

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.601
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/2007)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Middleware – Distributed processing environment

 Data architecture of one software system

ITU-T Recommendation Z.601

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.601 (02/2007) i

ITU-T Recommendation Z.601

Data architecture of one software system

Summary
ITU-T Recommendation Z.601 identifies a set of data structures and formats of one software system.
These data forms appear at the various interfaces to and media of the system and comprise
intermediate forms for transformations between the external forms. The data forms are needed
within one system, and they are not abstracted away from the system over several systems.

This Recommendation identifies data schemata that may be used to define interfaces between
software components. However, this Recommendation defines no software architecture.

Source
ITU-T Recommendation Z.601 was approved on 13 February 2007 by ITU-T Study Group 17
(2005-2008) under the ITU-T Recommendation A.8 procedure.

Keywords
Architecture, data, form, format, framework, layer, population, process, schema, structure.

ii ITU-T Rec. Z.601 (02/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2007

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.601 (02/2007) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

3 Definitions .. 1

4 Abbreviations.. 3

5 Conventions .. 4

6 Data architecture... 4
6.1 Three-schema architecture.. 4
6.2 Seven-schema architecture ... 6
6.3 Communication and distribution .. 9
6.4 Nesting.. 11

Annex A – Requirements on schema notations ... 13
A.1 Introduction .. 13
A.2 Requirements on notations for the external terminology schemata 13
A.3 Requirements on notations for the concept schemata 17
A.4 Requirements on notations for the contents schemata 18
A.5 Requirements on notations for the layout schemata....................................... 19
A.6 Requirements on notations for internal terminology schemata...................... 20
A.7 Requirements on notations for the distribution schemata 20
A.8 Requirements on notations for the physical schemata 21
A.9 Requirements on notations for the system management schemata 21

Appendix I – Introduction to data architectures... 22
I.1 A system planning perspective... 22
I.2 A data perspective on a system .. 24
I.3 Communication between systems .. 26
I.4 Communicating processes .. 27
I.5 Separation of media.. 27

Appendix II – Comparison with other architectures.. 29
II.1 Comparison with ITU-T Rec. M.3020 ... 29

Bibliography... 30

iv ITU-T Rec. Z.601 (02/2007)

Introduction
The primary users of this Recommendation will be software developers who design data definitions
of a system and its interfaces.
Data architects and systems planners may use this Recommendation to coordinate definitions of
interfaces between systems.

Some of the data definitions may provide end users' understanding of the system and its
functionality. Hence, these definitions will provide a kernel of a contract between purchaser and
developer organizations.
Formal language designers may use this Recommendation to identify the scope of their notation and
identify features needed to cover a certain application domain.
Annex A provides requirements on schema languages.
Appendix I provides an introduction and context of the Recommendation, where a system is defined
in the context of systems planning of several systems. The reader is advised to read this appendix
before he reads clause 6.
Appendix II provides a comparison with [b-ITU-T M.3020].

 ITU-T Rec. Z.601 (02/2007) 1

ITU-T Recommendation Z.601

Data architecture of one software system

1 Scope
This Recommendation identifies a set of data structures and formats of one software system.

These data forms appear at the various interfaces to and media of the system and comprise
intermediate forms for transformations between the external forms.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Z.351] ITU-T Recommendation Z.351 (1993), Data oriented human-machine
interface specification technique – Introduction.

3 Definitions
This Recommendation contains a set of definitions. The following terms appear in this
Recommendation. They are either defined explicitly, or by simple inference from the definitions.
The terms are meant to be used within the context of the data architecture, and may not have the
same meaning outside this context.

application area: See [ITU-T Z.351].

application layer: See [ITU-T Z.351].

application population: See [ITU-T Z.351].

application process: See [ITU-T Z.351].

application schema: See [ITU-T Z.351].

concept layer.

concept population.

concept process.

concept schema.

contents layer.

contents population.

contents process.

contents schema: See [ITU-T Z.351].

distribution layer.

distribution population.

distribution process.

distribution schema.

2 ITU-T Rec. Z.601 (02/2007)

external layer: See [ITU-T Z.351].

external population: See [ITU-T Z.351].

external process: See [ITU-T Z.351].

external schema: See [ITU-T Z.351].

external terminology layer.

external terminology population.

external terminology process.

external terminology schema.

internal layer: See [ITU-T Z.351].

internal population.

internal process.

internal schema.

internal terminology layer.

internal terminology population.

internal terminology process.

internal terminology schema.

layer: See [ITU-T Z.351].

layout layer.

layout population.

layout process.

layout schema: See [ITU-T Z.351].

physical layer.

physical population.

physical process.

physical schema.

population: See [ITU-T Z.351].

process: See [ITU-T Z.351].

schema: See [ITU-T Z.351].

system.

system management layer.

system management population.

system management process.

system management schema.

terminology layer.

terminology population.

terminology process.

terminology schema.

 ITU-T Rec. Z.601 (02/2007) 3

4 Abbreviations
This Recommendation uses the following abbreviations:

AL Application Layer

AP Application Population

Ar Application Process

AS Application Schema

CL Contents Layer

CP Contents Population

Cr Contents Process

CS Contents Schema

DL Distribution Layer

DP Distribution Population

Dr Distribution Process

DS Distribution Schema

EL External Layer

EP External Population

Er External Process

ES External Schema

eTL external Terminology Layer

eTP external Terminology Population

eTr external Terminology Process

eTS external Terminology Schema

IL Internal Layer

IP Internal Population

Ir Internal Process

IS Internal Schema

iTL internal Terminology Layer

iTP internal Terminology Population

iTr internal Terminology Process

iTS internal Terminology Schema

LL Layout Layer

LP Layout Population

Lr Layout Process

LS Layout Schema

OL Concept Layer

OP Concept Population

4 ITU-T Rec. Z.601 (02/2007)

Or Concept Process

OS Concept Schema

PL Physical Layer

PP Physical Population

Pr Physical Process

PS Physical Schema

SML System Management Layer

SMP System Management Population

SMr System Management Process

SMS System Management Schema

TL Terminology Layer

TP Terminology Population

Tr Terminology Process

TS Terminology Schema

5 Conventions
S Schema

P Population

6 Data architecture

6.1 Three-schema architecture
The three-schema architecture comprises the following kinds of schemata:
• external schemata;
• application schema;
• internal schemata.

For one system instance, the three-schema architecture provides one centralized application schema,
which may support several external and internal schemata. For n external and m internal schemata,
the three-schema architecture provides (n+m) mappings between schemata.

The application schema of a system instance defines the data classes, constraints and derivations
which have to be enforced for any data within the system instance, independently of which external
or internal medium they may appear on.

