INTERNATIONAL TELECOMMUNICATION UNION

CCITT Z.200

THE INTERNATIONAL (11/1988)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

CCITT HIGH LEVEL LANGUAGE (CHILL)

Reedition of CCITT Recommendation Z.200 published in
the Blue Book, Fascicle X.6 (1988)

NOTES

1 CCITT Recommendation Z.200 was published in Fascicle X.6 of the Blue Book. This file is an extract from the
Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

Recommendation Z.200

CCITT HIGH LEVEL LANGUAGE (CHILL)

1 Imntroduction

1.1 General

1.2 Language survey

1.3 Modes and classes .
1.4 Locations and their accesses
1.5 Values and their operations
1.6 Actions

1.7 Input and output

1.8 Exception handling

1.9 Time supervision

1.10 Program structure

1.11 Concurrent execution

1.12 General semantic properties
1.13 Implementation options

2 Preliminaries

2.1 The metalanguage

2.1.1 The context-free syntax descnptlon
2.1.2 The semantic deseription
2.1.3 The examples

2.1.4 The binding rules in the metalanguage

2.2 Vocabulary

2.3 The use of spaces

2.4 Comments

2.5 Format effectors

2.6 Compiler directives Coe
2.7 Names and their defining occurrences
3 Modes and classes

3.1 General
3.1.1 Modes
3.1.2 - Classes

{Geneva 1988)

CONTENTS

3.1.3 Properties of, and relatlons between, modes a.nd classes

3.2 Mode definitions

3.2.1 General . .
3.2.2 Synmode deﬁmtlons
3.2.3 Newmode definitions
3.3 Mode classification

3.4 Discrete modes

3.4.1 General

3.4.2 Integer modes

3.4.3 Boolean modes .
3.4.4 Character modes

3.4.5 Set modes

3.4.6 Range modes

3.5 Powerset modes

3.6 Reference modes

3.6.1 General .o .
3.6.2 Bound reference modes
3.6.3 Free reference modes
3.6.4 Row modes

3.7 Procedure modes

Fascicle X.6 — Rec. Z.200

=1 O N O R R R W W W NP

© W oo S0 00 =3 =] -]

B2 OB OB OB B BSOS OB 2 bt b et b b bt e bt el et el el el el el
B R RO O OWwWo =] =R R RN R DD WD

3.8 Instance modes

3.9 Synchronisation modes
3.9.1 General

3.9.2 Event modes

3.9.3 Buffer modes .
3.10 Input-Output Modes
3.10.1 General

3.10.2 Association modes
3.10.3 Access modes

3.10.4 Text modes .

3.11 Timing modes

3.11.1 General

3.11.2 Duration modes
3.11.3 Absolute time modes
3.12 Composite modes
3.12.1 General

3.12.2 String modes

3.12.3 Array modes

3.12.4 Structure modes

3.12.5 Layout description for array modes a.nd structure modes

3.13 Dynamic modes

3.13.1 General .
3.13.2 Dynamic string modes
3.13.3 Dynamic array modes

3.13.4 Dynamic parameterised structure modes

4 Locations and their accesses
4.1 Declarations

4.1.1 General .

4.1.2 Location declaratlons

4.1.3 Loc-identity declarations

4.2 Locations

4.2.1 General

4.2.2 Access names . .
4.2.3 Dereferenced bound references
4.2.4 Dereferenced free references
4.2.5 Dereferenced rows

4.2.6 String elements

4.2.7 String slices

4.2.8 Array elements

4.2.9 Array slices

4.2.10 Structure fields

4.2.11 Location procedure calls

4.2.12 Location built-in routine calls . .

4.2.13 Location conversions

5 Values and their operations
5.1 Synonym definitions

5.2 Primitive value

5.2.1 General

5.2.2 Location contents

5.2.3 Value names

5.2.4 Literals

5.2.4.1 General

6.2.4.2 Integer literals

5.2.4.3 Boolean literals .
5.2.4.4 Character literals
5.2.4.5 Set literals

5.2.4.6 FEmptiness literal
5.2.4.7 Character string literals
5.2.4.8 Bit string literals

5.2.5 Tuples

5.2.6 Value string elements

ii Fascicle X.6 — Rec. Z.2

......

........

......

.........

. 23
. 23
.23
. 24
.24
. 25
. 25
.25
.25
. 26
.27
.27
.27
L 2T
. 28
. 28
. 28
. 28
.31
.34
.37
.37
.37
.37
.37
. 39
. 39
. 38
. 38
. 40
. 41
.41
.42
.42
. 43
.43
.44
. 45
. 46
. 46
. 47
. 48
. 48
. 49
. 50
. 50
. 50
. 50
. 51
. 51
. b2
. 52
. 53
. 83
T
. 54
. 54
. 55
. b6
. .56
. 60

5.2.7 Value string slices
5.2.8 Value array elements
5.2.9 Value array slices
5.2.10 Value structure fields
5.2.11 Expression conversions
5.2.12 Value procedure calls
5.2.13 Value built-in routine calls
5.2.14 Start expressions
5.2.15 Zero-adic operator .
5.2.16 Parenthesised expression
5.3 Values and expressions
5.3.1 General
5.3.2 Expressions
5.3.3 Operand-0
5.3.4 Operand-1
5.3.5 Operand-2
5.3.6 Operand-3
5.3.7 Operand-4
5.3.8 Operand-5
5.3.9 Operand-6
6 Actions
6.1 General
6.2 Assignment action
6.3 If action
6.4 Case action
6.5 Do action
6.5.1 General
6.5.2 For control
6.5.3 While control
8.5.4 With part
6.6 Exit action
6.7 Call action ..
6.8 Result and return action
6.9 Goto action
6.10 Assert action
6.11 Empty action
6.12 Cause action
6.13 Start action
6.14 Stop action
6.15 Continue action
6.16 Delay action
6.17 Delay case action
6.18 Send action
- 6.18.1 General
6.18.2 Send signal action .
6.18.3 Send buffer action
6.19. Receive case action
6.19.1 General ..
6.19.2 Receive signal case action
6.19.3 Receive buffer case action
6.20 CHILL built-in routine calls .
6.20.1 CHILL simple built-in routine calls e e e e e e e
6.20.2 CHILL location built-in routine calls
6.20.3 CHILL value built-in routine calls
6.20.4 Dynamic storage handling built-in routines
7 Input and Qutput
7.1 1/0 reference model
7.2 Association values
7.2.1 General e e e e
7.2.2 Attributes of association values
7.3 Access values

Fascicle X.6 — Z.200

. 60
. 61
. 62
. 63
. 63
. 64
. 64
. 65
. 65
. 65
. 66
. 66
. 67
. 68
. 69
. 69
71
.72
.73
.74
.75
.75
.75
T
.78
.79
.79
. 80
. 82
. 83
. 83
.84
. 86
. 87
. 87
. 87
. 88
. 88
. 88
. 88
. 89
. 90
.91
.91
. 91
.92
. 92
. 92
. 93
.94
. 95
.95
. 95
. 96
. 98

100
100
i01
101
101
102

7.3.1 General . ..

7.3.2 Attributes of access values .

7.4 Built-in routines for input output

7.4.1 General .. R
7.4.2 Associating an outsn:le world ob_]ect
7.4.3 Dissociating an outside world object
7.4.4 Accessing association attributes

7.4.5 Modifying association attributes

7.4.6 Connecting an access location

7.4.7 Disconnecting an access location

7.4.8 Accessing attributes of access locations
T.4.9 Data transfer operations

7.5 'Text input output

7.5.1 General . .

7.5.2 Attributes of text values

7.5.3 Text transfer operations .

7.5.4 Format control string

7.5.5 Conversion

7.5.6 Editing

7.5.7 I/O control -

7.5.8 Accessing the attributes of a text locatmn
8 Exception handling

8.1 General

8.2 Handlers .

8.3 Handler 1dent1ﬁcat1on

9 Time supervision

9.1 General Coe e

9.2 Timeoutable processes

9.3 Timing actions

9.3.1 Relative timing a.ctlon

9.3.2 Absolute timing action

9:.3.3 Cyclic timing action

9.4 Built-in routines for time

9.4.1 Duration built-in routines

9.4.2 Absolute time built-in routine

9.4.3 Timing built-in routine call

10 Program Structure

10.1 General e

10.2 Reaches and nesting
10.3 Beginendblocks
10.4 Procedure definitions

10.5 Process definitions

10.6 Modules

10.7 Regions

10.8 Program .

10.9 Storage allocatlon and hfetlme

10.10 Constructs for piecewise programming
10.10.1 Remote pieces

10.10.2 Spec modules, spec regions and contexts
10.10.3 Quasi statements, ..

10.10.4 Maiching between quasi deﬁnmg ocCurrences and deﬁmng occurrences

11 Concurrent execution,
11.1 Processes and their definitions

11.2 Mutual exclusion and regions .

11.21 Gemeral
11.2.2 Regiomality

11.3 Delaying of a process

11.4 Re-activation of a process

11.5 Signal definition statements

12 General semantic properties

12.1 Mode rules .

iv FascicleX.6 —Z.20C

102
102
102
102
103
103
104
104
105
107
107
108
110
110
110
111
113
114
116
117
118
120
120
120
120
122
122
122
122
122
123
123
124
124
124
125
127
127
128
130
131
133
134
135
135
136
136
136
138
139
140
142
142
142
142
143
144
145
145
146
146

12.1.1 Properties of modes and classes

12.1.1.1
12.1.1.2
12.1.1.3
12.1.1.4
12.1.1.5
12.1.1.6
12.1.1.7

Read-only property
Parameterisable modes
Referencing property .
Tagged parameterised property
Non-value property

Root mode

Resulting class

12.1.2 Relations on modes and classes

12.1.2.1
12.1.2.2
12.1.2.3
12.1.2.4
12.1.2.5
12.1.2.8
12.1.2.7
12.1.2.8
12.1.2.9
12.1.2.10
12.1.2.11
12.1.2.12
12.1.2.13
12.1.2.14
12.1.2.15
12.1.2.16

General RN

Equivalence relations on modes

The relation similar

The relation v-equivalent

The relation equivalent

The relation I-equivalent .

The relations equivalent and 1-equ1va.1ent for ﬁelds
The relation equivalent for layout

The relation alike

The relation alike for fields .
The relation novelty bound
The 1elation read-compatible

The relations dynamic equivalent and read compatlble

The relation restrictable . .
Compatibility between a mode and a cla.ss
Compatibility between classes

12.2 Visibility and name binding

12.2.1 Degrees of visibility

12.2.2 Visibility conditions and name bmdmg
12.2.3 Visibility in reaches

12.2.3.1 General . .

12.2.3.2 Visibility statements

12.2.3.3 Prefix rename clause

12.2.3.4 Grant statement

12.2.3.5 Seize statement

12.2.4 Implied name strings

12.2.5 Visibility of field names

12.3 Case selection R
12.4 Definition and summary of semantlc ca.tegoues
12.4.1 Names

12.4.2 Locations

12.4.3 ZExpressions and values .

12.4.4 Miscellancous semantic categories

13 Implementation options

13.1 Implementation defined built-in routmes

13.2 Implementation defined integer modes

13.3 Implementation defined process names .
13.4 Implementation defined handlers

13.5 Implementation defined exception names .
13.6 Other implementation defined features
Appendix A: Character set for CHILL
Appendix B: Special symbols ..
Appendix C: Special simple name strings
C.1 Reserved simple name strings

C.2 Predefined simple name strings

C.3 Exception names . .
Appendix D: Program examples
Appendix E: Decommitted features
Appendix F: Collected syntax e
Appendix G: Index of production rules
Appendix H: Index

Fascicle X.6 — Z.200

146
146
146
146
146
147
147
147
148
148
148
148
149
149
150
150
150
151
152
152
153
154
154
155
155
156
156
1586
157
157
158
158
159
161
162
164
164
166
166
167
167
168
169
169
169
169
169
169
169
171
172
173
173
174
175
176
202
205
228
237

1 INTRODUCTION

This recommendation defines the CCITT high level programming language CHILL. CHILL stands for CCITT
High Level Language.

The following sub-sections in this chapter introduce some of the motivations behind the language design and
provide an overview of the language features.

For information .concerning the variety of introductory and training material on this subject, the reader is
referred to the CCITT Manuals, “Introduction to CHILL” and “CHILL user’s manual”.

An alternative definition of CHILL, in a strict mathematical form (based on the VDM notation), is available in
the CCITT Manual entitled “Formal definition of CHILL”.

1.1 GENERAL

CHILL is a strongly typed, block structured langnage designed primarily for the implementation of large and
complex embedded systems.

CHILL was designed to:
¢ .enhance reliability and run time efficiency by means of extensive compile-time checking;

s be sufficiently flexible and powerful to encompass the required range of applications and to exploit a
variety of hardware;

e provide facilities that encourage piecewise and modular development of large systems;

o cater for real-time implementations by providing built-in concurrency and time supervision primitives;
» permit the generation of highly efficient object code;

e be easy to learn and use.

The expressive power inherent in the language design allow engineers to select the appropriate constructs from
a rich set of facilities such that the resulting implementation can match the original specification more precisely.

Because CHILL is careful to distingnish between static and dynamic objects, nearly all the semantic checking
can be achieved at compile time. This has obvious run time benefits. Violation of CHILL dynamic rules results
in run-time exceptions which can be intercepted by an appropriate exception handler (however, generation of
such implicit checks is optional, unless a user defined handler is explicitly specified).

CHILL permits programs to be written in a machine independent manner. The language itself is machine
independent; however, particular compilation systems may require the provision of specific implementation
defined objects. It should be noted that programs containing such objects will not, in general, be portable.

1.2 LANGUAGE SURVEY
A CHILL program consists essentially of three parts:
¢ a description of data objects;
s a description of actions which are to be performed upon the data objects;

» a description of the program structure.

Data objects are described by data statements (declaration and definition statements), actions are described by
action statements and the program structure is determined by program structuring statements.

The manipulatable data objects of CHILL are values and locations where values can be stored. The actions
define the operations to be performed upon the data objects and the order in which values are stored into and
retrieved from locations. The program structure determines the lifetime and visibility of data objects.

CHILL provides for extensive static checking of the use of data objects in a given context.

In the following sections, a summary of the various CHILL concepts is given. Each section is an introduction
to a chapter with the same title, describing the concept in detail.

Fascicle X.6 — Rec. Z200 1

1.3 MODES AND CLASSES

A location has a mode attached to it. The mode of a location defines the set of values which may reside in that
location and other properties associated with it (note that not all properties of a location are determinable by
its mode alone). Properties of locations are: size, internal structure, read-onliness, referability, etc. Properties
of values are: internal representation, ordering, applicable operations, etc.

A value has a class attached to it. The class of a value determines the modes of the locations that may contain
the value.

CHILL provides the following categories of modes:

discrete modes integer, character, boolean, set (symbolic) modes and ranges thereof;
powerset modes sets of elements of some discrete mode;

reference modes bound references, free references and rows used as references to locations;
composite modes string, array and structure modes;

procedure modes procedures considered as manipulatable data objects;

instance modes identifications for processes;

synchronisation modes event and buffer modes for process synchronisation and communication;
input-output modes association, access and text modes for input-output operations;
timing modes duration and absolute time modes for time supervision.

CHILL provides denotations for a set of standard modes. Program defined modes can be introduced by means
of mode definitions. Some language constructs have a so-called dynamic mode attached. A dynamic mode is a
mode of which some properties can be determined only dynamically. Dynamic modes are always parameterised
modes with run-time parameters. A mode that is not dynamic is called a static mode.

Classes have no denotation in CHILL. They are introduced in the metalanguage only to describe static and
dynamic context conditions.

14 LOCATIONS AND THEIR ACCESSES

Locations are (abstract) places where values can be stored or from which values can be obtained. In order to
store or obtain & value, a location has to be accessed.

Declaration statements define names to be used for accessing a location. There are:
1. location declarations;
2. loc-identity declarations.

The first one creates locations and establishes access names to the newly created locations. The latter one
establishes new access names for locations created elsewhere.

Apart from location declarations, new locations can be created by means of a GETSTACK or ALLOCATE
built-in routine calls yielding reference values (see below) to the newly created Jocation.

A location may be referable. This means that a corresponding reference value exists for the location. This
reference value is obtained as the result of the referencing operation, applied to the referable location. By
dereferencing a reference value, the referred location is obtained. CHILL requires certain locations to be
referable and others to be not referable, but for other locations it is left to the implementation to decide
whether or not they are referable. Referability must be a statically determinable property of locations.

A location may have a read-only mode, which means that it can only be accessed to obtain a value and not
to store a new value into it (except when initialising).

A location may be composite, which means that it has sub-locations which can be accessed separately. A
sub-location is not necessarily referable. A location containing at least one read-only sub-location is said to
have the read-only property. The accessing methods delivering sub-locations (or sub-values) are indexing
and slicing for strings and for arrays, and selection for structures.

2 Fascicle X.8 — Rec. Z200

A location has a mode attached. If this mode is dynamic, the location is called a dynamic mode location.

The following properties of a location, although statically determinable, are not part of the mode:
referability: whether or not a reference value exists for the location;
storage class: whether or not it is statically allocated;

regionality: whether or not the location is declared within a region.

1.5 VALUES AND THEIR OPERATIONS

Values are basic objects on which specific operations are defined. A value is either a (CHILL) defined value or
an undefined value (in the CHILL sense). The usage of an undefined value in specified contexts results in an
undefined situation (in the CHILL sense) and the program is considered o be incorrect.

CHILL allows locations to be used in contexts where values are required. In this case, the location is accessed
to obtain the value contained in it.

A value has a class attached. Strong values are values that besides their class also have a mode attached. In
that case the value is always one of the values defined by the mode. The class is used for compatibility checking
and the mode for describing properties of the value. Some contexts require those properties to be known and a
strong value will then be required.

A value may be literal, in which case it denotes an implementation independent discrete value, known at compile
time. A value may be constant, in which case it always delivers the same value, i.e. it need only be evaluated
once. When the contexi requires a Jiteral or constant value, the value is assumed to be evaluated before
run-time and therefore cannot generate a run-time exception. A value may be intra-regional, in which case it
can refer somehow to locations declared within a region. A value may be composite, i.e. contain sub-values.

Synonym definition statements establish new names to denote constant values.

1.6 ACTIONS

Actions constitute the algorithmic part of a CHILL program.

The assignment action stores a (computed) value into one or more locations. The procedure call invokes a
procedure, a built-in routine call invokes a built-in routine (a2 built-in routine is a procedure whose definition
need not be written in CHILL and whose parameter and result mechanism may be more general). To return
from and/or establish the result of a procedure call, the return and result actions are used.

To control the sequential action flow, CHILL provides the following flow of control actions:

if action for a two-way branch;

case action for a multiple branch. The selection of the branch may be based upon several values,
similarly to a decision table;

do action for iteration or bracketing;

exit action for leaving a bracketed action or a module in a structured manner;

cause action to cause a specific exception;

goto action for unconditional transfer to a labelled program point.

Action and data statements can be grouped together to form a module or begin-end block, which form a
(compound) action.

To control the concurrent action flow, CHILL provides the start, stop, delay, continue, send, delay case, and
receive case actions, and receive and start expressions.

1.7 INPUT AND OUTPUT

The input and output facilities of CHILL provide the means to communicate with a variety of devices in the
outside world.

The input-output reference model knows three states. In the free state there is no interaction with the outside
world.

Fascicle X.6 — Rec. Z200 3

Through an ASSOCIATE operation the file handling state is entered. In the file handling state there are
locations of association mode, which denote outside world objects. It is possible via built-in routines to read
and modify the language defined attributes of associations, i.e. existing, readable, writeable, indexable,
sequencible and variable. File creation and deletion are also done in the file handiing state.

Through the CONNECT operation, a location of access mode is connected to a location of an association mode,
and the data transfer state is entered. The CONNECT operation allows positioning of a base index in a file,
In the data iransfer state various attributes of locations of access mode can be inspected and the data transfer
operations READRECORD and WRITERECORD can be applied.

Through the text transfer operations, CHILL values can be represented in a human-readable form which can
be transferred to or from a file or a CHILL location.

1.8 EXCEPTION HANDLING

The dynamic semantic conditions of CHILL are those (non context-free) conditions that, in general, cannot
be statically determined. (It is left to the implementation to decide whether or not to generate code to fest
the dynamic conditions at run time, unless an appropriate handler is explicitly specified.) The violation of a
dynamic semantic rule causes a run-time exception; however, if an implementation can determine statically that
a dynamic condition will be violated, it may reject the program.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an assert
action. When, at a given program point, an exception occurs, control is transferred to the associated handler
for that exception, if it is specifiable (i.c. it has a name) and is specified. Whether or not a handler is specified
for an exception at a given point can be statically determined. If no explicit handler is specified, control may
be transferred to an implementation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception name, an implementation defined exception
name, or a program defined exception name. Note that when a handler is specified for an exception name, the
associated dynamic condition must be checked.

1.9 TIME SUPERVISION

Time supervision facilities of CHILL provide the means to react to the elapse of time in the external world.
CHILL processes may be interrupted only at precise timeoutable points during execution. When this happens,
control is transferred to an appropriate handler.

Programs may detect the elapsing of a period of time or may synchronise to an absolute point of time or at
precise intervals without cumulated drifts. Built-in routines for time are provided to convert time and duration
values into integer values, to put a process in a waiting state and to detect the expiration of a time supervision.

1.10 PROGRAM STRUCTURE

The program structuring statements are the begin-end block, module, procedure, process and region. The

program structuring statements provide the means of controlling the lifetime of locations and the visibility of
names.

The lifetime of a location is the time during which a location exists within the program. Locations can be
explicitly declared (in a location declaration) or generated (GETSTACK or ALLOCATE built-in routine call),
or they can be implicitly declared or generated as the result of the use of language constructs.

A name is said to be visible at a certain point in the program if it may be used at that point. The scope of a
name encompasses all the points where it is visible, 1.e. where the denoted object is identified by that name.

Begin-end blocks determine both visibility of names and lifetime of locations.

Modules are provided to restrict the visibility of names to protect against unauthorised usage. By means of
visibility statements, it is possible to exercise control over the visibility of names in various program parts.

4 Fascicle X.6 ~ Rec. Z200

A procedure is a (possibly parameterised) sub-program that may be invoked (called) at different places within
a program. It may return a value (value procedure) or a location (location procedure), or deliver no result. In
the latier case the procedure can only be called in a procedure call action.

Processes and regions provide the means by which a structure of coneurrent executions can be achieved.

A complete CHILL program is a list of modules or regions that is considered to be surrounded by an (imaginary)
process definition. This outermost process is started by the system under whose control the program is executed.

Constructs are provided to facilitate various ways of piecewise development of programs. A spec module and
spec region are used to define the static properties of a program piece, a context is used to define the static
properties of seized names. In addition it is possible to specify that the text of a program piece is to be found
somewhere else through the remote facility.

1.11 CONCURRENT EXECUTICN

CHILL allows for the concurrent execution of program units. A process is the unit of concurrent execution.
The evaluation of a start expression causes the creation of a new process of the indicated process definition.
The process is then considered to be executed concurrently with the starting process. CHILL allows for one or
more processes with the same or different definition to be active at one time. The stop action, executed by a
process, causes its termination.

A process is always in one of two states; it can be active or delayed. The transition from active to delayed is
called the delaying of the process; the transition from delayed to active is called the re-activation of the process.
The execution of delaying actions on events, or receiving actions on buffers or signals, or sending actions on
buffers, can cause the executing process to become delayed. The execution of a continue action on events, or
sending actions on buffers or signals, or receiving actions on buffers can cause a delayed process to become
active again.

Buffers and events are Jocations with restricted use. The operations send, receive and receive case are defined on
buffers; the operations delay, delay case and continue are defined on events. Buffers are a means of synchronising
and transmitting information between processes. Events are used only for synchronisation. Signals are defined in
signa] definition statements. They denote functions for composing and decomposing lists of values transmitted
between processes. Send actions and receive case actions provide for communication of a list of values and for
synchronisation.

A region is a special kind of module. Its use is to provide for mutually exclusive access to data structures that
are shared by several processes.

1.12 GENERAL SEMANTIC PROPERTIES

The semantic (non context-free) conditions of CHILL are the mode and cless compatibility conditions (mode
checking) and the visibility conditions (scope checking). The mode rules determine how names may be used;
the scope rules determine where names may be used.

The mode rules are formulated in terms of compatibility requirements between modes, between classes and
between modes and classes. The compatibility requirements between modes and classes and between classes
themselves are defined in terms of equivalence relations between modes. If dynamic modes are involved, mode
checking is partly dynamic.

The scope rules determine the visibility of names through the program structure and explicit visibility state-
ments. The explicit visibility statements influence the scope of the mentioned names and also of possibly
implied names of the mentioned names. Names introduced in a program have a place where they are defined
or declared. This place is called the defining occurrence of the name. The places where the name is used are
called applied occurrences of the name. The name binding rules associate a unique defining occurrence with
each applied occurrence of the name.

1.13 IMPLEMENTATION OPTIONS

CHILL allows for implementation defined integer modes, implementation defined buili-in routines, implementa-
tion defined process names, implementation defined exception handlers and implementation defined exception
names.

Fascicle X.8 — Rec. Z200 5

An implementation defined integer mode must be denoted by an implementation defined mode name. This
name is considered to be defined in & newmode definition statement that is not specified in CHILL. Extending
the existing CHILL-defined arithmetic operations to the implementation defined integer modes is allowed within
the framework of the CHILL syntactic and semantic rules. Examples of implementation defined integer modes
are long integers, and short integers.

A built-in routine is a procedure whose definition need not be written in CHILL and that may have a more
general parameter passing and result transmission scheme than CHILL procedures.

A built-in process name is a process name whose definition need not be written in CHILL and that may
have a more general parameter passing scheme than CHILL processes. A CHILL process may cooperate with
built-in processes or start such processes.

An implementation defined exception handler is 2 handler appended to a process definition. If this handler
receives control after the occurrence of an exception, the implementation decides which actions are to be taken.
An implementation defined excepiion is caused if an implementation defined dynamic condition is violated.

NOTE

.Recommendation Z200 was prepared by the International Telegraph and Telephone Consultative
Sommlttee (CCITT) of the International Telecommunication Union (ITU) and was adopted, under a special
fast-track procedure”, as International Standard ISO/TEC 9496 by ISO (the International Organization for

Standa}'dization) and IEC (the International Electrotechnical Commission) through their Joint Technical
Committee ISO/IEC JTC 1, Information technology.

The text of CCITT Recommendation Z.200 serves as ISO/IEC 9496.

6 Fascicle X.6 — Rec. Z200

2 PRELIMINARIES

2.1 THE METALANGUAGE
The CHILL description consists of two parts:
o the description of the context-free syntax;

¢ the description of the semantic conditions.

2.1.1 The context-free syntax description

The context-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are

indicated by one or more English words, written in slanted characters, enclosed between angular brackets
(< and >). This indicator is called a non-terminal symbol. For each non-terminal symbol, a production rule

is given in an appropriate syntax section. A production rule for a non-terminal symbol consists of the non-

terminal symbol at the lefthand side of the symbol ::=, and one or more constructs, consisting of non-terminal

and/or terminal symbols at the righthand side. These constructs are separated by a vertical bar (|) to denote
alternative productions for the non-terminal symbol.

Sometimes the non-terminal symbol includes an underlined part. This underlined part does not form part of
the context-free description but defines a semantic category (see section 2.1.2).

Syntactic elements may be grouped together by using curly brackets ({ and }). Repetition of curly bracketed
groups is indicated by an asterisk (*) or plus {¥). An asterisk indicates that the group is optional and can
be further repeated any number of times; a plus indicates that the group must be present and can be further
repeated any number of times. For example, { 4 }* stands for any sequence of A’s, including zero, while { 4 }*
stands for any sequence of at least one A. If syntactic elements are grouped using square brackets ([and]),
then the group is optional. A curly or square bracketed group may contain one or more vertical bars, indicating
alternative syntactic elements.

A distinction is made between strict syntax, for which the semantic conditions are given directly, and derived
syntaX. The derived syntax is considered to be an extension of the strict syntax and the semantics for the
derived syntax is indirectly explained in terms of the associated strict syntax.

It is to be noted that the context-free syntax description is chosen to suit the semantic description in this
document and is not made to suit any particular parsing algorithm (e.g. there are some context-free ambiguities

introduced in the interest of clarity). The ambiguities are resolved using the semantic category of the syntactic
elements.

2.1.2 The semantic description

Each syntactic category (non-terminal symbol) is described in sub-sections semantics, static properties,
dynamic properties, static conditions and dynamic conditions.

The section semantics describes the concepts denoted by the syntactic categories (i.e. their meaning and
behaviour).

The section static properties defines statically determinable semantic properties of the syntactic category.
These properties are used in the formulation of static and/or dynamic conditions in the sections where the
syntactic category is used.

The section dynamic properties defines the properties of the syntactic category, which are known only
dynamically,

The section static conditions describes the context-dependent, statically checkable conditions which must be
fulfilled when the syntactic category is used. Somestatic conditions are expressed in the syntax by means of
an underlined part in the non-terminal symbol (see section 2.1.1). This use requires the non-terminal to be of
a specific semantic category E.g. <boolean expression>> is identical to <expression> in the context free sense,
but semantically it requires the expression to be of a boolean class.

The section dynamic conditions describes the context-dependent conditions that must be fulfilled during
execution. In some cases, conditions are static if no dynamic modes are involved. In those cases, the condition
is mentioned under static conditions and referred to under dynamic conditions. In other cases, dynamie
conditions can be checked statically; an implementation may treat this as a violation of a static condition.

Fascicle X.6 — Rec. Z200 7

In the semantic description, different fonts are used in the following ways: slanted font (without < and >) is
used to indicate syntactic objects; corresponding terms in roman font indicate corresponding semantic objects
(e.g. a Jocation denotes a location). Bolding is used to name semantic properties; sometimes a property can be
expressed syntactically as well as semantxcaily (e.g. the sentence “the expression is constant” means the same
as “the expression is a constant expression”).

Unless otherwise specified, the semantics, properties and conditions described in the sub-section of a syntactic
category hold regardless of the context in which in other sections that syntactic category may appear.

The properties of & syntactic category A that has a production rule of the form A ::= B, where B is a syntactic
category, are the same as B unless otherwise specified.

2.1.3 The examples

For most syntax sections, there is a section examples giving one or more examples of the defined syntactic
categories. These examples are extracted from a set of program examples contained in Appendix D. References
indicate via which syntax rule each example is produced and from which example it is taken.

E.g. 6.20 (d+5)/5 (1.2)indicates an example of the terminal string (d+5)/5, produced via rule (1.2) of the
appropriate syntax section, taken from program example no. 6 line 20.

2.1.4 The binding rules in the metalanguage

Sometimes the semantic description mentions CHILL special simple name strings {see Appendix C). These
special simple name strings are always used with their CHILL meaning and are therefore not influenced by the
binding rules of an actual CHILL program.

2.2 VOCABULARY

Programs are represented using the CHILL character set (see Appendix A). The alphabet is represented by the
syntactic category <character>, from which any character that is in the CHILL character set can be derived
as terminal production.

The lexical elements of CHILL are:
¢ special symbols
e simple name strings
s literals,

Apart from the lexical elements there are also special characier combinations. The special symbols and special
character combinations are listed in Appendix B.

Simple name strings are formed according to the following syntax:

syntax:

<simple name string> 1= o (1)
<letter> { <letter> | <digit> | _ }* (1.1)

<letter> = {2)
|B|C|D|E|F |G |H|I|J|K|L|M (2.1)
IN|O[P|QiR|S|T|U|V|W|X|Y|Z (2.2)

la [b|c|dle|flg|h|ilflk]|l|m (2.3)
lnJolpiglrls|tiulviw]|x]|y|sz (2.4)

<digit> = , (3)
|1|2|3]4|5|6|7[8|9 (3.1)

semantics: The underline character (_) forms part of the simple name string; e.g. the simple name string
life_time is different from the simple name string lifetime. Lower case and upper case letters are
different, e.g. Status and status are two different simple name strings.

8 Fascicle X.6 — Rec. Z200

The language has a number of special simple name strings with predetermined meanings (see
Appendix C). Some of them are reserved, i.e. they cannot be used for other purposes.

The special simple name strings in a piece must either all be in upper case representation or all
be in lower case representation. The reserved simple name strings are only reserved in the chosen
representation (e.g. if the lower case fashion is chosen, row is reserved, ROW is not).

static conditions: A simple name string can not be one of the reserved simple name strings (see Appendix
C.1).

2.3 THE USE OF SPACES

A space terminates any lexical element or special character combination. Lexical elements are also terminated
by the first character that cannot be part of the lexical element. For instance, IFBTHEN will be considered
a simple name string and not as the beginning of an action IF B THEN, //* will be considered as the
concatenation symbol (//) followed by an asterisk (#) and not as a divide symbol (/} followed by a comment
opening bracket (/x).

24 COMMENTS

syntax:

<comment> = (1)

< bracketed comment> {1.1)

| <line-end comment> (1.2)

< bracketed comment> 1= (2)

/#* <character string> */ (2.1)

<line-end comment> 1= (3)

~ — <character string> <end-of-line> {3.1)

<character string> 1= (4)

{ <character> }* (4.1)

N.B. end-of-line denotes the end of the line in which the comment occurs.

semantics: A comment conveys information to the reader of a program. It has no influence on the program
semantics.

A comment may be inserted at all places where spaces are allowed as delimiters.

A bracketed comment is terminated by the first occurrence of the special sequence: /. A line-end
comment is terminated by the first occurrence of the end of the line.

examples:
4.1 /* from collected algorithms from CACM no. 93 */ {2.1)

2.5 FORMAT EFFECTORS

The format effectors BS (Backspace), CR {Carriage return), FF (Form feed), HT (Horizortal tabulation), LF
(Line feed), and VT (Vertical tabulation) of the CHILL character set {see Appendix A, positions FEq to FE;)
are not mentioned in the CHILL context-free syntax description. When used, they have the same delimiting
effect as a space. Spaces and format effectors may not occur within lexical elements (except character string
literals).

Fascicle X.8 — Rec. Z200 9

2.6 COMPILER DIRECTIVES

syntax:
<directive clause> ::= {1)
<> <directive>> { , <directive> }* <> (1.1)
<directive> = {2)
<implementation directive> (2.1)

semantics: A directive clause conveys information to the compiler. This information is specified in an
implementation defined format.

An implementation directive must not influence the program semantics, i.e. a program with im-
plementation directives is correct, in the CHILL sense, if and only if it is correct without these
directives.

A directive clause is terminated by the fizst occurrence of the directive ending symbol (<>). A
directive may contain any character of the character set (see Appendix A).

static properties: A directive clause may be inserted at any place where spaces are allowed. It has the same
delimiting effect as a space. The names used in a directive clause follow an implementation defined
name binding scheme which does not influence the CHILL name binding rules (see section 12.2).

2.7 NAMES AND THEIR DEFINING OCCURRENCES

syntax:

<name> = (1)
<name string > (1.1)

<name string> = {2)
<simple name string> {2.1)

| <prefixed name string> {2.2)

< prefixed name string> 1= (3)
<prefix> ! <simple name string> (3.1
<prefix> = (4)
<simple prefix> { ! <simple prefix> }* (4.1)
<simple prefix> ::= (5)
<simple name string> (5.1)
<defining occurrence> = (6)
<simple name string> {6.1)
<defining occurrence list> ::= (7)
<defining occurrence> { , <defining occurrence> }* (7.1)

<field name> ::= (8)
<simple name string> (8.1)

<field name defining occurrence> ::= (9)
<simple name string > (9.1)

<fleld name defining occurrence list> = (10)
<field name defining occurrence> { , <field name defining occurrence> }* (10.1)
<exception name> ;= (11)
<simple name string> (11.1)

| <prefixed name string> (11.2)

< text reference name> ;1= (12)
<simple name string> (12.1}

| <prefixed name string> (12.2)

10 Fascicle X.6 — Rec. Z200

semantics: Names in a program denote objects. Given an occurrence of a name (formally: an occurrence
of a terminal production of name) in a program, the binding rules of section 12.2 provide defining
occurrences (formally: occurrences of terminal productions of defining occurrence) to which that
{occurrence of) name is bound. The name then denotes the object defined or declared by the
defining occurrences. (There can be more than one defining occurrence for a name only in the case
of set element names or of names with guasi defining oceurrences.) Defining occurrences are said
to define the name. A name is said to be an applied occurrence of the name created by the defining
occurrence to which it is bound. The name has its rightmost simple name string equal to that of
the name.

Similarly, fleld names are bound to field name defining occurrences and denote the fields (of a
structure mode) defined by those field name defining occurrences.

Exception names are used to identify exception handlers according to the rules stated in Chapter 8.

Text reference names are nsed to identify descriptions of pieces of source text in an implementation
defined way, subject to the rules in section 10.10.1.

When a name is bound to more than one defining occurrence, each of the defining occurrences to
which the name is bound defines or declares the same object (see 10,10 and 12.2.2 for precise rules).

definition of notation: Given a name string NS, and a string of characters P, which is either a prefix or is
empty, the result of prefixing NS with P, written P ! NS, is defined as follows:

o if P is empty, then P ! NS is NS;

s otherwise P | NS is the name string obtained by concatenating all the characters in P, a
prefixing operator and all the characters in NS.

For example, if P is “g ! r” and NSis “s ! n” then P! NSis “g!r!s! n".

static properties: Each simple name string has a canonical name string attached which is the simple name
string itself, A name string has a canonical name string attached which is;

e if the name string is a simple name string, then the canonical name string of that simple
name string;

s if the name string is a prefixed name string, then the concatenation in left to right order of
all simple name strings in the name string, separated by prefixing operators, i.e. interspersed
spaces, comments and format effectors (if any) are left out.

In the rest of this document:

» the name string of a name, exception name or text reference name is used to denote the
canonical name string of the name string in that name, exception name or text reference
name, respectively; '

s the name string of a defining occurrence, field name or field name defining occurrence is used
to denote the canonical name string of the simple name string in that defining occurrence,
field name or field name defining occurrence, respectively.

The binding rules are such that:

e names with a simple name string are bound to defining occurrences with the same name
string; :

e names with a prefixed name string are bound to defining occurrences with the same name
string as the rightmost simple name string in the prefixed name string of the name;

o field names are bound to field name defining occurrences with the same name string as the
field names.

A name inherits all the static properties attached to the name defined by the defining cccurrence
to which it is bound. A field name inherits all static properties attached to the field name defined
by the field name defining occurrence to which it is bound.

Fascicle X.6 — Rec. 2200 11

3 MODES AND CLASSES

3.1 GENERAL

A location has a mode attached to it; a value has a class attached to it. The mode attached to z location defines
the set of values that may be contained in the location, the access methods of the location and the allowed
operations on the values. The class atiached to a value is a means of determining the modes of the locations
that may contain the value. Some values are strong. A strong value has a class and a mode attached. Strong
values are required in those value contexts where mode information is needed.

3.1.1 Modes

CHILL has static modes (i.e. modes for which all properties are statically determinable) and dynamic modes
{i.e. modes for which some properties are only known at run time). Dynamic modes are always parameterised
modes with run-time parameters.

Static modes are terminal productions of the syntactic category mode.

In this document, virtual mode names are introduced to describe modes which are not denoted explicitly in
the program text. In such cases the mode name is preceded by an ampersand symbol (&).

Modes are also parameterised by values not explicitly denoted in the program text.

3.1.2 Classes

Classes have no denotation in CHILL.

The following kinds of classes exist and any value in a CHILL program has a class of one of these kinds:

e For a mode M there exists the M-value class. All values with such a class and only those values are
strong and the mode attached to the value is M.

¢ For a mode M there exists the M-derived class.
e For any mode M there exists the M-reference class.
e The null class.

- » The all class.

The last two classes are constant classes, i.e. they do not depend on a mode M. A ‘class is said to be dynamic
if and only if it is an M-value class, an M-derived class, or an M-reference class, where M is a dynamic mode.

3.1.3 Properties of, and relations between, modes and classes

Modes in CHILL have properties. These may be hereditary or non-hereditary properties. A hereditary property
is inherited from a defining mode to a mode name defined by it. Below a summary is given of the properties
that apply to all modes (except for the first, they are all defined in section 12.1):

¢ A mode has a novelty (defined in sections 3.2.2, 3.2.3 and 3.3).
* A mode can have the read-only property.

» A mode can be parameterisable.

® A mode can have the referencing property.

e A mode can have the tagged parameterised property.

¢ A mode can have the non-value property.

Classes in CHILL may have the following properties (defined in section 12.1):
¢ A class can have a root mode.

* One or more classes may have a resulting class.

12 Fascicle X.6 — Rec. Z200

Operations in CHILL are determined by the modes and classes of locations and values. This is expressed by
the mode checking rules which are defined in section 12.1 as a number of relations between modes and classes.
There exists the following relations:

» Two modes can be similar.

o Two modes can be v-equivalent.

¢ Two modes can be equivalent.

s Two modes can be l-equivalent.

» Two modes can be alike.

¢ Two modes can be novelty bound.

¢ Two modes can be read-compatible.

e Two modes can be dynamic read-compatible.
¢ Two modes can be dynamic equivalent.
» A mode can be restrictable to a mode.

* A mode can be compatible with a class.

e A class can be compatible with a class,

3.2 MODE DEFINITIONS

3.2.1 Genmneral

syntax:
<mode definition> ::= (1)
< defining occurrence list> = <defining mode> (1.1)
< defining mode> = (2)
<mode> (2.1)

derived syntax: A mode definition where the defining occurrence list consists of more than one defining
occurrence is derived from several mode definitions, one for each defining occurrence, separated by
commas, with the same defining mode. For example:

NEWMODE doliar, pound = INT;
is derived from:
NEWMODE dollar = INT , pound = INT;

semantics: A mode definition defines a name that denotes the specified mode. Mode definitions occur in
synmode and newmode definition statements. A synmode is synonymous with its defining mode.
A newmode is not synonymous with its defining mode. The difference is defined in terms of the
property novelty, that is used in the mode checking (see section 12.1).

static properties: A defining occurrence in a mode definition defines a mode name.

Predefined mode names and implementation defined integer mode names (if any, see section 3.4.2)
are also mode names.

A mode name has a defining mode which is the defining mode in the mode definition which defines
it. {For predefined and implementation defined mode names this defining mode is a virtual mode).
The hereditary properties of 2 mode name are those of its defining mode.

A set of recursive definitions is a set of mode definitions or synonym definitions (see section 5.1)
such that the defining mode in each mode definition or constant value or mode in each synonym
definition is, ot directly contains, a mode name or a synonym name defined by a definition in the
set,

Fascicle X.6 — Rec. Z200 13

A set of recursive mode definitions is a set of recursive definitions having only mode definitions.
(Any set of recursive definitions must be a set of recursive mode definitions; see section 5.1).

Any mode being or containing 2 mode name defined in a set of recursive mode definitions is said
to denote a recursive mode. A path in a set of recursive mode definitions is a list of mode names,
each name indexed with a marker such that:

e all names in the path have a different definition;

e for each name, its successor is or directly occurs in its defining mode {the successor of the
last name is the first name); 4

» the marker indicates uniquely the position of the name in the defining mode of its predecessor
(the predecessor of the first name is the last name).

(Example: NEWMODE M = STRUCT (i M, n REF M); contains two paths: {M;} and {M,}.)

A path is safe if and only if at least one of its names is contained in a reference mode, a row mode,
or a procedure mode at the marked place.

static conditions: For any set of recursive mode definitions, all its paths must be safe. (The first path of
the example above is not safe).

examples:
1.15 operand_mode = INT (1.1)
3.3 complex = STRUCT (re,im INT) (1.1)

3.2.2 Synmode definitions

syntax:
<synmode definition statement> ::= (1)
SYNMODE <mode definition> { , <mode definition> }* ; (1.1)

semantics: A synmode definition statement defines mode names which are synonymous with their defining
mode.

static properties: A defining occurrence ir a mode definition in a syninode definition statement defines a
synmode name (which is also a mode name). A synmode name is said to be synonymous with
a mode M (conversely, M is said to be synonymous with the synmode name) if and only if:

¢ cither M is the defining mode of the synmode name:

¢ or the defining mode of the synmode name is itself a synmode name synonymous
with M.

The novelty of 2 synmode name is that of its defining mode.

If the defining mode is a range mode, then the parent mode of the synonym name is that of its
defining mode. If the defining mode is a varying string mode, then the component mode of
the synonym name is that of its defining mode.

examples:
6.3 SYNMODE month = SET (jan, feb, mar, apr, may, jun,
Jul, aug, sep, oct, nov, dec); (1.1)
3.2.3 Newmode definitions
syntax:
<newinode definition statement> ::= (1)
NEWMODE <mode definition> { , <mode definition> }* ; (1.1)

14 Fascicle X.8 — Ree. Z200

semantics: A newmode definition statement defines mode names which are not synonymous with their
defining mode.

static properties: A defining occurrence in a mode definition in a newmode definition statement defines a
newmode name (which is also a mode name).

The novelty of the newmode name is the defining occurrence which defines it. If the defining
mode of the newmode name is a range mode, then the virtual mode &name is introduced as the
parent mode of the newmode name. The defining mode of &name is the parent mode of the
range mode, and the novelty of &name is that of the newmode name.

If the defining mode is a varying string mode, then the virtual mode &name is introduced as the
component mode of the newmode name. The defining mode of &name is the component mode
of the varying string mode, and the novelty of &name is that of the newmode name.

If the defining occurrence of the mode definition is a quasi defining occurrence, then the novelty
is a guasi novelty, otherwise it is a real novelty.

static conditions: If the novelty is a quasi novelty, then at most one real novelty must be novelty

bound to it.

examples:
11.6 NEWMODE line = INT (1:8); (1.1)
11.12 NEWMODE board = ARRAY (line) ARRAY (column) square; (1.1)

3.3 MODE CLASSIFICATION

syntax:

<mode> = (1)
[READ] <non-composite mode> (1.1)

| [READ | <composite mode> (1.2)

< Ron-composite mode> = (2)
<discrete mode> (2.1)

| <powerset mode> {2.2)

| <reference mode> {2.3)

| <procedure mode> (2.4)

| <instance mode> (2.5)

| <synchronisation mode>> (2.6)

| <input-outpui mode> (2.7)

| <timing mode> (2.8)

semantics: A mode defines a set of values and the operations which are allowed on the values. A mode may
be a read-only mode, indicating that a location of that mode may not be accessed to store a value.
A mode has a novelty, indicating whether it was introduced via a newmode definition statement
or not.

static properties: A mode has the following hereditary properties:
e Iiis a read-only mode if it is an explicit or an implicit read-only mode.

+ It is an explicit read-only mode if READ is specified or it is a parameterised array mode,
a parameterised string mode or a parameterised structure mode, where the origin array
mode name, origin string mode name or origin variant structure mode name, respectively,
in it is a read-only mode.

Fascicle X.6 — Rec. Z200 15

¢ It is an implicit read-only mode if it is not an explicit read-only mode and if:
— it is the element mode of a read-only array mode (see section 3.12.3);

— it is a field mode of a read-only structure mode or it is the mode of a tag field of a
parameterised structure mode (see section 3.12.4).

A mode has the same properties as the non-composite mode or composite mode init. In the following
sections, the properties are defined for predefined mode names and for modes that are not mode
names; the properties of mode names are defined in section 3.2. Read-only modes have the same
properties as their corresponding non-read-only modes except for the read-only property (see
section 12.1.1.1).

A mode has the following non-hereditary properties:

* A novelty that is either nil or the defining occurrence in a mode definitior in a newmode
definition statement. The novelty of a mode which is not a mode name (nor READ mode
name) is defined as follows:

— ifitis a parameterised string mode, a parameterised array mode or a parame-
terised structure mode, its novelty is that of its origin string mode, origin array
mode or origin variant structure mode, respectively;

— ifitis a range mode, its novelty is that of its parent mode:
— otherwise its novelty is nil.

The novelty of a mode that is & mode name (READ mode name) is defined in sections
3.2.2 and 3.2.3.

e A size that is the value delivered by SIZE (&M), where &M is a virtual synmode name
synonymous with the made.

3.4 DISCRETE MODES

3.4.1 General

syntax: .
<discrete mode> = (1)
<integer mode> (1.1)
| <boolean mode> (1.2)
| <character mode> (1.3)
| <set mode> {1.4)
| <range mode> (1.5)

semantics: A discrete modes defines sets and subsets of well-ordered values,

3.4.2 Integer modes

syntax:
<integer mode> = (1)
<integer mode name> {1.1)

predefined names: The name INT is predefined as an integer mode name.

16 Fascicle X.8 — Rec.. Z200

semantics: An integer mode defines a set of signed integer values between implementation defined bounds over
which the usual ordering and arithmetic operations are defined (see section 5.3). An implementation
may define other integer modes with different bounds (e.g. LONG_INT, SHORT_INT, ...) that
may also be used as parent modes for ranges (see section 13.2). The internal representation of an
integer value is the integer value itself.

static properties: An integer mode has the following hereditary properties:

e Anupper bound and alower bound which are the literals denoting respectively the highest
and lowest value defined by the integer mode. They are implementation defined.

¢ A number of values Whic.h is upper bound -~ lower bound + 1.

examples:

1.5 INT (1.1)

3.4.3 Boolean modes

syntax: ‘
< boolean mode> 1= (1)
< boolean mode name> (1.1)

predefined names: The name BOOL is predefined as a boolean mode name.

semantics: A boolean mode defines the logical truth values (TRUE and FALSE), with the usual boolean
operations (see section 5.3). The internal representations of FALSE and TRUE are the integer
values 0 and 1, respectively. This representation defines the ordering of the values.

static properties: A boolean mode has the following hereditary properties:
e An upper bound which is TRUE, and a lower bound which is FALSE.
s A number of values which is 2.

examples:
5.4 BOOL 1.1)

3.4.4 Character modes

syntax:
<character mode> = (1)
<character mode name> {1.1)

predefined names: The name CHAR is predefined as a character mode name.

semantics: A character mode defines the character values as described by the CHILL character set {see
Appendix A). This alphabet defines the ordering of the characters and the integer values which are
their internal representations.

Fascicle X.6 - Ree. Z200 17

static properties: A character mode has the following hereditary properties:

* An upper bound and a lower bound which are the character literals denoting respectively

the highest and lowest value defined by CHAR.

s A number of values which is 256.
examples:
8.4 CHAR (1.1)
3.4.5 Set modes
syntax:
<set mode> = {1)
SET (<set list>) (1.1)
| <set mode name>> (1.2)
<set list> = (2)
<numbered set list>> (2.1)
| <ennumbered set list> (2.2)
<numbered set list> = (3)
<numbered set element> { , <numbered set element> }* (3.1)
<numbered set element> ::= (4)
<defining occurrence> = <jnteger literal expression> (4.1)
<unnumbéred set list> = ' (5)
<set element> { , <set element> }* (5.1)
<set element> = {(6)
<defining occurrence> (6.1)

semantics: A set mode defines a set of named and unnamed values. The named values are denoted by the
names defined by defining occurrences in the set list; the unnamed values are the other values.
The internal representation of the named values is the integer value associated with them. This
representation defines the ordering of the values.

static properties: A defining occurrence in a set list defines a set element name. A set element name
has a set mode attached, which is the set mode.

A set mode has the following hereditary properties:

A set of set element names which is the set of names defined by defining occurrences in its
set list.

Each set element name of a set mode has an internal representation value attached which
is, in the case of a numbered set element, the value delivered by the integer literal expression
in it; otherwise one of the values 0, 1, 2, etc., according to its position in the unnumbered
set list. For example in: SET (a,b), a has representation value 0, and b has representation
value 1 attached.

An upper bound and a lower bound which are its set element names with the highest
and lowest representation values, respectively.

A number of values which is the highest of the values attached to the set element names
plus 1.

It is a numbered set mode if the set list in it is a numbered set list; otherwise it is an
unnumbered set mode.

18 Fascicle X.6 — Rec. Z200

static conditions: For each pair of integer literal expressions ey, €z in the set list NUM (e;) and NUM (e3)
must deliver different non-negative results.

examples: :
11.7 SET (occupied, free) (1.1)
6.3 month (1.2)

3.4.6 Range modes

syntax: '
<range mode> ::= (1)
<discrete mode name> (<literal range>) (1.1}

| RANGE (<literal range>) (1.2)

| BIN ({ <integer [iteral expression>) 7 (1.3)

| <range mode name>> : (1.4)
<literal range> ::= (2)
<lower bound> : <upper bound> {2.1)

<lower bound> ::= (3)
<discrete literal expression> (3.1)

<upper bound> = (4)
< discrete literal expression> (4.1)

derived syntax: The notation BIN (n) is derived from INT (0 : 2°-1), e.g. BIN (2+-1) stands for INT (0 :
7).

semantics: A range mode defines the set of values ranging between the bounds specified {bounds included) by
the literal range. The range is taken from a specific parent mode that determines the operations
on and ordering of the range values.

static properties: A range mode has the following non-hereditary property: it has a parent mode, defined
as follows:

e If the range mode is of the form:
<discrete_mode name> (<literal range>)

then if the discrete mode name is not a range mode, the parent mode is the discrete mode
name; otherwise it is the parent mode of the discrete mode name.

e If the range mode is of the form:
RANGE (<literal range>)

then the parent mode is the root mode of the resulting class of the classes of the upper
bound and lower bound in the literal range.

e If the range mode is 2 range mode name which is a synmode name, then its parent mode
is that of the defining mode of the synmode name; otherwise it is a newmode name and
then its parent mode is the virtually introduced parent mode (see section 3.2.3).

A range mode has the following hereditary properties:

e An upper bound and a lower bound which are the literals denoting the values delivered
by lower bound and upper bound, respectively, in the literal range.

* A number of values which is the value delivered by NUM (U) — NUM (L) + 1, where U
and L denote respectively the upper bound and lower bound of the range mode.

e It is a numbered range mode if its parent mode is a numbered set mode.

Fascicle X.6 — Rec. Z200 19

static conditions: The classes of upper bound and lower bound must be compatible and both must be
compatible with the discrete mode name, if specified.

Lower bound must deliver a value that is less than or equal to the value delivered by upper bound,
and both values must belong to the set of values defined by discrete mode name, if specified.

The integer literal expression in case of BIN must deliver a non-negative value.

examples:
9.5 INT (2:max) (1.1)
11.12 line (1.4)

3.5 POWERSET MODES

syntax:
< powerset mode> = {1)
POWERSET <member mode> (1.1)
| <powerset mode name> {1.2)
<member mode> ;1= - {(2)
<discrete mode> {2.1)

semantics: A powerset mode defines values that are sets of values of its member mode. Powerset values range
over all subsets of the member mode. The usual set-theoretic operators are defined on powerset
values (see section 5.3).

static properties: A powerset mode has the following hereditary property:

o A member mode which is the member mode.

examples:
8.4 POWERSET CHAR (1.1)
9.5 POWERSET INT (2:max) {1.1)
9.6 number_ list {1.2)

3.6 REFERENCE MODES

3.6.1 General

syntax: _
<reference mode> ;= , (1)
< bound reference mode> {1.1)
[<free reference mode> (1.2)
| <row mode> {1.3)

semantics: A reference mode defines references (addresses or descriptors} to referablelocations. By definition,
bound references refer to locations of a given static mode; free references may refer to locations of
any static mode; rows refer to locations of a dynamic mode.

20 Fascicle X.6 — Rec. Z200

The dereferencing operation is defined on reference values (see sections 4.2.3, 4.2.4 and 4.2.5), de-
livering the location that is referenced.

Two reference values are equal if and only if they both refer to the same location, or both do not
refer to a location (i.e. they are the value NULL).

3.6.2 Bound reference modes

syntax:
<bound reference mode> = ‘ (1)
REF <referenced mode> (1.1)
| <bound reference mode name> (1.2)
<referenced mode> = (2)
<mode> (2.1)

semantics: A bound reference mode defines reference values to locations of the specified referenced mode.
static properties: A bound reference mode has the following hereditary property:

¢ A referenced mode which is the referenced mode.

examples:
10.42 REF cell (2.1)

3.6.3 Free reference modes

syntax:
< free reference mode> ::= (1)
< free reference mode name> (1.1)

predefined names: The name PTR is predefined as a free reference mode name.

semantics: A free reference mode defines reference values to locations of any static mode.

examples:

19.8 PTR (1.1)

3.6.4 Row modes

syntax:
<row mode> = (1)
ROW <string mode> (1.1)
| ROW <arzay mode> (1.2)
| ROW <variant structure mode> (1.3}
| <rew mode name> (1.4)

Fascicle X.6 ~ Rec. Z200 21

semantics: A row mode defines reference values to locations of dynamic mode (which are locations of some
parameterised mode with statically unknown parameters).

A row value may refer to:
e string locations with statically unknown string length,
s array locations with statically unknown npper bound,
e parameterised structure locations with statically unknown parameters.
static properties: A row mode has the following hereditary property:

» A referenced origin mode which is the string mode, the array mode, or the variant structure
mode, respectively.

static condition: The variant structure mode must be pararmeterisable.

examples:
8.6 ROW CHARS (max) (1.1)

3.7 PROCEDURE MODES

syntax:

<procedure mode> = (1)

PROC (| <parameter list> | } [<result spec> |
[EXCEPTIONS (<exception list>) | [RECURSIVE] (1.1)
| <procedure mode name> (1.2)
< parameter list> ::= {2)
<parameter spec> { , <parameter spec> }* (2.1)
< parameter spec> = {3)
<mode> [<parameter attribute> | (3.1)
< parameter atiribute> 1= (4)
IN | OUT |INOUT |LOC [DYNAMIC] (4.1)
<result spec> = (5)
RETURNS (<mode> [<result attribute>]) (5.1)
<result attribute>::= (6)
[NONREF] LOC [DYNAMIC] (6.1)
<exception list> 1= : (7)
<exception name> { , <exception name> }' (7.1)

semantics: A procedure mode defines (general) procedure values, i.e. the objects denoted by general pro-
cedure names that are names defined in procedure definition statements. Procedure values indicate
pieces of code in a dynamic context. Procedure modes allow for manipulating a procedure dynam-
ically, e.g. passing it as a parameter to other procedures, sending it as message value to a buffer,
storing it into a location, etc.

Procedure values can be called (see section 6.7).

"Two procedure values are equal if and only if they denote the same procedure in the same dynamic
context, or if they both denote no procedure (i.e. they are the value NULL).

22 Fascicle X.6 — Rec. Z200

static properties: A procedure mode has the following hereditary properties:

s A list of parameter specs, each consisting of a mode and possibly a parameter attribute.
The parameter specs are defined by the parameter list.

s An optional result spec, consisting of a mode and an optional result attribute. The result
spec is defined by the result spec.

* A possibly empty list of exception names which are those mentioned in the exception list.

s A recursivity which is recursive if RECURSIVE is specified; otherwise an implementa-
tion defined default specifies either recursive or non-recursive.

static conditions: All names mentioned in exception list must be different.

Only if LOC is specified in the parameter spec or result spec may the mode in it have the non-value
property.

If DYNAMIC is specified in the parameter spec or the result spec, the mode in it must be
parameterisable. '

3.8 INSTANCE MODES

syntax:
<instance mode> 1= (1)
<instance mode name>> (1.1)

predefined names: The name INSTANCE is predefined as an instance mode name.

semantics: An instance mode defines values which identify processes. The creation of a new process (see
sections 5.2.14, 6.13 and 11.1) yields a unique instance value as identification for the created process.

Two instance values are equal if and only if they identify the same process, or they both identify no
process (i.e. they are the value NULL).

examples:
15.39 INSTANCE (1.1)

3.9 SBSYNCHRONISATION MODES ‘ -

3.9.1 General

syntax:
<synchronisation mode> ::= (1)
<event mode> (1.2)
| < buffer mode> . (1.2)

semantics: A synchronisation mode provides a means for synchronisation and communication between pro-
cesses (see chapter 11). There exists no expression in CHILL denoting a value defined by a synchro-
msation mode. As a consequence, there are no operations defined on the values.

Fascicle X.6 — Rec. Z200 23

3.9.2 Event modes

syntax:
<event mode> = (1)
EVENT [(<event length>)] (1.1)
| <event mode name>> (1.2)
<event length> 1= {2)
<integer literal expression> (2.1)

semantics: An event mode location provides a means for synchronisation between processes. The operations
defined on event mode locations are the continue action, the delay action and the delay case action,
which are described in section 6.15, 6.16 and 6.17, respectively.

The event length specifies the maximum number of processes that may become delayed on an event
location; that number is unlimited if no event length is specified.

static properties: An event mode has the following hereditary property:
¢ An optional event length which is the value delivered by event length.
static conditions: The event length must deliver a positive value.

examples:
1410 EVENT (1.1)

3.9.3 DBuffer modes

syntax:

< buffer mode> = (1)
BUFFER [{ <buffer length>)] <buffer element mode> 7 (1.1)

| <buffer mode name> (1.2)

< buffer length> = - {2)

<integer literal expression> {2.1)

< buffer element mode> .= {3)

<mode> (3.1)

semantics: A buffer mode location provides a means for synchronisation and communication between pro-
cesses. The operations defined on buffer locations are the send action, the receive case action and
the receive expression, described in section 6.18, 6.19 and 5.3.9, respectively.

The buffer length specifies the maximum number of values that can be stored in an event location;
that number is unlimited if no buffer length is specified.

static properties: A buffer mode has the following hereditary properties:
e An optional buffer length which is the value delivered by buffer length.

¢ A buffer element mode which is the buffer element mode.

2% Fascicle X.6 — Rec. Z200

static conditions: The buffer length must deliver a non-negative value.
The buffer element mode must not have the non-value property.

examples:
16.30 BUFFER (1) user_ messages (1.1)
16.34 user_. buffers (1.2)

3.10 INPUT-OUTPUT MODES

3.10.1 General

syntax:
<input-eutput mode> ;= . (1)
< association mode> (1.1)
| <access modex (1.2)
| <text mode> (1.3)

semantics: Aninput-output mode provides a means for input-output operations as defined in chapter 7. There
exists no expression in CHILL denoting a value defined by an input-output mode. As a consequence,
there are no operations defined on the values.

examples:
20.17 ASSOCIATION (1.1)

3.10.2 Association modes

syntax:
<association mode> = (1)
< assgciation mode name> (1.1)

predefined names: The name ASSOCIATION is predefined as an association mode name.

semantics: An association mode location provides a means for representing a relation to an outside world
object. Such a relation is called an association in CHILL; associations can be created by the built-in
routine ASSOCIATE and be ended by DISSOCIATE.

3.10.3 Access modes

syntax:

<access mode> = {1)

ACCESS [(<index mode>)] [<record mode> [DYNAMIC]] (1.1)

| <access mode name> {1.2)

<record mode> = (2)

<mode> (2.1)

<index mode> = (3)

<discrete mode> (3.1)

| <literal range> (3.2)

Fascicle X.8 — Rec. Z200 25

derived syntax: The index mode notation literal range is derived from the discrete mode RANGE (literal

range).

semantics: An access mode location provides a means for positioning a file and for transferring values from

a CHILL program to a file in the outside world, and vice versa.

An access mode may define a record mode; this record mode defines the root mode of the class of
the values that can be transferred via a location of that access mode to or from a file. The mode
of the transferred value may be dynamic, i.e. the size of the record may vary, when the attribute
DYNAMIC is specified in the access mode denotation or when record mode is a varying string
mode. In the latter case DYNAMIC need not be specified.

An access mode may also define an index mode; such an index mode defines the size of a “window”
to (a part of) the file, from which it is possible to read (or write) records randomly. Such a window
can be positioned in an (indexable) file by the connect operation. If no index mode is specified, then
it is possible to transfer records only sequentially.

static properties: An access mode has the following hereditary properties:

* An optional record mode which is the record mode if present. It is a dynamic record
mode if DYNAMIC is specified or if record mode is a varying string mode, otherwise it is
a static record mode.

e An optional index mode which is the index mode.

static conditions: The optional record mode must not have the non-value property.

IEDYNAMIC is specified, the record mode must be parameterisable and must not be a tagless
structure mode.

The index mode must neither be a numbered set mode nor 2 numbered range mode.

examples:

20.18 ACCESS (index_set) record_ type (1.1)
22.20 ACCESS string DYNAMIC (1.1)
20.18 record_ type (2.1)
20.18 index_set (8.1)

3.10.4 Text modes

syntax:

<text mode> 1= (1)
TEXT (<text length>) [<index mode>] [DYNAMIC] (1.1)
<text length> ::= (2)
< integer literal expression> (2.1)

semantics: A text mode location provides a means for transferring values represented in human-readable form

26

from a CHILL program to a file in the outside world, and vice versa. A text mode location has
a text record and an access sub-locations. The text record sub-location is initialised with an
empty string.

A text mode has a text length, which defines the maximum length of the records that can be
transferred, and possibly an index mode that has the same meaning as for access modes.

Fascicle X.6 — Rec. Z200

static properties: A text mode has the following hereditary properties:
o A text length which is the value delivered by text length.
e A text record mode which is CHARS (<text length>) VARYING.

¢ It has an access mode which is ACCESS [{(<index mode>)] CHARS (<text length>)
[DYNAMIC] (<index mode> and DYNAMIC are part of the mode only if they are
specified).

examples:

26,8 TEXT (80) DYNAMIC (1.1)

3.11 TIMING MODES

3.11.1 General

syntax:
<timing mode> 1= (1)
<duration mode> (1.1)
| < absolute time mode> (1.2)

semantics: A timing mode provides a means for time supervision of processes as described in chapter 9.
Timing values are created by a set of buili-in routines. The relational operators are defined on
titning values.

3.11.2 Duration modes

syntax:
<duration mode> ::= (1)
<duration mode name>> . (1.1)

predefined names: The name DURATION is predefined as a duration mode name.

semantics: A duration mode defines values which represent periods of time. The set of values defined by
the duration mode is implementation defined. An implementation may choose to represent duration
values as pairs of precision and value. Duration values are ordered in the intuitive way.

