

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.167
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2011)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3:

(TTCN-3) mapping from ASN.1

Recommendation ITU-T Z.167

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.167 (03/2011) i

Recommendation ITU-T Z.167

Testing and Test Control Notation version 3:
(TTCN-3) mapping from ASN.1

Summary

Recommendation ITU-T Z.167 defines a normative way of using ASN.1 as defined in
Recommendations ITU-T X.680, ITU-T X.681, ITU-T X.682 and ITU-T X.683 with TTCN-3. The
harmonization of other languages with TTCN-3 is not covered by this Recommendation.

This first revision of the Recommendation contains amendments (conformance and compatibility,
requirements and descriptions related to the objid type have been moved to this document from all
other Z.16x Recommendations, supporting XML values within ASN.1 modules, conversion of the
OID-IRI and RELATIVE-OID-IRI types, special real values and subtypes containing special values
and exclusive bounds, updated predefined language strings etc.), clarifications (e.g., on visibility of
imported ASN.1 definitions, on the transformation rules) corrigenda and editorial corrections.

This Recommendation is technically aligned with ETSI ES 201 873-7 V4.2.1 (2010-07).

History

Edition Recommendation Approval Study Group

1.0 ITU-T Z.146 2006-03-16 17

1.0 ITU-T Z.167 2006-03-16 17

2.0 ITU-T Z.167 2008-11-29 17

3.0 ITU-T Z.167 2011-03-16 17

ii Rec. ITU-T Z.167 (03/2011)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.167 (03/2011) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

2.1 Normative references .. 1

2.2 Informative references .. 2

3 Definitions and abbreviations ... 3

3.1 Definitions .. 3

3.2 Abbreviations ... 3

4 Introduction .. 3

4.1 Conformance and compatibility ... 4

5 General .. 4

6 Amendments to the core language .. 4

7 Additional TTCN-3 types ... 5

7.1 General ... 5

7.2 The object identifier type .. 5

8 ASN.1 and TTCN-3 type equivalents ... 17

8.1 General ... 17

8.2 Identifiers .. 19

9 ASN.1 data types and values .. 19

9.1 Transformation rules for ASN.1 types and values ... 19

9.2 Transformation rules for values .. 28

9.3 Scope of ASN.1 identifiers ... 28

10 Parameterization in ASN.1 ... 28

11 Defining ASN.1 message templates ... 28

11.1 General ... 28

11.2 Receiving messages based on ASN.1 types ... 28

11.3 Ordering of template fields ... 29

12 Encoding information ... 29

12.1 General ... 29

12.2 ASN.1 encoding attributes .. 29

12.3 ASN.1 variant attributes ... 30

Annex A – Additional BNF and static semantics .. 32

A.1 New productions for ASN.1 support .. 32

A.2 Amended core language BNF productions and static semantics 32

Annex B – Additional predefined TTCN-3 functions ... 34

Annex C – Additional information on object identifiers ... 35

C.1 The top-level arcs of the OID tree .. 35

C.2 Character patterns to match OID IRI-s ... 38

iv Rec. ITU-T Z.167 (03/2011)

 Page

Annex D – Deprecated features ... 39

Annex E – Example patterns for ASN.1 time types .. 40

E.1 Patterns corresponding to unconstrained time types 40

E.2 Constructing patterns corresponding to constrained time types 52

 Rec. ITU-T Z.167 (03/2011) 1

Recommendation ITU-T Z.167

Testing and Test Control Notation version 3:
(TTCN-3) mapping from ASN.1

1 Scope

This Recommendation defines a normative way of using ASN.1 as defined in Recommendations
[ITU-T X.680], [ITU-T X.681], [ITU-T X.682] and [ITU-T X.683] with TTCN-3. The
harmonization of other languages with TTCN-3 is not covered by this Recommendation.

This Recommendation is technically aligned with [ETSI 201 873-7].

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

2.1 Normative references

[ITU-T T.61] Recommendation ITU-T T.61 (1988), Character repertoire and coded character
sets for the international teletex service.

[ITU-T T.100] Recommendation ITU-T T.100 (1988), International information exchange for
interactive Videotex.

[ITU-T T.101] Recommendation ITU-T T.101 (1994), International interworking for Videotex
services.

[ITU-T X.660] Recommendation ITU-T X.660 (2008): Information technology – Open systems
interconnection – Procedures for the operation of OSI Registration Authorities:
General procedures and top arcs of the ASN.1 Object Identifier tree.

[ITU-T X.680] Recommendation ITU-T X.680 (2008) | ISO/IEC 8824-1:2002, Information
technology – Abstract Syntax Notation One (ASN.1): Specification of basic
notation.

[ITU-T X.681] Recommendation ITU-T X.681 (2008), Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

[ITU-T X.682] Recommendation ITU-T X.682 (2008), Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

[ITU-T X.683] Recommendation ITU-T X.683 (2008), Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

[ITU-T X.690] Recommendation ITU-T X.690 (2008), Information technology – ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER).

[ITU-T X.691] Recommendation ITU-T X.691 (2008), Information technology – ASN.1 encoding
rules: Specification of Packed Encoding Rules (PER).

2 Rec. ITU-T Z.167 (03/2011)

[ITU-T X.693] Recommendation ITU-T X.693 (2008), Information technology – ASN.1 encoding
rules: XML Encoding Rules (XER).

[ITU-T Z.161] Recommendation ITU-T Z.161 (2007), Testing and Test Control Notation
version 3: (TTCN-3) core language.

 technically aligned with:

 ETSI ES 201 873-1 V4.2.1:2011, Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.

[ITU-T Z.166] Recommendation ITU-T Z.166 (2011), Testing and Test Control Notation
version 3: TTCN-3 control interface (TCI).

 technically aligned with:

 ETSI ES 201 873-6, Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI).

[ITU-T Z.170] Recommendation ITU-T Z.170 (2011), Testing and Test Control Notation
version 3: TTCN-3 documentation comment specification.

 technically aligned with:

 ETSI ES 201 873-10 V4.2.1 (2010-07), Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3
Documentation Comment Specification.

NOTE – References to ITU-T Recommendations include the Recommendation and all Amendments and
Corrigenda published to the Recommendation.

2.2 Informative references

The following referenced documents are not necessary for the application of the present document
but they assist the user with regard to a particular subject area.

[ETSI 201 873-7] ETSI ES 201 873-7 V4.2.1 (2010-07), Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1
with TTCN-3.

[ISO 8601] ISO 8601 (2004), Data elements and interchange formats – Information
interchange – Representation of dates and times.

[ISO 3166-1] ISO 3166-1, Codes for the representation of names of countries and their
subdivisions – Part 1: Country codes.

 NOTE – Available at
http://www.iso.org/iso/english_country_names_and_code_elements.

 A repository of Object IDentifiers (OIDs).

 NOTE – Freely available at http://www.oid-info.com/.

[ISO/IEC 6429] ISO/IEC 6429:1992, Information technology – Control functions for coded
character sets.

[ISO/IEC 8859-1] ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded
graphic character sets – Part 1: Latin alphabet No. 1.

[ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)
(Formerly International Alphabet No. 5 or IA5) – Information technology –
7-bit coded character set for information interchange.

[ITU-T T.61] Recommendation ITU-T T.61 (1988), Character repertoire and coded
character sets for the international teletex service.

http://www.iso.org/iso/english_country_names_and_code_elements
http://www.oid-info.com/

 Rec. ITU-T Z.167 (03/2011) 3

[ITU-T X.121] Recommendation ITU-T X.121 (2000), Public data networks – Network
aspects – International numbering plan for public data networks.

NOTE – References to ITU-T Recommendations include the Recommendation and all Amendments and
Corrigenda published to the Recommendation except when specified otherwise in other parts of the present
document.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the terms and definitions given in [ITU-T Z.161],
[ITU-T X.660] and the following apply:

3.1.1 associated TTCN-3 type: TTCN-3 type definition resulted from the transformation of an
ASN.1 type definition by applying the transformation rules in clause 9.1

NOTE – Associated TTCN-3 types and values may not exist in a visible way; this term is used to identify the
part of the abstract information carried by the related ASN.1 type or value, which have significance from the
point of view of TTCN-3 (also called the TTCN-3 view).

3.1.2 metatype "OPEN TYPE": Used to explain the ASN.1 to TTCN-3 conversion process.

NOTE – It does not exist in the input ASN.1 module or the output TTCN-3 module.

3.1.3 root type: The definition in [ITU-T Z.161] applies with the following addition: in case of
types based on imported ASN.1 types, the root type is determined from the associated TTCN-3 type
(see clause 8).

3.2 Abbreviations

For the purposes of this Recommendation, the abbreviations given in [ITU-T Z.161] and the
following apply:

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules of ASN.1

CER Canonical Encoding Rules of ASN.1

OID Object IDentifier

PER Packed Encoding Rules of ASN.1

XER XML Encoding Rules of ASN.1

4 Introduction

When using ASN.1 with TTCN-3, all features of TTCN-3 and statements given in clause 4 of
[ITU-T Z.161] do apply. In addition, when supporting this part of the Recommendation, TTCN-3
becomes fully harmonized with ASN.1 which may be used with TTCN-3 modules as an alternative
data type and value syntax. This part of the Recommendation defines the capabilities required in
addition to those specified in [ITU-T Z.161] when ASN.1 is supported. The approach used to
combine ASN.1 and TTCN-3 could be applied to support the use of other type and value systems
with TTCN-3. However, the details of this are not defined in this Recommendation.

4 Rec. ITU-T Z.167 (03/2011)

 TTCN-3
Core
Language

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

The shaded boxes are not
 defined in this Recommendation

Tabular
format

Other
presentation
formats as
defined in

other parts of
the standard

Figure 1 – User's view of the core language and the various presentation formats

4.1 Conformance and compatibility

For an implementation claiming to support the use of ASN.1 with TTCN-3, all features specified in
this Recommendation shall be implemented consistently with the requirements given in this
Recommendation and in [ITU-T Z.161].

The language mapping presented in the present document is compatible with:

– Recommendation ITU-T Z.161.

– Recommendation ITU-T Z.170.

NOTE – Only the informative Annex E uses features from [ITU-T Z.170].

If later versions of those parts are available and should be used instead, the compatibility of the
language mapping presented in the present document has to be checked individually.

5 General

TTCN-3 provides a clean interface for using ASN.1 definitions (as specified in Recommendations
[ITU-T X.680], [ITU-T X.681], [ITU-T X.682] and [ITU-T X.683]) in TTCN-3 modules.

In general, there are two approaches to the integration of other languages with TTCN-3, which will
be referred to as implicit and explicit mapping. The implicit mapping makes use of the import
mechanism of TTCN-3, denoted by the keywords language and import, in which case the TTCN-3
tool shall produce an internal representation of the imported objects, which representation shall
retain all the structural and encoding information. This internal representation is not accessible by
the user. It facilitates the immediate use of the abstract data specified in the other language.
Therefore, the definition of a specific data interface for each of these languages is required.

The explicit mapping translates the definitions of the other language directly into appropriate
TTCN-3 language artefacts. This also means that all information needed for correct encoding and
decoding shall be present in the TTCN-3 module(s) generated by this translation.

In case of the ASN.1 to TTCN-3 mapping no TTCN-3 encoding instructions are defined by the
present document, hence only the implicit mapping is specified.

6 Amendments to the core language

Using ASN.1 with TTCN-3 is handled at the static type-value level. Though it mainly means
additions described in the subsequent clauses, some of the core language syntactical structures shall
also be amended to support the use of ASN.1. These are specified in clause A.2.

 Rec. ITU-T Z.167 (03/2011) 5

7 Additional TTCN-3 types

7.1 General

The TTCN-3 types summarized in Table 1 shall be supported in addition to those specified in
clause 6 of [ITU-T Z.161].

Table 1 – Overview of TTCN-3 types

Class of type Keyword Sub-type

Simple basic types objid list, range

7.2 The object identifier type

The object identifier type shall be supported as follows:

objid: a type whose distinguished values are the set of all syntactically correct object identifier
values. The value notations for the objid type shall conform to clause 31 of [ITU-T X.680] with the
exception that hyphens are replaced with underscores.

NOTE 1 – This definition also allows object identifier values outside the collection of values defined in
[ITU-T X.660] (e.g., with a node beneath the root not defined in [ITU-T X.660]).

The name form of object identifier components shall be used only for components defined in
[ITU-T X.660]. These predefined object identifier components are given in Annex C for
information. In case of any conflict between [ITU-T X.660] and Annex C of the present document,
the former shall take precedence.

In cases when the identifier of a value referenced within an object identifier value notation is
identical to any of the predefined component names, i.e., independently of the position of the
predefined component or the referenced value inside the notation (considering name conversion
rules in clause 8.2), the name of the referenced value shall be prefixed with the name of the module
in which it is defined (see definition of ASN.1 modules in clause 12 of [ITU-T X.680] and TTCN-3
modules in clause 8.1 of the core language standard [ITU-T Z.161]). The prefix and the identifier
shall be separated by a dot (.). Predefined object identifier component names may also be prefixed
with the name "X660".

NOTE 2 – To increase readability it is recommended to use the "X660" prefix also in object identifier values
referring to a value identifier that is clashing with any of the predefined component names.

NOTE 3 – Rules to resolve name clashes caused by imports are defined in clause 8.2.3.1 of the core
language ITU-T Recommendation ([ITU-T Z.161]).

EXAMPLE:

 objid{itu_t(0) identified_organization(4) etsi(0)}
 // or alternatively
 objid {itu_t identified_organization etsi(0)}
 // or alternatively
 objid { 0 4 0}

 // or alternatively
 const integer etsi := 0;
 const objid itu_idOrg := objid{ itu_t identified_organization }
 objid{ itu_idOrg etsi } // note, that both names are referencing value definitions

 const integer x := 162;
 objid{ itu_t recommendation x A.x } // it is mandatory to use the module name ('A')
 // to prefix the ambiguous identifier
 // or alternatively
 objid{ itu_t recommendation X660.x A.x } // the module name shall be present even if
 // the "X660" prefix is used

6 Rec. ITU-T Z.167 (03/2011)

7.2.1 Sub-typing of the objid type

7.2.1.1 Subtrees of the objid type

The object identifier type is a collection of principally infinite set of unique identifier values, each
containing a sequence of components; each given sequence of arbitrary length is composed of an
object identifier node as shown on Figure 2 (see also Annex C). Thus, each node of the object
identifier tree – except being a unique identifier itself – is the root of a subtree, containing a
potentially infinite number of unique identifiers. The first n components of all the identifiers in the
subtree are identical to the components of the node, being the root of the subtree, where n is the
number of components of that node. Hence, each object identifier node distinguishes also a unique
subset (subtype) of the objid type. Each member of this subtype (the subtree) is longer than the
node identifying the subtree.

Root

itu-t (0)
iso (1)

joint-iso-itu-t (2)

(0) (1) ... (i) (0) (1) … (j) (0) (1) … (k)

(0) ... (m)

Figure 2 – The object identifier tree

Note that object identifiers may also be relative identifiers, i.e., when the given objid value contains
only the additional components related to a defined base node. However, the above remains true for
relative object identifiers as well, as they also do denote a unique node in the object identifier tree
(the node defined by the base node + the relative identifier). If a node is identified by a relative
object identifier, all nodes in its subtree will have relative identifiers too.

7.2.1.2 List subtypes

In addition to the types listed in clause 6 Table 3 of [ITU-T Z.161], value list subtyping of the
objid type shall be supported. For value lists of the objid type the rules in this clause apply. The
objid nodes in the list shall be of objid type and shall be a true subset of the values defined by the
objid type or the base type being restricted. Clause 7.2.1.1 shall govern in determining if the nodes
are a true subset. The subtype defined by this list restricts the allowed values to the concrete nodes
on the list and the subtrees identified by them.

