

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.144
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2006)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3
(TTCN-3): Runtime interface (TRI)

ITU-T Recommendation Z.144

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.144 (03/2006) i

ITU-T Recommendation Z.144

Testing and Test Control Notation version 3 (TTCN-3):
Runtime interface (TRI)

Summary
This Recommendation provides the specification of the runtime interface for TTCN-3 (Testing and Test Control
Notation 3) test system implementations. The TTCN-3 Runtime Interface provides the recommended adaptation for
timing and communication of a test system to a particular processing platform and the system under test, respectively.
This Recommendation defines the interface as a set of operations independent of target language.

The interface is defined to be compatible with ITU-T Rec. Z.140. This Recommendation uses the CORBA Interface
Definition Language (IDL) to specify the TRI completely. Clauses 6 and 7 specify language mappings of the abstract
specification to the target languages Java and ANSI-C. A summary of the IDL-based interface specification is provided
in Annex A.

Source
ITU-T Recommendation Z.144 was approved on 16 March 2006 by ITU-T Study Group 17 (2005-2008) under the
ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.144 (03/2006)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.144 (03/2006) iii

CONTENTS

 Page
1 Scope ... 1

1.1 Compliance.. 1
2 References .. 1
3 Definitions and abbreviations.. 1

3.1 Definitions... 1
3.2 Abbreviations... 2

4 General structure of a TTCN-3 test system .. 3
4.1 Entities in a TTCN-3 test system.. 3
4.2 Interfaces in a TTCN-3 test system... 5
4.3 Execution requirements for a TTCN-3 test system ... 6

5 TTCN-3 Runtime Interface and operations .. 6
5.1 Overview of the TRI.. 6
5.2 Error handling .. 7
5.3 Data interface ... 8
5.4 Operation descriptions ... 9
5.5 Communication interface operations ... 10
5.6 Platform interface operations... 20

6 Java language mapping.. 23
6.1 Introduction ... 23
6.2 Names and scopes ... 23
6.3 Type mapping .. 23
6.4 Constants... 30
6.5 Mapping of interfaces .. 31
6.6 Optional parameters... 33
6.7 TRI initialization... 34
6.8 Error handling .. 34

7 ANSI-C language mapping... 34
7.1 Introduction ... 34
7.2 Names and scopes ... 34
7.3 Memory management .. 38
7.4 Error handling .. 38

8 Use scenarios... 38
8.1 First scenario.. 39
8.2 Second scenario .. 41
8.3 Third scenario .. 43

Annex A (normative) – IDL Summary ... 45
BIBLIOGRAPHY.. 48

iv ITU-T Rec. Z.144 (03/2006)

Introduction
This Recommendation consists of two distinct parts, the first part describing the structure of a TTCN-3 test system
implementation and the second part presenting the TTCN-3 Runtime Interface specification.

The first part introduces the decomposition of a TTCN-3 test system into four main entities:
• Test Management (TM);
• TTCN-3 Executable (TE);
• SUT Adapter (SA); and
• Platform Adapter (PA).

In addition, the interaction between these entities, i.e., the corresponding interfaces, is defined.

The second part of this Recommendation specifies the TTCN-3 Runtime Interface (TRI). The interface is defined in
terms of operations, which are implemented as part of one entity and called by other entities of the test system. For each
operation, the interface specification defines associated data structures, the intended effect on the test system and any
constraints on the usage of the operation. Note that this interface specification only defines interactions between the TSI
and the SUT as well as timer operations.

 ITU-T Rec. Z.144 (03/2006) 1

ITU-T Recommendation Z.144

Testing and Test Control Notation version 3 (TTCN-3):
Runtime interface (TRI)

1 Scope
This Recommendation provides the specification of the runtime interface for TTCN-3 test system implementations. The
TTCN-3 Runtime Interface provides a standardized adaptation for timing and communication of a test system to a
particular processing platform and the system under test, respectively. This Recommendation defines the interface as a
set of operations independent of target language.

The interface is defined to be compatible with the TTCN-3 standard (see reference below). This Recommendation uses
the CORBA Interface Definition Language (IDL) to specify the TRI completely. Clauses 6 and 7 present language
mappings for this abstract specification to the target languages Java and ANSI-C. A summary of the IDL-based
interface specification is provided in Annex A.

1.1 Compliance

The requirement for a TTCN-3 test system to be TRI compliant is to adhere to the interface specification stated in this
Recommendation as well as to one of the target language mappings included.

EXAMPLE: If a vendor supports Java, the TRI operation calls and implementations, which are part of
the TTCN-3 executable, must comply with the IDL to Java mapping specified in this
Recommendation.

2 References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged
to investigate the possibility of applying the most recent edition of the Recommendations and other references listed
below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] ITU-T Recommendation X.290 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications – General concepts.

 ISO/IEC 9646-1:1994, Information technology – Open Systems Interconnection – Conformance testing
methodology and framework – Part 1: General concepts.

[2] ITU-T Recommendation Z.140 (2006), Testing and Test Control Notation version 3 (TTCN-3): Core
language.

[3] ITU-T Recommendation X.292 (2002), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications – The Tree and Tabular Combined Notation (TTCN).

 ISO/IEC 9646-3:1998, Information technology – Open Systems Interconnection – Conformance testing
methodology and framework – Part 3: The Tree and Tabular Combined Notation (TTCN).

[4] ITU-T Recommendation Z.143 (2006), Testing and Test Control Notation version 3 (TTCN-3):
Operational Semantics.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. Z.140 [2] and the following
apply:

3.1.1 abstract test suite (ATS): See ITU-T Rec. X.290 [1].

3.1.2 communication port: Abstract mechanism facilitating communication between test components.
NOTE – A communication port is modelled as a FIFO queue in the receiving direction. Ports can be message-based, procedure-
based or a mixture of the two.

2 ITU-T Rec. Z.144 (03/2006)

3.1.3 executable test suite (ETS): See ITU-T Rec. X.290 [1].

3.1.4 explicit timer: Timer that is declared in a TTCN-3 ATS and that can be accessed through TTCN-3 timer
operations.

3.1.5 implementation extra information for testing (IXIT): See ITU-T Rec. X.290 [1].

3.1.6 implicit timer: System timer that is created by the TTCN-3 executable to guard a TTCN-3 call or execute
operation.

NOTE – Implicit timers are not accessible to the TTCN-3 user.

3.1.7 platform adapter (PA): Entity that adapts the TTCN-3 executable to a particular execution platform.
NOTE – The Platform Adapter creates a single notion of time for a TTCN-3 test system, and implements external functions as
well as explicit and implicit timers.

3.1.8 SUT adapter (SA): Entity that adapts the TTCN-3 communication operations with the SUT based on an
abstract test system interface and implements the real test system interface.

3.1.9 system under test (SUT): See ITU-T Rec. X.290 [1].
NOTE – All types are known at compile time, i.e., are statically bound.

3.1.10 test case: See ITU-T Rec. X.290 [1].

3.1.11 test event: Either sent or received test data (message or procedure call) on a communication port that is part
of the test system interface.

3.1.12 test management (TM): Entity that provides a user interface and administers the TTCN-3 test system.

3.1.13 test system: See ITU-T Rec. X.290 [1].

3.1.14 test system interface: Test component that provides a mapping of the ports available in the (abstract) TTCN-
3 test system to those offered by a real test system.

3.1.15 timer identification (TID): Unique identification for explicit or implicit timer instances that is generated by
the TTCN-3 Executable.

3.1.16 TTCN-3 control interface (TCI): Currently a proprietary interface that specifies the interaction between test
management and TTCN-3 executable in a test system.