 ITU-T Rec. Z.601 (02/2007) 5

Figure 1 depicts example schemata and corresponding populations in the three-schema architecture.

Z.601(07)_F01

Processor

IP
IP

EP
EP

EP

S

IS ISESES

SS S S

Schemata

Populations

AS

AP

Stored data set, temporarily or permanent

Any data set in general

Processor Data flow

Schema reference

reference
S

Data at human-computer interfaces

Legend

Figure 1 – Example use of the three-schema architecture

Note that the three-schema architecture does not state which external population and corresponding
schemata are used to input data to which internal population and corresponding schema. Hence,
internal forms are decoupled from external forms of data. Also, each external and internal schema is
decoupled from any other external or internal schema, respectively. The application schema
provides the only link between external and internal forms.

The correspondences between schemata, processors and populations may be conveyed through the
notion of layers:
• external layer;
• application layer;
• internal layer.

This is illustrated in Figure 2.

Note that the definition of the application schema presupposes that every data instance is
transformed via the application layer. Strictly speaking, the external form of data is one instance,
the application form is a second and the internal form is a third. And these may be copied into
several external and internal populations, creating still more instances, all originating from one
input instance, e.g., in the external layer.

Note that the three-schema architecture is a compiler kind of architecture, where presentation forms
of data at the external and internal layers are compiled via an intermediate application layer. This
compiler feature of the architecture may be used to nest the architecture.

6 ITU-T Rec. Z.601 (02/2007)

Z.601(07)_F02

Ar

IPEP

ISES

Schemata

Populations

AS

AP

IrEr

System schema

EL AL IL
The large rectangles depict layers

Figure 2 – Layering

In order to cover the coordination between the layers, we introduce some extra notions:
• System management schema, containing – except the external, application and internal

schemata:
– security data, including access control data;
– system directory data, including data for configuration control.

• System management processor, including the external, application and internal processors,
controls their interoperation and provides security and directory services.

• System management population: provides data instances for security and directory services.

Note that the system management processor and population are not depicted in Figure 2. With the
system management schema, we have in fact a three plus one-schema architecture.

We also observe that the processor of the system instance is split into specialized processors per
layer.

6.2 Seven-schema architecture
The seven-schema architecture provides a detail of the three-schema architecture. Each layer of the
three-schema architecture is split into two or three sub-layers. This is depicted in Figure 3.

 ITU-T Rec. Z.601 (02/2007) 7

Z.601(07)_F03

LS CS eTS OS iTS DS PS

System schema

LP

External schema Internal schema

Lr Cr eTr Or iTr Dr Pr

CP eTP OP iTP DP PP

Application schema

Figure 3 – Data transformation architecture

The seven-layer architecture describes how data can be transformed from one format and
terminology into another format and terminology.

The schemata of the seven layers are as follows:
• The external schema is composed of:

– layout schema, which defines the way data are presented to human users;
– contents schema, which defines the contents and structure of the selected data and

permissible operations on these data.
• The application schema is composed of:

– external terminology schema, which defines the common terminology and grammar for
a set of external schemata;

– concept schema, which defines the common structure, constraints and derivations of
data, common for all terminologies supported by the system – defined in each external
and internal terminology schema;

– internal terminology schema, which defines the common terminology and grammar for
a set of internal schemata.

• The internal schema is composed of:
– distribution schema, which defines the sub-setting of one internal terminology schema

for one medium and permissible operations on these data on this medium;
– physical schema, which defines the internal storage, accessing, implementation and

communication of data and their behaviour.

There will be corresponding processors and populations. In addition, come the system schema,
processor and population.

The layout schema defines fonts, colours, placements, buttons, lines, shapes, etc., as seen by the
human users.

The contents schema defines the grammar of the presented statements.

The external terminology schema defines the alphanumerical or graphical language being used.

8 ITU-T Rec. Z.601 (02/2007)

The concept schema defines the ideas or notions being managed by the system instance.

The internal terminology schema defines the language being used for storage or communication of
data.

The distribution schema defines the contents of messages being communicated to other systems or
storage media.

The physical schema defines the actual layout or encoding on the non-human media.

The seven-layer architecture is symmetrical around the concept schema:
• The layout schema corresponds to the physical schema.
• The contents schema corresponds to the distribution schema.
• The external terminology schema corresponds to the internal terminology schema.

The external and internal terminology schemata are collectively called terminology schemata.

The external and internal schemata are collectively called presentation schemata.

The mappings between these schemata are illustrated in Figure 4.

Z.601(07)_F04

LS

LS

LS

LS

CS

CS

iTS

eTS OS

PS

DS DS

PS

Presentation schemata

Application schema

Figure 4 – Example data flow between layers

Figure 4 depicts the permissible data flow between layers of the data architecture.

Note that the two-way flows are stated without any mentioning of processes or processors.

However, these are not the only possible flows:
• If one external terminology schema is stated for all concepts, and all constraints and

derivations are also stated in this external terminology schema, then this external
terminology schema may replace the concept schema altogether.

• If the internal media are using the same terminology as (one of) the external media, the
internal terminology schema may be replaced by this external terminology schema as well.

 ITU-T Rec. Z.601 (02/2007) 9

The effects of the two conditions are illustrated in Figure 5.

Z.601(07)_F05

LS

LS

LS

LS

CS

CS

eTS

PS

DS DS

PS

Presentation schemata

Application schema

Figure 5 – Prescription of simplified data flow

The system instance may be further degenerated, but with the loss of external terminology schemata
there will not be any data instances to enforce consistency over. Hence, this will be no more one
integrated system instance, but may be a function of some other system instance.

Note that other terminologies than the above are frequently used: the layout schema may be called a
GUI or panel. The contents schema may be called a view. The application schema may be called a
data structure, etc. However, these alternative notions may not satisfy the requirements expressed in
Annex A.

6.3 Communication and distribution
For two communicating system instances to be able to interpret the communicated data correctly,
they have to have identical schemata for the communicated data. The same applies for exchange of
data between two communicating software components. Hence, the layers of the seven-schema
architecture do not identify what could be one software component, as they all have different
schemata.

Two communicating software components will have identical schemata for the communicated data,
and transformations between schemata will take place inside the components. This is illustrated in
Figure 6.

Z.601(07)_F06

LS CS CS eTS eTS OS

Lr Cr Cr eTr eTr Or Lr

LS OS iTS

Or iTr

Software components

Figure 6 – Candidate software components

Implementations to and in the internal layer is not illustrated in Figure 6. However, the same
principles apply.