EXAMPLE:

 //identifies the nodes {0 4 0 0}, {0 4 0 1} and all other nodes beneath them
 type objid MyObjids (objid{0 4 0 0}, objid{0 4 0 1});

 //Further restricting the base type MyObjids
 type MyObjids MyNarrowerObjids (objid{0 4 0 0 1 0}, objid{0 4 1 1}, objid{0 4 1 3});

 //invalid definition as the node {0 4 2} is not member of the type MyObjids
 type MyObjids MyNarrowestObjids (objid{0 4 2 1});

7.2.1.3 Range subtypes

In addition to the types listed in clause 6 Table 3 of [ITU-T Z.161], range subtyping of the objid
type shall be supported. For range subtyping of the objid type the rules in this clause apply. The
objid nodes determining the lower and the upper bounds of the subtype shall be of objid type of
equal length and shall be a true subset of the values defined by the objid type or the base type
being restricted. Clause 7.2.1.1 shall govern in determining if the nodes are a true subset. The

 Rec. ITU-T Z.167 (03/2011) 7

subtype defined by the range restricts the allowed values to the nodes between the lower and the
upper bounds inclusive and the subtrees identified by them.

EXAMPLE:

 //identifies the nodes {0 4 0 0}, {0 4 0 1} … {0 4 0 5} and all other nodes beneath them
 type objid MyObjidRange (objid{0 4 0 0} .. objid{0 4 0 5});

7.2.1.4 Mixing list and range subtypings

It is allowed to mix the list and the range subtyping mechanisms for objid types. The nodes
identified by the different subtyping mechanisms shall not overlap.

7.2.2 Object identifier values

When defining objid values, rules in clauses 5.4.1.1, 8.2.1, 10 and 11.1 of [ITU-T Z.161] and in
this clause shall apply. In case of inconsistency, this Recommendation takes precedence.

Each object identifier node is an object identifier value. In this case the value identifies the concrete
node (i.e., with a definite number of components) and does not denote the objid subtree beneath it
(see clause 7.2.1.1).

7.2.3 Using objid values to identify modules

7.2.3.1 Identifying module definitions

When ASN.1 is supported, module names (of the form of a TTCN-3 identifier) may optionally be
followed by an object identifier, which shall be a valid value as defined in [ITU-T X.660].

NOTE – Module names in a test suite may differ in the object identifier part only. However, in this case, due
precaution has to be exercised at import to avoid name clash, as prefixing of TTCN-3 identifiers
(see clause 8.2.3.1 of [ITU-T Z.161]) is unable to resolve such kinds of clashes.

7.2.3.2 Identifying modules in import statements

When ASN.1 is supported, in addition to the module names, their object identifiers may also be
provided in TTCN-3 import statements. If an object identifier is used as part of the module
identifier, this object identifier shall be used by TTCN-3 test systems to identify the correct module.

7.2.4 Object identifier templates

When defining templates of objid types, rules in clause 15 and Annex B of [ITU-T Z.161] and in
this clause shall apply. In case of inconsistency, this Recommendation takes precedence.

7.2.4.1 In-line templates

The type of objid values can be identified from the value notation alone, hence in addition to the
types listed in Note 2 of clause 15.4 in [ITU-T Z.161], the type specification may also be omitted in
case of objid values.

7.2.4.2 Template matching mechanisms

Applicability of matching mechanisms to templates of objid types is defined in Table 2.

8 Rec. ITU-T Z.167 (03/2011)

Table 2 – TTCN-3 matching mechanisms

Used with
values of

Value Instead of values Inside values Attributes

S
p

ec
if

ic
V

al
u

e

O
m

it
V

al
u

e

C
om

p
le

m
en

te
d

L
is

t

V
al

u
eL

is
t

A
n

yV
al

u
e(

?)

A
n

yV
al

u
eO

rN
on

e(
*)

R
an

ge

S
u

p
er

se
t

S
u

b
ty

p
e

P
at

te
rn

A
n

yE
le

m
en

t(
?)

A
n

yE
le

m
en

ts
O

rN
on

e(
*)

P
er

m
u

ta
ti

on

L
en

gt
h

R
es

tr
ic

ti
on

If
P

re
se

n
t

objid Yes Yes
(see
Note)

Yes Yes Yes Yes
(see
Note)

Yes Yes Yes Yes Yes
(see
Note)

NOTE 1 – Can be assigned to templates, however when used, shall be applied to optional fields of record and set
types only (without restriction on the type of that field).

The matching mechanisms SpecificValue, OmitValue, AnyValue, AnyValueOrNone and IfPresent
are applicable to objid fields as well according to the rules defined in [ITU-T Z.161].

The value list and complemented value list matching mechanisms can also be used for objid
templates and template fields. Rules in clauses B.1.2.1 and B.1.2.2 of [ITU-T Z.161] also shall
apply to objid templates.

NOTE – This also means that only the concrete node values on the list are to be considered but not the
subtrees identified by them. In other words, in case of a complemented list, a node within a given subtree
will match even if the node being the root of the subtree is on the list.

The value range matching mechanism, in addition to types listed in clause B.1.2.5 of
[ITU-T Z.161], can also be used for objid templates. When applied to objids, the values matching
the range shall be determined according to clause 7.2.1.3, with the exception that subtrees are not
considered.

The inside value matching mechanism AnyElement, in addition to types listed in clause B.1.3.1 of
[ITU-T Z.161], can also be used within objid templates. When applied to objids, it replaces exactly
one component.

The inside value matching mechanism AnyElementsOrNone, in addition to types listed in
clause B.1.3.2 of [ITU-T Z.161], can also be used within objid templates. When applied to objids, it
matches the longest sequence of components possible, according to the pattern as specified by the
components surrounding the "*".

The length restriction matching attribute, in addition to types listed in clause B.1.4.1 of
[ITU-T Z.161], can also be used with objid templates. When applied to objids, it identifies the
number of components within an objid value matching the objid template.

7.2.5 Using objid with operators

7.2.5.1 List operator

When ASN.1 is supported, the concatenation operator (&) specified in clause 7.1.2 of
[ITU-T Z.161] shall be permitted for objid values as well. The operation is a simple concatenation

 Rec. ITU-T Z.167 (03/2011) 9

of the numerical values of the components from left to right. If necessary (e.g., for logging
purposes), the names of the components in the resulted objid value shall be determined from the
resulted objid value (i.e., names of the components will change when the component is changing
its position related to the input objid value). The result type is objid.

EXAMPLE:

 objid{itu_t identified_organization etsi(0)} & objid{inDomain(1) in_Network(1)}
 gives {0 4 0 1 1} that can also be presented as objid{itu_t identified_organization etsi(0)
inDomain(1) in_Network(1)}

 objid{itu_t identified_organization etsi(0)} & objid{iso(1) registration_authority(1)}
 gives {0 4 0 1 1} that can also be presented as objid{itu_t identified_organization etsi(0)
inDomain(1) in_Network(1)}

7.2.5.2 Relational operators

It is allowed to use objid values as operands of relational operators equality (==), less than (<),
greater than (>), non-equality to (!=), greater than or equal to (>=) and less than or equal to (<=).

Two objid values are equal, if they have equal number of components and the primary integer
values at all positions are the same.

The less than (<), greater than (>), greater than or equal to (>=) and less than or equal to (<=)
operations shall use the numerical values of objid value components for the decision, and the
decision process shall comply with the following rules:

• the comparison shall start by comparing the first primary integer values of the two objid
values and shall be continued in a recursive way until the smaller objid value is found or
the two objid values are found to be equal;

• the objid value in which a smaller primary integer value is found first, is less than the
other objid value;

• if all compared pairs of primary integer values of the two objid values are equal and one of
the objid values has further primary integer values while the other does not, the shorter
objid value is less than the longer objid value.

EXAMPLE:

 // Given
 const objid c_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network(1)}
 const objid c_etsiINNet := objid{itu_t identified_organization etsi(0)
 inDomain(1) in_Network(1)}
 const objid c_etsiIN := objid{itu_t identified_organization etsi(0)
 inDomain(1)}
 var objid v_etsiInIso := objid{ iso identified_organization dod(6)
 internet(1) private(4) enterprise(1) etsi(13019)}
 // then
 c_etsiMobNet == c_etsiINNet // returns false
 c_etsiMobNet < c_etsiINNet // returns true as the mobile_domain(0) component is numerically
 // smaller than the inDomain(1) component
 c_etsiINNet == c_etsiIN // returns false as c_etsiINNet has more components
 c_etsiINNet > c_etsiIN // returns true as c_etsiINNet has more components
 v_etsiInIso <= c_etsiMobNet // returns false as the component itu_t(0) is numerically smaller
 // than the component iso(1))

7.2.6 Using objid with predefined functions

7.2.6.1 Number of components of an objid value or template

In excess the input parameter types given in clause C.28 of [ITU-T Z.161], the lengthof
predefined function shall allow values and templates of objid types as input parameter. The actual
value to be returned is the sequential number of the last component.

10 Rec. ITU-T Z.167 (03/2011)

When the function lengthof is applied to templates of objid types, inpar shall only contain the
matching mechanisms: SpecificValue, value list, complemented list, AnyValue, AnyValueOrNone,
AnyElement and AnyElementsOrNone and the length matching attribute. The parameter inpar shall
only match values, for which the lengthof function would give the same result.

Additional error cases are:

inpar can match objid values with different number of components.

EXAMPLE:

// Given
 var objid v_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network (1)}
 // then
 numElements := lengthof(v_etsiMobNet); // returns 5

7.2.6.2 The substring function

When ASN.1 is supported, the substr predefined function shall support objid types, i.e., it shall
allow objid as type of the input parameter and return an object identifier value containing a
fragment (sequence of components) of the input parameter inpar. Rules specified in clause C.33 of
[ITU-T Z.161] shall apply with the following exceptions: index zero identifies the first component
of the input object identifier value or template. The third input parameter (count) defines the
number of components in the returned objid value.

EXAMPLE:

 var objid v_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network (1)}

 substr (v_etsiMobNet, 0, 2) // returns {itu_t identified_organization}

 substr (v_etsiMobNet, 2, 3) // returns {etsi(0) mobile_domain(0) umts_Network (1)}

 substr (v_etsiMobNet, 0, 0) // causes error as the number of components to be returned
 // shall be more than 0

 substr (v_etsiMobNet, 0, 6) // causes error as the input objid value contains less
 // than 6 components

7.2.6.3 The isvalue function

When ASN.1 is supported, the isvalue predefined function shall be supported for objid templates
too. Rules specified in clause C.37 of [ITU-T Z.161] shall apply.

7.2.7 Supporting objid in TCI

This clause describes the changes in and additions to [ITU-T Z.166] that shall be undertaken to
support the objid type and values in TCI.

7.2.7.1 Adding objid to abstract data types and values

In clause "7.2.2.1 Abstract TTCN-3 data types" [ITU-T Z.166], at the operation TciTypeClassType
getTypeClass(), the list of values of TciTypeClassType shall be extended with the constant
OBJID.

The hierarchy of abstract TTCN-3 values, presented on Figure 3 in clause "7.2.2.2 Abstract
TTCN-3 values" [ITU-T Z.166], shall be extended with the ObjidValue as shown on Figure 2
below. Please note that the abstract data type Value is present in Figure 2 to illustrate the addition
of ObjidValue only, but it is defined in [ITU-T Z.166].

 Rec. ITU-T Z.167 (03/2011) 11

ObjidValue

getObjid() : BasicTypes::TObjid
setObjid(value : BasicTypes::TObjid) : void

Value

getType() : Abstract Types::Type
notPresent() : BasicTypes::TBoolean
getValueEncoding() : BasicTypes::TString
getValueEncodingVariant() : BasicTypes::TString

getTypeExtension() : BasicTypes::TString

Figure 3 – Adding objid to the abstract value hierarchy

Clause "7.2.2.2 Abstract TTCN 3 values" [ITU-T Z.166] shall be extended by the ObjidValue
abstract type as the last clause of clause 7.2.2.2 [ITU-T Z.166] as follows:

7.2.2.2.x The abstract data type ObjidValue

The abstract data type ObjidValue is based on the abstract data type Value. It represents TTCN-3
objid values.

The following operations are defined on the abstract data type ObjidValue:

TObjid getObjid() Returns the object id value of the TTCN-3 objid
void setObjid(in TObjid value) Sets this ObjidValue to value

In clause "7.3.2.1.1 getTypeForName" [ITU-T Z.166], in the "In Parameters" row, the list of
reserved type names that shall return a predefined type, shall be extended by "objid".

Clause "7.3.2.1 TCI-CD required" [ITU-T Z.166] shall be extended with the following operation:

7.3.2.1.5 getObjid

Signature Type getObjid()

Return Value An instance of Type representing a TTCN-3 object id type.

Effect Constructs and returns a basic TTCN-3 object id type.

7.2.7.2 Adding objid to Java language mapping

Add the following sentence to clause "8.2.1 [ITU-T Z.166] Basic type mapping": "The native type
TObjId is defined in the respective section of the ObjidValue interface.".

Add to clause "8.2.2.4 TciTypeClassType" [ITU-T Z.166], within public interface

TciTypeClass:

" public final static int OBJID = 11 ;"

In clause "8.2.3.1 [ITU-T Z.166] Type" of, for the getTypeClass() method, add OBJID to the list
of allowed constants that TciTypeClassType can take.

12 Rec. ITU-T Z.167 (03/2011)

Extend clause "8.2.4 Abstract value mapping" [ITU-T Z.166] with the following clauses:

8.2.4.5 ObjidValue

ObjidValue is mapped to the following interface:

// TCI IDL ObjidValue
package org.etsi.ttcn.tci;
public interface ObjidValue {
 TciObjId getObjid ();
 void setObjid (TciObjId value);
}

Methods:

getObjid() Returns the object id value of the TTCN-3 objid.

setObjid(TciObjId value) Sets this ObjidValue to value.

8.2.4.6 TciObjId

TciObjId is mapped to the following interface. The native java representation of a TTCN-3
ObjectId consists of an ordered sequence of TciObjIdElements.

package org.etsi.ttcn.tci;
public interface TciObjId {
 public int size() ;
 public void setObjElement(TciObjIdElement[] objElemens) ;
 public TciObjIdElement getObjElement(int index) ;
}

Methods:

size() Returns the size of this Object Id in TciObjIdElements.

setObjElement(TciObjIdElement[] objElements) Sets this ObjId to the list of
objElements.

getObjElement(int index) Return the TciObjIdElement at position index.

8.2.4.7 TciObjIdElement

A TciObjIdElement represent a single object element within a TTCN-3 ObjId value. It can be set
using different representations like the ASCII representation or as integer.

TciObjIdElement is mapped to the following interface:

package org.etsi.ttcn.tci;
public interface TciObjIdElement {
 public void setElementAsAscii(String element) ;
 public void setElementAsNumber(int element) ;
 public String getElementAsAscii() ;
 public int getElementAsNumber() ;
}

Methods:

setElementAsAscii(String element) Sets the internal representation of this ObjIdElement to
string value element.

setElementAsNumber(int element) Set this the internal representation of this
ObjIdElement to the integer value element.

getElementAsAscii() Returns the internal representation of this ObjIdElement as string.

getElementAsNumber() Returns the internal representation of this ObjIdElement as integer.

In clause "8.3 Constants" [ITU-T Z.166], the list of constants that shall be used for value handling,
shall be extended with:

org.etsi.ttcn.tci.TciTypeClass.OBJID;

 Rec. ITU-T Z.167 (03/2011) 13

In clause "8.4.2.2 TCI-CD required" [ITU-T Z.166] of, within public interface

TciCDRequired, the following shall be added:

 public Type getObjid ();

7.2.7.3 Adding objid to ANSI C language mapping

Clause "9.2 Value interface" [ITU-T Z.166] shall be extended with the following:

ObjidValue

TObjid getObjid() TciObjidValue
tciGetTciObjidValue(Value inst)

void setObjid(in TObjid value) void tciSetObjidValue(Value inst,
TciObjidValue value)

The TCI-CD Required interface in clause "9.4.2.2 TCI-CD required" [ITU-T Z.166] shall be
extended by:

Type tciGetTciObjidType()

In clause "9.5 Data" [ITU-T Z.166], the type definition of TciTypeClassType shall be extended
with the value: "TCI_OBJID_TYPE".

