Super seded by a morerecent version

INTERNATIONAL /TR INTERNATIONAL I EC INTERNATIONAL
| TELECOMMUNICATION Iso ORGANISATION FOR ELECTROTECHNICAL
N\, %

UNION STANDARDIZATION L COMMISSION

ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

CCITT HIGH LEVEL LANGUAGE (CHILL)

ITU-T Recommendation Z.200 (10/96)

Superseded by a more recent version

(Previously “CCITT Recommendation”)

INTERNATIONAL STANDARD ISO/IEC 9496 : 1998 (E)

Super seded by a morerecent version

| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.200

TELECOMMUNICATION (10/96)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: PROGRAMMING LANGUAGES
ITU-T High Level Language (CHILL)

CCITT High Level Language (CHILL)

ITU-T Recommendation Z.200
Superseded by a more recent version

(Previously CCITT Recommendation)

Super seded by a morerecent version

ITU-T Z-SERIES RECOMMENDATIONS
PROGRAMMING LANGUAGES

Specification and Description Language (SDL) Z.100-Z.109
Applicability of formal Description Techniques Z.110-Z.119
Message Sequence Chart Z.120-7.199
ITU-T High Level Language (CHILL) Z.200-Z.299
MAN-MACHINE LANGUAGE Z.300-Z.499
General principles Z.300-2.309
Basic syntax and dialogue procedures Z.310-2.319
Extended MML for visual display terminals Z7.320-72.329
Specification of the man-machine interface Z.330-2.399
Miscellaneous Z.400-Z.499

For further details, please refer to ITU-T List of Recommendations.

Super seded by a morerecent version

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series |

Series J
Series K
Series L

Series M

Series N

Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Z

ITU-T RECOMMENDATIONS SERIES
Organization of the work of the ITU-T
Means of expression
General telecommunication statistics
Genera tariff principles
Telephone network and ISDN
Non-tel ephone telecommunication services
Transmission systems and media
Transmission of non-telephone signals
Integrated services digital network
Transmission of sound-programme and television signals
Protection against interference

Construction, installation and protection of cables and other elements of
outside plant

Maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound-programme and television transmission
circuits

Specifications of measuring equipment

Telephone transmission quality

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminal equipments and protocols for telematic services
Telegraph switching

Data communication over the telephone network

Data networks and open system communication

Programming languages

Super seded by a morerecent version

1712 66

Printed in Switzerland
Geneva, 1997

* *

Super seded by a morerecent version

FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation Z.200 was revised by ITU-T Study Group 10 (1993-1996) and was approved by the WTSC
(Geneva, 9-18 October 1996).

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

0 ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version i

Super seded by a morerecent version

CONTENTS

Page

gl [FTex o] o OSSR 1
O T o - TSP PTRPSN 1
1.2 LGNQUBOE SUMNVEY ...oevitiiieieeieee e sr sttt sse e e e se s bbbt s e s e e e b s e e e Rt e bt e bt eh e e e et se e e R e s b e erenb e e e e e e neenas 1
RS T IV oo (== 0o Mo b= oSS O RURRT 2
1.4 LoCationS and theil GCCESSES.........ctiirieiirieriete ettt sttt et se bbbt e e ebesbe e beseenesbeseenens 2
15 Values and their OPEraliONS........coeeeriirieie ettt sttt st sae et e e e e s besbesbesbe st eaeene e e aneeseeeas 3
O G 1o = TSP 3
O Vo 1H =g To o0 1 o LU | OSSO 4
RS T (= (o) T 7= o 1 oo 4
LS I T 4 SRS T o= oY= o] o SRR 4
1,10 PrOQram SLIUCKUIecveeteeieeieeeesee st e seeesteeste e e eseesseesseesseesseesseessanessseesseesseenseensesnsesseensennsesnsessenssees 5
111 CONCUITENE EXECULIONeieeeeeeteste st eteeeeaeeree st beseesbe st sbesae e e eeese e besaeebesaeeaeeae e s enbeseenbesaesbeeneenseneeseentas 5
1.12 General SEMantiC PrOPEITIESicuiiieeeeeereeestes e stesresre s e eee e este e s testesresresseeseeseeneenseseestessesresseenneneeseenses 6
113 IMPIEMENLEEiON OPLIONS.....cuiiuiiterteeieeteeieeee ettt sb ettt see e be et b e s st e ae e e e seenbeseesbesaeebeeneeaeeneeseeneas 6
PrEliMINGIIES......ocvciiiiccc s 7
AN R N 0 T= 07 = = g To 1 o T USSR 7
211 The context-free SyntaxX deSCriPLiONvvveeereerce e 7

212 The SEMantiC AESCIIPLION.......coiiiereie ettt e ee e 7

213 LI L 20 o)== 8

214 The binding rulesin the metalanQUAagE...........coouereeiinene e e 8

2 oo o 11| = 8
2.3 TREUSE Of SPACES. ... eiiteiee ittt et h e bttt e se et e bt sb e b e e et e ae e e e e e b e sbesaeeaeeneeneebeee 9
A o 101017 01T USSP TP RSOSSN 9
2.5 FOIMEL EffECLOIS ...ttt et bbbt e et e bbb aeene e e e et e 9
b ST 0 101 o T = e 1 (= 1Y =S 9
2.7 Namesand their defiNiNg OCCUITENCEScoiiuiriiriiiirieieeiie ettt st be e sbe e e e e e e e e 10
MOOES GNA CIESSEScveeieete ettt et sttt b st e e b s e et b e s e e st b e s et s b et e bt e b et et s be e benbe e e 13
N R €1 0 - USRS 13
311 IMIOOES. ...ttt ettt b e st b e bbb et b e b e e b e b e ne bt b e ne et ene b e neas 13

312 (OSSO 13

313 Properties of, and relations between, modes and Classesovvvvveereeeeieerene s 13

A |V [o (X o L= 1T Tl (o] USSR 14
321 LC 1 1 - | SOOI 14

322 SYNMOAE AEFINITIONS.......eeeeeeeiee ettt b e b seesreneas 15

323 NEWMOAE AEFINITIONScoveiiieierieeie et s b e s ebe e 15

G T |V [o X ol b= LS s] o= (oo USSR 16
R B TE o = (= 100 o =SOSR 17
34.1 LT 31 - | SRS 17

34.2 T 1= 0 0100 (= 17

34.3 B0 Q8N IMOUES ...ttt ettt ettt se e e b e et s b e et e s e e e se et e 17

344 CaraCler MOES.......eeeeireieere bbbttt bt 18

345 SEEMOAES ...ttt a et e e b et b e ae bt e st e e e eese e be et eheeae et et e e neas 18

3.4.6 DiSCrete ranNgE MOUESecveeeeeeeereerie ettt e ettt se e e e se e e srestesneeneeneeneenaennens 19

T < I 070 [USSP 20
351 Floating POINT MOUES........ecvieeeeeeeeres et s se e e srestesnesneeneeneenaennens 20

352 Floating POiNt raNGE MOES........couiriiieriieiere ettt s see b e e e 21

B 0T == 410 L= OSSPSR 22

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Super seded by a morerecent version

Page

I = 1= = (= 0 101=] 1110 [OOSR 22
371 (1= aTC = [OOSR 22

3.7.2 BOUNG FEFErENCE MOUES.........ei ittt ettt e be e b et e et e e abesaeesreesreas 23

3.7.3 Free rEfErENCE MOUES.......ccvi ittt et et b et e et e et e e abesaresanesreas 23

3.74 ROW IMOES........coeiticticiecte ettt et ettt et e st e et e et e st e satesaessaeesaeebeenbesaresabesreenrenns 23

R T o Tor e LU 1Y 0110 [OOSR 24
e I 10 =10 (@ =] 11100 (S-S TRRT 24
3.10 SyNnChroniSAtioN MOOES.........cccucieiiiiieiecieee et st a e e sr e be s e e reese e e e teseesbesaesresaeeneeneeneentees 25
3.10.1 (T aTC = TR 25

3.10.2 EVENE MOUES.......eoiteeitecce ettt sttt be et st e s be e ebe et e eabeeabeeatesbeesaeesaeas 25
3.10.3 BUFEI MOOES.......cctieitiecie ettt sttt et e eate et e ebseebeesbeesbe e beenbesaeesaeas 25

50 I N 1 0T o101 o 141U B 1 110 (=S 26
3111 (T aTC = [OOSR 26

3.11.2 ASSOCIALTION MOUES.......cveeitieitiiiteiie ettt et ete b e et e et e st e e beesbesbesaessaeesbeesbeenbesasesnresrennrenns 26

3.11.3 ACCESS MOUES......cveieteetiete et ete ettt ettt esteete et e e e e ebeeebe e beesbessbesaeesbeesbeesaeessesnsessnssseenreenrenns 26

3114 LIS R 100 [OOSR 27

50 2 T 0T o g 70 L= 28
3121 (T 0TC = TR 28

3.12.2 (D01 (o)l 400 (=TSRSS 28

3.12.3 ADSOIULE TIME MOUES......ccveeteiticie ettt s s s be e sbe e aesaessreesbe e beenreens 28

G50 1 T 0 01010 1S] (= 170 o L= S 29
3.13.1 (T aTC = TP 29

3.13.2 IS T 0T 0700 L= RS 29
3.13.3 N 4 = Y1110 L= 30
3.134 SEIUCEUIE IMOUES. ...t cevecerecete ettt et et ettt e e b e et e eab e s aaesbeesbeesseenbeeaseebeeebeesbeenbesnbesaeesrens 32

3.135 Layout description for array modes and structure modes............ccoeceveeeeieeveesesesesennens 35

G50 A V11 7= 0 o 120 o == S 37
3.14.1 (T 01C - TP 37

3.14.2 DYNaMIC StHNG MOUES.ccveieeeeeeieeer ettt e e st e e st esresre e e eneeeeneenaennens 38

3.14.3 DYNAMIC ATy MOUES.......ccveeeeeeeeeerieeseesese st s e e sees e e e sae s e sse e e eeeseestesaesnessenneensennens 38

3.14.4 Dynamic parameterised StruCture MOUES..........covreveieneeeeeereese e e snens 38

I ST V= 7= 1 110 o[- 38
3.15.1 (T 0TC = [T 38

3.15.2 MOOUIE MOGES.......c.veetieie ettt ettt ettt sttt e et e st e st e saeesbeesbeenbeenbeesaesbsesbeesbensrens 39

3.15.3 [S [0 8 110 1= PSS 41

3154 JLIE= S 11160 =R 43

L OCELIONS N0 thEIT BCCESSES.......ocitieeiee ettt ettt e et e b e e bt e st e e s ete e st e e sabeesabeeeabeesabeesaseenbesaseesnbeseasseesenas 45
R B T v F- = 1 o LTSRS 45
411 (1= aTC - OO TRRRROTPO 45

41.2 [IoTor= 1o N0 (< o o= (0] 0O 45

413 LOC-identity dECIarationS.eieririeie ettt s nna 46

N W oo~ {0 OO 47
421 (€1 oTC - [OOSR 47

422 AACCESS NMAIMIES ... eteee ettt e eeteee e e et eeetee e e s ebseeeeasbeeeeesaeeesabaeeaeasbesesassseeesbseeeeastesesansaeessrenenan 47

423 Dereferenced bouNd FEfErENCES.........ccovi ettt 48

424 DereferenCed frE8 FEf EBrENCES........cv ittt ettt b et et e et e sabesaeesrees 48

425 DEIEfEIENCEM FOWS.....veeieeiecee e etee ettt et et be s tee st e sbe e s be e beeatesaeeeaeesbeebeenbesnbesstesaeesaeesreas 49

4.2.6 SETNG EEMENES.......eeee bbbt et 49

42.7 SEING SHICES ..ttt ettt et b et a e et e e b se b e bt ebeeae e e e e e neeneas 49

4.2.8 F N = VA= L= 01) 50

429 N 4= VR o= 51
4.2.10 S 0w TR 1= Lo OSSR 52

4211 L OCatioN ProCRAUIE CAllS ...ttt 52

4212 Location bUilt-in TOUtINE CAlISecouieiiiiiiiee ettt s 52

4213 L OCAiON CONVEISIONS......cccvieitierietrietieeteesteesteestesbeseesaeesaeesseesseenseessesssesseesbeesbeenbessesssessens 53

4214 Predefined MOreta lOCatiON.covieeeiecee ettt ettt eneas 53

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version iii

5

iv

Super seded by a morerecent version

Values and theil OPEIELIONSccviieiiseie et st e sbe s aeese et eseeseestesteseestesaeeneeneeneenseseens
L300 R Y 00)Y 4 1 1 L= T 1 (0] TS
5.2 PrIMITIVE VBIUE ..ottt sttt sttt eae e e et e s sbesaeeneeneeneeeees
521 LC T g1 - | PSSR

5.2.2 [0 Tor= o gl o 01 = 0| -SSR

523 VBIUB NAITIES ..ottt sttt sttt sttt sttt et se e st et ese e st ebesaeseebeseeneebeseenenbeneenens

524 [0= =TSRSS
B2A4AL GENEA ..o bt

5242 INtEQEr [ITEralS. ..ot e

5243 Floating POint [IEralS........coveiiieieiiereese et

A A = 1o o] = o I 11 (S

5245 CharaCter IEralS......oveiiireiie et

A TS = 11 (= - S

5247 EMPUNESS HTEIal ...c.oivieeiiiiesiee e

524.8 Character String lIeralSooviiiiineere e

5249 Bit SNG HEralS.....cciiiiiciceccee e e

525 LIS 0] = T OO SOUPPE TSR

5.2.6 ValUE SIING ElEMENES ... et s e ene e e s

527 VAU SING SITCES .ttt

5.2.8 VAU array ElEMENLS........coeieiicie ettt st sttt b e e e s et e besresbesresreereeneens

529 VAlUE AITAY SHCES ...ttt ettt ettt

5.2.10 VAU SEUCIUTE FIEIUS. ...ttt e

5211 EXPIESSION COMVEISION.euiiiiitiieieetesieeete sttt se et be e bbbt bbb e e b b e s ebe b eneenis

5212 REPreSentation CONVEISIONcieieirieieirieesie et seeesse s see e sesesseseesessessesessessenes
5.2.13 ValUE ProCeAUIE CallS.......couiieiiiiireceste e bbb e

5214 Value built-in TOULINE CAlIS......cvciieiee et

5.2.15 SEAMT EXPIESSIONS. ...c.veueetirtieetertee ettt b bbbt b bt b e bt b e e st et b

5.2.16 W (o= o oo o [SRS

5217 Parenthesi SEd EXPIrESSION.......c.ciuirieirierieirte ettt bbb nens

5.3 ValUES @NU EXPIrESSIONSevieeiiitirieiistiseetesieseesestestesestessesessessesessessesessessesessessesessessenessessenessensesessensenes
531 LT 0T - R

532 EXPIESSIONS. ...ttt sttt sttt sttt sttt sttt sa st et seeseebeseeseebeseeseebeseeneebesaeneebeseenenteseeneas

533 OPEIANG-0.....oneiteeei e b bbbt bbbt

534 L@ 07 =00 o OSSR

535 OPEIBNG-2......eneeteee ettt b bbbttt b ket b e b bt

5.3.6 L@ 07 =100 e OSSR

537 OPEIBNG-A.....eonetee et bbb bbbt bbb e b b

5.3.8 L@ 07 =00 L TSSO

539 OPEIBNG-6......cneetiieieete ettt bbbttt b bbb e b bt

5.3.10 L@ 07 a0 SRR

Y o (0] 1SR
L2 T o SRR
O = T 101 A= o] o ST SSO T RSRRR
L2 T = 1o [PPSR
(ST O - ox £ o |
LS B o - o 1 o o TSRS
6.5.1 LT 0T RS

6.5.2 FOT CONMETOL ...ttt st st sttt sa et e st e et e st e e eteste e eteseeneas

6.5.3 LAY T o oo o

6.5.4 AT o= TSRS

LS T L o 1 o S
L A O |1 I o o o TSRS
(oS T = (=S U (A= oo [= (00 1= o o o S
ORI o (o - 1 o TSRS
Lo (O NS < o Ao 1 o o SR
L300 TR 0o Y= 1o S
L A O 1L o (o] o SRS

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Super seded by a morerecent version

Page

L2001 TS = = (o o S 91
L300 I RS (o o - o (o] o 1S 92
L300 LS T @0 g] TU o o o S 92
LS ST L= VAo o o S 92
6.17 DAY CASL ACHION.c.ecuiieieetieteiet ettt b bbb bbb e b et b e e n e n e enes 93
B.18 SENU BCLIOM ...c.vvieiteiiee ettt bbbt b bRt e bRt e Rt E bRt e R bR bR r s 93
6.18.1 L= 0T OSSPSR 93

6.18.2 = a0 B Lo o=t o) o 1S 94

6.18.3 SENd DUFFEI BCHON ... e st nee s 94

B.19 RECEIVE CBSE ACHION ...vviiieeeesiet ettt bbbt e b e b bt e b e b b e ne e b e e re s s 95
6.19.1 L= 0T OSSR 95

6.19.2 RECEIVE SIgNAl CASE BCHIONuiiuiceieicecte et st sttt e e e ee e e tesnens 95

6.19.3 ReceivVe DUFfer Case aCtioN.........cooveerieieee e e 96

6.20 CHILL DUIt-IN TOULING CAIIS. ...ttt 97
6.20.1 CHILL simple built-in routing CallS..........ccoiiirieieeee e 97
6.20.2 CHILL location built-in roUting CallS...........ciiriiieiirrieereees e 97

6.20.3 CHILL value built-in routing CallS........ccveveieee e 98

6.20.4 Dynamic storage handling built=-in rOULINESccceeiiiceeiecece e 102

T g o= Lo @0 1 o 1U | OO RO RO TPP 104
7.1 /O refErenCe MOELc.coiieeeiiieeteere ettt bbbt b et b bbbt bbb e b s 104
A A XS o e T o Y 11 - 105
721 GENENEL ...ttt bbbt e bbbt nna 105

722 Attributes of assOCiatioN VBIUES...........ccceieririrere e 105

7.3 ACCESS VAIUBS ...ttt ettt bbbt b ket b bbb e b b e e b bt b b et e b bt st b e b en s 105
731 LT 0T TSRS 105

7.32 ALrDULES Of BCCESS VAIUES ...ttt 105

7.4 BUIlt-IN routingS fOr INPUE QUEPUL..........ooueeiirieiitirie ettt sn s 106
74.1 GENENEL ...ttt bbb b et b et bbb ena 106

74.2 Associating an outside WOrTd ODJECL..........coireiiireere e 106

74.3 Dissociating an outside WOrld ODJECL..........cceciiieiie e s 107

74.4 ACCeSSING aSSOCi ation ALITHULES...........coiiieiiereee e 107

7.4.5 Modifying assoCiation @ttrTDULEScccevieirieirireree e 107

7.4.6 Connecting an aCCESS IOCALTON.cceuiriiiririerre e 108

7.4.7 Disconnecting an aCcCeSS IOCALIONcvvviieiirieieerieee e eenes 110

74.8 Accessing attributes of aCCeSS IOCALIONS........c.civeirerieire e 110

749 Data transfer OPEIratioNS............cvieieiieiriseee et ene s neens 110

7.5 TEXEINPUL OULPULcvetinietiiteeetest ettt b bbb bbbt nb bbbt b e e enena e e ens 112
751 GENENEL ...ttt bbb bbbt bbb ena 112

752 ALtriDULES Of TEXE VAIUES ... s 113

753 TeXt tranSfer OPEIaLiONS.........covveuiiiiee ettt 113

754 FOrmMat CONEIOL SETTNQecueitieetiitieeiesi e 115

755 10010177 £ T o S 116

7.5.6 0T (1 o S 119

757 [/O CONEPON ..ottt bbb bbbt 119

758 Accessing the attributes of ateXt 10CaON..........cceeriirireere e 120
EXCEPLION NANAIING ...ttt ettt b e bbbt b e bt be bt ae b e 122
8L GENENEL ...t R R Rt Rt e r s 122
8.2 HEBNAIES ..ottt bbb bbb bbbt b b e bbb s 122
TG TN a0 | 1= To (=g (] o= (o) o U PR 122
THME SUPEIVISION .ttt ettt bbb bbbt et b e h e b e b s b e £ e h e b e b st e b e e se e bt b et e bt be e e bt st e e 124
Lo R €701 - OSSOSO 124
9.2 TIMEOULADIE PrOCESSEScuecveeereetiriesiete e et see st stes st ste s be st e st s s e saesesbestesessestesesbessesessensene st ensenensensenes 124
1S S T T 01 g o = £ 3PS 124
931 ReE@tiVe tIMING BCHTON. ..o 124

9.3.2 PN 0150 101 (= 11 41T gl = £ o 125

9.3.3 (@Yo TTol 11911 oo =T 1 o RSP ST 125

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version %

10

11

12

Vi

Super seded by a morerecent version

Page

9.4 BUIE-IN FOULINES FOF tIME....tiitieetiiiiiet ettt bbbt ne b e ens 125
94.1 Duration BUITE-iN FOULINES........cceiieeie et a e e e 126

9.4.2 Absolute time BUITt-iN FOULINEco.eiireee e 126

9.4.3 Timing built-iN TOULINE Callccueeeie e e e 127
PrOGIAIM SITUCTUN.....c.ei ettt ettt b e s bt st e e s e e b s bt b e e bt e e s s e ss e beseeereene e e e nenrens 128
O T 7= 0 TR 128
10.2 REACNES AN NESHINGueeeiie sttt sttt sh et e et e e e sbe b e be s aeebe et e e e e e seebesbeebesaesbeeseenseneeseetas 129
10.3 BEGIN-ENA DIOCKS.couiieeiiitirieieie ettt sttt st sttt sttt e e neebeseeseebeseenesbeseenea 131
10.4 Procedure specifications and definitionS........ ..o s 131
10.5 Process specifications and defiNitioNS...........cooiieiiiiriien e 135
O T 1V oo LU =TSSR 136
O A = o 137
O = o] !0 | H OSSPSR PR TPRPR 137
10.9 Storage alocation and HHFEIME........ccoiiei i et a e e nen 137
10.10 Constructs for pieCeWiSE PrOGraMIMINGcoeeuerrerereeerreereeseeseesseseeeseseeeeseessesseseessesaeesesseensensessesses 138
0 0 IS R = 140 1= o= ot 138
10.10.2 Spec modules, Spec regions and CONTEXES.ccciuiririrereeereeee e see e see e 139
10.10.3 QUASH SEALEMENTS.viiieiiee ettt ettt et ete et eete s b e s beesbeesteseesaeesbeesbeeabesaseebeesbeenbennbesseesaees 141
10.10.4 Matching between quasi defining occurrences and defining occurrences...........c.ccoeeeee.e. 142

0 0 R 7 ot 143
CONCUITENE EXECULION. ... e eteeteeteeeeeee e eeesteste et etee e e aeeeessatesaeeaesaeeaeene e e eneeseeabesaeeaeeaeeaeenseasanbeseesbesneanseneeseenseses 147
11.1 Processes, tasks, threads and their definitioNS...........c.coovviieiiieine e 147
11.2 Mutual eXClUSION 8N FEJIONS........eiueeterieeeieeriesie sttt et ee e e e seeseeste et sbesseeaeeneeaeenseseesbesaesaesneeneeneeseeeas 147
1121 LC T 1 - | PSSR 147

11.2.2 (RS 0 [L0] 7= 11 USSR 148

11.3 Delaying of @thrEadcoco it r e e e nn 150
11.4 ReE-aCHVALION Of ATNTEAM ...ttt et e e et e e s s e ar e e s s be e e s esateessaaneessabenenas 151
11.5 Signal definition SEEMENLSccveieiereie sttt e st e e seesbesaesresseenneneeseenres 151
General SEMANTIC PrOPEITIESeeiereiete ettt ettt aeeae e e et e e e eesbesaeebe s st eaeeae e e eeeseenbeseesbeeaeaneeneeseeneees 152
2 T |V oo L= =SSOSR 152
1211 Properties of modes and ClasSeS..........oiiririeierere e 152
12.1.1.1 REa0-ONIY PrOPEILY ...ceeeeieieeeierieereeeeseestestesteseeseseeseseessessesseesesseenseseessessnsnens 152

12.1.1.2 Parameterisable MOUES.........coeriiiiieie ettt 152

12.1.1.3 RefEreNnCing PrOPEITY ...ccveceieeeeieceeeeeseesestesteseereseeeesaesrestesrestesseeseesaessessessens 152

12.1.1.4 Tagged parameteriSed PrOPEITYccoooerererereeeereesie e ste e ereeseeeeseesee e saens 152

12.1.1.5 NON-VAUE PrOPEIY ...veceeeeeeeeieese st e esae e st te e e saesae e snesresneesaeneens 153

12.1.1.6 ROOEMOOEcieiteiee ettt sttt eae e e e e e e seesbesaesbeeneenneneens 153

2 T A = (== ¥ (110 [= SRS 153

12.1.2 Relations 0N MOdes and ClaSSES........coiririiirie et 154
2 R € 1< o 1= - | ST 154

12.1.2.2 Equivalence relations 0N MOOES.........ccciueeerereeieereeie e 154

12.1.2.3 Therelation SIMIlAr ... 154

12.1.24 Therelation V-eqUIVAIENL...........coiirie e e 156

12.1.25 Therelation eQUIVAIENE.........cccceieie e 156

12.1.2.6 Therelation |-eqQUIVBIENT ..o s 156

12.1.2.7 Therelations equivalent and I-equivalent for fields........cccocvvvvvivvinincecceceenen, 156

12.1.2.8 Therelation equivalent fOr [ayOULccoeveirineienineee e 157

12.1.2.9 Therelation @iKe.......ccoiiiiiiieereeee s 157

12.1.2.10 Therelation aike for fieldS........coi i 158

12.1.2.11 Therelation NOVEltY BOUNd.........ccceeieiereiece e 159

12.1.2.12 Therelation read-compatible............ocooeiriiiinieee s 160

12.1.2.13 Therelations dynamic equivalent and read-compatible..........ccccocvvvvivnivinnene 160

12.1.2.14 Therelation restrictable.........ooooeiiieiee e 160

12.1.2.15 Compatibility between amode and acClass..........ccovveveeeeeeiereesese e 161

12.1.2.16 Compatibility befween Classes ... 161

12.1.3 Definitions for MOretamMOUES..........coirieiiirieirie e 162

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Super seded by a morerecent version

Page
12.2 Visibility and namebindingcccoueieiiiii i e e s 162
12.21 (D=0 ==Y Y= T o1 1 YRS 163
12.2.2 Visibility conditions and name binding...........ccovovrieveienene e 163
12.2.3 ViISIDIITY INTEACNES. ..o st s e ere e e e 163
12.2.3. 1 GENEIEL .ot bbb 163
12.2.3.2 ViSihility SEEEMENES.......coveiiiereiieeicere e 163
12.2.3.3 Prefix rename ClaUSE ..ot 163
12.2.3.4 Grant StAEMENL.......cueeeeeeeeteereeseeie e see e steesee et e eee e e saeeste e beeneeeneesseeseeeseeas 166
12.2.35 SEIZESEAEMENT ..ottt nne 167
1224 Visibility Of Set €lemMent NAMES ..o e 168
12.25 Visibility Of fIEld NAMES ..o e 168
e T O 1o o) 169
12.4 Definition and summary of SEMantiC CaEJONEScouererirereriere et e 171
12.4.1 INBIMIES......e ettt b e e b bbbt bbbk e bt b b e Rt e bt nn s 171
12.4.2 [0 or: 1 o] LSRR TSRS 172
1243 EXPressionS aN0 VAIUES..........coiiieiiiiieierieeetereee sttt 172
1244 Miscellaneous SEMantiC CALEYONES.......ccuerueruerueeeereeeeee e ere et ste st ere e e e e seeseesaeeneas 173
I 00T o L= 047 g1 0] 0] oo 0= SR RSTP 174
13.1 Implementation defined BUilt-iN FOULINES.........ccvcieiececc e 174
13.2 Implementation defined INtEgEr MOTESccoiiirireire et st s 174
13.3 Implementation defined floating POINt MOGES.coeiriirerieene e 174
13.4 Implementation defiNed PrOCESS NAIMES.........cuiviiierieirerietese et stese st steestesaesesteseesesteseesesteseesesseseenens 174
135 Implementation defined hBNAIErScc.oie i e 174
13.6 Implementation defined EXCEPLioN NAMES.........ccciiiiiierere e sbe e 174
13.7 Other implementation defined fEAIUIESccoiireiie e 174
AppendiX | — Character SEt fOr CHILLcooiiiiiiiiieiee ittt e e stbee e e e e e st ae e e e e e e sareeeeas 176
APPENiX 11 — SPECIAl SYMDIOISot e e e e e —————————raataaaaaaaaaan 177
Appendix Il — Special SIMPIE NAME SIHNGS ...vviiieeee e e e eeeeeeannan e e e e e e s 178
1.1 Reserved SIMPIe NAME SIHNGSeiiiiiiiiiaiae et e e e e e e e e e e e e 178
1.2 Predefined SIMPIE NAME SEHNGS....o.iiiiiiiiiie et e e e e e s s saareeaee s 179
] T (=Y o) 1o g =g T 179
AppPendixX 1V — Program eXamMPIES.........o ittt ene e e e e e e s 180
AppendiX V — DeCOMMITIET FEAIUIES.coi it eeeeeeemmn e e e e e e e e e neeee 210
1 FrEe IrECHIVE (SEE 2.5) ..eiiiiiiiiiiiiiie e ittt ettt e e e ettt e e e ettt e e e e s ettt e e e s e nbbe e e eenmmnaneeaasseeaeeeeannrees 210
2 Integer MOAES SYNLAX (SEE 3.4.2) ...uuuiieeieiiiieieeee et e e et e e e ae e e e e e et e e s mmmme e — e 210
3 Set Modes With NOIES (SEE 3.4.5) ... e e e e e e e mmmmmnne e 210
4 Procedure Modes SYNTAX (SEE 3.7) ..uuiiiieiiiiiiiiie ettt e et e e e et e e e ssnne e e e e e e neneee 210
5 StriNg MOAES SYNTAX (SEE 3.11.2) . iiiiiiee e ettt e e e e et e e e e e e st e e e e e s s e e e e e emmneee e ssraees 210
6 Array Modes SYNTAX (SEE 3.11.3) ..ottt e e e e e e e e e e e e e s e s s e s sse e r e e e e e et e e e e e eeeeeeeaaaaaaaaaaaaan 210
7 Level structure NOtatioN (SEE 3.11.5) ...ciiiiiiiiiiiiiiiiiie ettt s— 210
8 Map reference NAMES (SEE 3.11.6) ...ccieii ittt e e et e e e e e e e e e e e e aeneee 210
9 Based declarations (see 4.1.4) 210
10 Character string Iterals (SEE 5.2.4.6)cccceei i it e e et e emmmm————— e 211
11 Receive expressions (see Rec. Z.200, 1988, 5.3.9) ...cciiiiiiiiiiiiiiiiiie e 211
12 Adr NOLALION (SEE 5.3.8) ..ttt e e et ae e e e e mnr e et e e e e e anrees 211
13 ASSIGNMENE SYNEAX (SEE B.2) .uuiiiieeiiiiiiiiee e e ittt e e e e e sttt e e e e s sttt e e e e s sstbbe e e e e e e s tbaeeee e e s eaasemmmnaeeaaeeeeanseees 211
14 Case ACHON SYNTAX (SEE B.4) ..ceiii i it ittt et e e e e e e e e e e s s e s s e et e e aeeeeeeeeeeeee s mmmmmmmmmmmmmnt 555 e s e e e e 211
15 DOo-fOr action SYNLAX (SEE 6.5.2)uuiiiieiiiiiiiiii et e e 211

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version Vii

Super seded by a morerecent version

Page
16 EXPliCit 100D COUNLEIS (SEE 6.5.2) ..eueeeeeeeesiesese sttt e ee e ste sttt ese e e s aeseesre e ese e e en e saesrenneeneeneeneeses 211
17 Call BCLION SYNEAX (SEE 6.7) .ueeueeeuertireeierterie sttt ettt bbbt b bt b e bt e bt e e e bt e e b b e 211
18 RECURSEFAIL EXCEPLION (SEE 6.7) c.veuvitiieiiriiiesistisiesesieseeestesessestesssestesessestensssestessssessessssessensesessensesessensans 211
19 Start action SYNEAX (SEE 6.13) ...c.ccceeiieiiesiiee it etee et erte st e e ste st e e e e s te st e s be s aeereeseeaeeee st e teseeereereeaeenaenaerees 212
20 Explicit value receive NAMES (SEE 6.19)c.ecuecuieeeieresise st e et e e e ee et e et ese et sresresneeneeneeneenees 212
21 BIOCKS (SR 8.1) .ttt bbb bbbt bbb bR bRt R e b e Rt bt Rt b e ae b e 212
22 ENtry SEAEEMENT (SEE 8.4) .. eiieiei ittt ettt bt bt e e e b e b se e e b e aeeb e et e beshe b e nae e e e teneeeas 212
23 REGISLEN NAIMES (SEE 8.4)eete e eteeieeteee sttt e e e e e s te st e s be s aeeae e e e teseesbesbesaeeteeneenteste s e teseesresneenseneeseeres 212
24 Recursive attribute (see ReC. Z.200, 1988, 10.4)......cc.coerierererereeeseeeeseeseestessesresseseesesssessesssssessesssesseseesees 212
25 Quasi cause statements and quasi handlers (SEE 8.10.3)eveirierieiriiriee et e 212
26 Syntax of quasi statements (see Rec. Z.200, 1988, 10.10.3)ccoveereiririeierierieesieseee e sese et nens 212
27 Weakly visible names and visibility statements (see Rec. Z.200, 1988, 12.2.1)cccooerrerererenrenienenienenne 212
28 Weakly visible names and visibility statements (S8 10.2.4.3)......ccccoeveveie it 213
29 PervasiVeNeSss (SEE 10.2.4.4)o e bbb bbb et bbb 213
30 Seizing by modulion NAME (SEE 10.2.4.5)......c.ecueieieee ettt sttt ettt re e aenr e re e 213
31 Predefined sSimple Name StriNgS (SEE T11.2) ...t e e 213
Appendix VI — Index Of ProdUCLION FUIESoiiiiiiiie et et e e e e s ne e eeeeemneeeeens 214
o 1= OSSP 224

Viii ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

CCITT HIGH LEVEL LANGUAGE (CHILL)

(revised in 1996)

1 Introduction

This Recommendation defines the CCITT high level programming language CHILL. CHILL stands for CCITT High
Level Language.

The following subclauses introduce some of the motivations behind the language design and provide an overview of the
language features.

For information concerning the variety of introductory and training material on this subject, the reader is referred to the
CCITT manuals, “Introduction to CHILL” and “CHILL user’'s manual”.

An alternative definition of CHILL, in a strict mathematical form (based on the VDM notation), is available in the
CCITT manual entitled “Formal definition of CHILL".

1.1 General

CHILL is a strongly typed, block structured language designed primarily for the implementation of large and complex
embedded systems.

CHILL was designed to:
« enhance reliability and run time efficiency by means of extensive compile-time checking;

« be sufficiently flexible and powerful to encompass the required range of applications and to exploit a
variety of hardware;

« provide facilities that encourage piecewise and modular development of large systems;
« cater for real-time applications by providing built-in concurrency and time supervision primitives;
e permit the generation of highly efficient object code;

* be easy to learn and use.

The expressive power inherent in the language design allow engineers to select the appropriate constructs from a rich set
of facilities such that the resulting implementation can match the original specification more precisely.

Because CHILL is careful to distinguish between static and dynamic objects, nearly all the semantic checking can be
achieved at compile time. This has obvious run time benefits. Violation of CHILL dynamic rules results in run-time
exceptions which can be intercepted by an appropriate exception handler (however, generation of such implicit checks is
optional, unless a user defined handler is explicitly specified).

CHILL permits programs to be written in a machine independent manner. The language itself is machine independent;
however, particular compilation systems may require the provision of specific implementation defined objects. It should
be noted that programs containing such objects will not, in general, be portable.

12 L anguage survey
A CHILL program consists essentially of three parts:
e adescription of objects;
« adescription of actions which are to be performed upon the objects;

e adescription of the program structure.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 1

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Objects are described by data statements (declaration and definition statements), actions are described by action
statements and the program structure is described by program structuring statements.

The manipulatable objects of CHILL are values and locations where values can be stored. The actions define the
operations to be performed upon the objects and the order in which values are stored into and retrieved from locations.
The program structure determines the lifetime and visibility of objects.

CHILL provides for extensive static checking of the use of objectsin a given context.

In the following subclauses, a summary of the various CHILL concepts is given. Each subclause is an introduction to a
main clause with the sametitle, describing the concept in detail.

13 M odes and classes

A location has a mode attached to it. The mode of a location defines the set of values which may reside in that location
and other properties associated with it (note that not all properties of a location are determinable by its mode aone).
Properties of locations are: size, internal structure, read-onlines, referability, etc. Properties of values are: interna
representation, ordering, applicable operations, etc.

A value has a class attached to it. The class of a value determines the modes of the locations that may contain the value.

CHILL provides the following categories of modes:

— Discrete modes: Integer, character, boolean, set (enumerations) modes and ranges thereof.

— Real modes: Floating point modes and ranges thereof.

— Powerset modes: Sets of elements of some discrete mode.

— Reference modes: Bound references, free references and rows used as references to locations.
— Composite modes: String, array and structure modes.

— Procedure modes: Procedures considered as manipulatable data objects.

— Instance modes: Identifications for processes.

— Synchronisation modes: Event and buffer modes for process synchronisation and communication.

— Input-output modes: Association, access and text modes for input-output operations.
— Timing modes: Duration and absolute time modes for time supervision.
— Moreta modes: Module, region and task modes for object orientation with single inheritance.

CHILL provides denotations for a set of standard modes. Program defined modes can be introduced by means of mode
definitions. Some language constructs have a so-called dynamic mode attached. A dynamic mode is a mode of which
some properties can be determined only dynamically. Dynamic modes are always parameterised modes with run-time
parameters. A mode that is not dynamic is called a static mode.

With moreta modes, CHILL supports object oriented programming in a very versatile manner. There are three kinds of
modes for objects:

— Module modes: The values of these modes behave very much like modules and resemble therefore
mostly the objects in classical object oriented programming (e.g. Smalltalk, C++, Eiffel).

— Region modes: The values of these modes behave very much like regions. Such objects are usually not
found in classical object oriented programming.

— Taskmodes: The values of these modes have essentially the same structure as regions but have their
own thread of control, and communication between them and other objects is done
asynchronously.

Classes have no denotation in CHILL. They are introduced in the metalanguage only to describe static and dynamic
context conditions.
14 L ocations and their accesses

Locations are places where values can be stored or from which values can be obtained. In order to store or obtain a
value, a location has to be accessed.

2 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Declaration statements define names to be used for accessing alocation. There are;
1) location declarations;

2) loc-identity declarations.

The first one creates locations and establishes access names to the newly created locations. The latter one establishes
new access names for locations created elsewhere.

Apart from location declarations, new locations can be created by means of a GETSTACK or ALLOCATE built-in routine
call yielding reference values (see below) to the newly created location.

A location may be referable. This means that a corresponding reference value exists for the location. This reference
value is obtained as the result of the referencing operation, applied to the referable location. By dereferencing a
reference value, the referred location is obtained. CHILL requires certain locations to be referable and others to be not
referable, but for other locationsit is left to the implementation to decide whether or not they arer efer able. Referability
must be a statically determinable property of locations.

A location may have a read-only mode, which means that it can only be accessed to obtain a value and not to store a
new value into it (except when initialising).

A location may be composite, which means that it has sublocations which can be accessed separately. A sublocation is
not necessarily referable. A location containing at least one read-only sublocation is said to have the read-only
property. The accessing methods delivering sublocations (or subvalues) are indexing and dlicing for strings and for
arrays, and selection for structures.

A location has a mode attached. If this mode is dynamic, the location is called a dynamic mode location.
The following properties of alocation, athough statically determinable, are not part of the mode:
referability: whether or not areference value exists for the location.

storage class: whether or not it is statically allocated.

regionality: whether or not the location is declared within aregion.

15 Values and their operations

Vaues are basic objects on which specific operations are defined. A value is either a (CHILL) defined value or an
undefined value (in the CHILL sense). The usage of an undefined value in specified contexts results in an undefined
situation (in the CHILL sense) and the program is considered to be incorrect.

CHILL alows locations to be used in contexts where values are required. In this case, the location is accessed to obtain
the value contained in it.

A value has a class attached. Strong values are values that besides their class also have a mode attached. In that case the
value is always one of the values defined by the mode. The class is used for compatibility checking and the mode for
describing properties of the value. Some contexts require those properties to be known and a strong value will then be
required.

A value may be literal, in which case it denotes an implementation independent discrete value, known at compile time.
A value may be constant, in which case it always delivers the same value, i.e. it need only be evaluated once. When the
context requires a literal or constant value, the value is assumed to be evaluated before run time and therefore cannot
generate a run-time exception. A value may be intraregional, in which case it can refer somehow to locations declared
within aregion. A value may be composite, i.e. contain subvalues.

Synonym definition statements establish new names to denote constant values.

1.6 Actions
Actions constitute the algorithmic part of a CHILL program.

The assignment action stores a (computed) value into one or more locations. The procedure call invokes a procedure, a
built-in routine call invokes a built-in routine (a built-in routine is a procedure whose definition need not be written in
CHILL and whose parameter and result mechanism may be more general). To return from and/or establish the result of a
procedure call, the return and result actions are used.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 3

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

To control the sequential action flow, CHILL provides the following flow of control actions:

— If action: For a two-way branch.

— Case action: For a multiple branch. The selection of the branch may be based upon several values,
similarly to a decision table.

— Do action; For iteration or bracketing.

— Exit action; For leaving a bracketed action or a module in a structured manner.

— Cause action: To cause a specific exception.

— Goto action: For unconditional transfer to a labelled program point.

Action and data statements can be grouped together to form a module or begin-end block, which form a (compound)
action.

To control the concurrent action flow, CHILL provides the start, stop, delay, continue, send, delay case, and receive case
actions, and receive and start expressions.

1.7 Input and output

The input and output facilities of CHILL provide the means to communicate with a variety of devices in the outside
world.

The input-output reference model knows three states. In the free state there is no interaction with the outside world.

Through anASSOCIATE operation, the file handling state is entered. In the file handling state there are locations of
association mode, which denote outside world objects. It is possible via built-in routines to read and modify the language
defined attributes of associations, eristing, readable, writeable, indexable, sequencible andvariable. File creation

and deletion are also done in the file handling state.

Through theCONNECT operation, a location of access mode is connected to a location of an association mode, and the
data transfer state is entered. TW@NNECT operation allows positioning oflzase index in a file. In the data transfer

state various attributes of locations of access mode can be inspected and the data transfer BRARR&EXORD and
WRITERECORD can be applied.

Through the text transfer operations, CHILL values can be represented in a human-readable form which can be
transferred to or from a file or a CHILL location.

1.8 Exception handling

The dynamic semantic conditions of CHILL are those (non context-free) conditions that, in general, cannot be statically
determined. (It is left to the implementation to decide whether or not to generate code to test the dynamic conditions at
run time, unless an appropriate handler is explicitly specified.) The violation of a dynamic semantic rule causes a run-
time exception; however, if an implementation can determine statically that a dynamic condition will be violated, it may
reject the program.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an assert action.
When, at a given program point, an exception occurs, control is transferred to the associated handler for that exception,
if one is specified. Whether or not a handler is specified for an exception at a given point can be statically determined. If
no explicit handler is specified, control may be transferred to an implementation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception hame, an implementation defined exception name,
or a program defined exception name. Note that when a handler is specified for an exception name, the associated
dynamic condition must be checked.

19 Time supervision

Time supervision facilities of CHILL provide the means to react to the elapsing of time in the external world. A process
becomedimeoutable when it reaches a well-defined point in the execution of certain actions. At this point it may be
interrupted. When this happens, control is transferred to an appropriate handler.

Programs may detect the elapsing of a period of time or may synchronize to an absolute point of time or at precise
intervals without cumulated drifts. Built-in routines for time are provided to convert absolute time values and duration
values into integer values, to suspend a process until a time supervision expires.

4 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

1.10 Program structure

The program structuring statements are the begin-end block, module, procedure, process, region and moreta mode. The
program structuring statements provide the means of controlling the lifetime of locations and the visibility of names.

The lifetime of a location is the time during which a location exists within the program. Locations can be explicitly
declared (in a location declaration) or generated (GETSTACK or ALLOCATE built-in routine call), or they can be
implicitly declared or generated as the result of the use of language constructs.

A name is said to be visible at a certain point in the program if it may be used at that point. The scope of a name
encompasses all the pointswhereit isvisible, i.e. where the denoted object isidentified by that name.

Begin-end blocks determine both visibility of names and lifetime of locations.

Modules are provided to restrict the visibility of names to protect against unauthorised usage. By means of visibility
statements, it is possible to exercise control over the visibility of namesin various program parts.

A procedure is a (possibly parameterised) subprogram that may be invoked (called) at different places within a program.
It may return a value (value procedure) or a location (location procedure), or deliver no result. In the latter case the
procedure can only be called in a procedure call action.

Processes, task locations, regions and region locations provide the means by which a structure of concurrent executions
can be achieved.

Generic templates provide the means by which generic modules, regions, procedures, processes and moreta modes can
be constructed. These templates can be parameterised by SYN constants, modes and procedures. Generic instantiation
statements are used to obtain (non-generic) modules, regions, procedures, processes and moreta modes which are called
generic instances. A generic instance is obtained from a generic template T by replacing in T the formal generic
parameters with the corresponding actual generic parameters.

A complete CHILL program is a list of program units that is considered to be surrounded by an (imaginary) process
definition. This outermost process is started by the system under whose control the program is executed. A program unit
can be a module, a region, a moreta synmode definition statement, a moreta newmode definition statement or a generic
template.

Constructs are provided to facilitate various ways of piecewise development of programs. A spec module and spec
region are used to define the static properties of a program piece, a context is used to define the static properties of
seised names. |n addition it is possible to specify that the text of a program piece is to be found somewhere el se through
the remote facility.

1.11 Concurrent execution

CHILL alows for the concurrent execution of program units. A thread (process or task) is the unit of concurrent
execution. The evaluation of a start expression causes the creation of a new process of the indicated process definition.
The process is then considered to be executed concurrently with the starting thread. CHILL allows for one or more
processes with the same or different definition to be active at one time. The stop action, executed by a process or a task,
causes its termination.

A thread is aways in one of two states; it can be active or delayed. The transition from active to delayed is called the
delaying of the thread; the transition from delayed to active is called the reactivation of the thread. The execution of
delaying actions on events, or receiving actions on buffers or signals, or sending actions on buffers, or call action to a
component procedure of aregion location, or call action to a component procedure of atask location in case there is not
enough storage to perform can cause the executing thread to become delayed. The execution of a continue action on
events, or sending actions on buffers or signals, or receiving actions on buffers, or release of aregion location, or at the
beginning of the execution of an externally called component procedure of atask location can cause a delayed thread to
become active again.

Buffers and events are locations with restricted use. The operations send, receive and receive case are defined on
buffers; the operations delay, delay case and continue are defined on events. Buffers are a means of synchronizing and
transmitting information between processes. Events are used only for synchronisation. Signals are defined in signal
definition statements. They denote functions for composing and decomposing lists of values transmitted between
processes. Send actions and receive case actions provide for communication of alist of values and for synchronisation.

A region or region location is a special kind of module. Its use is to provide for mutually exclusive access to data
structures that are shared by several threads.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 5

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

1.12 General semantic properties

The semantic (non context-free) conditions of CHILL are the mode and class compatibility conditions (mode checking)
and the visibility conditions (scope checking). The mode rules determine how names may be used; the scope rules
determine where names may be used.

The mode rules are formulated in terms of compatibility requirements between modes, between classes and between
modes and classes. The compatibility requirements between modes and classes and between classes themselves are
defined in terms of equivalence relations between modes. If dynamic modes are involved, mode checking is partly
dynamic.

The scope rules determine the visibility of names through the program structure and explicit visibility statements. The
explicit visibility statements influence the scope of the mentioned names. Names introduced in a program have a place
where they are defined or declared. This placeis called the defining occurrence of the name. The places where the name
is used are called applied occurrences of the name. The name binding rules associate a unique defining occurrence with
each applied occurrence of the name.

1.13 Implementation options

CHILL alows for implementation defined integer modes, implementation defined built-in routines, implementation
defined process names, implementation defined exception handlers and implementation defined exception names.

An implementation defined integer mode must be denoted by an implementation defined mode name. This name is
considered to be defined in a newmode definition statement that is not specified in CHILL. Extending the existing
CHILL-defined arithmetic operations to the implementation defined integer modes is allowed within the framework of
the CHILL syntactic and semantic rules. Examples of implementation defined integer modes are long integers and short
integers.

A built-in routine is a procedure whose definition need not be written in CHILL and that may have a more generd
parameter passing and result transmission scheme than CHILL procedures.

A built-in process name is a process name whose definition need not be written in CHILL and that may have a more
general parameter passing scheme than CHILL processes. A CHILL process may cooperate with built-in processes or
start such processes.

An implementation defined exception handler is a handler appended to a process definition. If this handler receives
control after the occurrence of an exception, the implementation decides which actions are to be taken. An
implementation defined exception is caused if an implementation defined dynamic condition is violated.

6 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

2 Preliminaries

21 The metalanguage

The CHILL description consists of two parts:
e thedescription of the context-free syntax;

e thedescription of the semantic conditions.

211 The context-free syntax description

The context-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are indicated by
one or more English words, written in slanted characters, enclosed between angular brackets (< and >). Thisindicator is
called anon-terminal symbol. For each non-terminal symbol, a production rule is given in an appropriate syntax section.
A production rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side of the symbol ::=,
and one or more constructs, consisting of non-terminal and/or terminal symbols at the right-hand side. These constructs
are separated by avertical bar (|) to denote aternative productions for the non-terminal symbol.

Sometimes the non-terminal symbol includes an underlined part. This underlined part does not form part of the context-
free description but defines a semantic category (see 2.1.2).

Syntactic elements may be grouped together by using curly brackets ({ and }). Repetition of curly bracketed groups is

indicated by an asterisk (*) or plus (*). An asterisk indicates that the group is optional and can be further repeated any

number of times; a plus indicates that the group must be present and can be further repeated any number of times. For

example, { A}* stands for any sequence of A's, including zero, while A} * stands for any sequence of at leastAnié

syntactic elements are grouped using square brackets ([and]), then the group is optional. A curly or square bracketed
group may contain one or more vertical bars, indicating alternative syntactic elements.

A distinction is made between strict syntax, for which the semantic conditions are given directly, and derived syntax.
The derived syntax is considered to be an extension of the strict syntax and the semantics for the derived syntax is
indirectly explained in terms of the associated strict syntax.

It is to be noted that the context-free syntax description is chosen to suit the semantic description in this document and is
not made to suit any particular parsing algorithm (e.g. there are some context-free ambiguities introduced in the interest
of clarity). The ambiguities are resolved using the semantic category of the syntactic elements.

212 The semantic description

Each syntactic category (non-terminal symbol) is described in subclagsestics, static properties, dynamic
properties, static conditions anddynamic conditions.

The subclauseemantics describes the concepts denoted by the syntactic categories (i.e. their meaning and behaviour).

The subclausetatic properties defines statically determinable semantic properties of the syntactic category. These
properties are used in the formulation of static and/or dynamic conditions in the sections where the syntactic category is
used.

The subclausdynamic properties defines the properties of the syntactic category, which are known only dynamically.

The subclausstatic conditions describes the context-dependent, statically checkable conditions which must be fulfilled
when the syntactic category is used. Some static conditions are expressed in the syntax by means of an underlined part ir
the non-terminal symbol (see 2.1.1). This use requires the non-terminal to be of a specific semantic category.
E.g.boolean expression is identical to €xpression> in the context-free sense, but semantically it requiresxtression

to be of a boolean class.

The subclausdynamic conditions describes the context-dependent conditions that must be fulfilled during execution.

In some cases, conditions are static if no dynamic modes are involved. In those cases, the condition is mentioned under
static conditions and referred to undedynamic conditions. In other cases, dynamic conditions can be checked
statically; an implementation may treat this as a violation of a static condition.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 7

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

In the semantic description, different fonts are used in the following ways. slanted font (without < and >) is used to
indicate syntactic objects; corresponding terms in roman font indicate corresponding semantic objects (e.g. a location
denotes a location). Bolding is used to name semantic properties; sometimes a property can be expressed syntactically as
well as semantically (e.g. the sentence “eRpression is constant” means the same as “tle@pression is aconstant
expression”).

Unless otherwise specified, the semantics, properties and conditions described in the subclause of a syntactic category
hold regardless of the context in which in other subclauses that syntactic category may appear.

The properties of a syntactic categéryhat has a production rule of the foAn:= B, whereB is a syntactic category,
are the same @& unless otherwise specified.

In this Recommendation | International Standard, virtual names are introduced to describe modes, locations and values
which do not occur explicitly in the program text. In such cases the name is preceded by an ampersand (&) symbol.
These names are introduced for descriptive purposes only.

213 The examples

For most syntax subclauses, there is a subclaxamples giving one or more examples of the defined syntactic
categories. These examples are extracted from a set of program examples contained in Appendix IV. References indicate
via which syntax rule each example is produced and from which example it is taken.

E.g.6.20 (d+5)/5 (1.2) indicates an example of the terminal str{dg 5)/5, produced via rul¢l.2) of the appropriate
syntax subclause, taken from program exampletNioe 20.

214 Thebinding rulesin the metalanguage

Sometimes the semantic description mentions CHihécial simple name strings (see Appendix Ill). Thepecial
simple name strings are always used with their CHILL meaning and are therefore not influenced by the binding rules of
an actual CHILL program.

22 Vocabulary

Programs are represented using the CHILL character set (see Appendix). The alphabet is represented by the syntactic
category <haracter>, from which any character that is in the CHILL character set can be derived as terminal
production.

The lexical elements of CHILL are:
e special symbols;
e simple name strings;
o literals.
The special symbols are listed in Appendix Ill. They can be formed by a single character or by character combinations.

Simple name strings are formed according to the following syntax:

syntax:

<simple name string> ::= @

<letter> { <letter> | digit> | _}* (1.2)

<letter>::= &)
A|B|C|D|E|F|G|H]|I|J|K|L|M (2.1)
INJOIP|QIR|S|TIU|VIW][X]|Y]|Z (2.2)
lalblcld|el[flg[h[i|jlk|I|m (2.3)
Infolplalrfs|tiufv]w]|x]|y]|z (24)

<digit>::= ©)
0]1]12|3]4]|5|617]8]9 (31

semantics: The underline character () forms part of the simple name string, e.g. the simple namiéfestiimg is
different from the simple name stritidetime. Lower case and upper case letters are differentSatgs andstatus are
two different simple name strings.

8 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The language has a number of special simple name strings with predetermined meanings (see Appendix I11). Some of
them arereserved, i.e. they cannot be used for other purposes.

The special simple name strings in a piece must either all be in upper case representation or all be in lower case
representation. The reserved simple name strings are only reserved in the chosen representation (e.g. if the lower case
fashion is chosen, row isreserved, ROW is not).

static conditions: A simple name string may not be one of the reserved simple name strings (seell1.1).

23 The use of spaces

A sequence of one or more spaces is allowed before and after each lexical element. Such a sequenceis called adelimiter.
Lexical elements are also terminated by the first character that cannot be part of the lexical element. For instance,
IFBTHEN will be considered a simple name string and not as the beginning of an action IF B THEN, //* will be
considered as the concatenation symbol (//) followed by an asterisk (*) and not as a divide symbol (/) followed by a
comment opening bracket (/*).

24 Comments
syntax:
<comment> ::= @
<bracketed comment> 1.1
| <line-end comment> (1.2)
<bracketed comment> ::= ()]
[* <character string>*/ (2.2)
<line-end comment> ::= 3
— — <haracter string> <end-of-line> (3.1
<character string> ::= 4
{ <character> }* 4.2

NOTE - end-of-line denotes the end of the line in which the comment occurs.
semantics: A comment conveys information to the reader of a program. It has no influence on the program semantics.
A comment may be inserted at all places where spaces are allowed as delimiters.

A bracketed comment is terminated by the first occurrence of the special sequence: */. A line-end comment is terminated
by the first occurrence of the end of theline.

examples:

41 [* from collected algorithms from CACM No. 93 */ (2.1

25 Format effectors

The format effectors BS (Backspace), CR (Carriage return), FF (Form feed), HT (Horizontal tabulation), LF (Line feed),
VT (Vertical tabulation) of the CHILL character set (see Appendix |, positions FEq to FEs) and the end-of-line are not
mentioned in the CHILL context-free syntax description. When used, they have the same delimiting effect as a space.
Spaces and format effectors may not occur within lexical elements (except character string literals).

2.6 Compiler directives
syntax:
<directive clause> ::= 1)
<> <directive> { , <directive> }* <> 1.1

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 9

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<directive> ::= 2
<implementation directive> (2.1

semantics; A directive clause conveys information to the compiler. This information is specified in an implementation
defined format.

An implementation directive must not influence the program semantics, i.e. a program with implementation directivesis
correct, in the CHILL senseif, and only if, it is correct without these directives.

A directive clause is terminated by the first occurrence of the directive ending symbol (<>). A directive may contain any
character of the character set (see Appendix I).

static properties: A directive clause may be inserted at any place where spaces are alowed as delimiters. It has the
same delimiting effect as a space. The names used in a directive clause follow an implementation defined name binding
scheme which does not influence the CHILL name binding rules (see 12.2).

2.7 Names and their defining occurrences
syntax:

<name> ;= (0]
<name string> 1.0

| <qualified name> (1.2)

| <moreta component name> (1.3)

<name string> ::= 2
<simple name string> (2.1

| <prefixed name string> (2.2
<prefixed name string> ::= 3
<prefix> ! <simple name string> (3.1

<prefix> ;= 4
<simple prefix> { ! <simple prefix> }* (4.0

<simple prefix> ::=)
<simple name string> (5.0

<defining occurrence> ::= (6)
<simple name string> (6.1

<defining occurrencelist> ::= @)
<defining occurrence> { , <defining occurrence> }* (7.2)

<set element name> ;= (8
<simple name string> (8.1

<set element name defining occurrence> ::= 9
<simple name string> (9.0

<field name> ::= (10)
<simple name string> (10.1)

<field name defining occurrence> ::= (11)
<simple name string> (11.1)

<field name defining occurrencelist> ::= (12
<field name defining occurrence> { , <field name defining occurrence> }* (12.1)
<exception name> ::= (13
<simple name string> (13.2)

| <prefixed name string> (13.2)

<text reference name> ::= 14
<simple name string> (14.2)

| <prefixed name string> (14.2)

10 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<component name> ::= (15)
<simple name string> (15.1)
<component name defining occurrence> ::= (16)
<simple name string> (16.1)
<qualified name> ::= a7
<simple hame string>! <component name> (17.1)
<moreta component name> ::= (18)
<moreta location>. { <simple name string> | <qualified name> } (18.1)

semantics. Names in a program denote objects. Given an occurrence of a name (formally: an occurrence of a terminal
production of name) in a program, the binding rules of 12.2 provide defining occurrences (formally: occurrences of
terminal productions of defining occurrence) to which that (occurrence of) name is bound. The name then denotes the
object defined or declared by the defining occurrences. (There can be more than one defining occurrence for a name in
the case of names with quasi defining occurrences and in the case of names of components of moreta modes.)

Defining occurrences are said to define the name. A nameis said to be an applied occurrence of the name created by the
defining occurrence to which it isbound. The name has its rightmost simple name string equal to that of the name.

Similarly, field names are bound to field name defining occurrences and denote the fields (of a structure mode) defined
by those field name defining occurrences. Moreta component hames are bound to component defining occurrences and
denote the components (of a moreta mode) defined by those component name defining occurrences.

Exception names are used to identify exception handlers according to the rules stated in clause 8.

Text reference names are used to identify descriptions of pieces of source text in an implementation defined way, subject
totherulesin 10.10.1.

When a name is bound to more than one defining occurrence, each of the defining occurrences to which the name is
bound defines or declares the same object (see 10.10 and 12.2.2 for precise rules).

Qualified names are used to identify components of moreta modes.

definition of notation: Given a name string NS, and a string of characters P, which is either a prefix or is empty, the
result of prefixing NS with P, written P! NS, is defined as follows:

« if Pisempty, then P! NSisNS;

e otherwise P! NSisthe name string obtained by concatenating all the charactersin P, a prefixing operator
and all the charactersin NS.

For example, if Pisd! r"and NSis$!n"then PINSisf!r!s!n".

static properties: Eachsimple name string has acanonical name string attached which is thenple name string itself.
A name string has acanonical name string attached which is:

« if thenamestring is asimple name string, then thecanonical name string of thadimple name string;;

« if the name string is aprefixed name string, then the concatenation in left to right order ofatiple name
strings in thename string, separated by prefixing operators, i.e. interspersed spaces, comments and format
effectors (if any) are left out.

In the rest of this Recommendation | International Standard:

< the name string of mame, exception name or text reference name is used to denote the@nonical name
string of thename string in thatname, exception name or text reference name, respectively;

< the name string of defining occurrence, field name, field name defining occurrence, moreta component
name or moreta component defining occurrence is used to denote tlwanonical name string of theimple
name string in thatdefining occurrence, field name, field name defining occurrence, moreta component
name or moreta component defining occurrence, respectively.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 11

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The binding rules are such that:
* names with asimple name string are bound to defining occurrences with the same name string;

* names with a prefixed name string are bound to defining occurrences with the same name string as the
rightmost simple name string in the prefixed name string of the name;

« field names are bound to field name defining occurrences with the same name string as the field names;

« moreta component names are bound to moreta component name defining occurrences with the same
name string as the moreta component names.

A name inherits all the static properties attached to the name defined by the defining occurrence to which it is bound. A
field name inherits all static properties attached to the field name defined by the field name defining occurrence to which
it isbound. A moreta component name inherits all static properties attached to the moreta component name defined by
the moreta component hame defining occurrence to which it is bound.

static conditions: The simple name string denoted in a qualified name and followed by ! must be a moreta mode name.

If a qualified name of the form “M ! component name” occurs outside the definition of the moreta mode M, then the
component name must be the name of a SYN, a SYNMODE, or a NEWMODE component of M.

12 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

3 M odes and classes

31 General

A location has a mode attached to it; a value has a class attached to it. The mode attached to a location defines the set of
values that may be contained in the location, the access methods of the location and the allowed operations on the
values. The class attached to a value is a means of determining the modes of the locations that may contain the value.
Some values are strong. A strong value has a class and a mode attached. Strong values are required in those value
contexts where mode information is needed.

3.11 M odes

CHILL has static modes (i.e. modes for which all properties are statically determinable) and dynamic modes (i.e. modes
for which some properties are only known at run time). Dynamic modes are always parameterised modes with run-time
parameters.

Static modes are terminal productions of the syntactic category mode.

Modes are also parameterised by values not explicitly denoted in the program text.

3.1.2 Classes
Classes have no denotation in CHILL.
The following kinds of classes exist and any value in a CHILL program has a class of one of these kinds:

For amode M there exists the M-value class. All values with such a class and only those values are strong and the mode
attached to the valueis M.

* For amode M there exists the M-derived class.
e For any mode M there exists the M-reference class.
e Thenull class.

e Theall class.

The last two classes are constant classes, i.e. they do not depend on amode M. A classis said to be dynamic if, and only
if, it isan M-vaue class, an M-derived class, or an M-reference class, where M is a dynamic mode.

313 Properties of, and relations between, modes and classes

Modes in CHILL have properties. These may be hereditary or non-hereditary properties. A hereditary property is
inherited from a defining mode to a mode name defined by it. Below a summary is given of the properties that apply to
all modes (except for the first, they are all defined in 12.1):

e A mode has anovelty (defined in 3.2.2, 3.2.3 and 3.3).
¢ A mode can have the read-only property.

A mode can be parameterisable.

A mode can have the referencing property.

« A mode can have the tagged parameterised property.

¢ A mode can have the non-value property.

Classesin CHILL may have the following properties (defined in 12.1):
e A classcan have aroot mode.

e Oneor more classes may have aresulting class.

Operations in CHILL are determined by the modes and classes of locations and values. This is expressed by the mode
checking rules which are defined in 12.1 as a number of relations between modes and classes. There exist the following
relations:

« Two modes can be similar.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 13

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e Two modes can be v-equivalent.

e Two modes can be equivalent.

e Two modes can be l-equivalent.

* Two modes can be alike.

e Two modes can be novelty bound.

e Two modes can be read-compatible.

e Two modes can be dynamic read-compatible.
e Two modes can be dynamic equivalent.

* A mode can berestrictable to amode.

e A mode can be compatible with a class.

e A class can be compatible with a class.

32 M ode definitions

3.21 General

syntax:
<mode definition> ::= @
<defining occurrence list> = <defining mode> (1.1
<defining mode> ::= ()]
<mode> (2.1

derived syntax: A mode definition where the defining occurrence list consists of more than one defining occurrence is
derived from several mode definitions, one for each defining occurrence, separated by commas, with the same defining
mode. For example:

NEWM ODE dollar, pound = INT;
is derived from:
NEWM ODE dollar = INT, pound = INT;

semantics: A mode definition defines a name that denotes the specified mode. Mode definitions occur in synmode and
newmode definition statements. A synmode is synonymous with its defining mode. A newmode is not synonymous
with its defining mode. The difference is defined in terms of the property novelty, that is used in the mode checking
(see 12.1).

static properties: A defining occurrence in a mode definition defines a mode name.

Predefined mode names, implementation defined integer mode names and implementation defined floating point mode
names (if any, see 3.4.2 and 3.5.1) are also mode names.

A mode name has a defining mode which is the defining mode in the mode definition which defines it. (For predefined
and implementation defined mode names this defining mode is a virtual mode). The hereditary properties of a mode
name are those of its defining mode.

A set of recursive definitionsis a set of mode definitions or synonym definitions (see 5.1) such that the defining mode in
each mode definition or constant value or mode in each synonym definition is, or directly contains, a mode name or a
synonym name defined by a definition in the set.

A set of recursive mode definitions is a set of recursive definitions having only mode definitions.

Any mode being or containing a mode name defined in a set of recursive mode definitions is said to denote a recursive
mode. A path in a set of recursive mode definitionsis alist of mode names, each name indexed with a marker such that:

« dl namesin the path have a different definition;

14 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

« for each name, its successor is or directly occursin its defining mode (the successor of the last nameisthe
first name);

e the marker indicates uniquely the position of the name in the defining mode of its predecessor (the
predecessor of the first name isthe last name).

(Examplee NEWMODE M = STRUCT (i M, n REF M); contains two paths: { M;} and {Mp}.)

A path is safe if, and only if, at least one of its names is contained in a reference mode, a row mode, or a procedure
mode at the marked place.

static conditions: For any set of recursive mode definitions, al its paths must be safe. (The first path of the example
above is not safe).

examples:

1.15 operand_mode = INT (1.1
33 complex = STRUCT (re,im FLOAT) 1.n

322 Synmode definitions

syntax:
<synmode definition statement> ::= @
SYNM ODE <mode definition> { , <mode definition> }* ; (1.1
| <remote program unit> (1.2

semantics. A synmode definition statement defines mode names which are synonymous with their defining mode.

static properties: A defining occurrence in a mode definition in a synmode definition statement defines a synmode
name (which is also a mode name). A synmode name is said to be synonymous with a mode M (conversely, M is said
to be synonymous with the synmode name) if, and only if:

« either M isthe defining mode of the synmode name; or

« thedefining mode of the synmode nameisitself a synmode name synonymous with M.
The novelty of a synmode name is that of its defining mode.

If the defining mode is a discrete range mode or a floating point range mode, then the parent mode of the synmode
name is that of its defining mode. If the defining mode is a varying string mode, then the component mode of the
synmode nameis that of its defining mode.

examples:
6.3 SYNMODE month = SET (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec); (1.1
323 Newmode definitions
syntax:
<newmode definition statement> ::= (0]
NEWM ODE <mode definition> { , <mode definition>}* ; (1.2
| <remote program unit> (1.2

semantics. A newmode definition statement defines mode names which are not synonymous with their defining mode.

static properties: A defining occurrence in a mode definition in a newmode definition statement defines a newmode
name (which is also amode name).

The novelty of the newmode name is the defining occurrence which defines it. If the defining mode of the newmaode
name is a discrete range mode or a floating point range mode, then the virtual mode & name is introduced as the par ent
mode of the newmode name. The defining mode of & name is the parent mode of the discrete range mode or the one of
the floating point range mode, and the novelty of & nameis that of the newmode name.

If the defining mode is a varying string mode, then the virtual mode & name is introduced as the component mode of
the newmode name. The defining mode of & name is the component mode of the varying string mode, and the novelty
of &nameisthat of the newmode name.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 15

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If the defining occurrence of the mode definition is a quasi defining occurrence, then the novelty is a quasi novelty,
otherwiseitisareal novelty.

static conditions: If the novelty isaquasi novelty, then at most onereal novelty must be novelty bound to it.

examples:
11.6 NEWM ODE line = INT (1:8); (1.2)
11.12 NEWM ODE board = ARRAY (line) ARRAY (column) square; 1.1
3.3 M ode classification
syntax:
<mode> ::= @
[READ] <non-composite mode> (1.1
| [READ] <composite mode> (1.2
| <formal generic mode indication> 1.3
<non-composite mode> ::= 2
<discrete mode> (2.1
| <real mode> (2.2
| <powerset mode> (2.3
| <reference mode> (2.4)
| <procedure mode> (2.5)
| <instance mode> (2.6)
| <synchronisation mode> (2.7)
| <input-output mode> (2.8)
| <timing mode> (2.9

semantics: A mode defines a set of values and the operations which are alowed on the values. A mode may be aread-
only mode, indicating that a location of that mode may not be accessed to store a value. A mode has a novelty,
indicating whether it was introduced via a newmode definition statement or not.

static properties: A mode has the following hereditary properties:
e Itisaread-only modeif it isan explicit or an implicit read-only mode.

It is an explicit read-only mode if READ is specified or it is a parameterised array mode, a
parameterised string mode or a parameterised structure mode, where the origin array mode name,
origin string mode name or origin variant structure mode name, respectively, initisaread-only mode.

e Itisanimplicit read-only modeif it is not an explicit read-only mode and if:
— itis the element mode of a read-only string mode or a read-only array mode (see 3.13.2 and 3.13.3);

— itis a field mode of a read-only structure mode or it is the mode of a tag field of a parameterised
structure mode (see 3.13.4).

A mode has the same properties as ttioa-composite mode or composite mode in it. In the following subclauses, the
properties are defined for predefinede names and famodes that are nomode names; the properties afode names
are defined in 3.2Read-only modes have the same properties as their correspondingeambionly modes except for
theread-only property (see 12.1.1.1).

A mode has the following non-hereditary properties:

* A novelty that is eithemil or the defining occurrence in a mode definition in a newmode definition
statement. The novelty of a mode which is not eode name (hor READ mode name) is defined as
follows:

— if it is aparameterised string mode, garameterised array mode or garameterised structure
mode, itsnovelty is that of itsorigin string modeorigin array mode oprigin variant structure
mode, respectively;

— ifitis a discrete range mode or a floating point range modsovty is that of itgparent mode;

16 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

— otherwise itsiovety is nil.
Thenovelty of a mode that is mode name (READ mode name) is defined in 3.2.2 and 3.2.3.

« Asizethat is the value delivered I§ZE (&M), where&M is a virtualsynmode hamesynonymous with
themode.

34 Discrete modes

34.1 General

syntax:
<discrete mode> ::= (D)
<integer mode> (1.1
| <boolean mode> (1.2)
| <character mode> (1.3
| <set mode> (1.9
| <discrete range mode> (1.5)

semantics. A discrete mode defines sets and subsets of totally-ordered values.

34.2 Integer modes

syntax:
<integer mode> ::= @
<integer mode name> 1.0

predefined names. The namdNT is predefined as anteger mode name.

semantics. An integer mode defines a set of signed integer values between implementation defined bounds over which

the usual ordering and arithmetic operations are defined (see 5.3). An implementation may define other integer modes
with different bounds (e.d-ONG_INT, SHORT_INT, UNSIGNED_INT) that may also be used parent modes for

ranges (see 13.2). TRANT mode is introduced as the virtual mode that contains all the valuegpoéddfined integer

modes defined by the implementation. The internal representation of an integer value is the integer value itself. Note that
&INT is not apredefined mode (although it may have the same bounds as thoser eflefined integer mode).

static properties: An integer mode has the following hereditary properties:

« An upper bound and alower bound which are the literals denoting respectively the highest and lowest
value defined by the integer mode. They are implementation defined.

¢ A number of values which isupper bound —lower bound + 1.
examples:

15 INT (1.1
343 Boolean modes

syntax:

<boolean mode> ::= @
<boolean mode name> (1.1

predefined names. The namaéBOOL is predefined as laoolean mode name.

semantics. A boolean mode defines the logical truth valuEBUE and FALSE), with the usual boolean operations
(see 5.3). The internal representations FLSE and TRUE are the integer values 0 and 1, respectively. This
representation defines the ordering of the values.

static properties: A boolean mode has the following hereditary properties:

e Anupper bound which isTRUE, and dower bound which isFALSE.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 17

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

* A number of valueswhichis2.
examples:

54 BOOL (1.2)
344 Character modes

syntax:

<character mode> ::= @
<character mode name> (1.2)

predefined names. The name CHAR s predefined as a char acter mode name.

semantics. A character mode defines the character values as described by the CHILL character set (see Appendix 1).
This alphabet defines the ordering of the characters and the integer values which are their internal representations.

static properties: A character mode has the following hereditary properties:

e« An upper bound and a lower bound which are the character literals denoting respectively the highest
and lowest value defined by CHAR.

