

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.146
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2006)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3
(TTCN-3): Using ASN.1 with TTCN-3

ITU-T Recommendation Z.146

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.146 (03/2006) i

ITU-T Recommendation Z.146

Testing and Test Control Notation version 3 (TTCN-3):
Using ASN.1 with TTCN-3

Summary
This Recommendation defines the way of using ASN.1 as defined in ITU-T Recs X.680, X.681, X.682 and X.683 with
TTCN-3 (Testing and Test Control Notation 3) as defined in ITU-T Rec. Z.140.

Content of this Recommendation has been moved into this separate Recommendation from ITU-T Rec. Z.140 (04/2003).
Since then, corrections and editorial changes have been made and included in this Recommendation.

Source
ITU-T Recommendation Z.146 was approved on 16 March 2006 by ITU-T Study Group 17 (2005-2008) under the
ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.146 (03/2006)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.146 (03/2006) iii

CONTENTS

 Page
1 Scope ... 1
2 References .. 1
3 Definitions and abbreviations.. 1

3.1 Definitions... 1
3.2 Abbreviations... 1

4 Introduction... 2
5 General... 2
6 Amendments in the core language.. 2
7 Additional TTCN-3 types... 5

7.1 General ... 5
7.2 Additional simple basic types and values ... 5
7.3 Sub-typing of additional types ... 6

8 ASN.1 and TTCN-3 type equivalents ... 6
8.1 General ... 6
8.2 Identifiers .. 7

9 ASN.1 data types and values... 7
9.1 General ... 7
9.2 Scope of ASN.1 identifiers.. 12

10 Parameterization in ASN.1 ... 12
11 Defining ASN.1 message templates.. 13

11.1 General ... 13
11.2 ASN.1 receive messages using the TTCN-3 template syntax.. 13
11.3 Ordering of template fields.. 14

12 Encoding information.. 14
12.1 General ... 14
12.2 ASN.1 encoding attributes .. 14
12.3 ASN.1 variant attributes ... 15

Annex A – Additional BNF and static semantics .. 16
A.1 ASN.1 support.. 16

Annex B – Pre-defined TTCN-3 functions .. 16
B.1 The Decompose function .. 16

Annex C – Predefined object identifier components .. 17
BIBLIOGRAPHY.. 18

 ITU-T Rec. Z.146 (03/2006) 1

ITU-T Recommendation Z.146

Testing and Test Control Notation version 3 (TTCN-3):
Using ASN.1 with TTCN-3

1 Scope
This Recommendation defines a normative way of using of ASN.1 as defined in ITU-T Recs X.680 [2], X.681 [3],
X.682 [4] and X.683 [5] with TTCN-3. The harmonization of other languages with TTCN-3 is not covered by this
Recommendation.

2 References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged
to investigate the possibility of applying the most recent edition of the Recommendations and other references listed
below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] ITU-T Recommendation Z.140 (2006), Testing and Test Control Notation version 3 (TTCN-3): Core
language.

[2] ITU-T Recommendation X.680 (2002), Information technology – Abstract Syntax Notation One (ASN.1):
Specification of basic notation.

[3] ITU-T Recommendation X.681 (2002), Information technology – Abstract Syntax Notation One (ASN.1):
Information object specification.

[4] ITU-T Recommendation X.682 (2002), Information technology – Abstract Syntax Notation One (ASN.1):
Constraint specification.

[5] ITU-T Recommendation X.683 (2002), Information technology – Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications.

[6] ITU-T Recommendation X.690 (2002), Information technology – ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER).

[7] ITU-T Recommendation X.691 (2002), Information technology – ASN.1 encoding rules: Specification of
Packed Encoding Rules (PER).

[8] ITU-T Recommendation X.693 (2001), Information technology – ASN.1 encoding rules: XML Encoding
Rules (XER).

[9] Void.
[10] ITU-T Recommendation T.100 (1988), International information exchange for interactive Videotex.
[11] ITU-T Recommendation T.101 (1994), International interworking for Videotex services.
[12] ITU-T Recommendation X.660 (2004), Information technology – Open Systems Interconnection –

Procedures for the operation of OSI registration authorities: General procedures and top arcs of the
ASN.1 Object Identifier tree.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. Z.140 [1] apply.

3.2 Abbreviations

For the purposes of this Recommendation, the abbreviations given in ITU-T Rec. Z.140 [1] and the following apply:
ASN.1 Abstract Syntax Notation One

2 ITU-T Rec. Z.146 (03/2006)

4 Introduction
When using ASN.1 with TTCN-3 all features of TTCN-3 and statements given in clause 4/Z.140 [1] still apply. In
addition, when supporting this Recommendation, TTCN-3 becomes fully harmonized with ASN.1 which may be used
with TTCN-3 modules as an alternative data type and value syntax. This Recommendation defines the use of ASN.1 in
TTCN-3 modules. The approach used to combine ASN.1 and TTCN-3 could be applied to support the use of other type
and value systems with TTCN-3. However, the details of this are not defined in this Recommendation.

 TTCN-3
core
language

TTCN-3 User

ASN.1 types
& values

Other types &
values n

Graphical
format

Other types &
values 2

The shaded boxes are not
defined in this Recommendation

Tabular
format

Other

presentation
formats as
defined in

other parts of
this Recom-
mendation

Figure 1/Z.146 – User's view of the core language and the various presentation formats

5 General
TTCN-3 provides a clean interface for using ASN.1 version 2002 (as defined in ITU-T Recs X.680 [2], X.681 [3],
X.682 [4] and X.683 [5]) in TTCN-3 modules. XML related capabilities of ASN.1 are currently not considered. When
importing from an ASN.1 module one of the following language identifier strings shall be used:

• "ASN.1:2002" for ASN.1 version 2002;
• "ASN.1:1997" for ASN.1 version 1997;
• "ASN.1:1994" for ASN.1 version 1994;
• "ASN.1:1988" for Blue Book version of ASN.1.