3.1.17 TTCN-3 executable (TE): Part of a test system that deals with interpretation or execution of a TTCN-3 ETS.

3.1.18 TTCN-3 runtime interface (TRI): Interface that defines the interaction of the TTCN-3 executable with the
SUT and platform adapter in a test system.

3.2 Abbreviations

This Recommendation uses the following abbreviations:
ATS Abstract Test Suite
CH Component Handler
ECD External CoDecs
EDS Encoding/Decoding System
ETS Executable Test Suite
IDL Interface Definition Language
IXIT Implementation eXtra Information for Testing
MSC Message Sequence Chart
MTC Main Test Component
OMG Object Management Group
PA Platform Adapter
SA SUT Adapter
SUT System Under Test
T3RTS TTCN-3 Runtime System
TC Test Control
TCI TTCN-3 Control Interface

 ITU-T Rec. Z.144 (03/2006) 3

TE TTCN-3 Executable
TID Timer IDentification
TL Test Logging
TM Test Management
TRI TTCN-3 Runtime Interface
TSI Test System Interface
TTCN Testing and Test Control Notation
TTCN-3 Tree and Tabular Combined Notation version 3

4 General structure of a TTCN-3 test system
A TTCN-3 test system can be thought of conceptually as a set of interacting entities where each entity corresponds to a
particular aspect of functionality in a test system implementation. These entities manage test execution, interpreting or
executing compiled TTCN-3 code, realize proper communication with the SUT, implement external functions, and
handle timer operations. (See Figure 1.)

Figure 1/Z.144 – General structure of a TTCN-3 test system

4.1 Entities in a TTCN-3 test system

The structure of a TTCN-3 test system implementation is illustrated in Figure 1. It should be noted that the further
refinement of TM into smaller entities, as shown in Figure 1 and used in the following clauses of this Recommendation,
is purely an aid to define TTCN-3 test system interfaces.

The part of the test system that deals with interpretation and execution of TTCN-3 modules, i.e., the Executable Test
Suite (ETS), is part of the TTCN-3 Executable (TE). This corresponds either to the executable code produced by
a TTCN-3 compiler or a TTCN-3 interpreter in a test system implementation. It is assumed that a test system
implementation includes the ETS as derived from a TTCN-3 ATS.

The remaining part of the TTCN-3 test system, which deals with any aspects that cannot be concluded from information
being present in the original ATS alone, can be decomposed into Test Management (TM), SUT Adapter (SA), and
Platform Adapter (PA) entities. In general, these entities cover a test system user interface, test execution control, test
event logging, as well as communication with the SUT and timer implementation.

4 ITU-T Rec. Z.144 (03/2006)

4.1.1 Test Management (TM)

In the TM entity, we can distinguish between functionality related to test execution control and test event logging.

4.1.1.1 Test Control (TC)

The TC entity is responsible for overall management of the test system. After the test system has been initialized, test
execution starts within the TC entity. The entity is responsible for the proper invocation of TTCN-3 modules,
i.e., propagating module parameters and/or IXIT information to the TE if necessary. Typically, this entity would also
implement a test system user interface.

4.1.1.2 Test Logging (TL)

The TL entity is responsible for maintaining the test log. It is explicitly notified to log test events by the TE. The TL
entity has a unidirectional interface where any entity part of the TE may post a logging request to the TL entity. A TM
internal interface may also be used to record test management information generated by the TC.

4.1.1.3 External CoDecs (ECD)

The External Codec entities are optionally responsible for encoding and decoding data associated with message-based
or procedure-based communication within the TE. The external codecs can be used in parallel with, or instead of, the
built-in codecs associated with the TE. Unlike the built-in codecs, the external codecs have a standardized interface
which makes them portable between different TTCN-3 systems and tools.

4.1.1.4 Component Handler (CH)

The CH entity is responsible for distributing parallel test components. This distribution might be across one or many
physical systems. The CH entity allows the test management to create and control distributed test systems in a manner
which is transparent and independent from the TE.

4.1.2 TTCN-3 Executable (TE)

The TE entity is responsible for the interpretation or execution of the TTCN-3 ATS. Conceptually, the TE can be
decomposed into three interacting entities: an ETS, TTCN-3 Runtime System (T3RTS), and Encoding/Decoding
System (EDS) entity. Note that this refinement of the TE into smaller entities is purely a conceptual aid to define
TTCN-3 test system interfaces – there is no requirement for this distinction to be reflected in TRI implementations.

The following clauses define the responsibilities of each entity and also discuss the handling of timers in the TRI.

4.1.2.1 Executable Test Suite (ETS)

The ETS entity handles the execution or interpretation of test cases, the sequencing and matching of test events, as
defined in the corresponding TTCN-3 modules ITU-T Rec. Z.140 [2]. It interacts with the T3RTS entity to send,
attempt to receive (or match), and log test events during test case execution, to create and remove TTCN-3 test
components, as well as to handle external function calls, action operations, and timers. Note that the ETS entity does not
directly interact with the SA via the TRI.

4.1.2.2 TTCN-3 Runtime System (T3RTS)

The T3RTS entity interacts with the TM, SA and PA entities via TCI and TRI, and manages ETS and EDS entities. The
T3RTS initializes adapters as well as ETS and EDS entities. This entity performs all the actions necessary to properly
start the execution of a test case or function with parameters in the ETS entity. It queries the TM entity for module
parameter values required by the ETS and sends logging information to it. It also collects and resolves associated
verdicts returned by the ETS entity as defined in ITU-T Rec. Z.140 [2].

The T3RTS entity implements the creation and removal of TTCN-3 test components, as well as the TTCN-3 semantics
of message and procedure-based communication, external function calls, action operations and timers. This includes
notifying the SUT Adapter (SA) which message or procedure call is to be sent to the SUT, or the Platform Adapter (PA)
which external function is to be executed or which timers are to be started, stopped, queried, or read. Similarly, the
T3RTS notifies the ETS entity of incoming messages or procedure calls from the SUT as well as timeout events.

Prior to sending or receiving messages and procedure calls to or from the SA, or handling function calls and action
operations in the PA for the ETS entity, the T3RTS invokes the EDS entity for their encoding or decoding. The T3RTS
entity should implement all message and procedure-based communication operations between test components, but only
the TTCN-3 semantics of procedure-based communication with the SUT, i.e., the possible blocking and unblocking of
test component execution, guarding with implicit timers, and handling of timeout exceptions as a result of such
communication operations. All procedure-based communication operations with the SUT are to be realized and
identified (in the case of a receiving operation) in the SA as they are most efficiently implemented in a platform-specific

 ITU-T Rec. Z.144 (03/2006) 5

manner. Note that the timing of any procedure call operation, i.e., implicit timers, is implemented in the Platform
Adapter (PA).

The TTCN-3 Executable is required to maintain its own port queues (distinct from those which may be available in the
SA or PA) for input test events to perform snapshots for receiving operations as defined in ITU-T Rec. Z.140 [2].
Timeout events, which are generated by TTCN-3 timer, call timer, or test case timer implementations, are to be kept in
a timeout list as specified in ITU-T Rec. X.292 [3]. In Figure 2, all of this functionality has been assigned to the
T3RTS entity. It is responsible to store events that the SA or PA has notified the TE entity of, but which have yet to be
processed.

4.1.2.3 Encoding/Decoding System (EDS)

The EDS entity is responsible for the encoding and decoding of test data, which includes data used in communication
operations with the SUT, as specified in the executing TTCN-3 module. If no encoding has been specified for a
TTCN-3 module, the encoding of data values is tool specific. This entity is invoked by and returns to the T3RTS entity.
Note that the EDS entity does not directly interact with the SA via the TRI.