* A number of valueswhich is 256.
examples:

8.4 CHAR (1.1)

345 Set modes

syntax:

<set mode> ::= (0]
SET (<setlist>) (1.1)

| <set mode name> 1.2

<set list> ;= %)
<numbered set list> (2.2)

| <unnumbered set list> (2.2)
<numbered set list> ;:= (©)]
<numbered set element> { , <numbered set element>} * (3.1
<numbered set element> ::= 4
<set element name defining occurrence> = <integer literal expression> (4.1
<unnumbered set list> ;:= 5)
<set element> { , <set element>}* (5.1

<set element> 1= (6)
<set element name defining occurrence> (6.2)

semantics: A set mode defines a set of named and unnamed values. The named values are denoted by the names defined
by defining occurrences in the set list; the unnamed values are the other values. The internal representation of the named
valuesisthe integer value associated with them. This representation defines the ordering of the values.

The maximum number of values of a set mode isimplementation defined.

static properties. A defining occurrence in a set list defines a set element name. A set element name has a set mode
attached, which is the set mode.

A set mode has the following hereditary properties:
e A st of set element names which isthe set of names defined by defining occurrencesin its set list.

e Each set element name of a set mode has an internal representation value attached which is, in the case of
a numbered set element, the value delivered by the integer literal expression in it; otherwise one of the
values 0, 1, 2, etc., according to its position in the unnumbered set list. For example in: SET (a,b), a has
representation value 0, and b has representation value 1 attached.

18 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e An upper bound and a lower bound which are its set element names with the highest and lowest
representation values, respectively.

A number of values which isthe highest of the values attached to the set element names plus 1.

. It is a numbered set mode if the set list in it is a numbered set list; otherwise it is an unnumbered set
mode.

static conditions: For each pair of integer literal expressions e, e2 in the set list NUM (e1) and NUM (e2) must deliver
different non-negative results.

examples:

11.7 SET (occupied, free) 1.n
6.3 month 1.2

3.4.6 Discrete range modes

syntax:

<discrete range mode> ::= @
<discrete mode name> (<literal range>) (1.1

| RANGE (<literal range>) (1.2

| BIN (<integer literal expression>) 1.3

| <discrete range mode name> (1.4)

<literal range> ::= 2
<lower bound> : <upper bound> (2.1

<lower bound> ;:= (©)]
<discrete literal expression> 3.1

<upper bound> ::= 4
<discrete literal expression> (4.0

derived syntax: The notation BIN (n) is derived from RANGE (0: 2" — 1), e.g. BIN (2 + 1) stands for RANGE (O : 7).

semantics: A discrete range mode defines the set of values ranging between the bounds specified (bounds included) by
the literal range The range is taken from a specific parent mode that determines the operations on and ordering of the
range values.

static properties. A discrete range mode has the following non-hereditary property: it has a parent mode, defined as
follows:

e |f thediscrete range modeis of the form:
<discrete mod@ame> (<literal range>)

then if the discrete mod@ameis not a discrete range mode, the parent mode is the discrete mod@mame
otherwise it is the par ent mode of the discrete mod@ame

e |If thediscrete range modeis of the form:
RANGE (<literal range>)

then the parent mode depends on the resulting class of the classes of the upper boundand lower bound
in the literal range

— if it is an M-derived class, where M is an integer mode, therpghent mode is apredefined
integer mode chosen by the implementation such that it contains the range of values delivered by
literal range;

— otherwise it is theoot mode of the esulting class.

e If the discrete range mode isdiscrete range mode name which is asynmode name, then itparent
mode is that of thelefining mode of thesynmode name; otherwise it is aewmode name and then its
parent mode is the virtually introducquhrent mode (see 3.2.3).

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 19

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A discrete range mode has the following hereditary properties:

e Anupper bound and alower bound which are the literals denoting the values delivered by lower bound
and upper bound, respectively, in the literal range.

e A number of values which is the value delivered by NUM (U) — NUM (L) + 1, whereU andL denote
respectively theipper bound andlower bound of the discrete range mode.

e Itis anumbered range mode if itparent mode is anumbered set mode.

static conditions: The classes afpper bound andlower bound must becompatible and both must beompatible with
the discrete mode name, if specified.

Lower bound must deliver a value that is less than or equal to the value delivergpdsybound, and both values must
belong to the set of values defineddiscrete mode name, if specified.

Theinteger literal expression in case oBIN must deliver a non-negative value.

If the parent mode is an integer mode, there must exigredefined integer mode that contains the set of values
included between thewer bound and theupper bound.

If the discrete range mode is of the form:
RANGE (<literal range>) or <discrete mode name> (diteral range>)

then the evaluation of theldwer bound, 2.upper bound, must not depend directly or indirectly on the value of the
1lower bound, 2upper bound of the discrete range mode. If the discrete range mode is of the form:

BIN (<integer literal expression>)

then the evaluation of thateger literal expression must not depend directly or indirectly on the value ofupper
bound of the discrete range mode.

examples:
9.5 INT (2:max) (1.1
11.12 line (1.9
35 Real modes
syntax:
<real mode> ::= @
<floating point mode> 1.1
| <floating point range mode> 1.2

semantics. A real mode specifies a set of numerical values which approximate a continuous range of real numbers.

351 Floating point modes
syntax:

<floating point mode> ::= @
<floating point mode name> 1.1

predefined names. The namd-LOAT is predefined as fdoating point mode name.

semantics. A floating point mode defines a set of humeric approximations to a range of real values, together with their
minimum relative accuracy, between implementation defined bounds, over which the usual ordering and arithmetic
operations are defined (see 5.3). This set contains only the values which can be represented by the implementation. An
implementation may define other floating point modes with different bounds amuicision (e.g. LONG_FLOAT,
SHORT_FLOAT) that may also be used parent modes for ranges (see 13.3). BWiELOAT mode is introduced as the

virtual mode that contains all the values of @lkdefined floating point modes defined by the implementation. The
internal representation of a floating point value is the floating point value itself. No®Rh&AT is not apredefined

mode (although it may have the same bounds as thogar eflefined floating point mode).

20 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static properties: A floating point mode has the following hereditary properties:

* Anupper bound and alower bound which are the literals denoting respectively the highest and lowest
value defined by the floating point mode. They are implementation defined.

e A precision which is the maximum number of significant decimal digits defined by the mode.

A positive lower limit and a negative upper limit which are the literals denoting respectively the
smallest positive value and the largest negative value exactly representable in the floating point mode,
zero excluded.

examples:

FLOAT (1.1)

352 Floating point range modes

syntax:

<floating point range mode> ::= @
<floating point mode name> (<float value range>) 1.1

| RANGE (<float valuerange> [, <significant digits>]) (1.2)

| <floating point range mode hame> (1.3)

<float value range> ::= 2
<lower float bound> : <upper float bound> (2.1

<lower float bound> :: = 3
<floating point literal expression> 3.1

<upper float bound> :: = 4
<floating point literal expression> (4.1
<significant digits> ::= (5)
<integer literal expression> (5.1

semantics. A floating point range mode defines the set of values ranging between the bounds specified (bounds
included) by float value range with the number of significant digits specified by significant digits. The range is taken
from a specific parent mode that determines the operations on and ordering of the range values. E.g. RANGE (-10.(E1
: 10.CE1, 2) denotes the values: -10.0, -9.9, ..., -0.11, -0.1, 0, 0.1, ..., 10.0.

static properties: A floating point range mode has the following non-hereditary property: it paseat mode, defined
as follows:

e If the floating point range mode is of the form:

<floating point mode name> (<float value range>)

then if thefloating point mode name is not a floating point range mode, tharent mode is thdloating
point mode name; otherwise it is th@arent mode of thdloating point mode name.

e If the floating point range mode is of the form:

RANGE (<float value range> [, <significant digits>])

then theparent mode depends on thiesulting class of the classes of thapper float bound andlower
float bound in theliteral range:

— ifitis an M-derived class, where M is a floating point mode, thepahent mode is gredefined
floating point mode chosen by the implementation such that it contains the range of values delivered
by float value range, with theprecision defined below;

— otherwise it is theoot mode of the esulting class.

< If the floating point range mode isfl@ating point range mode name which is asynmode name, then its
parent mode is that of theefining mode of thesynmode name; otherwise it is aewmode name and
then itsparent mode is the virtually introducqghrent mode (see 3.2.3).

A floating point range mode has the following hereditary properties:

* An upper bound and alower bound which are the literals denoting the values deliveretblsr float
bound andupper float bound, respectively, in th8oat value range.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 21

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e« A precision whichis, if the floating point range mode is of the form:
RANGE (<float value range> [, <significant digits>])
— the value delivered kgrgnificant digits if specified;
— otherwise the greatgstecision of theprecisions of lower float bound andupper float bound.

Otherwise it is that of thi#oating point mode name or thél oating point range mode name.

static conditions: Lower float bound must deliver a value that is less than or equal to the value delivergybdsyfloat
bound, and both values must belong to the set of values definfidabiyng point mode name, if specified.

There must exist predefined floating point mode that contains bathper bound andlower bound with the specified
precision.

The value delivered bsignificant digit must be greater than zero.

The evaluation of the: lbwer float bound, 2.upper float bound, must not depend directly or indirectly on the value of
the: 1lower bound, 2upper bound of the floating point range mode.

3.6 Power set modes
syntax:
<powerset mode> ::= @
POWERSET <member mode> (1.1
| <powerset mode name> (1.2
<member mode> ::= 2
<discrete mode> (2.0

semantics. A powerset mode defines values that are sets of values of its member mode. Powerset values range over all
subsets of the member mode. The usual set-theoretic operators are defined on powerset values (see 5.3).

The maximunmumber of values of the member mode is implementation defined.

static properties: A powerset mode has the following hereditary property:

« A member mode which is thenember mode.

examples:
84 POWERSET CHAR (1.1
95 POWERSET INT (2:max) (1.2)
9.6 number_list 1.2
3.7 Refer ence modes

3.7.1 General

syntax:
<reference mode> ::= @
<bound reference mode> 1.1
| <freereference mode> (1.2
| <row mode> (1.3)

semantics; A reference mode defines references (addresses or descriptcaf® &éble locations. By definition, bound
references refer to locations of a given static mode or a set of related moreta modes; free references may refer to
locations of any static mode; rows refer to locations of a dynamic mode.

The dereferencing operation is defined on reference values (see 4.2.3, 4.2.4 and 4.2.5), delivering the location that is
referenced.

22 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Two reference values are equa if, and only if, they both refer to the same location, or both do not refer to a location
(i.e. they arethe value NULL).

3.7.2 Bound refer ence modes

syntax:
<bound reference mode> ::= (@]
REF <referenced mode> (1.0
| <bound reference mode name> (1.2
<referenced mode> ::=)
<mode> (2.1)

semantics: A bound reference mode defines reference values to locations of the specified referenced mode.

If the referenced mode is a non-moreta mode M, then the bound reference mode defines reference values to locations
of M.

If the referenced mode is a moreta mode MM, then the bound reference mode defines reference values to locations of
MM or any successor of MM.

static properties: A bound reference mode has the following hereditary property:

* A referenced mode which is the referenced mode.

examples:
10.42 REF cell 1.1

3.7.3 Freereference modes
syntax:

<free reference mode> ::= D
<free reference mode name> (1.1

predefined names: The name PTRis predefined as a free reference mode name.
semantics: A free reference mode defines reference values to locations of any static mode.
examples:

19.8 PTR (1.1)

374 Row modes

syntax:
<row mode> ::= (0]
ROW <string mode> 1.0
| ROW <array mode> (1.2
| ROW <variant structure mode> 1.3
| <row mode name> (1.4)

semantics. A row mode defines reference values to locations of dynamic mode (which are locations of some
parameterised mode with non constant parameters).

A row value may refer to:
e dtring locations with non constant string length;
e array locations with non constant upper bound;

e parameterised structure locations with non constant parameters.

static properties: A row mode has the following hereditary property:

« A referenced origin mode which is the string mode, the array mode, or the variant structure mode,
respectively.

static condition: The variant structure mode must be parameterisable.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 23

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

examples:
8.6 ROW CHARS (max) (1.2
3.8 Procedure modes
syntax:
<procedure mode> ::= D
PROC ([<parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)] (1.2)
| <procedure mode name> (1.2
<parameter list> ;= 2
<parameter spec> { , <parameter spec>}* (2.1
<parameter spec> ::= 3
<mode> [<parameter attribute>] (3.0
<parameter attribute> ::= 4
IN|OUT |INOUT |LOC[DYNAMIC] (4.2
<result spec>::=)
RETURNS (<mode> [<result attribute>]) (5.0
<result attribute>::= (6)
[NONREF] LOC [DYNAMIC] (6.2)
<exception list>::= @
<exception name> { , <exception name>}* (7.2)

semantics. A procedure mode defines (general) procedure values, i.e. the objects denoted by general procedure names
that are names defined in procedure definition statements. Procedure values indicate pieces of code in a dynamic context.
Procedure modes allow for manipulating a procedure dynamically, e.g. passing it as a parameter to other procedures,
sending it as message value to a buffer, storing it into alocation, etc.

Procedure values can be called (see 6.7).

Two procedure values are equa if, and only if, they denote the same procedure in the same dynamic context, or if they
both denote no procedure (i.e. they are the value NULL).

static properties: A procedure mode has the following hereditary properties:

« Alist of parameter specs, each consisting of a mode and possibly a parameter attribute. The parameter
specs are defined by the parameter list.

e Anoptional result spec, consisting of a mode and an optiona result attribute. The result spec is defined
by the result spec.

e A possibly empty list of exception names which are those mentioned in the exception list.
static conditions: All names mentioned in exception list must be different.
If LOC is specified in the parameter spec or in the result spec, the mode in it may have the non-value property.

If DYNAMIC is specified in the parameter spec or in the result spec, the mode in it must be parameterisable.

39 I nstance modes
syntax:
<instance mode> ::= (0]
<instance mode name> (1.1

predefined names. The name INSTANCE is predefined as an instance mode name.

24 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. An instance mode defines values which identify processes. The creation of a new process (see 5.2.15, 6.13
and 11.1) yields a unique instance value as identification for the created process.

Two instance values are equal if, and only if, they identify the same process, or they both identify no process (i.e. they

arethevalue NULL).

examples:
15.39 INSTANCE 1.1
3.10 Synchronisation modes
3.10.1 General
syntax:
<synchronisation mode> ::= D
<event mode> (1.2)
| <buffer mode> (1.2

semantics. A synchronisation mode provides a means for synchronisation and communication between processes (see
clause 11). There exists no expression in CHILL denoting a value defined by a synchronisation mode. As a consequence,

there are no operations defined on the values.

3.10.2 Event modes
syntax:
<event mode> ::= @
EVENT [(<event length>)] (1.2)
| <event mode hame> 1.2
<event length> ::= 2
<integer literal expression> (2.1

semantics: An event mode location provides a means for synchronisation between processes. The operations defined on
event mode locations are the continue action, the delay action and the delay case action, which are described in 6.15,
6.16 and 6.17, respectively.

The event length specifies the maximum number of processes that may become delayed on an event location; that
number is unlimited if no event length is specified.

An event mode location which contains the undefined value is an “empty” event, i.e. no delayed processes are attached
to it.

static properties: An event mode has the following hereditary property:

« An optionalevent length which is the value delivered lgyent length.
static conditions: Theevent length must deliver a positive value.

The evaluation of thevent length must not depend directly or indirectly on the value ofe¥ent length of the event
mode.

examples:
14.10 EVENT (1.2)
3.10.3 Buffer modes
syntax:
<buffer mode> ::= @
BUFFER [(<buffer length>)] <buffer element mode> (1.1
| <buffer mode name> (1.2
<huffer length> ::= ()]
<integer literal expression> (2.1
ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 25

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<buffer element mode> ::= 3
<mode> (3.1

semantics. A buffer mode location provides a means for synchronisation and communication between processes. The
operations defined on buffer locations are the send action and the receive case action, described in 6.18 and 6.19,
respectively.

The buffer length specifies the maximum number of values that can be stored in a buffer location; that number is
unlimited if no buffer length is specified.

A buffer mode location which contains the undefined value is an “empty” buffer, i.e. no delayed processes are attached
to it nor are there messages in the buffer.

static properties. A buffer mode has the following hereditary properties:
* An optionalbuffer length which is the value delivered lyffer length.

¢ A buffer element mode which is théuffer element mode.
static conditions: Thebuffer length must deliver a non-negative value.
The buffer element mode must not have theon-value property.

The evaluation of thbuffer length must not depend directly or indirectly on the value ofithier length of the buffer
mode.

examples:
16.30 BUFFER (1) user_messages (1.0
16.34 user_buffers 1.2

3.11 Input-output modes

3111 General

syntax:
<input-output mode> ::= (1)
<association mode> (1.1)
| <access mode> 1.2
| <text mode> (1.3)

semantics. An input-output mode provides a means for input-output operations as defined in clause 7. There exists no
expression in CHILL denoting a value defined by an input-output mode. As a consequence, there are no operations
defined on the values.

examples:
20.17 ASSOCIATION (1.2)
3.11.2 Association modes

syntax:

<association mode> ::= @
<association mode name> (1.2)

predefined names: The nameASSOCIATION is predefined as aassociation mode name.

semantics. An association mode location provides a means for representing a relation to an outside world object. Such a
relation is called an association in CHILL; associations can be created by the built-in ASBD@& ATE and be ended
by DISSOCIATE.

An association mode location which containsuhdefined value is “empty”, i.e. it does not contain an association.

3.11.3 Accessmodes
syntax:

<access mode> ::= (0]

26 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

ACCESS| (<index mode>)] [<record mode>[DYNAMIC]] 1.1

| <access mode name> 1.2
<record mode> ::= 2
<mode> (2.1

<index mode> ::= 3
<discrete mode> (3.1

| <literal range> (3.2

derived syntax: Theindex mode notation literal range is derived from the discrete mode RANGE (literal range).

semantics. An access mode location provides a means for positioning a file and for transferring values from a CHILL
program to afile in the outside world, and vice versa.

An access mode may define a record mode; this record mode defines the root mode of the class of the values that can be
transferred via a location of that access mode to or from a file. The mode of the transferred value may be dynamic,
i.e. the size of the record may vary, when the attribute DYNAMIC is specified in the access mode denotation or when
record mode is avarying string mode. In the latter case DY NAM I C need not be specified.

An access mode may also define an index mode; such an index mode defines the size of a “window” to (a part of) the
file, from which it is possible to read (or write) records randomly. Such a window can be positionedhihesab(e)
file by the connect operation. If nodex mode is specified, then it is possible to transfer records only sequentially.

An access mode location which containsuhdefined value is “empty”, i.e. it is not connected to an association.

static properties. An access mode has the following hereditary properties:

« An optional record mode which is theecord mode if present. It is adynamic record mode if
DYNAMIC is specified or ifecord mode is avarying string mode, otherwise it isssatic record mode.

* An optionalindex mode which is théndex mode.

e Optionalupper bound andlower bound which are theupper bound andlower bound of the index
mode, if present.

static conditions: The optionalecord mode must not have theon-value property.
If DYNAMIC is specified, theecord mode must bparameterisable and must not be tagless structure mode.
Theindex mode must neither be aumbered set mode nor aumbered range mode.
If the index mode is aliteral range of the form:
<lower bound> : <upper bound>

then, the evaluation of theldwer bound, 2.upper bound, must not depend, directly or indirectly, on the value of the
1lower bound, 2upper bound of the access mode.

examples:
20.18 ACCESS (index_set) record_type (1.0
22.20 ACCESSstring DYNAMIC (1.1
20.18 record_type (2.1
20.18 index_set (3.1

3.11.4 Text modes

syntax:
<text mode> ;= (0]
TEXT (<text length>) [<index mode>] [DYNAMIC] (1.1)
<text length> ::= @)
<integer literal expression> (2.1

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 27

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. A text mode location provides a means for transferring values represented in human-readable form from a
CHILL program to afile in the outside world, and vice versa. A text mode location has a text record sub-location and
an access sub-location. Thetext record sub-location is initialised with an empty string.

A text mode has atext length, which defines the maximum length of the records that can be transferred, and possibly an
index mode that has the same meaning as for access modes. The actual length attribute of a text mode location is the
actual length of itstext record.

A text mode location which contains the undefined value has a text record sub-location that contains the empty string
and an access sub-location that contains the undefined value.

static properties: A text mode has the following hereditary properties:
« Atext length whichisthe value ddlivered by text length.
e A text record mode whichis CHARS (<text length>) VARYING.

e It has an access mode which is ACCESS [(<index mode>)] CHARS (<text length>) [DYNAMIC]
(<index mode> and DY NAMI C are part of the mode only if they are specified).

e Optional upper bound and lower bound which are the upper bound and lower bound of the index
mode, if present.

static conditions: If theindex modeisaliteral range of the form:
<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the value of the
1.lower bound, 2.upper bound of the text mode.

examples:

26.8 TEXT (80) DYNAMIC (1.1)

3.12 Timing modes

3.121 General

syntax:
<timing mode> ::= (@]
<duration mode> 1.0
| <absolute time mode> (1.2

semantics. A timing mode provides a means for time supervision of processes as described in clause 9. Timing values
are created by a set of built-in routines. The relational operators are defined on timing values.

3.12.2 Duration modes

syntax:

<duration mode> ;:= (0]
<duration mode name> (1.1

predefined names: The name DURATION is predefined as aduration mode name.

semantics: A duration mode defines values which represent periods of time. The set of values defined by the duration
mode is implementation defined. An implementation may choose to represent duration values as pairs of precision and
value. Duration values are ordered in the intuitive way.

3.12.3 Absolutetime modes

syntax:

<absolute time mode> ::= @
<absolute time mode hame> (1.2)

predefined names. The name TIME is predefined as an absolute time mode name.

28 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. An absolute time mode defines values which represent points in time. The set of values defined by the
absolute time mode is implementation defined. Absolute time values are ordered in the intuitive way.

3.13 Composite modes

3131 Genera

syntax:
<composite mode> ::= (@]
<string mode> (1.1
| <array mode> (1.2
| <structure mode> (1.3
| <moreta mode> (1.4)

semantics: A composite mode defines composite values, i.e. values consisting of sub-components which can be
accessed or obtained (see 4.2.6-4.2.10 and 5.2.6-5.2.10).

3.13.2 String modes

syntax:

<string mode> ::= @
<string type> (<string length>) [VARYING] (1.0

| <parameterised string mode> (1.2

| <string mode name> (1.3)
<parameterised string mode> ::= 2
<origin string mode name> (<string length>) (2.1

| <parameterised string mode name> (2.2
<origin string mode name> ::= (©)]
<string mode name> 3.1

<string type> ::= @
BOOLS 4.2

| CHARS (4.2
<string length> ::= 5)
<integer literal expression> (5.1)

semantics; A fixed string mode defines bit or character string values of alength indicated or implied by the string mode.
A varying string mode defines bit or character string values whose actual length ranges from 0 to the string length.
The length is known only at runtime from the value of the attribute actual length. For a fixed string mode, the actual
length is always equal to the string length. Character strings are sequences of character values; hit strings are sequences
of boolean values.

String values are either empty or have string elements which are numbered from 0 upward.

The string values of a given string mode are totally-ordered in accordance with the ordering of the component values and
the following definition.

Two strings s and t are equal if, and only if, they are empty or have the same length | and s(i) = t(i) for all 0 < i < .
A string s precedes t when either:

e thereexistsanindex j suchthat s(j) <t(j) and s(0:j— 1) =t(0 :j — 1); or
e LENGTH (s) < LENGTH (t) ands =t(0 UP LENGTH (s)).

The concatenation operator is defined on string values. The usual logical operators are defined on bit string values and
operate between their corresponding elements (see 5.3).

The maximum length of string modes is implementation defined.

static properties: A string mode has the following hereditary properties:

e Astringlength which is the value delivered Isiring length.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 29

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
e« An upper bound and a lower bound which are the values delivered by string length — 1 and 0,
respectively.

* An element mode which is eitheM or READ M, whereM is BOOL or CHAR depending on whether
string type specifiesBOOLS or CHARS, or the element mode of theorigin string mode name,
respectively. Thelement mode will beREAD M if and only if thestring mode is aread-only mode; in
such case it is an impliaiead-only mode.

e ltis avarying string mode iVARYING is specified or if th@rigin string mode name denotes aarying
string mode; otherwise it isfaxed string mode.

A string mode igparameterised if, and only if, it is gparameterised string mode.
A parameterised string mode has amrigin string mode which is the mode denotedbigin string mode name.
A varying string mode has the following non-hereditary property: it hasrgonent mode, defined as follows:
e If thevarying string mode is of the form:
<string type> (<string length>) VARYING
then it is <string type> (<string length>).
e If thevarying string mode is of the form:
<origin string mode name> (<string length>)

then thecomponent mode is&name (string length), where&name is a virtually introducedgynmode
namesynonymous with thecomponent mode of theorigin string mode name.

e If thevarying string mode is atring mode name which is asynmode name, then itsomponent mode is
that of thedefining mode of thesynmode name; otherwise it is aewmode name and then its
component mode is the virtually introducesbmponent mode (see 3.2.3).

static conditions: Thestring length must deliver a non-negative value.

The value delivered by thaéring length directly contained in parameterised string mode must be less than or equal to
the string length of theorigin string mode name. This condition applies only to thmarameterised string modes that
are not introduced virtually.

The evaluation of thetring length must not depend directly or indirectly on the value ofstheng length of the string
mode.

examples:

751 CHARS(20) (L1)
22.22 CHARS (20) VARYING (1.1)

3.13.3 Array modes

syntax:

<array mode> ::= (0]

ARRAY (<index mode> { , <index mode> }*)
<element mode> { <element layout> }* 1.1
| <parameterised array mode> 1.2
| <array mode name> (1.3
<parameterised array mode> ::= 2
<origin array mode name> (<upper index>) (2.1
| <parameterised array mode name> (2.2
<origin array mode name> ::= 3
<array mode name> (3.1
<upper index> ::= 4
<discrete literal expression> 4.0
<element mode> ::= 5)
<mode> (5.1

30 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

derived syntax: An array mode with more than one index mode (denoting a multi-dimensional array), is derived syntax
for an array mode with an element mode that is an array mode. For example:

ARRAY (1:20,1:10) INT
is derived from:
ARRAY (RANGE (1:20)) ARRAY (RANGE (1:10)) INT

Only if this derived syntax is used, is more than one element layout occurrence allowed. The number of element layout
occurrences must be less than or equal to the number of index mode occurrences. In that case, the leftmost element
layout is associated with the innermost element mode, etc.

semantics. An array mode defines composite values, which are lists of values defined by its element mode. The physical
layout of an array location or value can be controlled by element layout specification (see 3.13.5). Two array values are
equal if and only if they have the same number of elements and the corresponding element values are equal.

The maximum number of elements of array modesis implementation defined.

static properties: An array mode has the following hereditary properties:

e Anindex mode which is the index mode if it is not a parameterised array mode, otherwise the index
mode is the discrete range mode constructed as:

&name (lower bound : upper bound)

where &name is a virtual synmode name synonymous with the index mode of origin array mode name,
lower bound is the lower bound of the index mode of the origin array mode name and upper bound is the
upper index.

e An upper bound and a lower bound which are the upper bound and the lower bound of its index
mode, respectively.

e Anelement mode which is either M or READ M, where M is the element mode, or the element mode of
the origin array mode name, respectively. The element mode will be READ M if, and only if, M is not a
read-only mode and the array mode is a read-only mode. The element mode is an implicit read-only
mode if itiSREAD M.

« An €eement layout which, if it is a parameterised array mode, is the element layout of its origin array
mode name; otherwise it is either the specified element layout, or the implementation default, which is
either PACK or NOPACK.

A number of eementswhich isthe value delivered by:

NUM (upper bound) — NUM (lower bound) + 1

whereupper bound andlower bound are respectively thepper bound and thdower bound of itsindex
mode.

e Itis amapped mode ifelement layout is specified and is step.
An array mode iparameterised if, and only if, it is goarameterised array mode.
A parameterised array mode has awigin array mode which is the mode denotedkigin array mode name.

static conditions: The class ofipper index must becompatible with theindex mode of theorigin array mode name
and the value delivered by it must lie in the range defined byritiet mode.

If the array mode is parameterised array mode, the evaluation of thepper index must not depend directly or indirectly
on the value of theipper bound of the array mode. If the array mode is neith@amameterised array mode nor an
array mode name, and if theindex mode is aliteral range of the form:

<lower bound> : <upper bound>

then, the evaluation of theldwer bound, 2upper bound, must not depend directly or indirectly on the value of the
1lower bound, 2upper bound of the array mode.

examples:

5.27 ARRAY (1:16) STRUCT (c4, c2, c1 BOOL) (L1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 31

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

11.12 ARRAY (line) ARRAY (column) square (1.1
11.17 board (1.3)

3.13.4 Structure modes

syntax:
<structure mode> ::= @
STRUCT (<fidd>{ , <field>}*) (1.1)
| <parameterised structure mode> (1.2
| <structure mode name> (1.3)
<field> ::= 2
<fixed field> (2.1
| <alternative field> (2.2)
<fixed field> ::= 3
<field name defining occurrence list> <mode> [<field layout>] (3.0
<alternativefield> ::= 4
CASE [<taglist>] OF
<variant alternative> { , <variant alternative>}*
[ELSE [<variant field>{ , <variant field>}*]] ESAC (4.2)
<variant alternative> ::= ®)
[<caselabd specification>] : [<variant field> { , <variant field> }*] (5.2)
<taglist> ::= (6)
<tag field name> { , <tag field name>} * (6.1
<variant field> ::= @)
<field name defining occurrence list> <mode> [<field layout>] (7.0
<parameterised structure mode> ::= (8
<origin variant structure mode name> (<literal expression list>) (8.2)
| <parameterised structure mode name> (8.2
<origin variant structure mode name> ;= 9
<variant structure mode name> (9.1
<literal expression list> ::= (20
<discrete literal expression> { , <discrete literal expression> }* (10.1)

derived syntax: A fixed field occurrence or variant field occurrence, where field name defining occurrence list consists
of more than one field name defining occurrence, is derived syntax for several fixed field occurrences or variant field
occurrences with one field name defining occurrence respectively, each with the specified mode and optional field
layout. In the case of field layout, thisfield layout must not be pos. For example:

STRUCT (1, BOOL PACK)
isderived from:
STRUCT (I BOOL PACK, JBOOL PACK)

semantics. Structure modes define composite values consisting of a list of values, selectable by a component name.
Each value is defined by a mode that is attached to the component name. Structure values may reside in (composite)
structure locations, where the component name serves as an access to the sub-location. The components of a structure
value or location are called fields and their names field names.

There are fixed structures, variant structures and parameterised structures.

Fixed structures consist only of fixed fields, i.e. fields that are always present and that can be accessed without any
dynamic check.

Variant structures have variant fields, i.e. fields that are not always present. For tagged variant structures, the presence
of these fields is known only at run time from the value(s) of certain associated fixed field(s) called tag fields. Tag-less
variant structures do not have tag fields. Because the composition of a variant structure may change during run time,
the size of avariant structure location is based upon the largest choice (worst case) of variant alternatives.

32 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

In an alternative field the variant alternative chosen is that for which values give in the case label specification match; if
no value match, the variant alternative following EL SE (which will be present) is chosen.

A parameterised structure is determined from a variant structure mode for which the choice of variant alternativesis
statically specified by means of literal expressions. The composition is fixed from the point of the creation of the
parameterised structure and may not change during run time. The tag fields, if present, are read-only and automatically
initialised with the specified values. For a parameterised structure location, a precise amount of storage can be allocated
at the point of declaration or generation. Note that dynamic parameterised structure modes also exist; their semantics
aredefinedin 3.14.4.

The layout of a structure location or value can be controlled by means of afield layout specification (see 3.13.5).

Two structure values are equal if, and only if, the corresponding component values are equal. However, if the structure
values are tag-less variant structure values, the result of comparison isimplementation defined.

For amode with the tagged parameterised property the undefined value denotes a value in which tag field sub-values
are equal to the corresponding parameter values and all the other ones are equal to the undefined value.

static properties:
general:

A structure mode has the following hereditary properties:

e Itisafixed structure mode if it is a structure mode that does not directly contain an alternative field
occurrence.

. It is a variant structure mode if it is a structure mode and contains at least one alternative field
occurrence.

e Itisaparameterised structure modeif it is aparameterised structure mode.

e It hasaset of field names. This set is defined below for the different cases. A name is said to be afield
name if, and only if, it is defined in afield name defining occurrence list in fixed fields or variant fieldsin
a structure mode.

Each fixed field, variant field and therefore each field name of a structure mode has a field mode attached
that is either M or READ M, where M is the mode in the fixed field or variant field. The field mode is
READ M if M is not aread-only mode and either the structure mode is aread-only mode, or the field is
atag field of a parameterised structure mode. The field mode is an implicit read-only mode if it is
READ M.

A fixed field, variant field and therefore a field name of a given structure mode has afield layout attached
to it that is the field layout in the fixed field or variant field, if present; otherwise it is the default field
layout, which is either PACK or NOPACK.

* Itisamapped modeif itsfield names have afield layout that is pos.
fixed structures:

A fixed structure mode has the following hereditary property:

e A setof field names which is the set of names defined by any field name defining occurrence list in fixed
fields. These field names are fixed field names.

variant structures:
A variant structure mode has the following hereditary properties:
e A set of field names which is the union of the set of names defined by any field name defining occurrence
list in fixed fields and the set of names defined by any field name defining occurrence list in aternative

fields. Field names defined by a field name defining occurrence list in fixed fields are the fixed field
names of the variant structure mode; its other field names are the variant field names.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 33

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A field name of avariant structure mode is atag field name if, and only if, it occursin any tag list of an
aternative field. Alternative fields in which no tag lists are specified are tag-less alternative fields.

e A variant structure mode is a tag-less variant structure mode if all its alternative field occurrences are
tag-less. Otherwise it isatagged variant structure mode.

e« A variant structure mode is a parameterisable variant structure mode if it is either a tagged variant
structure mode or a tag-less variant structure mode where for each of the alternative field occurrences a
case label specification is given for al the variant alternative occurrencesin it.

e A parameterisable variant structure mode has alist of classes attached, determined as follows:;

— ifitis atagged variant structure mode, the list ®fj -value classes, wheMj are the modes of the
tag field names in the order that they are definefixed fields;

— if it is atag-less variant structure mode, the list is built up from the individuedulting lists of
classes of eachalternative field by concatenating them in the order as dhernative fields occur.
Theresulting list of classes of analternative field occurrence is theesulting list of classes of the
list of case label specification occurrences in it (see 12.3).

parameterised structures:

A parameterised structure mode has the following hereditary properties:
* Anorigin variant structure mode which is the mode denotearigin variant structure mode name.

« A set offidd names which is the union of the setfiofed field names of itorigin variant structure
mode and the set of thoseriant field names of itorigin variant structure mode that are defined in
variant alternative occurrences that are selected by the list of values definktitay expression list.

e The set otag field names of garameterised structure mode is the set ofag field names of itorigin
variant structure mode.

e Alist of values attached, defined literal expression list.

e |tis atagged parameterised structure mode if it®rigin variant structure mode is tagged variant
structure mode; otherwise tharameterised structure mode isag-less.

For dynamigoarameterised structure modes, see 3.14.4.

static conditions:

general:

All field names of a structure mode must be different.

If any field has a field layout which mos, all the fields must have a field layout which muspbg

variant structures:

A tag field name must be fixed field name and must be textually defined before alktternative field occurrences in
whosetag list it is mentioned. (As a consequencdag field precedes all theariant fields that depend upon it.) The
mode of aag field name must be a discrete mode.

Themode of variant field may have neither theon-value property nor thetagged parameterised property.

In avariant structure mode, thelternative field occurrences must be either tdgged or all tag-less. For tagged
alternative fields, case label specification must be specified in easlariant alternative. Fortag-less alternative fields,
case label specification may be omitted in alNariant alternative occurrences together, or must be specified for each
variant alternative occurrence.

If, for atag-less variant structure mode, any of itdternative fields hascase label specification given, all itsalternative

fields must havesase label specification.

34 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

For alternative fields, the case selection conditions must be fulfilled (see 12.3), and the same completeness, consistency
and compatibility requirements must hold as for the case action (see 6.4). Each of the tag field names of tag list (if
present) serves as a case selector with the M-value class, where M is the mode of the tag field name. In the case of tag-
less alternative fields, the checks involving the case selector are ignored.

For a parameterisable variant structure mode none of the classes of its attached list of classes may be the all class.
(This condition is automatically fulfilled by atagged variant structure mode.)

parameterised structures:
The origin variant structure mode name must be parameterisable.

There must be as many literal expressions in the literal expression list as there are classes in the list of classes of the
origin variant structure mode name. The class of each literal expression must be compatible with the corresponding (by
position) class of the list of classes. If the latter class is an M-value class, the value delivered by the literal expression
must be one of the values defined by M.

examples:
33 STRUCT (re, imINT) (1.2)
11.7 STRUCT (status SET (occupied, free),
CASE status OF
(occupied): p piece,
(free):
ESAC) (1.2
2.6 fraction (1.3
11.7 status SET (occupied, free) (3.1
11.8 status (6.1
11.9 p piece (7.1

3.13.5 Layout description for array modes and structure modes

syntax:

<element layout> ::= @
PACK | NOPACK | <step> (1.1)
<field layout> ::= 2
PACK |NOPACK | <pos> (2.1)
<step>::= ©)
STEP (<pos> [, <stepsize>]) (3.1

<pos>::=(4)
POS (<word>, <start bit>, <length>) 4.0
| POS(<word>[, <start bit>[: <end bit>]1]) (4.2
<word> ::= 5)
<integer literal expression> (5.1)
<stepsize> ::= (6)
<integer literal expression> (6.2)
<start bit>::= @)
<integer literal expression> (7.2)
<end bit> ::= €]
<integer literal expression> (8.2)
<length>::= 9
<integer literal expression> (9.2)

semantics: It is possible to control the layout of an array or a structure by giving packing or mapping information in its
mode. Packing information is either PACK or NOPACK, mapping information is either step in the case of array modes,
or pos in the case of structure modes. The absence of element layout or field layout in an array or structure mode will
always be interpreted as packing information, i.e. either as PACK or as NOPACK.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 35

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If PACK is specified for elements of an array or fields of a structure, it means that the use of memory space is optimised
for the array elements or structure fields, whereas NOPACK implies that the access time for the array elements or the
structure fieldsis optimised. NOPACK aso impliesreferable.

The PACK, NOPACK information is applied only for onelevel, i.e. it is applied to the elements of the array or fields of
the structure, not for possible components of the array element or structure field. The layout information is always
attached to the nearest mode to which it may apply and which does not already have layout attached. For example, if the
default packing is NOPACK:

STRUCT (f ARRAY (0:1) mPACK)
isequivaent to:
STRUCT (f ARRAY (0:1) mPACK NOPACK)

It is also possible to control the precise layout of an array or a structure by specifying positioning information for its
components in the mode. This positioning information is given in the following ways:

« For array modes, the positioning information is given for all elements together, in the form of a step
following the array mode.

« For structure modes, the positioning information is given for each field individualy, in the form of a pos,
following the mode of thefield.

Mapping information with pos is given in terms of word and bit-offsets. A pos of the form:
POS (<word> , <start bit>, <length>)

defines a bit-offset of
NUM (word) * WIDTH + NUM (start bit)

and a length of NUM (length) bits, where WIDTH is the (implementation defined) number of bitsin aword, and word is
an integer literal expression.

When pos is specified in field layout it defines that the corresponding field starts at the given bit-offset from the start of
each location of the structure mode, and occupies the given length.

A step of the form:
STEP (<pos> , <step size>)

defines a series of bit-offsets bj for i taking values 0 to n— 1 wheren is thenumber of elementsin the array and
bj =i * NUM (step size)

Thej-th element of the array starts at a bit-offsep ef bj from the start of each location of the array mode, wpese
the bit-offset specified ipos. Each element occupies the length givepas

Defaults
The notation:
POS (<word> , <start bit>: <end bit>)
is semantically equivalent to:
POS (<word> , <start bit> , NUM (<end bit>) — NUM (start bit>) + 1)
The notation:
POS (<word> , <start bit>)
is semantically equivalent to:
POS (<word> , <start bit>, BSIZE

where BSIZEis the minimum number of bits which is needed to be occupied by the component for which the posis
specified.

The notation:

POS (<word>)

36 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

is semantically equivalent to:
POS (<word> , 0, BSZE)
The notation:
STEP (<pos>)
issemantically equivalent to
STEP (<pos> , SSZE)
where SSZE is the <length> specified in pos or derivable from pos by the above rules.

static properties. For any location of an array mode the element layout of the mode determines the referability of its
sub-locations (including sub-arrays, array slices) as follows:

« ether dl sub-locations are refer able, or none of them are;

e if the element layout is NOPACK, all sub-locations are referable.

For any location of a structure mode, the referability of the structure field selected by afield name is determined by the
field layout of the field name as follows:

« thefield nameisreferableif thefield layout isNOPACK.

static conditions: If the element mode of a given array mode or the field mode of a field name of a given structure
mode, is itself an array or structure mode, then it must be a mapped mode if the given array or structure mode is

mapped.

NUM (word), NUM (start bit), NUM (end bit), NUM (length) and NUM (step size) = O;
NUM (start bit) and NUM (end bit) < WIDTH; NUM (start bit) < NUM (end bit).

Each implementation defines for each mode a minimum number of bits its values need to occupy; call this the minimum
bit occupancy. For discrete modes it is any number of bits not less than log to the base two of the number of values of
the mode. For array modes it is the offset of the element of the highest index plus its occupied bits. For structure modes
it isthe offset of the highest bit occupied.

For each pos the length specified must not be less than the minimum bit occupancy of the mode of the associated field or
array components.

For each mapped array mode the step size must not be less than the length given or implied in the pos.
Consistency and feasibility
Consistency:

No component of a structure may be specified such that it occupies any bits occupied by another component of the same
object except in the case of two variant field names defined in the same alternative field occurrence; however, in the
latter case the variant field names may not both be defined in the same variant alter native nor both following EL SE.

Feasibility:

There are no language defined feasibility requirements, except for the one that can be deduced from the rule that the
referability of a sub-location of any (referable or non-referable) location is determined only by the (element or field)
layout, which is a property of the mode of the location. This places some restrictions on the mapping of components that
themselves have r efer able components.

examples:
17.5 PACK (1.2)
19.14 POS(1,0:15) (4.2

3.14 Dynamic modes

3.141 General

A dynamic mode is a mode of which some properties are known only at run time. Dynamic modes are always
parameterised modes with one or more run-time parameters. For description purposes, virtual denotations are introduced

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 37

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

in this Recommendation | International Standard. These virtual denotations are preceded by the ampersand symbol (&)
to distinguish them from actual notations which appear in a CHILL program text.

3.14.2 Dynamic string modes
virtual denotation: &<origin string mode name> (<integer expression>)
semantics; A dynamic string mode is a parameterised string mode with non constant length.

static properties. Dynamic string modes have the same properties as string modes, except for the properties described
below.

dynamic properties:
e A dynamic string mode has a dynamic string length which is the value delivered by integer expression.

e A dynamic string mode has an upper bound and alower bound which are the values delivered by string
length —1 and 0, respectively.

3.14.3 Dynamic array modes
virtual denotation: &<origin array mode name> (<discrete expression>)
semantics. A dynamic array mode is a parameterised array mode witlsamstant upper bound.

static properties: Dynamic array modes have the same properties as array modes, except for the properties described
below.

dynamic properties:

¢« A dynamic array mode has a dynamafper bound which is the value delivered lmjscrete expression,
and a dynamiaumber of elements which is the value delivered by:

NUM (discrete expression) — NUM (lower bound) + 1
wherelower bound is thelower bound of theorigin array mode name.
3.14.4 Dynamic parameterised structure modes
virtual denotation: &<origin variant structure mode name> (<expression list>)

semantics:. A dynamic parameterised structure mode is garameterised structure mode with norconstant
parameters.

static properties: The static properties of a dynanpiarameterised structure mode are those of a staticameterised
structure mode except for the following:

e The set ofield names of a dynamijgarameterised structure mode is the setfdéld names of itorigin
variant structure mode.

dynamic properties:

e A dynamicparameterised structure mode has a list of values attached that is the list of values delivered
by the expressions in tlexpression list.

3.15 M or eta modes

3.151 General

syntax:
<moreta mode> ;.= (0]
<module mode> (1.1
| <region mode> (1.2)
| <task mode> (1.3)
| <generic moreta mode instantiation> (1.4

38 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics;

statement list.

— region mode — A location ofregion mode has the same properties asgion.

module mode — A location of module mode has the same properties asnadule without anaction

task mode — A location oftask mode has essentially the same structure amdule mode location without

process definitions. The direct access to the components of a location, whose modeasisraode, is
mutually exclusive. A location, whose mode isagk mode, may be executed concurrently with other

threads (see 11.1).

instantiation of a generic moreta mode template (see 10.11).

static conditions:

Moreta modesre not parameterisable.

Moreta modesnd generic moreta mode templategnot be nested.

3.15.2

syntax:

M odule modes

<module mode> ::=
<module mode specification>
| <module mode body>

<module mode specification:=
MODULE SPEC [[ASSIGNABLE | ABSTRACT] |
[NOT_ASSIGNABLE [ABSTRACT 1]]
[<module inheritance] {<module specification componght
[<invariant part] END [<simple name strirrg]

<module mode body.:=
MODULE BODY [[ASSIGNABLE | ABSTRACT]|
[NOT_ASSIGNABLE [ABSTRACT]]]
[<module inheritance] {<module body compone#}t [<invariant part]
END [<handler] [<simple name strirg]

<module inheritance ::=
BASED_ON <module mod@ame

<module specification component=
<common module component

| <declaration statement

| <simpleguarded procedure specification staterrent

| <inline guarded procedure definition statenent
| <process specification statement
| <signal definition statement
| <grant statement

<module body component:=
<common module componegnt
| <simpleguarded procedure definition statenment
| <process definition statement

<common module component=
<synonym definition statement
| <synmode definition statement
| <newmode definition statement
| <seize statement

<invariant part ::=
INVARIANT <booleanexpression

1)
(1.1)
(1.2)

)

(2.1)
3)

(3.1)

(4)
(4.1)

(5)
(5.1)
(5.2)
(5.3)
(5.4)
(5.5)
(5.6)
(5.7)

(6)
(6.1)
(6.2)
(6.3)

(7)
(7.1)
(7.2)
(7.3)
(7.4)

(8)
(8.1)

generic moreta mode instantiation — A generic moreta mode instantiation is obtained statically by an

semantics: A module mode defines composite values consisting of alist of components sel ectable by component names.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

39

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Module values may reside in (composite) module locations.

A module mode is defined by giving two separate parts. a module mode specification and a module mode body.
The specification part defines the interface of the values of a module mode.

The body part defines the behaviour of the values of a module mode.

If a module inheritance clause is given, the mode being defined is immediately derived from the mode given in the
module inheritance clause, and this mode is the immediate base mode of the mode being defined.

The effect of the module inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base mode except for the constructor and destructor component procedures of this base mode. If this base
mode is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For visibility,
see 12.2.

The boolean expression of the invariant part must be true before and after any call of a public component procedure or
apublic component process.

static properties. If the attribute ASSIGNABLE is specified, the mode is an assignable module mode. An assignable
module mode can be used in the same way as a mode for which READ is not specified (see 3.3).

If the attribute NOT_ASSIGNABLE is specified, the mode has the not_assignable property, indicating that the location
of that mode may not be accessed to store the value and may not be accessed to copy its value.

If neither ASSIGNABLE nor NOT_ASSIGNABLE is specified, the mode is not_assignable by default.
If the attribute ABSTRACT is specified, the mode is an abstract mode.

A module specification component contained in a module mode specification Ms or SEIZEd into Ms, which is granted by
Ms, is called a public component of the mode of Ms,

A module specification component contained in a module mode specification Mg or SEIZEd into Ms, which is not
granted by Mg, is called an internal component of the mode of Ms.

A module body component C contained in a module mode body Mg or SEIZEd into Mg, is called a private component of
the mode of Mg if Cis neither apublic nor an internal component of the mode of M.

An abstract module mode has the property not_assignable.
static conditions: A module mode cannot be used as the mode in a synonym definition.

For each module mode specification, there must be one module mode body with the same name string in the defining
occurrence.

If specified, the simple name string after END must be equal to the name string of the defining occurrence of this mode
definition. This holds for module mode specification and for module mode body.

If one of the attributes ASSIGNABLE, NOT_ASSIGNABLE or ABSTRACT is specified in a module mode
specification, it must also be specified in the corresponding module mode body.

If a module mode specification contains a module inheritance, the corresponding module mode body must contain the
same modul e inheritance.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure specification, then this procedure
has the property incomplete.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure specification statement, this
procedure must be public.

For each simple, complete guarded procedure specification of a module mode specification, the corresponding module
mode body must contain a corresponding simple guarded procedure definition (see 12.1.3).

40 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If Pisasimple, incomplete guarded procedure specification of a module mode specification, the corresponding module
mode body must not contain a simple guarded procedur e definition matching P.

For each process specification of a module mode specification, the corresponding module mode body must contain a
corresponding process definition (see 12.1.3).

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure specification statement, this
procedure must be public.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure specification PD contained in a
module mode specification M, then the immediate base MB mode of M must contain or have inherited a public simple
guarded procedure specification PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is
not SEIZEd.

A module mode is an abstract module mode if it contains at least one incomplete component procedure (see 10.4). In
this case, the attribute ABSTRACT must be specified.

An abstract module mode name can only be used as the module mode name in a module inheritance or as a referenced
mode.

If a module mode M has at least one (sub-)component with non-value property, then M aso has the non-value
property and the attribute ASSIGNABL E must not be specified (see 12.1.1.5).

3.15.3 Region modes

syntax:
<region mode> ::= @
<region mode specification> (1.1
| <region mode body> (1.2
<region mode specification> ::= ()]
REGION SPEC [ABSTRACT] [<region inheritance>]
{<region specification component>}* [<invariant part>]
END [<simple name string>] (2.1)
<region mode body> ::= ©)
REGION BODY [ABSTRACT] [<region inheritance>]
{<region body component>}* [<invariant part>]
END [<handler>] [<simple name string>] (3.1
<region inheritance> ::= 4
BASED_ON {<module mode hame> | <region mode name>} (4.0
<region specification component> ::= 5)
<common module component> (5.2)
| <declaration statement> (5.2
| <simple guarded procedure specification statement> (5.3
| <signal definition statement> (5.9
| <grant statement> (5.5
<region body component> ::= (6)
<common module component> (6.1
| <simple guarded procedure definition statement> (6.2

semantics. A region mode defines composite values consisting of alist of components selectable by component names.
Region values may reside in (composite) region locations.

A region modeis defined by giving two separate parts: aregion mode specification and a region mode body.

The specification part defines the interface of the values of the region mode.

The body part defines the behaviour of the values of the region mode.

If aregion inheritance clause is given, the mode being defined isimmediately derived from the mode given in theregion
inheritance clause, and this mode is the immediate base mode of the mode being defined.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 41

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The effect of the region inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base mode except for the constructor and destructor component procedures of this base mode. If this base
mode is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For visibility,
see 12.2.

The boolean expression of the invariant part must be true before and after any call of a public component procedure.
static properties: A region mode has always the not_assignable property.

If the attribute ABSTRACT is specified, the mode is an abstract mode.

A region specification component contained in a region mode specification Ms or SEIZEd into Ms, which is granted by
My, is called a public component of the mode of M.

A region specification component contained in a region mode specification Mg or SEIZEd into Ms, which is not granted
by Mg, is called an internal component of the mode of Ms.

A region body component C contained in a region mode body Mg or SEIZEd into Mg, is called a private component of
the mode of My if Cis neither apublic nor an internal component of the mode of M.

static conditions: A region mode cannot be used as the mode in a synonym definition.

For each region mode specification, there must be one region mode body with the same name string in the defining
occurrence.

If specified, the simple name string after END must be equal to the name string of the defining occurrence of this mode
definition. This holds for region mode specification and for region mode body.

If the attribute ABSTRACT is specified in a region mode specification, it must also be specified in the corresponding
region mode body.

If aregion mode specification contains a region inheritance, the corresponding region mode body must contain the same
region inheritance.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure specification, then this procedure
has the property incomplete.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure specification statement, this
procedure must be public.

For each ssimple, complete guarded procedure specification of a region mode specification, the corresponding region
mode body must contain a corresponding simple guarded procedure definition (see 12.1.3).

If Pisasimple, incomplete guarded procedure specification of a region mode specification, the corresponding region
mode body must not contain a simple guarded procedure definition matching P.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure specification statement, this
procedure must be public.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure specification PD contained in a
region mode specification M, then the immediate base mode of M must contain or have inherited a public simple
guarded procedure specification PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is
not SEIZEd.

A region mode is an abstract region mode if it contains at least one incomplete component procedure (see 10.4). In this
case, the attribute ABSTRACT must be specified.

An abstract region mode name can only be used as the region mode name in a region inheritance or as a referenced
mode.

A region mode specification must not grant any location.
If the base mode of aregion mode is a module mode M, then M must have the not_assignable property, must not grant

any location and must not contain any inline guarded component procedure or any component process.

42 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

3.15.4 Task modes

syntax:
<task mode> ::= (0]
<task mode specification> (1.2
| <task mode body> (1.2)
<task mode specification> ::= 2
TASK SPEC [ABSTRACT] [<task inheritance>]
{ <task specification component>}* [<invariant part>]
END [<simple name string>] (2.0
<task mode body> ::= ©)]
TASK BODY [ABSTRACT] [<task inheritance>]
{ <task body component>}* [<invariant part>]
END [<handler>] [<simple hame string>] 3.1
<task inheritance> ::= @]
BASED_ON {<module mode name> | <task mode name>} (4.1)
<task specification component> ::=)
<region specification component> (5.1
<task body component> ::= (6)
<region body component> (6.1

semantics. A task mode defines composite values consisting of alist of components selectable by component names.
Task values may reside in (composite) task locations.

A task mode is defined by giving two separate parts: a task mode specification and a task mode body.

The specification part defines the interface of the values of the task mode.

The body part defines the behaviour of the values of the task mode.

If atask inheritance clause is given, the mode being defined is immediately derived from the mode given in the task
inheritance clause, and this mode is the immediate base mode of the mode being defined.

The effect of the task inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base mode except for the constructor and destructor component procedures of this base mode. If this base
mode is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For visibility,
see 12.2.

The boolean expression of the invariant part must be true before and after any call of a public component procedure.
static properties: A task mode has the not_assignable property.
If the attribute ABSTRACT is specified, the mode is an abstract mode.

A task specification component contained in a task mode specification Msor SEIZEd into Mg, which is granted by Mg, is
called a public component of the mode of Ms,

A task specification component contained in a task mode specification Mg or SEIZEd into Ms, which is not granted
by Mg, iscalled an internal component of the mode of Ms.

A task body component C contained in a task mode body Mg or SEIZEd into Mg, is called a private component of the
mode of Mg if Cisneither a public nor an internal component of the mode of Mg.

static conditions: A task mode cannot be used as the mode in a synonym definition.

For each task mode specification, there must be one task mode body with the same name string in the defining
occurrence.

If specified, the simple name string after END must be equal to the name string of the defining occurrence of this mode
definition. This holds for task mode specification and for task mode body.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 43

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If the attribute ABSTRACT is specified in atask mode specification, it must also be specified in the corresponding task
mode body.

If atask mode specification contains a task inheritance, the corresponding task mode body must contain the same task
inheritance.

All public component procedures of a task mode must only have IN parameters and must not have a result spec.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure specification, then this procedure
has the property incomplete.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure specification statement, this
procedure must be public.

For each simple, complete guarded procedure specification of a task mode specification, the corresponding task mode
body must contain a corresponding simple guarded procedure definition (see 12.1.3).

If Pisasimple, incomplete guarded procedure specification of atask mode specification, the corresponding task mode
body must not contain a simple guarded procedure definition matching P.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure specification statement, this
procedure must be public.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure specification PD contained in a
task mode specification M, then the immediate base mode of M, must contain or have inherited a public simple guarded
procedure specification PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is not
SEIZEd.

A task mode is an abstract task mode if it contains at least one incomplete component procedure (see 10.4). In this
case, the attribute ABSTRACT must be specified.

An abstract task mode name can only be used as the task mode name in atask inheritance or as a referenced mode.
A task mode specification must not grant any location.

If the base mode of atask mode is a module mode M, then M must have the not_assignable property, must not grant any
location, must not contain any inline guarded component procedure or any component process, and must contain only
public procedures which fulfill the restrictions of public component procedures of task modes.

44 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

4 L ocations and their accesses

41 Declarations

411 General

syntax:
<declaration statement> ::= @
DCL <declaration> { , <declaration>}* ; (1.1
<declaration> ::= 2
<location declaration> (2.1
| <loc-identity declaration> (2.2

semantics; A declaration statement declares one or more names to be an access to alocation.

examples:
6.9 DCL j INT := julian_day number,
d, m, yINT; (1.2)
11.36 starting_square LOC := b(m.lin_1)(m.col_1) (2.2

41.2 L ocation declar ations

syntax:

<location declaration> ::= @
<defining occurrence list> <mode> [STATIC] [<initialisation>] (1.1
<initialisation> ::= ()]
<reach-bound initialisation> (2.1

| <lifetime-bound initialisation> (2.2

| <moreta-bound initialisation> (2.3
<reach-bound initialisation> ::= 3
<assignment symbol> <value> [<handler>] 3.1
<lifetime-bound initialisation> ::= 4
INIT <assignment symbol> <constant value> 4.0
<moreta-bound initialisation> ::=)
([<constructor actual parameter list>]) [<handler>] (5.1

semantics: A location declaration creates as many locations as there are defining occurrences specified in the defining
occurrence list.

With reach-bound initialisation, the value is evaluated each time the reach in which the declaration is placed is entered
(see 10.2) and the delivered value is assigned to the location(s). Before the value is evaluated, the location(s) contain(s)
the undefined value.

With lifetime-bound initialisation, the value yielded by the constant value is assigned to the location(s) only once at the
beginning of the lifetime of the location(s) (see 10.2 and 10.9).

If the mode is a moreta mode, first all initialisations in the components are performed in textual order. If a (possibly
empty) parameter list is specified, the corresponding constructor of the mode is applied to the newly created location. If
the mode is atask mode, the task belonging to the newly created location is started.

Specifying no initialisation is semantically equivalent to the specification of a lifetime-bound initialisation with the
undefined value (see 5.3.1).

The meaning of the undefined value as initialisation for a location which has attached a mode with the tagged
parameterised property or the non-value property is asfollows:

e tagged parameterised property: The created tag field sub-location(s) are initialised with their
corresponding parameter value.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 45

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

* non-value property:

— the created event and/or buffer (sub-)location(s) are initialised to “empty”, i.e. no delayed processes
are attached to the event or buffer nor are there messages in the buffer;

— the created region and/or task (sub-)location(s) are initialised to “empty”, i.e. no delayed
threads are attached to them;

— the created association (sub-)location(s) are initialised to “empty”, i.e. they do not contain an
association;

— the created access (sub-)location(s) are initialised to “empty”, i.e. they are not connected to an
association;

— the created text (sub-)location(s) haved record sub-location which is initialised with an empty
string and amaccess sub-location which is initialised with “empty”, i.e. it is not connected to an
association.

e The semantics @TATIC andhandler can be found in 10.9 and clause 8, respectively.

If the lifetime of amoreta location L ends and the mode of the location contains a destructor, then this destructor is
applied to L (see 10.2).

static properties: A defining occurrence in alocation declaration defines docation hame. The mode attached to the
location name is thenode specified in théocation declaration. A location name ig eferable.

static conditions: The class of thealue or constant value must becompatible with themode and the delivered value
should be one of the values defined byrtioele, or theundefined value.

If the mode has theread-only property, initialisation must be specified. If thenode has thenon-value property,
reach-bound initialisation must not be specified.

If initialisation is specified, th@alue must ber egionally safe for the location (see 11.2.2).

dynamic conditions: In the case ofeach-bound initialisation, the assignment conditions wdlue with respect to the
mode apply (see 6.2).

examples:
5.7 k2, x, w, t, s, r BOOL 1.1
6.9 := julian_day_number (3.0
8.4 INIT :=TA"Z 4.1)

413 L oc-identity declarations

syntax:
<loc-identity declaratiom ::= Q)
<defining occurrence list<mode- LOC [DYNAMIC]
<assignment symbeklocatior> [<handler] (1.1)

semantics. A loc-identity declaration creates as many access names to the specified location as there are defining
occurrencesspecified in the defining occurrence lisfThe mode of the location may be dynamic only if DYNAMIC is
specified.

If the locationis evaluated dynamically, this evaluation is done each time the reach in which the loc-identity declaration
is placed is entered. In this case, a declared name denotes an undefined location prior to the first evaluation during the
lifetime of the access denoted by the declared name (see 10.2 and 10.9).

static properties: A defining occurrencén aloc-identity declaratiordefines a loc-identity name. The mode attached to
aloc-identity nameis, if DYNAMIC is not specified, the modespecified in the loc-identity declarationotherwise, it is
the dynamically parameterised version of it that has the same parameters as the mode of the location

It is not allowed to create alocation of a moreta mode with the DYNAM I C property.
A loc-identity nameisreferableif, and only if, the specified locationisreferable.

static conditions: If DYNAMIC is specified in the loc-identity declarationthe modemust be parameterisable. The
specified mode must be dynamic read-compatible with the mode of the location if DYNAMIC is specified and
read-compatible with the mode of the location otherwise.

46 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The location must not be a string element or string dlice in which the mode of the string location is a varying string
mode.

dynamic conditions:. The RANGEFAIL or TAGFAIL exception occurs if DYNAMIC is specified, and the
above-mentioned dynamic read-compatible check fails.

example:

11.36 starting square LOC := b(m.lin_1)(m.col_1) (1.2)

4.2 L ocations

421 General

syntax:

<location> ::= @
<access hame> 1.1

| <dereferenced bound reference> (1.2

| <dereferenced free reference> (1.3

| <dereferenced row> (1.4

| <string element> (1.5)

| <string dlice> (1.6)

| <array element> .7

| <arraydlice> (1.8)

| <structurefield> (1.9

| <location procedure call> (1.10)

| <location built-in routine call> (1.12)

| <location conversion> (1.12)

| <predefined moreta location> (1.13)

semantics. A location is an object that can contain values. L ocations have to be accessed to store or obtain avalue.

static properties: A location has the following properties:
* A mode, as defined in the appropriate subclauses. This mode is either static or dynamic.
e ltisstatic or not (see 10.9).
e ltisintra-regional or extra-regional (see 11.2.2).

e ltisreferable or not. The language definition requires certain locations to be referable and others to be
not referable as defined in the appropriate subclauses. An implementation may extend referability to
other locations except when explicitly disallowed.

4.2.2 Access hames

syntax:
<access hame> ::= @
<location name> 1.0
| <loc-identity name> (1.2
| <location enumeration name> (1.3
| <location do-with hame> (1.4)

semantics. An access name delivers alocation. An access name is one of the following:

« alocation name, i.e. aname explicitly declared in alocation declaration or implicitly declared in aformal
parameter without the LOC attribute;

e aloc-identity name, i.e. aname explicitly declared in aloc-identity declaration or implicitly declared in a
formal parameter with the LOC attribute;

e alocation enumeration name, i.e. aloop counter in alocation enumeration;

e alocation do-with name, i.e. afield name used as direct access in the do action with awith part.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 47

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If the location denoted by a location do-with name is avariant field of a tag-less variant structure location, the semantics
are implementation defined.

static properties. The (possibly dynamic) mode attached to an access name is the mode of the location name,
loc-identity name, location enumeration name or |ocation do-with name, respectively.

An access name is referable if, and only if, it is a location name, a referable |oc-identity name, a referable location
enumeration name, or arefer able location do-with name.

dynamic conditions. When accessing via aloc-identity name, it must not denote an undefined location.

When accessing via a loc-identity name a location which is a variant field, the variant field access conditions for the
location must be satisfied (see 4.2.10). Accessing via a location do-with name causes a TAGFAIL exception if the
denoted location isavariant field and the variant field access conditions for the location are not satisfied.

examples:
412 a (1.1)
11.39 starting (1.2
15.35 each (1.3
5.10 cl (1.4

423 Der eferenced bound references
syntax:

<dereferenced bound reference> ::= @
<bound reference primitive value> —> [<mode name> | (1.2)

semantics: A dereferenced bound reference delivers the location that is referenced by the bound reference value.

static properties: The mode attached todereferenced bound reference is themode name if specified, otherwise the
referenced mode of the mode of thmund reference primitive value. A dereferenced bound reference is refer able.

static conditions. The bound reference primitive value must bestrong. If the optionalmode name is specified, it must
beread-compatible with thereferenced mode of the mode of tH®und reference primitive value.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if thieound reference primitive value delivers the valu&lULL.

If the referenced location is wariant field, the variant field access conditions for the location must be satisfied
(see 4.2.10).

example:
10.54 p—> (1.1)
424 Der eferenced freereferences

syntax:

<dereferenced free reference= Q)
<free referencerimitive value —> <mode name> (1.1

semantics: A dereferenced free reference delivers the location that is referenced by the free reference value.

static properties: The mode attached todereferenced free reference is themode name. A dereferenced free reference
is referable.

static conditions: Thefree reference primitive value must bestrong.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if thigee reference primitive value delivers the valuélULL.
The mode name must be ead-compatible with the mode of the referenced location.

If the referenced location is wariant field, the variant field access conditions for the location must be satisfied
(see 4.2.10).

48 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

425 Der eferenced rows
syntax:

<dereferenced row> ::= (@]
<row primitive value> —> 1.1

semantics: A dereferenced row delivers the location that is referenced by the row value.
static properties: The dynamic mode attached tdesieferenced row is constructed as follows:
&<origin mode name> (<parameter> { , <parameter> }*)

where &origin mode name is a virtualsynmode namesynonymous with thereferenced origin mode of the mode of the
row primitive value and where the parameters are, depending oretleenced origin mode:

e the dynamigtring length, in the case of a string mode;
e the dynamiapper bound, in the case of an array mode;

< the list of values associated with the mode of the parameterised structure location, in the casardf a
structure mode.

A dereferenced row is referable.

static conditions: Therow primitive value must bestrong.

dynamic conditions. The lifetime of the referenced location must not have ended.
TheEMPTY exception occurs if theow primitive value deliversNULL.

If the referenced location is wariant field, the variant field access conditions for the location must be satisfied
(see 4.2.10).

example:

8.11 input -> (1.1

426 String elements

syntax:
<string element> ::= @
<string location> (<start element>) (1.1
<start dement> ::= 2
<integer expression> (2.1

semantics. A string element delivers a (sub-)location which is the element of the specified string location indicated by
start element.

static properties. The mode attached to theing element is theelement mode of the mode of theiring location.
If the mode of thetring location is avarying string mode, then tharing element is notreferable.
dynamic conditions: TheRANGEFAIL exception occurs if the following relation does not hold:
0< NUM (start element) < L — 1
whereL is theactual length of thestring location.
example:
18.16 string ->(i) (1.2)

427 String dlices

syntax:
<string dlice> ::= @
<dtring location> (<left element> : <right element>) (1.1
| <string location> (<start element> UP <dice size>) (1.2
<left element> ::= 2
<integer expression> (2.1

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 49

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<right lement> ::= ©)
<integer expression> 3.1
<dicesize> ::= ©)
<integer expression> (4.0

semantics. A string slice delivers a (possibly dynamic) string location that is the part of the specified string location
indicated by left element and right element or start element and dlice size. The (possibly dynamic) length of the string
dlice is determined from the specified expressions.

A string slice in which the right element delivers a value which is less than that delivered by the left element or in which
dlice size delivers a non-positive va ue denotes an empty string.

static properties: The (possibly dynamic) mode attached to a string dlice is a parameterised string mode constructed
as.

&name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the string location if itisa
fixed string mode, otherwise with the component mode, and where string size is either:

NUM (right element) — NUM (left element) + 1
or:
NUM (slice size).

However, if an empty string is denotedtlsing size is 0. The mode attached tosting dlice is static ifstring size is
literal, i.e.left element andright element areliteral or dice sizeisliteral; otherwise the mode is dynamic.

If the mode of thetring location is avarying string mode, then tharing slice is notreferable.
static conditions: The following relations must hold:

0<NUM (left lement) <L — 1

0<NUM (right lement) <L — 1

0<NUM (start element) <L — 1

NUM (start element) + NUM (dicesize) <L

wherel is theactual length of thestring location. If L and the value alinteger expressions are known statically, the
relations can be checked statically.

dynamic conditions: TheRANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.
examples:

18.26 blanks (count : 9) 1.n
18.23 string ->(scanstart UP 10) (1.2

4.2.8 Array elements

syntax:
<array element> ::= @
<array location> (<expression list>) 1.1
<expression list> ::= 2
<expression> { , <expression> }* (2.1

derived syntax: The notation: (expression list>) is derived syntax for:
(<expression>) { (<expression>) }*

where there are as many parenthesised expressions as there are expressiexg @sdbe list. Thus ararray element
in the strict syntax has only one (index) expression.

semantics. An array element delivers a (sub-)location which is the element of the specified array location indicated by
expression.

50 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static properties. The mode attached to the array element is the element mode of the mode of the array location.
An array element isreferable if the element layout of the mode of the array location is NOPACK.

static conditions. The class of the expression must be compatible with the index mode of the mode of the array
location.

dynamic conditions. The RANGEFAIL exception occursiif the following relation does not hold:
L < expression< U

where L and U are the lower bound and the (possibly dynamic) upper bound of the mode of the array location,
respectively.

examples:

11.36 b(m.lin_1)(m.col_1) 1.1

429 Array slices

syntax:

<array sice> ::= (1)

<array location> (<lower element> : <upper element>) (1.1

| <array location> (<first element> UP <dlice size>) (1.2

<lower element> ::= 2
<expression> (2.0

<upper element> ::= ©)
<expression> 3.1

<first element> ::= (4)
<expression> (4.1)

semantics. An array dice delivers a (possibly dynamic) array location which is the part of the specified array location
indicated by lower element and upper element or first element and dlice size. The lower bound of the array sliceis equa
to the lower bound of the specified array; the (possibly dynamic) upper bound is determined from the specified
expressions.

static properties. The (possibly dynamic) mode attached to an array slice is a parameterised array mode constructed
as.

& name (upper index)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the array location and
upper index is either an expression whose class is compatible with the classes of lower element and upper element and
delivers avalue such that:

NUM (upper index) = NUM (L) + NUM (upper element) — NUM (lower element)

or is an expression whose classampatible with the class ofirst element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slicesize) — 1

whereL is thelower bound of the mode of tharray location.

The mode attached to anray slice is static ifupper index is literal, i.e. lower element andupper element are both
literal or dicesizeisliteral; otherwise, the mode is dynamic.

An array diceisreferable if the element layout of the mode of tharray location is NOPACK .

static conditions: The classes dbwer element andupper element or the class dfirst element must becompatible with
theindex mode of thearray location.

The following relations must hold:
L < NUM (lower element) < NUM (upper element) < U
1< NUM (slice size) < NUM (U) —=NUM (L) + 1
NUM (L) < NUM (first element) < NUM (first element) + NUM (slice size) — 1< NUM (U)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 51

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

where L and U are respectively the lower bound and upper bound of the mode of the array location. If U and the value
of al expressions are known statically, the relations can be checked statically.

dynamic conditions. The RANGEFAIL exception occursif adynamic part of the check of the relations above fails.
example:

17.27 res(0: count— 1) (1.2)
4210 Structurefields

syntax:

<structure field> ::= Q)
<structurelocatiore . <field name (1.1)

semantics: A structure field delivers a (sub-)location which is the field of the specified structure location indicated by
field namef the structurelocationhas atag-less variant structure mode and the field nameisavariant field name, the
semantics are implementation defined.

static properties. The mode of the structure fieldis the mode of the field name
A structure fieldisreferableif the field layout of the field names NOPACK.
static conditions: The field namemust be a name from the set of field names of the mode of the structurelocation

dynamic conditions: A location must not denote:

e atagged variant structure mode location in which the associated tag field value(s) indicate(s) that the
field does not exist;

e adynamic parameterised structure mode location in which the associated list of values indicates that the
field does not exist.

The above-mentioned conditions are called the variant field access conditions for the location. The TAGFAIL exception
occursif they are not satisfied for the structurelocation

example:
10.57 last >.info (1.2)
4211 Location procedure calls

syntax:

<location procedure call ::= Q)
<locationprocedure calt (1.1)

semantics: A location procedure call delivers the location returned from the procedure.

static properties: The mode attached to a location procedure calis the mode of the result spec of the location
procedure calif DYNAMIC is not specified in it; otherwise, it is the dynamically parameterised version of it that has
the same parameters as the mode of the delivered location.

Thelocation procedure calisreferable if NONREF is not specified in the result spec of the location procedure call

dynamic conditions. The location procedure callmust not deliver an undefined location and the lifetime of the
delivered location must not have ended.

4.2.12 Location built-in routine calls
syntax:

<location built-in routine calk ::= Q)
<locationbuilt-in routine calt (1.1)

semantics; A location built-in routine call delivers the location returned from the built-in routine call.

static properties. The mode attached to the location built-in routine callis the mode of the result spec of the location
built-in routine call

52 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

dynamic conditions. The location built-in routine call must not deliver an undefined location and the lifetime of the
delivered location must not have ended.

4.2.13 Location conversions

syntax:

<location conversion> ::= D
<mode name> # (<static mode location>) (1.1

semantics. A location conversion delivers the location denoted by static mode location. However, it overrides the
CHILL mode checking and compatibility rules and explicitly attaches a mode to the location without any change in the
internal representation.

The precise dynamic semantics of alocation conversion are implementation defined.
static properties: The mode of alocation conversion is the mode name.
A location conversion isreferable.
static conditions: The static mode location must be referable.
The following relation must hold:
SIZE (mode name) = SIZE (static mode location)
4.2.14 Predefined moretalocation

syntax:

<predefined moreta location> ::= @
SELF (11

semantics: In a component procedure and/or process P of a moreta mode, SEL F denotes that moreta location ML to
which P is currently being applied. The mode of SEL F isthe mode of ML.

static conditions: The use of SELF is alowed only inside the definition of a moreta mode.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 53

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

5 Values and their operations

51 Synonym definitions

syntax:
<synonym definition statement> ;= (0]
SYN <synonym definition> { , <synonym definition>}* ; 1.1
<synonym definition> ::= ()]
<defining occurrence list> [<mode> | = <constant value> (2.1

derived syntax: A synonym definition, where defining occurrence list consists of more than one defining occurrence, is
derived from several synonym definition occurrences, one for each defining occurrence with the same constant value and
mode, if present. E.g. SYN i, = 3; isderived fromSYN i = 3,j = 3;.

semantics. A synonym definition defines a name that denotes the specified constant value.
static properties: A defining occurrence in a synonym definition defines a synonym name.