NOTE 1 – Language identifiers "ASN.1:1997", "ASN.1:1994" and "ASN.1:1988" refer to versions of ASN.1 based on
superseded ITU-T Recommendations (including the base document and all published Amendments and Technical Corrigenda
published so far amending the base document). The only purpose to include them into this Recommendation is to allocate unique
identifiers if protocol modules based on these ASN.1 versions are used with TTCN-3. When ASN.1 version 1997 is supported,
the support of Amendment 3 to ITU-T Rec. X.680 [2] is not considered.
NOTE 2 – When "ASN.1:1988" is supported, the ASN.1 items shall be imported from such modules according to the syntactical
and semantical rules of ITU-T Rec. X.208 (Blue Book)

When ASN.1 is used with TTCN-3, the keywords listed in 11.18/X.680 [2] shall not be used as identifiers in a TTCN-3
module. ASN.1 keywords shall follow the requirements of ITU-T Rec. X.680 [2].

6 Amendments in the core language
When using ASN.1 definitions in TTCN-3 the amendments given in this clause to the TTCN-3 core language as defined
in ITU-T Rec. Z.140 [1] shall also apply. Clause numbers below refer to those in ITU-T Rec. Z.140 [1].

Clause 3.1 Definitions
Change the definition "known types": with the following one:

known types: set of defined types, imported ASN.1 types and other imported external types.

Insert the following note after the definition "root type":
NOTE – In case of types based on imported ASN.1 types, the root type is determined from the associated TTCN-3 type
(see clause 8).

 ITU-T Rec. Z.146 (03/2006) 3

Clause 3.2 Abbreviations
Add the following abbreviation:

ASN.1 Abstract Syntax Notation One

Clause 7.1 Naming of modules
Append to the end of the 1st sentence of the 1st paragraph:

optionally followed by an object identifier.

Add the following new note after NOTE 1:
NOTE 2 – Module names may differ in the object identifier part only. However, in this case, due precaution has to be exercised
at import to avoid name clash as prefixing of identifiers (see 7.5.8) is unable to resolve such kind of clashes.

Clause 7.5.0 General
Add the following new paragraph after the 2nd paragraph:

If the object identifier is provided as part of the module name (from which the definitions are imported) in the import
statement, this object identifier shall be used to identify the correct module.

Clause 7.5.8
Add the following note after the 1st paragraph:

NOTE 1 – The rule to resolve name clashes within object identifier values is given in 6.1.0 item d).

Clause 14.3 Template matching mechanisms
Append objid to the list of types in the note to the 3rd paragraph:

NOTE – The following types may be omitted: ...

Clause 15.3 Relational operators
Add objid to the list of types in the 1st paragraph for which relational operators are allowed (All other relational
operators shall have only operands of type integer (including derivatives of integer), float (including derivations
of float), objid ...)

Add a new paragraph after the 2nd paragraph:

Two objid values are equal, if they have equal number of components and the numerical values at all positions are the
same. The less than (<), greater than (>), greater than or equal to (>=) and less than or equal to (<=) operations shall
use the numerical values of objid value components for the decision and the decision process shall comply with the
following rules:

• comparison shall start by comparing the first components of the objid values;
• if the numerical value of the compared component in the first objid value is less than the numerical value

of the corresponding component in the second objid value, the first objid value is less than the second;
• if numerical values of the two compared components equal, comparison continues with the next pair of

components of the two objid values; the objid value in which the first component with a smaller
numerical value is found, is less than the other objid value;

• if all compared pairs of components of the two objid values equal and one of the objid values has further
components while the another does not have a non-compared component, the shorter objid value is less
than the longer objid value.

 EXAMPLE:
 // Given
 const objid c_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network(1)}
 const objid c_etsiINNet := objid{itu_t identified_organization etsi(0)
 inDomain(1) in_Network(1)}
 const objid c_etsiIN := objid{itu_t identified_organization etsi(0)
 inDomain(1)}
 var objid v_etsiInIso := objid{ iso identified_organization dod(6)
 internet(1) private(4) enterprise(1) etsi(13019)}
 // then
 c_etsiMobNet == c_etsiINNet // returns false

4 ITU-T Rec. Z.146 (03/2006)

 c_etsiMobNet < c_etsiINNet // returns true as the mobile_domain(0) component is numerically
 smaller than the inDomain(1) component
 c_etsiINNet == c_etsiIN // returns false as c_etsiINNet has more components
 c_etsiINNet > c_etsiIN // returns true as c_etsiINNet has more components
 v_etsiInIso <= c_etsiMobNet // returns false as the component itu_t(0) is numerically smaller
 than the component iso(1))

Clause 16.1.3 Predefined functions
Add the row below to the section "Other functions" of Table 10 (List of TTCN-3 predefined functions):

Other functions

 Decompose an objid value decomp

Clause A.1.5 TTCN-3 terminals
Add objid to Table A.2 (List of TTCN-3 special terminal symbols).

Clause A.1.6.0 TTCN-3 module
Append '[DefinitiveIdentifier]' to the end of the production TTCN3ModuleId.

NOTE – It becomes if no other changes by other parts of the standard applied:
 '3. TTCN3ModuleId ::= ModuleIdentifier [DefinitiveIdentifier]'

Clause A.1.6.1.8 Import definitions
Append '[Dot ObjectIdentifierValue]' to the end of the production GlobalModuleId.

NOTE – It becomes if no other changes by other parts of the standard applied:
 '223. GlobalModuleId ::= ModuleIdentifier [Dot ObjectIdentifierValue]'

Clause A.1.6.3 Type
Append '| ObjectIdentifierKeyword' to the end of the production PredefinedType.

NOTE – It becomes if no other changes by other parts of the standard applied:

 '410. PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword |

 ObjectIdentifierKeyword'

Clause A.1.6.4 Value
Append '| ObjectIdentifierValue' to the end of the production PredefinedValue.