Clause "9.6 Miscellaneous" [ITU-T Z.166] shall be extended with the following:

Objid representation

objid typedef struct TciObjidValue

{

 long int length;

 TciObjidElem *elements;

} TciObjidValue;

Since the Objid value is
returned "as is" via the
Objid value interface, a
representation must be
defined.

TciObjidElem typedef struct TciObjidElemValue

{

 char* elem_as_ascii;

 long int elem_as_number;

 void* aux;

} TciObjidElemValue;

In clause "10.3.3.1 Value" [ITU-T Z.166], the <xsd:choice> child element of the complex type
definition "Value" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause the following shall be added to the list of "Choice of Elements":

objid An objid value.

Add the following new clause to clause "10.3.3 Abstract value mapping" [ITU-T Z.166]:

10.3.3.5 ObjidValue

ObjidValue is mapped to the following complex type:

 <xsd:complexType name="ObjidValue">
 <xsd:simpleContent>
 <xsd:extension base="SimpleTypes:TString">
 <xsd:attributeGroup ref="Values:ValueAtts"/>

14 Rec. ITU-T Z.167 (03/2011)

 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

Simple Content:

value The objid value as string.

null If no value is given.

omit If the value is omitted.

Attributes:

The same attributes as those of Value.

In clause "10.3.3.12 RecordValue" [ITU-T Z.166], the <xsd:choice> child element of the complex
type definition "RecordValue" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause the following shall be added to the list of "Sequence of Elements:":

objid An objid value.

In clause "10.3.3.13 RecordOfValue" [ITU-T Z.166], the <xsd:choice> child element of the
complex type definition "RecordOfValue" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Values:ObjidValue" minOccurs="0"
 maxOccurs="unbounded"/>

In the same clause the following shall be added to the list of "Choice of Sequence of Elements":

objid An objid value.

In clause "10.3.3.14 SetValue" [ITU-T Z.166], the <xsd:choice> child element of the complex
type definition "SetValue" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause the following shall be added to the list of "Sequence of Elements":

objid An objid value.

In clause "10.3.3.15 SetOfValue" [ITU-T Z.166], the <xsd:choice> child element of the complex
type definition "SetOfValue" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue" minOccurs="0"
 maxOccurs="unbounded"/>

In the same clause the following shall be added to the list of "Choice of Sequence of Elements":

objid An objid value.

In clause "10.3.3.17 UnionValue" [ITU-T Z.166], the <xsd:choice> child element of the complex
type definition "UnionValue" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause the following shall be added to the list of "Choice of Elements":

objid An objid value.

In clause "10.3.3.18 AnytypeValue" [ITU-T Z.166], the <xsd:choice> child element of the
complex type definition "AnytypeValue" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

 Rec. ITU-T Z.167 (03/2011) 15

In the same clause the following shall be added to the list of "Choice of Elements":

objid An objid value.

In clause "10.3.3.19 AddressValue" [ITU-T Z.166], the <xsd:choice> child element of the
complex type definition "AddressValue" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause the following shall be added to the list of "Choice of Elements":

objid An objid value.

In clause "10.3.4.1 TciValueTemplate" [ITU-T Z.166], the <xsd:choice minOccurs="0">
element shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

In the same clause the following shall be added to the list of "Choice of Elements":

objid An objid value.

In Annex A "IDL Specification of TCI" [ITU-T Z.166], within module tciInterface, below
"General Abstract Data Types",

add the basic definition "native TObjid;", and

extend the type enum TciTypeClassType with the value "OBJID_CLASS,"

In Annex A "IDL Specification of TCI" [ITU-T Z.166], within module tciInterface, below
"Abstract TTCN-3 Data Types And Values", add the following declaration:
 interface ObjidValue : Value {
 TObjid getObjid ();
 void setObjid (in TObjid value);
 };

In Annex A "IDL Specification of TCI" [ITU-T Z.166], within module tciInterface, below
"Coding Decoding Interface - Required", within interface TCI_CD_Required, add: "Type
getObjid ();"

In clause "B.3 TCI-TL XML Schema for Values" [ITU-T Z.166], the <xsd:choice> child element
of the complex type definition "Value" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause add the new complex type definition:
 <xsd:complexType name="ObjidValue">
 <xsd:choice>
 <xsd:element name="value" type="SimpleTypes:TString"/>
 <xsd:element name="null" type="Templates:null"/>
 <xsd:element name="omit" type="Templates:omit"/>
 </xsd:choice>
 <xsd:attributeGroup ref="Values:ValueAtts"/>
 </xsd:complexType>

In the same clause, the <xsd:choice minOccurs="0" maxOccurs="unbounded"> element of the
complex type definition "RecordValue" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause, the <xsd:choice> element of the complex type definition "RecordOfValue"
shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue" minOccurs="0"
 maxOccurs="unbounded"/>

16 Rec. ITU-T Z.167 (03/2011)

In the same clause, the <xsd:choice minOccurs="0" maxOccurs="unbounded"> element of the
complex type definition "SetValue" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause, the <xsd:choice> element of the complex type definition "SetOfValue" shall
be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue" minOccurs="0"
 maxOccurs="unbounded"/>

In the same clause, the <xsd:choice> element of the complex type definition "UnionValue" shall
be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause, the <xsd:choice minOccurs="0" maxOccurs="unbounded"> element of the
complex type definition "AnytypeValue" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In the same clause, the <xsd:choice minOccurs="0" maxOccurs="unbounded"> element of the
complex type definition "AddressValue" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Values:ObjidValue"/>

In clause "B.4 TCI-TL XML Schema for Templates" [ITU-T Z.166], the <xsd:choice> child
element of the complex type definition "TciValueTemplate" shall be extended by the local
element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

In the same clause add the new complex type definition:

 <xsd:complexType name="ObjidTemplate">
 <xsd:choice>
 <xsd:element name="value" type="SimpleTypes:TString"/>
 <xsd:element name="templateDef" type="SimpleTypes:TString"/>
 <xsd:element name="omit" type="Templates:omit"/>
 <xsd:element name="any" type="Templates:any"/>
 <xsd:element name="anyoromit" type="Templates:anyoromit"/>
 <xsd:element name="null" type="Templates:null"/>
 </xsd:choice>
 <xsd:attributeGroup ref="Values:ValueAtts"/>
 </xsd:complexType>

In the same clause, the <xsd:choice minOccurs="0"> element of the complex type definition
"RecordTemplate" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

In the same clause, the <xsd:choice minOccurs="0" maxOccurs="unbounded"> element of the
complex type definition "RecordOfTemplate" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate" minOccurs="0"
 maxOccurs="unbounded"/>

In the same clause, the <xsd:choice minOccurs="0"> element of the complex type definition
"SetTemplate" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

 Rec. ITU-T Z.167 (03/2011) 17

In the same clause, the <xsd:choice minOccurs="0" maxOccurs="unbounded"> element of the
complex type definition "SetOfTemplate" shall be extended by the local element "objid" as
follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate" minOccurs="0"
 maxOccurs="unbounded"/>

In the same clause, the <xsd:choice minOccurs="0"> element of the complex type definition
"UnionTemplate" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

In the same clause, the <xsd:choice minOccurs="0"> element of the complex type definition
"AnytypeTemplate" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

In the same clause, the <xsd:choice minOccurs="0"> element of the complex type definition
"AddressTemplate" shall be extended by the local element "objid" as follows:

 <xsd:element name="objid" type="Templates:ObjidTemplate"/>

8 ASN.1 and TTCN-3 type equivalents

8.1 General

The ASN.1 types listed in Table 3 are considered to be equivalent to their TTCN-3 counterparts.

Table 3 – List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent

BOOLEAN boolean

INTEGER integer

REAL (Note) float

OBJECT IDENTIFIER objid

BIT STRING bitstring

OCTET STRING octetstring

SEQUENCE record

SEQUENCE OF record of

SET set

SET OF set of

ENUMERATED enumerated

CHOICE union

VisibleString charstring

IA5String charstring

UniversalString universal charstring

NOTE – The ASN.1 type REAL is equivalent to the TTCN-3 type float until the base is
unrestricted or restricted to base 10 explicitly or implicitly. The ASN.1 notation allows
explicit restriction by, e.g., inner subtyping but, from the ASN.1 to TTCN-3 mapping
point of view an explicit restriction is an ASN.1 value notation. Implicit restriction
may be defined by the textual description of the given protocol, i.e., outside of the
ASN.1 module(s). However, in both cases the TTCN-3 value notation can be used
irrespective of the base in ASN.1.

18 Rec. ITU-T Z.167 (03/2011)

All TTCN-3 operators, functions, matching mechanisms, value notations, etc., that can be used with
a TTCN-3 type given in Table 3 may also be used with the corresponding ASN.1 type.

8.1.a Importing from ASN.1 modules

8.1.a.1 Language specification strings

When importing from ASN.1 modules, it is mandatory to use one of the following language
identifier strings:

• "ASN.1:2008" for ASN.1 version 2008;

• "ASN.1:2002" for ASN.1 version 2002;

• "ASN.1:1997" for ASN.1 version 1997;

• "ASN.1:1994" for ASN.1 version 1994;

• "ASN.1:1988" for ASN.1 version 1988 (CCITT Blue Book).

NOTE – Language identifiers "ASN.1:1988", "ASN.1:1994", "ASN.1:1997" and "ASN.1:2002" refer to
superseded versions of ASN.1. The only purpose to include them into the present document is to allocate
unique identifiers if protocol modules based on these ASN.1 versions are used with TTCN-3. When ASN.1
version 1997 is supported, the support of Amendment 3 to [ITU-T X.680] is not considered.

8.1.a.2 Importing definitions from ASN.1 modules

ASN.1 IMPORTS are transitive by default (see clause 12.13 of [ITU-T X.680]), however this is not
the case when importing from ASN.1 to TTCN-3. In this latter case only visible definitions shall be
imported (see importability of ASN.1 definitions in clause 8.1.a.4).

When importing ASN.1 types, values and value sets, first they have to be transformed to TTCN-3
types and values, respectively, according to the rules given in clauses 8 and 9.1 of this
Recommendation and import the resulted definitions afterwards based on the rules defined below.
All ASN.1 definitions are public by default (see clause 8.2.3 of [ITU-T Z.161]).

When the TTCN-3 import statement is importing single definitions or definitions of the same kind
from ASN.1 (see clauses 8.2.3.2, 8.2.3.4 of [ITU-T Z.161]), or an import all statement contains an
exception list (see clause 8.2.3.5 of [ITU-T Z.161]), the type syntactical branch shall be used for
ASN.1 type and value list definitions and the const syntactical branch shall be used for ASN.1
values. Using of other syntactical branches (e.g., group, template, testcase etc.) are not allowed
in import statements importing from ASN.1.

NOTE – ASN.1 value sets are semantically equivalent to subtypes. Hence, in this Recommendation, they are
not handled separately but all rules specified for ASN.1 types also apply to ASN.1 value sets.

8.1.a.3 Importing import statements from ASN.1 modules

It is not allowed to import ASN.1 IMPORTS statements to TTCN-3 (like importing TTCN-3 import
statements to other TTCN-3 modules, see clause 8.2.3.7 "Importing of import statements" from
TTCN-3 modules of [ITU-T Z.161]).

8.1.a.4 Import Visibility of ASN.1 definitions

All ASN.1 definitions declared directly in an ASN.1 module can be imported into TTCN-3 if the
ASN.1 module does not have an EXPORTS statement (the empty alternative of the Exports
production is used, see clause 12.1 of [ITU-T X.680]) or exports all definition (the EXPORTS ALL
alternative of the Exports production is used).

If the ASN.1 module has an export list (the EXPORTS SymbolsExported alternative of the Exports
production is used), only the definitions on the export list AND defined in the given ASN.1 module
shall be imported into TTCN-3, all other definitions shall not be imported.

 Rec. ITU-T Z.167 (03/2011) 19

ASN.1 definitions imported from an ASN.1 module to other ASN.1 module(s) are not importable
when importing from ASN.1 to TTCN-3 (i.e., importing from ASN.1 is not transitive when
importing into TTCN-3).

8.2 Identifiers

In converting ASN.1 identifiers to TTCN-3 identifiers, hyphen "-" characters shall be replaced by
underscore "_" characters. When TTCN-3 keywords are used as identifiers in ASN.1 modules, these
identifiers shall be appended with a single underscore "_" character at import.

EXAMPLE:

 MyASN1module DEFINITIONS ::=
 BEGIN
 Misleading-ASN1-Name ::= INTEGER -- ASN.1 type identifier using '-'
 TypeWithTTCN-3Keyword ::= SEQUENCE {
 value INTEGER,
 message OCTET STRING
 }

 END

 module MyTTCNModule
 {
 import from MyASN1module language "ASN.1:2002" all;

 // TTCN-3 reference to ASN.1 type using underscores
 const Misleading_ASN1_Name cg_Example1 := 1;

 // TTCN-3 reference to identifiers which are TTCN-3 keywords
 const TypeWithTTCN_3Keyword cg_Example2 := {
 value_ := 5,
 message_ := 'FF'O
 }
 }

9 ASN.1 data types and values

9.1 Transformation rules for ASN.1 types and values

ASN.1 value sets are handled in the present document the same way as ASN.1 types. Therefore,
when referring to "ASN.1 types" in the present document, both ASN.1 value set definitions and
type definitions are meant. ASN.1 types and values may be used in TTCN-3 modules. ASN.1
definitions are made using a separate ASN.1 module. ASN.1 types and values are referenced
by their type references and value references as produced according to clauses 11.2 and 11.4 of
[ITU-T X.680] within the ASN.1 module(s). Basic ASN.1 value notation and XML ASN.1 value
notation shall be transformed equally, i.e., a basic and an XML value notation referring to the same
value of the type shall produce the same associated TTCN-3 value.

EXAMPLE 1:

MyASN1module DEFINITIONS ::=
BEGIN
 Z::= INTEGER -- Simple type definition

 BMessage::= SEQUENCE -- ASN.1 type definition
 {
 name IA5String,
 title VisibleString,
 date IA5String
 }

 johnValues Bmessage ::= -- ASN.1 value definition
 {
 name "John Doe",
 title "Mr",
 date "April 12th"
 }

20 Rec. ITU-T Z.167 (03/2011)

 johnValuesXML ::= -- XML ASN.1 value definition
 <Bmessage>
 <name>John Doe</name>
 <title>Mr</title>
 <date>April 12th<date>
 <Bmessage>

 DefinedValuesForField1 Z ::= {0 | 1} -- ASN.1 subtype definition
END

The ASN.1 module shall conform to the syntax and semantics of [ITU-T X.680], [ITU-T X.681],
[ITU-T X.682] and [ITU-T X.683]. Once declared and imported, ASN.1 types and values may be
used within TTCN-3 modules in a similar way than TTCN-3 types and values, imported from
other TTCN-3 modules. Each imported ASN.1 definition produces an associated type or value. All
TTCN-3 definitions or assignments based on imported ASN.1 definitions shall be done according
the rules imposed by the related associated type or value. Also, the matching mechanism shall use
the associated type when matching at a receiving or a match operation.

Associated types and values are derived from ASN.1 definitions by applying the transformation
rules below. Transformations shall be started on a valid ASN.1 module and end in a valid TTCN-3
representation. The order corresponds to the order of execution of the individual transformations:

0) Ignore all type prefixes and all encoding control sections (see Note 1). ASN.1 type prefixes
may consist of tags and encoding prefixes.

0bis) Ignore names of inner types and values in SEQUENCE OF and SET OF definitions (see Note 1).

1) Ignore any extension markers and exception specifications.

2) Ignore any user defined constraints (see clause 9 of [ITU-T X.682]).

3) Ignore any contents constraint (see clause 11 of [ITU-T X.682]).

