQ — question string

@param N_Doc d — language analysis result of the question

@param vector<sQT _Info> vQTs — answer type information recognized in the question
@param string strTaggedQ

Function Name ‘

HybridSAT(

Class Name ‘

CQAnalSAT

Description ‘

Hybrid function of Lexico-Semantic Rule and ML results

Syntax ‘

vector<sSAT _Info> HybridSAT (vector<sSAT_Info> vRuleSATS, vector<sSAT _Info> VMLSATS);

Return Value |

vector<sSAT Info> - Hybrid SAT candidate result bector

Parameters ‘

@param vector<sSAT _Info> vRuleSATs — SAT results by rule-based mehod
@param vector<sSAT _Info> vVMLSATS — SAT results by ML-based mehod

Function Name ‘

ExpansionSAT

Class Name ‘

CQANalSAT

Description ‘

This function is to expand the SAT which was recognized.

Syntax ‘

void ExpansionSAT (vector<sSAT _Info> &VSATYS);

Return Value ‘

void

Parameters ‘

@param vector<sSAT _Info> &vSATSs — Results of the recognized SAT

Rec. ITU-T F.746.11 (08/2020)

19

A.1.4 Class API for question topic detection
This clause provides information for the class API for question topic detection.

Class Name ‘

CQAnalKeywords

Description ‘

Function to recognize main keywords in a question

Include files ‘

#include "QAnalHeader/QAnalRSCMng.h"

Member Variables ‘

CQAnalRSCMng *pRscMng;

Member Functions ‘

void SetRscMng (CQAnalRSCMng * pRscManager) { this->pRscMng =
pRscManager; };
CQAnalRSCMng *GetRscMng () { return this->pRscMng; };

/** function to get NE tagged objects from the language analysis results
*/
map<string, sTitle Info> GetNEWords (N Doc ndoc) ;

/** function to get chunk information from the language analysis results
*/

map<string, sTitle Info> GetChunkWords (N _Doc ndoc, vector<string>
vStrType) ;

Function Name |
GetNEWords

Class Name |
CQAnalKeywords

Description |

function to get NE tagged objects from the language analysis results

Syntax ‘
map<string, sTitle_Info> GetNEWords(N_Doc ndoc);

Return Value ‘

map<string, sTitle Info> - recognized object information (key : text morp
begin)

Parameters ‘

@param N_Doc ndoc — language analysis results

Function Name
GetChunkWords

Class Name ‘
CQAnalKeywords

Description ‘

function to get chunk information from the language analysis results

Syntax ‘

map<string, sTitle_Info> GetChunkWords(N_Doc ndoc, vector<string> vStrType)

20 Rec. ITU-T F.746.11 (08/2020)

Return Value ‘

map<string, sTitle Info> - recognized object information (key : text morp
begin)

Parameters ‘

@param N_Doc ndoc - language analysis results
@param vector<string> vStrChunkTypes — chunk types to get

Class Name ‘

CQAnalWikiTitle

Description ‘

Entity Linking class to map the keywords in the question into the WIKI titles to resolve the ambiguity

Include files ‘

#include "QAnalHeader/QAnalRSCMng.h"
#include "QAnalHeader/QAnalKeywords.h"

Member Variables ‘

CQAnNalRSCMng *pRscMng;

Member Functions ‘

/** function to recognize WIKI titles */
vector<sTitle Info> GetWikiTitles(string strQ, N Doc ndoc);

private:

/** function to recognize candidates for WIKI titles */
vector<sTitle Info> GetWikiTitleCandidates (N Doc ndoc);

/** function to resolve the WIKI title ambiguity */
void DisambiguationTitle(string strQ, vector<sTitle Info> &vTitles);

/** function to find WIKI title from the candidates */
void FindWikiTitles(sTitle Info sCandidate, vector<sTitle Info>
&vTitles) ;