NOTE – It becomes if no other changes by other parts of the standard applied:

 '434. PredefinedValue ::= BitStringValue |
 BooleanValue |
 CharStringValue |
 IntegerValue |
 OctetStringValue |
 HexStringValue |
 VerdictTypeValue |
 EnumeratedValue |
 FloatValue |
 AddressValue |
 OmitValue |

 ObjectIdentifierValue'

 ITU-T Rec. Z.146 (03/2006) 5

Clause C.14 Number of elements in a structured value
Append objid to the list of types in the 1st sentence of the first paragraph (i.e., 'This function returns the actual number
of elements of a module parameter, constant, variable or template of a record, record of, set, set of or
objid type ...').

Add the following new paragraph after the 1st paragraph:

In the case of objid values, templates or arrays, the actual value to be returned is the sequential number of the last
component in the objid value.

Add the following new example to the end of the EXAMPLE section:
// Given

 var objid v_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network (1)}
 // then
 numElements := sizeof(v_etsiMobNet); // returns 5

7 Additional TTCN-3 types

7.1 General

Additional TTCN-3 types to support the use of ASN.1 are summarized in Table 1.

Table 1/Z.146 – Overview of TTCN-3 types

Class of type Keyword Sub-type

Simple basic types objid list

7.2 Additional simple basic types and values

To support the use of ASN.1 in TTCN-3, the following simple types and values shall be supported in addition to those
specified in clause 6.1 of the core language Recommendation (ITU-T Rec. Z.140 [1]):

a) objid: a type whose distinguished values are the set of:
– all object identifier values conforming to Annex A/X.660 [12]; and
– all syntactically correct object identifier values outside the collection of values defined in

ITU-T Rec. X.660 [12] (e.g., with a node beneath the root not defined in ITU-T Rec. X.660 [12]).
 The value notations for the objid type shall conform to the rules given in clause 31/X.680 [2] with the

exception that hyphens in object identifiers are replaced with underscores.
NOTE 1 – The name form of object identifier components shall be used only for components defined in ITU-T Rec. X.660 [12].
These predefined object identifier components are given in Annex C. In case of any conflict between ITU-T Rec. X.660 [12] and
Annex C, the former shall take precedence.

In cases when the identifier of a value referenced within an object identifier value notation is identical to any
of the predefined component names (i.e., independently of the position of the predefined component or the
referenced value inside the notation), the name of the referenced value shall be prefixed with the name of the
module in which it is defined (see definition of TTCN-3 modules in clause 7/Z.140 [1]). The prefix and the
identifier shall be separated by a dot (.). Predefined object identifier component names may also be prefixed
with the name 'X660'.

NOTE 2 – To increase readability it is recommended to use the 'X660' prefix also in object identifier values referring to a value
identifier that is clashing with any of the predefined component names.
NOTE 3 – Rules to resolve name clashes caused by imports are defined in 7.5.8/Z.140 [1].

6 ITU-T Rec. Z.146 (03/2006)

EXAMPLE:
 objid{itu_t(0) identified_organization(4) etsi(0)}
 // or alternatively
 objid {itu_t identified_organization etsi(0)}
 // or alternatively
 objid { 0 4 0}

 // or alternatively
 const integer etsi := 0;
 const objid itu_idOrg := objid{ itu_t identified_organization }
 objid{ itu_idOrg etsi } // note, that both names are referencing value definitions

 const integer x := 162;
 objid{ itu_t recommendation x A.x } // it is mandatory to use the module name ('A')
 // to prefix the ambiguous identifier
 // or alternatively
 objid{ itu_t recommendation X660.x A.x } // the module name shall be present even if
 // the "X660" prefix is used

7.3 Sub-typing of additional types

7.3.1 General

User-defined types shall be denoted by the keyword type. With user-defined types it is possible to create sub-types
(such as lists) on types according to Table 1.

7.3.2 Lists of values

TTCN-3 permits the specification of a list of distinguished values of the objid type. Sub-typing shall be applied as
specified in 6.2.1/Z.140 [1].

EXAMPLE:
 type objid MyListOfObjids (objid{0 4 0 0 1}, objid{0 4 0 1 1});

8 ASN.1 and TTCN-3 type equivalents

8.1 General

The ASN.1 types listed in Table 2 are considered to be equivalent to their TTCN-3 counterparts.

Table 2/Z.146 – List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent
BOOLEAN boolean

INTEGER integer

REAL (Note) float

OBJECT IDENTIFIER objid

BIT STRING bitstring

OCTET STRING octetstring

SEQUENCE record

SEQUENCE OF record of

SET set

SET OF set of

ENUMERATED enumerated

CHOICE union

VisibleString charstring

IA5String charstring

UniversalString universal charstring

NOTE – The ASN.1 type REAL is equivalent to the TTCN-3 type float until the base is unrestricted or restricted to
base 10 explicitly or implicitly. The ASN.1 notation allows explicit restriction by, e.g., inner subtyping but from
ASN.1-TTCN-3 type mapping point of view, an explicit restriction is an ASN.1 value notation. Implicit restriction may
be defined by the textual description of the given protocol, i.e., outside of the ASN.1 module(s). However, in both cases
the TTCN-3 value notation can be used irrespective if the base in ASN.1.

 ITU-T Rec. Z.146 (03/2006) 7

All TTCN-3 operators, functions, matching mechanisms, value notation, etc., that can be used with a TTCN-3 type
given in Table 2 may also be used with the corresponding ASN.1 type.

8.2 Identifiers

In converting ASN.1 identifiers to TTCN-3 identifiers, any hyphen "-" symbols shall be changed to an underscore "_".