10 ITU-T Rec. Z.601 (02/2007)

Figure 6 shows that a processor must be able to communicate with a processor of the same kind,
e.g., eTr must be able to communicate with eTr, and Or must be able to communicate with Or. Also,
transformations between schemata may not take place in every component. See, for example, the Lr
processor in Figure 6.

In Figure 7, eTr of one component communicates directly with eTr of another component. What
data is communicated is stated in the distribution schemata. It will depend on the transaction
handling of the two eTr components if they implement one system instance or not.

Z.601(07)_F07

Cr

eTr

eTr

Or

Or

iTr

eTr

Or iTr

iTr

Dr

iTr

Dr
 Or

Or

iTr

iTr Dr

Or

iTr

iTr

Dr

Dr Pr

Dr

Pr

Figure 7 – Distribution of processing

If the components implement one system instance, their data instances may be partitioned
horizontally or vertically. If the partitioning is vertical, their schemata may only be identical for the
communicated data.

The components may run on the same hardware. If so, communication between identical kind of
processors may happen directly. If not, the communication may be stated via appropriate
distribution and physical schemata.

Note that the distribution schema is the only means to state what data shall be communicated where.

If data of one or more sub-layers of the application layer of one system instance is partitioned over
several processors, then this system instance is called an integrated distributed system instance.

Z.601(07)_F08

LS

LS

LS

LS

CS

CS iTS eTS OS

PS DS

DS PS

Presentation schemata

Application schema

CS

CS

eTS

Figure 8 – Decoupling of layers through a centralized application schema

 ITU-T Rec. Z.601 (02/2007) 11

The purpose of the insulation functionality is to provide modeless-ness. Any screen picture may be
used to update a particular piece of information (in the application layer), as long as this
information appears in the screen picture and allows for the appropriate operation on the data
instance. Some screens may be tailored for this function, but the user is not forced to use particular
screens or dialogue sequences, e.g., through using a particular order entry process. Hence, the data
architecture provides decoupling of layers.

Even if the data architecture functions as an insulator on the original source, form and destination of
information, this may be worked around by defining particular data on this information in the
application schema or population. An example of this is handling of an order of a particular product.
The product type requires certain data to be provided, and the order is not accepted until the
appropriate data are provided. This can be expressed as constraints on the associations between the
product type and order (in the application layer), and need not be designed as an application
dependent process for order entry. For a certain product type – within an order – the use of certain
internal interfaces is prescribed; this can also be expressed as a method on the data (in the
application layer), and need not have a particular work flow process. This way, the application
schema and population may accomplish the coupling that the architecture does not provide. The
actual provision of the last example will be expressed through the distribution schema for the actual
data.

6.4 Nesting
The data architecture provides a translation and reorganization of any data. Hence, the architecture
may be used to manage the schema data as well as instance data. This is illustrated in Figure 9.

Z.601(07)_F09

Meta schema

Processor Schema data

Schema

Processor PopulationEnd user

Developer

Figure 9 – Recursive use of the data architecture

Figure 9 shows that the data transformation architecture may be used to implement a repository of
specifications (external layers) and their implementations (internal layers) of an application, e.g., of
an operation support system for telecommunications management.

Also, the data architecture provides a means to compile or interpret the stored schema data in the
repository into executable code of the application. This is illustrated in Figure 10.

12 ITU-T Rec. Z.601 (02/2007)

Z.601(07)_F10

 Meta schema

Processor Schema data

Schema

Processor PopulationEnd user

Developer

Figure 10 – Active repository

Or, the specifications as seen by the system developer may be transformed directly into executable
code as may also be accomplished by Figure 10.

Note that Figure 9 allows for ordinary end users accessing the repository, and Figure 10 allows for
using the repository for active help to access the application on the population data.

The implication of Figures 9 and 10 is that the format of a schema is not well-defined by referring
to the layer only. In addition, we have to refer to the form of the layer information, e.g.:
• layout form of layout schema;
• contents form of layout schema;
• ..
• physical form of layout schema;
• etc.

We get a matrix of forms for the various schemata, as illustrated in Figure 11.

LLS LCS LeTS LOS LiTS LDS LPS
CLS CCS CeTS COS CiTS CDS CPS
eTLS eTCS eTeT eTOS eTiTS eTDS eTPS
OLS OCS OeTS OOS OiTS ODS OPS
iTLS iTCS iTeTS iTOS iTiTS iTDS iTPS
DLS DCS DeTS DOS DiTS DDS DPS
PLS PCS PeTS POS PiTS PDS PPS

Figure 11 – Nesting of the data architecture

The upper row of Figure 11 shows the formats of the schema as presented to human users.

The lower row shows the physical formats of the schemata, e.g., their executable form.

From the above illustrations in Figures 9 through 11, we realize that the data architecture may be
used recursively. And, there may be no absolute distinction between schema data and instance data,
as they are only so relative to each other. This means that:
• data types (such as numbers) in the schema of an application may serve as classes for other

data (such as length) in the same schema;
• data instances (such as product types) in one population of an application may serve as

classes for other data (such as install base) in the same population.

 ITU-T Rec. Z.601 (02/2007) 13

Annex A

Requirements on schema notations
(This annex forms an integral part of this Recommendation)

A.1 Introduction
The external terminology schemata define the terminology and grammar of one application system.
Therefore, one such schema should be clearly defined before development of any other part of the
application system, i.e., before defining the other schemata.

Hence, the requirements on the notation for the external terminology schemata come first in this
annex and should be understood before requirements on other schema notations are discussed.

Note that the requirements on the physical schemata, i.e., the external layout schema and the
internal physical schema are not explored in detail in this annex.

The requirements are presented in the following sequence:
• external terminology schema;
• concept schema;
• contents schema;
• layout schema;
• internal terminology schema;
• distribution schema;
• physical schema;
• system management schema.

A.2 Requirements on notations for the external terminology schemata

A.2.1 Introduction
The external terminology schema should be capable of expressing the syntactical richness of
elementary statements and their constituents as encountered at the human computer interface of one
system. The following requirements may all be considered means to this end. However, the full
capability to the human user is only provided by the addition of the features of the contents and
layout schemata, as indicated in the text. Also, features of the system management schemata are
needed for management purposes, and the internal schemata are needed for implementation.

A.2.2 Requirements
1) The contents of an external terminology schema are recursively made up of lists of

elementary statements and their constituents, which may contain references to other
statements or constituents.
a) The external terminology schema is itself a node in a data tree, which also contains its

elementary statements and other constituents.
b) The purpose of the external terminology schema is to prescribe permissible contents of

its external terminology populations.
c) The purpose of restricting the external terminology schema to elementary statements

and their constituents is that the creation of compound statements is deferred to the
contents schemata.

d) The expression 'elementary statements' is meant to refer to data structuring notions, like
objects and attributes, and is not meant to require use of sentential logic; the expression
'and their constituents' is meant to indicate value syntax and behaviour expressions.