3.11.3 Absolute time modes

syntax:
<absolute time mode> ;= (1)
<absolute time mode name> (1.1}

predefined names: The name TIMFE is predefined as an absolute time mode name.

Fascicle X.6 — Rec. Z200 27

semantics: An absolute time mode defines values which represent points in time. The set of values defined by
the absolute time mode is implementation defined. Absolute time values are ordered in the intuitive
way.

3.12° COMPOSITE MODES

3.12.1 General

syntax:
<composite mode> 1= (1)
<string mode> (1.1)
| <array mode> (1.2)
| <structure mode> (1.3)

semantics: A composite mode defines composite values, i.e. values consisting of sub-components which can
be accessed or obtained (see sections 4.2.6-4.2.10 and 5.2.6-5.2.10).

3.12.2 String modes

syntax:

<string mode> = (1)
<string type> (<string length>) [VARYING | {1.1)

| <parameterised string mode> (1.2)

| <string mode name> (1.3)

< parameterised string mode> ::= {2)
<origin string mode name>> (<string length>) (2.1)

| <parameterised string mode name> {2.2)
<origin string mode name> ::= (3)
<string mode name> (3.1)

<string type> = (4)
BOOLS (4.1)

| CHARS (4.2)
<string length> .= (5)
<integer literal expression> ' {5.1)

semantics: A fixed string mode defines bit or character string values of a length indicated or implied by the
string mode. A varying string mode defines bit or character string values whose actual length
can vary dynamically from 0 to the string length. The length is known only at runtime from the
value of the attribute actual length. For a fixed string mode the actual length is always equal
to the string length. Character strings are sequences of character values; bit strings are sequences
of boolean values.

String values are either empty or have string elements which are numbered from 0 upward.

The string values of a given string mode are well-ordered in accordance with the ordering of the
component values and the following definition.

Two strings s and ¢ are equal if and only if they are empty or have the same length [and s(i) = #(i)
for all 0 € ¢ < I. A string s precedes ¢ when either:

 there exists an index j such that s() < #(j) and s(0:5—1) =#(0:5 ~ 1), or
o LENGTH (s) < LENGTH (t) and s = (0 UP LENGTH (s)).

The concatenation operator is defined on string values. The usual logical operators are defined on
bit string values and operate between their corresponding elements (see section 5.3).

28 Fascicle X.6 — Rec. Z200

static properties: A string mode has the following hereditary properties:

A string length which is the value delivered by string length.

An upper bound and a lower bound which are the values delivered by string length —1
and 0, respectively.

It is a bit string mode or a character siring mode, depending on whether string type specifies
BOOLS or CHARS, or whether origin string mode name is a bit or character string mode.

It is a varying string mode if VARYING is specified or if the origin string mode name is
a varying string mode; otherwise it is a fixed string mode.

A string mode is parameterised if and only if it is a parameterised string mode.

A parameterised string mode has an origin string mode which is the mode denoted by origin
string mode name.

A varying string mode has the following non-hereditary property: it has a component mode,
defined as follows:

If the varying string mode is of the form:

<string type> (<string length>) VARYING
then it is <string type> {<string length>).
If the varying string mode is of the form:

<origin string mode name> (<string length>)

then the component mode is &name (string length), where &name is a virtually introduced
synmode name synonymous with the component mode of the origin string mode name.

If the varying string mode is a string mode name which is a synmode name, then its
component mode is that of the defining mode of the synmode name; otherwise it is a
newmode name and then its component mode is the virtually introduced component
mode (see section 3.2.3).

static conditions: The string length must deliver a non-negative value.

The value delivered by the string length directly contained in a parameterised string mode must be
less than or equal to the string length of the origin string mode name. This condition applies only
to the parameterised string modes that are not introduced virtually.

examples:
7.51

22,22

~

CHARS (20) (1.1)
CHARS (20) VARYING (1.1)

3.12.3 Array modes

syntax:

<array mode> = (1)

ARRAY (<index mode> { , <index mode> }*)
<element mode> { <element layout> }* {1.1)
| <parameterised array mode> (1.2)
| <array mode name> (1.3)
< parameterised array mode> ;= (2)
<origin array mode name> (<upper index>) (2.1)
| <parameterised array mode name> (2.2)
<origin array mode name> ;1= (3)
< array mode name> (3.1)
<upper index> = (4)
<discrete literal expression>> (4.1)
<element mode> 1= {5)
<mode> (5.1)

Fascicle X.6 — Rec. Z200 29

derived syntax: An array mode with more than one index mode (denoting a multi-dimensional array), is
derived syntax for an array mode with an element mode that is an array mode. For example:

ARRAY (1:20,1:10) INT
.15 derived from:
. ARRAY (RANGE (1:20)) ARRAY (RANGE (1:10)) INT

Only if this derived syntax is used, is more than one element layout occurrence allowed. The number
of element layout occurrences must be less than or equal to the number of index mode occurrences.
In that case, the leftmost element layout is associated with the innermost element mode, etc.

semantics: An array mode defines composite values, which are lists of values defined by its element mode.
The physical layout of an array location or value can be controlled by element layout specification
(see section 3.12.5). Two array values are equal if and only if all corresponding element values are
equal.

static properties: An array mode has the following hereditary properties:

e An index mode which is the index mode if it is not a parameterised array mode, otherwise
the index mode is the range mode constructed as:

&name (lower bound : upper bound)

where &pame is a virtual synmode name synonymous with the index mode of origin
array mode name, lower bound is the lower bound of the index mode of the origin array
mode name and upper bound is the upper index.

s An upper bound and a lower bound which are the upper bound and the lower bound
of its index mode, respectively.

¢ An element mode which is either M or READ M, where M is the element mode, or the
element mode of the origin array mode name, respectively. The element mode will be
READ M if and only if M is not a read-only mode and the array mode is a read-only
mode. The element mode is an implicit read-only mode if it is READ M.

o An element layout which, if it is a parameterised array mode, is the element layout
of its origin array mode name; otherwise it is either the specified element Iayout, or the
implementation default, which is either PACK or NOPACK.

¢ A number of elements which is the value delivered by:
NUM (upper bound) — NUM (lower bound) + 1

where upper bound and lower bound are respectively the upper bound and the lower
bound of its index mode.

e It is a mapped mode if element layout is specified and is a step.
An array mode is parameterised if and only if it is a parameterised array mode.

A parameterised array mode has an origin array mode which is the mode denoted by origin array
mode name.

static conditions: The class of upper index must be compatible with the index mode of the origin array
mode name and the value delivered by it must lie in the range defined by that index mode.

examples:
529 ARRAY (1:16) STRUCT (c4, c2, I BOOL) (1.1)
11.12 ARRAY (line) ARRAY (column) square (1.1}
11.17 board (1.3)

30 Fascicle X.8 — Rec. Z200

3.12.4 Structure modes

syntax:

<structure mode> 1= (1)
STRUCT (<field> { , <field> }*) (1.1)

| < parameterised structure mode>> {1.2)

| <structure mode name> (1.3)
<field> = (2)
' < fixed field> {2.1)

| <alternative field> {2.2)

<fixed fleld> = , {3)
< field name defining occurrence list> <mode> [<field layout>] {5.1)
<alternative field> = {4)

CASE [<tag list>] OF
< variant alternative> { , <variant alternative> }*

[ELSE [<variant fleld> { , <variant field> }*]] ESAC (4.1)

< variant alternative> ::= (5)
[<case label specification> | : [<variant field> { , <variant field> }*] (5.1)

<tag list> n= (6)
<iag field name> { , <tag field name> }* (6.1)
<variant field> = (7)
<field name defining occurrence list> <mode> [<field layout>] (7.1)

< parameterised structure mode> = (8)
<origin variant structure mode name> (<literal expression list> } (8.1)

| <parameterised structure mode name> (8.2)

< origin variant structure mode name> = (8)
' < yariant structure mode name> {9.1)
<literal expression list> = (10)
<discrete literal expression> { , <discrete literal expression> }* (10.1)

derived syntax: A fixed field occurrence or variant field occurrence, where field name defining occurrence

list consists of more than one field name defining occurrence, is derived syntax for several fixed field
occurrences or variant field occurrences with one field name defining occurrence respectively, each
with the specified mode and optional field layoui. In the case of field Iayout, this field layout must
not be pos. For example:

STRUCT (I,J BOOL PACK)

is derived from:

STRUCT (I BOOL PACK, J BOOL PACK)

semantics: Structure modes define composite values consisting of a list of values, selectable by a component

name. Each value is defined by a mode that is attached to the component name. Structure values
may reside in (composite) structure locations, where the component name serves as an access to the
sub-location. The components of a structure value or location are called fields and their names field
names.

There are fixed structures, variant structures and parameterised structures.

Fixed structures consist only of fixed fields, i.e. fields that are always present and that can be
accessed without any dynamic check.

Fascicle X.6 — Rec. Z200 31

Variant structures have variant fields, i.e. fields that are not always present. For tagged variant
structures, the presence of these fields is known only at run time from the value(s) of certain asso-
clated fixed field(s) called tag fields. Tag-less variant structures do not have tag fields. Because
the composition of a variant structure may change during run time, the size of a variant structure
location is based upon the largest choice (worst case) of variant alternatives.

In an alternative field the variant alternative chosen is that for which values give in the case label
specification match; if no value match, the variant alternative following ELSE {(which will be present)
is chosen.

A parameterised structure is determined from a variant structure mode for which the choice of
variant alternatives is statically specified by means of literal expressions. The composition is fixed
from the point of the creation of the parameterised structure and may not change during run time.
The tag fields, if present, arc read-only and automatically initialised with the specified values.
For a parameterised structure location, a precise amount of storage can be allocated at the point
of declaration or generation. Note that dynamic parameterised structure modes also exist; their
semantics are defined in section 3.13.4.

The layout of a structure location or value can be controlled by means of a field layout specification
(see section 3.12.5).

Two structure values are equal if and only if the corresponding component values are equal. How-
ever, if the structure values are tag-less variant structure values, the result of comparison is
implementation defined.

static properties:

32

general:
A structure mode has the following hereditary properties:

e It is a fixed structure mode if it is a structure mode that does not directly contain an
alternative field occnrrence.

e It is a variant structure mode if it is a structure mode and contains at least one alternative
fleld occurrence.

e It is a parameterised structure mode if it is a parameterised structure mode.

¢ It has a set of field names. This set is defined below for the different cases. A name is said
to be a field name if and only if it is defined in a field name defining occurrence list in fixed
fields or variant fields in a structure mode.

Each fixed field, variant field and therefore cach field name of a structure mode has a field
mode attached that is either M or READ M, where M is the mode in the fixed field or
variant field. The field mode is READ M if M is not a read-only mode and either the
structure mode is a read-only mode, or the field is a tag field of a parameterised structure
mode. The field mode is an implicit read-only mode if it is READ M.

A fixed field, variant field and therefore a field name of a given structure mode has z field
layout attached to it that is the field layout in the fixed field or variant field, if present;
otherwise it is the default field Jayout, which is either PACK or NOPACK.

e Itis a mapped mode if its field names have a field Jayout that is pos.
fixed structures:
A fixed structure mode has the following hereditary property:

* A set of field names which is the set of names defined by any field name defining occurrence ’
list in fixed fields. These field names are fixed field names.

variant structures:
A variant structure mode has the following hereditary properties:

» A set of field names which is the union of the set of names defined by any field name
defining occurrence list in fixed fields and the set of names defined by any field name defining
occurrence list in alternative flelds. Field names defined by a field name defining occurrence
Iist in fixed fields are the fixed field names of the variant structure mode; its other field
names are the variant field names.

A field name of a variant structure mode is a tag field name if and only if it occurs in
any tag list of an alternative field. Alternative fields in which no tag list are specified are
tag-less alternative fields.

Fascicle X.6 — Rec. Z200

s A variant structure mode is a tag-less variant structure mode if all its alternative field
occurrences are tag-less. Otherwise it is a tagged variant structure mode.

» A variant structure mode is a parameterisable variant structure mode if it is either a
tagged variant structure mode or a tag-less variant siructure mode where for each of the
alternative field veenrrences a case label specification is given for all the variant alternative
occurrences in it.

e A parameterisable variant stracture mode has a list of classes attached, determined as
follows:

— ifitis a tagged variant structure mode, the list of M; -value classes, where M; are
the modes of the tag field names in the order that they are defined in fixed fields;

— if it is a tag-less vartant structure mode, the list is built up from the individual
resulting lists of classes of each alternative field by concatenating them in the
order as the alternative flelds oceur. The resulting list of classes of an alternative
field occurrence is the resulting list of classes of the list of case label specification
occurrences in it (see section 12.3).

parameterised structures:
A parameterised structure mode has the following hereditary properties:

s An origin variant structure mode which is the mode denoted by origin variant structure
mode name.

» A set of field names which is the union of the set of fixed field names of its origin variant
structure mode and the set of those variant field names of its origin variant structure
mode that are defined in vaziant alternative occurrences that are selected by the list of values
defined by literal expression list.

The set of tag field names of a parameterised structure mode is the set of tag field names
of its origin variant structure mode.
o A list of values attached, defined by literal expression list. .
¢ [iis a tagged parameterised structure mode if its origin variant structure mode is a
tagged variant structure mode; otherwise the parameterised structure mode is tag-less.

For dynamic parameterized structure modes see section 3.13.4.
static conditions:
general:
All field names of a structure mode must be different.
H any field has a field layout which is pos, all the fields must have a field layout which must be pos.
variant structures:

A tag field name must be a fixed field name and must be textually defined before all the alternative
field occurrences in whose tag Iist it is mentioned. (As a consequence, a tag field precedes all the
variant fields that depend upon it). The mode of a tag field name must be a discrete mode.

The mode of variant field may have neither the non-value property nor the tagged parame-
terised property.

In a variant structure mode the alternative field occurrences must be either all tagged or all tag-
less. For tag-less alternative fields, case label specification may be omitted in all variant alternative
occurrences together, or must be specified for each variant alternative occurrence.

H, for a tag-less variant structurc mode, any of its alternative fields has case label specification
given, all its alternative fields must have case label specification.

For alternative fields, the case selection conditions must be fulfilled (see section 12.3), and the
same completeness, consistency and compatibility requirements must hold as for the case action (see
section 6.4}. Each of the tag field names of tag list (if present) serves as a case selector with the
M-value class, where M is the mode of the tag field name. In the case of tag-less alternative fields,
the checks involving the case selector are ignored.

For a parameterisable variant structure mode none of the classes of its attached list of classes may
be the all class. (This condition is automatically fulfilled by a tagged variant structure mode.)

Fascicle X.6 — Rec. Z200 33

examples:

parameterised structures:
The origin variant structure mode name must be parameterisable.

There must be as many literal expressions in the literal expression list as there are classes in the
list of classes of the origin variant structure mode name. The class of each literal expression must
be compatible with the corresponding (by position) elass of the list of classes. If the latter class
is an M-value class, the value delivered by the literal expression must be one of the values defined
by M.

3.3 STRUCT (re, im INT) (1.1)
11.7 STRUCT (status SET (occupied, free),
CASE status OF
{occupied): p piece,

(free):
ESAC) (1.1)
2.6 fraction (1.3)
11.7 status SET (occupied, free) (3.1}
11.8 status (6.1)
11.9 p piece ' (7.1)

3.12.5 Layout description for array modes and structure modes

syntax:

<element layout> ::= (1)
PACK | NOPACK | <step> © (1.1)

<field layout> = (2)
PACK | NOPACK | <pes> (2.1)

<step> n= (3)
STEP (<pos> [, <step size> |) (3.1)

<pos> u= (4)
POS (<word> , <start bit> , <length>) (4.1}

| POS (<word> [, <start bit> [: <end bit>]]) (4.2)
<word> = (5)
<integer literal expression> {5.1)

<step size> = {(6)
<integer literal expression> f6.1)

<start bit> 1= : ‘ (7)
<integer literal expression> (7.1)

<end bit> = (8)
<integer literal expression> (8.1)
<length> ::= (%)
<integer literal expression> (9.1)

semantics: It is possible to control the layout of an array or a structure by giving packing or mapping

34

information in its mode. Packing information is either PACK or NOPACK, mapping information
is either step in the case of array meodes, or pos in the case of structure modes. The absence of
element Iayout or field layout in an array or structure mode will always be interpreted as packing
information, i.e. either as PACK or as NOPACK.

If PACK is specified for elements of an array or fields of a structure, it means that the use of
memory space is optimised for the array elements or structure fields, whereas NOPACK implies
that the access time for the array elements or the structure fields is optimised. NOPACK also
implies referable.

Fascicle X.6 — Rec. Z200

The PACK, NOPACK information is applied only for one level, i.e. it is applied to the elements
of the array or fields of the structure, not for possible components of the array element or structure
field. The layout information is always attached to the nearest mode to which it may apply and
which does not already have layout attached. For example, if the default packing is NOPACK:

STRUCT { f ARRAY (0:1) m PACK)
is equivalent to:
STRUCT (f ARRAY (0:1) m PACK NOPACK)

It is also possible to control the precise layout of an array or a siructure by specifying positioning
information for its components in the mode. This positioning information is given in the following
ways:

o For array modes, the positioning information is given for all elements together, in the form
of a step following the array mode.

o For structure modes, the positioning information is given for each field individually, in the
form of a pos, following the mode of the field.

Mapping information with pos is given in terms of word and bit-offsets. A pos of the form:
POS (<word> , <start bit> , <length>)

defines a bit-offset of
NUM (word) * WIDTH + NUM (start bit)

and a length of NUM (length) bits, where WIDTH is the (implementation defined) number of bits
in a word, and word is an integer literal expression.

When pos is specified in field layout it defines that the corresponding field starts at the given
bit-offset from the start of each location of that mode, and occupies the given length.

A step of the form:
STEP (<pos> , <step size>)

defines a series of bit-offsets b; for ¢ taking values 0 to n — 1 where » is the number of elements
in the array and

b; = i * NUM (step size).

The j-th element of the array starts at a bit-offset of p + b; from the start of each location of the
array mode, where p is the bit-offset specified in pos. Each element occupies the length given in pos.

Defaults
The notation:
POS (<word number> , <start bit> : <end bit>)
is semantically equivalent to:
POS (<word number> , <start bit> , NUM (<end bit>) - NUM (<start bit>} + 1)
The notation:
POS (<word number> , <start bit>)
is semantically equivalent to:
POS (<word number> , <start bit> , BSIZE)

where BSIZE is the minimum number of bits which is needed to be occupied by the component for
which the pos is specified.

The notation:
POS (<word number>)
is semantically equivalent to:

POS (<word number> , 6, BSIZE)

Fascicle X.6 — Rec. Z200 35

The notation:
STEP {<pos>)

1s semantically equivalent to
STEP (<pos> , SSIZE)

where SSIZE is the <length> specified in pos or derivable from pos b& the above rules.

static properties: For any location of an array mode the element layout of the mode determines the referability

of its sub-locations (including sub-arrays, array slices) as follows:
s cither all sub-locations are referable, or none of them are;
o if the element layout is NOPACK all sub-locations are referable,

For any location of a structure mode, the referability of the structure field selected by a field name
is determined by the field layout of the field name as follows:

¢ the field name is referable if the field layout is NOPACK.

static conditions: If the element mode of a given array mode or the field mode of a field name of a given

examples:

36

structure mode, is itself an array or structure mode, then it must be a mapped mode if the given
array or structure mode is mapped.

Each of word, start bit, end bit, length and step size must, if specified, deliver a non negative value;
and the values delivered by start bit and end bit must be less than WIDTH, the number of bits in
an implementation’s word; and the value delivered by start bit must be less than or equal to that
of end bit. :

Each implementation defines for each mode a minimum number of bits its values need to oceupy;
call this the minimum bit occupancy. For discrete modes it is any number of bits not less than log to
the base two of the number of values of the mode. For array modes it is the offset of the element
of the highest index plus its occupied bits. For structure modes it is the offset of the highest bit
occupied.

For each pos the length specified must not be Jess than the minimum bit occupancy of the mode of
the associated field or array components.

For each mapped array mode the step size must not be less than the length given or implied in the
pos.

Comnsistency and feasibility
Consistency:

No component of a structure may be specified such that it occupies any bits occupied by another
component of the same cbject except in the case of two variant field names defined in the same
alternative field occurrence; however, in the latter case the variant field names may not both be
defined in the same variant alternative nor both following ELSE.

Feasibility:

There are no language defined feasibility requirements, except for the one that can be deduced
from the rule that the referability of a sub-location of any (referable or non-referable) location is
determined only by the (element or field) layout, which is a property of the mode of the location. This
places some restrictions on the mapping of components that themselves have referable components.

17.5 PACK (1.1)
19.14 POS (1,0:15) (4.2)
Faseicle X.6 — Rec. Z200

3.13 DYNAMIC MODES

3.13.1 General

A dynamic mode is a mode of which some properties are known only at run time. Dynamic modes are always
parameterised modes with one or more run-time parameters. For description purposes, virtual denotations
are introduced in this document. These virtual denotations are preceded by the ampersand symbol (&) to
distinguish them from actual notations which appears in a CHILL program text.

3.13.2 Dynamic string modes
virtual denotation: &<origin string mode name>> (<integer expression>)
semantics: A dynamie string mode is a parameterised string mode with statically unknown length.

static properties: Dynamic string modes have the same properties as string modes, except for the properties
described below.

dynamic properties:

e A dynamic siring mode has a dynamic string length which is the valve delivered by integer
expression,

s A dynamic string mode has an upper bound and a lower bound which are the values
delivered by string length ~1 and 0, respectively.

3.13.3 Dymamic array modes
virtual denotation: &<origin array mode name> (<discrete expression>)
semantics: A dynamic array mode is a parameterised array mode with statically unknown upper bound.

static properties: Dynamic array modes have the same properties as array modes, except for the properties
described below.

dynamic properties:

e A dynamic array mode has a dynamic upper bound which is the value delivered by discrete
expression, and a dynamic number of elements which is the value delivered by

NUM (discrete expression) — NUM (lower bound} + 1

where lower bound is the lower bound of the origin array mode name.

3.13.4 Dynamic parameterised structure modes

virtual denotation: &<origin variant structure mode name> (<expression list>)

Fascicle X.6 — Rec. Z200 37

semantics: A dynamic parameterised structure mode is 2 parameterised structure mode with statically
unknown parameters.

static properties: The static properties of a dynamic parameterised structure mode are those of a static
parameterised structure mode except for the following:

e The set of field names of a dynamic parameterised structure mode is the set of field names
of its ordgin variant structure mode.

dynamic properties:

¢ A dynamic parameterised structure mode has a list of values attached that is the list of
values delivered by the expressions in the expression list.

38 Fascicle X.6 — Rec. Z200

4 LOCATIONS AND THEIR ACCESSES

4.1 DECLARATIONS

4.1.1 General

syntax:
<declaration statement> ;1= (1)
DCL <declaration> { , <declaration> }* ; (1.1)
<declaration> ::= (2)
<location declaration> (2.1)
| <loc-identity declaration> (2.2)

semantics: A declaration statement declares one or more names to be an access to a location.

examples:
6.9 DCL jINT := julian_day_number,
d, m, y INT; (1.1)
11.36 starting.square LOGC := b(m.lia_1)(m.col_1) (2.2)

4.1.2 Location declarations

syntax:
<location declaration> = (1)
' <defining occurrence list> <mode> | STATIC] [<initialisation>] (1.1)
<Initialisation> ;1= (2)
<reach-bound injtialisation> (2.1)
| <lifetime-bound initialisation> (2.2)
<reach-bound initialisation> ::= ' (3)
<assignment symbol> <value> [<handler> | (3.1)
<lifetime-bound initialisation> ::= (4)
INIT <assignment symbol> <constant value> (4.1)

semantics: A location declaration creates as many locations as there are defining occurrences specified in the
defining occurrence list.

With reach-bound initialisation, the value is evaluated each time the reach in which the declaration
is placed is entered (see section 10.2) and the delivered value is assigned to the location(s). Before
the value is evaluated the location(s) contain(s) the undefined value.

With lifetime-bound initialisation, the value yielded by the constant value is assigned to the loca-
tion(s) only once at the beginning of the lifetime of the location(s) (see sections 10.2 and 10.9).

Specifying no initialisation is semantically equivalent to the specification of a lifetime-bound initial-
isation with the undefined value {see section 5.3.1).

The meaning of the undefined value as initialisation for a Jocation which has attached a mode with
the tagged parameterised property or the non-value property is as follows:

e tagged parameterised property: the created tag field sub-location(s) are initialised with
their corresponding parameter value.

» non-value property:

— the created event and/or buffer (sub-)location(s) are initialised to “empty”, i.e. no
delayed processes are attached to the event or buffer nor are there messages in the
bufier;

— the created association (sub-)location(s) are initialised to “empty”, i.e. they do not
contain an association;

Fascicle X.8 — Rec. Z200 39

— the created access (sub-)location(s) are initialised to “empty”, i.e. they are not con-
nected o an association;

— the created text (sub-jlocation(s) have a text record sub-location which is initialised
with an empty string and an access sub-location which is initialised with “empty”,
i.e. it is not connected to an association.

The semantics of STATIC and handler can be found in section 10.9 and chapter 8, respectively.

static properties: A defitiing occurrence in a location declaration defines a location mame. The mode
attached to the location name is the mode specified in the location declaration. A location name
is referable.

static conditions: The class of the value or constant value must be compatible with the mode and the
delivered value should be one of the values defined by the mode, or the undefined value.

If the mode has the read-only property, initialisation must be specified. If the mode has the
non-value property, reach-bound initialisation must not be specified.

If initialisation is specified, the value must be regionally safe for the location (see section 11.2.2).

dynamic conditions: In the case of reach-bound initialisation, the assignment conditions of value with respect
to the mode apply (see section 6.2).

examples:
5.7 k2, x, w, t, 5, r BOGL (1.1)
6.9 := julian_day_number (3.1)
84 INIT :=['A'Z] (4.1)

4.1.3 Loc-identity declarations

syntax:
<loc-identity declaration> ::= (1)
<defining occurrence list> <mode> LOC [DYNAMIC]
<assignment symbol> <location> [<handler>] (1.1)

semantics: A loc-identity declaration creates as many access names to the specified location as there are
defining occurrences specified in the defining occurrence list. The mode of the location may be
dynamic only if DYNAMIC is specified.

If the location is evaluated dynamically, this evaluation is done each time the reach in which the
loc-identity declaration is placed is entered. In this case, a declared name denotes an undefined
location prior to the first evaluation during the lifetime of the access denoted by the declared name
(see sections 10.2 and 10.9).

static properties: A defining occurrence in a loc-identity declaration defines a loc-identity name. The
mode attached to a loc-identity name is, if DYNAMIC is not specified, the mode specified in
the loc-identity declaration; otherwise it is the dynamically parameterised version of it that has the
same parameters as the mode of the location.

A loc-identity name is referable if and only if the specified location is referable.

40 Fascicle X.6 — Rec. Z200

static conditions: If DYNAMIC is specified in the Ioc-identity declaration, the mode must be parame-
terisable. The specified mode must be dynamic read-compatible with the mode of the location
if DYNAMIC is specified and read-compatible with the mode of the Jocation otherwise.

The location must not be a string element or string slice in which the mode of the string location is
a varying string mode.

dynamic conditions: The RANGEFAIL or TAGFAIL exception oceurs if DYNAMIC is specified, and the
above-mentioned dynamic read-compatible check fails.

examples: .
11.36 starting square LOC := b{m.in_1)(m.col_1) (1.1)

' 4.2 LOCATIONS

4.2.1 General

syntax:

<location> = (1)
< access name>> (1.1)

| <dereferenced bound reference> (1.2)

| < dereferenced free reference>> (1.3)

| <dereferenced row> (1.4)

| <string element> (1.5)

| <string slice> (1.6)

| <array element> (1.7)

| <array slice> _ (1.8)

| <structure field> (1.9)

| <location procedure call> {1.10)

| <location built-in routine call> (1.11)

| <location conversion:> 1.12)

semantics: A location is an object that can contain values. Locations have to be accessed to store or obtain
a value,

static properties: A Jocation has the following properties:
e A mode, as defined in the appropriate sections. This mode is either static or dynamic.
e It is static or not (see section 10.9).
s It is intra-regional or extra-regional (see section 11.2.2).

e It is referable or not. The language definition requires certain locations to be referable and
others to be not referable as defined in the appropriate sections. An implementation may
extend referability to other locations except when explicitly disallowed.

Fascicle X.6 — Rec. Z200 41

4.2.2 Access names

syntax:
< access name> = ; (1)
<location name> {1.1)
| <loc-identity name> (1.2)
| <location erumeration name> (1.3)
| <location do-with name> (1.4)

semantics: An access name delivers a location. An access name is one of the following:

» alocation name, i.¢. a name explicitly declared in a location declaration or implicitly declared
in a formal parameter without the LOC attribute;

¢ aloc-identity name, i.e. a name explicitly declared in a loc-identity declaration or implicitly
declared in a formal parameter with the LOC attribute;

* alocation enumeration name, i.e. a loop counter in a location enumeration;

¢ a location do-with name, i.e. a field name used as direct access in the do action with a
with part.

If the location denoted by a location do-with name is a variant field of a tag-less variant structure
location, the semantics are implementation defined.

static properties: The (possibly dynamic) mode attached to an access name is the mode of the Jocation
name, loc-identity name, location enumeration name or location do-with name, respectively.

An access name is referable if and only if it is a location name, a referable loc-identity name, a
referable Jocation enumeration name, or a referable location do-with name.

dynamic conditions: When accessing via a loc-identity name, it must not denote an undefined location.

When accessing via a loc-identity name a location which is a variant field, the variant field access
conditions for the location must be satisfied (see section 4.2.10). Accessing via a location do-with
name causes a TAGFAIL exception if the denoted location is a variant field and the variant field
access conditions for the location are not satisfied.

examples:
4.12 a ' (1.1)
11.39 starting {1.2)
15,35 each (1.3)
510 cl (1.4)

4.2.3 Dereferenced bound references

syntax:
<dereferenced bound reference> 1= (1)
<bound reference primitive value> -> [<mode name>] (1.1)

semantics: A dereferenced bound reference delivers the location that is referenced by the bound reference
value,

42 Fascicle X.6 — Rec. Z200

static properties: The mode attached to a dereferenced bound reference is the mode name if specified,
otherwise the referenced mode of the mode of the bound reference primitive value. A dereferenced
bound reference is referable.

static conditioms: The bound reference primitive value must be strong. ¥ the optional mode name is spec-
ified, it must be read-compatible with the referenced mode of the mode of the bound reference
primitive value.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if the bound reference primitive value delivers the value NULL.

If the referenced location is a variant field, the variant field access conditions for the location must
be satisfied (see section 4.2.10).

examples:
1054 p-> (1.1)

4.2.4 Dereferenced free references

syntax:
< dereferenced free reference> = (1)
< free reference primitive value> —> <mode name> : (1.1)

semantics: A dereferenced free reference delivers the location that is referenced by the free reference value.

static properties: The mode attached to a dereferenced free reference is the mode name. A dereferenced
free reference is referable.

static conditions: The free reference primitive value must be strong.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if the free reference primitive value delivers the value NULL.
The mode name must be read-compatible with the mode of the referenced location.

If the referenced location is a variant field, the variant field access conditions for the location must
be satisfied (see section 4.2.10).

4.2.5 Dereferenced rows

syntax:
< dereferenced row> = (1)
<Iow primitive value> -> {1.1)

semantics: A dereferenced row delivers the location that is referenced by the row value.

Fascicle X.6 - Rec. Z200 43

static properties: The dynamic mode attached to a dereferenced row is constructed as follows:
& origin mode name (<parameter> { , <parameter> }*)

where origin mode name is a virtual synmode name synonymous with the referenced origin
mode of the mode of the row primitive value and where the parameters are, depending on the
referenced origin mode:

o the dynamic string length, in the case of a string mode;
» the dynamic upper bound, in the case of an array mode;

o the list of values associated with the mode of the parameterised structure location, in the
case of a variant structure mode.

A dereferenced row is referable.

static conditions: The row primitive value must be strong.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if the row primitive value delivers NULL.

If the referenced location is a variant field, the variant field access conditions for the location must
be satisfied (see section 4.2.10).

examples:
8.11 input —> (1.1)

4.2.6 String elements

syntax:
<string element> 1= {1)
<string location> (<start element>) (1.1)
<start element> ::= (2)
<integer expression> (2.1)

semantics: A string element delivers a (sub-)location which is the element of the specified string location
indicated by start element.

static properties: The mode attached to the string element is BOOL or CHAR depending on whether the
mode of the string location is a bit string mode or a character string mode.

If the mode of the string location is a varying string mode, then the string element is not referable.
dynamic conditions: The RANGEFAIL exception occurs if the following relation does not hold:
0 £ NUM (start element} < L — 1
Where L is the actual length of the string location.

examples:
1816 string —>(1) {1.1)

44 Fascicle X.6 — Rec. Z200

4.2.7 String slices

syntax:

<string slice> 1= (1)

<string location> (<left element> : <right elemeni>) {1.1)

| <string location> (<start element> UP <slice size>) ‘ (1.2)

<left element> n= (2)

<Integer expression> (2.1)

<right element> ::= (3)

<Integer expression> (3.1)

<slice size> ::= (4)

<integer expression> ‘ (4.1)

semantics: A string slice delivers a (possibly dynamic) string location that is the part of the specified string
location indicated by left element and right element or start element and slice size. The (possibly
dynamic) length of the string slice is determined from the specified expressions.

A string slice in which the right element delivers a value which is less than that delivered by the left
element or in which slice size delivers a non positive value denotes an empty string.

static properties: The (possibly dynamic) mode attached to a string slice is a parameterised string mode
constructed as:

&name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the
string location if it is a fixed string mode, otherwise with the component mode, and where string
size is either

NUM (right element) — NUM (left element) + 1
or
NUM (slice size).

However, if an empty string is denoted, string size is 0. The mode attached to a string slice is static
if string size is literal, i.e. left element and right element are literal or slice size is literal; otherwise
the mode is dynamic.

If the mode of the string location is a varying string mode, then the string slice is not referable.
static conditions: The following relations must hold:
0 < NUM (left element) < L —1
0 < NUM (right element) < L —1
0 < NUM (start element) < L — 1
NUM (start element) + NUM (slice size) < L

where L is the actual length of the stzing location. If I and the value all jnteger expressions are
known statically, the relations can be checked statically.

dynamic conditions: The RANGEFAIL exception occurs if & dynamic part of the check of the relations
above fails.

examples: .
18.26 blanks {count : 9) ' (1.1)
18.23 string —>(scanstart UP 10) {1.2)

Fascicle X.6 — Rec. Z200 45

4.2.8 Array elements

syntax:
<array element> = (1)
<array location> (<expression list>) (1.1)
< expression list> = : (2)
<expression> { , <expression> }" (2.1}

derived syntax: The notation: (<expression list>) is derived syntax for:
{ <expression>) { (<expression>) }*

where there are as many parenthesised expressions as there are expressions in the expression list.
Thus an array element in the strict syntax has only one (index) expression.

semantics: An array element delivers a (sub-)location which is the element of the specified array location
indicated by expression.

static properties: The mode attached to the array element is the element mode of the mode of the array
location.

An array element is referable if the element layout of the mode of the array locationis NOPACK.

static conditions: The class of the expression must be compatible with the index mode of the mode of the
array location.

dynamic conditions: The RANGEFAIL exception occurs if the following relation does not hold:
L < expression < U

where L and U are the lower bound and the {possibly dynamic) upper bound of the mode of
the array location, respectively.

examples:
11.36 b{m.in_1){m.col_1} (1.1)

4.2.9 Array slices

syntax

<array slice> = (1)

<array location> { <lower element> : <upper element>) (1.1)

| <array location> { <first element> UP <slice size>) (1.2)

<lower element> = {2)

< expression> {2.1)

<upper element> ::= (3)

< expression>> {3.1)

<first element> ::= {4)

< expression> (4.1)

46 Fascicle X.6 — Rec. Z200

semantics: An array slice delivers a (possibly dynamic) array location which is the part of the specified array
location indicated by lower element and upper element or fizst element and slice size. The lower
bound of the array slice is equal to the lower bound of the specified array; the (possibly dynamic)
upper bound is determined from the specified expressions.

static properties: The (possibly dynamic) mode attached to an array slice is a parameterised array mode
constructed as:

&name {upper index)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the
array location and upper index is either an expression whose class is compatible with the classes
of lower element and upper element and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element} — NUM (lower element)

oI 1s an expression whose class is compatible with the class of first element and delivers a value
such that:

NUM (upper index) = NUM (L) + NUM (slice size) — 1
where L is the lower bound of the mode of the array location.

The mode attached to an array slice is static if upper index is literal, i.e. Iower element and upper
element are both literal or slice size is literal; otherwise the mode is dynamic.

An array slice is referable if the element layout of the mode of the array location is NOPACK.

static conditions: The classes of lower element and upper element or the class of first element must be
compatible with the index mode of the array location.

The following relations ﬁlust hold:
L < lower element < upper element < U
1 < NUM (slice size) < NUM (U) — NUM (L) +1
NUM(L) < NUM (first element) < NUM (first element)+ NUM (slice size)—1 < NUM (U)

where L and U are respectively the lower bound and upper bound of the mode of the array
location. f U and the value af all expressions are known statically, the relations can be checked
statically,

dynamic conditions: The RANGEFAIL exception occurs if a dynamic part of the check of the relations
above fails.

examples:
17.27 res {0 : count - 1) (1.1)

4.2.10 Structure fields

syntax:
<structure field> 1= (1)
<structure location> . <field name> (1.1)

semantics: A structure field delivers a (sub-)location which is the field of the specified structure location
indicated by field name. If the structure location has a tag-less variant structure mode and the
field name is a variant field name, the semantics are implementation defined.

Fascicle X.6 — Rec. Z200 47

static properties: The mode of the structure field is the mode of the field name.
A structure field is referable if the field layout of the field name is NOPACK.

static conditions: The field name must be a name from the set of field names of the mode of the structure
location.

dynamic conditions: A Jocation must not denote:

s a tagged variant structure mode location in which the associated tag field value(s) indi-
cate(s) that the field does not exist;

e 2 dynamic parameterised structure mode location in which the associated list of values
indicates that the field does not exist.

The above mentioned conditions are called the variant field access conditions for the location (note
that the condition do not include the occurrence of an exception). The TAGFAIL exception occurs
if they are not satisfied for the structure location.

examples:
10.57 last —>.info (1.1)

4.2.11 Location procedure calls

syntax:
<location procedure call> = (1)
<location procedure call> {1.1)

semantics: A location procedure call delivers the location returned from the procedure.

static properties: The mode attached to a location procedure call is the mode of the result spec of
the location procedure call if DYNAMIC is not specified in it; otherwise it is the dynamically
parameterised version of it that has the same parameters as the mode of the delivered location.

The location procedure call is referable if NONREF is not specified in the result spec of the
location procedure call.

dynamic conditions: The location procedure call must not deliver an undefined location and the lifetime
of the delivered location must not have ended.

4.2.12 ZLocation built-in routine calls

syntax:
<location built-in routine call> 1= (1)
<location built-in routine call> (1.1)

semantics: A location built-in routine call delivers the location returned from the built-in routine call,

48 Fascicle X.6 — Rec. Z200

static properties: The mode attached to the Iocation built-in routine call is the mode of the result spec of
the location built-in routine call.

dynamic conditions: The Jocation built-in routine call must not deliver an undefined location and the
lifetime of the delivered location must not have ended.

4.2.13 Location conversions

syntax:
<location conversion> = (1)
<mode name> (<giatic mode location> } (1.1)

semantics: A location conversion delivers the location denoted by static mode location. However, it overrides
the CHILL mode checking and compatibility rules and explicitly attaches a mode to the location.

The precise dynamic semantics of a location conversion are implementation defined.
static properties: The mode of a location conversion is the mode name.

A location conversion is referable.
static conditions: The static mode location must be referable.

The following relation must hold:

SIZE (mode name) = SIZE (static mode location)

Fascicle X.6 —~ Rec. Z200 49

5 VALUES AND THEIR OPERATIONS

5.1 SYNONYM DEFINITIONS

syntax:
<synonym definition statement> ::= (1)
SYN <synonym definition> { , <synonym definition> }* ; (1.1)
<synonym definition> ::= (2)
<defining occurrence list> [<mode> | = <constant value> (2.1)

derived syntax: A synonym definition, where defining occurrence list consists of more than one defining
occurrence, is derived from several synonym definition occurrences, one for each defining occurrence
with the same constant value and mode, if present. E.g. SYN 1, j = 3; is derived from SYN i =
3,]=3.

semantics: A synonym definition defines a name that denotes the specified constant value,
static properties: A defining occurrence in a synonym definition defines 2 synonym name.

The class of the synonym name is, if a mode is specified, the M-value class, where M is the mode,
otherwise the class of the constant value.

A synonym name is undefined if and only if the constant value is an undefined value (see section
5.3.1).

A synonym name is literal if and only if the constant value is literal.

static conditions: If a mode is specified, it must be compatible with the class of the constant value and
the value delivered by the constant value must be one of the values defined by the mode.

Synonym definitions must not be recursive nor mutually recursive via other synonym definitions or
mode definitions, i.e. no set of recursive definitions may contain synonym definitions {see section

3.2.1).
examples:
1.17 SYN neutral for_add = 0,
neutral_for_mult = 1; (1.1)
2.18 neutral_for_add fraction = [0,1] (2.1)

5.2 PRIMITIVE VALUE

5.2.1 General

syntax:

< primitive value> = (1)
<location contents> (1.1)

| <value name> (1.2)

t <literal> (1.3)

| <tuple> (1.4)

| <value string element> (1.5)

| <value siring slice> (1.6)

| <value array element> (1.7)

| <value array slice> (1.8)

| <value structure field> (1.8)

| <expression conversion> (1.10)

50 Fascicle X.8 — Rec. Z200

| < value procedure call> (1.11)

| < value built-in routine call> {1.12)
| <start expression> (1.13)
| <zero-adic operator> (1.14)
| <parenthesised expression> {1.15)

semantics: A primitive value is the basic constituent of an expression. Some primitive values have a dynamic
class, i.e. a class based on a dynamic mode. For these primitive values the compatibility checks can
only be completed at run time. Check failure will then result in the TAGFAIL or RANGEFAIL
exception.

static propexrties: The class of the primitive value is the class of the location contents, value name, ete.,
respectively.

A primitive value is constant if and only if it is a constant value name, a literal, a constant
tuple, a constant expression conversion, a constant value buili-in routine call or a constant
parenthesised expression.

A primitive value is literal if and only if it is a value name that is literal, a discrete literal, or a
value built-in routine call that is Literal.

5.2.2 Location contents

syntax:
<location contents> = (1)
<location> (1.1)

semantics: A location contents delivers the value contained in the specified location. The location is accessed
to obtain the stored value.

static properties: The class of the Jocation contents is the M-value class, where M is the (possibly dynamic)
mode of the location.

static conditions: The mode of the location must not have the non-value property.
dynamic conditions: The delivered value must not be undefined.

examples;
3.7 c2im (1.1)

5.2.3 Value names

L

syntax:
<value name> ::= (1)
<synonym name> (1.1)
| <value enumeration name> (1.2)
| <value do-with name> (1.3)
| <value receive name> (1.4)
| <general procedure name> (1.5)

Fascicle X.6 — Rec. Z200 51

semantics: A value name delivers a value. A value name is one of the following:
e a synonym hame, i.e. a name defined in a synonyimn definition statement;
e 2 value enumeration name, i.e. a name defined by a loop counter in a value enumeration;

¢ 2 value do-with name, i.e. a field name introduced as value name in the do action with a
with part;

e a value receive name, i.e. a name introduced in a receive case action;
e a general procedure name (see section 10.4).

If the value denoted by a value do-with name is a variant field of a tag-less variant structure value,
the semantics are implementation defined.

static properties: The class of a value name is the class of the synonym name, valne enumeration name,
value do-with name, value receive name or the M-derived class, where M is the mode of the general
procedure name, respectively.

A value name is literal if and only if it i1s a svnonvm name that is literal.

A value name is constant if it is a synonym name or a general procedure name denoting a proce-
dure name which has attached a procedure definition which is not surrounded by a block.

static conditions: The synonym name must not be undefined.

dynamic conditions: Evaluating a value do-with name causes a TAGFAIL exception if the denoted value is
a variant field and the variant field access conditions for the value are not satisfied.

examples:
10.12 max (1-1)
88 i \ (1.2)
15.54 this_counter (1.4)

5.2.4 Literals

5.2.4.1 General

syntax:

<literal> 1= (1)

<integer literal> (1.1)

| <boolean literal> (1.2)

| <character literal> (1.3)

| <set literal> (1.4)

| <emptiness literal> (1.5)

| <character string literal> (1.6)

| <bit string literal> (1.7)

semantics: A literal delivers a constant value.

static properties: The class of the literal is the class of the integer literal, boolean literal, etc., respectively.

A literal is discrete if it is either an integer literal, a boolean literal, a character literal or a set
literal.

The letter together with the following apostrophe which starts an integer literal, boolean literal, and
bit string literal (i.e. B’, D’, H’, O’, b’, d’, 1", o) 1s a literal qualification.

52 Fascicle X.6 — Rec. Z200

5.2.4.2 Integer literals

syntax:

<integer literal> ::= (1)
<decimal integer literal> (1.1}

| <binary integer literal> (1.2)

| <octal integer literal> {1.3)

| <hexadecimal integer literal> (1.4)
<decimal integer literal> 1= (2)
[{D |d}’]{ <digit> | _}* (2.1)

< binary integer literal> ;1= (3)
{Bleyr{of1 |-} (3.1)

<octal integer literal> 1= (4)
{0 | o} '{<octal digit> | _ }* (4.1)
<hexadecimal integer literal> ::= (5)
{ H | h} ’{ <hexadecimal digit> | _ }* (5.1)
<hexadecimal digit> 1= (6)
<digit> |A |B |[C|D |E |Fla |b|c|d]|el|f (6.1)

<octal digit> == (7)
01123 141}15]|6]|7 (7.1)

semantics: An integer literal delivers a non-negative integer value. The usual decimal (base 10) notation is
provided as well as binary (base 2), octal (base 8) and hexadecimal (base 16). The underline character
{~)} is not significant, i.e. it serves only for readability and it does not influence the denoted value.

static properties: The class of an integer literal is the INT-derived class. An integer literal is constant and
literal.

static conditions: The string following the apostrophe (*) and the whole integer literal must not consist
solely of underline characters.

examples;
6.11 1.721_119 {1.1)
D’1.721_119 (1.1)
B’101011_110100 (1.2)
Q’53_64 (1.3)
H’AF4 (1.4)

5.2.4.3 Boolean literals

syntax:
<boolean Iiteral> ::= (1)
<boolean literal name> (1.1)

predefined names: The names FALSE and TRUE are predefined as boolean lteral names.

Fascicle X.6 — Rec. Z200 53

semantics: A boolean literal delivers a boolean value.

static properties: The class of a boolean literal is the BOOL-derived class. A boolean literal is constant
and literal.

examples:
546 FALSE (1.1)

5.2.4.4 Character literals

syntax:
< character literal> ;= (1)
' <character> | <control sequence> ’ (1.1)

semantics: A character literal delivers a character value. Apart from the printable representation, the control
sequence representation may be used.

static properties: The class of a character literal is the CHAR-derived class. A character literal is constant
and Literal.

static conditions: A control sequence in a character literal must denote only one character.

examples:
7.9 M (1.1)

5.2.4.5 Set literals

syntax:
<set lteral> 1= (1)
<set element name> (1.1)

semantics: A set literal delivers a set value. A set literal is a name defined in a set mode.

static properties: The class of a set literal is the M-derived class, where M is the set mode attached to the
set element name. A set literal is constant and literal.

examples;
6.51 dec (1.1)
11.78 king (1.1)

5.2.4.6 Emptiness literal

syntax:
<emptiness literal> = (1)
<emptiness literal name> (1.1)

54 Fascicle X.6 — Rec. Z200

predefined names: The name NULL is predefined as an emptiness literal name.

semantics: The emptiness literal delivers either the empty reference value, i.e. a value which does not refer
to a location, the empty procedure value, i.e. a value which does not indicate a procedure, or the
empty instance value, i.e. a value which does not identify a process.

static properties: The class of the emptiness literal is the null class. An emptiness literal is constant.

examples:
10.43 NULL (1.1)

5.2.4.7 Character string literals

syntax:
<character string literal> ;1= {1)
” { <non-reserved character> | <quote> | <control sequence> }* ” (1.1)
<quote> = (2)

»n (2_1)

<control sequence> n= (3)
" (<integer literal expression> { , <integer literal expression> }*) (3.1)

| ~ <non-special character> (3.2)

| ~» (3.3)

semantics: A character string literal delivers a character string value that may be of length 0. It is a list
of values for the elements of the string; the values are given for the elements in increasing order of
their index from left to right. To represent the character quote (”) within a character string literal,
it has to be written twice (7).

Apart from the printable representation, the control sequence representation may be used. A control
sequence in which the circumflex character (7} is followed by an open parenthesis denotes the
sequence of characters whose representations are the integer literal expression in it; otherwise if
it is followed by another circumflex character it denotes itself, otherwise it denotes the character
whose representation is obtained by logically negating the b7 of the internal representation of the
non-special character in it (see Appendix A).

static properties: The string length of a character string literal is the number of non-reserved character,
quote and characters denoted by control sequence oceurrences.

The class of a character string literal is the CHARS (n)-derived class, where n is the string length
of the character string literal. A character string literal is constant.

static conditions: The value delivered by an integer literal expression in a control sequence must belong to
the range of values defined by the representations of the characters in the CHILL character set (see
Appendix A).

examples:

820 "A-B<ZAAIK’” (1.1)

Fascicle X.86 — Rec. Z200 55

5.2.4.8 Bit string literals

syntax:

< bit string literal> ::= (1)
< binary bit string literal> (1.1)

| <octal bit string literal> (1.2)

| <hexadecimal bit string literal> (1.3)

< binary bit string literal> ::= (2)
{B b} {olrj-J~ (2.1)
<octal bit string literal> = (3)
{0 | o} { <octal digit> | _ }*’ (3.1)

< hexadecimal bit string literal> 1= (4)
{ H | h} ’ { <hexadecimal digit> | _ }*’ (4.1)

semantics: A bit string literal delivers a bit string value that may be of length 0. Binary, octal or hexadecimal

static pro

examples:

5.2.5 Tu

syntax:

56

notations may be used. The underline character (_) is insignificant, i.e. it serves only for readability
and does not influence the indicated value.

A bit string literal is a list of values for the elements of the string; the values are given for the
elements in increasing order of their index from left to right.

perties: The string length of & bit string literal is either the number of 0 and I occurrences
after B’, three times the number of octal digit occurrences after O’ or four times the number of
hexadecimal digit occurrences after H'.

The class of a bit string literal is the BOOLS (n)-derived class, where n is the string length of
the bit string Iiteral. A bit string literal is constant.

B’101011_110100° (1.1)
0’53_64’ _ (1.2)
HAFg (1.3)
ples
<tuple> ;1= (1)
[<mode name>] (: { <powerset tuple> |
<array tuple> | <structure tuple> } :) (1.1)
< powerset tuple> = (2)
[{ <expression> | <range>} {, { <expression> | <range> } }*] (2.1)
<range> ;= (3)
< expression’> : <expression> {3.1)
<array tuple> = - (4}
<unlabelled array tuple> (4.1)
| <labelled array tuple> (4.2)
<unlabelled array tuple> 1= (5)
<value> {, <value> }* (5.1)
<labelled array tuple> ::= . (6)
<case label list> : <value> {, <case label list> : <value> }* ‘ (6.1)
<structure tuple> = (7)
<unlabelled structure tuple> (7.1)
{ <labelled structure tuple> (7.2)
<unlabelled structure tuple> ::= (8)
<value> { , <value> }* (8.1)
Fascicle X.6 — Rec. Z200

<labelled structure tuple> ::= (9)

<field name list> : <value> { , <field name list> : <value> }* (9.1)
<field name list> 1= (10)
. <field name> {, . <field name> }* (10.1)

derived syntax: The tuple opening and closing brackets, [and], are derived syntax for {: and :), respectively.
This is not indicated in the syntax to avoid confusion with the use of square brackets as meta
symbols.

semantics: A tuple delivers either a powerset value, an array value or a structure value.

If it is a powerset value, it consists of a list of expressions and/or ranges denoting those member
values which are in the powerset value. A range denotes those values which lie between or are one of
the values delivered by the expressions in the range. If the second expression delivers a value which
is less than the value delivered by the first expression, the range is empty, i.e. it denotes no values.
The powerset tuple may denote the empty powerset value.

If it is an array value, it is a (possibly labelled) list of values for the elements of the array; in the
unlabelled array tuple, the values are given for the elements in increasing order of their index; in
the labelled array tuple, the values are given for the elements whose indices are specified in the case
label list labelling the value. It can be used as & shorthand for lazge array tuples where many values
are the same. The label ELSE denotes all the index values not mentioned explicitly. The label *
denotes all index values (for further details, see section 12.3). '

If it is a structure value, it is a (possibly labelled) set of values for the fields of the structure. In the
unlabelled structure tuple, the values are given for the fields in the same order as they are specified
in the attached structure mode. In the labelled structure tuple, the values are given for the fields
whose field names are specified in the field name list for the value.

The order of evaluation of the expressions and values in a tuple is undefined and they may be
considered as being evaluated in mixed order.

static properties: The class of a tuple is the M-value class, where M is the mode name, if specified. Otherwise
M depends upon the context where the tuple occurs, according to the following list:

¢ if the tuple is the value or constant value in an initialisation in a location declaration, then
M is the mode in the location declaration;

e if the tuple is the righthand side value in a single assighment action, then M is the (possibly
dynamic) mode of the lefthand side location;

e if the tuple is the constant value in a synonym definition with a specified mode, then M is
that mode;

o if the tuple is an actual parameter in a procedure eall or in a start expression where DY-
NAMIC is not specified in the corresponding parameter spec, then M is the mode in the
corresponding parameter spec;

e if the tuple is the value in a return action or a result action, then M is the mode of the result
spec of the procedure name of the result action or return action (see section 6.8);

e if the tuple is a value in a send action, then it is the associated mode specified in the signal
definition of the signal name or the buffer element mode of the mode of the buffer location;

s if the tuple is an expression in an array tuple, then M is the element mode of the mode of
the array tuple;

o if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple
where the associated field name list consists of only one field name, then M is the mode of
the field in the structure tuple for which the tuple is specified;

o [If the tuple is the value in a GETSTACK or ALLOCATE built-in routine call, then M is the
mode denoted by mode argument.

A tuple is constant if and only if each value or expression occurring in it is constant.

Fascicle X.8 — Rec. Z200 57

static conditions: The optional mode name may be deleted only in the contexts specified above. Depending
on whether a powerset tuple, array tuple or structure tuple is specified, the following compatibility
requirements must be fulfilled:

a. powerset tuple

1. The mode of the tuple must be a powerset mode.

2. The class of each expression must be compatible with the nember mode of the
mode of the tuple.

3. For a constant powerset tuple the value delivered by each expression must be one of
the values defined by that member mode.

b. arrav tuple
1. The mode of the tuple must be an array mode.

2. The class of each value must be compatible with the element mode of the mode of
the tuple.

3. In the case of an unlabelled array tuple, there must be as many oceurrences of value
as the number of elements of the array mode of the tuple.

4. In the case of a Jabelled array tuple, the case selection conditions must hold for the
list of case label list occurrences (see section 12.3). The resulting class of the list
must be compatible with the index mode of the mode of the tuple. The list of case
label specifications must be complete.

5. 1In the case of a labelled array tuple, the values explicitly indicated by each case label
in a case Jabel list must be values defined by the index mode of the tuple.

6. In an unlabelled array tuple, at least one value occurrence must be an expression.

7. For a constant array tuple, where the element mode of the mode of the tuple is
a discrete mode, each specified value must deliver a value defined by that element
mode, unless it is an undefined value.

c. structure tuple
1. The mode of the tuple must be a structure mode.

2. This mode must not be a struciure mode which has field names which are invisible
(see section 12.2.5).

In the case of an unlabelled structure tuple:

e If the mode of the tuple is neither a variant structure mode nor a parame-
terised structure mode, then:

3. There must be as many occurrences of value as there are field names in
the list of field names of the mode of the tuple.

4. The class of each value must be compatible with the mode of the cor-
responding (by position) field name of the mode of the tuple.

e If the mode of the tuple is a tagged variant structure mode or a tagged
parameterised structure mode, then:

5. Each value specified for a tag field must be a discrete liferal expression.

6. There must be as many occurrences of value as there are field names
indicated as existing by the value(s) delivered by the discrete literal ex-
pression oceurrences specified for the tag fields.

7. The class of cach value must be compatible with the mode of the cor-
responding field name.

o If the mode of the tuple is a tag-less variant structure mode or a tag-less
parameterised structure mode, then:

8. No unlabelled structuvre tuple is allowed.

58 Fascicle X.6 — Rec. 7200

dynamic conditions:

examples:

18.

17.

18,

In the case of a labelled structure tuple:

e I the mode of the tuple is neither a variant structure mode nor a parame-
terised structure mode, then:

9.

10.

Each field name of the list of field names of the mode of the fuple must
be mentioned once and only once in a fleld name list and in the same
order as in the mode of the tuple.

The class of each value must be compatible with the mode of every
field name specified in the field name list labelling that value.

o If the mode of the tuple is a tagged variant structure mode or a tagged
parameterised structure mode, then:

11.

12.

13.

Each value that is specified for 2 tag field must be a discrete literal
expression.

Only field names corresponding to fields indicated as existing by the
value(s) delivered by the discrete literal expression occurrences specified
for the tag fields may be specified and all of them must be specified and
must be in the same order as in the mode of the tuple.

The class of each value must be compatible with the mode of any field
name specified in the field name list labelling that value.

s If the mode of the tuple is a tag-less variant structure mode or a tag-less
parameterised structure mode, then:

14,

15.

Field names mentioned in field name list, which are definred in the same
alternative field, must be all defined in the same variant alternative or
defined after ELSE. All the field names of a selected variant alternative
or defined after ELSE must be mentioned once and only once in the
same order as in the mode of the tuple.

The class of each value must be compatible with the mode of any field
name specified in the field name list labelling that value.

If the mode of the tuple is a tagged parameterised structure mode, the list of values
delivered by the discrete literal expression occurrences specified for the tag fields must
be the same as the list of values of the mode of the tuple.

For a constant structure tuple, each value specified for a field with a discrete mode
must deliver a value defined by the field mode, unless it is an undefined value.

At least one value occurrence must be an expression.

No tuple may have two value occurrences in it such that ome is extra-regional and the other is
intra-regional (see section 11.2.2).

The assignment conditions of any value with respect to the member mode, ele-
ment mode or associated field mode, in the case of powerset tuple, array tuple or structure tuple,
respectively (see section 6.2) apply (refer to conditions a2, b2, ¢4, c7, c10, ¢13 and cl5).

If the tuple has a dynamic array mode, the RANGEFAIL excepiion occurs if any of the conditions

b3 or b5 are not satisfied.

If the tuple has a dynamic parameterised structure mode, the TAGFAIL exception occurs if any
of the conditions ¢14 or c16 are not satisfied.

The value delivered by a tuple must not be undefined.

9.6
9.7
8.26
17.5
12.35
11.18

number._list [|

(1.1)

[2:max] (2.1)
[CA):3,(’B’’K",’Z’):1,(ELSE):0] (6.1)
[(*):"] (6.1)
(:NULL,NULL,536:) (7.1)
[-status:occupied,.p:[white,rook]] (9.1)

Fascicle X.6 — Rec. 2200 59

5.2.6 Value string elements

syntax:
< value string element> 1= (1)
<string primitive value> { <start element>) (1.1)

N.B. if the string primitive value is a string Jocation, the syntactic construct is ambiguous and will
be interpreted as a string element (see section 4.2.6).

semantics: A value string element delivers a value which is the element of the specified string value indicated
by start element.

static properties: The class of the value string element is the BOOL-value class or CHAR-value class
depending on whether the mode of the string primitive value is a bit string mode or a character
string mode.

dynamic conditions: The value delivered by a value string element must not be undefined.
The RANGEFAIL exception occurs if the folloWing relation does not hold:
0 < NUM (start element) < L —1

Where L is the actual length of the string primitive value.

5.2.7 Value string slices

syntax: :
<value string slice> ::= {1)
<string primitive value> (<left element> : <right element>) (1.1)
| <string primitive value> (<start element> UP <slice size>) (1.2)

N.B. if the string primitive value is a string location, the syntactic construct is ambiguous and will
be interpreted as a string slice (see section 4.2.7).

semantics: A value string slice delivers a (possibly dynamic) string value which is the part of the specified
string value indicated by left element and right element or start element and slice size. The (possibly
dynamic) length of the string slice is determined from the specified expressions.

A string slice in which the right element delivers a value which is less than that delivered by the left
element or in which slice size delivers a non positive value denotes an empty string.

static properties: The (possibly dynamic} class of a value string slice is the M-value class if the string
primitive value is strong and otherwise the M-derived class, where M is a parameterised string
mode constructed as:

&name (string size)

where &nrame is a virtual synmode name synonymous with the (possibly dynamic) root mode
of the string primitive value if it is a fixed string mode, otherwise with the component mode, and
where string size is either

NUM (right element) — NUM (left element) 4 1
or
NUM (slice size).

However, if an empty string is denoted, string size is 0. The class of a value string slice is static if
string sige is literal, i.e. left element and right element are literal or slice size is literal; otherwise
the class 1s dynamic.

60 Fascicle X.6 — Rec. Z200

static conditions: The following relations must hold:
0 < NUM (left element) < L —1
0 < NUM (right eleﬁent) <L-1
0 < NUM (start element) < L —1
NUM (start element) + NUM (slice size) < L

where L is the actual length of the string primitive value. If L and the value all integer expressions
are known statically, the relations can be checked statically.

dynamic conditions: The value delivered by a value siring slice must not be undefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

5.2.8 Value array elements

syntax:
<value array element> = (1)
<array primitive value> (<expression list>) (1.1)

N.B. If the array primitive value is an array location the syntactic construct is ambiguous and will
be interpreted as an array element (see section 4.2.8).

derived syntax: See section 4.2.8.

semantics: A value array element delivers a value which is the element of the specified array value indicated
by expression.

static properties: The class of the value array element is the M-value class, where M is the element mode
of the mode of the array primitive value.

static conditions: The class of the expression must be compatible with the index mode of the mode of the
array primitive value.

dynamic conditions: The value delivered by a value array element must not be undefined.
The RANGEFAIL exception occurs if the following relation does not hold:
L < expression < U

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the
array primitive value, respectively.

Fascicle X.6 — Rec. Z200 61

5.2.8 Value array slices

syntax:
<value array slice> = (1)
<array primitive value> { <lower element> : <upper element>) (1.1)
| <azray primitive value> (<first element> UP <slice size>) (1.2)

N.B. If the array primitive value is an array Jocation, the syntactic construct is ambignous and will
be interpreted as an array slice (see section 4.2.9).

semantics: A value array slice delivers an (possibly dynamic) array value which is the part of the specified
array value indicated by lower element and upper element, or firsi element and slice size. The
lower bound of the value array slice is equal to the lower bound of the specified array value; the
(possibly dynamic) upper bound is determined from the specified expressions.

static properties: The (possibly dynamic) class of a value array slice is the M-value class, where M is a
parameterised array mode constructed as:

&name (upper index)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the
array primitive value and upper index is either an expression whose class is compatible with the
classes of lower element and upper element and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element) — NUM (lower element)

or is an expression whose class is compatible with the class of first element and delivers a value
such that:

NUM (upper index) = NUM (L) -+ NUM (slice size) — 1
where L is the lower bound of the mode of the array primitive value.

The class of a value array slice is static if upper Index is literal, i.e. lower element and upper element
both are literal or slice size is literal; otherwise the class is dynamic.

static conditions: The classes of lower element and upper element or the class of first element must be
compatible with the index mode of the array primitive value.

The following relations must hold:
L < lower element < upper element < U
1 < NUM (slice size) < NUM (U) — NUM (L) +1
NUM(L) < NUM (first element) < NUM (first element)+ NUM (slice size)—1 < NUM (U)

where L and U are, respectively, the lower bound and upper bound of the mode of the array

primitive value. If U and the value af all expressions are known statically, the relations can be
checked statically.

dynamic conditions: The value delivered by a value array slice must not be undefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

62 Fascicle X.6 ~ Rec. Z200

5.2.10 Value structure fields

syntax:
<value structure field> ::= (1)
<structure primitive value> . <field name> (1.1)

N.B. If the structnre primitive value is a structure location, the syntactic construct is ambiguous
and will be interpreted as a structure field (see section 4.2.10),

semantics: A value structure field delivers a value which is the field of the specified structure value indicated
by field name. If the structure primitive value has a tag-less variant structure mode and the field
name is a variant field name, the semantics are implementation defined.

static properties: The class of value structure field is the M-value class, where M is the mode of the field
name,

static conditions: The field name must be a name from the set of field names of the mode of the structure
primitive value.

dynamic conditions: The value delivered by a value structure field must not be undefined.
A value must not denote:

o atagged variant structure mode value in which the associated tag field value(s) indicate(s)
that the denoted field does not exist;

» 2 dynamic parameterised structure mode value in which the associated list of values indi-
cates that the fleld does not exist,

The above mentioned conditions are called the variant field access conditions for the value (note
that the condition do not include the occurrence of an exception). The TAGFAIL exception occurs
if they are not satisfied for the structure primitive value.

examples:

16.51 (RECEIVE user_ buffer).allocator (1.1)

5.2.11 Expression conversions

syntax:
< expression conversion> ;= : (1)
<mode name> (<expression>) (1.1)

N.B. If the expression is a static mode location, the syntactic construct is ambiguous and will be
interpreted as a location conversion (see section 4.2.13).

semantics: An expression conversion overrides the CHILL mode checking and compatibility rules. It explicitly
attaches a mode to the expression. If the mode of the mode name is a discrete mode and the class of
the value delivered by the expression is discrete, then the value delivered by the expression conversion
is such that:

NUM (mode name (expression)) = NUM (expression)

Otherwise the value delivered by the expression conversion is implementation defined and depends
on the internal representation of values.

static properties: The class of the expression conversion is the M-value class, where M is the mode name.
An expression conversion is constant if and only if the expression is constant.