EXAMPLE:
 MyASN1module DEFINITIONS ::=
 BEGIN
 Missleading-ASN1-Name::= INTEGER -- ASN.1 type identifier using '-'

 END

 module MyTTCNModule
 {
 import from MyASN1module language "ASN.1:2002" all;

 const Missleading_ASN1_Name ExampleConst:= 1; // TTCN-3 reference to ASN.1 type
 // using underscores
 }

9 ASN.1 data types and values

9.1 General

ASN.1 types and values may be used in TTCN-3 modules. ASN.1 definitions are made using a separate ASN.1 module.
ASN.1 types and values are referenced by their type references and value references as produced according
to 9.3/X.680 and 9.4/X.680 [2] within the ASN.1 module(s).

EXAMPLE 1:
MyASN1module DEFINITIONS ::=
BEGIN
 Z::= INTEGER -- Simple type definition

 BMessage::= SET -- ASN.1 type definition
 {
 name IA5String,
 title VisibleString,
 date IA5String
 }

 johnValues Bmessage ::= -- ASN.1 value definition
 {
 name "John Doe",
 title "Mr",
 date "April 12th"
 }

 DefinedValuesForField1 Z ::= {0 | 1} –ASN.1 subtype definition
END

The ASN.1 module shall conform to the syntax of ITU-T Recs X.680 [2], X.681 [3], X.682 [4] and X.683 [5]. Once
declared, ASN.1 types and values may be used within TTCN-3 modules in a similar way that ordinary TTCN-3 types
and values from other TTCN-3 modules are used (i.e., the required definitions shall be imported). When importing
ASN.1 items into a TTCN-3 module, an associated type or value is produced for each ASN.1 item imported. All
TTCN-3 definitions or assignments based on imported ASN.1 items shall be done according to the rules imposed by the
related associated type or value. Also, the matching mechanism shall use the associated type when matching constants,
variables, templates or in-line expressions based on ASN.1 declarations.

8 ITU-T Rec. Z.146 (03/2006)

Associated types and values are derived from ASN.1 items by application of the transformation rules below.
Transformations shall be started on a valid ASN.1 module and end in a valid TTCN-3. The order corresponds to the
order of execution of the individual transformations:

1) Ignore any extension markers and exception specifications.
2) Ignore any user-defined constraints (see clause 9/X.682 [4]).
3) Ignore any contents constraint (see clause 9/X.682 [4]).
4) Ignore any pattern constraint (see 48.9/X.680 [2]).
5) Create equivalent TTCN-3 subtypes for all ASN.1 types constrained using contained subtyping by

replacing included types by the set of values they represent. More detailed information on the conversion
of ASN.1 type constraints to TTCN-3 subtypes is given in Table 3. Table 3 shows the applicability of
ASN.1 type constraint mechanisms to different ASN.1 types. Where the cell contains "No", the type
constraint is disallowed for the given type. Shaded cells identify type constraints applicable to a given
type and text in the cell defines TTCN-3 subtyping mechanisms to be used when transforming
constrained ASN.1 types.

6) Execute the COMPONENTS OF transformation according to 24.4/X.680 [2] on any SEQUENCE types
and according to 26.2/X.680 [2] on any SET types containing the keywords "COMPONENTS OF".

7) Replace any EMBEDDED PDV type with its associated type obtained by expanding inner subtyping in
the associated type of the EMBEDDED PDV type (see 33.5/X.680 [2]) to a full type definition.

8) Replace the EXTERNAL type with its associated type obtained by expanding inner subtyping in the
associated type of the EXTERNAL type (see 34.5/X.680 [2]) to a full type definition (see Note 3).

9) Replace the CHARACTER STRING type with its associated type obtained by expanding inner
subtyping in the associated type of the CHARACTER STRING type (see 40.5/X.680 [2]) to a full type
definition.

10) Replace the INSTANCE OF type with its associated type obtained by substituting INSTANCE OF
DefinedObjectClass by its associated ASN.1 type (see C.7/X.681 [3]) and replace all ASN.1 types with
their TTCN-3 equivalents according to Table 2. The resulted type is the TTCN-3 associated type.

11) Ignore any remaining inner subtyping (see Note 4).
12) Ignore any named numbers and named bits in ASN.1 types. In ASN.1 values, replace any named number

by its value and substitute any named bits or sequence of named bits by a bitstring without trailing zeros,
where bit positions identified by names present are replaced by "1"s, other bit positions are replaced
by "0"s.

13) Replace any selection type with the type referenced by the selection type; if the denoted choice type (the
"Type" in 29.1/X.680 [2]) is a constrained type, the selection has to be done on the parent type of the
denoted choice type.

14) Convert any RELATIVE-OID type or value to an objid type or value (see Note 5).

15) Replace any of the following restricted character string types with their associated types obtained as (see
Note 6):
– BMPString: universal charstring (char (0,0,0,0) .. char (0,0,255,255));
– UTF8String: universal charstring;
– NumericString: charstring constrained to the set of characters as given in 37.2/X.680 [2];
– PrintableString: charstring constrained to the set of characters as given in 37.4/X.680 [2];
– TeletexString and T61String: universal charstring constrained to the set of characters as given

in ITU-T Rec. T.61 (see Bibliography);
– VideotexString: universal charstring constrained to the set of characters as given in

ITU-T Recs T.100 [10] and T.101 [11];
– GraphicString: universal charstring;
– GeneralString: universal charstring.

16) Replace any GeneralizedTime and UTCTime types or values with the type or value of charstring.
17) Replace any ObjectDescriptor type or value by the universal charstring type or value.
18) Replace any notations for the object class field types (see 14/X.681 [3]) by the ASN.1 item they are

referring to (see Note 8); open types has to be replaced by the metatype "OPEN TYPE" for the purpose
of the transformation (and only for that).

 ITU-T Rec. Z.146 (03/2006) 9

19) Replace all information from objects notations (see 15/X.681 [3]) by the ASN.1 item they are
referencing.

20) Revert table constraints (see clause 10/X.682 [4]) to list subtyping and ignore all relational constraints
(see Note 7).