14 ITU-T Rec. Z.601 (02/2007)

e) Lists within the external terminology schema are used to express alternatives,
i.e., disjunctions, of what is permissible in the external terminology population.

f) Lists within lists are used to express context.
2) The contents of any external terminology population is homomorphic to its external

terminology schema.
a) For each node in the external terminology population, there is an identical node in the

external terminology schema.
b) For each node in an external terminology schema, there may be zero or more nodes in

its external terminology population. This instantiation is made by copying class labels
and references between classes into the external terminology population.

c) Any node in the external terminology schema is called a class relative to its
corresponding nodes in the external terminology population, which are called instances
relative to their class. The nodes are classes and instances relative to each other, and are
not marked as such by any reserved words.

d) If there is a S(chema) reference from a node to another node, then this other node is
called a schema relative to the first node. The schema node contains the classes of the
instances contained in the first node.

e) If there is a P(opulation) reference from a node to another node, then this other node is
called a population relative to the first node. The population node contains instances of
the classes contained in the first node.

f) Given an instance and its corresponding class; then the homomorphy requirement
implies that the superior node of the class is itself a class of the superior node of the
instance.

g) If a reference is made between two instances, then the homomorphy requirement
implies that a corresponding reference is made between the corresponding classes.

h) The purpose of this requirement is to allow end users to foresee permissible instance
structures (just by making copies of the schemata) when they see the class structures,
and vice versa.

i) One implication of this requirement is that the user can see no difference between a
class and an instance label, when they are observed in isolation. Only their recursively
superior structures and references to schemata or populations can show the different
roles.

j) In predicate calculus, there is no distinction made between instances and classes; the
statements are just checked for consistency or inconsistency. We make, however, a
distinction between instances and classes, because we need to know what data are
prescriptions for which data. But we do not make the distinction in an absolute way.
Data are just instances and classes relative to each other.

3) The name label of any node in the external terminology schema can be alphanumerical or
graphical.
a) The purpose of this requirement is to allow use of any character set, and the designer

should be allowed to design his own characters.
b) Graphical name labels may be pixel or vector based. This is used to prescribe graphics

of the instances, as the class labels are copied into each one of its instances.

 ITU-T Rec. Z.601 (02/2007) 15

4) The notation of the external terminology schema shall be postfix and have no superficial
block structure.
a) The purpose of disallowing superficial block structures is to satisfy the homomorphy

requirement; i.e., the structure of the instances shall be homomorphic to the structure of
its classes. Hence, extra nodes or levels among the classes are disallowed.

b) The purpose of requiring the postfix notation is due to the homomorphism requirement,
as well. If (logical) operators will not appear above or between the nodes in the
instances, they cannot appear above or between the corresponding classes either.
Hence, all constraints and derivations are expressed subordinate to some class node.

c) The previous bullet explains why the external terminology schemata contains
elementary statements only, and do not contain expressions that are consistent with or
derivable from the elementary statements.

d) Derived statements that are themselves elementary are, however, contained in the
external terminology schemata. The derived statements may be derived by a compound
function that must itself be contained in the external terminology schema.

5) Class labels are only unique within the scope of the superior class label, if a larger scope is
not explicitly stated at a superior node. See c.
a) This means that each node acts as a block for its subordinate nodes.
b) Identical class labels can therefore be reused for different purposes within different

classes.
c) Some classes may contain further constraints (on naming), e.g., that all recursively

subordinate name labels to a constrained class must be unique.
d) The implication of this requirement of using local class labels is that references to a

class must contain the path from the current node to the referenced node. Note that use
of a globally unique path of class labels may not work, as the exact path from node to
node is needed to express the exact scope of the reference.

e) Note that the path of the reference between class labels prescribes the permissible paths
of references between instances. For example, a path from a 'termination point' instance
via its superior 'exchange' instance to another 'termination point' instance states a
connection within that 'exchange'. If alternatively, the path goes via the superior
'network' of the 'exchange', the connection can be made to a 'termination point' within
any 'exchange' in that 'network'. Hence, the navigation paths provide a scoping
mechanism of the references.

f) Another implication of using local class labels is that no class label has a unique
identification without providing the entire globally distinguished class label, which is
made up of the path of its recursively superior class labels. Hence, to state a class label
without providing its context makes no sense.

g) The superior class of a local class label is used to express the context of the local class
label. Use of local class labels allows users to use their own terminology for classes and
not to invent artificial labels to satisfy the naming convention of a particular
specification language.

h) As class labels are copied into becoming instance labels, use of local class labels has
implications for the naming tree of the corresponding instances. Use of local class
labels prescribes name bindings between the corresponding instances.

16 ITU-T Rec. Z.601 (02/2007)

6) Class labels need not be unique within the scope of their superior class label, as use of
duplicates is permissible.
a) Duplicate class labels are distinguishable from each other, due to their position in the

list subordinate to their superior class label. Also, the subordinate structure of or
references from or to duplicate class labels may be different, thus helping to distinguish
the class labels.

b) Use of duplicate class labels allows users to use their own terminology of classes and
not to invent artificial labels to satisfy the naming convention of a particular
specification language.

c) The handling of lists of instances, where the instances are only distinguishable by their
position in the list, is another reason for allowing use of duplicate class labels. As there
is no fundamental difference between instances and classes, they are treated equally.
Nodes are only classes and instances relative to each other.

d) Within the context of a certain class, duplicate class labels may be disallowed by an
explicit constraint. This certain class may be the schema itself.

e) Also, data designers may avoid use of duplicate labels without this being explicitly
stated as a constraint.