The class of the synonym name s, if amode is specified, the M-value class, where M is the mode, otherwise the class of
the constant value.

A synonym name isundefined if, and only if, the constant value is an undefined value (see 5.3.1).

A synonym nameisliteral if, and only if, the constant valueisliteral.

static conditions: If a mode is specified, it must be compatible with the class of the constant value and the value
delivered by the constant value must be one of the values defined by the mode.

The evaluation of the constant value must not depend, directly or indirectly, on the constant value of the synonym
name.

examples:
117 SYN neutral_for_add = 0,
neutral_for_mult = 1, 1.1
2.18 neutral_for_add fraction=[0,1] (2.0
5.2 Primitive value
521 General
syntax:
<primitive value> ::= D
<location contents> (1.1
| <value name> (1.2
| <literal> (1.3)
| <tuple> (1.4
| <valuestring element> (1.5)
| <valuestring slice> (1.6)
| <valuearray element> @7
| <valuearray dlice> (1.8)
| <valuestructure field> (1.9)
| <expression conversion> (1.10)
| <representation conversion> (1.12)
| <value procedure call> (1.12)
| <value built-in routine call> (1.13)
| <start expression> (12.14)
| <zero-adic operator> (1.15)
| <parenthesised expression> (1.16)

54 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. A primitive value is the basic constituent of an expression. Some primitive values have a dynamic class,
i.e. aclass based on a dynamic mode. For these primitive values, the compatibility checks can only be completed at run
time. Check failure will then result in the TAGFAIL or RANGEFAIL exception.

static properties: The class of the primitive value is the class of the location contents, value name, etc., respectively.

A primitive value is constant if, and only if, it is a constant value name, a literal, a constant tuple, a constant
expression conversion, a constant representation conversion, a constant value built-in routine call or a constant
parenthesised expression.

A primitive value is literal if, and only if, it is a value name that is literal, a discrete literal, or a value built-in routine
call that isliteral.

522 L ocation contents
syntax:

<location contents> ::= @
<location> 1.1

semantics: A location contents delivers the value contained in the specified location. The location is accessed to obtain
the stored value.

static properties. The class of the location contents is the M-value class, where M is the (possibly dynamic) mode of
the location.

static conditions: The mode of the location must not have the non-value property.
dynamic conditions. The delivered value must not be undefined.
example:

37 c2.im 1.n

5.2.3 Value names

syntax:
<value name> ::= (€]
<synonym name> (1.2)
| <value enumeration name> (1.2)
| <value do-with name> 1.3
| <valuereceive name> (1.4
| <general procedure name> (1.5)

semantics: A value name deliversavalue. A value nameis one of the following:
e asynonym name, i.e. a name defined in a synonym definition statement;
e avalueenumeration name, i.e. aname defined by aloop counter in avalue enumeration;
e avaluedo-with name, i.e. afield name introduced as value name in the do action with awith part;
* avaluereceive name, i.e. aname introduced in areceive case action;

e ageneral procedure name (see 10.4).

If the value denoted by a value do-with name is a variant field of a tag-less variant structure value, the semantics are
implementation defined.

static properties: The class of avalue name is the class of the synonym name, value enumeration name, value do-with
name, value receive name or the M-derived class, where M is the mode of the general procedure name, respectively.

A value nameisliteral if, and only if, it is a synonym name that isliteral.

A value name is constant if it is a synonym name or a general procedure name denoting a procedur e name which has
attached a procedure definition which is not surrounded by a block.

static conditions: The synonym name must not be undefined.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 55

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

dynamic conditions. Evaluating a value do-with name causes a TAGFAIL exception if the denoted value is a variant
field and the variant field access conditions for the value are not satisfied.

examples:
10.12 max (1.
8.8 i (1.2
1554 this_counter (1.9

524 Literals

5.24.1 General

syntax:

<literal>::= (0]

<integer literal> (1.2

| <floating point literal> (1.2

| <boolean literal> 1.3

| <character literal> (1.4

| <setliteral> (1.5)

| <emptinessliteral> (1.6)

| <character string literal> @7

| <bit string literal> (1.8)

semantics; A literal delivers aconstant vaue.

static properties: The class of the literal is the class of the integer literal, boolean literal, etc., respectively. A literal is
discreteif it iseither aninteger literal, aboolean literal, acharacter literal or a set literal.

The letter together with the following apostrophe which starts an integer literal, boolean literal, and bit string literal
(i,e.B’,D’,H, O, b’,d, h’,0") isalitera qualification.

5.24.2 Integer literals

syntax:

<integer literab ::= 1)
<unsigned integer literad (1.2)

| <signed integer literad (1.2)
<unsigned integer literad ::= (2)
<decimal integer literat (2.1)

| <binary integer literak (2.2)

| <octal integer literab (2.3)

| <hexadecimal integer literal (2.4)
<signed integer literad ::= 3)
- <unsigned integer literad (3.1)
<decimal integer literat ::= (4)
[{D|d}’]<digit sequence> (4.1)

<binary integer literal> ::=)
{BIb}'{O]1]_} (5.1)

<octal integer literal>::= (6)
{O|o} {<octal digit>| _}* (6.1)
<hexadecimal integer literal>::= @)
{H | h>}"{<hexadecimal digit>| _}* (7.1)
<hexadecimal digit>::= 8
<digit>|A|B|C|D|E|F|a|b|c|d|e]|f (8.1)

<octal digit>::= 9)
0l1]2]3]4|5|6]|7 (9.1)

56 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<digit sequence> ::= (10)
{ <digit>|_}* (10.1)

semantics. An integer literal delivers an integer value. The usual decimal (base 10) notation is provided as well as
binary (base 2), octal (base 8) and hexadecimal (base 16). The underline character (_) is not significant, i.e. it serves
only for readability and it does not influence the denoted value.

A signed integer literal delivers a value which is the additive inverse of that delivered by the unsigned integer literal
init.

static properties: The class of an integer literal isthe & INT-derived class. Aninteger literal is constant and literal.

static conditions: The string following the apostrophe (') and the digit sequencenust not consist solely of underline
characters.

The value delivered by integer literalmust be one of the values defined by the &INT mode.

examples:
6.11 1 721 119 (2.1)
D'1 721 119 (2.1)
B’'101011_110100 (2.2)
0'53_64 (2.3)
H'AF4 (2.4)

5.24.3 Floating point literals

syntax:

<floating point literap ::= (1)
<unsigned floating point literal (1.2)

| <signed floating point litera (1.2)
<unsigned floating point literal ::= (2)
<digit sequence. [<digit sequence] [<exponer#] (2.2)

[<digit sequence] . <digit sequence[<exponert] (2.2)

<signed floating point literad ::= 3)
- <unsigned floating point literal (3.1)
<exponent ::= 4)
E <digit sequence (4.2)

E - <digit sequence (4.2)

derived syntax: A floating point literalin which 1. a digit sequence2. an exponenis missing is derived syntax for a
literal in which 1. the digit sequencés 0, 2. the exponents E1.

semantics: A floating point literal delivers afloating point value, expressed as a decimal number in scientific notation.

A signed floating point literal delivers a value which is the additive inverse of that delivered by the unsigned floating
point literalin it.

If the floating point literal lies between the upper bound and lower bound of one of the predefined floating point
modes of the implementation but is not exactly representable, the floating point literal value is approximated to the value
delivered by an implicit representation conversian the predefined floating point mode chosen by the implementation
for representing the floating point literal

static properties. The class of a floating point literalis the &FLOAT-derived class. A floating point literalis constant
and literal.

The precision of afloating point literalis the sum of the number of significant decimal digits delivered by the two digit
sequencethat form its mantissa.

static conditions. The value delivered by floating point literalmust be one of the values defined by the &FLOAT mode.
examples:

10.0E1 (1.1)
-365.0E-5 (1.1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 57

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

5.2.4.4 Boolean literals

syntax:

<boolean literal> ::= (€]
<boolean literal name> (1.2)

predefined names. The names FALSE and TRUE are predefined as boolean literal names.

semantics; A boolean literal delivers aboolean value.

static properties: The class of aboolean literal isthe BOOL-derived class. A boolean literal is constant and literal.
example:

5.42 FALSE (1.1)

5245 Character literals

syntax:
<character literal>::= @
" { < character> | <control sequence>}’ (1.2)
<control sequence> ;:= ()]
" (<integer literal expression> {, <integer literal expression> }*) (2.2)
| " <non-special character> (2.2
| m (2.3

semantics; A character literal delivers a character value.

Apart from the printable representation, tioatrol sequence representation may be usedcéntrol sequence in which

the circumflex character (”) is followed by an open parenthesis denotes the sequence of characters whose
representations are theteger literal expression in it; otherwise if it is followed by another circumflex character it
denotes itself, otherwise it denotes the character whose representation is obtained by logically negating the b7 of the
internal representation of timen-special character in it (see 12.4.4 and Appendix I).

static properties. The class of aharacter literal is theCHAR-derived class. Aharacter literal is constant andliteral.
static conditions: A control sequence in acharacter literal must denote only one character.

The value delivered by anteger literal expression in acontrol sequence must belong to the range of values defined by
the representations of the characters in the CHILL character set (see Appendix I).

example:

7.9 ‘M’ (1.2)
5.24.6 Setliterals

syntax:

<set literab ::= 1)
[<modename .] <set elememame (1.2)

semantics; A set litera delivers aset value. A set literal is aname defined in a set mode.

static properties. The class of a set literalis the M-value class, where M is the modename if specified. Otherwise,
M depends upon the context where the set literaloccurs, according to the following list:

« if the set literalis used in a place where a tuple without the modenamecan be used, then M is derived
following the same rules defined for the tuple (see 5.2.5);

« if theset literalis used asavauein atuple then M isthe mode of that value;
« if theset literalis used in aliteral rangeto define adiscrete range modef the form:
<discrete mod@ame> (<literal range>)

then M isthe discrete mod@ame;

58 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

« if the set literal is the usage expression, the where expression, the index expression or the write
expression in a built-in routine for input output (see 7.4), then M is respectively USAGE, WHERE, the
index mode of the access location or of the text location, the r ecord mode of the access location;

e if the set literal is used in a conditional expression, then M is derived in the same way as for the
expression in which it is contained;

e if the set literal is the upper index in a parameterised array mode, then M is the corresponding index
mode of the origin array mode;

e if the set literal is an expression in a parameterised structure mode, then M is the root mode of the
corresponding tag field name in the origin variant structure mode;

« if theset literal isused in an array element or array dice, then M is the corresponding index mode in the
array mode;

e if the set literal is used in a case label, then M is derived from the mode of the corresponding tag field
name (for structure mode), from the mode of the corresponding selector in the case selector list (for case
action or conditional expression), or from the index mode (for tuple);

e if the set literal is used as the lower bound or the upper bound and a discrete mode name is specified in
theliteral range in which it is contained, then M is the discrete mode name.

A set literal is constant and literal.

static conditions: The optional mode name may be omitted only in the contexts specified above.
The set element name must belong to the set of set element names of M.

examples:

6.51 dec (1.1)
11.78 king (1.1)

5.24.7 Emptinessliteral

syntax:
<emptiness literal> ::= D
<emptiness literal name> (1.1

predefined names: The name NULL is predefined as an emptinessliteral name.

semantics. The emptiness literal delivers either the empty reference value, i.e. avalue which does not refer to alocation,
the empty procedure value, i.e. a value which does not indicate a procedure, or the empty instance value, i.e. a value
which does not identify a process.

static properties: The class of the emptiness literal isthe null class. An emptiness literal is constant.
example:

10.43 NULL (1.1)

5.24.8 Character string literals

syntax:
<character string literal> ::= @
" { < non-reserved character> | <quote> | <control sequence>}* " 1.0
<guote> ::= ()]
”n (2.1)

semantics; A character string literal delivers a character string value that may be of length 0. It is a list of values for the
elements of the string; the values are given for the elements in increasing order of their index from left to right. To
represent the character qudté Within a character string literal, it has to be written twice (™).

static properties: The string length of a character string literalis the number of non-reservedharacter quoteand
characters denoted by control sequenceccurrences.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 59

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The class of a character string literal is the CHARS (n)-derived class, where n is the string length of the character
string literal. A character string literal is constant.

example:
8.20 "A-B<ZAA9K’” (1.1)

5.24.9 Bit string literals

syntax:

<hit string literab ::= Q)
<binary bit string literab (1.2)

| <octal bit string literab 1.2)

| <hexadecimal bit string literal (1.3)
<binary bit string literap ::= (2)
{BIb} {O]1]|_} (2.1)

<octal hit string literal> ::= 3
{O]o} ' {<octal digit>| _}’ 3.1
<hexadecimal bit string literal> ::= 4
{H]|h} {<hexadecimal digit>| _}*’ 4.1)

semantics. A bit string literal delivers a bit string value that may be of length 0. Binary, octal or hexadecimal notations
may be used. The underline character (_) is insignificant, i.e. it serves only for readability and does not influence the
indicated value.

A bit string literal is a list of values for the elements of the string; the values are given for the elements in increasing
order of their index from left to right.

static properties. Thestring length of abit string literal is either the number d@f and1 occurrences in hinary bit
string literal, three times the number oftal digit occurrences in aoctal bit string literal or four times the number of
hexadecimal digit occurrences in hexadecimal bit string literal.

The class of &it string literal is theBOOLS (n)-derived class, whene is thestring length of thebit string literal. A
bit string literal is constant.

examples:
B’'101011_110100 (1.2)
0'53_64’ (1.2)
H'AF4’ (1.3)
525 Tuples
syntax:
<tuple> ::= Q)
[<modenames | (: { <powerset tuple |
<array tuple> | <structure tuple } :) (1.2)
<powerset tuple ::= (2)
[{ <expression | <range>} { , { <expressior | <range>} }* | (2.1)
<range> ::= ©)
<expressior : <expressior (3.1)
<array tuple> ::= (4)
<unlabelled array tuple (4.2)
| <labelled array tuple (4.2)
<unlabelled array tuple ::= 5)
<value> { , <value}* (5.1)
<labelled array tuple ::= (6)
<case label list : <value> { , <case label list : <value>}* (6.1)
<structure tuple ::= ©)
<unlabelled structure tupte (7.1)
| <labelled structure tupke (7.2)

60 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<unlabelled structure tuple> ::= (8
<value> { , <value>}* (8.1
<labelled structure tuple> ::= 9
<field namelist> : <value> { , <field name list> : <value>}* (9.1
<field namelist>::= (10)
. <field name> { , . <field name> }* (10.2)

derived syntax: The tuple opening and closing brackets, [and], are derived syntax for (: and :), respectively. Thisis not
indicated in the syntax to avoid confusion with the use of square brackets as meta symbols.

semantics: A tuple delivers either a powerset value, an array value or a structure value.

If it is a powerset value, it consists of alist of expressions and/or ranges denoting those member values which are in the
powerset value. A range denotes those values which lie between or are one of the values delivered by the expressionsin
the range. If the second expression delivers a value which is less than the value delivered by the first expression, the
range is empty, i.e. it denotes no values. The powerset tuple may denote the empty powerset value.

If itisan array value, it is a (possibly labelled) list of values for the elements of the array; in the unlabelled array tuple,
the values are given for the elements in increasing order of their index; in the labelled array tuple, the values are given
for the elements whose indices are specified in the case label list labelling the value. It can be used as a shorthand for
large array tuples where many values are the same. The label ELSE denotes al the index values not mentioned
explicitly. Thelabel » denotesall index values (for further details, see 12.3).

If it isastructure vaue, it is a (possibly labelled) set of values for the fields of the structure. In the unlabelled structure
tuple, the values are given for the fields in the same order as they are specified in the attached structure mode. In the
labelled structure tuple, the values are given for the fields whose field names are specified in the field name list for the
value.

The order of evaluation of the expressions and values in a tuple is undefined and they may be considered as being
evaluated in any order.

static properties: The class of a tuple is the M-value class, where M is the mode name, if specified. Otherwise
M depends upon the context where the tuple occurs, according to the following list:

« if thetupleisthe value or constant value in an initialisation in alocation declaration, then M is the mode
in the location declaration;

« if the tuple is the right-hand side value in a single assignment action, then M is the (possibly dynamic)
mode of the left-hand side location;

o if thetupleisthe constant value in a synonym definition with a specified mode, then M is that mode;

e if thetupleis used in an operand-2 and one of the operands is strong, then M is the mode of the strong
operand;

e if thetupleis an actual parameter in a procedure call or in a start expression where DYNAMIC is not
specified in the corresponding parameter spec, then M isthe mode in the corresponding parameter spec;

« if thetuple isthe value in areturn action or aresult action, then M is the mode of the result spec of the
procedur e name of the result action or return action (see 6.8);

- if thetupleisavaluein a send action, then it is the associated mode specified in the signal definition of
the signal name or the buffer element mode of the mode of the buffer location;

« if thetupleisan expressionin an array tuple, then M is the element mode of the mode of the array tuple;

« if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple where the
associated field name list consists of only one field name, then M is the mode of the field in the structure
tuple for which the tuple is specified;

e if thetupleisthe value in a GETSTACK or ALLOCATE built-in routine call, then M is the mode denoted
by mode argument.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 61

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A tupleisconstant if, and only if, each value or expression occurring in it is constant.

static conditions: The optional mode name may be omitted only in the contexts specified above. Depending on whether
apowerset tuple, array tuple or structure tuple is specified, the following compatibility requirements must be fulfilled:

a) Powerset tuple:

1) The mode of the tuple must be a powerset mode.

2)
3

The class of each expression must be compatible with the member mode of the mode of the tuple.

For a constant powerset tuple the value delivered by each expression must be one of the values
defined by that member mode.

b) Arraytuple

1
2)
3

4)

5)

6)
7)

The mode of the tuple must be an array mode.
The class of each value must be compatible with the element mode of the mode of the tuple.

In the case of an unlabelled array tuple, there must be as many occurrences of value as the number
of elements of the array mode of the tuple.

In the case of alabelled array tuple, the case selection conditions must hold for the list of case label
list occurrences (see 12.3). The resulting class of the list must be compatible with the index mode
of the mode of the tuple. Thelist of case label specifications must be complete.

In the case of alabelled array tuple, the values explicitly indicated by each case label in a case |abel
list must be values defined by the index mode of the tuple.

In an unlabelled array tuple, at least one value occurrence must be an expression.

For a constant array tuple, where the element mode of the mode of the tuple is a discrete mode,
each specified value must deliver a value defined by that element mode, unless it is an undefined
value.

¢) Sructuretuple:

1
2)

The mode of the tuple must be a structure mode.
This mode must not be a structure mode which has field names which are invisible (see 12.2.5).
In the case of an unlabelled structure tuple;

— If the mode of thduple is neither avariant structure mode nor parameterised structure
mode, then:

3) There must be as many occurrencesatiie as there aréield names in the list ofield
names of the mode of thaple.

4) The class of eactalue must becompatible with the mode of the corresponding (by

position)field name of the mode of thaple.

— If the mode of theuple is atagged variant structure mode or #agged parameterised
structure mode, then:

5) Eachvalue specified for dag field must be aliscrete literal expression.

6) There must be as many occurrencegabfe as there aréield names indicated as existing
by the value(s) delivered by thdkscrete literal expression occurrences specified for the
tag fields.

7) The class of eactalue must becompatible with the mode of the correspondifigid
name.

— If the mode of thduple is atag-less variant structure mode or &ag-less parameterised
structure mode,

62 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

8) No unlabelled structure tuple is allowed.

In the case of alabelled structure tuple:

If the mode of thduple is neither avariant structure mode nor parameterised structure
mode, then:

9) Eachfield name of the list ofield names of the mode of thaple must be mentioned once
and only once in theuple.

10) The class of eaalalue must becompatible with the mode of everield name specified in
thefield name list labelling thatvalue. The modes of allield names in thdield name list

must beequivalent.

If the mode of theuple is atagged variant structure mode or #dagged parameterised
structure mode, then:

11) Eachvaluethat is specified for tag field must be aliscrete literal expression.

12) Eachfield name that denotes a fixed field or a field indicated as existing by the value(s)
delivered by thaliscrete literal expression occurrences specified for thag fields must be
mentioned once and only once in thple.

13) The class of eadlalue must becompatible with the mode of anfield name specified in
thefield namelist labelling thatvalue.

If the mode of thduple is atag-less variant structure mode or #ag-less parameterised
structure mode, then:

14) Eachfield name must be mentioned at most once in the tuple. Allixied field names
must be mentionedzield names mentioned in the tuple, which are defined in the same
alternative field, must all be defined in the same variant alternative or all be defined after
ELSE. All field names of an alternative field in each variant alternative dreldl names
defined aftelEL SE must be mentioned.

15) The class of eadlalue must becompatible with the mode of anfield name specified in
thefield namelist labelling thatvalue.

16) If the mode of theuple is atagged parameterised structure mode, the list of values delivered by the
discrete literal expression occurrences specified for thag fields must be the same as the list of
values of the mode of thaple.

17) For aconstant structure tuple, eachvalue specified for a field with a discrete mode must deliver a
value defined by th&ield mode, unless it is amdefined value.

18) At least on@alue occurrence must be &rpression.

No tuple may have twovalue occurrences in it, such that oneeastra-regional and the other isntra-regional

(see 11.2.2).

dynamic conditions. The assignment conditions of any value with respect tantraber mode,element mode or
associatedield mode, in the case gbwerset tuple, array tuple or structure tuple, respectively (see 6.2) apply [refer to
conditions a) 2), b) 2), c) 4), ¢) 7), ¢) 10), c) 13) and c) 15)].

If the tuple has a dynamic array mode, tRANGEFAIL exception occurs if any of the conditions b) 3) or b) 5) are not

satisfied.

If the tuple has a dynamiparameterised structure mode, thEAGFAIL exception occurs if any of the conditions c) 14)
or ¢) 16) are not satisfied.

The value delivered bytaple must not baindefined.

examples:

9.6
9.7
8.26
17.5

number_list[]~ (1.1)

[2:max] (2.1)
[(A):3,(B"K’,'Z'):1,(ELSE):0] (6.1)
[¢):" 7] (6.1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 63

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

12.35 (:NULL,NULL,536:) (7.1)
11.18 [.status: occupied,.p:[white,rook]] (9.1

526 Value string elements
syntax:

<value string element> ::= (0]
<string primitive value> (<start element>) (1.1

NOTE - If the string primitive value is astring location, the syntactic construct is ambiguous and will be interpretedsasig
element (see 4.2.6).

semantics: A value string element delivers a value which is the element of the specified string value indicated by start
element.

static properties: The class of the value string element is the M-value class, where M is the element mode of the mode
of the string primitive value.

A value string element is constant if, and only if, string primitive value and start el ement are constant.
dynamic conditions: The value delivered by avalue string el ement must not be undefined.
The RANGEFAIL exception occursif the following relation does not hold:
0<NUM (start element) <L — 1
whereL is theactual length of thestring primitive value.

5.2.7 Valuestring slices

syntax:
<valuestring dlice> ::= (D)
<string primitive value> (<left element> : <right element>) (1.1
| <string primitive value> (<start element> UP <dlice size>) (1.2

NOTE - If the string primitive value is astring location, the syntactic construct is ambiguous and will be interpretecsas@
dice (see 4.2.7).

semantics: A value string slice delivers a (possibly dynamic) string value which is the part of the specified string value
indicated by left element and right element or start element and slice size. The (possibly dynamic) length of the string
diceis determined from the specified expressions.

A string slice in which the right element delivers a value which is less than that delivered by the |eft element or in which
dice size delivers a non-positive value, denotes an empty string.

static properties: The (possibly dynamic) class of avalue string slice is the M-value classif the string primitive value is
strong and otherwise the M-derived class, where M is aparameterised string mode constructed as:

&name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) root mode of the string primitive
value if it isafixed string mode, otherwise with the component mode, and where string size is either

NUM (right element) — NUM (left element) + 1
or:
NUM (dlice size)

However, if an empty string is denotestting size is 0. The class of @alue string dice is static ifstring size is literal,
i.e. left element andright element areliteral or dice size isliteral; otherwise the class is dynamic.

A value string slice is constant if, and only if,string primitive value andstring size areconstant.
static conditions: The following relations must hold:

0<NUM (leftelement) <L — 1

64 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
0<NUM (right element) <L — 1
0< NUM (start element) < L — 1
NUM (start element) + NUM (dicesize) <L

wherelL is theactual length of thestring primitive value. If L and the value alhteger expressions are known statically,
the relations can be checked statically.

dynamic conditions. The value delivered byalue string slice must not baindefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

528 Value array elements

syntax:
<value array element> ::= (D)
<array primitive value> (<expression list>) 1.1

NOTE - If thearray primitive value is anarray location, the syntactic construct is ambiguous and will be interpreted agan
element (see 4.2.8).

derived syntax: See4.2.8.

semantics. A value array element delivers a value which is the element of the specified array value indicated by
expression.

static properties: The class of the value array element is the M-value class, where M is the element mode of the mode
of the array primitive value.

A value array element is constant if, and only if, array primitive value and expression are constant.

static conditions. The class of the expression must be compatible with the index mode of the mode of the array
primitive value.

dynamic conditions. The value delivered by avalue array element must not be undefined.

The RANGEFAIL exception occursiif the following relation does not hold:
L < expression< U

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the array primitive value,
respectively.

529 Valuearray slices

syntax:
<value array dice> ::= @
<array primitive value> (<lower element> : <upper element>) 1.1
| <array primitive value> (<first element> UP <dice size>) (1.2

NOTE - If thearray primitive value is anarray location, the syntactic construct is ambiguous and will be interpreted agsan
dlice (see 4.2.9).

semantics: A value array slice delivers a (possibly dynamic) array value which is the part of the specified array value
indicated by lower element and upper element, or first element and slice size. The lower bound of the value array dliceis
equal to the lower bound of the specified array value; the (possibly dynamic) upper bound is determined from the
specified expressions.

static properties: The (possibly dynamic) class of avalue array dice is the M-value class, where M is a parameterised
array mode constructed as:

& name (upper index)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the array primitive value
and upper index is either an expression whose class is compatible with the classes of lower element and upper element
and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element) — NUM (lower element)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 65

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

or is an expression whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (dlicesize) — 1

whereL is thelower bound of the mode of tharray primitive value.

The class of aalue array dlice is static ifupper index is literal, i.e.lower element andupper element both arditeral or
dicesizeisliteral; otherwise the class is dynamic.

static conditions: The classes dbwer element andupper element or the class dfirst element must becompatible with
theindex mode of therray primitive value.

The following relations must hold:
L < NUM (lower element) < NUM (upper element) < U
1< NUM (dlice size) < NUM (U) —=NUM (L) + 1
NUM (L) < NUM (first element) < NUM (first element) + NUM (slice size) — 1< NUM (U)

whereL andU are, respectively, thewer bound andupper bound of the mode of tharray primitive value. If U and
the value of albxpressions are known statically, the relations can be checked statically.

A value array dlice is constant if, and only if,array primitive value andupper index areconstant.
dynamic conditions: The value delivered byalue array slice must not baindefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

5210 Valuestructurefields
syntax:

<value structure field> ::= (0]
<gtructure primitive value> . <field name> (1.1

NOTE - If the structure primitive value is astructure location, the syntactic construct is ambiguous and will be interpreted as a
structure field (see 4.2.10).

semantics: A vaue structure field delivers a value which is the field of the specified structure value indicated by field
name. If the structure primitive value has a tag-less variant structure mode and the field name is a variant field name,
the semantics are implementation defined.

static properties: The class of value structure field is the M-value class, where M is the mode of the field name.
A value structurefield is constant if, and only if, structure primitive value is constant.

static conditions: The field name must be a name from the set of field names of the mode of the structure primitive
value.

dynamic conditions: The value delivered by avalue structure field must not be undefined.

A value must not denote:

e atagged variant structure mode value in which the associated tag field value(s) indicate(s) that the
denoted field does not exist;

e adynamic parameterised structure mode value in which the associated list of values indicates that the
field does not exist.

The above-mentioned conditions are called the variant field access conditions for the value (note that the conditions do
not include the occurrence of an exception). The TAGFAIL exception occurs if they are not satisfied for the structure
primitive value.

example:

11.140 b (lin)(col).status 1.1

66 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

5211 EXxpression conversion
syntax:

<expression conversion> ::= (1)
<mode name> # (<expression>) (1.2)

NOTE - If the expression is a static mode location, the syntactic construct is ambiguous and will be interpreted|esat@on
conversion (see 4.2.13).

semantics; An expression conversion overrides the CHILL mode checking and compatibility rules. It explicitly attaches
amode to the expression without any change in the internal representation.

static properties. The class of the expression conversion is the M-value class, where M is the mode name. An
expression conversion is constant if, and only if, the expression is constant.

static conditions. The mode name must not have the non-value property. The size of the root mode of the expression
and the size of mode hame must be equal.

5.212 Representation conversion
syntax:

<representation conversion> ::=)
<mode name> (<expression>) (1.1

semantics: A representation conversion overrides the CHILL mode checking and compatibility rules. It explicitly
attaches a mode to the expression and may change the internal representation of the value delivered by the expression
itself. If the mode of the mode name is a discrete mode and the class of the value delivered by the expression is discrete,
then the value delivered by the representation conversion is such that:

NUM (mode name (expression)) = NUM (expression)
A representation conversion in which mode name and the r oot mode of the class of the expression are respectively:
e aninteger mode and afloating point mode;
« afloating point mode and an integer mode;

» afloating point mode and another floating point mode with different r oot modes,

may involve an approximation. If the value delivered by expression is exactly representable in the set of values of mode
name, the result of the representation conversion is the value of expression itself, otherwise it is one of the two values
belonging to the set of values of mode name that delimit the smallest interval in which the value delivered by expression
is contained. A representation conversion in which mode name is an integer mode and the root mode of the class of the
expression is a duration mode, delivers an integer value which represents in milliseconds the value delivered by
expression.

A representation conversion in which mode name or the root mode of the class of the expression is a structure mode,
and the other one is a parameterised structure mode whaose origin structure mode is similar to it, delivers a structure
value in which the values of the fields are equal to the corresponding ones of the expression, if present. Otherwise the
result isimplementation defined.

Note that for tag-less variant structure values and for tagged variant structure values in which the list of tag valuesis
different from that of the parameterised structure mode, the result of the representation conversion is implementation
defined.

A representation conversion in which the mode M of the mode name is a reference mode and the class of the expression
isthe null class, the result of the representation conversion is null, if M is compatible with the class of
-> ((expression) ->), then the result is equal to it, otherwise the result is implementation defined.

Otherwise the value delivered by the representation conversion is implementation defined and may depend on the
internal representation of values.

static properties. The class of the representation conversion is the M-value class, where M is the mode name. A
representation conversion is constant if, and only if, the expression is constant.

static conditions: The mode name must not have the non-value property. An implementation may impose additional
static conditions.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 67

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

dynamic conditions: In the case of an expression that is not constant:

« aRANGEFAIL exception occurs if mode name is a duration mode and the root mode of the class of the
expression is an integer mode (or vice versa), and the value delivered by representation conversion does
not belong to the set of values defined for mode name;

e an OVERFLOW exception occurs if:

— the class of the value delivered épression is discrete and the mode wbde name is a discrete
mode which does not define a value with an internal representation edludi\t¢expression);

— the mode ofnode name and theroot mode of the class of thexpression are, independently, an
integer mode or a floating point mode, and ¢kgression delivers a value that does not lie between
the bounds of theoot mode ofmode name;

« anUNDERFLOW exception occurs if theode name and ther oot mode of the class of thepression are
floating point modes, and the value deliveredekyression is greater than theegative lower limit and
less than theositive lower limit of themode name, and is different from zero.

An implementation may impose additional dynamic conditions that, when violated, cause an exception defined by the
implementation.

5.213 Valueprocedurecalls
syntax:

<value procedure call> ::= @
<value procedure call> 1.1

semantics: A value procedure call delivers the value returned from a procedure.

static properties: The class of thealue procedure call is the M-value class, where M is the mode ofrtéseilt spec of
thevalue procedure call.

dynamic conditions; Thevalue procedure call must not deliver anndefined value (see 5.3.1 and 6.8).
examples:

6.50 julian_day_number ([10,dec,1979]) (1.1
11.63 ok _bishop(b,m) 1.n

5.2.14 Valuebuilt-in routine calls
syntax:

<value built-in routine call> ::= @
<value built-in routine call> 1.0

semantics: A value built-in routine call delivers the value returned by the built-in routine.
static properties: The class attached to thiaue built-in routine call is the class of thealue built-in routine call.

dynamic conditions: Thevalue built-in routine call must not deliver anndefined value (see 5.3.1 and 6.8).

5215 Start expressions

syntax:
<start expression>::= @
START <process name> ([<actual parameter list>]) 1.1

semantics. The evaluation of the start expression creates and activates a new process whose definition is indicated by
the process name (see clause 11). The start expression delivers the instance value identifying the created process.
Parameter passing is analogous to procedure parameter passing; however, additional actual parameters may be givel
with an implementation defined meaning.

static properties: The class of thetart expression is thelNSTANCE-derived class.

68 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static conditions: The number of actual parameter occurrences in the actual parameter list must not be less than the
number of formal parameter occurrences in the formal parameter list of the process definition of the process name. If
the number of actual parameters is m and the number of formal parameters is n(m=n), the compatibility and
regionality requirements for the first n actual parameters are the same as for procedure parameter passing (see 6.7). The
static conditions for the rest of the actual parameters are implementation defined.

dynamic conditions: For parameter passing, the assignment conditions of any actual value with respect to the mode of
its associated formal parameter apply (see 6.7).

The start expression causes the SPACEFAIL exception if storage requirements cannot be satisfied.
example:
15.35 START counter () (1.2)
5.216 Zero-adic operator
syntax:

<zero-adic operator> ::= 1)
THIS (1.1

semantics: The zero-adic operator delivers the unique instance value identifying the process executing it.

static properties: The class of the zero-adic operator isthe INSTANCE-derived class.

5.217 Parenthesised expression

syntax:
<parenthesised expression> ::= @
(<expression>) 1.0

semantics. A parenthesised expression delivers the value delivered by the evaluation of the expression.
static properties: The class of the parenthesised expression is the class of the expression.

A parenthesised expression is constant (literal) if, and only if, the expression is constant (literal).

example:
5.10 (al OR b1) (1.1)
53 Values and expressions

531 General

syntax:
<value> ;= (D)
<expression> (1.2
| <undefined value> (1.2
<undefined value> ::= 2
* (2.2)
| <undefined synonym name> (2.2

semantics: A valueis either an undefined value or a (CHILL defined) value delivered as the result of the evaluation of
an expression.

Except where explicitly indicated to the contrary, the order of evaluation of the constituents of an expression and their
sub-constituents, etc., is undefined and they may be considered as being evaluated in any order. They need only be
evaluated to the point that the value to be delivered is determined uniquely. If the context requires a constant or literal
expression, the evaluation is assumed to be done prior to run time and cannot cause an exception. An implementation
will define ranges of allowed values for literal and constant expressions and may reject a program if such a prior-to-
run-time evaluation delivers a value outside the implementation defined bounds.

static properties: The class of avalueisthe class of the expression or undefined value, respectively.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 69

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The class of the undefined value is the all class if the undefined value is a *; otherwise the class is the class of the
undefined synonym name.

A valueis constant if, and only if, it is an undefined value or an expression which is constant. A valueisliteral if, and
only if, it isan expression which isliteral.

dynamic properties: A valueis said to be undefined if it is denoted by the undefined value or when explicitly indicated
in this Recommendation | International Standard. A composite value is undefined if, and only if, al its sub-components
(i.e. substring values, element values, field values) are undefined.

example:
6.40 (146_097xc)/4+(1_461xy)/4
+(153* m+2)/5+day+1 721 119 (1.1)
532 Expressions
syntax:
<expression> ::= D
<operand-0> 1.1
| <conditional expression> (1.2
<conditional expression> ::= 2
| |F <boolean expression> <then alternative>
<else alternative> Fl (2.1)
| CASE <case selector list> OF { <value case alternative>} +
[EL SE <sub expression>] ESAC (2.2
<then alternative> ::= 3
THEN <sub expression> (3.1
<else alternative> ::= 4
EL SE <sub expression> (4.0
| ELSIF <boolean expression>
<then alternative> <else alternative> 4.2
<sub expression> ::=)
<expression> 5.1
<value case alternative> ;= (6)
<case label specification> : <sub expression> ; (6.2)

semantics. If IF is specified, the boolean expression is evaluated and if it yields TRUE, the result is the value delivered
by the sub expression in the then alternative, otherwise it is the value delivered by the else alternative.

The value delivered by an else alternative is the value of the sub expression if EL SE is specified, otherwise the boolean
expression is evaluated and if it yields TRUE, it is the value delivered by the sub expression in the then alternative,
otherwise it is the value delivered by the else alternative.

If CASE is specified, the sub expressions in the case selector list are evaluated and if a case label specification matches,
the result is the value delivered by the corresponding sub expression, otherwise it is the value delivered by the
sub expression following EL SE (which will be present).

Unused sub expressions in a conditional expression are not eval uated.

static properties: If an expression is an operand-0, the class of the expression is the class of the operand-0. If it is a
conditional expression, the class of the expression is the M-value class, where M is the mode which depends on the
context where the conditional expression occurs according to the same rules that define the mode of the class of atuple
without a mode name (see 5.2.5).

An expression is constant (literal) if, and only if, it is either an operand-0 which is constant (literal), or a conditional
expression in which al boolean expression or case selector list in it are constant (literal) and in which al
sub expressionsin it are constant (literal).

static conditions: If an expression is aconditional expression, the following conditions apply:

e aconditional expression may occur only in the contexts in which atuple without a mode name in front of
it may occur;

70 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e each sub expression must be compatible with the mode that is derived from the context with the same
rules as for tuples. However, the dynamic part of the compatibility relation applies only to the selected
sub expression;

« if CASE is specified, the case selection conditions must be fulfilled (see 12.3), and the same
completeness, consistency and compatibility requirements must hold as for the case action (see 6.4);

* no conditional expression may have two sub expression occurrences in it, such that one is extra-regional
and the other isintra-regional (see 11.2.2).

dynamic conditions. In the case of a conditional expression, the assignment conditions of the value delivered by the
selected sub expression with respect to the mode M derived from the context apply.

533 Operand-0

syntax:
<operand-0> ::= @
<operand-1> (1.2)
| <suboperand-0>{ OR |ORIF | XOR >} <operand-1> 1.2
<sub operand-0> ::= 2
<operand-0> (2.1)

semantics: If OR, ORIF or XOR is specified, sub operand-0 and operand-1 deliver:

e boolean values, in which case OR and XOR denote the logical operators “inclusive disjunction” and
“exclusive disjunction”, respectively, delivering a boolean valueORF is specified andperand-0
delivers the boolean valuERUE, then this is the result, otherwise the result is the value delivered by
operand-1;

e bit string values, in which casgR andXOR denote the logical operations on corresponding element of
the bit strings, delivering a bit string value;

e powerset values, in which ca8R denotes the union of both powerset values 4R denotes the
powerset value consisting of those member values which are in only one of the specified powerset values
(e.g.AXOR B= A-BOR B-A).

static properties: If an operand-0Ois an operand-1 the class of operand-0is the class of operand-1 If OR, ORIF or
XOR is specified, the class of operand-Ostheresulting class of the classes of sub operand-@nd operand-1

An operand-Qis constant (literal) if, and only if, it is either an operand-1which is constant (literal), or built up from
an operand-0and an operand-1which are both constant (literal).

static conditions: If OR, ORIF or XOR is specified, the class of sub operand-0nust be compatible with the class of
operand-1 If ORIF is specified, both classes must have a boolean root mode, otherwise both classes must have a
boolean, powerset or bit string root mode, in which case the actual length of sub operand-@nd operand-1must be the
same. This check is dynamic if one or both modesis (are) dynamic or varying string modes.

dynamic conditions; In the case of OR or XOR, a RANGEFAILexception occurs if one or both operands have a
dynamic class and the dynamic part of the above-mentioned compatibility check fails.

examples:

10.31 Kmin (1.1)
10.31 Kmin OR i>max (1.2)

534 Operand-1

syntax:
<operand- ::= 1)
<operand-2 (1.1)
| <sub operand-%{ AND | ANDIF >} <operand-2 (1.2)
<sub operand-% ::= (2)
<operand-® (2.1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 71

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. If AND or ANDIF is specified, sub operand-1 and operand-2 deliver:

* boolean values, in which case AND denotes the logical “conjunction” operation, delivering a boolean
value. IFANDIF is specified andub operand-1 delivers the boolean vall&ALSE, then this is the result,
otherwise the result is the value deliveredpgrand-2;

e bit string values, in which cageND denotes the logical operation on corresponding element of the bit
strings, delivering a bit string value;

e powerset values, in which ca8&D denotes the “intersection” operation of powerset values delivering a
powerset value as a result.

static properties: If anoperand-1 is anoperand-2, the class obperand-1 is the class aobperand-2.

If AND or ANDIF is specified, the class aperand-1 is theresulting class of the classes ofub operand-1 and
operand-2.

An operand-1 is constant (literal) if, and only if, it is either amperand-2 which isconstant (literal), or built up from
anoperand-1 and aroperand-2 which are botltonstant (literal).

static conditions: If AND or ANDIF is specified, the class afib operand-1 must becompatible with the class of
operand-2. If ANDIF is specified, both classes must have a booteah mode, otherwise both classes must have a
boolean, powerset duit stringroot mode, in which case tteetual length of sub operand-1 andoperand-2 must be the
same. This check is dynamic if one or both modes is (are) dynawacyong string modes.

dynamic conditions. In the case oAND, aRANGEFAIL exception occurs if one or both operands have a dynamic class
and the dynamic part of the above-mentioned compatibility check fails.

examples:

5.10 (al OR b1) (1.1)
5.10 NOT k2 AND (al OR b1l) (1.2)

535 Operand-2

syntax:

<operand-2> ::= @
<operand-3> 1.1

| <sub operand-2> <operator-3> <operand-3> (1.2

<sub operand-2> ::= ()]
<operand-2> (2.1
<operator-3>::= 3
<relational operator> (3.1

| <membership operator> 3.2

| <powerset inclusion operator> 3.3
<relational operator> ::= 4
=|/=|>|>=|<|<= (4.1)
<membership operator> ::= 5)
IN (5.2)
<powerset inclusion operator> ::= (6)
<=|>=|<|> (6.1)

semantics. The equality (=) and inequality (/=) operators are defined between all values of a given mode. The other
relational operators (less than: <, less than or equal to: <=, greater than: >, greater than or equal to: >=) are defined
between values of a given discrete, timing, string or floating point mode. All the relational operators deliver a boolean
value as result.

The membership operator is defined between a member value and a powerset value. The operatdRUEivfetise
member value is in the specified powerset value, othe ASSE.

The powerset inclusion operators are defined between powerset values and they test whether or not a powerset value is
contained in: <=, is properly contained in: <, contains: >= or properly contains: > the other powerset value. A powerset
inclusion operator delivers a boolean value as result.

72 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static properties. If an operand-2 is an operand-3, the class of operand-2 is the class of operand-3. If an operator-3 is
specified, the class of operand-2 isthe BOOL-derived class.

An operand-2 is constant (literal) if, and only if, it is either an operand-3 which is constant (literal) or built up from a
sub operand-2 and an operand-3 which are both constant (literal).

static conditions: If an operator-3 is specified, the following compatibility regquirements between the class of
sub operand-2 and the class of operand-3 must be fulfilled:

e if operator-3is=or /=, both classes must be compatible;

« if operator-3isarelational operator other than = or /=, both classes must be compatible and must have a
discrete, timing, string or floating point root mode;

« if operator-3 is a membership operator, the class of operand-3 must have a powerset root mode and the
class of sub operand-2 must be compatible with the member mode of that r oot mode;

e if operator-3 is a powerset inclusion operator, both classes must be compatible and must have a
powerset root mode.

dynamic conditions: In the case of arelational operator, a RANGEFAIL or TAGFAIL exception occurs if one or both
operands have a dynamic class and the dynamic part of the above-mentioned compatibility check fails. The TAGFAIL
exception occursif, and only if, a dynamic class is based upon a dynamic parameterised structure mode.

examples:

10.50 NULL (1.1)
10.50 last=NULL (1.2)

5.3.6 Operand-3

syntax:

<operand-3> ::= @
<operand-4> (1.1

| <sub operand-3> <operator-4> <operand-4> (1.2

<sub operand-3> ::= ()]
<operand-3> (2.1
<operator-4> ;.= 3
<arithmetic additive operator> 3.1

| <string concatenation operator> 3.2

| <powerset difference operator> 3.3
<arithmetic additive operator> ::= @
+|- (4.1)

<string concatenation operator> ::= 5)
" (5.1
<powerset difference operator> ::= (6)
- (6.2)

semantics; If operator-4 is an arithmetic additive operator, both operands deliver either integer values or floating point
values and the resulting integer value or floating point value respectively is the sum (+) or difference (-) of the two
values.

If operator-4 is a string concatenation operator, both operands deliver either bit string values or character string values;
the resulting value consists of the concatenation of these values. Boolean (character) values are also allowed; they are
regarded as bit (character) string values of length 1.

If operator-4 is the powerset difference operator, both operands deliver powerset values and the resulting value is the
powerset value consisting of those member values which are in the value delivexddopgrand-3 and not in the
value delivered bypperand-4.

If the class of operand-3 has a floating podt mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 73

Super seded by a more recent version

ISO/IEC 9496 : 1998 (E)

static properties: If an operand-3 is an operand-4, the class of operand-3 is the class of operand-4. If an operator-4 is
specified, the class of operand-3 is determined by operator-4 as follows:

e |If operator-4 is a string concatenation operator, the class of operand-3 is dependent on the classes of
operand-4 and sub operand-3, in which an operand that is a boolean or a character value is regarded as a
value whose classisaBOOL S (1)-derived class or CHARS (1)-derived class, respectively:

— if none of them istrong, the class is thBOOLS (n)-derived class 0€CHARS (n)-derived class,
depending on whether both operands are bit or character strings, misetiee sum of thatring
lengths of theroot modes of both classes;

— otherwise the class is then&me(n)-value class, where game is a virtual synmode name
synonymous with theroot mode of theresulting class of the classes of the operands anid the
sum of thestring lengths of ther oot modes of both classes.

(This class is dynamic if one or both operands have a dynamic class).

« If operator-4 is anarithmetic additive operator or powerset difference operator, the class obperand-3 is
theresulting class of the classes afperand-4 andsub operand-3.

An operand-3 is constant (literal) if, and only if, it is either awperand-4 which isconstant (literal), or built up from
an operand-3 and anoperand-4 which are bothconstant (literal) and operator-4 is either thearithmetic additive
operator or thepowerset difference operator.

If operator-4 is thestring concatenation operator, anoperand-3 is constant if it is built up from anoperand-3 and

operand-4 which are botltonstant.

static conditions: If an operator-4 is specified, the following compatibility requirements must be fulfilled:

e If operator-4 is thearithmetic additive operator, the classes of both operands mustdmpatible and
they must both have either an integer or a floating paiot mode. Furthermore, ibperand-3 is not
constant, theroot mode of the class alperand-3 must be gredefined integer mode or aredefined

floating point mode.

« If operator-4 is thestring concatenation operator, then:

— the classes of both operands mustdrapatible and they must both havebé stringroot mode or
both have &haracter stringroot mode; or

— the classes of both operands mustdrepatible with theBOOL mode or both beompatible with

the CHAR mode; or

— the class of one operand must havbita(character) string root mode and the other must be
compatible with theBOOL (CHAR) mode.

e If operator-4 is thepowerset difference operator, the classes of both operands mustdrapatible and
both must have a powerseiot mode.

dynamic conditions: In the case of aoperand-3 that is notconstant, if operator-4 is anarithmetic additive operator,
an OVERFLOW exception occurs if an addition (+) or a subtraction (=) gives rise to a value that is not one of the values
defined by the oot mode of the class afperand-3, or one or both operands do not belong to the set of values of the

root mode ofoperand-3.

In the case of aoperand-3 that is notconstant, an UNDERFLOW exception occurs if the class gferand-3 has a
floating pointroot mode and the exact mathematical addition (+) or subtraction (-) give rise to a value that is greater
than thenegative upper limit and less than thgositive lower limit of theroot mode ofoperand-3, and is different

from zero.
examples:

16 i
16 i+

537 Operand-4

syntax:

<operand-4> ::=

74 ITU-T Rec. Z.200 (1996 E)

(1.2)
(1.2)

@

Super seded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<operand-5> (1.0

| <sub operand-4> <arithmetic multiplicative operator> <operand-5> (1.2

<sub operand-4> ::= ()]
<operand-4> (2.1
<arithmetic multiplicative operator> ::= 3
O//|MOD | REM (3.2

semantics: If the arithmetic multiplicative operator is either the product () or the quotient operator (/), then both
sub operand-4 and operand-5 deliver either integer values or floating point values and the resulting integer value or
floating point value respectively is the product or quotient of both values.

If the arithmetic multiplicative operator is either the modulo (M OD) or division remainder (REM) operator, then both
sub operand-4 and operand-5 deliver integer values, and the resulting integer value is the modulo or division remainder
of both values.

The modulo operation is defined such that i MOD j delivers the unique integer value k, 0 < k < j such that there is an
integer value n such that i = n 0j + k; j must be greater than 0.

The quotient operation is defined such that all relations:

ABS (x/y) = ABS(x) / ABS(y) and
sign (xy) = sign (X) / sign (y) and
ABS(x) — (ABS (x) / ABS (y)) OABS (y) = ABS (x) MOD ABS (y)

yield TRUE for all integer valueg andy, where signx) = —1 ifx < 0, otherwise signxj = 1.
The remainder operation is defined such ¥REM y = x — (xy) Oy yieldsTRUE for all integer valueg andy.

If the class of operand-4 has a floating powdt mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.

static properties: If operand-4 is anoperand-5, the class obperand-4 is the class obperand-5; otherwise the class of
operand-4 is theresulting class of the classes &lb operand-4 andoperand-5.

An operand-4 is constant (literal) if, and only if, it is either amperand-5 which isconstant (literal), or built up from
anoperand-4 and aroperand-5 which are botltonstant (literal).

static conditions: If an arithmetic multiplicative operator is specified between integer or floating point operands, then
the classes dafperand-5 andsub operand-4 must becompatible and both must have an integeot mode or a floating
pointroot mode respectively. Furthermore offerand-4 is notconstant, theroot mode of the class afperand-4 must

be apredefined integer mode or predefined floating point mode.

dynamic conditions: In the case of amwperand-4 that is notconstant, if an arithmetic multiplicative operator is
specified, anOVERFLOW exception occurs if a multiplicatiori)(a division (), a modulo 1 OD), or a remainder

(REM) operation gives rise to a value that is not one of the values definedrtmptimode of the class @perand-4 or

is performed on operand values for which the operator is mathematically not defined, i.e. division or remainder with an
operand-5 delivering 0 or a modulo operation with eperand-5 delivering a non-positive integer value, or one or both
operands do not belong to the set of values ofadbemode ofoperand-4.

In the case of aoperand-4 that is notconstant, an UNDERFLOW exception occurs if the class oferand-4 has a
floating pointroot mode and the exact mathematical multiplicatidnof division (/) give rise to a value that is greater
than thenegative upper limit and less than thgositive lower limit of theroot mode ofoperand-4, and is different
from zero.

examples:
6.15 1 461 (1.1)
6.15 (4.d+3)/1_461 (1.2

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 75

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

5.3.8 Operand-5

syntax:

<operand-5> ::= @
<operand-6> (1.1

| <sub operand-5> <exponentiation operator> <operand-6> (1.2

<sub operand-5> ::= 2
<operand-5> (2.1

<exponentiation operator> ::= ©)]

M (3.1

semantics: If the exponentiation operator is specified, sub operand-5 and operand-6 deliver a floating point value or an
integer value. The resulting value is that obtained by raising the value delivered by sub operand-5 to the power of that
delivered by operand-6.

If the class of operand-5 has afloating point r oot mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.

static properties: If the operand-5 is an operand-6, the class of the operand-5 is the class of operand-6.
If the exponentiation operator is specified, the class of the operand-5 is that of the sub operand-5.

An operand-5 is constant (literal) if, and only if, it is either an operand-6 which is constant (literal), or built up from
an operand-5 and operand-6 which are both constant (literal).

static conditions: If an exponentiation operator is specified:

e if the class of sub operand-5 has a floating point root mode, the class of operand-6 must have an integer
root mode or afloating point r oot mode;

e otherwise the class of sub operand-5 must have an integer root mode and the class of operand-6 must
have an integer r oot mode.

dynamic conditions: In the case of an operand-5 which is not constant, an OVERFLOW exception occurs if an
exponentiation operation gives rise to a value outside the range of the root mode of the class of the operand-5.

In the case of an operand-5 that is not constant, an UNDERFLOW exception occurs if the class of operand-5 has a
floating point root mode and the exact mathematical exponentiation gives rise to a value that is less than the positive
lower limit of the root mode of operand-5.

If an exponentiation operator is specified and the class of operand-5 has an integer root mode, then if operand-6 is not
constant, its value must be greater than or equal to zero.

example:
rx% 4 1.2
539 Operand-6
syntax:
<operand-6> ::= @
[<monadic operator>] <operand-7> (1.1
| <signedinteger literal> (1.2
| <signed floating point literal> (1.3
<monadic operator> ::= 2
— |NOT (2.2)
| <string repetition operator> (2.2
<string repetition operator> ::= 3
(<integer literal expression>) 3.0

NOTE - If the monadic operator is the change sign operator (-) and dperand-7 is anunsigned integer literal or anunsigned
floating point literal, the syntactic construct is ambiguous and will be interpreteds@meal integer literal or asigned floating
point literal respectively.

76 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. If the monadic operator is a change-sign operator (-), operand-7 delivers an integer value or a floating point
value and the resulting integer value or floating point value is the previous integer value or floating point value with its
sign changed.

If the monadic operator is NOT, operand-7 delivers a boolean value, a bit string value, or a powerset value. In the first
two cases the logical negation of the boolean value or of the elements of the bit string value is delivered. In the latter
case, the set complement value, i.e. the set of those member values which are not in the operand powerset value, is
delivered.

If the monadic operator is a string repetition operator, operand-7 is a character string literal or a bit string literal. If the
integer literal expression delivers 0, the result is the empty string value; otherwise the result is the string value formed
by concatenating the string with itself as many times as specified by the value delivered by the integer literal expression
minus 1.

static properties: If operand-6 is an operand-7, the class of operand-6 is the class of operand-7.

If amonadic operator is specified, the class of operand-6 is:
e if the monadic operator is—or NOT, then the resulting class of operand-7

« if the monadic operatoris the string repetition operatgrthen it is the CHARS (n)- or BOOLS
(n)-derived class (depending on whether the literal was a character string literalor bit string literal)
where n =r [I, where r is the value delivered by the integer literal expressiorand | is the string length
of the string literal.

An operand-6is constant if, and only if, the operand-7is constant. An operand-6is literal if, and only if, the
operand-7isliteral and the monadic operators—or NOT.

static conditions: If monadic operatois —, the class of operand-7must have an integer root mode or a floating point
root mode. Furthermore, if operand-6is not constant, the root mode of the class of operand-6must be a predefined
integer mode or a predefined floating point mode.

If monadic operators NOT, the class of operand-7must have a boolean, bit string or powerset root mode.

If monadic operators the string repetition operatqroperand-7must be a character string literalor a bit string literal.
Theinteger literalexpressiommust deliver a non-negative integer-value.

dynamic conditions: If operand-6is not constant, an OVERFLOWexception occurs if a change sign (-) operation
givesriseto avalue which is not one of the values defined by the r oot mode of the class of the operand-6

In the case of an operand-6that is not constant, an UNDERFLOWexception occurs if the class of operand-6has a
floating point root mode and the exact mathematical change sign operation (=) gives rise to a value that is greater than
the negative upper limit and less than thgositive lower limit of theroot mode ofoperand-6, and is different from
zero.

examples:
5.10 NOT k2 (1.1
7.54)" (1.2)
7.54 (6) (2.2

5310 Operand-7

syntax:
<operand-7> ::= @
<referenced |ocation> (1.0
| <primitive value> (1.2
<referenced location> ::= 2
—> docation> (2.0

semantics: A referenced location delivers a reference to the specified location.

static properties: The class of anperand-7 is the class of theeferenced location or primitive value, respectively. The
class of theeferenced location is the M-reference class where M is the mode ofdbetion.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 77

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

An operand-7 is constant if, and only if, the primitive value is constant or the referenced location is constant. A
referenced location is constant if, and only if, the location is static. An operand-7 isliteral if, and only if, the primitive
valueisliteral.

static conditions: The location must be refer able.
example:
8.25 >c (2.1

78 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

6 Actions
6.1 General
syntax:
<action statement> ::= (0]
[<defining occurrence> :] <action> [<handler>] [<simple name string>1] ; (1.2
| <module> (1.2
| <spec module> (1.3)
| <context module> (1.4)
<action>::= ()]
<bracketed action> (2.2)
| <assignment action> (2.2)
| <call action> (2.3)
| <exit action> (2.9
| <return action> (2.5)
| <result action> (2.6)
| <goto action> 2.7
| <assert action> (2.8)
| <empty action> (2.9)
| <start action> (2.10)
| <stop action> (2.11)
| <delay action> (2.12)
| <continue action> (2.13)
| <send action> (2.19)
| <causeaction> (2.15)
<bracketed action> ::= ©)]
<if action> (3.1
| <caseaction> (3.2
| <do action> (3.3)
| <begin-end block> (349
| <delay case action> (3.5
| <receive case action> (3.6)
| <timing action> (3.7)

semantics. Action statements congtitute the algorithmic part of a CHILL program. Any action statement may be
labelled. Those actions that have no exception defined may not have a handler appended.

static properties: A defining occurrence in an action statement defines a label name.

static conditions: The simple name string may only be given after an action which is a bracketed action or if a handler
is specified, and only if a defining occurrence is specified. The simple name string must be the same name string as the
defining occurrence.

6.2 Assignment action

syntax:

<assignment action> ::= @
<single assignment action> 1.n

| <multiple assignment action> 1.2
<single assignment action> ;= ()]
<location> <assignment symbol> <value> (2.1

| <location> <assigning operator> <expression> (2.2)
<multiple assignment action> ::= 3
<location> { , <location> } + <assignment symbol> <value> (3.1
<assigning operator> ::= 4
<closed dyadic operator> <assignment symbol> (4.0

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 79

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<closed dyadic operator> ::= 5)
OR | XOR |AND (5.1

| <powerset difference operator> (5.2

| <arithmetic additive operator> (5.3)

| <arithmetic multiplicative operator> (5.9

| <string concatenation operator> (5.5
<assignment symbol> ::= (6)
= (6.1

semantics; An assignment action stores a value into one or more locations.

If an assignment symbol is used, the value yielded by the right hand side is stored into the location(s) specified at the left
hand side.

If an assigning operator is used, the value contained in the location is combined with the right hand side value (in that
order) according to the semantics of the specified closed dyadic operator, and the result is stored back into the same
location.

The evaluation of the left hand side location(s), of the right hand side value, and of the assignment themselves are
performed in any order. Any assignment may be performed as soon as the value and alocation have been evaluated.

If the location (or any of the locations) is the tag field of a variant structure, the semantics for the variant fields that
depend on it are implementation defined.

static conditions: The modes of all location occurrences must be equivalent and they must have neither the read-only
property nor the non-value property. Each mode must be compatible with the class of the value. The checks are
dynamic in the case where dynamic mode locations and/or a value with a dynamic class are involved.

The value must be regionally safe for every location (see 11.2.2).

If any location has a fixed string mode, then the string length of the mode and the actual length of the value must be
the same; otherwise, if it has a varying string mode, then the string length of the mode must not be less than the actual
length of the value. This check is dynamic if one or both modes is (are) dynamic or varying string modes. This

condition is called the string assignment condition.

dynamic conditions. The RANGEFAIL or TAGFAIL exception occurs if the mode of the location and/or that of the
value are dynamic modes and the dynamic part of the above mentioned compatibility checksfails.

The RANGEFAIL exception occurs if the mode of the location and/or that of the value are varying string modes and the
dynamic part of the above mentioned compatibility checks fails.

The RANGEFAIL exception occurs if any location has a discrete range mode (floating point range mode) and the value
delivered by the evaluation of value is neither one of the values defined by the discrete range mode (floating point range
mode) nor the undefined value.

The above mentioned dynamic conditions together with the string assignment condition are called the assignment
conditions of avalue with respect to a mode.

In the case of an assigning operator, the same exceptions are caused as if the expression:
<location> <closed dyadic operator> (<expression>)

were evaluated and the delivered value stored into the specified location (note that the location is evaluated once only).

examples:
4.12 a:=b+c (1.1
10.25 stackindex- := 1 (2.1)
19.19 X->.prev, X->.next := NULL (31)
10.25 .= (4.1)

80 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

6.3 If action
syntax:
<if action> ::= (1)
| F <boolean expression> <then clause> [<else clause>] FI (1.1
<then clause> ::= 2
THEN <action statement list> (2.0
<elseclause> ::= 3
EL SE <action statement list> (3.0
| ELSIF <boolean expression> <then clause> [<else clause> | (3.2

derived syntax: The notation:
EL SIF <boolean expression> <then clause> [<else clause> |
is derived syntax for:
EL SE | F <boolean expression> <then clause> [<else clause> | Fl;

semantics. An if action is a conditional two-way branch. If the boolean expression yields TRUE, the action statement
list following THEN is entered; otherwise the action statement list following EL SE, if present, is entered.

dynamic conditions. The SPACEFAIL exception occurs if storage reguirements cannot be satisfied.

examples:
7.22 IFn>=50THEN rn(r) :="L";
n- :=50;
r+:=1;
= (1.1)
10.50 IF last = NULL
THEN first,last := p;
EL SE last->.succ := p;
p->.pred := last;
last ;= p;
FI (1.1)
6.4 Case action
syntax:
<case actiom ::= Q)
CASE <case selector listOF [<range list ;] { <case alternative } *
[EL SE <action statement list] ESAC (1.1)
<case selector list::= (2)
<discreteexpression { , <discreteexpression }* (2.1)
<range list ::= 3)
<discrete mod@ame- { , <discrete mod@ame- }* (3.1)
<case alternative ;;= (4)
<case label specification: <action statement list (4.2)

semantics: A case action is a multiple branch. It consists of the specification of one or more discrete expressions (the
case selector list) and a number of |abelled action statement lists (case alternatives). Each action statement list is labelled
with a case label specification which consists of alist of case label list specifications (one for each case selector). Each
case label list defines a set of values. The use of alist of discrete expressions in the case selector list allows selection of
an alternative based on multiple conditions.

The case action enters that action statement list for which values given in the case label specification match the valuesin
the case selector list; if no value match, the action statement ligollowing EL SE is entered.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 81

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The expressions in the case selector list are evaluated in any order. They need be evaluated only up to the point where a
case alternative is uniquely determined.

static conditions: For the list of case label specification occurrences, the case selection conditions apply (see 12.3).

The number of discrete expression occurrences in the case selector list must be equal to the number of classes in the
resulting list of classes of the list of case label list occurrences and, if present, to the number of discrete mode name
occurrences in the range list.

The class of any discrete expression in the case selector list must be compatible with the corresponding (by position)
class of the resulting list of classes of the case label list occurrences and, if present, compatible with the corresponding
(by position) discrete mode name in the range list. The latter mode must also be compatible with the corresponding
class of theresulting list of classes.

Any value delivered by a discrete literal expression or defined by a literal range or by a discrete mode name in a case
label (see 12.3) must lie in the range of the corresponding discrete mode name of the range list, if present, and also in
the range defined by the mode of the corresponding discrete expression in the case selector lit, if it isastrong discrete
expression. In the latter case, the values defined by the corresponding discrete mode name of the range list, if present,
must also lie in that range.

The optional EL SE part according to the syntax may only be omitted if the list of case label list occurrences is complete
(see 12.3).

dynamic conditions: The RANGEFAIL exception occurs if arange list is specified and the value delivered by a discrete
expression in the case selector list does not lie within the bounds specified by the corresponding discrete mode name in
therange list.

The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:
411 CASE order OF
(1): a:=b+g;
RETURN;
(2: d:=0;
(ELSE): d:= 1,
ESAC (1.2)
11.43 starting.p.kind, starting.p.color (2.1
11.58 (rook),(*):
IF NOT ok _rook(b,m)
THEN
CAUSE illegal;
FI; (4.2)
6.5 Do action
6.5.1 General
syntax:
<do action> ::= (0]
DO [<control part> ;] <action statement list> OD 1.1
<control part>::= 2
<for control> [<while control>] (2.1
| <while control> (2.2)
| <with part> (2.3

semantics. A do action has one out of three different forms: the do-for and the do-while versions, both for looping, and
the do-with version as a convenient short hand notation for accessing structure fields in an efficient way. If no control
part is specified, the action statement list is entered once, each time the do action is entered.

82 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

When the do-for and the do-while versions are combined, the while control is evaluated after the for control, and only if
the do action is not terminated by the for control.

If the specified control part is afor control and/or while control, then for as long as control stays inside the reach of the
do action, the action statement list is entered according to the control part, but the do reach is not re-entered for each
execution of the action statement list.

dynamic conditions. The SPACEFAIL exception occurs if storage reguirements cannot be satisfied.

examples:
4,17 DOFORi:=1TOg;
op(a,b,d,order-1);
d:=g;
oD (1.2
15.58 DO WITH each;
I F this_counter = counter
THEN
status := idle;
EXIT find_counter;
FI;
oD (1.2)
6.5.2 For control
syntax:
<for control>::= (D)
FOR { <iteration>{ , <iteration>}* | EVER } (1.1)
<iteration>::= 2
<value enumeration> (2.2)
| <location enumeration> (2.2)
<value enumeration> ;:= 3
<step enumeration> (3.0
| <range enumeration> (3.2
| <powerset enumeration> (3.3
<step enumeration> ::= 4
<loop counter> <assignment symbol>
<start value> [<step value>] [DOWN] <end value> (4.0
<loop counter> ::= 5)
<defining occurrence> (5.1
<start value> ::= (6)
<discrete expression> (6.2)
<step value> ::= @
BY <integer expression> (7.2)
<end value> ;= (8
TO <discrete expression> (8.2)
<range enumeration> ::= 9
<loop counter>[DOWN] IN <discrete mode name> (9.1
<powerset enumeration> :;= (10)
<loop counter>[DOWN] IN <powerset expression> (10.2)
<location enumeration> ::= 11
<loop counter>[DOWN] IN <composite object> (11.1)
<composite object> ::= (12
<array location> (12.1)
| <array expression> (12.2)
| <string location> (12.3)
| <string expression> (12.4)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 83

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

NOTE - If the composite object is a string location or anarray location, the syntactic ambiguity is resolved by interpreting
composite object as aocation rather than aexpression.

semantics. The for control may mention several loop counters. The loop counters are evaluated each time in an
unspecified order, before entering the action statement list, and they need be evaluated only up to the point that it can be
decided to terminate the do action. The do action is terminated if at least one of the loop counters indicates termination.

1) dofor ever:
The action list isindefinitely repeated. The do action can only terminate by a transfer of control out of it.
2) value enumeration:

The action statement list is repeatedly entered for the set of specified values of the loop counters. The set
of values is either specified by a discrete mode name (range enumeration), or by a powerset value
(powerset enumeration), or by a start value, step value and end value (step enumeration).

The loop counter implicitly defines a name which denotes its value or location inside the action statement
list.

range enumeration:

In the case of range enumeration without (with) DOWN specification, the initial value of the loop counter
is the smallest (greatest) value in the set of values defined by the discrete mode name. For subsequent
executions of the action statement list, the next value will be evaluated as:

SUCC (previous value) (PRED (previous value))

Termination occurs if the action statement list has been executed for the greatest (smallest) value defined
by the discrete mode name.

power set enumer ation:

In the case of powerset enumeration without (with) DOWN specification, the initial value of the loop
counter is the smallest (highest) member value in the denoted powerset value. If the powerset value is
empty, the action statement list will not be executed. For subsequent executions of the action statement
list, the next value will be the next greater (smaller) member value in the powerset value. Termination
occurs if the action statement list has been executed for the greatest (smallest) value. When the do action
is executed, the power set expression is evaluated only once.

step enumer ation:

In the case of step enumeration without (with) DOWN specification, the set of values of the loop counter
is determined by a start value, an end value, and possibly a step value. When the do action is executed,
these expressions are evaluated only once in any order. The step value is always positive. The test for
termination is made before each execution of the action statement list. Initially, atest is made to determine
whether the start value of the loop counter is greater (smaller) than the end value. For subsequent
executions, next value will be evaluated as:

previous value + step value (previous value — step value)
in the case oftep value specification; otherwise as:
SUCC (previous value) (PRED (previous value))

Termination occurs if the evaluation yields a value which is greater (smaller) than the end value or would
have caused aBVERFLOW exception.

3) location enumeration:

In the case of a location enumeration without (WEBQWN specification, the action statement list is
repeatedly entered for a set of locations which are the elements of the array location deaotegd by
location or the components of the string location denotedtibiyg location. If an array expression or a

string expression is specified that is not a location, a location containing the specified value will be
implicitly created. The lifetime of the created location is the do action. The mode of the created location is

84 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

dynamic if the value has a dynamic class. The semantics are as if before each execution of the action
statement list the loc-identity declaration:

DCL <loop counter> <mode> L OC := <composite object> (<index>);

were encountered, where mode is the element mode of the array location or & name(1) such that & nameis
a virtual synmode name synonymous with the mode of the string location if it is a fixed string mode,
otherwise with the component mode, and where index is initially set to the lower bound (upper bound)
of the mode of location and index before each subsequent execution of the action statement list is set to
SUCC (index) (PRED (index)). The action statement list will not be executed if the actual length of the
string location equals 0. The do action isterminated if index just after an execution of the action statement
list is equal to the upper bound (lower bound) of the mode of location. When the do action is executed,
the composite object is evaluated only once.

static properties: A loop counter has a name string attached which is the name string of its defining occurrence.
value enumer ation:

The name defined by the loop counter is avalue enumeration name.

step enumeration:

The class of the name defined by aloop counter is the resulting class of the classes of the start value, the step value, if
present, and the end value.

range enumeration:
The class of the name defined by the loop counter isthe M-value class, where M is the discrete mode name.
power set enumer ation:

The class of the name defined by the loop counter is the M-value class, where M is the member mode of the mode of
the (strong) power set expression.

location enumer ation:

The name defined by the loop counter is alocation enumeration name. Its mode is the element mode of the mode of
the array location or array expression or the string mode &name(1l), where &name is a virtual synmode name
synonymous with the mode of string location or the root mode of the string expression.

A location enumeration name is referable if the element layout of the mode of the array location is NOPACK.
static conditions: The classes of start value, end value and step value, if present, must be pairwise compatible.
Theroot mode of the class of aloop counter in avalue enumeration must not be anumbered set mode.

If the root mode of the class of a loop counter is an integer mode, there must exist a predefined integer mode that
contains al the values delivered by start value, end value and step value, if present.

dynamic conditions: A RANGEFAIL exception occurs if the value delivered by step value is not greater than 0. This
exception occurs outside the block of the do action.

examples:
417 FORi:=1TOc 1.1
15.37 FOR EVER 1.1
417 i:=1TOc (3.1
9.12 j := MIN (sieve) BY MIN (sieve) TO max (3.0
14.28 i ININT (1:100) (3.2)

6.5.3 While control
syntax:

<while control>::= (D)
WHILE <boolean expression> 1.1

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 85

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. The boolean expression is evaluated just before entering the action statement list (after the evaluation of the
for control, if present). If it yields TRUE, the action statement list is entered; otherwise the do action is terminated.

examples:

7.35 WHILE n>= 1 (1.1)

6.5.4 With part

syntax:
<with part>::= @
WITH <with control> { , <with control> }* (1.1
<with control> ::= 2
<structure location> (2.1
| <structure primitive value> (2.2

NOTE - If the with control is astructure location, the syntactic ambiguity is resolved by interpretivith control as alocation
rather than @rimitive value.

semantics. The (visible) field names of the mode of the structure locations or structure value specified in each with
control are made available as direct accesses to the fields.

The visihility rules are as if afield name defining occurrence were introduced for each field name attached to the mode
of the location or primitive value and with the same name string as the field name.

If a structure location is specified, access names with the same name string as the field names of the mode of the
structure location are implicitly declared, denoting the sub-locations of the structure location.

If a structure primitive value is specified, value names with the same name string as the field names of the mode of the
(strong) structure primitive value are implicitly defined, denoting the sub-values of the structure value.

When the do action is entered, the specified structure locations and/or structure values are evaluated once only on
entering the do action, in any order.

static properties: The (virtual) defining occurrence introduced for a field name has the same name string as the field
name defining occurrence of that field name.

If astructure primitive value is specified, a (virtual) defining occurrence in awith part defines avalue do-with name. Its
class is the M-value class, where M is the mode of that field name of the structure mode of the structure primitive value
which is made available as value do-with name.

If a structure location is specified, a (virtual) defining occurrence in a with part defines a location do-with name. Its
mode is the mode of that field name of the mode of the structure location which is made available as location do-with
name. A location do-with nameisreferableif the field layout of the associated field name is NOPACK.

examples:

15,58 WITH each (1.1)

6.6 Exit action

syntax:

<exit action> ::= D
EXIT <label name> (1.2)

semantics: An exit action is used to leave a bracketed action statement or a module. Execution is resumed immediately
after the closest surrounding bracketed action statement or module labelled with the label name.

static conditions: The exit action must lie within the bracketed action statement or module of which the defining
occurrencein front has the same name string as label name.