21) Replace all occurrences of NULL type with the following associated TTCN-3 type:
– type enumerated <identifier> { NULL }, where <identifier> is the ASN.1 Type reference

converted according to 7.2.
22) Replace all references to open types with the metatype "OPEN TYPE".
23) Replace ASN.1 types with their equivalents according to Table 2 and ASN.1 values with equivalent

TTCN-3 values based on the associated types. Missing (i.e., implicitly omitted) optional fields in
structured ASN.1 values of the types (SET, SEQUENCE, etc.) shall be explicitly omitted in the resulted
structured TTCN-3 values (see Note 9). The metatype "OPEN TYPE" has to be replaced by anytype.

NOTE 1 – Associated types alone do not contain all information needed for the correct encoding of values based on
ASN.1 types. The way of handling the extra information needed by the system to provide correct encoding is
implementation dependent and remains hidden for the user; its knowledge is not required to make valid TTCN-3
declarations or assignments involving imported ASN.1 types and values.
NOTE 2 – When importing ENUMERATED types, integer numbers assigned by the user to enumerations are also
imported.
NOTE 3 – The data-value field of the EXTERNAL type may be encoded as a single-ASN.1-type, octet-aligned or
arbitrary (see 8.18.1/X.690 [6]) at the discretion of the encoder; if the user wants to enforce one given form of
encoding or wants to allow only one specific encoding form at matching, it shall use the appropriate encoding attribute
for the type or the given constant, variable, template or template field (see 11.3).
NOTE 4 – Inner subtyping shall be taken into account by the user when defining TTCN-3 values or templates based
on an ASN.1 type constrained by inner subtyping.
NOTE 5 – Equivalence with the objid type is limited to the syntax to be used for value notations only. When
encoding/decoding an objid value retrieved from an ASN.1 RELATIVE-OID value using an ASN.1 encoding rule,
the encoding/decoding shall occur according to rules specified for the RELATIVE-OID type.
NOTE 6 – VisibleString, IA5String and UniversalString have their equivalent TTCN-3 types and are replaced
directly.
NOTE 7 – Relational constraints shall be taken into account by the user when declaring values and templates (also
may be handled by tools implicitly).
NOTE 8 – This replacement do not effect constraints applied to the "notation for the object class field type" itself.
NOTE 9 – Missing optional fields in values of structured ASN.1 types (SET, SEQUENCE, EXTERNAL, etc.) are
equivalent to explicitly omitted fields in structured TTCN-3 values.

 EXAMPLE 2:
 module MyTTCNModule
 {
 import from MyASN1module language "ASN.1:2002" all;

 const Bmessage MyTTCNConst:= johnValues;
 const DefinedValuesForField1 Value1:= 1;
 }

NOTE 10 – ASN.1 definitions other than types and values (i.e., information object classes or information object sets)
are not directly accessible from the TTCN-3 notation. Such definitions shall be resolved to a type or value within the
ASN.1 module before they can be referenced from within the TTCN-3 module.

10 ITU-T Rec. Z.146 (03/2006)

Table 3/Z.146 – ASN.1 type constraint to TTCN-3 subtype conversions

Type (or derived from such a
type by tagging or subtyping)

Single
value

Contained
subtypeh)

Value
range

Size
constraint

Permitted
alphabet

Type
constraint

Inner
subtypingi)

Pattern
constraint

User-defined
constraint

Table
constraintk)

Relation
constraintk)

Content
constraint

Bit String list single value:list,
size: length

No length No No No No ignore No No ignore

Boolean list list No No No No No No ignore No No No
Choice list list No No No No convert to

full type
No ignore No No No

Embedded-pdva) list No No No No No convert to
full type

No ignore No No No

Enumerated list list No No No No No No ignore No No No
Externala) list No No No No No convert to

full type
No ignore No No No

Instance-of a), b) list list No No No No convert to
full type

No ignore No No No

Integer list single value:list,
value range:

range

range No No No No No ignore No No No

Null ignore ignore No No No No No No ignore No No No
Object class field type c) c) No No No No No No ignore list ignore No
Object Descriptore) list single value: list,

size: length,
perm.alphabet:

range

No length range No No No ignore No No No

Object Identifier list list No No No No No No ignore No No No
Octet String list single value:list,

size: length
No length No No No No ignore No No ignore

open typef) No No No No No anytype
with list

constraint

No No ignore Nom) Nom) No

Real list single value:list,
value range:

range

range No No No convert to
full type

No ignore No No No

Relative Object Identifierd) list list No No No No No No ignore No No No

11 ITU-T Rec. Z.146 (03/2006)

Type (or derived from such a
type by tagging or subtyping)

Single
value

Contained
subtypeh)

Value
range

Size
constraint

Permitted
alphabet

Type
constraint

Inner
subtypingi)

Pattern
constraint

User-defined
constraint

Table
constraintk)

Relation
constraintk)

Content
constraint

Restricted Character String
Types

list single value:list,
size: length,

perm.alphab.:
range

range length range No No Ignoreg) ignore No No No

Sequence list list No No No No convert to
full type

No ignore No No No

Sequence-of list single value:list,
value range:

range

No length No No convert to
full type

No ignore No No No

Set list list No No No No convert to
full type

No ignore No No No

Set-of list single value:list,
value range:

range

No length No No convert to
full type

No ignore No No No

Time Typesa) list list No No No No No No ignore No No No
Unrestricted Character String
Typea)

list No No length
(applied to

field
"string-
value")

No No convert to
full type

No ignore No No No

a) These types are seen from TTCN-3 as being equivalent to their associated types.
b) Type-id field of the associated type for Instance of shall be replaced by the type of the &id field the value field is anytype (Annex C/X.681 [3]).
c) Replaced by the referenced type, thus applicable as to the referenced type.
d) Seen as object identifier from TTCN-3.
e) Its associated type is a restricted character string type.
f) Open type is replaced by anytype.
g) Character patterns can only be used in constants, variables, templates and module parameters in TTCN-3 but cannot be used for subtyping.
h) Contained subtype constraints shall be replaced by literal constraints at import.
i) Information in this column relates to the TTCN-3 views of ASN.1 items. Encoding/decoding shall be according to the root type; thus, extra information for encoding also has to be stored which

are not shown in this table.
k) Applicable to notations for the object class field type only.
m) Applicable when the open type is defined using the notation for the object class field type (see above).