7) The external terminology schema notation should allow for recursion.
a) Any node in the population or schema may have one or more S(chema) references to

any other node in a population or schema.
b) This means that there is no strict distinction between a population and a schema, and

the notations of both are identical.
c) This also means that a schema may have a meta-schema, etc.; or a node within a

schema may have a S(chema) reference to another node within this schema, or of some
other schema, or of some other populations or to a node within its own population.

d) A S(chema) reference to a superior node is used to state recursion. The contents of the
referenced superior node may act as a schema of what can be contained in the current
node; hence, some contents of the superior node may be copied into the current node –
maybe repeatedly.

e) Note that any reference – not only a S(chema) reference – may refer to any node,
including a superior node of the current node.

f) Any class of a schema may be instantiated into zero or more instances. If there is no
explicit cardinality constraint on the class (relative to its superior class), then any
number of instances may be generated relative to their superior instance.

g) Note that if an instance is created, also all its recursively superior instances must
already exist or be created.

h) However, if an instance is created, no subordinate instances may be created, if there is
no explicit constraint requesting this creation of subordinate instances.

i) This way, the schema prescribes the existence of all recursively superior nodes of an
instance, while subordinate nodes may not exist. Therefore, the schema is considered to
provide an attachment grammar as opposed to a rewriting grammar. In a rewriting
grammar the superior nodes are discarded, and only leaf nodes are left in the final
production. In the attachment grammar the recursively superior nodes provide the
required context and must exist in the final production, while the leaf nodes may not be
needed.

j) Note that while all the recursively superior nodes within the external terminology layer
are required in the contents layer, some of these nodes may be suppressed in the layout
layer.

 ITU-T Rec. Z.601 (02/2007) 17

8) The external terminology schema should be capable of expressing any logical, arithmetical
and quantification statements.
a) This is called the 100% principle.
b) The purpose of this requirement is to be able to express all constraints and derivations

within the external terminology schema, and not have to rely on behaviour
specifications outside this schema.

9) An external terminology schema should be capable of prescribing the abstract grammar of
the elementary statements and abstract syntax of the terms of an end user terminology.
a) Each external terminology schema prescribes different end user terminologies,

e.g., English, French, Chinese and graphics.
b) An external terminology schema does not define the common concepts of different end

user terminologies, but one external terminology schema may act as the source of other
end user terminologies defined in other external terminology schemata.

c) An external terminology schema may have source references to a concept schema of
that external terminology schema.

A.3 Requirements on notations for the concept schemata

A.3.1 Introduction
A copy of an external terminology schema may play the role of being a concept schema of other
external terminology schemata.

This means that the notation for defining any external terminology schema satisfies the notational
requirements for defining any concept schema.

The concept schema (and its population) may contain more concepts than supported in some of its
external terminology schemata (and their populations).

Also, the external terminology schemata (and their populations) may contain data details that are
not supported by the corresponding concept schema (and its population).

Ideally, the notational requirements for the concept schemata and the external terminology
schemata are the same. However, there is a trend to not put so strict requirements on the concepts
schemata. Often, the concept schemata are used to state draft notions, which are not isomorphic to
their external terminology schemata. This makes it easier to state concept schemata, but makes the
mapping between the layers more complex and may lead to loss of functionality of and usability
from the mappings.

In conclusion, a notation for concept schemata may not satisfy all the requirements on the notation
for external terminology schemata.

This is not an ideal solution, but is a pragmatic one, as human conceptions of concepts are typically
more vague and sketchier than the notions of data syntax to be defined in the external terminology
schemata. This has the implication that concept design is not as concrete as data design, and concept
designers may provide several alternatives that they believe satisfy the data requirements. Another
implication may be that concepts are only used in some analysis and design methods, and are not
used in the final design and implementations.

By weakening the requirements on the concept schemata, the list of requirements may not be as
exclusive as for external terminology schemata.

In addition to requirements on the definition of the concepts and their associations, mappings
between nodes in the external terminology schemata and concepts are needed. This mapping is here
called a denotation mapping. In this text we address the mapping between data and concepts, not
between data and phenomena, and not between concepts and phenomena.

18 ITU-T Rec. Z.601 (02/2007)

A.3.2 Requirements
1) If a node in an external terminology schema denotes a concept in its concept schema, then

all its recursively superior nodes shall denote a concept as well, and a path of references
between concepts shall represent the node structure.
a) Preferably, the node structure should be mirrored by an identical concept structure,

such that the concept structure becomes isomorphic to the node structure; but this
would disqualify all but external terminology schema notations to specify concept
schemata.

b) The weaker formulation in this requirement states that subordination in the external
layer must be represented by a path of references between concepts in the concept
layer.

2) If a node in an external terminology schema does not denote a concept in its concept
schema, then no recursively subordinate node shall denote a concept either.
a) This allows subordinate nodes in the external terminology schema to provide

'syntactical sugar', e.g., be helpful for identification, but do not denote any concept.
3) An attribute in the external terminology schema may denote a role (of an object class) in its

concept schema.
a) This allows value types to be represented as object classes in the concept schema.

4) Any association in the external terminology schema that denote something must be
represented by a path of (one or more) references in the concept schema.

5) In one external terminology schema there may be several synonymous terms, even if each
synonym normally should be defined in a separate external terminology schema.

6) Every node in the external terminology schema must denote a concept or path of concepts
in the concept schema; exceptions are made for 2.

7) Except for 2, 3, 4 and 5, the graph of the concept schema should be isomorphic to the graph
of any of its external terminology schemata.

A.4 Requirements on notations for the contents schemata

A.4.1 Introduction
The contents schemata define the abstract syntax of the statements presented to the human end user.

Each contents schema refers to one external terminology schema only.

Each contents schema defines a compound statement of some of the statement contained in its
external terminology schema.

A.4.2 Requirements
1) The elementary statements in the external terminology schema are combined into

compound statements in the contents schemata by the use of reflexive pronouns with the
proper references.
a) The references in the contents schemata shall be able to express both parenthesis

structures and alternative sequences of presentation.
b) The previous sub-bullet means that the compound statement should be able to express

the following example compound statement: "Site relationship has subordinate trail
(which) has subordinate trail section (which) has subordinate physical link connection
which is (physical link (which) has subordinate physical link connection)". Here the
globally distinguished name of the referenced physical link connection of the physical
(both in parenthesis) is given by providing the identifier of the superior physical link

 ITU-T Rec. Z.601 (02/2007) 19

first. "Which" is the reflexive pronoun; note that this is used to state references only,
and not to state subordination, but is here added in parentheses to ease the reading.

c) The first sub-bullet also means that the compound statement should be able to express
the following compound statement: "Site relationship has subordinate trail has
subordinate trail section has subordinate physical link connection which is (physical
link connection has superior physical link)". Here the globally distinguished name of
the referenced physical link connection will be given last.

d) The parenthesis structures shall be capable of expressing branching, like in the
following statement: "Site relationship (has subordinate trail has subordinate trail
section has subordinate physical link connection which is (physical link has subordinate
physical link connection)) has subordinate identifier". Here Identifier is an attribute of
site relationship.

e) Also the parenthesis structures should be capable of expressing delimitation of
execution, e.g., traversal of a reference one way, may not automatically lead to a
traversal of the opposite reference and control of consistency, even if this is required by
the external terminology schema.

f) Note that the above informal examples use just one kind of parentheses, but that
different kinds may be needed in the contents schema notation.

g) Note that the compound statements in the contents schemata are traversing the
elementary statements in the external terminology schema in various permissible ways.