4) Convert pattern constraints (see clause 51.9 of [ITU-T X.680]) to TTCN-3 pattern subtypes
(see clause 6.1.2.5 of [ITU-T Z.161]).

5) Execute the COMPONENTS OF transformation according to clause 25.5 of [ITU-T X.680] on any
SEQUENCE types and according to clause 27.2 on any SET types containing the keywords
"COMPONENTS OF".

6) Create equivalent TTCN-3 subtypes for all ASN.1 types constrained using contained
subtyping by replacing included types by the set of values they represent. More detailed
information on the conversion of ASN.1 type constraints to TTCN-3 subtypes is given in
Table 4. Table 4 shows the applicability of ASN.1 type constraint mechanisms to different
ASN.1 types. Where the cell contains "No", the type constraint is disallowed for the given
type. Shaded cells identify type constraints applicable to a given type and text in the cell
defines TTCN-3 subtyping mechanisms to be used when transforming constrained ASN.1
types.

7) Replace any EMBEDDED PDV type with its associated type obtained by expanding inner
subtyping in the associated type of the EMBEDDED PDV type (see clause 36.5 of [ITU-T X.680])
to a full type definition.

8) Replace the EXTERNAL type with its associated type obtained by expanding inner subtyping in
the associated type of the EXTERNAL type (see clause 37.5 of [ITU-T X.680]) to a full type
definition (see Note 3).

9) Replace the CHARACTER STRING type with its associated type obtained by expanding inner
subtyping in the associated type of the CHARACTER STRING type (see clause 44.5 of
[ITU-T X.680]) to a full type definition.

 Rec. ITU-T Z.167 (03/2011) 21

10) Replace the INSTANCE OF type with its associated type obtained by substituting INSTANCE OF
DefinedObjectClass by its associated ASN.1 type (see clause C.7 of [ITU-T X.681]) and
replace all ASN.1 types with their TTCN-3 equivalents according to Table 3. The resulted
type is the TTCN-3 associated type.

11) Ignore any remaining inner subtyping (see Note 4).

12) Ignore any named numbers and named bits in ASN.1 types. In ASN.1 values replace any
named number by its value and substitute any named bits or sequence of named bits by a
bitstring without trailing zeros, where bit positions identified by names present are replaced
by "1"s, other bit positions are replaced by "0"s.

13) Replace any selection type with the type referenced by the selection type; if the denoted
choice type (the "Type" in clause 30.1 of [ITU-T X.681]) is a constrained type, the
selection has to be done on the parent type of the denoted choice type.

14) Convert any RELATIVE-OID type or value to an objid type or value (see Note 5).

15) Replace any of the following restricted character string types with their associated types
obtained as (see Note 6):

 BMPString: universal charstring (char (0,0,0,0) .. char (0,0,255,255));

 UTF8String: universal charstring;

 NumericString: charstring constrained to the set of characters as given in clause 41.2
of [ITU-T X.680];

 PrintableString: charstring constrained to the set of characters as given in clause 41.4
of [ITU-T X.680];

 TeletexString and T61String: universal charstring constrained to the set of characters as
given in [ITU-T T.61];

 VideotexString: universal charstring constrained to the set of characters as given in
[ITU-T T.100] and [ITU-T T.101];

 GraphicString: universal charstring;

 GeneralString: universal charstring.

16) Replace any of the following time types with their associated types obtained as (see
Notes 14 and 15):

 GeneralizedTime types or values with the type or value of charstring;

 UTCTime types or values with the type or value of charstring;

 TIME, DATE, TIME-OF-DAY, DATE-TIME and DURATION types or values with the type or value of
charstring. Properties settings and range subtyping, if any, shall be ignored (see also
Table 4).

17) Replace any of the following types with their associated types obtained as:

 ObjectDescriptor type or value by the universal charstring type or value;

 OID-IRI type or value by the universal charstring type or value (see Note 14);

 RELATIVE-OID-IRI type or value by the universal charstring type or value (see Note 14).

18) Replace any notations for the object class field types (see clause 14 of [ITU-T X.681]) by
the ASN.1 definition they are referring to (see Note 8); open types has to be replaced by the
metatype "OPEN TYPE" for the purpose of the transformation (and only for that).

19) Replace all information from objects notations (see clause 15 of [ITU-T X.681]) by the
ASN.1 definition they are referencing to.

20) Revert table constraints (see clause 10 of [ITU-T X.682]) to list subtyping and ignore all
relational constraints (see Note 7).

22 Rec. ITU-T Z.167 (03/2011)

21) Replace all occurrences of NULL type with the following associated TTCN-3 type (see
Note 13):

 type enumerated <identifier> { NULL },

where <identifier> is the ASN.1 Type reference converted according to clause8.2, if a
synonym of the NULL type is defined; or with

 the nested type definition enumerated { NULL } <identifier>,
where <identifier> is the ASN.1 field identifier, converted according to clause 8.2, if the
ASN.1 NULL type is used within a structured type.

22) Replace all references to open types with the metatype "OPEN TYPE" (see Note 11).

23) Replace ASN.1 types with their equivalents according to Table 3 and ASN.1 values with
equivalent TTCN-3 values based on the associated types. Fields of ASN.1 SEQUENCE and SET
types identified as OPTIONAL or with a DEFAULT value shall be optional fields in the associated
type (see Note 12). Missing (i.e., implicitly omitted) optional fields in structured ASN.1
values (of the types (SET, SEQUENCE, etc.) shall be explicitly omitted in the resulted structured
TTCN-3 values (see Note 9).

24) Replace the metatype "OPEN TYPE" by anytype.

NOTE 1 – Associated types and values contain abstract information only, thus do not contain all information
needed for correct encoding. The way of handling the information needed by the test system to provide
correct encoding and/or decoding (both embedded in ASN.1 definitions and provided in the encoding
reference default, tag default and extension default settings of ASN.1 modules and encoding control sections,
if any and information coming from the ASN.1 specification itself, like tag values of built-in ASN.1 types) is
implementation dependent and remains hidden for the user; this knowledge is not required to make valid
TTCN-3 declarations or assignments involving imported ASN.1 types and values.

NOTE 2 – When importing ENUMERATED types, integer numbers assigned by the user to enumerations will also
be imported.

NOTE 3 – The data-value field of the EXTERNAL type may be encoded as a single-ASN1-type, octet-aligned
or arbitrary (see clause 8.18.1 of [ITU-T X.690]) at the discretion of the encoder; if the user wants to enforce
one given form of encoding or wants to allow only one specific encoding form at matching, it has to use the
appropriate encoding attribute for the type or the given constant, variable, template or template field (see
clause 11.3 of the present document).

NOTE 4 – Inner subtyping has to be taken into account by the user when defining TTCN-3 values or
templates based on an ASN.1 type constrained by inner subtyping.

NOTE 5 – Equivalence with the objid type is limited to the syntax to be used for value notations only.
When encoding/decoding an objid value retrieved from an ASN.1 RELATIVE-OID value using an ASN.1
encoding rule, the encoding/decoding will occur according to rules specified for the RELATIVE-OID type.

NOTE 6 – VisibleString, IA5String and UniversalString have their equivalent TTCN-3 types and are
replaced directly.

NOTE 7 – Relational constraints have to be taken into account by the user when declaring values and
templates (also may be handled by tools implicitly).

NOTE 8 – This replacement does not affect constraints applied to the "notation for the object class field
type" itself.

NOTE 9 – Missing optional fields in values of structured ASN.1 types (SET, SEQUENCE, EXTERNAL, etc.) are
equivalent to explicitly omitted fields in structured TTCN-3 values.

EXAMPLE 2:

 module MyTTCNModule
 {
 import from MyASN1module language "ASN.1:2002" all;

 const Bmessage MyTTCNConst:= johnValues;
 const DefinedValuesForField1 Value1:= 1;
 }

 Rec. ITU-T Z.167 (03/2011) 23

NOTE 10 – ASN.1 definitions, other than types and values (i.e., information object classes or information
object sets) are not directly accessible from the TTCN-3 notation. Such definitions will be resolved to a type
or value within the ASN.1 module before they can be referenced from within the TTCN-3 module.

NOTE 11 – The metatype "OPEN TYPE" is just used to describe the transformation process. It does not
exist, neither before nor after the transformation.

NOTE 12 – Most ASN.1 encoding rules require that fields with DEFAULT values are omitted in the
encoded message when their actual contents equal to the default values. However, in TTCN-3, it may be
required that the default value is also encoded and present. If fields with default values are omitted or present
in the encoded message, is a TTCN-3 test system runtime configuration option. It is also a TTCN-3 test
system runtime configuration option, if fields with default values missing in the received encoded message
are omitted or substituted by their default values in the abstract TTCN-3 value (the decoded message).

NOTE 13 – The associated type for the ASN.1 NULL type is introduced to specify the TTCN-3 value
notation for this type. The encoding/decoding of NULL values and fields have to be as defined for the NULL
type in the ASN.1 Recommendations (see, e.g., in [ITU-T X.690], [ITU-T X.691] and [ITU-T X.693]). Also,
the restriction in clause 7.1.3 of [ITU-T Z.161] (relational operators) that only values of the same enumerated
types are allowed to be compared, does not apply to imported ASN.1 NULL types.

NOTE 14 – The ASN.1 time types (including its useful types) are transformed to a restricted TTCN-3
charstring type and the OID-IRI and RELATIVE-OID-IRI types are transformed to the TTCN-3 universal charstring type
primarily for tool efficiency reasons (though this approach also allows sending some invalid values without
the need to create a specific type). This, however, means that the user shall exercise specific caution in
receiving templates, as AnyValue and AnyValuesOrNone will accept incorrectly formatted time values as
well. When the correctness of the received values is important, the pattern matching (possibly appended with
the ifpresent matching attribute for optional fields) shall be used instead of AnyValue and AnyValuesOrNone.
TTCN-3 patterns for the time types are given in Annex E and for the OID-IRI type is given in clause C.2.

NOTE 15 – Though all ASN.1 time types are transformed to a restricted TTCN-3 charstring type, they differ
in their tag values (see clauses 38.1.1, 38.4, 46.3 and 47.3 of [ITU-T X.680]) and encodings (see clauses 8.25
and 8.26 of [ITU-T X.690] and clauses 10.6.5 and 32 of [ITU-T X.691]). Therefore it is necessary that
TTCN-3 tools retain the type information and encode the values accordingly.

24 Rec. ITU-T Z.167 (03/2011)

Table 4 – ASN.1 type constraint to TTCN-3 subtype conversions

Type (or derived
from such a type by

tagging or subtyping)

Single
Value

Contained
Subtype see h)

Value
Range

Size
Constraint

Permitted
Alphabet

Type
Constraint

Inner
Subtyping

see i)

Pattern
Constraint

User
defined

constraint

Table
constraint

see k)

Relation
constraint

see k)

Content
constraint

Property
settings

Bit String list single value: list,
size: length

No length No No No No ignore No No ignore No

Boolean list list No No No No No No ignore No No No No

Choice list list No No No No convert to
full type

No ignore No No No No

Embedded-pdv (see a)) list No No No No No convert to
full type

No ignore No No No No

Enumerated list list No No No No No No ignore No No No No

External (See a) list No No No No No convert to
full type

No ignore No No No No

Instance-of (see a and b) list list No No No No convert to
full type

No ignore No No No No

Integer list single value: list,
value range:

range

Range
and/or

list
(l,m)

No No No No No ignore No No No No

Null ignore ignore No No No No No No ignore No No No No

Object class field type see c) see c) No No No No No No ignore list ignore No No

Object Descriptor (see e) list single value: list,
size: length,

perm.alphabet:
range

No length range No No No ignore No No No No

Object Identifier list list No No No No No No ignore No No No No

Octet String list single value: list,
size: length

No length No No No No ignore No No ignore No

open type No No No No No anytype
with list

constraint

No No ignore No (see m) No (see m) No No

25 Rec. ITU-T Z.167 (03/2011)

Table 4 – ASN.1 type constraint to TTCN-3 subtype conversions

Type (or derived
from such a type by

tagging or subtyping)

Single
Value

Contained
Subtype see h)

Value
Range

Size
Constraint

Permitted
Alphabet

Type
Constraint

Inner
Subtyping

see i)

Pattern
Constraint

User
defined

constraint

Table
constraint

see k)

Relation
constraint

see k)

Content
constraint

Property
settings

Real list single value: list,
value range:

range

Range
and/or

list
(n,o)

No No No convert to
full type

No ignore No No No No

Relative Object Identifier
(see d)

list list No No No No No No ignore No No No No

Restricted Character
String Types

list single value: list,
size: length,

perm.alphabet:
range

range length range No No Ignore
(see g)

ignore No No No No

Sequence list list No No No No convert to
full type

No ignore No No No No

Sequence-of list single value: list,
value range:

range

No length No No convert to
full type

No ignore No No No No

Set list list No No No No convert to
full type

No ignore No No No No

Set-of list single value: list,
value range:

range

No length No No convert to
full type

No ignore No No No No

TIME <and its
derivations>

 ignore

Time Types (see a) list list No No No No No No ignore No No No No

Unrestricted Character
String Type (see a)

list No No length (applied
to field "string-

value")

No No convert to
full type

No ignore No No No No

26 Rec. ITU-T Z.167 (03/2011)

Table 4 – ASN.1 type constraint to TTCN-3 subtype conversions

a) These types are seen from TTCN-3 as being equivalent to their associated types.
b) Type-id field of the associated type for Instances-of shall be replaced by the type of the &id field the value field is anytype (Annex C of Recommendation ITU-T X.681 [ITU-T X.681]).
c) Replaced by the referenced type, thus applicable as to the referenced type.
d) Seen as object identifier from TTCN-3.
e) Its associated type is a restricted character string type.
f) Open type is replaced by anytype.
g) Character patterns can only be used in constants, variables, templates and module parameters in TTCN-3 but cannot be used for subtyping.
h) Contained subtype constraints shall be replaced by literal constraints at import.
i) Information in this column relates to the TTCN-3 views of ASN.1 definitions. Encoding/decoding shall be according to the root type, thus extra information for encoding also has to be stored,

this is not shown in this table.
k) Applicable to notations for the object class field type (see above).
l) If the lower and the upper boundaries of an ASN.1 range equal, the range shall be translated to a TTCN-3 list subtyping, corresponding to the allowed ASN.1 value (please note, there may be

more than one ranges in an ASN.1 range subtype specification).
m) For each range, not obeying rule (l) above a TTCN-3 subtype range shall be generated, considering the following:

If the lower boundary of an ASN.1 range is MIN, the lower boundary of the corresponding TTCN-3 range shall be inclusive and its value shall be the lower boundary of the ASN.1 type's parent
type or -infinity (if the parent type is a built-in type or has no lower boundary, i.e., MIN – either open or closed – is used along the whole derivation chain).

 If the lower boundary of an ASN.1 range is MIN<, the lower boundary of the corresponding TTCN-3 range shall be inclusive and its value shall be the lower boundary of the ASN.1 type's parent
type plus 1 or -infinity (if the parent type is a built-in type or has no lower boundary, i.e., MIN – either open or closed – is used along the whole derivation chain).

 If the lower boundary of an ASN.1 range is a value and is a closed boundary (i.e., not MIN and does not include the "<" symbol), the lower boundary of the corresponding TTCN-3 range shall be
inclusive and its value shall be the ASN.1 lower boundary.

 If the lower boundary of an ASN.1 range is a value and is an open boundary (i.e., not MIN< and does include the "<" symbol), the lower boundary of the corresponding TTCN-3 range shall be
inclusive and its value shall be the ASN.1 lower boundary plus 1.

 If the upper boundary of an ASN.1 range is MAX, the upper boundary of the corresponding TTCN-3 range shall be inclusive and its value shall be the upper boundary of the ASN.1 type's parent
type or infinity (if the parent type is a built-in type or has no upper boundary, i.e., MAX – either open or closed – are used along the whole derivation chain).