Fascicle X.6 — Rec. Z200 63

static conditions: The mode name must not have the non-value property. An implementation may impose
additional static conditions.

dynamic conditions: If the class of the value delivered by expression is discrete and if the mode of the
mode name is a discrete mode which does not define a value with an internal representation equal
to NUM (expression), then the OVERFLOW exception occurs. An implementation may impose
additional dynamic conditions that, when violated, result in the occurrence of an exception defined
by the implementation.

5.2.12 Value procedure calls

syntax:
<value procedure call> = (1)
< value procedure call> (1.1)

semantics: A value procedure call delivers the value returned from a procedure.

static properties: The class of the value procedure call is the M-value class, where M is the mode of the
result spec of the value procedure call.

dynamic conditions: The value procedure call must not deliver an undefined value (see sections 5.3.1 and

6.8).

examples: .
6.50 julian_day_number([10,dec,1979}) (1.1)
11.65 ok._ bishop(b,m) (1.1)

5.2.13 Value built-in routine calls

syntax:
< value built-in routine call> = {1)
< value built-in routine call> (1.1)

semantics: A value built-in routine call delivers the value returned by the built-in routine.

static properties: The class attached to the value built-in routine call is the class of the value built-in routine

call.

dynamic conditions: The value built-in routine call must not deliver an undefined value (see sections 5.3.1
and 6.8).

64 Fascicle X.6 — Rec. Z200

5.2.14 BStart expressions

syntax:
<start expression> = (1)
START <process name> ([<actual parameter list> |) (1.1)

semantics: The evaluation of the start expression creates and activates a2 new process whose definition is
indicated by the process name (see chapter 11}. The start expression delivers the instance value
identifying the created process. Parameter passing is analogous to procedure parameter passing;
however, additional actual parameters may be given with an implementation defined meaning.

static properties: The class of the start expression is the INSTANCE-derived class.

static conditions: The number of actual parameter occurrences in the actual parameter list must not be
less than the number of formal parameter occurrences in the formal parameter list of the process
definition of the process name. If the number of actual parameters is s and the number of formal
parameters is » (m > n), the compatibility and regionality requirements for the first n actual
parameters are the same as for procedure parameter passing (see section 6.7). The static conditions
for the rest of the actual parameters are implementation defined.

dynamic conditions: For parameter passing, the assignment conditions of any actual value with respect to
the mode of its associated formal parameter apply (see section 6.7).

The start expression causes the SPACEFAIL exception if storage requirements cannot be satisfied.

examples:

15.35 START counter() (1.1)

5.2.15 Zero-adic operator

syntax:
< gero-adic operator> = (1)
THIS (1.1)

sernantics: The zero-adic operator delivers the unigue instance value identifying the process executing it.

static properties: The class of the zero-adic operator is the INSTANCE-derived class.

5.2.16 Parenthesised expression

syntax:
< parenthesised expression> ::= (1)
(<expression>) (1.1)

semantics: A parenthesised expression delivers the value delivered by the evaluation of the expression.

Fascicle X.6 — Rec. Z200 65

static properties: The class of the parenthesised expression is the class of the expression.
A parenthesised expression is constant (literal) if and only if the expression is constant (literal).

examples:
5.10 (al OR b1} (1.1)

5.3 VALUES AND EXPRESSIONS

5.3.1 General

syntax:
<value> = (1)
< expression> (1.1)
| <undefined value> (1.2)
<undefined value> ::= (2)
® {2.1)
| <undefined synouym name> (2.2)

semantics: A value is either an undefined value or a (CHILL defined) value delivered as the result of the
evaluation of an expression.

Except where explicitly indicated to the contrary, the order of evaluation of the constituents of
an expression and their sub-constituents, etc., is undefined and they may be considered as being
evaluated in mixed order. They need only be evalnated to the point that the value to be delivered
is determined uniquely. If the context requires a constant or literal expression, the evaluation is
assumed to be done prior to run time and cannot cause an exception. An implementation will define
ranges of allowed values for literal and constant expressions and may reject a program if such a
prior-to-run-time evaluation delivers a value out of the implementation defined bounds.

static properties: The class of a value is the class of the expression or undefined value, respectively.

The class of the undefined value is the all class if the undefined value is a % otherwise the class is
the class of the undefined synonvm name.

A value is constant if and only if it is an undefined value or an expression which is constant. A
value is literal if and only if it is an expression which is lteral.

dynamic properties: A valueis said to be undefinedifit is denoted by the undefined value or when explicitly
indicated in this document. A composite value is undefined if and only if all its sub-components
(i.e. substring values, element values, field values) are undefined.

examples:
6.40 (146_097+#c)/4+(1_461xy)/4
+(153+m+c)/5+day+1_721_119 {1.1)

66 Fascicle X.8 — Rec. Z200

5.3.2 Expressions

syntax:

<expression> = (1)
< operand-0> (1.1)
| <conditional expression> (1.2)
<conditional expression> 1= {2)
| YF <boolean expression> < then alternative>
<else alternative> FI (2.1)
| CASE <case selector list> OF { <value case alternative> }*
[ELSE <sub expression> | ESAC (2.2)
<then alternative> ::= (3)
THEN <sub expression> (3.1)
<else alternative> := (4)
ELSE <sub expression> (4.1)
| ELSIF <boolean expression>)
<then alternative> <else alternative> (4.2)
<sub expression> = (5)
< expression> {5.1)
< value case alternative> = ‘ (6)
<case label specification> : <sub expression> ; {6.1)

semantics: IfIF is specified, the boolean expression is evaluated and if it yields TRUE, the result is the value

delivered by the sub expression in the then alternative, otherwise it is the value delivered by the else
alternative.

The value delivered by an else alternative is the value of the sub expression if ELSE is specified,
otherwise the boolean expression is evaluated and if it yields TRUE, it is the value delivered by the
sub expression in the then alternafive, otherwise it is the value delivered by the else alternative.

If CASE is specified, the sub expressions in the case selector list are evaluated and if a case label
specification matches, the result is the value delivered by the corresponding sub expression, otherwise
it is the value delivered by the sub expression following ELSE (which will be present).

Unused sub expressions in a conditional expression are not evaluated.

static properties: If an expression is an operand-0, the class of the expression is the class of the operand-0.

If it is a conditional expression, the class of the expression is the M-value class, where M is the mode
which depends on the context where the conditional expression occurs according to the same rules
that define the mode of the class of a tuple without a mode name (see section 5.2.5).

An expression is constant (literal) if and only if it is either an operand-0 which is constant
(literal), or a conditional expression in which all hoolean expression or case selector list in it are
constant (literal) and in which all sub expressions in it are constant (literal).

static conditions: If an expression is a conditional expression the following conditions apply:

e a conditional expression may occur only in the contexts in which a tuple without a mode
name in front of it may occur;

¢ ecach sub expression must be compatible with the mode that is derived from the context
with the same rules as for tuples. However, the dynamic part of the compatibility relation
applies only to the selected sub expression;

Fascicle X.6 — Rec. Z200 67

e if CASE is specified, the case selection conditions must be fulfilled (see section 12.3), and
the same completeness, consistency and compatibility requirements must hold as for the case
action (see section 6.4);

® no conditional expression may have two sub expression occurrences im it such that one is
extra-regional and the other is intra-regional (see section 11.2.2).

dynamic conditions: In the case of a conditional expression, the assignment conditions of the value delivered
by the selected sub expression with respect to the mode M derived from the context apply.

5.3.3 Operand-0

syntax:
<goperand-0> 1= : (1)
<operand-1> ‘ - (1.1)
| <sub operand-0> { OR | ORIF | XOR } <operand-1> (1.2)
<sub operand-0> = (2)
< operand-(0> _ f2.1)

semantics: If OR, ORIF or XOR is specified, sub operand-0 and operand-1 deliver:

s boolean values, in which case OR and XOR denote the logical operators “inclusive dis-
Junction” and “exclusive disjunction”, respectively, delivering a boolean value. If ORIF is
specified and operand-0 delivers the boolean value TRUE, then this is the result, otherwise
the result is operand-1;

e bit string values, in which case OR and XOR. dencte the logical operations on each element
of the bit strings, delivering a bit string value;

¢ powerset values, in which case OR denotes the unjon of both powerset values and XOR
denotes the powerset value consisting of those member values which are in only one of the
specified powerset values {e.g. A XOR B = A-B OR B-4).

static properties: If an operand-0 is an operand-1, the class of operand-0 is the class of operand-1. If OR,
ORIF or XOR is specified, the class of operand-0 is the resulting class of the classes of sub
operand-0 and operand-1.

An operand-0 is comstant (literal) if and only if it is either an operand-1 which is constant
(literal), or built up from an operand-0 and an operand-1 which are both constant(literal).

static conditions: If OR, ORIF or XOR is specified, the class of sub operand-0 must be compatible
with the class of operand-1. If ORIF is specified, both classes must have a boolean root mode,
otherwise both classes must have a boolean, powerset or bit string root mode, in which case the
actual length of sub operand-0 and operand-1 must be the same. This check is dynamic if one or
both modes is (are) dynamic or varying string modes.

dynamic conditions: In the case of OR or XOR, a RANGEFAIL exception occurs if one or both. operands
have a dynamic class and the dynamic part of the above mentioned compatibility check fails.

examples:
10.31 i<min (1.1)
10.31 i<min OR i>max (1.2)

68 Fascicle X.6 — Rec. Z200

5.3.4 Operand-1

syntax:
<operand-1> ::= (1)
<operand-2> ' (1.1)
| <sub operand-1> { AND | ANDIF } <operand-2> (1.2}
<sub operand-1> ::= ' (2)
<operand-1> (2.1)

semantics: If AND or ANDIF is specified, sub operand-1 and operand-2 deliver:

s boolean values, in which case AND denotes the logical “conjﬁnction“ operation, delivering a
boolean value. If ANDIF is specified and sub operand-1 delivers the boolean value FALSE,
then this is the result, otherwise the result is operand-2;

o bit string values, in which case AND denotes the logical operation on each element of the
bit strings, delivering a bit string value;

o powerset values, in which case AND denotes the “intersection ” operation of powerset values
delivering a powerset value as a result,

static properties: If an operand-1 is an operand-2, the class of operand-1 is the class of operand-2.

If AND or ANDIF is specified, the class of operand-1 is the resulting class of the classes of sub
operand-1 and operand-2.

An operand-1 is constant (literal) if and only if it is either an operand-2 which is constant
(Literal), or built up from an operand-1 and an operand-2 which are both constant (literal).

static conditions: If AND or ANDIF is specified, the class of sub operand-1 must be compatible with the
class of operand-2. If ANDIF is specified, both classes must have a boolean root mode, otherwise
both classes must have a boolean, powerset or bit string root mode, in which case the actual
length of sub operand-1 and operand-2 must be the same. This check is dynamic if one or both
modes is (are) dynamic or varying string modes.

dynamic conditions: In the case of AND, a RANGEFAJL exception occurs if one or both operands have a
dynamic class and the dynamic part of the above mentioned compatibility check fails.

examples:
5.10 (al OR bI1) (1.1)
5.10 NOT k2 AND (al OR bi) (1.2)

5.3.5 Operand-2

syntax: _

<operand-2> = (1)
<operand-3> (1.1)

| <sub operand-23> <operator-3> <operand-3> (1.2)

<sub operand-2> = (2)
<operand-2> (2.1)

< operator-3> = (3)
<relational operator> (3.1)

| <membership operator> (3.2)

| <powerset inclusion operator> (3.3)

Fascicle X.6 — Rec. Z200 69

<relational operator> ::= {4)

=|/=1>|>=|< | <= (4.1)
<membership operator> = (5)
IN (5.1)
< powerset inclusion operator> ;= (6)
<= |>=|< |> (6.1)

semantics: The equality (=) and inequality (/=) operators are defined between all values of a given mode.
The other relational operators {less than: <, less than or equal to: <=, greater than: >, greater
than or equal to: >=) are defined between values of a given discrete, timing or string mode. All the
relational operators deliver a boolean value as result.

The membership operator is defined between a member value and a powerset value. The operator
delivers TRUE if the member value is in the specified powerset value, otherwise FALSE.

The powerset inclusion operators are defined between powerset values and they test whether or not a
powerset value is contained in: <=, is properly contained in: <, contains: >= or properly contains:
> the other powerset value. A powerset inclusion operator delivers a boolean value as result.

static properties: If an operand-2 is an operand-3, the class of operand-2 is the class of operand-3. If an
operator-3 is specified, the class of operand-2 is the BOOL-derived class.

An operand-2 is constant (literal) if and only if it is either an operand-3 which is constant
(Literal) or built up from a sub operand-2 and an operand-3 which are both constant (literal).

static conditions: If an operator-3 is specified, the following compatibility requirements between the class of
sub operand-2 and the class of operand-3 must be fulfilled:

e if operator-3 is = or /=, both classes must be compatible;

s if operator-3 is a relational operator other than = or /=, both classes must be compatible
and maust have a discrete, timing or string root mode;

¢ if operator-3 is a membership operator, the class of operand-3 must have a powerset root
mode and the class of sub operand-2 must be compatible with the member mode of that
root mode;

 if operator-3 is a powerset inclusion operator, both classes must be compatible and must
have a powerset root mode.

dynamic conditions: In the case of a relational operator, a RANGEFAIL or TAGFAIL exception occurs if one
or both operands have a dynamic class and the dynamic part of the above mentioned compatibility
check fails. The TAGFAIL exception occurs if and only if a dynamic class is based upon a dynamic
Parameterised structure mode,

examples:
10.50 NULL (1.1)
10.50 last=NULL (1.2)

70 Fascicle X.6 — Rec. Z200

5.3.6 Operand-3

syntax

<operand-3> = (1)
< operand-4> (1.1)

| <sub operand-3> <operator-4> <operand-4> (1.2)

<sub operand-3> ::= (2)
<operand-3> (2.1)
<operaior-4> = (3)
<arithmetic additive operator> {3.1)

| <string concatenation operator> (3.2)

| <powerset difference operator> (3.3)
<arithmetic additive operator> 1= | (4)
+ |- (4.1)

<string concatenation operator> ::= ' (5)
/! (5.1)
<powerset difference operator> ::= (6)

- (6.1)

semantics: If operator-4 is an arithmetic additive operator, both pperands deliver integer values and the

resulting integer value is the sum (+) or difference () of the two values.

H operator-4 is a string concatenation operator, both operands deliver either bit string values or
character string values; the resulting value consists of the concatenation of these values. Boolean
(character) values are also allowed; they are regarded as bit (character) string values of length 1.

If operator-4 is the powerset difference operator, both operands deliver powerset values and the
resulting value is the powerset value consisting of those member values which are in the value
delivered by sub operand-3 and not in the value delivered by operand-4.

static properties: If an operand-3 is an operand-4, the class of operand-3 is the class of operand-4. If an

operator-4 is specified, the class of operand-3 is determined by operator-4 as follows:

e if operator-4 is a string concatenation operator, the class of operand-3 is dependent on the
classes of operand-4 and sub operand-3, in which an operand that is a boolean or a character
value is regarded as a value whose class is a BOOLS (1)-derived class or CHARS (1)-derived
class, respectively:

— if none of them is strong, the class is the BOOLS (n)-derived class or CHARS (n)-
derived class, depending on whether both operands are bit or character strings, where
1 is the sum of the string lengths of the root modes of both classes;

— otherwise the class is the &name(n)-value class, where &name is a virtual synmode
name synonymous with the root mode of the resulting class of the classes of the
operands and n is the sum of the string lengths of the root modes of both classes

(this class is dynamic if one or both operands have a dynami¢ class).

e if operator-4 is an arithmetic additive operator or powerset difference operator, the class of
operand-3 is the resulting class of the classes of operarnd-4 and sub operand-3.

An operand-3 is constant (literal) if and only if it is either an operand-4 which is constant
(literal), or built up from an operand-3 and an operand-4 which are both constant (literal) and
operator-4 is either the arithmetic additive operator or the powerset difference operator.

If operator-4 is the string concatenation operator, an operand-3 is constant if it is built up from
an operand-3 and operand-4 which are both constant. '

Fascicle X.8 — Rec. Z200 71

static conditions: If an operator-4 is specified, the following compatibility requirements must be fulfilled:

¢ if operator-4 is the arithmetic additive operafor, the classes of both operands must be com-
patible and they must both have an integer root mode;

e if operator-4 is the string concatenation operator then:

— the classes of both operands must be compatible and they must both have a bit
string root mode or both have a character siring root mode, or

— the classes of both operands must be compatible with the BOOL mode or both be
compatible with the CHAR mode, or

— the class of one operand must have a bit (character) string root mode and the other
must be compatible with the BOOL (CHAR) mode.

» if operator-4 is the powerset difference operator, the classes of both operands must be com-
patible and both must have a powerset root mode.

dynamic conditions: In the case of an operand-3 that is not constant, an OVERFLOW exception occurs
if an addition (+) or a subtraction (-} gives rise to a value that is not one of the values defined by
the root mode of the class of operand-3.

examples:
1.6] (1.1)
1.6 iH (1.2)

5.3.T Operand-4

syntax

<operand-4> = (1)
<operand-5> (1.1)

| <sub operand-4> <arithmetic multiplicative operator> <operand-5> (1.2)

<sub operand-4> = (2)
<operand-4> {2.1)

< arithmetic multiplicative operator> 1= (3)

* |/ | MOD | REM (3.1)

semantics: If an arithmetic multiplicative operator is specified, sub operand-4 and operand-5 deliver integer
values and the resulting integer value is either the product (#), the quotient (/), modulo (MOD)
or division remainder (REM) of both values. '

The modulo operation is defined such that { MOD j delivers the unique integer value &, 0 < k < j§
such that there is an integer value n such that i = n* j + k; 7 must be greater than 0.

The quotient operation is defined such that all relations:

ABS(z/y) = ABS(z)/ABS(y) and
sign(z/y) = sign(z)/sign(y) and
ABS(z) — (ABS(z)/ABS(y)) » ABS(y) = ABS(z) MOD ABS(y)

yield TRUE for all integer values % and y, where sign{z} = —1 if z < 0, otherwise sign(e) = 1.

The remainder operation is defined such that « REM y = @ — (2/y) * y yields TRUE for all integer
values ¢ and y.

static properties: If operand-4 is an operand-5, the class of operand-4 is the class of operand-5; otherwise
the class of operand-4 is the resulting class of the classes of sub operand-4 and operand-35.

An operand-4 is comstant (literal) if and only if it is either an operand-5 which is comstant
(literal), or built up from an operand-4 and an operand-5 which are both constant (literal).

72 Fascicle X.6 — Rec. Z200

static conditions: If-an arithmetic multiplicative operator is specified, the classes of operand-5 and sub
operand-4 must be compatible and both must have an integer root mode.

dynamic conditions: In the case of an operand-4 that is not constant, an OVERFLOW exception occurs
if a multiplication {*), a division (/), a modulo (MOD), or a remainder (REM) operation’ gives
rise to a value that is not one of the values defined by the root mode of the class of operand-4 or
is performed on operand values for which the operator is mathematically not defined, i.e. division
or remainder with an operand-5 delivering 0 or a modulo operation with an operand-5 delivering a
non-positive integer value.

examples:
6.15 1..461 (1.1)
6.15 (4 xd + 3}/ 1.461 (1.2)

5.3.8 Operand-5

syntax

<operand-5> = (1)

[<monadic operator>]| <operand-6> (1.1)

<Inonadic operator> = {2)

- |NOT (2.1)

| <string repetition operator> (2.2)

< string repetition operator> = _ {(3)

(<integer literal expression>) {3.1)

semantics: If the monadic operator is a change-sign operator (-}, operand-6 délivers an integer value and the
resulting integer value is the previous integer value with its sign changed.

If the monadic operator is NOT, operand-6 delivers a boolean value, a bit string value, or a powerset
value. In the first two cases the logical negation of the boolean value or of the elements of the bit
string value is delivered. In the latter case, the set complement value, i.e. the set of those member
values which are not in the operand powerset value, is delivered.

If the monadic operator is a string repetition operator, operand-6 is a character string literal or a
bit string literal. If the integer literal expression delivers 0, the result is the empty siring value;
otherwise the result is the string value formed by concatenating the string with itself as many times
as specified by the value delivered by the literal expression minus 1.

static properties: If operand-5 is an operand-6, the class of operand-5 is the class of operand-6.
If 2 monadic operator is specified, the class of operand-5 is:
e if the monadic operator is — or NOT then the resulting class of operand-6;

o if the .monadic operator is the string repetition operator, then it is the CHARS (n)- or
BOOLS (n)-derived class (depending on whether the literal was a character string literal
or bit string literal) where m = r x I, where 7 is the value delivered by the integer literal
expression and [is the string length of the string literal.

An operand-5 is constant if and only if the operand-6 is constant. An operand-5 is litexal if and
only if the operand-6 is literal and the monadic operator is —or NOT.

static conditions: I monadic operator is —, the class of operand-6 must have an integer root mode.

If monadic operator is NOT, the class of operand-6 must have a boolean, bit string or powerset
root mode.

If monadic operator is the siring repetition operator, operand-6 must be a character string literal
or a bit string literal. The integer literal expression must deliver a non-negative integer-value.

Fascicle X.6 — Rec. .Z200 73

dynamic conditions: If operand-5 is not constant, an OVERFLOW exception occurs if a change sign ()
operation gives rise to a value which is not one of the values defined by the root mode of the class
of the operand-5.

examples:
510 NOT k2 (1.1)
7.54 (6)"" (1.1)
.54 {6) (2.2)

5.3.9 Operand-6

syntax:

<operand-6> = (1)
<referenced location> (1.1)

| <receive expression> (1.2)

| <primitive value> (1.3)

<referenced location> ::= (2)

~> <location> {2.1)

<receive expression> = {3)
RECEIVE <buffer location> {3.1)

semantics: A referenced location delivers a reference to the specified location.

The receive expression receives a value from the buffer Iocation. The executing process may become
delayed and may re-activate another process, delayed on sending to the specified buffer location (see
section 6.19.3 for details).

static properties: The class of an operand-6 is the class of the referenced location, receive expression or
primitive value, respectively. The class of the referenced location is the M-reference class where M
is the mode of the Jocation. The class of the receive expression is the M-value class, where M is the
buffer element mode of the mode of the buffer location.

An operand-6 is constant if and only if the primitive value is constant or the referenced location
is comstant. A referenced location is constant if and only if the location is static. An operand-6
is literal if and only if the primitive value is literal.

static conditions: The location must be referable.

dynamic conditions: The lifetime of the buffer Iocation must not end while the executing process is delayed

on it.

examples:
8.25 A (2.1)
16.51 RECEIVE user.. buffer (3.1)

T4 Fascicle X.6 — Rec. Z200

6 ACTIONS

6.1 GENERAL

syntax:

<action statement> ;= (1)
[<defining occurrence> :] <action> [<handler>] [<simple name string>] ; (1.1)

| <module> (1.2)

| <spec module> (1.3)

| <context module> (1.4)
<action> = (2)
< bracketed action> (2.1)

| <assignment action> (2.2)

| <call action> (2.3)

| <exit action> (2.4)

| <return action> (2.5)

| <result action> (2.6)

| <goto action> : (2.7)

| <assert action> (2.8)

| <empty action> (2.9)

| <start action> : (2.10)

| <stop action> (2.11)

| <delay action> (2.12)

| <continue action> (2.13)

| <send action> (2.14)

| <cause action> (2.15)

< bracketed action> = (3)
<if action> ' (3.1)

| <case action> (3.2)

| <do action> (3.3)

| <begin-end block> (3.4)

| <delay case action> (3.5)

| <receive case action> {3.6)

| <timing action> {3.7)

semantics: Action statements constitute the algorithmic part of a CHILL program. Any action statement may
be labelled. Those actions that may never cause an exception may not have a handler appended.

static properties: A defining occurrence in an action statement defines a label name.

static conditions: The simple name string may only be given after an action which is a bracketed action or
if a handler is specified, and only if a defining occurrence is specified. The simple name string must
be the same name string as the defining occurrence.

6.2 ASSIGNMENT ACTION

syntax:

< assignment action> = 1

<single assignment action> {1.1)

| <multiple assignment action> (1.2)

< single assignment action> 1= (2)
<location> <assignment symbol> <value> (2.1)

| <location> < assigning operator> <expression> (2.2)

< multiple assignment action> ;1= {3)
<location> { , <location> }+ <assignment symbol> <value> (3.1)

Fascicle X.6 — Rec. Z200 75

<assigning operator> = : (4)

<closed dyadic operator> <assignment symbol> (4.1)

<closed dyadic operator> == (5)
OR |[XOR | AND : (5.1)

| <powerset difference operator> (5.2)

| <arithmetic additive operator> (5.3)

| <arithmetic multiplicative operator> (5.4)

| <string concatenation operator> (5.5)
<assignment symbol> 1= _ (6)

i ‘ (6.1)

semantics: An assignment action stores a value into one or more locations.

If an assignment symbol is used, the value yielded by the right hand side is stored into the location(s)
specified at the left hand side.

If an assigning operator is used, the value contained in the location is combined with the right hand
side value (in that order} according to the semantics of the specified closed dyadic operator, and the
result is stored back into the same location.

The evaluation of the left hand side location(s}, of the right hand side value, and of the assignment
themselves are performed in an unspecified and possibly mixed order. Any assignment may be
periormed as soon as the value and a location have been evaluated.

If the location (or any of the locations) is the tag field of a variant structure, the semantics for the
variant fields that depend on it are implementation defined.

static conditions: The modes of all location occurrences must be equivalent and they must have nejither

the read-only property nor the non-value property. Each mode must be compatible with
the class of the value. The checks are dynamic in the case where dynamic mode locations and/or a
value with a dynamic class are involved.

The value must be regionally safe for every location (see section 11.2.2).

If any location has a fixed string mode, then the string length of the mode and the actual length
of the value must be the same; otherwise, if it has a varying string mode, then the string length
of the mode must not be less than the actual length of the value. This check is dynamic if one or
both modes is (are) dynamic or varying string modes. This condition is called the string assignment
condition.

dynamic conditions: The RANGEFAIL or TAGFAIL exception occurs if the mode of the location and/or

76

that of the value are dynamic modes and the dynamic part of the above mentioned compatibility
checks fails.

The RANGEFAIL exception occurs if the mode of the location and /or that of the value are varying
string modes and the dynamic part of the above mentioned compatibility checks fails.

The RANGEFAIL exception occurs if any location has a range mode and the value delivered by the
evalnation of value is neither one of the values defined by the range mode nor the undefined value.

The above mentioned dynamic conditions together with the string assignment condition are called
the assignment conditions of a value with respect to a mode.

Fascicle X.8 ~ Rec. 7200

In the case of an assigning operator, the same exceptions are caused as if the expression: .
<location> <closed dyadic operator> (<expression>)

were evaluated and the delivered value stored into the specified location (note that the location is
evaluated once only}.

examples:
4.12 a:= b+c (1.1)
10.25 stackindex— := I (2.1)
19.19 x—>.prex, x=>.next := NULL (3.1)
1025 -:= (4.1)

6.3 IF ACTION

syntax:

<if action> = (1)

IF <boolean expression> <then clause> [<else clause> | FI (1.1)

<then clause> ;= {2)

THEN <action statement list> (2.1)

<else clause> = (3)

ELSE <action statement list> (3.1)

| ELSIF <boolean expression> <then clause> [<else clause> | (3.2)

derived syntax: The notation:

ELSIF <boolean expression> <then clause> | <else clause>]

is derived syntax for:
ELSE IF <boolean expression> <then clause> [<else clause> | FI;

semantics: An if action is a conditional two-way branch. If the boolean expression yields TRUE, the action
statement list following THEN is entered; otherwise the action statement list following ELSE, if
present, is entered.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:

7.22 IF n >= 50 THEN rn{r) := 'L}
n-:= 50;
4+ = 1;
Fi (1.1)
10.50 IF last = NULL
THEN first,last := p;
ELSE last—>.succ ;= p;
p—>.pred := last;
last := p;
FI {1.1)

Fascicle X.8 — Rec. Z200 T

6.4 CASE ACTION

syntax:

<case action> 1= (1)
CASE <case selector list> OF [<range list> ;] { <case alternative> }+
[ELSE <action statement list> } ESAC (1.1)
<case selector list> ::= (2)
<discrete expression> { , <discrete expression> }* (2.1)
<range list> 1= (3)
<discrete mode name> { , <discrete mode name> }* (3.1)
<case alternative> ;1= f4)
<case label specification> : <action statement list> (4.1)

semantics: A case action is a multiple branch. It consists of the specification of one or more discrete expressions

(the case selector list) and a number of labelled action statement lists (case alternatives). Each
action statement list is labelled with a case label specification which consists of a list of case label
list specifications (one for each case selector). Bach case label list defines a set of values. The use
of a list of discrete expressions in the case selector list allows selection of an alternative based on
multiple conditions.

The case action enters that action statement list for which values given in the case label specification
match the values in the case selector list; if no value match, the action statement list following ELSE
is entered.

The expressions in the case selector list are evaluated in an undefined and possibly mixed oxder.
They need be evaluated only up to the point where a case alternative is uniquely determined.

static conditions: For the list of case Jabel specification occuirences, the case selection conditions apply (see

section 12.3).

The number of discrete expression occurrences in the case selector list must be equal to the number
of classes in the resulting list of classes of the list of case Jabel list oceurrences and, if present, to
the number of discrete mode name occurrences in the range list.

The class of any discrete expression in the case selector list must be compatible with the corre-
sponding (by position) class of the resulting list of classes of the case label list occurrences and,
if present, compatible with the corresponding (by position) discrete mode name in the range list.
The latter mode must also be compatible with the corresponding class of the resulting list of
classes.

Any value delivered by a discrete literal expression or defined by a literal range or by a discrete mode
name in a case label (see section 12.3) must lie in the range of the corresponding discrete mode name
of the range list, if present, and also in the range defined by the mode of the corresponding discrete
expression in the case selector list, if it is a strong discrete expression. In the latter case, the values
defined by the corresponding discrete_mode name of the range list, if present, must also lie in that
range.

The optional ELSE part according to the syntax may only be omitted if the list of case Jabel list
occurrences is complete (see section 12.3).

dynamic conditions: The RANGEFAIL exception occurs if a range list is specified and the value delivered

78

by a discrete expression in the case selector list does not lie within the bounds specified by the
corresponding discrete_ mode name in the range list.

The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

Fascicle X.6 — Rec. Z200

examples:

4.11

11.43
11.58

CASE order OF

6.5 DO ACTION

6.5.1 General

syntax:

<do action> =

<control part> =

(1): a := b+e;
RETURN;
(2): d:=0;
(ELSE): d := 1;
ESAC (1.1)
starting.p.kind, starting.p.color (2.1)
(rook),{*):
IF NOT ok_rook(b,m)
THEN
CAUSE illegal;
FI; (4.1)
(1)
DO [<control part> ;] <action statement list> OD (1.1}
(2)
<for control> [< while control>] (2.1)
| < while contrel> (2.2)

| <with part>

(2:3)

semantics: A do action has one out of three different forms: the do-for and the do-while versions, both for
looping, and the do-with version as a convenient short hand notation for accessing structure fields
in an efficient way. If no control part is specified, the action statement list is entered once, each time
the do action is entered.

When the do-for and the do-while versions are combined, the while control is evaluated after the for
control, and only if the do action is not terminated by the for control.

If the specified control part is a for control and/or while control, then for as long as control stays
inside the reach of the do action, the action statement list is entered according to the control part,
but the do reach is not re-entered for each execuiion of the action statement list.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:

417

15.58

DOFORi:=1TC¢
op(a,b,d,order-1);
d = a
oD
DO WITH each;
IF this_counter = counter
THEN
status := idle;
EXIT find_counter;
FI;
oD

(1.1)

(1.1)

Fascicle X.6 — Rec. Z200 79

6.5.2 For control

syntax:

<for control> =
FOR { <iteration> { , <iteration> }* | EVER }

<iteration> .=
< value enumeration>
| <location enumeration>>

<value enumeration> ;=
< step enumeration>>
| <range enumeration>
| <powerset enumeration>

<step enumeration> 1=
<loop counter> <assignment symbol>
<start value> [<step value>] | DOWN | <end value>

<loop counter> ;=
<defiring occurrence>>

<start value> =
< discrete expression>

<step value> =
BY <integer expression>

<end value> =
TO <discrete expression>

<range enumeration> ::=
<loop counter> [DOWN] IN <discrete mode name>

<powerset enumeration> =
<loop counter> [DOWN] IN <powerset expression>

<location enumeration> ::=
<loop counter> | DOWN] IN <composite object>

<composite object> 1=
<array location>
| <array expression>>
| <string location>
| <string expression>

(1)
(1.1}

(2)
(2.1)
(2.2)

(3)
(3.1)
(3.2}
(3.3)

(4)
(4.1)

(5)
(5.1)

(6)
(6.1)

(7)
(7.1)

(8)
(8.1)

(9)
(9.1)

(10)
(10.1)

(11)
(11.1)

(12)
(12.1)
(12.2)
(12.3)
(12.4)

N.B. If the composite object is a (string, array) location, the syntactic ambiguity is resolved by

interpreting composite object as a location rather than an expression.

semantics: The for control may mention several loop counters. The loop counters are evaluated each time
in an unspecified order, before entering the action statement list, and they need be evaluated only
up fo the point that it can be decided to terminate the do action. The do action is terminated if at

80

least one of the loop counters indicates termination.

1. do for ever:

The action list is indefinitely repeated. The do action can only terminate by a transfer of

control out of it.

2. value enumeration:

The action statement list is repeatedly entered for the set of specified values of the loop
counters. The set of values is either specified by a discrete mode name (range enumeration),
or by a powerset value (powerset enumeration), or by a start value, step value and end value

(step enumeration).

The loop counter implicitly defines a name which denotes its value or location inside the

action statement list.

Fascicle X.6 — Rec. Z200

range enumeration:

In the case of range enumeration without {with) DOWN specification, the initial value of the
loop counter is the smallest (greatest) value in the set of values defined by the discrete mode
name. For subsequent executions of the action statement list, the next value will be evaluated
as: :

SUCC (previous value) (PRED (previous value)).

Termination occurs if the action statement list has been executed for the greatest {smallest)
value defined by the discrete mode name.

powerset enumeration:

In the case of powerset enumeration without {(with) DOWN specification, the initial value
of the loop counter is the smallest (highest) member value in the denoted powerset value. If
the powerset value is empty, the action statement list will not be executed. For snbsequent
executions of the action statement list, the next value will be the next greater (smaller)
member value in the powerset value. Termination occurs if the action statement list has been
executed for the greatest (smallest) value. When the do action is executed, the powerset
expression is evaluated only once.

step enumeration:

In the case of step enumeration without (with) DOWN specification, the set of values of the
loop counter is determined by a start value, an end value, and possibly a step value. When the
do action is executed, these expressions are evaluated only onee in an unspecified and possibly
mixed order. The step value is always positive. The test for termination is made before each
execution of the action statement list. Initially, a test is made to determine whether the start
value of the loop counter is greater (smaller) than the end value. For subsequent executions,
next value will be evaluated as:

previous value + step value (previous value — step value)

in the case of step value specification; otherwise as:
SUCC (previous value) (PRED (previous value}).

Termination occurs if the evaluation yields a value which is greater (smaller) than the end
value or would have caused an OVERFLOW exception.

3. location enumeration:

In the case of a location enumeration without (with) DOWN specification, the action state-
ment list is repeatedly entered for a set of locations which are the elements of the array
location denoted by array location or the components of the string location denoted by string
location. If an array or string expression is specified that is not a location, a location con-
taining the specified value will be implicitly created. The lifetime of the created location is
the do action. The mode of the created location is dynamic if the value has a dynamic class.
The semantics are as if before each execution of the action statement list the loc-identity
declaration:

DCL <loop counter> <mode> LOC := <composite object> (<index>);

were encountered, where mode is the element mode of the array location or &name(1) such
that &name is a virtual synmode name synonymous with the mode of the string location if
it is a fixed string mode, otherwise with the component mode, and where index is initially
set to the lower bound (upper bound) of the mode of location and index before each
subsequent execution of the action statement list is set to SUCC (index} (PRED (index)).
The action statement list will not be executed if the actual length of the siring location
equals 0. The do action is terminated if index just after an execution of the action statement
list is equal to the upper bound (lower bound) of the mode of location. When the do
action is executed, the composite object is evaluated only once.

static properties: A loop counter has a name string attached which is the name string of its defining
occurrence.

value enumeration:

The name defined by the loop counter is a value enumeration name.

Fascicle X.6 — Rec. Z200 81

step enumeration:

The class of the name defined by a loop counter is the resulting class of the classes of the start
value, the step value, if present, and the end value.

range enumeration:

The class of the name defined by the loop counter is the M-value class, where M is the discrete mode
name.

powerset enumeration:

The class of the name defined by the loop counter is the M-value class, where M is the member
mode of the mode of the (strong) powerset expression.

location enumeration:

The name defined by the Ioop counter is a location enumeration name. Its mode is the element

- mode of the mode of the array location or array expression or the string mode &name(1), where

&name is a virtual synmode name synonymous with the mode of string location or the root
mode of the string expression.

A location enumeration name is referable if the element layout of the mode of the array location
is NOPACK.

static conditions: The classes of start value, end value and step value, if present, must be pairwise com-

patible.

The root mode of the class of a Joop counter in a value enumeration must not be a numbered set
mode.

dynamic conditions: A RANGEFAIL exception occurs if the value delivered by step value is not greater

than 0. This exception occurs outside the block of the do action.

examples:

4.17 FORi:=1TO ¢ (1.1)
1537 FOR EVER (1.1)
417 i:=1TOc¢ (3.1)
9.12 j:= MIN (sieve) BY MIN (sieve) TO max (3.1)
14.28 iIN INT (1:100) (3.2)

6.5.3 While control

syntax:

< while control> = (1)
WHILE <boolean expression> (1.1)

semantics: The boolean expression is evaluated just before entering the action statement list (after the

evaluation of the for control, if present). If it yields TRUE, the action statement list is entered;
otherwise the do action is terminated.

examples:

82

7.35 WHILE n >= I (1.1)

Fascicle X.6 — Rec. Z200

6.5.4 With part

syntax:
<with part> = (1)
WITH <with control> { , <with control> }* (1.1)
<with control> ::= (2)
<structure location> (2.1)
| <structure primitive value> (2.2)

N.B. If the with control is a structure location, the syntactic ambiguity is resolved by interpreting
with control as a location tather than a primitive value.

semanties: The (visible) field names of the mode of the structure locations or structure value specified in
each with control are made available as direct accesses to the fields.

The visibility rules are as if a field name defining occurrence were introduced for each field name
attached to the mode of the location or primitive value and with the same name string as the field
name.

If a structure location is specified, access names with the same name string as the field names of the
mode of the structure location are implicitly declared, denoting the sub-locations of the structure
location.

If a structure primitive value is specified, value names with the same name string as the field names
of the mode of the (strong) structure primitive value are implicitly defined, denoting the sub-values
of the structure value,

When the do action is entered, the specified structure locations and /or structure values are evaluated
once only on entering the do action, in an unspecified, possibly mixed order.

static properties: The (virtual) defining occurrence introduced for a field name has the same name string
as the field name defining occurrence of that field name.

U a structure primitive value is specified, a (virtual) defining occurrence in a with part defines a
value do-with name. Its class is the M-value class, where M is the mode of that field name of the
structure mode of the structure primitive value which is made available as value do-with name.

If a structure Jocation is specified, a (virtual) defining occurrence in a with part defines a location
do-with name. Its mode is the mode of that field name of the mode of the structure location which
is made available as location do-with name. A location do-with name is referable if the field
layout of the associated field name is NOPACK.

examples:

15.58 WITH each (1.1)

6.6 EXIT ACTION

syntax:
<exit action> 1= (1)
EXIT <label name> (1.1)

semantics: An exit action is used to leave a bracketed action statement or a module. Execution is resumed
immediately after the closest surrounding bracketed action statement or module labelled with the
label name.

Fascicle X.6 — Rec. Z200 83

static conditions:

examples:

defining occurrence in front has the same name string as label name.

The exit action must lie within the bracketed action statement or module of which the

If the exit action is placed within a procedure or process definition, the exited bracketed action
statement or module must also lie within the same procedure or process definition (i.e. the exit

action cannot be used to leave procedures or processes).

No handler may be appended to an exif action.

i15.62 EXIT find_ counter

6.7 CALL ACTION

syntax:

<call action> 1=
< procedure call>
| <built-in routine call>

< procedure call> =
{ <procedure name> | <procedure primitive value> }
({ <actual parameter list>])

<actual parameter list> =
<actual parameter> { , <actual parameter> }*

<actual parameter> =
<value>
| <location>

< built-in routine call> =
< built-in routine name> { [<built-in routine parameter list>])

< built-in routine parameter lst> =
< built-in routine parameter> { , <buili-in routine parameter> }*

< built-in routine parameter> =
<value>
| <location>
| <non-reserved name> | (<buili-in routine parameter list>) |

(1.1)

(1)
(1.1)
(1.2)

(2)
(2.1)

(3)
(3.1)

(4)
(4.1)
(4.2)

(5)
(5.1)

(6)
(6.1)

(7)
(7.1)
(7.2)
(7.3)

N.B. If the actual parameter or built-in routine parameier is a location, the syntactic ambiguity is

resolved by interpreting it as a location rather than a value.

semantics: A call action causes the call of either a procedure or a built-in routine. A procedure call canses
a call of the general procedure indicated by the value delivered by the procedure primitive value
or the procedure indicated by the procedure name. The actual values and locations specified in the

84

actual parameter list are passed to the procedure.

A built-in routine call is either a CHILL built-in routine call or an implementation buil{-in routine

call (see sections 6.20 and 13.1, respectively).

A value, a location, or any program defined name that is not a reserved simple name string may
be passed as built-in routine parameter. The built-in routine call may return a value or a location.

A built-in routine may be generic, i.e. its class (if it is a value built-in routine call) or its mode (if
it is a location built-in routine call) may depend not only on the bujlt-in routine name but also on

the static properties of the actual parameters passed and the static context of the call.

Fascicle X.6 — Rec. Z200

static properties: A procedure call has the following properties attached: a list of parameter specs, possibly
a result spec, a possibly empty set of exception names, a generality, a recursivity, and possibly
it is intra-regional (the latter is only possible with & procedure name, see section 11.2.2). These
properties are inherited from the procedure name or any mode compatible with the class of the
procedure primitive value (in the latter case, the generality is always general).

A procedure call with a result spec is a Jocation procedure call if and only if LOC is specified in
the result spec; otherwise it is a value procedure call.

A built-in routine name is a CHILL or an implementation defined name that is considered to be

defined in the reach of the imaginary outermost process definition or in any context (see section
10.8).

A built-in routine call is a location built-in routine call if it delivers a location; it is a value built-in
routine call if it delivers a value.

static conditions: The number of actual parameter occurrences in the procedure call must be the same as
the number of its parameter specs. The compatibility requirements for the actual parameter and
corresponding (by position) parameter spec of the procedure call are:

¢ If the parameter spec has the IN attribute (default), the actual parameter must be a value
whose class is compatible with the mode in the corresponding parameter spec. The latter
mode must not have the non-value property. The actual parameter is a value which must
be regionally safe for the procedure call.

s If the parameter spec has the INOUT or OUT attribute, the actual parameter must be a
location, whose mode must be compatible with the M-value class, where M is the mode in
the corresponding parameter spec. The mode of the (actual) location must be static and must
not have the read-only property no: the non-value property. The actual parameter isa
location. It can be viewed as a value which must be regionally safe for the procedure call.

e If the parameter spec has the INOUT attribute, the mode in the parameter spec must be
compatible with the M-value class where M is the mode of the location.

» If the parameter spec has the LOC attribute specified without DYNAMIC, the actual pa-
rameter must be a location which is both referable and such that the mode in the parameter
spec is read-compatible with the mode of the (actual) location, or the actual parameter
must be a value which is not a location but whose class is compatible with the mode in the
parameter spec.

¢ If the parameter spec has the LOC attribute with DYNAMIC specified, the actual param-
eter must be a location which is both referable and such that the mode in the parameter
spec is dynamic read-compatible with the mode of the (actual) location, or the actual
parameter must be a value which is not a location but whose class is compatible with a
parameterised version of this mode.

e TIf the parameter spec has the LOC aitribute then

— if the actual parameter is a location it must have the same regionality as the proce-
dure call;

— if the actual parameter is a value then it must be regionally safe for the procedure
call.

dynamic conditioms: A procedure call or buili-in routine call can cause any of the exceptions from the
attached set of exception names. A procedure call causes the EMPTY exception if the procedure
primitive value delivers NULL; it causes the SPACEFAIL exception if storage requirements cannot
be satisfied. If the recursivity of the procedure is non-recursive, then the procedure must not
call itself either directly or indirectly.

Parameter passing can cause the following exceptions:

¢ If the parameter spec has the IN or INOUT attribute, the assignment conditions of the
(actual) value with respect to the mode of the parameter spec apply at the point of the call
(see section 6.2) and the possible exceptions are caused before the procedure is called.

s If the parameter spec has the INOUT or OUT attribute, the assignment conditions of the
local value of the formal parameter with respect to the mode of the (actual) location apply
at the point of return (see section 6.2) and possible exceptions are caused after the procedure
has returned.

Fascicle X.6 — Rec. Z200 85

examples:

¢ If the parameter spec has the LOC attribuie and the actual parameter is a value which is not
a location, the assignment conditions of the (actual) value with respect to the mode of the
parameter spec apply at the point of the call and the possible exceptions are caused before
the procedure is called (see section 6.2).

The procedure primitive value must not deliver a procedure defined within a process definition whose
activation is not the same as the activation of the process executing the procedure call (other than
the imaginary outermost process) and the lifetime of the denoted procedure must not have ended.

4.18 op(a,b,d,order-1) (1.1)

6.8 RESULT AND RETURN ACTION

syntax:

<return action> ;= ' (1)
RETURN [<result>] (1.1)

<result action> 1= (2)
RESULT <result> (2.1)
<result> ;= (3)
< value> (3.1)

| <location> (3.2)

derived syntax: The return action with result is derived from DO RESULT <result> ; RETURN; OD.

semantics: A result action serves to establish the result to be delivered by a procedure call. This result may

be a location or a value. A return action causes the return from the invocation of the procedure
within whose definition it is placed. If the procedure returns a result, this result is determined by
the latest executed result action. If no result action has been executed, the procedure call delivers
an undefined location or undefined value, respectively.

static properties: A result action and a return action have a procedure name attached, which is the name

of the closest surrounding procedure definition.

static conditions: A return action and a result action must be textually surrounded by a procedure definition.

86

A result action may only be specified if its procedure name has a result spec.
A handler must not be appended to a return action (without result).

IfLOC (LOC DYNAMIC) is specified in the result spec of the procedure name of the result
action, the result must be a Jocation, such that the mode in the result spec is read-compatible
(dynamic read-compatible) with the mode of the location. The location must be referable if
NONRETFT is not specified in the result spec. The result is a Iocation which must have the same
regionality as the procedure name attached to the result action.

If LOC is not specified in the result spec of the procedure name of the result action, the result
must be a value, whose class is compatible with the mode in the result spec. The result is a
value which must be regionally safe for the procedure name attached to the result action.

Fascicle X.6 — Rec. Z200

dynamic conditions: If LOC is not specified in the result spec of the procedure name, the assignment
conditions of the value in the result action with respect to the mode in the result spec of its
procedure name apply.

examples:
4.21 RETURN (1.1)
1.6 RESULT i+j (2.1)
519 ¢ (3.1)

6.9 GOTO ACTION

syntax:
< goto action> = (1)
GOTO <label name> (1.1)

semantics: A goto action causes a transfer of control. Execution is resumed with the action statement labelled
with the label name.

static conditions: If a goto action is placed within a procedure or process definition, the label indicated by
the Jabel name must also be defined within the definition (i.e. it is not possible to jump outside a
procedure or process invocation).

A handler must not be appended to a goto action.

6.10 ASSERT ACTION

syntax:
<assert action> = (1)
ASSERT <boolean expression> (1.1)

semantics: An assert action provides a means of testing a condition.
dynamic conditions: The ASSERTFAIL exception occurs if the boolean expression delivers FALSE.

examples:

4.7 ASSERT b>0 AND ¢>0 AND order>0 (1.1)

6.11 EMPTY ACTION

syntax:
<empty action> ;1= (1)
<empty> (1.1)
<empty> = (2)

semantics: An empty action causes no action.

static conditions: A handler must not be appended to an empty action.

Fascicle X.6 — Rec. Z200 a7

6.12 CAUSE ACTION

syntax:
<cause action> = (1)
CAUSE <exception name> (1.1)

semantics: A cause action causes the exception whose name is indicated by exception name to occur.
static conditions: A handler must not be appended to a cause action.

examples:

4.9 CAUSE wrong_input (1.1)

6.13 START ACTION

syntax:
<starf action> = {1)
<start expression> (1.1)

semantics: A start action evalnates the start expression (see section 5.2.14) without using the resulting
instance value.

examples:

14.45 START call_distributor () {1.1)

6.14 STOP ACTION

syntax:
<stop action> ::= (1)
STOP (1.1)

semantics: A stop action terminates the process executing it (see section 11.1).

static conditions: A handler must not be appended to a stop action.

6.15 CONTINUE ACTION

syntax:
< continue action> ;1= (1)
CONTINUE <event location> - (L1)

88 Fascicle X.6 — Reec. Z200

semantics: A continue action evaluates the event Jocation.

If the event location has a non-empty set of delayed processes attached, one of these, with the
highest priority, will be be re-activated. I there are several such processes, one will be selected in
an implementation defined way. If there are no such processes, the continue action has no further
effect.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a
member. 7

examples:

13.25 CONTINUE resource_ freed (1.1)

6.16 DELAY ACTION

syntax:
<delay action> 1= (1)
DELAY <gvent location> [<priority>] (1.1)
<priority > = (2)
PRIORITY <integer literal expression> (2.1)

semantics: A delay action evaluates the event location.

Then a DELAYFAIL exception oceurs {see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member with & priority of the set of delayed
processes attached to the specified event location. The priority is the one specified, if any, otherwise.
0 (lowest).

dynamic properties: A process executing a delay action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The integer literal expression must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if the event location has a mode with an event
length attached which is equal to the number of processes already delayed on the event location.

~ The lifetime of the event location must not end while the executing process is delayed on it.

examples:

13.18 DELAY resource.. freed (1.1)

Fascicle X.6 — Rec. Z200 89

6.17 DELAY CASE ACTION

syntax:
<delay case action> = (1)
DELAY CASE [SET <instance location> [<priority> | ; | <priority> ;]
{ <delay alternative> }+

ESAC (1.1)
<delay alternative> ::= (2)
(<event list>) : <action statement list> (2.1)
<event list> = (3)
<event location> { , <event location> }* (3.1)

semantics: A delay case action evaluates, in an unspecified and possibly mixed order, the instance location,
if present, and all event locations specified in a delay alternative.

Then a DELAYFAIL exception occurs {see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member with a priority of the set of delayed
processes attached to each of the specified event locations. The priority is the one specified, if any,
otherwise 0 (lowest).

If the delayed process becomes re-activated by another process executing a continue action on an
event location, the corresponding action statement list is entered. If several delay alternatives specify
the same event location, the choice between them is not specified. Prior to entering, if an instance
Iocation is specified, the instance value identifying the process that has executed the continue action
is stored in it.

dynamic properties: A process executing a delay case action becomes timeoutable when it reaches the
point of execution where it may become delayed. It ceases to be timeoutable when it leaves that
point.

static conditions: The mode of the instance location must not have the read-only property. The
integer litera] expression in priority must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if any event location has a mode with an event
length attached which is equal to the number of processes already delayed on that event location.

The lifetime of none of the event locations must end while the executing process is delayed on them.
The SPACEFAIL exception oceurs if storage requirements cannot be satisfied.

examples:

14.26 DELAY CASE
(operator. is_ready): /* some actions */
(switch_is_closed): DO FOR i IN INT (1:100);
CONTINUE operator_is._ ready;
/* empty the queue %/
OoD;
ESAC (1.1)

90 Fascicle X.8 — Rec. Z200

6.18 SEND ACTION

6.18.1 General

syntax:
<send action> = (1)
<send signal action> (1.1)
| <send buffer action> (1.2)

semantics: A send action initiates the transfer of synchronisation information from a sending process. The
detailed semantics depend on whether the synchronisation object is a signal or a buffer.

6.18.2 Send signal action

syntax:
<send signal action> = (1)
SEND <signal name> [(<value> { , <value> }*)]
[TO <instance primitive value>] [<priority> | (1.1)

semantics: A send signal action evaluates, in an unspecified and possibly mixed order, the list of values, if
present, and the instance primitive value, if present.

The signal specified by signal name is composed for transmission from the specified values and a
priority. The priority is the one specified, if any, otherwise 0 (lowest).

If the signal name has a process name attached, only processes with that name may receive the
signal; if an instance primitive value is specified, only that process may receive the signal. Otherwise
any process may receive the signal.

If the signal has a non-empty set of delayed processes attached, in which one or more may receive
the signal, one of these will be re-activated. If there are several such processes, one will be selected
in an implementation defined way. If there are no such processes, the signal becomes pending.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a
member.

static conditions: The number of value occurrences must be equal to the number of modes of the signal
name. The class of each value must be compatible with the corresponding mode of the signal name,
No value occurrence may be intra-regional (see section 11.2.2). The integer literal expression in
priority must not deliver a negative value.

dynamic conditions: The assignment conditions of each value with respect to its corresponding mode of the
signal name apply.

The EMPTY exception occurs if the instance primitive value delivers NULL.

The lifetime of the process indicated by the value delivered by the instance primitive value must not
have ended at the point of the execution of the send signal action.

The SENDFAIL exception occurs if the signal name has a process name attached which is not the
name of the process indicated by the value delivered by the instance primitive value.

examples:

15.78 SEND ready TO received_ user (1.1)
15.86 SEND readout{count) TO user (1.1)

Fascicle X.6 — Rec. Z200 91

6.18.3 Send buffer action

syntax:
<send buffer action> 1= {1)
SEND <buffer location> { <value>) [<priority>] (1.1)

semantics: A send buffer action evaluates the buffer location and the value in any order.

If the buffer location has a non-empty set of delayed processes attached, one of these will be re-
activated. If there are several such processes, one will be selected in an implementation defined way.
If there are no such processes and the capacity of the buffer location is exceeded, the executing
process becomes delayed with a priority. Otherwise the value is stored with a priority. The priority
is the one specified, if any, otherwise 0 (lowest). The capacity of the buffer is exceeded if the buffer
location has a mode with a buffer length attached which is equal to the number of values already
stored in the buffer location.

If the executing process becomes delayed, it becomes a member of the set of delayed sending processes
attached to the buffer location. If a process becomes re-activated, it is removed from all sets of
delayed processes of which it was a member.

dynamic properties: A process executing a send buffer action becomes timeoutable when it reaches the
point of execution where it may become delayed. It ceases to be timmeoutable when it leaves that
point.

static conditions: The class of the value must be compatible with the buffer element mode of the mode of
the buffer location. The value must not be intra-regional (see section 11.2.2). The integer literal
expression in priority must not deliver a negative value.

dynamic conditions: The assignment conditions of the value with respect to the buffer element mode of

the mode of the buffer location apply; the possible exceptions occur before the process may become
delayed.

The lifetime of the buffer Jocation must not end while the executing process is delayed on it.

examples:

16.119 SEND user—>([ready, —>counter_ buffer])k (1.1)

6.19 RECEIVE CASE ACTION

6.19.1 General

syntax:
<receive case action> 1= (1)
<receive signal case action> (1.1)
| <receive buffer case action> (1.2)

semantics: A receive case action receives synchronisation information transmitted by a send action. The
detailed semantics depend on the synchronisation object used, which is either a signal or a buffer.
Entering a receive case action does not necessarily result in a delaying of the executing process (see
chapter 11 for further details).

22 Fascicle X.6 — Rec. Z200

6.19.2 Receive signal case action

syntax:
<receive signal case action> ;= (1)
RECEIVE CASE | SET <instance location> ;]
{ <signal receive alternative> }*

[ELSE <action statement list> | ESAC (1.1)
<signal receive alternative> :'= (2)
(<signal name> [IN <defining occurrence list>]) : <action statement list> (2.1)

semantics: A receive signal case action evaluates the instance location, if present.

Then the executing process: (immediately) receives a signal or, if ELSE is specified, enters the
corresponding action statement list, otherwise becomes delayed. The executing process immediately
receives a signal if one of a signal name specified in a signal receive alternative is pending and may
be received by the process. If more than one signal may be received, one with the highest priority
will be selected in an implementation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes
attached to each of the specified signals. If the delayed process becomes re-activated by another
Process executing a send signal action, it receives a signal.

If the executing process receives a signal, the corresponding action statement list is entered. Prior
to entering, if an instance location is specified, the instance value identifying the piocess that has
sent the received signal is stored in it. If the signal name of the received signal has a list of modes
attached, a list of value receive names is specified; the signal carries a list of values, and the value

receive names denote their corresponding value in'the entered action statement list,

static properties: A defining occurrence in the defining occurrence list of a signal receive alternative defines
a value receive name. Its class is the M-value class, where M is the corresponding mode in the list
of modes attached to the signal name in front of it.

dynamic properties: A process executing a receive signal case action becomes timeoutable when it reaches
the point of execution where it may become delayed. It ceases to be timeoutable when it leaves
that point.

static conditions: The mode of the instance location must not have the read-only property.
All signal name occurrences must be different.

The optional IN and the defining occurrence Iist in the signal receive alternative must be specified
if and only if the signal name has a non-empty set of modes, The number of names in the defining
occurrence list must be equal to the number of modes of the signal name.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

Fascicle X.6 — Rec. 7200 93

examples:

15,83 RECEIVE CASE
(advance): count + := I;
(terminate):
SEND readout(count) TO user;
EXIT work_loop;
ESAC (1.1)

6.19.83 Receive buffer case action

syntax:

<receive buffer case action> = : (1)
RECEIVE CASE [SET <jnstance location> ;]
{ <buffer receive alternative> }7
[ELSE <action statement list>]

ESAC (1.1)
< bufler receive alternative> 1= (2)
) (<buffer location> IN <defining occurrence>) : <action statement list> (2.1)

semantics: A receive buffer case action evaluates, in an unspecified and possibly mixed order, the instance

location, if present, and all buffer locations specified in a buffer receive alternative.

Then the executing process: (immediately) receives a value or, if ELSE is specified, enters the
corresponding action statement list, otherwise becomes delayed. The executing process immediately
receives a value if one is stored in, or a sending process delayed on, one of the specified buffer
locations. If more than one value may be received, one with the highest priority will be selected in
an implementation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes
attached to each of the specified buffer locations. H the delayed process becomes re-activated by
another process executing a send buffer action, it receives a value.

If the executing process receives a value, the corresponding action statement list is entered. If several
buffer receive alternatives specify the same buffer location, the choice between them is not specified.
Prior to entering, if an instance location is specified, the instance value identifying the process that
has sent the received value is stored in it. The specified value receive name denotes the received
value in the entered action statement list.

Another process becomes re-activated if the executing process receives a value from a buffer location,
the attached set of delayed sending processes of which is not empty. The re-activated process is one
with the highest priority attached, if the received value was stored in the buffer location, otherwise
the one sending the received value. In the former case, the value to be sent by the re-activated process
1s stored in the buffer location (the capacity of which remains exceeded), and if more than one process
may be re-activated, one will be sclected in an implementation defined way. The re-activated process
1s removed from the set of delayed sending processes attached to the buffer location.

static properties: A defining occurrence in a buffer receive alternative defines a value receive name. Its

class is the M-value class, where M is the buffer element mode of the mode of the buffer location
labelling the buffer receive alternative.

dynamic properties: A process executing a receive buffer case action becomes timeoutable when it reaches

the point of execution where it may become delayed. It ceases to be timeoutable when it leaves
that point.

static conditions: The mode of the instance location must not have the read-only property.

94

Fascicle X.6 — Rec. Z200

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

The lifetime of none of the huffer locations must end while the executing process is delayed on them.

6.20 CHILL BUILT-IN ROUTINE CALLS

syntax:
< CHILL built-in routine call> ::= (1)
< CHILL simple built-in routine call> : (1.1)
| < CHILL location built-in routine call> (1.2)
| <CHILL value built-in routine call> {1.3)

predefined names: The CHILL built-in routine names are predefined as built-in routine names (see section
6.7).

semantics: A CHILL built-in routine call is either a CHILL simple built-in routine call, which delivers no
results (see section 6.20.1), a CHILL location built-in routine call, which delivers a location (see
section 6.20.2), or a CHILL value built-in routine call, which delivers a value (see section 6.20.3).

static properties: A CHILL built-in routine call is a location built-in routine call if it is a CHILY location
built-in routine call; it is a value built-in routine call if it is 2 CHILL value built-in routine call.

6.20.1 CHILL simple built-in routine calls

syntax:
< CHILL simple built-in routine call> = (1)
< terminate built-in routine call> (1.1)
| <io simple built-in routine call> (1.2)
| <timing simple built-in routine call>> (1.3)

semantics: A CHILL simple built-in routine call is a built-in routine call which delivers neither a value nor a
locatjon. The simple built-in routines for input ontput are defined in Chapter 7. The simple built-in
routines for timing are defined in Chapter 9.

6.20.2 CHILL location built-in routine calls

syntax:
< CHILL location built-in routine call> = (1)
<io location built-in routine call> (1.1)

semantics: A CHILL location built-in routine call is a built-in routine call that delivers a location. The
location built-in routines for input output are defined in Chapter 7.

Fascicle X.6 — Rec. Z200 95

6.20.3 CHILL value built-in routine calls

syntax:

< CHILL value built-in routine call> ::= (1)
NUM (<discrete expression>) (1.1)

| PRED (<discrete expression>>) (1.2)

| SUCC (<discrete expression>) (1.3)

| ABS (<integer expression>) (1.4)

| CARD (<powerset expression>) (1.5)

| MAX (<powerset expression>) {1.6)

| MIN (<powerset expression>) (1.7)

| SIZE ({ <location> | <mode argument> }) (1.8)

| UPPER (<upper lower argument>) (1.9)

| LOWER (<upper lower argument>) (1.10)

| LENGTH (<length argument>) (1.11)

| <allocate built-in routine call> {1.12)

| <io value built-in routine call> (1.13)

| <time value built-in routine call> (1.14)
<mode argument> =] (2)
<mode name>> (2.1)

| <array mode name> (<expression>) {2.2)

| <string mode name> (<integer expression>) (2.3)

| <variant structure mode name> (<expression list>) (2.4)
<upper lower argument> = (3)
<arzay location> (3.1)

| <array expression> (3.2)

| <array mode name> (3.3)

| <string location>> (3.4)

| <string expression>> (3.5)

} <string mode name> (3.6)

| <discrete location> {3.7)

| <discrete expression> (3.8)

| <discrete mode name> (3.9)
<length argument> ::= (4)
<string location> (¢.1)

| <string expression> {4.2)

N.B. If the upper lower argument is an (arrav, string, discrete) location, the syntactic ambiguity is

resolved by interpreting upper lower argument as a location rather than an expression or primitive
value. If the length argument is a string location, the syntactic ambiguity is resolved by interpreting
length argument as a location rather than an expression.

semantics: A CHILL value built-in routine call is a built-in routine cail that delivers a value.

96

NUM delivers an integer value with the same internal representation as the value delivered by its
argument.

PRED and SUCC deliver respectively the next lower and higher discrete value of their argument.
ABS delivers the absolute value of its argument.

CARD, MAX and MIN are defined on powerset values. CARD delivers the number of element
values in its argument.

Fascicle X.86 — Rec. Z200

MAX and MIN deliver respeciively the greatest and smallest element value in their argunment.

SIZE is defined on referable locations and (possibly dynamic) modes. In the first case, it delivers
the number of addressable memory units oceupied by that location; in the second case, the number
of addressable memory units that a referable location of that mode will occupy. The mode is static
if the mode argument is a mode name, otherwise it is a dynamically parameterised version of it, with
parameters as specified in the mode argument. In the first case, the Jocation will not be evaluated
at run time.

UPPER and LOWER are defined on (possibly dynamic):

s array, string and discrete locations, delivering the upper bound and lower bound of the
mode of the location,

o array and siring expressions, delivering the upper bound and lower bound of the mode
of the value’s class, :

» strong discrete expressions, delivering the upper bound and lower bound of the mode of
the value’s class,

s array, string and discrete mode names, delivering the upper bound and lower bound of
the mode.

LENGTH delivers the actual length of its argument.

static properties: The class of & NUM built-in routine call is the INT-derived class. The built-in routine
call is constant if and only if the argument is either constant or literal.

The class of a PRED or SUCC built-in routine call is the resulting class of the argument. The
built-in routine call is constant (literal) if and only if the argument is constant (literal).

The class of an ABS built-in routine call is the resulting class of the argument. The built-in
routine call is constant (literal) if and only if the argument is constant (literal).