2) The paths expressed in the contents schema shall never deviate from the paths expressed in
the corresponding external terminology schema.

3) The contents schema shall not define derived data that are not already defined in the
external terminology schemata.

4) The notation of the contents schema should be capable of expressing recursion that does not
appear in the external terminology schema, e.g., if there is a loop of associations in the
external terminology schema, the contents schema may state that this loop shall be
traversed recursively until no more data instance is found.

5) The notation of the contents schema should be capable of expressing logical and
arithmetical conditions on the data defined in the external terminology schemata, e.g., the
external terminology schema defines that site relationship has subordinate trail has
subordinate length (that is given in metres). A corresponding contents schema may restrict
the selected trails to be within the range 1000-2000 metres.

6) The notation of the contents schema should be capable of expressing what data will be
presented in the layout layer and what will be suppressed.

7) The notation of the contents schema should be capable of expressing permissible
operations, e.g., insert, delete, modify and read, on data instances prescribed by this
contents schema.

A.5 Requirements on notations for the layout schemata

A.5.1 Introduction
The layout schemata define the concrete syntax of the data as they are presented to the human end
user.

Each layout schema refers to one contents schema only, but there may be several alternative layout
schemata for each contents schema.

20 ITU-T Rec. Z.601 (02/2007)

A.5.2 Requirements
1) The notations for the layout schemata should provide multimedia support.

A.6 Requirements on notations for internal terminology schemata

A.6.1 Introduction
The internal layer may adapt to the technology used for communication over a telecommunication
line or in a database management system. Therefore, the internal layer may not convey or support
the terminology used to communicate with a human user. However, the internal layer may have to
convey information needed to translate between different terminologies of different users.

One such example can be translation between codes according to ITU-T Recs M.1400, M.3100 and
regional standards for management of the telecommunication network. In these cases, different
object structures are used, and there is no one-to-one mapping between fields. Hence, several fields
in one standard have to be communicated to provide the contents of one field in another, and only
parts of the fields are needed to generate the one field.

From this explanation follows that more information may be needed in the internal terminology
schemata than conveyed in the used external terminology schema, and the mappings between the
schemata (via the concept schema or not) may be complex, using detailed navigation and selection
of information from unpacking the value syntax of the fields.

A.6.2 Requirements
1) The notations used for the internal terminology schemata must be capable of expressing the

data structures used in implementations of peer communicating systems.
2) The notations used for the internal terminology schemata may not be capable of expressing

the logic and arithmetic of the application system, i.e., the notation may not support all
capabilities of the external terminology schemata.

3) The notation used for expressing the mappings between the internal terminology schemata
and the external terminology schemata (via the concept schema or not) must be capable of
expressing detailed navigation and selection down to the value syntax of fields.

A.7 Requirements on notations for the distribution schemata

A.7.1 Introduction
A distribution schema defines one message class for communication between systems or with
internal media of the application system.

The message class may be elementary, as in object-oriented communication, or the message class
may be complex, as in file transfer.

The distribution schema states a view of the corresponding internal terminology schema.

A.7.2 Requirements
1) The notation for the distribution schema must be capable of expressing any view of the

corresponding internal terminology schema.
2) The notation for the distribution schema must comply both to the internal terminology

schema and the physical schema being used, but need not express a strict subset of either.
3) The distribution schema must be capable of defining any vertical or horizontal partitioning

of data.
4) The distribution schema must be able to address its peer systems and media and define

communication with these.

 ITU-T Rec. Z.601 (02/2007) 21

A.8 Requirements on notations for the physical schemata

A.8.1 Introduction
A physical schema defines the structure of the data as represented on an internal medium, e.g., on a
hard-disk or a telecommunication line.

A.8.2 Requirements
1) A notation for a telecommunication line must be capable of defining the encoding of

signals on this line.
2) There may not be a one-to-one mapping between signals defined in the encoding and

messages defined in the distribution schema.
3) The notation for the telecommunication line must be capable of defining the mapping

between message classes defined in the distribution schema and signal classes in the
physical schema, and define the protocol for this implementation.

4) A notation for a database must be capable of defining the storage organization and storage
details as perceived by the database designer.

5) The database views defined in the distribution schemata may deviate much from the
physical organization of the database, defined in the physical schema.

6) The notation for defining the physical organization of the database must have means for
stating proper references and access paths for its distribution schemata.

A.9 Requirements on notations for the system management schemata

A.9.1 Introduction
The system management schemata contain security and directory data for one or more systems.

The system management schema data are typically instantiated during execution only.

A.9.2 Requirements
1) A system management schema may contain data for more than one system, but must

contain each system identifier and clearly indicate which resources, e.g., schemata and
populations, relate to which system.

2) Security data may address application layer, contents layer and distribution layer data;
seldom they will address layout and physical layers.

3) Directory data will provide overview of all layers and how they relate to each other.
4) Separate Recommendations apply for security and directory data.

22 ITU-T Rec. Z.601 (02/2007)

Appendix I

Introduction to data architectures
(This appendix does not form an integral part of this Recommendation)

I.1 A system planning perspective
The clause provides an introduction to a terminology for systems planning of an organization.

A system instance is a set of data instances that are enforced as one consistent whole.

A system class is a set of data classes that prescribe constraints and derivations on data instances.

A system class is typically developed by a software development team. See the upper part of Figure
I.1. A system class may be copied, shipped, distributed, configured, installed and instantiated into
system instances to be used by the system users. See the lower part of Figure I.1.

Z.601(07)_FI.1

Software development bench

System class

 System instance

Software deployment

Software
developer

User User

System instance

A recursive channel on the system class is instantiated into becoming a channel instance between the
two system instances.

Figure I.1 – A system class is deployed into two system instances

A system class may be made up of software components. Software houses typically address the
development of such components. Design of components and their interactions may be called
portfolio management, and is not addressed in this Recommendation. However, the data
architecture herein may be relevant to component design.

Rather than considering individual human users of systems, we may consider organizational users,
i.e., organization units that interact with system instances. This is depicted in Figure I.2.

 ITU-T Rec. Z.601 (02/2007) 23

Z.601(07)_FI.2

System instance B1

 System instance A1

Organization unit 1

System instance A2

Organization unit 2

System instance C1

The two organizational users may be two operators using separate system instances of
the same class A, one common instance of class B and a separate instance of class C.

Figure I.2 – Organizational users of system instances

Figure I.2 illustrates the core contents of a systems plan or a systems map of an organization. Even
if communication channels between system instances are indicated, interoperation planning and
interoperation maps are not addressed in this clause, as this clause only serves as an introduction to
clause 6 on a data architecture of one system instance.