4.1.2.4 Timers in the TTCN-3 executable

Timers that have been declared and named in the TTCN-3 ATS can be conceptually classified as explicit in the TE.
Timers that are created by the TE for guarding TTCN-3 procedure calls or execute operations are known in the TE as
implicit timers. Explicit as well as implicit timers are both created within the TE but implemented by the Platform
Adapter (PA). This is achieved by generating a unique Timer IDentification (TID) for any timer created in the TE. This
unique TID should enable the TE to differentiate between different timers. The TID is to be used by the TE to interact
with corresponding timer implementation in the PA.

Note that it is the responsibility of the TE to implement the different TTCN-3 semantics for explicit and implicit timers
correctly as defined in ITU-T Rec. Z.140 [2], e.g., the use of keywords any and all with timers only applies to explicit
timers. In the PA all timers, i.e., implicit and explicit, are treated in the same manner.

4.1.3 SUT Adapter (SA)

The SA adapts message and procedure-based communication of the TTCN-3 test system with the SUT to the particular
execution platform of the test system. It is aware of the mapping of the TTCN-3 test component communication ports to
test system interface ports and implements the real test system interface as defined in ITU-T Rec. Z.140 [2]. It is
responsible to propagate send requests and SUT action operations from the TTCN-3 Executable (TE) to the SUT, and to
notify the TE of any received test events by appending them to the port queues of the TE.

Procedure-based communication operations with the SUT are implemented in the SA. The SA is responsible for
distinguishing between the different messages within procedure-based communication (i.e., call, reply, and exception)
and to propagate them in the appropriate manner either to the SUT or the TE. TTCN-3 procedure-based communication
semantics, i.e., the effect of such operation on TTCN-3 test component execution, are to be handled in the TE.

The SA has an interface with the TE, which is used to send SUT messages (issued in TTCN-3 SUT action operations)
to the SA and to exchange encoded test data between the two entities in communication operations with the SUT.

4.1.4 Platform Adapter (PA)

The PA implements TTCN-3 external functions and provides a TTCN-3 test system with a single notion of time. In this
entity, external functions are to be implemented as well as all timers. Notice that timer instances are created in the TE.
A timer in the PA can only be distinguished by its Timer IDentification (TID). Therefore, the PA treats both explicit
and implicit timers in the same manner.

The interface with the TE enables the invocation of external functions and the starting, reading, and stopping of timers
as well as the inquiring of the status of timers using their timer ID. The PA notifies the TE of expired timers.

4.2 Interfaces in a TTCN-3 test system

As previously depicted in Figure 1, a TTCN-3 test system has two interfaces, the TTCN-3 Control Interface (TCI) and
the TTCN-3 Runtime Interface (TRI), which specify the interface between Test Management (TM) and TTCN-3
Executable (TE) entities, and TE, SUT Adapter (SA) and Platform Adapter (PA) entities, respectively.

This Recommendation defines the TRI. The interaction of the TE with SA and PA will be defined here in terms of TRI
operations. Although both interfaces, i.e., the TRI and the TCI, have to be defined for a complete implementation of a
TTCN-3 test system, the specification and implementation of the TCI is currently considered to be proprietary.

6 ITU-T Rec. Z.144 (03/2006)

4.3 Execution requirements for a TTCN-3 test system

Each TRI operation call shall be treated as an atomic operation in the calling entity. The called entity, which
implements a TRI operation, shall return control to the calling entity as soon as its intended effect has been
accomplished, or if the operation cannot be completed successfully. The called entity shall not block in the
implementation of procedure-based communication. Nevertheless, the called entity shall block after the invocation of an
external function implementation and wait for its return value. Notice that, depending on the test system
implementation, failure to return from an external function implementation may result in the infinite blocking of test
component execution, the TTCN-3 executable, the Platform Adapter, or even of the entire test system.

The execution requirements stated above can be realized in a tightly integrated test system implementation. Here, the
entire TTCN-3 test system is implemented in a single executable or process where each test system entity is assigned at
least one thread of execution. TRI operations can be implemented here as procedure calls.

Note that a looser integration of a test system implementation is still possible, e.g., an implementation of a TTCN-3 test
system with multiple SUT Adapters in a distributed computing environment. In this case, only a small part of the SUT
Adapter is tightly integrated with the remainder of the TTCN-3 test system whereas actual SA Adapters may be realized
in separate processes. That small part of SA may then only implement a routing of information provided by TRI
operations to the desired SUT Adapter processes, possibly being executed on remote hosts, and vice versa.

5 TTCN-3 Runtime Interface and operations
This clause defines TRI operations in terms of when they are to be used and what their effect is intended to be in a
TTCN-3 test system implementation. Also, a set of abstract data types is defined which is then used for the definition of
TRI operations. This definition also includes a more detailed description of the input parameters required for each TRI
operation call and its return value.

5.1 Overview of the TRI

The TRI defines the interaction between the TTCN-3 Executable (TE), SUT Adapter (SA), and Platform Adapter (PA)
entities within a TTCN-3 test system implementation. Conceptually, it provides a means for the TE to send test data to
the SUT or manipulate timers, and similarly to notify the TE of received test data and timeouts.

The TRI can be considered to consist of two sub-interfaces, a triCommunication and a triPlatform interface. The
triCommunication interface addresses the communication of a TTCN-3 ETS with the SUT, which is implemented in the
SA. The triPlatform interface represents a set of operations, which adapt an ETS to a particular execution platform.

Both interfaces are bidirectional so that calling and called parts reside in the TE, SA, and PA entities of the test system.
Table 1 shows in more detail the caller/callee relationship between the respective entities. Notice that this table only
shows interactions visible at the TRI. Internal communication between parts of the same entity is not reflected as the
internal structure of the TE, SA, or PA may differ in a TTCN-3 test system implementation.

Table 1/Z.144 – Interface overview

Interface Direction (calling entity → called entity)

Name TE → SA or PA SA or PA → TE
triCommunication TE → SA SA → TE
triPlatform TE → PA PA → TE

5.1.1 The triCommunication Interface

This interface consists of operations that are necessary to implement the communication of the TTCN-3 ETS with the
SUT. It includes operations to initialize the Test System Interface (TSI), establish connections to the SUT, and handle
message and procedure-based communication with the SUT. In addition, the triCommunication interface offers an
operation to reset the SUT Adapter (SA).

5.1.2 The triPlatform Interface

This interface includes all operations necessary to adapt the TTCN-3 Executable to a particular execution platform. The
triPlatform interface offers means to start, stop, read a timer, enquire its status and to add timeout events to the expired
timer list. In addition, it offers operations to call TTCN-3 external functions and to reset the Platform Adapter (PA).
Notice that there is no differentiation between explicit and implicit timers required at the triPlatform Interface. Instead,
each timer shall be addressed uniformly with its Timer IDentifier (TID).

 ITU-T Rec. Z.144 (03/2006) 7

5.1.3 Correlation between TTCN-3 and TRI Operation Invocations

For some TTCN-3 operation invocations there exists a direct correlation to one TRI operation invocation (or possibly
two in the case of TTCN-3 execute and call operations), which is shown in Table 2. For all other TRI operation
invocations there may be no direct correlation.

The shown correlation for TTCN-3 communication operations (i.e., send, call, reply, and raise) only holds if these
operations are invoked on a test component port, which is mapped to a TSI port. Nevertheless, this correlation holds for
all such operation invocations if no system component has been specified for a test case, i.e., only the MTC test
component is created for a test case and no other test components.