 If the upper boundary of an ASN.1 range is <MAX, the upper boundary of the TTCN-3 range shall be inclusive and its value shall be the upper boundary of the ASN.1 type's parent type minus 1
or infinity (if the parent type is a built-in type or has no upper boundary, i.e., MAX – either open or closed – are used along the whole derivation chain).

 If the upper boundary of an ASN.1 range is a value and is a closed boundary (i.e., not MAX and does not include the "<" symbol), the upper boundary of the TTCN-3 range shall be inclusive and
its value shall be the ASN.1 upper boundary.

 If the upper boundary of an ASN.1 range is a value and is an open boundary (i.e., not <MAX and does include the "<" symbol), the upper boundary of the TTCN-3 range shall be inclusive and its
value shall be the ASN.1 upper boundary minus 1.

n) If the lower and the upper boundaries of an ASN.1 range equal, the range shall be translated to a TTCN-3 list subtyping, corresponding to the allowed ASN.1 value (please note, there may be
more than one ranges in an ASN.1 range subtype specification).

o) For each range, not obeying rule (n) above a TTCN-3 subtype range shall be generated, considering the following:
 If the lower boundary of an ASN.1 range is MINUS-INFINITY, the lower bound of the corresponding TTCN-3 range shall be -infinity.
 If the lower boundary of an ASN.1 range is MIN, the lower boundary of the corresponding TTCN-3 range shall be inclusive and its value shall be the lower boundary of the ASN.1 type's parent

type or -infinity (if the parent type is a built-in type or has no lower boundary, i.e., MIN and/or MINUS-INFINITY – either open or closed – are used along the whole derivation chain).
 If the lower boundary of an ASN.1 range is MIN<, the lower boundary of the corresponding TTCN-3 range shall be either an exclusive value equivalent to the lower boundary of the ASN.1

type's parent type or -infinity (if the parent type is a built-in type or has no lower boundary, i.e., MIN and/or MINUS-INFINITY – either open or closed – are used along the whole derivation
chain).

27 Rec. ITU-T Z.167 (03/2011)

Table 4 – ASN.1 type constraint to TTCN-3 subtype conversions

 If the lower boundary of an ASN.1 range is a numerical value and is a closed boundary (i.e., not MIN or MINUS-INFINITY and does not include the "<" symbol), the lower boundary of the
corresponding TTCN-3 range shall be inclusive and its value shall be the ASN.1 lower boundary.

 If the lower boundary of an ASN.1 range is a numerical value and is an open boundary (i.e., not MIN< or MINUS-INFINITY< and does include the "<" symbol), the lower boundary of the
corresponding TTCN-3 range shall be exclusive and its value shall be the ASN.1 lower boundary.

 If an upper boundary of an ASN.1 range is NOT-A-NUMBER, a TTCN-3 range with the upper boundary infinity and the list subtype value not_a_number shall be generated for this range.
 If an upper boundary of an ASN.1 range is <NOT-A-NUMBER, a TTCN-3 range with the upper boundary infinity shall be generated for this range.
 If the upper boundary of an ASN.1 range is PLUS-INFINITY, the upper bound of the corresponding TTCN-3 range shall be infinity.
 If the upper boundary of an ASN.1 range is MAX, the upper boundary of the corresponding TTCN-3 range shall be inclusive and its value shall be the upper boundary of the ASN.1 type's parent

type or infinity (if the parent type is a built-in type or has no upper boundary, i.e., MAX, PLUS-INFINITY or NOT-A-NUMBER – either open or closed – are used along the whole derivation
chain).

 If the upper boundary of an ASN.1 range is <MAX, the upper boundary of the corresponding TTCN-3 range shall be either an exclusive value equivalent to the upper boundary of the ASN.1
type's parent type or infinity (if the parent type is a built-in type or has no upper boundary, i.e., MAX, PLUS-INFINITY or NOT-A-NUMBER – either open or closed – are used along the whole
derivation chain).

 If the upper boundary of an ASN.1 range is a numerical value and is a closed boundary (i.e., not MAX, PLUS-INFINITY or NOT-A-NUMBER and does not include the "<" symbol), the upper
boundary of the corresponding TTCN-3 range shall be inclusive and its value shall be the ASN.1 upper boundary.

 If the upper boundary of an ASN.1 range is a numerical value and is an open boundary (i.e., not <MAX, <PLUS-INFINITY or <NOT-A-NUMBER and does include the "<" symbol), the upper
boundary of the corresponding TTCN-3 range shall be exclusive and its value shall be the ASN.1 upper boundary.

28 Rec. ITU-T Z.167 (03/2011)

9.2 Transformation rules for values

In case of real values, the base used in the value notation (2 or 10) shall be retained by the tool to be
able to produce the correct encoding of the value. However, from the point of view of TTCN-3
relational operations only the numerical value counts.

9.3 Scope of ASN.1 identifiers

Imported ASN.1 identifiers follow the same scope rules as imported TTCN-3 types and values
(see clause 5.2 of [ITU-T Z.161]).

10 Parameterization in ASN.1

It is not permitted to reference parameterized ASN.1 definitions from within the TTCN-3 module.
However, non-parameterized ASN.1 definitions may reference parameterized ASN.1 definitions by
providing the actual parameters. Such ASN.1 definitions can be imported to and used in TTCN-3
and when importing all definitions of an ASN.1 module, such definitions shall also be imported.

11 Defining ASN.1 message templates

11.1 General

Imported ASN.1 values can be used as messages in both send and receive operations.

EXAMPLE:

 MyASN1module DEFINITIONS ::=
 BEGIN
 -- ASN.1 Module definition

 -- The message definition
 MyMessageType::= SEQUENCE
 { field1 [1] IA5STRING, -- Like TTCN-3 charstring
field2 [2] INTEGER OPTIONAL, -- like TTCN-3 integer
field3 [4] Field3Type, -- Like TTCN-3 record
field4 [5] Field4Type -- Like TTCN-3 array
 }

 Field3Type::= SEQUENCE {field31 BIT STRING, field32 INTEGER, field33 OCTET STRING},
 Field4Type::= SEQUENCE OF BOOLEAN

 -- may have the following value
 myValue MyMessageType::=
 {
 field1 "A string", -- IA5STRING
field2 123, -- INTEGER
 field3 {field31 '11011'B, field32 456789, field33 'FF'O}, -- SEQUENCE
 field4 {true, false} - SEQUENCE OF
 }
 END

11.2 Receiving messages based on ASN.1 types

Matching mechanisms are not supported by the ASN.1 syntax. Thus, if matching mechanisms are
wished to be used with a received ASN.1 message, a TTCN-3 template shall be defined based on
the ASN.1 type and this shall be used in the receiving operation.

EXAMPLE:

 import from MyASN1module language "ASN.1:2002" {
 type myMessageType
 }

 // a message template using matching mechanisms is defined within a TTCN-3 module
 template myMessageType MyValue:=

 Rec. ITU-T Z.167 (03/2011) 29

 {
 field1 := pattern"A?tr*g",
 field2 := *,
 field3.field31 := '110??'B,
 field3.field32 := ?,
 field3.field33 := 'F?'O,
 field4.[0] := true,
 field4.[1] := false
 }

 // the following syntax is equally valid
 template myMessageType MyValue:=
 {
 field1 := pattern"A?tr*g", // string with wildcards
 field2 := *, // any integer or none at all
 field3 := {'110??'B, ?, 'F?'O},
 field4 := {?, false}
 }

11.3 Ordering of template fields

When TTCN-3 templates are used for ASN.1 types the significance of the order of the fields in the
template will depend on the type of ASN.1 construct used to define the message type. For example:
if SEQUENCE or SEQUENCE OF is used then the message fields shall be sent or matched in the order
specified in the template. If SET or SET OF is used then the message fields may be sent or matched
in any order.

12 Encoding information

12.1 General

TTCN-3 allows references to encoding rules and variations within encoding rules to be associated
with various TTCN-3 language elements. It is also possible to define invalid encodings. This
encoding information is specified using the with statement (see clause 27 of [ITU-T Z.161])
according to the following syntax:

EXAMPLE:

 module MyModule
 {
 :
 import from MyASN1module language "ASN.1:2002" {
 type myMessageType
 }
 with {
 encode "PER-BASIC-ALIGNED:1997" // All instances of MyMessageType should be encoded
using PER:1997
 }
 :
 } // end module
 with { encode "BER:1997" } // Default encoding for the entire module (test suite) is BER:1997

12.2 ASN.1 encoding attributes

The following strings are the predefined (standardized) encoding attributes for the current version
of ASN.1:

a) "BER:2008" means encoded according to [ITU-T X.690] (BER);

b) "CER:2008" means encoded according to [ITU-T X.690] (CER);

c) "DER:2008" means encoded according to [ITU-T X.690] (DER);

d) "PER-BASIC-UNALIGNED:2008" means encoded according to (Unaligned PER)
[ITU-T X.691];

e) "PER-BASIC-ALIGNED:2008" means encoded according to [ITU-T X.691]
(Aligned PER);

30 Rec. ITU-T Z.167 (03/2011)

f) "PER-CANONICAL-UNALIGNED:2008" means encoded according to (Canonical
Unaligned PER) [ITU-T X.691];

g) "PER-CANONICAL-ALIGNED:2008" means encoded according to [ITU-T X.691]
(Canonical Aligned PER);

h) "BASIC-XER:2008" means encoded according to [ITU-T X.693] (Basic XML encoding
rules);

i) "CANONICAL-XER:2008" means encoded according to [ITU-T X.693] (Canonical XML
encoding rules);

j) "EXTENDED-XER:2008" means encoded according to [ITU-T X.693] (Extended XML
encoding rules).

The encodings of previous ASN.1 versions rule (e.g., 1988, 1994, 1997 or 2002) can be used as
well. In this case, the date has to be replaced accordingly. For example, for ASN.1 1997 the
following encoding attributes apply: "BER:1997", "CER:1997", "DER:1997",
"PER-BASIC-UNALIGNED:1997", "PER-BASIC-ALIGNED:1997",
"PER-CANONICAL-UNALIGNED:1997" and "PER-CANONICAL-ALIGNED:1997".

12.3 ASN.1 variant attributes

The following strings are predefined (standardized) variant attributes. They have predefined
meaning only when applied jointly with predefined ASN.1 encoding attributes (see clause 12.2).
Handling of these predefined attributes, when applied jointly with other attributes or to a TTCN-3
object without an attribute, is out of scope of this Recommendation (see Note 1):

a) "length form 1" means, that the given value shall only be encoded and decoded using the
short definite form of the length octets (see clause 8.1.3.4 of [ITU-T X.690]) in case of
BER, CER and DER encodings or the single octet length determinant (see clause 11.9.3.6
of [ITU-T X.691]) in case of any form of the PER encoding.

b) "length form 2" means, that the given value shall only be encoded and decoded using
the long form of the length octets (see clause 8.1.3.5 of [ITU-T X.690]) in case of BER,
CER and DER encodings or the two octets length determinant (see clause 11.9.3.7 of
[ITU-T X.691]) in case of any form of the PER encoding.

c) "length form 3" means, that the given value shall only be encoded and decoded using the
indefinite form of the length octets (see clause 8.1.3.6 of [ITU-T X.690]) in case of BER,
CER and DER encodings.

d) "REAL base 2" means that the given value shall be encoded or matched according to the
REAL binary encoding form. This attribute can be used on constants, variables or templates
only and when used on any kind of a grouping (e.g., to groups or to the whole import
statement) it shall have effect on these TTCN-3 objects only.

e) "single-ASN1-type", "octet-aligned" and "arbitrary" mean, that the given value based on an
ASN.1 EXTERNAL type shall be encoded using the form specified by selected alternative
of the encoding field (see clause 8.18 of [ITU-T X.690] and clause 29 of [ITU-T X.691]).
When this attribute is used for import statements, component type definitions, groups or
TTCN-3 modules, it shall have effect on types, constants, variables and templates based on
ASN.1 EXTERNAL types only. If the conditions set in clauses 8.18.6 to 8.18.8 of
[ITU-T X.690] and the specified attribute do not met, this shall cause an error.

f) "TeletexString" means that the given value shall be encoded and decoded as the ASN.1
type TeletexString (see clause 8.23 of [ITU-T X.690] and clause 30 of [ITU-T X.691]).

g) "VideotexString" means that the given value shall be encoded and decoded as the ASN.1
type VideotexString (see clause 8.23 of [ITU-T X.690] and clause 30 of [ITU-T X.691]).

 Rec. ITU-T Z.167 (03/2011) 31

h) "GraphicString" means that the given value shall be encoded and decoded as the ASN.1
type GraphicString (see clause 8.23 of [ITU-T X.690] and clause 30 of [ITU-T X.691]).

i) "GeneralString" means that the given value shall be encoded and decoded as the ASN.1
type GeneralString (see clause 8.23 of [ITU-T X.690] and clause 30 of [ITU-T X.691]).

NOTE – These attributes may be reused in implementation specific encoding rules with a different meaning
than specified in the current clause, may be ignored or a warning/error indication may be given. However,
the strategy to be applied is implementation dependent.

Application of these variant attributes may lead to invalid ASN.1 encoding (e.g., using the
indefinite length form to primitive values in BER or not using the minimum necessary number of
length octets). This is allowed intentionally and users shall allocate these variant attributes to
constants, variables, templates or template fields used for receiving cautiously.

32 Rec. ITU-T Z.167 (03/2011)

Annex A

Additional BNF and static semantics

(This annex forms an integral part of this Recommendation)

When ASN.1 is supported, rules defined in Annex A of [ITU-T Z.161] shall apply, supplemented
by the BNF and semantic rules specified in this annex.

In addition to those listed in Table 3 of [ITU-T Z.161] "List of TTCN-3 terminals which are
reserved words" (see clause A.1.5 of [ITU-T Z.161]), the word objid shall also be a TTCN-3
reserved word (keyword).

Amendments to clause A.1.6 of [ITU-T Z.161] are specified in the subsequent clauses of this annex.

A.1 New productions for ASN.1 support

1000. DefinitiveIdentifier ::= ObjectIdentifierKeyword "{" DefinitiveObjIdComponentList "}"
1001. ObjectIdentifierKeyword ::= "objid"
1002. DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+
1003. DefinitiveObjIdComponent ::= Identifier ["(" Number ")"] |
 Number
1004. ObjectIdentifierValue ::= ObjectIdentifierKeyword "{" ObjIdComponentList "}"
1005. ObjIdComponentList ::= {ObjIdComponent}+
1006. ObjIdComponent ::= DefinitiveObjIdComponent | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall be an object identifier value */
1007. NameAndNumberForm ::= Identifier "(" NumberForm | ReferencedValue ")"
/* STATIC SEMANTICS - ReferencedValue shall be an integer value */
1008. ObjectIdentifierSpec := ObjectIdentifierKeyword "{" ObjIdComponentListSpec "}"
1009. ObjIdComponentListSpec := {ObjIdComponentSpec}+
1010. ObjIdComponentSpec := ObjIdComponent | AnyValue | AnyOrOmit | TemplateRefWithParList
/* STATIC SEMANTICS - TemplateRefWithParList shall be of integer type */

A.2 Amended core language BNF productions and static semantics

Additions to clause A.1.6 of [ITU-T Z.161] are identified by underlined font, deletions are
identified by strikethrough font. In case of contradiction between the above clause of Part-1
[ITU-T Z.161] and this clause (i.e., parts of the productions not marked by strikethrough font is
changed in Part-1), Part-1 takes precedence, i.e., tools supporting the present document shall apply
the insertions and deletions of this clause to the actual Part-1 production or static semantics rule
automatically.