Configuration of system instances and their interactions is called integration. The integration should
be based on target systems and interoperation plans, knowledge of software components to be used
to implement the system instances and their interactions.

A transaction through a system instance causes an activation of that system instance. A transaction
through an organizational unit causes an activity within this unit. The activity may involve
activation of more than one system instance.

A transaction within a system instance is typically managed by the transaction handler of the
software. A transaction of an organization unit is typically called a request, order, plan, trouble
ticket or other, and its fulfilment and consistency are managed by the organization unit. An
organization unit may comprise several subunits.

An order transaction may be a long transaction that spans several system instances and or
organizational units. Also, new orders may be defined for each of these, and each unit or instance
will have the responsibility to map back to the original order transaction.

The reader should note that we here have identified concrete system instances and organization
units, their activations and activities, and have introduced no notion of abstract processes. The
contents of a system is defined by the data it encompasses, not functionality or processes.

The data perspective will be kept during this Recommendation. This does not exclude combinations
with a process perspective, but the systems may be designed by applying the data perspective only.

A way to conceptualise the data perspective is to imagine the entire system – be it a class or
instance – to be made up of a set of statements in predicate calculus; Prolog may be considered to
be a special case of this. The statements may be considered as data. And the statements need no
notion of application dependent processes to be executed.

Note that as the term system is used with various meanings in the literature. The system notion of
this Recommendation may be called one integrated system – instance or class.

24 ITU-T Rec. Z.601 (02/2007)

I.2 A data perspective on a system
This clause introduces a data perspective on one system instance.

A system instance with its inputs, outputs, temporary and stored data is illustrated in Figure I.3.

Z.601(07)_FI.3

Storage System
 Inputs

Outputs

Temp

Arrows indicate data flow

Figure I.3 – Depiction of a system instance

A processor (instance) may enforce the data classes on the data instances of a system instance. This
is illustrated in Figure I.4.

Z.601(07)_FI.4

Data instances

Data
classes

Stored data
instances

Processor

Inputs Outputs Temp

Figure I.4 – Data instances and classes of a system instance

Figure I.4 illustrates that the data classes provide classes for inputs, outputs, temporary and stored
data. The system class defines classes for all these data. A system instance requires the data classes
in order to operate appropriately, as the data classes prescribe the permissible structure and
operations on their instance data.

A system instance may be executed on several interacting processors. This is called a distributed
system instance. Note though that the collection of data on these processors only make up a system
instance if consistency is enforced across all the data of the distributed system.

The consistency requirement means that the system ensures that no one can insert a statement p and
its formal counterpart not-p simultaneously into the system instance. And nobody can retrieve both
these statements simultaneously from the system instance. However, p may be stored in one system
instance and not-p in another system instance, since there is no real time consistency enforcement
across system instances.

Note that users may insert an informal statement p and its informal counterpart not p simultaneously
into one system instance. The system instance only prohibits insertion of formally inconsistent
statements. This prohibition is enforced during one run of a transaction.

 ITU-T Rec. Z.601 (02/2007) 25

Suppose the system instance uses strong typing, in the sense that a data instance must belong to
only one class. Then input data and stored data may be permitted to be informally inconsistent
within the system instance as long as a transaction is not defined to transform the input data to
stored data in such a way that they become formally inconsistent.

The set of data classes of a system class is called a schema, and the set of data instances of a system
instance is called a population. See Figure I.5.

Z.601(07)_FI.5

Processor

Population

Schema

Figure I.5 – Schema and population of a system instance

However, data are not classes or instances in an absolute way; they are only so relative to each
other. This is illustrated in Figure I.6.

Z.601(07)_FI.6

Data

Data

P S

P Population reference

Figure I.6 – Schema and population references between data

Figure I.6 illustrates that schema-population references may be applied recursively. This will allow
the data architecture of this Recommendation to be nested.

Note that the recursion indicated by Figure I.6 will only be possible if the data definition language
used for the schema allows for recursion. For example, if the data language uses expressions like
"managed object CLASS", this statement (syntax) can only be treated as a class and not as an
instance. In order to allow for recursion of the data syntax, the notations should be designed such
that data instances become pure copies of the data classes. This many-to-one mapping from
instances to classes that maintain the structure of the data is called a homomorphism (on the
syntax). See more on requirements for language design in Annex A.

Schemata and populations may be partitioned into subsets. Such subsets are identified in this
Recommendation.

According to the definition, the schema defines all behaviour of a system instance. The behaviour
may be defined as constraints on and derivation of data. These prescriptions on data may or may not
be grouped into processes like order entry, order delivery, billing, invoice, etc. The perspective of

26 ITU-T Rec. Z.601 (02/2007)

this Recommendation is that this kind of processes need not be identified within a system, as all
behaviour may be prescribed as mappings between data, and a generic processor may enforce all
kinds of constraints and derivations.

From the previous paragraph, we observe that a system class can be defined as a set of data classes,
including their relationships and methods that express their behaviour. The process perspective on a
system is not strictly needed.

I.3 Communication between systems
When communicating between system instances over a channel without loss of information, the
receiving system instance receives the data set that is sent from the sending system instance. Here,
the channel is not considered to be a system itself.

For the communicating system instances to be able to interpret the communicated data set correctly,
they have to share common definitions for the communicated data set. These definitions are found
in both system instances in a schema for the channel. These schemata must be identical for the data
instances being communicated. This is what is called shared management knowledge in
telecommunication management. See Figure I.7.

Z.601(07)_FI.7

Schema 1

Processor 1 Processor 2

Schema 2

Channel

Common data definitions

Figure I.7 – Common data definitions for the communicated data instances

Note that it is possible, and sometimes convenient, not to use the same data definitions in both ends
of a data channel. Typically then the receiving system instance uses more generic definitions than
the sending system instance. Hence, some of the classification information in the sent signal is lost.
With knowledge of the sender's definitions, these definitions may sometimes be added later in the
processing in order to provide a correct interpretation of the original data. This technique allows for
using generic software for communication, while using more application specific software at the
core of the system instances.

The data set that contains the communicated data instances is called a population. Note that only
data instances that are sent together are enforced as a consistent whole and is called a population.
Data which are not sent together, but are sent on different events, may be inconsistent with each
other, and do therefore not make up a population. See Figure I.8.

Z.601(07)_FI.8

S

Schema 1

Processor 1 Processor 2

Schema 2

S
S
S

S

S

The populations may share common schemata at both ends, but may be inconsistent.