Table 2/Z.144 – Correlation between TTCN-3 and TRI Operation Invocations (* = if applicable)

TTCN-3 operation name TRI operation name TRI interface name

execute triExecuteTestCase

triStartTimer*

TriCommunication

TriPlatform

map triMap TriCommunication

unmap triUnmap TriCommunication

triSend (see Note 1)

triSendBC (see Note 2)

send

triSendMC (see Note 3)

TriCommunication

triCall (see Note 1)

triCallBC (see Note 2)

triCallMC (see Note 3)

TriCommunication call

triStartTimer* TriPlatform

triReply (see Note 1)

triReply (see Note 2)

reply

triReply (see Note 3)

TriCommunication

triRaise (see Note 1)

triRaise (see Note 2)

raise

triRaise (see Note 3)

TriCommunication

action triSUTactionInformal TriCommunication

start (timer) triStartTimer TriPlatform

stop (timer) triStopTimer TriPlatform

read (timer) triReadTimer TriPlatform

running (timer) triTimerRunning TriPlatform

TTCN-3 external function triExternalFunction TriPlatform

NOTE 1 – For unicast communication.
NOTE 2 – For broadcast communication.
NOTE 3 – For multicast communication.

Note that all of the TRI operations listed in Table 2 are used by the TE and that the TE may implement the invocation of
these operations differently when evaluating a TTCN snapshot within the TTCN-3 ETS.

5.2 Error handling

Explicit error handling is specified only for TRI operations called by the TTCN-3 Executable (TE). The SA or PA
reports the status of a TRI operation in the return value of a TRI operation. The status value can either indicate the local
success (TRI_OK) or failure (TRI_Error) of the TRI operation. Therefore, the TE may react to an error that occurred
either within the SA or PA and issue, e.g., a test case error.

For TRI operations called by the SA or PA no explicit error handling is required since these operations are implemented
in the TE. Here, the TE is in control over the test execution in the case that an error occurs in such a TRI operation.

Notice that specific error codes as well as the detection and handling of errors in any of the test system entities are
beyond the scope of the current TRI specification.

8 ITU-T Rec. Z.144 (03/2006)

5.3 Data interface

In the TRI operations only encoded test data shall be passed. The TTCN-3 Executable (TE) is responsible for encoding
test data to be sent and decoding received test data in the respective TRI operations since encoding rules can be
specified for or within a TTCN-3 module. Notice that the TE is required to encode test data even if no encoding
information has been provided in a TTCN-3 ATS. In this case, the tool vendor has to define an encoding.

Instead of defining an explicit data interface for TTCN-3 and ASN.1 data types, the TRI standard defines a set of
abstract data types. These data types are used in the following definition of TRI operations to indicate which
information is to be passed from the calling to the called entity, and vice versa. The concrete representation of these
abstract data types, as well as the definition of basic data types, are defined in the respective language mappings in
clauses 6 and 7.

Notice that the values for any identifier data type shall be unique in the test system implementation where uniqueness is
defined as being globally distinct at any point in time.

The following abstract data types are defined and used for the definition of TRI operations.

5.3.1 Connection

TriComponentIdType A value of type TriComponentIdType includes an identifier, a name and the component
type. The distinct value of the latter is the component type name as specified in the
TTCN-3 ATS. This abstract type is mainly used to resolve TRI communication
operations on TSI ports that have mappings to many test component ports.

TriComponentIdListType A value of type TriComponentIdListType is a list of TriComponentIdType. This
abstract type is used for multicast communication in TCI.

TriPortIdType A value of type TriPortIdType includes a value of type TriComponentIdType to
represent the component to which the port belongs, a port index (if present), and the
port name as specified in the TTCN-3 ATS. The TriPortIdType type is mainly required
to pass information about the TSI and connections to the TSI from the TE to the SA.

TriPortIdListType A value of type TriPortIdListType is a list of TriPortIdType. This abstract type is
used for initialization purposes after the invocation of a TTCN-3 test case.

5.3.2 Communication

TriMessageType A value of type TriMessageType is an encoded test data that either is to be sent
to the SUT or has been received from the SUT.

TriAddressType A value of type TriAddressType indicates a source or destination address within
the SUT. This abstract type can be used in TRI communication operations and is
an open type, which is opaque to the TE.

TriAddressListType A value of type TriAddressListType is a list of TriAddressType. This abstract
type is used for multicast communication in TRI.

TriSignatureIdType A value of type TriSignatureIdType is the name of a procedure signature as
specified in the TTCN-3 ATS. This abstract type is used in procedure-based TRI
communication operations.

TriParameterType A value of type TriParameterType includes an encoded parameter and a value of
TriParameterPassingModeType to represent the passing mode specified for the
parameter in the TTCN-3 ATS.

TriParameterPassingModeType A value of type TriParameterPassingModeType is either in, inout, or out. This
abstract type is used in procedure-based TRI communication operations and for
external function calls.

TriParameterListType A value of type TriParameterListType is a list of TriParameterType. This
abstract type is used in procedure-based TRI communication operations and for
external function calls.

TriExceptionType A value of type TriExceptionType is an encoded type and value of an exception
that either is to be sent to the SUT or has been received from the SUT. This
abstract type is used in procedure-based TRI communication operations.

 ITU-T Rec. Z.144 (03/2006) 9

5.3.3 Timer

TriTimerIdType A value of type TriTimerIdType specifies an identifier for a timer. This abstract
type is required for all TRI timer operations.

TriTimerDurationType A value of type TriTimerDurationType specifies the duration for a timer in
seconds.

5.3.4 Miscellaneous

TriTestCaseIdType A value of type TriTestCaseIdType is the name of a test case as specified in the
TTCN-3 ATS.

TriFunctionIdType A value of type TriFunctionIdType is the name of an external function as
specified in the TTCN-3 ATS.

TriStatusType A value of type TriStatusType is either TRI_OK or TRI_Error indicating the
success or failure of a TRI operation.

5.4 Operation descriptions

All operation definitions are defined using the Interface Definition Language (IDL). Concrete language mappings are
defined in clauses 6 and 7.

For every TRI operation call all in, inout, and out parameters listed in the particular operation definition are mandatory.
The value of an in parameter is specified by the calling entity. Similarly, the value of an out parameter is specified by
the called entity. In the case of an inout parameter, a value is first specified by the calling entity but may be replaced
with a new value by the called entity. Note that although TTCN-3 also uses in, inout, and out for signature definitions,
the denotations used in a TRI IDL specification are not related to those in a TTCN-3 specification.

Operation calls should use a reserved value to indicate the absence of parameters that are defined as optional in the
corresponding TRI parameter description. The reserved values for these types are defined in each language mapping
and will be subsequently referred to as the null value.

All functions in the interface are described using the following template:

F.n.m Operation Name calling entity → called entity

Signature IDL-Signature.
In Parameters Description of data passed as parameters to the operation from the calling entity to the called entity.
Out Parameters Description of data passed as parameters to the operation from the called entity to the calling entity.
InOutParameters Description of data passed as parameters to the operation from the calling entity to the called entity and

from the called entity back to the calling entity.
Return Value Description of data returned from the operation to the calling entity.
Constraints Description of any constraints that apply to calling the operation.
Effect Behaviour required of the called entity before the operation may return.

10 ITU-T Rec. Z.144 (03/2006)

5.5 Communication interface operations

5.5.1 triSAReset (TE → SA)

Signature TriStatusType triSAReset()

In Parameters n.a.
Out Parameters n.a.
Return Value The return status of the triSAReset operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation can be called by the TE at any time to reset the SA.
Effect The SA shall reset all communication means that it is maintaining, e.g., reset static connections to the SUT,

close dynamic connections to the SUT, discard any pending messages or procedure calls.
The triResetSA operation returns TRI_OK in case the operation has been successfully performed,
TRI_Error otherwise.