5. GlobalModuleId ::= ModuleIdentifier [Dot DefinitiveIdentifier]
51. ValueOrRange ::= RangeDef | ConstantExpression | Type
/* STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal
charstring, or float or object identifier based types */
/* STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not
be mixed in the same SubTypeSpec */
101. TemplateBody ::= (SimpleSpec | FieldSpecList | ArrayValueOrAttrib | ObjectIdentifierSpec)
[ExtraMatchingAttributes]
/* STATIC SEMANTICS - Within TeplateBody the ArrayValueOrAttrib can be used for array, record,
record of and set of types. */
148. LowerBound ::= SingleConstExpression | (Minus InfinityKeyword)
149. UpperBound ::= SingleConstExpression | InfinityKeyword
/* STATIC SEMANTICS - LowerBound and UpperBound shall evaluate to types integer, charstring,
universal charstring, or float or object identifier. In case LowerBound or UpperBound evaluates to
types charstring, or universal charstring or object identifier, only SingleConstExpression may be
present and in case of charstring and universal charstring types the string length shall be 1*/
455. PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |

 Rec. ITU-T Z.167 (03/2011) 33

 DefaultKeyword |
 AnyTypeKeyword |
 ObjectIdentifierKeyword
474. PredefinedValue ::= BitStringValue |
 BooleanValue |
 CharStringValue |
 IntegerValue |
 OctetStringValue |
 HexStringValue |
 VerdictTypeValue |
 EnumeratedValue |
 FloatValue |
 AddressValue |
 OmitValue |
 ObjectIdentifierValue

34 Rec. ITU-T Z.167 (03/2011)

Annex B

Additional predefined TTCN-3 functions

(This annex forms an integral part of this Recommendation)

Void.

 Rec. ITU-T Z.167 (03/2011) 35

Annex C

Additional information on object identifiers

(This annex does not form an integral part of this Recommendation)

C.1 The top-level arcs of the OID tree

Annex A of [ITU-T X.660] defines the tree of object identifier components shown below. Some
object identifier components defined in [ITU-T X.660] may use the name form (without defining
the numerical value of the component) in object identifier value notations (see Table C.1). These
predefined components have specified numerical values when used at their predefined positions
only. Names in italic are reserved for historical reasons, therefore their use in TTCN-3 codes is
deprecated, but it is recommended that TTCN-3 test systems are able to recognize them and
substitute with the correct numerical value.

NOTE 1 – Names below are given according to the TTCN-3 syntax, i.e., all dash characters are replaced by
underscore characters.

NOTE 2 – Further arcs can be found via the repository of Object IDentifiers (OIDs) that is freely available at
http://www.oid-info.com/.

Table C.1 – The top-level arcs of the OID tree

root arcs arcs beneath the root
third-level

arcs

allowed
as

Name
Form

secondary
identifier
(primary
integer)

Unicode label

integer valued

-
non-integer

secondary identifier
(primary integer)

Unicode label

integer valued

non-integer

 Unicode
label
integer
valued |
non-
integer

itu_t(0),
ccitt(0)

"0"

"ITU-T"

recommendation(0) "0"

"Recommendation"

a(1)
b(2)
c(3)
d(4)
e(5)
f(6)
g(7)
h(8)
i(9)
j(10)
k(11)
l(12)
m(13)
n(14)
o(15)
p(16)
q(17)
r(18)
s(19)
t(20)

 "1" |
"A"
 "2" |
"B"
 "3" |
"C"
 "4" |
"D"
 "5" |
"E"
 "6" |
"F"
 "7" |
"G"
 "8" |
"H"
 "9" |
"I"
"10" |
"J"

Yes

36 Rec. ITU-T Z.167 (03/2011)

Table C.1 – The top-level arcs of the OID tree

root arcs arcs beneath the root
third-level

arcs

allowed
as

Name
Form

 u(21)
v(22)
w(23)
x(24)
y(25)
z(26)

"11" |
"K"
"12" |
"L"
"13" |
"M"
"14" |
"N"
"15" |
"O"
"16" |
"P"
"17" |
"Q"
"18" |
"R"
"19" |
"S"
"20" |
"T"
"21" |
"U"
"22" |
"V"
"23" |
"W"
"24" |
"X"
"25" |
"Y"
"26" |
"Z"

 question(1) "1"

(see Note 3)

(see
Note 4)

 arc
beneath
root: Yes,
third-
level arc:
No

 administration(2) "2"

"Administration"

(see
Note 5)

 arc
beneath
root: Yes,
third-
level arc:
No

 network_operator(3) "3"

"Network-Operator"

(see
Note 6)

 arc
beneath
root: Yes,
third-
level arc:
No

 Rec. ITU-T Z.167 (03/2011) 37

Table C.1 – The top-level arcs of the OID tree

root arcs arcs beneath the root
third-level

arcs

allowed
as

Name
Form

 identified_organization(4) "4"

"Identified-
Organization"

 Yes

 r_recommendation(5) "5"

"R-Recommendation"

 No

iso(1) "1"

"ISO"

standard(0)
(Note 7)

"0"

"Standard"

 Yes

 registration_authority(1) "1"

"Registration-Authority"

 Yes

 member_body(2) "2"

"Member-Body"

 Yes

 identified_organization(3) "3"

"Identified-
Organization"

 Yes

joint_iso_itu_t
(2), joint_iso_
ccitt(2)

"2"

"Joint-ISO-
ITU-T"

 Yes

NOTE 3 – The arcs beneath the arc with the primary integer value 1 (secondary identifier question) have
never been used and are of historical interest only. A non-integer Unicode label has not been assigned to
these arcs.

NOTE 4 – Arcs below the arc with the primary integer value 1 (secondary identifier question) have primary
integer values corresponding to ITU-T study groups, qualified by the study period. The value is computed by
the formula:

 Study Group number + (Study Period * 32)

where "Study Period" has the value 0 for 1984-1988, 1 for 1988-1992, etc., and the multiplier is 32 decimal.
The arcs below each study group have primary integer values corresponding to the Questions assigned to that
study group. Arcs below this are determined as necessary by the group (e.g., Working Party or special
Rapporteur group) assigned to study the question.

NOTE 5 – The primary integer values (and hence integer-valued Unicode labels) that are the values of data
country codes (DCCs) as defined in Annex J of [ITU-T X.121]. These arcs have a non-integer Unicode label
and a secondary identifier, both consisting of the two-letter alpha-2 code element (see [ISO 3166-1], country
code elements for the corresponding country.

NOTE 6 – The primary integer values (and hence integer-valued Unicode labels) that are the values of data
network identification codes (DNICs) as defined in Annex I of [ITU-T X.121]. These arcs have no non-
integer Unicode labels and no secondary identifiers assigned by default.

NOTE 7 – This arc (but only this) can also be used as iec(1) standard(0)….

38 Rec. ITU-T Z.167 (03/2011)

C.2 Character patterns to match OID IRI-s

The template t_OID_IRI below is matching all legal OID-IRI values, containing at least the arcs
given in Table C.1. It can also be used as an example and basis to specify patterns to match
OID-IRI values containing further arc(s) or to create template to match values containing less arcs
by deleting the unneeded parts of the pattern below (please note, that the root arc is mandatory).
Please note, that the pattern below should not be used for long arcs (see [ITU-T X.660] and
http://www.oid-info.com/faq.htm#iri for more information).
module OID_IRI {

 //***
 //*
 //* @reference ES 201 873-7 table C.1
 //*
 //* @desc Matches any valid (non-relative) International Resource Identifier
 //* containing at least the arcs in table C.1
 //*
 //* @remark It does not guarantee that the whole identifier is correct, check
 //* the first arcs only; when the further arcs are known and wanted
 //* to be checked, the "(/?*)#(,1)" fragment shall be replaced by
 //* the pattern corresponding to the arcs beneath the ones defined
 //* in table C.1
 //*
 //* @status non-verified
 //*
 //***
 template universal charstring t_OID_IRI := pattern
 "/((0|ITU-T)/(((0|Recommendation)/((1|A)|(2|B)|(3|C)|(4|D)|(5|E)|(6|F)|(7|G)|" &
 "(8|H)|(9|I)|(10|J)|(11|K)|(12|L)|(13|M)|(14|N)|(15|O)|(16|P)|(17|Q)|" &
 "(18|R)|(19|S)|(20|T)|(21|U)|(22|V)|(23|W)|(24|X)|(25|Y)|(26|Z)))|" &
 "1|(2|Administration)|(3|Network-Operator)|(4|Identified-Organization)|" &
 "(5|R-Recommendation))|" &
 "((1|ISO)/((0|Standard)|(1|Registration-Authority)|(2|Member-Body)|" &
 "(3|Identified-Organization)))|" &
 "(2|Joint-ISO-ITU-T))" &
 "(/?*)#(,1)" //this fragment may be replaced by the arcs beneath the ones in C.1

 //***
 //*
 //* @reference ITU-T X.680 $35
 //*
 //* @desc Matches valid relative International Resource Identifiers
 //*
 //* @remark It does not guarantee that the identifier is correct, checks
 //* only if it is provided like a relative value
 //*
 //* @status non-verified
 //*
 //***
 template universal charstring t_RELATIVE_OID_IRI := pattern
 "[^/]" &
 "(/?*)#(,1)" //this fragment may be replaced by the arcs wanted

}

 Rec. ITU-T Z.167 (03/2011) 39

Annex D

Deprecated features

(This annex does not form an integral part of this Recommendation)

Void.

40 Rec. ITU-T Z.167 (03/2011)

Annex E

Example patterns for ASN.1 time types

(This annex does not form an integral part of this Recommendation)

As specified in clause 9.1 of this Recommendation, the ASN.1 date and time types are transformed
to the TTCN-3 charstring type. This annex contains TTCN-3 patterns that can be used either to
create pattern-constrained types corresponding to the ASN.1 date and time types or be used in
templates to match correctly formed date and time value only.

In this annex the TTCN-3 source code documentation format specified in [ITU-T Z.170] is used
(please see the compatibility statement in clause 4.1 of this Recommendation).

E.1 Patterns corresponding to unconstrained time types

This clause contains two TTCN-3 modules. The module called "nc" contains subsidiary constants
that specify the patterns for atomic components of the complete date and time patterns.

For matching an unconstrained TIME type use the template t_ISO8601AllFormats from the
module "ISO8601DateTimePatterns" below (values of the ASN.1 TIME type are character strings
formatted according to [ISO 8601]).
module nc
{
 //***
 //*
 //* @desc Unconstrained charstring constants referenced from the
 //* ISO8601 date/time patterns
 //*
 //* @remark Whatever components are possible, defined as constant strings
 //* referenced in the patterns (e.g. the optional T designator in
 //* time representations or the optional century expansion in dates)
 //* to allow easy modification via changing the constants only
 //* @remark No. of century expansion digits and digits of decimal fraction
 //* are not limited; intentionally the "#(1,)" pattern is used
 //* instead of "+" to allow adding digit number limitations easily
 //* @remark Defined constants are: dash, colon, century, year,
 //* centuryExpansion, month, monthDurAlt, week, dayOfWeek,
 //* dayOfMonth, dayOfMonthDurAlt, dayOfYear, dayOfYearDurAlt,
 //* hour, minute, second, fraction, endOfDay, endOfDayExt,
 //* nums, timeZone, timeZoneExt, durTime
 //* @remark Components used also as optional (i.e., followed by #(,1)
 //* in any of the date/time patterns) shall have an external
 //* enclosing bracket; other constants need not have this
 //*
 //* @status verified
 //*
 //***
 const charstring
 dash := "-",
 colon := ":",
 century := "[0-9]#2",
 year := "[0-9]#4",
 yearExpansion := "([\+\-][0-9]#(0,))", //also allows zero additional digits!
 yearExpansionOpt := "([\+\-][0-9]#(0,))#(,1)", //also allows zero additional
 month := "(0[1-9]|1[0-2])",//need outer brackets: optional in some patterns
 monthDurAlt := "(0[0-9]|1[01])",
 week := "(W(0[1-9]|[1-4][0-9]|5[0-3]))",//need outer brackets: optional
 dayOfWeek := "[1-7]",
 dayOfMonth := "(0[1-9]|[12][0-9]|3[01])",//need outer brackets: optional
 dayOfMonthDurAlt := "[012][0-9]|30",
 dayOfYear := "(0(0[1-9]|[1-9][0-9])|[12][0-9][0-9]|3([0-5][0-9]|6[0-5]))",//optional
 dayOfYearDurAlt := "[012][0-9][0-9]|3([0-5][0-9]|6[0-4])",
 hour := "([01][0-9]|2[0-3])",
 minute := "([0-5][0-9])", //need outer brackets: optional
 second := "([0-5][0-9])",
 //differentiation of fractions used in hours, minutes and seconds and duration
 //is needed to allow setting of different number of decimal digits & subtyping
 hFraction := "([,.][0-9]#(1,))", //need outer brackets: optional
 mFraction := nc.hFraction,
 sFraction := nc.hFraction,

 Rec. ITU-T Z.167 (03/2011) 41

 dFraction := nc.hFraction,
 optionalT := "T#(,1)",
 endOfDay := "24(00(00([,.]0#(1,))#(,1)|[,.]0#(1,))#(,1)|[,.]0#(1,))#(,1)",
 endOfDayExt := "24:00(:00([,.]0#(1,))#(,1)|[,.]0#(1,))#(,1)",
 nums := "[0-9]#(1,)",
 timeZone := "[\+\-]([01][0-9]|2[0-3])([0-5][0-9])#(,1)",
 optZorTimeZone := "(Z|[\+\-]([01][0-9]|2[0-3])([0-5][0-9])#(,1))#(,1)",
 timeZoneExt := "[\+\-]([01][0-9]|2[0-3])(:[0-5][0-9])#(,1)",
 optZorTimeZoneExt := "(Z|[\+\-]([01][0-9]|2[0-3])(:[0-5][0-9])#(,1))#(,1)",
 durTime := "(T[0-9]#(1,)"&
 "(H([0-9]#(1,)(M([0-9]#(1,)(S|[,.][0-9]#(1,)S))#(,1)|[,.][0-9]#(1,)" &
 "[MS]|S))#(,1)|M([0-9]#(1,)(S|[,.][0-9]#(1,)S)|[,.][0-9]#(1,)M)#(,1)|" &
 "S|[,.][0-9]#(1,)[HMS]))" //optional
//Used in atomic patterns only
 ,endOfDaywFraction := "24(00(00[,.]0#(1,)|[,.]0#(1,))|[,.]0#(1,))"
 ,endOfDaywFractionExt := "24:00(:00[,.]0#(1,)|[,.]0#(1,))"

}//end module

module ISO8601DateTimePatterns {

 //===
 // Imports
 //===

 import from nc all;

 //===
 // Templates
 //===

 //============================DATE FORMS==================================

 //***
 //*
 //* @reference ISO_8601 $4.1.2
 //*
 //* @desc Matches all calendar date representations (complete, reduced
 //* accuracy and expanded) in basic formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateCalendarBasic := pattern
 "{nc.yearExpansionOpt}({nc.century}|{nc.year}({nc.month}{nc.dayOfMonth}|" &
 "{dash}{nc.month})#(,1))";

 //***
 //*
 //* @reference ISO_8601 $4.1.2
 //*
 //* @desc Matches all calendar date representations (complete and expanded)
 //* in extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateCalendarExtended := pattern
 "{nc.yearExpansionOpt}{nc.year}{dash}{nc.month}{dash}{nc.dayOfMonth}";

 //***
 //*
 //* @reference ISO_8601 $4.1.2
 //*
 //* @desc Matches all calendar date representations (complete, reduced
 //* accuracy and expanded) in basic and extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateCalendar := (
 t_ISO8601DateCalendarBasic,
 t_ISO8601DateCalendarExtended
)

 //***

42 Rec. ITU-T Z.167 (03/2011)

 //*
 //* @reference ISO_8601 $4.1.3
 //*
 //* @desc Matches all ordinal date representations (complete, reduced
 //* accuracy and expanded) in basic formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateOrdinalBasic := pattern
 "{nc.yearExpansionOpt}{nc.year}{nc.dayOfYear}";

 //***
 //*
 //* @reference ISO_8601 $4.1.3
 //*
 //* @desc Matches all ordinal date representations (complete, reduced
 //* accuracy and expanded) in basic formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateOrdinalExtended := pattern
 "{nc.yearExpansionOpt}{nc.year}{dash}{nc.dayOfYear}";