86 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If the exit action is placed within a procedure or process definition, the exited bracketed action statement or module must
also lie within the same procedure or process definition (i.e. the exit action cannot be used to leave procedures or

processes).
No handler may be appended to an exit action.
examples:
15.62 EXIT find_counter (1.2)
6.7 Call action
syntax:
<call action> ::= @
<procedure call> 1.n
| <built-in routine call> 1.2
| <moreta component procedure call> (1.3
<procedurecall>::= ()]
{ <procedure name> | <procedure primitive value> }
([<actual parameter list>]) (2.1)
<actual parameter list>::= 3
<actual parameter>{ , <actual parameter> }* (3.1
<actual parameter> ::= ©)
<value> (4.2)
| <location> (4.2)
<built-in routine call> ::= 5)
<built-in routine name> ([<built-in routine parameter list>]) (5.2)
<built-in routine parameter list> ;:= (6)
<built-in routine parameter> { , <built-in routine parameter> }* (6.1
<built-in routine parameter> ::= @)
<value> (7.2)
| <location> (7.2
| <non-reserved name> [(<built-in routine parameter list>) | (7.3
<moreta component procedure call> ;= (8
<moreta location> . <moreta component procedure call> [<priority>] (8.1
| <bound reference moreta location primitive value> -> .
<mor eta component procedure call> [<priority>] (8.2
| <moreta component procedure call> [<priority>] (8.3

der

NOTE - If the actual parameter or built-in routine parameter is alocation, the syntactic ambiguity is resolved by interpreting it
as docation rather than &alue.

ived syntax: A procedure call P(...) of amoreta component procedure P is derived syntax for SELF.P(...).

semantics: A call action causes the call of either a procedure, a built-in routine, or a moreta component procedure. A
procedure call causes a call of the general procedure indicated by the value delivered by the procedure primitive value

ort

he procedure indicated by the procedure name. A moreta component procedure call L.name(...) causes the call of

that moreta component procedure which is identified by name in the mode of L. L is passed as an initial location
parameter to the procedure. The actual values and locations specified in the actual parameter list are passed to the
procedure.

A built-in routine call is either a CHILL built-in routine call or an implementation built-in routine call (see 6.20

and

13.1, respectively).

A value, alocation, or any program defined name that is not a reserved simple name string may be passed as built-in
routine parameter. The built-in routine call may return avalue or alocation.

A built-in routine may be generic, i.e. its class (if it is avalue built-in routine call) or its mode (if it isalocation built-in
routine call) may depend not only on the built-in routine name but also on the static properties of the actual parameters
passed and the static context of the call.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 87

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A moreta component procedure call has always the structure “location . procedure call’. This is characterised by the
expression “the procedure call is applied to the location”.

For a moreta component procedure call, the following steps are performed:
a) Thecalled procedureis applied to a module mode location:
1) evaluation of the actual parameters;
2) check of the precondition;
3) check of the complete invariant;
4) execution of the body of the procedure;
5) check of the complete invariant;
6) check of complete postcondition;
7) return to the calling point.
b) Thecalled procedureis applied to a region mode location RL:
1) evaluation of the actual parameters;
2) wait until RL is free and lock RL;
3) check of the precondition;
4) check of the complete invariant;
5) execution of the body of the procedure;
6) check of the complete invariant;
7) check of complete postcondition;
8) release RL;
9) return to the calling point.
c) Thecalled procedureis applied to a task mode location TL.:
the caller performs the following steps:
1) evaluation of the actual parameters;
2) send procedure identification, actual parameters and priority to TL;
3) continue with next action.
TL performs the following steps:
1) receive procedure identification and actual parameters according to priority;
2) check of the precondition;
3) check of the complete invariant;
4) execution of the body of the procedure;
5) check of the complete invariant;

6) check of complete postcondition.

static properties. A procedure call has the following properties attached: a lispafameter specs, possibly aresult
spec, a possibly empty set of exception namegereer ality, arecursivity, and possibly it isntra-regional (the latter is
only possible with grocedure name, see 11.2.2). These properties are inherited fromptbesdure name, moreta
component procedure name or any modecompatible with the class of therocedure primitive value (in the latter case,
the generality is alwaygeneral).

A procedure call with aresult spec is alocation procedure call if, and only if, LOC is specified in theesult spec;
otherwise it is avalue procedure call.

A built-in routine name is a CHILL or an implementation defined name that is considered to be defined in the reach of
the imaginary outermost process definition or in any context (see 10.8).

88 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A built-in routine call is a location built-in routine call if it delivers a location; it is a value built-in routine call if it
deliversavaue.

static conditions: A priority can only be used in a call of a procedure applied to a task location.

The number of actual parameter occurrences in the procedure call must be the same as the number of its parameter
specs. The compatibility requirements for the actual parameter and corresponding (by position) parameter spec of the
procedure call are:

e If the parameter spec has the IN attribute (default), the actual parameter must be a value whose class is
compatible with the mode in the corresponding parameter spec. The latter mode must not have the
non-value property. The actual parameter is a value which must be regionally safe for the procedure
call.

o If the parameter spec has the INOUT or OUT attribute, the actual parameter must be a location, whose
mode must be compatible with the M-value class, where M is the mode in the corresponding parameter
spec. The mode of the (actual) location must be static and must not have the read-only property nor the
non-value property. The actual parameter is a location. It can be viewed as a value which must be
regionally safe for the procedure call.

e If the parameter spec has the INOUT attribute, the mode in the parameter spec must be compatible with
the M-value class where M is the mode of the location.

e If the parameter spec has the L OC attribute specified without DYNAM I C, the actual parameter must be
alocation which is both refer able and such that the mode in the parameter spec is read-compatible with
the mode of the (actual) location, or the actual parameter must be a value which is not a location but
whose class is compatible with the mode in the parameter spec.

e If the parameter spec has the LOC attribute with DYNAM I C specified, the actual parameter must be a
location which is both referable and such that the mode in the parameter spec is dynamic
read-compatible with the mode of the (actual) location, or the actual parameter must be avalue which is
not a location but whose class is compatible with a parameterised version of this mode.

e If the parameter spec hasthe L OC attribute then:
— if theactual parameter is alocation, it must have the sammegionality as theprocedure call;

— if theactual parameter is avalue, then it must beegionally safe for theprocedure call.

dynamic conditions. A call action can cause any of the exceptions from the attached set of exception names. A
procedure call causes th&EMPTY exception if theprocedure primitive value deliversNULL. A call action causes the
SPACEFAIL exception if storage requirements cannot be satisfied. Hethesivity of the procedure ison-recursive,

then the procedure must not call itself either directly or indirectly.

Parameter passing can cause the following exceptions:

e If the parameter spec has tid or INOUT attribute, the assignment conditions of the (actual) value with
respect to the mode of the parameter spec apply at the point of the call (see 6.2) and the possible
exceptions are caused before the procedure is called.

e If the parameter spec has theOUT or OUT attribute, the assignment conditions of the local value of
the formal parameter with respect to the mode of the (actual) location apply at the point of return (see 6.2)
and possible exceptions are caused after the procedure has returned.

» If the parameter spec has th@C attribute and thactual parameter is avalue which is not docation,

the assignment conditions of the (actwalue with respect to the mode of the parameter spec apply at the
point of the call and the possible exceptions are caused before the procedure is called (see 6.2).

Assertion checking can cause the following exceptions:

« If the precondition evaluates FALSE the exceptiorlPREFAIL is caused — The search for an appropriate
handler begins at the end of the procedure body and continues according to 8.3.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 89

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e |If the postcondition evaluates to FALSE the exception POSTFAIL is caused — The search for an
appropriate handler begins at the end of the procedure body and continues according to 8.3.

e If the invariant evaluates tBALSE the exceptionNVFAIL is caused — The search for an appropriate
handler begins at the end of the body of the corresponding moreta mode and continues according to 8.3.

The procedure primitive value must not deliver a procedure defined within a process definition whose activation is not
the same as the activation of the process executing the procedure call (other than the imaginary outermost process) anc
the lifetime of the denoted procedure must not have ended.

If a call is applied to a task location TL, then TL must not be ended.

examples:
4.18 op(a,b,d,order-1) 1.1
6.8 Result and return action
syntax:
<return action> ::= (D)
RETURN [<result>] (1.2)
<result action> ::= 2
RESULT <result> (2.1
<result>::= ©)
<value> (3.1
| <ocation> (3.2

derived syntax: Thereturn action with result is derived frorDO RESULT <result> ; RETURN; OD.

semantics. A result action serves to establish the result to be delivered by a procedure call. This result may be a location
or a value. A return action causes the return from the invocation of the procedure within whose definition it is placed. If
the procedure returns a result, this result is determined by the latest executed result action. If no result action has been
executed, the procedure call deliversuadefined location orundefined value, respectively.

static properties: A result action and areturn action have gorocedure name attached, which is the name of the closest
surrounding procedure definition.

static conditions: A return action and aresult action must be textually surrounded by a procedure definitionesalt
action may only be specified if itgrocedure name has eesult spec.

A handler must not be appended toeturn action (withoutresult).

If LOC (LOC DYNAMIC) is specified in theesult spec of theprocedure name of theesult action, theresult must be
alocation, such that the mode in tihesult spec is read-compatible (dynamic read-compatible) with the mode of the
location. Thelocation must bereferable if NONREF is not specified in theesult spec. Theresult is alocation which
must have the sanmegionality as theprocedur e name attached to tmesult action.

If LOC is not specified in theesult spec of theprocedure name of theesult action, theresult must be avalue, whose
class iscompatible with the mode in theesult spec. Theresult is avalue which must beregionally safe for the
procedure name attached to thmesult action.

dynamic conditions: If LOC is not specified in theesult spec of the procedure name, the assignment conditions of
thevalue in theresult action with respect to the mode in thesult spec of its procedure name apply.

examples:
421 RETURN (1.1)
16 RESULT i+j (2.1)
5.19 c (3.1

90 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

6.9 Goto action
syntax:
<goto action> ;= D
GOTO <label name> (1.2)

semantics. A goto action causes a transfer of control. Execution is resumed with the action statement labelled with the
label name.

static conditions: If a goto action is placed within a procedure or process definition, the label indicated by the |abel
name must also be defined within the definition (i.e. it is not possible to jump outside a procedure or process invocation).

A handler must not be appended to a goto action.

6.10 Assert action

syntax:

<assert action> ::= @
ASSERT <boolean expression> 1.0

semantics: An assert action provides a means of testing a condition.
dynamic conditions. The ASSERTFAIL exception occurs if the boolean expression delivers FALSE.
examples:

4.7 ASSERT b>0 AND c>0 AND order>0 (1.2)

6.11 Empty action

syntax:
<empty action> ::= (@)
<empty> (1.2)
<empty> ::= 2

semantics: An empty action causes no action.

static conditions: A handler must not be appended to an empty action.

6.12 Cause action

syntax:

<cause action> ::= (1)
CAUSE <exception name> (1.2)

semantics. A cause action causes the exception whose name is indicated by exception name to occur.
static conditions: A handler must not be appended to a cause action.
examples:

49 CAUSE wrong_input (1.1

6.13 Start action

syntax:

<start action> ::= @
<start expression> 1.1

semantics: A start action evaluates the start expression (see 5.2.15) without using the resulting instance value.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 91

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

examples:

14.45 START call_distributor () 1.1

6.14 Stop action
syntax:

<stop action> ::= @
STOP (1.1

semantics. A stop action terminates the process executing it (see 11.1).

static conditions: A handler must not be appended to a stop action.

6.15 Continue action
syntax:

<continue action> ::= (0]
CONTINUE <event location> 1.n

semantics: A continue action evaluates the event location.

If the event location has a non-empty set of delayed processes attached, one of these, with the highest priority, will be
re-activated. If there are several such processes, one will be selected in an implementation defined way. If there are no
such processes, the continue action has no further effect.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

examples:

13.25 CONTINUE resource_freed (1.2)

6.16 Delay action

syntax:
<delay action> ::= @
DELAY <event location> [<priority>] (1.1
<priority>::= ()]
PRIORITY <integer literal expression> (2.1

semantics: A delay action evaluates the event location.
Then a DELAYFAIL exception occurs (see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member with a priority of the set of delayed processes attached
to the specified event location. The priority is the one specified, if any, otherwise O (lowest).

dynamic properties: A process executing a delay action becomes timeoutable when it reaches the point of execution
where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions; The integer literal expression must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if the event location has a mode with an event length attached
which is equal to the number of processes already delayed on the event location.

The lifetime of the event location must not end while the executing process is delayed on it.
examples:

13.18 DELAY resource freed (1.1

92 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

6.17 Delay case action

syntax:

<delay case action> ::= (D)
DELAY CASE [SET <instance location> [<priority>] ; | <priority>;]
{ <delay alternative> } +

ESAC (1.1
<delay alternative> ::= ()]
(<event list>) : <action statement list> (2.1
<event list> ::= ©)
<event location> { , <event location> }* (3.1

semantics. A delay case action evauates, in any order, the instance location, if present, and all event locations specified
in adelay alternative.

Then a DELAYFAIL exception occurs (see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member with a priority of the set of delayed processes attached
to each of the specified event locations. The priority is the one specified, if any, otherwise O (lowest).

If the delayed process becomes re-activated by another process executing a continue action on an event location, the
corresponding action statement list is entered. If several delay alternatives specify the same event location, the choice
between them is not specified. Prior to entering, if an instance location is specified, the instance value identifying the
process that has executed the continue action is stored in it.

dynamic properties. A process executing a delay case action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions. The mode of the instance location must not have the read-only property. The integer literal
expression in priority must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if any event location has a mode with an event length
attached which is equal to the number of processes aready delayed on that event location.

The lifetime of none of the event locations must end while the executing process is delayed on them.
The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
examples:
14.26 DELAY CASE
(operator_is ready): /* some actions*/
(switch_is closed): DO FOR i IN INT (1:100);

CONTINUE operator_is ready;
[* empty the queue */

OD;
ESAC (1.1)
6.18 Send action
6.18.1 General
syntax:
<send action> ::= D
<send signal action> (1.1
| <send buffer action> 1.2

semantics; A send action initiates the transfer of synchronisation information from a sending process. The detailed
semantics depend on whether the synchronisation object isasignal or a buffer.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 93

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

6.18.2 Send signal action

syntax:
<send signal action> ::= @
SEND <signhal name> [(<value> { , <value>1}*)]
[TO <instance primitive value>] [<priority>] (1.2)

semantics. A send signal action evaluates, in any order, the list of values, if present, and the instance primitive value, if
present.

The signal specified by signal name is composed for transmission from the specified values and a priority. The priority
is the one specified, if any, otherwise 0 (lowest).

If the signal name has a process name attached, only processes with that name may receive the signal; if an instance
primitive value is specified, only that process may receive the signal. Otherwise any process may receive the signal.

If the signal has a non-empty set of delayed processes attached, in which one or more may receive the signal, one of
these will be re-activated. If there are several such processes, one will be selected in an implementation defined way. If
there are no such processes, the signal becomes pending.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

static conditions: The number of value occurrences must be equal to the number of modes of the signal name. The class
of each value must be compatible with the corresponding mode of the signal name. No value occurrence may be
intra-regional (see 11.2.2). The integer literal expression in priority must not deliver a negative value.

dynamic conditions: The assignment conditions of each value with respect to its corresponding mode of the signal
name apply.

The EMPTY exception occursiif the instance primitive value delivers NULL.

The lifetime of the process indicated by the value delivered by the instance primitive value must not have ended at the
point of the execution of the send signal action.

The SENDFAIL exception occurs if the signal name has a process name attached which is not the name of the process
indicated by the value delivered by the instance primitive value.

examples:

15.78 SEND ready TO received user (1.1
15.86 SEND readout(count) TO user 1.1

6.18.3 Send buffer action

syntax:

<send buffer action> ::= @
SEND <buffer location> (<value>) [<priority>] (1.1

semantics: A send buffer action evaluates the buffer location and the value in any order.

If the buffer location has a non-empty set of delayed processes attached, one of these will be re-activated. If there are
several such processes, one will be selected in an implementation defined way. If there are no such processes and the
capacity of the buffer location is exceeded, the executing process becomes delayed with a priority. Otherwise, the value
is stored with a priority. The priority is the one specified, if any, otherwise O (lowest). The capacity of the buffer is
exceeded if the buffer location has a mode with a buffer length attached which is equal to the number of values already
stored in the buffer location.

If the executing process becomes delayed, it becomes a member of the set of delayed sending processes attached to the
buffer location. If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a
member.

dynamic properties: A process executing a send buffer action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

94 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static conditions: The class of the value must be compatible with the buffer element mode of the mode of the buffer
location. The value must not be intra-regional (see 11.2.2). The integer literal expression in priority must not deliver a
negative value.

dynamic conditions; The assignment conditions of the value with respect to the buffer element mode of the mode of
the buffer location apply; the possible exceptions occur before the process may become delayed.

The lifetime of the buffer location must not end while the executing processis delayed on it.
examples:

16.123 SEND user->([ready, ->counter_buffer]) ; (1.1

6.19 Receive case action

6.19.1 General
syntax:
<receive case action> ::= @
<receive signal case action> 1.1
| <receive buffer case action> (1.2

semantics; A recelve case action receives synchronisation information transmitted by a send action. The detailed
semantics depend on the synchronisation object used, which is either asignal or a buffer. Entering a receive case action
does not necessarily result in adelaying of the executing process (see clause 11 for further details).

6.19.2 Receivesignal case action
syntax:

<receive signal case action> ::= (0]
RECEIVE CASE [SET <instance location> ;]
{ <signal receive alternative> } +

[EL SE <action statement list>] ESAC (1.1

| RECEIVE[SET <instance location>]
(<signal name>[IN <location list>1]) 1.2
<location list> ::= 2
<location> { , <location> }* (2.1
<signal receive alternative> ::= 3
(<signal name> [IN <defining occurrence list>]) : <action statement list> 3.1

derived syntax: The notation (1.2) is derived syntax for

RECEIVE CASE [SET <instance location>; |

(<signal name> [IN <&name>1, ..., <&name>n]):

<location>1 := <&name>1; ... <location>p := <&nhame>p; ESAC,

where € name>1, ..., <&hame>p, are virtually introducedalue r eceive names, and
<location>1, ..., docation>p are thdocations in thelocation list.

semantics: A receive signal case action evaluated tiseance location, if present.

Then the executing process: (immediately) receives a signal Bk, SE is specified, enters the correspondautjon
statement list, otherwise becomes delayed. The executing process immediately receives a signal if sgeabhame
specified in asignal receive alternative is pending and may be received by the process. If more than one signal may be
received, one with the highest priority will be selected in an implementation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes attached to each of th
specified signals. If the delayed process becomes re-activated by another process executing a send signal action, it
receives a signal.

If the executing process receives a signal, the correspoadiiay statement list is entered. Prior to entering, if an
instance location is specified, the instance value identifying the process that has sent the received signal is stored in it. If

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 95

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

the signal name of the received signal has a list of modes attached, alist of value receive names is specified; the signal
carries alist of values, and the value r eceive names denote their corresponding value in the entered action statement list.

static properties. A defining occurrence in the defining occurrence list of a signal receive alternative defines a value
receive name. Its class is the M-value class, where M is the corresponding mode in the list of modes attached to the
signal namein front of it.

dynamic properties: A process executing a receive signal case action becomes timeoutable when it reaches the point
of execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property.

All signal name occurrences must be different.

The optional IN and the defining occurrence list in the signal receive alternative must be specified if, and only if, the
signal name has a non-empty set of modes. The number of names in the defining occurrence list must be equal to the
number of modes of the signal name.

The assignment conditions of the values delivered by &namey, ..., &namep with respect to the modes lakcationy, ...
locationp apply.

dynamic conditions. The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
examples:

15.83 RECEIVE CASE
(advance): count + := 1;
(terminate):
SEND readout(count) TO user;
EXIT work_loop;
ESAC (1.2)

6.19.3 Receive buffer case action
syntax:

<receive buffer case action> ::= (0]
RECEIVE CASE [SET <instance location>;]
{ <buffer receive alternative> }+
[EL SE <action statement list>]

ESAC (1.2)
| RECEIVE [SET <instance location>]
(<buffer location > IN <location>) 1.2
<buffer receive alternative> ::= 2
(<buffer location> IN <defining occurrence>) : <action statement list> (2.1

derived syntax: The notation (1.2) is derived syntax for

RECEIVE CASE [SET <instance location>;]
(<buffer location> IN <&nhame>): <location> := <& hame>;
where €name> is a virtually introducedalue receive name.

semantics: A receive buffer case action evaluates, in any ordeingtemnce location, if present, and albuffer locations
specified in duffer receive alternative.

Then the executing process: (immediately) receives a value 6L, SE is specified, enters the correspondaution

statement list, otherwise becomes delayed. The executing process immediately receives a value if one is stored in, or a
sending process delayed on, one of the specified buffer locations. If more than one value may be received, one with the
highest priority will be selected in an implementation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes attached to each of th
specified buffer locations. If the delayed process becomes re-activated by another process executing a send buffer action,
it receives a value.

If the executing process receives a value, the correspondiioy statement list is entered. If severduffer receive
alternatives specify the same buffer location, the choice between them is not specified. Prior to enterimgtahes

96 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

location is specified, the instance value identifying the process that has sent the received value is stored in it. The
specified value r eceive name denotes the received value in the entered action statement list.

Another process becomes re-activated if the executing process receives a value from a buffer location, the attached set of
delayed sending processes of which is not empty. The re-activated process is one with the highest priority attached, if the
received value was stored in the buffer location, otherwise the one sending the received value. In the former case, the
value to be sent by the re-activated process is stored in the buffer location (the capacity of which remains exceeded), and
if more than one process may be re-activated, one will be selected in an implementation defined way. The re-activated
process is removed from the set of delayed sending processes attached to the buffer location.

static properties: A defining occurrence in a buffer receive alternative defines a value receive name. Its class is the
M-value class, where M is the buffer element mode of the mode of the buffer location labelling the buffer receive
alternative.

dynamic properties: A process executing a receive buffer case action becomes timeoutable when it reaches the point
of execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property.

The assignment conditions of the value denoted by & name with respect to the mode of the location apply.
dynamic conditions. The SPACEFAIL exception occurs if storage reguirements cannot be satisfied.

The lifetime of none of the buffer locations must end while the executing process is delayed on them.

6.20 CHILL built-inroutinecalls

syntax:
<CHILL built-in routine call> ::= (0]
<CHILL simple built-in routine call> (1.1
| <CHILL location built-in routine call> (1.2
| <CHILL value built-in routine call> 1.3

predefined names: The CHILL built-in routine names are predefined as built-in routine names (see 6.7).

semantics: A CHILL built-in routine call is either a CHILL simple built-in routine call, which delivers no results
(see 6.20.1), a CHILL location built-in routine call, which delivers a location (see 6.20.2), or a CHILL value built-in
routine call, which delivers avalue (see 6.20.3).

static properties: A CHILL built-in routine call is a location built-in routine call if it is a CHILL location built-in
routine call; it isavalue built-in routine call if it isa CHILL value built-in routine call.

6.20.1 CHILL simplebuilt-in routine calls

syntax:
<CHILL simple built-in routine call> ::= (0]
<terminate built-in routine call> (1.1
| <iosimplebuilt-in routine call> 1.2
| <timing simple built-in routine call> (1.3

semantics. A CHILL simple built-in routine call is a built-in routine call which delivers neither a value nor a location.
The simple built-in routines for input output are defined in clause 7. The simple built-in routines for timing are defined
in clause 9.

6.20.2 CHILL location built-in routinecalls

syntax:

<CHILL location built-in routine call> ::= @
<io location built-in routine call> 1.1

semantics: A CHILL location built-in routine call is a built-in routine call that delivers a location. The location built-in
routines for input output are defined in clause 7.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 97

Super seded by a more recent version

6.20.3

syntax:

98

ISO/IEC 9496 : 1998 (E)

CHILL valuebuilt-in routine calls

<CHILL value built-in routine call> ::=

NUM (<discrete expression>)
PRED (<discrete expression>)
SUCC (<discrete expression>)
ABS (<numeric expression>)
CARD (<powerset expression>)
MAX (<powerset expression>)

MIN (<powerset expression>)

SZE ({ <location> | <mode argument> })
UPPER (<upper lower argument>)
LOWER (<upper lower argument>)
LENGTH (<length argument>)
<allocate built-in routine call>

<time value built-in routine call>

SN (<floating point expression>)
COS (<floating point expression>)
TAN (<floating point expression>)
ARCSIN (<floating point expression>)
ARCCOS (<floating point expression>)
ARCTAN (<floating point expression>)
EXP (<floating point expression>)

LN (<floating point expression>)

LOG (<floating point expression>)
SORT (<floating point expression>)

|
|
|
|
|
|
|
|
|
|
| < lt-in rout
| <io valuebuilt-in routine call>
|
|
|
|
|
|
|
|
|
|
|

<numeric expression> ::=

<integer expression>
<floating point expression>

<mode argument> ::=
<mode name>

| <array mode name> (<expression>)
| <string mode name> (<integer expression>)
| <variant structure mode name> (<expression list>)

<upper lower argument> ::=

<array location>

<array expression>

<array mode name>
<string location>

<dtring expression>

<string mode name>
<discrete location>
<discrete expression>
<discrete mode name>
<floating point location>
<floating point expression>
<floating point mode name>
<access location>

<access mode hame>

<text location>

<text mode name>

<length argument> ::=

ITU-T Rec. Z.200 (1996 E)

<string location>
<string expression>
<string mode name>
<event location>
<event mode name>

Super seded by a more recent version

1)
(1.1)
(1.2)
(1.3)
(1.4)
(15)
(1.6)
(1.7)
(1.8)
(L.9)

(1.10)
(1.11)
(1.12)
(1.13)
(1.14)
(1.15)
(1.16)
(1.17)
(1.18)
(1.19)
(1.20)
(1.21)
(1.22)
(1.23)
(1.24)

(2
2.2)
(2.2)

©)
(3.1)
(3.2)
(3.3)
(3.4)

<)
4.1)
4.2)
(4.3)
(4.9)
(4.5)
(4.6)
(4.7)
(4.8)
(4.9
(4.10)
(4.12)
(4.12)
(4.13)
(4.14)
(4.15)
(4.16)

)
(5.1)
(5.2)
(5.3)
(5.4)
(5.5)

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

| <buffer location> (5.6)
| <buffer mode name> (5.7)
| <textlocation> (5.8
| <text mode hame> (5.9)

NOTE - If the upper lower argument is an arfagation, a_strindocation, a_discretéocation or a floating pointocation, the
syntactic ambiguity is resolved by interpreting upper lower argument as a location rather than an expression or primitfve value
the length argument is_a strihgcation, the syntactic ambiguity is resolved by interpreting length argument as a location rather
than an expression.

semantics. A CHILL value built-in routine call is a built-in routine call that delivers avalue.
NUM delivers an integer value with the same internal representation as the value delivered by its argument.
PRED and SUCC déliver respectively the next lower and higher discrete value of their argument.

ABS is defined on numeric values, i.e. integer values and floating point values, delivering the corresponding absolute
value.

CARD, MAX and MIN are defined on powerset values. CARD delivers the number of element valuesin its argument.
MAX and MIN deliver respectively the greatest and smallest element value in their argument.

SIZE is defined on referable locations and (possibly dynamic) modes. In the first case, it delivers the number of
addressable memory units occupied by that location; in the second case, the number of addressable memory units that a
referable location of that mode will occupy. The mode is static if the mode argument is a mode name, otherwise it isa
dynamically parameterised version of it, with parameters as specified in the mode argument. In the first case, the
location will not be evaluated at run time.

UPPER and LOWER are defined on (possibly dynamic):

e array, string, discrete, floating point, access and text locations, delivering the upper bound and lower
bound of the mode of the location;

e array and string expressions, delivering the upper bound and lower bound of the mode of the value’s
class;

* strong discrete and floating point expressions, deliveringughiger bound andlower bound of the mode
of the value’s class;

e array, string, discrete, floating point, access andnexte names, delivering thepper bound andlower
bound of the mode.

LENGTH is defined on (possibly dynamic):
e string and text locations and string expressions delivering the actual value of them;
e event locations delivering trewent length of the mode of the locations;
« buffer locations delivering thisuffer length of the mode of the locations;
e stringmode names delivering thering length of the mode;
« textmode names delivering thiext length of the mode;
e buffermode names delivering thieuffer length of the mode;

* eventmode names delivering thevent length of the mode.
SIN delivers the sine of its argument (interpreted in radians).
COSdelivers the cosine of its argument (interpreted in radians).
TAN delivers the tangent of its argument (interpreted in radians).
ARCSIN delivers the sinl function of its argument in the ranga/2 : 172.
ARCCOS delivers the cosl function of its argument in the range fi.:

ARCTAN delivers the tanl function of its argument in the ranga/2 : 172.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 99

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
EXP deliversthe eX function, where x is its argument.

LN delivers the natural logarithm of its argument.

LOG delivers the base 10 logarithm of its argument.

ORT delivers the square root of its argument.

The same rules for the evaluation of the result of built-in routine call with constant arguments as that of constant
expression apply (see 5.3.1).

static properties: The class of a NUM built-in routine call is the & INT-derived class. The built-in routine cal is
constant (literal) if, and only if, the argument is constant (literal).

The class of a PRED or SUCC built-in routine call is the resulting class of the argument. The built-in routine call is
constant (literal) if, and only if, the argument is constant (literal).

The class of an ABS huilt-in routine call is the resulting class of the argument. The built-in routine call is constant
(literal) if, and only if, the argument is constant (literal).

The class of a CARD built-in routine call is the & INT-derived class. The built-in routine call is constant if, and only if,
the argument is constant.

The class of a MAX or MIN built-in routine call is the M-value class, where M is the member mode of the mode of the
powerset expression. The built-in routine call is constant if, and only if, the argument is constant.

The class of a SZE built-in routine call is the & INT-derived class. The built-in routine call is constant if the mode of the
argument is static.

The class of an UPPER and LOWER built-in routine call is:

e the M-value class if upper lower argument is an array location, array expression or array mode name,
where M isthe index mode of array location, array expression or array mode name, respectively;

e the &INT-derived class if upper lower argument is a string location, string expression or string mode
name;

e the M-value class if upper lower argument is a discrete location, discrete expression or discrete mode
name, where M is the mode of discrete location, or discrete expression, or discrete mode name,
respectively;

e the M-value class if upper lower argument is a floating point location, floating point expression, or
floating point mode name, where M is the mode of the floating point location, floating point expression,
or floating point mode name, respectively;

e the M-value class if upper lower argument is an access location or access mode name, where M is the
index mode of the mode of the access location or access mode name, respectively;

e the M-value class if upper lower argument is a text location or text mode name, where M is the index
mode of the mode of the text location or text mode name, respectively.

An UPPER or LOWER built-in routine call is literal if the upper lower argument is an array mode name, a string mode
name, a discrete mode name, a floating point mode name, an access mode name, or atext mode name, if the mode of the
array location or string location is static, if the array expression or string expression has a static class, or if the upper
lower argument is a discrete location, a discrete expression, a floating point location, a floating point expression, an
access location, or atext location.

The class of a LENGTH built-in routine call is the & INT-derived class. The built-in routine call is literal if the length
argument is a string location with a static mode, a string expression with a static class, an event location, or a buffer
location, or if it is a string mode name, an event mode name, a buffer mode name, or a text mode name.

The class of a TAN, EXP, LN, LOG or SQRT built-in routine call isthe resulting class of its argument.

100 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The class of SN, COS, ARCSN, ARCCOS, ARCTAN is the 1. N-derived class, 2. N-value class if the class of the
argument is 1. an N-derived class, 2. an N-value class, where N is a mode constructed as follows:

e for IN: &RANGE (-1.0: 1.0, S);

e« for COS &RANGE (-1.0: 1.0, S);

e for ARCIN: &RANGE (-72: 172, S);
« for ARCCOS &RANGE (0: 11, S);

e for ARCTAN: &RANGE (-172: 102, S);

where Sisthe precision of N, and the novelty isthat of N.

A SN, COS TAN, ARCSN, ARCCOS, ARCTAN, EXP, LN, LOG or SQRT built-in routine call is constant (literal) if,
and only if, the argument is constant (literal).

static conditions: If the argument of a PRED or SUCC built-in routine call is constant, it must not deliver, respectively,
the smallest or greatest discrete value defined by the root mode of the class of the argument. The root mode of the
discrete expression argument of PRED and SUCC must not be a number ed set mode.

If the argument of a MAX or MIN built-in routine call is constant, it must not deliver the empty powerset value.
The location argument of SZE must be referable.
The discrete expression and floating point expression as arguments of UPPER and LOWER must be strong.

If the upper lower argument is an access mode name or an access location, the corresponding access mode must have an
index mode.

If the upper lower argument is a text mode name or a text location, the corresponding text mode must have an index
mode.

The following compatibility requirements hold for a mode argument which is not a single mode name:
* Theclass of the expression must be compatible with theindex mode of the array mode name.

e Thevariant structure mode name must be parameterisable and there must be as many expressions in the
expression list as there are classes in its list of classes and the class of each expression must be
compatible with the corresponding classin the list of classes.

dynamic conditions. PRED and SUCC that are not constant cause the OVERFLOW exception if they are applied to the
smallest or greatest discrete value defined by the r oot mode of the class of the argument.

NUM and CARD that are not constant cause the OVERFLOW exception if the resulting value is outside the set of values
defined by & INT.

MAX and MIN cause the EMPTY exception if they are applied to empty powerset values.

ABS that is not constant causes the OVERFLOW exception if the resulting value is outside the bounds defined by the
root mode of the class of the argument.

The RANGEFAIL exception occursif in the mode argument:

« the expression delivers a value which does not belong to the set of values defined by the index mode of
the array mode name;

« theinteger expression delivers a negative value or a value which is greater than the string length of the
string mode name;

e any expression in the expression list for which the corresponding class in the list of classes of the variant
structure mode name is an M-value class (i.e. is strong) delivers avalue which is outside the set of values
defined by M.

ARCSIN and ARCCOSthat are not constant cause the OVERFLOW exception if the argument does not liein the
range—-1.0:1.0

LN and LOG that are not constant cause the OVERFLOWexception if the argument is not greater than zero.

SQRTthat is not constant causes the OVERFLOWexception if the argument is not greater than or equal to zero.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 101

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

SN, COS, TAN, ARCSN, ARCTAN, LN and LOG that are not constant cause the OVERFLOW exception if the resulting
valueis greater than the upper bound or less than the lower bound of the root mode of the class of the argument. In the
case of an exact mathematical resulting value that is greater than the negative upper limit and less than the positive
lower limit of the root mode of the argument, and is different from zero, an UNDERFLOW exception occurs.

ARCCOS EXP and SQRT that are not constant cause the OVERFLOW exception if the resulting value is greater than
the upper bound or less than the lower bound of the root mode of the class of the argument. In the case of an exact
mathematical resulting value that is greater than zero and less than the positive lower limit of the root mode of the
argument, an UNDERFLOW exception occurs.

examples:
9.12 MIN (sieve) .7
11.47 PRED (col_1) 1.2
11.47 SUCC (col_1) 1.3

6.20.4 Dynamic storage handling built-in routines

syntax:

<allocate built-in routine call> ::= @

GETSTACK (<mode argument> [, <value> |
([<constructor actual parameter list>])]) (1.1

| ALLOCATE (<mode argument> [, <value> |
([<constructor actual parameter list>])]) (1.2
<terminate built-in routine call> ::= 2
TERMINATE (<reference primitive value>) (2.1)

semantics. GETSTACK and ALLOCATE create a location of the specified mode and deliver a reference value for the
created location. GETSTACK creates this location on the stack (see 10.9). A location whose mode is that of the mode
argument is created and a value referring to it is delivered. The created location is initialised with the value of value, if
present; otherwise with the undefined value (see 4.1.2) if the mode argument is not a moreta mode.

If the mode argument is a moreta mode, first all initialisations in the components are performed in textual order. If a
(possibly empty) parameter list is specified, the corresponding constructor of the mode argument is applied to the newly
created location. If the mode argument is atask mode, the task belonging to the newly created location is started.

TERMINATE ends the lifetime of the location referred to by the value delivered by reference primitive value. An
implementation might as a consequence, release the storage occupied by this location, and if the reference primitive
value is alocation which is not read-only, assign the undefined value to the location.

If the reference primitive value refersto aregion or atask location L, the following steps are performed sequentially:

a) L isclosed. If alocation is closed, no more externa calls of the public component proceduresin L are
accepted.

b) The thread executing the TERMINATE waits until L is empty.

¢) If themode of L containsadestructor, that destructor isappliedtoL.

102 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static properties. The class of a GETSTACK or ALLOCATE built-in routine call is the M-reference class, where M is
the mode of mode argument. M is either the mode name or a par ameterised mode constructed as:

&<array mode name> (<expression>); or
&<string mode name> (<integer expression>); or

&<variant structure mode name> (<expression list>),

respectively.

A GETSTACK or ALLOCATE built-in routine call is intra-regional if it is surrounded by a region, otherwise it is
extra-regional.

static conditions: The class of the value, if present, in the GETSTACK and ALLOCATE built-in routine call must be
compatible with the mode of mode argument; this check is dynamic in case the mode of mode argument is a dynamic
mode.

If the mode of mode argument has the read-only property, the second argument must be present.

The value, if present, in the GETSTACK and ALLOCATE built-in routine call, must be regionally safe for the created
location.

dynamic properties: A reference value is an allocated reference value if, and only if, it is returned by an ALLOCATE
built-in routine call.

dynamic conditions. GETSTACK causes the SPACEFAIL exception if storage requirements cannot be satisfied.
ALLOCATE causes the ALLOCATEFAIL exception if storage requirements cannot be satisfied.

For GETSTACK and ALLOCATE the assignment conditions of the value delivered by value with respect to the mode of
mode argument apply.

TERMINATE causes the EMPTY exception if the reference primitive value delivers the value NULL.

The reference primitive value must deliver an allocated reference value. The lifetime of the referenced location must not
have ended.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 103

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

7 Input and Output

71 1/O reference mode

A model is used for the description of the input/output facilities in an implementation independent way; it distinguishes
three states for a given association location: afree state, afile handling state and a data transfer state.

The diagram shows the three states and the possibl e transitions between the states.

The association location contains no value. No

Free state relation to an outside world object.
ASSOCIATE DISSOCIATE
File The association location contains an association.
handling Operations like create and delete a file, or change
state its properties.
CONNECT DISCONNECT
Data An access location is connected to the association
transfer location. Transfer data to/from afile: read and write
State operations.

The model assumes that objects, in implementations often referred to as datasets, files or devices, exist in the outside
world, i.e. the external environment of a CHILL program. Such an outside world object is called afile in the model. A
file can be a physical device, a communication line or just a file in a file management system; in general, afile is an
object that can produce and/or consume data.

Manipulating a file in CHILL requires an association; an association is created by the associate operation and it
identifies afile. An association has attributes; these attributes describe the properties of afile that is or could be attached
to the association.

In the free state, there is no interaction or relation between the CHILL program and outside world objects. The associate
operation changes the state of the model from the free state into the file handling state. This operation takes as one
argument an association location and an implementation defined denotation for an outside world object for which an
association must be created; additional arguments may be used to indicate the kind of association for the object and the
initial values for the attributes of the association. A particular association also implies an (implementation dependent) set
of operations that may be applied on thefile that is attached to that association.

In the file handling state, it is possible to manipulate a file and its properties via an association, provided that the
association enables the particular operation; for operations that change the properties of a file, an exclusive association
for the file will be necessary in general.

The model assumes associations in general are exclusive, i.e. only one association exists at the same time for a given
outside world object. However, implementations may alow the creation of more associations for the same object,
provided that the object can be shared among different users (programs) and/or among different associations within the
same program. All operationsin the file handling state take an association as an argument.

The dissociate operation is used to end an association for an outside world object; this operation causes transition from
the file handling state back to the free state.

Transferring datato or from afile is possible only in the data transfer state; transfer operations require an access location
to be connected to an association for that file. The connect operation connects an access location to an association and
changes the state of the model into the data transfer state. The operation takes an association location and an access
location as arguments; the association location contains an association for the file to, or from, which data can be
transferred via the access location. Additional arguments of the connect operation denote for which type of transfer
operations the access location must be connected, and to which record the file must be positioned. At most one access
location can be connected to an association location at any onetime.

104 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The disconnect operation takes an access location as argument and disconnects it from the association it is connected to;
it changes the state of the model back to the file handling state.

In the data transfer state, an access location must be used as an argument of a transfer operation; there are two transfer
operations provided, namely, a read operation to transfer data from afile to the program and a write operation to transfer
data from the program to afile. The transfer operations use the record mode of the access location to transform CHILL
valuesinto records of thefile, and vice versa.

A fileis viewed in the model as an array of values, each element of this array relates to arecord of the file. The element
mode of this array is determined by the connect operation to be the record mode of the access location being connected.
An index value is assigned to each record of the file; this value uniquely identifies each record of the file. In the
description of the connect and transfer operations, three specia index values will be used, namely, a base index, a
current index and a transfer index. The base index is set by the connect operation and remains unchanged until a
subsequent connect operation; it is used to calculate the transfer index in transfer operations and the current index in a
connect operation. The transfer index denotes the position in the file where a transfer will take place; the current index
denotes the record to which the file currently is positioned.

7.2 Association values

7.2.1 General

An association value reflects the properties of afile that is or could be attached to it. A particular association value aso
implies an (implementation dependent) set of operations on the file that is possibly attached to it.

Association values have no denotation but are contained in locations of association mode; there exists no expression
denoting a value of association mode. Association values can only be manipulated by built-in routines that take an
association location as parameter.

7.2.2 Attributes of association values

An association value has attributes; the attributes describe the properties of the association and the file that may or could
be attached to it.

The following attributes are language defined:
e existing: indicating that a (possibly empty) file is attached to the association;
« readable: indicating that read operations are possible for the file when it is attached to the association;
« writeable: indicating that write operations are possible for the file when it is attached to the association;

* indexable: indicating that the file, when it is attached to the association, allows for random access to its
records,

e sequencible: indicating that the file, when it is attached to the association, alows for sequential access to
its records;

e variable: indicating that the size of the records of the file, when it is attached to the association, may vary
within thefile.

These attributes have a boolean value; the attributes are initialised when the association is created and may be updated as
a consequence of particular operations on the association. This list comprises the language defined attributes only;
implementations may add attributes according to their own needs.

7.3 Access values

7.3.1 General

Access values are contained in locations of access mode. An access location is necessary to transfer data from or to afile
in the outside world.

Access values have no denotation but are contained in locations of access mode; there exists no expression denoting a
value of access mode. Access values can only be manipulated by built-in routines that take an access location as
parameter.

7.3.2 Attributes of access values

Access values have attributes that describe their dynamic properties, the semantics of transfer operations, and the
conditions under which exceptions can occur.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 105

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

CHILL defines the following attributes:

e usage: indicating for which transfer operation(s) the access location is connected to an association; the
attribute is set by the connect operation;

< outoffile: indicating whether or not theansfer index calculated by the last read operation was in the
file; the attribute is initialised tBALSE by the connect operation and is set by every read operation.

7.4 Built-in routines for input output

7.4.1 General

Language defined built-in routines are defined for operations on association locations and access locations, and for
inspecting and changing the attributes of their values.

The built-in routines will be described in the following subclauses.

syntax:

<iovalue built-inroutine call> ::= D
<association attr built-in routine call> (1.0

| <sassociated built-in routine call> 1.2

| <accessattr built-in routine call> (1.3

| <readrecord built-in routine call> (1.4

| <gettext built-in routine call> (1.5)

<io simple built-in routine call> ::= 2
<dissociate built-in routine call> (2.0

| <modification built-in routine call> (2.2

| <connect built-in routine call> (2.3)

| <disconnect built-in routine call> (2.9

| <writerecord built-in routine call> (2.5

| <text built-in routine call> (2.6)

| <settext built-in routine call> (2.7

<io location built-in routine call> ::= 3
<associate built-in routine call> 3.1

static conditions: A built-in routine parameter in an io built-in routine that is amssociation location, an access
location or atext location must berefer able.

74.2 Associating an outside world object

syntax:

<associate built-in routine call> ::= (€]
ASSOCIATE (<association location> [, <associate parameter list>]) 1.1

<isassociated built-in routine call> ::= 2
ISASSOCIATED (<association location>) (2.1

<associate parameter list>::= 3
<associate parameter> { , <associate parameter> }* (3.0

<associate parameter> ::= 4
<location> (4.1

| <value> (4.2

semantics. ASSOCIATE creates an association to an outside world object. It initialisessgbe ation location with the

created association. It initialises the attributes of the created association. The association location is also returned as a
result of the call. The particular association that is created is determined by the locations and/or values occurring in the
associate parameter list; the modes (classes) and the semantics of these locations (values) are implementation defined.

ISASSOCIATED returnsTRUE if association location contains an association aRALSE otherwise.

static properties. The class of anSASSOCIATED built-in routine call is théBOOL-derived class. The mode of an
ASSOCIATE built-in routine call is the mode of ttassociation location.

Theregionality of anASSOCIATE built-in routine call is that of thassociation location.

static conditions: The mode and the class of eashociate parameter is implementation defined.

106 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

dynamic conditions. ASSOCIATE causes the ASSOCIATEFAIL exception if the association location already contains
an association or if the association cannot be created due to implementation defined reasons.

examples:

20.21 ASSOCIATE (file_association,"DSK:RECORDS.DAT"); (1.1)
74.3 Dissociating an outside world object
syntax:

<dissociate built-in routine caH ::= Q)
DISSOCIATH <associationocatior>) (1.1)

semantics. DISSOCIATEerminates an association to an outside world object. An access location that is still connected
to the association contained in an association location is disconnected before the association is terminated.

dynamic conditions: DISSOCIATEcauses the NOTASSOCIATException if associatioriocation does not contain an
association.

examples:

22.38 DISSOCIATE (association); (1.2)

7.4.4 Accessing association attributes

syntax:

<association attr built-in routine call::= Q)
EXISTING(<associatiorlocatior>) (1.2)

| READABLE(<associatioriocatior>) 1.2)

| WRITEABLK <associatiorlocatiors) (1.3)

| INDEXABLE(<associatioriocatiorn>) (1.4)

| SEQUENCIBLE <associatiorlocatior>) (1.5)

| VARIABLE(<associatiorlocatior>) (1.6)

semantics. EXISTING READABLE WRITEABLE INDEXABLE SEQUENCIBLEand VARIABLE return respectively
the value of the existing-, readable-, writeable-, indexable-, sequencible- and variable-attribute of the association
contained in associatiorlocation

static properties: The class of an association attr built-in routine calk the BOOL-derived class.

dynamic conditions. The association attr built-in routine caltauses the NOTASSOCIATERxception if association
locationdoes not contain an association.

7.4.5 M odifying association attributes

syntax:

<modification built-in routine cai ::= 1)
CREATE(<associatiorocatiors) (1.1)

| DELETE(<associatiorlocatior>) 1.2)

| MODIFY (<associatiorocatior> [, <modify parameter list]) (1.3)

<modify parameter list::= 2)

<modify parameter { , <modify parameter }* (2.1)

<modify parameter ::= 3)

<value> (3.1)

| <locatior~ (3.2)

semantics: CREATEcreates an empty file and attaches it to the association denoted by the associationlocation The
existing-attribute of the indicated association is set to TRUEIf the operation succeeds.

DELETEdetaches a file from the association denoted by associatioriocationand deletes the file. The existing-attribute
of the indicated association is set to FALSEIf the operation succeeds.

MODIFY provides the means of changing properties of an outside world object for which an association exists and that
is denoted by associationlocatior; the locations and/or values that occur in modify parameter listescribe how the
properties must be modified. The modes (classes) and the semantics of these locations (values) are implementation
defined.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 107

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

dynamic conditions. CREATE, DELETE and MODIFY cause the NOTASSOCIATED exception if the association
location does not contain an association.

CREATE causes the CREATEFAIL exception if one of the following conditions occurs:
* theexisting-attribute of the association is TRUE;
e thecreation of thefilefails (implementation defined).

DELETE causes the DELETEFAIL exception if one of the following conditions occurs:
e theexisting-attribute of the association is FALSE;
« thedeletion of thefile fails (implementation defined).

MODIFY causes the MODIFYFAIL exception if the properties, defined by modify parameter list cannot or may not be
modified; the conditions under which this exception can occur are implementation defined.

examples:

21.39 CREATE (outassoc); 1.1
21.69 DELETE (curassoc); 1.2

7.4.6 Connecting an access location

syntax:

<connect built-in routine call> ::= @

CONNECT (<transfer location> , <association location>,
<usage expression> [, <where expression> [, <index expression>]]) (1.1
<transfer location> ::= 2
<access location> (2.1
| <text location> (22
<usage expression> ::= ©)
<expression> 3.1
<where expression> ::= 4
<expression> (4.1)
<index expression> ::= ®)
<expression> (6.1

predefined names. To control the connect operation, performed by the built-in routine CONNECT, two synmode
names are predefined in the language, namely, USAGE and WHERE; their defining modes are SET (READONLY,
WRITEONLY, READWRITE) and SET (FIRST, SAME, LAST), respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location must be connected to an
association, while values of the mode WHERE indicate how the file that is attached to an association must be positioned
by the connect operation.

semantics: CONNECT connects the access location denoted by transfer location to the association that is contained in
association location; there must be a file attached to the denoted association; i.e. the asso@sitsting-attribute must
be TRUE.

The access location denoted toginsfer location is the location itself if it is amccess location; otherwise theaccess
sub-location of théext location.

The value that is delivered lugage expression indicates for which type of transfer operations the access location must
be connected to the file. If the expression deliREADONLY, the connection is prepared for read operations only; if it
deliversWRITEONLY, the connection is set up for write operations only; if it delflREADWRITE, the connection is
prepared for both read and write operations.

Theindexable-attribute of the denoted association musfTBRIE if the access location has amex mode, while the
sequencible-attribute must b&RUE if the location has nmdex mode.

CONNECT (re)positions the file that is attached to the denoted association; i.e. it establishes ldageéngex and
current index in the file. The (newhase index depends upon the value that is deliveredtzye expression:

» if where expression deliversFIRST or is not specified, thikase index is set to 0; i.e. the file is positioned
before the first record;

108 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e if where expression delivers SAME, the base index is set to the current index in the file; i.e. the file
position is not changed;

e if where expression delivers LAST, the base index is set to N, where N denotes the number of records in
thefile; i.e. thefileis positioned after the last record.

After a base index is set, a current index will be established by CONNECT. This current index depends upon the
optional specification of an index expression:

« if noindex expression is specified, the current index is set to the (new) base index;
« if anindex expression is specified, the current index is set to:
baseindex + NUM (v) — NUM ()

wherel denotes théower bound of the access locationimdex mode andv denotes the value that is
delivered byindex expression.

If the access location is being connected for sequential write operations (i.e. the access locatiamdeasnuzle and
the usage expression deliversWRITEONLY), then those records in the file that have an index greater than the (new)
current index will be removed from the file; i.e. the file may be truncated or empti€DDINECT.

An access location that has no index mode cannot be connected to an association for read and write operations at the
same time.

Any access location to which the denoted association may be connected will be disconnected implicitly before the
association is connected to the location that is denoté&dsfer location.

CONNECT initialises theoutoffile-attribute of the access locationRALSE and sets thasage-attribute according to the
value that is delivered hysage expression.

static properties: The mode attached toti@ansfer location is the mode of thaccess location or theaccess mode of the
text location, respectively.

static conditions: The mode ofransfer location must have amdex mode if anindex expression is specified; the class
of the value delivered bindex expression must becompatible with thatindex mode. Theransfer location must have
the sameegionality as theassociation location.

The class of the value delivered image expression must becompatible with theUSAGE-derived class.
The class of the value delivered Wijere expression must becompatible with theWHERE-derived class.

dynamic conditions: CONNECT causes th&\OTASSOCIATED exception ifassociation location does not contain an
association.

CONNECT causes th€ONNECTFAIL exception if one of the following conditions occurs:
« the association’sxisting-attribute isFALSE;

e the association’sreadable-attribute is FALSE and usage expression delivers READONLY or
READWRITE;

« the association’swriteable-attribute is FALSE and usage expression delivers WRITEONLY or
READWRITE;

« the association’Bxdexable-attribute iSFALSE and access location hasiadex mode;
¢ the association’sequencible-attribute iSFALSE and access location hasindex mode;

« where expression deliversSAME, while the association containedassociation location is not connected
to an access location;

* the association’sariable-attribute isSFALSE and the access location hadyamamic record mode, while
usage expression deliversWRITEONLY or READWRITE;

* the association'variable-attribute isTRUE and the access location hastatic record mode, while
usage expression deliversREADONLY or READWRITE;

» the access location has imalex mode, whileusage expression deliversREADWRITE;

« the association contained association location cannot be connected to the access location, due to
implementation defined conditions.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 109

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

CONNECT causes the RANGEFAIL exception if the index mode of access location is a discrete range mode and the
index expression delivers a value which lies outside the bounds of that discrete range mode.

The EMPTY exception occurs if the access reference of the text location delivers the value NULL.
examples:

20.22 CONNECT (record file, file_association, READWRITE); (1D
20.22 READWRITE (3.1)

74.7 Disconnecting an access location
syntax:

<disconnect built-in routine call> ::= (0]
DISCONNECT (<transfer location>) (1.2

semantics. DISCONNECT disconnects the access location denoted by transfer location from the association it is
connected to.

dynamic conditions: DISCONNECT causes the NOTCONNECTED exception if the access |ocation denoted by transfer
location is not connected to an association.

74.8 Accessing attributes of access locations

syntax:
<access attr built-in routine call> ::= (0]
GETASSOCIATION (<transfer location>) (1.2
| GETUSAGE (<transfer location>) (1.2
| OUTOFFILE (<transfer location>) 1.3

semantics; GETASSOCIATION returns a reference value to the association location that the access location denoted by
transfer location is connected to; it returns NULL if the access location is not connected to an associ ation.

GETUSAGE returns the value of the usage-attribute, i.e. READONLY (WRITEONLY) if the access location is connected
only for read (write) operations, or READWRITE if the access location is connected for both read and write operations.

OUTOFFILE returns the value of the outoffile-attribute of access location, i.e. TRUE if the last read operation cal culated
atransfer index that was not in the file, FALSE otherwise.

static properties: The class of a GETASSOCIATION built-in routine call is the ASSOCIATION-reference class. The
regionality of an GETASSOCIATION built-in routine call isthat of the transfer location.

The class of an OUTOFFILE built-in routine call isthe BOOL-derived class.
The class of a GETUSAGE built-in routine call isthe USAGE-derived class.

dynamic conditions: GETUSAGE and OUTOFFILE cause the NOTCONNECTED exception if the access location is
not connected to an association.

examples:

21.47 OUTOFFILE (infiles (FALSE)) (L3)

7.4.9 Data transfer operations

syntax:
<readrecord built-in routine call> ::= (0]
READRECORD (<access location> [, <index expression> |
[, <storelocation>1]) 1.1
<writerecord built-in routine call> ::= 2
WRITERECORD (<access location> [, <index expression>] ,
<write expression>) (2.1
<storelocation> ::= 3
<static mode location> (3.1
<write expression> ::= 4
<expression> 4.1

110 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

NOTE - If the access location has arindex mode, the syntactic ambiguity is resolved by interpreting the second argument as an
index expression rather than atore location.

semantics; For the transfer of data to or from a file, the built-in routines WRITERECORD and READRECORD are
defined. The access location must have a record mode, and it must be connected to an association in order to transfer
data to or from the file that is attached to that association. The transfer direction must not be in contradiction with the
value of the access location’s usage-attribute.

Before a transfer takes place, thensfer index, i.e. the position in the file of the record to be transferred, is calculated.
If the access location has noindex mode, thetransfer index is thecurrent index incremented by 1; if thaccess
location has arindex mode, theéransfer index is calculated as follows:

transfer index :=base index +NUM (v) —=NUM () + 1

wherel is thelower bound of the mode of thaccess location’s index mode ands denotes the value that is delivered by
index expression. If the transfer of the record with the calculateansfer index has been performed successfully, the
current index becomes theansfer index.

Theread operation:
READRECORD transfers data from a file in the outside world to the CHILL program.

If the calculatedransfer index is not in the file, theutoffile-attribute is set tdRUE; otherwise the file is positioned,
the record is read, and thetoffile-attribute is set t&-ALSE.

The record that is read must not deliveiuadefined value; the effect of the read operation is implementation defined if
the record being read from the file is not a legal value according tedbrel mode of theaccess location.

If a store location is specified, then the value of the record that was read is assigned to this locatiatoré fozation

is specified, the value will be assigned to an implicitly created location; the lifetime of this location ends velcegsthe

location is disconnected or reconnected. Whether the referenced location is created only once by the connect operation,
or every time a read operation is performed, is not defined.

READRECORD returns in both cases a reference value that refers to the (possibly dynamic mode) location to which the
value was assigned.

If the outoffile-attribute is set tdRUE as a result of the built-in routine call, then MidLL value is returned as a result
of the call.

Thewrite operation:

WRITERECORD transfers data from the CHILL program to a file in the outside world. The file is positioned to the
record with the calculated index and the record is written.

After the record has been written successfully, the number of records is setrantifier index, if the latter is greater
than the actual number of records.

The record written byWRITERECORD is the value delivered byrite expression.

static properties: The class of the value that was readRBBADRECORD is the M-value class, where M is thecord
mode of theaccess location, if it has astatic record mode, or a dynamically parameterised version of it, if the location
has adynamic record mode; the parameters of such a dynamically parameterised record mode are:

« the dynamicstring length of the string value that was read in case of a string mode;
* the dynamiaipper bound of the array value that was read in case of an array mode;

< the list of (tag) values associated with the mode of the structure value that was read in caséant a
structure.

The class of th&@EADRECORD built-in routine call is the M-reference classtifre location is not specified, otherwise
it is the S-reference class, where S is the mode atahelocation.

Theregionality of aREADRECORD built-in routine call is that of thetore location if it is specified, otherwise it is that
of theaccess |ocation.

static conditions: Theaccess location must have aecord mode.

An index expression may not be specified dccess location has nandex mode and must be specifiedadcess location
has arindex mode; the class of the value deliveredmex expression must becompatible with thatindex mode.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 111

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The store location must be referable.
The mode of store location must not have the read-only property.

If store location is specified, then the mode of store location must be equivalent with the record mode of the access
location, if it has a static record mode or avarying string record mode, otherwise a dynamically parameterised version
of it; the parameters of such a dynamically parameterised mode are those of the value that has been read.

The class of the value delivered by write expression must be compatible with the record mode of the access location, if
it has a static record mode or a varying string record mode; otherwise there should exist a dynamically parameterised
version of record mode that is compatible with the class of write expression. The assignment conditions of the value of
write expression with respect to the above mentioned mode apply.

dynamic conditions. The RANGEFAIL or TAGFAIL exceptions occur if the dynamic part of the above mentioned
compatibility check fails.

The READRECORD and WRITERECORD built-in routine call cause the NOTCONNECTED exception if the access
location is not connected to an association.

The READRECORD or WRITERECORD built-in routine call cause the RANGEFAIL exception if the index mode of
access location is a discrete range mode and the index expression delivers a value that lies outside the bounds of that
discrete range mode.

The READRECORD built-in routine call causes the READFAIL exception if one of the following conditions occurs:
« thevalue of the usage-attribute is WRITEONLY;

« the value of the outoffile-attribute is TRUE and the access location is connected for sequential read
operations;

» thereading of the record with the calculated index fails, due to outside world conditions.
The WRITERECORD built-in routine call causes the WRITEFAIL exception if one of the following conditions occurs:
e thevalue of the usage-attribute is READONLY;

< thewriting of the record with the calculated index fails, due to outside world conditions.

If the RANGEFAIL exception or the NOTCONNECTED exception occur, then it occurs before the value of any attribute
is changed and before the file is positioned.

examples:
0.24 READRECORD (record_file, curindex, record_buffer); (1D
22.25 READRECORD (fileaccess); (1D
20.32 WRITERECORD (record_file, curindex, record_buffer); (2.1)
21.61 WRITERECORD (outfile, buffers(flag)); (2.1
20.24 record_buffer (3.0
21.61 buffers(flag) (4.0

75 Text input output

7.5.1 General

Text output operations allow the representation of CHILL values in a human-readable form; text input operations
perform the opposite transformation.

Text transfer operations are defined on top of the basic CHILL input/output model and operate on files that may be
accessed either sequentially or randomly and whose records may have afixed or variable length.

The model assumes that every record has a (possibly empty) positioning information attached, in implementations often
referred to as carriage control or control characters.

Manipulating a text file in CHILL requires an association; transferring data to or from a text file requires a text location
to be connected to an association for that file.

Text transfer operations can be applied to CHILL values that may become records of some text file, aswell asto CHILL
locations that are not necessarily related to any i/o activity of the program.

112 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The possibility to recover from a piece of text the same CHILL values that originated it cannot be guaranteed in general,
but rather it depends on the specific representation that has been used.

Text values are contained in locations of text mode. A text location is necessary to transfer datain human-readable form.

Text values have no denotation but are contained in locations of text mode; there exists no expression denoting a value
of text mode. Text values can only be manipulated by built-in routines that take a text location as parameter.

75.2 Attributes of text values

Text values have attributes that describe their dynamic properties. The following attributes are defined:

e actual index: indicating the next character position of the text record to be read or written. It has a mode
which is RANGE (0:L-1), where L isthe text length of the value’s mode. It is initialised to 0 when a text
location is created,;

e text record reference: indicating a reference value to ttext record sub-location of the text location. It
has a mode which REF M, whereM is thetext record mode of the value’'s mode;

* access reference: indicating a reference value to thecess sub-location of the text location. It has a
mode which iREF M, whereM is theaccess mode of the value’s mode.

753 Text transfer operations

syntax:

text built-inroutine call> ::= (0]
READTEXT (<text io argument list>) (1.2)
| WRITETEXT (<text io argument list>) (1.2
<text io argument list> ::= 2

<text argument> [, <index expression> |,
<format argument> [, <iolist>] (2.1
<text argument> ::= ©)
<text location> (3.1
| <character string location> (3.2
| <character string expression> 3.3
<format argument> ::= ©)
<character string expression> (4.0
<iolist>::= 5)
<iolist element> {, <iolist element> }* (5.2)
<iolist element> ::= (6)
<value argument> (6.1
| <ocation argument> (6.2
<location argument> ::=)
<discrete location> (7.0
| <floating point location> (7.2)
| <string location> (7.3
<value argument> ::= 8
<discrete expression> (8.1
| <floating point expression> (8.2
| <string expression> (8.3)

NOTE - If theio list element is a location, the syntactic ambiguity is resolved by interpretingothist element as alocation
argument rather than &alue argument.

semantics; READTEXT applies the conversion, editing and i/o control functions contained in the format argument to the
text record denoted by the text argument; this (possibly) produces a list of values that are assigned to the elements of
the io list in the sequence in which they are specified. WRITETEXT performs the opposite operation. No implicit i/o
operations are performed.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 113

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

If the text argument is a character string location or a character string expression, then the conversion and editing
functions are applied without any relation with the external world. In this case the actual index denotes a location that is
implicitly created at the beginning of the built-in routine call and initialised to 0. The text record is the character string
denoted by character string location or character string expression and the text length itsstring length.

The elements of theio list may be either:
e value arguments and location arguments; or

e variable clause widths as described below.
Relationships between a format argument and an io list
The value delivered by aformat argument must have the form of aformat control string (see 7.5.4).

During the execution of a text i/o built-in routine call the format control string (see 7.5.4) denoted by the format
argument and the io list are scanned from left to right. Each occurrence of a format text and format specification is
interpreted and the appropriate action is taken as follows:

a) Format text:

In READTEXT the text record should contain at the actual index position a string slice which is equal to
the string delivered by format text. In WRITETEXT, the string delivered by format text is transferred to the
text record. The semantics are the same as if a format specification which is %C and an io list element
that delivers the same string value as that delivered by format text were encountered.

b) Format specification:
If the format specification contains a repetition factor, then it is equivalent to a sequence of as many
format element occurrences as the number denoted by repetition factor.

If the format specification is a format clause, then it contains a control code. If the control code is a
conversion clause, then anio list element is taken from theio list and the conversion function selected by
the conversion code, conversion qualifiers and clause width is applied to it (see 7.5.5). If the control code
is an editing clause or an io clause, then the editing or io function selected by the editing code or io code
and clause width is applied to the text argument without reference to theio list (see 7.5.6 and 7.5.7).

If the clause width is variable, then a value is taken from the list, which denotes the width parameter of
the conversion or editing control function.

If the format specification is a parenthesised clause, then the format control string that is contained initis
scanned.

The interpretation of the format control string terminates when the end of the string delivered by format control string
has been reached.

Theio list elements of theio list are scanned in the order that they are specified.
static conditions: If the text argument isastring location, its mode must be a varying string mode.

An index expression may not be specified if the text argument is not atext location or if it is and its access mode has no
index mode and must be specified if the access mode has an index mode; the class of the value delivered by index
expression must be compatible with that index mode.

A text argument in aWRITETEXT built-in routine call must be alocation.
A string location in atext argument must be referable.

dynamic conditions. The TEXTFAIL exception occursif:

e the string value delivered by the format argument cannot be derived as a terminal production of the
format control string; or

e an attempt to assign to the actual index a value which is less than O or greater than text length is
made; or

e during the interpretation, the end of the format control string has been reached and the io list is not
completely scanned, or no more elements can be taken from the io list and the format control string
contains more conversion codes or variable clause widths; or

114 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e anio clauseisencountered and the text argument is not atext location; or

« aformat text is encountered in READTEXT and the text record does not contain at the actual index
position a string which is equal to the string delivered by format text.

Any exception defined for the READRECORD and WRITERECORD huilt-in routine call can occur if an i/o control
function is executed and any one of the dynamic conditions defined is violated.

examples:

26.18 WRITETEXT (output,"%B%!/”,10) (1.2)

754 Format control string

syntax:

format control string ::= Q)
[<format text] { <format specification [<format text] }* (1.2)

<format text ::= (2)
{ <non-percentharactep | <percent }* (2.1)
<percenp ::= 3)
% % (3.1)

<format specification ::= 4)
% [<repetition factor | <format element (4.2)
<repetition factop ::= (5)
{ <digit>}+ (5.1)

<format element ::= (6)
<format clause (6.1)

| <parenthesised clause (6.2)
<format clause ::=)
<control coder [% .] (7.1)

<control code ::= (8)
<conversion clause (8.1)

| <editing clause (8.2)

| <io clause (8.3)
<parenthesised clause:= 9)
(<format control string %) (9.1)

NOTE — A format specification is terminated by the first character that cannot be part dbth@t element. Spaces and format
effectors may not be used witHiormat elements. A period () may be used to terminatdfamat clause. It belongs to théormat
clause and it has only a delimiting effect. To represent the character peféerwithin a format text, it has to be written
twice ©0%).

semantics: A format control string specifies the external form of the values being transferred and the layout of data
within the records. A format control string is composed of format text occurrences, which denote fixed parts of the
records and of format specification occurrences, which denote the external representations of CHILL values, allowing
the editing of the text record or controlling the actual i/o operations.

If aformat specification contains a repetition factor and a format clause, then it is equivalent to as many identical format
specification occurrences of the format clause as the number delivered by repetition factor. A repetition factor can be 0,
in which case the format specification is not considered. E.g. "%3C4” is equivalent to "% C4%C4%C4".

The decimal notation is assumed for the digitsin arepetition factor

A format control stringin a parenthesised clause repeatedly scanned according to the repetition factor If none is
specified, 1 isassumed by default.

examples:

26.20 size = %C%/ (1.1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 115

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

7.5.5 Conversion

syntax:

conversion clause> ::= (0]
<conversion code> { <conversion qualifier>}*
[<clause width>] 1.n

<conversion code> ::= 2
B|O|H|C|F (2.2)

<conversion qualifier> ::= (©)]
L | E | P <character> (3.1

<clause width> ::= @
{ { <digit>}* |V } [<fractional width>] [<exponent width>] (4.2)

<fractional width> ::= 5)
A <digit>}* (5.2)

<exponent width> ::= (6)
{ <digit>1}* (6.2)

derived syntax: A conversion clause in which a clause width is not present is derived syntax for a conversion clause in
which aclause width that is 0 is specified.

semantics. A conversion in a READTEXT built-in routine call transforms a string which is an external representation
into a CHILL value. A conversion in a WRITETEXT built-in routine call performs the opposite transformation. The
conversion code together with the conversion qualifier specify the type of the conversion and the details of the requested
operation such asjustification, overflow handling and padding.

The external representation is a string whose length usually depends on the value being converted. That string may
contain the minimum number of characters that are necessary to represent the CHILL value (free format) or may have a
given length (fixed format).

In the fixed format a slice of width size starting from the actual index position is read from or written into the text
record according to the justification and padding selected by conversion qualifiers, asfollows:

* In READTEXT: All padding characters (to the left or to the right according to the justification), if any, are
removed. However, when characters or fixed character strings are being read, the maximum number N of
padding characters that are removed is width -L , where L is 1 or string length, respectively. No
characters are removed if N < 0. The remaining characters are taken as the external representation.

e In WRITETEXT: If the length of the external representation is less than or equal to width, then the
characters are judtified to the left or to the right in the slice (according to the justification). The unused
string elements, if any, are filled with the padding character. Otherwise the string is truncated (on the | eft
if the justification to the right is selected, otherwise on the right), or width “overflow” indicator
characters «) are transferred, if the qualifiE is present. The truncation is applied to the external
representation, including the minus sign, the period (.) anH {keientific representation), if any.

In the free format the following holds:

« In READTEXT: Padding characters, if any, are skipped except when a character or a character string is
being read and theonversion qualifier P is not specified. Then, the external representation is taken as the
longest slice of characters that starts atattaal index and is made of all the subsequent characters that
may lexically belong to it as defined below.

* In WRITETEXT: The string delivered by the conversion is inserted starting fromadheal index
position.

In WRITETEXT the string which is the external representation is transferred teexheecord without regard to its

actual length. After the transfer, thactual index is automatically advanced to the next available character position and
theactual length is set to the maximum value betweendhbeial index and the (oldpctual length.

116 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version ISO/IEC 9496 : 1998 (E)
A clause width is constant if it is made of digits. The decimal notation is assumed. Otherwiseit isvariable.
If the width is zero, then the free format is chosen, otherwise the width is the length of the fixed format.
If the width istoo small to contain the string, the appropriate action is taken depending on the conversion qualifier.

In a READTEXT the external representation that is applied is the one defined below for the mode of the location
argument.

In a WRITETEXT the externa representation that is applied is the one defined below for the mode M of the M-value or
M-derived class of the value delivered by the value argument.

Conversion codes

Conversion codes are represented as single letters. The following conversion codes are defined:
B: Binary representation.
O: Octal representation.
H: Hexadecimal representation.
C

Conversion — Indicates the default external representation of CHILL values, which depends on the mode
of the value being converted (see below).

F. Scientific representation, i.e. the representation of floating point values with mantissa and exponent.
The external representation depends orctingersion code and the mode of the value being converted.

Conversion qualifiers

Conversion qualifiers are represented as single letters. The followomyersion qualifiers are defined:

L: Left justification — Right justification is assumed if it is not present. In the free format the qualifier has no
effect.

E: Overflow evidence — IWRITETEXT the overflow indication is selected; if the qualifier is not present,
then truncation is performed. READTEXT or in the free format this qualifier has no effect.

P: Padding — The character that follows the qualifier specifies the padding chargeterntit present, then
the padding character is assumed to be space by defdREADITEXT if the free format is selected, then
spaces and HT (Horizontal Tabulation) are considered as the same character for skipping purposes, either
when specified after the qualifier or when applied by default.

External representation

The external representation of CHILL values is defined as follows:
a) Integers

Integer values are lexically represented as one or more digits in a decimal default base without leading

zeroes and with a leading sign if negative. Underline characters, a leading plus sign and leading zeroes are
discarded irREADTEXT. The followingconversion codes are availableB, O, C andH. Theconversion

code C selects the decimal representation. The digits that may belong to the representation are only those
that are selected by the conversion code.

b) Floating point
Floating point values can be represented in two ways:
« fixed point representation (selected®gonversion code);
« scientific representation (selectedygonversion code).

In the fixed point representation the floating point value is lexically represented by a sequence of one
or more digits (integer part) followed by an optional sequence of one or more digits (fractional part)

separated from the integer part by a period (.). A leading minus sign is present if the value is
negative.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 117

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

d)

e

f)

0)

h)

In the scientific representation the floating point value is represented by mantissa and exponent. The
mantissa is lexically represented as a fixed point value with the integer part consisting of only one
digit, greater than zero. The exponent is lexically represented by an E followed by a possible sign
and a sequence of one or more digits. For both representations a leading plus sign and zeros are
discarded in READTEXT.

If fractional width is present, the value delivered by digits contained in it indicates the length of the
fractional part extended with trailing zeros if necessary, otherwise the fractional part contains the
minimum number of digits that are necessary to represent it.

If exponent width is present, the value delivered by digits contained in it indicates the minimum
number of digits to use to represent the exponent, including leading zeros if necessary, otherwise a
default value of 3 is assumed.

The following conversion codes are available: C, F.
Booleans

Boolean values are lexically represented as simple name string, that are TRUE and FALSE [in upper case
(e.g. TRUE) or lower case (e.g. true) depending on the representation chosen by the implementation for
the special simple name strings]. The following conversion codeis available: C.

Characters

Character values are lexically represented as strings of length 1. The following conversion code is
available: C.

Sets

Set mode values are lexically represented as simple name strings, that are the set literals. The following
conversion codeisavailable: C.

Ranges

Range values have the same representation as the values of their root mode. However, only the
representations of those values defined by the discrete range mode or floating point range mode belong to
the set of external representations associated to the discrete range mode or floating point range mode.

Character strings

Character string values are lexically represented as strings of characters of length L. In WRITETEXT L is
the actual length. In READTEXT L is the string length if the string is a fixed string, otherwise it is a
varying string and L is the string length, unless there are less characters available in the (dice of) text
record at the actual index position, in which case L is the number of available characters. The following
conversion codeis available: C.

Bit strings

Bit string values are lexicaly represented as strings of binary digits. The same rules as for character
strings apply to determine the number of digits. The following conversion code is available: C.

dynamic properties: A clause width has a width, which is the value delivered by digits or by a value from theio list if
the clause width is variable, otherwiseit is zero if noneis specified.