5.5.2 Connection handling operations

5.5.2.1 triExecuteTestCase (TE → SA)

Signature TriStatusType triExecuteTestCase(in TriTestCaseIdType testCaseId,
 in TriPortIdListType tsiPortList)

In Parameters testCaseId identifier of the test case that is going to be executed
tsiPortList a list of test system interface ports defined for the test system

Out Parameters n.a.
Return Value The return status of the triExecuteTestCase operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE immediately before the execution of any test case. The test case that is

going to be executed is indicated by the testCaseId. tsiPortList contains all ports that have been
declared in the definition of the system component for the test case, i.e., the TSI ports. If a system
component has not been explicitly defined for the test case in the TTCN-3 ATS then the tsiPortList
contains all communication ports of the MTC test component. The ports in tsiPortList are ordered as
they appear in the respective TTCN-3 component declaration.

Effect The SA can set up any static connections to the SUT and initialize any communication means for TSI ports.
The triExecuteTestCase operation returns TRI_OK in case the operation has been successfully
performed, TRI_Error otherwise.

5.5.2.2 triMap (TE → SA)

Signature TriStatusType triMap(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)

In Parameters compPortId identifier of the test component port to be mapped
tsiPortId identifier of the test system interface port to be mapped

Out Parameters n.a.
Return Value The return status of the triMap operation. The return status indicates the local success (TRI_OK) or failure

(TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 map operation.
Effect The SA can establish a dynamic connection to the SUT for the referenced TSI port.

The triMap operation returns TRI_Error in case a connection could not be established successfully,
TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connection needs to be
established by the test system.

 ITU-T Rec. Z.144 (03/2006) 11

5.5.2.3 triUnmap (TE → SA)

Signature TriStatusType triUnmap(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)

In Parameters compPortId identifier of the test component port to be unmapped
tsiPortId identifier of the test system interface port to be unmapped

Out Parameters n.a.
Return Value The return status of the triUnmap operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes any TTCN-3 unmap operation.
Effect The SA shall close a dynamic connection to the SUT for the referenced TSI port.

The triUnmap operation returns TRI_Error in case a connection could not be closed successfully or no such
connection has been established previously, TRI_OK otherwise. The operation should return TRI_OK in case
no dynamic connections have to be established by the test system.

5.5.3 Message-based communication operations

5.5.3.1 triSend (TE → SA)

Signature TriStatusType triSend(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriMessageType sendMessage)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is sent to the SUT

Adapter
SUTaddress (optional) destination address within the SUT
sendMessage the encoded message to be sent

Out Parameters n.a.
Return Value The return status of the triSend operation. The return status indicates the local success (TRI_OK) or failure

(TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast send operation on a component port,

which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 send operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can send the message to the SUT.
The triSend operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error
shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received
sendMessage.

5.5.3.2 triSendBC (TE → SA)

Signature TriStatusType triSendBC(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TriMessageType sendMessage)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is sent to the SUT
 Adapter
sendMessage the encoded message to be sent

Out Parameters n.a.
Return Value The return status of the triSend operation. The return status indicates the local success (TRI_OK) or failure

(TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast send operation on a component port,

which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 send operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can broadcast the message to the SUT.
The triSend operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error
shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received
sendMessage.

12 ITU-T Rec. Z.144 (03/2006)

5.5.3.3 triSendMC (TE → SA)

Signature TriStatusType triSendMC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriMessageType sendMessage)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is sent to the SUT
 Adapter
SUTaddresses destination addresses within the SUT
sendMessage the encoded message to be sent

Out Parameters n.a.
Return Value The return status of the triSend operation. The return status indicates the local success (TRI_OK) or failure

(TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast send operation on a component port,

which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 send operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can multicast the message to the SUT.
The triSend operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error
shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received
sendMessage.

5.5.3.4 triEnqueueMsg (SA → TE)

Signature void triEnqueueMsg(in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriMessageType receivedMessage)

In Parameters tsiPortId identifier of the test system interface port via which the message is enqueued by the
 SUT Adapter
SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
receivedMessage the encoded received message

Out Parameters n.a.
Return Value void
Constraints This operation is called by the SA after it has received a message from the SUT. It can only be used when

tsiPortId has been either previously mapped to a port of componentId or has been referenced in the previous
triExecuteTestCase statement.
In the invocation of a triEnqueueMsg operation receivedMessage shall contain an encoded value.

Effect This operation shall pass the message to the TE indicating the component componentId to which the TSI port
tsiPortId is mapped.
The decoding of receivedMessage has to be done in the TE.

 ITU-T Rec. Z.144 (03/2006) 13

5.5.4 Procedure-based communication operations

5.5.4.1 triCall (TE → SA)

Signature TriStatusType triCall(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)

In Parameters componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure call is sent to the SUT
 Adapter
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in
 parameterList are ordered as they appear in the TTCN-3 signature declaration

Out Parameters n.a.
Return Value The return status of the triCall operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast call operation on a component port,

which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 call operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate the procedure call corresponding to the signature
identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure call (see note).
This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No
error shall be indicated by the SA in case the value of any out parameter is non-null. Notice that the return
value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a call operation, is not
included in the triCall operation signature. The TE is responsible to address this issue by starting a timer
for the TTCN-3 call operation in the PA with a separate TRI operation call, i.e., triStartTimer.

NOTE – This might be achieved, for example, by spawning a new thread or process. This handling of this procedure call is,
however, dependent on implementation of the TE.

14 ITU-T Rec. Z.144 (03/2006)

5.5.4.2 triCallBC (TE → SA)

Signature TriStatusType triCallBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)

In Parameters componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure call is sent to the SUT
 Adapter
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in
 parameterList are ordered as they appear in the TTCN-3 signature declaration

Out Parameters n.a.
Return Value The return status of the triCall operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast call operation on a component port,

which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 call operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate and broadcast the procedure call corresponding to the
signature identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure call (see note).
This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No
error shall be indicated by the SA in case the value of any out parameter is non-null. Notice that the return
value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a call operation, is not
included in the triCall operation signature. The TE is responsible to address this issue by starting a timer
for the TTCN-3 call operation in the PA with a separate TRI operation call, i.e., triStartTimer.

NOTE – This might be achieved for example by spawning a new thread or process. This handling of this procedure call is,
however, dependent on implementation of the TE.

 ITU-T Rec. Z.144 (03/2006) 15

5.5.4.3 triCallMC (TE → SA)

Signature TriStatusType triCallMC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)

In Parameters componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure call is sent to the SUT

Adapter
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in

parameterList are ordered as they appear in the TTCN-3 signature declaration
Out Parameters n.a.
Return Value The return status of the triCall operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast call operation on a component port,

which has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 call operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate and multicast the procedure call corresponding to the
signature identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure call (see note).
This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No
error shall be indicated by the SA in case the value of any out parameter is non-null. Notice that the return
value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a call operation, is not
included in the triCall operation signature. The TE is responsible to address this issue by starting a timer
for the TTCN-3 call operation in the PA with a separate TRI operation call, i.e., triStartTimer.

NOTE – This might be achieved for example by spawning a new thread or process. This handling of this procedure call is,
however, dependent on implementation of the TE.

16 ITU-T Rec. Z.144 (03/2006)

5.5.4.4 triReply (TE → SA)

Signature TriStatusType triReply(in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)

In Parameters componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent to the SUT Adapter
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in

parameterList are ordered as they appear in the TTCN-3 signature declaration
returnValue (optional) encoded return value of the procedure call

Out Parameters n.a.
Return Value The return status of the triReply operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast reply operation on a component port

that has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 reply operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in
the TTCN-3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct value null
shall be passed for the return value.