12 ITU-T Rec. Z.146 (03/2006)

9.2 Scope of ASN.1 identifiers

Imported ASN.1 identifiers follow the same scope rules as imported TTCN-3 types and values (see 5.3/Z.140 [1]).

10 Parameterization in ASN.1
It is permitted to reference parameterized ASN.1 type and value definitions from with the TTCN-3 module. However,
all ASN.1 parameterized definitions used in a TTCN-3 module shall be provided with actual parameters (open types are
not permitted) and the actual parameters provided shall be resolvable at compile-time.

The TTCN-3 core language does not support the import of ASN.1 items, which employ uniquely ASN.1-specific
objects as formal or actual parameter(s). ASN.1-specific parameterization which involves objects which cannot be
defined directly in the TTCN-3 core language shall therefore be resolved in the ASN.1 part before use within the
TTCN-3. The ASN.1-specific objects are:

a) Information Object classes;
b) Information Objects;
c) Information Object Sets.

For example the following is not legal because it defines a TTCN-3 type which takes an ASN.1 object set as an actual
parameter.
 MyASN1module DEFINITIONS ::=
 BEGIN
 -- ASN.1 Module definition

 -- Information object class definition
 MESSAGE ::= CLASS { &msgTypeValue INTEGER UNIQUE,
 &MsgFields}

 -- Information object definition
 setupMessage MESSAGE ::= { &msgTypeValue 1,
 &MsgFields OCTET STRING}

 setupAckMessage MESSAGE ::= { &msgTypeValue 2,
 &MsgFields BOOLEAN}

 -- Information object set definition
 MyProtocol MESSAGE ::= { setupMessage | setupAckMessage}

 -- ASN.1 type constrained by object set
 MyMessage{ MESSAGE : MsgSet} ::= SEQUENCE
 {
 code MESSAGE.&msgTypeValue({ MsgSet}),
 Type MESSAGE.&MsgFields({ MsgSet})
 }
 END

 module MyTTCNModule
 {
 // TTCN-3 module definition
 import from MyASN1module language "ASN.1:2002" all;

 // Illegal TTCN-3 type with object set as parameter
 type record Q(MESSAGE MyMsgSet) ::= { Z field1,
 MyMessage(MyMsgSet) field2}
 }

To make this a legal definition, the extra ASN.1 type My Message1 has to be defined as shown below. This resolves the
information object set parameterization and can therefore be directly used in the TTCN-3 module.
 MyASN1module DEFINITIONS ::=
 BEGIN
 -- ASN.1 Module definition

 …

 MyProtocol MESSAGE ::= { setupMessage | setupAckMessage}

 ITU-T Rec. Z.146 (03/2006) 13

 -- Extra ASN.1 type to remove object set parameterization
 MyMessage1 ::= MyMessage{ MyProtocol}
 END

 module MyTTCNModule
 {
 // TTCN-3 module definition
 import from MyASN1module language "ASN.1:2002" all;

 // Legal TTCN-3 type with no object set as parameter
 type record Q := { Z field1,
 MyMessage1 field2}
 }

11 Defining ASN.1 message templates

11.1 General

If messages are defined in ASN.1 using, for example, SEQUENCE (or possibly SET), then actual messages, for both
send and receive events, can be specified using the ASN.1 value syntax.

EXAMPLE:
 MyASN1module DEFINITIONS ::=
 BEGIN
 -- ASN.1 Module definition

 -- The message definition

 MyMessageType::= SEQUENCE
 { field1 [1] IA5STRING, // Like TTCN-3 character string

field2 [2] INTEGER OPTIONAL, // like TTCN-3 integer
field3 [4] Field3Type, // Like TTCN-3 record
field4 [5] Field4Type // Like TTCN-3 array

 }

 Field3Type::= SEQUENCE {field31 BIT STRING, field32 INTEGER, field33 OCTET STRING},
 Field4Type::= SEQUENCE OF BOOLEAN

 -- may have the following value
 myValue MyMessageType::=
 {
 field1 "A string",

field2 123,
 field3 {field31 '11011'B, field32 456789, field33 'FF'O},
 field4 {true, false}
 }
 END

11.2 ASN.1 receive messages using the TTCN-3 template syntax

Matching mechanisms are not supported in the standard ASN.1 syntax. Thus, if it is wished to use matching
mechanisms with an ASN.1 receive message, then the TTCN-3 syntax for receive templates shall be used instead. Note
that this syntax includes component references in order to be able to reference the individual components in ASN.1
SEQUENCE, SET, etc.

EXAMPLE:
 import from MyASN1module language "ASN.1:2002" {
 type myMessageType
 }

 // a message template using matching mechanisms within TTCN-3 might be
 template myMessageType MyValue:=
 {
 field1 := "A"<?>"tr"<*>"g",
 field2 := *,
 field3.field31 := '110??'B,
 field3.field32 := ?,
 field3.field33 := 'F?'O,
 field4.[0] := true,
 field4.[1] := false
 }

14 ITU-T Rec. Z.146 (03/2006)

 // the following syntax is equally valid
 template myMessageType MyValue:=
 {
 field1 := "A"<?>"tr"<*>"g", // string with wildcards
 field2 := *, // any integer or none at all
 field3 := {'110??'B, ?, 'F?'O},
 field4 := {?, false}
 }

11.3 Ordering of template fields

When TTCN-3 templates are used for ASN.1 types, the significance of the order of the fields in the template will
depend on the type of ASN.1 construct used to define the message type. For example: if SEQUENCE or SEQUENCE OF
is used, then the message fields shall be sent or matched in the order specified in the template. If SET or SET OF is
used, then the message fields may be sent or matched in any order.