/** function to search for the string if it is in the WIKI title
dictionary */
void LookupWikiDic(string title, vector<sEntity Info> &vEntities);

Function Name |

GetWikiTitles

Class Name |

CQAnalWikiTitle

Description ‘

Function to recognize WIKI titles

Syntax ‘

vector<sTitle_Info> GetWikiTitles(string strQ, N_Doc ndoc);

Return Value ‘

vector<sEntity Info> - Wikititle information

Parameters ‘

@param string strQ - Question
@param N_Doc ndoc — language analysis results

Rec. ITU-T F.746.11 (08/2020)

21

A2 Class API for candidate answer generation

A.2.1 Class_API for candidate answer index and search
This clause provides information for the Class_API for candidate answer index and search.

Class Name ‘
DIndexingMultiThread

Description ‘
Unstructured indexing: top class

Include files ‘
none

Member Variables ’

private Thread t;

private String threadName;
private String filePath;
String syntacticLexical;
String syntacticRelation;
String surficialRelation;
long start,end;

String hbaseTableName;
CloudSolrServer solrcloud;

Member Functions

DIndexingMultiThread (String name, String hbaseTableName, CloudSolrServer
solrcloud, String filePath)

public void run ()

public void start()

public String

makeTerm2StringWithWhiteSpace (ArrayList<HashMap<Integer,ArrayList<String>>>
sentencelist)

Class Name ‘

PrimarySearch.cpp

Description ‘

Unstructured indexing: top class

Include files ‘

typedef struct {
string docid; // document ID
string domain; // wiki, dictionary

string type; // document, section, definition, passage

string rowkey; // hbase key (for fetching language analysis results)

string page struct; // doc title

string description; // information for the origin of doc

double weight; // doc weight

int ranking; // doc ranking

int s_sentid; // start sentence ID

int e sentid; // end sentence ID

vector<string> topic; // topic of the doc

vector<TERM INFO> syntacticLexical; // keyword info matched in the
search

vector<TERM INFO> syntacticRelation; // keyword info matched in the
search

vector<TERM INFO> surficialSemanticRelation; // keyword info
matched in the search

vector<TERM INFO> semanticRelation; // keyword info matched in the
search

22 Rec. ITU-T F.746.11 (08/2020)

} DOC_RESULT STRUCT;

//Primary Search integration
typedef struct {
string query;

//

// save the search result

//

vector<DOC_RESULT STRUCT> doc result list; // to store doc search
results

vector<DOC RESULT STRUCT> def result list; // to store definition
search results

vector<DOC RESULT STRUCT> sec result list; // to store section
search results

vector<DOC_RESULT STRUCT> psg result list; // to store paragraph

search results
} doc result;

Member Variables ‘ /[Skipped//

Member Functions ‘

void hexconvert (char *text, unsigned char bytes[]);

string replaceAll (string str, string pattern, string replace);

string* strSplit(string strOrigin, string strTok);

PrimarySearch(string solrIP, string hbaseIP, string jarPath);

string p_g generation(string collectionName, N _Doc ndoc);

string p g reGeneration(string collectionName, N Doc ndoc, vector<string>
candidateAnswer) ;

string p_g reGeneration(string collectionName, N Doc ndoc, string

docid sentid);

vector<string> assignPassageRange (string docid sentid, int range);
PrimarySearch () ;

~PrimarySearch () ;

string p_search(string collectionName, string query, int max cnt);
string p_search(string collectionName, string query, string title, int
max_cnt);

string getlang(string collectionName, string rowkey);

string getRowkey(string docid);

A.2.2 Class_API for candidate answer generation sub-block
This clause provides information for the Class_API for candidate answer generation sub-block.