Effect On invocation of this operation the SA can issue the reply to a procedure call corresponding to the signature
identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation, TRI_Error
otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value
is different from null.

5.5.4.5 triReplyBC (TE → SA)

Signature TriStatusType triReplyBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)

In Parameters componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent to the SUT Adapter
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in

parameterList are ordered as they appear in the TTCN-3 signature declaration
returnValue (optional) encoded return value of the procedure call

Out Parameters n.a.
Return Value The return status of the triReply operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast reply operation on a component

port that has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 reply operations
if no system component has been specified for a test case, i.e., only a MTC test component is created for a
test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in
the TTCN-3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct value null
shall be passed for the return value.

Effect On invocation of this operation, the SA can broadcast the reply to procedure calls corresponding to the
signature identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation, TRI_Error
otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value
is different from null.

 ITU-T Rec. Z.144 (03/2006) 17

5.5.4.6 triReplyMC (TE → SA)

Signature TriStatusType triReplyMC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)

In Parameters componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent to the SUT Adapter
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in

parameterList are ordered as they appear in the TTCN-3 signature declaration
returnValue (optional) encoded return value of the procedure call

Out Parameters n.a.
Return Value The return status of the triReply operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast reply operation on a component port

that has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 reply operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in
the TTCN-3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct value null
shall be passed for the return value.

Effect On invocation of this operation the SA can multicast the reply to procedure calls corresponding to the
signature identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation, TRI_Error
otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value
is different from null.

5.5.4.7 triRaise (TE → SA)

Signature TriStatusType triRaise(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)

In Parameters componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is sent to the SUT

Adapter
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call which the exception is associated with
exc the encoded exception

Out Parameters n.a.
Return Value The return status of the triRaise operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast raise operation on a component port

that has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 raise operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise an exception to a procedure call corresponding to the
signature identifier signatureId and the TSI port tsiPortId.
The triRaise operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

18 ITU-T Rec. Z.144 (03/2006)

5.5.4.8 triRaiseBC (TE → SA)

Signature TriStatusType triRaiseBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)

In Parameters componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is sent to the SUT

Adapter
signatureId identifier of the signature of the procedure call which the exception is associated with
exc the encoded exception

Out Parameters n.a.
Return Value The return status of the triRaise operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast raise operation on a component port

that has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 raise operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise and broadcast an exception to procedure calls
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaise operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

5.5.4.9 triRaiseMC (TE → SA)

Signature TriStatusType triRaiseMC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)

In Parameters componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is sent to the SUT

Adapter
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call which the exception is associated with
exc the encoded exception

Out Parameters n.a.
Return Value The return status of the triRaise operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast raise operation on a component port

that has been mapped to a TSI port. This operation is called by the TE for all TTCN-3 raise operations if no
system component has been specified for a test case, i.e., only a MTC test component is created for a test
case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise and multicast an exception to procedure calls corresponding
to the signature identifier signatureId and the TSI port tsiPortId.
The triRaise operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

 ITU-T Rec. Z.144 (03/2006) 19

5.5.4.10 triEnqueueCall (SA → TE)

Signature void triEnqueueCall(in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)

In Parameters tsiPortId identifier of the test system interface port via which the procedure call is enqueued by
the SUT Adapter

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in

parameterList are ordered as they appear in the TTCN-3 signature declaration.
Description of data passed as parameters to the operation from the calling entity to the
called entity.

Out Parameters n.a.
Return Value void
Constraints This operation can be called by the SA after it has received a procedure call from the SUT. It can only be

used when tsiPortId has been either previously mapped to a port of componentId or referenced in the
previous triExecuteTestCase statement.
In the invocation of a triEnqueueCall operation all in and inout procedure parameters contain encoded
values.

Effect The TE can enqueue this procedure call with the signature identifier signatureId at the port of the
component componentId to which the TSI port tsiPortId is mapped. The decoding of procedure
parameters has to be done in the TE.
The TE shall indicate no error in case the value of any out parameter is different from null.

5.5.4.11 triEnqueueReply (SA → TE)

Signature void triEnqueueReply(in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)

In Parameters tsiPortId identifier of the test system interface port via which the reply is enqueued by the SUT
Adapter

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The parameters in

parameterList are ordered as they appear in the TTCN-3 signature declaration.
returnValue (optional) encoded return value of the procedure call

Out Parameters n.a.
Return Value void
Constraints This operation can be called by the SA after it has received a reply from the SUT. It can only be used when

tsiPortId has been either previously mapped to a port of componentId or referenced in the previous
triExecuteTestCase statement.
In the invocation of a triEnqueueReply operation all out and inout procedure parameters and the return
value contain encoded values.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct value null
shall be used for the return value.

Effect The TE can enqueue this reply to the procedure call with the signature identifier signatureId at the port of
the component componentId to which the TSI port tsiPortId is mapped. The decoding of the procedure
parameters has to be done within the TE.
The TE shall indicate no error in case the value of any in parameter or an undefined return value is different
from null.

20 ITU-T Rec. Z.144 (03/2006)

5.5.4.12 triEnqueueException (SA → TE)

Signature void triEnqueueException(in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)

In Parameters tsiPortId identifier for the test system interface port via which the exception is enqueued by the
SUT Adapter

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call which the exception is associated with
exc the encoded exception

Out Parameters n.a.
Return Value void
Constraints This operation can be called by the SA after it has received a reply from the SUT. It can only be used when

tsiPortId has been either previously mapped to a port of componentId or referenced in the previous
triExecuteTestCase statement.
In the invocation of a triEnqueueException operation exception shall contain an encoded value.

Effect The TE can enqueue this exception for the procedure call with the signature identifier signatureId at the
port of the component componentId to which the TSI port tsiPortId is mapped.
The decoding of the exception has to be done within the TE.

5.5.5 Miscellaneous operations

5.5.5.1 triSUTactionInformal (TE → SA)

Signature TriStatusType triSUTactionInformal(in string description)

In Parameters description an informal description of an action to be taken on the SUT
Out Parameters n.a.
Return Value The return status of the triSUTactionInformal operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 SUT action operation, which only contains a

string.
Effect On invocation of this operation the SA shall initiate the described actions to be taken on the SUT, e.g., turn

on, initialize, or send a message to the SUT.
The triSUTactionInformal operation returns TRI_OK on successful execution of the operation,
TRI_Error otherwise. Notice that the return value of this TRI operation does not make any statement about
the success or failure of the actions to be taken on the SUT.

5.5.5.2 triSUTactionTemplate (TE → SA)

Obsolete.

5.6 Platform interface operations

5.6.1 triPAReset (TE → PA)

Signature TriStatusType triPAReset()

In Parameters n.a.
Out Parameters n.a.
Return Value The return status of the triPAReset operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation can be called by the TE at any time to reset the PA.
Effect The PA shall reset all timing activities which it is currently performing, e.g., stop all running timers, discard

any pending timeouts of expired timers.
The triResetSA operation returns TRI_OK in case the operation has been performed successfully,
TRI_Error otherwise.

 ITU-T Rec. Z.144 (03/2006) 21

5.6.2 Timer operations

5.6.2.1 triStartTimer (TE → PA)

Signature TriStatusType triStartTimer(in TriTimerIdType timerId,
 in TriTimerDurationType timerDuration)

In Parameters timerId identifier of the timer instance
timerDuration duration of the timer in seconds

Out Parameters n.a.
Return Value The return status of the triStartTimer operation. The return status indicates the local success (TRI_OK)

or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when a timer needs to be started.
Effect On invocation of this operation the PA shall start the indicated timer with the indicated duration. The timer

runs from the value zero (0.0) up to the maximum specified by timerDuration. Should the timer indicated by
timerId already be running it is to be restarted. When the timer expires the PA will call the triTimeout()
operation with timerId.
The triStartTimer operation returns TRI_OK if the timer has been started successfully, TRI_Error
otherwise.