Dynamic conditions: The TEXTFAIL exception occursif:

118

in READTEXT the text record does not contain a string slice starting at the actual index that (after the
removal or skipping of padding characters, see above) can be interpreted as an external representation of
one of the values of the mode of the current location argument (including an attempt to read a non-empty
external representation from atext record when actual index = actual length); or

in WRITETEXT a string slice that is the external representation of the current value argument cannot be
transferred to the text record starting at the actual index; or

in READTEXT a conversion code is encountered and the current element in theio list is not alocation, or
the mode of the location has the read-only property; or

the same conversion qualifier is specified more than once; or

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e avariable clause width is encountered and the corresponding io list element in theio list does not have an
integer class or it isless than O;

e aclause width has a fractional width or an exponent width and the corresponding io list element in the io
list does not have a floating point class, or it has an exponent width and the conversion code is not F.

examples:
26.21 CL6 (1.2)
75.6 Editing
syntax:
<editing clause> ::= (€]
<editing code> [<clause width>] (1.1
<editing code> ::= 2
X|<|>|T (2.1)

derived syntax: An editing clause in which a clause width is not present is derived syntax for an editing clause in which
aclausewidth that is 1 is specified if the editing code is not T, otherwise O, respectively.

semantics: The following editing functions are defined:
X: space—width space characters are inserted or skipped.
>: skip right — Theactual index is moved rightward fowidth positions.
<: skip left — Theactual index is moved leftward fowidth positions.

T: tabulation — Thactual index is moved to the positiowidth.

In WRITETEXT, if the actual index is moved to a position which is greater thanabiual length, then a string oN
space characters, wheXds the difference between thetual index and the (oldpctual length is appended to thext
record. Theactual length is set to the maximum value betweendhiial index and the (oldpactual length.

dynamic conditions. The TEXTFAIL exception occurs if:
» theactual index is moved to a position which is less than 0 or greaterttixamength; or
* in READTEXT theactual index is moved to a position which is greater thanatteial length; or

¢ in READTEXT theediting code X is specified and a string ofidth space or HT (Horizontal Tabulation)
characters is not present in tiext record at theactual index position.

examples:

26.22 X (1.1)

7.5.7 1/0O control

syntax:
<jo clause> ::= 1)
<io code> (1.2)
<iocode> ::= ()]
H=1+1?2]= (2.1)

semantics; The i/o control functions (except=) perform an i/o operation. They allow precise control over the transfer

of the text record. In READTEXT, all the functions have the same effect, to read the next record from the file. In
WRITETEXT, thetext record and the appropriate representation of the carriage control information are transferred. The
initial position of the carriage at the time ttext location is connected is such that the first character of thetfkst

record is printed at the beginning of the first unoccupied line (regardless of any positioning information attached to the
text record).

The carriage placement is described by means of the following abstract operations on the current column, line and page
(%, y, 2) considering columns as being numbered from zero starting at the left margin, and lines from zero starting at the
top margin.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 119

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

nl(w): the carriage is moved w lines downward, at the beginning of the line [new position: (0, (y + w) mod
p, z+ (y +w) / p, where p is the number of lines per page)];

np(w): the carriage is moved w pages downward at the beginning of the line [new position: (0, O, z + w)].
The following control functions are provided:

[: Next record — The record is printed on the next line (nl(1), print record, nl(0)).

+: Next page — The record is printed on the top of the next page (np(1), print record, nl(0)).

-: Current line — The record is printed on the current line (print record, ni(0)).

?. Prompt — The record is printed on the next line. The carriage is left at the end of the line [nl(1), print
record].

I: Emit — No carriage control is performed (print record).

=: End page — Defines the positioning of the next record, if any, to be at the top of the next page (this
overrides the positioning performed before the printing of the record). It does not cause any i/o operation.

The 1/O transfer is performed as follows:

¢« In READTEXT the semantics are as ifREADRECORD (A, |, R), whereA is theaccess sub-location
of thetext location, | is theindex expression (if any) andR denotes théext record, were executed. After
the 1/O transfeactual index is set to 0 andctual length to thestring length of the string value that was
read.

* InWRITETEXT the semantics are as iVéRITERECORD (A, I, R), whereA is theaccess sub-location of
the text location, | is theindex expression (if any) andR denotes theext record, were executed. The
associated positioning information is also transferred. It daerd mode of the access is nbgnamic,
then thetext record is filled at the end with space characters anddtaal length is set totext length
before the transfer takes place. After the I/O trarefieral index andactual length are set to 0.

examples:

26.21 / (1.1)

7.5.8 Accessing the attributes of a text location

syntax:

<gettext built-in routine call> ::= @
GETTEXTRECORD (<text location>) (1.1)

| GETTEXTINDEX (<text location>) (1.2

| GETTEXTACCESS (<text location>) (1.3)

| EOLN (<text location>) (1.4

<settext built-in routine call> ::= 2
SETTEXTRECORD (<text location> , <character string location>) (2.1

| SETTEXTINDEX (<text location> , <integer expression>) (2.2

| SETTEXTACCESS (<text location> , <access location>) (2.3

semantics; GETTEXTRECORD returns theext record refer ence of text location.
GETTEXTINDEX returns thectual index of text location.
GETTEXTACCESSreturns theaccess r efer ence of text location.

EOLN deliversTRUE if no more characters are available in teet record (i.e. if theactual index equals theactual
length).

SETTEXTRECORD stores a reference to the location deliveredchgracter string location into the text record
refer ence of thetext location.

SETTEXTINDEX has the same semantics asediting clause in WRITETEXT in which editing code is T and clause
width delivers the same value iseger expression, applied to theéext record denoted byext location.

120 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

SETTEXTACCESS stores a reference to the location delivered by access location into the access reference of the text
location.

static properties: The class of the GETTEXTRECORD built-in routine call is the M-reference class, where M is the text
record mode of the text location.

The class of the GETTEXTINDEX built-in routine cal isthe & INT-derived class.

The class of the GETTEXTACCESS built-in routine call is the M-reference class, where M is the access mode of the text
location.

The class of the EOLN built-in routine call is the BOOL-derived class.
A GETTEXTRECORD or GETTEXTACCESS built-in routine call has the same regionality as the text location.

static conditions: The mode of the character string location argument of SETTEXTRECORD must be read-compatible
with the text record mode of the text location.

The mode of the access location argument of SETTEXTACCESS must be read-compatible with the access mode of the
text location.

The location argument in SETTEXTRECORD and SETTEXTACCESS must have the same regionality as the text
location.

dynamic conditions: The TEXTFAIL exception occurs if the integer expression argument of SETTEXTINDEX delivers
avalue that islessthan O or greater than the text length of the text location.

examples:
26.23 GETTEXTINDEX (output) 1.2

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 121

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

8 Exception handling

8.1 General

An exception is either a language defined exception, in which case it has a language defined exception name, a user
defined exception, or an implementation defined exception. A language defined exception will be caused by the dynamic
violation of adynamic condition. Any exception can be caused by the execution of a cause action.

When an exception is caused, it may be handled, i.e. an action statement list of an appropriate handler will be executed.

Exception handling is defined such that at any statement it is statically known which exceptions might occur (i.e. it is
statically known which exceptions cannot occur) and for which exceptions an appropriate handler can be found or which
exceptions may be passed to the calling point of a procedure. If an exception occurs and no handler for it can be found,
the programisin error.

When an exception occurs at an action statement or a declaration statement, the execution of the statement is performed
up to an unspecified extent, unless stated otherwise in the appropriate section.

8.2 Handlers

syntax:
<handler> ::= (1)
ON { <on-alternative> }* [EL SE <action statement list>] END (1.1
<on-alternative> ::= 2
(<exception list>) : <action statement list> (2.1

semantics. A handler is entered if it is appropriate for an exception E according to 8.3. If E is mentioned in an exception
list in an on-alternative in the handler, the corresponding action statement list is entered; otherwise EL SE is specified
and the corresponding action statement list is entered.

When the end of the chosen action statement list is reached, the handler and the construct to which the handler is
appended are terminated.

static conditions: All the exception namesin all the exception list occurrences must be different.

dynamic conditions: The SPACEFAIL exception occurs if an action statement list is entered and storage requirements
cannot be satisfied.

examples:
10.47 ON
(ALLOCATEFAIL): CAUSE overflow;
END (1.1)
8.3 Handler identification

When an exception E occurs at an action or module A, or a data statement or region D, the exception may be handled by
an appropriate handler; i.e. an action statement list in the handler will be executed or the exception may be passed to the
calling point of aprocedure; or, if neither is possible, the programisin error.

For any action or module A, or data statement or region D, it can be statically determined whether for a given exception
E at A or D, an appropriate handler can be found or whether the exception may be passed to the calling point.

An appropriate handler for A or D with respect to an exception with exception name E is determined as follows:

1) if ahandler which mentions E in an exception list or which specifies EL SE is appended to or included
in A or D, and E occurs in the reach directly enclosing the handler, then that handler is the appropriate
one with respect to E;

2) otherwise, if A or D is directly enclosed by a bracketed action, a module or a region, the appropriate
handler (if present) is the appropriate handler for the bracketed action, module or region with respect to E;

122 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

3) otherwise, if A or D isplaced in the reach of a procedure definition then:

- if ahandler which mentions E in an exception list or specifies EL SE, is appended to the procedure
definition, then that handler is the appropriate handler;

» otherwise, if E is mentioned in the exception list of the procedure definition, then E is caused at the
calling point;

» otherwise there is no user-defined handler; however, in this situation an implementation defined
handler may be appropriate (see 13.5);

4) otherwise, if A or D is placed in the reach of a process definition, then:

« if ahandler which mentions E in an exception list or specifies EL SE, is appended to the process
definition, then that handler is the appropriate handler;

e otherwise there is no user-defined handler; however, in this situation an implementation defined
handler may be appropriate (see 13.5);

5) otherwise, if A is an action of an action statement list in a handler, then the appropriate handler is the
appropriate handler for the action A’ or data statement or region D’ with respect to E which the handler is
appended to or included in but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, local storage
will be released when exiting from the block.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 123

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

9 Time supervision

9.1 General

It is assumed that a concept of time exists externally to a CHILL program (system). CHILL does not specify the precise
properties of time, but provides mechanisms to enable a program to interact with the external world’s view of time.

9.2 Timeoutable processes

The concept of aimeoutable process exists in order to identify the precise points during program execution where a
time interrupt may occur, that is, when a time supervision may interfere with the normal execution of a process.

A process becomésmeoutable when it reaches a well-defined point in the execution of certain actions. CHILL defines
a process to becomaneoutable during the execution of specific actions; an implementation may define a process to
becomeimeoutable during the execution of further actions.

9.3 Timing actions
syntax:
<timing action> ::= @
<relative timing action> 1.1
| <absolute timing action> (1.2
| <cyclictiming action> (1.3)

semantics: A timing action specifies time supervisions of the executing process. A time supervision may be initiated, it
may expire and it may cease to exist. Several time supervisions may be associated with a single process because of the
cyclic timing action and because a timing action can itself contain other actions whose execution can initiate time
supervisions.

A time interrupt occurs when a processiimeoutable and at least one of its associated time supervisions has expired.
The occurrence of a time interrupt implies that the first expired time supervision ceases to exist; furthermore, it leads to
the transfer of control associated with that time supervision in the supervised process. If the supervised process was
delayed, it becomes reactivated.

Time supervisions also cease to exist when control leaves the timing action that initiated them.

Note that if the transfer of control causes the process to leave a region, the region will be released (see 11.2.1).

931 Relative timing action

syntax:
<relative timing action> ::= @
AFTER <duration primitive value> [DELAY] IN
<action statement list> <timing handler> END (1.2)
<timing handler> ::= 2
TIMEOUT <action statement list> (2.1)

semantics; Theduration primitive value is evaluated, a time supervision is initiated, and theadtien statement list is
entered.

If DELAY is specified, the time supervision is initiated when the executing process beouoatesable at the point of

execution specified by thection statement in the action statement list, otherwise it is initiated before thextion

statement list is entered.

If DELAY is specified, the time supervision ceases to exist if it has been initiated and the executing process ceases to be
timeoutable.

124 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
The time supervision expiresif it has not ceased to exist when the specified period of time has elapsed since initiation.
The transfer of control associated with the time supervision isto the action statement list of the timing handler.

static conditions: If DELAY is specified, the action statement list must consist of precisely one action statement that
may itself cause the executing process to become timeoutable.

dynamic conditions. The TIMERFAIL exception occurs if the initiation of the time supervision fails for an
implementation defined reason.

9.3.2 Absolute timing action

syntax:
<absolute timing action> ::= Q)
AT <absolute time primitive value> IN
<action statement list> <timing handler> END (1.2)

semantics. The absolute time primitive value is evaluated, a time supervision is initiated, and then the action statement
listis entered.

The time supervision expiresif it has not ceased to exist at (or after) the specified point in time.
The transfer of control associated with the time supervision isto the action statement list of the timing handler.

dynamic condition: The TIMERFAIL exception occurs if the initiation of the time supervision fails for an
implementation defined reason.

9.3.3 Cyclic timing action

syntax:
<cyclictiming action> ::= (0]
CYCLE <duration primitive value> IN
<action statement list> END (1.1

semantics. The cyclic timing action is intended to ensure that the executing process enters the action statement list at
precise intervals without cumulated drifts (this implies that the execution time for the action statement list on average
should be less than the specified duration value). The duration primitive value is evaluated, a relative time supervision is
initiated, and then the action statement list is entered.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since initiation.
Indivisibly with the expiration, a new time supervision with the same duration value isinitiated.

The transfer of control associated with the time supervision is to the beginning of the action statement list.
Note that the cyclic timing action can only terminate by atransfer of control out of it.

dynamic properties: The executing process becomes timeoutable if and when control reaches the end of the action
statement list.

dynamic conditions: The TIMERFAIL exception occurs if any initiation of a time supervision fails for an
implementation defined reason.

9.4 Built-in routinesfor time
syntax:
<time value built-in routine call> ;= (0]
<duration built-in routine call> (1.2
| <absolute time built-in routine call> (1.2

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 125

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

semantics. Implementations are likely to have quite different requirements and capabilities in terms of precision and
range of time values. The built-in routines defined below are intended to accommodate these differences in a portable
manner.

94.1 Duration built-in routines

syntax:
<duration built-in routine call> ::= D
MILLISECS(<integer expression>) (1.2)
| SECS(<integer expression>) (1.2
| MINUTES (<integer expression>) 1.3
| HOURS(<integer expression>) (1.4)
| DAYS(<integer expression>) (1.5)

semantics. A duration built-in routine call delivers a duration value with implementation defined and possibly varying
precision (i.e. MILLISECS (1000) and SECS (1) may deliver different duration values); this value is the closest
approximation in the chosen precision to the indicated period of time. The argument of MILLISECS, SECS, MINUTES,
HOURS and DAYSindicate a point in time expressed in milliseconds, seconds, minutes, hours and days respectively.

static properties: The class of aduration built-in routine call is the DURATION-derived class.

dynamic conditions. The RANGEFAIL exception occurs if the implementation cannot deliver a duration value denoting
the indicated period of time.

9.4.2 Absolute time built-in routine

syntax:
<absolute time built-in routine call> ::= @
ABSTIME ([[[[[[<year expression>,] <month expression>,]
<day expression> , | <hour expression> , |
<minute expression> ,] <second expression>]) (1.2)
<year expression>::= ()]
<integer expression> (2.1
<month expression> ::= 3
<integer expression> (3.0
<day expression> ::= 4
<integer expression> (4.0
<hour expression> ::= ®)
<integer expression> (5.2)
<minute expression> ::= (6)
<integer expression> (6.1
<second expression> ::= (7)
<integer expression> (7.0

semantics. The ABSTIME built-in routine call delivers an absolute time value denoting the point in time in the
Gregorian calendar indicated in the parameter list. The parameters indicate the components of time in the following
order: the year, the month, the day, the hour, the minute and the second. When higher order parameters are omitted, the
point in time indicated is the next one that matches the low order parameters present [e.g. ABSTIME (15,12,00,00)]
denotes noon on the 15th in this or the next month.

When no parameters are specified, an absolute time value denoting the present point in timeis delivered.
static properties: The class of the absolute time built-in routine call is the TIME-derived class.
dynamic conditions: The RANGEFAIL exception is caused if the implementation cannot deliver an absolute time value

denoting the indicated point in time.

126 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

9.4.3 Timing built-in routine call

syntax:
<timing simple built-in routine call> ::= 1)
WAIT () (1.2)
| EXPIRED () (1.2)
| INTTIME (<absolute time primitive value> , [[[[<year location>
<month location> ,] <day location> ,]
<hour location>,] <minute location>,]
<second location>) 1.3
<year location> ::= 2
<integer location> (2.1
<month location> ::= 3
<integer location> (3.1
<day location> ::= 4
<integer location> (4.0
<hour location> ::=)
<integer location> (5.1
<minute location> ::= (6)
<integer location> (6.1
<second location> ::= @)
<integer location> (7.2)

semantics; WAIT unconditionally makes the executing process timeoutable: its execution can only terminate by atime
interrupt. (Note that the process remains active in the CHILL sense).

EXPIRED makes the executing process timeoutable if one of its associated time supervisions has expired; otherwise it
has no effect.

INTTIME assigns to the specified integer locations an integer representation of the point in time in the Gregorian
calendar specified by the absolute time primitive value. The locations passed as arguments receive the components of
time in the following order: the year, the month, the day, the hour, the minute and the second.

static conditions: All specified integer locations must be referable and their modes may not have the read-only
property.
dynamic properties. WAIT makes the executing process timeoutable.

EXPIRED makes the executing process timeoutable if thereis an expired time supervision associated with it.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 127

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

10

10.1

Program Structure

General

The if action, case action, do action, delay case action, begin-end block, module, region, spec module, spec region,
context, receive case action, procedure definition and process definition determine the program structure; i.e. they
determine the scope of names and the lifetime of locations created in them.

The word block is used to denote:

theaction statement list in ado action including anyloop counter andwhile control;

theaction statement list in athen clause in anif action;

— theaction statement list in acase alternative in acase action;

— theaction statement list in adelay alternative in adelay case action;
— abegin-end block;

— aprocedure definition excluding theresult spec andparameter spec of all formal parameters of the
formal parameter list;

— aprocess definition excluding theparameter spec of all formal parameters of theformal parameter
list;

— theaction statement list in a buffer receive alternative or in asignal receive alternative, including
anydefining occurrences in adefining occurrence list afterIN;

— theaction statement list afterEL SE in anif action or case action or areceive case action or handler;
— theon-alternative in ahandler;

— theaction statement list in arelative timing action, anabsolute timing action, acyclic timing action
or in atiming handler.

The word modulion is used to denote:

— amodule orregion, excluding thecontext list anddefining occurrence, if any;
— aspec module or spec region, excluding thecontext list, if any;

— acontext;

— the specification together with the corresponding bodynadrata mode;

— atemplate together with the corresponding body.

The word group denotes either a block or a modulion.

The word reach or reach of a group denotes that part of the group that is not surrounded (see 10.2) by an
inner group. If BM is a moreta mode and DM is a direct successor of BM, therBMc, [0 DMp form

one reach. For the visibility of the internal components of moreta modes, the reach of a successor is

nested immediately in the specification part of its direct predecessor; this nesting occurs at the end of the

specification part.

A group influences the scope of each name created in its reach. Names are crdeftachdppccurrences:

128

A defining occurrence in the defining occurrence list of a declaration, mode definition or synonym
definition or appearing in aignal definition creates a name in the reach where déearation, mode
definition, synonym definition or signal definition, respectively, is placed.

A defining occurrence in aset mode creates a name in the reach directly enclosingeth@ode.

A defining occurrence appearing in theefining occurrence list in aformal parameter list creates a name
in the reach of the associatabcedure definition or process definition.

A defining occurrence in front of a colon followed by aaction, region, procedure definition, or process
definition creates a name in the reach whereatteon, region, procedure definition, process definition,
respectively, is placed.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by a more recent version

|SO/IEC 9496 : 1998 (E)

e A (virtual) defining occurrence introduced by awith part or in aloop counter creates a name in the reach

of the block of the associated do action.

« A defining occurrence in the defining occurrence list of a buffer receive alternative or a signal receive
alternative creates a name in the reach of the block of the associated buffer receive alternative or signal

receive alternative, respectively.

e A (virtual) defining occurrence for a language predefined or an implementation defined name creates a

name in the reach of the imaginary outermost process (see 10.8).

The places where a name is used are called applied occurrences of the name. The name binding rules associate adefining

occurrence with each applied occurrence of the name (see 12.2.2).

A name has a certain scope, i.e. that part of the program where its definition or declarations can be seen and, as a
consequence, where it may be freely used. The name is said to be visible in that part. Locations and procedures have a
certain lifetime, i.e. that part of the program where they exist. Blocks determine both visibility of names and the lifetime
of the locations created in them. Modulions determine only visibility; the lifetime of locations created in the reach of a
modulion will be the same as if they were created in the reach of the first surrounding block. Modulions allow for
restricting the visibility of names. For instance, a name created in the reach of a module will not automatically be visible

in inner or outer modules, although the lifetime might allow for it.

10.2 Reachesand nesting

syntax:

<begin-end body> ::=
<data statement list> <action statement list>

<proc body> ::=
<data statement list> <action statement list>

<process body> ::=
<data statement list> <action statement list>

<module body> ::=
{ <data statement> | <visibility statement> | <region> |
<spec region> }* <action statement list>

<region body> ::=
{ <data statement> | <visibility statement> } *

<spec module body> ::=
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> } *

<spec region body> ::=
{ <quasi data statement> | <visibility statement> }*

<context body> ::=
{ <quasi data statement> | <visibility statement> |
<gpec module> | <spec region> }*

<action statement list> ::=
{ <action statement> } *

<data statement list> ::=
{ <data statement> } *

<data statement> ::=
<declaration statement>
| <definition statement>

<definition statement> ::=
<synmode definition statement>
| <newmode definition statement>
| <synonym definition statement>
| <procedure definition statement>
| <process definition statement>

1)
(1.1)

(2
2.2)

©)
(3.1)

@
4.2)

)
(5.1)

(6)
(6.)

)
(7.1)

(8
(8.1)

9)
(9.1)

(10)
(10.1)

(11)
(11.1)
(11.2)

(12)
(12.1)
(12.2)
(12.3)
(12.4)
(12.5)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

129

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

| <signal definition statement> (12.6)
| <template> (22.7)
| <empty>; (12.8)

semantics: When a reach of a block is entered, al the lifetime-bound initialisations of the locations created when
entering the block, are performed. Subsequently, the reach-bound initialisations in the block reach, the possibly dynamic
evaluations in the loc-identity declarations, the reach-bound initialisations in the regions and the actions are performed in
the order they are textually specified.

When a reach of a modulion is entered, the reach-bound initialisations, the possibly dynamic evaluations in the
loc-identity declarations, the reach-bound initialisations in the regions and the actions (if the modulion is a module) that
arein the modulion reach are performed in the order they are textually specified.

A data statement, action, module or region, is terminated either by completing it, or by terminating a handler appended
toit.

When a reach-bound initialisation, loc-identity declaration, action, module, region, procedure or process is terminated,
execution is resumed as follows, depending on the statement or the kind of termination:

e if the statement is terminated by completing the execution of a handler, then the execution is resumed
with the subsequent statement;

« otherwisg, if it is an action that implies a transfer of control, the execution is resumed with the statement
defined for that action (see 6.5, 6.6, 6.8, 6.9);

e otherwise, if it isaprocedure, control isreturned to the calling point (see 10.4);

« otherwise, if it is a process, the execution of that process (or the program, if it is the outermost process)
ends (see 11.1) and execution is (possibly) resumed with another process;

e otherwise control will be given to the subsequent statement.

static properties: Any reachis directly enclosed in zero or more groups as follows:

« If thereach isthe reach of ado action, begin-end block, procedure definition, process definition, thenitis
directly enclosed in the group in whose reach the do action, begin-end block, procedure definition or
process definition, respectively, is placed, and only in that group.

» If thereach isthe action statement list of atiming action or timing handler, or one of the action statement
lists of an if action, case action or delay case action, then it is directly enclosed in the group in whose
reach the timing action, timing handler, if action, case action or delay case action is placed, and only in
that group.

« If thereach isthe action statement list, or a buffer receive alternative, or signal receive alternative, or the
action statement list following EL SE in a receive buffer case action or receive signal case action, then it
is directly enclosed in the group in whose reach the receive buffer case action or receive signal case
action is placed, and only in that group.

e If thereach isthe action statement list in an on-alternative or the action statement list following EL SE in
a handler which is not appended to a group, then it is directly enclosed in the group in whose reach the
statement to which the handler is appended is placed, and only in that group.

e If the reach is an on-alternative or action statement list after EL SE of a handler which is appended to a
group, then it is directly enclosed in the group to which the handler is appended, and only in that group.

e If the reach is a module, region, spec module or spec region, then it is directly enclosed in the group in
whose reach it is placed, and also directly enclosed in the context directly in front of the module, region,
spec module or spec region, if any. This is the only case where a reach has more than one directly
enclosing group.

» If thereach isacontext, then it is directly enclosed in the context directly in front of it. If there is no such
context, it has no directly enclosing group.

A reach has directly enclosing reaches that are the reaches of the directly enclosing groups. A statement has a unique

directly enclosing group, namely, the group in which the statement is placed. A reach is said to directly enclose a group
(reach) if, and only if, the reach is adirectly enclosing reach of the group (reach).

130 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A statement (reach) is said to be surrounded by a group if, and only if, either the group is the directly enclosing group of
the statement (reach) or a directly enclosing reach is surrounded by the group.

A reach is said to be entered when:

e Module reach; The module is executed as an action (e.g. the module is not said to be entered when a goto
action transfers control to alabel name defined inside the module).

* Begin-end reach: The begin-end block is executed as an action.

* Region reach: The region is encountered (e.g. the region is not said to be entered when one of its critical
proceduresis called).

e Procedure reach: The procedure is entered via a procedure call.
» Processreach: The processis activated viathe evaluation of a start expression.

« Doreach: The do action is executed as an action after the evaluation of the expressions or locations in the
control part.

- Buffer-receive aternative reach, signal receive alternative reach: The alternative is executed on reception
of abuffer value or signal.

e On-dternative reach: The on-alternative is executed on the cause of an exception.

¢ Other block reaches: The action statement list is entered.

An action statement list is said to be entered when, and only when, its first action, if present, receives control from
outside the action statement list.

A reachisaquasi reachif it isthe one of a spec module, spec region or context, otherwiseit isareal reach.

A defining occurrence isaquasi defining occurrenceif:
e itissurrounded by a context and not by a module or region; or
e itissurrounded by a simple spec module or a simple spec region; or

e it isnot surrounded by one of the above mentioned groups and it is surrounded by a module spec or a
region spec and it is contained in a quasi declaration, a quasi procedure definition statement or a quasi
process definition statement,

otherwise it isareal defining occurrence.

10.3 Begin-end blocks
syntax:

<begin-end block> ::= D
BEGIN <begin-end body> END 1.1

semantics. A begin-end block is an action, possibly containing local declarations and definitions. It determines both
visibility of locally created names and the lifetimes of locally created locations (see 10.9 and 12.2).

dynamic conditions. The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples: see 15.73 - 15.90

104 Procedur e specifications and definitions

syntax:
<procedure definition statement> ::= @
<defining occurrence> : <procedure definition>
[<handler>] [<simple name string>1] ; 1.0
| <generic procedure instantiation> (1.2

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 131

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<procedure definition> ;= ()]
PROC ([<formal parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)] <procedure attribute list> ;

<proc body> END (2.1)
<formal parameter list>::= 3

<formal parameter> { , <formal parameter>}* (3.0
<formal parameter> ::= @

<defining occurrence list> <parameter spec> (4.0
<procedure attribute list> ::=)

[<generality>] (5.0
<generality> ::= (6)

GENERAL (6.2)

| SIMPLE (6.2)
| INLINE (6.3)

<guarded procedure specification statement> ::=)

<defining occurrence> :

<guarded procedure specification> [<simple name string>1] ; (7.2)
<guarded procedure specification> ::= (8

PROC ([<formal parameter list>]) [<result spec>]

[EXCEPTIONS (<exception list>)] <guarded procedure attribute list> END (8.1
<guarded procedure definition statement> ::= 9)

<defining occurrence> : <guarded procedure definition>

[<handler>] [<smple name string>1] ; (9.2)
<guarded procedure definition> ::= (10)

PROC ([<formal parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)] <guarded procedure attribute list> ;

<proc body> END (10.2)

<guarded procedure attribute list> ::= (11)

[GENERAL] (11.1)

| [SIMPLE] [<simple component procedure attribute list>] <assertion part> (112

| [INLINE] [<inline component procedure attribute list>] (11.3)

<simple component procedure attribute list> ::= (12)

<inline component procedure attribute list> (12.1)

| DESTR (12.2)

| [INCOMPLETE][REIMPLEMENT] (12.3)

<inline component procedure attribute list> ::= (13)

CONSTR (13.2)

<assertion part> ::= (14
[PRE (<boolean expression>)]

[POST (<boolean expression>)] (14.1)

derived syntax: A formal parameter, where defining occurrence list consists of more than one defining occurrence, is
derived from several formal parameter occurrences, separated by commas, one for each defining occurrence and each
with the same parameter spec. E.g. i, j INT LOC isderived fromi INT LOC, j INT LOC.

semantics. A procedure definition statement defines a (possibly) parameterised sequence of actions that may be called
from different places in the program. The procedure is terminated and control is returned to the calling point either by
executing a return action or by reaching the end of the proc body or by terminating a handler appended to the procedure
definition (falling through). Different degrees of complexity of procedures may be specified as follows:

a) simple procedures (SIMPLE) are procedures that cannot be manipulated dynamically. They are not
treated as values, i.e. they cannot be stored in a procedure location nor can they be passed as parameters
to or returned as result from a procedure call;

132 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

b) general procedures (GENERAL) do not have the restrictions of simple procedures and may be treated as
procedure values,

¢) inline procedures (INLINE) have the same restrictions as simple procedures and they are not recursive.
They have the same semantics as norma procedures, but the compiler may insert the generated object
code at the point of invocation rather than generating code for actually calling the procedure.

Only simple and general procedures are recursive.

A guarded procedure definition statement defines a (possibly) parameterised sequence of actions that may be called from
different places in the program. The procedure is terminated and control is returned to the calling point either by
executing areturn action or by reaching the end of the proc body or by terminating a handler appended to the procedure
definition (falling through).

When the procedure is defined in a moreta mode, it is called a component procedure. Different kinds of simple and
inline component procedures defined in moreta modes may be specified as follows:

a) a constr component procedure (CONSTR) is a constructor which can be used to initialise moreta
locations automatically when they are created statically or dynamically;

b) adestr component procedure (DESTR) is a destructor which can be used to finalise moreta locations
when they are destroyed statically or dynamically;

¢) anincomplete component procedure (INCOMPLETE) has only a specification but no body;

d) areimplement component procedure (REIMPLEMENT) which is given a new body and possibly new
assertions.

Different kinds of assertion part may be specified for simple component procedures:

a) a pre assertion part (PRE) which is checked automatically before the body of the corresponding
procedure is executed;

b) a post assertion part (POST) which is checked automatically after the body of the corresponding
procedure has been executed and before the return to the calling point.

Only simple (except for component procedures with the attributes constr or destr or with public visibility in aregion
mode) and general procedures are recursive.

A procedure may return avalue or it may return alocation (indicated by the LOC attribute in the result spec).
The defining occurrence in front of the procedure definition defines the name of the procedure.
parameter passing:

There are basically two parameter passing mechanisms: the “pass by Wdlu@UT andINOUT) and the “pass by
location” LOC).

pass by value

In pass by value parameter passing, a value is passed as a parameter to the procedure and stored in a local location of tt
specified parameter mode. The effect is as if, at the beginning of the procedure call, the location declaration:

DCL <defining occurrence> <mode> := <actual parameter>;

were encountered for thaefining occurrences of the formal parameter. However, the procedure is entered after the
actual parameters have been evaluated. Optionally, the keyWaongy be specified to indicate pass by value explicitly.

If the attributel NOUT is specified, the actual parameter value is obtained from a location and just before returning the
current value of the formal parameter, is restored in the actual location.

The effect ofOUT is the same as foNOUT with the exception that the initial value of the actual location is not copied

into the formal parameter location upon procedure entry; therefore, the formal parameteurdefiaed initial value.
The store-back operation need not be performed if the procedure causes an exception at the calling point.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 133

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

pass by location

In pass by location parameter passing, a (possibly dynamic mode) location is passed as a parameter to the procedure
body. Only referable locations can be passed in this way. The effect is as if at the entry point of the procedure the
loc-identity declaration statement:

DCL <defining occurrence> <mode>
LOC [DYNAMIC] := <actual parameter> ;

were encountered for the defining occurrences of the formal parameter. However the procedure is entered after the
actual parameters have been evaluated.

If avalueis specified that is not alocation, alocation containing the specified value will be implicitly created and passed
at the point of the call. The lifetime of the created location is the procedure call. The mode of the created location is
dynamic if the value has a dynamic class.

result transmission:

Both a value and a location may be returned from the procedure. In the first case, a value is specified in any result
action, in the latter case, a location (see 6.8). If the attribute NONREF is not given in the result spec, the location must
be referable. The returned value or location is determined by the most recently executed result action before returning.
If a procedure with a result spec returns without having executed a result action, the procedure returns an undefined
value or an undefined location. In this case the procedure call may not be used as a location procedure call (see 4.2.11)
nor as avalue procedure call (see 5.2.13), but only as a call action (see 6.7).

static properties: A defining occurrence in a procedure definition statement defines a procedur e name.

A procedure name has a procedure definition attached that is the procedure definition in the statement in which the
procedure nameis defined.

A procedur e name has the following properties attached, as defined by its procedure definition:

e It has a list of parameter specs that are defined by the parameter spec occurrences in the formal
parameter list, each parameter consisting of a mode and possibly a parameter attribute.

* Ithaspossibly aresult spec, consisting of amode and an optional result attribute.
* It hasapossibly empty list of exception names, which are the names mentioned in exception list.

« It has a generality that is, if generality is specified, either general or simple or inline, depending on
whether GENERAL, SIMPLE or INLINE is specified; otherwise an implementation default specifies
general or simple. If the procedur e name is defined inside a block or aregion, its generality is simple.
If aprocedure is defined in a moreta mode and has public visibility, its generality issimple or inline.

e It hasarecursivity which isrecursive. However, if the generality isinline or if the procedure nameis
critical (see 11.2.1) therecursivity isnon-recursive.

« A component procedure has the generality inline if the attribute INL INE is specified. Otherwise it has the
generality SIMPLE by default.

A procedure name that is general is a general procedure name. A general procedure name has a procedure mode
attached, formed as:

PROC ([<parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)]

where <result spec>, if present, and <exception list> are the same as in its procedure definition and parameter list isthe
seguence of <parameter spec> occurrences in the formal parameter list, separated by commas.

A name defined in a defining occurrence list in the formal parameter is alocation name if, and only if, the parameter
spec in the formal parameter does not contain the L OC attribute. If it does contain the L OC attribute, it isaloc-identity
name. Any such alocation name or loc-identity name isreferable.

A moreta mode component procedure of a moreta mode M has a complete postcondition CPM which is defined as
follows:

a) if M has no immediate base mode then CPM = post part;

134 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

b) if M has the immediate base mode B then CPM = CPB O post part, where CPB is the complete
postcondition of B.

static conditions: If a procedure name is intra-regional (see 11.2.2) or is a public procedure of a moreta mode, its
procedure definition must not specify GENERAL.

If aprocedurenameiscritical (see 11.2.1), its definition may not specify GENERAL.
If asimple component procedure has any assertion part, the name of the procedure must have public visibility.

The defining occurrence of a constr component procedure must be the same as that of its attached moreta mode. A
constr component procedure must not specify a result spec and must be non-recursive.

The defining occurrence of a destr component procedure must be the same as that of its attached moreta mode. A destr
component procedure must neither specify aformal parameter list nor aresult spec and must be non-recursive.

If specified, the simple name string must be equal to the name string of the defining occurrence in front of the procedure
definition.

Only if LOC is specified in the parameter spec or result spec may the mode in it have the non-value property.
All exception names mentioned in exception list must be different.

If P1 and P2 are component procedures or component processes, then P1 matches P2 if, and only if:
a) P1and P2 are of the samekind; and
b) P1and P2 have the same simple name string; and
¢) theformal parameter lists of P1 and P2 are syntactically and semantically equivalent, and
d) theresult specsof P1 and P2 are syntactically and semantically equivalent.
If Pisacomponent procedure or a component process, then Pg correspondsto Ps if, and only if:
a) Pg matchesPg; and
b) theexception lists of Ps and Py are syntactically and semantically equivalent; and
¢) theattribute lists of Psand Pg are syntactically and semantically equivalent.
examples:

1.4 add:
PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+j;
END add; (1.2)

put :
PROC(p RANGE(1:10)) PRE((p > 0) AND (p < 11));

END put; (10.1)

105 Process specifications and definitions

syntax:
<process definition statement> ::= (D)
<defining occurrence> : <process definition>
[<handler>] [<simple name string>1] ; 1.n
| <generic processinstantiation> ; 1.2
<process definition> ::= ()]
PROCESS ([<formal parameter list>]) <process body> END (2.1

semantics: A process definition statement defines a possibly parameterised sequence of actions that may be started for
concurrent execution from different placesin the program (see clause 11).

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 135

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static properties: A defining occurrence in a process definition statement defines a process name.
A process name has the following property attached, as defined by its process definition:

e It has a list of parameter specs that are defined by the parameter spec occurrences in the formal
parameter list, each parameter consisting of a mode and possibly a parameter attribute.

static conditions: If specified, the simple name string must be equal to the name string of the defining occurrence in
front of the process definition.

A process definition statement must not be surrounded by a region or by a block other than the imaginary outermost
process definition (see 10.8).

The parameter attributes in the formal parameter list must not be INOUT nor OUT.

Only if LOC is specified in the parameter spec in aformal parameter in the formal parameter list, may the mode in it
have the non-value property.

examples:

14.13 PROCESS ();
wait:
PROC (x INT);
/*some wait action*/
END wait;
DO FOR EVER;
wait(10 /* seconds */);
CONTINUE operator_is ready;
OD;
END (2.1)

10.6 M odules

syntax:

<module> ::= (1)
[<context list>] [<defining occurrence> : |
MODULE [BODY] <module body> END

[<handler>] [<simple name string>1] ; 1.1
| <remote modulion> 1.2
| <generic module instantiation> (1.3

semantics: A module is an action statement possibly containing local declarations and definitions. A module is a means
of restricting the visibility of name strings; it does not influence the lifetime of the locally declared locations.

The detailed visibility rules for modules are givenin 12.2.

static properties: A defining occurrence in a module defines a module name as well as alabel name. The name has the
module (seen as amodulion, i.e. excluding the context list and defining occurrence, if any) attached.

A moduleis developed piecewisely if, and only if, acontext list is specified.

A moduleisamodule body if, and only if, BODY is specified.

static conditions: If specified, the simple name string must be equal to the name string of the defining occurrence.
A remote modulion in amodule must refer to a module.

examples:

7.48 MODULE
SEIZE convert;
DCL nINT INIT:= 1979;
DCL rn CHARS (20) INIT:= (20)" ™;
GRANT n,rn;
convert();

136 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

ASSERT rn = "MDCCCCLXXVIIII'/(6)" ”;
END (1.1)

10.7 Regions
syntax:

<regior> ::= (1)
[<context list] [<defining occurrence:]
REGION [BODY] <region body END

[<handler] [<simple name strirg] ; (1.1)
| <remote modulion 1.2)
| <generic region instantiation (1.3)

semantics. A region is a means of providing mutually exclusive access to its locally declared data objects for the
concurrent executions of processes (see clause 11). It determines visibility of locally created names in the same way as a
module.

static properties. A defining occurrenceén a region defines a region name. It has the region (seen as a modulion,
i.e. excluding the context listand defining occurrencdf any) attached.

A regionis developed piecewisely if, and only if, acontext listis specified.

A regionisaregion body if, and only if, BODY is specified.

static conditions: If specified, the simple name stringwst be equal to the name string of the defining occurrence
A regionmust not be surrounded by a block other than the imaginary outermost process definition.

A remote moduliomnn aregionmust refer to aregion

examples: see 13.1 - 13.28

10.8 Program
syntax:

<progran® ::= Q)
{ <module> | <spec module| <regior> | <spec regior
| <moretadeclaration statement
| <moretasynmode definition statement
| <moretanewmode definition statement
| <templatee}+ (1.2

semantics: A program consists of a list of program units (as given in the syntax rule) surrounded by an imaginary
outermost process definition.

The definitions of the CHILL pre-defined names (see I11.2) and the implementation defined built-in routines and integer
modes are considered, for lifetime purposes, to be defined in the reach of the imaginary outermost process definition.
For their visibility see 12.2.

10.9 Storage allocation and lifetime
The time during which alocation or procedure exists within its program isits lifetime.
A location is created by adeclaration or by the execution of a GETSTACKor an ALLOCATEDbuilt-in routine call.

The lifetime of a location declared in the reach of a block is the time during which control lies in that block or in a
procedure whose call originated from that block, unless it is declared with the attribute STATIC. The lifetime of a
location declared in the reach of a modulion is the same as if it were declared in the reach of the closest surrounding
block of the modulion. The lifetime of alocation declared with the attribute STATIC isthe same as if it were declared in
the reach of the imaginary outermost process definition. This implies that for a location declaration with the attribute
STATIC storage alocation is made only once, namely, when starting the imaginary outermost process. If such a
declaration appears inside a procedure definition or process definition, only one location will exist for al invocations or
activations.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 137

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The lifetime of alocation created by executing a GETSTACK built-in routine call ends when the directly enclosing block
terminates.

The lifetime of a location created by an ALLOCATE built-in routine cal is the time starting from the ALLOCATE call
until the time that the location cannot be accessed anymore by any CHILL program. The latter is aways the case if a
TERMINATE built-in routine is applied to an allocated reference value that references the location.

The lifetime of an access created in a loc-identity declaration is the directly enclosing block of the loc-identity
declaration.

The lifetime of a procedure isthe directly enclosing block of the procedure definition.

static properties: A location is said to be static if, and only if, it is a static mode location of one of the following kinds:

e A location name that is declared with the attribute STATIC or whose definition is not surrounded by a
block other than the imaginary outermost process definition.

« A string element or string slice where the string location is static and either the left element and right
element, or start element and slice size are constant.

* Anarray element where the array location is static and the expression is constant.

« An array dlice where the array location is static and either the lower element and upper element or the
first element and slice size are constant.

¢ A structure field where the structure location is static.

e A location conversion where the location occurring in it is static.

10.10 Constructsfor piecewise programming

Modules and regions are the elementary units (pieces) in which a complete CHILL program that is developed
piecewisely can be subdivided. The text of such pieces is indicated by remote constructs (see 10.10.1). CHILL defines
the syntax and semantics of complete programs, in which all occurrences of remote pieces have been virtually replaced
by the referred text.

10.10.1 Remote pieces

syntax:

<remote modulion> ::= @
[<simple name string> :] REM OTE <piece designator> ; (1.0
<remote spec>::= &
[<simple name string> :] SPEC REM OTE <piece designator> ; (2.2)
<remote context> ::= 3

CONTEXT REMOTE <piece designator>
[<context body>] FOR 3.1
<context module> ::= 4
CONTEXT MODULE REMOTE <piece designator> ; (4.2
<piece designator> ::= 5)
<character string literal> (5.2)
| <text reference name> (5.2
| <empty> (5.3)
<remote program unit> ::= (6)
[<simple name string> :] REM OTE <piece designator> ; (6.1

derived syntax: The notation:

CONTEXT MODULE REMOTE <piece designator>

138 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

is derived syntax for:

CONTEXT REMOTE <piece designator> FOR
MODULE SEIZE ALL; END;

NOTE - This construct is redundant but can be used for consistence checking.

semantics: Remote modulions, remote specs, remote contexts, context modules, and remote program units are means to
represent the source text of a program as a set of (interconnected) files.

A piece designator refersin an implementation defined way to a description of a piece of CHILL source text, as follows:

e | the piece designator is empty, the source text is retrieved from a place determined by the structure of
the program.

e | the piece designator contains a character string literal, the character string literal is used to retrieve
the source text.

e |If the piece designator contains a text reference name, the text reference name is interpreted in an
implementation defined way to retrieve the source text.

A program with: 1. remote modulions, 2. remote specs, 3. remote program units is equivalent to the program built by
replacing each: 1. remote modulion, 2. remote spec, 3. remote program unit by the piece of CHILL text referred to by its
piece designator.

A program with remote contexts is equivalent to the program built by replacing each remote context by the piece of
CHILL text referred to by its piece designator in which the context body has been virtually inserted immediately after
the last occurrence of context body in the context list referred to by the piece designator.

If the designated piece is not available as CHILL text, then the piece designator in it is considered to refer to an
equivalent piece of CHILL text whichisintroduced virtually.

Although the semantics of a remote piece is defined in terms of replacement, CHILL does not imply any textual
substitution.

static conditions: The piece designator in a 1. remote modulion, 2. remote spec, 3. remote context, 4. context module,
5. remote program unit, must refer to a description of a piece of source text which is a terminal production of a 1.
module or region that is not aremote modulion, 2. spec module or spec region that is not aremote spec, 3., 4. context list
which is not aremote context, 5. a program unit which is not remote.

When the source text referred to by the piece designator in aremote modulion starts with a defining occurrence, then the
remote modulion must start with a simple name string which is the name string of that defining occurrence.

When the source text referred to by the piece designator in a remote spec starts with a simple name string, then the
remote spec must start with the same simple name string.

When the source text referred to by the piece designator in aremote program unit starts with a simple name string, then
the first defining occurrence in the remote program unit must be the same simple name string.

examples:

25.9 stack: REMOTE "example 27 or 28”; (1.2)
25.9 "example 27 or 28" (5.1)

10.10.2 Spec modules, spec regions and contexts

syntax:

<spec module ::= Q)
<simple spec modute (1.2)
| <module spee (1.2)
| <remote spee (1.3)
<simple spec moduie:= (2)

[<context list] [<simple name strirrg:] SPEC MODULE
<spec module bothEND [<simple name strirg] ; (2.1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 139

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<module spec> ::= (©)
[<context list>] <simple name string>: MODULE SPEC
<spec module body> END [<simple name string>1] ; (3.0
<spec region> ::= 4
<simple spec region> (4.0
| <region spec> (4.2
| <remote spec> (4.3
<simple spec region> ::= 5)
[<context list>] [<simple name string> :] SPEC REGION
<spec region body> END [<simple name string>] ; (5.1
<region spec> ::= (6)
[<context list>] <simple name string> : REGION SPEC
<spec region body> END [<simple name string>] ; (6.1
<context list> ::= @
<context> { <context> }* (7.0
| <remote context> (7.2
<context> ::= (8
CONTEXT <context body> FOR (8.1)

semantics: Smple spec modules, simple spec regions and contexts are used to specify static properties of names. They
may be redundant but they can be used for piecewise programming.

Smple name strings in spec modules and spec regions are not names, they are not bound, and they have no visibility
rules.

1. spec modules, 2. spec regions in a real reach indicate the properties of one or more 1. modules, 2. regions that are
piecewisely compiled and that are considered to be enclosed in that reach. The texts of such: 1. modules, 2. regions, are
indicated by occurrences of remote modulions. A context list indicates the surrounding reaches (note that a module or a
region that is developed piecewisely always has a context list in front of it).

For each name string OP ! NSvisible in the reach of a: 1. module spec, 2. region spec and linked there to a quasi s
defining occurrence and that is granted into areal reach as NP ! NS a (virtual) grant statement with the same old name
string OP ! NS and new name string NP ! NS is considered to be introduced in the reach of the corresponding: 1.
module body, 2. region body.

static conditions: In a spec module or a spec region, the optional simple name string following END may only be
present if the optional simple name string before SPEC is present. When both are present, they must have equal name
strings.

A context which has no directly enclosing group may not contain visibility statements.
A real reach that contains a: 1. spec module, 2. spec region, must also contain at least aremote modulion and vice versa.

If areal r reach contains a 1. module which is a module body, 2. region which is aregion body, then it must contain
also a 1. module spec, 2. region spec such that the simple name strings in front of them have equal name strings. The:
1. module spec, 2. region spec, is said to have a corresponding: 1. module body, 2. region body.

A remote spec in a: 1. spec module, 2. spec region, must refer to a: 1. spec module, 2. spec region.
A spec module or a spec region may not be surrounded by a block other than the imaginary outermost process definition.
examples:

23.2 letter_count:
SPEC MODULE
SEIZE max;
count: PROC (input ROW CHARS (max) IN,
output ARRAY ('A’’Z") INT OUT) END;
GRANT count;
END letter_count; (1.1)

140 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

10.10.3 Quas statements

syntax:
<quasi data statement> ::= @
<quasi declaration statement> 1.1
| <quasi definition statement> (1.2
<quasi declaration statement> ::= 2
DCL <quasi declaration>{ , <quasi declaration>}* ; (2.1
<quasi declaration> ::= 3
<quasi location declaration> (3.1
| <quasi loc-identity declaration> (3.2
<quasi location declaration> ;:= 4
<defining occurrence list> <mode> (4.0
<quasi loc-identity declaration> ::= 5)
<defining occurrence list> <mode>
LOC [NONREF][DYNAMIC] (5.1)
<quasi definition statement> ::= (6)
<synmode definition statement> (6.1
| <newmode definition statement> (6.2
| <synonym definition statement> (6.3)
| <quasi synonym definition statement> (6.4)
| <quasi procedure definition statement> (6.5
| <quasi process definition statement> (6.6)
| <quas signal definition statement> (6.7)
| <signal definition statement> (6.8)
| <empty>; (6.9
<quasi synonym definition statement> ::= @)
SYN <quasi synonym definition> { , <quasi synonym definition>}* ; (7.2)
<quasi synonym definition> ::= (8)
<defining occurrence list> { <mode> = [<constant value>] |
[<mode>] = <literal expression> } (8.1
<quasi procedure definition statement> ::= 9
<defining occurrence> : PROC ([<quasi formal parameter list>])
[<result spec>] [EXCEPTIONS (<exception list>)]
<procedure attribute list> [END [<simple name string>1]] ; (9.0
<quasi formal parameter list>::= (10)
<quasi formal parameter> { , <quasi formal parameter> }* (10.1)
<quasi formal parameter>::= (11)
<simple name string> { , <simple name string> }* <parameter spec> (11.1)
<quasi process definition statement> ::= (12
<defining occurrence> : PROCESS ([<quasi formal parameter list>])
[END [<simple name string>1] ; (12.2)
<quasi signal definition statement> ::= (13)
SIGNAL <quasi signal definition> { , <quasi signal definition>}* ; (13.1)
<quasi signal definition> ::= (14)
<defining occurrence> [= (<mode> { , <mode>1}*)] [TO] (14.2)

semantics: Quasi statements are used in spec modules, spec regions and contexts to specify static properties of names.
Foec modules, spec regions and contexts may contain quasi statements and real statements. Quasi statements may be
redundant, but are used for piecewise programming.

An implementation that cannot guarantee the equality of the values between quasi constant synonym names and the
corresponding real ones may disallow the indication of the constant value.

Note that in CHILL no quasi defining occurrences exist for label names.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 141

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

static properties: Quasi statements are restricted forms of the corresponding statements, and have the same static
properties.

The name defined by a defining occurrence in aquasi loc-identity declaration isreferable if NONREF is not specified.

static conditions: Quasi statements are restricted forms of the corresponding statements and are subject to their static
conditions.

A quasi synonym definition statement or a quasi signal definition statement may only be directly enclosed in a simple
spec module, simple spec region or context. A synonym definition statement or a signal definition statement in a quasi
definition statement may only be directly enclosed in a module spec or region spec.

10.10.4 Matching between quasi defining occurrences and defining occur rences

Two defining occurrences are said to match if they have identical semantic categories and:

If they are synonym names, then they must have the same regionality and value, the root mode of their
classes must be alike, they must both have an M-value, M-derived, M-reference, null or all class, and if
the one which is quasi isliteral, then so the other one must be.

If they are newmode names or synmode names, then their modes must be alike.

If they are location names or loc-identity names, then they must have the same regionality, they both
must be or both not be refer able, and their modes must be alike.

If they are procedur e names, then they must have the same regionality and gener ality, they both must be
or both not be critical, they must satisfy the same conditions of alikeness as procedure modes, and
corresponding (by position) simple name strings in the formal parameter list and quasi formal parameter
list must be the same.

If they are process names, then the parameters of their process definitions must satisfy the same
conditions of matching and alikeness as the parameters of procedur e names.

If they are signal names, then they must both specify or both not specify TO, their lists of modes must
have the same number of modes, and corresponding modes must be alike.

If two structure modes are novelty bound in areach R, then they must have the same set of visible field namesin R.

The following rules apply:

142

If a name string in a reach that is not the reach of a spec module, spec region or context is bound to a
quasi defining occurrence, then it must also be bound to a defining occurrence which is not a quasi
defining occurrence, and further:

— Let aname string bebound to aquasi defining occurrence QD and beébound also to aeal defining
occurrence RD in reach R, then:

1) QD and RD mugnatch as defined above; and

2) RD and QD must both be enclosed in an enclosed group of R or both not be enclosed in the

group of R or, if R is the reach ofnaodule or region which is amodule body or region body,
then QD must be enclosed in the group ofdbrr esponding module spec or region spec and
RD must be enclosed in the group of R.

— If aname string in areal reach R isbound to aquas defining occurrence that is enclosed in the
group of R (i.e. surrounded by a spec modulion), then it must alémurel to areal defining
occurrence that is surrounded by the group ofredule or region that are indicated by wemote

modulion directly enclosed in R (informally, if the interface grants, so must the implementation). If

the quasi defining occurrence is enclosed in the group ofraodule spec or aregion spec, then the
real one must be enclosed in the group ofdbre esponding modulion.

— For eacmame string in the reach Q of gpec module or spec region directly enclosed in eeal reach
R that isbound to adefining occurrence not surrounded by Q, there must be an identieate
string in the reach of anodule or region that is indicated by eemote modulion directly enclosed in

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

R that is bound to the same defining occurrence (informally, if the interface seizes, so must the
implementation).

« If two name strings are bound to the same: 1. real, 2. quasi defining occurrence in a reach, then both
name strings must be bound to the same: 1. quasi, 2. real defining occurrence, or both not be further
bound.

« A real novelty may not be novelty bound to two quasi noveltiesin any reach.

Let aquasi novelty QN and areal novelty RN be novelty bound to each other in areach R; then RN and
ON must both be enclosed in an enclosed group of R or both not be enclosed in the group of R, or if Ris
the reach of a module or region which is a module body or region body, then RN must be enclosed in
the group of R and QN must be enclosed in the group of the cor responding module spec or region spec.

10.11 Genericity
Many algorithms solve problems on similarly structured data items whose component modes are different. Genericity

provides a means to implement such algorithms as program schemes which are instantiated by substituting formal mode
definitions by actual ones.

syntax:
<template> ::= (0]
<generic module template> (1.1
| <generic region template> (1.2)
| <generic procedure template> (1.3)
| <generic process template> (1.9
| <generic module mode template> (1.5)
| <generic region mode template> (1.6)
| <generic task mode template> (1.7
| <remote program unit> (1.8
<generic module template> ::= 2
[<context list>] [<defining occurrence>: |
<generic part> MODULE [BODY] <module body> END
[<handler>] [<smple name string>1] ; (2.2)
<generic region template> ::= ©)]
[<context list>] [<defining occurrence> : |
<generic part> REGION [BODY] <region body> END
[<handler>] [<smple name string>1] ; (3.2
<generic procedure template> ::= 4
<defining occurrence> : <generic part> <procedure definition>
[<handler>] [<simple name string>1] ; (4.2
<generic process template> ::=)
<defining occurrence> : <generic part> <process definition>
[<handler>] [<smple name string>1] ; (5.2)
<generic module mode template> ::= (6)
<generic part> <module mode specification> (6.1
<generic region mode template> ::= (7
<generic part> <region mode specification> (7.0
<generic task mode template> ::= (8
<generic part> <task mode specification> (8.2)
<generic part> ::=)
GENERIC { <seize statement> }* <formal generic parameter list> (9.2)
<formal generic parameter list> ::= (20
{ <formal generic parameter> }* (10.2)
<formal generic parameter> ::= (11)
SY N <formal generic synonymlist> ; (11.1)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 143

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

| MODE <formal generic modelist>;
| PROC <formal generic procedure spec> ;

<formal generic synonymlist>::=
<formal generic synonym> { ,<formal generic synonym> }*

<formal generic modelist> ::=
<formal generic mode> { ,<formal generic mode> }*

<formal generic synonym> ::=
<defining occurrence list> =
{ <mode> | ANY_DISCRETE | ANY_INT | ANY_REAL }

<formal generic mode> ::=
<defining occurrence list> = <formal generic mode indication>

<formal generic mode indication> ::=
ANY
| ANY_ASSIGN
| ANY_DISCRETE
| ANY_INT
| ANY_REAL
| <moreta mode name>

<formal generic procedure spec> ;.=
<simple name string> ([<formal parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)]

<generic module instantiation> ::=
<simple name string>: MODUL E = NEW <generic module hame>
{ <seize statement> } *
<actual generic parameter list> END [<simple nhame string>1] ;

<generic region instantiation> ::=
<simple name string>: REGION = NEW <generic region name>
{ <seize statement> } *
<actual generic parameter list> END [<simple name string>] ;

<generic procedure instantiation> ::=
<simple name string>: PROC = NEW <generic procedure name>
{ <seize statement> } *
<actual generic parameter list> END [<simple hame string>] ;

<generic processinstantiation> ::=
<simple name string>: PROCESS = NEW <generic process name>
{ <seize statement> }*
<actual generic parameter list> END [<simple name string>1] ;

<generic moreta mode instantiation> ::=
NEW <generic moreta mode name>
{ <seize statement> } *
<actual generic parameter list> END [<simple name string>] ;

<actual generic parameter list>::=
<actual generic parameter> { <actual generic parameter> }*

<actual generic parameter> ::=
<synonym definition statement>
| <synmode definition statement>
| <newmode definition statement>
| <actual generic procedure>

<actual generic procedure> ::=
PROC <defining occurrence list> = <procedure name> ;

semantics. The word unit means either amodule, aregion, a procedure, a process, or a moreta mode.

A generic unit isa unit which contains a generic part.

144 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

(11.2)
(11.3)

(12)
(12.1)

(13)
(13.1)

(14

(14.1)

(15)
(15.1)

(16)
(16.1)
(16.2)
(16.3)
(16.4)
(16.5)
(16.6)

17

(17.1)
(18)

(18.1)
(19

(19.1)
(20)

(20.1)
(21)

(21.1)
(22)

(22.1)

(23)
(23.1)

(24
(24.1)
(24.2)
(24.3)
(24.4)

(29)
(25.1)

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A generic unit is atemplate from which non-generic units may be obtained by a process called generic instantiation.

A generic unit may contain formal generic parameters. During generic instantiation a copy of the generic unit is made
and the formal generic parameters are replaced by the actual generic parameters throughout the whole unit. After this
replacement, the generic part is deleted and thus a non-generic unit is obtained.

static properties: The formal generic synonyms are characterised by two properties:
a) the properties which aformal generic parameter has inside the generic unit;
b) the properties which a corresponding actual generic parameter must have to be accepted:

mode: formal prop: properties of the given mode which must not have the
non-value property.
act prop: value of the actual generic parameter must be a value of the
mode.
ANY_DISCRETE: formal prop: operations available: :=, relational, PRED, SUCC, NUM,
SIZE.
act prop: value of the actual generic parameter must be a value of a
discrete mode.
ANY_INT: formal prop: ANY_DISCRETE and +, -, *, /, mod, abs, rem.
act prop: value of the actual generic parameter must be a value of an
integer mode.
ANY_REAL: formal prop: operations available: ANY_ASSIGN and relationd, +, -, *, /.
act prop: value of the actual generic parameter must be avalue of area
mode.

The formal generic modes are characterised by two properties:
a) the properties which aformal generic parameter has inside the generic unit;
b) the properties which a corresponding actual generic parameter must have to be accepted:

ANY: formal prop: SIZE; cannot be used as the mode of a location or of a
parameter; (can be used as a referenced mode).
actual prop: any mode acceptable.
ANY_ASSIGN: formal prop: operations available: :=, comparison, SIZE.
act prop: mode must posses formal prop.
ANY_DISCRETE: formal prop: operations available: :=, relational, PRED, SUCC, NUM,
SIZE.
act prop: mode must posses formal prop.
ANY _INT: formal prop: ANY_DISCRETE and +, -, *, /, mod, abs, rem.
act prop: mode must posses formal prop.
ANY_REAL: formal prop: operations available: ANY_ASSIGN and relational, +, -, *, /.
act prop: mode must posses formal prop.
moreta mode name: formal prop: those of the mode.
act prop: same mode or any SUCCESSOr.

The formal generic procedures are characterised by two properties:
a) the properties which aformal generic parameter has inside the generic unit;
b) the properties which a corresponding actual generic parameter must have to be accepted:

formal prop: according to the given formal generic procedure spec.

act prop: the given formal generic procedure spec must be compatible with the class of the
actual generic parameter.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 145

Super seded by a more recent version

static conditions. For derivation involving generic moreta mode templates, the following restrictions apply: if the base
is a template then any derived entity must also be a template. If the base is not a template, a derived entity may be a

template.

In a generic instantiation there must be exactly one actual generic parameter for each formal generic parameter of the

generic unit being instantiated.

For templates the restrictions on nesting are given in the following table. The table defines which templates may occur

immediately in which groups.

ISO/IEC 9496 : 1998 (E)

Template/
Instantiation MODULE | REGION PROC PROCESS Mn?g;ée Rn?gij%n r-:;gﬂ:a
Group
Begin-End Yes No Yes No Yes No No
PROC Yes No Yes No Yes No No
PROCESS Yes No Yes No Yes No No
MODULE Yes Yes Yes Yes Yes Yes Yes
REGION Yes Yes Yes No Yes Yes No
Module Mode Yes Yes Yes Yes Yes Yes Yes
Region Mode Yes Yes Yes No Yes Yes No
Task Mode Yes No Yes No Yes No No
Program Yes Yes Yes Yes Yes Yes Yes

This table is based on the following correspondence between templates and entities of CHILL92. For a template in the

left column, the restrictions of the corresponding entity in the right column apply:

generic module template
generic region template
generic procedure template
generic process template
generic module mode templ

ate

generic region mode template

generic task mode template

146 ITU-T Rec. Z.200 (1996 E)

procedure definition statement

region

procedure definition statement

process definition statement

procedure definition statement

region

process definition statement

Super seded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

11 Concurrent execution

11.1 Processes, tasks, threads and their definitions
A thread is either a process or atask.

A process is the sequential execution of a series of statements. It may be executed concurrently with other threads. The
behaviour of a process is described by a process definition (see 10.5), that describes the objects local to a process and the
series of action statements to be executed sequentialy.

A process is created by the evaluation of a start expression (see 5.2.15). It becomes active (i.e. under execution) and is
considered to be executed concurrently with other threads. The created process is an activation of the definition
indicated by the process name of the process definition. An unspecified number of processes with the same definition
may be created and may be executed concurrently. Each process is uniquely identified by an instance value, yielded as
the result of the start expression or the evaluation of the THIS operator. The creation of a process causes the creation of
its locally declared locations, except those declared with the attribute STATIC (see 10.9), and of locally defined values
and procedures. The locally declared locations, values and procedures are said to have the same activation as the created
process to which they belong. The imaginary outermost process (see 10.8), which is the whole CHILL program under
execution, is considered to be created by a start expression executed by the system under whose control the program is
executing. At the creation of a process, its formal parameters, if present, denote the values and locations as delivered by
the corresponding actual parametersin the start expression.

A process is terminated by the execution of a stop action, by reaching the end of the process body or by terminating a
handler specified at the end of the process definition (falling through). If the imaginary outermost process executes a
stop action or falls through, the termination will be completed when, and only when, al other threads in the program are
terminated.

A task is a sequential execution of a series of statements. It may be executed concurrently with other threads. The
behaviour of atask is described by atask mode definition.

A task is created as part of the creation and initialisation of a task mode location (see 4.1). It is called to belong to this
task mode location. A task isterminated if its task mode location is destroyed (see 10.2).

A thread is, at the CHILL programming level, always in one of two states: it is either active (i.e. under execution) or
delayed (see 11.3). The transition from active to delayed is called the delaying of the thread; the transition from delayed
to activeis called the re-activation of the thread.

11.2 Mutual exclusion and regions

11.21 General

Regions (see 10.7) and region locations (see 3.15) are a means of providing threads with mutually exclusive indirect
access to locations declared inside the regions or region locations by granted procedures. Static context conditions
(see 11.2.2) are made such that accesses by a thread other than the imaginary outermost process to locations declared
inside a region can be made only by calling procedures that are defined inside the region or region mode and granted by
the region or region mode.

NOTE - The only situation when the locations declared inside a region or region location can be directly accessed by a thread T is
when the region or the region location is entered and its reach-bound initialisations (if any) are performed by T.

A procedure name is said to denote a critical procedure (and it is a critical procedure name) if it is defined inside a
region and granted by the region.

A component procedure name is said to denote a critical component procedure (and it is a critical component
procedure name) if it is defined inside a region mode and granted by the region mode.

A region is said to be free if, and only if, control liesin none of its critical procedures or in the region itself performing
reach-bound initialisations.

A region location is said to be free if, and only if, control lies in none of its critical component procedures or in the
region location itself performing reach-bound initialisations.

The region will be locked (to prevent concurrent execution) if;

« Theregion is entered (note that because regions are not surrounded by a block, no concurrent attempts
can be made to enter the region).

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 147

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e Acritical procedure of theregion iscalled.
e A process, delayed in theregion, is re-activated.
The region location will be locked (to prevent concurrent execution) if:
e Theregion location is entered.
e A critical component procedure of the region location is called.
e Athread, whichis delayed in the region location, is re-activated.
The region will be released, becoming free again, if:
* Theregion isleft after having its reach-bound initialisations performed.
e Acritical procedure returns.

* A critical procedure executes an action that causes the executing process to become delayed (see 11.3). In
the case of dynamically nested critical procedure calls, only the latest locked region will be released.

e A process executing a critical procedure terminates. In the case of dynamically nested critical procedure
calls, all the regions locked by the process will be rel eased.

The region location will be released, becoming free again, if:
e Theregion location is|eft after having its reach-bound initialisations performed.
e A critica component procedure returns.

e A critical component procedure executes an action that causes the executing thread to become delayed
(see 11.3). In the case of dynamically nested critical procedure calls, only the latest locked region will be
released.

e A thread executing a critical component procedure terminates. In the case of dynamically nested critical
component procedure calls, all the region locations locked by the thread will be rel eased.

If, while the region is locked, a thread attempts to call one of its critical procedures or a thread delayed in the region is
re-activated, the thread is suspended until the region is released (note that the thread remains active in the CHILL sense).

If, while the region location is locked, a thread attempts to call one of its critical component procedures or a thread
delayed in the region location is re-activated, the thread is suspended until the region location is released (note that the
thread remains active in the CHILL sensg).

When a region is released and more than one thread has been suspended while attempting to call one of its critical
procedures or to be re-activated in one of its critical procedures, only one thread will be selected to lock the region
according to an implementation defined scheduling algorithm.

When a region location is released and more than one thread has been suspended while attempting to call one of its
critical component procedures or to be re-activated in one of its critical component procedures, only one thread will be
selected to lock the region location according to an implementation defined scheduling algorithm.

11.2.2 Regionality

To allow for checking statically that a location declared in a region can only be accessed by calling critical procedures
or by entering the region for performing reach-bound initialisations, the following static context conditions are enforced:

« the regionality requirements mentioned in the appropriate sections (assignment action, procedure call,
send action, result action, etc.);

e intra-regional procedures are not general (see 10.4);

e critical procedures are neither general nor recursive (see 10.4).

To alow for checking statically that a component location declared in a region location can only be accessed by calling
critical component procedures or by entering the region location for performing reach-bound initialisations, the
following static context conditions are enforced:

e the regionality requirements mentioned in the appropriate sections (assignment action, procedure call,
send action, result action, etc.);

e intrarregional component procedures are not general (see 10.4);

148 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

critical component procedures are neither general nor recursive (see 10.4);

critical component procedures are also not inline (see 3.15).

A location and procedure call have aregionality which isintra-regional or extra-regional. A value has aregionality
whichisintra-regional or extra-regional or nil. These properties are defined as follows:

1)

2)

L ocation

A locationisintra-regional if, and only if, any of the following conditions are fulfilled:

. It is an access name that is either:

alocation name declared textually inside r@gion or spec region and not defined in éormal
parameter of acritical procedure;

alocation name declared textually inside riegion mode and not defined in formal parameter
of acritical component procedure;

aloc-identity name, where thdocation in its declaration igntra-regional or that is defined in a
formal parameter of anintra-regional procedure;

aloc-identity name, where thdocation in its declaration igntra-regional or that is defined in a
formal parameter of anintra-regional component procedure;

alocation enumeration name, where thearray location or string location in the associatedo
action isintra-regional;

a location do-with name, where thestructure location in the associateddlo action is
intra-regional.

e It is a dereferenced bound reference, where thebound reference primitive value in it is
intra-regional.

e Itis adereferenced free reference, where thdree reference primitive value in it isintra-regional.

. It is adereferenced row, where therow primitive value in it isintra-regional.

e Itis anarray element or array slice, where tharray location in it isintra-regional.

e Itis astring element or string slice, where thestring location in it isintra-regional.

e ltis agtructurefield, where thestructure location in it isintra-regional.

e Itis alocation procedure call, where in thdocation procedure call a procedure name is specified
which isintra-regional.

e Itis alocation built-in routine call, that the CHILL definition or the implementation specifies to be
intra-regional.

e Itis alocation conversion, where thestatic mode location in it is intra-regional.

A location which is notintra-regional is extra-regional.

Value

A value has aregionality depending on its class. If it has the M-derived class oaltheass or theull
class, then it hasegionality nil. Otherwise it has the M-value class or the M-reference class and it has a
regionality depending on the mode M as follows:

If the value has the M-value class and M does not have défezencing property, then the egionality is
nil; otherwise thevalue is anoperand-7 (and has theeferencing property) or aconditional expression:

If it is a primitive value then:

. If it is alocation contents that is docation, then it is that of théocation.

e If it is a component location contents that is acomponent location, then it is that of the component
location.

. If it is avalue name, then:

if it is asynonym name, then it is that of theonstant value in its definition;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 149

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

— if it is avalue do-with name, then it is that of thetructure primitive value in the associated do
action;

— ifitis avalue receive name, then it isextra-regional.

- Ifitis atuple, then if one of th@alue occurrences in it hasgionality notnil, then it is that of that
value (it does not matter which choice is made, see 5.2.5 static conditions); otherwisk it is

e Ifitis avaluearray element or avalue array dlice, then it is that of tharray primitive value in it.
e Ifitis avalue structurefield, then it is that of thetructure primitive value in it.

« Ifitis anexpression conversion, then it is that of thexpression in it.

« Ifitis avalue procedure call, then it is that of thprocedure call in it.

e If it is avalue component procedure call, then it is that of theomponent procedure call in it.

e If it is avalue built-in routine call that the CHILL definition or the implementation specifies to be
intra-regional orextra-regional.

If it is areferenced location, then it is that of théocation in it.

If it is a conditional expression, then if one of theub expression occurrences in it haggionality notnil,
then it is that of thagub expression (it does not matter which choice is made, see 5.3.2 static conditions);
otherwise it ixil.

3) Procedurename

A procedure name is intra-regional if, and only if, it is defined inside @egion or spec region and it is
notcritical (i.e. not granted by the region). Otherwise & a-regional.

A component procedure name is intra-regional if, and only if, it is defined inside r@&gion mode and it is
notcritical (i.e. not granted by the region mode). Otherwisedkisa-regional.

4) Procedurecall

A procedure call is intra-regional if it contains gprocedure name which isintra-regional; otherwise it
is extra-regional.

A component procedure call is intra-regional if it contains acomponent procedure name which is
intra-regional; otherwise it isxtra-regional.

A value is regionally safe for a non-terminal (used only fdocation, procedure call and procedure name) if, and
only if:

e the non-terminal igxtra-regional and thevalue is notintra-regional;
< the non-terminal igntra-regional and thevalue is notextra-regional;

« the non-terminal hasegionality nil.

11.3 Delayingof athread

An active thread may become delayed by executing one of the following actions:
« delay action (see 6.16);
e delay case action (see 6.17);
* receive signal case action (see 6.19.2);
* receive buffer case action (see 6.19.3);
« send buffer action (see 6.18.3);
e call action to a component procedure of a region location (see 3.15.3);

« call action to a component procedure of a task location in case there is not enough storage to perform step
6) 2) in 6.7 (see 3.15.4).

150 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

When a thread becomes delayed while its control lies within a critical procedure or acritical component procedure, the
associated region is released. The dynamic context of the thread is retained until it is re-activated. The thread then
attemptsto lock the region or the region location again, which may cause it to be suspended.

11.4 Re-activation of athread

A delayed thread may become re-activated if it is time supervised and a time interrupt occurs (see clause 9). It may also
become re-activated if another thread executes one of the following actions:

continue action (see 6.15);

send signal action (see 6.18.2);

send buffer action (see 6.18.3);

receive buffer case action (see 6.19.3);
release of aregion location (see 3.15.3);

at the beginning of the execution of an externally called component procedure of a task location
(see 3.15.4).

When a thread, while having locked a region or region location, re-activates another thread, it remains active, i.e. it will
not release the region or region location at that point.

115 Signal definition statements

syntax:
<signal definition statement> ::= (0]
SIGNAL <signal definition> { , <signal definition>}* ; 1.1
<signal definition> ::= 2
<defining occurrence> [= (<mode> { , <mode> }*)] [TO <process name> | (2.0

semantics. A signa definition defines a composing and decomposing function for values to be transmitted between
processes. If asignal is sent, the specified list of values is transmitted. If no process is waiting for the signal in areceive
case action, the values are kept until a process receives the values.

static properties: A defining occurrencein asignal definition defines asignal name.