 //***
 //*
 //* @reference ISO_8601 $4.1.3
 //*
 //* @desc Matches all ordinal date representations (complete, reduced
 //* accuracy and expanded) in basic and extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateOrdinal := (
 t_ISO8601DateOrdinalBasic,
 t_ISO8601DateOrdinalExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.1.4
 //*
 //* @desc Matches all week date representations (complete, reduced
 //* accuracy and expanded) in basic formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateWeekBasic := pattern
 "{nc.yearExpansionOpt}{nc.year}{nc.week}{nc.dayOfWeek}#(,1)";

 //***
 //*
 //* @reference ISO_8601 $4.1.4
 //*
 //* @desc Matches all week date representations (complete, reduced
 //* accuracy and expanded) in extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateWeekExtended := pattern
 "{nc.yearExpansionOpt}{nc.year}{dash}{nc.week}({dash}{nc.dayOfWeek})#(,1)";

 //***
 //*
 //* @reference ISO_8601 $4.1.4
 //*
 //* @desc Matches all week date representations (complete, reduced
 //* accuracy and expanded) in basic and extended formats
 //*
 //* @status verified
 //*

 Rec. ITU-T Z.167 (03/2011) 43

 //***
 template charstring t_ISO8601DateWeek := (
 t_ISO8601DateWeekBasic,
 t_ISO8601DateWeekExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.1
 //*
 //* @desc Matches all date representations (complete, reduced accuracy
 //* and expanded) in basic formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateBasic := (
 t_ISO8601DateCalendarBasic,
 t_ISO8601DateOrdinalBasic,
 t_ISO8601DateWeekBasic
)

 //***
 //*
 //* @reference ISO_8601 $4.1
 //*
 //* @desc Matches all date representations (complete, reduced accuracy
 //* and expanded) in extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateExtended := (
 t_ISO8601DateCalendarExtended,
 t_ISO8601DateOrdinalExtended,
 t_ISO8601DateWeekExtended
)

 //***
 //*
 //* @reference ISO_8601
 //*
 //* @desc Matches all date representations (complete, reduced accuracy and
 //* expanded) in basic and extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601Date := (
 t_ISO8601DateBasic,
 t_ISO8601DateExtended
)

 //============================TIME-OF-DAY============================

 //***
 //*
 //* @reference ISO_8601 $4.2
 //*
 //* @desc Matches all time of day representations in basic formats
 //* Supports all time of day representations as local time: complete
 //* ($4.2.2.2), reduced accuracy($4.2.2.3) and with decimal fraction
 //* ($4.2.2.4), midnight($4.2.3); UTC of day ($4.2.4) and difference
 //* between local time and UTC of day ($4.2.5)and the optional time
 //* designator
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601TimeBasic := pattern
 "{nc.optionalT}({nc.hour}({nc.minute}({nc.second}{nc.sFraction}#(,1)|60|" &
 "{nc.mFraction})#(,1)|60|{nc.hFraction})#(,1)|{nc.endOfDay})" &
 "{nc.optZorTimeZone}";

 //***
 //*

44 Rec. ITU-T Z.167 (03/2011)

 //* @reference ISO_8601 $4.2
 //*
 //* @desc Matches all time of day representations in extended formats
 //* Supports all time of day representations as local time: complete
 //* ($4.2.2.2), reduced accuracy($4.2.2.3) and with decimal fraction
 //* ($4.2.2.4), midnight($4.2.3); UTC of day ($4.2.4) and difference between
 //* local time and UTC of day ($4.2.5)and the optional time designator
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601TimeExtended := pattern
 "{nc.optionalT}({nc.hour}{colon}({nc.minute}({colon}({nc.second}" &
 "{nc.sFraction}#(,1)|60)|{nc.mFraction})#(,1)|60)|{nc.endOfDayExt})" &
 "{nc.optZorTimeZoneExt}";

 //***
 //*
 //* @reference ISO_8601 $4.2
 //*
 //* @desc Matches all time of day representations in basic and extended formats
 //* Supports all time of day representations as local time: complete
 //* ($4.2.2.2), reduced accuracy($4.2.2.3) and with decimal fraction
 //* ($4.2.2.4), midnight($4.2.3); UTC of day ($4.2.4) and difference between
 //* local time and UTC of day ($4.2.5)and the optional time designator
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601Time := (
 t_ISO8601TimeBasic,
 t_ISO8601TimeExtended
)

 //============================DATE-TIME FORMATS================================

 //***
 //*
 //* @reference ISO_8601 $4.3
 //*
 //* @desc Matches all date/time of day representations in basic formats
 //*
 //* @remark Acc. to $4.3... ?) the date part shall always be complete
 //* @remark Omitting the T designer between the date and time parts is not
 //* supported
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateTimeBasic := pattern
 "{nc.yearExpansionOpt}{nc.year}({nc.month}{nc.dayOfMonth}|{nc.dayOfYear}|" &
 "{nc.week}{nc.dayOfWeek})T({nc.hour}({nc.minute}({nc.second}" &
 "{nc.sFraction}#(,1)|60|{nc.mFraction})#(,1)|60|{nc.hFraction})#(,1)" &
 "{nc.optZorTimeZone}|{nc.endOfDay}{nc.optZorTimeZone})";

 //***
 //*
 //* @reference ISO_8601 $4.3
 //*
 //* @desc Matches all date/time of day representations in all formats
 //*
 //* @remark Acc. to $4.3.3 c) the date part shall always be complete
 //* @remark Omitting the T designer between the date and time parts is not
 //* supported
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateTimeExtended := pattern
 "{nc.yearExpansionOpt}{nc.year}{dash}({nc.month}{dash}{nc.dayOfMonth}|" &
 "{nc.dayOfYear}|{nc.week}{dash}{nc.dayOfWeek})T({nc.hour}{colon}" &
 "({nc.minute}({colon}({nc.second}{nc.sFraction}#(,1)|60)|{nc.mFraction})" &
 "#(,1)|60){nc.optZorTimeZoneExt}|{nc.endOfDayExt}{nc.optZorTimeZoneExt})";

 //***
 //*

 Rec. ITU-T Z.167 (03/2011) 45

 //* @reference ISO_8601 $4.3
 //*
 //* @desc Matches all date/time of day representations in all formats
 //*
 //* @remark Acc. to $4.3... ?) the date part shall always be complete
 //* @remark Omitting the T designer between the date and time parts is not
 //* supported
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DateTime := (
 t_ISO8601DateTimeBasic,
 t_ISO8601DateTimeExtended
)

 //============================DURATION============================

 //***
 //*
 //* @reference ISO_8601 $4.4.3.2
 //*
 //* @desc Matches duration representations containing only date components
 //* and using the format with designators; Both week and caledar dates
 //* are supported (the alternative format in $4.4.3.3 is excluded: it is
 //* covered by t_ISO8601DurationAlternative...)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationDesignDate := pattern
 "P{nc.nums}(Y({nc.nums}(M({nc.nums}(D|{nc.dFraction}D))#(,1)|" &
 "{nc.dFraction}[MD]|D))#(,1)|{nc.dFraction}[YMDW]|M({nc.nums}" &
 "(D|{nc.dFraction}D)|{nc.dFraction}D)#(,1)|D|W)"

 //***
 //*
 //* @reference ISO_8601 $4.4.3.2
 //*
 //* @desc Matches duration representations containing time components
 //* only and using the format with designators
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationDesignTime := pattern
 "PT{nc.nums}(H({nc.nums}(M({nc.nums}(S|{nc.dFraction}S))#(,1)|" &
 "{nc.dFraction}[MS]|S))#(,1)|{nc.dFraction}[HMS]|M({nc.nums}(S|" &
 "{nc.dFraction}S)|{nc.dFraction}M)#(,1)|S)"

 //***
 //*
 //* @reference ISO_8601 $4.4.3.2
 //*
 //* @desc Matches duration representations using the format with designators;
 //* Both week and caledar dates are supported (the alternative format in
 //* $4.4.3.3 is excluded: it is covered by t_ISO8601DurationAlternative...)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationDesign := pattern
 "P({nc.nums}((Y({nc.nums}(M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|" &
 "{nc.durTime}#(,1))|{nc.dFraction}[MD]|D{nc.durTime}#(,1))|{nc.durTime}" &
 "#(,1))|{nc.dFraction}[YMDW])|M({nc.nums}(D{nc.durTime}#(,1)|" &
 "{nc.dFraction}D)|{nc.dFraction}D|{nc.durTime}#(,1))|D{nc.durTime}#(,1)|" &
 "W{nc.durTime}#(,1))|{nc.durTime})"

 //***
 //*
 //* @reference ISO_8601 $4.4.3.3
 //*
 //* @desc Matches duration representations using the alternative basic format
 //*
 //* @remark Both caledar and ordinal dates are supported
 //* @remark Any of the components may be numerically 0;

46 Rec. ITU-T Z.167 (03/2011)

 //* @remark Carry over points are 12 month, 30 days, (365 days in case of
 //* ordinal dates), 24 hours, 60 minutes and
 //* 60 seconds; e.g.
 //* P00011200T000000, P00010130T000000,
 //* P001365T000000, P0001001T006000 and
 //* P0001-001T00:00:60
 //* are NOT accepted, only
 //* P00020000T000000, P00010200T000000,
 //* P002000T000000, P0001001T010000 and
 //* P0001001T000100
 //* are valid
 //* @remark The time part may be of reduced accuracy (by using decimal fraction
 //* or omitting lower order time element(s)), the date part shall be
 //* complete (i.e., numerically 0 elements shall not be omitted)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationAlternativeBasic := pattern
 "P{nc.year}({nc.monthDurAlt}{nc.dayOfMonthDurAlt}|{nc.dayOfYearDurAlt})" &
 "T{nc.hour}({nc.minute}({nc.second}{nc.sFraction}#(,1)|{nc.mFraction})" &
 "#(,1)|{nc.hFraction})#(,1)"

 //***
 //*
 //* @reference ISO_8601 $4.4.3.3
 //*
 //* @desc Matches duration representations using the alternative extended format
 //*
 //* @remark Both caledar and ordinal dates are supported
 //* @remark Any of the components may be numerically 0;
 //* @remark Carry over points are 12 month, 30 days, (365 days in case of
 //* ordinal dates), 24 hours, 60 minutes and
 //* 60 seconds; e.g.
 //* P0001-12-00T00:00:00, P0001-01-30T00:00:00,
 //* P001-365T00:00:00, P0001-001T00:60:00 and
 //* P0001-001T00:00:60
 //* are NOT accepted, only
 //* P0002-00-00T00:00:00, P0001-02-00T00:00:00,
 //* P002-000T00:00:00, P0001-001T01:00:00 and
 //* P0001-001T00:01:00
 //* are valid
 //* @remark The time part may be of reduced accuracy (by using decimal fraction
 //* or omitting lower order time element(s)), the date part shall be
 //* complete (i.e., numerically 0 elements shall not be omitted)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationAlternativeExtended := pattern
 "P{nc.year}{dash}({nc.monthDurAlt}{dash}{nc.dayOfMonthDurAlt}|" &
 "{nc.dayOfYearDurAlt})T{nc.hour}{colon}{nc.minute}({colon}{nc.second}" &
 "{nc.sFraction}#(,1)|{nc.mFraction})#(,1)"

 //***
 //*
 //* @reference ISO_8601 $4.4.3.3
 //*
 //* @desc Matches duration representations using the alternative format;
 //* both the basic and the extended formats are supported
 //*
 //* @remark Both caledar and ordinal dates are supported
 //* @remark Any of the components may be numerically 0;
 //* @remark Carry over points are 12 month, 30 days, (365 days in case of
 //* ordinal dates), 24 hours, 60 minutes and
 //* 60 seconds; e.g.
 //* P0001-12-00T00:00:00, P0001-01-30T00:00:00,
 //* P001-365T00:00:00, P0001-001T00:60:00 and
 //* P0001-001T00:00:60
 //* are NOT accepted, only
 //* P0002-00-00T00:00:00, P0001-02-00T00:00:00,
 //* P002-000T00:00:00, P0001-001T01:00:00 and
 //* P0001-001T00:01:00
 //* are valid
 //* @remark The time part may be of reduced accuracy (by using decimal fraction
 //* or omitting lower order time element(s)), the date part shall be
 //* complete (i.e., numerically 0 elements shall not be omitted)
 //*

 Rec. ITU-T Z.167 (03/2011) 47

 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationAlternative := (
 t_ISO8601DurationAlternativeBasic,
 t_ISO8601DurationAlternativeExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches duration representations using the both formats: with
 //* designators and the alternative representation; in the alternative
 //* representation only the basic format is allowed
 //*
 //* @remark both caledar and ordinal dates are supported
 //* @remark any of the components may be numerically 0;
 //* @remark Carry over points are 12 month, 30 days, (365 days in case of
 //* ordinal dates), 24 hours, 60 minutes and
 //* 60 seconds; e.g.
 //* P00011200T000000, P00010130T000000,
 //* P001365T000000, P0001001T006000 and
 //* P0001001T000060
 //* are NOT accepted, only
 //* P00020000T000000, P00010200T000000,
 //* P002000T000000, P0001001T010000 and
 //* P0001001T000100
 //* are valid
 //* @remark The time part may be of reduced accuracy (by using decimal fraction
 //* or omitting lower order time element(s)), the date part shall be
 //* complete (i.e., numerically 0 elements shall not be omitted)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationBasic := pattern
 "P({nc.year}({nc.monthDurAlt}{nc.dayOfMonthDurAlt}|{nc.dayOfYearDurAlt})" &
 "T{nc.hour}(({nc.minute}({nc.second}{nc.sFraction}#(,1)|{nc.mFraction})" &
 "#(,1)|{nc.hFraction})#(,1))|({nc.nums}((Y({nc.nums}(M({nc.nums}" &
 "(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.durTime}#(,1))|{nc.dFraction}" &
 "[MD]|D{nc.durTime}#(,1))|{nc.durTime}#(,1))|{nc.dFraction}[YMDW])|" &
 "M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.dFraction}D|" &
 "{nc.durTime}#(,1))|D{nc.durTime}#(,1)|W{nc.durTime}#(,1))|{nc.durTime}))"

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches duration representations using the both formats: with designators
 //* and the alternative representation; in the alternative representation only
 //* the extended format is allowed
 //*
 //* @remark both caledar and ordinal dates are supported
 //* @remark any of the components may be numerically 0;
 //* @remark Carry over points are 12 month, 30 days, (365 days in case of
 //* ordinal dates), 24 hours, 60 minutes and
 //* 60 seconds; e.g.
 //* P0001-12-00T00:00:00, P0001-01-30T00:00:00,
 //* P001-365T00:00:00, P0001-001T00:60:00 and
 //* P0001-001T00:00:60
 //* are NOT accepted, only
 //* P0002-00-00T00:00:00, P0001-02-00T00:00:00,
 //* P002-000T00:00:00, P0001-001T01:00:00 and
 //* P0001-001T00:01:00
 //* are valid
 //* @remark The time part may be of reduced accuracy (by using decimal fraction
 //* or omitting lower order time element(s)), the date part shall be
 //* complete (i.e., numerically 0 elements shall not be omitted)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601DurationExtended := pattern
 "P({nc.year}{dash}({nc.monthDurAlt}{dash}{nc.dayOfMonthDurAlt}|" &
 "{nc.dayOfYearDurAlt})T{nc.hour}{colon}{nc.minute}({colon}{nc.second}" &
 "{nc.sFraction}#(,1)|{nc.mFraction})#(,1)|({nc.nums}((Y({nc.nums}" &
 "(M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.durTime}#(,1))|" &

48 Rec. ITU-T Z.167 (03/2011)

 "{nc.dFraction}[MD]|D{nc.durTime}#(,1))|{nc.durTime}#(,1))|{nc.dFraction}" &
 "[YMDW])|M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.dFraction}D|" &
 "{nc.durTime}#(,1))|D{nc.durTime}#(,1)|W{nc.durTime}#(,1))|{nc.durTime}))"