12 Encoding information

12.1 General

TTCN-3 allows references to encoding rules and variations within encoding rules to be associated with various TTCN-3
language elements. It is also possible to define invalid encodings. This encoding information is specified using the
with statement according to the following syntax:

EXAMPLE:
 module MyModule
 {
 :
 import from MyASN1module language "ASN.1:2002" {
 type myMessageType
 }
 with {
 encode "PER-BASIC-ALIGNED:1997" // All instances of MyMessageType should be encoded
using PER:1997
 }
 :
 } // end module
 with { encode "BER:1997" } // Default encoding for the entire module (test suite) is BER:1997

12.2 ASN.1 encoding attributes

The following strings are the predefined (standardized) encoding attributes for the current version of ASN.1:
a) "BER:2002" means encoded according to ITU-T Rec. X.690 [6] (BER);
b) "CER:2002" means encoded according to ITU-T Rec. X.690 [6] (CER);
c) "DER:2002" means encoded according to ITU-T Rec. X.690 [6] (DER).
d) "PER-BASIC-UNALIGNED:2002" means encoded according to (Unaligned PER)

ITU-T Rec. X.691 [7];
e) "PER-BASIC-ALIGNED:2002" means encoded according to ITU-T Rec. X.691 [7] (Aligned PER);
f) "PER-CANONICAL-UNALIGNED:2002" means encoded according to ITU-T Rec. X.691 [7]

(Canonical Unaligned PER);
g) "PER-CANONICAL-ALIGNED:2002" means encoded according to ITU-T Rec. X.691 [7] (Canonical

Aligned PER);
h) "BASIC-XER:2002" means encoded according to ITU-T Rec. X.693 [8] (Basic XML encoding rules);
i) "CANONICAL-XER:2002" means encoded according to ITU-T Rec. X.693 [8] (Canonical XML

encoding rules);
j) "EXTENDED-XER:2002" means encoded according to ITU-T Rec. X.693/Amd.1 [8] (Extended XML

encoding rules).

 ITU-T Rec. Z.146 (03/2006) 15

The encodings of previous ASN.1 versions rule (e.g., 1988, 1994 or 1997) can be used as well. In this case, the date has
to be replaced accordingly. For example, for ASN.1 1997 the following encoding attributes apply: "BER:1997",
"CER:1997", "DER:1997", "PER-BASIC-UNALIGNED:1997", "PER-BASIC-ALIGNED:1997",
"PER-CANONICAL-UNALIGNED:1997" and "PER-CANONICAL-ALIGNED:1997".

12.3 ASN.1 variant attributes

The following strings are predefined (standardized) variant attributes. They have predefined meaning when applied
jointly with predefined ASN.1 encoding attributes only (see 11.2). Handling of these predefined attributes when applied
jointly with other attributes or to an TTCN-3 object without an attribute is out of scope of this Recommendation (see
Note 1):

a) "length form 1" means that the given value shall only be encoded and decoded using the short form of
the length octets (see 8.1.3/X.690 [6]) in case of BER, CER and DER encodings or the single octet
length determinant (see 10.9/X.691 [7]) in case of any form of the PER encoding (see Note 2).

b) "length form 2" means that the given value shall only be encoded and decoded using the long form of the
length octets (see 8.1.3/X.690 [6]) in case of BER, CER and DER encodings or the two octets length
determinant (see 10.9/X.691 [7]) in case of any form of the PER encoding (see Note 2).

c) "length form 3" means that the given value shall only be encoded and decoded using the indefinite form
of the length octets (see 8.1.3/X.690 [6]) in case of BER, CER and DER encodings.

d) "REAL base 2" means that the given value shall be encoded or matched according to the REAL binary
encoding form. This attribute can be used on constants, variables or templates only and when used on
any kind of a grouping (e.g., to groups or to the whole import statement), it shall have effect on these
TTCN-3 objects only.

e) "single-ASN1-type", "octet-aligned" and "arbitrary" means, that the "encoding" field of the value, which
shall be based on an ASN.1 EXTERNAL type, shall be encoded using the "encoding" choice specified
by the variant attribute or matched at receipt only if it has been encoded by the sender using the specified
choice (see 8.18/X.690 [6]). This attribute shall be used only with imported ASN.1 EXTERNAL types
and constants, variables, templates or template fields based on such types. When used with any kind of a
grouping (e.g., TTCN-3 groups, import of a kind of definitions, import all statements etc.) it shall have
effect on TTCN-3 objects based on ASN.1 EXTERNAL types only. If the conditions set in clauses
8.18.6 to 8.18.8/X.690 [6] and the specified attribute do not met, this shall cause a run-time error.

f) "TeletexString" means that the given value shall be encoded and decoded as the ASN.1 type
TeletexString (see 8.20/X.690 [6] and 26/X.691 [7]).

g) "VideotexString" means that the given value shall be encoded and decoded as the ASN.1 type
VideotexString (see 8.20/X.690 [6] and 26/X.691 [7]).

h) "GraphicString" means that the given value shall be encoded and decoded as the ASN.1 type
GraphicString (see 8.20/X.690 [6] and 26/X.691 [7]).

i) "GeneralString" means that the given value shall be encoded and decoded as the ASN.1 type
GeneralString (see 8.20/X.690 [6] and 26/X.691 [7]).

NOTE 1 – These attributes may be re-used in implementation-specific encoding rules with a different meaning than
specified in the current clause, may be ignored or a warning/error indication may be given. However, the strategy to
be applied is implementation dependent.
NOTE 2 – Application of these variant attributes may lead to invalid ASN.1 encoding (e.g., using the indefinite length
form to primitive values in BER or not using the minimum necessary number of length octets). This is allowed
intentionally and users shall allocate these variant attributes to constants, variables, templates or template fields used
for receiving cautiously.