A signal name has the following properties:

It has an optional list of modes attached, that are the modes mentioned in the signal definition.
It has an optional process hame attached that is the process name specified after TO.

static conditions: No mode in asignal definition may have the non-value property.

examples:

15.27 SIGNAL initiate = (INSTANCE),

terminate; 1y

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 151

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

12 General semantic properties

121 Moderules
12.1.1 Properties of modes and classes

12.1.1.1 Read-only property
Informal

A mode has the read-only property if it is a read-only mode or contains a component or a sub-component, etc. which
isaread-only mode.

Definition
A mode has the read-only property if, and only if, itis:
e anarray mode with an element mode that has the read-only property;

e astructure mode where at least one of its field modes has the read-only property, where the field is not a
tag field with an implicit read-only mode of a parameterised structure mode;

* aread-only mode.
12.1.1.2 Parameterisable modes
Informal
A modeis parameterisableif it can be parameterised.
Definition
A modeis parameterisableif, and only if, itis:
e astring mode;
e anarray mode;
e aparameterisablevariant structure mode.
12.1.1.3 Referencing property
Informal

A mode has the referencing property if it is areference mode or contains a component or a sub-component, etc. which
is areference mode.

Definition
A mode has thereferencing property if, and only if, itis:
e areference mode;
e anarray mode with an element mode that has the referencing property;
e astructure mode where at least one of its field modes has the r efer encing property.
12.1.1.4 Tagged parameterised property
Informal

A mode has the tagged parameterised property if it is a tagged parameterised structure mode or contains a
component or a sub-component etc. which isatagged parameterised structure mode.

Definition

152 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A mode has the tagged parameterised property if, and only if, it is:
« anarray mode with an element mode which has the tagged parameterised property;
e astructure mode where at least one of its field modes has the tagged parameterised property;

e atagged parameterised structure mode.

12.1.1.5 Non-value property
Informal
A mode has the non-value property if no expression or primitive value denotation exists for the mode.
Definition
A mode has the non-value property if, and only if, itis:
* anevent mode, abuffer mode, an access mode, an association mode or atext mode;
« anarray mode with an element mode that has the non-value property;
e astructure mode where at least one of its field modes has the non-value property;
e anot_assignable moreta mode;
e anabstract moretamode;

e amoretamode where at least one of its components has the non-value property.

12.1.1.6 Root mode

Any mode M has aroot mode defined as:
e if M isnot adiscrete range mode nor afloating point range mode;

e theparent mode of M, if M isadiscrete range mode or afloating point range mode.

Any M-value class or M-derived class has aroot mode which is the root mode of M.

12.1.1.7 Resulting class

Given two compatible classes (see 12.1.2.16), where the first one is either the all class, an M-value class or an M-
derived class, where M and N are either a discrete mode, a floating point mode, a powerset mode or a string mode, the
resulting classis defined as:

« theresulting class of the M-value class and the N-value classis the R-value class;

* theresulting class of the M-value class and the N-derived class or the all classisthe P-value class;
» theresulting class of the M-derived class and the N-derived class is the R-derived class;

e theresulting class of the M-derived class and the all classisthe P-derived class;

» theresulting class of the all class and the all classisthe all class,
where R isthe resulting mode of M and N, and P is the root mode of M.

Given two similar modes M and N, the resulting mode R is defined as:

« if theroot mode of one is a fixed string mode and the other one is a varying string mode, then it is the
root mode of the one (between M and N) whose root mode is a varying string mode;

e otherwiseitisP.
Given alist Cj of pairwise compatible classes (i=1,...,n), theesulting class of the list of classes is recursively defined

as theresulting class of the resulting class of the listCj (i=1,...,n—1) and the clasSp if n > 1; otherwise as the
resulting class of C1 andCj.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 153

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
12.1.2 Relations on modes and classes

12.1.2.1 General

In the following subclauses, the compatibility relations are defined between modes, between classes, and between modes
and classes. These relations are used throughout the document to define static conditions.

The compatibility relations themselves are defined in terms of other relations which are mainly used in this clause for the
above mentioned purpose.

12.1.2.2 Equivalencerelations on modes
Informal

The following equivalence relations play arole in the formulation of the compatibility relations:
« Two modes are similar if they are of the same kind, i.e. they have the same hereditary properties.
« Two modes are v-equivalent (value-equivaent) if they are similar and also have the same novelty.

« Two modes are equivalent if they are v-equivalent and also possible differences in value representation
in storage or minimum storage size are taken into account.

« Two modes are |-equivalent (location-equivalent) if they are equivalent and also have the same read-
only specification.

« Two modes are alike if they are indistinguishable, i.e. if al operations that can be applied to objects of
one of the modes can be applied to the other one as well, provided that novelty is not taken into account.

¢ Two modes are novelty bound if they are alike and have equal novelty specification.
Definition

In the following subclauses, the equivalence relations on modes are given in the form of a (partial) set of relations. The
full equivalence algorithms are obtained by taking the symmetric, reflexive and transitive closure of this set of relations.
The modes mentioned in the relations may be virtually introduced or dynamic. In the latter case, the complete
equivalence check can only be performed at run time. Check failure of the dynamic part will result in the RANGEFAIL
or TAGFAIL exception (see appropriate subclauses).

Checking two recursive modes for any equivalence, requires the checking of associated modes in the corresponding
paths of the set of recursive modes by which they are defined. Equivalence between the modes holds if no contradiction
is found. (As a consequence, a path of the checking algorithm stops successfully if two modes which have been
compared before, are compared.)

12.1.2.3 Therelation similar

Two modes are similar if and only if:
» they areinteger modes;
e they arefloating point modes;
e they are boolean modes;
e they are character modes;
e they are set modes such that:
1) they define the same number of values;

2) for each set element name defined by one mode there is a set element name defined by the other
mode which has the same name string and the same representation value;

3) they both are numbered set modes or both are unnumber ed set modes;
e they are discrete range modes with similar parent modes;
e they arefloating point range modes,

e oneisadiscrete range mode or a floating point range mode whose parent mode is similar to the other
mode;

154 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

they are powerset modes such that their member modes are equivalent;

they are bound reference modes such that their r efer enced modes are equivalent;
they are free reference modes;

they are row modes such that their referenced origin modes are equivalent;

they are procedure modes such that:

1) they have the same number of parameter specs and corresponding (by position) parameter specs
have |-equivalent modes and the same parameter attributes, if present;

2) they both have or both do not have aresult spec. If present, the result specs must have I-equivalent
modes and the same attributes, if present;

3) they havethe same list of exception names;

4) they have the samerecur sivity;

they are instance modes;

they are event modes such that they both have no event length or both have the same event length;
they are buffer modes such that:

1) they both have no buffer length or both have the same buffer length;

2) they havel-equivalent buffer element modes;

they are association modes,

they are access modes such that:

1) they both have no index mode or both have index modes which are equivalent;

2) at least one has no record mode, or both have record modes that are I-equivalent and that are both
static record modes or both dynamic record modes;

they are text modes such that:

1) they havethe sametext length;

2) they havel-equivalent text record modes;
3) they havel-equivalent access modes,

they are duration modes;

they are absolute time modes;

they are string modes such that their element modes are equivalent;
they are array modes such that:

1) their index modes are v-equivalent;

2) their element modes are equivalent;

3) their element layouts are equivalent;

4) they have the same number of elements. This check is dynamic if one or both modes is (are)
dynamic. Check failure will result in the RANGEFAIL exception;

they are structure modes which are not parameterised structure modes such that:

1) in the strict syntax, they have the same number of fields and corresponding (by position) fields are
equivalent;

2) if they are both parameterisable variant structure modes, their lists of classes must be compatible;
they are parameterised structure modes such that:
1) their origin variant structure modes are similar;

2) their corresponding (by position) values are the same. This check is dynamic if one or both modes is
(are) dynamic. Check failure will result in the TAGFAIL exception.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 155

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

12.1.2.4 Theréeation v-equivalent

Two modes are v-equivalent if, and only if, they are similar and have the same novelty.

12.1.2.5 Therelation equivalent

Two modes are equivalent if, and only if, they are v-equivalent and:

if one is a discrete range mode, the other must also be a discrete range mode and both upper bounds
must be equal and both lower bounds must be equal;

if oneis afloating point range mode, the other must also be a floating point range mode and both upper
bounds must be equal and both lower bounds must be equal and they must have the same precision;

if oneisafixed string mode, the other one must also be afixed string mode, and they must have the same
string length. This check is dynamic in the case that one or both modes is (are) dynamic. Check failure
will result in the RANGEFAIL exception;

if oneisavarying string mode, the other one must also be a varying string mode, and they must have the
same string length. This check is dynamic in the case that one or both modes is (are) dynamic. Check
failure will result in the RANGEFAIL exception.

12.1.2.6 Therdation l-equivalent

Two modes are |-equivalent if, and only if, they are equivalent and if oneis aread-only mode, the other must also be a
read-only mode, and:

if they are bound reference modes, their refer enced modes must be I-equivalent;
if they are row modes, their r eferenced origin modes must be I-equivalent;
if they are array modes, their element modes must be I-equivalent;

if they are structure modes which are not parameterised structure modes, corresponding (by position)
fields in the strict syntax must be |-equivalent; if they are parameterised structure modes, their origin
variant structure modes must be I-equivalent.

12.1.2.7 Therédationsequivalent and I-equivalent for fields

Two fields (both fields in the context of two given structure modes) are: 1. equivalent, 2. I-equivalent if, and only if,
both fields are fixed fields which are: 1. equivalent, 2. l-equivalent or both are alternative fields which are:
1. equivalent, 2. |-equivalent.

The relations equivalent and I-equivalent are recursively defined for corresponding fixed fields, variant fields,
alternative fields and variant alternatives, respectively, in the following way:

156

Fixed fields and variant fields:

1) Bothfixed fields or variant fields must have equivalent field layout.
2) Bothfield modes must be: 1. equivalent, 2. I-equivalent.
Alternative fields:

1) Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must
have the same number of tag field names and corresponding (by position) tag field names must
denote corresponding fixed fields.

2) Both must have the same number of variant alternatives and corresponding (by position) variant
alternatives must be: 1. equivalent, 2. [-equivalent.

3) Both must have no EL SE specified or both must have EL SE specified. In the latter case, the same
number of variant fields must follow and corresponding (by position) variant fields must be:
1. equivalent, 2. I-equivalent.

Variant alternatives:

1) Both variant alternatives must have the same number of case label lists and corresponding (by
position) case label lists must either be both irrelevant, or both define the same set of values.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

2) Both variant alternatives must have the same number of variant fields and corresponding (by
position) variant fields must be: 1. equivalent, 2. I-equivalent.

12.1.2.8 Therelation equivalent for layout

In the rest of the section, it will be assumed that each posis of the form:

POS (<number>,<start bit>,<length>)

and that each step is of the form:

STEP (<pos>,<step size>)

Subclause 3.13.5 gives the appropriate rules to bring pos or step in the required form:

Field layout:

Two field layouts are equivalent if they are both NOPACK, or both PACK, or both pos. In the latter
case the one pos must be equivalent to the other one (see below).

Element layout:

Two element layouts are equivalent if they are both NOPACK, both PACK, or both step. In the latter
case the pos in the one step must be equivalent to the pos in the other one (see below) and step size must
deliver the same values for the two element layouts.

Pos:

A pos is eguivalent to another pos if, and only if, both word occurrences deliver the same value, both
start bit occurrences deliver the same value and both length occurrences deliver the same value.

12.1.2.9 Therelation alike

Two modes are alike if, and only if, they both are or both are not read-only modes and they both have novelty nil or
both have the same novelty and:

they are integer modes;

they are boolean modes;

they are character modes;

they are similar set modes;

they are discrete range modes with equal upper bounds and equal lower bounds;
they are floating point range modes with equal upper bounds, equal lower bounds and equal precision;
they are powerset modes such that their member modes are alike;

they are bound reference modes such that their r eferenced modes are alike;

they are free reference modes;

they are row modes such that their referenced origin modes are alike;

they are procedure modes such that:

1) they have the same number of parameter specs and corresponding (by position) parameter specs
have alike modes and the same parameter attributes, if present;

2) they both have or both do not have aresult spec. If present, the result specs must have alike modes
and the same attributes, if present;

3) they havethe same list of exception names;

4) they have the samerecur sivity;

they are instance modes;

they are event modes such that they both have no event length or both have the same event length;

they are buffer modes such that:

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 157

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

1) they both have no buffer length or both have the same buffer length;
2) they have buffer element modes which are alike;

e they are association modes;

e they are access modes such that:
1) they both have no index mode or both have index modes that are alike;

2) at least one has no record mode or both have record modes that are alike and that are both static
record modes or both dynamic record modes,

e they are text modes such that:
1) they havethe sametext length;
2) their text record modes are alike;
3) their access modes are alike;
e they are duration modes,
e they are absolute time modes;
e they are string modes such that:
1) their element modes are alike;
2) they have the same string length;
3) they both are fixed string modes or both are varying string modes;
e they are array modes such that:
1) their index modes are alike;
2) their element modes are alike;
3) their element layouts are equivalent;
4) they have the same humber of elements;
« they are structure modes that are not parameterised structure modes such that:

1) in the strict syntax they have the same number of fields and corresponding (by position) fields are
alike;

2) if they are both parameterisable variant structure modes, their lists of classes must be compatible;
e they are parameterised structure modes such that:
1) their origin variant structure modes are alike;

2) their corresponding (by position) values are the same.

12.1.2.10 Therelation alike for fields

Two fields (both fields in the context of two given structure modes) are alike if, and only if, both fields are fixed fields
which are alike or both are alternative fields which are alike.

The relation alike is recursively defined for corresponding fixed fields, variant fields, alternative fields and variant
alternatives, respectively, in the following way:

* Fixedfieldsand variant fields:
1) Bothfixed fields or variant fields must have equivalent field layout.
2) Both field modes must be alike.
3) Bothfixed fields or variant fields must have the same name string attached.

158 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Alternative fields;

1) Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must
have the same number of tag field names and corresponding (by position) tag field names must
denote corresponding fixed fields.

2) Both must have the same number of variant alternatives and corresponding (by position) variant
alternatives must be alike.

3) Both must have no EL SE specified or both must have EL SE specified. In the latter case, the same
number of variant fields must follow and corresponding (by position) variant fields must be alike.

Variant alternatives:

1) Both variant alternatives must have the same number of case label lists and corresponding (by
position) case label lists must either be both irrelevant, or both define the same set of values.

2) Both variant alternatives must have the same number of variant fields and corresponding (by
position) variant fields must be alike.

12.1.2.11 Therelation novelty bound

Informal

In a program, each quasi newmode must represent at most one real newmode. This is established as follows. when a
name string is bound to both areal and aquasi defining occurrence, all the newmodes involved are paired. The relation
novelty bound is then established between novelties.

Definition

The relation novelty paired applies between two modes and a reach. For each name string bound in areach R to both a
real and aquasi defining occurrence:

if they are synonym names, then the r oot modes of their classes are novelty paired in R;
if they arelocation or loc-identity names, then their location modes are novelty paired in R;

if they are procedure names, then the modes of the parameter specs and result spec, if present, are
novelty paired in R;

if they are process names, then the modes of the par ameter specs are novelty paired in R;

if they are signal names, then the modes in the list of modes are novelty paired in R.

If two modes are novelty paired in areach R, then:

if they are powerset modes, their member modes are novelty paired in R;
if they are bound reference modes, their referenced modes are novelty paired in R;
if they are row modes, their referenced origin modes are novelty paired in R;

if they are procedure modes, the modes of their parameter specs and result spec, if present, are novelty
paired inRR;

if they are buffer modes, their buffer element modes are novelty paired in R;

if they are access modes, their index modes, if present, and record modes, if present, are novelty paired
inR;

if they are text modes, their index modes, if present, are novelty paired in R;

if they are array modes, their index modes and element modes are novelty paired in R;

if they are parameterised structure modes, their origin variant structure modes are novelty paired in R;

if they are parameterisable variant structure modes, their field modes and the modes of the classes in
their list of classes are novelty paired in R;

otherwise if they are structure modes, their field modes are novelty paired in R.

If two modes are novelty paired in areach R and their novelties are not equal, then the real and quasi novelties of the
modes are novelty bound to each other in R.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 159

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Two novelties are considered the same if they are:
e thesamereal novelty; or

e areal novelty and aquasi novelty that are novelty bound.

12.1.2.12 There€lation read-compatible
Informal

The relation read-compatible is relevant for equivalent modes. A mode M is said to be read-compatible with a
mode N if it or its possible (sub-)components have equal or more restrictive read-only specifications and, if they are
reference modes, refer to I-equivalent locations. Thisrelation is therefore non-symmetric.

Example:

READ REF READ CHARisread-compatible with REF READ CHAR

Definition

A mode M is said to be read-compatible with a mode N (a non-symmetric relation) if, and only if, M and N are
equivalent and, if N isaread-only mode, then M must also be aread-only mode and further:

« if M and N are bound reference modes, the referenced mode of M must be |-equivalent with the
referenced mode of N;

« if M and N are row modes, the referenced origin mode of M must be I-equivalent with the referenced
origin mode of N;

e if M and N are array modes, the element mode of M must be read-compatible with the element mode
of N;

e if M and N are structure modes which are not parameterised structure modes, any field mode of M must
be read-compatible with the corresponding field mode of N. If M and N are parameterised structure
modes, the origin variant structure mode of M must be read-compatible with the origin variant
structure mode of N.

12.1.2.13 Thereations dynamic equivalent and read-compatible
Informal

The relations: 1. dynamic equivalent, 2. dynamic read-compatible, are relevant only for modes that can be dynamic,
i.e. string, array and variant structure modes. A parameterisable mode M is said to be: 1. dynamic equivalent,
2. dynamic read-compatible with a (possibly dynamic) mode N, if there exists a dynamically parameterised version
of M whichis: 1. equivalent, 2. Read-compatible with N.

Definition
A mode M is: 1. dynamic equivalent to a mode N, 2. dynamic read-compatible with a mode N (a non-symmetric
relation) if, and only if, one of the following holds:

¢ M and N are string modes such that M(p) is: 1. equivalent, 2. read-compatible with N, where p is the
(possibly dynamic) length of N. The value p must not be greater than the string length of M. This check
isdynamic if N isadynamic mode. Check failure will result in a RANGEFAIL exception;

e M and N are array modes such that M(p) is: 1. equivalent, 2. read-compatible with N, where p is such
that NUM (p) — LOWER (M) + 1 is the (possibly dynamiclumber of elements of N. The valugp must
not be greater than thgper bound of M. This check is dynamic if N is a dynamic mode. Check failure
will result in aRANGEFAIL exception;

e M is aparameterisable variant structure mode and N is @arameterised structure mode such that
M(p1,...,.pn) is: 1.equivalent, 2.read-compatible with N, wherepy,...,pn denote the list of values of N.

12.1.2.14 Therelation restrictable

Informal

The relationrestrictable is relevant forequivalent modes with the eferencing property. A mode M is said to be
restrictableto a mode N if it or its possible (sub-)components refer to locations with equal or more restictioaly
specification than those referenced by N. This relation is therefore non-symmetric.

160 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Example:

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

REF READ INT isrestrictable to REF INTSTRUCT (P REF READ BOOL) is restrictable to STRUCT (Q REF

BOOL)

Definition

A mode M isrestrictable to amode N (anon-symmetric relation) if, and only if, M and N are equivalent and further:

if M and N are bound reference modes, the referenced mode of M must be read-compatible with the
referenced mode of N;

if M and N are row modes, the referenced origin mode of M must be read-compatible with the
referenced origin mode of N;

if M and N are array modes, the element mode of M must be restrictable to the element mode of N;

if M and N are structure modes, each field mode of M must be restrictable to the corresponding field
mode of N.

12.1.2.15 Compatibility between a mode and a class

Any mode M is compatible with the all class.

A mode M is compatible with the null classif, and only if, M is areference mode or a procedure mode or
an instance mode.

A mode M is compatible with the N-reference class if, and only if, M is a reference mode and one of the
following conditionsis fulfilled:

1) N isa static non-moreta mode and M is a bound reference mode whose referenced mode is read-
compatible with N;

2) N isadtatic moreta mode and M is a bound reference mode REF-MM and either MM =N or N isa
successor of MM;

3) Nisastatic mode and M is afree reference mode;

4) M isarow mode whosereferenced origin mode is dynamic read-compatible with N.
A mode M is compatible with the N-derived classif, and only if, M and N are similar.

A mode M is compatible with the N-value classif, and only if, one of the following holds:
1) if M does not have the referencing property, M and N must be v-equivalent;

2) if M does have thereferencing property, M must berestrictableto N.

12.1.2.16 Compatibility between classes

Any classis compatible with itself.
Theall classis compatible with any other class.
The null classis compatible with any M-reference class.

The null class is compatible with the M-derived class or M-value class if, and only if, M is a reference
mode, procedure mode or instance mode.

The M-reference class is compatible with the N-reference class if, and only if, M and N are equivalent.
If M and/or N is (are) a dynamic mode, the dynamic part of the equivalence check is ignored, i.e. no
exceptions can occur.

The M-reference class is compatible with the N-value class if, and only if, N is a reference mode and one
of the following conditionsis fulfilled:

1) Misastatic mode and N is abound reference mode whose r efer enced mode is equivalent to M;
2) M isastatic mode and N is afree reference mode;

3) Nisarow mode whosereferenced origin mode is dynamic equivalent with M;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 161

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e the M-derived class is compatible with the N-derived class or N-value class if, and only if, M and N are
similar;

e theM-vaueclassiscompatible with the N-value classif, and only if, M and N are v-equivalent.

Two lists of classes are compatible if, and only if, both lists have the same number of classes and corresponding (by
position) classes are compatible.

12.1.3 Definitionsfor moreta modes
If M isamoreta mode, then:

Ms is the specification part of M (also the set of componentsin this part);

Mg isthe body part of M (also the set of componentsin this part);

Mp isthe set of public components of Mg defined directly in Mg;

Mp. isthe set of all public components of M (including the inherited ones);
M, isthe set of internal components of Mg;

M. isthe set of al internal components of Mg (including the inherited ones);
Mg isthe set of private components of Mg;

Mg isthe set of all private components of Mg (including the inherited ones);
Mcp isthe set of constructors and destructors of Mg;

M. isthe invariant of Mg;

Mo isthe set of components (logically) contained in alocation of mode M.

If Pisacomponent procedure of a moreta mode, then:

PS is the specification part of P;

PD isthe (complete) definition of P,

PPre is the precondition of P,

PPost is the postcondition of P;

PE isthe set of exceptions specified in PS.

If X isaprocedure or a moreta mode then:

atr(X, A) X contains the attribute A, e.g. attr(P, INLINE);
prop(X, P) X hasthe property P, e.g. prop(P, assignable);
GRANTed = explicitly exported;

granted = GRANTed Oimplicitly exported.

Qualified names of components of moreta modes and moreta locations.

If M is the simple name string of a moreta mode, L is the simple name string of a moreta location, and C is the smple
name of a component of M or of a public component of L, then the name M.C or L.C can be used as a unique name
for C in order to distinguish C from components with the same simple name string. If necessary the qualified name is
assumed.

A moreta mode DM is a direct successor of a moretamode BM if, and only if, BM is mentioned in the inheritance clause
of DM.

A moreta mode DM is a successor of a moreta mode BM if, and only if, DM is a direct successor of BM or if DM isa
successor of adirect successor of BM.

The relation “predecessor” is the inverse of “successor”.

12.2 Visibility and name binding
The definition of visibility and name binding is based on the following terminology:

e name string: denotes a terminal string that has attachednanical name string (see 2.7) and visibility
properties;

« name: denotessample name string associated with theefining occurrence that has created it (see 10.1);

162 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

* name: denotes an applied occurrence of a name (with a possibly prefixed name string).

12.21 Degreesof visibility

The binding rules are based on the visibility of name strings in the reaches of a program. Within a reach, each name
string has one of the following degrees of visibility.

Table 1 — Degrees of visibility

Visihility Properties (informal)

directly visible Name string is visible by creation, granting or seizing or
inheritance from spec to body.

indirectly visible Name string is predefined or inherited via block nesting.
invisible Name string may not be applied.
publicly visible Name string is name of a public component of a moreta mode

and is used in a moreta component name, or name string is
name of a component of a moreta mode M and is used in a
moreta component name which occurs inside M or any
successor of M.

A name string is said to be visible in areach if it is either directly visible or indirectly visible in that reach. Otherwise
the name string is said to be invisible in that reach. The program structuring statements and visibility statements
determine uniquely to which visibility class each name string belongs.

When a name string is visible in areach, it can be directly linked to another name string in ancther reach, or directly
linked to a defining occurrence in the program. The rules for direct linkage arein 12.2.3. Notice that any application of
aruleintroduces a new direct linkage for a name string.

Based on direct linkage, the notion of (not necessarily direct) linkage is defined as follows:

A name string N1, visible in reach R1, is said to be linked to name string N2 in reach R2 or to defining occurrence D,
if, and only if, one of the following conditions holds:

e Njpin Rgisdirectly linked to N2 in R2 or to D. However, if N1 is directly linked to more than one
defining occurrence in R1, then all but one of these defining occurrences are superfluous, and N1 is
linked to an arbitrary one of them in R1. This does not apply if N is the name string of a simple guarded
procedure specification statement in a moreta mode specification.

* NjinRjisdirectly linked tosomeN insomeR, and N in Rislinked to N2 in Ro or to D.

12.2.2 Visibility conditions and name binding

In each reach of a program, the following conditions must be satisfied:

« If aname string is visible in a reach and has more than one direct linkage, then it must be linked to
exactly one real defining occurrence and one quasi defining occurrence, or to exactly one real defining
occurrence in a simple guarded procedure specification statement and exactly one real defining
occurrence in a corresponding simple guarded procedure definition statement.

A name string NS, visible in reach R, is said to be bound in R to several defining occurrences according to the
following rules:

« If NSisvisible in R, NS is bound to the defining occurrences to which it is linked in R (as a visible
name string). If it is bound both to a quasi defining occurrence and a real defining occurrence, then the
quasione is redundant and does not participate further to visibility and name binding (i.e. it is not seized,
granted nor inherited).

¢ Otherwise NSisnot boundinR.
static condition: The name string attached to each name directly enclosed in areach must be bound in that reach.

binding of names:A name N with attached name string NS in areach R is bound to the defining occurrences to which
NSisboundinR.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 163

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
12.2.3 Visibility in reaches

12.2.3.1 General

A name string is directly visible in areach according to the following rules:
 Thenamestring is seized into the reach (see 12.2.3.5).
e Thenamestring is granted into the reach (see 12.2.3.4).

« There is a defining occurrence with that name string in the reach. In that case, the name string in the
reach is directly linked to the defining occurrence. (Note that the name string may be directly linked to
several defining occurrencesin the reach.)

e Inside a constructor or destructor CD of a moreta mode M the name string of M is not hidden by the
defining occurrence of the same name string in the definition of CD (but it may still be hidden by other
defining occurrences of the same name string).

At aplace inside a constructor or destructor CD of a moreta mode M, where the name string S of M is not
hidden, S denotes either M or CD depending on the context.

e Thereachisa 1. module body, 2. region body and the name string is directly visible in the reach of a
corresponding: 1. module spec, 2. region spec. The name string is directly linked to the name string in
the corresponding reach.

A name string which is not directly visiblein areachisindirectly visibleinit, according to the following rules:

e Thereachisablock, and the name string is visible in the directly enclosing reach. The name string is said
to be inherited by the block, and is directly linked to the same name string in the directly enclosing
reach.

e Thereach isnot ablock in which the name string is inherited and the name string is alanguage (see 111.2)
or implementation defined name string. The name string is considered to be directly linked to a defining
occurrence in the reach of the imaginary outermost process definition for its predefined meaning.

12.2.3.2 Visibility statements

syntax:
<visibility statement> ::= 1)
<grant statement> 1.1
| <seize statement> 12

semantics. Vishility statements are only allowed in modulion reaches and moreta mode reaches, and control the
visibility of the name strings mentioned in them.

static properties: A visibility statement has one or two origin reaches (see 10.2) and one or two destination reaches
attached, defined as follows:

< If thevisibility statement is a seize statement, its destination reach is the reach directly enclosing the seize
statement, and its origin reaches are the reaches directly enclosing that reach.

< If the visibility statement is a grant statement, then its origin reach is the reach directly enclosing the
grant statement, and its destination reaches are the reaches directly enclosing that reach.

« If the visibility statement is a grant statement in a moreta mode specification, then its origin reach is the
reach directly enclosing the grant statement, and its destination reaches are not the reaches directly
enclosing that reach.

12.2.3.3 Prefix rename clause

syntax:
<prefix rename clause> ::= @
(<old prefix> —> <new prefix>) ! <postfix> (1.2)
<old prefix> ::= 2
<prefix> (2.1
| <empty> (2.2)

164 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

<new prefix> ::= ©)
<prefix> (3.0

| <empty> (3.2)
<postfix> ::= (4
<seize postfix> { , <seize postfix> } * (4.0

| <grant postfix> { , <grant postfix> }* 4.2

derived syntax: A prefix rename clause where the postfix consists of more than one seize postfix (grant postfix) is
derived syntax for severa prefix rename clauses, one for each seize postfix (grant postfix), separated by commas, with
the same old prefix and new prefix.

For example:
GRANT (p—>q)'a,b;
is derived syntax for:
GRANT (p—=qg)la,(p>q)!b;

semantics. Prefix rename clauses are used in visibility statements to express change of prefix in prefixed name strings
that are granted or seized. (Since prefix rename clauses can be used without prefix changes - when both the old prefix
and the new prefixare empty - they are taken as the semantic base for visibility statements).

static properties: A prefix rename clausbkas one or two origin reaches attached, which are the origin reaches of the
visibility statemenin which it iswritten.

A prefix rename claushas one or two destination reaches attached, which are the destination reaches of the visibility
statementn which it is written.

A postfixhas a set of name stringsattached, which is the set of name stringsittached to its seize postfivor the set of
name stringsttached to its grant postfix These name stringgre the postfix name string®f the prefix rename clause

A prefix rename clausbas a set of old hame stringsand a set of new name stringsttached. Each postfix name string
attached to the prefix rename clausgives both an old name stringand a new name stringgttached to the prefix rename
clause as follows: the new name stringis obtained by prefixing the postfix name stringwith the new prefix the old
name strings obtained by prefixing the postfix name stringwith the old prefix

When a new name stringand an old hame stringare obtained from the same postfix name stringthe old name strings
said to be the source of the new name string

visibility rules: The new name stringsttached to a prefix rename clausare visible in their destination reaches and are
directly linked in those reaches to their sources in the origin reaches. If the prefix rename clausés part of a seize
statementgrant statement, those name stringsre seized (granted) in their destination reach (reaches).

A name string\NS is said to be seizable by modulion M directly enclosed in reach R if, and only if, it isvisiblein R and
it is neither linked in R to any name stringin the reach of M nor directly linked to the defining occurrenceof a
predefined name string

A name string\NS is said to be grantable by modulion M directly enclosed in reach R if, and only if, it is visible in the
reach of M and it is neither linked in it to any name stringn R nor directly linked in it to the defining occurrencef a
predefined name string

static conditions: If a prefix rename clauses in a seize statememdirectly enclosed in the reach of modulion M, then
each of its old name stringsnust be:

* bound to severa defining occurrencem the reach directly enclosing the reach of M; and

e seizableby M.

If aprefix rename clausis in agrant statemendlirectly enclosed in the reach of modulion M, then each of its old name
stringsmust be;

* bound to severa defining occurrencem the reach of M; and

e grantableby M.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 165

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A prefix rename clause that occurs in a grant statement (seize statement) must have a postfix that is a grant postfix (seize

postfix).
examples:

25.35

(stack! int -> stack)! ALL 1D

12.2.3.4 Grant statement

syntax:
<grant statement> ::= D
GRANT <prefix rename clause> { , <prefix rename clause> }* ; (1D
GRANT <grant window> [<prefix clause>1] ; (1.2)
<grant window> ::= (2
<grant postfix> { , <grant postfix> }* (2.1
<grant postfix> ::= (3)
<name string> [(<formal parameter list>) [[RETURNS] (<result spec>)1]] (3.1
<newmode name string> <forbid clause> 3.2
[<prefix>!] ALL (3.3)
<prefix clause> ;:= 4
PREFIXED [<prefix>] 4.1
<forbid clause> ::= (5)
FORBID { <forbid namelist> | ALL } (5.2)
<forbid namelist>::= (6)
(<field name> { , <field name> }*) (6.2)

semantics. Grant statements are a means of extending the visibility of name strings in a modulion reach into the directly
enclosing reaches. FORBID can be specified only for newmode names which are structure modes. It means that all
locations and values of that mode have fields which may be selected only inside the granting modulion, not outside.

The following visibility rules apply:

« |f the grant statement contains prefix rename clause(s), the grant statement has the effect of its prefix
rename clause(s) (see 12.2.3.3).

e If the grant statement contains grant windows, it is shorthand notation for a set of grant statements with
prefix rename clauses constructed as follows:

for eachgrant postfix in thegrant window, there is a correspondimggant statement;
theold prefix in theirprefix rename clause is empty;

thenew prefix in their prefix rename clause is theprefix attached to therefix clause in the grant
statement, or it is empty if there is nprefix clause in the originalgrant statement;

thepostfix in theprefix rename clause is the correspondingpstfix in thegrant window.

e The notationFORBID ALL is shorthand notation for forbidding all tfield names of the newmode
name (see 12.2.5).

< If aprefix rename clause in agrant statement has agrant postfix which contains arefix andALL, then it
is of the form:

(OP—>NP) ! P IALL

where OP and NP are the possibly empty old prefixand new prefix respectively, and P is the prefixin the
grant postfix The prefix rename clausis then shorthand notation for a clause of the form:

(OP | P-=>NP ! P) IALL

static properties: A prefix clausehas a prefix attached, defined as follows:

» If the prefix clausecontains a prefix, then that prefix is attached.

166 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

e Otherwise the attached prefix is a simple prefix whose name string is determined as follows:

— if the reach directly enclosing tipeefix is amodule or region, then thename string is the same as
the one of thenodule name orregion name of that modulion;

— if the reach directly enclosing tipeefix is aspec region or spec module, then the name string is the
name string in front o8PEC.

A grant postfix has a set afiame strings attached, defined as follows:
« Ifitis anamestring, or contains @ewmode name string, then the set contains only thaime string.

e Otherwise, l1etOP be the (possibly emptydld prefix of the prefix rename clause in which thegrant
postfix is placed, the set contains aflme strings of the formOP ! N (i.e. obtained by prefixingy with
OP) for anyname string N such thatOP ! N is visible in the reach of the modulion in which theant
postfix is placed andrantable by this modulion.

static conditions: The newmode name string with forbid clause must bevisible in the reachR of the modulion in which

the grant statement is placed. Theewmode name string must bebound in R to thedefining occurrence of a newmode

which must be a structure mode, and efagld name in theforbid name list must be dield name of that mode. The
newmodedefining occurrence must be directly enclosed R All field names in aforbid name list must have different
name strings.

If the grant statement is placed in the reach ofregion or spec region, it must not grant aame string which isbound in
that reach to thdefining occurrence of:

e alocation name; or
e aloc-identity name, where thication in its declaration isntra-regional; or

e asynonym name whosealue isintra-regional.
The prefix rename clause in agrant statement must have grant postfix.

If a grant statement contains gprefix clause which does not contain @ efix, then its directly enclosing modulion must
not be acontext and:

« ifits directly enclosing modulion israodule or region, then it must be named (i.e. it must be headed by a
defining occurrence followed by a colon);

« if its directly enclosing modulion is gpec module or aspec region, then it must be headed bysiaple
name string.

If the grant statement occurs immediately inside a moreta specification, then no prefixing must occur.
examples:

25.7 GRANT (-> stack ! char) ! ALL; (1.2)
6.44 gregorian_date, julian_day number 2.1

12.2.3.5 Seize statement

syntax:

<seize statement> ;= D

SEIZE <prefix rename clause> { , <prefix rename clause> }* ; (1.2)

| SEIZE <seize window> [<prefix clause> | ; (1.2

<seize window> ;= 2

<seize postfix> { , <seize postfix> }* 2.1

<seize postfix> ::= 3

<name string> [(<formal parameter list>) [[RETURNS] (<result spec>)]] (3.1

| [<prefix>!]ALL 32

semantics. Seize statements are a means of extending the visibility of name strings in group reaches into the reaches of
directly enclosed modulions.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 167

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

The following visihility rules apply:

e |If the seize statement contains prefix rename clause(s), the seize statement has the effect of its prefix
rename clause(s) (see 12.2.3.3).

. If the seize statement contains a seize window, it is shorthand notation for a set of seize statements with
prefix rename clauses constructed as follows:

— for eaclseize postfix in theseize window, there is a correspondiisgize statement;

— theold prefix in their prefix rename clause is theprefix attached to therefix clause in the seize
statement, or is empty if there is nprefix clause in the originalseize statement;

— thenew prefix in theirprefix rename clause is empty;
— thepostfix in theirprefix rename clause is the correspondingpstfix of theseize window.

« If aprefix rename clause in a seize statement has aseize postfix which contains a@refix andALL, then it
is of the form:

(OP—NP) I P IALL

where OP and NP are the possibly empty old prefixand new prefix respectively, and P is the prefixin the
seize postfixThe prefix rename clausis then shorthand notation for a clause of the form:

(OP!'P->NP!P)!ALL
static properties: A seize postfikias a set of name stringsttached, defined as follows:

« If the seize postfixs aname stringthe set contains only the name string

e Elsg if the seize postfixs ALL, let OP be the (possibly empty) old prefixof the prefix rename clausef
which the seize postfixs part, the set contains all name string®f the form OP ! S for any name stringS,
such that:

— OPI!S isvisible in the reach directly enclosing the modulion in which dfiee statement is placed;
and

— itisseizable by this modulion; and
— itisbound to aquas defining occurrenceif this modulion has aontext in front of it.

static conditions: Theprefix rename clause in aseize statement must have aeize postfix.

If a seize statement contains grefix clause which does not contain @efix, then its directly enclosing modulion must
not be econtext and:

« ifits directly enclosing modulion israodule or region, then it must be named (i.e. it must be headed by a
defining occurrence followed by a colon);

e if its directly enclosing modulion is gpec module or aspec region, then it must be headed bysiaple
name string.

examples:

25.35 SEIZE (stack! int -> stack) ! ALL; (1.1
12.24 Visbility of set element names
A set element name may occur only in the context ofset literal.

If a set mode name is specified in theset literal, then thename string of a set element name can bebound to aset
element name defining occurrence in the mode of the class of thet literal.

Otherwise, aset mode name is not specified, and then tmame string can bebound to aset element name defining
occurrence only if it is notvisible in the reach in which theet literal is placed.

12.25 Visibility of field names

Field names may occur only in the following contexts:
e structure fields andvalue structure fields;

e labelled structure tuples;

168 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
« forbid clausesin grant statements.
Note that afield name may not occur in agrant postfix or in a seize postfix.

In each of these cases, the name string of the field name can be bound to a field name defining occurrence in the mode
M or in the defining mode of M, obtained as follows:

* M isthe mode of the structure location or (strong) structure primitive value;

e M isthe mode of the structure tuple;

« M isthe mode of the defining occurrence to which the newmode name string is bound in the reach in
which the forbid clause is placed.

However, if the novelty of M is a defining occurrence that defines a newmode name that has been granted by a grant
statement in a modulion as a grant postfix with a forbid clause, then the field names mentioned in the forbid name list
areonly visible:

e inthegroup of the granting modulion;

« if the novelty of M is novelty bound to a quasi novelty N, then in the group of the reach in which N is
directly enclosed;

« if the modulion is amodule spec or region spec, then in the reach of the corresponding modulion.

QOutside these reaches, the field names mentioned in the forbid name list are invisible and cannot be used.

12.3 Case selection

syntax:

<case label specification> ::= (0]
<caselabel list>{ , <caselabd list>}* 1.1
<caselabel list>::= ()]
(<caselabel>{ , <caselabel>}*) (2.1

| <irrelevant> (2.2

<case label> ::= ©)
<discrete literal expression> (3.0

| <literal range> 3.2

| <discrete mode name> (3.3

| ELSE (34)
<irrelevant> ::= 4
(*) (4.1)

semantics. Case selection is a means of selecting an aternative from alist of alternatives. The selection is based upon a
specified list of selector values. Case selection may be applied to:

e dternativefields (see 3.13.4), in which case alist of variant fields is selected;
o labelled array tuples (see 5.2.5), in which case an array element value is selected;
e conditional expressions (see 5.3.2), in which case an expression is selected,;

e caseaction (see 6.4), in which case an action statement list is selected.

In the first, third and fourth situations, each aternative is labelled with a case label specification; in the labelled array
tuple, each value is labelled with a case label list. For ease of description, the case label list in the labelled array tuple
will be considered in this subclause as a case label specification with only one case label list occurrence.

Case selection selects that alternative which is labelled by the case label specification which matches the list of selector
values. (The number of selector values will always be the same as the number of case label list occurrences in the case
label specification.) A list of values is said to match a case label specification if, and only if, each value matches the
corresponding (by position) case label list in the case label specification.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 169

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

A valueissaid to match acase label list if, and only if:

* thecaselabel list consists of case labels and the value is one of the values explicitly indicated by one of
the case labels or implicitly indicated in the case of EL SE;

* thecaselabel list consists of irrelevant.

The values explicitly indicated by a case label are the values delivered by any discrete literal expression, or defined by
the literal range or discrete mode name. The values implicitly indicated by EL SE are all the possible selector values
which are not explicitly indicated by any associated case label list (i.e. belonging to the same selector value) in any case
label specification.

static properties:

< An alternative fields with case label specification, a labelled array tuple, a conditional expression, or a
case action has alist of case label specifications attached, formed by taking the case label specification in
front of each variant alternative, value or case alternative, respectively.

¢ A case label has a class attached, which is, if it is a discrete literal expression, the class of the discrete
literal expression; if it is a literal range, the resulting class of the classes of each discrete literal
expression in the literal range; if it is a discrete mode name, the resulting class of the M-value class
where M is the discrete mode name; if itis EL SE, the all class.

« A case labdl list has a class attached, which is, if it is irrelevant, the all class, otherwise the resulting
class of the classes of each case label.

* A caselabel specification has alist of classes attached, which are the classes of the case label lists.

e Alist of case label specifications has aresulting list of classes attached. This resulting list of classesis
formed by constructing, for each position in the list, the resulting class of al the classes that have that
position.

A list of case label specifications is complete if, and only if, for al lists of possible selector values, a case label
specification is present, which matches the list of selector values. The set of all possible selector values is determined by
the context as follows:

e For atagged variant structure mode, it is the set of values defined by the mode of the corresponding tag
field.

e For a tag-less variant structure mode, it is the set of values defined by the root mode of the
corresponding resulting class (this class is never the all class, see 3.13.4).

e Foranarray tuple, it isthe set of values defined by the index mode of the mode of the array tuple.

» For acaseaction with arangeligt, it is the set of values defined by the corresponding discrete mode in the
range list.

e For a case action without a range list, or a conditional expression, it is the set of values defined by M
where the class of the corresponding selector is the M-value class or the M-derived class.

static conditions: For each case label specification, the number of case label list occurrences must be equal.
For any two case label specification occurrences, their lists of classes must be compatible.

The list of case label specification occurrences must be consistent, i.e. each list of possible selector values matches at
most one case label specification.

If the root mode of the class of a case label list is an integer mode, there must exist a predefined integer mode that
contains al the values delivered by each case label.

examples:
11.9 (occupied) (2.0
11.58 (rook),(x) (1.1
8.26 (ELSE) 2.1

170 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

124 Definition and summary of semantic categories

This subclause gives a summary of all semantic categories which are indicated in the syntax description by means of an
underlined part. If these categories are not defined in the appropriate clauses, the definition is given here, otherwise the
appropriate subclause will be referenced.

12.4.1 Names
M ode names

absolute time mode name:
access mode name:

array mode name:
association mode name;
boolean mode name:

bound reference mode name:
buffer mode name:

character mode name:
discrete mode name:
discrete range mode name:
duration mode name:

event mode name:

floating point mode name:
floating point range mode name;

aname defined to be an absolute time mode.
aname defined to be an access mode.

aname defined to be an array mode.

a name defined to be an association mode.
aname defined to be a boolean mode.

aname defined to be a bound reference mode.
aname defined to be a buffer mode.

aname defined to be a character mode.
aname defined to be a discrete mode.

aname defined to be a discrete range mode.
aname defined to be a duration mode.
aname defined to be an event mode.

aname defined to be afloating point mode.
aname defined to be a floating point range mode.

free reference mode name: aname defined to be a free reference mode.
generic moreta mode name: aname defined to be a generic moreta mode.
instance mode name: aname defined to be an instance mode.
integer mode name: aname defined to be an integer mode.

mode name: see 3.2.1.

module mode name: aname defined to be a module mode.

mor eta mode name: aname defined to be a moreta mode.

parameterised array mode name:
parameterised string mode name:

parameterised structure mode name:

aname defined to be a parameterised array mode.
aname defined to be a parameterised string mode.
aname defined to be a parameterised structure mode.

power set mode name; aname defined to be a powerset mode.
procedure mode name: aname defined to be a procedure mode.
region mode name: aname defined to be a region mode.
row mode name: aname defined to be arow mode.

set mode name: aname defined to be a set mode.

string mode name: aname defined to be a string mode.
structure mode name: aname defined to be a structure mode.
task mode name: aname defined to be atask mode.

variant structure mode name:

aname defined to be a variant structure mode.

Access hames

location name: see4.1.2.
location do-with name: see 6.5.4.
|ocation enumer ation name: see 6.5.2.
loc-identity name: see4.1.3.
Value names

boolean literal name: seeb.2.4.4.
emptiness literal name; seeb.2.4.7.
synonym name: seeb.1.
value do-with name: see 6.5.4.
value enumeration name: see 6.5.2.

value receive name:

see6.19.2, 6.19.3.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

171

Super seded by a more recent version

Miscellaneous names

built-in routine name;

general procedure name:

generic module name;
generic procedure name:
generic process name:

generic region name;
label name:

newmode name string:
non-reserved name;
procedure name:

process name:

set element name:

signal name:

tag field name:

undefined synonym name:

12.4.2 Locations

access location:

array location:
association location:
buffer location:
character string location:
discrete location:
event location:
floating point location:
instance location:
integer location:
moreta location:

static mode location:
string location:
structure location:

text location:

12.4.3 Expressionsand values
absolute time primitive value:

array expression:
array primitive value:
boolean expression:

bound reference moreta location primitive
value:

bound reference primitive value:

character string expression:
constant value:

discrete expression:
discrete literal expression:
duration primitive value:

172 ITU-T Rec. Z.200 (1996 E)

ISO/IEC 9496 : 1998 (E)

any CHILL or implementation defined name denoting a built-in
routine.

a procedure name whose generality is general.

see 10.11.

see 10.11.

see 10.11.

see 10.11.

see 6.1, 10.6.

aname string bound to the defining occurrence of a newmode name.
aname which is none of the reserved names mentioned in 111.1.
see 10.4.

see 10.5.

see 3.4.5.

see 11.5.

see 3.13.4.

see 5.1

alocation with an access mode.
alocation with an array mode.
alocation with an association mode.
alocation with a buffer mode.
alocation with acharacter string mode.
alocation with a discrete mode.
alocation with an event mode.
alocation with afloating point mode.
alocation with an instance mode.
alocation with an integer mode.
alocation with a moreta mode.
alocation with a static mode.
alocation with a string mode.
alocation with a structure mode.
alocation with atext mode.

a primitive value whose class is compatible with an absolute time
mode.

an expression whose class is compatible with an array mode.
a primitive value whose class is compatible with an array mode.
an expression whose classis compatible with a boolean mode.

see 6.7.

aprimitive value whose class is compatible with a bound reference
mode.

an expression whose classis compatible with a character string mode.
avalue which is constant.

an expression whose classis compatible with a discrete mode.
adiscrete expression which isliteral.

aprimitive value whose class is compatible with a duration mode.

Super seded by a more recent version

floating point expression:
floating point literal expression:
free reference primitive value:

instance primitive value:
integer expression:

integer literal expression:
literal expression:

power set expression:
procedure primitive value:
reference primitive value:

row primitive value;
string expression:

string primitive value:
structure primitive value:

1244 Miscellaneous semantic categories
array mode:

constructor actual parameter list:

discrete mode:

inline guarded procedure definition statement:
location built-in routine call:

location procedure call:

mor eta component procedure call:

mor eta declaration statement:

mor eta newmode definition statement:

mor eta synmode definition statement:
non-percent character:

non-reserved character:

non-special character:

simple guarded procedure definition statement:
simple guarded procedure specification
statement:

string mode:

value built-in routine call:

value procedure call:

ITU-T Rec. Z.200 (1996 E)

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
an expression whose classis compatible with a floating point mode.
afloating point expression which isliteral.

a primitive value whose class is compatible with a free reference
mode.

a primitive value whose class is compatible with an instance mode.
an expression whose class is compatible with an integer mode.

an integer expression which isliteral.

an expression which isliteral.

an expression whose classis compatible with a powerset mode.
aprimitive value whose class is compatible with a procedure mode.
aprimitive value whose class is compatible with either a bound
reference mode, a free reference mode or arow mode.

aprimitive value whose class is compatible with arow mode.

an expression whose class is compatible with a string mode.

a primitive value whose class is compatible with a string mode.
aprimitive value whose class is compatible with a structure mode.

amode in which the composite mode is an array mode.
seed.1.2.

amode in which the non-composite mode is a discrete mode.
see 10.4.

see 6.7.

See6.7.

See2.7.

see 3.15.

see 3.15.

See 3.15.

acharacter which is not a percent (%).

acharacter which is neither a quote (") nor a circumflex (?).
acharacter which is neither a circumflex (*) nor an open parenthesis

(0
see 10.4.

see 10.4.

amode in which thecomposite mode is astring mode.
see 6.7.

see 6.7.

Super seded by a more recent version 173

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

13 I mplementation options

13.1 Implementation defined built-in routines

semantics. An implementation may provide for a set of implementation defined built-in routines in addition to the set of
language defined built-in routines.

The parameter passing mechanism is implementation defined.
predefined names. The name of an implementation defined built-in routine is predefined as a built-in routine name.

static properties. A built-in routine name may have a set of implementation defined exception names attached. A
built-in routine call isavalue (location) built-in routine call if, and only if, the implementation specifies that for a given
choice of static properties of the parameters and the given static context of the call, the built-in routine call delivers a
value (location).

The implementation specifies also the regionality of the value (location).

13.2 Implementation defined integer modes

An implementation defines the upper bound and lower bound of the integer mode INT. An implementation may define
integer modes other than the ones defined by INT, e.g. short integers, long integers, unsigned integers. These integer
modes must be denoted by implementation defined integer mode names. These names are considered to be newmode
names, similar to INT. Their value ranges are implementation defined. These integer modes may be defined as root
modes of appropriate classes.

13.3 Implementation defined floating point modes

An implementation defines the upper bound and the lower bound, the negative upper limit and the positive lower
limit, the precision of the floating point mode FLOAT. An implementation may define floating point modes other than
the ones defined by FLOAT, e.g. short float, long float. These floating point modes must be denoted by implementation
defined floating point mode names. These names are considered to be newmode names, similar to FLOAT. Their values
ranges, lower limits and precision are implementation defined. These floating point modes may be defined as root
modes of appropriate classes.

134 Implementation defined process names

An implementation may define a set of implementation defined process names, i.e. process names whose definition is
not specified in CHILL. The definition is considered to be placed in the reach of the imaginary outermost process or in
any context. Processes of this name may be started and instance values denoting such processes may be manipulated.

13.5 Implementation defined handlers

An implementation may specify that an implementation defined handler is appended to a process or procedure
definition; such a handler may handle any exception.

13.6 Implementation defined exception names

An implementation may define a set of exception names.

13.7 Other implementation defined features

e Static check of dynamic conditions (see 2.1.2);

174 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

implementation directive (see 2.6);

case of special simple name strings;

text reference name (see 2.7 and 10.10.1);
default generality (see 10.4);

set of values of duration modes (see 3.12.2);

set of values of absolute time modes (see 3.12.3);
default element layout (see 3.13.3);

comparison of tag-less variant structure values (see 3.13.4);
number of bitsin aword (see 3.13.5);

minimum bit occupancy (see 3.13.5);

additional referable (sub-)locations (see 4.2.1);

semantics of a location do-with name and value do-with name which is a variant field of a tag-less
variant structure location (see 4.2.2 and 5.2.3);

semantics of variant fields of tag-less variant structures (see 4.2.10, 5.2.14 and 6.2);
semantics of location conversion (see 4.2.13);

semantics of expression conversion and additional conditions (see 5.2.11);
additional actual parametersin a start expression (see 5.2.15);

ranges of values for literal and constant expressions (see 5.3.1);
scheduling algorithm (see 6.15, 6.18.2, 6.18.3, 6.19.2, 6.19.3 and 11.2.1);
releasing of storagein TERMINATE (see 6.20.4);

denotation for files (see 7.1);

operations on associations (see 7.1 and 7.2.1);

non-exclusive associations (see 7.1);

additional attributes of association values (see 7.2.2);

semantics of associate parameters (see 7.4.2);

ASSOCIATEFAIL exception (see 7.4.2);

semantics of modify parameters (see 7.4.5);

CREATEFAIL, DELETEFAIL and MODIFYFAIL exception (see 7.4.5);
CONNECTFAIL exception (see 7.4.6);

semantics of reading of records that are not legal values according to the record mode (see 7.4.9);
additional timeoutable actions (see 9.2);

TIMERFAIL exception (see 9.3.1, 9.3.2 and 9.3.3);

precision of duration values (see 9.4.1 and 9.4.2);

indication of constant value in quasi synonym definitions (see 10.10.3);
regionality of built-in routines (see 11.2.2).

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 175

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Appendix |

Character set for CHILL

The character set of CHILL is an extension of the CCITT Alphabet No. 5, International Reference Version,
Recommendation V3. For the values whose representations are greater than 127, no graphical representation is defined.

The integer representation is the binary number formed by bits b8 to b1, where bl isthe least significant bit.

b7bgbs 000 001 010 011 100 101 110 111
bgb3zbob1 0 1 2 3 4 5 6 7
0000 0 NUL TG, SP 0 @ P ‘ p
(DLE)
0001 1 TG DC, ! 1 A Q a q
(SOH)
0010 2 TG DG, " 2 B R b r
(STX)
0011 3 TG DC; # 3 C S c S
(ETX)
0100 4 TG DC, $ 4 D T d t
(EOT)
0101 5 TG TCs % 5 E U e u
(ENQ) (NAK)
0110 6 TG TCy & 6 F Y, f v
(ACK) (SYN)
0111 7 BEL TGo ' 7 G W g w
(ETB)
1000 8 Fis CAN (8 H X h X
(BS)
1001 9 FE EM) 9 [Y i y
(HT)
1010 10 FE& SUB * : J Zz j z
(LF)
1011 11 Fg ESC + : K [k {
(V1)
1100 12 F& 1S, , < L \ |
(FF) (FS)
1101 13 FE IS, - = M] m }
(CR) (GS)
1110 14 SO 1S . > N n n -
(RS)
1111 15 Sl 19 / ? (0] _ o] DEL
(US)

176 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by a more recent version

Appendix |1

Special symbols

|SO/IEC 9496 : 1998 (E)

Name

Use

T = N~~~ -

semicolon

comma

left parenthesis
right parenthesis
left square bracket
right square bracket
left tuple bracket
right tuple bracket
colon

dot

assignment symbol
less than

less than or equal
equal

not equal

greater than or equal
greater than

plus

minus

asterisk

solidus

double solidus
arrow

diamond

comment opening
comment closing
apostrophe

sharp

quote

prefixing operator
literal qualification
literal qualification
literal qualification
literal qualification

line end

terminator for statements, etc.

separator in various constructs

opening parenthesis of various constructs

closing parenthesis of various constructs

opening bracket of atuple

closing bracket of atuple

opening bracket of atuple

closing bracket of atuple

label indicator, range indicator

field selection symbol

assignment, initialisation

relational operator

relational operator

relational operator, assignment, initialisation, definition indicator

relational operator

relational operator

relational operator

addition operator

subtraction operator

multiplication operator, undefined value, unnamed value, irrelevant symbol

division operator

concatenation operator

referencing and dereferencing, prefix renaming

start or end of adirective clause

bracket start of a comment

bracket end of a comment
start or end symbol in various literals
location and expression conversion

start or end symbol in character string literals
prefixing of names

binary base for literal

decimal base for literal

hexadecimal base for literal

octal base for literal

line end delimiter of in-line comments

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

177

Super seded by a more recent version

ISO/IEC 9496 : 1998 (E)

Appendix [I1

Special simple name strings

I11.1 Reserved simple name strings

ABSTRACT
ACCESS
AFTER

ALL

AND

ANDIF

ANY
ANY_ASSIGN
ANY_DISCRETE
ANY_INT
ANY_REAL
ARRAY
ASSIGNABLE
ASSERT

AT

BASED_ON
BEGIN

BIN

BODY
BOOLS
BUFFER
BY

CASE
CAUSE
CHARS
CONSTR
CONTEXT
CONTINUE
CYCLE

DCL
DELAY
DESTR
DO

DOWN
DYNAMIC

178 ITU-T Rec. Z.200 (1996 E)

ELSE

ELSIF

END

ESAC

EVENT

EVER
EXCEPTIONS
EXIT

Fl
FOR
FORBID

GENERAL
GENERIC
GOTO
GRANT

IF

IN
INCOMPLETE
INIT

INLINE
INOUT
INVARIANT

LOC

MOD
MODE
MODULE

NEW

NEWMODE
NONREF
NOT_ASSIGNABLE
NOPACK

NOT

oD
OF
ON
OR
ORIF
ouT

PACK

POS

POST
POWERSET
PRE
PREFIXED
PRIORITY
PROC
PROCESS

RANGE
READ
RECEIVE
REF
REGION

REIMPLEMENT

REM
REMOTE
RESULT
RETURN
RETURNS
ROW

SEIZE
SELF
SEND
SET
SIGNAL
SIMPLE
SPEC
START

Super seded by a more recent version

STATIC
STEP
STOP
STRUCT
SYN
SYNMODE

TASK
TEXT
THEN
THIS
TIMEOUT
TO

uUpP

VARYING

WHILE
WITH

XOR

Superseded by a more recent version

111.2 Predefined ssimple name strings

ABS

ABSTIME
ALLOCATE
ASSOCIATE
ASSOCIATION

BOOL

CARD
CHAR
CONNECT
CREATE

DAYS
DELETE
DISCONNECT
DISSOCIATE
DURATION

EOLN
EXISTING
EXPIRED

FALSE
FIRST
FLOAT

GETASSOCIATION
GETSTACK
GETTEXTACCESS
GETTEXTINDEX
GETTEXTRECORD
GETUSAGE

HOURS

INDEXABLE
INSTANCE

INT

INTTIME
ISASSOCIATED

LAST
LENGTH
LOWER

[11.3 Exception names

ALLOCATEFAIL
ASSERTFAIL
ASSOCIATEFAIL
CONNECTFAIL
CREATEFAIL
DELAYFAIL
DELETEFAIL
EMPTY

INVFAIL
MODIFYFAIL
NOTASSOCIATED
NOTCONNECTED
OVERFLOW
POSTFAIL
PREFAIL
RANGEFAIL
READFAIL
SENDFAIL
SPACEFAIL
TAGFAIL
TEXTFAIL
TIMERFAIL
UNDERFLOW
WRITEFAIL

ITU-T Rec. Z.200 (1996 E)

MAX
MILLISECS
MIN
MINUTES
MODIFY

NULL
NUM

OUTOFFILE

PRED
PTR

READABLE
READONLY
READRECORD
READTEXT
READWRITE

SAME
SECS

|SO/IEC 9496 : 1998 (E)

SEQUENCIBLE
SETTEXTACCESS
SETTEXTINDEX
SETTEXTRECORD
SZE

UCC

TERMINATE
TIME
TRUE

UPPER
USAGE

VARIABLE

WAIT

WHERE
WRITEABLE
WRITEONLY
WRITERECORD
WRITETEXT

Super seded by a more recent version 179

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

O oO~NOOUPS~,WNE -

NNNRPRRRRRRRR R
NFPOOWWONODUDMWNERO

©CoOoO~NOOOUP,WDNE DN

NNNRPRRERRRERRRR
NFPOOO~NOOUDWNEREO

23

WN P W

180

Appendix IV

Program examples

Operationson integers

integer_operations:
MODULE

add:

PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+j;

END add;

mult:

PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i*j;

END mult;

GRANT add, mult;
SYNMODE operand_mode=INT;
GRANT operand_mode;
SYN neutral_for_add=0,
neutral_for_mult=1;
GRANT neutral_for_add,
neutral_for_mult;

END integer_operations;

Same oper ations on fractions

fraction_operations:
MODULE

NEWM ODE fraction=STRUCT (num,denum INT);

add:

PROC (f1,f2 fraction) RETURNS (fraction) EXCEPTIONS (OVERFLOW);
RETURN [f1.num*f2.denum+f2.num* f1.denum,f1.denum* f2.denum ;

END add;

mult:

PROC (f1,f2 fraction) RETURNS (fraction) EXCEPTIONS (OVERFLOW);
RETURN [f1.num®*f2.num,f2.denum*f1.denum];

END mult;

GRANT add, mult;
SYNM ODE operand_mode=fraction;
GRANT operand_mode;
SYN neutral_for_add fraction=[0,1],
neutral_for_mult fraction=[1,11];
GRANT neutral_for_add,
neutral_for_mult;

END fraction_operations;

Same oper ations on complex numbers

complex_operations:
MODULE

NEWM ODE complex=STRUCT (re,im FLOAT);

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

O©Coo~NOoOOUh~,WNE b

NNNNNNNRERRRRRRRR R
OUBRWNRPOOOMNO®UNAWNERERO

NOoO o~ WNE O

Superseded by a more recent version

add:

PROC (c1,c2 complex) RETURNS (complex) EXCEPTIONS (OVERFLOW);

RETURN [cl.re+c2.recl.im+c2.im|;
END add;

mult:

PROC (c1,c2 complex) RETURNS (complex) EXCEPTIONS (OVERFLOW):;

RETURN [cl.re*c2.re-cl.im*c2.im,cl.re*c2.im+cl.im*c2.re];
END mult;

GRANT add, mult;
SYNMODE operand_mode=complex;
GRANT operand_mode;
SYN neutral_for_add=complex[0.0,0.0],
neutral_for_mult=complex[1.0,0.0];
GRANT neutral_for_add,
neutral_for_mult;

END complex_operations;

General order arithmetic

general_order_arithmetic: /* from collected algorithms from CACM no. 93 */
MODULE
op:
PROC (aINT INOUT, b,c,order INT)
EXCEPTIONS (wrong_input);
DCL dINT;
ASSERT b>0AND c>0AND order>0
ON (ASSERTFAIL):
CAUSE wrong_input;

END;
CASE order OF
(2): a:= btc;
RETURN;
(2): d:=0;
(ELSE): d:=1;
ESAC;

DOFORi:=1TOg;
op (a,b,d,order-1);
d:= g
OD;
RETURN;
END op;

GRANT op;

END general_order_arithmetic;

Adding bit-by-bit and checking the result

add bit_by bit:
MODULE
adder:
PROC (a STRUCT (a2,a1 BOOL) IN, b STRUCT (b2,b1 BOOL) IN)
RETURNS (STRUCT (c4,c2,c1 BOOL));
DCL ¢ STRUCT (c4,c2,c1 BOOL);
DCL k2,x,w,t,s,r BOOL;

|SO/IEC 9496 : 1998 (E)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 181

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

8 DO WITH a,b,c;

9 k2 := al AND b1,

10 cl:= NOT k2 AND (al OR b1l);

11 X := a2 AND b2 AND k2;

12 w:= a2 OR b2 OR k2;

13 t:= b2 AND k2;

14 s:= a2 AND k2;

15 r:= a2 AND b2;

16 c4:=rORsORt;

17 c2:= XOR (wAND NOT c4);

18 OD;

19 RETURN ¢;

20 END adder;

21 GRANT adder;

22 END add_bit_by hit;

23

24 exhaustive_checker:

25 MODULE

26 SEIZE adder;

27 SYNMODE ressARRAY (1:16) STRUCT (c4,c2,c1 BOOL);

28 DCL r INT, resultsres;

29 r:=0;

30 DO FOR a2 IN BOOL;

31 DO FOR al IN BOOL;

32 DO FOR b2 IN BOOL;

33 DO FOR b1 IN BOOL;

34 r+:=1,

35 results (r) := adder ([a2,al], [b2,b1]);

36 OD;

37 OD;

38 OD;

39 OD;

40 ASSERT

41 resultssres[[FALSE,FALSEFALSE] | [FALSE,FALSE, TRUE],
42 [FALSE, TRUE,FALSE] [FALSE, TRUE, TRUE],
43 [FALSE,FALSE, TRUE],[FALSE, TRUE,FALSE],
44 [FALSE, TRUE, TRUE] JTRUE,FALSE,FALSE],
45 [FALSE, TRUE,FALSE] ,[FALSE, TRUE,TRUE],
46 [TRUE,FALSE,FALSE] [TRUE,FALSE, TRUE],
47 [FALSE, TRUE, TRUE] JTRUE,FALSE,FALSE],
48 [TRUE,FALSE, TRUE] JTRUE,TRUE,FALSE]];
49 END exhaustive _checker;

182 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

O©OoOoO~NOOUPWDNE O

[
(S

bbbhﬁbhbbwwwwwwwwwwI\)I\)I\)I\)l\)l\)l\)l\)l\)l\)l—‘l—‘l—‘l—‘l—‘l—‘l—‘l—‘
0o ~NO O WNPFPOOOONOOUOPRWNRPOOONODUPRRWNRPOOONOOOPEAWDN

49

Superseded by a more recent version

Playing with dates

playing_with_dates:
MODULE /* from collected algorithms from CACM no. 199 */
SYNMODE month=SET (jan,feb,mar,apr,may,jun,
jul,aug,sep,oct,nov,dec);
NEWM ODE date=STRUCT (day INT (1:31), mo month, year INT);

gregorian_date:
PROC (julian_day number INT) RETURNS (date);
DCL jINT:= julian_day number,
d,my INT;
j-:=1.721 119;
=(4*j-1)/146 097,
= 4*j-1-146 097 * vy,
=jl4
j:=(@4*d+ 3)/1 461,
d:=4*d+ 3-1 461*]j;
d:=(d+4)/4
m:=(5*d-3)/153;
d:=5*d-3-153* m;
d:=(d+5)/5
y:=100*y+j;
IF m<10 THEN m+ :=3;
ELSE m-:=9;
y+:=1;

o —<

Fl;
RETURN [d,month (m-1), y];
END gregorian_date;

julian_day _number:
PROC (d date) RETURNS (INT);
DCL c¢,y,mINT;
DO WITH d;
m:= NUM (mo)+1;
IFm>2 THEN m-:=3;
ELSE m+ :=09;

year - := 1;
FI;
c := year/100;
y := year-100*c;

RETURN (146_097*c)/4+(1_461*y)/4
+(153*m+2)/5+day+1 721 119;
OD;
END julian_day_number;
GRANT gregorian_date, julian_day number;
END playing_with_dates;

test:
MODULE
SEIZE gregorian_date, julian_day _number;
ASSERT julian_day number ([10,dec,1979])= julian_day number
(gregorian_date(julian_day_number ([10,dec,1979 1)));
END test;

Roman numerals

Roman:
MODULE
SEIZE n,rn;

|SO/IEC 9496 : 1998 (E)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 183

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

4 GRANT convert;

5 convert:

6 PROC () EXCEPTIONS (string_too_small);
7 DCL r INT:= Q;

8 DO WHILE n>=1_000;

9 rn(r) :="'M’;

10 n-:=1 000;

11 r+:.=1;

12 OD;

13 IF n>500THENTN(r) :='D’;

14 n - :=500;

15 r+:=1,

16 FI;

17 DO WHILE n>=100;

18 r(r) :='C’;

19 n-:=100;

20 r+:.=1;

21 OD;

22 IFn>=50 THEN rn(r) :='L’;

23 n-:=50;

24 r+:=1;

25 Fl;

26 DO WHILE n>=10;

27 rn(r) :='X’;

28 n-:=10;

29 r+:=1;

30 OD;

31 IF n>=5 THEN rn(r) :="V’;

32 n-:=5;

33 r+:=1;

34 FI;

35 DO WHILE n>=1;

36 rn(r) :="I';

37 n-:=1;

38 r+:=1;

39 OD;

40 RETURN,;

41 END ON (RANGEFAIL): DO FOR i := 0 TO UPPER (rn);
42 rn(i) ="
43 OD;

44 CAUSE string_too_small;
45 END convert;

46 END Roman;

47 test:

48 MODULE

49 SEIZE convert;

50 DCL n INTINIT:=1979;

51 DCL rn CHARS (20)INIT:= (20)" ™;

52 GRANT n,rn;

53 convert ();

54 ASSERT rn="MDCCCCLXXVIII"//(6)" "
55 END test;

8 Counting lettersin a character string of arbitrary length
1 letter_count:

2 MODULE

3 SEIZE max;

4

DCL letterPOWERSET CHARINIT:= A’ :'Z7;

184 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

5 count:

6 PROC (input ROW CHARS (max) IN, output ARRAY ('A’’Z") INT OUT);
7 output := [ELSE) : O];

8 DO FOR i :=0 TO UPPER (input ->);

9 IF input -> (i) IN letter

10 THEN

11 output (input -> (i)) + :=1;
12 FI;

13 OD;

14 END count;

15 GRANT count;

16 END letter_count;

17 test:

18 MODULE

19 SYNMODE resultssARRAY (A’’Z)INT;
20 DCL cCHARS (10)INIT:="A-B<ZAA9K' "
21 DCL output results;

22 SYN max=10_000;

23 GRANT max;

24 SEIZE count;

25 count (-> c,output);

26 ASSERT output=results [(A) : 3,(B’,’K",’Z2") : 1, (ELSE) : 0];
27 END test;

9 Prime numbers

1 prime:

2 MODULE

3

4 SYN max = H'7FFF;

5 NEWM ODE number_list POWERSET INT (2:max);
6 SYN empty = number_list[];

7 DCL sieve number_lidiNIT:= [2:max],

8 primes number_lidNIT:= empty;

9 GRANT primes;

10 DO WHILE sieve/=empty;

11 primeOR:= [MIN (sieve)];

12 DO FOR j := MIN (sieve)BY MIN (sieve)T O max;
13 sieve - = [j];

14 OD;

15 OD;

16 END prime;

10 Implementing stacksin two different ways, transparent to the user
1 stackMODULE

2 NEWM ODE element STRUCT (a INT, b BOOL);
3 stacks_1:

4 MODULE

5 SEIZE element;

6 SYN max=10_000,min=1;

7 DCL stackARRAY (min : max) element,

8 stackindex INTNIT:= min;

9

10 push:

11 PROC (e elementEXCEPTIONS (overflow);
12 | F stackindex=max

13 THEN CAUSE overflow;

14 FI;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 185

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a4
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

186

stackindex + := 1;
stack (stackindex) := €;
RETURN;

END push;

pop:
PROC () EXCEPTIONS (underflow);
| F stackindex=min
THEN CAUSE underflow;
Fl;
stackindex - := 1;
RETURN,;
END pop;

elem:
PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds);
IF i<min OR i>max
THEN CAUSE bounds;
Fl;
RETURN stack (i);
END elem;

GRANT push,pop,elem;
END stacks 1;
stacks 2:
MODULE
SEIZE element;
NEWM ODE cell=STRUCT (pred,succ REF cell,info element);
DCL p,last,first REF cell INIT:= NULL;

push:
PROC (e element) EXCEPTIONS (overflow);
p:= ALLOCATE (cell) ON
(ALLOCATEFAIL) : CAUSE overflow;
END;
IF last=NULL
THEN first:=p;
last := p;
ELSElast ->. succ := p;
p->.pred:=lagt;
last := p;
Fl;
last ->. info:= €
RETURN;
END push;

pop:
PROC () EXCEPTIONS (underflow);
IF last=NULL
THEN CAUSE underflow;
Fl;
p:=lagt;
last := last ->. pred;
IF last = NULL
THEN first := NULL;
EL SE last ->. succ := NULL;
Fl;
TERMINATE(p);
RETURN;
END pop;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

75

76 eem:

77 PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds);
78 IF first=NULL

79 THEN CAUSE bounds;

80 Fl;

81 p:=first;

82 DOFOR|:=2TOi;

83 IF p->.succ=NULL

84 THEN CAUSE bounds,

85 Fl;

86 p:= p->. succ;

87 OD;

88 RETURN p ->. info;

89 END elem;

90

91 /* GRANT push,pop,elem; */

92 END stacks 2;

93 END stack;

11 Fragment for playing chess

1 chess fragments:

2 MODULE

3 NEWM ODE piece=STRUCT (color SET (white,black),

4 kind SET (pawn,rook,knight,bishop,queen,king));
5 NEWM ODE column=SET (a,b,c,d,ef,g,h);

6 NEWMODE line=INT (1: 8);

7 NEWM ODE square=STRUCT (status SET (occupied,free),

8 CASE status OF

9 (occupied) : p piece,

10 (free) :

11 ESAC);

12 NEWM ODE board=ARRAY (line) ARRAY (column) square;

13 NEWM ODE move=STRUCT (lin_1,lin_2 line,

14 col_1,col_2 column);

15

16 initialise:

17 PROC (bd board INOUT);

18 bd:=[(1): [(ah): [.status: occupied, .p : [white,rook]],
19 (b,9): [.status: occupied, .p : [whiteknight]],
20 (cf): [.status: occupied, .p : [whitebishop]],
21 (d): [.status: occupied, .p : [white,queen]],
22 (e): [.status: occupied, .p : [whiteking]]],
23 (2: [(ELSE): [.status: occupied, .p: [white,pawn]]],
24 (3:6): [(ELSE): [.¢tatus: freg]],