The class of a CARD built-in routine call is the INT-derived class. The built-in routine call is
constant if and only if the argument is constant.

The class of a MAX or MIN built-in routine call is the M-value class, where M is the member
mode of the mode of the powerset expression. The built-in routine call is constant if and only if
the argument is constant.

The class of a SIZE built-in rountine call is the INT-derived class. The built-in routine call is
constant if the mode of the argument is static.

The class of an UPPER and LOWER built-in routine call is

¢ the M-value class if upper lower argument is an array Iocation, array expression or array mode
name, where M is the index mode of azray location, array expression or array mode name,
respectively;

o the INT-derived class if upper lower argument is a siring location, string expression or
string mode name;

¢ the M-value class if upper lower argument is a discrete location, discrete expression or
discrete mode name, where M is the mode of discrete Iocation, or discrete expression, ot
discrete mode name, respectively.

An UPPER or LOWER built-in routine call is constant if the upper Iower argument is an (array,
string or discrete) mode name, if the mode of the array or string location is static, if the array or
String expression has a static class, or if upper lIower argument is a discrete expression or a discrete
location.

The class of a LENGTH built-in routine call is the INT-derived class.

static conditions: If the argument of a PRED or SUCC buili-in routine call is constant, it must not deliver,
respectively, the smallest or greatest discrete value defined by the root mode of the class of the
argument. The root mode of the discrete expression argument of PRED and SUCC must not be
an unnumbered set mode.

If the argument of a MAX or MIN built-in routine call is constant, it must not deliver the empty
powerset value.

Fascicle X.6 — Rec. Z200 97

The Iocation argument of SIZE must be referable.
The discrete expression as an argument of UPPER and LOWER must be strong.

The following compatibility requirements hold for a mode argument which is not a single mode
name:

® The class of the expression must be compatible with the index mode of the arrar mode
name.

e The variant structure mode name must be parameterisable and there must be as many
expressions in the expression list as there are classes in its list of classes and the class of each
expression must be compatible with the corresponding class in the list of classes.

dynamic conditions: PRED and SUCC cause the OVERFLOW exception if they are applied to the smallest

examples:

or greatest discrete value defined by the root mode of the class of the argument.

NUM and CARD cause the OVERFLOW exception if the resulting value is outside the set of values
defined by INT.

MAX and MIN cause the EMPTY exception if they are applied to empty powerset values.

ABS causes the OVERFLOW exception if the resulting value is ontside the bounds defined by the
root mode of the class of the argument.

The RANGEFAIL exception occurs if in the mode argument:

o the expression delivers a value which is outside the set of values defined by the index mode
of the array mode name;

» the inieger expression delivers a negative value or a valne which is greater than the string
length of the séring mode name;

® any expression in the expression list for which the corresponding class in the list of classes of
the variant structure mode name is an M-value class (i.e. is strong) delivers a value which
is outside the set of values defined by M.

9.12 MIN (sieve) (1.7)
11.47 PRED (col_1) (1.2)
11.47 SUCC {col_1) (1.3)

6.20.4 Dynamic storage handling built-in routines

syntax:

semantics

98

< allocate built-in routine call> = {1)
GETSTACK (<mode argument> [, <value>]) (1.1)

| ALLOCATE (<mode argument> |, <value>]) {1.2)
<terminate built-in rontine call> = (2)
TERMINATE (<reference primitive value>) (2.1)

: GETSTACK and ALLOCATE create a location of the specified mode and deliver a reference
value for the created location. GETSTACK creates this location on the stack (see section 10.9). A
location whose mode is that of the mode argument is created and a value referring to it is delivered.
The created location is initialised with the value of value, if present; otherwise with the undefined
value (see section 4.1.2).

TERMINATE ends the lifetime of the location referred to by the value delivered by reference primi-
tive value. An implementation might as a consequence release the storage occupied by this location.

Fascicle X.6 — Rec. 7200

static properties: The class of a GETSTACK or ALLOCATE built-in routine call is the M-reference class,

where M is the mode of mode argument. M is either the mode name or a parameterised mode
constructed as:

&< array mode name> (<expression>) or

&< string mode name>> (<integer expression>) or

&< yariant structure mode name> (<expression list>),

respectively.

A GETSTACK or ALLOCATE built-in routine call is intra-regional if it is surrounded by a region,
otherwise it is extra-regional.

static conditions: The class of the value, if present, in the GETSTACK and ALLOCATE built-in routine
call must be compatible with the mode of mode argument; this check is dynamic in case the mode
of mode argument is a dynamic mode.

If the first argument of GETSTACK or ALLOCATE has the read-only property, the second
argument must be present.

The value, if present, in the GETSTACK and ALLOCATE built-in routine call, must be regionally
safe for the created location.

dynamic properties: A reference value is an allocated reference value if and only if it is returned by an
ALLOCATE built-in routine call.

dynamic conditions: GETSTACK causes the SPACEFAIL exception if storage requirements cannot be
satisfied.

ALLOCATE causes the ALLOCATEFAIL exception if storage requirements cannot be satisfied.

For GETSTACK and ALLOCATE the assignment conditions of the value delivered by value with
respect to the mode of mode argument apply.

TERMINATE causes the EMPTY exception if the reference primitive value delivers the value
NULL.

The reference primitive value must deliver an allocated reference value. The lifetime of the refer-
enced location must not have ended.

Fascicle X.6 — Rec. Z200 99

7 INPUT AND OUTPUT

7.1 I/O0 REFERENCE MODEL

A model is used for the description of the input/output facilities in an implementation independent way; it
distinguishes three states for a given association location: a free state, a file handling state and a data transfer
state.

The diagram shows the three states and the possible transitions between the states.

free The association location contains no value.
state No relation to an outside world object.
ASSOCIATE DISSOCIATE
file The association location contains an association.
handling Operations like create and delete a file,
state or change its properties,
CONNECT DISCONNECT
data An access location is connected to the association
transfer location. Transfer data to/from a file:
state read and write operations.

The model assumes that objects, in implementations often referred to as datasets, files or devices, exist in the
outside world, i.e. the external environment of 2 CHILL program. Such an outside world object is called a file
in the model. A file can be a physical device, a communication line or just a file in a file management system;
in general, a file is an object that can produce and/or consume data.

Manipulating a file in CHILL requires an association; an association is created by the associate operation and it
identifies a file. An association has attributes; these attributes describe the properties of a file that is or could
be attached to the association.

In the free state, there is no interaction or relation between the CHILL program and outside world objects. The
associate operation changes the state of the model from the free state into the file handling state. This operation
takes as one argument an association location and an implementation defined denotation for an outside world
object for which an association must be created; additional arguments may be used to indicate the kind of
association for the object and the initial values for the attributes of the association. A particular association
also implies an (implementation dependent) set of operations that may be applied on the file that is attached
to that association.

In the file handling state, it is possible to manipulate a file and its properties via an association, provided that
the association enables the particular operation; for operations that change the properties of a file, an exclusive
assoclation for the file will be necessary in general.

The model assumes associations in general are exclusive, i.e. only one association exists at the same time for
a given outside world object. However, implementations may allow the creation of more associations for the
same object, provided that the object can be shared among different users (programs) and /or among different
associations within the same program. All operations in the file handling state take an association as an
argument.

The dissociate operation is used to end an association for an outside world object; this operation causes transition
from the file handling state back to the free state.

100 Fascicle X.6 — Rec. Z200

Transferring data to or from a file is possible only in the data transfer state; transfer operations require an
access location to be connected to an association for that file. The connect operation connects an access
location o an association and changes the state of the model into the data transfer state. The operation takes
an assoclation location and an access location as arguments; the association location contains an association for
the file to, or from, which data can be transferred via the access location. Additional arguments of the connect
operation denote for which type of transfer operations the access location must be connected, and to which
record the file ;must be positioned. At most one access location can be connected to an association location at
any one time.

The disconnect operation takes an access location as argument and disconnects it from the association it is
connected to; it changes the state of the model back to the file handling state.

In the data transfer state, an access location must be used as an argument of a transfer operation; there are
two transfer operations provided, namely, a read operation to transfer data from a file to the program and a
write operation to transfer data from the program to a file. The transfer operations use the record mode of the
access location to transform CHILL values into records of the file, and vice versa.

A file is viewed in the model as an array of values; each element of this array relates to a record of the file.
The element mode of this array is determined by the connect operation to be the record mode of the access
location being connected. An index value is assigned to each record of the file; this value uniquely identifies
each record of the file. In the descripiion of the connect and transfer operations, thiee special index values will
be used, namely, a base index, a current index and a transfer index. The base index is set by the connect
operation and remains unchanged until a subsequent connect operation; it is used to calculate the transfer
index in transfer operations and the current index in a connect operation. The transfer index denotes the
position in the file where a transfer will take place; the current index denotes the record to which the file
currently is positioned.

7.2 ASSOCIATION VALUES

7.2.1 General

An association value reflects the properties of a file that is or could be attached to it. A particular association
value also implies an {implementation dependent) set of operations on the file that is possibly attached to it.

Association values have no denotation but are contained in locations of association mode; there exists no
expression denoting a value of association mode. Association values can only be manipulated by built-in
routines that take an association location as parameter.

7.2.2 Attributes of asseciation values

An association value has attributes; the attributes deseribe the properties of the association and the file that
may or could be attached to it. '

The following attributes are language defined:
» existing: indicating that a (possibly empty) file is attached to the association;
» readable: indicating that read operations are possible for the file when it is attached to the association;
* writeable: indicating that wiite operations are possible for the file when it is attached to the association;

¢ indexable: indicating that the file, when it is attached to the association, allows for random access to
its records;

e sequencible: indicating that the file, when it is attached to the association, allows for sequential access
to its records; :

* variable: indicating that the size of the records of the file, when it is attached to the association, may
vary within the file.

These attributes have a boolean value; the atiributes are initialized when the association is created and may be
updated as a consequence of particular operations on the association. This list comprises the language defined
attributes only; implementations may add attributes according to their own needs.

Fascicle X.6 — Rec. Z200 101

7.3 ACCESS VALUES

7.3.1 General

Access values are contained in locations of access mode. An access location is necessary to transfer data from
or to a file in the outside world.

Access values have no denotation but are contained in locations of access mode; there exists no expression
denoting a value of access mode. Access values can only be manipulated by built-in routines that take an access
location as parameter.

7.3.2 Attributes of access values

Access values have attributes that describe their dynamic properties, the semantics of transfer operations, and
the conditions under which exceptions can occur.

CHILL defines the following attributes:

* usage: indicating for which transfer operation(s) the access locatlon is connected to an association; the
attribute is set by the connect operation.

* outoffile: indicating whether or not the transfer index calculated by the last read operation was in the
file; the attribute is initialized to FALSE by the connect operation and is set by every read operation.

7.4 BUILT-IN ROUTINES FOR INPUT OUTPUT

7.4.1 General

Language defined built-in routines are defined for operations on association locations and access locations, and
for inspecting and changing the attributes of their values.

The built-in routines will be described in the following sections.

syntax:

<io value bailt-in routine call> ::= (1)
<association attr built-in routine call> (1.1)

| <isassociated built-in routine call> (1.2)

| <access attr built-in routine call> : (1.3)

| <readrecord built-in routine call> (1.4)

| <gettext built-in rouiine call> {1.5)

<o simple built-in routine call> ::= f2)
<dissociate built-in routine call> {2.1)

| <modification built-in routine call> (2.2)

| <connect built-in routine call> (2.3)

| <disconnect built-in routine call> (2.4)

| <writerecord built-in routine call> (2.5)

| <text built-in routine call> . (2.6)

| <settext built-ir routine call> (2.7)

<io location built-in routine cali> ::= {3)
<associate built-in routine call> {3.1)

static conditions: A built-in routine parameter in an io built-in routine that is an association, access or text
location must be referable.

102 Fascicle X.86 — Rec. Z200

7.4.2 Associating an outside world object

syntax:

<associate built-in routine call> = {1)
ASSOCIATE (<assogiation location> [, <associate parameter list>]) (1.1)

<isassociated built-in routine call> ::= (2)
ISASSOCIATED (<association location>) (2.1)

<associate parameter list> 1= (3)

<associate parameter> { , <associate parameter> }* {3.1)

<associate parameter> = (4)
<location> (4.1)

| <value> (4.2)

semantics: ASSOCIATE creates an association to an outside world object. It initializes the association
Iocation with the created association. It initializes the attributes of the created association. The
association location is also returned as a result of the call. The particular association that is created
is determined by the locations and/or values occurring in the associate parameter list; the modes
(classes) and the semantics of these locations (values) are implementation defined.

ISASSOCIATED returns TRUE if association location contains an association and FALSE other-
wise,

static properties: The class of an ISASSOCIATED built-in routine call is the BOOIL-derived class. The
mode of an ASSOCIATE built-in routine call is the mode of the association location.

The regionality of an ASSOCIATION built-in routine call is that of the association location.
static conditions: The mode and the class of each associate parameter is implementation defined.

dynamic conditions: ASSOCIATE causes the ASSCGCIATEFAIL exception if the association location alfeady

contains an association or if the association cannot be created due to implementation defined reasons.

examples:

20.21 ASSOCIATE (file..association,"DSK:RECORDS. DAT”); (1.1}

7.4.3 Dissociating an outside world object

syntax:
<dissociate built-in routine call> ::= (1)
DISSOCIATE { <association location>) (1.1)

semantics: DISSOCIATE terminates an asscciation to an outside world object. An access location that is
still connected to the association contained in an association location is disconnected before the
association is terminated.

dynamic conditions: DISSOCIATE causes the NOTASSOCIATED exception if association Iocation does
not contain an association.

examples:

22.38 DISSOCIATE (association); (1.1)

Fascicle X.6 — Rec. Z200 103

7.4.4 Accessing association attributes

syntax:

<association attr built-in routine call> ::= (1)
EXISTING (<association location>) (1.1)

| READABLE (<association location>) {1.2)

| WRITEABLE (<association location>) (1.8)

| INDEXABLE (<association location>) (1.4)

| SEQUENCIBLE (<association location>) (1.5)

| VARIABLE (<association location>) (1.6)

semantics: EXISTING, READABLE, WRITEABLE, INDEXABLE, SEQUENCIBLE and VARIABLE re-
turn respectively the value of the existing-, readable-, writeable-, indexable-, sequencible-
and variable-attribute of the association contained in association location.

static properties: The class of an association attr built-in routine call is the BOOIL-derived class.

dynamic conditions: The association attr built-in routine call causes the NOTASSOCIATED exception if
association location does not contain an association.

7.4.5 Modifying association attributes

syntax:

<modification built-in routine call> 1= (1)

CREATE (<association location>) (1.1)

| DELETE (<association location>) (1.2)

| MODIFY (<association location> | , <modify parameter list>]) (1.3)

<modify parameter list> 1= (2)

<modify parameter> { , <modify parameter> }* (2.1)

<modify parameter> = ‘ (3)

< value> (3.1)

| <location> ' (3.2)

semantics: CREATE creates an empty file and attaches it to the association denoted by the association loca-
tion. The existing-attribute of the indicated association is set to TRUE if the operation succeeds.

DELETE detaches a file from the association denoted by association location and deletes the file.
The existing-attribute of the indicated association is set to FALSE if the operation succeeds.

MODIFY provides the means of changing properties of an outside world object for which an asso-
clation exists and that is denoted by association location; the locations and/or values that occur in
modify parameter list describe how the properties must be modified. The modes (classes) and the
semantics of these locations (values) are implementation defined.

dynamic conditions: CREATE, DELETE and MODIFY cause the NOTASSOCIATED exception if the
association location does not contain an association.

CREATE causes the CREATEFAIL exception if one of the following conditions occurs:
o the existing-attribuie of the association is TRUE;

» the creation of the file fails (implementation defined).

104 Fascicle X.6 — Rec. Z200

examples:

DELETE causes the DELETEFAIL exception if one of the following conditions occurs:
¢ the existing-attribute of the association is FALSE,
o the deletion of the file fails (implementation defined).

MODIFY causes the MODIFYFAIL exception if the properties, defined by modify parameter list
cannot or may not be modified; the conditions under which this exception can occur are implemen-
tation defined.

21.39 CREATE (outassoc}; (1.1)
21.69 DELETE (curassoc); (1.2)

7.4.6 Connecting an access location

syntax:

<connect built-in routine call> 1= (1)
CONNECT (<transfer location> , <association location> ,

<usage expression> | , <where expression> [, <index expression>)]) (1.1)

<transfer location> = (2)

<access location> (2.1)

| <text location>> (2.2)

<usage expression> 1= (3)

< expression> _ (3.1)

< where expression> 1= (4)

< expression> (4.1)

<index expression> = (5)

<expression> (5.1}

predefined names: To control the connect operation, performed by the built-in routine CONNECT, two

synmode names are predefined in the language, namely, USAGE and WHERE; their defining
modes are SET (READONLY,WRITEONLY , READWRITE) and SET (FIRST,SAME,LAST},
respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location must
be connected to an association, while values of the mode WHERE indicate how the file that is
attached to an association must be positioned by the connect operation.

semantics: CONNECT connects the access location denoted by transfer location to the association that is

contained in association location; there must be a file attached to the denoted association; i.e. the
association’s existing-attribute must be TRUE.

The access location denoted by transfer location is the location itself if it is an access location;
otherwise the access sub-location of the text location.

The value that is delivered by usage expression indicates for which type of transfer operations the
access location must be connected to the file. If the expression delivers READONLY, the connection
is prepared for read operations only; if it delivers WRITEONLY, the connection is set up for write
operations only; if it delivers READWRITE, the connection is prepared for both read and write
operations.

The indexable-attribute of the denoted association must be TRUE if the access location has an
index mode, while the sequencible-attribute must be TRUE if the location has no index mode.

Fascicle X.8 — Rec. Z200 105

CONNECT (re)positions the file that is attached to the denoted association: i.e. it establishes a
(new) base index and current index in the file. The (new) base index depends upon the value
that is delivered by where expression:

o if where expression delivers FIRST or is not specified, the base index is set to 0; i.e. the file
is positioned before the first record; .

e if where expression delivers SAME, the base index is set to the current index in the file;
i.e. the file position is not changed; ’

¢ if where expression delivers LAST, the base index is set to N, where N denotes the number
of records in the file; i.e. the file is positioned after the last record.

After a base index is set, a current index will be established by CONNECT. This current index
depends upon the optional specification of an index expression:

e if no index expression is specified, the current index is set to the (new) base index;
o if an index expression is specified, the current index is set to
base index +NUM (v) — NUM (I)

where denotes the lower bound of the access location’s index mode and v denotes the
value that is delivered by index expression.

If the access location is being connected for sequential write operations (ie. the access location has
no index mode and the usage expression delivers WRITEONLY'), then those records in the file that
have an index greater than the (new) current index will be removed from the file; i.e. the file may
be truncated or emptied by CONNECT.

An access location that has no index mode cannot be connected to an association for read and write
operations at the same time.

Any access location to which the denoted association may be connected will be disconnected implic-
itly before the association is connected to the location that is denoted by transfer location.

CONNECT initializes the outoffile-attribute of the access location to FALSE and sets the usage-
atiribute according to the value that is delivered by usage expression.

static properties: The mode attached to a transfer location is the mode of the access location or the access

mode of the text location, respectively.

static conditions: The mode of transfer location must have an index mode if an index expression is specified:

the class of the value delivered by index expression must be compatible with that index mode.
The transfer location must have the same regionality as the association Jocation.

The class of the value delivered by usage expression must be compatible with the USAGE-derived
class,

The class of the value delivered by where expression must be compatible with the WHERE-derived
class,

dynamic conditions: CONNECT causes the NOTASSOCIATED exception if association location does not

106

contain an association.
CONNECT causes the CONNECTFAIL exception if one of the following conditions occurs:
e the association’s existing-atiribute is FALSE;

¢ the association’s readable-attribute is FALSE and usage expression delivers READONLY
or READWRITE,;

e the association’s writeable-attribute is FALSE and usage expression delivers WRITEONLY
or READWRITE;

e the association’s indexable-attribute is FALSE and access location has an index mode;
* the association’s sequencible-attribute is FALSE and access location has no index mode;

o where expression delivers SAME, while the association contained in association location is
not connected to an access location;

¢ the association’s variable-attribute is FALSE and the access location has a dynarmic record
mode, while usage expression delivers WRITEONLY or READWRITE;

Fascicle X.8 — Rec. Z200

e the association’s variable-attribute is TRUE and the access location has a static record
mode, while usage expression delivers READONLY or READWRITE;

o the access location has no index mode, while usage expression delivers READWRITE;

e the association contained in association location cannot be connected to the access location,
due to implementation defined conditions.

CONNECT causes the RANGEFAIL exception if the index mode of access location is a range mode
and the index expression delivers a value which lies outside the bounds of that range mode.

The EMPTY exception occurs if the access reference of the text location delivers the value NULL.

examples:
20.22 CONNECT (record-file, file_association, READWRITE); (1.1)
20.22 READWRITE (3.1)

7.4.7 Disconnecting an access location

syntax:
< disconnect built-in routine call> ::= ' (1)
DISCONNECT (<transfer Jocation>) (1.1)

semantics: DISCONNECT disconnects the access location denoted by transfer location from the association
it is connected to.

dynamic conditions: DISCONNECT causes the NOTCONNECTED exception if the access location denoted
by transfer location is not connected to an association.

7.4.8 Accessing attributes of access locations

syntax:
<access attr buflt-in routine call> 1= : (1)
GETASSOCIATION (<transfer location>) (1.1)
| GETUSAGE (<transfer location>) (1.2)
| OUTOFFILE (<transfer location>) (1.3)

semantics: GETASSOCIATION returns a reference value to the association location that the access location
denoted by transfer location is connected to; it returns NULL if the access location is not connected
to an assoclation.

GETUSAGE returns the value of the usage-attribute; i.e. READONLY (WRITEONLY) if the
access location is connected only for read (write) operations, or READWRITE if the access Jocation
is connected for both read and write operations.

QUTOFFILE returns the value of the outoffile-attribute of access location; i.e. TRUE if the last
read operation calculated a transfer index that was not in the file, FALSE otherwise.

static properties: The class of a GETASSOCIATION built-in routine call is the ASSOCIATION -reference
class. The regionality of an GETASSOCIATION built-in routine call is that of the transfer Iocation.

The class of an QUTOFFILE built-in routine call is the BOOL-derived class.

The class of a GETUSAGE built-in routine call is the USAGE-derived class.

Fascicle X.6 — Rec. Z200 107

dynamic conditions: GETUSAGE and OUTOFFILE cause the NOTCONNECTED exception if the access

examples:

location is not connected to an association.

21.47 OUTOFFILE (infiles (FALSE)) ' (1.3)

7.4.9 ° Data transfer operations

syntax:

<readrecord built-in routine call> ::= {1}
READRECORD (<access location> |, <index expression>]
[, <store location>]) (1.1)
<writerecord built-in routine call> ;1= (2)
WRITERECORD (<access location> [, <index expression> |,
< write expression>) {2.1)
<store location> = (3)
<static mode location™> (3.1)
<WTite expression> 1= (4)
< expression> (4.1}

N.B. If the access location has an index mode, the syntactic ambiguity is resolved by interpreting
the second argument as an index expression rather than a store location.

sexnantics: For the transfer of data to or from a file, the built-in routines WRITERECORD and READ-

108

RECORD are defined. The access location must have a record mode, and it must be connected
to an association in order to transfer data to or from the file that is attached to that association.
The transfer direction must not be in contradiction with the valne of the access location’s usage-
attribute.

Before a transfer takes place, the transfer index, i.e. the position in the file of the record to be
transferred, is calculated. If the access Jocation has no index mode, the transfexr index is the
current index incremented by 1; if the access location has an index mode, the transfer index is
calculated as follows:

transfer index := base index + NUM (v) - NUM (1) +1

where ! is the lower bound of the mode of the access Jocation’s index mode and v denotes the
value that is delivered by index expression. If the transfer of the record with the calculated transfer
index has been performed successfully, the current index becomes the transfer index.

The read operation:
READRECORD transfers data from a file in the outside world to the CHILL program.

If the calculated transfer index is not in the file, the outoffile-attribute is set to TRUE; otherwise
the file is positioned, the record is read, and the outoffile-attribute is set to FALSE.

The record that is read must not deliver an undefined value; the effect of the read operation is
implementation defined if the record being read from the file is not a legal value according to the
record mode of the access Iocation.

If a store Iocation is specified, then the value of the record that was read is assigned to this location.
If no store location is specified, the value will be assigned to an implicitly created location; the
lifetime of this location ends when the access location is disconnected or reconnected. Whether the
referenced location is created only once by the connect operation, or every time a read operation is
performed, is not defined.

READRECORD returns in both cases a reference value that refers to the {possibly dynamic mode)
location to which the value was assigned.

If the outoffile-attribute is set to TRUFE as a result of the built-in routine call, then the NULL
value is returned as a result of the call.

Fascicle X.6 — Rec. Z200

The write operation:

WRITERECORD transfers data from the CHILL program to a file in the outside world. The file is
positioned to the record with the calculated index and the record is written.

After the record has been written successfully, the number of records is set to the transfer index,
if the latter is greater than the actual number of records.

The record written by WRITERECORD is the value delivered by write expression.

static properties; The class of the value that was read by READRECORD is the M-value class, where
M is the record mode of the access location, if it has a static record mode, or a dynamically
parameterised version of it, if the location has a dynamic record mode; the parameters of such a
dynamically parameterised record mode are:

» the dynamic string length of the string value that was read in case of a string mode;
e the dynamic upper bound of the array value that was read in case of an array mode;

o the list of (tag) values associated with the mode of the structure value that was read in case
of a variant structure.

The class of the READRECORD built-in routine call is the M-reference class if store location is not
specified, otherwise it is the S-reference class, where § is the mode of the store location.

The regionality of a READRECORD built-in routine call is that of the store location if it is
specified, otherwise it is that of the access location.

static conditions: The access location must have a record mode.

An index expression may not be specified if access location has no index mode and must be specified
if access Jocation has an index mode; the class of the value delivered by index expression must be
compatible with that index mode.

The store location must be referable.
The mode of store location must not have the read-only property,

If store location is specified, then the mode of store location must be equivalent with the record
mode of the access Jocation, if it has a static record mode or a varying string record mode, other-
wise a dynamically parameterised version of it; the parameters of such a dynamically parameterised
mode are those of the value that has been read.

The class of the value delivered by write expression must be compatible with the record mode of
the access location, if it has a static record mode or a varying string record mode; otherwise
there should exist a dynamically parameterised version of recoxrd mode that is compatible with
the class of write expression. The assignment conditions of the value of write expression with respect
to the above mentioned mode apply.

dynamic conditions: The RANGEFAIL or TAGFAIL exceptions occur if the dynamic part of the above
mentioned compatibility check fails.

The READRECORD and WRITERECORD built-in routine call cause the NOTCONNECTED
exception if the access location is not connected to an association.

The READRECORD or WRITERECORD built-in routine call cause the RANGEFAIL exception
if the index mode of access location is a range mode and the index expression delivers a value that
lies outside the bounds of that range mode.

The READRECORD built-in routine call causes the READFAIL exception if one of the following

conditions occurs:
e the value of the usage-attribute is WRITEONLY;

e the value of the outoffile-attribute is TRUE and the access location is connected for sequen-
tial read operations;

s the reading of the record with the calculated index fails, due to outside world conditions.

Fascicle X.6 — Rec. Z200 109

The WRITERECORD built-in routine call causes the WRITEFAIL exception if one of the following
conditions occurs:

o the value of the usage-attribute is READONLY
o the writing of the record with the calculated index fails, due to outside world conditions.

If the RANGEFAIL exception or the NOTCONNECTED exception occur then it occurs before the
value of any attribute is changed and before the file is positioned. -

examples:

20.24 READRECORD (record._ file, curindex, record.. buffer); (1.1)
22.25 READRECORD (fileaccess); (1.1)
20.32 WRITERECORD (record_ file, curindex, record. buffer); (2.1)
21.61 WRITERECORD (outfile, buffers(flag)); (2.1)
20.24 record_ buffer (3.1)
21.61 buffers(flag) (4.1)

7.5 TEXT INPUT OUTPUT

7.5.1 General

Text output operations allow the representation of CHILL values in a human-readable form; text input opera-
tions perform the opposite transformation.

Text transfer operations are defined on top of the basic CHILL input/output model and operate on files that
may be accessed either sequentially or randomly and whose records may have a fixed or variable length.

The model assumes that every record has a (possibly empty) positioning information attached, in implementa-
tions often referred to as carriage control or control characters.

Manipulating a text file in CHILL requires an association; transferring data to or from a text file requires a
text location to be connected to an association for that file.

Text transfer operations can be applied to CHILL values that may become records of some text file, as well as
to CHILL locations that are not necessarily related to any i/o activity of the program.

The possibility to recover from a piece of text the same CHILL values that originated it cannot be gnaranteed
in general, but rather it depends on the specific representation that has been used.

Text values are contained in locations of text mode. A text location is necessary to tranmsfer data in human-
readable form.

Text values have no denotation but are contained in locations of text mode; there exists no expression denoting
a value of text mode. Text values can only be manipulated by built-in routines that take a text location as
parameter.

7.5.2 Attributes of text values
Text values have attributes that describe their dynamic properties. The following attributes are defined:

s actual index: indicating the next character position of the text record to be read or written. It has
a mode which is INT (0:L), where L is the text length of the value’s mode. It is initialised to 0 when
a text location is created.

¢ text record reference: indicating a reference value to the text record sub-location of the text locatlon
It has a mode which is REF M, where M is the text record mode of the value’s mode.

* access reference: indicating a reference value to the access sub-location of the text location. It has a
mode which is REF M, where M is the access mode of the value’s mode.

110 Fascicle X.8 — Rec. Z200

7.5.3 Text transfer operations

syntax:

<text built-in routine call> ::= (1)

READTEXT (<text io argument list>) (1.1)

| WRITETEXT { <text io argument list>) (1.2)

<text io argument list> = (2)
<text argument> | , <index expression> |,

<format argument> [, <io list>] (2.1)

<text argument> ;1= (3)

<text location> (3.1)

| <characier string location> (3.2)

| <character string expression> (3.3)

<format argument> = (4)

< character string expression> (4.1)

<io list> = {5)

<io list element> { , <io list element> }* (5.1)

<io list element> = (6)

<value argument> (6.1)

{ <location argument> (6.2)

<location argument> ;= (7)

<discrete location> (7.1)

| <string location> (7.2)

<value argument> ;1= (8)

< discrete expression> (8.1)

| <string expression> (8.2)

N.B. If the io list element is a location, the syntactic ambiguity is resolved by interpreting the io list
element as a location argument rather than a value argument.

semantics: READTEXT applies the conversion, editing and i/o control functions contained in the format

argument to the text record denoted by the text argument; this (possibly) produces a list of
values that are assigned to the elements of the io list in the sequence in which they are specified.
WRITETEXT performs the opposite operation. No implicit i/o operations are performed.

If the text argument is a character string location or a character string expression, then the conver-
sion and editing functions are applied without any relation with the external world. In this case the
actual index denotes a location that is implicitly created at the beginning of the built-in routine
call and initialised to 0. The text record is the character string denoted by character string location
or character string expression and the text length iis string length.

The elements of the io list may be either:

* value arguments and Iocation arguments, or

s variable clause widths as described below.
Relationships between a format argument and an io list

The value delivered by a format argument must have the form of a format control string (see 7.5.4.)

Fascicle X.6 — Rec, Z200 111

During the execution of a text i/o built-in routine call the format control string (see 7.5.4) denoted
by the format argument and the io list are scanned from left to right. Each occurrence of a format
text and format specification is interpreted and the appropriate action is taken as follows:

a.

format text:

In READTEXT the text record should contain at the actual index position a string slice
which is equal to the string delivered by format text. In WRITETEX T, the string delivered
by format text is transferred to the text record. The semantics are the same as if a format
specification which is %C and an io list element that delivers the same string value as that
delivered by format text were encountered.

format specification:

If the format specification contains a repetition factor, then it is equivalent to a sequence of
as many format element occurrences as the number denoted by repetition factor.

If the format specification is a format clause, then it contains a control code. If the control
code is a conversion clause, then an ic list element is taken from the io list and the conversion
function selected by the conversion code, conversion qualifiers and clause width is applied to
it (see section 7.5.5). If the control code is an editing clause or an io clause, then the editing
or 1o function selected by the editing code or io code and clause width is applied to the iext
argument without reference to the io list (see sections 7.5.6 and 7.5.7).

If the clause width is variable, then a value is taken from the list, which denotes the width
parameter of the conversion or editing control function.

If the format specification is a parenthesised clause, then the format control string that is
contained in it is scanned.

The interpretation of the format control string terminates when the end of the siring delivered by
format control stzing has been reached,

The io list elements of the io list are scanned in the order that they are specified.

static conditions: If the fext argument 1is a string location, its mode must be a varying string mode.

An index expression may not be specified if the text argument is not a text location or if it is and
its access mode has no index mode and must be specified if the access mode has an index mode;
the class of the value delivered by index expression must be compatible with that index mode.

A text argument in a WRITETEXT built-in routine call must be a location.

A string location in a text argument must be referable.

dynamic conditions: The TEXTFAIL exception occurs if:

112

the string value delivered by the format argument cannot be derived as a terminal production
of the format control string, or

an attempt to assign to the actual index a value which is less than 0 or greater than text
length is made, or

during the interpretation, the end of the format control string has been reached and the io
Iist is not completely scanned, or no more elements can be taken from the io list and the
format control string contains more conversion codes or variable clause widths, or

an Io clause is encountered and the fext argument is not a text Iocation, or

a format text is encountered in READTEXT and the text record does not contain at the
actual index position a string which is equal to the string delivered by format text.

Fascicle X.6 — Rec. Z200.

examples:

Any exception defined for the READRECORD and WRITERECORD built-in routine ¢all can occur
if an i/o control function is executed and any one of the dynamic conditions defined is violated.

26.18 WRITETEXT (ouiput,”%B%/”,10) (1.2)

7.5.4 Format control string

syntax:

<format control string> 1= (1)
[<format text> | { <format specification> [<format text> | }* (1.1)
<format text> = - (2)
{ <non-percent character> | <percent> } (2.1)
<percent> ::= (3)
% % - (3.1)
<format specification> 1= (4)
% [<repetition factor>] <format element> (4.1)
<repetition factor> = (5)
{ <digit> }* (5.1)
<format element> ::= (6)
<format clause> : (6.1)
| <parenthesised clause> (6.2)
<format clause> ::= (7)
<control code> [% .] (7.1)
<control code> = {(8)
< conversion clause> (8.1)
| <editing clause> (8.2)
| <io clause> (8.3)
<parenthesised clause> = (8.
(<format control string> %) (9.1)

N.B. A format specification is terminated by the first character that cannot be part of the format
element. Spaces and format effectors may not be used within format elements. A period (.) may
be used to terminate a format clause. It belongs to the format clavse and it has only a delimiting
effect. To represent the character percent (%) withir a format text, it has to be written twice (%%).

semantics: A format control string specifies the external form of the values being transferred and the layout

of data within the records. A format control string is composed of format text occurrences, which
denote fixed parts of the records and of format specification occurrences, which denote the external
representations of CHILL values, allowing the editing of the text record or controlling the actual
i/o operations.

A format specification that contains a repetition factor and a format clause is equivalent to as many
identical format specification occurrences for the format clause as the repetition factor. A repetition
factor can be 0, in which case the format specification is not considered. E.g. "%3D4” is equivalent
to "% D4%D4%D4”.

The decimal notation is assumed for the digits in a repetition factor.

A format control string in a parenthesised clause is repeatedly scanned according to the repetition
factor. If none is specified, 1 is assumed by default.

Fascicle X.8 — Rec. Z200 113

examples:

26.20 size = %C%/ * (1.1)

7.5.5 Conversion

syntax:

<conversion clause> = (1)
< conversion code> { <conversion qualifier> }*
[<clause width> | (1.1)
< conversion code> = (2)
BiOo|H |C (2.1)
<conversion qualifier> = (3)
L | E | P <character> (3.1)
<clause width> = {4)
{ <digit>}t |V (4.1)

derived syntax: A conversion clause in which a clause width is not present is derived syntax for a conversion

semantics

clause in which a clause width that is 0 is specified.

: A conversion in a READTEXT built-in routine call transforms a string which is an external

representation into a CHILL value. A conversion in a WRITETEXT built-in routine call performs
the opposite transformation. The conversion code together with the conversion qualifier specifiy
the type of the conversion and the details of the requested operation such as justification, overflow
handling and padding. ‘

The external representation is a string whose length usually depends on the value being converted.

- That string may contain the minimum number of characters that are necessary to represent the

114

CHILL value {free format) or may have a given length (fixed format).

In the fixed format a slice of width size starting from the actual index position is read from
or written into the text record according to the justification and padding selected by conversion
qualifiers, as follows:

¢ in READTEXT: all padding characters (to the left or to the right according to the justifi-
cation), if any, are removed. However, when characters or fixed character strings are being
read, the maximum number N of padding characters that are removed is width —L | where
L is 1 or string length, respectively. No characters are removed if N < 0. The remaining
characters are taken as the external representation;

o in WRITETEXT: if the length of the external representation is less than or equal to width,
then the characters are justified to the left or to the right in the slice (according to the
Jjustification). The unused string elements, if any, are filled with the padding character.
Otherwise the string is truncated (on the left if the justification to the right is selected,
otherwise on the right), or width “overflow” indicator characters (#) are transferred, if the
qualifier E is present. The truncation is applied to the external representation, including the
minus sign, if any.

In the free format the following holds:

e in READTEXT: padding characters, if any, are skipped except when a character or a char-
acter string is being read and the conversion qualifier P is not specified. Then, the external
representation is taken as the longest slice of characters that starts at the actual index and
is made of all the subsequent characters that may lexically belong to it as defined below.

» in WRITETEXT" the string delivered by the conversion is inserted starting from the actual
index position.

In WRITETEXT the string which is the external representation is transferred to the text record
without regard to its actual length. After the transfer, the actual index is antomatically advanced
to the next available character position and the actual length is set to the maximum value between
the actnal index and the (old) actual length.

Fascicle X.6 — Rec. Z200

A clause width is constant if it is made of digits. The decimal notation is assumed. Otherwise it
is variable.

If the width is zero, then the free format is chosen, otherwise the width is the length of the fixed
format.

If the width is too small to contain the string, the appropriate action is taken depending on the
conversion qualifier.

In a READTEXT the external representation that is applied is the one defined below for the mode
of the location argument.

In a WRITETEXT the external representation that is applied is the one defined below for the mode
M of the M-value or M-derived class of the value delivered by the value argument.

Conversion codes
Conversion codes are represented as single letters. The following conversion codes are defined:
B: binary representation;
O: octal representation;
H: hexadecimal representation;
C:

conversion: indicates the default external representation of CHILL values, which depends on
the mode of the value being converted (see below).

The external representation depends on the conversion code and the mode of the value being con-
verted.

Conversion qualifiers
Conversion qualifiers are represented as single letters. The following conversion qualiﬁérs are defined:

L: left justification. Right justification is assumed if it is not present. In the free format the
qualifier has no effect.

E: overflow evidence. In WRITETEXT the overflow indication is selected; if the qualifier is not
present, then truncation is performed. In READTEXT or in the free format this qualifier
has no effect.

P: padding. The character that follows the qualifier specifies the padding character. If P is not
present, then the padding character is assumed to be space by default. In READTEXT if
the free format is selected, then spaces and HT (Horizontal Tabulation} are considered as
the same character for skipping purposes, either when specified after the qualifier or when
applied by default.

External representation
The external representation of CHILL values is defined as follows:

a. integers

Integer values are lexically represented as one or more digits in a decimal default base without
leading zeroes and with a leading sign if negative. A leading plus sign and leading zerces are
discarded in READTEXT. The following conversion codes are available: B, O, C and H.
The conversion code C selects the decimal representation. The digits that may belong to the
representation are only those that are selected by the conversion code.

b. boogleans

Boolean values are lexically represented as simple name string, that are TRUE and FALSE
(in upper-case (e.g. TRUE) or lower case (e.g. true) depending on the representation chosen
by the implementation for the special simple name strings}. The following conversion code
is available: C.

c. characters

Character values are lexically represented as strings of length 1. The following conversion
code is available: C.

Fascicle X.8 — Rec. Z200 115

d. sets

Set mode values are lexically represented as simple name strings, that are the set literals.
The following conversion code is available: C,

€. ranges

Range values hiave the same representation as the values of their root mode. However, only
the representations of the values defined by the range mode belong to the set of external
representations associated to the range mode.

f. character strings

Character string values are lexically represented as strings of characters of length L. In
WRITETEXT L is the actual length. In READTEXT L is the string length if the
string is a fixed string, otherwise it is a varying string and [is the string length, unless
there are less characters available in the (slice of) text record at the actual index posi-
tiom, in which case L is the number of available characters. The following conversion code is
available: C.

g. bit strings

Bit string values are lexically représented as strings of binary digits. The same rules as for
character strings apply to determine the number of digits. The following conversion code is
available: C,

dynamic properties: A clause width has a width, which is the value delivered by digits or by a value from
the io list if the clause width is variable.

dynamic conditions: The TEXTFAIL exception occurs if:

o in READTEXT, the text record does not contain a string slice starting at the actual index
that (after the removal or skipping of padding characters, see above) can be interpreted as
an external representation of one of the values of the mode of the current location argument
(including an attempt to read a non-empty external representation from a text record when
actual index = actual length), or

o in WRITETEXT, a string slice that is the external representation of the current value argu-
ment can not be transferred to the text record starting at the actual index, or

o in READTEXT a conversion code is encountered and the current element in the io Iist is not
a location, or the mode of the location has the read-only property, or

¢ a variable clause width is encountered and the corresponding io list element in the io list
does not have an integer class or it is less than 0.

examples:
26.21 CL6 (1.1)

7.5.6 Editing

syntax:
<editing clause> 1= (1)
<editing code> [<clause width> | (1.1)
<editing code> = (2)
X|l<|>|T (2.1)

derived syntax: An editing clause in which a clause width is not present is derived syntax for an editing clause
in which a clause width that is I is specified if the editing code is not T, otherwise 0, respectively.

116 Fascicle X.6 — Rec. Z200

semantics

¢ The following editing functions are defined:

X: space: width space characters are inserted or skipped.

>: skip right: the actual index is moved rightward for width positions.
<: skip left: the actual index is moved leftward for width positions.

T: tabulation: the actual index is moved to the position width.

In WRITETEXT, if the actual index is moved to a position which is greater than the actual
length, then a string of N space characters, where N is the difference between the actual index
and the (old) actual length is appended to the text record. The actual length is set to the
maximum value between the actunal index and the (old) actual length.

dynamic conditions: The TEXTFAIL exception oceurs if:

examples:

» the actual index is moved to a position which is less than 0 or greater than text length,
or

* in READTEXT the actual index is moved to a position which is greater than the actual
length, or

» in READTEXT the editing code X is specified and a string of width space or HT (Horizontal
Tabulation) characters is not present in the text record at the actual index position.

26.22 X ' _ (1.1)

7.5.7 I/0 control

syntax:

semantics

<io clanse> = (1)
<io code> (1.1)
<io code> = '. (2)
VAR I O (2.1)

: The i/o control functions (except %=) perform an i/o operation. They allow precise control over
the transfer of the text record. In READTEXT, all the functions have the same effect, to read the
next record from the file,. In WRITETEXT, the text record and the appropriate representation
of the carriage control information are transferred. The initial position of the carriage at the time
the text location is connected is such that the first character of the fizst text record is printed at
the beginning of the first unoccupied line (regardless of any positioning information attached to the
text record).

The carriage placement is described by means of the following abstract cperations on the current
¢column, line and page (2, ¥, 2) considering columns as being numbered from zero starting at the left
margin, and lines from zero starting at the top margin.

nl(w): the carriage is moved w lines downward, at the beginning of the line (new position:
(0, (y +w) mod p, 2 + (y + w)/p, where pis the number of lines per page));

np(w): the carriage is moved w pages downward at the beginning of the line (new position:
(0,0, z + w)).

Fascicle X.6 — Rec. Z200 117

The following contral functions are provided:

examples:;

YE
+

next record: the record is printed on the next line (nl{i), print record, ni(0));

next page: the record is printed on the top of the next page (np(1), print record, ni(0});

: current line: the record is printed on the current line (print record, nl(0));

: prompt: the record is printed on the next line. The carriage is left at the end of the line

(nl(1), print record);

! emit: no carriage control is performed (print record);

end page: defines the positioning of the next record, if any, to be at the top of the next page
(this overrides the positioning performed before the printing of the record). It does not cause
any i/o operation.

The I/0 transfer is performed as follows:

26.21

in READTEXT, the semantics are as if a READRECORD (A,LR), where A is the access
sub-location of the text location, I is the index expression (if any) and R denotes the text
record, were executed. After the I/O transfer actual index is set to 0 and actual length
to the string length of the string value that was read;

in WRITETEXT, the semantics are as ifa WRITERECORD (A,LR), where A is the access
sub-location of the text location, I is the index expression (if any) and R denotes the text
record, were executed. The associated positioning information is also transferred. If the
record mode of the access is not dynamic, then the text record is filled at the end with
space characters and its actual length is set to text length before the transfer takes place,
After the I/O transfer actual index and actual length are set to 0.

/ (1.1)

7.5.8 Accessing the attributes of a text location

syntax:

<gettext built-in routine call> = (1)
GETTEXTRECORD (<text location>) (1.1)

{ GETTEXTINDEX (<text location>) (1.2)

| GETTEXTACCESS { <text location>) (1.3)

| BOLN (<text location>) {1.4)
<settext built-in routine call> 1= (2)
SETTEXTRECORD (<text location> , <character string location>) (2.1)

| SETTEXTINDEX (<text location> , <integer expression>) (2.2)

| SEYTEXTACCESS (<text location> , <access location>) (2.3)

semantics: GETTEXTRECORD returns the text record reference of text Iocation.

118

GETTEXTINDEX returns the actual index of text location.

GETTEXTACCESS returns the access reference of iext location.

EOLN delivers TRUE if no more characters are available in the text record (i.e. if the actual
index equals the actual length).

SETTEXTRECORD stores a reference to the location delivered by character string location into
the text record reference of the text location.

Fascicle X.6 — Rec. Z200

SETTEXTINDEX has the same semantics as an editing clause in WRITETEXT in which editing
code is T and clause width delivers the same value as integer expression, applied to the text record
denoted by text location,

SETTEXTACCESS stores a reference to the location delivered by access location intc the access
reference of the text location.

static properties: The class of the GETTEXTRECORD built-in routine call is the M-reference class, where
M 1s the text record mode of the text Iocation.

The class of the GETTEXTINDEX built-in routine call is the INT-derived class.

The class of the GETTEXTACCESS built-in routine call is the M-reference class, where M is the
access mode of the text location.

The class of the EOLN built-in routine call is the BOOL-derived class.

A GETTEXTRECORD or GETTEXTACCESS built-in routine call has the same regionality as
the text Iocation.

static conditions: The mode of the character string location argument of SETTEXTRECORD must be
read-compatible with the text record mode of the text Iocation.

The mode of the access location argument of SETTEXTACCESS must be read-compatible with
the access mode of the text location.

The location argument in SETTEXTRECORD and SETTEXTACCESS must have the same re-
gionality as the text location.

dynamic conditions: The TEXTFAIL exception occurs if the integer expression argument of SETTEXTIN-
DEX delivers a value that is less than 0 or greater than the text length of the text Jocation.

examples:
26.23 GETTEXTINDEX (output) (1.2)

Fascicle X.6 — Rec. Z200 119

8 EXCEPTION HANDLING

8.1 GENERAL

An exception is either a language defined exception, in which case it has a language defined exception name, a
user defined exception, or an implementation defined exception. A language defined exception will be cansed by
the dynamic violation of a dynamic condition. Any exception can be caused by the exécution of a cause action.

When an exception is caused, it may be handled, 1.e. an action statement list of an appropriate handler will be
executed.

Exception handling is defined such that at any statement it is statically known which excepiions might occur
(i.e. it is statically known which exceptions cannot occur) and for which exceptions an appropriate handler can
be found or which exceptions may be passed to the calling point of a procedure. If an exception occurs and no
handler for it can be found, the program is in error.

When an exception occurs at an action statement or a declaration statement, the execution of the statement is
performed up to an unspecified extent, unless stated otherwise in the appropriate section.

8.2 HANDLERS

syntax:
<handler> = (1)
ON { <on-alternative> }* [ELSE <action statement list> | END {1.1)
<on-alternative> = (2)
(<exception list>) : <action statement list> {2.1)

semantics: A handler is entered ifit is appropriate for an exception B according to section 8.3. IfE is mentioned
in an exception list in an on-alternative in the handler, the corresponding action statement list is
entered; otherwise ELSE is specified and the corresponding action statement list is entered.

When the end of the chosen action statement list is reached, the handler and the comstruct to which
the handler is appended are terminated.

static conditions: All the exception names in all the exception list occurrences must be different.

dynamic conditions: The SPACEFAIL exception occurs if an action statement list is entered and storage
requirements cannot be satisfied.

examples:
10.47 ON
(ALLOCATEFAIL): CAUSE overflow;
END (1.1)

8.3 HANDLER IDENTIFICATION

When an exception E occurs at an action or module A, or a data statement or region D, the exception may be
handled by an appropriate handler; 1.e. an action statement list in the handler will be executed or the exception
may be passed to the calling point of a procedure; or, if neither is possible, the program is in error.

For any action or module A, or data statement or region D, it can be statically detexmined whether for a given
cxception E at A or D an appropriate handler can be found or whether the exception may be passed to the
calling point.

120 Fascicle X.6 — Rec. Z200

An appropriate handler for A or D with respect to an exception with exception name E is determined as
follows:

1.

if 2 handler which mentions E in an exception list or which specifies ELSE is appended to or included
in A o1 D, and E occurs in the reach directly enclosing the handler, then that handler is the appropriate
one with respect to E;

otherwise, if A or D is directly enclosed by a bracketed action, a module or a region, the apﬁropriate

handler (if present) is the appropriate handler for the bracketed action, module or region with respect
to E;

otherwise, if A or D is placed in the reach of a procedure definition then:

e if a handler which mentions E in an exception list or specifies ELSE is appended to the procedure
definition, then that handler is the appropriate handler,

s otherwise, if B is mentioned in the exception list of the procedure definition, then E is caused at
the calling point,

e otherwise there is no handler;
otherwise, if A or D is placed in the reach of a process definition, then:

e if a handler which mentions E in an exception list or specifies ELSE is appended to the process
definition, then that handler is the appropriate handler,

» otherwise there is no handler; however, in this situation an implementation defined handler may
be appropriate (see section 13.4);

otherwise, if A is an action of an action statement list in & handler, then the appropriate handler is the
appropriate handler for the action A’ or data statement or region D’ with respect to E which the handler
is appended to or included in but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, local
storage will be released when exiting from the block.

Fascicle X.6 — Rec. Z200 121

9 TIME SUPERVISION

9.1 GENERAL

It is assumed that a concept of time exists externally to a CHILL program (system). CHILL does not specify the
precise properties of time, but provides mechanisms to enable a program to interact with the external world’s
view of time,

9.2 TIMEOUTABLE PROCESSES

The concept of a tirneoutable process exists in order to identify the precise points during program execution
where a time interrupt may occur, that is, when a time supervision may interfere with the normal execution of
a process.

A process becomes timeoutable when it reaches 2 well-defined point in the execution of certain actions, CHILL
defines & process to become timeoutable during the execution of specific actions; an implementation may define
a process to become timeoutable during the execution of further actions.

8.3 TIMING ACTIONS

syntax:
<timing action> 1= (1)
<relative timing action> (1.1)
| <absolute timing action> (1.2)
| <cyclic timing action> (1.3)

semantics: A {iming action specifies time supervisions of the executing process. A fime supervision may be
initiated, it may expire and it may cease to exist. Because of the cyclic timing action and because
of the nesting of timing actions, several time supervisions may be associated with the same process.

A time interrupt occurs when a process is timeoutable and at least one of its associated time
supervisions has expired. The occurrence of a time interrupt implies that the first expired time
supervision ceases to exist; furthermore, it leads to the transfer of control associated with that time
supervision in the supervised process. If the supervised process was delayed, it becomes re-activated.

Time supervisions also cease to exist when control leaves the timing action that initiated them.

9.3.1 Relative timing action

syntax:
<relative timing action> = (1)
AFTER. <duration primitive value> [DELAY] IN
<action statement list> <timing handler> END (1.1)
< timing handler> ;1= {2)
TIMEOQUT <action statement list> (2.1)

semantics: The duration primitive value is evaluated, a time supervision is initiated, and then the action
statement list is entered.

I DELAY is not specified, the time supervision is initiated before the action statement list is
entered, otherwise it is initiated when the executing process becomes timeoutable at the point of
execution specified by the action statement in the action statement list.

If DELAY is specified, the time supervision ceases to exist if it has been initiated and the executing
process ceases to be timeoutable.

122 Fascicle X.6 — Rec. Z200

The time supervision expires if it has not ceased to exist when the specified period of time has
elapsed since initiation.

The transfer of control associated with the time supervision is to the action statement list of the
timing handler.

static conditions: If DELAY is specified the action statement list must consist of precisely one action
statement that may itself cause the executing process to become timeoutable.

dynamic conditions: The TIMERFAIL exception occurs if the initiation of the time supervision fails for an
implementation defined reason.

9.3.2 Absolute timing action

syntax:
<absolute timing action> ::= (1)
AT <absolute time primitive value> IN
<action statement list> <timing handler> END (1.1)

semantics: The absolute time primitive value is evaluated, a time supervision is initiated, and then the action
statement list is entered. -

The time supervision expires if it has not ceased to exist at (or after) the specified point in time.

The transfer of control associated with the time supervision is to the action statement list of the
timing handler.

dynamic condition: The TIMERFAIL exception occurs if the initiation of the time supervision fails for an
implementation defined reason.

9.3.3 Cyclic timing action

syntax:
<cyclic timing action> ;1= ' (1)
CYCLE <duration primitive value> IN
<action statement list> END (1.1)

semantics: The cyclic timing action is intended to ensure that the executing process enters the action statement
list at precise intervals without cumulated drifts (this implies that the execution time for the action
statement list on average should be less than the specified duration value). The duration primitive
value is evaluated, a relative time supervision is initiated, and then the action statement list is
entered.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed
since initiation. Indivisibly with the expiration a new time supervision with the same duration value
is initiated.

The transfer of control associated with the time supervision is to the beginning of the action state-
ment Jist.

Note that the cyclic timing action can only terminate by a transfer of control out of it.

dynamic properties: The executing process becomes timeoutable if and when control reaches the end of
the action statement list.

Fascicle X.6 — Rec. Z200 123

dynamic conditions: The TIMERFAIL exception occurs if any initiation of 2 time supervision fails for an
implementation defined reason.

9.4 BUILT-IN ROUTINES FOR TIME

syntax:
<time value built-in routine call> ::= (1)
<duration built-in routine call> (1.1)
| <absolute time built-in routine call> (1.2)

semantics: Implementations are likely to have quite different requirements and capabilities in terms of precision
and range of time values. The built-in routines defined below are intended to accomodate thése
differences in a portable manner.

9.4.1 Duration built-in routines

syntax:
<duration built-in routine call> ::= (1)
MILLISECS (<integer expression>) (1.1)
| SECS (<integer expression>) (1.2)
| MINUTES (<integer expression>) (1.3)
| HOURS (<integer expression>) (1.4)
| DAYS (<integer expression>) _ (1.5)

semantics: A duration built-in routine call delivers a duration value with implementation defined and possibly
varying precision (i.e. MILLISECS (1000) and SECS (1) may deliver different duration values); this
value is the closest approximation in the chosen precision to the indicated period of time.

static properties: The class of a duration built-in routine call is the DURATION-derived class.

dynamic conditions: The RANGEFAIL exception occurs if the implementation cannot deliver a duration
value denoting the indicated period of time.

9.4.2 Absolute time built-in routine

syntax:
<absolute time buili-in routine call> ::= (1)
ABSTIME ([[[[[[<year expression> , | <month expression> , |
<day expression> , | <hour expression> ,]

<minute expression> , | <second expression>) (1.1)
< year expression>> ::= (2)
<integer expression> {2.1)
<month expression> ::= (3)
<integer expression>> (3.1)
<day expression> ::= (4)
<integer expression> (4.1)

124 Fascicle X.6 — Reec. 7200

<hour expression> 1= (3)

<integer expression>> (6.1)
<minute expression> = (6)
<integer expression> _ (6.1)
<second expression> ;= (7)
<Integer expression> (7.1)

semantics: The ABSTIME buili-in routine call delivers an absolute time value denoting the point in time in

the Gregorian calendar indicated in the parameter list. When higher order parameters are omitted,
the point in time indicated is the next one that matches the low order parameters present (e.g.
ABSTIME (15,12,00,00) denotes noon on the 15th in this or the next month.

When no parameters are specified, an absolute time value dencting the present peint in time is
delivered.

static properties: The class of the absolute time built-in routine call is the TIME-derived class.

dynamic conditions: The RANGEFAIL exception is caused if the implementation cannot deliver an absolute

time value denoting the indicated point in time.

9.4.3 Timing built-in routine call

syntax:

< timing simple built-in routine call> = (1)
WAIT () (1.1)
| EXPIRED () (1.2)

| INTTIME (<absolute time primitive value> , [[[[<year location>
<month location> , | <day location> |, |
<hour location> , | <minute location> , |

<second location>) (1.3)
<year location> ::= (2)
<integer location> - (2.1)
<month location> ;= (3)
<integer location> (3.1)
<day location> 1= (4)
<integer location> (4.1)
<hour Jocation> = (5)
<integer location> (5.1)
<minute location> 1= (6)
<integer location> {6.1)
<second location> ;1= (7)
<integer location> (7.1)

semantics: WAIT unconditionally makes the executing process timeoutable: its execntion can only terminate

by a time interrupt.

EXPIRED makes the executing process timeoutable if one of its associated time supervision has
expired; otherwise it has no effect.

INTTIME assigns to the specified integer locations an integer representation of the point in time in
the Gregorian calendar specified by the absolute time primitive value.

Fascicle X.6 — Rec. Z200 125

static conditions: All specified integer locations must be referable and their modes may not have the
read-only property.

dynamic properties: WAIT makes the executing process timeoutable.

EXPIRED makes the executing process timeoutable if there is an expired time supervision asso-
ciated with it.

126 Fascicle X..6 — Rec. Z200

10

10.1

PROGRAM STRUCTURE

GENERAL

The if action, case action, do action, delay case action, begin-end block, module, region, spec module, spec
region, context, receive case action, procedure definition and process definition determine the program structure;
i.e. they determine the scope of names and the lifetime of locations created in them.

The word block will be used to denote:
— the action statement list in a do action including any loop counter and while control;
= the action statement list in a then clause in an if action;
— the action statement list in a case alternative in a case action;
— the action statement list in a delay alternative in a delay case action;
— the begin-end block;

— the procedure definition excluding the result spec and parameter spec of all formal parameters of
the formal parameter list;

— the process definition excluding the parameter spec of all formal parameters of the formal param-
eter list;

— the action statement list in a buffer receive alternative or in a signal receive alternative, including
any defining occurrences in a defining occurrence list after IN;

— the action statement list after ELSE in an if action or case action or a receive case action or
handler;

— the on-alternative in a handler;

— the action statement list in a relative timing action, an absolute timing action, a cyclic timing
action or in a timing handler.

The word modulion will be used to denote:
— a module or region, excluding the context list and defining occurrence, if any;
— a spec module or spec region, excluding the context list, if any;
— a context.

The word group will denote either a block or a modulion.

The word reach or reach of a group will denote that part of the group that is not surrounded (see section
10.2) by an inner group.

A group influences the scope of each name created in its reach. Names are created by defining occurrences:

A defining occurrence in the defining occurrence list of a declaration, mode definition or synonym defini-
tion or appearing in a signal definition creates a name in the reach where the declaration, mode definition,
synonym definition or signal definition, respectively, is placed.

A defining occurrence in a set mode creates a name in the reach directly enclosing the set mode.

A defining occurrence appearing in the defining occurrence list in a formal parameter list creates a name
in the reach of the associated procedure definition or process definition.

A defining occurrence in front of a colon followed by an action, region, procedure definition, or process
definition creates a name in the reach where the action, region, procedure definition, process definition,
respectively, is placed.

A (virtual) defining occurrence introduced by a with part or in a loop counter creates a name in the
reach of the block of the associated do action.

A defining occurrence in the defining occurrence list of a buffer receive alternative or a signal receive
alternative creates a name in the reach of the block of the associated buffer receive alternative or signal
receive alternative, respectively.

A (virtual) defining occurrence for a language predefined or an implementation defined name creates a
name in the reach of the imaginary outermost process (see section 10.8).

Fascicle X.6 — Rec. Z200 127

The places where a name is used are called appliedloccurrences of the name. The name binding rules associate
a defining occurrence with each applied occurrence of the name (see section 12.2.2),

A name has a certain scope, i.e. that part of the program where its definition or declarations can be seen
and, as a consequence, where it may be freely used. The name is said to be visible in that part. Locations
and procedures have a certain lifetime, i.e. that part of the program where they exist. Blocks determine both
visibility of names and the lifetime of the locations created in them. Modulions determine only visibility; the
lifetime of locations created in the reach of a modulion will be the same as if they were created in the reach
of the first surrounding block. Modulions allow for restricting the visibility of names. For instance, a name
created in the reach of a module will not automatically be visible in inner or outer modules, although the
lifetime might allow for it.

10.2 REACHES AND NESTING

syntax:
< begin-end body> 1= (1)
<data statement lst> <action statement list> (1.1)
<proc body> = (2)
<data statement list> <action statement list> {2.1)
< process body> 1= (3)
<data statement list>> <action statement list> ' (3.1)
<module body> ::= {4)
{ <data statement> | <visibility statement> | <region> |
<spec region> }* <action statement list> (4.1)
<region body> = {5)
{ <data statement> | <visibility statement> }* (5.1)
<spec module body> ;= {6)
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }* (6.1)
<spec region body> 1= (7)
{ <quasi data statement> | <visibility statement> }* (7.1)
<context body> = (8)
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }* (8.1)
<action statement list> 1= , (8)
{ <action statement> }* (9.1)
<data statement list> ::= ' (10)
{ <data statement> }* (10.1)
<data statement> = (11)
<declaration statement>> (11.1)
| <definition statement> (11.2)
< definition statement> ::= (12)
<synmode definition statement> (12.1)
| <newmode definition statement> {12.2)
| <synonym definition statement> {12.3)
| <procedure definition statement> {12.4)
| <process definition statement> (12.5)
| <signal definition statement> (12.6)
| <empty> ; (12.7)

semantics: When a reach of a block is entered, all the lifetime-bound initialisations of the locations created
when entering the block are performed. Subsequently, the reach-bound initialisations in the block
reach, the possibly dynamic evaluations in the loc-identity declarations, the reach-bound initialisa-
tions in the regions and the actions are performed in the order they are textually specified.

128 Fascicle X.6 — Rec. Z200

When a reach of 2 modulion is entered, the reach-bound initialisations, the possibly dynamic evalu-
ations in the loc-identity declarations, the reach-bound initialisations in the regions and the actions
(if the modulion is a module) that are in the modulion reach are performed in the order they are
textnally specified.

A data statement, action, module or region, is terminated either by completing it, or by terminating
a handler appended to it. '

When a reach-bound initialisation, loc-identity declaration, action, module, region, procedure or
process is terminated, execution is resumed as follows, depending on the statement or the kind of
termination:

o if the statement is terminated by completing the execution of a handler, then the execution
is resumed with the subsequent statement;

e otherwise, if it is an action that implies a transfer of control, the execution is resumed with
the statement defined for that action (see sections 6.5, 6.6, 6.8, 6.9);

o otherwise, if it is a procedure, control is returned to the calling point (see section 10.4).

¢ otherwise, if it is a process, the execution of that process (or the program, if it is the outermost
process) ends (see section 11.1) and execution is (possibly) resumed with another process;

e otherwise control will be given to the subsequent statement.
static properties: Any reach is directly enclosed in zero or more groups as follows:

s If the reach is the reach of a do action, begin-end block, procedure definition, process defini-
tion, then it is directly enclosed in the group in whose reach the do action, begin-end block,
procedure definition o1 process definition, respectively, is placed, and only in that group.

e If the reach is the action statement list of a timning action or timing handler, or one of the
action statement lists of an if action, case action or delay case action, then it is directly
enclosed in the group in whose reach the timing action, timing handler, if action, case action
or delay case action is placed, and only in that group.

e If the reach is the action statement list, or a buffer receive alternative, or signal receive
alternative, or the action statement list following ELSE in a receive buffer case action or
receive signal case action, then it is directly enclosed in the group in whose reach the receive
buffer case action or receive signal case action is placed, and only in that group.

e If the reach is the action statement list in an on-alternative or the action statement list
following ELSE in a handler which is not appended to a group, then it is directly enclosed
in the group in whose reach the statement to which the handler is appended is placed, and
only in that group.

e If the reach is an on-alternative or action statement list after ELSE of a handler which
is appended to a group, then it is directly enclosed in the group to which the handler is
appended, and only in that group.

e If the reach is a module, region, spec module or spec region, then it is directly enclosed in
the group in whose reach it is placed, and also directly enclosed in the coniext directly in
front of the module, region, spec module or spec region, if any. This is the only case where
a reach has more than one directly enclosing group.

e If the reach is a context, then it is directly enclosed in the context directly in front of it. If
there is no such context, it has no directly enclosing group.

A reach has directly enclosing reaches that are the reaches of the directly enclosing groups. A
statement has a unique directly enclosing group, namely, the group in which the statement is placed.
A reach is said to directly enclose a group (reach) if and only if the reach is a directly enclosing
reach of the group (reach).