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches duration representations using both formats: with designators
 //* and the alternative representation; in the alternative representation both
 //* the basic and the extended formats are allowed
 //*
 //* @remark both caledar and ordinal dates are supported
 //* @remark any of the components may be numerically 0;
 //* @remark Carry over points are 12 month, 30 days, (365 days in case of
 //* ordinal dates), 24 hours, 60 minutes and
 //* 60 seconds; e.g.
 //* P0001-12-00T00:00:00, P0001-01-30T00:00:00,
 //* P001-365T00:00:00, P0001-001T00:60:00 and
 //* P0001-001T00:00:60
 //* are NOT accepted, only
 //* P0002-00-00T00:00:00, P0001-02-00T00:00:00,
 //* P002-000T00:00:00, P0001-001T01:00:00 and
 //* P0001-001T00:01:00
 //* are valid
 //* @remark The time part may be of reduced accuracy (by using decimal fraction
 //* or omitting lower order time element(s)), the date part shall be
 //* complete (i.e., numerically 0 elements shall not be omitted)
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601Duration := (
 t_ISO8601DurationBasic,
 t_ISO8601DurationExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy (see note below)time
 //* interval representations identified by start and end and using the
 //* basic format
 //*
 //* @remark $ 4.4.4.5 is contradictory as allows omitting higher order time
 //* elements in the part representing end date/time (the expression
 //* after the solidus), while the time part may also be of reduced
 //* accuracy (either by omitting the lower order elements or by a
 //* decimal fraction). This pattern resolves this conflict the
 //* following way: Higher order elements can be omitted in the date
 //* part of the expression following the solidus (in case of omitting
 //* the weeks also the "W" is omitted!) but not in the time part. The
 //* time part may be of reduced accuracy.
 //* @remark There is no requirement in ISO8601 to keep reduced accuracy
 //* compatible in the start and the end date/time; this may result
 //* "strange" or in some cases unclear (in these cases agreement is
 //* required between the communicating sides) time interval
 //* representations, however these are allowed by this template
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalStartEndBasic := pattern
 "{nc.yearExpansionOpt}{nc.year}({nc.month}{nc.dayOfMonth}|{nc.dayOfYear}|" &
 "{nc.week}{nc.dayOfWeek})T({nc.hour}({nc.minute}({nc.second}{nc.sFraction}" &
 "#(,1)|60|{nc.mFraction})#(,1)|60|{nc.hFraction})#(,1){nc.optZorTimeZone}|" &
 "{nc.endOfDay}{nc.optZorTimeZone})/({nc.yearExpansionOpt}{nc.year}" &
 "({nc.month}{nc.dayOfMonth}|{nc.dayOfYear}|{nc.week}{nc.dayOfWeek})|" &
 "({nc.month}#(,1){nc.dayOfMonth}|{nc.dayOfYear}|{nc.week}#(,1){nc.dayOfWeek}))"&
 "T({nc.hour}({nc.minute}({nc.second}{nc.sFraction}#(,1)|60|{nc.mFraction})" &
 "#(,1)|60|{nc.hFraction})#(,1){nc.optZorTimeZone}|{nc.endOfDay}" &
 "{nc.optZorTimeZone})"

 //***
 //*
 //* @reference ISO_8601 $4.4.3

 Rec. ITU-T Z.167 (03/2011) 49

 //*
 //* @desc Matches both complete and reduced accuracy (see note below)time interval
 //* representations identified by start and end and using the extended format
 //*
 //* @remark $ 4.4.4.5 is contradictory as allows omitting higher order time
 //* elements in the part representing end date/time (the expression
 //* after the solidus), while the time part may also be of reduced
 //* accuracy (either by omitting the lower order elements or by a
 //* decimal fraction). This pattern resolves this conflict the
 //* following way: Higher order elements can be omitted in the date
 //* part of the expression following the solidus (in case of omitting
 //* the weeks also the "W" is omitted!) but not in the time part. The
 //* time part may be of reduced accuracy.
 //* @remark There is no requirement in ISO8601 to keep reduced accuracy
 //* compatible in the start and the end date/time; this may result
 //* "strange" or in some cases unclear (in these cases agreement is
 //* required between the communicating sides) time interval
 //* representations, however these are allowed by this template
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalStartEndExtended := pattern
 "{nc.yearExpansionOpt}{nc.year}{dash}({nc.month}{dash}{nc.dayOfMonth}|" &
 "{nc.dayOfYear}|{nc.week}{dash}{nc.dayOfWeek})T({nc.hour}{colon}" &
 "({nc.minute}({colon}({nc.second}{nc.sFraction}#(,1)|60)|{nc.mFraction})" &
 "#(,1)|60)|{nc.endOfDayExt}){nc.optZorTimeZoneExt}/({nc.yearExpansionOpt}" &
 "{nc.year}({dash}{nc.month}{dash}{nc.dayOfMonth}|{dash}{nc.dayOfYear}|" &
 "{dash}{nc.week}{dash}{nc.dayOfWeek})|({nc.month}{dash})#(,1)" &
 "{nc.dayOfMonth}|{nc.week}{dash}{nc.dayOfWeek})T({nc.hour}{colon}" &
 "({nc.minute}({colon}({nc.second}{nc.sFraction}#(,1)|60)|{nc.mFraction})" &
 "#(,1)|60)|{nc.endOfDayExt}){nc.optZorTimeZoneExt}"

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy (see note below)time
 //* interval representations identified by start and end and using the basic
 //* or the extended format
 //*
 //* @remark $ 4.4.4.5 is contradictory as allows omitting higher order time
 //* elements in the part representing end date/time (the expression
 //* after the solidus), while the time part may also be of reduced
 //* accuracy (either by omitting the lower order elements or by a
 //* decimal fraction). This pattern resolves this conflict the
 //* following way: Higher order elements can be omitted in the date
 //* part of the expression following the solidus (in case of omitting
 //* the weeks also the "W" is omitted!) but not in the time part. The
 //* time part may be of reduced accuracy.
 //* @remark There is no requirement in ISO8601 to keep reduced accuracy
 //* compatible in the start and the end date/time; this may result
 //* "strange" or in some cases unclear (in these cases agreement is
 //* required between the communicating sides) time interval
 //* representations, however these are allowed by this template
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalStartEnd := (
 t_ISO8601IntervalStartEndBasic,
 t_ISO8601IntervalStartEndExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by start and duration and using the basic
 //* format
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalStartDurationBasic := pattern
 "{nc.yearExpansionOpt}{nc.year}({nc.month}{nc.dayOfMonth}|{nc.dayOfYear}|" &
 "{nc.week}{nc.dayOfWeek})T({nc.hour}({nc.minute}({nc.second}{nc.sFraction}" &

50 Rec. ITU-T Z.167 (03/2011)

 "#(,1)|60|{nc.mFraction})#(,1)|60|{nc.hFraction})#(,1){nc.optZorTimeZone}|" &
 "{nc.endOfDay}{nc.optZorTimeZone})/P({nc.year}({nc.monthDurAlt}" &
 "{nc.dayOfMonthDurAlt}|{nc.dayOfYearDurAlt})T{nc.hour}(({nc.minute}" &
 "({nc.second}{nc.sFraction}#(,1)|{nc.mFraction})#(,1)|{nc.hFraction})" &
 "#(,1))|({nc.nums}((Y({nc.nums}(M({nc.nums}(D{nc.durTime}#(,1)|" &
 "{nc.dFraction}D)|{nc.durTime}#(,1))|{nc.dFraction}[MD]|D{nc.durTime}" &
 "#(,1))|{nc.durTime}#(,1))|{nc.dFraction}[YMDW])|M({nc.nums}(D{nc.durTime}" &
 "#(,1)|{nc.dFraction}D)|{nc.dFraction}D|{nc.durTime}#(,1))|D{nc.durTime}" &
 "#(,1)|W{nc.durTime}#(,1))|{nc.durTime}))"

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by start and duration and using the
 //* extended format
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalStartDurationExtended := pattern
 "{nc.yearExpansionOpt}{nc.year}{dash}({nc.month}{dash}{nc.dayOfMonth}|" &
 "{nc.dayOfYear}|{nc.week}{dash}{nc.dayOfWeek})T({nc.hour}{colon}" &
 "({nc.minute}({colon}({nc.second}{nc.sFraction}#(,1)|60)|{nc.mFraction})" &
 "#(,1)|60){nc.optZorTimeZoneExt}|{nc.endOfDayExt}{nc.optZorTimeZoneExt})" &
 "/P({nc.year}{dash}({nc.monthDurAlt}{dash}{nc.dayOfMonthDurAlt}|" &
 "{nc.dayOfYearDurAlt})T{nc.hour}{colon}{nc.minute}({colon}{nc.second}" &
 "{nc.sFraction}#(,1)|{nc.mFraction})#(,1)|({nc.nums}((Y({nc.nums}" &
 "(M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.durTime}#(,1))|" &
 "{nc.dFraction}[MD]|D{nc.durTime}#(,1))|{nc.durTime}#(,1))|{nc.dFraction}" &
 "[YMDW])|M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.dFraction}D|" &
 "{nc.durTime}#(,1))|D{nc.durTime}#(,1)|W{nc.durTime}#(,1))|{nc.durTime}))"

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by start and duration and using either the
 //* basic or the extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalStartDuration := (
 t_ISO8601IntervalStartDurationBasic,
 t_ISO8601IntervalStartDurationExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by duration and end and using the basic
 //* format
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalDurationEndBasic := pattern
 "P({nc.year}({nc.monthDurAlt}{nc.dayOfMonthDurAlt}|{nc.dayOfYearDurAlt})" &
 "T{nc.hour}(({nc.minute}({nc.second}{nc.sFraction}#(,1)|{nc.mFraction})" &
 "#(,1)|{nc.hFraction})#(,1))|({nc.nums}((Y({nc.nums}(M({nc.nums}" &
 "(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.durTime}#(,1))|{nc.dFraction}" &
 "[MD]|D{nc.durTime}#(,1))|{nc.durTime}#(,1))|{nc.dFraction}[YMDW])|" &
 "M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.dFraction}D|" &
 "{nc.durTime}#(,1))|D{nc.durTime}#(,1)|W{nc.durTime}#(,1))|" &
 "{nc.durTime}))/{nc.yearExpansionOpt}{nc.year}({nc.month}{nc.dayOfMonth}|" &
 "{nc.dayOfYear}|{nc.week}{nc.dayOfWeek})T({nc.hour}({nc.minute}" &
 "({nc.second}{nc.sFraction}#(,1)|60|{nc.mFraction})#(,1)|60|" &
 "{nc.hFraction})#(,1){nc.optZorTimeZone}|{nc.endOfDay}{nc.optZorTimeZone})"

 //***
 //*
 //* @reference ISO_8601 $4.4.3

 Rec. ITU-T Z.167 (03/2011) 51

 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by duration and end and using the extended
 //* format
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalDurationEndExtended := pattern
 "P({nc.year}{dash}({nc.monthDurAlt}{dash}{nc.dayOfMonthDurAlt}|" &
 "{nc.dayOfYearDurAlt})T{nc.hour}{colon}{nc.minute}({colon}{nc.second}" &
 "{nc.sFraction}#(,1)|{nc.mFraction})#(,1)|({nc.nums}((Y({nc.nums}" &
 "(M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.durTime}#(,1))|" &
 "{nc.dFraction}[MD]|D{nc.durTime}#(,1))|{nc.durTime}#(,1))|{nc.dFraction}" &
 "[YMDW])|M({nc.nums}(D{nc.durTime}#(,1)|{nc.dFraction}D)|{nc.dFraction}D|" &
 "{nc.durTime}#(,1))|D{nc.durTime}#(,1)|W{nc.durTime}#(,1))|{nc.durTime}))/" &
 "{nc.yearExpansionOpt}{nc.year}{dash}({nc.month}{dash}{nc.dayOfMonth}|" &
 "{nc.dayOfYear}|{nc.week}{dash}{nc.dayOfWeek})T({nc.hour}{colon}" &
 "({nc.minute}({colon}({nc.second}{nc.sFraction}#(,1)|60)|{nc.mFraction})" &
 "#(,1)|60){nc.optZorTimeZoneExt}|{nc.endOfDayExt}{nc.optZorTimeZoneExt})"

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by duration and end and using either the
 //* basic or the extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalDurationEnd := (
 t_ISO8601IntervalDurationEndBasic,
 t_ISO8601IntervalDurationEndExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by duration and end and using either the
 //* basic or the extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalBasic := (
 t_ISO8601DurationBasic,
 t_ISO8601IntervalStartEndBasic,
 t_ISO8601IntervalStartDurationBasic,
 t_ISO8601IntervalDurationEndBasic
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval
 //* representations identified by duration and end and using either the
 //* basic or the extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601IntervalExtended := (
 t_ISO8601DurationExtended,
 t_ISO8601IntervalStartEndExtended,
 t_ISO8601IntervalStartDurationExtended,
 t_ISO8601IntervalDurationEndExtended
)

 //***
 //*
 //* @reference ISO_8601 $4.4.3
 //*
 //* @desc Matches both complete and reduced accuracy time interval

52 Rec. ITU-T Z.167 (03/2011)

 //* representations identified by duration and end and using either the
 //* basic or the extended formats
 //*
 //* @status verified
 //*
 //***
 template charstring t_ISO8601Interval := (
 t_ISO8601IntervalBasic,
 t_ISO8601IntervalExtended
)

 //***
 //*
 //* @reference ISO_8601 $4
 //*
 //* @desc Matches all ISO8601 date and time formats
 //*
 //* @remark Exceptions see at the members of the value list
 //*
 //* @status
 //*
 //***
 template charstring t_ISO8601AllFormats := (
 t_ISO8601Date,
 t_ISO8601Time,
 t_ISO8601DateTime,
 t_ISO8601DurationDesign,
 t_ISO8601DurationAlternative,
 t_ISO8601Interval
)

} // end of module

E.2 Constructing patterns corresponding to constrained time types

This clause describes the way, how patterns corresponding to properties of ASN.1 time types (see
clause 38.2 of [ITU-T X.680]) can be constructed.

To constrain the format to the different basic natures use the templates from the module
ISO8601DateTimePatterns (see clause E.1) according to Table E.1.

Table E.1 – Templates for basic nature properties

Basic nature property Corresponding template definition

Date t_ISO8601Date

Time t_ISO8601Time

Date-Time t_ISO8601DateTime

Interval (t_ISO8601DurationAlternative,
 t_ISO8601Interval)

Rec-Interval to be completed

Printed in Switzerland
Geneva, 2011

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.167 (03/2011) – Testing and Test Control Notation version 3: (TTCN-3) mapping from ASN.1
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 Conformance and compatibility

	5 General
	6 Amendments to the core language
	7 Additional TTCN-3 types
	7.1 General
	7.2 The object identifier type

	8 ASN.1 and TTCN-3 type equivalents
	8.1 General
	8.2 Identifiers

	9 ASN.1 data types and values
	9.1 Transformation rules for ASN.1 types and values
	9.2 Transformation rules for values
	9.3 Scope of ASN.1 identifiers

	10 Parameterization in ASN.1
	11 Defining ASN.1 message templates
	11.1 General
	11.2 Receiving messages based on ASN.1 types
	11.3 Ordering of template fields

	12 Encoding information
	12.1 General
	12.2 ASN.1 encoding attributes
	12.3 ASN.1 variant attributes

	Annex A – Additional BNF and static semantics
	A.1 New productions for ASN.1 support
	A.2 Amended core language BNF productions and static semantics
	Annex B – Additional predefined TTCN-3 functions
	Annex C – Additional information on object identifiers
	C.1 The top-level arcs of the OID tree
	C.2 Character patterns to match OID IRI-s
	Annex D – Deprecated features
	Annex E – Example patterns for ASN.1 time types
	E.1 Patterns corresponding to unconstrained time types
	E.2 Constructing patterns corresponding to constrained time types