25 (7): [(ELSE): [.status: occupied, .p: [black,pawn]]],
26 ®: [(ah): [.status: occupied, .p : [black,rook]],
27 (b,9): [.status: occupied, .p : [blackknight]],
28 (c,f): [.status: occupied, .p : [black,bishop]],
29 (d): [.status: occupied, .p : [black,queen]],
30 (e): [.status: occupied, .p : [black,king]]]
31 1

32 RETURN;

33 END initialise;

34 register_move:

35 PROC (b board LOC,m move) EXCEPTIONS (illegal);

36 DCL starting square LOC:= b (m.lin_1)(m.col_1),

37 arriving square LOC:= b (m.lin_2)(m.col_2);

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 187

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

38 DO WITH m;

39 | F starting.status=free THEN CAUSE illegal; FI;

40 IF arriving.status/=free THEN

41 IF arriving.p.kind=king THEN CAUSE illegal; FI;

42 FI;

43 CASE starting.p.kind, starting.p.color OF

44 (pawn),(white):

45 IF col_1=col 2AND (arriving.status/=free

46 OR NOT (lin_2=lin_1+1 OR lin_2=lin_1+2 AND lin_2=2))
47 OR (col_2=PRED (col_1) OR col_2=3SUCC (cal_1))

48 AND arriving.status=free THEN CAUSE illegal; FI;

49 |F arriving.status/=free THEN

50 IF arriving.p.color=white THEN CAUSE illegal; FI; FI;
51 (pawn),(black):

52 IF col_1=col_2 AND (arriving.status/=free

53 OR NOT (lin_2=lin_1-1 OR lin_2=lin_1-2 AND lin_1=7))
54 OR (col_2=PRED (col_1) OR col_2=SUCC (col_1))

55 AND arriving.status=free THEN CAUSE illegal; FI;

56 IF arriving.status/=free THEN

57 IF arriving.p.color=black THEN CAUSE illegal; FI; FI;
58 (rook),(*):

59 IF NOT ok_rook (b,m)

60 THEN CAUSE illegal;

61 FI;

62 (bishop),(*):

63 IF NOT ok_hishop (b,m)

64 THEN CAUSE illegal;

65 Fl;

66 (queen),(*):

67 IF NOT ok _rook (b,m) AND NOT ok_bishop (b,m)

68 THEN CAUSE illegal;

69 Fl;

70 (knight),(*):

71 IF ABS(ABS(NUM (col_2)-NUM (col_1))

72 -ABS(lin_2-1lin 1)) /=1

73 OR ABS(NUM (col_2)-NUM (col_1))

74 +ABS(lin_2-lin_1) =/ 3THEN CAUSE illegal; FI;
75 IF arriving.status/=free THEN

76 | F arriving.p.color=starting.p.color THEN

77 CAUSE illegal; FI; FI;

78 (king),(*):

79 IF ABS (NUM (col_2)-NUM (col_1)) > 1

80 ORABS(lin_2-1lin/1)>1

81 OR lin_2=lin_1 AND col_2=col_1THEN CAUSE illegal; FI;
82 |F arriving.status/=free THEN

83 | F arriving.p.color=starting.p.color THEN

84 CAUSE illegal; FI; FI;/* checking king moving to check not implemented */
85 ESAC;

86 OD;

87 arriving := starting;

88 starting := [.status:free] ;

89 RETURN;

90 END register_move;

91 ok_rook:

92 PROC (b board,m move) RETURNS (BOOL);

93 DCL starting square := b (m.lin_1)(m.col_1),

94 arriving square := b (m.lin_2)(m.col_2);

95

96 DOWITH m;

97 IF NOT (col_2=col_1OR lin_1=lin_ 2) THEN RETURN FALSE; FI;

188 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

98 |F arriving.status/=free THEN

99 I F arriving.p.color=starting.p.color THEN;

100 RETURN FALSE; FI; FI;

101 IF col_1=col_2

102 THEN IFlin_1<lin 2

103 THEN DO FOR lin:=1lin_1+1TO lin_2-1;
104 IF b (lin)(col_1).status/=free
105 THEN RETURN FALSE;
106 FI;

107 OD;

108 ELSE DO FOR lin:=lin_1-1 DOWN TO lin_2+1;
109 IF b (lin)(col_1).status/=free
110 THEN RETURN FALSE;
111 FI;

112 OD;

113 FI;

114 ELSIF col_1<col 2

115 THEN DO FOR col := SUCC (col_1) TO PRED (col_2);
116 IF b (lin_1)(col).status/=free

117 THEN RETURN FALSE;

118 FI;

119 OD;

120 EL SE DO FOR col := SUCC (col_2) DOWN TO PRED (col_1);
121 IF b (lin_1)(col).status/=free

122 THEN RETURN FALSE;

123 FI;

124 OD;

125 FI;

126 RETURN TRUE;

127 OD;

128 END ok _rook;

129 ok_bishop:

130 PROC (b board,m move) RETURNS (BOOL);

131 DCL starting square:= b (m.lin_1)(m.col_1),

132 arriving square := b (m.lin_2)(m.col_2),

133 col column;

134

135 DOWITH m;

136 CASE lin_2>lin_1,col_2>col 1 OF

137 (TRUE),(TRUE): col := col_1;

138 DO FOR lin:=1lin_1+1TO lin_2-1;
139 col := SUCC (col);

140 IF b (lin)(col).statusg/=free
141 THEN RETURN FALSE;
142 FI;

143 OD;

144 IF SUCC (cal)/=cal_2

145 THEN RETURN FALSE;
146 FI;

147 (TRUE),(FALSE): col := col_1;

148 DO FORIlin:=1lin_ 1+1TO lin_2-1;
149 col := PRED (col);%

150 IF b (lin)(col).status/=free
151 THEN RETURN FALSE;
152 FI;

153 OD;

154 IF PRED (col)/=col_2

155 THEN RETURN FALSE;
156 FI;

157 (FALSE),(TRUE): col := col_1;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 189

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

158 DO FORlin:=lin_1-1DOWN TO lin_2+1;
159 col := SUCC (col);

160 IF b (lin)(col).status/=free
161 THEN RETURN FALSE;
162 Fl;

163 OD;

164 IF SUCC (col)/=col_2

165 THEN RETURN FALSE;
166 Fl;

167 (FALSE),(FALSE): col := col_1;

168 DO FOR lin:=1in_1-1 DOWN TO lin_2+1;
169 col := PRED (col);

170 IF b (lin)(col).status/=free
171 THEN RETURN FALSE;
172 Fl;

173 OD;

174 |F PRED (col)/=col_2

175 THEN RETURN FALSE;
176 Fl;

177 ESAC;

178 IF arriving.status=free THEN RETURN TRUE;

179 EL SE RETURN arriving.p.color/=starting.p.color; Fl;
180 OD;

181 END ok_bishop;

182 END chess fragments;

12 Building and manipulating a circularly linked list

1 circular_list:

2 MODULE

3 handle list:

4 MODULE

5 GRANT insert, remove, node;

6 NEWM ODE node=STRUCT (pred, suc REF node, value INT);
7 DCL pool ARRAY (1:1000)node;

8 DCL head node := (: NULL,NULL,0:);

9

10 insert: PROC (new node);

11 [* insert actions */

12 END insert;

13

14 remove: PROC ();

15 [* remove actions */

16 END remove;

17

18 initialize list:

19 BEGIN

20 DCL last REF node := ->head;

21 DO FOR new N pool;

22 new.pred := last;

23 last->.suc := ->new;

24 last := ->new;

25 new.value := 0;

26 OD;

27 head.pred := lagt;

28 last->.suc := ->head,;

29 END initialize list;

30

31 END handle ligt;

190 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

32
33
34
35
36
37
38
39
40

O© o0 ~NOOULPA, WNPE B

NNNNNNNNNRPRPRRRERRRRRRR
XO~NOURWNRPOOWOMNOOUDNWNERO

O© o0 ~NO UL, WNPE l;

B R R R R R
O WNERO

Superseded by a more recent version

manipul ate:

MODULE
SEIZE node, remove, insert;
DCL node anode:= (: NULL,NULL,536:);
remove();
remove();
insert(node_a);

END manipulate;

END circular_list;

A region for managing competing accesses to a resour ce

allocate resources:
REGION
GRANT allocate, deallocate;
NEWM ODE resource_set = INT (0:9);
DCL allocated ARRAY (resource set)BOOL.:= (: (resource set): FALSE:);
DCL resource freed EVENT;

allocate:
PROC () RETURNS (resource_set);
DO FOR EVER;
DO FOR i IN resource set;
IF NOT allocated(i)
THEN
allocated(i) := TRUE;
RETURN i;
FI;
OD;
DELAY resource freed,
OD;
END allocate;

deallocate:

PROC (i resource_set);
allocated(i) := FALSE;
CONTINUE resource freed;

END deallocate;

END allocate resources;

Queuing callsto a switchboard

switchboard:
MODULE
/* Thisexample illustrates a switchboard which queues incoming calls
and feeds them to the operator at an even rate. Every time the
operator is ready one and only one call islet through. Thisis
handled by a call distributor which lets calls through at fixed
intervals. If the operator is not ready or there are other calls
waiting, a new call must queue up to wait for itsturn. */
DCL operator_is ready,
switch_is closed EVENT;

call_distributor:
PROCESS ();
wait:
PROC (x INT);
/*some wait action*/

|SO/IEC 9496 : 1998 (E)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 191

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

17 END wait;

18 DO FOR EVER;

19 wait(10 /* seconds*/);

20 CONTINUE operator_is ready;

21 OD;

22 END call_distributor;

23

24 call_process:

25 PROCESS ();

26 DELAY CASE

27 (operator_is ready): /* some actions*/ ;

28 (switch_is closed): DO FOR i IN INT (1:100);

29 CONTINUE operator_is ready;
30 /* empty the queue*/

31 OD;

32 ESAC;

33 END call_process,

34

35 operator:

36 PROCESS ();

37 DCL time INT;

38 DO FOR EVER;

39 IF time= 1700

40 THEN CONTINUE switch_is_closed;

41 Fl;

42 OD;

43 END operator;

44

45 START call_distributor ();

46 START operator();

47 DO FOR i IN INT (1:100);

48 START call_process();

49 OD;

50 END switchboard,;

15 Allocating and deallocating a set of resour ces

1 definitions:

2 MODULE

3 SIGNAL

4 acquire,

5 release= (INSTANCE),

6 congested,

7 ready,

8 advance,

9 readout=(INT);

10 GRANT ALL;

11 END definitions;

12 counter_manager :

13 MODULE

14 /* Toillustrate the use of signals and the receive case, (buffers
15 might have been used instead) we will look at an example where an
16 allocator manages a set of resources, in this case a set of

17 counters. Themodule is part of a larger systemwherethere are
18 users, that can request the services of the counter_manager. The
19 module is made to consist of two process definitions, one for the
20 allocation and one for the counters. Initiate and terminate
21 are internal signals sent from the allocator

22 to the counters. All the other signals are external, being sent
23 fromor to the users. */

192 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

Superseded by a more recent version

SEIZE/* external signals*/

acquire, release, congested,ready,advance,readout;
SIGNAL initiate= (INSTANCE),

terminate;

allocator:
PROCESS ();

NEWM ODE no_of_counters = INT (1:100);
DCL counters ARRAY (no_of_counters)

STRUCT (counter INSTANCE, status SET (busy,idle));

DO FOR each IN counters;
each := (: START counter(), idle:);
OD;
DO FOR EVER;
BEGIN
DCL user INSTANCE;
await_signals:
RECEIVE CASE SET user;
(acquire):
DO FOR each IN counters;
DO WITH each;
|F status = idle
THEN
status := busy;
SEND initiate (user) TO counter;
EXIT await_signals,
Fl;
OD;
OD;
SEND congested TO user;
(release IN this_counter):
SEND terminate TO this_counter;
find_counter:
DO FOR each IN counters;
DO WITH each;
| F this_counter = counter
THEN
status:= idle;
EXIT find_counter;
Fl;
OD;
OD find_counter;
ESAC await_signals;
END;
OD;
END allocator;
counter:
PROCESS ();
DO FOR EVER;
BEGIN
DCL user INSTANCE,
count INT:= 0;
RECEIVE CASE
(initiate IN received_user):
SEND ready TO received user;
user ;= received user;
ESAC;
work_loop:
DO FOR EVER,;
RECEIVE CASE

ITU-T Rec. Z.200 (1996 E)

Super seded by a more recent version

|SO/IEC 9496 : 1998 (E)

193

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

84
85
86
87
88
89
90
91
92
93
94

194

(advance): count + := 1,
(terminate):
SEND readout(count) TO user;
EXIT work_loop;
ESAC;
OD work_loop;
END;
OD;
END counter;
START allocator();
END counter_manager;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

16 Allocating and deallocating a set of resources using buffers
1

2

3 user_world:

4 MODULE

5 /* This example is the same as no.15 except that buffers are

6 used for communication instead of signals.

7 The main differenceis that processes are now identified

8 by means of references to local message buffers rather than
9 by instance values. There is one message buffer declared

10 local to each process. There is one set of message types

11 for each process definition. When started each process must
12 identify its buffer address to the starting process.

13 The user_world modul e sketches some of the environment in
14 which the counter_manager isused. */

15

16 SEIZE allocator;

17 GRANT user_bhuffers,user_messages,

18 allocator_messages, allocator _buffers,

19 counter _messages, counters_buffers;

20 NEWM ODE

21 user_messages =

22 STRUCT (type SET (congested, ready,

23 readout, allocator_id),

24 CASE type OF

25 (congested) : ,

26 (ready) : counter REF counters_buffers,
27 (readout) : count INT,

28 (allocator_id): allocator REF allocator_buffers
29 ESACQC),

30 user_buffers= BUFFER (1) user_messages,

31 allocator_messages =

32 STRUCT (type SET (acquire, release, counter_id),

33 CASE type OF

34 (acquire) : user REF user_buffers,
35 (release,

36 counter_id): counter REF counters_buffers
37 ESAC),

38 allocator_buffers= BUFFER (1) allocator_messages,

39 counter_messages =

40 STRUCT (type SET (initiate, advance, terminate),

41 CASE type OF

42 (initiate) : user REF user_buffers,
43 (advance,

44 terminate):

45 ESAC),

46 counters buffers= BUFFER (1) counter_messages,

47 DCL user_buffer user_buffers,

48 allocator_buf REF allocator_buffers,

49 counter _buf REF counters_buffers;

50 START allocator(->user_buffer);

51 RECEIVE CASE

52 (user_buffer IN u_msg): allocator_buf := u_msg.allocator;
53 ESAC;

54 END user_world;

55 counter_manager :

56 MODULE

57 SEIZE user_bhuffers,user_messages,

58 allocator_messages, allocator_buffers,

59 counter _messages, counters_buffers;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 195

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9
91
92
93
94
95
9
97
08
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

196

GRANT allocator;

allocator:
PROCESS (starter REF user_buffers);
DCL allocator_buffer allocator _buffers;
NEWM ODE no_of_counters= INT (1:10);
DCL countersARRAY (no_of counters)
STRUCT (counter REF counters_buffers,
status SET (busy, idle)),
message allocator _messages;
SEND starter->([allocator_id, ->allocator_buffer]);
DO FOR each IN counters;
START counter(->allocator_buffer);
RECEIVE CASE
(allocator_buffer IN a_msg): each := [a_msg.counter, idl€e];
ESAC;
OD;
DO FOR EVER;
BEGIN
DCL user REF user_buffers;
RECEIVE (allocator_buffer IN message);
handle_messages:
CASE message.type OF
(acquire):
user := message.user;
DO FOR each IN counters,
DO WITH each;
|F status= idle
THEN status:= busy;
SEND counter->([initiate, user]);
EXIT handle_messages;
Fl;
OD;
OD;
SEND user->([congested]);
(release):
SEND message.counter->([terminate]);
find_counter:
DO FOR each IN counters;
DO WITH each;
| F message.counter = counter
THEN status:= idlg
EXIT find_counter;
Fl;
OD;
OD find_counter;
(counter_id): ;
ESAC handle_messages,
END;
OD;
END allocator;
counter:
PROCESS (starter REF allocator_buffers);
DCL counter_buffer counters buffers;
SEND starter-> ([counter_id, ->counter_buffer]);
DO FOR EVER;
BEGIN
DCL user REF user_buffers,
count INT:= 0,
message counter_messages,

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

=Y
~

O~NO UL WNPE

Superseded by a more recent version

RECEIVE (counter_buffer IN message);
CASE message.type OF
(initiate): user := message.user;
SEND user->([ready, ->counter_buffer]);
EL SE/* some error action */
ESAC;
work_loop:
DO FOR EVER;
RECEIVE (counter_buffer IN message);
CASE message.type OF
(advance): count+ :=1;
(terminate): SEND user-> ([readout, count]);
EXIT work_loop;
EL SE/* some error action */
ESAC;
OD work_loop;
END;
OD;
END counter;
END counter_manager;

String scanner 1

string_scannerl: /* This program implements strings by means
of packed arrays of characters. */
MODULE
SYN
blanks ARRAY (0:9)CHAR PACK = [(*):" '], linelength = 132;
SYNMODE
stringptr =ROW ARRAY (lineindex)CHARPACK,
lineindex = INT (0:linelength-1);

scanner:
PROC (string stringptr, scanstart lineinddNOUT,
scanstop lineindex, stopfQWERSET CHAR)
RETURNS (ARRAY (0:9)CHARPACK);
DCL count INT:=0,
resARRAY (0:9)CHARPACK := blanks;
DO
FOR cIN string->(scanstart:scanstop)
WHILE NOT (cIN stopset);
count +:=1;
OD;
IF count>0
THEN
IF count>10
THEN
count :=10;
FI;
res(0:count-1) := string->(scanstart:scanstart+count-1);
FI;
RESULT res;
| F scanstart+count < scanstop
THEN
scanstart := scanstart+count+1;
FI;
END scanner,

GRANT scanner;

|SO/IEC 9496 : 1998 (E)

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 197

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

37
38

O o0 ~NOO OIS, WN P l&‘

=
(N)

W WWWWWWWWWNDNDNDNNNNNNNRPRERRPEPREREREPRPR
O©CoO~NOUD,WNPOOONOODUUPR,WNPEPOOO~NOOOGRAWNDN

=
©

O© oo ~NO UL, WN P

END string_scanner1;

String scanner 2

string_scanner2: /* This example isthe same as No.17 but it uses
character string instead of packed arrays*/
MODULE
SYN
blanks = (10)" ", linelength = 132;
SYNMODE
stringptr =ROW CHARS (linelength),
lineindex = INT (0:linelength-1);

scanner:
PROC (string stringptr, scanstart lineinddNOUT,
scanstop lineindex, stopPAAWERSET CHAR)
RETURNS (CHARS (10));
DCL count INT:= 0;
DO FOR i := scanstartTO scanstop
WHILE NOT (string->(i) IN stopset);
count + :=1;
OD;
IF count>0
THEN
IF count>=10
THEN
RESULT string->(scanstarUP 10);
ELSE

RESULT string->(scanstart:scanstart+count-1)

//blanks(count:9);
FI;
ELSE
RESULT blanks;
Fl;
| F scanstart+count < scanstop
THEN
scanstart := scanstart+count+1;
Fl;
END scanner;

GRANT scanner;

END string_scanner2;

Removing an item from a double linked list

queueMODULE
SYNMODE info=INT;
gueue_removal:
MODULE
SEIZE info;
GRANT remove;
remove:
PROC (p PTR)RETURNS (info) EXCEPTIONS (EMPTY);
[* This procedure removes the item referred to
by p from a queue and returns the information
contents of that queue element */
SYNMODE element =STRUCT (

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O oo ~NOoO Ok, WNPE B

W WWWWWNDNDNDNDNNNNNNREPEEPRPEPERPERPEPERPPERE
ORRWNRPOOO~NOUOPNMNWNPOOONOOOA~WDNPEO

N
[y

WN P

Superseded by amorerecent version | SO/IEC 9496

i info POS (0,8:31),
prev PTR POS (1,0:15),
next PTR POS (1,16:31));

DCL x REF element LOC:= element(p), prev, next PTR;

prev:= x->.prev;

next := x->.next;

X->.prev, x->.next := NULL;

RESULT x->.i;

p:= prev;

X->.next := next;

p := next;

X->.prev .= prev;

END remove;
END queue_removal;
END queus;

Update arecord of afile

read_modify write:
MODULE

/* this example indicates how the CHILL i/o conceptscan beused */

/* towrite an application where a record of a random accessible */
/* file can be updated or added if not yet in use */
NEWMODE

index_set = INT (1:1000),
record _type = STRUCT (
free BOOL,
count INT,
name CHARS (20));

DCL
curindex index_set,
file_association ASSOCIATION,
record file ACCESS (index_set) record_type,
record_buffer record_type;

ASSOCIATE (file_association,"DSK:RECORDS.DAT");

/* create association */

CONNECT (record_file,file_association,READWRITE); [* connect to file */
curindex := 123; [* position record */
READRECORD (record_file,curindex,record_buffer); /* read the record */
IF record_buffer.free /* if record is free */
THEN /* the claim and */
record_buffer.free := FALSE [* initialize it */

record_buffer.count := 0;
record_buffer.name := "CHILL I/O concept ”;
FI;
record_buffer.count + ;= 1;
WRITERECORD (record_file, curindex, record_buffer);
DISSOCIATE (file_association);

/* increment its count */
/* write the record */
/* end the association */

END read_modify_write;

Mergetwo sorted files

merge_sorted_files:
MODULE

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

: 1998 (E)

199

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

4 /* this example shows how two sorted files can be merged intoone */

5 /* new sorted file, where the field 'key’ is used for sorting */

6 [* the old sorted files are deleted after the merging has been done */
7

8 NEWM ODE

9 record_type sSTRUCT (

10 key INT,

11 nameCHARS (50));

12

13 DCL

14 flag BOOL,

15 infiles ARRAY (BOOL)ACCESSrecord_type,

16 outfile ACCESSrecord_type,

17 buffers ARRAY (BOOL) record_type,

18 innames ARRAY (BOOL)CHARS (10)INIT:=["FILE.IN.1 ","FILE.IN.2 ",
19 outname CHARS (10)INIT:="FILE.OUT ",

20 inassocs ARRAY (BOOL) ASSOCIATION,

21 outassoc ASSOCIATION;

22

23 [* associate both sorted input files, connect an access to them for input */
24 /* and read their first record into a buffer *
25

26 DO

27 FOR curfile IN infiles,

28 curbuffet N buffers,

29 curassotN inassocs,

30 curnaméN innames;

31 CONNECT (curfile, ASSOCIATE (curassoc,curname), READONLY);
32 READRECORD (curfile, curbuffer);

33 OD;

34

35 /* associate the output file, create a file for the association */

36 /* and connect an access to it for output */

37

38 ASSOCIATE (outassoc,outname);

39 CREATE (outassoc);

40 CONNECT (outfile, outassoc, WRITEONLY);

41 merge_files:

42 DO FOR EVER

43

44 /* determine which file, if any at all, to process next */

45 [* ‘flag’ indicates the file */

46

47 CASE OUTOFFILE (infiles(FALSE)),OUTOFFILE (infiles(TRUE)F

48 (TRUE), (TRUE): * both files are empty
49 EXIT merge_files;

50 (TRUE), (FALSE): /* one file is empty
51 flag := TRUE;

52 (FALSE), (TRUE): /* one file is empty
53 flag := FALSE;

54 (FALSE), (FALSE): /* no file is empty
55 flag := buffers(FALSE).key>buffers(TRUE).key;

56 ESAC;

57

58 [* output the buffer which currently contains a record with the ~ */
59 /* smallest value for ‘key’, fill the buffer with a new record */
60

61 WRITERECORD (outfile,buffers(flag));

62 READRECORD (infiles(flag), buffers(flag));

63 OD merge_files;

200 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

64
65
66
67
68
69
70
71
72
73

O oo ~NO O~ WNPR %

B WWWWWWWWWWNDNNDNNNMNNNNNRPEPRPEPEPEPEPERPREPER
O OVWONOOUOPWNRPOOONOUUOPMNWNRPOOONOO O WDNPEO

N
w

W N P

Superseded by a more recent version

[* delete the input files and close the output file */
DO
FOR curassoc IN inassocs;
DELETE (curassoc);
DISSOCIATE (curassoc);
OD;
DISSOCIATE (outassoc);

END merge_sorted files;

Read afilewith variable length records

variable length records:

/* delete thefile */
[* and terminate association */

/* disconnect and terminate*/

MODULE

[* This example shows how a file which consists of variable length */
[* records can be treated. */
[* Thefile consists of a number of strings of varying length; the */
/* algorithmwill read a string, allocate an appropriate location */
[* for it, and put the reference to this location into a push down list */
NEWMODE

string = CHARS (80),

link_record = STRUCT (

next_record REF link_record,
string_row ROW string);

DCL

pushdownlist ~ REF link _record INIT:= NULL,

length INT (1:80),

temporaryrow ROW string,

fileaccess string DYNAMIC,

association ASSOCIATION;

filename CHARS (20) VARYING INIT :="INPUT.DATA";
ASSOCIATE (association,filename); [* associate the input file */
CONNECT (fileaccess, association, READONLY); [* connect access for input */
temporaryrow := READRECORD (fileaccess); /* read the first record */
DO /* while not end-of-file *

WHILE NOT(OUTOFFILE(fileaccess));

pushdownlist := ALLOCATE (link_record, * get a new link record *
[pushdownlist,NULL]); /* and initialize it *

length := 1 + UPPER (temporaryrow->);
DO
WITH pushdowlist->;
string_row := ALLOCATEGHARS (length),
temporaryrow->);
OD;
temporaryrow := READRECORD (fileaccess);
OD;
DISSOCIATE (association);

END variable_length_records;

The use of spec modules

[* determine length of string */

/* add new string to list */
[* allocate space for string */
/* and fill it */
/* get next record in file *
/* end the association *

/* The examples 23 and 24 are example 8 divided in two pieces. */

letter_count:
SPEC MODULE

ITU-T Rec. Z.200 (1996 E)

Super seded by a more recent version

|SO/IEC 9496 : 1998 (E)

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

4 /* Thisis a spec module for the corresponding module in example 8. */
5 SEIZE max;

6 count:

7 PROC (input ROW CHARS (max) IN, output ARRAY ('A’’Z") INT OUT) END;
8 GRANT count;

9 END letter_count;

10 letter_ countREMOTE "example 24",

11 test:

12 MODULE

13 [* This is the module ‘test’ from example 8. */

14 /* It can now be piecewise compiled together with */

15 /* the above spec module */

16 SYNMODE results =ZARRAY ('A’’Z") INT;

17 DCL cCHARS (10)INIT:="A-B<ZAA9K' ”;

18 DCL output results;

19 SYN max = 10_000;

20 GRANT max;

21 SEIZE count;

22 count (-> ¢, output);

23 ASSERT output =results [(A) : 3, (B, 'K’,’Z) : 1, (ELSE) : 0];
24 END test;

24 Example of a context

1 CONTEXT

2 [* This is a context for the module “letter_count” */

3 [* as used in example 23, allowing the piecewise */

4 /* compilation of “letter_count” */

5 SYN max = 10_000;

6 FOR

7 letter_count:

8 MODULE

9 SEIZE max;

10 DCL letterPOWERSET CHARINIT:=[A’:'Z7;

11 count:

12 PROC (inputROW CHARS (max)IN, outputARRAY ('A’’Z") INT OUT);
13 output := [EL SE) : 0];

14 DO FOR i :=0 TO UPPER (input ->);

15 IF input -> (i) IN letter THEN

16 output (input -> (i)) +:=1;

17 FI;

18 OD;

19 END count;

20 GRANT count;

21 END letter_count;

25 The use of prefixing and remote modules

1 [* This example uses the module ‘stack’ from example 27 or 28. */
2 /* It shows how prefixes can be used to prevent name clashes. */
3 /* It uses the remote construct to share the source code. */
4 char_stack:

5 MODULE

6 SYNMODE element = CHAR,;

7 GRANT (-> stack ! char) IALL;

8 stack:SPEC REM OTE"example 297;

9 stackREMOTE "example 27 or 28 for CHAR”;

10 END char_stack;

11

202 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

12 int_stack:

13 MODULE

14 SYNMODE element = INT;

15 GRANT (-> stack ! int) ! ALL;

16 stack: SPEC REMOTE"example 297;

17 stackREMOTE "example 27 or 28 for CHAR”;

18 END int_stack;

19 /* Here ‘push’, ‘pop’ and ‘element’ are visible but */

20 /* with prefixes ‘stack ! char’ and ‘stack ! int’ for */

21 /* the implementations with element = CHAR and */

22 /* element = INT, respectively. *

23 /* Below are some possibilities of using the granted *

24 /* names inside modules. *

25 MODULE

26 SEIZE ALL PREFIXED stack ;

27 DCL c CHAR,;

28 int! push (123) ;

29 char ! push (&) ;

30 int!pop ();

31 c:=char!elem (1);

32 END;

33

34 MODULE

35 SEIZE (stack ! int -> stack) ALL;

36 stack ! push (345) ;

37 stack ! pop () ;

38 END;

26 Theuseof text i/o

1 textio:

2 MODULE

3

4 [* This example shows the use of the text i/o features. */

5

6 DCL

7 outfile ASSOCIATION,

8 output TEXT (80)DYNAMIC,

9 size INT:= 12345,

10 flag BOOL:= FALSE,

11 set SET (a,b,c) :=b,

12 sl CHARS (5) := "CHILL",

13 s2 CHARS (5) VARYING:= "text”;

14

15 ASSOCIATE (outfile,"OUTPUT.DATA"); - - associate the output file
16 CREATE (ouftfile); - - create it
17 CONNECT (output,outfile, WRITEONLY); - - then connect text location
18 WRITETEXT (output,”%B%/",10); --1010
19 WRITETEXT (output,”%C%/",set); --b

20 WRITETEXT (output,”size = %C%/",size); - - size = 12345
21 WRITETEXT (output,”%CL6%C i/0%/",s1,s2); - - CHILL textilo
22 WRITETEXT (output,"flag =%X%C",flag); - - flag = FALSE
23 size := GETTEXTINDEX (output); --12

24 DISSOCIATE (outfile);

25 END textio;

27 A generic stack

1 [* This example implements a generic stack. Please */

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 203

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

2 /* note that the element mode has been left out. */
3 [* The element mode is defined in the surroundings. */
4 /* The context is a virtually introduced context, */
5 /* and it has no source. */
6 CONTEXT REMOTE FOR

7 stack:

8 MODULE

9 SEIZE element;

10 NEWM ODE cell = STRUCT (pred,succ REF cell,info e ement);
11 DCL p,last,first REF cell INIT:= NULL;

12

13 push:

14 PROC (e element) EXCEPTIONS (overflow)

15 p := ALLOCATE (cell) ON (ALLOCATEFAIL): CAUSE overflow; END;
16 IF last = NULL THEN

17 first:=p;

18 last := p;

19 ELSE

20 last -> .succ:=p;

21 p-> .pred:= last;

22 last ;= p;

23 FI;

24 last -> .info:= €

25 RETURN;

26 END push;

27

28 pop:

29 PROC () EXCEPTIONS (underflow)

30 IF last = NULL THEN

31 CAUSE underflow;

32 FI;

33 p:= last;

34 last := last -> .pred;

35 IF last = NULL THEN

36 first := NULL,;

37 ELSE

38 last -> .succ := NULL;

39 FI;

40 TERMINATE (p);

41 RETURN;

42 END pop;

43

44 elem:

45 PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds)
46 IF first = NULL THEN

47 CAUSE bounds;

48 Fl;

49 p:=first

50 DOFOR|:=2TOj;

51 IF p-> .succ= NULL THEN

52 CAUSE bounds,

53 Fl;

54 p:=p-> .succ;

55 OD;

56 RETURN p -> .info;

57 END elem;

58

59 GRANT push,pop,elem;

60 END stack;

204 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

O© O ~NO O WNPE 8

W W WWWWWWWWNDNPNDNDNNNNDNNRPEPERPRPERERPERPERPRER
OO ~NOOUPA,WNPOOO~NOUUPR, WNRPOOONOD O WDNEDO

O ~NO OIS WN B 8

w
o

A WN P

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

An abstract data type

[* This example implements a stack with the same functionality */
/* of example 27, demonstrating how an abstract data type */
/* can be implemented in two different waysin CHILL. */
CONTEXT REMOTE FOR
stack:
MODULE
SEIZE element;
SYN max = 10 000, min= 1,
DCL stack ARRAY (min: max) element,

stackindex INT INIT:= min-1;
push:
PROC (e element) EXCEPTIONS (overflow)
| F stackindex = max THEN
CAUSE overflow;,
Fl;
stackindex +:= 1;
stack(stackindex) := €
RETURN;
END push;
pop:
PROC () EXCEPTIONS (underflow)
| F stackindex = min THEN
CAUSE underflow;
Fl;
stackindex-:= 1;
RETURN;
END pop;

eem:
PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds)
IFi<mnORi>max THEN
CAUSE bounds;
Fl;
RETURN stack(i);
END elem;

GRANT push,pop,elem;
END stacks;

Example of a spec module

/* This SPEC MODULE defines the interface of examples 27 and 28. */
stack: SPEC MODULE
SEIZE: element;
push: PROC (e element) EXCEPTIONS (overflow) END;
pop: PROC () EXCEPTIONS (underflow) END;
elem: PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds) END;
GRANT push,pop,elem;
END stack;

Object-Orientation — Modes for Simple, Sequential Stacks

/¥ The examples show the application of object-orientation to the well known stack data structure.
Two different implementations of stack modes with identical interfaces are realized (Example 30).
Based on these modes extended modes with an additional operation (e.g. Top; Example 31) or
with other properties (e.g. mutual exclusive access to stacks (Example 32)) are realized. */

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 205

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

5

6 SYNMODE SackModel = MODULE SPEC /* ------m-mmmm-- Definition of theinterface */
7 GRANT ElementMode, Push, Pop; [* Smple, sequential stack */
8 NEWMODE ElementMode = STRUCT (a INT, b BOOL);

9 Push: PROC(Elem ElementMode IN) EXCEPTIONS(Overflow) END Push;

10 Pop: PROC() RETURNS(ElementMode) EXCEPTIONS(Underflow) END Pop;

11 SYN Length= 10 _000;

12 DCL SackData ARRAY (1:Length) ElementMode, [* Array implementation*/
13 TopOfStack RANGE(O:Length) INIT := 0; [* of the stack*/

14 END SackModel;

15

16 SYNMODE SackModel = MODULE BODY /* -—----mmmmmmme- Definition of the body */

17 Push: PROC(Elem ElementMode I|N) EXCEPTIONS(Overflow)

18 IF TopOfStack = Length THEN

19 CAUSE Overflow;

20 ELSE

21 TopOfStack +:= 1;

22 SackData(TopOfStack) := Elem;

23 FI;

24 END Push;

25 Pop: PROC() RETURNS(ElementMode) EXCEPTIONS(Underflow)

26 IF TopOfSack = 0 THEN

27 CAUSE Underflow;

28 ELSE

29 RESUL T (SackData(TopOfStack));

30 TopOfSack -:= 1;

31 FI;

32 END Pop;

33 END SackModel;

34

35 MainPrograml: MODULE

36 SEIZE StackModel,;

37 DCL Sackl StackModel;

38 DCL Eleml SackModel!ElementMode;

39 Eleml :=[10, TRUE];

40 Sackl.Push(Eleml);

41 Sackl.Push([20, FALSE]);

42 END MainProgrami;

43

44 SYNMODE SackMode2 = MODULE SPEC /* ------memmmmmm- Definition of theinterface */
45 GRANT ElementMode, Push, Pop; I* Same interface as StackModel */
46 NEWMODE ElementMode = STRUCT (a INT, b BOOL);

47 Push: PROC(Elem ElementMode IN) EXCEPTIONS(Overflow) END Push;

48 Pop: PROC() RETURNS(ElementMode) EXCEPTIONS(Underflow) END Pop;

49

50 NEWMODE ListElem = STRUCT (next REF ListElem, [* Listimplementation */
51 info ElementMode); /* of the stack */
52 DCL Sack REF ListElem INIT := NULL;

53 END SackMode2;

54

55 SYNMODE SackMode2 = MODULE BODY [* e Definition of thebody */
56 Push: PROC(Elem ElementMode |N) EXCEPTIONS(Overflow)

57 Sack := ALLOCATE (ListElem, [Stack, Elem])

58 ON (ALLOCATEFAIL) : CAUSE Overflow; END;

59 END Push;

60 Pop: PROC() RETURNS(ElementMode) EXCEPTIONS(Underflow)

61 DCL Temp REF ListElem;

62 IF Stack = NULL THEN

63 CAUSE Underflow;

64 ELSE

206 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

65 RESULT (Stack->.info);

66 Temp := Sack;

67 Sack := Sack->.next;

68 TERMINATE (Temp);

69 FI;

70 END Pop;

71 END SackMode?;

72

73 MainProgram2: MODULE /* Essentially the same as MainPrograml */
74 SEIZE SackMode2;

75 DCL Sackl SackMode2;

76 DCL Eleml SackMode2!ElementMode;

77 Eleml := [10, TRUE];

78 Sackl.Push(Eleml);

79 Sackl.Push([20, FALSE]);

80 END MainProgram2;

31 Object-Orientation — Mode Extension — Simple, Sequential Stack with Operation “Top”

1

2 SYNMODE SackWithTopMode2 = MODULE SPEC /* BASED_ON indicates */
3 BASED_ ON SackMode2 /* mode derivationor */
4 GRANT Top; /* inheritance */
5 Top: PROC() RETURNS (ElementMode) [* Topisan additional operation */
6 EXCEPTIONS (EmptyStack) END Top;

7 END SackWithTopMode?2 ;

8

9 SYNMODE SackWithTopMode2 = MODULE BODY BASED_ON StackMode2

10 Top: PROC() RETURNS (ElementMode) EXCEPTIONS (EmptyStack)

11 IF Sack = NULL THEN

12 CAUSE EmptyStack;

13 ELSE

14 RETURN (Stack->.info);

15 FI;

16 END Top;

17 END SackWithTopMode2 ;

18

19 MainProgram3: MODULE /* Very similar to MainProgram2 */
20 SEIZE SackWithTopMode2;

21 DCL Sackl StackWithTopMode2;

22 DCL Eleml SackWithTopMode2! ElementMode;

23 Eleml := [10, TRUE];

24 Sackl.Push(Eleml);

25 Sackl.Push([20, FALSE]);

26 Eleml := Sackl.Top();

27 END MainProgram3;

32 Object-Orientation — Modes for Stacks with Access Synchronization

1 /* Based on the mode StackWithTopMode2 defined in example 31 the mode

2 RegionStackWithTopModel is defined whose objects behave like regions:

3 at any point in time at most one of the public procedures may be in execution.

4 Apart fromthis, the behavior is essentially the same as for SackWithTopMode2:

5 erroneous use of an object causes an exception. The second mode

6 RegionStackWithTopMode2 uses the CHILL event mechanism to deal with

7 erroneous use of a stack object. */
8

9 SYNMODE RegionSackWithTopModel = REGION SPEC BASED_ON SackWithTopMode2
10 * Just put the base mode into a “region envelope” */

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 207

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

11 [* In case of an erroneous use same behaviour as SackWithTopMode2: cause an exception */
12 END RegionSackWithTopModel ;

13

14 SYNMODE RegionSackWithTopModel = REGION BODY BASED ON SackWithTopMode2
15 END RegionSackWithTopModel ;

16

17 MainProgram4: MODULE

18 SEIZE RegionSackWithTopModel;

19 DCL Sackl RegionStackWithTopModel,;

20 Producer: PROCESS () ;

21 DCL Eleml RegionSackWithTopModel!ElementMode;

22 DO FOR EVER

23 [* compute Elem1 */

24 Sackl.Push(Eleml);

25 OD;

26 END Producer;

27 Consumer: PROCESS () ;

28 DCL Eleml RegionSackWithTopModel!ElementMode;

29 DO FOR EVER

30 Eleml := Stackl.Pop ();

31 [* process Eleml*/

32 OD;

33 END Consumer;

34 START Producer ();

35 START Consumer ();

36 END MainProgramy;

37

38 SYNMODE RegionSackWithTopMode2 = REGION SPEC BASED_ON SackWithTopMode2
39 /* In case of an erroneous use different behaviour as SackWithTopMode2:
40 use the event mechanism*/

41 GRANT Push, Pop, Top;

42 Push: PROC(Elem ElementMode IN) REIMPLEMENT END Push;

43 Pop: PROC() RETURNS (ElementMode) REIMPLEMENT END Pop;
44 Top: PROC() RETURNS (ElementMode) REIMPLEMENT END Top;
45 DCL NotEmpty, NotFull EVENT;

46 END RegionSackWithTopMode2 ;

47

48 SYNMODE RegionSackWithTopMode2 = REGION BODY BASED ON SackWithTopMode2
49 Push: PROC(Elem ElementMode IN) REIMPLEMENT

50 PushLoop: DO

51 BEGIN

52 SackWithTopMode2! Push(Elem);

53 EXIT PushLoop;

54 END

55 ON (Overflow): DELAY NotFull; END;

56 OD PushLoop;

57 CONTINUE NotEmpty;

58 END Push;

59 Pop: PROC() RETURNS(ElementMode) REIMPLEMENT

60 PopLoop: DO

61 BEGIN

62 RESULT SackWithTopMode2! Pop();

63 EXIT PopLoop;

64 END

65 ON (Underflow): DELAY NotEmpty; END;

66 OD PopLoop;

67 CONTINUE NotFull;

68 END Pop;

69 Top: PROC() RETURNS (ElementMode) REIMPLEMENT

70 TopLoop: DO

208 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

71
72
73
74
75
76
7
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Superseded by amorerecent version | SO/IEC 9496

BEGIN
RESULT SackWithTopMode2! Top();
EXIT TopLoop;
END
ON (EmptyStack): DELAY NotEmpty; END;
OD TopLoop;
CONTINUE NotFull;
END Top;
END RegionStackWithTopMode2 ;

MainProgram5: MODULE /* Essentially the same as MainProgram4 */
SEIZE RegionSackWithTopMode2;
DCL Sackl RegionSackWithTopMode2;
Producer: PROCESS () ;
DCL Eleml RegionStackWithTopMode2! ElementMode;
DO FOR EVER
/* compute Elem1 */
Sackl.Push(Eleml);
OD;
END Producer;
Consumer: PROCESS () ;
DCL Eleml RegionStackWithTopMode2! ElementMode;
DO FOR EVER
Eleml := Sackl.Pop (Eleml);
[* process Eleml*/
OD;
END Consumer;
START Producer ();
START Consumer ();
END MainProgramb;

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

: 1998 (E)

209

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Appendix V

Decommitted features

The features described in the following are not part of the present Recommendation Z.200, but were part of the
Recommendation Z.200, 1984, Red Book, Volume VI - Fascicle V1.12 and Recommendation Z.200, 1988, Blue Book,
Volume X - Fascicle X.6. In the following a brief description is given; for a complete definition of them, refer to the
relevant subclauses of Recommendation Z.200, 1984, that are hereafter mentioned. These features may be supported by
an implementation. If no indication is given, the references are made to Recommendation Z.200, 1984.

1 Free directive (see 2.6)

A free directive freed the reserved simple name strings specified in the reserved simple name string list so that they
could be redefined.

2 Integer modes syntax (see 3.4.2)
BIN was derived syntax for INT.

3 Set modes with holes (see 3.4.5)

A set mode defined a set of named or unnamed values. A set mode was a set mode with holes, if, and only if, the
number of its set element names was less than the number of values of the set mode.

4 Procedur e modes syntax (see 3.7)

A result spec without the optional reserved simple name string RETURNS was derived syntax for the result spec
with RETURNS.

5 String modes syntax (see 3.11.2)
The notation CHAR (n) and BIT (n) denoted character strings and bit strings respectively.

6 Array modes syntax (see 3.11.3)

Thereserved simple name string ARRAY was optional.

7 Level structurenotation (see 3.11.5)

A level structure mode was derived syntax for a nested structure mode. In the level structure notation, the fields were
preceded by a level number. If a structure contained fields that were themselves structures or arrays of structures, a
hierarchy of structures was formed and a level number could be associated with each field. Instead of writing nested
structure modes, it was allowed in the level structure mode to write the level number in the front of the field name.

8 M ap r eference names (see 3.11.6)
Map reference names could be used to specify mapping in an implementation defined way.

9 Based declarations (see 4.1.4)

A based declaration without a bound or free reference location name was derived syntax for a synmode definition
statement. A based declaration with a bound or free reference location name defined one or more access names. These

210 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
names served as an aternative way of accessing a location by dereferencing the reference value contained in the

specified reference location. This dereferencing operation was performed each time and only when an access was made
viaadeclared based name.

10 Character string literals (see 5.2.4.6)

Character string literals were delimited by apostrophe characters. Apart from the printable representation, the
hexadecimal representation could be used. Character string literals of length one served as character literals.

11 Receive expressions (see Rec. Z.200, 1988, 5.3.9)

Receive expressions were used to receive values from buffer locations. The executing process could become delayed and
could re-activate another process, delayed on sending a value to the specified buffer location.

12 Addr notation (see 5.3.8)

ADDR (<location>) was derived syntax for -> <location>.

13 Assignment syntax (see 6.2)

The = symbol was derived syntax for the := symbol.

14 Case action syntax (see 6.4)

The range list of a case action could be specified more generally by a discrete mode, and not only by a discrete mode
name.

15 Do-for action syntax (see 6.5.2)

The range in the range enumeration of a do-for action could be specified more generaly by a discrete mode, and not
only by a discrete mode name.

16 Explicit loop counters (see 6.5.2)

If an access name was visible in the reach where the do action was placed, which was equal to one of the names defined
by a loop counters, then the loop counter was explicit; otherwise it was implicit. In the former case, the value of the
loop counter was stored into the denoted location just prior to abnormal termination. A distinction was made between
normal and abnormal termination. Normal termination occurred if the evaluation of at least one of the loop counters

indicated termination. Abnormal termination occurred if the evaluation of while condition delivered FALSE or if the do
action was left by atransfer of control out of it.

17 Call action syntax (see 6.7)

The reserved simple name string CALL was optional. A call action with CALL was derived from a call action without
CALL.

18 RECURSEFAIL exception (see 6.7)

The RECURSEFAIL exception was caused when a non-r ecur sive procedure called itself recursively.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 211

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

19 Start action syntax (see 6.13)

The start action with the SET option was derived syntax for the single assignment action:
<instance location> := <start expression>.

20 Explicit value receive names (see 6.19)
A receive signal case action and a receive buffer case action could introduce value receive names. If a name was visible
in the reach where the receive signal case action was placed, which was equal to one of the names introduced after IN,

then the value receive name was explicit; otherwise it was implicit. In the former case, the received value was stored
into the denoted location immediately before the execution of the action statement list.

21 Blocks (see 8.1)

Theif action, case action, do action and delay case action were not defined to be blocks.

22 Entry statement (see 8.4)
A procedure could have multiple entry points by means of entry statements. These statements were considered to be
additional procedure definitions. The defining occurrence in the entry statement defined the name of the entry point in

the procedure in which reach it was placed. The entry point was determined by the textual position of the entry
statement.

23 Register names (see 8.4)
Register specification could be given in the formal parameter of the procedure and in the result spec. In the pass by value
case, it meant that the actua value was contained in the specified register; in the pass by location case, it meant that the

(hidden) pointer to the actual location was contained in the specified register. If the specification was in the result spec it
meant that the returned value or the (hidden) pointer to the returned location was contained in the specified register.

24 Recursive attribute (see Rec. Z.200, 1988, 10.4)

The recursivity of procedures was an implementation default, unless the attribute RECURSIVE was specified in a
procedure attribute list.

25 Quasi cause statements and quasi handlers (see 8.10.3)
Quasi cause statements indicated the presence of cause statements in remote modules or remote regions directly enclosed
in the reach directly enclosing the reach of the spec module or spec region in which the quasi cause statement was

placed. Quasi handlers indicated the presence of a handler in the program, reachable from the module, region or context
directly enclosed in the context to which the quasi handler was appended.

26 Syntax of quasi statements (see Rec. Z.200, 1988, 10.10.3)

Quasi procedure and process definition statements were terminated by an END <simple name string>.

27 Weakly visible names and visibility statements (see Rec. Z.200, 1988, 12.2.1)

A name string which was not strongly visible in areach was said to be weakly visiblein it if it wasimplied by a name
string which was strongly visible in the reach. The name string in the reach was linked to implied defining

212 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

occurrences. If they did not define the same set element of similar set modes, a weak clash occurred, otherwise the
name string was bound to them. Subclause 12.2.4 defined the implied defining occurrences for names.

28 Weakly visible names and visibility statements (see 10.2.4.3)

A name string NS weakly visible in reach R was said to be seizable by modulion M directly enclosed in R if NS was
linked in R to a defining occurrence not surrounded by the reach of M. A name string NS weakly visible in reach R of
modulion M was said to be grantable by M if NSwas linked in R to a defining occurrence surrounded by R.

29 Pervasiveness (see 10.2.4.4)

When a grant statement contained (DIRECTLY) PERVASIVE, al name strings granted by it had the (directly)
pervasive property in the surrounding reaches of the modulion M that directly enclosed the grant statement. The name
strings:

e werestrongly visiblein adirectly surrounding reach S of M;

e in case the name strings had the directly pervasive property in S, they had aso the directly pervasive
property in M;

e if they were not directly strongly visible in a reach R and were strongly visible in a reach that directly
enclosed R and where they had the pervasive property, then they were indirectly strongly visible in R
and had also the pervasive property in R.

30 Seizing by modulion name (see 10.2.4.5)

If a prefix rename clause in a seize statement had a seize postfix which contained a modulion name string and AL L, then
the prefix rename clause was equivalent to a set of seize statements, for any name string that was strongly visible in the
reach that directly enclosed the modulion in which the seize statement was placed and was seizable by this modulion,
and was granted by the modulion attached to the modulion name in the reach directly enclosing the modulion in which
the seize statement was placed.

31 Predefined simple name strings (seel11.2)
AND, NOT, OR, REM, MOD, THIS and XOR were predefined simple name strings.

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 213

Super seded by a more recent version

Non-ter minal

<absolute time built-in routine call>
<absolute time mode>
<absolute timing action>
<access attr built-in routine call>
<access mode>

<access name>

<action>

<action statement>

<action statement list>

<actual generic parameter>
<actual generic parameter list>
<actual generic procedure>
<actual parameter>

<actual parameter list>
<allocate built-in routine call>
<alternative field>

<arithmetic additive operator>
<arithmetic multiplicative operator>
<array element>

<array mode>

<array dice>

<array tuple>

<assert action>

<assertion part>

<assigning operator>
<assignment action>
<assignment symbol>
<associate built-in routine call>
<associate parameter>
<associate parameter list>
<association attr built-in routine call>
<association mode>
<begin-end block>

<begin-end body>

<binary bit string literal>
<binary integer literal>

<hit string literal>

<boolean literal>

<boolean mode>

<bound reference mode>
<bracketed action>

<bracketed comment>

<buffer element mode>

<buffer length>

<buffer mode>

<buffer receive alternative>
<built-in routine call>

<built-in routine parameter>
<built-in routine parameter list>
<call action>

<case action>

<case alternative>

<case label>

214 ITU-T Rec. Z.200 (1996 E)

Appendix VI

Defining

subclauses page

94.2
3.12.3
9.3.2
7.4.8
3113
4.2.2
6.1
6.1
10.2
10.11
10.11
10.11
6.7
6.7
6.20.4
3.13.4
5.3.6
537
4.2.8
3.13.3
4.2.9
525
6.10
10.3
6.2
6.2
6.2
742
742
74.2
744
3.11.2
10.3
10.2
5.24.9
5.24.2
5.24.9
5244
343
3.7.2
6.1
2.4
3.10.3
3.10.3
3.10.3
6.19.3
6.7
6.7
6.7
6.7
6.4
6.4
12.3

ISO/IEC 9496 : 1998 (E)

Index of production rules

Subclause Used on page(s)

126
28
125
110
26
47
79
79
129
144
144
144
87
87
102
32
73
75
50
30
51
60
91
132
79
79
80
106
106
106
107
26
131
129
60
56
60
58
17
23
79

26
25
25
96
87
87
87
87
81
81
169

125
28
124
106
26

47

79
129
81, 82, 93, 95, 96, 122, 124, 125, 129
144
144
144
87
45, 102
98

32
73,80
75, 80
47

29

47

60

79
132
79

79
45, 46, 79, 83
106
106
106
106
26

79
131
60

56

56

56

17

22

79

9

25

25

25

%
52, 68, 87
87

87

79

79

81
169

Super seded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Non-terminal Defining Subclause Used on page(s)
subclauses page

<case labdl list> 12.3 169 60, 169

<case label specification> 12.3 169 32,70, 81

<case selector list> 6.4 81 70, 81

<cause action> 6.12 91 79

<character> 2.2 8 9, 58, 59, 115, 116

<character literal> 5245 58 56

<character mode> 344 18 17

<character string> 24 9 9

<character string literal> 5.24.8 59 56, 138

<CHILL built-in routine call> 6.20 97

<CHILL location built-in routine call> 6.20.2 97 97

<CHILL simple built-in routine call> 6.20.1 97 97

<CHILL value built-in routine call> 6.20.3 98 97

<clause width> 755 116 116, 119

<closed dyadic operator> 6.2 80 79

<comment> 24 9

<common module component> 3.15.2 39 39,41

<component name> 2.7 11 11

<component hame defining occurrence> 2.7 11

<composite mode> 3131 29 16

<composite object> 6.5.2 83 83

<conditional expression> 532 70 70

<connect built-in routine call> 7.4.6 108 106

<context> 10.10.2 140 140

<context body> 10.2 129 138, 140

<context list> 10.10.2 140 136, 137, 139, 140, 143

<context module> 10.10.1 138 79

<continue action> 6.15 92 79

<control code> 754 115 115

<control part> 6.5.1 82 82

<control sequence> 5245 58 58, 59

<conversion clause> 755 116 115

<conversion code> 755 116 116

<conversion qualifier> 755 116 116

<cyclic timing action> 933 125 124

<data statement> 10.2 129 129

<data statement list> 10.2 129 129

<day expression> 94.2 126 126

<day location> 9.4.3 127 127

<decimal integer literal> 5242 56 56

<declaration> 41.1 45 45

<declaration statement> 41.1 45 39, 41, 129, 137

<defining mode> 321 14 14

<defining occurrence> 2.7 10 10, 79, 83, 96, 131, 132, 134, 135, 136,
137, 141, 143, 151

<defining occurrence list> 2.7 10 14, 45, 46, 54, 95, 132, 141, 144

<definition statement> 10.2 129 129

<delay action> 6.16 92 79

<delay alternative> 6.17 93 93

<delay case action> 6.17 93 79

<dereferenced bound reference> 4.2.3 48 47

<dereferenced free reference> 424 48 47

<dereferenced row> 425 49 47

<digit> 2.2 8 8, 56, 57, 115, 116

<digit sequence> 5242 57 56, 57

<directive> 2.6 10 9

<directive clause> 2.6 9

<disconnect built-in routine call> 7.4.7 110 106

<discrete mode> 34.1 17 16

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 215

Super seded by a more recent version

Non-ter minal

<discrete range mode>
<dissociate built-in routine call>
<do action>

<duration built-in routine call>
<duration mode>

<editing clause>

<editing code>

<element layout>
<element mode>

<else alternative>

<else clause>

<emptiness literal>
<empty>

<empty action>

<end hit>

<end value>

<end-of-line>

<event length>

<event list>

<event mode>

<exception list>
<exception name>

<exit action>

<exponent>

<exponent width>
<exponentiation operator>
<expression>

<expression conversion>
<expression list>

<field>

<field layout>

<field name>

<field name defining occurrence>
<field name defining occurrence list>
<field name list>

<first element>

<fixed field>

<float value range>

<floating point literal>

<floating point mode>

<floating point range mode>

<for control>

<forbid clause>

<forbid name list>

<formal generic mode>

<formal generic mode indication>
<formal generic mode list>
<formal generic parameter>
<formal generic parameter list>
<formal generic procedure spec>
<formal generic synonym>
<formal generic synonym list>
<formal parameter>

<formal parameter list>

<format argument>

<format clause>

216 ITU-T Rec. Z.200 (1996 E)

ISO/IEC 9496 : 1998 (E)

Defining

subclauses page

34.6
7.4.3
6.5.1
94.1
3.12.2
7.5.6
7.5.6
3.135
3.13.3
532
6.3
5247
6.11
6.11
3.135
6.5.2
24
3.10.2
6.17
3.10.2
3.8
2.7
6.6
5243
755
539
532

5211
4.2.8
3.134
3.135
2.7

2.7

2.7
525
4.2.9
3.134
352
5243
351
352
6.5.2
12.2.3.4
12234
10.11
10.11
10.11
10.11
10.11
10.11
10.11
10.11
10.4
104
753
754

Subclause Used on page(s)

19
107
82
126
28
119
119
35
30
70
81
59
91
91
35
83
9
25
93
25
24
10
86
57
116
76
70

67
50
32
35
10
10
10
61
51
32
21
57
20
21
83
166
166
144
144
144
143
143
144
144
144
132
132
113
115

17
106
79
125
28
115
119
30

30

70

81

56
91, 130, 138, 141, 164, 165
79
35, 36
83

25

93

25
24,122,132, 134, 141, 144
24,91

79

57

116

76

18, 19, 20, 21, 25, 27, 29, 30, 32, 35,
38, 39, 49, 50, 51, 58, 60, 67, 69, 70
76, 79, 80, 81, 83, 85, 91, 92, 98, 103,
108, 110, 113, 120, 126, 132, 141, 169
54

38, 50, 65, 98, 103

32

32

32, 52, 61, 66, 166

10

32

61

51, 65

32

21,22

56

20

20

82

166

166

144

16, 144

144

143

143

144

144

143

132

132, 144, 135, 166, 167
113

115

Super seded by a more recent version

Non-ter minal

<format control string>

<format element>

<format specification>

<format text>

<fractional width>

<free reference mode>
<generality>

<generic module instantiation>
<generic module mode template>
<generic module template>
<generic moreta mode instantiation>
<generic part>

<generic procedure instantiation>
<generic procedure template>
<generic process instantiation>
<generic process template>
<generic region instantiation>
<generic region mode template>
<generic region template>
<generic task mode templ ate>
<gettext built-in routine call>
<goto action>

<grant postfix>

<grant statement>

<grant window>

<guarded procedure attribute list>
<guarded procedure definition>
<guarded procedure definition statement>
<guarded procedure specification>
<guarded procedure specification statement>
<handler>

<hexadecimal bit string literal>
<hexadecimal digit>
<hexadecimal integer literal>
<hour expression>

<hour location>

<if action>

<implementation directive>
<index expression>

<index mode>

<initialisation>

<inline component procedure attribute list>
<input-output mode>

<instance mode>

<integer literal>

<integer mode>

<invariant part>

<io clause>

<io code>

<iolist>

<iolist element>

<io location built-in routine call>
<io simple built-in routine call>
<io value built-in routine call>
<irrelevant>

<isassociated built-in routine call>
<iteration>

<labelled array tuple>

Superseded by a more recent version

Defining
subclauses page
754 115
754 115
7.5.4 115
754 115
755 116

373 23
10.4 132
10.11 144
10.11 143
10.11 143
10.11 144
10.11 143
10.11 144
10.11 143
10.11 144
10.11 143
10.11 144
10.11 143
10.11 143
10.11 143
7.5.8 120
6.9 91
12.2.34 166
12234 166
12.2.34 166
10.3 132
10.3 132
10.3 132
10.3 132
10.3 132
8.2 122
5.2.4.9 60
524.2 56
5.2.4.2 56
9.4.2 126
9.4.3 127
6.3 81
2.6 10
7.4.6 108
3113 27
412 45
10.3 132
3111 26
3.9 24
524.2 56
34.2 17
3.15.2 39
75.7 119
757 119
7.5.3 113
7.5.3 113
7.4.1 106
7.4.1 106
74.1 106
12.3 169
7.4.2 106
6.5.2 83
525 60

ITU-T Rec. Z.200 (1996 E)

|SO/IEC 9496 : 1998 (E)

Subclause Used on page(s)

115

115

115

115

116

22

132

136

143

143

38

143

131

143

135

143

137

143

143

143

106

79

165, 166
39, 41, 164
166

132

132
39,41
132
39,41
39, 41, 43, 45, 46, 79, 131, 132, 143,
135, 136, 137
60

56, 60
56

126

127

79

108, 110, 113
27,30

45

132

16

16

56

17

39, 41, 43
115

119

113

113

97

97

98

169

106

83

60

Super seded by a more recent version 217

Super seded by a more recent version

Non-ter minal

<labelled structure tuple>
<left element>

<length>

<length argument>
<letter>

<lifetime-bound initialisation>
<line-end comment>
<literal>

<literal expression list>
<literal range>
<location>

<location argument>
<location built-in routine call>
<location contents>
<location conversion>
<location declaration>
<location enumeration>
<location list>

<location procedure call>
<loc-identity declaration>
<loop counter>

<lower bound>

<lower element>

<lower float bound>
<member mode>
<member ship operator>
<minute expression>
<minute |location>
<mode>

<maode argument>

<mode definition>

<modification built-in routine call>
<modify parameter>

<modify parameter list>

<module>

<modul e body>

<module body component>
<module inheritance>

<module mode>

<module mode body>

<module mode specification>
<module spec>

<module specification component>
<monadic operator>

<month expression>

<month location>

<moreta component name>
<moreta component procedure call>
<mor eta mode>

<mor eta-bound initialisation>
<multiple assignment action>
<name>

218 ITU-T Rec. Z.200 (1996 E)

Defining

subclauses page

525
4.2.7
3.135
6.20.3
2.2
4.1.2
24
5241
3.13.4
346
4.2.1

753
4.2.12
522
4.2.13
4.1.2
6.5.2
6.19.2
4211
4.1.3
6.5.2
3.4.6
4.2.9
352
3.6
535
94.2
9.4.3
33

6.20.3
321
7.4.5
7.4.5
7.4.5
10.6
10.2
3.15.2
3.15.2
3.15.2
3.15.2
3.15.2
10.10.2
3.15.2
539
9.4.2
9.4.3
2.7
6.7
3.151
4.1.2
6.2
2.7

ISO/IEC 9496 : 1998 (E)

Subclause Used on page(s)

61
49
35
98
8

45
9

56
32
19
47

113
52
55
53
45
83
95
52
46
83
19
51
21
22
72
126
127
16

98
14
107
107
107
136
129
39
39
39
39
39
140
39
76
126
127
11
87
38
45
79
10

60
49, 64

35

08

8

45

9

54

32

19, 20, 27, 58, 169

11, 46, 49, 50, 51, 52, 53, 55, 77, 79,
80, 83, 86, 87, 90, 92, 93, 94, 95, 96,
98, 106, 107, 108, 110, 113, 120, 127
113

47

54

47

45

83

95

47

45

83, 85

19, 27, 28, 31

51, 65

21

22

72

126

127

14, 22, 23, 24, 26, 27, 30, 32, 45, 46,
54, 85, 133, 134, 141, 144, 151

98, 102

15

106

107

107

79, 137

136, 143

39

39

38

39

39, 143

139

39

76

126

127

10

87

29

45

79

17, 18, 19, 20, 21, 22, 23, 24, 25, 27,
28, 29, 30, 32, 39, 41, 43, 47, 48, 49,
53, 55, 58, 59, 60, 67, 68, 69, 81, 83,
86, 87, 91, 94, 95, 96, 98, 103, 144,
151, 169

Super seded by a more recent version

Non-ter minal

<name string>

<new prefix>

<newmode definition statement>
<non-composite mode>
<numbered set element>
<numbered set list>

<numeric expression>

<octal bit string literal>

<octal digit>

<octal integer literal>

<old prefix>

<on-alternative>

<operand-0>

<operand-1>

<operand-2>

<operand-3>

<operand-4>

<operand-5>

<operand-6>

<operand-7>

<operator-3>

<operator-4>

<origin array mode name>
<origin string mode name>
<origin variant structure mode name>
<parameter attribute>
<parameter list>

<parameter spec>
<parameterised array mode>
<parameterised string mode>
<parameterised structure mode>
<parenthesised clause>
<parenthesised expression>
<percent>

<piece designator>

<pos>

<postfix>

<power set difference operator>
<power set enumeration>
<power set inclusion operator>
<power set mode>

<power set tuple>

<predefined moreta location>
<prefix>

<prefix clause>

<prefix rename clause>
<prefixed name string>
<primitive value>

<priority>

<proc body>

<procedure attribute list>
<procedure call>

<procedure definition>
<procedure definition statement>
<procedure mode>

<process body>

<process definition>

<process definition statement>

Superseded by a more recent version

Defining

subclauses page
2.7 10
12.2.3.3 165
323 15
3.3 16
345 18
345 18
6.20.3 98
5.2.4.9 60
5.24.2 56
524.2 56
12.2.3.3 164
8.2 122
533 71
534 71
5.35 72
5.3.6 73
537 74
5.3.9 76
5.3.9 76
5.3.10 77
5.35 72
5.3.6 73
3.13.3 30
3.13.2 29
3.134 32
38 24
38 24
38 24
3.133 30
3.13.2 29
3.134 32
75.4 115
5.2.17 69
754 115
10.10.1 138
3.135 35
12.2.3.3 165
5.3.6 73
6.5.2 83
5.35 72
3.6 22
525 60
4214 53
2.7 10
12.2.34 166
12.2.3.3 164
2.7 10
521 54
6.16 92
10.2 129
10.4 132
6.7 87
10.4 132
104 131
38 24
10.2 129
105 135
10.5 135

ITU-T Rec. Z.200 (1996 E)

Subclause Used on page(s)

10, 166, 167
164

39, 129, 137, 141, 144
16

18

18

98

60

56, 60

56

164

122

70,71

71

71,72
72,73
73,75
75,76

76

76

72

73

30, 38

29, 30, 38
32,38

24

24,134
24,132, 134, 141
30

29

32

115

54

115

138

35, 37, 157
164

73, 80

83

72

16

60

47

10, 164, 165, 166, 167
166, 167
166, 167

10

48, 49, 64, 65, 66, 77, 86, 87, 94, 102,
124, 125, 127
87,93, 94
132

132, 141
52, 68, 87
131, 143
129

16

135

135, 143
39, 129

Super seded by a more recent version

|SO/IEC 9496 : 1998 (E)

219

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Non-ter minal

<process specification statement>
<program>

<qualified name>

<quasi data statement>

<quasi declaration>

<quasi declaration statement>
<quasi definition statement>
<quasi formal parameter>

<quasi formal parameter list>
<quasi guarded procedure definition statement>
<quasi location declaration>
<quasi loc-identity declaration>
<quasi process definition statement>
<quasi signal definition>

<quasi signal definition statement>
<quasi synonym definition>
<quasi synonym definition statement>
<quote>

<range>

<range enumer ation>

<range list>

<reach-bound initialisation>
<readrecord built-in routine call>
<real mode>

<receive buffer case action>
<receive case action>

<receive signal case action>
<record mode>

<reference mode>

<referenced location>
<referenced mode>

<region>

<region body>

<region body component>
<region inheritance>

<region mode>

<region mode body>

<region mode specification>
<region spec>

<region specification component>
<relational operator>

<relative timing action>

<remote context>

<remote modulion>

<remote program unit>

<remote spec>

<repetition factor>
<representation conversion>
<result>

<result action>

<result attribute>

<result spec>

<return action>

<right element>

<row mode>

<second expression>

<second location>

<seize postfix>

<seize statement>

Defining
subclauses page

105
10.8
2.7
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
10.10.3
5248
525
6.5.2
6.4
4.1.2
749
35
6.19.3
6.19.1
6.19.2
3.11.3
371
5.3.10
3.7.2
10.7
10.2
3.15.3
3.15.3
3.15.3
3.15.3
3.15.3
10.10.2
3.15.3
535
931
10.10.1
10.10.1
10.10.1
10.10.1
754
5.2.12
6.8

6.8

38

3.8

6.8
4.2.7
3.74
9.4.2
9.4.3
12.2.35
12.2.3.5

39
137
11
141
141
141
141
141
141
141
141
141
141
141
141
141
141
59
60
83
81
45
110
20
96
95
95
27
22
77
23
137
129
41
41
41
41
41
140
41
72
124
138
138
138
138
115
67
90
90
24
24
90
50
23
126
127
167
167

Subclause Used on page(s)

10, 11
129

141

141

141

141

141

141

141

141

141

141

141

141

141

59

60

83

81

45

106

16

95

79

95

27

16

77

23

129, 137
137, 143
41, 43
41

38

41

41, 143
140

41, 43
72

124
140
136, 137
15, 143
139, 140
115

54

90

79

24
24,132, 134, 141, 144, 166, 167
79

49, 64
22

126

127
165, 167
39, 143, 144, 164

220 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Non-terminal Defining Subclause Used on page(s)
subclauses page

<seize window> 12.2.35 167 167

<send action> 6.18.1 93 79

<send buffer action> 6.18.3 9 93

<send signal action> 6.18.2 94 93

<set element> 345 18 18

<set element name> 2.7 10

<set element name defining occurrence> 2.7 10 18

<set list> 345 18 18

<set literal> 5.4.2.6 58 56

<set mode> 345 18 17

<settext built-in routine call> 75.8 120 106

<signal definition> 115 151 151

<signal definition statement> 115 151 39, 41, 130, 141

<signal receive alternative> 6.19.2 95 95

<signed floating point literal> 5243 57 57,76

<signed integer literal> 5242 56 56, 76

<significant digits> 352 21 21,22

<simple component procedure attribute list> 10.3 132 132

<simple name string> 2.2 8 10, 11, 39, 41, 43, 79, 131, 132, 135,

136, 137, 138, 139, 140, 141, 143, 144

<simple prefix> 2.7 10 10

<simple spec module> 10.10.2 139 139

<simple spec region> 10.10.2 140 140

<single assignment action> 6.2 79 79

<dicesize> 4.2.7 50 49, 51, 64, 65

<spec module> 10.10.2 139 79, 129, 137

<sgpec module body> 10.2 129 139, 140

<spec region> 10.10.2 140 129

<spec region body> 10.2 129 140

<start action> 6.13 91 79

<start bit> 3.135 35 35, 36, 157

<start element> 426 49 49, 64

<start expression> 5215 68 54,91

<start value> 6.5.2 83 83

<step> 3.135 35 35

<step enumeration> 6.5.2 83 83

<step size> 3.135 35 35, 36, 157

<step value> 6.5.2 83 83

<stop action> 6.14 92 79

<store location> 7.4.9 110 110

<string concatenation operator> 5.3.6 73 73,80

<string element> 4.2.6 49 47

<string length> 3.13.2 29 29, 30

<string mode> 3.13.2 29 29

<string repetition operator> 539 76 76

<string dice> 4.2.7 49 47

<string type> 3.13.2 29 29, 30

<structure field> 4.2.10 52 47

<structure mode> 3.134 32 29

<structure tuple> 525 60 60

<sub expression> 532 70 70

<sub operand-0> 533 71 71

<sub operand-1> 534 71 71

<sub operand-2> 535 72 72

<sub operand-3> 5.3.6 73 73

<sub operand-4> 537 75 75

<sub operand-5> 539 76 76

<synchronisation mode> 3.10.1 25 16

<synmode definition statement> 322 15 39, 129, 137, 141, 144

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 221

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Non-terminal Defining Subclause Used on page(s)
subclauses page
<synonym definition> 5.1 54 54
<synonym definition statement> 51 54 39, 129, 141, 144
<tag list> 3.134 32 32
<task body component> 3.154 43 43
<task inheritance> 3.154 43 43
<task mode> 3.154 43 38
<task mode body> 3.154 43 43
<task mode specification> 3.154 43 43, 143
<task specification component> 3.154 43 43
<template> 10.11 143 130, 137
<terminate built-in routine call> 6.20.4 102 97
<text argument> 753 113 113
<text built-in routine call> 753 113 106
<text io argument list> 753 113 113
<text length> 3114 27 27
<text mode> 3114 27 26
<text reference name> 2.7 10 138
<then alternative> 532 70 70
<then clause> 6.3 81 81
<time value built-in routine call> 94 125 98
<timing action> 9.3 124 79
<timing handler> 931 124 124,125
<timing mode> 3121 28 16
<timing simple built-in routine call> 9.4.3 127 97
<transfer location> 7.4.6 108 108, 110
<tuple> 525 60 54
<undefined value> 531 69 69
<unlabelled array tuple> 525 60 60
<unlabelled structure tuple> 525 61 60
<unnumbered set list> 345 18 18
<unsigned floating point literal> 5243 57 57
<unsigned integer literal> 5242 56 56
<upper bound> 34.6 19 19, 27, 28, 31
<upper el ement> 4.2.9 51 51, 65
<upper float bound> 35.2 21 21
<upper index> 3.13.3 30 30
<upper lower argument> 6.20.3 98 98
<usage expression> 7.4.6 108 108
<value> 531 69 45, 54, 60, 61, 79, 87, 90, 94, 102, 106,
107
<value argument> 753 113 113
<value array element> 528 65 54
<value array slice> 529 65 54
<value built-in routine call> 5214 68 54
<value case alternative> 532 70 70
<value enumeration> 6.5.2 83 83
<value name> 523 55 54
<value procedure call> 5.2.13 68 54
<value string element> 526 64 54
<value string slice> 527 64 54
<value structure field> 5.2.10 66 54
<variant alter native> 3.134 32 32
<variant field> 3.134 32 32
<visibility statement> 12.2.3.2 164 129
<where expression> 7.4.6 108 108
<while control> 6.5.3 85 82
<with control> 6.5.4 86 86
<with part> 6.5.4 86 82
<word> 3.135 35 35, 36, 37

222 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

Non-terminal Defining Subclause Used on page(s)
subclauses page

<write expression> 7.4.9 110 110

<writerecord built-in routine call> 7.4.9 110 106

<year expression> 9.4.2 126 126

<year location> 94.3 127 127

<zero-adic operator> 5.2.16 69 54

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 223

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

I ndex

Page numbers in boldface are references to the defining occurrences of an item; normal font refers to applied
occurrences of indexed items.