Figure I.8 – Sent and received populations on a communication channel

 ITU-T Rec. Z.601 (02/2007) 27

An order instance is an example of a population, where consistency is enforced within the order, but
not across orders. Even the order may be split into messages, where consistency is enforced within
each message and maybe not across the entire order.

Each communicating system instance enforces its own consistency. Since the communicating
system instances do not make up one consistent whole, they do not make up one joint system
instance. Their data – both classes and instances – may be inconsistent, and the communicated data
between the system instances may be inconsistent.

When using orders to convey data between systems, at any moment of time, the order may have
affected one system instance, but not yet the other system instance. Only after some time, may the
orders bring the system instances into consistent states with respect to this order instance. With
respect to other order instances, the system instances may be inconsistent, as the updates have not
yet taken place.

Orders are means to provide long transactions across several system instances and organization
units. However, orders are not the only means to this end. As an alternative solution, one system
instance may record states on the updating of other systems about certain data instances. This
provides a simpler and not as complete solution to coordination between system instances, while
orders provide identification of long transactions.

I.4 Communicating processes
Since each system instance enforces the constraints and derivations on data, and these derivations
include mappings from input to output media of a system instance, there is no need to apply an
application-dependent process perspective on communication between systems. The sending
system, or the channel, need only to direct the data to the right sink system instance, and need not to
know anything of its processing.

Also, there is no need of an application-dependent process perspective on the internal behaviour of
a system instance. All its behaviour can be stated as constraints on data and transformation of data.
Data are transformed within a system, not between systems.

I.5 Separation of media
Figure I.4 separates input and output data of a system instance. However, the output form of one
dialogue step may become the input form of the next dialogue step. Hence, separation of input and
output forms is not a very effective way of structuring data definitions on the input-output media.

Also, different media – such as a screen and a data communication line – may have very different
characteristics. Therefore, it is convenient to separate the kind of media that provides interfaces to a
system instance. We start with separating:
• external schemata, defining the external presentations to and manipulations by end users of

the system instance, e.g., presentations on screens and reports;
• internal schemata, defining the internal organization and behaviour of data; the internal

schemata define formats for storage of data in a database, for communication over
telecommunication lines and other non-human interfaces.

28 ITU-T Rec. Z.601 (02/2007)

This is illustrated in Figure I.9. Here, populations corresponding to the schemata are illustrated as
well.

Z.601(07)_FI.9

Processor

IP
IP

EP
EP

EP

S

IS ISESES

SS S S

Schemata

Populations

Figure I.9 – Example two-schema architecture

However, if we want to allow communication from all to all media, it may be very impractical to
state the permissible mappings between every combination of any two schemata. The two-schema
architecture may require up to (n+m)! mappings between schemata. The number of mappings may
be reduced by using the three-schema architecture.

 ITU-T Rec. Z.601 (02/2007) 29

Appendix II

Comparison with other architectures
(This appendix does not form an integral part of this Recommendation)

II.1 Comparison with ITU-T Rec. M.3020
[b-ITU-T M.3020] provides a methodology for specifying management interfaces between two
physical systems.

This Recommendation provides a framework for the development of one system. This data
architecture identifies candidate interfaces within one system as well as the interfaces on the
boundary of this system. These interfaces at the boundary will be between systems.

[b-ITU-T M.3020] identifies specifications that may be related to the data architecture.

[b-ITU-T M.3020] is primarily aimed at the development of a set of Recommendations rather than
of individual systems. However, [b-ITU-T M.3020] prescribes a requirements phase for
management Recommendations. The data architecture prescribes no requirements capture, as it
prescribes the specification of individual systems only, not their purpose relative to an organization.

However, this Recommendation focuses on specification of the external terminology and grammar
as perceived by the end users. [b-ITU-T M.3020] focuses on specification of internal management
interfaces, which may not be perceived by the end users.

[b-ITU-T M.3020] defines three phases and resulting outputs as follows:
– Requirements phase – Requirements.
– Conceptual design phase – Implementation independent specification.
– Implementation design phase – Technology specific specification.

In [b-ITU-T M.3020], the requirements for the problem being solved fall into two classes. The first
class of requirements is referenced here as business requirements. The second class is referred to as
specification requirements.

The specification requirements may include syntactical requirements to support end-user interaction
at their human-computer interfaces. These syntactical requirements may need to be supported over
any management interface. These syntactical requirements correspond to external terminology
schemata of the data architecture as described in this Recommendation.

The output of the conceptual design phase will be an information model. This corresponds to a
concept schema of the data architecture as described in this Recommendation.

The documentation from the implementation design phase will consist of two parts:
1) A technology-dependent data specification common for several interfaces, e.g., using

GDMO or CORBA IDL, corresponding to an internal terminology schema according to the
data architecture in this Recommendation.

2) A technology-dependent specification of each interface, e.g., using CMIP or CORBA IDL,
corresponding to a distribution schema according to the data architecture in this
Recommendation.

30 ITU-T Rec. Z.601 (02/2007)

Bibliography

[b-ITU-T M.3020] ITU-T Recommendation M.3020 (2007), TMN interface specification
methodology.

[b-ITU-T Z.352] ITU-T Recommendation Z.352 (1993), Data oriented human-machine
interface specification technique – Scope, approach and reference model.

[b-Grietheusen] GRIETHEUSEN (J. J. van) (ed.): Concepts and terminology for the conceptual
schema and the information base, ISO/TC97, 1982 (ISO/TC97/SC5 – N695).

[b-Meisingset] Meisingset (A.): A data flow approach to interoperability, Telektronikk 2/3.93.

Printed in Switzerland
Geneva, 2007

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.601 (02/2007) Data architecture of one software system
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations
	5 Conventions
	6 Data architecture
	6.1 Three-schema architecture
	6.2 Seven-schema architecture
	6.3 Communication and distribution
	6.4 Nesting

	Annex A – Requirements on schema notations
	A.1 Introduction
	A.2 Requirements on notations for the external terminology schemata
	A.3 Requirements on notations for the concept schemata
	A.4 Requirements on notations for the contents schemata
	A.5 Requirements on notations for the layout schemata
	A.6 Requirements on notations for internal terminology schemata
	A.7 Requirements on notations for the distribution schemata
	A.8 Requirements on notations for the physical schemata
	A.9 Requirements on notations for the system management schemata
	Appendix I – Introduction to data architectures
	I.1 A system planning perspective
	I.2 A data perspective on a system
	I.3 Communication between systems
	I.4 Communicating processes
	I.5 Separation of media
	Appendix II – Comparison with other architectures
	II.1 Comparison with ITU-T Rec. M.3020
	Bibliography