5.6.2.2 triStopTimer (TE → PA)

Signature TriStatusType triStopTimer(in TriTimerIdType timerId)

In Parameters timerId identifier of the timer instance
Out Parameters n.a.
Return Value The return status of the triStopTimer operation. The return status indicates the local success (TRI_OK)

or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when a timer is to be stopped.
Effect On invocation of this operation the PA shall use the timerId to stop the indicated timer instance. The

stopping of an inactive timer, i.e., a timer which has not been started or has already expired, should have no
effect.
The triStopTimer operation returns TRI_OK if the operation has been performed successfully,
TRI_Error otherwise. Notice that stopping an inactive timer is a valid operation. In this case TRI_OK shall
be returned.

5.6.2.3 triReadTimer (TE → PA)

Signature TriStatusType triReadTimer(in TriTimerIdType timerId,
 out TriTimerDurationType elapsedTime)

In Parameters timerId identifier of the timer instance
Out Parameters elapsedTime value of the time elapsed since the timer has been started in seconds
Return Value The return status of the triReadTimer operation. The return status indicates the local success (TRI_OK) or

failure (TRI_Error) of the operation.
Constraints This operation may be called by the TE when a TTCN-3 read timer operation is to be executed on the

indicated timer (see 5.3.1).
Effect On invocation of this operation the PA shall use the timerId to access the time that elapsed since this timer

was started. The return value elapsedTime shall be provided in seconds. The reading of an inactive timer,
i.e., a timer which has not been started or already expired, shall return an elapsed time value of zero.
The triReadTimer operation returns TRI_OK if the operation has been performed successfully,
TRI_Error otherwise.

22 ITU-T Rec. Z.144 (03/2006)

5.6.2.4 triTimerRunning (TE → PA)

Signature TriStatusType triTimerRunning(in TriTimerIdType timerId,
 out boolean running)

In Parameters timerId identifier of the timer instance
Out Parameters running status of the timer
Return Value The return status of the triTimerRunning operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation may be called by the TE when a TTCN-3 running timer operation is to be executed on the

indicated timer (see 5.3.1).
Effect On invocation of this operation the PA shall use the timerId to access the status of the timer. The operation

sets running to the boolean value true if and only if the timer is currently running.
The triTimerRunning operation returns TRI_OK if the status of the timer has been successfully
determined, TRI_Error otherwise

5.6.2.5 triTimeout (PA → TE)

Signature void triTimeout(in TriTimerIdType timerId)

In Parameters timerId identifier of the timer instance

Out Parameters n.a.
Return Value void
Constraints This operation is called by the PA after a timer, which has previously been started using the

triStartTimer operation, has expired, i.e., it has reached its maximum duration value.
Effect The timeout with the timerId can be added to the timeout list in the TE. The implementation of this

operation in the TE has to be done in such a manner that it addresses the different TTCN-3 semantics for
timers defined in ITU-T Rec. Z.143 [4] (see also 5.3.1).

5.6.3 Miscellaneous operations

5.6.3.1 triExternalFunction (TE → PA)

Signature TriStatusType triExternalFunction(in TriFunctionIdType functionId,
 inout TriParameterListType parameterList,
 out TriParameterType returnValue)

In Parameters functionId identifier of the external function

Out Parameters returnValue (optional) encoded return value
InOutParameters parameterList a list of encoded parameters for the indicated function. The parameters in

parameterList are ordered as they appear in the TTCN-3 function declaration.
Return Value The return status of the triExternalFunction operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a function which is defined to be TTCN-3 external

(i.e., all non-external functions are implemented within the TE).
In the invocation of a triExternalFunction operation by the TE all in and inout function parameters
contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is non-
null.

Effect For each external function specified in the TTCN-3 ATS the PA shall implement the behaviour. On
invocation of this operation the PA shall invoke the function indicated by the identifier functionId. It shall
access the specified in and inout function parameters in parameterList, evaluate the external function
using the values of these parameters, and compute values for inout and out parameters in parameterList.
The operation shall then return encoded values for all inout and out function parameters and the encoded
return value of the external function.
If no return type has been defined for this external function in the TTCN-3 ATS, the distinct value null
shall be used for the latter.
The triExternalFunction operation returns TRI_OK if the PA completes the evaluation of the external
function successfully, TRI_Error otherwise.
Note that whereas all other TRI operations are considered to be non-blocking, the triExternalFunction
operation is considered to be blocking. That means that the operation shall not return before the indicated
external function has been fully evaluated. External functions have to be implemented carefully as they
could cause deadlock of test component execution or even the entire test system implementation.

 ITU-T Rec. Z.144 (03/2006) 23

6 Java language mapping

6.1 Introduction

This clause introduces the TRI Java language mapping. For efficiency reasons, a dedicated language mapping is
introduced instead of using the OMG IDL to Java language.

The Java language mapping for the TTCN-3 Runtime Interface defines how the IDL definitions described in clause 5
are mapped to the Java language. The language mapping is independent of the used Java version as only basic Java
language constructs are used.

6.2 Names and scopes

6.2.1 Names

Although there is no conflict between identifiers used in the IDL definition and the Java language, some naming
translation rules are applied to the IDL identifiers.

• Java parameter identifiers shall start with a lower case letter, and the subsequent parts building the
parameter identifier will start with a capital letter. For example the IDL parameter identifier
SUTaddress maps to sutAddress in Java.

• Java interfaces or class identifiers omit the trailing Type used in the IDL definition. For example the IDL
type TriPortIdType maps to TriPortId in Java.

The resulting mapping conforms with the standard Java coding conventions.

6.2.2 Scopes

The IDL module triInterface is mapped to the Java package org.etsi.ttcn3.tri. All IDL-type declarations
within this module are mapped to Java classes or interface declarations within this package.

6.3 Type mapping

6.3.1 Basic type mapping

Table 3 gives an overview on how the used basic IDL types are mapped to the Java types.

Table 3/Z.144 – Basic type mappings

IDL Type Java Type

boolean org.etsi.ttcn.tri.TriBoolean

string java.lang.String

Other IDL basic types are not used within the IDL definition.

6.3.1.1 Boolean

The IDL boolean type is mapped to the interface org.etsi.ttcn.tri.TriBoolean, so that objects implementing this
interface can act as holder objects.

The following interface is defined for org.etsi.ttcn.tri.TriBoolean:
// TriBoolean
package org.etsi.ttcn.tri;
public interface TriBoolean {
 public void setBooleanValue(boolean value);
 public boolean getBooleanValue();
}

6.3.1.1.1 Methods
– setBooleanValue(boolean value)

Sets this TriBoolean to the boolean value value.
- getBooleanValue()

Returns the boolean value represented by this TriBoolean.

24 ITU-T Rec. Z.144 (03/2006)

6.3.1.2 String

The IDL string type is mapped to the java.lang.String class without range checking or bounds for characters in
the string. All possible strings defined in TTCN-3 can be converted to java.lang.String.

6.3.2 Structured type mapping

The TRI IDL description defines user-defined types as native types. In the Java language mapping, these types are
mapped to Java interfaces. The interfaces define methods and attributes being available for objects implementing this
interface.