Class Name |

AnswerUnit

Description ‘

Answer candidates and structure of representing evidences

Include files ‘
class AnswerUnit

{
public:

string answer;
string answer key; //
double tot weight; //engine matching weight (normalized reliability)

int total sent;

Rec. ITU-T F.746.11 (08/2020) 23

list<AnswerSent> answer sent;
CIFeature ci_feat; //context independent features

}i

class AnswerFeature

{
public:

AnswerFeature (void) ;
~AnswerFeature (void) ;

double
double
double
double
double
string
double

string

}i

TyCor score; //TyCor feature

Ln score; //IR+ voc similarity feature
SEM score; //syntax and meaning feature
CONS_score; //question constraint feature
IR score; //IRweight

TE; //integration

confidence; //answer confidence

src_ENGINE; // source of engine

// answer candidate sentences for Answer Evidence
class AnswerSent

{

public:
string answer;
double weight;
string doclID; //answer doc ID
int sentID; //answer sentence ID

QADocType doc type; //

//canGen results

string
double

source; // source (Content, Title, ...)
DIRweight; // doc search weight

int DIRsrcType; // 0=Doc, l=secion, 2=sentence

string
string
string
string

title;
sent;
url;
cpname;

unsigned long long date=0;

}i

//context independent features
class CIFeature

{

public:
string
string
double

double
double

string

type; // types
NEType; // NE type
inQ = 0; // if included in question

CIweight; //after feature engineering
TyCor vec[TyCor vec SIZE];

CI feature; //CI feature for training str

24 Rec. ITU-T F.746.11 (08/2020)

Class Name

CandidateGenerator

Description ‘

Top class for answer candidate generation
Include files

#include "DR/DR.h"

#include "QStruct.h"

#include "DBSolution/DBSolution.h"
#include "GetNDocHeader/GetNDoc.h"
#include "TyCor/TyCor.h"

#include "LingCor/LingCor.h"
#include "SpaTempCor/SpaTempCor.h"
#include "set"

typedef struct CandidateAnswer {

string text; // text of candidate answers

string type; // type of candidate answers (NE, NP,
string NEType; // NE type

string source; // source (Content, Title, ...)
string sentenceText; // text of the sentence
string docID; // extracted document ID

string paralID; // extracted paragraph ID

int
int
int
int
int

sentenceID = -1; // extracted sentence ID
beginMorpID = -1; // starting morpheme ID
endMorpID = -1; // last morpheme ID
beginWordID = -1; // strting word ID
endWordID = -1; // last word ID

LATScore LATScr; // LAT similarity
SATScore SATScr; // SAT similarity

SpaceScore spaceScr; // space similarity
TimeScore timeScr; // time similarity
LingScore lingScr; // context similarity

string dependency; // used in TE
} CandidateAnswer;

typedef struct CandidateAnswerConfig {

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool

SUPPORT PASSAGE SEARCH=false;
EXTRACT NE=false;

EXTRACT NP=false;

USE LAT SCORE=false;

USE_SAT SCORE=false;

USE SPACE SCORE=false;
USE_TIME SCORE=false;

USE _WORD_SCORE=false;
USE_WORD BI SCORE=false;
USE_WORD_ORDER SCORE=false;
USE_SYN SCORE=false;
VERBOSE Q LAT=false;
VERBOSE Q DEPENDENCY=false;
VERBOSE DOCS DEPENDENCY=false;
VERBOSE_SYN SCORE=false;

} CandidateAnswerConfig;

typedef pair<int, int> CandidateAnswerId;

Member Variables

DBSolution *dbSol;
string dbPath;
CGetNDoc getNDoc;
TyCor tyCor;
LingCor lingCor;

Rec. ITU-T F.746.11 (08/2020)

25

SpaTempCor spaTempCor;
CandidateAnswerConfig config;

Member Functions

CandidateGenerator () ;

bool initialize(string rscDir, DBSolution *dbSol, string dbPath,
Searcher *kornetSearcher=NULL) ;

vector<CandidateAnswer> generateCandAns (QDecomp Info& g, doc result& dr

)
static void printCandidateAnswers(vector<CandidateAnswer>& cands);
static void printCandidateAnswer (CandidateAnsweré& cand, int index=-1);