A statement (reach) is said to be surrounded by a group if and only if either the group is the directly
enclosing group of the statement (reach) or a directly enclosing reach is surrounded by the group.

Fascicle X.6 — Rec. Z200 129

A reach is said to be entered when:

Module reach: the module is executed as an action (e.g. the moduleis not said to be entered
when a goto action transfers control to a label name defined inside the module).

Begin-end reach: the begin-end block is executed as an action.

Region reach: the region is encountered (e.g. the region is not said to be entered when one
of its critical procedures is called).

Procedure reach: the procedure is entered via a procedure call.
Process reach: the process is activated via the evaluation of a start expression.

Do reach: the do action is executed as an action after the evaluation of the expressions or _
locations in the control part.

Buffer-receive alternative reach, signal receive alternative reach: the alternative is executed
on reception of a buffer value or signal.

On-alternative reach: the on-alternative is executed on the cause of an exception.

Other block reaches: the action statement list is entered.

An action statement list is said to be entered when and only wher its first action, if present, receives
control from outside the action statement list,

A reach is a quasi reach if it is the one of a spec module, spec region or context, otherwise it is a
real reach,

A defining occurrence is a quasi defining occurrence if:

it is surrounded by a context and not by a medule or region, or
it is surrounded by a simple spec module or a simple spec region, or

it is not surrounded by one of the above mentioned groups and it is surrounded by a module
spec or a region spec and it is contained in a quasi declaration, a quasi procedure definition
statement or a quasi process definition statement, and it is not the defining occurrence of a
set element name,

otherwise it is a real defining occurrence.

10.3 BEGIN-END BLOCKS

syntax:

<begin-end block> ::= (1)

BEGIN <begin-end body> END {1.1)

semantics: A begin-end block is an action, possibly containing local declarations and definitions. It determines
both visibility of locally created names and the lifetimes of locally created locations (see sections
10.9 and 12.2).

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples: see 15.73 - 15.90

130 Fascicle X.6 — Rec. Z200

10.4 PROCEDURE DEFINITIONS

syntax:

< procedure definition statement> ;1= (1)
<defining occurrence> : < procedure definition>
[<handler> | [<simple name string> | ; (1.1)
< procedure definition> 1= (2)

PROC (| <formal parameter list>]) [<result spec> |
[EXCEPTIONS (<exception list>) | <procedure attribute list>

<proc body> END (2.1)
<formal parameter list> ::= (3)
<formal parameter> { , <formal parameter> }* (3.1)
<formal parameter> = {4)
<defining occurrence list> <parameter spec> {4.1)
<procedure attribute list> = (5)
[<generality>] [RECURSIVE] (5.1)

< generality > = (6)
GENERAL (6.1)

| SIMPLE (6.2)

| INLINE (6.3)

derived syntax: A formal parameter, where defining occurrence list consists of more than one defining

occurrence, is derived from several formal parameter occurrences, separated by commas, one for
each defining occurrence and each with the same parameter spec. E.g. i, j INT LOC is derived
from 1 INT LOC, j INT LOC.

semantics: A procedure definition statement defines a (possibly) parameterised sequence of actions that may

be called from different places in the program. The procedure is terminated and control is returned
to the calling point éither by executing a return action or by reaching the end of the proc body or
by terminating a handler appended to the procedure definition {falling through). Different degrees
of complexity of procedures may be specified as follows:

a. simple procedures (SIMPLE) are procedures that cannot be manipulated dynamically.
They are not treated as values, i.e. they cannot be stored in a procedure location nor can
they be passed as parameters to or returned as result from a procedure call.

b. general procedures (GENERAL) do not have the restrictions of simple procedures and
may be treated as procedure values,

¢. inline procedures (INLINE) have the same restrictions as simple procedures and they
cannot be recursive. They have the same semantics as normal procedures, but the compiler
will insert the generated object code at the point of invocation rather than generating code
for actually calling the procedure.

Only simple and general procedures may be specified to be (mutually) recursive. When no
procedure attributes are specified, an implementation default will apply.

A procedure may return a value or it may return a location (indicated by the LOC attribute in the
result spec).

The defiring occurrence in front of the procedure definition defines the name of the procedure.
parameter passing:

There are basically two parameter passing mechanisms: the “pass by value” (IN, OUT and IN-
OUT) and the “pass by location” (LOC).

Fascicle X.6 — Rec. Z200 131

pass by value

In pass by value parameter passing, a value is passed as a parameter to the procedure and stored in a
local location of the specified parameter mode. The effect is as if, at the beginning of the procedure
call, the location declaration:

DCL <defining occurrence> <mode> := <actunal parameter>;

were encountered for the defining occurrences of the formal parameter. However the procedure
is entered after the actual parameters have been evaluated. Optionally, the keyword IN may be
specified to indicate pass by value explicitly.

If the attribute INOUT is specified, the actual parameter value is obtained from a location and
Just before returning the current value of the formal parameter is restored in the actual location.

The effect of OUT is the same as for INOUT with the exception that the initial value of the actual
location is not copied into the formal parameter location upon procedure entry; therefore, the formal
parameter has an undefined initial value. The store-back operation need not be performed if the
procedure causes an exception at the calling point.

pass by location

In pass by location parameter passing, a (possibly dynamic mode) location is passed as a parameter
to the procedure body. Only referable locations can be passed in this way. The effect is as if at
the entry point of the procedure the loc-identity declaration statement:

DCL <defining occurrence> <mode>
LOC [DYNAMIC | := <actual parameter>;

were encountered for the defining occurrences of the formal parameter. However the procedure is
entered after the actual parameters have been evaluated.

If a value is specified that is not a Jocation, a location containing the specified value will be implicitly
created and passed at the point of the call. The lifetime of the created location is the procedure
call. The mode of the created location is dynamic if the value has a dynamic class.

result transmission:

Both a value and a location may be returned from the procedure. In the first case, a value is specified
in any result action, in the latter case, a Jocation {see section 6.8). If the attribute NONREF is
not given in the result spec, the location must be referable. The returned value or location is
determined by the most recently executed result action before returning. If a procedure with a
result spec returns without having executed a result action, the procedure returns an undefined
value or an undefined location. In this case the procedure call may not be used as a location
procedure call (see section 4.2.11) nor as a value procedure call (see section 5.2.12), but only as a
call action (section 6.7).

static properties: A defining occurrence in a procedure definition statement defines a procedure name.

132

A procedure name has a procedure definition attached that is the procedure definition in the
statement in which the procedure name is defined.

A procedure name has the following properties attached, as defined by its procedure definition:

e It has a list of parameter specs that are defined by the parameter spec occurrences in
the formal parameter list, each parameter consisting of a mode and possibly a parameter
attribute.

e It has possibly a result spec, consisting of a mode and an optional result attribute.

e It has a possibly empty list of exception names, which are the names mentioned in exception
List.

¢ It has a generality that is, if generality is specified, ecither general or simple or inline,
depending on whether GENERAL, SIMPLE or INLINE is specified; otherwise an imple-
mentation default specifies general or simple. If the procedure name is defined inside a
region, its generality is simple.

» It has a recursivity which is recursive if RECURSIVE is specified; otherwise an imple-
mentation default specifies either recursive or non-recursive. However, if the generality
is inline or if the procedure name is critical (see section 11.2.1) the recursivity is non-
recursive,

Fascicle X.6 — Rec. 7200

A procedure name that is general is a general procedure name. A general procedure name
has a procedure mode attached, formed as:

PROC ([<parameter list>]) [<result spec> |
[EXCEPTIONS (<exception list>)] [RECURSIVE |

where <result spec>, if present, and <exception list>> are the same as in its procedure definition
and <parameter list> is the sequence of <parameter spec> occurrences in the formal parameter
list, separated by commas.

A name defined in a defining occurrence list in the formal parameter is a location name if and
only if the parameter spec in the formal parameter does not contain the LOC attribute. If it does
contain the LOC attribute, it is a loc-identity name. Any such a location name or loc-identity
name is referable.

static conditions: If a procedure name is intra-regional (see section 11.2.2), its procedure definition must
not specify GENERAL.

If a procedure name is critical (see section 11.2.1), its definition may specify neither GENERAL
nor RECURSIVE,

No procedure definition may specify both INLINE and RECURSIVE.

If specified, the simple name string must be equal to the name string of the defining occurrence in
front of the procedure definition.

Oaly if LOC is specified in the parameter spec or result spec may the mode in it have the non-value
property.

All exception names mentioned in exception list must be different.

examples:

1.4 add:
PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+j; o
END add; (1.1)

10.5 PROCESS DEFINITIONS

syntax:
< process definition statement> ::= (1)
< defining occurrence> : <process definition>
[<handler>] [<simple name string> | ; ' (1.1)
< process definition> ::= (2)
PROCESS ([<formal parameter list>] } <process body> END f2.1)

semantics: A process definition statement defines a possibly parameterised sequence of actions that may be
started for concurrent execution from different places in the program (see chapter 11).

static properties: A defining occurrence in a process definition statement defines a process name.
A process name has the following property attached, as defined by its process definition:

s It has a list of parameter specs that are defined by the parameter spec occurrences in
the formal parameter list, each parameter consisting of a mode and possibly a parameter
attribute,

Fascicle X.6 — Rec. Z200 133

static conditions: If specified, the simple name string must be equal to the name string of the defining
occurrence in front of the process definition.

A process definition statement must not be surrounded by a region or by a block other than the
imaginary outermost process definition (see section 10.8).

The parameter attributes in the formal parameter list must not be INOUT nor OU'T.

Only if LOC is specified in the parameter spec in a formal parameter in the formal parameter list
may the mode in it have the non-value property.

examples:
14.13 PROCESS (};
walt:
PROC (x INT);
/#some wait action*/
END wait;
DO FOR EVER;
wait(10 /* seconds */);
CONTINUE cperator_is_ready;
oD,
END (2.1)

10.6 MODULES

syntax:
<module> ;= (1)
[<context list>] | <defining occurrence> :]
MODULE | BODY | <module body> END
[<handler> | [<simple name string>] ; (1.1)
| <remote modulion> (1.2)

semantics: A module is an action statement possibly containing local declarations and definitions. A module
is a means of restricting the visibility of name strings; it does not influence the lifetime of the locally
declared locations,

The detailed visibility rules for modules are given in section 12.2.

static properties: A defining occurrence in a module defines a module name as well as a label name. The
name has the module (seen as a modulion, i.e. excluding the context list and defining occurrence, if
any) attached.

A module is developed piecewisely if and only if a context list is specified.
A module is 2 module body if and only if BODY is specified.

static conditions: If specified, the simple name string must be equal to the name string of the defining
occurrence.

A remote modulion in a module must refer to a module.

134 Fascicle X..6 — Rec. 7200

examples:
7.48 MODULE
SEIZE convert;
DCL »n INT INIT := 1979;
DCL rn CHARS (20) INIT := (20)"

GRANT n,rn;
convert(); ‘
ASSERT rn = "MDCCCCLXXVIIIT"//(6)"
END (1.1)
10.7 REGIONS
syntax:
<region> = (1)

[<context list>> | [<defining occurrence> : |

REGION [BODY] <region body> END

[<handler>] [<simple name string>] ; (1.1)
| <remote modulion> (1.2)

semantics: A region is a means of providing mutually exclusive access to its locally declared data objects for
the concurrent executions of processes (see chapter 11). It determines visibility of locally created
names in the same way as a module,

static properties: A defining occurrence in a region defines a region name. It has the region (seen as a
modulion, i.e. excluding the context list and defining occurrence, if any) attached.

A region is developed piecewisely if and only if a context list is specified.
A region is a region body if and only if BODY is specified.

static conditions: If specified, the simple name string must be equal to the name string of the defiring
occurrence.

A region must not be surrounded by a block other than the imaginary outermost process definition.
A remote modulion in a region must refer to a region.

examples: see 13.1- 13.28

10.8 PROGRAM

syntax:
< program> = " (1)
{ <module> | <spec module> | <region> | <spec region> }* (1.1)

semantics: Programs consist of a list of modules or regions surrounded by an imaginary outermost process
definition,

The definitions of the CHILL pre-defined names (see Appendix C.2) and the implementation defined
built-in routines and integer modes are considered, for lifetime purposes, to be defined in the reach
of the imaginary outermost process definition. For their visibility see section 12.2.

Fascicle X.6 — Rec. Z200 135

10.9 STORAGE ALLOCATION AND LIFETIME
The time during which a location or procedure exists within its program is its lifetime.

A location is created by a declaration or by the execution of a GETSTACK or an ALLOCATE built-in routine
call.

The lifetime of a location declared in the reach of a block is the time during which control lies in that block
or in a procedure whose call originated from that block, unless it is declared with the atiribute STATIC. The
lifetime of a location declared in the reach of a modulion is the same as if it were declared in the teach of the
closest surrounding block of the modulion. The lifetime of a location declared with the attribute STATIC
is the same as if it were declared in the reach of the imaginary outermost process definition. This implies
that for a location declaration with the attribute STATIC storage allocation is made only once, namely, when
starting the imaginary outermost process. If such a declaration appears inside a procedure definition or process
definition, only one location will exist for all invocations or activations.

The lifetime of a location created by executing a GETSTACK built-in routine call ends when the directly
enclosing block terminates.

The lifetime of a location created by an ALLOCATE built-in routine call is the time starting from the ALLO-
CATE call until the time that the location cannot be accessed anymore by any CHILL program. The latter is
always the case if a TERMINATE built-in routine is applied to an allocated reference value that references
the location.

The lifetime of an access created in a loc-identity declaration is the directly enclosing block of the loc-identity
declaration.

The lifetime of a procedure is the directly enclosing block of the procedure definition.

static properties: A location is said to be static if and only if it is a static mode location of one of the
following kinds:

® A Jocation name that is declared with the attribute STATIC or whose definition is not
surrounded by a block other than the imaginary outermost process definition,

¢ A string element or string slice where the string Jocation is static and either the left element
and right element, or start element and slice size are constant.

¢ An array element where the array location is static and the expression is constant.

® An array slice where the array location is static and either the lower element and upper
element or the first element and slice sjze are constant.

s A structure field where the structure location is static.

* A location conversion where the location occurring in it is static.

10.10 CONSTRUCTS FOR PIECEWISE PROGRAMMING

Modules and regions are the elementary units (pieces) in which a complete CHILL program that is developed
piecewisely can be subdivided. The text of such pieces is indicated by remote constructs (see section 10.10.1).
CHILL defines the syntax and semantics of complete programs, in which all oceurrences of remote pieces have
been virtually replaced by the referred text.

10.19.1 Remote picces

syntax:
<remote modulion> ::= (1)
[<simple name string> : | REMOTE <piece designator> ; (1.1)
<remote spec> = {2)
| <simple name string> : | SPEC REMOTE <piece designator> ; (2.1)

136 Fascicle X.8 — Rec. Z200

<remote context> 1= (3)
CONTEXT REMOTE <piece designator>

[<context body>] FOR (3.1)
<context module> 1= (4)
CONTEXT MODULE REMOTE <piece designator> ; (4.1)

< piece designator> ;= {(5)
<character string literal> (5.1)

| <text reference name> (5.2)

| <empty> (5.3)

derived syntax: The notation:
CONTEXT MODULE REMOTE <piece designator>
is derived syntax for:

CONTEXT REMOTE <piece designator> FOR
MODULE SEIZE ALL; END;

N.B. This construct is redundant but can be used for consistence checking.

semantics: Remote modulions, remote specs, remote contexts and coniext modules are means to represent
the source text of a program as a set of (interconnected) files.

A piece designator refers in an implementation defined way to a description of a piece of CHILL
source text, as follows:

e If the piece designator is empty, the source text is retrieved from a place determined by the
structure of the program.

e If the piece designator contains a character string literal, the character string literal is used
to retrieve the source text.

e If the piece designator contains a text reference name, the text reference name is interpreted
in an implementation defined way to retrieve the source text.

A program with 1. remote modulions, 2. remote specs, is equivalent to the program built by replacing
each 1. remote modulions, 2. remote specs, by the piece of CHILL text referred to by its piece
designator.

A program with remote contexts is equivalent to the program built by replacing each remote context
by the piece of CHILL text referred to by its piece designator in which the context body has been
virtually inserted immediately after the last occurrence of context body in the context list referred
to by the piece designator. :

If the designated piece is not available as CHILL text, then the piece designator in it is considered
to refer to an equivalent piece of CHILL text which is introdunced virtually.

Although the semantics of a remote piece is defined in terms of replacement, CHILL does not imply
any textual substitution.

static conditions: The piece designator ina 1. remote modulion, 2. remote spec, 3. remote context, 4. context
module, must refer to a description of a piece of source text which is a terminal production of a 1.
module or region that is not a remote modulion, 2. spec module or spec region that is not a remote
spec, 3.,4. context list which is not a remote context.

When the source text referred to by the piece designator in a remote modulion starts with a defining
occurrence, then the remote modulion must start with a simple name string which is the name string
of that defining occurrence.

When the source text referred to by the piece designator in a remote spec starts with a simple name
string, then the remote spec must start with the same simple name string.

Fascicle X.6 — Rec. Z200 137

examples:
25.9 stack: REMOTE “example 27 or 287; (1.1)
25.9 “example 27 or 28”7 (5.1)

10.10.2 Spec modules, spec regions and contexts

syntax:
<spec module> 1= (1)
<simple spec module> ' (1.1)
| <module spec> (1.2)
| <remote spec> (1.3)
<simple spec module> = (2)
[<context list>] [<simple name string> : | SPEC MODULE
<spec module body> END [<simple name string> | ; (2.1)
<module spec> 1= (3)
[<context list> | <simple name string> : MODULE SPEC
<spec module body> END [<simple name string> | ; (3.1)
<spec region> = (4)
<simple spec region> (4.1)
| <region spec> (4.2}
| <remote spec> (4.3)
<simple spec region> ::= _ (5)
[<context list> | [<simple name string> : | SPEC REGION
<spec region body> END [<simple name string>] ; (5.1)
<region spec> = (6)
[<context list>] <simple name string> : REGION SPEC
<spec region body> END [<simple name string> | ; (6.1)
<context lisi> 1= (7)
<context> { <context> }* (7.1)
| <remote context> (7.2)
<context> n= (8)
CONTEXT <context body> FOR, (8.1)

semantics: Simple spec modules, simple spec regions and contexts are used to specify static properties of
names. They are redundant but they can be used for plecewise programming.

Simple name strings in spec modules and spec regions are not names, they are not bound, and they
have no visibility rules.

1. spec modules, 2. spec regions in a real reach indicate the properties of one or more 1. modules,
2. regions that are piecewisely compiled and that are considered to be enclosed in that reach. The
texts of such 1. modules, 2. regions are indicated by occurrences of remote modulions. A context
list indicates the surrounding reaches {note that a modulion that is developed piecewisely always
has a context Iist in front of it).

For each name string OP ! NS visible in the reach of a 1. module spec, 2. region spec and linked
there to a quasi defining occurrence and that is granted into 2 real reach as NP / NS, a (virtual)
grant statement with the same old name string OP ! NS and new name string NP ! NS is considered
to be introduced in the reach of the corresponding 1. module body, 2. region body.

138 Fascicle X.6 — Rec. Z200

static conditions: In a spec module or a spec region, the optional simple name string following ENI may
only be present if the optional simple name string before SPEC is present. When both are present,

examples:

they must have equal name strings.

A context which has no directly enclosing group may not contain visibility statements.

A real reach that contains a 1. spec module, 2. spec region must also contain at least a remote

modulion and vice-versa.

If a real reach contains a 1. module which is a module body, 2. region which is a region body,
then it must contain also a 1. module spec, 2. region spec such that the simple name strings in front of
them have equal name strings. The 1. module spec, 2. region spec is said to have a corresponding

1. module body, 2. region body.

A remote spec in a 1. spec module, 2. spec region must refer to a 1. spec meodule, 2. spec region.

23.2 letter.. count:
SPEC MODVULE
SEIZE max;
count: PROC (input ROW CHARS (max) IN,
output ARRAY (A’’Z’) INT OUT) END;
GRANT count;
END letter_count;

24.1 CONTEXT
count: PROC (ROW CHARS (max) IN,
ARRAY (’A"Z’) INT OUT) END;
FOR

10.10.3 Quasi statements

syntax:

< quasi data statement> =
< quasi declaration statement>
| <quasi definition statement>

< quasi declaration statement> 1=
DCL <quasi declaration> { , <quasi declaration> }* ;

< quasi declaration> ::=
< quasi location declaration>
| <quasi loc-identity declaration>

< quasi location declaration> ;=
<defining occurrence list> <mode> [STATIC |

< quasi loc-identity declaration> 1=
< defining occurrence list> <mode>
LOC [NONREF | | DYNAMIC]

< quasi definition statement> 5:=
<synmode definition statement>
| <newmode definition statement>
| <synonym definition statement>
| <guasi synonym definition statement>
| <quasi procedure definition statement>
| <quasi process definition statement>
| <quasi signal definition statement>
| <empty> ;

Fascicle X.6 — Rec. Z200

(1.1)

(8.1)

(1)
(1.1)
(1.2)

(2)
(2.1)

(3)
(5.1)
(3.2)

(4)
(4.1)

(5)
(5.1)

(6)
(6.1)
(6.2)
(6.3)
(6.4)
(6.5)
(6.6)
(6.7)
(6.8)

139

<quasi synonym definition statement> ::= (7)

SYN <quasi synonym definition> { , <quasi synonym definition> }* ; (7.1)
<quasi synonym definition> ::= (8)

<defining occurrence list> { <imode> = [<constant value>]

[<mode> | = <literal expression> } (8.1)
<quasi procedure definition statement> ::= (9)

<defining occurrence> : PROC ([<quasi formal parameter list>] }
[<result spec>] [EXCEPTIONS (<exception list>)]

<procedure attribute list> END [<simple name string> | ; (9.1)
<quasi formal parameter list> 1= (10)
<quasi formal parameter> { , <quasi formal parameter> e - (10.1)
<quasi formal parameter> ::= (11)
<sitmple name string> { , <simple name string> }* <parameter spec> (11.1)
< guasi process definition statement> = (12)
<defining occurrence> : PROCESS ([<quasi formal parameter list>])
END [<simple name string> | ; (12.1)
<quasi signal definition statement> ::= (13)
SIGNAL <quasi signal definition> { ,<quasi signal definition> }* ; (158.1)
<quasi signal definition> = (14)
<defining occurrence> | = (<mode> { , <mode> y)iiTo] {14.1)

semantics: Quasi statements are used in spec modules, spec regions and contexts to specify static proper-

ties of names. These specifications are redundant, but quasi statements can be used for plecewise
Programming,.

An implementation that can not guarantee the equality of the values between quasi comstant
Synonym names and the corresponding real ones may disallow the indication of the constant
value.

Note that in CHILL no quasi defining occurrences exist for label names.

static properties: Quasi statements are restricted forms of the corresponding statements, and have the same

static properties.

The name defined by a defining occurrence in a quasi Ioc-identity declaration is referable if NON-
REF is not specified.

static conditions: Quasi statements are restricted forms of the corresponding statements and are subject to

their static conditions.

A quasi synonym definition statement may only be directly enclosed in a simple spec module, simple
Spec region or context. A synonym definition statement in a quasi definition statement may only be
directly enclosed in a module spec oI region spec.

10.10.4 Matching between quasi defining occurrences and defining occurrences

Two defining occurrences are said to match if they have identical semantic categories and:

140

If they are synonym names, then they must have the same regionality and value, the root mode of
their classes must be alike, they must both have an M-value, M-derived, M-reference, null or all class,
and if the one which is quasi is literal, then so the other one must be.

If they are set element names, then the attached set modes must be alike.
If they are newmode names or synmode names, then their modes must be alike.

If they are location names or loc-identity names, then they must have the same regionality, they
both must be or both not be referable, they both must be or both not be static, and their modes must
be alike.

Fascicle X.6 — Rec. 7200

e If they are procedure names, then they must have the same regionality and generality, they both
must be or both not be eritical, they must satisfy the same conditions of alikeness as procedure modes,
and corresponding (by position) simple name strings in the formal parameter list and quasi formal
parameter list must be the same.

e If they are process names, then the parameters of their process definitions must satisfy the same
conditions of matching and alikeness as the parameters of procedure names.

¢ If they are signal names, then they must both specify or both not specify T O, their lists of modes must
have the same number of modes, and corresponding modes must be alike.

If two structure modes are novelty bound in a reach R, then they must have the same set of visible field
names in R.

The following rules apply:

e If a name string in a reach that is not the reach of a spec module, spec region or context is bound to
a quasi defining occurrence, then it must also be bound to a defining occurrence which is not a quasi
defining occurrence, and further:

— Let a name string be bound to a quasi defining occurrence QD and be bound also to a real
defining accurrence RD in reach R, then:

1. QD and RD must match as defined above, and

2. RD and QD must both be enclosed in an enclosed group of R or both not be enclosed in
the group of R or, if R is the reach of a module or region which is a module body or
region body, then QD must be enclosed in the group of the corresponding module spec
or region spec and RD must be enclosed in the group of R.

— If a name string in a real reach R is bound to a quasi defining occurrence that is enclosed in the
group of R (i.e. surrounded by a spec modulion), then it must also be bound to a real defining
occurrence that is surrounded by the group of a module or region that are indicated by a remote
modulion directly enclosed in R (informally, if the interface grants, so must the implementation).
If the quasi defining occurrence is enclosed in the group of a module spec or a region spec, then
the real one must be enclosed in the group of the corresponding modulion.

— I a name string in a real reach R is bound to a real defining occurrence that is enclosed in the
group of a module or region that are indicated by a remote modulion directly enclosed in R, then
it must also be bound to a quasi defining occurrence that is enclosed into the group of R (i.e.
surrounded by a spec modulion. Informally, if the implementation grants, so must the interface).

— For each name string in the reach Q of a spec module or spec region directly enclosed in a real
reach R that is bound to a defining occurrence not surrounded by Q, there must be an identical
name string in the reach of a module or region that is indicated by a remote modulion directly
enclosed in R that is bound to the same defining occurrence (informally, if the interface seizes,
5o must the implementatjon).

e If two name strings are bound to the same 1. real, 2. quasi defining occurrence in a reach, then both

name strings must be bound to the same 1. quasi, 2. real defining occurrence, or both not be further
bound.

* A real novelty may not be novelty bound to two guasi novelties in any reach.

Let a guasi novelty QN and a real novelty RN be novelty bound to each other in a reach R; then
RN and QN must both be enclosed in an enclosed group of R or both not be enclosed in the group of R,
or if R is the reach of a module or region which is a module body or region body, then RN must be
exclosed in the group of R and QN must be enclosed in the group of the corresponding module spec
or region spec.

Fascicle X.6 — Rec. 7200 141

11 CONCURRENT EXECUTION

11.1 PROCESSES AND THEIR DEFINITIONS

A process is the sequential execution of a series of statements. It may be executed concurrently with other
processes. The behaviour of a process is described by a process definition (see section 10.5), that describes the
objects local to a process and the series of action statements to be executed seql_lentia.lly.

A process is created by the evaluation of a start expression (see section 5.2.14). It becomes active (i.e. under
execution) and is considered to be executed concurrently with other processes. The created process is an
activation of the definition indicated by the process name of the process definition. An unspecified number
of processes with the same definition may be created and may be executed concurrently. FEach process is
uniquely identified by an instance value, yielded as the result of the start expression or the evalnation of the
THIS operator. The creation of a process causes the creation of its locally declared locations, except those
declared with the attribute STATIC (see section 10.9), and of locally defined values and procedures. The
locally declared locations, values and procedures are said to have the same activation as the created process to
which they belong. The imaginary outermost process (see section 10.8), which is the whole CHILL program
under execution, is considered to be created by a start expression executed by the system under whose control
the program is executing. At the creation of a process, its formal parameters, if present, denote the values and
locations as delivered by the corresponding aciual parameters in the start expression.

A process is terminated by the execution of a stop action, by reaching the end of the process body or by
terminating a handler specified at the end of the process definition (falling through). If the imaginary outermost
process executes a stop action or falls through, the termination will be compleied when and only when all other
processes in the program are terminated.

A process is, at the CHILL programming level, always in one of two states: it is either active {i.e. under
execution) or delayed (i.e. waiting for a condition to be fulfilled). The transition from active to delayed is called
the delaying of the process; the transition from delayed to active is called the re-activation of the process.

11.2 MUTUAL EXCLUSION AND REGIONS

11.2.1 General

Regions (see section 10.7) are a means of providing processes with mutually exclusive access to locations declared
in them. Static context conditions (see section 11.2.2) are made such that accesses by a process (which is not
the imaginary outermost process) to locations declared in a region can be made only by calling procedures that
are defined inside the region and granted by the region.

A procedure name is said to denote a critical procedure (and it is a critical procedure name) if it is defined
inside a region and granted by the region.

A region is said {o be free if and only if control lies in none of its critical procedures or in the region itself
performing reach-bound initialisations.

The region will be locked (to prevent concurrent execution) if:

¢ The region is entered (note that because regions are not surrounded by a block, no concurrent attempis
can be made to enter the region).

e A critical procedure of the region is called.

e A process, delayed in the region, is re-activated.

The region will be released, becoming free again, if:
e The region is left.
e The critical procedure returns.

o The critical procedure executes an action that causes the executing process to become delayed (see
section 11.3). In the case of dynamically nested critical procedure calls, only the latest locked region
will be released.

e The process executing the critical procedure terminates. In the case of dynamically nested eritical
procedure calls, all the regions locked by the process will be released.

142 Fascicle X.68 — Rec. Z200

If, while the region is locked, a process atiempts to call one of its critical procedures or a process delayed in

the region is re-activated, the process is suspended until the region is released. (Note that the process remains
active in the CHILL sense).

When a region is released and more than one process has been suspended while attempting to call ome of its
critical procedures or to be re-activated in one of its critical procedures, only one process will be selected to
lock the region according to an implementation defined scheduling algorithm.

11.2.2 Regionality

To allow for checking statically that a location declared in a region can only be accessed by calling critical
procedures or by entering the region for performing reach-bound initialisations, the following static context
conditions are enforced:

o the regionality requirements mentioned in the appropriate sections (assignment action, procedure call,
send action, result action, etc.);

* intra-regional procedures are not general (see section 10.4);

e critical procedures are neither general nor recursive (see section 10.4).

A Jocation and procedure call have a regionality which is intra-regional or extra-regional. A value has a
regionality which is intra-regional or extra-regional or nil. These properties are defined as follows:

1. Location
A location is intra-regional if and only if any of the following conditions are fulfilled:
¢ It is an access name that is either:

— alocation name declared textually inside a region or spec region and not defined in a formal
parameter of a critical procedure,

— a loc-identity name, where the location in its declaration is intra-regional or that is
defined in a formal parameter of an intra-regional procedure,

— a location enumeration name, where the array location or string location in the associated
do action is intra-regional,

— aJocation do-with name, where the structure location in the associated do action is intra-
regional.

e It is a dereferenced bound reference, where the bound reference primitive value in it is intra-
regional.

» It is a dereferenced free reference, where the free reference primitive value in it is intra-regional.
o It is a dereferenced row, where the row primitive value in it is intra-regional.

¢ It is an array element or array slice, where the array location in it is intra-regional.

o It is a string element or string slice, where the string location in it is intra-regional.

* It is a structure field, where the structure location in it is intra-regional.

¢ It is a Jocation procedure call, where in the location procedure call a procedure name is specified
which is intra-regional.

» It is a location built-in routine call, that the CHILL definition or the implementation specifies to
be intra-regional.

e It is a location conversion, where the static mode Iocation in it is intra-regional.
A location which is not intra-regional is extra-regional.

2. Value

A value has a regionality depending on its class. If it has the M-derived class or the all class or the
null class then it has regionality nil. Otherwise it has the M-value class or the M reference class and
it has a regionality depending on the mode M as follows:

If the value has the M-value class and M does not have the referencing property then the regionality is
nil; otherwise the value is an operand-6 (and has the referencing property) or a conditional expression:

Fascicle X.6 — Rec., Z200 143

it is a primitive value then:
e Ifit is a location contents that is a location, then it is that of the location.
e Ifit is a value name, then:
— if it is a synonvm name then it is that of the constant value in its definition;

~ ifitis a value do-with name then if is that of the structure primitive value in the associated
do action;

— if it is a value receive name then it is extra~-regional.

e Ifitis a tuple then if one of the value occurrences in it has regionality not mnil, then it is that of
that value (it does not matter which choice is made, see section 5.2.5 static conditions); otherwise
it is nil.

+ TIfit is a value array element or a value array slice then it is that of the array primitive value in it.

s Ifit is a value structure field then it is that of the structure primitive value in it.

o Ifitis an expression conversion then it is that of the expression in it.

e it is a value procedure call then it is that of the procedure call in it.

e If it is a value built-in routine call that the CHILL definition or the implementation specifies to
be intra-regional or extra-regional.

H it is a referenced location then it is that of the location in it.
If it is a receive expression then it is extra-regional.

If it is a conditional expression, then if one of the sub expression occurrences in it has regionality not
nil, then it is that of that sub expression (it does not matter which choice is made, see section 5.3.2
static conditions); otherwise it is mil.

3. Procedure name

A procedure name is intra-regional if and only if it is defined inside a region or spec region and it is
not critical (i.e. not granted by the region). Otherwise it is extra-regional.

4. Procedure call

A procedure call is intra-regional if it contains a procedure name which is intra-regional; otherwise
it is extra-regional.

A value is regionally safe for a non-terminal (used only for location, procedure call and procedure name) if
and only if:

e the non-terminal is extra-regional and the value is not intra-regional;
s the non-terminal is intra-regional and the value is not extra-regional;

¢ the non-terminal has regionality nil.

11.3 DELAYING OF A PROCESS
An active process may become delayed by executing (evaluating) one of the following actions (expressions):
o delay action (see section 6.16), | |
o delay case action (see section 6.17),
s Teceive expression (see section 5.3.9),
® receive signal case action (see section 6.19.2),
e receive buffer case action (see section 6.19.3),
* send buffer action (see section 6.18.3).

When a process becomes delayed while its control lies within a critical procedure, the associated region will
be released. The dynamic context of the process is retained until it is re-activated. The process then attempts
to lock the region again, which may cause it to be suspended.

144 Fascicle X.6 — Rec. 7200

11.4 RE-ACTIVATION OF A PROCESS

A delayed process may become re-activated if it is time supervised and a time interrupt occurs (see chapter 9). It
may also become re-activated if another process executes (evaluates) one of the following actions (expressions):

¢ continue action (see section 6.15),

¢ send signal action (see section 6.18.2),

» send buffer action (see section 6.18.3),

» receive expression (see section 5.3.9),

» receive buffer case action (see section 6.19.3).

When a process, while having locked a region, re-activates another process, it remains active, i.e. it will not
release the region at that point.

11.5 SIGNAL DEFINITION STATEMENTS

syntax:
<signal definition statement> ::= (1)
SIGNAL <signal definition> { ,<signal definition> }* ; (1.1)
<signal definition> 1= (2)

<defining occurrence> [= (<mode> { , <mode> }*)] [TO <process name> | (2.1)

semantics: A signal definition defines a composing and decomposing function for values to be transmitted
between processes. If a signal is sent, the specified list of values is transmitted. If no process is
waiting for the signal in a receive case action, the values are kept until a process receives the values.

static properties: A defining occurrence in a signal definition defines a signal name.
A signal name has the following properties:
e It has an optional list of modes attached, that are the modes mentioned in the signal definition.
e It has an optional process name attached that is the process name specified after TO.
static conditions: No mode in a signal definition may have the non-value property.

examples:
15.27 SIGNAL initiate = (INSTANCE),
terminate; (1.1)

Fascicle X.6 — Rec. Z200 145

12 GENERAL SEMANTIC PROPERTIES

121 MODE RULES

12.1.1 Properties of modes and classes

12.1.1.1 Read-only property
Informal

A mode has the read-only property if it is a read-only mode or contains a component or & sub-component,
etc. which is a read-only mode.

Definition
A mode has the read-only property if and only if it is:
* an array mode with an element mode that has the read-only property;

® a structure mode where at least one of its field modes has the read-only property, where the field is
not a tag field with an implicit read-only mode of a parameterised structure mode;

¢ a read-only mode.

12.1.1.2 Parameterisable modes
Informal
A mode is parameterisable if it can be parameterised.
Definition
A mode is parameterisable if and only if it is
¢ a string mode;
¢ an array mode;

* a parameterisable variant structure mode.

12.1.1.3 Referencing property
Informal

A mode has the referencing property if it is a reference mode or contains a component or a sub-component,
ete. which is a reference mode.

Definition
A mode has the referencing property if and only if it is:
¢ a reference mode;
* an array mode with an element mode that has the referencing property;

s a structure mode where at least one of its field modes has the referencing property.

12.1.1.4 Tagged parameterised property
Informal

A mode has the tagged parameterised property ifit is a tagged parameterised structure mode or contains
a component or a sub-component etc. which is a fagged parameterised structure mode.

146 Fascicle X.6 — Rec. Z200

Definttion
A mode has the tagged parameterised property if and only if it is:
® an array mode with an element mode which has the tagged parameterised property;
® astructure mode where at least one of its field modes has the tagged parameterised property;

s a tagged parameterised structure mode.

12.1.1.5 Non-value property
Informal

A mode has the non-value property if no expression or primitive value denotation exists for the mode.

Definition

A mode has the non-value property if and only if it is: -
e an event mode, a buffer mode, an access mode, an association mode or a text mode;
¢ an array mode with an element mode that has the non-valne property;

* a structure mode where at least one of its field modes has the non-value property.

12.1.1.6 Root mode
Any mode M has a root mode defined as:
e M, if M is not a range mode;
o the parent mode of M, if M is a range mode.

Any M-value class or M-derived class has a root mode which is the root mode of M.

12.1.1.7 Resulting class

Given two compatible classes (see section 12.1.2.16), which are either the all class, an M-value class or an
M-derived class, where M is either a discrete mode, a powerset mode or a string mode, the resulting class is
defined in terms of the notion of resulting mode R of M and N and the root mode P of M.

Given two similar modes M and N, the resulting mode R is defined as:

* if the root mode of one is a fixed string mode and the other one is a varying string mode, then it is
the root mode of the one (between M and N) whose root mode is a varying string mode;

e otherwise it is P,
The resulting class is defined as:
» the resulting class of the M-value class and the N-value class is the R-value class;
* the resulting class of the M-value class and the N-derived class or the all class is the P-value class;
¢ the resulting class of the M-derived class and the N-derived class is the R-derived class;
* the resulting class of the M-derived class and the all class is the P-derived class;
» the resulting class of the all class and the all class is the all class.

Given a list C; of pairwise compatible classes (i=1,...,n), the resulting class of the list of classes is recursively
defined as the resulting class of the resulting class of the list C; (i=1,...,n~1) and the class C,, if n > 1;
otherwise as the resulting class of C; and C.

Fascicle X.6 — Rec. Z200 147

12.1.2 Relations on modes and classes

12.1.2.1 General

In the following sections, the compatibility relations are defined between modes, between classes, and between
modes and classes. These relations are nsed throughout the document to define static conditions. -

The compatibility relations themselves are defined in terms of other relations which are mainly used in this
chapter for the above mentioned purpose.

12.1.2.2 Egquivalence relations on modes

Informal

The following equivalence relations play a role in the formulation of the compatibility relations:
* Two modes are similar if they are of the same kind; i.e. they have the same hereditary properties.
* Two modes are v-equivalent (value-equivalent) if they are similar and alse have the same novelty.

* Two modes are equivalent if they are v-equivalent and also possible differences in value representation
in storage or minimum storage size are taken into account.

¢ Two modes are l-equivalent (location-equivalent) if they are equivalent and also have the same read-
only specification.

s Two modes are alike if they are indistinguishable; i.e. if all operations that can be applied to objects
of one of the modes can be applied to the other one as well, provided that novelty is not taken into
account.

¢ Two modes are novelty bound if they are alike and have equal novelty specification.
Definition

In the following sections, the equivalence relations on modes are given in the form of a (partial) set of relations.
The full equivalence algorithms are obtained by taking the symmetric, reflexive and transitive closure of this
set of relations. The modes mentioned in the relations may be virtually introduced or dynamic. In the latter
case, the complete equivalence check can only be performed at run time. Check failure of the dynamic part will
result in the RANGEFAIL or TAGFAIL exception (see appropriate sections).

Checking two recursive modes for any equivalence requires the checking of associated modes in the corresponding
paths of the set of recursive modes by which they are defined. Equivalence between the modes holds if no
contradiction is found. (As a consequence, a path of the checking algorithm stops successfully if two modes
which have been compared before, are compared).

12.1.2.3 'The relation similar
Two modes are similar if and only if:
¢ they are infteger modes;
» they are boolean modes;
s they are character modes;
s they are set modes such that:
1. they define the same number of values;

2. for each set element name defined by one mode there is a set element name defined by the
other mode which has the same name string and the same representation value;

3. they both are numbered set modes or both are unnumbered set modes.
® they are range modes with similar parent modes;
* one is a range mode whose parent mode is similar to the other mode;
e they are powerset modes such that their member modes are equivalent;

o they are bound reference modes such that their referenced modes are equivalent;

148 Fascicle X.6 — Rec. Z200

they are free reference modes;
they are row modes such that their referenced origin modes are equivalent;
they are procedure modes such that:

1. they have the same number of parameter specs and corresponding (by position) parameter
specs have l-equivalent modes and the same parameter attributes, if present;

2. they both have or both do not have a result spec. If present, the result specs must have
l-equivalent modes and the same attributes, if present;

3. they have the same list of exception names;
4. they have the same recursivity;
they are instance modes;
they are event modes such that they both have no event length or both have the same event length;
they are buffer modes such that:
1. they both have no buffer length or both have the same buffer length;
2. they have l-equivalent buffer element modes;
they are association modes;
they are access modes such that:
1. they both have no index mode or both have index modes which are equivalent;

2. at least one has no record mode, or both have record modes that are l-equivalent and that
are both static record modes or both dynamic record modes;

they are text modes such that:
1. they have the same text length;
2. they have l-equivalent text record modes;
3. they have l-equivalent access modes;
they are duration modes;
they are absolute time modes;
they are string modes such that they are both bit string modes or both are character string modes;
they are array modes such that:
1. their index modes are v-equivalent;
2. their element modes are equivalent;
3. their element layouts are equivalent;
4

they have the same number of elements. This check is dynamic if one or both modes is (are)
dynamic. Check failure will result in the RANGEFAIL exception;

they are structure modes which are not parameterised structure modes such that:

1. in the strict syntax, they have the same number of fields and corresponding (by position) fields
are equivalent:

2. if they are both parameterisable variant structure modes, their lists of classes must be com-
patible;

they are parameterised structure modes such that:
1. their origin variant structure modes are similar;

2. their corresponding (by position) values are the same. This check is dynamic if one or both modes
is (are) dynamic. Check failure will result in the TAGFAIL exception.

12.1.2.4 The relation v-equivalent

Two modes are v-equivalent if and only if they are similar and have the same novelty.

12.1.2.5 The relation eguivalent

Two modes are equivalent if and only if they are v-equivalent and:

s if one is a range mode, the other must also be a range mode and both upper bounds must be equal

and both lower bounds must be equal;

Fascicle X.6 — Rec. Z200 149

o ifone is a fixed string mode, the other one must also be a fixed string mode, and they must have the
same string length. This check is dynamic in the case that one or both modes is (are) dynamic. Check
failure will result in the RANGEFAIL exception;

s ifone is & varying string mode, the other one must also be a varying string mode, and they must have
the same string length. This check is dynamic in the case that one or both modes is (are) dynamic.
Check failure will result in the RANGEFAIL exception.

12.1.2.6 The relation l-equivalent

4
Two modes are l-equivalent if and only if they are equivalent and if one is a read-only mode, the other
must also be a read-only mode, and: ‘

if they are bound reference modes, their referenced modes must be l-equivalent;

if they are row modes, their referenced origin modes must be l-equivalent;

if they are array modes, their element modes must be l1-equivalent;

if they are structure modes which are not parameterised structure modes, corresponding (by position)
flelds in the strict syntax must be l-equivalent; if they are parameterised structure modes, their
origin variant structure modes must be l-equivalent.

12.1.2.7 The relations equivalent and l-equivalent for fields

Two fields (both fields in the context of two given structure modes) are 1. equivalent, 2. l-equivalent if and
only if both fields are fixed fields which are 1. equivalent, 2. l-equivalent or both are alternative fields which
are 1. equivalent, 2. l-equivalent.

The relations equivalent and l-equivalent are recursively defined for corresponding fixed fields, variant fields,
alternative fields and variant alternatives, respectively, in the following way:

Fixed fields and variant fields

1.
2.

Both fixed fields or variant fields must have equivalent field layout.
Both field modes must be 1. equivalent, 2. l-equivalent,

Alternative fields

1.

Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists
must have the same number of tag field names and corresponding (by position) tag field names
must denote corresponding fixed fields.

Both must have the same number of variant alternatives and corresponding (by position) variant
alternatives must be 1. equivalent, 2. l-equivalent.

Both must have no ELSE specified or both must have ELSE specified. In the latter case, the
same number of variant fields must follow and corresponding (by position) variant fields must be
1. equivalent, 2. l-equivalent.

Variant alternatives

1

Both variant alternatives must have the same number of case label fists and corresponding (by
position) case label lists must either be both irrelevant, or both define the same set of values.

Both variant alternatives must have the same number of variant fields and corresponding (by
position) variant fields must be 1. equivalent, 2. l-equivalent.

12.1.2.8 The relation equivalent for layout

In the rest of the section, it will be assumed that each pos is of the form:

POS (<number>,<start bit>,<length>)

and that each step is of the form:

STEP (<pos>,<step size>)

Section 3.12.5 gives the appropriate rules to bring pos or step in the required form.
Field layout

Two field layouts are equivalent if they are both NOPACK, or both PACK, or both pos. In the
latter case the one pos must be equivalent to the other one (see below).

150

Fasciele X.6 — Rec. Z200

Element layout

Two element layouts are equivalent if they are both NOPACK, both PACK, or both step. In the
latter case the pos in the one step must be equivalent to the pos in the other one (see below) and step
size must deliver the same values for the two element layouts.

Pos

A pos is equivalent to another pos if and only if both word occurrences deliver the same value, both
start bit occurrences deliver the same value and both length occurrences deliver the same value.

12.1.2.9 The relation altke

Two modes are alike if and only if they both are or both are not read-only modes and they both have novelty
nil or both have the same novelty and:

L J

»

they are integer modes;

they are boolean modes;

they are character modes;

they are similar set modes;

they are range modes with equal upper bounds and equal lower bounds;
they are powerset modes such that their member modes are alike:

they are bound reference modes such that their referenced modes are alike;
they are free reference modes;

they are row modes such that their referenced origin modes are alike;
they are procedure modes such that:

1. they have the same number of parameter specs and corresponding (by position) parameter
specs have alike modes and the same parameter attributes, if present;

2. they both have or both do not have a result spec. If present, the result specs must have alike
modes and the same attributes, if present:

3. they have the same list of exception names;
4. they have the same recursivity;
they are instance modes;
they are event modes such that they both have no event length or both have the same event length;
they are buffer modes such that:
1. they Both have no buffer length or both have the same buffer length;
2. they have buffer element modes which are alike;
they are association modes;
they are access modes such that:
1. they both have no index mode or both have index modes that are alike;

2. at least one has no record mode or both have record modes that are alike and that are both
static record modes or both dynamic record modes;

they are text modes such that:
1. they have the same text length;
2. their text record modes are alike;
3. their access modes are alike;

they are duration modes;

they are absolute time modes;

Fascicle X.6 — Rec. Z200 151

e they are string modes such that:

1.
2
3.

they both are bit string modes or both are character string modes;
they have the same string length;

they both are fixed string modes or both are varying string modes;

¢ they are array modes such that:

1.
2.
3.
4.

their index modes are alike;
their element modes are alike;
their element layouts are equivalent;

they have the same number of elements;

» they are siructure modes that are not parameterised structure modes such that:

1,

in the strict syntax they have the same number of fields and corresponding (by position) fields
are alike;

if they are both parameterisable variant structure modes, their lists of classes must be com-
patible;

e they are parameterised structure modes such that:

1.
2,

their origin variant structure modes are alike;

their corresponding {by position) values are the same.

Fi
12.1.2.10 The relation alike for fields

Two fields (both fields in the context of two given structure modes) are alike if and only if both fields are fixed
fields which are alike or both are alternative fields which are alike.

The relation alike is recursively defined for corresponding fixed fields, variant fields, alternative fields and
variant alternatives, respectively, in the following way:

e Fixed fields and variant fields

1.
2.
3.

Both fixed fields or variant fields must have equivalent field layout.
Both field modes must be alike.

Both fixed fields or variant fields must have the same name string attached.

o Alternative fields

1.

Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists
must have the same number of tag field names and corresponding (by position) tag field names
must denote corresponding fixed fields.

Both must have the same number of variant alternatives and corresponding (by position) variant
alternatives must be alike.

Both must have no ELSE specified or both must have ELSE specified. In the latter case, the
same number of variant fields must follow and corresponding (by position) variant fields must be
alike,

e Variant alternatives

1.

Both variant alternatives must have the same number of case label lists and corresponding (by
position) case label lists must either be both irrelevant, or both define the same set of values.

Both variant alternatives must have the same number of variant fields and corresponding (by
position) variant flelds must be alike.

12.1.2.11 The relation novelty bound

Informal

In a program, each quasi newmode must represent at most one real newmode. This is established as follows:
when a name string is bound to both a real and a quasi defining occurrence all the newmodes involved are
paired. The relation novelty bound is then established between novelties.

152

Fascicle X.6 — Rec. Z200

Definition

The relation novelty paired applies between two modes and a reach. For each name string bound in a reach
R to both a real and a quasi defining occurrence:

e if they are synonym names, then the root modes of their classes are novelty paired in R;
o if they are set element names, then the modes of the attached set modes are novelty paired in R;
e if they are location or loc-identity names, then their location modes are novelty paired in R;

e if they are procedure names, then the modes of the parameter specs and result spec, if present, are
novelty paired in R;

s if they are process names, then the modes of the parameter specs are novelty paired in R;

¢ if they are signal names, then the modes in the st of modes are novelty paired in R.

If two modes are novelty paired in a reach R, then:
e if they are powerset modes, their member modes are novelty paired in R;
o if they are bound reference modes, their referenced modes are novelty paired in R;
o if they are row modes, their referenced origin modes are novelty paired in R;

e if they are procedure modes, the modes of their parameter specs and result spec, if present, are
novelty paired in R;

¢ if they are buffer modes, their buffer element modes are novelty paired in R;

e if they are access modes, their index modes, if present, and record modes, if present, are novelty
paired in R;

» if they are text modes, their index modes, if present, are novelty paired in R;
o if they are array modes, their index modes and element modes are novelty paired in R;

» if they are structure modes, their field modes are novelty paired in R.

If two modes are novelty paired in a reach R and their novelties are not equal, then the real and quasi
novelties of the modes are novelty bound to each other in R.

Two novelties are considered the same if they are:

¢ the same real novelty, or

¢ a real novelty and a quasi novelty that are novelty bound.

12.1.2.12 The relation read-compatible
Informal

The relation read-compatible is relevant for equivalent modes. A mode M is said to be read-compatible
with a mode N if it or its possible (sub-)components have equal or more restrictive read-only specifications
and, if they are reference modes, refer to 1-equivalent locations. This relation is therefore non-symmetric.

Example:

READ REF READ CHAR is read-compatible with REF READ CHAR

Definition

A mode M is said to be read-compatible with a mode N (a non-symmetric relation) if and only if M and N
are equivalent and, if N is a read-only mode, then M must also be a read-only mode and further:

e if M and N are bound reference modes, the referenced mode of M must be I-equivalent with the
referenced mode of N;

» if M and N are row modes, the referenced origin mode of M must be I-equivalent with the referenced
origin mode of N;

Fascicle X.8 — Rec. Z200 153

® if M and N are array modes, the element mode of M must be read-compatible with the element
mode of N;

® if M and N are structure modes which are not parameterised structure modes, any field mode of M
must be read-compatible with the corresponding field mode of N. If M and N are parameterised
structure modes, the origin variant structure mode of M must be read-compatible with the origin
variant structure mode of N.

12.1.2.13 The relations dynamic equivalent and read-compatible
Informal

The relations 1. dynamic equivalent, 2. dynamic read-compatible, are relevant only for modes that can
be dynamic, i.e. string, array and variant structure modes. A parameterisable mode M is said to be 1.
dynamic equivalent, 2. dynamic read-compatible with a (possibly dynamic) mode N, if there exists a
dynamically parameterised version of M which is 1. equivalent, 2. read-compatible with N.

Definition

A mode M is 1. dynamic equivalent to a mode N, 2. dynamic read-compatible with a mode N (a non-
symmetric relation) if and only if one of the following holds:

¢ Mand N are string modes such that M(p) is 1. equivalent, 2. read-compatiblé with N, where p is the
(possibly dynamic) length of N. The value p must not be greater than the string length of M. This
check is dynamic if N is a dynamic mode. Check failure will result in a RANGEFAIL exception;

* Mand N are array modes such that M(p) is 1. equivalent, 2. read-compatible with N , where p is such
that NUM (p) — LOWER (M) + 1 is the (possibly dynamic) number of elements of N. The value P
must not be greater than the upper bound of M. This check is dynamic if N is 2 dynamic mode. Check
failure will result in & RANGEFAIL exception;

¢ Mis a parameterisable vdriant structure mode and N is a parameterised structure mode such that
M(p1,...,pn) is 1. equivalent, 2. read-compatible with N, where P1, -+, Pn denote the list of values
of N.

12.1.2.14 The relation restrictable
Informal

The relation restrictable is relevant for equivalent modes with the referencing property. A mode M is
said to be restrictable to a mode N if it or its possible (sub-)components refer to locations with equal or more
restrictive read-only specification than those referenced by N. This relation is therefore non-syrnumetric.

Example:

REF READ INT is restrictable to REF INT
STRUCT (P REF READ BOOL) is restrictable to STRUCT {(Q REF BOOL)

Definition

A mode M is restrictable to a mode N (a non-symmetric relation) if and only if M and N are equivalent and
further:

if M and N are bound reference modes, the referenced mode of M must be read-compatible with the
referenced mode of N;

e if M and N are row modes, the referenced origin mode of M must be read-compatible with the
referenced origin mode of N;

e if M and N are array modes, the element mode of M must be restrictable to the element mode of N;

¢ if M and N are structure modes, each field mode of M must be restrictable to the corresponding field
mode of N.

154 Fascicle X.8 - Rec. Z200

12.1.2.15 Compatibility between a mode and a class

Any mode M is compatible with the all class.

A mode M is compatible with the null class if and only if M is a reference mode or a procedure mode
or an instance mode. 7

A mode M is compatible with the N-reference class if and only if it is a reference mode and one of the
following conditions is fulfilled:

1. Nis astatic mode and M is a bound reference mode whose referenced mode is read-compatible
with N;

2. N is a static mode and M is a free reference mode;

3. M is a row mode whose referenced origin mode is dynamic read-compatible with N.
A mode M is compatible with the N-derived class if and only if M and N are similar.
A mode M is compatible with the N-value class if and only if one of the following holds:

1. if M does not have the referencing property, M and N must be v-equivalent;

2. if M does have the referencing property, M must be restrictable to N.

12.1.2.16 Compatibility between classes

Any class is compatible with itself.
The all class is compatible with any other class.
The null class is compatible with any M-reference class.

The null class is compatible with the M-derived class or M-value class if and only if M is a reference
mode, procedure mode or instance mode.

The M-reference class is compatible with the N-reference class if and only if M and N are equivalent.
H M and/or N is (are} a dynamic mode, the dynamic part of the equivalence check is ignored, i.e. no
exceptions can occur,

The M-reference class is compatible with the N-value class if and only if N is a reference mode and one
of the following conditions is fulfilled:

1. Mis a static mode and N is a bound reference mode whose referenced mode is equivalent to M.
2. M is a static mode and N is a free reference mode.
3. N is a row mode whose referenced origin mode is dynamic equivalent with M;

The M-derived class is compatible with the N-derived class or N-value class if and only if M and N are
similar.

The M-value class is compatible with the N-value class if and only if M and N are v-equivalent.

Two lists of classes are compatible if and only if both lists have the same number of classes and corresponding
(by position) classes are compatible.

12,2 VISIBILITY AND NAME BINDING

The definition of visibility and name binding is based on the following terminology:

name string: denotes a terminal string that has attached a canonical name string (see section 2.7) and
visibility properties;

name: denotes a simple name string associated with the defining occurrence that has created it (see
section 10.1);

name: denotes an applied occurrence of a name (with a possibly prefixed name string}.

Fascicle X.68 - Rec. Z200 155

12.2.1 Degrees of visibility

The binding rules are based on the visibility of name strings in the reaches of a program. Within a reach, each
name string has one of the following four degrees of visibility:

Visibility Properties (informal}
directly strongly Name string is visible by creation,
visible granting or seizing or inheritance

from spec to body

indirectly strongly | Name string is predefined or
visible inherited via block nesting

weakly visible Name string is implied by a strongly
visible name string

invisible Name string may not be applied

Table 1. Degrees of visibility

A name string is said to be strongly visible in a reach if it is either directly strongly visible or indirectly
strongly visible in that reach. A name string is said to be visible if it is either weakly or strongly visible,
in that reach. Otherwise the name string is said to be invisible in that reach. The program structuring
statements and visibility statements determine uniquely to which visibility class each name string belongs.

When a name string is visible in a reach, it can be directly linked to another name string in another reach,
or directly linked to a defining occurrence in the program. The rules for direct linkage are in section 12.2.3.
Notice that any application of a rule introduces 2 new direct linkage for a name string.

Based on direct linkage, the notion of (not necessarily direct) linkage is defined as follows:

A name string N;, visible in reach Ry, is said to be linked to name string N, in reach R or to defining
occurrence D, if and only if one of the following conditions holds:

¢ N in Ry is directly linked to N; in R, or to D. However, if Ny is directly linked to more than
one defining occurrence in Ry, then all but one of these defining occurrences are superfluous, and N is
linked to an arbitrary one of them in R,.

¢ Nj in R; is directly linked to some N in some R, and N in R is linked to Ny in R, or to D,

12.2.2 Visibility conditions and name binding
In each reach of a program, the following conditions must be satisfied:
¢ Ifa name string is strongly visible in a reach and has more than one direct linkage, then:

= 1t must be directly linked to defining occurrences only, and these defining occurrences must
define the same set elements of set modes that are similar, or

— it must be linked to exactly one real defining occurrence and one guasi defining occurrence.

A name string weakly visible in a reach, and linked as a weakly visible name string in that reach to defining
occurrences that do not define the same set element of similar set modes, 1s said to have a weak clash in that
reach.

156 Fascicle X.6 — Rec. 7200

A name siring NS, visible in reach R, is said to be bound in R to several defining occurrences according to
the following rules:

If NS is strongly visible in R, NS is bound to the defining occurrences to which it is linked in R
(as a strongly visible name string). If it is bound both to a quasi defining occurrence and a real
defining occurrence, then the guasi one is redundant and does not participate further to visibility and
name binding (i.e. it is not seized, granted, inherited and does not introduce implied names);

else, if NS is weakly visible in R, it is bound to the defining occurrences to which it is linked in R
(as a weakly visible name string), provided NS has no weak clash in R. (Weak clashes are allowed
in a reach if no name with a name string with a weak clash exists in the reach);

otherwise NS is not bound in R.

static condition: The name string attached to each name directly enclosed in a reach must be bound in

that reach.

binding of names: A name N with attached name string NS in a reach R is bound to the defining occurrences

to which NS is bound in R.

12.2.3 Visibility in reaches

12.2.3.1 General

A name string is directly strongly visible in a reach according to the following rules:

» the name string is seized into the reach (see 12.2.3.5);

¢ the name string is granted into the reach (see 12.2.3.4);

o there is a defining occurrence with that name string in the reach. In that case, the name string in the

reach is directly linked to the defining occurrence. (Note that the name string may be directly linked
to several defining occurrences in the reach.)

The reach is a 1. module body, 2. region body and the name string is directly strongly visible in the
reach of a corresponding 1. spec module, 2. spec region. The name string is directly linked to the
name string in the corresponding reach.

A name string which is not directly strongly visible in a reach is indirectly strongly visible in it according
to the following rules:

¢ The reach is a block, and the name string is strongly visible in the directly enclosing reach. The name

siring is sald to be inherited by the block, and is directly linked to the same name stzing in the directly
enclosing reach.

The reach is not a block in which the name string is inherited and the name string is a language (see
Appendix C.2) or implementation defined name string. The name string is considered to be directly
linked to a defiring occurrence in the reach of the imaginary outermost process definition for its prede-
fired meaning.

A name string which is not strongly visible in a reach is weakly visible in it if it is implied by a name
string which is strongly visible in the reach. The name string in the reach is directly linked to an implied
defining occurrence (see section 12.2.4).

Fascicle X.6 — Rec. Z200 157

12.2.3.2 Vistbility statements

syntax:
<visibility statement> ::= (1)
<grant statement> (1.1)
| <seize statement> (1.2)

semantics: Visibility statements are only allowed in modulion reaches and control the visibility of the name
strings mentioned in them and implicitly of their implied name strings.

static properties: A visibility statement has one or two origin reaches (see 10.2) and one or two destination
reaches attached, defined as follows:

o If the visibility statement is a seize stafement, its destination reach is the reach directly
enclosing the seize statement, and its origin reaches are the reaches directly enclosing that
reach.

o If the visibility statement is a grant statement, then its origin reach is the reach directly
enclosing the grant statement, and its destination reaches are the reaches directly enclosing
that reach.

12.2.3.3 Prefix rename clause

syntax:

< prefix rename clause> ::= (1)
(<old prefix> —> <new prefix>) | <postfix> (1.1)

<old prefix> = (2)
< prefix> {2.1)

| <empty> (2.2)

<new prefix> n= {3)
<prefix> (3.1)

| <empty> (3.2)

< postfix> = (4)
<seize postfix> { , <seize postfix> }* (4.1)

| <grant postfix> { , <grant postfix> }* (4.2)

derived syntax: A prefix rename clause where the postfix consists of more than one seize postfix (grant
postfix} is derived syntax for several prefix rename clauses, one for each seize postfix {(grant postfix),
separated by cominas, with the same old prefix and new prefix.

For example:
GRANT (p->gq)!a,b;
is derived syntax for
GRANT (p->q)la,{(p->q)!b;

semantics: Prefix rename clauses are used in visibility statements to express change of prefix in prefixed
name strings that are granted or sejzed. (Since prefix rename clauses can be used without prefix
changes—when both the old prefix and the new prefix are empty—they ate taken as the semantic
base for visibility statements).

158 Fascicle X.6 — Rec. Z200

static pro

perties: A prefix rename clause has one or two origin reaches attached, which are the origin
reaches of the visibilify statement in which it is written.

A prefix rename clause has one or two destination reaches attached, which are the destination
reaches of the visibility statement in which it is written.

A postfix has a set of name strings attached, which is the set of name strings attached to its seize
postfix or the set of name strings attached to its grant postfix. These name strings are the postfix
name strings of the prefix rename clause.

A prefix rename clause has a set of 0ld name strings and a set of new name strings attached. Each
postfix name string attached to the prefix rename clause gives both an old name string and a new
name string attached to the prefix rename clause, as follows: the new name string is obtained by
prefixing the postfix name string with the new prefix; the old name string is obtained by prefixing
the postfix name string with the old prefix.

When a new name string and an old name string are obtained from the same postfix name string,
the old name string is said to be the source of the new name string.

visibility rules: The new name strings attached to a prefix rename clause are strongly visible in their

destination reaches and are directly linked in those reaches to their sources in the origin reaches.
If the prefix rename clause is part of a seize (grant) statement, those name strings are seized (granted)
in their destination reach (reaches).

A name string NS is said to be seizable by modulion M directly enclosed in reach R if and only if
it is strongly visible in R and it is neither linked in R to any name string in the reach of M nor
directly linked to the defining occurrence of a predefined name string.

)

A name string NS is said to be grantable by modulion M directly enclosed in reach R if and only
if it is strongly visible in the reach of M and it is neither linked in it to any name string in R nor
directly linked in it to the defining occurrence of a predefined name string.

static conditions: If a prefix rename clause is in a seize statement directly enclosed in the reach of modulion

examples:

M then each of its old name strings must be:
¢ bound in the reach directly enclosing the reach of M and

e seizable by M.

If a prefix rename clause is in a grant statement directly enclosed in the reach of modulion M then
each of its old name strings must be:

¢ bound in the reach of M and
s+ grantable by M.

A prefix rename clause that occurs in & grant (seize) statement must have a postfix that is a grant
(seize) postfix.

25.35 (stack ! int —> stack)! ALL (1.1)

12.2.3.4 Grant statement

syntax:

< grant statement> = {1)
GRANT <prefix rename clause> { , <prefix rename clause> }* ; (1.1)
| GRANT <grant window> [<prefix clause> | ; (1.2)

Fascicle X.6 — Rec. Z200 159

< grant window> = _ (2)

<grant postfix> {, <grant postfix> }* (2.1}

< grant postfix> 1= (3)
<name string> (3.1)

| <newmode name string> <forbid clause> (3.2)

| [<prefix> !} ALL 7 (3.3)

< prefix clause> = {4)
PREFIXED [<prefix> | (4.1)

<forbid clause> = (5)
FORBID { <forbid name list> | ALL } (5.1)

<forbid name list> := {(6)
(<field name> { , <field name> }*) (6.1)

semantics: Grant statements are a means of extending the visibility of name strings in a modulion reach
into the directly enclosing reaches. FORBID can be specified only for newmode names which
are structure modes. It means that all locations and values of that mode have fields which may be
selected only inside the granting modulion, not outside.