16 ITU-T Rec. Z.146 (03/2006)

Annex A

Additional BNF and static semantics

To support the use of ASN.1 in TTCN-3, the TTCN-3 syntax in Annex A/Z.140 [1] shall be supplemented by the BNF
and semantic rules specified in this annex.

A.1 ASN.1 support
xxx. DefinitiveIdentifier ::= Dot ObjectIdentifierKeyword "{" DefinitiveObjIdComponentList "}"
xxx. ObjectIdentifierKeyword ::= "objid"
xxx. DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+
xxx. DefinitiveObjIdComponent ::= NameForm |
 DefinitiveNumberForm |
 DefinitiveNameAndNumberForm
xxx. DefinitiveNumberForm ::= Number
xxx. DefinitiveNameAndNumberForm ::= Identifier "(" DefinitiveNumberForm ")"
xxx. ObjectIdentifierValue ::= ObjectIdentifierKeyword "{" ObjIdComponentList "}"
xxx. ObjIdComponentList ::= {ObjIdComponent}+
xxx. ObjIdComponent ::= NameForm |
 NumberForm |
 NameAndNumberForm |
 ReferencedValue
/* STATIC SEMANTICS – ReferencedValue shall be an object identifier value */
xxx. NameForm ::= Identifier
xxx. NumberForm ::= Number | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall be a non negative integer value */
xxx. NameAndNumberForm ::= Identifier "(" NumberForm ")"

Annex B

Predefined TTCN-3 functions

B.1 The Decompose function
 decomp (in objid invalue, in integer index, in integer count) return objid

This function returns an object identifier value containing a fragment (sequence of components) of the input object
identifier value (invalue). The starting point of the fragment is defined by the second in parameter (index). The actual
value of the 'index' parameter shall be a non-negative integer. Indexing starts from zero, which identifies the first
component of the input object identifier value. The third input parameter (count) defines the number of components in
the returned objid value. The actual value of the 'count' parameter shall be a positive non-zero integer. The sum of the
'index' and 'count' parameters shall be less than or equal to the number of components in the input objid value minus 1.

EXAMPLE:
 var objid v_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network (1)}

 decomp (v_etsiMobNet, 0, 2) // returns {itu_t identified_organization}

 decomp (v_etsiMobNet, 2, 3) // returns {etsi(0) mobile_domain(0) umts_Network (1)}

 decomp (v_etsiMobNet, 0, 0) // causes error as number of components to be returned
 // shall be more than 0

 decomp (v_etsiMobNet, 0, 6) // causes error as the input objid value contains less
 // than 6 components

 ITU-T Rec. Z.146 (03/2006) 17

Annex C

Predefined object identifier components

ITU-T Rec. X.660 [12] defines the tree of object identifier components shown below. Only the object identifier
components defined in ITU-T Rec. X.660 [12] shall use the name form (without defining the numerical value of the
component) in object identifier value notations. These predefined components have specified numerical values when
used at their predefined positions only. Names in italic are reserved for historical reasons; therefore, their use in
TTCN-3 codes is deprecated, but it is recommended that TTCN-3 tools are able to recognize them and substitute with
the correct numerical value.

NOTE – Names below are given according to the TTCN-3 syntax; i.e., all dash characters are replaced by underscore characters.

itu_t(0), ccitt(0), itu_r(0)
recommendation(0)

a(1)
d(4)
e(5)
f(6)
g(7)
h(8)
i(9)
j(10)
k(11)
l(12)
m(13)
n(14)
o(15)
p(16)
q(17)
r(18)
s(19)
t(20)
u(21)
v(22)
x(24)
y(25)
z(26)

question(1)
administration(2)
network_operator(3)
identified_organization(4)
r_recommendation(5)

iso(1)
standard(0)
registration_authority(1)
member_body(2)
identified_organization(3)

joint_iso_itu_t(2), joint_iso_ccitt(2)

18 ITU-T Rec. Z.146 (03/2006)

BIBLIOGRAPHY

• ISO/IEC 6429:1992, Information technology – Control functions for coded character sets.
• ITU-T Recommendation T.50 (1992), International Reference Alphabet (IRA) (Formerly International

Alphabet No. 5 or IA5) – Information technology – 7-bit coded character set for information
interchange.

• ITU-T Recommendation X.208, Specification of Abstract Syntax Notation One (ASN.1).
• ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded graphic character sets – Part 1:

Latin alphabet No. 1.
• ITU-T Recommendation T.61 (1993), Character repertoire and coded character sets for the

international teletex service.
• A repository of object identifiers (OIDs) is freely available at http://oid.elibel.tm.fr.

NOTE – The content of the above website is planned to be moved to the ITU-T website.

http://oid.elibel.tm.fr/

Printed in Switzerland
Geneva, 2006

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.146 (03/2006) Testing and Test Control Notation version 3 (TTCN-3): Using ASN.1 with TTCN-3
	Summary
	Source
	CONTENTS
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 General
	6 Amendments in the core language
	7 Additional TTCN-3 types
	7.1 General
	7.2 Additional simple basic types and values
	7.3 Sub-typing of additional types
	7.3.1 General
	7.3.2 Lists of values

	8 ASN.1 and TTCN-3 type equivalents
	8.1 General
	8.2 Identifiers

	9 ASN.1 data types and values
	9.1 General

	10 Parameterization in ASN.1
	11 Defining ASN.1 message templates
	11.1 General
	11.2 ASN.1 receive messages using the TTCN-3 template syntax
	11.3 Ordering of template fields

	12 Encoding information
	12.1 General
	12.2 ASN.1 encoding attributes
	12.3 ASN.1 variant attributes

	Annex A Additional BNF and static semantics
	A.1 ASN.1 support

	Annex B Predefined TTCN-3 functions
	B.1 The Decompose function

	Annex C Predefined object identifier components
	BIBLIOGRAPHY