Class Name

AnswerHypo

Description

Extraction of answer candidate and hypothesis generation according to the questions

Include files

#include "math.h"

#include "QAConfig.h"
#include "AnswerType.h"

/ /===========Question analysis

#include "QStruct.h"

#include "QAnalHeader/QAnalyzer.h"
#include "QAJsonHeader/QAnalJsonRW.h"
//=========== document search

#include "PrimarySearch/PrimarySearch.h"
#include "QAJsonHeader/DocResultParser.h"
//=========== candidate answer generation
#include "CanGen/CanGenerator.h"

#include "CI/TypeCor.h"

/* /=========== KB search

#include "KBInterface/KBInterface.h"

//=========== real time extraction of candidate answers
#include "CanGen/CandidateGenerator.h"

/x*/

/***/

//for multi-thread
extern CQAnalRSCMng * gResourceMng; //
extern Dictionary * gkornet; //lexical semantic concept network

extern map<int, string> *ExAtMap;
extern map<string, int> *rExAtMap;

extern QAConfig QAConfig core;

Member Variables

OAnal Result Q; //question analysis result structure
CQAnalJsonRW * QJsonRW; // question analyzer JsonRW

//Primary Search----—-—————-—-———————
PrimarySearch * ps;

DocResultParser *DocJsonRW;

double DIR top weight;

//anwer candidate extraction------—-——————————-——
float CONF CUT OFF;

CanGenerator * CanGen;

TypeCor * CI;

26 Rec. ITU-T F.746.11 (08/2020)

Member Functions
//real time candidate answer extraction

int get answerCandidate fromIR(string Q json, int subQ idx, doc result

1vResult, list<AnswerUnit> & RES);
//subQ question merge
bool merge answerCandidate fromSubQ (vector<CandidateAnswer>
sub AnsCan_vec, int subQ idx, map<string, AnswerUnit> & AnsUnit map) ;
//pre_softfilter
int pre soft filter(CandidateAnswer & AnsCan, int subQ idx);

Function Name

get_answerCandidate_fromIR

Class Name

AnswerHypo

Description

Candidate answer generation based on document search

Syntax

int get answerCandidate fromIR(string Q json, int subQ idx, doc result
1vResult, list<AnswerUnit> & RES);

Return Value

return int; // number of candidate answers

list<AnswerUnit> RES : //candidate answer list basically ordered
Parameters

string input Json //result Jjson (with "||" division)

int subQ idx: // processed question index (-1: original question)

Function Name

pre_soft_filter

Class Name

AnswerHypo

Description

Filtering function for the answer candidates as the doc search results

Syntax

int pre_soft_filter(CandidateAnswer & AnsCan, int subQ_idx);

Return Value

return int; //if filtering applied
0: not object for filtering
1: if more than 1, filtering should be applied

Parameters

CandidateAnswer & AnsCan // individual answer candidate
int subQ_idx: (processed question) index (-1: original question)

Rec. ITU-T F.746.11 (08/2020)

27

A3 Class API for answer inference/generation
This clause provides information for the class API for answer inference/generation.

Class Name ‘

AnswerConfidence

Description ‘

Among answer candidates from different answer generation module, to select the answer candidate with the
highest reliability and to verify the answer to the question.

Include files ’

#if !defined (AFX ANSWERRANK H C4797D53 04A5 4E4E BESF 841D4BC76032 INCLUDED)
#define AFX ANSWERRANK H C4797D53 04A5 4E4E BESF 841D4BC76032 INCLUDED

#if MSC_VER > 1000
#pragma once

#endif // MSC_VER > 1000
#define INDI MAX 30

#include "QAConfig.h"

Member Variables
xmlrpc c::clientSimple myClient;

/// Object pointer of QAConfing for answer inference resource loading and
reliability model loding

QAConfig *gconfig;

Merge * AnsMerge;

/// answer filtering vector
vector<string> except answer;