The following visibility rules apply:

o If the grant statement contains prefix rename clause(s), the grant statement has the effect of
its prefix rename clause(s) (see section 12.2.3.3).

e If the grant statement contains grant windows, it is shorthand notation for a set of grant
statements with prefix rename clauses constructed as follows:

— For each grant postfix in the grant window, there is a corresponding grant statement.
~ The old prefix in their prefix rename clause is empty.

— The new prefix in their prefix rename clause is the prefix attached to the prefix clause
in the grant statement, or it is empty if there is no prefix clause in the original grant
statement.

— The postfix in the prefix rename clause is the corresponding postfix in the grant
window.

» The notation FORBID ALL is shorthand notation for forbidding all the field names of the
newmode name (see section 12.2.5).

¢ Ifa prefix rename clause in a grant statement has a grant postfix which contains a prefix and
ALL, then it is of the form:

(OP—>NP) | P I ALL

where OP and NP are the possibly empty old prefix and new prefix, respectively, and P is
the prefix in the grant postfix. The prefix rename clause is then shorthand notation for a
clause of the form:

(OP ! P->NP ! P)! ALL
static properties: A prefix clause has a prefix attached, defined as follows:
» If the prefix clause contains a prefix, then that prefix is attached.
» Otherwise the attached prefix is a simple prefix whose name string is determined as follows:

— If the reach directly enclosing the prefix is a module or region, then the name string
is the same as the one of the modulion name of that modulion.

— If the reach directly enclosing the prefix is a spec region or spec module, then the
name string is the name string in front of SPEC.

160 Fascicle X.6 — Rec. Z200

A grant postfix has a set of name strings attached, defined as follows:

e Ifit is a name string, or contains a newmode name string, then the set containing only that
name string.

o Otherwise, let OP be the (possibly empty) old prefix of the prefix rename clause in which the
grant postfix is placed, the set contains all name strings of the form OP ! N (i.e. obtained by
prefixing N with OP) for any name stzing N such that OP ! N is strongly visible in the
reach of the modulion in which the grant postfix is placed and grantable by this modulion.

static conditions: The newmode name string with forbid clause must be strongly visible in the reach R of
the modulion in which the grant statement is placed. The newmode name string must be bound
in R to the defining occitrrence of a newmode which must be a structure mode, and each field name
in the field name list must be a field name of that mode. The newmode defining accurrence must
be directly enclosed in R. All field names in a forbid name list must have different name strings.

If the grant statement is placed in the reach of a region or spec region, it must not grant a name
string which is bound in that reach to the defining occurrence of:

s a location name, or
e a loc-identity name, where the Jocation in its declaration is intra-regional, or
e a synonym name whose value is intra-regional.

The prefix rename clause in a gran{ statement must have a grant postfix.

If a grant statement contains a prefix clause which does not contain a prefix, then its directly
enclosing modulion must not be a context and,

e ifits directly enclosing modulion is a module or regior, then it must be named (i.e. it must
be headed by a defining occurrence followed by a colon);

o if its directly enclosing modulion is 2 spec module or a spec region, then it must be headed
by a simple name string.

examples:
257 GRANT (—> stack ! char) | ALL; (1.1)
6.44 gregorian. date, julian_day._number {2.1)

12.2.3.5 Seize statement

syntax:

<seige statement> ::= (1)

SEIZE <prefix rename clause> { , <prefix rename clause> }* ; (1.1)

| SEIZE <secize window> [<prefix clause>] ; (1.2)

< seize window> ;= (2)

<seize postfix> { , <seize postfix> }* (2.1)

< seize postix> 1= (3)

<name string > (3.1)

| [<prefix> !] ALL (3.2)

semantics: Seize statements are a means of extending the visibility of name strings in group reaches into the
reaches of directly enclosed modulions.

Fascicle X.6 — Rec. Z200 161

The following visibility rules apply:

» If the seize statement contains prefix rename clause(s), the seize statement has the effect of
its prefix rename clause(s) (see section 12.2.3.3).

e I the seize statement contains a seize window, it is shorthand notation for a set of seize
statements with prefix rename clauses constructed as follows:

— For each seize postfix in the seize window, there is a corresponding seize statement.

— The old prefix in their prefix rename clause is the prefix attached to the prefix clause
in the seize statement, or is empty if there is no prefix clause in the original seize
statement.

— The new prefix in their prefix rename clause is empty.

— The postfix in their prefix rename clause is the corresponding postfix of the seize
window,

o If a prefix rename clause in a seize statement has a seize postfix which contains a prefix and
ALL, then it is of the form:

(OP->NP) | P 1 ALL

where OP and NP are the possibly empty old prefix and new prefix, respectively, and P is
the prefix in the seize postfix. The prefix rename clause is then shorthand notation for a
clause of the form:

(OP ! P->NP ! P) ! ALL
static properties: A seize postfix has a set of name strings attached, defined as follows:
e If the seize postfix is a name siring, the set containing only the name string.

¢ Else, if the seize postfix is ALL, let OP be the (possibly empty) old prefix of the prefix
rename clause of which the seize postfix is part, the set contains all name strings of the form
OP !'S, for any name string S, such that OP ! § is strongly visible in the reach directly
enclosing the modulion in which the seize statement is placed and seizable by this modulion.

static conditions: The prefix rename clause in a seize statement must have a seize postiix,

If a seize statement contains a prefix clause which does not contain a prefix, then its directly enclosing
modulion must not be a context and,

e ifits directly enclosing modulion is 2 module or region, then it must be named (i.e. it must
be headed by a defining occurrence followed by a colon);

¢ if its directly enclosing modulion is a spec module or a spec Tegion, then it must be headed
by a simple name string.

examples:
25.35 SEIZE (stack ! int —> stack) ! ALL; (1.1)

12.2.4 Implied name strings

Each name string strongly visible in a reach R has a set of implied name strings, which may be weakly
visible in R,

Each mode has a possibly empty set of implied defining occurrences attached in a reach, as listed in Table 2.

Each name string NS, strongly wvisible in reach R, has a set of implied defining occurrences, defined as
follows, where D is one of the defining occurrences to which NS is bound in R:

* If D defines an access name of mode M, the implied defining occurrences of NS in R are those implied
in R by M.

e If D defines a mode name, the implied defining occurrences of NS in R are those implied in R by the
defining mode of the mode name.

162 Fascicle X.6 — Rec. Z200

s If D defines a procedure name, the implied defining occurrences of NS in R are those implied in R
by the modes of the parameter specs and the result spec of the procedure, if any.

e Il D defines a process name, the implied defining occurrences of NS in R are those implied in R by
the modes of the parameter specs, if any.

o If D defines a signal name, the implied defining occurrences of NS in R are all defining occurrences
implied in R by all modes attached to the signal.

e Otherwise the set is empty.

Modes Set of implied defining occurrences

INT, BOOL, CHAR, RANGE (...)
BIN (n), PTR, INSTANCE, EVENT, | Empty
ASSOCIATION, TIME, DURATION,
BOOLS (n), CHARS (n)

mode name The set of defining occurrences implied in R by its
defining mode

mode name (...) {parameterised) The set of defining occurrences impled in R by mode name

M{m:n), REF M, ROW M, READ M | The set of defining occurrences implied in R by M
POWERSET M, BUFFER M

TEXT {...) M

SET (...) The set of set element defining occurrences in the mode

PROC (My,M,)(Mas1) The union of the sets of the defining occurrences
implied in R by My through M, 1

ARRAY (M) N, ACCESS (M) N The union of the sets of the defining occurrences

implied in R by M, and N

The union of the sets of defining occurrences
STRUCT (N, My ,...,No M, } implied in R by M; for fields that are visible in R.
For variant structures it is the union of

the defining cccurrences implied in R by the

fields of the variant structure that are visible in R

Table 2. Implied defining occurrences of modes in reach R

If & name string NS, strongly visible in a reach R, has implied defining occurrences, each of those defining
occurrences specifies an implied name string for NS in R: let D be a defining occurrence implied by NS in R
and let Ni be the name string of D. There are two cases:

e NSis a simple name string. Then Ni is an implied name string of NS.

e NSis of the form P !5, where § is a simple name string., Then P ! Ni is an implied name string of NS.

examples:
m: MODULE
DCL x SET (on, off);
GRANT x PREFIXED;
END;

7

/* m ! x visible here with implied m ! on, m ! off »/

Fascicle X.6 — Rec. Z200 163

12.2.5 Visibility of field names

Field names may occur only in the following contexts:
s structure fields and value structure fields,
o labelled structure tuples,
¢ forbid clauses in grant statements.

In each of these cases, the name string of the field name can be bound to a field name defining occurrence in
the mode M or in the defining mode of M, obtained as follows:

* M is the mode of the structure location or (stroung) structure primitive value;
® M is the mode of the structure tuple;

¢ M is the mode of the defining occurrence to which the newmode name string is bound in the reach in
which the forbid clause is placed.

However, if the novelty of M is a defining occurrence that defines a newmode name that has been granted
by a grant statement in a modulion as a grant postfix with a forbid clause, then the field names mentioned in
the forbid name list are only visible:

* in the group of the granting modulion,

* if the novelty of M is novelty bound to a quasi novelty N, then in the group of the reach in which
N is directly enclosed,

* if the modulion is a module spec or region spec, then in the reach of the corresponding modulion.

Outside these reaches the field names mentioned in the forbid name list are invisible and cannot be used.

12.3 CASE SELECTION

syntax:

<case label specification> 1= (1)
<case label list> { , <case label Iist> }* (1.1)

<case label list> 1= {2)
(<case label> {, <case label> }*) {2.1)

| <irrelevant> (2.2)

<case label> 1= (3)
<discrete literal expression> (3.1)

| <literal range> (3.2)

| <discrete mode name> (3.3)

| ELSE (3.4)
<irrelevant> .= (4)

(+) (4.1)

semantics: Case selection is a means of selecting an alternative from a list of alternatives. The selection is
based upon a specified list of selector values. Case selection may be applied to:

¢ alternative fields (see section 3.12.4), in which case a list of variant fields is selected,

* labelled array tuples (see section 5.2.5), in which case an array element value is selected,
e conditional expressions (see section 5.3'.2), in which case an expression is selected,

¢ case action (see section 6.4}, in which case an action statement list is selected.

In the first, third and fourth situations, each alternative is labelled with a case label specification; in
the labelled array tuple, each value is labelled with a case lahel list. For ease of description, the case
label list in the labelled array tuple will be considered in this section as a case label specification
with only one case label list occurrence.

164 Fascicle X.6 — Rec. Z200

Case selection selects that alternative which is labelled by the case label specification which matches
the list of selector values. (The number of selector values will always be the same as the number of
case label list occurrences in the case label specification.) A list of values is said to maitch a case
label specification if and only if each value matches the corresponding (by position) case label list
in the case label specification.

A value is said to match a case label list if and only if:

o the case label list consists of case labels and the value is one of the values explicitly indicated
by one of the case labels or implicitly indicated in the case of ELSE;

e the case label list consists of Irrelevant.

The values explicitly indicated by a case label are the values delivered by any discrete literal ex-
Dression, or defined by the literal range or discrete mode name. The values impliciily indicated by
ELSE are zll the possible selector values which are not explicitly indicated by any associated case
label list (i.e. belonging to the same selector value) in any case label specification.

static properties:

e An alternative fields with case label specification, a labelled array tuple, a conditional expres-
sion, or a case action has a list of case label specifications attached, formed by taking the case
label specification in front of each variant alternative, value or case alternative, respectively.

s A case label has a class attached, which is, ifit is a discrete Iiteral expression, the class of the
discrete literal expression; if it is a literal range, the resulting class of the classes of each
discrete literal expression in the literal range; if it is a discrete mode name, the resulting
class of the M-value class where M is the discrete mode name; if it is ELSE, the all class.

o A case label list has a class attached, which is, if it is irrelevant, then the all class, otherwise
the resulting class of the classes of each case label,

e A case label specification has a list of classes attached, which are the classes of the case label
lists.

o A list of case label specifications has a resulting List of classes attached. This resulting
list of classes is formed by comstructing, for each position in the list, the resulting class
of all the classes that have that position.

A Hst of case label specifications is complete if and only if for all lists of possible selector values, a
case label specification is present, which matches the list of selector values. The set of all possible
selector values is determined by the context as follows:

s For a tagged variant structure mode it is the set of values defined by the mode of the
corresponding tag field.

o For a tag-less variant structure mode it is the set of values defined by the root mode of
the corresponding resulting class (this class is never the all class, see section 3.12.4).

o For an array tuple, it is the set of values defined by the index mode of the mode of the array
tuple.

¢ For a case action with a range list, it is the set of values defined by the corresponding discrete
mode in the range list.

s For a case action without a range list, or a conditional expression it is the set of values defined
by M where the class of the corresponding selector is the M-value class or the M-derived class.

static conditions: For each case label specification the number of case label list occurrences must be equal.
For any two case label specification occurrences, their lists of classes must be compatible.

The list of case label specification occurrences must be consistent, i.e. each list of possible selector
values matches at most one case label specification.

examples:
11.9 {occupied) (2.1)
11.58 (rook),(*) (1.1)
8.26 (ELSE) (2.1)

Fascicle X.6 — Rec. 7200 165

12.4 DEFINITION AND SUMMARY OF SEMANTIC CATEGORIES

This section gives a summary of all semantic categories which are indicated in the syntax description by means
of an underlined part. If these categories are not defined in the appropriate sections, the definition is given

here, otherwise the appropriate section will be referenced.

12.4.1 Names
Mode names

absolute time mode name:

access mode name:

array mode name:

assoclation mode name:

boolean mode name:

bound reference mode name:

buffer mode name:

character mode name:

discrete mode name:
duration mode name:
event mode name:

free reference mode name:

instance mode name:
integer mode name:
mode name:
newmode name:

a name defined to be an absolute time mode.
a name defined to be an access mode.

a name defined to be an array mode.

a namte defined to be an association mode.

a name defined to be a boolean mode.

a name defined to be a bound reference mode.
a name defined to be a buffer mode.

a name defined to be a character mode.

a name defined to be a discrete mode.

a name defined to be a duration mode.

a name defined to be an event mode.

a name defined to be a free reference mode.
a name defined to be an instance mode.

a name defined to be an integer mode.

see section 3.2.1

see section 3.2.3

a name defined to be a parameterised array mode.

parameterised array mode name:
parameterised string mode name:
paiameterised structure mode name:

a name defined to be a parameterised string mode.
a name defined to be a parameterised structure mode.

powerset mode name:
procedure mode name:

range mode name:
Iow mode name:

set_mode name:
string mode name:
structure mode name:

synmode name:
variant structure mode name:

Access names

location name:
location do-with name:
location enumeration name:

loc-identity name:

Value names

boolean literal name:

emptiness literal name:
synonym name:
value do-with name:

value enumeration name:
value receive name:

166 Fascicle X.6 — Rec. Z200

a name defined to be a powerset mode.

a name defined to be a procedure mode.

a name defined to be a range mode.

a name defined to be a row mode.

a name defined to be a set mode.

a name defined to be a string mode.

a name defined to be a structure mode.

see section 3.2.2

a name defined to be a variant structure mode,

see sections 4.1.2,
see section 6.5.4.
see section 6.5.2.
see sections 4.1.3.

see section 5.2.4.3.

see section 5.2.4.6.

see section 5.1.

see section 6.5.4.

see section 6.5.2.

see sections 6.19.2, 6.19.3.

Miscellaneous names

bound reference location name:

built-in rovtine name:

free reference location name:

general procedure name:
Iabel name:

newmode name string:

Don-reserved name:

procedure name:
EIOCCSS name:

set element name:
signal name:

tag field name:

undefined synonym name:

12.4.2 Locations

access location:
array location:
assoclation location:

character string location:
buffer Iocation:

discrete location:
event location:
instance location:
static mode Jocation:
string location:
structure location:

text location:

12.4.3 Expressions and values

absclute time primitive value:

BITAY eXpression:
array primitive value:
boolean expression:

bound reference primitive value:

character string expression:

a location name with a bound reference mode.

any CHILL or implementation defined name denoting a built-in
routine.

a Jocation name with a free reference mode.
a procedure name whose generality is general.
see sections 6.1, 10.6.

a name string bound to the defining occurrence of a newmode
name.

a name which is none of the reserved names mentioned in Ap-
pendix C.1.

see section 10.4,
see section 10.5.
see section 3.4.5.
see section 11.5.
see section 3.12.4.
see section 5.1.

a location with an access mode.

a location with an array mode.

a location with an association mode.
a location with a character string mode.
a location with a buffer mode.

a location with a discrete mode.

a location with an event mode.

a location with an instance mode.

a location with a static mode.

a location with a string mode.

a Jocation with a structure mode.

a location with a text mode.

a primitive value whose class is compatible with an absolute
time mode.

an expression whose class is compatible with an array mode.
a primitive value whose class is compatible with an array mode.
an expression whose class is compatible with a boolean mode.

a primitive value whose class is compatible with a bound refer-
ence mode,

an expression whose class is compatible with a character string
mode.

Fascicle X.6 —~ Rec. Z200 167

constant value:

discrete expression:
discrete literal expression:
duration primitive value:

free reference primitive value:

instance primitive value:

integer expression:
integer literal expression:

powerset expression:
procedure primitive value:

reference primitive value:

row primitive value:
string expression:

siring primitive value:
structure primitive value:

a value which is constant.

an expression whose class is compatible with a discrete mode.
a discrete expression which is literal.

a primitive value whose class is compatible with a duration
mode.

a primitive value whose class is compatible with a free reference
mode.

a primitive value whose class is compatible with an instance
mode.

an expression whose class is compatible with an integer mode.
an jnteger expression which is literal.

an expression whose class is compatible with & powerset mode.
a primitive value whose class is compatible with a procedure
mode.

a primitive value whose class is compatible with either a bound
reference mode, a free reference mode or a row mode.

a primitive value whose class is compatible with a row mode.
an expression whose class is compatible with a string mode.

a primitive value whose class is compatible with a string mode.
a primitive value whose class is compatible with a structure
mode.

12.4.4 Miscellaneous semantic categories

168

array mode:

discrete mode:

location built-in routine call:
location procedure call:
non-reserved character:
non-special character:

string mode:
value built-in routine call:
yalue procedure call:

Fascicle X.68 - Rec. Z200

a mode in which the compesite mode is an array mode.

a mode in which the non-composite mode is a discrete mode.
see section 6.7

see section 6.7

a character which is neither a quote () nor a circumflex ().

a character which is neither a circumflex (") nor an open paren-
thesis ().

a mode in which the composite mode is a string mode.

see section 6.7

see section 6.7

13 IMPLEMENTATION OPTIONS

131 IMPLEMENTATION DEFINED BUILT-IN ROUTINES

semantics: An implementation may provide for a set of implementation defined built-in routines in addition
to the set of langnage defined built-in routines.

The parameter passing mechanism is implementation defined.

predefined names: The name of an implementation defined built-in routine is predefined as a built-in
routine name.

static properties: A built-in routine name may have a set of implementation defined exception names
attached. A built-in routine call is a value (location) built-in routine call if and only if the
implementation specifies that for a given choice of static properties of the parameters and the given
static context of the call, the built-in routine call delivers a value (location). ‘

The implementation specifies also the regionality of the value (location).

13.2 IMPLEMENTATION DEFINED INTEGER MODES

An implementation defines the upper bound and lower bound of the integer mode INT. An implementation
may define integer modes other than the ones defined by INT; e.g. short integers, long integers, unsigned
integers. These integer modes must be denoted by implementation defined integer mode names. These names
are considered to be newmode names, similar to INT. Their value ranges are implementation defined. These
integer modes may be defined as root modes of appropriate classes,

13.3 IMPLEMENTATION DEFINED PROCESS NAMES

An implementation may define a set of implementation defined process names; i.e. process names whose
definition is not specified in CHILL. The definition is considered to be placed in the reach of the imaginary
outermost process or in any context. Processes of this name may be started and instance values denoting such
processes may be manipulated.

13.4 IMPLEMENTATION DEFINED HANDLERS

An implementation may specify that an implementation defined handler is appended to a process definition;
such a handler may handle any exception.

13.5 IMPLEMENTATION DEFINED EXCEPTION NAMES

An implementation may define a set of exception names.

13.6 OTHER IMPLEMENTATION DEFINED FEATURES
* Static check of dynamic conditions (see section 2.1.2)
e implementation directive (see section 2.6)
» text reference name (see sections 2.7 and 10.10.1)
¢ default recursivity and generality (see sections 3.7 and 10.4)
o set of values of duration modes (see section 3.11.2)
» set of values of absoluie time modes (see section 3.11.3)

o default element layout (see section 3.12.3)

Fascicle X.6 — Rec. Z200 169

® comparison of tag-less variant structure values (see section 3.12.4)
. number of bits in a word (see section 3.12.5)
¢ minimum bit occupancy (see section 3.12.5) _
¢ additional referable (sub-)locations (see section 4.2.1))

¢ semantics of a location do-with name and yalue do-with name which is a variant field of a tag-less
variant structure location (see sections 4.2.2 and 5.2.3)

® semantics of variant fields of tag-less variant structures (see section 4.2.10,5.2.13 and 6.2)
¢ semantics of Jocation conversion (see section 4.2.13)

* semantics of expression conversion and additional conditions (see section 5.2.11)
* additional actual parameters in a start expression (see section 5.2.14)

» ranges of values for literal and constant expressions (see section 5.3.1)

* scheduling algorithm (see sections 6.15, 6.18.2, 6.18.3, 6.19.2 and 6.19.3)

¢ releasing of storage in TERMINATE (see section 6.20.4) |

* denotation for files (see section 7.1)

® operations on associations (see sections 7.1 and 7.2.1)

® non-exclusive associations (see section 7.1)-

* additional attributes of association values (see section 7.2.2)

* semantics of asspciate parameters (see section 7.4.2)

» ASSOCIATEFAIL exception (see section 7.4.2)

» semantics of modify parameters (see section 7.4.5)

* CREATEFAIL, DELETEFAIL and MODIFYFAIL exception (see section 7.4.5)
¢ CONNECTFAIL exception (see section 7.4.6)

* semantics of reading of records that are not legal values according to the record mode (see section 7.4.9)
¢ additional timeoutable actions (see section 9.2)

» TIMERFAIL exception (see sections 9.3.1, 9.3.2 and 9.3.3)

® precision of duration values (see sections 9.4.1 and 9.4.2)

* indication of constant value in quasi synonym definitions (see section 10.10.3)

* regionality of built-in routines (see section 11.2.2).

170 Fascicle X.6 — Rec. Z200

APPENDIX A: CHARACTER SET FOR CHILL

The character set of CHILL is an extension of the CCITT Alphabet No. 5, International Reference Version,

Recommendation V3. For the values whose representations are greater than 127, no graphical representation is
defined.

The integer representation is the binary number formed by bits bg to by, where by is the least significant bit.

bybgbs | 000 | 001 | 010 | 011 | 100 | 101 110 | 111

bababsbs o | 1| 2] 3| 45 | 6|7
0000 0 | NUL gfg) se| o | @l p | < |o»
0001 1 (ES}}) DC; | ! 1 | A | Q@] a| «
0010 2 (Ef}';’) DC, | » 2 | B | R | b | 1
0011 3 (F'EF%) DG; | # | 3 | € | S | ¢ | s
0100 4 gg;) DC. | $ 4 | D| T | 4|t
0101 5 é’;’g) (Efli) % | 5 | E| U | e | u
0110 6 (fgﬁ) gfb?) & | 6 | F | V1| v
0111 7 | BEL (Tﬁ};’) ’ 7| ¢ | W] s | w
1000 8 ?BES‘i can| | s | #] x| pn | x
1001 9 g}) EM |) 9 I | Y | i y
1010 10 Ez) SUB | * : h I A z
1011 11 f“%‘) Esc| + | 5 | x| [| x| {
1100 12](FFEF‘*) (I,_;S;) ; <t 1 |\ 1 |
1101 13 Eﬁf} {I(?g) -l =M |1 | m}?}
1110 14 | so (11;?;) . > | N | - n -
1111 15 | sI (ﬁf;) / 2 | o | _ o | DEL

Fascicle X.6 — Rec. Z200 171

APPENDIX B:

SPECIAL SYMBOLS

AND CHARACTER COMBINATIONS

et ""'\i-__,r-q\._Jn-\..

A

>

+ Vv

/!

=
<>

*/

»

n»

B7
D’
Hﬁ
O?

left parenthesis
right parenthesis
left square bracket
right square bracket
left tuple bracket
right tuple bracket
colon

dot

assignment symbol
less than

less than or equal
equal

not equal

greater than or equal
greater than

plus

minus

asterisk

solidus
double solidus
arrow

diamond
comment opening
comment closing
apostrophe

quote

double quote
prefixing operator
literal qualification
literal qualification
literal qualification
literal qualification
line end

Name Use
; semicolon terminator for statements etc.
comma separator in various constructs

opening parenthesis of various constructs
closing parenthesis of various constructs
opening bracket of a tuple

closing bracket of a tuple

opening bracket of a juple

closing bracket of a tuple

label indicator, range indicator

field selection symbol

assignment, initialisation

relational operator

relational operator

relational operator, assignment,
imtialisation, definition indicator
relational operator

relational operator

relational operator

addition operator

subtraction operator

multiplication operator, undefined value,
unnamed value, irrelevant symbol
division operator

concatenation operator

referencing and dereferencing,

prefix renaming

start or end of a directive clause
bracket stari of a comment

bracket end of a comment

start or end symbol in various literals
start or end symbol in character string
literals

quote within character string litezals
prefixing of names

binary base for literal

decimal base for literal

hexadecimal base for literal

octal base for literal

line end delimiter of in-line comments

172

Fascicle X.6 — Rec. Z200

APPENDIX C:

C.1 RESERVED SIMPLE NAME STRINGS

ACCESS
AFTER
ALL
AND
ANDIF
ARRAY
ASSERT
AT

BEGIN
BIN
BODY
BOOLS
BUFFER
BY

CASE
CAUSE
CHARS
CONTEXT
CONTINUE
CYCLE

DCL
DELAY
Do

DOWN
DYNAMIC

ELSE
ELSIF

SPECIAL SIMPLE NAME STRINGS

END

ESAC

EVENT

EVER
EXCEPTIONS
EXIT

FI
FOR
FORBID

GENERAL
GOTO
GRANT

IF

IN

INIT
INLINE
INOUT

LOC

MOD
MODULE

NEWMODE
NONREF
NOPACK

NOT

oD
OF
ON
OR
ORIF
ouT

PACK

POS
POWERSET
PREFIXED
PRIORITY
PROC
PROCESS

RANGE
READ
RECFEIVE
RECURSIVE
REF
REGION
REM
REMOTE
RESULT
RETURN
RETURNS
ROW

SEIZE

Fascicle X.6 — Rec. Z200

SEND
SET
SIGNAL
SIMPLE
SPEC
START
STATIC
STEP
STOP
STRUCT
SYN
SYNMODE

TEXT
THEN
THIS
TIMEOUT
TO

up

VARYING

WHILE
WITH

XOR

173

C.2 PREDEFINED SIMPLE NAME STRINGS

ABS

ABSTIME
ALLOCATE
ASSOCIATE
ASSOCIATION

BOOL

CARD
CHAR
CONNECT
CREATE

DAYS
DELETE
DISCONNECT
DISSOCIATE
DURATION

EOLN
EXISTING
EXPIRED

FALSE
FIRST

GETASSOCIATION
GETSTACK
GETTEXTACCESS
GETTEXTINDEX
GETTEXTRECORD
GETUSAGE

HOURS

INDEXABLE
INSTANCE

INT

INTTIME
ISASSOCIATED

LAST
LENGTH
LOWER

MAX

174 Fascicle X.6 — Rec. Z200

MILLISECS
MIN
MINUTES
MODIFY

NULL
NUM

OUTOFFILE

PRED
PTR

READABLE
READONLY
READRECORD
READTEXT
READWRITE

SAME
SECS
SEQUENCIBLE

SETTEXTACCESS
SETTEXTINDEX
SETTEXTRECCRD
SIZE

5UCC

TERMINATE
TIME
TRUE

UPPER
USAGE

VARIABLE

WAIT

WHERE
WRITEABLE
WRITEONLY
WRITERECORD
WRITETEXT

C.3 EXCEPTION NAMES

ALLOCATEFATL -
ASSERTFAIL
ASSOCIATEFAIL
CONNECTFAIL
CREATEFAIL
DELAYFAIL
DELETEFAIL
EMPTY
MODIFYFAIL
NOTCONNECTED

NOTASSOCIATED
OVERFLOW
RANGEFAIL
READFAIL
SENDFAIL
SPACEFAIL
TAGFAIL
TEXTFAIL
TIMERFAIL
WRITEFAIL

Fascicle X.6 — Rec. Z200

175

APPENDIX D: PROGRAM EXAMPLES

1. Operations on integers

I integer_ operations:
2 MODULE
3
4 add:
5 PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
] RESULT i+j;
7 END add;
8
9 mult:
10 PROC (ij INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
11 RESULT jixj;
12 END mult;
13
14 GRANT add, mult;
I5 SYNMODE operand_mode=INT;
16 GRANT operand_ mode;
17 SYN neutral_for_add=20,
18 neutral_for_muli=1;
19 GRANT neutral_for_add,
20 neutral_for_ mult;
21

22 END integer_ operations;

2. Same operations on fractions

1 fraction_operations:
2 MODULE
3 NEWMODE fraction=STRUCT (num,denum INT);
4
5 add:
6 PROC (f1,f2 fraction) RETURNS (fraction) EXCEPTIONS (GVERFLOW);
7 RETURN [fI.num«f2.denum+12. numf1.denum,fl.denum 2. denum;
8 END add;
9
i0 mult:
11 PROC (f1,£2 fraction) RETURNS (fraction) EXCEP TIONS (OVERFLOW);
12 RETURN [fl.numf2.num £2.denum +f1.denum];
13 END mault;
14
15 GRANT add, mult;
16 SYNMODE operand_ mode=fraction;
17 GRANT operand_mode;
18 SYN neutral_for..add fraction=[0,1],
19 neutral_for_ mult fraction=[1,1);
20 GRANT neutral_for_add,
21 neutral_for_ mult;
22
23 END fraction_operations;

176 Fascicle X.6 — Rec. Z200

3.

Same operations on complex numbers

1 complex. operations:
2 MODULE
3 NEWMODE complex=STRUCT (re,im INT);
4
5 add:
6 PROC (cl,c2 complex) RETURNS (complex) EXCEPTIONS (OVERFLOW);
7 ' RETURN |[cl.re+c2.7e,cl.im+c2.im);
8 END add;
9
10 mult:
11 PROC (cl,¢2 complex) RETURNS (complex) EXCEPTIONS (OVERFLOW);
12 RETURN [cl.rexc2.re—cl.im*c2.im,cl.rexc2.im+cl.im#c2.re);
13 END mult;
14
15 GRANT add, mult;
16 SYNMODE operand.. mode=complex;
17 GRANT operand_mode;
18 SYN neutral . for_ add=complex [0,0,
18 neutral_for_ muli=complex [1,0];
20 GRANT neutral_for_add,
21 neutral_for_ mult;
22

23 END complex_operations;

General order arithmetic

1 general_order. arithmetic: /* from collected algorithms from CACM no. 93 #/
2 MODULE
3 op:
4 PROC (a INT INOUT, b,c,order INT)
8 EXCEPTIONS (wrong_input) RECURSIVE;
6 DCL d INT;
7 ASSERT b>0 AND c>0 AND order>0
8 ON (ASSERTFAIL):
9 CAUSE wrong.input;

10 END;

11 CASE order OF

iz (1): a := b+c;

13 RETURN;

14 {2): d:=0;

15 (ELSE): d := I;

16 ESAC;

17 DO FOR i:=1TO ¢

18 op (a,b,d,order-1);

18 d:=a;

20 oD;

21 RETURN;

22 END op;

23 .

24 GRANT op;

25

26 END general_order_ arithmetic;

Fascicle X.6 — Rec. Z200

177

5. Adding bit by bit and checking the result

1 add_bit_by_ bit:
2 MODULE
3 adder:
4 PROC (a STRUCT (a2,al BOOL) IN, b STRUCT (b2,b1 BOOL) IN)
5 RETURNS (STRUCT (c4,c2,c1 BOOL));
8 DCL ¢ STRUCT (c4,c2,c1 BOOL);
7 DCL k2,x,w,t,5,r BOOL;
8 DO WITH a,b,c;
9 k2 := al AND bil;
10 ¢l := NOT k2 AND (al OR bi1);
11 x:= a2 AND b2 AND k2;
12 w:= a2 OR b2 OR k2
13 t:= b2 AND k2;
14 s:= a2 AND kz;
15 r:=a2 AND b2;
16 ¢d:=r OR s OR t;
17 ¢2:=x OR (w AND NOT c4);
18 OD;
19 RETURN c;
20 END adder;
21 GRANT adder;
22 END add_bit_by_bit;
23
24 exhaustive_ checker:
25 MODULE
26 SEIZE adder;
27 DCL a STRUCT (a2,al BOOL),
28 b STRUCT (b2,b1 BOOL);
29 SYNMODE res=ARRAY (1:16) STRUCT (c4,c2,c1 BOOL);
30 DCL 1 INT, results res;
31 DO WITH a,b;
32 r:i=10
33 DO FOR a2IN BOOIL;
34 DO FOR al IN BOOL;
35 DO FOR bh2IN BOOL;
36 DO FOR b1 IN BOOL;
37 +:=1;
38 results (r) := adder (a,b);
39 OD;
40 OD;
41 OD;
42 oD;
43 oD,
44 ASSERT
45 results==res [[FALSE,FALSE,FALSE),[FALSE,FALSE, TRUE],
48 [FALSE,TRUE,FALSE] ,[FALSE, TRUE,TRUE),
47 [FALSE,FALSE, TRUE | ,[FALSE,TRUE,FALSE],
48 (FALSE,TRUE,TRUE] ,[TRUE,FALSE,FALSE],
49 (FALSE,TRUE,FALSE | [FALSE,TRUE,TRUE],
50 [TRUE,FALSE,FALSE | ,(TRUE,FALSE, TRUE],
51 [FALSE,TRUE,TRUE) ,[TRUE,FALSE,FALSE],
52 [TRUE,FALSE,TRUE] ,[TRUE,TRUE,FALSE]];
53 END exhaustive_ checker;

178 Fascicle X.8 — Rec. 7200

6. Playing with dates

1 playing_with_dates:

2 MODULE/* from collected algorithms from CACM no. 199 +/

3 SYNMODE month=SET (jan,fcb,mar,apr,may,jun,

4 Jul,aug,sep,oct,nov,dec);

5 NEWMODE date=STRUCT (day INT {1:31), mc month, year INT);
6
7
8

gregorian_date:

PROC (julian_day_number INT) RETURNS (date);

g DCL j INT := julian_day_number,
10 d,m,y INT;
11 j- = 1_721_119;
12 yi=(4+j-1)/146_097;
13 ji=d4%j—1-146_097 * y;
14 di=j/4
15 ji=(4»d+ 3)/1_461;
16 di=4xd+3-1_461 xj;
17 d:=(d+4) /4
18 m:=(5+xd-3) /153
18 d:=5+«d-3-153 *m;
20 d:=(d+3)/5
21 y:=100xy +j;
22 IF m<100 THEN m + := 3;
23 ELSE m-~:=8;
24 y+i=1
25 FI1;
26 RETURN [d,month (m+1), y];
27 END gregorian_date;
28
29 Julian_day_number:
30 PROC (d date) RETURNS (INT);
31 DCL ¢,y,m INT;
32 DO WITH d;
33 m := NUM (mo)+1;
34 IF m>2 THEN m - := 3;
35 ELSEm+:=9;
36 year —:= 1;
37 F1;
38 ¢ := year/100;
39 ¥ := year—100xc;
40 RETURN (146_097+c)/44-(1_461+y)/4
41 +(153+m+c)/5+day+1_T21_119;
42 OD:
43 END julian_day_number;
44 GRANT gregorian_date, julian_day_number;
45 END playing_with_dates;
45
47 ftest:
48 MODULE
49 SEIZE gregorian_date, julian._ day_ number;
50 ASSERT julian_day_number {[10,dec,1979 |)=julian_day_number
51 (gregorian_date(julian_day_number([10,dec,19791)});
52 END test;

Fascicle X.6 — Rec. Z200 179

7. Roman numerals

! Roman:
2 MODULE
3 SEIZE n,rn;
4 GRANT convert;
5 convert:
"6 PROC () EXCEPTIONS (string_too_small);
7 DCL r INT := 0;
8 DO WHILE r>=1. 000;
g nfr) := M’;
10 n-:=1.000
11 I+ :=1;
12 oD,
13 IF n>500 THEN ra{r) := ’D’;
14 n - = 500;
15 r+:=1
16 FI;
17 DO WHILE n>=100;
18 mfr) :='C%
19 n - :=100;
20 r-:=1
21 OoD;
22 IF n>=50 THEN ra(z) := 'L}
23 R — = 50;
24 r+4+:=1;
25 FI1,
26 DO WHILE n>=10;
27 m(r) =X’
28 n - = 10;
29 r+:=1;
30 OD;
31 IF n>=5 THEN rn{r) := 'V
32 n - = 5;
33 I+ =1
34 FI;
35 DO WHILE n>=1;
36 m(r) ;= T;
37 n-:=1;
38 r+:=1;
39 OoD;
40 RETURN;
41 END ON (RANGEFAIL): DO FOR i := 0 TO UPPER {n);
42 mfi) ;=7
43 0D;
44 CAUSE siring_ too_small;
45 END convert;
46 END ERoman;
47 test:
45 MODULE
49 SEIZE convert;
50 DCL n INT INIT := 1979;
51 DCL rn CHARS (20) INIT := (20)°
52 GRANT n,rn;
53 convert ();
54 ASSERT mn="MDCCCCLXXVIII"//(6) >
55 END test;

180 Fascicle X.6 — Rec. Z200

8.

10.

Counting letters in a character string of arbitrary length

1 letter_ count:
2 MODULE
3 SEIZE max;
4 DCL letter POWERSET CHAR INIT := [’A’: 'Z%;
5 count:
6 PROC (input ROW CHARS (max) IN, output ARRAY ("A"°Z’) INT OUT);
7 output := [(ELSE) : 0];
8 DO FOR i := 0 TO UPPER (input —>);
9 IF input —> (i) IN letter
10 THEN
11 output (input -> (i}) 4 := I1;
12 FI;
13 OD;
14 END count;
15 GRANT count;
16 END letter_ count;
17 test:
18 MODULE
19 SYNMODE results=ARRAY ("A’Z’)INT;
20 DCL ¢ CHARS (10) INIT := "A-B<ZAAIK'”;
21 DCL ocutput resulis;
22 SYN max=10_000;
23 GRANT max;
24 SEIZE count;
25 count {~> c,output);
26 ASSERT output=results {("A’) : 3,("B’,’K’,’Z’) : 1, (ELSE) : 0};
27 END test;

Prime numbers

prime:
MODULE

1
2
3
4 SYN max = H'TFFF; '

5 NEWMODE number_list =POWERSET INT {2:max);
6 SYN empty = number..list [];

7 DCL sieve number_list INIT := [2:max],

8 primes number_list INIT := empty;

9 GRANT primes;
10 DO WHILE sieve/=empiy;
11 primes OR := [MIN (sieve)];
12 DO FOR j := MIN (sieve) BY MIN (sieve) TO max;
13 sieve — := [j];
14 OoD;
15 OD;

16 END prime;

Implementing stacks in two different ways, transparent to the user

I stack: MODULE

2 NEWMODE element =STRUCT (a INT, b BOOL);
3 stacks_1:

4 MODULE

Fascicle X.6 — Rec. Z200

181

182

[y
D W oo =W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

SEIZE clement;

SYN max=10_000,min=1;

DCL stack ARRAY (min : max) element,
stackindex INT INIT := min;

push: .

PROC (e element) EXCEPTIONS (overflow);
IF stackindex=max

THEN CAUSE overflow;

F1;
stackindex + := 1;
stack (stackindex) :=e;
RETURN;

END push;

pop:
PROC (} EXCEPTIONS (underflow);
IF stackindex—=min
THEN CAUSE underflow;
FI1;
stackindex — := 1;
RETURN;
END pop;

elem:

PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds);

IF i<min OR i>max
THEN CAUSE bounds;
FI;
RETURN stack (i);
END elem;

GRANT push,pop,elem;
END stacks_ 1;
stacks_2:
MODULE
SEIZE clement;
NEWMODE cell=STRUCT (pred,succ REF cell,info element);
DCL p,last,first REF cell INIT := NULL;

push:
PROC (e element) EXCEPTIONS (overflow);
p = ALLOCATE (cell) ON
(ALLOCATEFAIL) : CAUSE overflow;
END;
IF Jast=NULL
THEN first := p;
last := p;
ELSE last —>. succ := p;
p —>. pred := last;
last := p;
FI;
last —>. info ;= ¢;
RETURN;
END pusk;

Pop:
PROC () EXCEPTIONS (underflow};
IF last=NULL
THEN CAUSE underflow;
FI;

Fascicle X.6 — Rec. Z200

11.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
80
91
92
83

p = last; :
last := last —>. pred;
IF last = NULL
THEN first := NULL;
ELSE last —>. succ := NULL;
FI1;
TERMINATE(p);
RETURN;
END pop;

elem:
PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds);
IF first=NULL
THEN CAUSE bounds;
FI1;
p = first;
DO FOR j.=2TO i
IF p —>. succ=NULL
THEN CAUSE bounds;
FI;
p = p —>. suce;
OD;
RETURN p ->. info;
END elem;

/* GRANT push,pop,elem; */
END stacks_ 2;
END stack;

Fragment for playing chess

o =] @ O s o by

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

chess_ fragments:
MODULE
NEWMODE piece=STRUCT (color SET (white, black),
kind SET (pawn,rook,knight,bishop,queen, king));
NEWMODE column=SET (a,b,c,d e fgh);
NEWMODE line=INT (1 : 8);
NEWMODE square=STRUCT (status SET (occupied,free),
CASE status OF
{(occupied) : p piece,
(free) :
ESAC);
NEWMODE board=ARRAY (line) ARRAY (column) square;
NEWMODE move=STRUCT (lin_1,lin_2 line,
col_1,col_2 columna);

initialise:
PROC (bd board INOUT);
bd :=[(1): {(a,h}): [.status: occupied, .p : [white,rook]],
{(b.g): [.status: occupied, .p : [white knight]),
(c,f): [-status: occupied, .p : [white,bishop],
(d): [.status: occupied, .p : [white,queen]],
(e): [.status: occupied, .p : [white,king]]],
(2): [(ELSE):[status: occupied, .p : [white,pawn]]],
(3:6):[(ELSE):[.status: free]],
(7): [(ELSE):[.status: occupied, .p : [black,pawn]]],
(8): [(ah): [.status: occupied, .p : [black,rook]),
(b,g): [.status: occupied, .p : [black,knight]],

Fascicle X.8 — Rec. Z200

183

184

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
33
54
58
56
57
58
59
60
61
62
63
64
65
66
67
68
69
7o
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

(c.f): [status: occupied, .p : [black,bishop]],
(d): [.status: occupied, .p : [black,queen]],
{e): [.status: occupied, .p : [black,king]]]

RETURN;

END initialise;

register. move:

PROC (b board LOC,m move) EXCEPTIONS (illegal);
DCL starting square LOC := b (m.lin_1){m.col_1),

arriving square LOC := b (m.lin_2)(m.col_2);

DO WITH m;
IF starting.status=free THEN CAUSE illegal; F1;
IF arriving.status/=free THEN

IF arriving.p.kind=king THEN CAWUSE illegal; FI;
FI;

CASE starting.p.kind, starting.p.color OF

(pawn),(white):
IF col_1 = col-2 AND (arriving.status/=free
OR NOT (lin_2=lin_1+1 OR lLin_2=lin_1+2 AND lin_2=2))
OR (eol_2=PRED (col_1) OR col_2=8UCC (col_1})
AND arriving.status—=free THEN CAUSE illegal; FI;
IF arriving.status/=free THEN
IF arriving.p.color=white THEN CAUSE illegal; FI; FI;
(pawn),(black):
IF col_l=col_2 AND (arriving.status/=free
OR NOT (lin_2=lin_1-1 OR Ln_2=lin_1-2 AND [in_1=7))
OR (col.2=PRED (col_1) OR col_2=8UCC (col_1))
AND arriving.status=free THEN CAUSE illegal; FI;
IF arriving.status/=free THEN
IF arriving.p.color=black THEN CAWUSE illegal; FI; FL;
{rook),(*):
IF NOT ok_rook (b,m)
THEN CAUSE illegal;
FI;
(bishop),(*):
IF NOT ok_bishop (b,m)
THEN CAUSE illegal;
¥1;
(queen),(*):
IF NOT ok_rook (b,m) AND NOT ok. bishop (b,m}
THEN CAUSE illegal;
FI;
(knight),{*):
IF ABS (ABS (NUM (col_2)-NUM (col_1))
-ABS (lin_2-lin_1)) /=1
OR ABS (NUM (col..2)-NUM (col.1))
+ABS (lin_2~1lin_1) =/ 3 THEN CAUSE illegal; FI;
IF arriving.status/=free THEN
IF arriving.p.color=starting.p.color THEN
CAUSE illegal; FX; FI;
(king),(+):
IF ABS (NUM (col_2)-NUM (col_1)) > 1
OR ABS (lin_2-lin_1) > 1
OR. lin_2=lin_1 AND col_2=col_1 THEN CAUSE illegal; FI;
IF arriving.status/=free THEN '
IF arriving.p.color=starting.p.color THEN
CAUSE illegal; FI; F1;/* checking king moving to check not implemented =/

ESAC;
0oD;

arriving := starting;
starting := [.status:free];

Fascicle X.6 — Rec. Z200

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

RETURN;

END register_ move;
ok_rook:

.PROC (b board,m move) RETURNS (BOOL);

DCL starting square := b (m.Jin_1)(m.col_1},
arriving square := b (m.lin_2)(m.col_2);

DO WITH m;

IF NOT (col_2=col_1 OR lin_I=lin_2) THEN RETURN FALSE; FI;

IF arniving.status/=free THEN
IF arriving.p.color=starting.p.color THEN;
RETURN FALSE; FI; FI;
IF col_l=col_.2
THEN IF lin_1<lin_2
THEN DO FOR lin :=lin_1+41 TO lin_2-1;
' IF b (lin)(col_1).status/=free
THEN RETURN FALSE;
FI1;
oD,
ELSE DO FOR Iin := lin_1-1 DOWN TO lin_2+1;
IF b (lin){col_1).status/=free
THEN RETURN FALSE;
FI;
OD;
FIL;
ELSIF col_I<col_2 :
THEN DO FOR col := SUCC (col-1) TO PRED (col_2);
IF b (lin_1)(col).status/=free
THEN RETURN FALSE;
FI;
obD;

ELSE DO FOR col := SUCC (col_2) DOWN TO PRED (col_1);

IF b (lin_1){col}.status/=free
THEN RETURN FALSE;
FI;
oD;
FL;
RETURN TRUE;
OoD;
END ok_rook;
ok_ bishop:
PROC (b board,m move) RETURNS (BOOL);
DCL starting square := b (m.lin_1){m.col_1),
arriving square := b {m.lin_2){m.col_2),
col column;

DO WITH m;
CASE lin_2>Iin_1,col_2>col_1 OF
{(TRUE),(TRUE): col := col_1;
DO FOR lin := lin_1+1 TO lin.2-1;
col := SUCC (col);
IF b (lin)(col).status/=free
THEN RETURN FALSE;
FI1;
oD;
IF SUCC (col)/=col_2
THEN RETURN FALSE;
FI;
(TRUE),(FALSE): col := col_1;
DO FOR lin := lin_1+1 TO lin_2-1;
col := PRED (col};

Fascicle X.8 — Rec. Z200

185

150 IF b (lin)(col).status/=free

151 THEN RETURN FALSE;
152 FI1;

158 OD;

154 IF PRED (col)/=col_2

155 THEN RETURN FALSE;

156 FI;

157 (FALSE),(TRUE): col := col_1; :
158 DO FOR Iin := lin.1-1 DOWN TO lin_2+1;
159 col := SUCC (col);

160 IF b (lin)(col).status/=free

161 THEN RETURN FALSE;
162 FI;

163 oD,

164 IF SUCC (col)/=col_2

165 .THEN RETURN FALSE;

166 FIL;

167 (FALSE),(FALSE): col := col_1;

168 DO FOR lin :=lin_1-1 DOWN TO Jin_2+1;
169 col := PRED (col);

170 IF b (lin)(col).status/=free

171 THEN RETURN FALSE;
172 FI,

178 OD;

174 IF PRED (col)/=col_2

175 THEN RETURN FALSE;

176 FI;

17y ESAC;

178 IF arriving.status=free THEN RETURN TRUE;

179 ELSE RETURN arriving.p.color/=starting.p.color; FI;
180 OD;

181 END ok_ bishop;

182 END chess.. fragments;

12. DBuilding and manipulating a circularly linked list .

I circular_list:
2 MODULE
3 handle_ list:
4 MODULE
5 GRANT insert, remove, node;
6 NEWMODE rode=STRUCT (pred, suc REF node, value INT);
7 DCL pool ARRAY (1:1000)node;
8 DCL head node := (: NULL,NULL,0 :);
9
16 insert: PROC (new node};
11 /* insert actions */
12 END insert;
13
14 remove: PROC ();
15 /* remove actions */
16 END remove;
17
18 initialize_list:
19 BEGIN
20 DCL Jast REF node := —>head;
21 DO FOR new IN pool;
22 new.pred ;= last;

186 Fascicle X.6 — Rec. Z200

13.

14,

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

last—>.su¢ '= ~>new;
last := —>new;
new.value := 0

OD;

head.pred := last;

last—>.suc := —>head;
END initialize_list;

END handle_list;

manipulate:

MODULE
SEIZY node, remove, insert;
DCL node_a node := (: NULL,NULL,536 :);
remove(};
remove();
insert(node_ a);

END manipulate;

END circular_list;

A region for managing competing accesses to a resource

1
2
3
4
5
6
7
8
g
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

allocate_resources:
REGION
GRANT allocate, deallocate;
NEWMODE resource_set = INT (0:9);
DCL allocated ARRAY (resource_set)BOOL := (: (resource_set): FALSE :);
DCL resource_. freed EVENT,

allocate:
PROC () RETURNS (resource_set);
DO FOR EVER; .
DO FOR i IN resource_set;
IF NOT allocated(i)
THEN
allocated(i) := TRUE;
RETURN i;
Fi;
0OD;
DELAY resource_ freed;
oD,
END allocate;

deallocate:

PROC (i resource. set);
allocated(i) ;= FALSE;
CONTINUE resource_ freed;

END deallocate;

END allocate_resources;

Queuing calls to a switchboard

switchboard:
MODULE

/* This example illustrates a switchboard which queues incoming calls
and feeds them to the operator at an even rate. Every time the

Fascicle X.6 ~ Rec. Z200

187

15.

188

=
=T =R R S I

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

operator is ready one and only one call is let through. This is
handled by a call distributor which lets calls through at fixed
intervals. If the operator is not ready or there are other calls
waiting, a new call must queue up to wait for its turn. */
DCL operator_is_ready,
switch_is_. closed EVENT,;

call_distributor:
PROCESS ();

wait:

PROC (x INT);

/*some wait action/

END wait;

DO FOR EVER;
wait(10 /xsecondsx/);
CONTINUE operator_is_ready;

oD;

END call_distributor;

call_ process:
PROCESS ();
DELAY CASE
(operator_is_ready): /* some actions */ ;
(switch_is_closed): DO FOR i IN INT (1:100);
CONTINUE operator_is_ready;
/* empty the queues/
OD;
ESAC;
END call_process;

operator:
PROCESS (};
DCL time INT;
DO FOR EVER;
IF time = 1700
THEN CONTINUE switch_is_ closed;
Fi;
oD;
END operator;

START call_distributor();
START operator();
DO FOR i IN INT (1:100);
START call_process(};
oD,
END switchboard;

Allocating and deallocating a set of resources

O 00~ O o o b s

definitions:

MODULE

SIGNAL
acquire,
release=(INSTANCE},
congested,
ready,
advance,
readout={INT);

Fascicle X.6 — Rec. Z200

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

GRANT ALL;

END definitions;
counter_ manager:

MODULE

Ve

To illustrate the use of signals and the receive case, (buffers

might have been used instead) we will look at an example where an
allocator manages a set of resources, in this case a set of

counters. The module is part of a larger system where there are
users, that can request the services of the counter.. manager. The
module is made to consist of iwo process definitions, one for the
allocation and one for the counters. Initiate and terminate

are internal signals sent from the allocator

to the counters. All the other signals are external, being sent

from or to the users, */

SEIZE/* external signals »/
acquire, release, congested,ready,advance, readout;
SIGNAL initiate = (INSTANCE),
terminate;
allocator:
PROCESS (}; _
NEWMODE no_of_counters = INT (1:100);
DCL counters ARRAY (no_of_counters)
STRUCT (counter INSTANCE status SET (busy,idle)};
DO FOR each IN counters;
each := (: START counter(), idle :);
oD;
DO FOR EVER;
BEGIN
DCL user INSTANCE;
awalt_signals:
RECEIVE CASE SET user;
(acquire):
DO FOR eackh IN counters;
DO WITH each;
IF status = idle
THEN
status := busy;
SEND initiate (user) TO counter;
EXIT await_signals;
FI;
OoD;
OoD;
SEND congested TO user;
(release IN this_ counter):
~SEND terminate TO this_counter;
find_ counter:
DO FOR each IN counters;
DO WITH each;
IF this_counter = counter
THEN
status := idle;
EXAT find_counter;
FI1;
OD;
OD find_ counter;
ESAC await_signals;
END;
OD;
END allocator;

counter:

Fascicle X.6 — Rec. Z200

189

71 PROCESS ();

72 DO FOR EVER;

73 BEGIN

74 DCL user INSTANCE,

75 count INT := 0;

76 RECEIVE CASE

7 (initiate IN received_ user):
78 SEND ready TO received_ user;
79 user := received_ user;
80 ESAC;

81 : work_loop:

82 DO FOR EVER;

83 RECEIVE CASE

84 (advance): count + := I;
85 (terminate):

86 SEND readout(count) TO user;
87 EXIT work_loop;
88 ESAC;

89 OD work_loop;

g0 END,;

91 oD,

92 END counter;

93 START allocator({);

94 END counter_ manager;

16. Allocating and deallocating a set of resources using buffers

1
2
3 user_world:
4 MODULE
5 /% This example is the same as no.15 except that buffers are
6 used for communication in stead of signals.
7 The main difference is that processes are now identified
8 by means of references to local message buffers rather than
9 by instance values. There is one message buffer declared
10 local to each process. There is one set of message types
11 for each process definition. When started each process must
12 identify its buffer address to the starting process.
13 The user_ world module sketches some of the environment in
i4 which the counter_ manager is used. */
15

16 SEIZE allocator;
17 GRANT user_ buffers, user_ messages,

18 allocator_messages, allocator_ buffers,

19 counter_ messages, counters_ buffers;

28 NEWMODE

21 user.. messages =

22 STRUCT (type SET (congested, ready,

23 readout, allocator_id),

24 CASE type OF

25 (congested) : |

26 (ready) : counter REF counters_ buffers,
27 (readout) : count INT,

28 (allocator_id): allocator REF allocator_ buifers
29 ESAC),

30 user_ bufters = BUFFER. (1) user- messages,

31 allocator_messages =

190 Fascicle X.6 — Rec. Z200

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
a1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

71

STRUCT (type SET (acquire, release, counter_id),
CASE type OF
(acquire) : user REF user_ buffers,
(release,
counter_id): counter REF counters_ buffers
ESAC),
allocator_buffers = BUFFER (1) allocator_ messages,
counter_messages =
STRUCT (type SET (initiate, advance, terminate),
CASE type OF
(initiate) : user REF user_ buffers,
(advance,
terminate):
ESAC),
counters.. buffers = BUFFER (1) counter_ messages;
DCL user_ buffer user_ buffers,
 allocator_ buf REF allocator_ buffers,
counter_ buf REF counters_ buffers;
START allocator(—>user_ buffer);
allocator_buf := (RECEIVE user.. buffer).allocator;
END user_ world;
counter_ manager:
MODULE
SEIZE user_ buffers,user_ messages,
allocator_messages, allocator_ buffers,

counter_ messages, counters_ buffers;
GRANT allocator;

allocator:
PROCESS (starter REF user_ buffers);
DCL allocator_buffer allocator_ buffers;
NEWMODE no_of_counters = INT (1:10);
DCL countezs ARRAY (no_of_counters)
STRUCT ({counter REF counters_ buffers,
status SET (busy, idle)),
message allocator_messages;
SEND starter—> ([allocator_id, —>allocator_ buffer]);
DO FOR. each IN counters;
START counter{—>allocator_ buffer);
each := [(RECEIVE allocator_buffer).counter, idle];
oD,
DO FOR EVER;
BEGIN
DCL user REF user_ buffers;
message := RECEIVE allocator_ buffer;
handle_messages:
CASE message.type OF
(acquire):
user := message. user;
DO FOR each IN counters;
DO WITH each;
IF status= idle
THEN status := busy;
SEND counter->(|initiate, user));
EXIT handle_ messages;
FI1;
oD,
OD;
SEND user—> ([congested));
(release):
SEND message.counter~>([terminate));

Fascicle X.6 — Rec. 2200

191

93 find_ counter:

94 DO FOR. each IN counters;
95 DO WITH each;
96 IF message.counter = counter
g7 THEN status := idle;
98 EXIT find_ counter;
99 FI;

100 OD;

101 OD find_ counter;

102 {counter_id): ;

103 ESAC handle_messages;

104 END;

105 oD;

106 END allocator;
107 counter:
108 PROCESS (starter REF allocator_ buffers);

109 DCL counter. buffer counters_ buffers;

110 SEND starter—> ([counter_id, —>counter. buffer]);
111 DO FOR EVER;

112 BEGIN

113 DCL user REF yser_ buffers,

114 count INT := 0,

115 message counter_ messages;

116 message ;= RECEIVE counter_ buffer;
117 CASE message.type OF

118 (initiate): user := message.user;

119 SEND user—>([ready, —>counter_ buffer));
120 ELSE/* some error action #/

121 ESAC;

122 work_loop:

123 DO FOR EVER;

124 message := RECEIVE counter_ buffer;
125 CASE message.type OF

126 (advance) : count + :=1;

127 (terminate):SEND user~>([readout, count]};
128 EXIT work_loop;

128 ELSE/+ some error action */

130 ESAC;

131 OD work.. loop;

132 END;

133 0D;

134 END counter;
135 END counter.. manager;

17. String scannerl

1 string_scannerl: /# This program implements strings by means
2 of packed arrays of characters. #/
3 MODULE
4 SYN
5 blanks ARRAY (0:9)CHAR PACK = [(%):> 7], linelength = 132;
6 SYNMODE
7 stringptr = ROW ARRAY (lineindex)CHAR PACK,
8 lineindex = INT (0:linelength-1);
g

10 scanner:

11 PROC (string stringptr, scanstart lineindex INOU'T,

12 scanstop lineindex, stopset POWERSET CHAR)

192 Fascicle X.6 — Rec. Z200

18.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

RETURNS (ARRAY (0:9)CHAR PACK);
DCL count INT := 0, :
res ARRAY (0:9)CHAR PACK := blanks;
DO
FOR ¢ IN string—>(scanstart:scanstop)
WHILE NOT (¢ IN stopset);
count + := 1; -
oD;
IF count>0
THEN
IF count>10
THEN
count := 10;
FI;
res(Q:count—1) := string->>(scanstart:scanstart+count-1);
F1;
RESULT res;
IF scanstart-+count < scanstop
THEN
scanstart := scanstart+count-+1;
FI;
END scanner;

GRANT scanner;

END string_scannerl;

String scanmner2

O oon =1 T o o B

string_scanner2: /* This example is the same as no.17 but it uses
character string instead of packed arrays */
MODULE
SYN
blanks = (10)’ ’, linelength = 132;
SYNMODE
stringptr = ROW CHARS (linelength),
lineindex = INT (0:linelength~1);

SCanner:

PROC (string stringptr, scanstart lineindex INOU'T,
scanstop lineindex, stopset POWERSET CHAR)
RETURNS (CHARS (10));

DCL count INT := 0;
DO FOR | := scanstart TO scanstop
WHILE NOT (string—>(i) IN stopset);

count + := 1;
oD;
IF count>0
THEN
IF count>=1I10
THEN
RESULT string—>(scanstart UP 10);
ELSE
RESULT string—> (scanstart:scanstart+count—1)
//blanks(count:9);
F1,
ELSE

RESULT blanks;

Fascicle X.6 — Rec. Z200

193

19.

20.

194

30
31
32
33
34
35
36
37
38
39

FI;
IF scanstart-+count < scanstop
THEN
scanstart ;= scanstart+count+1;
FIL;
END scanner;

GRANT scanner;

END string_scanner2;

Removing an item from a double linked list

1
2
3
4
5
]
7
8

9
10
11
12
13
14
15
16
7
18
19
20
21
22
23
24
25
26
27

quene: MODULE
SYNMODE info=INT;
quene_ removal:
MODULE
SEIZE info;
GRANT remove;
remove:
PROC (p PTR) RETURNS (info) EXCEPTIONS (EMPTY);
/#* This procedure removes the item referred to
by p from a queue and returns the information
contents of that queue element */
SYNMODE element = STRUCT (
i info POS (0,8:31),
prev PTR POS (1,0:15),
next PTR POS (1,16:31));
DCL x REF element LOC := element(p), prev, next PTR;
PIEV := X->>.prev;
next := x—>.next;
x->.prev, x->.next := NULL;
RESULT x—>.i;
p = prev;
x—>.next ;= next;
p := next;
X—>.prev != prev,
END remove;
END gueue_removal;
END gueue;

Update a record of a file

1
2
3
4
5
6
7
8
9
10

11
12
13

read_modify_ write:
MODULE

/* this example indicates how the CHILL i/o concepts can be nsed ®/
/* to write an application where a record of a random accessible x/
/* file can be updated or added if not yet in use #/

NEWMODE
index_set = INT (1:1000),
record_type = STRUCT (
free BQOL,
count INT,
name CHARS (20));

Fascicle X.6 — Rec. Z200

21.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

DCL
curindex index_ set,
file_association ASSOCIATION,
record_ file ACCESS (index_set) record_type,
record_ buffer record_ type;

ASSOCIATE (file_association,” DSK:RECORDS.DAT”); /* create association */
CONNECT (record_ file,file_association, READWRITE); /# connect to file #/

curindex := 123; /* position record #/
READRECORD (record_ file,curindex,record_ buffer); /* read the record #/
IF record_ buffer.free /* if record is free #/
THEN /#* the claim and %/
record_ buffer.free := FALSE /#* initialize it */

record_ buffer.count := 0;)
record_ buffer.name := "CHILL I/O concept ”;
FI1;
record... buffer.count + := 1; /* increment its count/
WRITERECORD (record_ file, curindex, record_ buffer); /% write the record %/
DISSOCIATE (file_association); /* end the association/

END read. modify_ write;

Merge two sorted files

meige_ sorted.. files:
MODULE

/* this example shows how two sorted flles can be merged into one */
/* new sorted file, where the field ’key’ is used for sorting */
/* the old sorted files are deleted after the merging has been done */

NEWMODE
record_ type = STRUCT (
key INT,
name CHARS (50));
DCL
flag BOOL,

infiles ARRAY (BOOL} ACCESS record_type,
outfile ACCESS record_ type,
buffers ARRAY (BOOL) record_type,

innames ARRAY (BOOL) CHARS (10) INIT := ["FILE.IN.1 ”,"FILE.IN.2 7],

outname CHARS (10) INIT := "FILE.OUT o
inassocs ARRAY (BOOL) ASSOCIATION,
outassoc ASSOCIATION,;

/* associate both sorted input files, connect an access to them for input */
/* and read their first record into a buffer ¥/

DO
FOR curfile YN infiles,
curbuffer IN buflers,
curassoc IN inassocs,
curname IN innames;
CONNECT (curfile, ASSOCIATE (curassoc,curname), READONLY);
READRECORD (curfile, curbuffer); ’
0OD;

Fascicle X.6 — Rec, Z200

195

22,

196

34

35 /* associate the output file, create a file for the association */
36 /* and connect an access to it for output */
37

38 ASSOCIATE (outassoc,outname);

39 CREATE (outassoc);

40 CONNECT (outfile, outassoc, WRITEONLY);
41 merge._. files:

42 DO FOR EVER

43

44 /* determine which file, if any at all, to process nexts/

45 /* ‘flag’ indicates the file */

46

47 CASE OUTOFFILE (infiles(FALSE)),0UTOFFILE (infiles(TRUE)) OF
48 (TRUE), (TRUE): /* both files are empty */
49 EXIT merge_files;

50 (TRUE), (FALSE): /* one file is empty
51 flag := TRUE;

52 (FALSE), (TRUE): /% one file is empty
53 flag := FALSE;

54 (FALSE), (FALSE): /* no file is empty
55 flag := buffers(FALSE).key> buffers(TRUE).key;

56 ESAC;

57

58 /¥ output the buffer which currently contains a record with the */
59 /* smallest value for ‘key’, fll the buffer with a new record

60

61 WRITERECOQRD (outfile, buffers(flag));

62 READRECORD (infiles(flag), buffers(flag));

63 OD merge_ files;

64

64 /* delete the input files and close the output file */
66

67 DO

68 FOR curassoc IN inassocs;

69 DELETE (curassoc); /* delete the file
70 DISSOCIATE (eurassoc);

71 0D;

72 DISSOCIATE (outassoc);

73

74 END merge_sorted_ files;

Read a file with variable length records

variable_length_records:
MODULE

1

2

3

4 /* This example shows how a file which consists of variable length
5 /* records can be treated.