—A— all class, 13, 35, 70, 142, 149, 153, 161, 170
ALLOCATE, 3, 5, 61, 102, 103, 137, 138, 179
ABS, 75, 98, 99, 100, 101, 179 allocate built-in routine call, 98, 102
absolute time built-in routine call, 126 allocated reference value, 103, 138
absolute time built-in routine call, 125, 126 ALLOCATEFAIL, 103, 179
absolute time mode, 2, 29, 155, 158, 171, 172, 175 aternative field, 63, 169
absolute time mode, 28 alternative field, 32, 33, 34, 35, 37, 156, 158, 159, 170
absolute time mode name, 28, 171 AND, 71, 72, 80, 178
absolute time primitive value, 125, 127, 172 ANDIF, 71, 72, 178
absolute timing action, 124, 125, 128 ANY, 144, 145, 178
absolute value, 99 ANY_ASSIGN, 144, 145, 178
ABSTIME, 126, 179 ANY_DISCRETE, 144, 145, 178
abstract, 40, 41, 42, 43, 44, 153 ANY _INT, 144, 145, 178
ABSTRACT, 39, 40, 41, 42, 43, 44, 178 ANY_REAL, 144, 145, 178
access, 2, 5, 13, 32, 36, 45, 46, 47, 86, 105, 120, 137, applied occurrence, 6, 11, 129, 163
147 ARCCOQOS, 98, 99, 101, 102
ACCESS, 27, 28, 178 ARCSIN, 98, 99, 101, 102
access attr built-in routine call, 106, 110 ARCTAN, 98, 99, 101, 102
access attribute, 105 arithmetic additive operator, 73
access location, 104, 105, 106, 107, 108, 109, 110 arithmetic additive operator, 73, 74, 80
access location, 59, 98, 100, 101, 106, 108, 109, 111, arithmetic multiplicative operator, 75
112,121, 172 arithmetic multiplicative operator, 75, 80
access mode, 4, 27, 101, 105, 153, 155, 158, 159, 171, ARRAY, 30, 31, 36, 178
172 array element, 36, 50, 169
access mode, 26 array element, 47, 50, 51, 59, 65, 138, 149
access mode, 28, 109, 113, 114, 121, 155, 158 array expression, 84, 85, 100, 172
access mode name, 98, 100, 101, 171 array location, 23, 31, 50, 51, 84, 85
access name, 3, 46, 47, 48, 86, 149, 171 array location, 51, 52, 65, 84, 85, 99, 100, 138, 149,
accessreference, 110, 113, 120, 121 172
access sub-location, 28, 46, 108, 113, 120 array mode, 16, 31, 35, 36, 37, 38, 49, 62, 111, 152,
access values, 105 153, 155, 156, 158, 159, 160, 161, 171, 172
action, 1,2, 3,4,5,6,9, 79, 84, 114, 117, 122, 123, array mode, 29, 31, 59, 173
124, 128, 130, 131, 132, 135, 147, 150, 151, 175 array mode, 23, 173
action statement, 2, 79, 91, 122, 129, 136, 147 array mode name, 31, 98, 100, 101, 171
action statement, 79, 124, 125 array primitive value, 65, 66, 150, 172
action statement list, 81, 82, 83, 84, 85, 86, 122, 123, array dice, 37, 51
125, 131, 169 array slice, 47, 51, 59, 65, 138, 149
action statement list, 81, 93, 95, 96, 122, 124, 125, 128, array tuple, 61, 170
129, 130 array tuple, 60, 61, 62, 63
activation, 90, 137, 147 array value, 31, 61, 65, 111
active, 5, 127, 147, 148, 150, 151 ASSERT, 91, 178
actual generic parameter, 145, 146 assert action, 4, 91
actual generic parameter, 144 assert action, 79, 91
actual generic parameter list, 144 ASSERTFAIL, 91, 179
actual generic procedure, 144 assertion part, 133
actual index, 113, 114, 115, 116, 118, 119, 120 assertion part, 132, 133, 135
actual length, 28, 29, 49, 50, 64, 65, 71, 72, 80, 85, assignable, 40
116, 118, 119, 120 ASSIGNABLE, 39, 40, 41, 178
actual parameter, 68, 69, 87, 133, 134, 147 assigning operator, 80
actual parameter, 61, 69, 87, 89, 175 assigning operator, 79, 80
actua parameter list, 87 assignment action, 3, 80, 148
actual parameter list, 69, 87 assignment action, 79
AFTER, 124, 178 assignment conditions, 46, 63, 69, 71, 80, 89, 94, 95,
alike, 14, 142, 154, 157, 158, 159 96, 97, 103, 112
ALL, 139, 166, 167, 168, 178 assignment symbol, 80

224 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

assignment symbol, 45, 46, 79, 80, 83

ASSOCIATE, 4, 26, 104, 106, 107, 179

associate built-in routine call, 106

associate parameter, 106, 175

associate parameter list, 106

ASSOCIATEFAIL, 107, 175, 179

association, 2, 4, 26, 27, 46, 104, 105, 106, 107, 108,
109, 110, 111, 112, 153, 175

ASSOCIATION, 26, 110, 179

association attr built-in routine call, 106, 107

association attribute, 105

association location, 104, 105, 106, 107, 110

association location, 106, 107, 108, 109, 172

association mode, 4, 26, 105, 153, 155, 158, 171, 172

association mode, 26

association mode name, 26

association mode name, 26, 171

association value, 105, 175

AT, 125,178

—B—

Backus-Naur Form, 7

baseindex, 4, 105, 108, 109

BASED_ON, 39, 41, 43, 178

BEGIN, 131, 178

begin-end block, 4, 5, 131

begin-end block, 79, 128, 130, 131

begin-end body, 129, 131

BIN, 19, 20, 178

binary bit string literal, 60

binary integer literal, 56

binding rules, 8, 11, 12, 163

bit string, 29, 71, 72

bit string literal, 60

bit string literal, 56, 60, 77

bit string value, 29, 60, 71, 72, 73, 77, 118

block, 1, 55, 85, 123, 128, 129, 130, 131, 134, 136,
137, 138, 140, 147, 163, 164

BODY, 39, 41, 43, 136, 137, 143, 178

BOOL, 17, 30, 32, 58, 73, 74, 106, 107, 110, 121, 161,
179

boolean expression, 86

boolean expression, 70, 81, 91, 172

boolean literal, 58

boolean literal, 56, 58

boolean literal name, 58, 171

boolean literal names, 58

boolean mode, 17, 154, 157, 171, 172

boolean mode, 17

boolean mode name, 17

boolean mode name, 17, 171

boolean value, 29, 58, 71, 72, 77, 105, 118

BOOLS, 29, 30, 60, 74, 77, 178

bound, 11, 12, 140, 142, 143, 159, 163, 165, 167, 168,
169, 172

bound reference, 2, 22

bound reference mode, 23, 155, 156, 157, 159, 160,
161, 171, 172, 173

bound reference mode, 22, 23

bound reference mode name, 23, 171

bound reference moreta location primitive value, 87,
172

bound reference primitive value, 48, 149, 172

bracketed action, 4, 86, 87, 122

bracketed action, 79

bracketed comment, 9

buffer, 5, 24, 46, 93, 94, 95

BUFFER, 25, 178

buffer element mode, 26

buffer element mode, 26, 61, 95, 97, 155, 158, 159

buffer length, 26, 94, 99, 155, 158

buffer length, 26

buffer location, 26, 94, 96, 97, 99

buffer location, 61, 94, 95, 96, 97, 100, 172

buffer mode, 2, 26, 153, 155, 157, 159, 171, 172

buffer mode, 25

buffer mode name, 99, 100, 171

buffer receive alternative, 96, 97, 128, 129, 130

built-in routine call, 3, 5, 52, 61, 87, 100, 101, 103,
106, 110, 111, 112, 114, 115, 116, 121, 126, 137,
138, 174

built-in routine call, 87, 89, 97, 99, 100, 174

built-in routine name, 97, 174

built-in routine name, 87, 88, 172

built-in routine parameter, 87, 106

built-in routine parameter list, 87

BY, 83, 178

—C—

call action, 87, 134

call action, 79, 87, 89

canonical name string, 11, 162

CARD, 98, 99, 100, 101, 179

carriage placement, 119

CASE, 32,70, 71, 81, 95, 96, 178

case action, 4, 35, 71, 81, 169, 170

case action, 59, 79, 81, 128, 130, 170

case dternative, 81, 82

case alternative, 81, 128, 170

case label, 62, 170

case label, 59, 82, 169, 170

case labdl list, 61, 81, 169, 170

case labdl list, 60, 62, 82, 156, 159, 169, 170

case labdl specification, 33, 81, 169, 170

case label specification, 32, 34, 70, 81, 82, 169, 170

case selection, 169

case selection conditions, 35, 62, 71, 82

case selector list, 81, 82

case selector list, 59, 70, 81, 82

CAUSE, 91, 178

cause action, 4, 91, 122

cause action, 79, 91

change-sign, 77

CHAR, 18, 30, 58, 74, 179

character, 2,7, 8, 9, 10, 11, 18, 58, 59, 73, 113, 115,
116, 117, 118, 119, 120

character, 8, 9, 58, 116, 173

character literal, 18, 58

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 225

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

character literal, 56, 58

character mode, 18, 154, 171

character mode, 17, 18

character mode name, 18

character mode name, 18, 171

character set, 8, 9, 10, 18, 58, 176

character string, 29, 74, 114, 116, 118

character string, 9

character string expression, 113, 114, 172

character string literal, 9, 59

character string literal, 56, 59, 60, 77, 138, 139

character string location, 113, 114, 120, 121, 172

character string mode, 172

character string value, 29, 59, 118

CHARS, 28, 29, 30, 60, 74, 77, 178

CHILL,1,2,3,4,5,6,7,8,9, 10, 13, 18, 25, 26, 27,
28, 53, 58, 67, 69, 79, 88, 97, 104, 105, 106, 111,
112, 113, 115, 116, 117, 124, 127, 137, 138, 139,
141, 147, 148, 149, 150, 172, 174, 176

CHILL built-in routine call, 87, 97

CHILL location built-in routine call, 97

CHILL simple built-in routine call, 97

CHILL value built-in routine call, 97, 98, 99

class, 2, 3, 6, 7, 13, 14, 19, 20, 21, 27, 31, 35, 46, 51,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 82, 85, 86,
88, 89, 90, 94, 95, 96, 97, 99, 100, 101, 102, 103,
106, 107, 109, 110, 111, 112, 114, 119, 121, 126,
142, 149, 153, 154, 155, 158, 159, 161, 162, 163,
168, 170, 172, 173, 174

clause width, 114, 116, 117, 118, 119, 120

closed dyadic operator, 80

closed dyadic operator, 79, 80

closest surrounding, 86, 90, 137

comment, 9, 11

comment, 9

common module component, 39, 41

compatibility relations, 154

compatible, 14, 20, 31, 35, 46, 51, 54, 62, 63, 65, 66,
67, 71,72, 73, 74, 75, 80, 82, 85, 88, 89, 90, 94, 95,
101, 103, 109, 111, 112, 114, 153, 155, 158, 161,
162, 170, 172, 173

complement, 77

complete, 62, 82, 170

component mode, 15, 30, 50, 64, 85

component name, 12, 32, 39, 41, 43

component name, 11

component name defining occurrence, 11

component procedure, 40, 42, 43, 44, 53, 102, 133,
134, 135, 147, 148, 149, 150, 151, 162

component procedure, 133, 147

component procedure, 41, 42, 44, 133, 150

composite mode, 2, 29

composite mode, 16, 29, 173

composite object, 83, 84, 85

composite value, 29, 31, 32, 70

concatenation, 9, 11, 29, 73

concurrent execution, 5, 135, 137, 147

conditional expression, 169, 170

conditional expression, 59, 70, 71, 149, 150, 170

conjunction, 72

CONNECT, 4, 104, 108, 109, 110, 179

connect built-in routine call, 106, 108

connect operation, 27, 104, 105, 106, 108, 111

connected, 4, 27, 46, 104, 105, 106, 107, 108, 109, 110,
111, 112, 119

CONNECTFAIL, 109, 175, 179

consistency, 35, 37, 71

consistent, 170

constant, 3, 8, 23, 38, 55, 57, 58, 59, 60, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
100, 101, 102, 117, 138, 141, 172, 175

constant classes, 13

constant value, 3, 54, 56, 175

constant value, 14, 45, 46, 54, 61, 141, 149, 172

constr, 133, 135

CONSTR, 132, 133, 178

constructor, 40, 41, 42, 43, 44, 133, 162, 164

constructor, 45, 102

congtructor actual parameter list, 45, 102, 173

context, 2, 3, 5, 8, 58, 59, 61, 62, 69, 70, 71, 88, 147,
148, 151, 156, 158, 168, 170, 174

context, 128, 130, 131, 140, 141, 142, 167, 168

CONTEXT, 138, 139, 140, 178

context body, 129, 138, 139, 140

context list, 128, 136, 137, 139, 140

context module, 79, 138, 139

CONTINUE, 92, 178

continue action, 5, 25, 92, 93, 151

continue action, 79, 92

control code, 114, 115

control part, 82, 83, 131

control part, 82

control sequence, 58, 59

conversion clause, 114, 115, 116

conversion code, 117

conversion code, 114, 116, 117, 118, 119

conversion qualifier, 114, 116, 117, 118

corresponding, 140, 142, 143, 164, 169

COS, 98, 99, 101, 102

CREATE, 107, 108, 179

created, 3, 11, 25, 26, 28, 45, 46, 68, 102, 103, 104,
105, 106, 107, 113, 128, 129, 130, 131, 137, 138,
147, 162

CREATEFAIL, 108, 175, 179

critical, 131, 134, 135, 142, 147, 148, 149, 150, 151

critical procedure name, 147

current index, 105, 108, 109, 111

CYCLE, 125, 178

cyclic timing action, 124, 125

cyclic timing action, 124, 125, 128

—D—

data statement, 2, 4, 122, 123, 130
data statement, 129

data statement list, 129
datatransfer state, 4, 104, 105
day expression, 126

day location, 127

DAYS, 126, 179

226 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

DCL, 45, 85, 133, 134, 141, 178

decimal integer literal, 56

declaration, 2, 33, 45, 129, 131, 137, 149, 167

declaration, 45, 128

declaration statement, 3, 45, 122

declaration statement, 45, 129

defined value, 3, 147

defining mode, 13, 14, 15

defining mode, 14

defining mode, 14, 15, 19, 21, 30, 108, 169

defining occurrence, 6, 11, 12, 86, 140

defining occurrence, 10, 11, 12, 14, 15, 16, 18, 45, 46,
54, 79, 83, 85, 86, 96, 97, 128, 129, 131, 132, 133,
134, 135, 136, 137, 139, 141, 142, 143, 151, 162,
163, 164, 165, 167, 168, 169, 172

defining occurrence list, 10, 14, 45, 46, 54, 95, 96, 128,
129, 132, 134, 141

definition statement, 129

definition statements, 2

DELAY, 92, 93, 124, 125, 178

delay action, 25, 92, 150

delay action, 79, 92

delay alternative, 93, 128

delay case action, 25, 93, 150

delay case action, 79, 93, 128, 130

delayed, 5, 25, 26, 46, 92, 93, 94, 95, 96, 97, 124, 147,
148, 150, 151

DELAYFAIL, 92, 93, 179

delaying, 5, 95, 147

DELETE, 107, 108, 179

DELETEFAIL, 108, 175, 179

delimiter, 9, 10

dereferenced bound reference, 48

dereferenced bound reference, 47, 48, 149

dereferenced free reference, 48

dereferenced free reference, 47, 48, 149

dereferenced row, 49

dereferenced row, 47, 49, 149

dereferencing, 3, 22

derived class, 13, 19, 21, 55, 57, 58, 60, 64, 68, 69, 73,
74,77, 100, 101, 106, 107, 109, 110, 117, 121, 126,
149, 153, 161, 162, 170

derived syntax, 7, 31, 32, 50, 57, 61, 81, 95, 96, 116,
119, 139, 165

destination reach, 164, 165

destr, 133, 135

DESTR, 132, 133, 178

destructor, 40, 41, 42, 43, 44, 46, 133, 162, 164

destructor, 102

difference, 14, 73, 119, 126, 154

digit, 8, 56, 57, 115, 116, 117, 118

digit sequence, 56, 57

digits, 21, 117, 118

direct linkage, 163

directive, 10

directive, 9, 10

directive clause, 10

directive clause, 9, 10

directly enclose, 130

directly enclosed, 122, 130, 142, 163, 165, 167, 169

directly enclosing, 122, 128, 130, 131, 138, 140, 164,
165, 166, 167, 168

directly linked, 163, 164, 165

directly visible, 163, 164

DISCONNECT, 104, 110, 179

disconnect built-in routine call, 106, 110

disconnect operation, 105

discrete, 55, 56

discrete expression, 38, 81, 82, 98, 100, 101, 172

discrete expressions, 81

discrete literal, 56

discrete literal expression, 32, 62, 63, 82, 170, 172

discrete location, 98, 99, 100, 172

discrete mode, 2, 17, 27, 34, 37, 62, 63, 67, 68, 153,
170, 171, 172

discrete mode, 16, 17, 173

discrete mode, 22, 27, 173

discrete mode name, 19, 20, 58, 59, 81, 82, 84, 85, 98,
100, 170, 171

discrete range mode, 15, 16, 19, 20, 31, 80, 110, 112,
118, 153, 154, 156, 157, 171

discrete range mode, 17, 19, 58

discrete range mode name, 19, 171

DISSOCIATE, 26, 104, 107, 179

dissociate built-in routine call, 106, 107

dissociate operation, 104

division remainder, 75

DO, 82, 90, 178

do action, 4, 82, 83, 84, 85, 86, 131, 150

do action, 47, 55, 79, 82, 128, 129, 130, 149

DOWN, 83, 84, 178

DURATION, 28, 126, 179

duration built-in routine call, 126

duration built-in routine call, 125, 126

duration mode, 28, 67, 68, 155, 158, 171, 172, 175

duration mode, 28

duration mode name, 28

duration mode name, 28, 171

duration primitive value, 124, 125, 172

duration values, 175

DYNAMIC, 24, 27, 28, 46, 47, 52, 61, 89, 90, 134,
141, 178

dynamic array mode, 38, 63

dynamic class, 13, 55, 71, 72, 73, 74, 80, 85, 134

dynamic condition, 4, 6, 7, 68, 80, 115, 122, 174

dynamic conditions, 7

dynamic equivalent, 14, 160, 161

dynamic mode, 2, 6, 7, 13, 22, 23, 37, 49, 55, 80, 103,
111, 134, 160, 161

dynamic mode location, 3, 80

dynamic parameterised structure mode, 33, 38, 52, 63,
66, 73

dynamic properties, 105, 113

dynamic properties, 7

dynamic read-compatible, 14, 46, 47, 89, 90, 160,
161

dynamic record mode, 27, 109, 111, 155, 158

dynamic string mode, 38

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 227

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

— E—

editing clause, 114, 115, 119, 120

editing code, 114, 119, 120

element, 2, 7, 29, 31, 36, 37, 49, 50, 59, 60, 61, 64, 65,
70,71, 72,77, 84,99, 105, 113, 114, 118

element layout, 37, 85, 157

element layout, 31, 51, 155, 157, 158, 175

element layout, 30, 31, 35

element mode, 31, 85, 105

element mode, 31

element mode, 16, 30, 31, 37, 49, 51, 61, 62, 63, 64,
65, 85, 152, 153, 155, 156, 158, 159, 160, 161

EL SE, 32, 33, 37, 61, 63, 70, 81, 82, 95, 96, 122, 123,
128, 130, 156, 159, 169, 170, 178

else alternative, 70

else clause, 81

ELSIF, 70, 81, 178

emptiness literal, 59

emptiness literal, 56, 59

emptinessliteral name, 59

emptiness literal name, 59, 171

empty, 11, 24, 25, 26, 27, 29, 46, 61, 84, 88, 105, 107,
112, 134, 139, 165, 166, 167, 168

empty, 91, 130, 138, 141, 164, 165

EMPTY, 48, 49, 89, 94, 101, 103, 110, 179

empty action, 91

empty action, 79, 91

empty instance value, 59

empty powerset value, 61, 101

empty procedure value, 59

empty reference value, 59

empty string, 28, 46, 50, 64, 77

END, 39, 40, 41, 42, 43, 122, 124, 125, 131, 132, 135,
136, 137, 139, 140, 141, 143, 144, 178

end bit, 35, 36

end value, 84

end value, 83, 85

end-of-line, 9

enter, 147

entered, 4, 45, 46, 81, 82, 83, 84, 86, 93, 95, 96, 122,
124, 125, 130, 131, 133, 134, 147

EOLN, 120, 121, 179

equality, 72, 141

equivalencerelations, 6, 154

equivalent, 14, 63, 80, 112, 154, 155, 156, 157, 158,
160, 161

ESAC, 32, 70, 81, 93, 95, 96, 178

EVENT, 25, 178

event length, 25, 92, 93, 99, 155, 157

event length, 25

event list, 93

event location, 25, 92, 93, 99

event location, 92, 93, 98, 100, 172

event mode, 25, 153, 155, 157, 171, 172

event mode, 25

event mode name, 25, 98, 100, 171

EVER, 83, 178

exception, 1, 3, 4, 6, 11, 47, 48, 49, 50, 51, 52, 55, 56,
63, 64, 65, 66, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79,
80, 81, 82, 83, 84, 85, 89, 91, 92, 93, 94, 95, 96, 97,
101, 102, 103, 105, 107, 108, 109, 110, 112, 114,
115, 118, 119, 121, 122, 123, 125, 126, 131, 133,
154, 155, 156, 160, 161, 174, 175

exception handling, 122

exception list, 123

exception list, 24, 122, 132, 134, 135, 141

exception name, 4, 11, 88, 89, 122, 134, 135, 174

exception name, 10, 11, 24, 91, 122

exception names, 24, 155, 157

EXCEPTIONS, 24, 132, 134, 141, 144, 178

exclusive digunction, 71

existing, 4, 105, 107, 108, 109

EXISTING, 107, 179

EXIT, 86, 178

exit action, 4, 86, 87

exit action, 79, 86, 87

EXP, 98, 100, 101, 102

EXPIRED, 127, 179

explicit read-only mode, 16

explicitly indicated, 62, 69, 70, 170

exponent, 117, 118

exponent, 57

exponent width, 116, 118, 119

exponentiation operator, 76

expression, 25, 26, 33, 35, 38, 50, 51, 55, 61, 64, 65,
66, 67, 69, 80, 82, 84, 101, 105, 108, 113, 131, 153,
169, 175

expression, 7, 50, 51, 52, 59, 60, 61, 62, 63, 65, 66, 67,
68, 69, 70, 79, 84, 99, 100, 101, 103, 108, 110, 138,
150, 172, 173

expression conversion, 67

expression conversion, 54, 55, 67, 150, 175

expression list, 38, 50, 65, 98, 101, 103

extra-regional, 47, 63, 71, 103, 149, 150

— F—

FALSE, 17, 58, 72, 89, 90, 91, 106, 107, 108, 109, 110,
111, 118, 179

Fl, 70, 81, 178

field, 11, 32, 33, 34, 36, 37, 52, 61, 63, 66, 67, 86, 152,
166

field, 32, 155, 156, 158

field layout, 33, 34, 37, 86, 157

field layout, 33, 52, 156, 157, 158

field layout, 32, 33, 35, 36

field mode, 16, 33, 37, 63, 152, 153, 156, 158, 159,
160, 161

field name, 11, 12, 61, 86, 169, 210

field name, 10, 11, 12, 52, 61, 66, 166, 167, 168, 169

field name, 32, 33, 34, 37, 38, 47, 52, 55, 62, 63, 66,
86, 167

field name defining occurrence, 11, 12, 86

field name defining occurrence, 10, 11, 12, 32, 86, 169

field name defining occurrence list, 33

field name defining occurrence list, 10, 32, 33

field namelist, 61

228 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

field nameligt, 61, 63 format specification, 114, 115
file, 4, 27, 28, 104, 105, 106, 107, 108, 109, 110, 111, format text, 114, 115
112, 119, 139, 175 fractional part, 117, 118
file handling state, 4, 104, 105 fractional width, 116, 118, 119
file positioning, 108 free, 147, 148
file truncation, 109 free format, 116, 117
FIRST, 108, 179 free reference, 2, 22, 48
first element, 51, 65, 66, 138 free reference mode, 23, 155, 157, 161, 171, 173
fixed field, 32, 33, 63 free reference mode, 22, 23
fixed field, 32, 33, 34, 156, 158, 159 free reference mode name, 23

fixed field name, 33, 34, 63
fixed format, 116, 117
fixed string, 118

free reference mode name, 23, 171
free reference primitive value, 48, 149, 173

fixed string mode, 29, 30, 50, 64, 80, 85, 153, 156, 158 free state, 4, 104
fixed structure mode, 33 —G—
FLOAT, 20, 174, 179
&FLOAT, 20, 57 general, 24,88, 134, 148, 172
float value range, 21 GENERAL, 132, 133, 134, 135, 178
floating point expression, 98, 100, 101, 113, 173 general procedure, 87, 133
floating point literal, 57 general procedure name, 24, 55, 134
floating point literal, 56, 57 general procedure name, 55, 172
floating point literal expression, 21, 173 generality, 88, 172
floating point literal value, 57 generality, 88, 134, 142, 175
floating point location, 98, 99, 100, 113, 172 generality, 132, 134
floating point mode, 2, 20, 21, 67, 68, 72, 153, 154, generated, 5, 133
171,172, 173, 174 GENERIC, 143,178
floating point mode, 20 generic module, 5
floating point mode name, 20 generic module instantiation, 136, 144
floating point mode name, 20, 21, 22, 98, 100, 171 generic module mode template, 146
floating point range mode, 15, 16, 21, 22, 80, 118, 153, generic module mode template, 143
154, 156, 157, 171 generic module name, 144, 172
floating point range mode, 20, 21 generic module template, 146
floating point range mode name, 21, 22, 171 generic module template, 143
floating point value, 20, 57, 73, 75, 76, 77, 99, 117, 118 generic moreta mode name, 144, 171
FOR, 83, 138, 139, 140, 178 generic part, 144, 145
for control, 83, 84, 86 generic part, 143
for control, 82, 83 generic procedure instantiation, 131, 144

FORBID, 166, 178

forbid clause, 166, 167, 169

forbid name list, 169

forbid name list, 166, 167, 169
formal generic mode, 145

formal generic mode, 144

formal generic mode indication, 16, 144
formal generic mode list, 144
formal generic parameter, 145, 146
formal generic parameter, 143
formal generic parameter list, 143
formal generic procedure spec, 145

generic procedure name, 144, 172
generic procedure template, 146
generic procedure template, 143
generic process instantiation, 135, 144
generic process name, 144, 172
generic process template, 146

generic process template, 143
generic region instantiation, 137, 144
generic region mode template, 146
generic region mode template, 143
generic region name, 144, 172

formal generic procedure spec, 144 generic region template, 146

formal generic synonym, 145 generic region template, 143

formal genenc synonym, 144 generlc task mode templ ate, 146
formal generic synonym list, 143, 144 generic task mode template, 143
formal parameter, 69, 89, 133, 147 generic template, 5

formal parameter, 47, 69, 128, 132, 133, 134, 136, 149 generic unit, 144, 145, 146

formal parameter list, 69, 128, 132, 134, 135, 136, 142 GETASSOCIATION, 110, 179
format argument, 113, 114 GETSTACK, 3, 5, 61, 102, 103, 137, 138, 179
format clause, 114, 115 gettext built-in routine call, 106, 120
format control string, 114, 115 GETTEXTACCESS, 120, 121, 179
format effectors, 9, 11, 115 GETTEXTINDEX, 120, 121, 179
format element, 114, 115 GETTEXTRECORD, 120, 121, 179

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 229

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

GETUSAGE, 110, 179

GOTO, 91, 178

goto action, 4, 91, 131

goto action, 79, 91

GRANT, 165, 166, 178

grant postfix, 165, 166, 167, 169

grant statement, 140, 166

grant statement, 164, 165, 166, 167, 169

grant window, 166

grantable, 165, 167

greater than, 72, 74, 75, 77, 101, 102, 109, 111, 114,
118, 119, 121, 160

greater than or equal, 72, 76, 101

group, 7, 128, 130, 131, 140, 142, 143, 167, 169

guarded procedure attribute list, 132

guarded procedure definition, 132

guarded procedure definition statement, 133, 163

guarded procedure definition statement, 132

guarded procedure specification, 40, 41, 42, 44, 132

guarded procedure specification statement, 163

guarded procedure specification statement, 132

—H—

handler, 1, 4, 6, 11, 79, 122, 123, 130, 132, 147, 174

handler, 45, 46, 79, 87, 90, 91, 92, 122, 128, 130, 131,
135, 136, 137, 143

handler identification, 122

hereditary property, 13, 22, 23, 25, 33

hexadecimal bit string literal, 60

hexadecimal digit, 56, 60

hexadecimal integer literal, 56

hour expression, 126

hour location, 127

HOURS, 126, 179

IF,9,70,81,178

if action, 4, 81

if action, 79, 81, 128, 130

imaginary outermost process, 88, 90, 129, 136, 137,
138, 140, 147, 164, 174

implementation built-in routine call, 87

implementation defined built-in routine, 6, 137, 174

implementation defined exception name, 4, 6, 174

implementation defined floating point mode names, 14,
174

implementation defined handler, 123, 174
implementation defined integer mode, 6
implementation defined integer mode names, 14, 174
implementation defined name, 10, 88, 129, 172
implementation defined name string, 164
implementation defined process names, 6, 174
implementation directive, 10

implementation directive, 10, 175

implicit read-only mode, 16, 30, 31, 33, 152
implicitly created, 84, 111, 114, 134

implicitly declared, 5, 47, 86

implicitly defined, 86

implicitly indicated, 170

IN, 24, 72, 83, 89, 95, 96, 124, 125, 128, 133, 178

inclusive digunction, 71

incomplete, 40, 41, 42, 44, 133

INCOMPLETE, 40, 42, 44, 132, 133, 178

index expression, 59, 108, 109, 110, 111, 112, 113,
114, 120

index mode, 27, 31, 109

index mode, 27, 28, 30, 31, 59

index mode, 27, 28, 31, 51, 59, 62, 65, 66, 100, 101,
108, 109, 110, 111, 112, 114, 155, 158, 159, 170

indexable, 4, 27, 105, 107, 108, 109

INDEXABLE, 107, 179

indexing, 3

indirectly visible, 163, 164

inequality, 72

INIT, 45, 178

initialisation, 45

initialisation, 45, 46, 61

inline, 134

INLINE, 132, 133, 134, 178

inline component procedure attribute list, 132

inline guarded procedure definition statement, 39, 173

inline procedures, 133

INOUT, 24, 89, 133, 136, 178

input-output mode, 2, 26

input-output mode, 16, 26

INSTANCE, 24, 68, 69, 179

instance location, 93, 95, 96, 97, 172

instance mode, 2, 25, 155, 157, 161, 171, 172, 173

instance mode, 16, 24

instance mode name, 24

instance mode name, 24, 171

instance primitive value, 94, 173

instance value, 25, 59, 68, 69, 91, 93, 95, 97, 147, 174

INT, 14, 17, 31, 132, 161, 174, 179

&INT, 17,57, 100, 101, 121

integer expression, 38, 49, 50, 65, 83, 98, 101, 103,
120, 121, 126, 173

integer literal, 57

integer literal, 56, 57

integer literal expression, 18, 19, 20, 21, 25, 27, 29, 35,
36, 58, 76, 77, 92, 93, 94, 95, 173

integer location, 127, 172

integer mode, 17, 19, 20, 67, 68, 85, 137, 154, 157,
170, 171, 172, 173, 174

integer mode, 17

integer mode name, 17

integer mode name, 17, 171

integer part, 117, 118

integer value, 4, 17, 18, 57, 67, 73, 75, 76, 77, 99, 117

intersection, 72

intra-regional, 3, 47, 63, 71, 88, 94, 95, 103, 135, 148,
149, 150, 167

INTTIME, 127, 179

INVARIANT, 39, 178

invariant part, 39, 40, 41, 42, 43

INVFAIL, 90, 179

230 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

invisible, 62, 163, 169

io clause, 114, 115, 119

io code, 114, 119

iolist, 113, 114, 118, 119

iolist element, 113, 114, 119

io location built-in routine call, 97, 106
io simple built-in routine call, 97, 106
io value built-in routine call, 98, 106
irrelevant, 156, 159, 169, 170
ISASSOCIATED, 106, 179
isassociated built-in routine call, 106
iteration, 4

iteration, 83

—J—
justification, 116, 117
— L—

label name, 79, 131, 136, 141

label name, 86, 91, 172

labelled array tuple, 61, 169

labelled array tuple, 60, 62, 170

labelled structure tuple, 61

labelled structure tuple, 61, 63, 168

LAST, 108, 109, 179

layout, 31, 33, 35, 36, 37, 115

left element, 49, 50, 64, 138

length, 35, 36, 37, 157

LENGTH, 29, 98, 99, 100, 179

length argument, 98, 99, 100

l-equivalent, 14, 154, 155, 156, 157, 160

less than, 37, 50, 61, 64, 68, 69, 72, 74, 75, 76, 77, 80,
102, 114, 119, 121, 125

less than or equal, 20, 22, 30, 31, 72, 116

letter, 8, 56, 117

letter, 8

lexical element, 8, 9

lifetime, 2, 5, 45, 46, 48, 49, 52, 53, 84, 90, 92, 93, 94,
95, 97, 102, 103, 111, 128, 129, 131, 134, 136, 137,
138

lifetime-bound initialisation, 45

lifetime-bound initialisations, 130

line-end comment, 9

linkage, 163

linked, 140, 163, 165

list of classes, 34, 35, 101, 153, 159, 170

list of values, 5, 32, 34, 38, 52, 59, 60, 61, 63, 66, 96,
151, 160, 169

literal, 8, 17, 20, 21, 56, 77

literal, 3, 33, 35, 50, 51, 54, 55, 57, 58, 59, 64, 66, 69,
70,71, 72,73, 74,75, 76, 77, 78, 100, 101, 142,
172,173, 175

literal, 54, 55, 56

literal expression, 141, 173

literal expression list, 32, 34, 35

literal qualification, 56

literal range, 19, 20, 21, 27, 28, 31, 58, 59, 82, 169,
170

LN, 98, 100, 101, 102

LOC, 24, 46, 47, 85, 88, 89, 90, 132, 133, 134, 135,
136, 141, 178

location, 2, 3, 4, 5, 8, 13, 16, 22, 23, 24, 25, 26, 27, 28,
32, 36, 37, 45, 46, 47, 48, 49, 50, 52, 53, 55, 59, 77,
80, 84, 85, 86, 87, 89, 90, 97, 99, 102, 103, 105,
106, 107, 108, 109, 111, 112, 113, 114, 118, 120,
121, 127, 128, 129, 130, 131, 133, 134, 136, 137,
138, 147, 148, 154, 159, 160, 166, 174, 175

location, 46, 47, 49, 50, 51, 52, 53, 55, 59, 61, 64, 65,
67,77, 78, 79, 80, 83, 84, 86, 87, 89, 90, 92, 93, 94,
95, 96, 97, 98, 99, 101, 106, 107, 108, 110, 121,
134, 138, 149, 150, 167, 172

location argument, 113, 114, 117, 118

location built-in routine call, 52

location built-in routine call, 47, 52

location built-in routine call, 87

location built-in routine call, 52, 53, 149,
173

location contents, 55

location contents, 54, 55, 149

location conversion, 53

location conversion, 47, 53, 67, 138, 149, 175

location declaration, 3, 5, 45, 133, 137

location declaration, 45, 46, 47, 61

location do-with name, 47, 86

location do-with name, 47, 48, 149, 171, 175

location enumeration, 84

location enumeration, 47, 83

location enumer ation name, 47, 85

location enumeration name, 47, 48, 149, 171

location list, 95

location name, 46, 47, 134, 142, 167

location name, 47, 48, 138, 149, 171

location procedure, 5

location procedure call, 52, 134

location procedure call, 47, 52, 149

location procedure call, 52, 88, 149, 173

loc-identity declaration, 3, 46, 85, 130, 134, 138

loc-identity declaration, 45, 46, 47

loc-identity name, 46, 47, 134, 142, 159, 167

loc-identity name, 47, 48, 149, 171

locked, 147, 148, 151

LOG, 98, 100, 101, 102

LONG_FLOAT, 20

LONG _INT, 17

loop counter, 84, 85

loop counter, 47, 55, 83, 85, 128, 129

LOWER, 98, 99, 100, 101, 160, 179

lower bound, 31, 51

lower bound, 17, 18, 19, 20, 21, 22, 27, 28, 30, 31, 38,
51, 52, 57, 65, 66, 85, 99, 102, 109, 111, 156, 157,
174

lower bound, 19, 20, 27, 28, 31, 38, 59

lower casg, 8, 9, 118

lower element, 51, 65, 66, 138

lower float bound, 21, 22

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 231

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

— M=

mantissa, 57, 117, 118

mapped, 31, 33, 37

mapping, 35, 36, 37

match, 142

MAX, 98, 99, 100, 101, 179

member mode, 22

member mode, 22

member mode, 22, 62, 63, 73, 85, 100, 155, 157, 159

membership operator, 72

member ship operator, 72, 73

metalanguage, 2, 7

MILLISECS, 126, 179

MIN, 98, 99, 100, 101, 179

minute expression, 126

minute location, 127

MINUTES, 126, 179

MOD, 75, 178

mode, 2, 3, 6, 13, 14, 15, 16, 17, 20, 24, 28, 30, 31, 32,
33, 34, 35, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53,
55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71,72, 74,77, 80, 82, 84, 85, 86, 87, 88, 89, 90, 92,
93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 106, 107,
108, 109, 111, 112, 113, 114, 117, 118, 121, 127,
134, 135, 136, 142, 149, 151, 152, 153, 154, 155,
156, 157, 159, 160, 161, 166, 167, 168, 169, 170

mode, 13, 14, 16, 17, 23, 24, 27, 30, 32, 34, 45, 46, 47,
54, 61, 85, 133, 134, 141, 151, 173

MODE, 144, 178

mode argument, 61, 98, 99, 101, 102, 103

mode checking, 6, 13, 14, 53, 67

mode definition, 2, 14, 16

mode definition, 14, 15, 16, 128

mode name, 13, 14, 15, 16, 99

mode name, 16, 17, 48, 53, 58, 59, 60, 61, 62, 67, 68,
70,98, 99, 101, 103, 171

mode rules, 6, 152

modification built-in routine call, 106, 107

MODIFY, 107, 108, 179

modify parameter, 107, 175

modify parameter list, 107, 108

MODIFYFAIL, 108, 175, 179

module, 4, 5, 86, 87, 122, 129, 130, 131, 136, 137, 138,
140

module, 79, 128, 130, 136, 137, 139, 140, 142, 143,
167, 168

MODULE, 39, 136, 138, 139, 140, 144, 178

module body, 136, 140, 142, 143

module body, 129, 136, 164

module body component, 39, 40

module inheritance, 39, 40, 41

module mode, 39, 40, 41, 171

module mode, 38, 39, 40, 41, 42, 44

module mode body, 39, 40, 41

module mode location, 88

module mode name, 39, 41, 43, 171

module mode specification, 39, 40, 41, 143

module name, 136, 167

module spec, 131, 140, 142, 143, 164, 169

module specification component, 39, 40

modulion, 128, 129, 130, 136, 137, 142, 164, 165, 166,
167, 168, 169

modulo, 75

monadic operator, 77

monadic operator, 76, 77

month expression, 126

month location, 127

moreta component name, 163

mor eta component name, 10, 11, 12

mor eta component procedure, 87

moreta component procedure call, 88

mor eta component procedure call, 87

mor eta component procedure call, 87, 173

moreta declaration statement

mor eta declaration statement, 137, 173

moreta location, 53, 133, 162

mor eta location, 46

moreta location, 11, 87, 172

moretamode, 2, 11, 12, 22, 23, 46, 53, 90, 128, 133,
134, 135, 144, 153, 161, 162, 163, 164, 171, 172

moreta mode, 11, 29, 38, 39, 45, 53, 102, 128, 133, 163

mor eta mode, 135

moreta mode component procedure, 134

moreta mode name, 145

moreta mode name, 12

moreta mode name, 144, 171

moreta mode reaches, 164

moreta mode specification, 163

moreta mode specification, 164

mor eta newmode definition statement, 137, 173

mor eta synmode definition statement, 137, 173

mor eta-bound initialisation, 45

multi-dimensional array, 31

multiple assignment action, 79

—N—

name, 3, 4,5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 20, 23,
24, 26, 28, 32, 33, 45, 46, 47, 52, 54, 55, 58, 59, 66,
84, 85, 87, 90, 91, 94, 96, 128, 129, 131, 133, 134,
137, 140, 141, 142, 162, 163, 174

name, 10, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 47, 48, 49, 53, 55, 58, 59, 60,
61, 67, 68, 69, 70, 81, 82, 83, 84, 85, 86, 87, 88, 91,
94, 95, 96, 98, 100, 101, 103, 128, 149, 150, 151,
163, 168, 169, 170, 171, 172, 175

&name, 15, 30, 31, 50, 51, 64, 65, 74, 85, 95, 96, 97

name binding, 6, 10, 129, 162, 163

name string, 11, 12, 79, 85, 86, 135, 136, 139, 140,
154, 166, 167

name string, 10, 11, 140, 142, 143, 158, 159, 162, 163,
164, 165, 166, 167, 168, 169, 172

named values, 18

negative lower limit, 68

negative upper limit, 21, 74, 75, 77, 102, 174

NEW, 144, 178

new prefix, 165, 166, 168

NEWM ODE, 14, 15, 178

newmode definition statement, 6, 14, 15, 16

232 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

newmode definition statement, 15, 16, 129, 141

newmode name, 15, 19, 21, 30, 142, 166, 169, 172,
174

newmode name string, 166, 167, 169, 172

nil, 16, 17, 149, 150, 157

non-composite mode, 16, 173

non-hereditary property, 13, 19, 21, 30

non-percent character, 115, 173

non-recursive, 89, 134

NONREF, 24, 52, 90, 134, 141, 142, 178

non-reserved character, 59, 173

non-reserved name, 87, 172

non-special character, 58, 173

non-value property, 13, 24, 26, 27, 34, 45, 46, 55, 67,
80, 89, 135, 136, 151, 153

NOPACK, 31, 33, 35, 36, 37, 51, 52, 85, 86, 157, 178

NOT, 76, 77, 178

not_assignable, 40, 42, 43, 44, 153

NOT_ASSIGNABLE, 39, 40, 178

NOTASSOCIATED, 107, 108, 109, 179

NOTCONNECTED, 110, 112, 179

novelty, 13, 14, 15, 16, 17, 101, 154, 156, 157, 169

novelty bound, 14, 16, 142, 143, 154, 159, 160

novelty paired, 159

null, 67

NULL, 23, 24, 25, 48, 49, 59, 89, 94, 103, 110, 111,
179

null class, 13, 59, 67, 149, 161

NUM, 19, 20, 31, 36, 37, 38, 49, 50, 51, 64, 65, 66, 67,
68, 98, 99, 100, 101, 109, 111, 160, 179

number of elements, 31, 36, 38, 62, 155, 158, 160

number of values, 17, 18, 19, 20, 22, 37, 154

number ed range mode, 20, 27

numbered set element, 18

numbered set list, 18, 19

numbered set mode, 19, 20, 27, 85, 101, 154

numeric expression, 98

—0—

octal bit string literal, 60
octal digit, 56, 60

octal integer literal, 56
OD, 82,90, 178

OF, 32,70, 81, 178

old prefix, 164, 165, 166, 167, 168
ON, 122,178
on-alternative, 131
on-alternative, 122, 128, 130
operand-0, 70, 71
operand-1, 71, 72
operand-2, 61, 71, 72, 73
operand-3, 73

operand-3, 72, 73, 74
operand-4, 75

operand-4, 73, 74, 75
operand-5, 76

operand-5, 75, 76
operand-6, 76, 77
operand-7, 76, 77, 78, 149
operator-3, 72, 73
operator-4, 73, 74

OR, 71, 80, 178

ORIF, 71, 178

origin array mode, 59

origin array mode, 16, 31

origin array mode name, 30, 31, 38

origin array mode name, 16

origin reach, 164, 165

origin string mode, 16, 30

origin string mode name, 29, 30, 38

origin string mode name, 16

origin structure mode, 67

origin variant structure mode, 59

origin variant structure mode, 16, 34, 38, 155, 156,
158, 159, 160

origin variant structure mode name, 32, 34, 35, 38

origin variant structure mode name, 16

OUT, 24, 89, 133, 136, 178

outoffile, 106, 109, 110, 111, 112

OUTOFFILE, 110, 179

outside world object, 4, 26, 104, 106, 107

overflow, 116, 117

OVERFLOW, 68, 74, 75, 76, 77, 84, 101, 102, 179

—P—

PACK, 31, 32, 35, 36, 157, 178

packing, 35, 36

padding, 116, 117, 118

parameter attribute, 24, 134, 136, 155, 157

parameter attribute, 24

parameter list, 87, 126

parameter list, 24, 134

parameter passing, 6, 68, 69, 89, 133, 134, 174

parameter spec, 89

parameter spec, 24, 61, 128, 132, 134, 135, 136, 141

parameter specs, 24, 88, 134, 136, 155, 157, 159

parameterisable, 13, 23, 24, 27, 35, 46, 101, 152, 160

parameterisable variant structure mode, 34, 35, 152,
155, 158, 159, 160

parameterised array mode, 38

parameterised array mode, 30, 31, 59

parameterised array mode, 16, 31, 51, 65, 171

parameterised array mode name, 30, 171

parameterised string mode, 38

parameterised string mode, 29, 30

parameterised string mode, 16, 30, 50, 64, 171

parameterised string mode name, 29, 171

parameterised structure mode, 32, 33, 34, 59

parameterised structure mode, 16, 33, 34, 38, 62, 63,
67, 152, 155, 156, 158, 159, 160, 171

parameterised structure mode name, 32, 171

parent mode, 15, 16, 17, 19, 20, 21, 153, 154

parenthesised clause, 114, 115

parenthesised expression, 50, 69

parenthesised expression, 54, 55, 69

pass by location, 133

pass by value, 133

path, 14, 15, 154

percent, 115, 173

percent, 115

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 233

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

piece, 5, 9, 11, 24, 113, 138, 139

piece designator, 138, 139

piecewise programming, 138, 140, 141

pos, 157

pos, 32, 33, 34, 35, 36, 37, 157

POS, 35, 36, 37, 157, 178

positive lower limit, 21, 68, 74, 75, 76, 77, 102, 174

post, 133, 134, 135

POST, 132, 133, 178

POSTFAIL, 90, 179

postfix, 165

postfix, 165, 166, 168

POWERSET, 22, 178

powerset difference operator, 73

powerset difference operator, 73, 74, 80

powerset enumeration, 84

power set enumeration, 83

power set expression, 84

power set expression, 83, 85, 98, 100, 173

powerset inclusion operator, 72

powerset inclusion operator, 72, 73

powerset mode, 2, 22, 62, 153, 155, 157, 159, 171, 173

powerset mode, 16, 22

power set mode name, 22, 171

powerset tuple, 61, 62

powerset tuple, 60, 62, 63

powerset value, 22, 61, 71, 72, 73, 77, 84, 99

pre, 133

PRE, 132, 133, 178

precision, 20, 21, 22, 57, 101, 156, 157, 174

PRED, 84, 85, 98, 99, 100, 101, 179

predefined floating point mode, 20, 21, 22, 57, 74, 75,
77

predefined integer mode, 17, 19, 20, 74, 75, 77, 85,
170

predefined mode, 17, 20

predefined moreta location, 47, 53

predefined name string, 165

PREFAIL, 89, 179

prefix, 165

prefix, 10, 11, 164, 165, 166, 167, 168

prefix clause, 166, 167, 168

prefix rename clause, 164, 165, 166, 167, 168

prefix rename clauses, 165

PREFIXED, 166, 178

prefixed name string, 12, 163, 165

prefixed name string, 10, 11

prefixing operator, 11

primitive value, 55, 86, 153

primitive value, 54, 55, 77, 78, 86, 99, 149, 172, 173

priority, 92, 93, 94, 95, 96, 97

priority, 92, 93, 94, 95

PRIORITY, 92,178

PROC, 24, 132, 134, 141, 144, 178

proc body, 129, 132

procedure, 2, 3, 5, 6, 24, 52, 59, 68, 69, 87, 89, 90, 91,
122, 129, 130, 131, 132, 133, 134, 137, 138, 147,
148, 149, 151

procedure attribute list, 132, 141

procedure call, 3, 5, 87, 90, 131, 132, 133, 134, 148

procedure call, 61, 87, 88, 89, 149, 150

procedure definition, 90, 123, 132, 133, 135, 137, 138,
174

procedure definition, 55, 128, 130, 132, 134, 135

procedure definition statement, 24, 132

procedure definition statement, 129, 131, 134

procedure mode, 2, 24, 134, 142, 155, 157, 159, 161,
171, 173

procedure mode, 15, 16, 24

procedure mode name, 24, 171

procedure name, 55, 61, 90, 134, 135, 142, 147, 159

procedure name, 87, 88, 149, 150, 172

procedure primitive value, 87, 88, 89, 90, 173

procedure values, 24, 133

process, 2, 4, 5, 6, 25, 26, 28, 46, 59, 68, 69, 87, 90, 91,
92, 93, 94, 95, 96, 97, 124, 125, 127, 129, 130, 131,
137, 147, 148, 151, 174

PROCESS, 135, 141, 144, 178

process body, 147

process body, 129, 135

process creation, 147

process definition, 5, 6, 69, 87, 88, 90, 91, 123, 135,
136, 137, 138, 140, 142, 147, 164

process definition, 128, 130, 135, 136

process definition statement, 129, 135, 136

process delaying, 150

process name, 6, 94, 136, 142, 147, 151, 159, 174

process name, 68, 69, 151, 172

process re-activation, 151

process specification statement, 39

process termination, 147

product, 75

program, 1, 2, 3,4, 5, 6, 8, 9, 10, 11, 13, 27, 28, 38, 69,
87, 104, 105, 111, 112, 122, 124, 129, 130, 132,
135, 137, 138, 139, 147, 159, 163, 212

program, 137

program structure, 1, 2, 6, 128

program unit, 5, 137

PTR, 23, 179

Q

qualified name, 12, 162

qualified name, 10, 11, 12

guasi data statement, 129, 141

quasi declaration, 131, 141

guasi declaration statement, 141

quasi defining occurrence, 11, 16, 131, 141, 142, 143,
159, 163, 168

quasi definition statement, 141, 142

quasi formal parameter, 141

quasi formal parameter list, 141, 142

quasi guarded procedure definition statement, 141

quasi location declaration, 141

quasi loc-identity declaration, 141, 142

quasi novelty, 16, 143, 160, 169

quasi procedure definition statement, 131

quasi process definition statement, 131, 141

quasi reach, 131

guasi signal definition, 141

234 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

guasi signal definition statement, 141, 142
quasi statements, 141, 142

guasi synonym definition, 141, 175

guasi synonym definition statement, 141
quote, 59, 173

quote, 59

quotient, 75

—R—

range, 1, 2, 17, 19, 20, 21, 31, 58, 61, 69, 76, 82, 99,
101, 118, 126, 174, 175

range, 60

RANGE, 19, 20, 21, 22, 27, 31, 101, 178

range enumeration, 84

range enumeration, 83

rangelist, 170

rangelist, 81, 82

RANGEFAIL, 47, 49, 50, 51, 52, 55, 63, 64, 65, 66, 68,
71,72, 73, 80, 82, 85, 101, 110, 112, 126, 154, 155,
156, 160, 179

reach, 45, 46, 83, 88, 122, 123, 128, 129, 130, 131,
137, 140, 142, 143, 159, 163, 164, 165, 166, 167,
168, 169, 174

reach-bound initialisation, 130, 147, 148

reach-bound initialisation, 45, 46

re-activation, 5, 147

READ, 16, 17, 30, 31, 33, 40, 160, 161, 178

read operation, 105, 106, 108, 110, 111, 112

readable, 4, 105, 107, 109

READABLE, 107, 179

read-compatible, 14, 46, 48, 89, 90, 121, 160, 161

READFAIL, 112, 179

read-only, 3, 16, 33, 102, 154, 160

READONLY, 108, 109, 110, 112, 179

read-only mode, 3, 16, 30, 31, 33, 152, 156, 157, 160

read-only property, 3, 13, 16, 46, 80, 89, 93, 96, 97,
103, 112, 118, 127, 152

READRECORD, 4, 110, 111, 112, 115, 120, 179

readrecord built-in routine call, 106, 110

READTEXT, 113, 114, 115, 116, 117, 118, 119, 120,
179

READWRITE, 108, 109, 110, 179

real defining occurrence, 131, 142, 143, 163

real mode, 2, 20

real mode, 16, 20

real novelty, 16, 143, 160

real reach, 131, 140, 142

real values, 20

RECEIVE, 95, 96, 178

receive buffer case action, 96, 97, 150, 151

receive buffer case action, 95, 96, 130

receive case action, 4, 5, 26, 95, 151

receive case action, 55, 79, 95, 128

receive signal case action, 95, 96, 150

receive signal case action, 95, 130

record mode, 27, 105, 111, 175

record mode, 27

record mode, 27, 59, 111, 112, 120, 155, 158, 159

recursive, 133, 134, 148

RECURSIVE, 212

recursive definitions, 14

recursive mode, 14, 154

recursive mode definitions, 14, 15

recursivity, 88, 89, 134, 155, 157

REF, 15, 23, 113, 160, 161, 178

referability, 2, 3, 37, 47

referable, 3, 22, 36, 37, 46, 47, 48, 49, 50, 51, 52, 53,
78, 85, 86, 89, 90, 99, 101, 106, 112, 114, 127, 134,
142, 175

reference class, 13, 77, 103, 110, 111, 121, 149, 161

reference mode, 2, 22, 67, 152, 160, 161

reference mode, 15, 16, 22

reference primitive value, 102, 103, 173

reference value, 3, 22, 23, 48, 102, 103, 110, 111, 113,
138

referenced location, 48, 49, 77, 103, 111

referenced location, 77, 78, 150

referenced mode, 23

referenced mode, 23

referenced mode, 23, 48, 155, 156, 157, 159, 160, 161

referenced origin mode, 23, 49, 155, 156, 157, 159,
160, 161

referencing property, 13, 149, 152, 160, 161

region, 3, 5, 103, 122, 123, 124, 130, 131, 134, 136,
137, 138, 140, 147, 148, 150, 151

region, 128, 129, 130, 137, 139, 140, 142, 143, 149,
150, 167, 168

REGION, 41, 137, 140, 144, 178

region body, 137, 140, 142, 143

region body, 129, 137, 164

region body component, 41, 42, 43

region inheritance, 41, 42

region mode, 42, 88, 147, 150, 171

region mode, 38, 39, 41, 42, 149, 150

region mode, 133

region mode body, 41, 42

region mode name, 41, 171

region mode specification, 41, 42, 143

region name, 137, 167

region spec, 131, 140, 142, 143, 164, 169

region specification component, 41, 42, 43

regionality, 3, 69, 89, 90, 106, 109, 110, 111, 121, 142,
148, 149, 150, 174, 175

regionally safe, 46, 80, 89, 90, 103, 150

reimplement, 133

REIMPLEMENT, 41, 42, 44, 132, 133, 178

relational operator, 72, 73

relational operators, 28, 72

relative timing action, 124, 128

released, 123, 124, 148, 151

REM, 75, 178

REMOTE, 138, 139, 178

remote context, 138, 139, 140

remote modulion, 136, 137, 138, 139, 140, 142, 143

remote piece, 138, 139

remote program unit, 15, 138, 139, 143

remote spec, 138, 139, 140

repetition factor, 114, 115

representation conversion, 67, 73, 75, 76

representation conversion, 54, 55, 57, 67, 68

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 235

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

reserved names, 172

reserved simple name string, 9

reserved simple name string, 9, 87

restrictable, 14, 160, 161

result, 3, 5, 11, 19, 33, 67, 69, 70, 71, 72, 73, 75, 76,
77, 80, 90, 95, 97, 100, 106, 111, 132, 147

result, 90

RESULT, 90, 178

result action, 3, 90, 134, 148

result action, 61, 79, 90, 134

result attribute, 24, 134

result attribute, 24

result spec, 133, 134

result spec, 24, 52, 61, 68, 88, 90, 134, 155, 157, 159

result spec, 24, 128, 132, 134, 135, 141

result transmission, 6

resulting class, 13, 19, 21, 62, 71, 72, 74, 75, 77, 85,
100, 153, 170

resulting list of classes, 34, 82, 170

resulting mode, 153

RETURN, 90, 178

return action, 90, 132

return action, 61, 79, 90

RETURNS, 24, 166, 167, 178

right element, 50, 64, 65, 138

root mode, 13, 19, 21, 27, 59, 64, 67, 68, 71, 72, 73,
74,75, 76, 77, 85, 101, 102, 118, 142, 153, 159,
170, 174

row, 2, 22, 23, 49

ROW, 9, 23, 178

row mode, 23, 155, 156, 157, 159, 160, 161, 171, 173

row mode, 15, 22, 23

row mode name, 23, 171

row primitive value, 49, 149, 173

—S—

safe, 15

SAME, 108, 109, 179

scope, 5, 6, 128, 129

second expression, 61

second expression, 126

second location, 127

SECS 126, 179

seizable, 165, 168

SEIZE, 139, 167, 178

seize postfix, 165, 166, 167, 168, 169

seize statement, 167

seize statement, 164, 165, 166, 167, 168

seize window, 167, 168

selection, 3, 4, 81, 169

selector, 35, 59, 81, 170

selector value, 169, 170

SELF, 53, 87, 178

semantic category, 7, 142, 171

semantic description, 7, 8

semantics, 7, 8, 9, 10, 33, 46, 48, 52, 53, 55, 66, 80, 85,
93, 95, 105, 106, 107, 114, 120, 133, 138, 139, 175

semantics, 7

SEND, 94, 178

send action, 5, 26, 93, 95, 148

send action, 61, 79, 93

send buffer action, 94, 96, 150, 151

send buffer action, 93, 94

send signal action, 94, 95, 151

send signal action, 93, 94

SENDFAIL, 94, 179

sequencible, 4, 105, 107, 108, 109

SEQUENCIBLE, 107, 179

SET, 18, 93, 95, 96, 108, 178

set element, 18

set element name, 10, 59, 168

set element name, 18, 19, 59, 154

set element name, 58, 172

set element name defining occurrence, 10, 18, 168

setligt, 18, 19

set literal, 58, 118

set literal, 56, 58, 59, 168

set mode, 18, 58, 118, 154, 157, 171

set mode, 17, 18, 128

set mode, 18

set mode name, 18, 168, 171

settext built-in routine call, 106, 120

SETTEXTACCESS, 120, 121, 179

SETTEXTINDEX, 120, 121, 179

SETTEXTRECORD, 120, 121, 179

SHORT_FLOAT, 20

SHORT_INT, 17

signal, 5, 93, 94, 95, 131, 151

SIGNAL, 141, 151, 178

signal definition, 61, 151

signal definition, 128, 151

signal definition statement, 130, 141, 142, 151

signal definition statements, 5

signal name, 94, 96, 142, 151, 159

signal name, 61, 94, 95, 96, 172

signal receive aternative, 131

signal receive alternative, 95, 96, 128, 129, 130

signed floating point literal, 57

signed floating point literal, 57, 76

signed integer literal, 57

signed integer literal, 56, 76

significant digit, 21, 22

similar, 13, 67, 153, 154, 155, 156, 157, 161, 162, 174

simple, 133, 134

SIMPLE, 132, 134, 178

simple component procedure attribute list, 132

simple guarded procedure definition, 40, 41, 42, 44

simple guarded procedure definition statement, 39, 41,
173

simple guarded procedure specification, 40, 41, 42, 44

simple guarded procedure specification statement, 39,
40, 41, 42, 44, 173

simple name string, 8, 12, 118

simple name string, 8, 9, 10, 11, 79, 118, 131, 135, 136,
137, 138, 139, 140, 141, 142, 143, 162, 167, 168

simple prefix, 10, 167

simple procedures, 132, 133

236 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

simple spec module, 131, 139, 140, 142
simple spec region, 131, 140, 142

SN, 98, 99, 101, 102

single assignment action, 61, 79

size, 17, 27, 32, 105

SZE, 17, 53, 98, 99, 100, 101, 179
slicesize, 50, 51, 64, 65, 66, 138
dicing, 3

SPACEFAIL, 69, 81, 82, 83, 89, 93, 96, 97, 103, 122,

131, 179
spaces, 9, 10, 11, 115, 117
SPEC, 39, 41, 43, 138, 139, 140, 167, 178
spec module, 5

spec module, 79, 128, 129, 130, 131, 137, 139, 140,

141, 142, 167, 168
spec module body, 129, 139, 140
spec region, 5

spec region, 128, 129, 130, 131, 137, 139, 140, 141,

142, 149, 150, 167, 168
spec region body, 129, 140
special smple name strings, 8, 9, 118, 175
specia symbol, 8, 177
SQRT, 98, 100, 101, 102
stack, 102
START, 68, 178
start action, 91
start action, 79, 91
start bit, 35, 36, 37, 157
start element, 49, 50, 64, 65, 138
start expression, 4, 5, 68, 91, 131, 147
start expression, 54, 61, 68, 69, 91, 175
start value, 84
start value, 83, 85
static, 47, 78, 138
STATIC, 45, 46, 137, 138, 147, 178
static class, 100
static condition, 7, 67, 69, 142, 150, 154
static conditions, 7
static mode, 2, 13, 22, 23, 100, 161, 172
static mode location, 53, 67, 110, 138, 149, 172
static properties, 5, 12, 38, 87, 140, 141, 142, 174
static properties, 7
static record mode, 27, 109, 111, 112, 155, 158
step, 31, 35, 36, 157
STEP, 35, 36, 37, 157, 178
step enumeration, 84
step enumeration, 83
step size, 35, 36, 37, 157
step value, 84
step value, 83, 84, 85
STOP, 92,178
stop action, 5, 92, 147
stop action, 79, 92

storage, 33, 69, 81, 82, 83, 89, 93, 96, 97, 102, 103,

122,123, 131, 154, 175
storage allocation, 137
store location, 110, 111, 112
strict syntax, 7, 50, 155, 156, 158
string concatenation operator, 73

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

string concatenation operator, 73, 74, 80

string element, 29, 49, 116

string element, 47, 49, 64, 138, 149

string expression, 83, 84, 85, 98, 100, 113, 173

string length, 23, 29, 30, 38, 49, 59, 60, 74, 77, 80, 99,
101, 111, 114, 116, 118, 120, 156, 158, 160

string length, 29, 30

string location, 23, 49, 50, 84, 85

string location, 47, 49, 50, 64, 83, 84, 85, 98, 99, 100,
113, 114, 138, 149, 172

string mode, 16, 29, 30, 38, 49, 85, 111, 152, 153, 155,
158, 160, 171, 172, 173

string mode, 29, 30, 173

string mode, 23, 173

string mode name, 29, 30, 98, 100, 101, 103, 171

string primitive value, 64, 65, 173

string repetition operator, 77

string repetition operator, 76, 77

string size, 50, 64

string slice, 50, 64, 114, 118

string dlice, 47, 49, 50, 64, 138, 149

string type, 29, 30

string value, 29, 64, 73, 77, 111, 114, 120

strong, 3, 13, 48, 49, 61, 64, 74, 82, 85, 86, 99, 101,
169

STRUCT, 15, 32, 36, 161, 178

structure field, 36, 37, 52, 82

structure field, 47, 52, 66, 138, 149, 168

structure location, 23, 32, 33, 48, 49, 52, 86, 175

structure location, 52, 66, 86, 138, 149, 169, 172

structure mode, 2, 11, 27, 32, 33, 34, 35, 36, 37, 61, 62,
67, 86, 142, 152, 153, 155, 156, 158, 159, 160, 161,
166, 167, 171, 172, 173

structure mode, 29, 32, 33, 59

structure mode name, 32, 171

structure primitive value, 66, 86, 150, 169, 173

structure tuple, 60, 61, 62, 63, 169

structure value, 32, 33, 55, 61, 66, 67, 86, 111

sub expression, 70, 71, 150

sub operand-0, 71

sub operand-1, 71, 72

sub operand-2, 72, 73

sub operand-3, 73, 74

sub operand-4, 75

sub operand-5, 76

SUCC, 84, 85, 98, 99, 100, 101, 179

sum, 57, 73, 74

surrounded, 5, 55, 90, 103, 128, 131, 136, 137, 138,
140, 142, 147

SYN, 54, 141, 143, 178

synchronisation mode, 2, 25

synchronisation mode, 16, 25

SYNMODE, 15, 178

synmode definition statement, 15

synmode definition statement, 15, 129, 141

synmode name, 15, 17, 19, 21, 30, 31, 49, 50, 51, 64,
65, 74, 85, 108, 142

synonym definition, 14, 54

synonym definition, 14, 54, 61, 128

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 237

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

synonym definition statement, 3, 54

synonym definition statement, 54, 55, 129, 141, 142

synonym name, 14, 54, 55, 141, 142, 159, 167

synonym name, 55, 149, 171

synonymous, 14, 15, 17, 30, 31, 49, 50, 51, 64, 65, 74,
85

syntax, 7, 8, 61, 82, 138

syntax description, 7, 9, 171

—T—

tag, 111

tag field, 16, 32, 33, 34, 45, 52, 62, 63, 66, 80, 152,
170

tag field name, 34, 35, 156, 159

tag field name, 32, 59, 172

tag list, 32, 34, 35, 156, 159

tag values, 67

TAGFAIL, 47, 48, 52, 55, 56, 63, 66, 73, 80, 112, 154,
155, 179

tagged alternative fields, 34

tagged parameterised property, 13, 33, 34, 45, 152,
153

tagged parameterised structure mode, 34, 62, 63, 152,
153

tagged variant structure mode, 34, 35, 52, 62, 63, 66,
170

tagged variant structure values, 67

tag-less alternative fields, 35

tag-less alternative fields, 34

tag-less parameterised structure mode, 34

tag-less parameterised structure mode, 62, 63

tag-lessvariant, 175

tag-lessvariant structure, 175

tag-less variant structure mode, 34, 52, 62, 63, 66, 170

tag-lessvariant structure values, 33, 67, 175

TAN, 98, 99, 100, 101, 102

TASK, 43, 178

task body component, 43

task inheritance, 43, 44

task mode, 43, 44, 147, 171

task mode, 38, 39, 43, 44, 45, 102

task mode body, 43, 44

task mode location, 88, 147

task mode name, 43, 171

task mode specification, 43, 44, 143

task specification component, 43

template, 145, 146

template, 130, 137, 143

TERMINATE, 102, 103, 138, 175, 179

terminate built-in routine call, 97, 102

terminated, 9, 10, 83, 84, 85, 86, 107, 115, 122, 130,
132, 147

TEXT, 27, 178

text argument, 113, 114, 115

text built-in routine call, 106, 113

text io argument list, 113

text length, 28, 99, 113, 114, 119, 120, 121, 155, 158

text length, 27, 28

text location, 99, 113

text location, 112

text location, 59, 98, 99, 100, 101, 106, 108, 109, 110,
113, 114, 115, 119, 120, 121, 172

text mode, 2, 28, 101, 113, 153, 155, 158, 159, 172

text mode, 26, 27

text mode name, 98, 99, 100, 101

text record, 28, 113, 114, 115, 116, 118, 119, 120

text record mode, 28, 113, 121, 155, 158

text record reference, 113, 120

text record sub-location, 28, 46, 113

text reference name, 10, 11, 138, 139, 175

text value, 113

TEXTFAIL, 114, 118, 119, 121, 179

THEN, 9, 70, 81, 178

then alternative, 70

then clause, 81, 128

THIS, 69, 147, 178

thread, 5, 39, 46, 102, 147, 148, 150, 151

TIME, 28, 126, 179

time value built-in routine call, 98, 125

TIMEOUT, 124, 178

timeoutable, 4, 92, 93, 94, 96, 97, 124, 125, 127, 175

TIMERFAIL, 125, 175, 179

timing action, 124

timing action, 79, 124, 130

timing handler, 124, 125, 128, 130

timing mode, 2, 28

timing mode, 16, 28

timing simple built-in routine call, 97, 127

TO, 83, 94, 141, 142, 151, 178

transfer index, 105, 106, 110, 111

transfer location, 108, 109, 110

TRUE, 17, 58, 70, 71, 72, 75, 81, 86, 106, 107, 108,
109, 110, 111, 112, 118, 120, 179

truncation, 116, 117

tuple, 61, 62, 63, 70, 71

tuple, 54, 55, 58, 59, 60, 61, 62, 63, 150

—U—

undefined location, 46, 48, 52, 53, 90, 134

undefined synonym name, 70, 172

undefined value, 3

undefined value, 69, 70

undefined value, 3, 25, 26, 27, 28, 33, 45, 46, 54, 62,
63, 68, 69, 80, 90, 102, 111, 134

UNDERFLOW, 68, 74, 75, 76, 77, 102, 179

underline character, 8, 57, 60, 117

union, 33, 34, 71

unlabelled array tuple, 61

unlabelled array tuple, 60, 62

unlabelled structure tuple, 61

unlabelled structure tuple, 61, 62, 63

unnamed values, 18

238 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)

unnumbered set list, 18

unnumbered set mode, 19, 154

unsigned floating point literal, 57, 76

unsigned integer literal, 56, 57, 76

UNSIGNED_INT, 17

UP, 29, 49, 51, 64, 65, 178

UPPER, 98, 99, 100, 101, 179

upper bound, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31,
38, 49, 51, 52, 57, 65, 66, 85, 99, 102, 111, 156,
157, 160, 174

upper bound, 19, 20, 27, 28, 31, 59

upper case, 8, 9, 118

upper element, 51, 65, 66, 138

upper float bound, 21, 22

upper index, 30, 31, 51, 59, 65, 66

upper lower argument, 98, 99, 100, 101

usage, 106, 109, 110, 111, 112

USAGE, 59, 108, 109, 110, 179

usage expression, 59, 108, 109

—V—

value, 2, 3, 4,5, 8, 13, 16, 17, 18, 19, 20, 21, 22, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 45, 47, 49,
51, 55, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71,72,74,75, 76, 77, 80, 81, 82, 84, 85, 89, 90, 94,
96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 110,
111, 112, 113, 114, 115, 116, 117, 118, 120, 121,
132, 133, 134, 141, 142, 151, 154, 155, 156, 157,
158, 159, 166, 169, 170, 174, 175, 176

value, 45, 46, 61, 62, 63, 69, 70, 80, 84, 87, 89, 90, 94,
95, 102, 103, 134, 149, 150, 167, 170, 172

value argument, 113, 114, 117, 118

value array element, 65

value array element, 54, 65, 150

value array dlice, 65

value array dice, 54, 65, 66, 150

value built-in routine call, 68

value built-in routine call, 54, 55, 68

value built-in routine call, 87

value built-in routine call, 68, 150, 173

value case alternative, 70

value class, 13, 34, 35, 54, 55, 58, 61, 64, 65, 66, 67,
68, 70, 74, 85, 86, 89, 96, 97, 100, 101, 111, 149,
153, 161, 162, 170

value do-with name, 55, 86

value do-with name, 55, 56, 150, 171, 175

value enumeration, 55, 83, 85

value enumer ation name, 55, 85

value enumeration name, 55, 171

value name, 55, 86, 171

value name, 54, 55, 149

value procedure, 5

value procedure call, 68, 134

value procedure call, 54, 68, 150

value procedure call, 68, 88, 173

value receive name, 55, 95, 96, 97

value receive name, 55, 150, 171

value string element, 64

value string element, 54, 64

value string slice, 64

value string dlice, 54, 64, 65

value structure field, 66

value structure field, 54, 66, 150, 168

variable, 4, 105, 107, 109, 114, 117, 118

VARIABLE, 107, 179

variable clause width, 114, 119

variant alternative, 32, 33, 63

variant alternative, 32, 33, 34, 37, 156, 157, 158, 159,
170

variant field, 32, 48, 55, 80, 169

variant field, 32, 33, 34, 156, 157, 158, 159

variant field, 34, 48, 49, 56, 175

variant field access conditions, 48, 49, 52, 56, 66

variant field name, 33, 34, 37, 52, 66

variant structure mode, 33, 34, 62, 63, 160, 171

variant structure mode, 23

variant structure mode name, 101, 171

VARYING, 28, 29, 30, 178

varying string, 112, 118

varying string mode, 15, 27, 29, 30, 47, 49, 50, 71, 80,
114, 153, 156, 158

v-equivalent, 14, 154, 155, 156, 161, 162

visibility, 2, 5, 6, 86, 129, 131, 136, 137, 140, 162, 163,
166, 167, 168

visibility of field names, 168

visibility statement, 129, 164, 165

visibility statements, 5, 6, 140, 163, 164, 165

visible, 5, 86, 129, 140, 142, 163, 164, 165, 167, 168,
169

visible field names, 142

—W—

WAIT, 127, 179

WHERE, 59, 108, 109, 179

where expression, 59, 108, 109

WHILE, 85, 178

while control, 83

while control, 82, 85, 128

width, 114, 116, 117, 118, 119

WITH, 86, 178

with control, 86

with part, 47, 55, 82, 86, 129

word, 7, 36, 128, 175

word, 35, 36, 37, 157

write expression, 59, 110, 111, 112

write operation, 104, 105, 108, 109, 110, 111
writeable, 4, 105, 107, 109

WRITEABLE, 107, 179

WRITEFAIL, 112, 179

WRITEONLY, 108, 109, 110, 112, 179
WRITERECORD, 4, 110, 111, 112, 115, 120, 179
writerecord built-in routine call, 106, 110
WRITETEXT, 113, 114, 116, 117, 118, 119, 120, 179

ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version 239

Superseded by amorerecent version |SO/IEC 9496 : 1998 (E)
— X —

XOR, 71, 80, 178

—Y —

year expression, 126

year |ocation, 127

—7

zero-adic operator, 69

zero-adic operator, 54, 69

240 ITU-T Rec. Z.200 (1996 E) Superseded by a more recent version