/// answer candidates integration exception rules
vector<string> except is redirect rule;

/// answer filtering rule map
map<string, string> filter map;

/// answer filtering rule map using LAT and SAT
map<string, string> latsat filter map;

Member Functions

public:

AnswerRank () ;

virtual ~AnswerRank () ;

void ARank THREAD init ();

string soft filter 4UIMA(string json in);
string answer merge 4UIMA (string json_in);
private:

xmlrpc c::clientSimple myClient;

QAConfig *gconfig;

/// Merge object pointer for answer candidates integration

Merge * AnsMerge;

/// answer filtering vector

vector<string> except answer;

/// space information NE vector

vector<string> space;

/// time information NE vector

vector<string> time;

map<string, string> filter map;

map<string, string> latsat filter map;

28 Rec. ITU-T F.746.11 (08/2020)

bool latsat filter(string NE Type, map<string, string> & latsat filter map,
vector<sLAT Info> latVec, string first SAT, double KB score, bool g type);

bool answer filter(string NE Type, map<string, string> & filter map, string
SAT Type);

bool answer filter lat(string NE Type, vector<sLAT Info> latVec, bool
q _type);

bool soft filter lat(string candidate, string NE Type, string SAT Type,
vector<sLAT Info> latVec, double KB score, bool g type, string first SAT);

bool soft filter sat(string candidate, string NE Type, string SAT Type,
vector<sLAT Info> latVec, double KB score, bool g type, string first SAT);

bool soft filter string(string candidate, string NE Type, vector<sLAT Info>
latVec, string question, double KB score, bool g_type);

bool update resource();

bool except one char answer (string & answer, string & taggedQ, QAnal Result
Q)

string make feature (list<AnswerUnit>::iterator lpAu, int rank);

double conf wisega(int blank size, string answer type, int g exam size,
list<AnswerUnit>::iterator 1pAu, bool lat flag, bool sat flag, string g type, int
rank, string SAT CONF TYPE);

double conf all(int blank size, string answer type, int g exam size,
list<AnswerUnit>::iterator lpAu, string g type, int rank, string SAT CONF TYPE);
/** Reliability calculation */

bool overlap question(vector<string> vec, string taggedQ, string question,
OAnal Result Q);

/** final answer inference */

int re ranking answerCandidate (list<AnswerUnit> & RES, int mode, bool
select, int select size, bool negation, bool lat flag, bool sat flag, string
gstring, string SAT Type, QAnal Result Q, string g type, string SAT CONF TYPE,
string first SAT);

bool exist kb AnswerUnit (list<AnswerUnit> & RES, string json);

double thre type(string conf type, bool lat, bool sat); //threshold measure

Rec. ITU-T F.746.11 (08/2020) 29

Series A

Series D

Series E
Series F
Series G
Series H
Series |

Series J

Series K

Series L

Series M
Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X

Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Tariff and accounting principles and international telecommunication/ICT economic and
policy issues

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia
signals

Protection against interference

Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation
and protection of cables and other elements of outside plant

Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling, and associated measurements and tests

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects, next-generation networks,
Internet of Things and smart cities

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2020

	Rec. ITU-T F.746.11 (08/2020) Interfaces for intelligent question answering system
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview
	7 Functional components of intelligent question answering service
	8 Interfaces for natural language processing
	9 Interfaces for question analysis
	10 Interfaces for candidate answer generation
	11 Interfaces for answer inference/generation
	Annex A Class API for intelligent question answering system
	A.1 Class API for question analysis
	A.1.1 Class API for QDecomposition
	A.1.2 Class_API for question type classification
	A.1.3 Class_API for recognition of question focus, answer type and reliability
	A.1.4 Class API for question topic detection

	A.2 Class API for candidate answer generation
	A.2.1 Class_API for candidate answer index and search
	A.2.2 Class_API for candidate answer generation sub-block

	A.3 Class API for answer inference/generation