6 /* The file consists of a number of strings of varying length; the

7 /* algorithmn will read a string, allocate an appropriate location

8

/# and terminate association

/* disconnect and terminate

*/
*/
*/
*/

/* for it, and put the reference to this location into a push down list x/

g
10 NEWMODE
11 string = CHARS (80),
12 link_record = STRUCT (
13 ’ next. . record REF link_record,
14 string_row ROW string);

Fascicle X.8 — Rec. Z200

¥/
*/

*/

23.

15
16
17
18
18
20
2]
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

DCL
pushdownlist REF link_record INIT := NULL,
length INT (1:80),
temporaryrow ROW string,
fileaccess ACCESS string DYNAMIC,

association ASSOCIATION;

filename CHARS (20) VARYING INIT := "INPUT.DATA”;

ASSOCIATE (association,filename);
CONNECT (fileaccess, association, READONLY);
temporaryrow := READRECORD (fileaccess);
DO
WHILE NOT(OUTOFFILE(fileaccess));
pushdownlist := ALLOCATE (link_record,
[pushdownlist, NULL]);
length := 1 + UPPER (temporaryrow—>);
DO
WITH pushdowlist—>;

/* associate the input file
/#* connect access for input
/* read the first record

/* while not end-of—file

/* get a new link record
/# and initialize it

/* determine length of string

/* add new string to list

string_row ;= ALLOCATE (CHARS (length), /* allocate space for string

temporaryrow—>);
OoD;
temporaryrow := READRECORD (fileaccess);
OD;
DISSOCIATE (association);

END variable_length_records;

The use of spec modules

b~
D W 00 =] @ G B o by =

Bo Do B B R ka ha ket b ke a ks ke
L R e A I B TR B S R S

24

/* and fill it
/* get next record in file

/#* end the association

/* The examples 23 and 24 are example § divided in two pieces. */

letter_ eount:

SPEC MODULE

/* This is a spec module for the corresponding module in example 8. %/

SEIZE max;
count:

PROC (input ROW CHARS (max) IN, output ARRAY (’A’’Z’) INT OUT) END;

GRANT count;
END letter_count;
letter_count: REMOTE “example 24”;
test:
MODULE
/# This is the module ‘test’ from example 8.
/* It can now be piecewise compiled together with
/* the above spec module
SYNMODE results = ARRAY ("A’’Z’) INT;
DCL c CHARS (10) INIT := "A-B<ZAAIK’ ”;
DCL output results;
SYN max = 10000,
GRANT max;
SEIZE count;
count (=> ¢, output);
ASSERT ouiput = results [("A’) : 3, ("B’, 'K’, ’Z")
END test;

*/
4
*/

:1, (ELSE) : 0];

Fascicle X.6 — Rec. Z200

197

24, Example of a context

I CONTEXT
2 /* This is a context for the module “letter..count” »/
3 /* as used in example 23, allowing the piecewise */
4 /* compilation of “letter_count” x/
5 SYN max = 10_000;
6 FOR
7 letter. count:
8§ MODULE
9 SEIZE max;
10 DCL letter POWERSET CHAR INIT := ['A’: ’Z%;
11 count:
12 PROC (input ROW CHARS (max) IN, output ARRAY (’A%’Z’) INT OUT);
13 output := [(ELSE) : 0];
i4 DO FOR i:= 0 TO UPPER (input ->);
15 IF input —> (i) IN letter THEN
i6 output (input —> (i)) + := I;
17 FI;
18 0D,
19 END count;
20 GRANT count;

21 END letter_ count;

25. The use of prefixing and remote modules

1 /* This example uses the module ‘stack’ from example 27 or 28. %/
2 /* It shows how prefixes can be used to prevent name clashes. %/
3 /* It uses the remote construct to share the source code. */
4 char_stack:
5 MODULE
6 SYNMODE eclement == CHAR;
7 GRANT (-> stack ! char) ! ALL;
8 stack: SPEC REMOTE “example 297;
9 stack: REMOTE Yexample 27 or 28%;
10 END char_stack;
11
12 int_stack:
13 MODULE h
14 SYNMODE element = INT;
15 GRANT (-> stack ! int) ! ALL;
16 stack: SPEC REMOTE “example 29%;
17 stack: REMOTE Yexample 27 or 28”;
18 END int_stack;
i9 /* Here ‘push’, ‘pop’ and ‘element’ are visible but +/
20 /* with prefixes ‘stack ! char’ and ‘stack ! int’ for #/
21 /* the implementations with element = CHAR and #/
22 /# element = INT, respectively. */
23 /* Below are some possibilities of using the granted +/
24 /* names inside modules. */
25 MODULE :
26 SEIZE ALL PREFIXED stack ;
27 DCL ¢ CHAR;
28 int ! push (123) ;
29 char ! push (’a’) ;
30 int ! pop () ;
31 ¢ = char ! elem (1) ;

198 Fascicle X.6 — Rec., Z200

26.

2T7.

32 END;

3

33

34 MODULE

35 SEIZE (stack ! int —> stack) ! ALL;
36 stack ! push (345);

37 stack ! pop {) ;

38 END;

The use of text ifo

I iextio:

2 MODULE

3

4 /* This example shows the use of the text i/o features. */

5

6 DCL

v outfle ASSOCIATION,

8 output TEXT (80) DYNAMIC,

g size INT := 12345,
10 fag BOOL := FALSE,
11 set SET (a,b,c) := b,
12 s1 CHARS (5) := "CHILL”,
13 52 CHARS (5) DYNAMIC := "text”;
14
15 ASSOCIATE (outfile,”OUTPUT.DATA”); — — assoclate the output file
16 CREATE (outfile); - - create it
17 CONNECT (output,outfile, WRITEONLY); — — then connect text location
18 " WRITETEXT (output,”%B%/”,10); - - 1010
19 WRITETEXT (output,”%C%/” set); —-—b
20 WRITETEXT (output,”size = %C%/” size); - ~size = 12345
21 WRITETEXT (output,”%CL6%C i/0%/",51,52); — — CHILL text i/o
22 WRITETEXT (output,”flag =%X%C” flag); ~—flag — FALSE
23 size ;= GETTEXTINDEX (output); - 12
24 DISSOCIATE (outfile);

25 END textio;

A generic stack
1 /% This example implements a generic stack. Please »/
‘2 /#* note that the element mode has been left out. #/
3 /% The element mode is defined in the surroundings. */
4 /* The context is a virtually introduced context, 74
5 /#* and it has no source. w/
§ CONTEXT REMOTE FOR
7 stack:
8 MODULE
9 SEIZE element;
10 NEWMODE cell = STRUCT (pred,succ REF cell,info element);
11 DCL p,last,first REF cell INIT := NULL;
12
13 push:
14 PROC (e element) EXCEPTIONS (overflow)
i5 p = ALLOCATE (cell) ON (ALLOCATEFAIL): CAUSE overflow; END;
16 IF last = NULL THEN
17 first ;= p;
18 last := p;

Fascicle X.86 — Rec. Z200

199

28.

200

18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ELSE
last > .succ ;= p;
p —> .pred := last;
last := p;

FI1;

last —> .info := e;

RETURN;

END push;

pop:
PROC () EXCEPTIONS (underflow)
IF last = NULL THEN
CAUSE underfiow;
FI1;
p:= last;
last := last -> | pred;
IF last = NULL THEN
first := NULL;
ELSE
last -> .sucec := NULL;
FI;
TERMINATE (p);
RETURN;
END pop;

elem:
PROC (1 INT) RETURNS (element LOC) EXCEPTIONS (bounds)
IF first = NULL THEN
CAUSE bounds;
FI;
p := first;
DO FOR j = 2 TO i;
IF¥ p -> .suce = NULL THEN
CAUSE bounds;
FI1;
p = p -> .succ;
oD,
RETURN p -> .info;
END elem;

GRANT push,pop,elem;-
END stack;

An abstract data type

G ~1 h O o by =

[SR Y
oy by = @ W

/# This example implements the functionality of example 27 */

/* demonstrating how an abstract data type can be ®/
/* implemented in two different ways in CHILL. */
CONTEXT REMOTE FOR
stack:
MODULE

SEIZE element;
SYN max = 10_000, min = I;
DCL stack ARRAY (min : max) element,
stackindex INT INIT := min-I1;
push:
PROC (e element) EXCEPTIONS (overflow)
IF stackindex = max THEN

Fascicle X.8 — Rec. Z200

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

CAUSE overflow;
FI;
stackindex 4:= 1;
stack(stackindex) := e;
RETURN;
END push;
pop:
PROC () EXCEPTIONS (underflow)
IF stackindex = min THEN
CAUSE underflow;
FI;
stackindex-:= 1;
RETURN;
END pop;

elem:
PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds}
IF¥ ;i < min ORI > max THEN
CAUSE bounds;
FI,;
RETURN stack{i);
END elem;

GRANT push,pop,elem;

END stacks;

29. Example of a spec module

GO ~3 T O oHa Lo bo ks

/*This SPEC MODULE defines the interface of example 27 and 28. #/

stack: SPEC MODULE

SEIZE element;
push: PROC (e element) EXCEPTIONS (overflow) END;
pop: PROC () EXCEPTIONS (underflow) END;

elem: PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds) END;

GRANT push,pop,elem;

END stack;

Fascicle X.6 — Rec. Z200

201

APPENDIX E: DECOMMITTED FEATURES

The features described in the following are not part of the present Recommendation Z200, but were part of
the Recommendation Z200, 1984, Red Book, Volume VI — Fascicle VI.12. In the following a brief description
is given; for a complete definition of them, refer to the relevant sections of the Z200 1984, that are hereafter
mentioned. These features may be supported by an implementation.

1. Free directive {See section 2.6)

A free directive freed the reserved simple name strings specified in the reserved simple name string list so that
they could be redefined.

2. Integer modes syntax (See section 3.4.2)
BIN was derived syntax for INT.

3. Set modes with holes (See section 3.4.5)

A set mode defined a set of named or unnamed values. A set mode was a set mode with holes, if and only if
the number of its set element names was less than the number of values of the set mode.

4. Procedure modes syntax (See section 3.7)

A result spec without the optional reserved simple name string RETURNS was derived syntax for the result
spec with RETURNS.

5. Array modes syntax {See section 3.11.3)

The reserved simple name string ARRAY was optional.

6. Level structure notation (See section 3.11.5)

A level siructure mode was derived syntax for a nested structure mode. In the level structure notation the fields
were preceded by a level number. If a structure contained fields that were themselves structares or arrays of
structures, a hierarchy of structures was formed and a level number could be associated with each field. Instead
of writing nested structure modes, it was allowed in the level structure mode to write the level number in the
front of the field name.

7. Map reference names (See section 3.11.6)

Map reference names could be used to specify mapping in an implementation defined way.

8. Based declarations (See section 4.1.4)

A based declaration without a bound or free reference location name was derived syntax for a synmode defini-
tion statement. A based declaration with a bound or free reference location name defined one or more access
names. These names served as an alternative way of accessing a location by dereferencing the reference value
contained in the specified reference location. This dereferencing operation was performed each time and only
when an access was made via a declared based name.

202 Fascicle X.6 — Rec. Z200

9. Character string literals (See section 5.2.4.6)

Character string literals were delimited by apostrophe characters. Apart from the printable representation, the
hexadecimal representation could be used. Character string literals of length one served as character literals.

10. Addr notation (See section 5.3.8)
ADDR (<location>) was derived syntax for —> <location>.

11. Assignment syntax (See section 6.2)

The = symbol was derived syntax for the := symbol.

12. Case action syntax (See section 6.4)

The range list of a case action could be specified more generally by a discrete mode, and not only by a
discrete mode name.

13. Do for action syntax (See section 6.5.2)

The range in the range enumeration of a do-for action could be specified more generally by a discrete mode,
and not only by a discrete mode name.

14. Explicit loop counters (See section 6.5.2)

If an access name was visible in the reach where the do action was placed, which was equal to one of the names
defined by a Joop counters, then the Ioop counter was explicit; otherwise it was implicit. In the former case,
the value of the loop counter was stored into the denoted location just prior to abnormal termination.

A distinetion was made between normal and abnormal termination. Normal termination occurred if the
evaluation of at least one of the loop counters indicated termination. Abnormal termination occured if the
evaluation of while condition delivered FALSE or if the do action was left by a transfer of control out of it.

15. Call action syntax (See section 6.7)

The reserved simple name string CALL was optional. A call action with CALL was derived from a call
action without CALL.

16. RECURSEFAIL exception {See section 6.7)

The RECURSEFAIL exception was caused when a non-recursive procedure called itself recursively.

17. Start action syntax (See section 6.13)

The start action with the SET option was derived syntax for the single assignment action:
<instance locaiion> := <start expression>

18. Explicit value receive names (See section 6.19)

A receive signal case action and a receive buffer case action could introduce value receive names. If a name
was visible in the reach where the receive signal case action was placed, which was equal to one of the names
introduced after IN, then the value receive name was explicit; otherwise it was implicit. In the former
case, the received value was stored into the denoted location immediately before the execution of the action
statement list.

Fascicle X.6 — Rec. Z200 203

19. Blocks (See section 8.1)

The if action, case action, do action and delay case action were not defined to be blocks.

20. Entry statement (See section 8.4) g

A procedure could have multiple entry points by means of entry statements. These statements were considered
to be additional procedure definitions. The defining occurrence in the entry statement defined the name of
the entry point in the procedure in which reach it was placed. The entry point was defermined by the textual
position of the entry statement.

21. Register names (See section 8.4)

Register specification could be given in the formal parameter of the procedure and in the result spec. In the
pass by value case, it meant that the actual value was contained in the specified register; in the pass by location
case, it meant that the (hidden) pointer to the actual location was contained in the specified register. If the
specification was in the result spec it meant that the returned value or the (hidden) pointer to the returned
location was contained in the specified register.

22. Weakly visible names and visibility statements (See section 10.2.4.3)

A name string NS weakly visible in reach R was said to be seizable by modulion M directly enclosed in R if NS
was linked in R to a defining occurrence not surrounded by the reach of M. A name string NS weakly visible in

reach R of modulion M was said to be grantable by M if NS was linked in R to a defining occurrence surrounded
by R.

23. Seizing by modulion name (See section 10.2.4.5)

If a prefix rename clause in a seize statement had a seize postfix which contained a modulion name string and
ALL, then the prefix rename clause was equivalent to a set of seize statements, for any name string that was
strongly visible in the reach that directly enclosed the modulion in which the seize statement was placed and
was seizable by this modulion, and was granted by the modulion attached to the modulion name in the reach
directly enclosing the modulion in which the seize statement was placed.

24. Predefined simple name strings (See section C.2)
AND, NOT, OR, REM, MOD, THIS and XOR were predefined simple name strings.

204 Fascicle X.6 — Rec. Z200

APPENDIX F: COLLECTED SYNTAX

2 PRELIMINARIES
<simple name string > =
<letter> { <letter> | <digit> | - }*

<letter> 1=
A|B|C|DI|E|F|G!HI|I|J|K|L |M
IN|O|P|Q[R|S|T|U |V |W|X|Y |z
la|lb|c|dle|flg|h|ililk|l|m
lafolplalris|t]|u|v|w x|y |2

<digit> =
011 (238|456 |7 |89

<comment> =

< bracketed comment>
| <line-end comment>
< bracketed comment> 1=
/* <character string> »/
<line-end comment> ;=
— = <character string> <end-of-line>
<character string> 1=
{ <character> }*
<directive clause> 1= .
<> <directive> { , <directive> }* <>
< directive> =
<implementation directive>
<pame> !=
<name string >
<name string > 5=
<simple name string>
| <prefixed name string>
<prefixed name string> =
<prefix> ! <simple name string >
<prefix> 1=
<simple prefix> { ! <simple prefix> }*
<simple prefix> =
<sitmple name string >
<defining occurrence> =
<simple name string>
<defining occurrence list> 1=
<defining occurrence> { , <defining occurrence> }*
<field name> ;1=
<simple name string>
<fleld name defining occurrence> =
<simple name string >
<field name defining occurrence list> =
<field name defining occurrence> { , <field name defining occurrence> }*
<exception name> ;1=
<simple name string >
| <prefixed name string>
<ftext reference name> =

<simple name string >
| <prefixed name string>

Fascicle X.8 — Rec. Z200

205

3 MODES AND CLASSES

<inede definition> 1=
<defining occurrence list> = <defining mode>

<defining mode>> ::=
<mode>

<synmode definition statement> ::=
SYNMODE <mode definition> { , <mode definition> }*

<newinode definition statement> ;1=
NEWMODE <mode definition> { , <mode definition> }* ;

<mode> =
[READ]| <non-composite mode>
| [READ] <composite mode>

<aon-composite mode> 1=
<discrete mode>
| <powerset mode>
| <reference mode>
| <procedure mode>
| <instance mode>
| <synchronisation mode>
| <input-output mode>
| <timing mode>

<discrete mode> 1=
<integer mode>
| <boolean mode>
| <character mode>
| <set mode>
| <range mode>

<integer mode> ::=
<integer mode name>>

< boolean mode> ;1=
< boolean mode name>

<character mode> 1=
<character mode name>

<set mode> =
SET (<set list>)
| <set mode name>
<set list> 1=
<numbered set list>
| <unnumbered set list>

<numbered set list> ::=
<numbered set element> { , <numbered set element> }*

<numbered set element> 1=
<defining occurrence> = <integer literal expression>
<unnumbered set list> ;=
<set element> { , <set element> }*
<set element> ::=
<defining cecurrence>
<range mode> ::=
<discrete mode name> (<literal range>)
| RANGE (<literal range>)
| BIN (<integer literal expression>)
| <range mode name>
<literal range> ::=
<lower bound> : <upper bound>

206 Fascicle X.6 — Rec. 7200

<lower bound> ::=

<discrete literal expression>
<upper bound> ;1=

<discrete literal expression>
< powerset mode> 1=

POWERSET <member mode>

| <powerset mode name>

<member mode> ::=

< discrete mode>

< reference mode> ::=
<bound reference mode>
| <free reference mode>>
| <row mode>

< bound reference mode> 1=

REF <referenced mode>
| <bound reference mode name>

<referenced mode> 1=
<mode>

<{ree reference mode> :=
<free reference mode name>-

<row mode> ;1= :
ROW <string mode>
| ROW <arrav mode>
| ROW < variant structure mode>
| <row mode name>

< procedure mode> ;1=
PROC (| <parameter list>]) [<result spec>>]
[EXCEPTIONS (<exception list>)| [RECURSIVE]
| <procedure_mode name>
< parameter list> =
< parameter spec> { , <parameter spec> }*
< parameter spec> ;1=
<mode> [<parameter atiribute>]
< parameter attribute> =
IN | OUT |INOUT |LOC[DYNAMIC]
<result spec> =
RETURNS (<mode> [<result attribute>])
<result attribute =
[NONREF | LOC [DYNAMIC]
<exception list> 1=
<exception name> { , <exception name> }*
<instance mode> ;1=
<instance mode name>
<synchronisation mode> 1=
<event mode>>
| <buffer mode>
<event mode> ::=
EVENT | { <event length>)]
| <event mode name>
<event length> 1=
<integer literal expression>
<buffer mode> ::=

BUFFER [(<buffer length> } | <buffer element mode>
| <buffer mode name>

Fascicle X.6 — Rec. Z200

207

< buffer length> ::=
<integer literal expression>
<buffer element mode> ::=
<mode>
<input-output mode> ::=
<association mode>
| <access mode>
| <text mode>
<assoclation mode> 1=
<association mode name:>
<access mode> =
ACCESS [(<index mode>)] [<record mode> [DYNAMIC]]
| <access mode name> ,
<record mode> ::=
<mode>
<index mode> =
<discrete mode>>
| <literal range>
<text mode> ;= :
TEXT (<text length>) [<index mode>] [DYNAMIC] -
<text length> =
<integer literal expression>
<timing mode> ::=
<duration mode>
| <absolute time mode>
<duration mode> ::=
<duration mode name>
<absolute time mode> 1=
<absolute time mode name>

<composite mode> ::=
<siring mode>
| <array mode>
| <structure mode>
<string mode> 1=
<string type> (<string length>) [VARYING]
| <parameterised string mode> ’
| <string mode name>
< parameterised string mode> 1=
<origin string mode name> (<string length> }
| <parameterised string mode name>
<origin string mode name> ::=
<string mode name>
<string type> ::=
BOOLS
| CHARS
<string length> ::=
<linteger literal expression>
<array mode> ::=
ARRAY (<index mode> { , <index mode> }*)
<element mode> { <element layout> }*
| <parameterised array mode>
| <array mode name>
<parameterised array mode> ::=
<origin array mode name> (<upper index>)

208 Fascicle X.6 — Rec. 7200

| <parameterised array mode name>>
<origin array mode name> ;=
<array mode name>>
<upper index> =
<discrete literal expression>

<element mode> ;1=
<mode>

<structure mode> ;1=
STRUCT (<field> { , <field> }*)
| <parameterised structure mode>
| <structure mode name>
<field> =
<fixed field>
| <alternative field>
<fixed fleld> 1=
<field name defining occurrence list> <mode> [<field layout> |
< alternative field> 1=
CASE | <tag list>] OF
< variant alternative>> { , <variant alternative> }*
[ELSE [«<variant field> { , <variant field> }*]] ESAC
< variant alternative> 1=
[<case Jabel specification> | : [<variant field> { , <variant fleld> }*]
<tag list> 1=
<tag field name> { , <tag field name> }*
<variant fleld> 1=
<field name defining occurrence list> <mode> | <field layout>]
< parameterised structure mode> 1=
<origin variant structure mode name> { <literal expression list>)
| <parameterised structure mode name>

<origin variant structure mode name> ;=
< variant structure mode name>

<Iiteral expression list> ;1=
<disgrete literal expression> { , <discrete literal expression> }*
<element layout> ::=
PACK | NOPACK | <step>
<field layout> ::=
PACK | NOPACK | <pos>
<step> =
STEP (<pos> [, <step size>])
<pos> n=
POS (<word> , <start bit> , <length>)
| POS (<word> [, <start bit> [: <end bit>]])
<word> =
<integer literal expression>
<step size> =
<integer literal expression>
<start bit> =
<integer literal expression>>
<end bit> =
<integer literal expression>
<length> =
<integer literal expression>>

Fascicle X.6 — Rec. Z200

209

4 LOCATIONS AND THEIR ACCESSES

<declaration statement> ::=
DCL <declaration> { , <declaration> }* ;

<declaration> ;1=
<location declaration>
| <loc-identity declaration>

<location declaration> =
<defining occurrence list> <mode> [STATIC | [<initialisation>]
<Initialisation> ::=
<reach-bound initialisation>
| <lifetime-bound initialisation>

<reach-bound initialisation> 1=
<assignment symbol> <value> [<handler>]

<lifetime-bound initialisation> ::=
INIT <assignment symbol> <constant value>

<loc-identity declaration> ::=
<defining occurrence list>> <mode> LOC [DYNAMIC]
<assignment symbol> <location> | <handler>]

<location> 1=
<access name>>
| <dereferenced bound reference>
| <dereferenced free reference>
| <dereferenced row>
| <string element>
| <string slice>
| <array element>
| <array slice>
| <structure field>
| <location procedure call>
| <location built-in routine cali>
| <location conversion>
< aCCess name> =
<location name>
| <loc-identity name>
{ <location enumeration name>
| <lgcation do-with name>

<dereferenced bound reference> ::=
<bound reference primitive value> —> [<mode name> |

<dereferenced free reference> =
<free reference primitive value> -> <mode name>

<dereferenced row> ::=
<Iow primitive value> ->
<string element> ::=
<string location> (<start element>)
<start element> ::=
<integer expression>
<string slice> ::=
<string location> (<left element> : <right element>)
| <string location> (<start element> UP <slice size>)
<left element> ::=
<integer expression>>
<right element> ::=
<Integer expression>
<slice sige> ;:=
<integer expression>

210 Fascicle X.6 — Rec. Z200

<array element> .=
<array location> { <expression list>)
< expression list> 1=
<expression> { , <expression> }*
<array slice> ::= :
<array location> (<lower element> : <upper element>)
| <array location> (<first element> UP <slice size>)
<lower element> ::=
< expression>
<upper element> !:=
< expression>
<first element> ::=
< expression>
<structure fields =
<structure location> . <fleld name>
<location procedure call> =
<location procedure call>
<location built-in routine call> ::=
<location built-in routine call>
<location conversion> ;1=
<mode name> (<static mode location>)

5 VALUES AND THEIR OPERATIONS

<synonym definition statement> 1=
SYN <synonym definition> { , <synonym definition> }* ;
<synonym definition> 1= '
<defining occurrence list>> [<mode>] = <constant value>
< primitive value> 1=
<location contents>
| <value name>
| <literal>
| <tuple>
| <value string element>
| <value string slice>
| <value array element>
| <value array slice>
| <value structure field>
| <expression conversion>
| <value procedure call>
| <value built-in routine call>
| <start expression>
| <zero-adic operator:
| <parenthesised expression>

<location contents> ;1=
<location>

<value name> ;1=
<S¥ynonym name>
| <value enumeration name>
| <value do-with name>
| <value receive name>
| <general procedure name>
<literal> ==
<integer literal>
| <boolean literal>
| <character literal>

Fascicle X.6 — Rec. Z200

211

| <set literal>
| <emptiness literal>
| <character string lteral>
| <bit string literal>
<integer literal> =
< decimal integer Iiteral>
| <binary integer literal>
| <octal integer literal>
| <hexadecimal integer Iiteral>

<decimal integer literal> 1=

[({D |d}’]{<digit> | - }
<binary integer literal> =

1B b} {o]1]-}
<octal integer literal> ::=

{0 | o}’ {<octal digit> | . }*
<hexadecimal integer lteral> ::=

{H | b}’ { <hexadecimal digit> | _ }*
<hexadecimal digit> 1=

<digit> |A |B |C |D |E |[Fla |b |c|d e |f
<octal digit> =

0|1 |23 |4 15]|6]|7
<hoolean literal> ::=

<bgolean literal name>>
<character literal> ::=

* <character> | <control sequence>
<set literal> ::=

<set element name>

b

<emptiness literal> 1=
<emptiness literal name>

<character string literal> ::=
" { <non-reserved character> | <quote> | <control sequence> }* ”

<quote> =
»n
<control sequence> =

" (<integer literal expression> { , <integer literal expression> }*)
| = <non-special character>

|
<bit string literal> ::=
< binary bit string literal>
| <octal bit string literal>
| <hexadecimal bit string literal>
<binary bit string literal> =
1B b} {ol1]-}"
<octal bit string literal> 1=
{0 |0} ' { <octal digit> | - }*’
< hexadecimal bit string literal> 1=
{ H | h} ' { <hexadecimal digit> | _ }*’
<tuple> 1=
[<mode name>] (: { <powerset tuple> |
<array tuple> | <structure tuple> } :)
<powerset tuple> 1=
[{ <expression> | <range>} {, { <expression> | <range> } }*]
<range> :—
<expression> : <expression>

212 Fascicle X.6 — Rec. Z200

<array tuple> =
<unlabelled array tuple>
| <labelled array tuple>
<unlabelled array tuple> ;1=
<value> { , <value> }*
<labelled array tuple> ::=
<case label list> : <value> {, <case label list> : <value> }*
<structure tuple> ;=
<unlabelled structure tuple>
| <labelled structure tuple>
<unlabelled structure tuple> =
<value> {, <value> }*
<labelled structure tuple> =
<field name list> : <value> {, <field name list> : <value> }*
<field name list> ::=
<field name> { , . <field name> }*
< value string element> 1=
<string primitive value> (<start element>)
< value string slice> 1=
<string primitive value> (<left element> : <right element>)
| <string primitive value> { <start element> UP <slice size>)
<value array element> 1=
<array primitive value> { <expression list>)
<value array slice> =
<array primitive value> { <lower element> : <upper element>)
| <array primitive value> (<first element> UP <slice size>)
< value structure field> 1=
<structure primitive value> . <field name>

< expression conversien> =

<mode name> (<expression>)
< value procedure call> 1=

<value procedure call>

< value built-in routine call> 1=
<value built-in routine call>

< start expression> ;=
START <process name> (| <actual parameter list>])

<zero-adic operator> 1=
THIS
< parenthesised expression> ;=
(<expression>)
<value> =
< expression>
| <undefined value>
<undefined value> 1=
¥
| <undefined synonym name>

< expression> ;=
<operand-0>
| <conditional expression>

<conditional expression> =
| IF < boolean expression> <then altermative>
<else alternative> FI
| CASE <case selector list> OF { <value case alternative> }*
[ELSE <sub expression>> | ESAC

Fascicle X.6 — Rec. Z200

213

<then alternative> ::=
THEN <sub expression>

<else alternative> ::=
ELSE <sub expression>
| ELSIF <boolean expression>
<then alternative> <else alternative>

<sub expression> =
< expression>>

< value case alternative> ::=
< case label specification>> : <sub expression> ;
<operand-0> ::=
< operand-1>
| <sub operand-0> { OR. | ORIF | XOR } <operand-1>
<sub operand-0> =
< operand-0>
<operand-1> ::=
<operand-2>>
| <sub operand-1> { AND | ANDIF } <operand-2>
<sub operand-1> ::=
<operand-1>
<operand-2> =
<operand-3>
| <sub operand-2> <operator-3> <operand-3>
<sub operand-2> ;=
< operand-2>
<operator-3> ;1=
<relational operator>
| <membership operator>
| <powerset inclusion operator>
<relational operator> =
=1/=1>1>= 1< |<=
<membership operator> ::=
IN

< powerset inclusion operator> 1=
=[>= <[>
<operand-3> ;=
<operand-4>
| <sub operand-3> <operator-4> <operand-4>
<sub operand-3> ;1=
<operand-3>
<operator-4> =
<arithmetic additive operator>
| <string concatenation operator>
| <powerset difference operator>
<arithmetic additive operator> =
+ | =
<string concatenation operator> ::=

'/

<powerset difference operator> 1=

<operand-4> ::=
<operand-5>
| <sub operand-4> <arithmetic multiplicative operator> <operand-5>

<sub operand-4> 1=

214 Fascicle X.6 — Rec. Z200

< operand-4>

<arithmetic multiplicative operator> 1=
* |/ |MOD | REM
<operand-5> ;=
[<monadic operator> | <operand-6>
<monadic operator> =
- | NOT
| <string repetition operator>
<string repetifion operator> =
(<integer literal expression>)}
<operand-6> =
< referenced location>
| <receive expression>
| <primitive value>
<referenced location> 1=
-> <location>>
<receive expression> 1=
RECEIVE <buffer location>

6 ACTIONS

<action statement> n=

[<defining occurrence> : | <action> [<handler>] [<simple name string> | ;

| <module>
| <spec module>
| <context module>
<action> 1=
< bracketed action>
| <assignment action>
| <call action> '
| <exit action>
| <return action>
| <result action>
| <goto action>
| <assert action>
| <empty action>
| <start action>
| <stop action>
| <delay action>
| <continue action>
| <send action>
| <cause action>

<bracketed action> 1=
<if action>

| <case action>

| <do action>

| <begin-end block>

| <delay case action>>

| <receive case action>

| <timing action>
<assignment action> =

<single assignment action>
| <multiple assignment action>

<single assignment action> 1=

<location> <assignment symbol> <value>
| <location> <assigning operator> < expression>

Fascicle X.6 — Rec. Z200

215

<multiple assignment action> ::=
<location>> { , <location> }t <assignment symbol> <value>
< assigning operator> =
<closed dyadic operator> <assignment symbol>
<closed dyadic operator> ;=
CR | XOR | AND
| <powerset difference operator>
| <arithmetic additive operator>
| <arithmetic multiplicative operator>
| <string concatenation operator>
<assignment symbol> ::=

<if action> ;=

IF <boolean expression> <then clause> | <else clause> | FI
<then clause> ::= '

THEN <action statement list>

<else clause> =
ELSE <action statement list>
| BLSIF <boolean expression> <then clause> [<else clause>]
<case action> =
CASE <case selector list> OF [<range list> ; | { <case alternative> }+
[ELSE <action statement list>] ESAC

<case selector list> =
<discrete expression> { , <discrete expression> }*

<range list> ::=
<discrete mode name> { , <discrete mode name> }*

< case alternative> ::=
' <case label specification> : <action statement list>

<do action> ;=
DO [<control part> ;| <action statement list> OD

<control part> ::=
<for control> [<while control> |
| <while control>
| <with part>
<for control> ;1=
FOR { <iteration> { , <iteration> }* | EVER }
<Iteration> ;=
< value enumeration>
| <location enumeration>

<value enumeration> =
<step enumeration>
| <range enumeration>
| <powerset enumeration>

< step enumeration> ;1=
<loop counter> <assignment symbol>
<start value> [<step value> | [DOWN | <end value>

<loup counter> ::=
< defining occurrence>

<start value> ::=
< discrete expression>>

<step value> ;1=
BY <integer expression>

<end value> ;=
TO <discrete expression

216 Fascicle X.6 — Rec. Z200

<range enumeration> ;=
<loop counter> | DOWN | IN <discrete mode name>

< powerset entimeration> 1=
<loop counter> | DOWN | IN <powerset expression>

<location enumeration> ;1=
<loop counter> | DOWN | IN <composite object>
<composite object> 1=
<array location>
| <array expression>
| <string location>
| <string expression>
<while control> ::=
WHILE <boolean expression>
<with part> ;=
WITH <with control> { , <with control> }*
< with control> ::=
<structure location>
| <structure primitive value>

<exit action> ::=
EXIT <label name>
<call action> ::=

<procedure call>
| <built-in routine call>

< procedure call> ::=

{ <procedure name> | <procedure primitive value> }

([<actunal parameter list>])
<actual parameter Hst> 1=

<actual parameter> { , <actual parameter> }*
<actual parameter> ::—

<value>

| <location>

< built-in routine call> ::=
<built-in routine name> (| <built-in routine parameter list>])
< built-in routine parameter list> ::=
< built-in routine parameter> { , <built-in routine parameter> }*
< built-in routine parameter> ::=
<value>
| <location>
| <non-reserved name> | { <built-in routine parameter list>) |

<return action> ::=
RETURN [<result>]

<result action> ::=

RESULT <result>
<result> =

<value>

| <location>

<goto action> ::=

GOTO <label name>
<assert action> ;=

ASSERT <bgolean expression>>
<empty action™> 1=

<empty >
<empty> =

Fascicle X.6 — Rec. Z200

217

<{cause action> ::=

CAUSE <exception name>
<start action> ::=

<start expression>
<stop action> ;1=

STOP

<continue action> 1=
CONTINUE <event location>
<delay action> 1=
DELAY <event location> [<priority > |

<priority> ;1=
PRIORITY <integer literal expression>
< delay case action> ::=
DELAY CASE [SET <instance location> [<priority>]; | <priority> ;|
{ <delay alternative> }*
ESAC
<delay alternative> :=
{ <event list>) : <action statement list>
<event list> ;=
<egvent location> { , <event location> }*

<send action> 5=
<send signal action>
| <send buffer action>

<send signal action> =
SEND <sigral name> [(<value> {, <value> }*)]
[TO <instance primitive value>] [<priority>]
<send buffer action> 1=
SEND <buffer location> (<value>) [<priority> |

<receive case action> =
<receive signal case action>
| <receive buffer case action>

<receive signal case action> 1=
RECEIVE CASE [SET <instance location> ;)
{ <signal receive alternative> }+
[ELSE <action statement list>] ESAC

<signal recejve alternative> ::=
(<signal name> [IN <defining occurrence list>]) : <action statement list>

<receive buffer case action> ;1=
RECEIVE CASE [SET <instance location> ; |
{ <buffer receive alternative> }+
[ELSE <action statement list> |
ESAC

< buffer receive alternative> ::=
{ <buffer location> IN <defining occurrence>) : <action statement list>
<CHILL built-in routine call> ;=
< CHILL simple buili-in routine call>
| < CHILL location built-in routine call>
| <CHILL value buili-in routine call>
<CHILL simple built-in routine call> ::=
< terminate built-in routine call>
| <io simple built-in routine call>
| <timing simple buili-in routine call>
< CHILL location built-in routine call> ::=
<o location built-in routine call>

218 Fascicle X.6 —~ Rec. Z200

< CHILL value built-in routine call> ::=
NUM (<discrete expression>)
| PRED (<discrete expression>)
| SUCC (<discrete expression>)
| ABS (<integer expression>)
| CARD (<powerset expression> }
| MAX (<powerset expression>)
| MIN (<powerset expression>)
| SIZE ({ <location> | <mode argument> })
| UPPER (<upper lower argument>)
| LOWER (<upper lower argument>)
| LENGTH (<length argumeni>)
| <allocate buili-in routine call>
| <io value buili-in routine call>
| <time value built-in routine call>

<mode argument> ;1=
<mode name>
| <airay mode name> (<expression> }
| <string mode name> (<integer expression>)
| <variant structure mode name>> { <expression list>)

<upper lower argument> =
<array location>
| <array expression>
| <afray mode name>
| <string location>
| <string expression>
| <string mode name>
| <discrete location>
| <discrete expression>
| <discrete mode name>

<length argument> ;1=
<string location>
| <string expression>

<allocate built-in routine call> =
GETSTACK { <mode argument> [, <value>])
| ALLOCATE (<mode argument> [, <value> | }

<terminate built-in routine call> ::=
TERMINATE (<reference primitive value>)

7 INPUT AND OUTPUT

<io value built-in routine call> =
<association attr built-in routine call>
| <isassociated built-in routine call>
| <access attr built-in routine call>
| <readrecord built-in routine call>
| <gettext built-in routine call>

<io simple built-in routine call> ;1=
< dissociate built-in routine call>
| <modification buili-in routine call>
| <connect built-in routine call>
| <disconnect built-in routine call>
| <writerecord built-in routine call>
| <text built-in routine call>
| <settext bunilt-in routine call>

<to location built-in routine call> =
< associate built-in routine call>

<associate built-in routine call> =

Fascicle X.6 — Rec. Z200

219

ASSOCIATE (<association location> [, <associate parameter list> |)

<isassociated built-in routine call> 1=
ISASSOCIATED (<association location>)

<associate parameter list> 1=
< associate parameter> { , <associate parameter> }*

<associate parameter> 1=
<location>
| <value>

<dissociate buili-in routine call> ::=
DISSOCIATE (<association location>)

<association attr buili-in routine call> ::=
EXISTING (<association location>)
| READABLE (<association location>)
| WRITEABLE (<association location>)
| INDEXABLE (<association location>) *
| SEQUENCIBLE (<association location>)
| VARIABLE (<association location>)

<modification built-in routine call> ::=
CREATE (<association location>)
| DELETE (<association location>)
| MODIFY (<association location> [, <modify parameter list> 1)

<modify parameter list> ::=
<modify parameter> { , <modify parameter> }*
<modify parameter> ;1=
<value>
| <location>

<connect built-in routine call> ::=

CONNECT (<transfer location> , <association location> ,

<usage expression> [, <where expression> [, <index expression>])
<transfer location> 1=

<access location>
| <text location>

<lusage expression> =
<expression>

< where expression> ::=
<expression>

<index expression> =
<expression>

<disconnect bujlt-in routine call> ::=
DISCONNECT (<transfer location>)

<access atir built-in routine call> =
GETASSOCIATION (<iransfer location>)
| GETUSAGE (<transfer location>)
| OUTOFFILE (<transfer location>)

<readrecord built-in routine call> ::=
READRECORD (<access location> [, <index expression> |
[, <store location>])

< writerecord built-in routine call> =
WRITERECORD (<access location> [, <index expression>],
<write expression>)
<store location> 1=
<static mode location>
< write expression> 1=
<expression>>

220 Fascicle X.6 — Rec. 7200

<text built-in routine call> ;=
READTEXT (<text io argument list>)
| WRITETEXT (<text io argument list>)

<text io arguinent list> ;1=
<text argument> [, <index expression>],
<format argument> [, <io list> |
<text argument> ;=
<text location>
| <character string location>
| <characier siring expression>
<format argument> =
<character string expression>
<ie list> =
<io list element> { , <io list element> }*
<io list element> 1=
<value argument>
| <location argument>>
<location argument> ;1=
<discrete location>>
| <string location>
< value argument> 1=
<discrete expression>
| <string expression>
<format control string> ::=
[<format text> | { <format specification> [<format text>] }*
<format text> ::=
{ <non-percent character> | <percent> }
<percent> 1=
% %
<format specification> =
% [<repetition factor> | <format element>
<repetition factor> =
{ <digit> }+
<format element> =
<format clause>
| <parenthesised clause>
<format clause» ::=
<control code> [% . |
<control code> 1=
<c¢onversion clause>
| <editing clause>
| <io clause>
<parenthesised clause> 1=
(<format control string> %)
<conversion clause> 1=
<conversion code> { <conversion qualifier> }*
[<clause width>]
<conversion code> =
B|o|H|C
<conversion qualifier> =
L | E | P <character>
<clause width> =
{ <digit>}* |V
<editing clause> =

Fascicle X.6 — Rec. Z200

221

<editing code> [<clause width> |
<editing code> ::=

X|<|>|T
<io clause> ;=

<lio code>
<jo code> ;=
Sl= 1+ 171! =

<gettext buili-in routine call> ::=
GETTEXTRECORD (<text location>)
| GETTEXTINDEX (<text location>)
| GETTEXTACCESS (<text location>)
| EOLN (<text location>)

<settext built-in routine call> ::=
SETTEXTRECORD (<gext location> , <character string location>)
| SETTEXTINDEX (<text location> , <integer expression>)
| SETTEXTACCESS { <text Jocation> , <access location>)

8 EXCEPTION HANDLING

<handler> ;1=
ON { <on-alternative> }* [ELSE <action statement list>] END

<on-alternative> ::=
(<exception list>) : <action statement list>

9 TIME SUPERVISION
<timing action> =
<relative timing action>
| <absolute timing action>
| <eyclic timing action>
<relative timing action> ::=
AFTER <duration primitive value> | DELAY | IN
<action statement list> <timing handler> END
<timing handler> ::=
TIMEOUT <action statement Iist>
<absolute timing action> ::=
AT <absolute time primitive value> IN
<action statement list>> <timing handler> END
<cyclic timing action> 1=
CYCLE <duration primitive value> IN
<action statement list> END

<time value built-in routine call> =
<duration built-in routine call>
| <absolute time built-in routine call>

<duration built-in routine call> ::=
MILLISECS (<integer expression>)
| SECS (<integer expression>)
| MINUTES (<integer expression>)
| HOURS (<integer expression>)
| DAYS (<integer expression>)

<absolute time built-in routine call> =
ABSTIME ([[[[[[<year expression> ,] <month expression> ,]
<day expression> , | <hour expression> |, |
<Ininute expression> , | <second expression> |)

< year expression> =

222 Fascicle X.6 — Rec. Z200

<integer expression>>
<month expression> 1=
<integer expression>
<day expression> ::=
<integer expression>
<hour expression> 1=
<integer expression>>
<minute expression> ::=
<integer expression>>
<second expression> 1=
<integer expression>
< timing simple built-in routine call> ::=
WAIT ()
| EXPIRED ()
| INTTIME (<absolute time primitive value> , [[[[<year location>
<month location> , | <day location> ,]
<hour location> , | <mirute location> , |
<second location>)
< year Jocation> =
<linteger location>
<month location> =
<jnteger location>
<day location> ::=
<integer location>
<hour location> 1=
<integer location>
<minute location> ::=
<integer location>>
<second location> ;1=
<integer location>

10 PROGRAM STRUCTURE
< begin-end body> ::=
<data statement list> <action statement list>
<proc body> ::=
<data statement list>> <action statement list>
< process body> n=
< data statement list>> <action statement list>
<module body> ::=
{ <data statement> | <visibility statement> | <region> |
<spec region> }* <action statement list>
<region body> =]
{ <data statement> | <visibility statement> }*
<spec module body> 1=
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }*
<spec region body> ;1=
" { <quasi data statement> | <visibility statement> }*
<context body> =
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }*
<action statement list> ;1=
{ <action statement> }*

Fascicle X.6 — Rec. Z200

223

<data statement list> ;1=
{ <data statement> }*

<data statement> 1=
<declaration statement>
| <definition statement>

< definition statement> ::=
<synmode definition statement>
| <newmode definition statement>
| <synonym definition statement>
| <procedure definition statement>
| <process definition statement>
| <signal definition statement>
| <empty> ;
< begin-end block> ::=
BEGIN <begin-end body> END

< procedure definition statement> ::=
<defining occurrence> : <procedure definition>
[<handler>] [<simple name string>] ;

< pracedure definition> ::=
PROC ([<formal parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)] <procedure attribute list>
<proc body> END

<formal parameter list> 1=
<formal parameter> { , <formal parameter> }*

<formal parameter> ::=
<defining occurrence list> <parameter spec>

<procedure attribute list> ::=
[<generality>] | RECURSIVE]
<generality> ::=
GENERAL
| SIMPLE
| INLINE

<process definition statement> ;1=
<defining occurrence> : <process definition>
[<handler>] [<simple name string>] ;
< process definition> ;1=
PROCESS ([<formal parameter list>]) <process body> END
<module> =
[<context list> | [<defining occurrence> :]
MODULE [BODY] <module body> END
[<handler>] [<simple name string>] ;
| <remote modulion>
<regior> n=
[<context list>] [<defining occurrence’> : |
REGION [BODY | <region body> END
[<handler> | [<simple name string>] ;
| <remote modulion>
<program> : =
{ <module> | <spec module> | <region> | <spec region> }*
<remote modulion> ::=
[<simple name string> :] REMOTE <piece designator> ;

<remote spec> =
[<simple name string> :] SPEC REMOTE <piece designator> ;

<remote context> 1=
CONTEXT REMOTE <piece designator>>

224 Fascicle X.6 — Rec. Z200

[<context body>] FOR

<context module> ::=
CONTEXT MODULE REMOTE <piece designator> ;

< piece designator> ::=
<character string literal>
| <text reference name>
| <empty >
<spec module> =
<simple spec module>
| <module spec>
| <remote spec>

<simple spec module> ::=
[<context list> | [<simple name string> : | SPEC MODULE
<spec module body> END [<simple name string> | ;
<module spec> ;=
[<context list>> | <simple name string> : MODULE SPEC
<spec module body> END [<simple name string> | ;
<spec region> ;1=
<simple spec region>
| <region spec>
| <remote spec>
<simple spec region> =
[<context list> | [<simple name string> :] SPEC REGION
<spec region body> END [<simple name string> | ;
<region spec> =
[<context list>] <simple name string> : REGION SPEC
<spec region body> END [<simple name string>] ;
<context list> 1=
<context> { <context> }*
| <remote context>
<conbext> =
CONTEXT <context bady> FOR

<quasi data statement> 1=
<quasi declaration statement>
| <quasi definition statement>

< quasi declaration statement> 1=
DCL <quasi declaration> { , <quasi declaration> }* ;

<quasi declaration> 1=
< quasi location declaration>
| <quasi loc-identity declaration>

<quasi location declaration> ::=
<defining occurrence list> <mode> | STATIC]

<quasi loc-ideniity declaration> 1=
<defining occurrence list> <mode>
LOC [NONREF] [DYNAMIC]

<quasi definition statement> ::=
<synmode definition statement>
| <rewmode definition statement>
| <synonym definition statement>
| <quasi synonym definition statement>
| <quasi procedure definition statement>
| <quasi process definition statement>
| <quasi signal definition statement>
| <empty> ;

<quasi synonym definition statement> ;1=

Fascicle X.8 — Rec. Z200

225

SYN <gquasi synonym definition> { , <quasi synorym definition> }* ;
<guasi synonym definition> ::=

<defining occurrence list>> { <mode> = [<constant value> | |

[<mode> | = <literal expression> }
<quasi procedure definition statement> ;=

<defining occurrence> : PROC ([<quasi formal parameter list>])

[<result spec> | [EXCEPTIONS (<exception list>)]

<procedure attribute list> END [<simple name string>] ;

<qguasi formal parameter list> 1=
<quasi formal parameter> { , <quasi formal parameter> }*

<quasi formal parameter> =
<simple name string> { , <simple name string> }* <parameter spec>

<quasi process definition statement> ;=
<defining occurrence> : PROCESS ([<quasi formal parameter list> |)
END [<simple name string> | ;
< quasi signal definition statement> ;1=
SIGNAL <quasi signal definition> { ,<quasi signal definition> }* ;
< quasi signal definition> 1=
<defining occurrence> [= (<mode> {, <mode> }*)] [TO]

11 CONCURRENT EXECUTION

<signal definition statement> ::=
SIGNAL <signal definition> { ,<signal definition> }* ;
<signal definition> ::=
<defining occurrence> | = (<mode> {, <mode> }*)] [TO <process name> |

12 GENERAL SEMANTIC PROPERTIES

< visibility statement> ;=
<grant statement>
| <seize statement>

<prefix rename clause> ::=
(<old prefix> ~> <new prefix>) | <postfix>
<old prefix> ;=
< prefix>
| <empty>
<new prefix> ;1=
< prefix>
| <empty>
<postfix> =
<seize postfix> { , <seize postfix> }*
| <grant postfix> { , <grant postfix> }*
<grant statement> ::=
GRANT <prefix rename clause> { , <prefix rename clause> }* ;
| GRANT <grant window> [<prefix clause>] ;
<grant window> ::=
<grant postfix> { , <grant postfix> }*
<grant postfix> ::=
<name string >
| <newmode name string> <forbid clause>
| [<prefix>!] ALL
<prefix clause> =
PREFIXED [<prefix> |

226 Fascicle X.8 — Rec. Z200

< forbid clause> 1=
FORBID { <forbid name list> | ALL }

< forbid name list> ::=
(<field name> { , <field name> }*)

< seizge statement> ;1=
SEIZE <prefix rename clause> { , <prefix rename clause> }* ;
| SEIZE <seize window>> [<prefix clause>] ;
<seize window> ;1=
<seize postfix> { , <seize postfix> }*
< seize postfix> 1=
<name string >
| [<prefix>!] ALL
< case labe] specification> 1=
<case label list> { , <case label list> }*
<case label list> =
{ <case label> { , <case label> }*)
| <irrelevant>
< case label> ::=
< discrete literal expression>>

| <literal range>

| <discrete mode name>
| ELSE

<irrelevant> ;=

(*)

Fascicle X.6 — Rec. Z200 227

APPENDIX G: INDEX OF PRODUCTION RULES

non-termina]

< absolute time built-in routine call>
<absolute time mode>

<absolute timing action>

<access attr built-in routine call>
<access mode>

< &cCess name>

<action>

<action statement>

<action statement list>

<actual parameter>

<actual parameter list>

<allocate built-in routine call>
<alternative field>

<arithmetic additive operator>
<arithmetic multiplicative operator>
<array element>

<array mode>

< array slice>

<array tuple>

< assert action>

<assigning operator>

<assignment action>

<assignment symbol>

< associate built-in routine call>
<assoclate parameter>

<associate parameter list>
<association attr built-in routine call>
<association mode>

< begin-end block>

< begin-end body>

<binary bit string literal>

< binary integer literal>

< bit string Iiteral>

<boolean literal>

< boolean mode>

< bound reference mode>

< bracketed action>

< bracketed comment>

< buffer element mode>
<buffer length>

< buffer mode>

< buffer receive alternative>
< built-in routine call>

< built-in routine parameter>
< built-in routine parameter Iist>

< call action>
< case action>

228 Fascicle X.6 — Rec. Z200

defined used on
section page page(s)
9.4.2 124 124
3.11.3 27 27
9.3.2 123 122
7.4.8 107 io2
3.10.3 25 25
4.2.2 42 4]
6.1 75 75
6.1 75 128
10.2 128 77,78,79,90,93,94,120,122,123,128
8.7 84 84
6.7 84 65,84
6.20.4 98 96
3.12.4 31 31
5.3.6 71 71,76
5.3.7 72 72,76
4.2.8 46 41
3.12.3 29 28
4.2.9 46 41
5.2.5 56 56
6.10 87 75
6.2 76 75
6.2 75 75
6.2 76 39,40,75,76,80
7.4.2 103 102
7.4.2 103 103
7.4.2 103 103
7.4.4 104 102
3.10.2 25 25
10.3 130 75
10.2 128 130
5.2.4.8 56 56
5.2.4.2 53 53
5.2.4.8 56 52
5.2.4.3 53 52
3.4.3 17 16
3.6.2 21 20
6.1 75 75
2.4 9 g
3.9.3 24 24
3.9.3 24 24
3.9.3 24 23
6.19.3 94 94
6.7 84 48,64
6.7 84 84
6.7 84 84
6.7 84 75
6.4 78 75

non-terminal

<case alternative>

< case label>

<case label list>

< case label specification>
< case selector Iist>

< cause action>

< character>

< character literal>
<character mode>
<character string>
<character string literal>
< CHILL built-in routine call>

< CHILL location built-in routine call>
< CHILL simple built-in routine call>
< CHILL value built-in routine call>

<clause widih>

<closed dyadic operator>
< comtment>

<composite mode>
<composite object>
<conditional expression>
< connect built-in routine call>
<context>

< context body>
<context list>

< context module>
<continue action>

< control code>

<control part>

< control sequence>
<conversior clause>
<conversion code>
<conversion gunalifier>
<cyclic timing action>

<data statement>

<data statement list>

< day expression>

< day location>
<decimal integer literal>
< declaration>

< declaration statement>
<defining mode>

< defining occurrence>

<defining occurrence list>
<definition statement>

<delay action>

<delay alternative>

<delay case action>

< dereferenced bound reference>
<dereferenced free reference>

< dereferenced row>

defined
sectlon

6.4
12.3
12.3
12.3
6.4
6.12

5.2.4.4
3.4.4
24
5.2.4.7
6.20
6.20.2
6.20.1
6.20.3
7.5.5
6.2

2.4
3.12.1
6.5.2
5.3.2
7.4.6
10.10.2
10.2
10.10.2
10.10.1
6.15
7.5.4
6.5.1
5.2.4.7
7.5.5
7.5.5
7.5.5
9.3.3

10.2
10.2
9.4.2
9.4.3
5.2.4.2
4.1.1
4.1.1
3.21
2.7

2.7
10.2
6.16
6.17
6.17
4.2.3
4.2.4
4.2.5

used on
page page(s)
78 78
164 164
164 56,164
164 31,67,78
78 67.78
88 75
9,54,55,113,114
54 52
17 16
9 9
55 52,137
35
95 95
95 95
96 95
114 114,116
76 76
9
28 15
80 80
67 67
106 102
138 138
128 137,138
138 134,135,138
137 75
88 75
113 113
79 79
bb 54,55
114 113
114 114
114 114
123 122
128 128
128 128
124 124
125 125
53 53
39 39
39 128
13 13
10 10,18,75,80,94,131,133,134,135,140
145
10 13,39,40,50,93,131,139,140
128 128
89 75
90 90
a0 75
42 41
213 41
43 41

Fascicle X.6 — Rec. Z200

229

non-terminal

<digit>

<directive>

<directive clause>

<disconnect built-in routine call>
<discrete mode>

<dissociate built-in routine call>
<do action>

<duration built-in routine call>
<duration mode>

<editing clause>
<editing code>
<element layout>
<element mode>
<else alternative>
<else clause>
<empfiiness literal>
<empty>

<empty action>
<end bit>
<end-of-line>
<end value>
<event length>
<event list>
<event mode>
<exception list>
<exception name>
<exit action>

< expression>

<expression conversion>
<expression list>

<field>

<field layout>

<field name>

<field name defining occurrence>

<field name defining occurrence list>

<field name list>

< first element>

<fixed field>

<forbid clause>
<forbid name list>

< for control>

<formal parameter>
<formal parameter list>
<format argument>
<format clause>
<format control string>
<format element>
<format specification™>

230 ‘Faseicle X..6 — Rec. Z200

defined used on

section page page(s)

2.2 8 8,53,113,114

2.6 10 10

2.6 10

7.4.7 107 102

3.4.1 16 15

7.4.3 103 102

6.5.1 79 5

9.4.1 124 124

3.11.2 27 27

7.5.6 116 113

7.5.6 116 116

3.12.5 34 29

3.12.3 29 29

5.3.2 67 67

6.3 77 7

5.2.4.¢ 54 52

6.11 87 87,128,137,139,158

6.11 87 75

3.12.5 34 34
9

6.5.2 80 80

3.9.2 24 24

6.17 90 30

3.9.2 24 23

3.7 22 22,120,131,140

2.7 10 29,88

6.6 83 75

5.3.2 67 18,19,24,26,28,29,31,34,44,45
46,55,56,63,65,66,67,73,75,77
78,80,82,87,89,96,105,108,111,118
124,125,140,164 '

5.2.11 63 50

4.2.8 46 46,61,96

3.12.4 31 31

3.12.5 34 31

2.7 10 31,47,57,63,160

2.7 10 10

2.7 10 31

5.2.5 57 57

4.2.9 46 46,62

3.12.4 31 31

12.2.3.4 160 160

12.2.34 160 160

6.5.2 80 79

10.4 131 131

10.4 131 131,133

7.5.3 111 111

7.5.4 113 113

7.5.4 113 113

7.5.4 113 113

7.5.4 113 113

non-terminal

<format text>)
<free reference mode>

< generality>

<gettext built-in routine call>
<goto action>

<grant postfix>

< grant statement>

<grant window>

<handler>

< hexadecimal bit string literal>
< hexadecimal digit>

< hexadecimal integer literal>>

< hour expression>

<hour location>

<if action>

<implementation directive>
<index expression>

<index mode>

<initialisation>

<input-output mode>

<instance mode>

<integer literal>

<Integer mode>

<lo clause>

<io code>

<lIo list>

<lio list element>

<io location built-in routine call>
<io simple built-in routine call>
<io value built-in routine call>
<irrelevant>

<isassociated built-in routine call>
<iteration>

<labelled array tuple>
<labelled structure tuple>
<left element>

<length>

<length argument>
<letter>

<lifetime-bound initialisation>
<line-end comment>
<literal>

<literal expression list>
<literal range>
<location>

<location argument>
<location built-in routine call>

defined
section

7.5.4
3.6.3

10.4
7.5.8
6.9
12.2.3.4
12.2.3.4
12.2.3.4

8.2
5.2.4.8
5.2.4.2
5.2.4.2
9.4.2
9.4.3

6.3

7.4.6
3.10.3
4.1.2
3.10.1
3.8
5.2.4.2
3.4.2
7.5.7
7.5.7
7.5.3
7.5.3
74.1
7.4.1
T.4.1
12.3
7.4.2
6.5.2

5.2.5
5.2.5
4.2.7
3.12.5
6.20.3
2.2
4.1.2
2.4
5.2.4.1
3.12.4
3.4.6
4.2.1

7.5.3
4.2.12

used on

page page(s)

113 113

21 20

131 131

118 102

87 75

160 158,160

159 158

160 159

120 39,40,75,131,133,134,135

56 56

53 53,56

53 53

125 124

125 125

(i 75
10

105 105,108,111

25 25,26,29

39 39 .

25 15

23 15

53 52

16 16

117 113

117 117

111 111

111 111

102 85

102 a5

102 96

164 164

163 102

80 80

56 56

57 56

45 45,60

34 34

96 26

8 8

39 39

9 9

b2 50

31 31

19 19,25,164

41 40,44,45,46,47,49,51,74,75,80
83,84.86.88 89.00,92,93,04,96
103,104,105,108,111,118,125

111 111

48 41

Fascicle X.6 — Rec. Z200 231

non-terminal

<location contents>
<location conversion>
<location declaration>
<location enurmneration>
<location procedure call>
<loc-identity declaration>
<loop counter>

<lower bound>

<lower element>

<member mode>
<membership operator>
<minute expression>
<minute location>
<mode>

<mode argument>
<mode definition>

<modification built-in routine éa11>

<modify parameter>
<modify parameter list>
<module>

<module body>

<module spec>

<monadic operator>

<month expression>

<month location>

<multiple assignment action>

<name>>

<name string>

<newmode definition statement>
<new prefix>

<non-composite mode>
<numbered set element>
<numbered set list>

<octal bit string literal>
<octal digit>

<octal integer literal>
<old prefix>
<on-alternative>
<operand-0>

< operand-1>
<operand-2>
<operand-3>
<operand-4>
<operand-5>
<operand-6>
<operator-3>

232 Fascicle X.6 — Rec, Z200

defined used on

section page page(s)

5.2.2 51 50

4.2.13 49 41

4.1.2 39 39

6.5.2 80 80

4.2.11 48 41

4.1.3 40 39

6.5.2 80 80

3.4.8 18 19

4.2.9 46 46,62

3.5 20 20

5.3.5 70 69

9.4.2 125 124

9.4.3 125 125

3.3 15 13,20,21,22,24,25,29,31,39,40
50,139,140,145

6.20.3 96 96,98

3.2.1 13 14

T.4.5 104 102

7.4.5 104 104

7.4.5 104 i04

10.6 134 75,135

10.2 128 134

10.10.2 138 138

5.3.8 73 73

9.4.2 124 124

9.4.3 125 125

6.2 75 75

2.7 10 16,17,18,19,20,21,22,23,24,25
27,28,29,31,42,43,49,51,53,54
56,63,65,66,78,80,83,84,87,91
93,06,145,164

2.7 10 10,160,161

3.2.3 i4 128,139

12.2.3.3 158 158

3.3 15 15

3.4.5 18 18

3.4.5 18 18

5.2.4.8 56 56

5.2.4.2 53 53,56

5.2.4.2 53 53

12.2.3.3 158 158

8.2 120 120

5.3.3 68 67,68

5.3.4 69 68,69

5.3.5 6o 69

5.3.6 71 69,71

5.3.7 T2 71,72

5.3.8 73 72

5.3.9 74 73

5.3.5 69 69

non-terminal

< operator-4>

<origin array mode name>

<origin string mode name>

< origin variant structure mode name>

< parameter atiribute>

< parameterised array mode>
< parameterised string mode>
< parameterised structure mode>
< parameter list>

< parameter spec>

< parenthesised clause>

< parenthesised expression>

< percent>>

< piece designator>

< pos>

< postfix>

< powerset difference operator>
< powerset enumeration>

< powerset inclusion operator>
< powerset mode>

< powerset tuple>

< prefix>

< prefix clause>

<prefixed name string>

< prefix rename clause>

< primitive value>

<priority>

<proc body>

< procedure attribute list>

< procedure call>

< procedure definition>

< procedure definition statement>
< procedure mode>

< process body>

< process definition>

< process definition statement>
< program>

<quasi data statement>

< quasi declaration>

< quasi declaration statement>

< quasi definition statement>

<quasi formal parameter>

< quasi formal parameter list>
<quasi location declaration>

<quasi loc-identity declaration>

< quasi procedure definrition statement>
< quasi process definition statement>
<quasi signal definition>

< quasi signal definition statement>
<quasi synonym definition>

defined used on

section page page(s)

5.3.6 71 71

3.12.3 29 29

3.12.2 28 28

3.12.4 31 31

3.7 22 22

3.12.3 29 29

3.12.2 28 28

3.12.4 31 31

3.7 22 22

3.7 22 22,131,140

7.5.4 113 113

5.2.16 65 51

7.5.4 113 113

10.10.1 137 136,137

3.12.5 34 34

12.2.3.3 158 158

5.3.6 71 71,76

6.5.2 80 80

5.3.5 70 69

3.5 20 15

5.2.5 58 56

2.7 10 10,158,160,161

12.2.34 160 159,161

2.7 10 10

12.2.3.3 158 159,161

5.2.1 50 42,43,60,61,62,63,74,83,84,91
98,122,123,125

6.16 89 89,90,01,92

10.2 128 131

10.4 131 131,140

6.7 84 48,64,84

10.4 131 131

10.4 131 128

3.7 22 15

10.2 128 133

10.5 133 133

10.5 133 128

10.8 135

10.10.3 139 128

10.10.3 139 139

10.10.3 139 139

10.10.3 139 139

10.10.3 140 140

10.10.3 140 140

10.10.3 139 139

10.10.3 139 139

10.10.3 140 139

10.10.3 140 139

10.10.3 140 140

10.10.3 140 139

10.10.3 140 140

Fascicle X.6 — Rec. Z200

233

non-terminal

<quasi synonym definition statement>
<quote>

<range>

<range enumeration>

< range list>

<range mode>
<reach-bound initialisation>
<readrecord built-in routine call>
<receive buffer case action>
<receive case action>
<receive expression>
<receive signal case action>
<record mode>

<referenced location>
<referenced mode>
<reference mode>

<region>

<region body>

<region spec>

<relational operator>
<relative timing action>
<remote context>

<remote modulion>
<remote spec>

<repetition factor>
<result>

<result action>

<result attribute>

<result spec>

<return action>

<right element>

<row mode>

<second expression>
<second location>>

< seize postfix>

< seize statement>

<seize window>

<send action>

<send buffer action>

<send signal action>

<set element>

<set list>

<set Nieral>

<set mode>

<settext built-in routine call>
<signal definition>
<signal definition statement>
<signal recejve alternative>
<simple name string>
<simple prefix>

<simple spec module>

234 Fascicle X.6 — Rec. Z200

defined used on
section page page(s)
10.10.3 140 139
5.2.4.7 55 55
5.2.5 56 56
6.5.2 80 80

6.4 78 78
3.4.6 19 16
4.1.2 39 39
7.4.9 108 102
6.19.3 94 92
6.19.1 92 75
5.3.9 74 T4
6.19.2 93 92
3.10.3 25 25
5.3.9 T4 T4
3.6.2 21 21
3.6.1 20 15

10.7 135 128,135
10.2 128 135
10.10.2 138 138
5.3.5 70 69
9.3.1 122 122
10.10.1 137 138
10.10.1 136 134,135
10.10.1 136 138
7.5.4 113 113

6.8 86 86

6.8 86 75

3.7 22 22

3.7 22 22,131,140
6.8 86 75
4.2.7 45 45,60
3.6.4 21 20
9.4.2 125 124
9.4.3 125 125
12.2.3.5 161 158,161
12.2.3.5 161 158
12.2.3.5 161 161
6.18.1 91 75
68.18.3 92 91
6.18.2 91 91
3.4.5 18 18
3.4.5 18 18
5.2.4.5 54 52
3.4.5 18 16
7.5.8 118 102
11.5 145 145
11.5 145 128
6.19.2 93 93

2.2 8 10,75,131,133,134,135,136,138,140
2.7 10 10
10.10.2 138 138

non-terminal

. <simple spec region>
<single assignment action>
<slice size>

<spec module>

< spec module body>

<spec region>

< spec region body>

< start action>

<start bit>

<start element>

<start expression>

<start value>

<step>

< step enumeration>

< step size>

< step value>

<stop action>

<store location>

<string concatenation operator>
<string element>

< string length>

<string mode>>

<string repetition operator>
<string slice>

<string type>

<structure feld>

<structure mode>

< structure tuple>

<sub expression™

<sub operand-0>

<sub operand-]1>

<sub operand-2>

<sub operand-3>

<sub operand-4>

< synchronisation mode>
<synmode definition statement>
<synonym definition>
<synonym definition statement>

<tag list>

<terminate built-in routine call>
<text argument>

<text built-in routine call>

< text io argument list>

<text length>

<text mode>

< text reference pame>

< then alternative>

<then clause>

<time value built-in routine call>
<timing action>

< timing handler>

< timing mode>

defined

section

10.10.2
6.2
4.2.7
10.10.2
10.2
10.10.2
10.2
6.13
3.12.5
4.2.6
5.2.14
6.5.2
3.12.5
6.5.2
3.12.5
6.5.2
6.14
7.4.9
5.3.6
4.2.6
3.12.2
3.12.2
5.3.8
4.2.7
3.12.2
4.2.10
3.12.4
5.2.5
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
53.7
3.9.1
3.2.2
5.1
5.1

3.12.4
6.20.4
7.5.3
7.5.3
7.5.3
3.10.4
3.10.4
2.7
5.3.2
6.3
9.4
9.3
9.3.1
3.11.1

used on
page page(s)
138 138
75 75
45 45,46,60,62
138 75,128,135
128 138
138 128,135
128 138
88 75
34 34
44 44 45,60
65 51,88
80 80
34 34
80 80
34 34
80 80
88 75
108 108
71 71,76
44 41
28 28
28 28
73 73
45 41
28 28
47 41
31 28
56 56
67 67
68 68
69 69
69 69
71 71
72 72
23 15
14 128,139
50 50
50 128,139
31 31
98 85
111 111
111 102
111 111
26 26
26 25
10 137
67 67
7 (i
124 96
122 75
122 122,123
27 15

Fascicle X.6 — Rec. Z200

235

non-terminal

<timing simple built-in routine call>
< transfer location>
<tuple>

<undefined value>
<unlabelled array tuple>
<unlabelled structure tuple>
<unnumbered set list>
<upper bound>

< upper element>

<upper index>

<upper lower argument>

< usage expression>>

< value>

<value argument>
<value array element:
<value array slice>

< value built-in routine call>
< value case alternative>
<value enumeration>
<value name>

<value procedure call>
<value string element>
<value string slice>
<value structure field>
< variant alternative>
<variant field>

< visibility statement>

< where expression>

< while control>

< with control>

< with part>

< word>

< write expression>

<writerecord built-in routine call>

< yeal expression>
<year location>

<zero-adic operator>

236 Fascicle X.6 — Rec. Z200

defined used on
section page page(s)
9.4.3 125 95
7.4.6 105 105,107
5.2.5 56 50
5.3.1 66 66
5.2.5 56 56
5.2.5 56 56
3.4.5 18 18
3.4.6 19 19
4.2.9 46 46,62
3.12.3 29 29
6.20.3 96 96
7.4.6 105 105
5.3.1 66 39,50,56,57,75,84,86,91,92,98
103,104,140
7.5.3 111 111
5.2.8 61 50
5.2.9 62 50
5.2.13 64 51
5.3.2 67 67
6.5.2 80 80
5.2.3 51 50
5.2.12 64 51
5.2.6 60 50
5.2.7 60 50
5.2.10 63 50
3.12.4 31 31
3.12.4 31 31
12.2.3.2 158 128
7.4.6 103 105
6.5.3 82 79
6.5.4 83 83
6.5.4 83 79
3.12.5 34 34
7.4.9 108 108
7.4.9 108 102
9.4.2 124 124
9.4.3 125 125
5.2.15 65 51

APPENDIX H: INDEX

Page numbers in boldface are references to the deﬁning occurrences of an item; normal font refers to applied

occurrences of indexed items.

ABS 72, 96, 97-98, 174

absolute time built-in routine call 125

absolute time buil-in routine call 124

absolute time mode 2, 28, 149, 151, 166-167, 169

absolute time mode 27

absolute time mode name 27

absolute time mode name 27, 166

absolute time primitive value 123, 125, 167

absolute timing action 122, 123, 127

absolute value 96

ABSTIME 124,125,174

ACCESS 25, 27, 163, 173 -

2,5, 12, 31, 34, 39-40, 42, 83, 101, 118, 135—

136, 142 4

access attr built-in routine call 102, 107

access attribute 102 '

access location 100-103, 105-108

access location 101

access location 105-106, 108-109, 118-119, 167

access mode 4, 26, 102, 147, 148, 151, 153, 166-167

access mode 25

access mode 27, 106, 110, 112, 119, 149, 151

access mode name 25, 166

access name 2, 40, 42, 83, 166

access name 41, 42, 143

access name 162

access reference 107, 110, 118-119

access sub-location 26, 40, 105, 110, 118

Access values 102

action 1, 3,5-6,9, 75, 80, 87, 90, 112, 115, 120-122,
128-131, 133, 142, 144-145, 170

action 75,127

action statement - 1, 75, 87, 120, 134, 142

action statement 75, 122-123, 128

action statement kst 77-82,120-121, 123, 130, 164

action statement list 77-79, 90, 93-94, 120, 122-
123, 127, 128, 129

activation 86, 136, 142

active 5, 142, 143-145

actual index 110-112, 114, 116-118

actual length 28, 44-45, 60-61, 68-69, 76, 81, 97,
114, 116-118

actual parameter 65, 84, 132, 142

actual parameter 57, 65, 84, 85-86, 170

actual parameter list 84

actual parameter list 65, 84

AFTER 122, 173

alike 13, 140-141, 148, 151, 152

ALL 137, 160-1861, 162, 173

all class 12, 33, 66, 140, 143, 147, 155, 165

ALLOCATE 2,4, 57, 98, 99, 136, 174

allocate built-in routine call 96, 98

allocated reference value 99, 136

ALLOCATEFAIL 99,175

access

alternative fields 164

alternative field 31, 32-33, 36, 59, 150, 152, 165

AND 68,76, 173

ANDIF 69,173

applied occurrence 5, 11, 128, 155

arithmetic additive operator 71

arithmetic additive operator 71, 72,76

arithmetic multiplicative operator 72

arithmetic multiplicative operator 72,73, 76

ARRAY 29, 30, 35, 163, 173

array element 34-35, 46, 164

array element 41, 46, 61, 136, 143

array expression 80, 82, 96-97, 167

array location 22, 30, 46-47, 81

array location 46-47,61-62, 80-82, 96-97, 136, 143,
167

array mode 16, 30, 34-37, 44, 58, 109, 146-147,
149-150, 152-154, 166-167

array mode 28, 29, 30, 168

array mode 21-22, 168

array mode name 29, 96-99, 166

array primitive value 61-62, 144, 167

array slice 36, 47

array slice 41, 46, 47, 62, 136, 143

array tuple 57, 165

array tuple 586, 57-59

array valune 30, 57, 61-62, 109

ASSERT 87,173

assert action 4, 87

assert action 75, 87

ASSERTFAIL 87,175

assigning operator 76

assigning operator 75, 76, 77

assignment action 76, 143

assignment action T5

assignment conditions
91-92, 99, 109

assignment symbol 76

assignment-symbol 39-40, 75, 76, 80

ASSOCIATE 4, 25, 100, 103, 174

associate built-in routine call 102, 103

associate parameter 103, 170

associate parameter list 103

ASSOCIATEFAIL 103,170, 175

ASSOCIATION 25, 103, 107, 163, 174

association 2, 4, 25, 39-40, 160-110, 170

association attr built-in routine call 102, 104

association attribute 101

association location 100-103, 107

association location 103-107, 167

association mode 4, 25,101, 147, 149, 151, 166-167

association mode 25

association mode name 26

association mode name 25, 166

40, 59, 65, 68, 76, 85-87,

Fascicle X.6 — Rec. Z200 237

assoctation value
AT 128,173

101, 170

Backus-Naur Form 7

base index 4, 101, 106, 108

BEGIN 130, 173

begin-end block 3-4, 130

begin-end block 75, 127, 129, 130

begin-end body 128, 130

BIN 18, 20, 163, 173

binary bit string literal 56

binary integer literal 53

binding rules 8, 11, 156

bit string 28, 68-69

bit string literal 56

bit string literal 52, 56, 73

bit string mode 29, 44, 60, 149, 152

bit string value 28, 56, 68-69, 71, 73, 116

block 1, 52, 82, 121, 127, 128, 130, 134-136, 142,
156-157

BODY 134-135, 173

BOOL 17, 44, 54, 60, 70, 72, 103-104, 107, 154,
163, 174

boolean expression 82

boolean expression 7, 67, 77, 82, 87, 167

boolean literal 54

boolean litera] 52, 53, 54

boolean Literal names 53

boolean [iteral name 53, 166

boolean mode 17, 148, 151, 166-167

boolean mode 16, 17

boolean mode name 17

boolean mode name 17, 166

boolean value 28, 54, 68-70, 73, 101, 115

BOOLS 28, 29, 56, 71, 73, 163, 173

bound 11, 138, 141, 152-153, 157, 159, 161-162,
164, 167

bound reference 2, 20, 42

bound reference Jocation name 167

21, 148, 150-151, 153-155,

bound reference mode
166-168

bound reference mode 20, 21

bound reference mode name 21, 166

bound reference primitive value 42-43, 143, 167

bracketed action 3, 83-84, 121

bracketed action 75

bracketed comment 9

BUFFER 24, 163, 173

buffer 3, 22, 39, 91-92, 130

buffer element mode 24, 25

buffer element mode 24, 57, 74, 92, 94, 149, 151,
153

buffer length 24, 92, 149, 151

buffer length 24, 25

buffer location 24, 74, 92, 94

buffer location 57, 74, 92, 0495, 167

buffer mode 2, 24, 147, 149, 151, 153, 166-167

buffer mode 23, 24

buffer mode name 24, 166

buffer receive alternative 94, 127, 129

built-in routine call 3-4, 48, 57, 84, 97, 99, 103,

238 Fascicle X.6 — Rec. Z200

107-114, 119, 125, 136, 169
built-in routine call 84, 85, 95-96, 169
built-in routine name 95, 169
built-in routine name 84-85, 167
built-in routine parameter 84, 102
built-in routine parameter list 84
BY 80,173

call action 84, 132
call action 75, 84
canonical name string 11, 155

CARD 86, 97-98, 174
carriage placement 117
CASE 31, 67, 68, 78, 90, 93-94, 173

case action 3, 33, 68, 78, 164-165

case action 75, T8, 127, 128, 165

case alternative 78

case alternative T8, 127, 165

case label 58, 165

case label 78, 164, 165

case label list 57, 78, 164-165

case label list 56, 58, 78, 150, 152, 164, 165

case label specification 32, 58, 78, 164, 165

case label specification 31, 33, 67, 78, 164, 165

case selection 164, 165

case selection conditions

case selector list 78

case selector list 67, T8

CAUSE 88,173

cause action 3-4, 88, 120

cause action 75, 88

change-sign 73

CHAR 17-18, 44, 54, 60, 72, 153, 163, 174

character 2, 7-11, 17, 28, 54-55, 71, 110, 113-118

character 8-9, 54, 114, 168

character literal 18, 54

character literal 52, 54

character mode 17, 18, 148, 151, 166

character mode, 16, 17

character mode name 17

character mode name 17, 166

character set 8-10, 17, 55, 171

character string 28, 71, 111, 114, 116

character stzing 9

character string expression 111, 167

character string literal 9, 55

character string literal 52, 55, 73, 137

character string location 111, 118-119, 167

character string mode 29, 44, 60, 149, 152, 167

character string value 28, 55, 71, 116

CHARS 27, 28, 29, 55, 71, 73, 168, 173

CHILL 1-10, 12-13, 17, 23, 25-26, 37, 49, 55, 63,
66, 75, 85, 95, 100-102, 108-110, 113-115,
122, 135~137, 140, 142-144, 167, 169

CHILL built-in rontine call 84, 95

CHILL location built-in routine call 95

CHILL simple built-in routine call 95

CHILL value built-in routine call 95, 96

class 2-3,5, 7,12, 13, 19-20, 26, 30, 33-34, 40, 46—
47, 50-74, 76, 78, 82-86, 91-94, 97-99, 103~
104, 106-107, 109, 112, 115-116, 119, 124~

33, 58, 68, 78

125, 140, 143, 147-149, 152-153, 155-156, 165,
167-169

clause width 112, 114, 115-116, 119

closed dyadic operator 76

closed dyadic operator 76, 77

closest surrounding 83, 86, 136

comment 9, 11

commment 9

compatibility relations 148

compatible 13, 20, 30, 34, 40, 4647, 50, 58-59,
61-62, 6770, 72-73, 76, 78, 82, 85-86, 91-92,
98-99, 106, 109, 112, 147, 149, 152, 155, 165,
167-168

complement 73

complete 58, 78, 165

component mode 14-15, 29, 45, 60, 81

composite mode 2, 28

composite mode 15-16, 28, 168

composite obhject 80, 81

composite value 28, 30-31, 66

concatenation 9, 11, 28, 71

concurrent execution 5, 133, 135, 142

conditional expression 164-165

conditional expression 67, 68, 143-144, 165

conjunction 69

CONNECT 4, 100, 105, 106-107, 174

connect built-in routine call 102, 105

connect operation 26, 101, 102, 105, 108

connected 4, 40, 100-103, 105-110, 117

CONNECTFAIL 106, 170, 175

consistency 33, 36, 68

consistent 165

constant 3, 50-59, 63, 66-74, 97, 115, 136, 140,
168, 170 '

constant classes 12

constant value 3,170

constant value 13, 39-40, 50, 57, 140, 144, 168

CONTEXT 137-138,173

context 5, 85, 169

context 127, 129-130, 138, 139-141, 161-162

context body 128, 137-138

context list 127, 134-135, 137, 138

context module 75, 137

CONTINUE 88,173

continue action 5, 24, 89, 90, 145

continue action 75, 88

control code 112,113

control part 79, 130

control part 79

control sequence 54, 55

conversion clause 112-113, 114

conversion code 115

conversion code 112, 114, 115-116

conversion qualiffier 112, 114, 115

CREATE 104, 174

created 2, 11, 23, 25, 27, 39-40, 65, 81, 98-101,
103, 108, 110-111, 127, 128, 130, 132, 135~
136, 142, 155

CREATEFAIL 104, 170, 175

critical 130, 132-133, 141, 142, 143-144

critical procedure name 142

current index 101, 106, 108
CYCLE 123,173

cyclic fiming action 122-123
cyclic timing action 122,123, 127

data statement 1, 3, 120-121, 129

data statement 128

data statement list

data transfer state

day expression 124

day location 125

DAYS 124,174

DCL 39,81, 132, 139,173

decimal integer literal 53

declaration 1, 32, 39, 128, 130, 134, 136, 143, 161

declaration 39, 127

declaration statement 2,39, 120

declaration statement 39, 128

defined value 3, 142

defining mode 12-15, 29, 105, 162, 164

defining mode 13

defining mode 13, 14-15, 19, 163

defining occurrence 5, 83

defining occurrence 10-11, 13-16, 18, 39-40, 50,
75, 80-81, 84, 93-94, 127-128, 130-135, 137,
140-141, 145, 155-157, 1569, 161-164, 167

defining occurrence list 10, 13, 39-40, 50, 93, 127,
131, 133, 139-140

definition statements -1

definition statement 128

DELAY 89-90, 122, 123,173

delay action 24, 89, 144

delay action 75, 89

delay alternative 90, 127

delay case action 24, 90, 144

delay case action 75, 90, 127, 129

delayed 5, 24, 39, 74, 80-95, 122, 142, 143-145

DELAYFAIL 89-90, 175

delaying 5, 92, 142

DELETE 104,105,174

DELETEFAIL 105, 170, 175

dereferenced bound reference 42

dereferenced bound reference 41, 42, 43, 143

dereferenced free reference 43

dereferenced free reference 41, 43, 143

dereferenced row 43

dereferenced row 41, 43, 44, 143

dereferencing 2, 21

derived class 12, 53-56, 65, 70-71, 73, 97, 103-104,
106~107, 119, 124-125

derived syntax 7, 30-31, 57, 77, 114, 116, 137, 158

destination reach 158, 159

difference 71

digits 115-116

digit 8, 53, 113-116

direct linkage 156

directive 10

directive 10

directive clause 10

directive clause 10

directly enclose 129

128
4, 100, 101

Fascicle X.6 — Rec. Z200 239

directly enclosed 121, 129, 140-141, 157, 159, 161,
164

directly enclosing 121, 127, 129, 136, 139, 157-162

directly inked 156, 157, 159

directly sirongly visible 156, 157

DISCONNECT 100, 107, 174

disconnect built-in routine call 102, 107

disconnect operation 101

discrete 51

discrete expressions 78, 97

discrete expression 37, 78, 80, 96-98, 111, 168

discrete literal 52

discrete literal expression 19, 29, 31, 58-59, 78, 164—
165, 168

diserete locations 97

discrete location 96-97, 111, 167

discrete mode 2, 16, 26, 33, 36, 58-59, 63-64, 147,
165-168

discrete mode 15, 16, 168

discrete mode 20, 25, 168

discrete mode name 19-20, 78, 80-82, 96-97, 164—
166

DISSOCIATE 25,100, 103, 174

dissociate built-in routine call 102, 103

dissociate operation 100

division remainder 72

DO 79, 86, 173

do action 3, 79, 80-83, 130, 144

do action 42, 52, 75, 79, 127, 129, 143

DOWN 8o, 81, 173

DURATION 27,124, 163, 174

duration built-in routine call 124

duration built-in routine call 124

duration mode 27, 149, 151, 166, 168-169

duration mode 27

duration mode name 27

duration mode name 27, 166

duration primitive value 122-123, 168

duration values 170

DYNAMIC 22, 23, 25-26, 27, 40, 41, 48, 57,
85-86, 132, 139, 173

dynamic array mode 37, 59

dynamic class 12, 51, 68-71, 76, 81, 132

dynamic condition 4, 6-7, 64, 76, 113, 120, 169

dynamic conditions 7

dynamic equivalent 13, 154, 155

dynamic mode 2, 5, 7, 12, 20, 22, 37, 44, 51, 76,
99, 154-155

dynamic mode location 3, 76

dynamic parameterised structure mode
48, 59, 63, 70

dynamic properties 102, 110

dynamic properties 7

dynamic read-compatible 13, 41, 85-86, 154,
155

dynamic record mode

dynamic string mode 37

32, 38,

26, 106, 109, 149, 151

editing clause 112-113, 116, 119
editing code 112, 116, 117, 119
element 2, 7, 28, 30, 34-36, 44, 46, 55-57, 60-61,

240 Fascicle X.6 — Bec. Z200

66, 68-69, 73, 81, 96-97, 101, 111-112, 116

element layout 36, 82, 151

element layout 30, 46-47, 149, 151-152, 169

element layout 29-30, 34

element mode 30, 81, 101

element mode 29, 30

element mode 16, 30, 36, 46, 57-59, 61, 82, 146—

147, 149-150, 152-154

31, 32, 36, 57, 59, 67, T7-78, 93-94, 120,

121, 127, 129, 150, 152, 164, 165, 173

else alternative 67

else clause T7

ELSIF a7, 77,173

emptiness literal 55

emptiness literal 52, 54, 55

emptiness literal name 55

emptiness literal name 54, 166

EMPTY 43-44, 85, 91, 98-99, 107, 175

empty 11, 23, 28, 39-40, 57, 81, 85, 94, 101, 104,
110, 132, 137, 158, 160-163

empty 87,128, 137, 139, 158

empty action 87

empty action 75, 87

empty instance value 55

empty powerset value 57, 97-98

empty procedure value 55

empty reference value 55

empty string 26, 40, 45, 60, 73

END 120, 122-123, 130-131, 133-135, 137,
138, 139, 140, 173

end bit 34, 36

end value 80-81

end value 80, 82

end-of-line 9

enter 142

entered 4, 39-40, 77-83, 90, 93-94, 120, 122-123,
128-129, 130, 132, 142

EOLN 118-119, 174

equality 70, 140

equivalence relations 5, 148

equivalent 13, 76, 109, 148-149, 150-155

ESAC 31,67, 78, 90, 93-94, 173

EVENT 24, 163, 173

event length 24, 89-90, 149, 151

event length 24

event list 90

event location 24, §9-90

event location 88-00, 167

event mode 24, 147, 149, 151, 166-167

event mode 23, 24

event mode name 24, 166

EVER 80, 173

exception 1, 3-6, 11, 41-48, 51-52, 59-66, 68-70,
72-79, 81--82, 85-93, 95, 98-99, 102-110, 112-
113, 116-117, 119, 120, 121, 123-125, 130,
132, 148-150, 154-155, 169-170

exception handling 120

exception list 121

exception list 22, 23, 120-121, 131-133, 140

exception name 4, 85, 120-121, 132, 133, 169

exception name 10-11, 22, 88, 120

ELSE

exception names 23, 149, 151

EXCEPTIONS 22, 131, 133, 140, 173

exclusive disjunction 68

EXISTING 104, 174

existing 4, 101, 104-106

EXIT 83, 173

exit action 3, 83, 84

exit action 75, 83, 84

EXPIRED 125, 126, 174

exphicit read-only mode 15

explicit read-only mode 15-16

explicitly indicated 58, 66, 165

expression 23, 25, 32, 34, 38, 45-47, 51, 57, 60, 62—
63, 65-66, 73, T7-78, 81, 98, 101-102, 105,
110, 130, 144-145, 147, 164, 170

expression 7, 46-47, 56~59, 61-66, 67, 75, 77, 80,
96, 98-99, 105, 108, 136, 144, 167168

expression conversion 63 '

expression conversion 50~51, 63, 144, 170

expression Jist 37-38, 48, 61, 96, 98-99

extra-regional 41, 59, 68, 99, 143, 144

FALSE 17, 53, 69-70, 87, 102~-108, 115, 174, 203

feasibility 36

FI 67,77 173 .

field 11, 31, 32-36, 47—48, 57, 59, 63, 66, 83, 146,
160, 163

field 31, 149-150, 152

field layout 32-33, 36, 83, 150

field layout 32, 48, 150, 152

field layout 31-32, 34, 35

field mode 186, 32, 36, 59, 146147, 150, 152-154

field name 11, 57, 83, 164 ,

field name 10, 11, 47, 57, 63, 160-161, 164

field name 31, 32, 33, 36, 38, 42, 48, 52, 58-59, 63,
83, 161

field name 47-48, 164

field name defining occurrence 83

field name defining occurrence 10-11, 31, 83, 184

field name defining occurrence list 10, 31-32

field name list 57

field name list 57, 59, 161

file 4, 26, 100, 101-102, 104-110, 117, 170

file handling state 4, 100, 101

file positioning 1086

file truncation 106

FIRST 105-106,174

first element 486, 47, 62, 136

fixed field 31-32

fixed field 31, 32-33, 150, 152

fixed field name 32, 33

fixed format 114-115

fixed string 116

fixed string mode 28, 29, 45, 60, 76, 81, 147, 150

fixed structure mode 32

FOR 80, 137-138,173

for control 79, 80, 82

for control 79, 80

FORBID 160, 173

forbid clause 160, 161, 164

forbid name list 164

forbid name list 160, 161, 164

formal parameter 65, 85, 132, 142

formal parameter 42, 65, 127, 131, 132134, 143
formal parameter list 65, 127, 131, 132-134, 141
format argument 111, 112

format clause 112, 113

format control string 111-112, 113

format effectors 9, 11, 113

format element 112, 113

format specification 112, 113

format text 112, 113

free 142

free format 114-115

free reference 2, 20, 43

free reference location name 167

free reference mode 21, 149, 151, 155, 166-168
free reference mode 20, 21

free reference mode name 21

free reference mode name 21, 166

free reference primitive value 43, 143, 168

free state 3, 100

GENERAL 131, 132-133, 173

general 22, 32-33, 85, 132, 133, 143, 167

general procedure 84, 131

general procedure name 22, 52, 133

general procedure name 51-52, 167

generality 85, 167

generality 85, 132, 141, 169

generality 131, 132

generated 4, 131

GETASSOCIATION 107,174

GETSTACK 2,4, 57, 98, 99, 136, 174

gettext built-in routine call 102, 118

GETTEXTACCESS 118-119,174

GETTEXTINDEX 118-119,174

GETTEXTRECORD 118-119,174

GETUSAGE 107, 108, 174

GOTO 87,173

goto action 3, 87, 130

goto action 75, 87

GRANT 158, 159, 173

grant postfix 158-159, 160, 161, 164

grant statement 138, 160

grant statement 158, 159, 160-161, 164

grant window 159, 160

grantable 159, 161

greater than 70, 72, 82, 98, 106, 109, 112, 117, 119,
154

greater than or equal 70

group 7,127, 129-130, 139, 141, 161, 164

handler 1,4-6, 11,75, 120, 121, 129, 131, 142, 169

handler 39-40, 75, 84, 86-88, 120, 127, 129, 131,
133-135

handler identification 120

hereditary property 12, 13, 15, 17-24, 26-27, 29—
30, 32-33, 148

hexadecimal bit string literal 56

hexadecimal digit 53, 56

hexadecimal integer literal 53

Fascicle X.6 — Rec. Z200 241

hour expression 124, 125
hour location 125
HOURS 124,174

IF 9,67 77,173

if action 3, 77

if action 75, 77, 127, 129

imaginary outermost process
136, 142, 157, 169

implementation built-in routine call 84

implementation defined built-in routine 5,135,169

implementation defined exception name 4-5, 169

implementation defined handler 121, 169

implementation defined integer mode 5-6

implementation defined integer mode names 13,
169

implementation defined name 10, 85, 127, 167

implementation defined name string 157

implementation defined process names 5, 169

implementation directive 10

implementation directive 10, 169

implicit read-only mode 15, 16, 30, 32, 146

implicitly indicated 165

implied 156-157, 162-163

implied defining occurrence

implied names 3, 157

implied name string 158, 162, 163

IN 22,70,s0, 85, 93-94, 122~123, 127, 131-132,
173

inclusive disjunction 68

index expression 105, 106-109, 111-112, 118

index mode 26, 30, 106

index mode 25-26, 27, 29-30

index mode 26, 30, 46-47, 58, 61-62, 97-98, 105~
109, 112, 149, 151-153, 185

85-86, 127, 134, 135,

157, 162, 163

INDEXABLE 104, 174
indexable 4, 101, 104-106
indexing 2

indirectly strongly visible 156, 157

inequality 70

INIT 39,173

initialisation 39, 128

initialisation 89, 40, 57

INLINE 131, 132-133, 173

inline 132

inline procedures 131

INOUT 22, 85,131-132, 134, 173

input-output mode 2, 25

input-output mode 15, 25

INSTANCE 23, 65, 163, 174

instance location 90, 93-94, 167

instance mode 2, 23, 149, 151, 155, 166-168

instance mode 15, 23

instance mode name 23

instance mode name 23, 166

instance primitive value 91, 168

instance value 23, 65, 88, 90, 93-94, 142, 169

INT 13, 18, 19, 30, 53, 97-98, 110, 119, 131, 154,
163, 169, 174

integer expression 37,44-45, 61, 80, 96, 9899, 118—
119, 124-125, 168 :

242 Fascicle X.6 — Rec. Z200

integer literal 53

integer literal 52, 53

integer literal expression 18-20, 24, 26, 28, 34-35,
' 55, 73, 89-92, 168

integer location 125

integer mode 17, 135, 148, 151, 166, 168-169

integer mode 16

integer mode name 16

integer mode name 16, 166

integer value 4, 17-18, 53, 71-73, 96, 115

intersection 69

intra-regional 3, 41, 59, 68, 85, 91-92, 99, 133,

143, 144, 161

INTTIME 125, 174

invisible 58, 156, 164

io elause 112-113, 117

io code 112, 117

io list 111, 112, 116

io list element 111, 112, 116

io location built-in routine call 95, 102

io simple built-in routine call 95, 102

io value built-in routine call 96, 102

irrelevant 150, 152, 164, 165

ISASSOCIATED 103, 174

isassociated built-in routine call 102, 103

iteration 3

iteration 80

justification 114-115

lequivalent 13, 148, 149, 150, 153

label name 75, 130, 134, 140

label name 83-84, 87, 167

labelled array tuple 57, 164

labelled array tuple 56, 58, 165

labelled structure tuple 57

labelled structure tuple 56, 57, 59, 164

LAST 105-106, 174

layout 30, 32, 3435, 113

left element 45, 60-61, 136

LENGTH 28, 96, 97, 174

length 34, 36, 97, 151

length argument 96

less than 36, 45, 60, 65, 70, 76, 112, 116117, 119

less than or equal 20, 29-30, 36, 70

letter 8, 52, 115

letter 8

lexical element 8, 9 :

lifetime 1, 4, 39-40, 43-44, 48-49, 74, 81, 86, 89-92,
95, 98-99, 108, 127, 128, 130, 132, 134-135,
136

lifetime-bound initialisations 128

lifetime-bound initialisation 39

line-end comment 9

linkage 156

linked 138, 156, 157, 159

list of classes 33, 34, 98, 147, 165

list of values 5, 33, 38, 44, 48, 55-57, 59, 63, 93,
145, 154, 165

literal 8, 17, 19, 32, 52, 73

literal 3, 34, 45, 47, 50, 51, 52-54, 60, 62, 66-74,

97, 140, 168, 170

literal 50-51, 52

literal expression 140

literal expression list 31, 33-34

literal qualification 52

literal range 19, 25-26, 78, 164-165

LOC 22, 23, 40, 42, 81, 85-87, 131-134, 139, 173

loc-identity declaration 2, 40, 81, 128-129, 132, 136

loc-identity declaration 39, 40, 41-42

loc-identity name 40, 42, 133, 140, 153, 161

loc-identity name 42, 143, 166

location 1-5, 12-13, 15, 20-22, 24-26, 31, 35-36,
39-40, 41, 42-44, 46-49, 51, 55, 74, 76-T7,
80~81, 83-86, 95, 97-106, 108-112, 116, 118-
119, 125-128,130-132, 134, 136, 142-143, 153~
154, 160, 169-170

location 49, 41, 48, 51, 57, 74-77, 80, 83-86, 96-97,
103-104, 132, 136, 143144, 161, 167

locatior argument 111, 115-116

location built-in routine call 48

location built-in routine call 41, 48, 49

location built-in routine call 84

location built-in routine call 48-49, 143, 168

location contents 51

location contents 50, 51, 144

location conversion 49

location conversion 41, 49, 63, 136, 143, 170

location declaration 2, 4, 39, 132, 136

location declaration 39, 40, 42, 57

location do-with name 42, 83

location do-with name 42, 143, 166, 170

location enumeration &1

locaiion enumeration 42, 80

location enumeration name 42, 82

location enumeration name 42, 143, 166

location name 40, 42, 133, 140, 161

location name 42, 136, 143, 166-167

location procedure 5

location procedure call 48, 132

location procedure call 41, 48, 143

location procedure call 48, 85, 143, 168

locked 142, 143, 145

LONG_INT 17

loop counter 80, 81

loop counter 42, 52, 80, 81-82, 127

LOWER 96, 97-98, 154, 174

lower bound 30, 47

lower bound 17-19, 29-30, 37, 46-47, 61-62, 81,
97, 106, 108, 149, 151, 169

lower bound 19, 20, 30, 37

lower case 8, 9, 115

lower elemnent 46, 47, 62, 136

mapped 30, 32, 36

mapping 34, 35-36

match 140-141

MAX 96, 97-98, 174

member mode 20

member mode 20

member mode 20, 58-59, 70, 82, 97, 148, 151, 153
membership operator 70

membership operator

metalanguage 2, T

MILLISECS 124,174

MIN 96, 97-98, 174

minute expression 124, 125

minute location 125

MINUTES 124,174

MOD 72,173,173

mode 2-3, 5, 12-14, 15, 16, 22-23, 2627, 29-37,

39-49, 51-52, 57-65, 67-70, 72, 74, 76, 78, 81~

87, 89-94, 97-99, 103-106, 108-110, 112, 115-

116, 119, 126, 132-134, 140-141, 143, 145—

151, 153-155, 160-165

12-13, 15, 16, 21-25, 29, 31-33, 39-41, 50,

57,81, 132, 139-140, 145, 162, 168

mode argument 57, 96, 97-99

mode checking 5, 13, 49, 63

mode definition 2, 13, 14-15, 50

mode definition 13, 14~186, 127

mode name 6,12, 13, 14-16, 97, 162

mode name 18, 42-43, 49, 56-58, 63-64, 67, 96-99,
163, 166

mode rules 5, 146

modification built-in routine call 102, 104

MODIFY 104, 105, 174

modify parameter 104, 170

modify parameter list 104, 105

69, 70

mode

MODIFYFAIL 105, 170, 175

MODULE 134, 137-138, 173

module 3-5, 83-84, 120-121, 128-130, 134, 135-
136

module 75, 127, 129, 134, 135, 137-139, 141, 160~
162

module body 134, 138-139, 141

module body 128, 134, 157

module name 134

module spec 130, 138, 139-141, 164

modulion 127, 128-129, 134-136, 138, 141, 158
162, 164

module 72, 73

monadic operator 73

monadic operator 73

month expression 124

month location 125

multi-dimensional array 30

multiple assignment action 75

name 2-6, 10, 11, 13-14, 16-18, 21-23, 25, 27, 31-

32, 39-40, 42, 48, 50, 62-55, 63, 80-82, 84, 86,

88, 91, 93, 127-128, 130-135, 138, 140, 155,

160, 166-167, 169

name 10,11, 15, 71, 81, 127, 155, 157, 166-167

name binding 5, 10, 128, 155, 156, 157

name string 11, 75, 81, 83-84, 133-135, 137, 139,
148, 157, 160-161

name string 10, 11, 138, 141, 152-153, 155~164,
167

named values 18

new prefix 158, 159-160, 162

NEWMODE 13, 14, 173

newmode definition statement 6, 13, 15

Fascicle X.6 — Rec. Z200 © 243

newmode definition statement 14, 15-16, 128, 139

newmode name 15, 19, 29, 140, 160, 164, 167, 169

newmode name 166

newmode name string 160-161, 164, 167

nil 186, 143-144, 151

non-composite mode 15, 16, 168

non-hereditary property 12, 16, 19, 29

hon-percent character 113

non-recursive 23, 85, 132

- non-reserved character 55, 168

non-reserved name 84, 167

non-special character 55, 168

non-value property 12, 23, 25-26, 33, 39-40, 51,
64, 76, 85, 133-134, 145, 147

NONREF 22, 48, 86, 132, 139, 140, 173

NOPACK 30, 32, 34, 35-36, 4648, 82-83, 150-
151, 173

NOT 73,173

NOTASSOCIATED 103-104, 106, 175

NOTCONNECTED 107-110, 175

novelty 12-13, 14, 15, 16, 148-149, 151-153, 164
novelty bound 13, 15, 141, 148, 152, 153, 164
novelty paired 153

NULL 21-23, 4344, 55, 85, 91, 99, 107108, 174
null class 12, 55, 143, 155
NUM 19, 30, 35, 37, 44-45, 47, 60-64, 96, 97-98,

106, 108, 154, 174
number of elements 30, 35, 37, 58, 149, 152, 154
number of values 17-19, 36, 148
numbered range mode 19, 26
numbered set element 18
numbered set list 18
numbered set mode 18, 19, 26, 82, 148
octal bit string literal 56
octal digit 53, 56
octal integer literal 53
OD 79, 86,173
OF 31,67, 78,173
old prefix 158, 159-162
ON 120, 173
on-alternative 130
on-alternative 120, 127, 120
operand-0 67, 68
operand-1 68, 69
operand-2 69, 70
operand-3 69-70, T1, 72
operand-4 71, 72, 73
operand-5 72,73, 74
operand-6 T3, 74, 143
operator-3 69, 70
operator-4 71, 72
OR 68,776,173
ORIF 68, 173
origin array mode 16, 30
origin array mode name 29, 30, 37
origin array mode name 15
origin reach 158, 159
origin string mode 16, 29
origin string mode name 28, 29, 37
origin string mode name 15

244 Fascicle X.6 — Rec. Z200

origin variant structure mode
150, 152, 154

origin variant structure mode name 381, 33-34, 37

origin variant structure mode name 15

OUT 22, 85, 131~132, 134, 173

OUTOFFILE 107,108,174

outeffile 102, 106-109

outside world object 4, 25, 100, 103-104

OVERFLOW 64, 72-74, 81, 98, 175

overflow 114-115

16, 33, 38, 149-

PACK 30, 32, 34, 35, 150~151, 173

packing 34, 35

padding 114-116

parameter atiribute 23, 132-134, 149, 151

parameter attribute 22

parameter kst 125

parameter list 22, 23

parameter passing 6, 65, 85, 131-132, 169

parameter spec 85-86

parameter specs 23, 85, 132, 133, 149, 151, 153,
163

barameter spec 22, 23, 57,127, 131-134, 140

parameterisable 12, 22-23, 26, 34, 41, 98, 146,
154

parameterisable variant structure mode
149, 152, 154

parameterised array mode 37

parameterised array mode 29, 30

parameterised array mode 15-16, 30, 47, 62, 166

parameterised array mode name 29, 166

parameterised string mode 37

parameterised string mode 28, 29

parameterised siring mode 15-18, 29, 45, 60, 166

Darameterised string mode name 28, 166

parameterised structure mode 31, 32-33

parameterised structure mode 15-16, 32, 33, 38,
58-59, 146, 149-150, 152, 154, 166

parameterised structure mode name 31, 166

parent mode 14-17, 19, 147-148

parenthesised clause 112,113

parenthesised expression 46, 65

parenthesised expression 51, 85, 66

pass by location 131, 132

pass by value 131, 132

path 14, 148

percent 113

percent 113

piece 5,9, 11, 136-137

Diece designator 136, 137

piecewise programming 136, 138, 140

POS 34, 35, 150,173

pos 151

pos 31-33, 34-35, 36, 150-151

postfix 159

postfix 158-159, 160, 162

POWERSET 20, 163, 173

powerset difference operator 71

powerset difference operator 71, 72, 76

powerset enumeration 8081

powerset enumeration 80

33, 146,

powerset expression 81

powerset expression 80, 82, 96-97, 168

powerset inclusion operator 70

powerset inclusion operator 69, 70

powerset mode 2, 20, 58, 147-148, 151, 153, 166
168

powerset mode 15, 20

powerset mode name 20, 166

powerset tuple 57-58

powerset tuple 56, 58-59

powerset value 20, 57, 68-71, 73, 80-81, 96

PRED 81, 96, 97-98, 174

predefined name string 159

prefix 158

prefix 10, 11, 158, 160-162

prefix clause 159, 160, 161162

prefix rename clauses 158

prefix rename clause 158, 159-162

PREFIXED 160, 173

prefixed name string 153, 158

prefixed name string 10, 11

prefixing operator 11

primitive value 51, 83, 147

primitive value 50, 51, 74, 83, 96, 144, 167-168

PRIORITY 89, 173

priority 89, 900-94

priority 89, 90-92

PROC 22, 131, 133, 140, 163, 173

proc body 128, 131

procedure 2-6, 22, 48, 55, 64-65, 8487, 120, 128-
132, 136, 142-144, 163

procedure atiribute list 131, 140

procedure call 3, 5, 84, 86, 130-132, 143

procedure call 57, 84, 85, 143-144

procedure definition 86, 121, 131, 133, 136

procedure definition 52, 127, 129, 131, 132-133

procedure definition statements 22

procedure definition statement 128, 131, 132

procedure mode 2, 22, 23, 133, 141, 149, 151, 153,
155, 166, 168

procedure mode 14-15, 22

procedure mode name 22, 166

procedure name 52, 57, 86-87, 132-133, 141-
142, 153, 163

procedure name 84-85, 143-144, 167

procedure primitive value 84-86, 168

procedure values 22, 131

PROCESS 133, 140, 173

process 2, 4-6, 23-24, 27, 39, 55, 65, 74, 84, 86-95,
122-123, 125-126, 129-130, 135, 142, 143-
145, 169

process body 142

process body 128, 133

process creation 142

process definition 5, 65, 84, 86-87, 121, 133, 136,
141-142, 169

process definition 127,129, 133, 134

process definition statement 128, 133, 134

process delaying 144

process name 6, 91, 133, 141-142, 145, 153, 163,
169

process name 65, 145, 167

process re-activation 145

process termination 142

product 72

program 1-5, 8-12, 26, 37, 66, 75, 84, 100-101,
108-110, 120, 122, 128-129, 131, 133, 133,
136-137, 142, 152, 156

program 135

program structure

PTR 21,163,174

1,5, 127

guasi data statement 128, 139

quasi declaration 130, 139

quasi declaration statement 138

quasi defining occurrence 11, 15, 130, 138, 140-
141, 152-153, 156-157

quasi definition statement 139, 140

quasi formal parameter 140

quasi formal parameter list 140, 141

quasi loc-identity declaration 139, 140

quasi location declaration 139

quasl novelty 15, 141, 153, 164

quasi procedure definition statement 130, 139, 140

quasi process definition statement 130, 139, 140

quasi reach 130

quasi signal definition 140

quasi signal definition statement

quast statements 140

quasi synonym definition 140, 170

quasi synonym definition statement 139, 140

guote 55, 168

quote 55

quotient 72

139, 140

RANGE 19, 26, 30, 163, 173

range 1-2, 17, 19-20, 30, 55, 57, 66, 78, 116, 124,
169

range 96

range enumeration 80-81

range enumeration 80

range list 165

range list T8

range mode 14-16, 19, 30, 76, 107, 109, 116, 147-
149, 151, 166

range mode 16,19

range mode name 19, 166

RANGEFAIL 41, 44-47, 51, 59-62, 68-70, 76, T8,
82, 98, 107, 109-110, 124-125, 148—150, 154,
175

re-activation 5, 142

reach 39-40, 79, 85, 89-90, 92-04, 121-123, 127,
128-130, 135-136, 138, 141, 153, 156-164, 169

reach-bound inifialisation 128-129, 142-143

reach-bound initialisation 39, 40

READ 15,16, 30, 32, 153154, 163, 173

read operation 101, 102, 105, 107, 108, 109

read-compatible 13,41, 43, 85-86,119, 153,154~
155

read-only 2, 16, 32, 148, 153-154

read-only mode 2, 15, 16, 30, 32, 146, 150-151,
153

Fascicle X.6 — Rec. Z200 245

read-only property 2,12, 16, 40, 76, 85, 90, 93~
94, 99, 109, 116, 126, 146

READABLE 104, 174

readable 4, 101, 104, 106

READEAIL 109, 175

READONLY = 105-107, 110, 174

READRECORD 4, 108, 109, 113, 118, 174

readrecord built-in routine call 102, 108

READTEXT 111, 112, 114-118, 174

READWRITE 105-107, 174 .

real defining occurrence 130, 141, 156-157

real novelty 15, 141, 153

real reach 130, 138-139, 141

RECEIVE 74, 93-04, 173

receive buffer case action 94, 144-145

receive buffer case action 92, 94, 129

receive case action 3, 5, 24, 92, 145

receive case action 52, 75, 82, 127

Teceive expression 24, 74, 144-145

receive expression T4, 144

receive signal case action 93, 144

receive signal case action 92, 93, 129

record mode 26, 101, 109, 170

record mode 25-26

record mode 26, 108-109, 118, 149, 151, 153

RECURSIVE 22, 23, 131, 132-133, 173

recursive 23, 131, 132, 143

recursive definitions 13, 14, 50

recursive mode 14, 148

recursive mode definitions 14

recursivity 23, 85, 132, 149, 151, 169

REF 14, 21, 110, 153-154, 163, 173

referability 2, 36, 41

referable 2, 20, 34, 36, 40, 41, 42-49, 74, 82-83,
85-86, 97-98, 102, 109, 112, 126, 132-133,
140, 170

reference class 12, 107, 143

reference mode 2, 20, 146, 153, 155

reference mode 14-15, 20

reference primitive value 98-99, 168

reference value 2-3, 21, 22, 98-99, 107-108, 110

referenced location 43-44, 74, 99, 108

referenced location T4, 144

referenced mode 21

referenced mode 21

referenced mode 21, 43, 148, 150-151, 153-155

referenced origin mode 22, 44, 149-151, 153155

referencing property 12, 143, 146, 154-155

REGION 135,138,173

region 3-5, 99, 120-121, 128-130, 132, 134, 135,
136, 142-145

region 127-129, 185, 137-139, 141, 143-144, 160—
162

region body 135, 138-139, 141

region body 128, 135, 157

region name 135

region spec 130, 138, 139-141, 164

regionality 65, 85-86, 103, 106-107, 109, 119, 140—
141, 143, 144, 169-170

regionally safe 40, 76, 85-86, 99, 144

relational operators 27, 70

246 Fascicle X.6 — Rec. Z200

" remote context

relational operator 69, 70

relative timing action 122, 127

released 121, 142, 143-144

REM 72,73, 173

REMOTE 136-137, 173

137, 138

remote modulion 134-135, 136-137, 138-139, 141

remote piece 136, 137

remote spec 136-137, 138-139

repetition factor 112, 113

reserved names 167

reserved simple name string 9

reserved simple name string 9, 84

restrictable 13, 154, 155

RESULT 86,173

result 2-5, 11, 32, 51, 64, 66~70, 73, 76, 86, 92,
103, 108, 131, 142, 148-150, 154

result 86

result action 3, 86, 132, 143

result action 57, 75, 86, 87, 132

result atiribute 23, 132

result attribute 22

result spec 131-132

result spec 23, 48-49, 57, 64, 85-87, 132, 149,
151, 153, 163

result spec 22, 23, 127, 131-133, 140

result transmission 6

resulting class 12, 19, 58, 68-69, 71-73, 82, 97,
147, 165

resulting list of classes 33, 78, 165

resulting lists of classes 33

resulting mode 147

RETURN 86,173

refurn action 86, 131

return action 57, 75, 86

RETURNS 22, 173

right element 45, 60-81, 136

root mode 12, 19, 26, 60, 68-T4, 82, 97~98, 116,
140, 147, 153, 165, 169

ROW ¢, 21, 163, 173

row 2,20, 22, 43

row mode 22, 149-151, 153-155, 166, 168

row mode 14, 20, 21

row mode name 21, 166

Iow primitive value 43-44, 143, 168

safe 14

SAME 105-106, 174
scope 4-5,127, 128
second expression 57
second expression 124, 125
second location 125

SECS 124,174
seizable 158, 162
SEIZE 137, 161, 173

seize postfix 158-159, 161, 162
seize statement 161

seize statement 158-159, 161, 162
seize window 161-162

selection 2-3, 78, 164

selector 33, 78, 165

string mode 28, 168

string mode 21-22, 168

string mode name 28-29, 96-99, 166

string primitive value 60-61, 168

string repetition operator 73

string repetition operator 73

string slice 45, 60, 112, 116

stzing slice 41, 45, 60, 136, 143

string type 28, 29

string value 28, 60, 73, 109, 112, 118

strong 3, 12, 43-44, 60, 71, 78, 82-83, 97--08, 164

strongly visible 156, 157, 159, 161-163

STRUCT 14, 31, 35, 154, 163, 173

structure field 34-36, 47, 79

structure field 41, 47, 48, 63, 136, 143, 164

structure location 22, 31-32, 42, 44, 47, 83

structure location 47-48, 63, 83, 136, 143, 164, 167

structure mode 2, 11, 16, 26, 31, 32-36, 57-58,
83, 141, 146-147, 149-150, 152-154, 160-161,
166-168

structure mode 28, 31, 32

structure mode name 31, 166

structure primitive value 63, 83, 144, 164, 168

structure tuple 56, 57-59, 164

structure value 31-32, 52, 57, 63, 83, 109, 170

sub expression 67, 68, 144

sub operand-0 68

sub operand-1 69

sub operand-2 69, 70

sub operand-3 T1

sub operand-4 72,73

SUCC 81, 96, 97-98, 174

sum 71

surrounded 5, 52, 86, 99, 127, 129, 130, 134-136,
141-142

SYN 50, 140,173

synchronisation mode 2, 23

synchronisation mode 15, 23

SYNMODE 14,173

synmode definition statement 14

synmode definition statement 14, 128 139

synmode name 14, 16, 19, 29-30, 44-45, 47, 60,
62, 71, 81--82, 105, 140

synmode name 166

synonym definition 13, 50

synonym definition 13, 50, 57, 127

synonym definition statement 3, 50

synonym definition statement 50, 52, 128, 139-140

synonym name 13-14, 50, 52, 140, 153, 161

synonym name 5I1-52, 144, 166

synoaymous 13, £4, 15-16, 29-30, 44-45, 47, 60,
62, 71, 8182

syntax 7, 8, 57, 78, 136

syntax description 7, 9, 166

tag 109

tag field 16, 32, 33, 39, 48, 58-59, 63, 76, 146, 165
tag field name 32, 33, 150, 152

lag field name 31, 167

tag list 31, 32-33, 150, 152

tag-less alternative fields 33

248 Fascicle X.6 — Ree. Z200

tag-less alternative flelds 32, 33

tag-less parameterised structure mode 33

tag-less parameterised structure mode

tag-less variant 170

tag-less variant structure 170

tag-less variant structure mode
63, 165

TAGFAIL 41-42, 48, 51-52, 59, 63, 70, 76, 109,
148-149, 175

tagged parameterised property 12, 33, 39, 146,
147

tagged parameterised structure mode
59, 146-147

tagged variant structure mode
165

TERMINATE 98, 99, 136, 170, 174

terminate built-in routine call 95, 98

terminated 9-10, 79-82, 103, 113, 120, 129, 131,
142 '

TEXT 26, 163, 173

text argument 111, 112

text built-in routine call 102, 111

text io argument list 111

text length 26-27, 110-112, 117-119, 149, 151

text length 26, 27

text location 110

text location 110 ~

text location 102, 105-107, 111~-112, 117-119, 167

text mode 2, 26-27, 110, 147, 149, 151, 153, 167

text mode 25, 26

text record 26, 110-114, 116-119

text record mode 27,110, 119, 148, 151

text record reference 110, 118

text record sub-location 40

text reference name 10-11, 137, 169

text value 110

TEXTFAIL 112, 116-117, 119, 175

THEN 9,67, 77,173

then alternative 67

then clause 77, 127

THIS 85, 142,173

TIME 27, 125, 163, 174

time value built-in routine call 96, 124

58-59

33, 47, 58-59,

33, b8~

33, 48, 58-59, 63,

TIMEOUT 122, 173

timeoutable 4, 89-90, 92-94, 122-123, 125-126,
170

TIMERFAIL 123-124, 170, 175

timing action 122

timing action 75,122, 129

timing handler 122, 123, 127, 129

timing mode 2, 27

timing mode 15, 27

timing simple buil-in routine call 95, 125

TO 80, 91, 140, 141, 145, 173

transfer index 101-102, 107, 108, 109

transfer location 105, 106-107

TRUE 17,53,67-68, 70, 72, 77, 82, 103-105, 107~
109, 115, 118, 174

truncation 114-115

tuple 5%, 58, 67

tuple 50-51, 56, 57-59, 144

selector value 164, 165

semantics 7-10, 32, 40, 42, 47, 49, 52, 63, 76, 81,
91-92, 102-104, 112, 118-119, 131, 136-137

semantics T

semantic category 7, 166

semantic description 78

SEND 91-92, 173

send action 5, 24, 91, 92, 143

send action 57, 75, 91

send buffer action 92, 94, 144-145

send buffer action 91, 92

send signal action 91, 93, 145

send signal action 91
SENDFAIL 91,175
SEQUENCIBLE 104,174

sequencible 4, 101, 104-106

SET 18, 90, 93-94, 105, 163, 173

set element 156

set element 18

set element name

set element name

set list 18,19

set literal 54, 116

set literal 52, 54

set mode 18, 54, 116, 148, 151, 156, 166

set mode 16, 18, 127

set mode 18, 54, 140, 153

set mode name 18, 166

settext built-in routine call 102, 118

SETTEXTACCESS 119,174

SETTEXTINDEX 119,174

SETTEXTRECORD 118-119, 174

SHORT_INT 17

SIGNAL 140, 145, 173

signal 5, 91-93, 130, 145, 163

signal definition 57, 145

signal definition 127, 145

signal definition statements 5§

signal definition statement 128, 145

signal name 91, 93, 141, 145, 153, 163

signal name 57, 91, 93, 167

signal receive alternative 130

signal receive alternative 93, 127, 129

similar 13, 147, 148, 149, 151, 155--156, 169

SIMPLE 131, 132,173

simple 131, 132

simple name string 8, 116

simple name string 8, 9-10, 11, 75, 115, 131, 133~
141, 155, 161-163

simple prefix 10, 160

simple procedures 131

simple spec module 130, 138, 140

simple spec region 130, 138, 140

single assignment action 57,75

SIZE 16, 49, 96, 9798, 174

size 16, 26, 32, 101

slice size 45, 46—47, 60-62, 136

slicing 2

space 9

SPACEFAIL
130, 175

18, 130, 140, 148, 153
11, 54, 167

65, 7779, 85, 90, 93, 95, 99, 120,

" string mode

SPEC 136, 138, 139, 160, 173

spec module 5

spec module 75, 127-130, 135, 137, 138, 139-141,
157, 160-162

spec module body 128, 138

spec region b5

spec region 127-130, 135, 137, 138, 139-141, 143-
144, 157, 160-162

spec region body 128, 138

special character combination 8-9

special simple name strings 8, 9, 115

special symbol 8, 172

stack 98

START 65,173

start action 88

start action 75, 88

start bit 34, 36, 151

start element 44, 45, 60-61, 136

start expression 3, 5, 65, 88, 130, 142

start expression 51, 57, 65, 88, 170

start value 80-81

start value 80, 82

STATIC. 39, 40, 136, 139, 142, 173

static 41, 74, 136, 140

static class 97

static condition 7, 6465, 140, 144, 148

static conditions 7

static mode 2, 12, 20-21, 155, 167

static mode location 49, 63, 108, 136, 143, 167

static properties 5, 11, 38, 84, 138, 140, 169

static properties 7

static record mode 26, 107, 109, 149, 151

STEP 34, 35-36, 150, 173

step 30, 34-35, 150-151

step enumeration 80-81

step enumeration 80

step size 34, 35-36, 151

step value 80-81

step value 8Q, 81-82

STOP 88,173

stop action 5, 88, 142

stop action 75, 88

storage 32, 65, 77-T9, 85, 90, 93, 95, 98-89, 120-
121, 130, 148

storage allocation 136

store location 108, 109 '

strict syntax 7, 46, 149-150, 152

string concatenation operator T1

string concatenation operator 71,72, 76

string element 28, 44, 114

string element 41, 44, 60, 136, 143

string expressions 97

string expression 80-82, 96-97, 111, 168

string length 22, 28, 29, 37, 44, 55-56, 71, 73,
76, 98,109, 111, 114, 116, 118, 150, 152, 154

string length 28, 29

string location 22, 44-45, 81

string location 41, 4445, 60, 80-82, 96-97, 111~
112, 136, 143, 167

28-29, 37, 44, 70, 82, 109, 146-14T,

149, 152, 154, 166-168

Fascicle X.6 — Rec. Z200 247

undefined location 40, 42, 48-49, 86, 132

undefined synonym name 66, 167
undefined value 3

undefined value 66

undefined valne 3, 39-40, 50, 58-59, 64, 66, 76,
86, 98, 108, 132

underline character 8, 53, 56

union 32-33, 68, 163

unlabelled array tuple 57

unlabelled array tuple 56, 58

unlabelled structure tuple &7

urnlabelled structure tuple 56, 57-58
unnamed values 18 ’
unnumbered set list 18

unnumbered set mode 18, 97, 148

UP 28, 45-46, 60, 62, 173

UPPER 06, 97-98, 174

upper bound 17-19, 22, 29-30, 37, 44, 46-47,
61-62, 81, 97, 109, 149, 151, 154, 169

upper bound 19, 20, 30

upper case 8, 9

upper element 486, 47, 62, 136

upper index 29, 30, 47, 62

upper lower argument 96, 97

USAGE 105-107,174

usage 102, 106-110

usage expression 105, 106-107

v-eguivalent 13, 148-149, 155

value 1-5, 12-13, 15-32, 34-37, 39-43, 45, 47—48,
50-65, 66, 6768, T0-T4, 76-T78, 8082, 8486,
89-117, 119, 123-125, 130-132, 140, 142, 145,
148-152, 154, 160, 164-165, 169-170

value 39-40, 56-59, 66, 75-76, 84-87, 91-92, 98-
99, 103-104, 132, 143-144, 161, 165, 168

value argument 111, 115-116

value array element 61

value array element 50, 61, 144

value array slice 62

value array slice 50, 62, 144

value built-in routine call 64

value built-in routine call 51, 64

value buili-in routine call 84

value built-in routine call 64, 144, 168

value case alternative 67T

value class 12, 33, 60, 71

value do-with name 52, 83

value do-with name 51-52, 144, 166, 170

value enumeration 52, 80, 82

value enumeration name 52, 81

value enumeration name 51-52, 166

value name 52, 83, 166

value name 50, 51, 52, 144

value procedure 5

value procedure call 64, 132

value procedure call 51, 64, 144

value procedure call 64, 85, 168

value receive name 52, 93-94

value receive name 51-52, 144, 166

value string element 60

value string element 50, 60

value string slice 60

value string slice 50, 60, 61

value structure field 63

value structure field 50, 63, 144, 164

VARIABLE 104, 174

variable 4, 101, 104, 106-107, 112, 115-116
variable clause width 111-112, 116

variant alternative 32, 59

variant alternative 31, 32-33, 36, 59, 150, 152, 165
variant field 32, 42, 52, 76, 164

variant field 81, 32-33, 150, 152

variant field 33, 42-44, 52, 170

variant field access conditions 42-44, 48, 52, 63
variant field name 32, 33, 36, 47, 63

variant structure mode 32-33, 44, 58-59, 154, 166
variant structure mode 21-22

variant structure mode name 31, 96, 98-99, 166

VARYING 27, 28, 29, 173

varying string 109, 116

varying string mode 14-15, 26, 28, 29, 41, 44-45,
68-69, 76, 112, 147, 150, 152

visibility 1, 4-5, 83, 128, 130, 134-135, 138, 155,
156, 157-158, 160-162

visibility of field names 164

visibility statements 4-5, 139, 156, 158

visibility statement 128, 158, 159

visible 4, 128, 138, 156, 157, 163-164

visible field names 141

WAIT 125,126,174
weak clash 156-157
weakly visible 156-157, 162

WHERE 105-106, 174
where expression 1035, 106
WHILE 82,173

while control 79

while control 79, 82, 127

width 112, 114-117

WITH 83,173

with control 83

with part 42, 52, 79, 83, 127

word 7, 35-36, 170

word 34, 35-36, 151

write expression 108, 109

write operation 100, 101, 105-107, 109
WRITEABLE 104, 174

writeable 4, 101, 104, 108
WRITEFAIL 110, 175

WRITEONLY 105-107,109, 174
WRITERECORD 4, 108, 109-110, 113, 118, 174
writerecord built-in routine call 102, 108
WRITETEXT 111, 112, 114-119, 174

XOR 68, 76, 173

year expression 124
year location 125

zero-adic operator 65

zero-adic operator 51, 65

Fascicle X.6 — Rec. Z200 249

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series 1

Series J

Series K
Series L

Series M

Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Y

Series Z

ITU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone -circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2010

	CCITT Rec. Z.200 (11/1988) – CCITT HIGH LEVEL LANGUAGE (CHILL)

	CONTENTS
	1 INTRODUCTION

	1.1 GENERAL

	1.2 LANGUAGE SURVEY

	1.3 MODES AND CLASSES

	1.4 LOCATIONS AND THEIR ACCESSES

	1.5 VALUES AND THEIR OPERATIONS

	1.6 ACTIONS

	1.7 INPUT AND OUTPUT

	1.8 EXCEPTION HANDLING

	1.9 TIME SUPERVISION

	1.10 PROGRAM STRUCTURE

	1.11 CONCURRENT EXECUTION

	1.12 GENERAL SEMANTIC PROPERTIES

	1.13 IMPLEMENTATION OPTIONS

	2 PRELIMINARIES

	2.1
THE METALANGUAGE
	2.2 VOCABULARY

	2.3 THE USES OF SPACES

	2.4 COMMENTS

	2.5 FORMAT EFFECTORS

	2.6 COMPILER DIRECTIVES

	2.7 NAMES AND THEIR DEFINING OCCURENCES

	3 MODES AND CLASSES
	3.1 GENERAL

	3.2 MODE DEFINITIONS

	3.3 MODE CLASSIFICATION

	3.4 DISCRETE MODES

	3.5 POWERSET MODES

	3.6 REFERENCE MODES

	3.7 PROCEDURE MODES

	3.8 INSTANCE MODES

	3.9 SYNCHRONISATION MODES

	3.10 INPUT-OUTPUT MODES

	3.11 TIMING MODES

	3.12 COMPOSITE MODES

	3.13 DYNAMIC MODES

	4 LOCATIONS AND THEIR ACCESSES

	4.1 DECLARATIONS

	4.2 LOCATIONS

	5 VALUES AND THEIR OPERATIONS

	5.1 SYNONYM DEFINITIONS

	5.2 PRIMITIVE VALUE

	5.3 VALUES AND EXPRESSIONS

	6 ACTIONS

	6.1 GENERAL

	6.2 ASSIGNMENT ACTION

	6.3 IF ACTION

	6.4 CASE ACTION

	6.5 DO ACTION

	6.6 EXIT ACTION

	6.7 CALL ACTION

	6.8 RESULT AND RETURN ACTION

	6.9 GOTO ACTION

	6.10 ASSERT ACTION

	6.11 EMPTY ACTION

	6.12 CAUSE ACTION

	6.13 START ACTION

	6.14 STOP ACTION

	6.15 CONTINUE ACTION

	6.16 DELAY ACTION

	6.17 DELAY CASE ACTION

	6.18 SEND ACTION

	6.19 RECEIVE CASE ACTION

	6.20 CHILL BUILT-IN ROUTINE CALLS

	7 INPUT AND OUTPUT

	7.1 I/O REFERENCE MODEL

	7.2 ASSOCIATION VALUES

	7.3 ACCESS VALUES

	7.4 BUILT-IN ROUTINES FOR INPUT OUTPUT

	7.5 TEXT INPUT OUTPUT

	8 EXCEPTION HANDLING

	8.1 GENERAL

	8.2 HANDLERS

	8.3 HANDLER IDENTIFICATION

	9 TIME SUPERVISION

	9.1 GENERAL

	9.2 TIMEOUTABLE PROCESSES

	9.3 TIMING ACTIONS

	9.4 BUILT-IN ROUTINES FOR TIME

	10 PROGRAM STRUCTURE

	10.1 GENERAL

	10.2 REACHES AND NESTING

	10.3 BEGIN-END BLOCKS

	10.4 PROCEDURES DEFINITIONS

	10.5 PROCESS DEFINITIONS

	10.6 MODULES

	10.7 REGIONS

	10.8 PROGRAM

	10.9 STORAGE ALLOCATION AND LIFETIME

	10.10 CONSTRUCTS FOR PIECEWISE PROGRAMMING

	11 CONCURRENT EXECUTION

	11.1 PROCESSES AND THEIR DEFINITIONS

	11.2 MUTUAL EXCLUSION AND REGIONS

	11.3 DELAYING OF A PROCESS

	11.4 RE-ACTIVATION OF A PROCESS

	11.5 SIGNAL DEFINITION STATEMENTS

	12 GENERAL SEMANTIC PROPERTIES

	12.1 MODE RULES

	12.2 VISIBILITY AND NAME BINDING

	12.3 CASE SELECTION

	12.4 DEFINITION AND SUMMARY OF SEMANTIC CATEGORIES

	13 IMPLEMENTATION OPTIONS

	13.1 IMPLEMENTATION DEFINED BUILT-IN ROUTINES

	13.2 IMPLEMENTATION DEFINED INTEGER MODES

	13.3 IMPLEMENTATION EFINED PROCESS NAMES

	13.4 IMPLEMENTATION DEFINED HANDLERS

	13.5 IMPLEMENTATION DEFINED EXCEPTION NAMES

	13.6 OTHER IMPLEMENTATION DEFINED FEATURES

	APPENDIX A: CHARACTER SET FOR CHILL

	APPENDIX B: SPECIAL SYMBOLS AND CHARACTER COMBINATIONS

	APPENDIX C: SPECIAL SIMPLE NAME STRINGS

	APPENDIX D: PROGRAM EXAMPLES

	APPENDIX E: DECOMMITTED FEATURES

	APPENDIX F: COLLECTED SYNTAX

	APPENDIX G: INDEX OF PRODUCTION RULES

	APPENDIX H: INDEX