6.3.2.1 TriPortIdType

TriPortIdType is mapped to the following interface:
// TRI IDL TriPortIdType
package org.etsi.ttcn.tri;
public interface TriPortId {
 public String getPortName();
 public TriComponentId getComponent();
 public boolean isArray();
 public int getPortIndex();
}

6.3.2.1.1 Methods
- getPortName()

Returns the port name as defined in the TTCN-3 specification.
- getComponent()

Returns the component identifier that this TriPortId belongs to as defined in the TTCN-3 specification.
- isArray()

Returns true if this port is part of a port array, false otherwise.
- getPortIndex()

Returns the port index if this port is part of a port array starting at zero. If the port is not part of a port array, then –1
is returned.

6.3.2.2 TriPortIdListType

TriPortIdListType is mapped to the following interface:
// TRI IDL TriPortIdListType
package org.etsi.ttcn.tri;
public interface TriPortIdList {
 public int size();
 public boolean isEmpty();
 public java.util.Enumeration getPortIds();
 public TriPortId get(int index);
}

6.3.2.2.1 Methods
size()

Returns the number of ports in this list.
isEmpty()

Returns true if this list contains no ports.
getPortIds()

Returns an Enumeration over the ports in the list. The enumeration provides the ports in the same order as they
appear in the list.

get(int index)

Returns the TriPortId at the specified position.

 ITU-T Rec. Z.144 (03/2006) 25

6.3.2.3 TriComponentIdType

TriComponentIdType is mapped to the following interface:
// TRI IDL TriComponentIdType
package org.etsi.ttcn.tri;
public interface TriComponentId {
 public String getComponentId();
 public String getComponentName();
 public String getComponentTypeName();
 public TriPortIdList getPortList();
 public boolean equals(TriComponentId port);
}

6.3.2.3.1 Methods
- getComponentId()

Returns a representation of this unique component identifier.
- getComponentName()

Returns the component name as defined in the TTCN-3 specification. If no name is provided, an empty string is
returned.

- getComponentTypeName()

Returns the component type name as defined in the TTCN-3 specification.
- getPortList()

Returns the component's port list as defined in the TTCN-3 specification.
- equals(TriComponentId component)

Compares component with this TriComponentId for equality. Returns true if and only if both components have
the same representation of this unique component identifier, false otherwise.

6.3.2.4 TriComponentIdListType

TriComponentIdListType is mapped to the following interface:
// TRI IDL TriComponentIdListType
package org.etsi.ttcn.tri;
public interface TriComponentIdListType {
 public int size();
 public boolean isEmpty();
 public java.util.Enumeration getComponents();
 public TriComponentId get(int index);
 public void clear();
 public void add(TriComponentId comp);
}

6.3.2.4.1 Methods

size()

Returns the number of components in this list.
isEmpty()

Returns true if this list contains no components.
getComponents()

Returns an Enumeration over the components in the list. The enumeration provides the components in the same
order as they appear in the list.

get(int index)

Returns the TriComponentId at the specified position.
clear()

Removes all components from this TriComponentIdList.
add(TriComponentId comp)

Adds comp to the end of this TriComponentIdList.

26 ITU-T Rec. Z.144 (03/2006)

6.3.2.5 TriMessageType

TriMessageType is mapped to the following interface:
// TRI IDL TriMessageType
package org.etsi.ttcn.tri;
public interface TriMessage {
 public byte[] getEncodedMessage();
 public void setEncodedMessage(byte[] message);
 public boolean equals(TriMessage message);
}

6.3.2.5.1 Methods
- getEncodedMessage()

Returns the message encoded according to the coding rules defined in the TTCN-3 specification.
- setEncodedMessage(byte[] message)

Sets the encoded message representation of this TriMessage to message.
- equals(TriMessage message)

Compares message with this TriMessage for equality. Returns true if and only if both messages have the same
encoded representation, false otherwise.

6.3.2.6 TriAddressType

TriAddressType is mapped to the following interface:
// TRI IDL TriAddressType
package org.etsi.ttcn.tri;
public interface TriAddress {
 public byte[] getEncodedAddress();
 public void setEncodedAddress(byte[] address);
 public boolean equals(TriAddress address);
}

6.3.2.6.1 Methods
- getEncodedAddress()

Returns the encoded address.
- setEncodedAddress(byte[] address)

Set the encoded address of this TriAddress to address.
- equals(TriAddress address)

Compares address with this TriAddress for equality. Returns true if and only if both addresses have the same
encoded representation, false otherwise.

6.3.2.7 TriAddressListType

TriAddressListType is mapped to the following interface:
// TRI IDL TriAddressListType
package org.etsi.ttcn.tri;
public interface TriAddressListType {
 public int size();
 public boolean isEmpty();
 public java.util.Enumeration getAddresses();
 public TriAddress get(int index);
 public void clear();
 public void add(TriAddress addr);
}

6.3.2.7.1 Methods
size()

Returns the number of components in this list.
isEmpty()

Returns true if this list contains no components.
getAddresses()

Returns an Enumeration over the components in the list. The enumeration provides the addresses in the same order
as they appear in the list.

 ITU-T Rec. Z.144 (03/2006) 27

get(int index)

Returns the TriAddress at the specified position.
clear()

Removes all addresses from this TriAddressList.
add(TriAddress addr)

Adds addr to the end of this TriAddressList.

6.3.2.8 TriSignatureIdType

TriSignatureIdType is mapped to the following interface:
// TRI IDL TriSignatureIdType
package org.etsi.ttcn.tri;
public interface TriSignatureId {
 public String getSignatureName();
 public void setSignatureName(String sigName);
 public boolean equals(TriSignatureId sig);
}

6.3.2.8.1 Methods
- getSignatureName()

Returns the signature identifier as defined in the TTCN-3 specification.
- setSignatureName(String sigName)

Sets the signature identifier of this TriSignatureId to sigName.
- equals(TriSignatureId sig)

Compares sig with this TriSignatureId for equality. Returns true if and only if both signatures have the same
signature identifier, false otherwise.

6.3.2.9 TriParameterType

TriParameterType is mapped to the following interface:
// TRI IDL TriParameterType
package org.etsi.ttcn.tri;
public interface TriParameter {
 public String getParameterName();
 public void setParameterName(String name);
 public int getParameterPassingMode();
 public void setParameterPassingMode(in mode);
 public byte[] getEncodedParameter();
 public void setEncodedParameter(byte[] parameter);
}

6.3.2.9.1 Methods
– getParameterName()

Returns the parameter name as defined in the TTCN-3 specification.
- setParameterName(String name)

Sets the name of this TriParameter parameter to name.
- getParameterPassingMode()

Returns the parameter passing mode of this parameter.
- setParameterPassingMode(in mode)

Sets the parameter mode of this TriParameter parameter to mode.
- getEncodedParameter()

Returns the encoded parameter representation of this TriParameter, or the null object if the parameter contains the
distinct value null (see also 5.5.4.1).

- setEncodedParameter(byte[] parameter)

Sets the encoded parameter representation of this TriParameter to parameter. If the distinct value null shall be set
to indicate that this parameter holds no value, the Java null shall be passed as parameter (see also 5.5.4.1).

28 ITU-T Rec. Z.144 (03/2006)

6.3.2.10 TriParameterPassingModeType

TriParameterPassingModeType is mapped to the following interface:
// TRI IDL TriParameterPassingModeType
package org.etsi.ttcn.tri;
public interface TriParameterPassingMode {
 public final static int TRI_IN = 0;
 public final static int TRI_INOUT = 1;
 public final static int TRI_OUT = 2;
}

6.3.2.10.1 Constants
- TRI_IN

Will be used to indicate that a TriParameter is an in parameter.
- TRI_INOUT

Will be used to indicate that a TriParameter is an inout parameter.
- TRI_OUT

Will be used to indicate that a TriParameter is an out parameter.

6.3.2.11 TriParameterListType

TriParameterListType is mapped to the following interface:
// TRI IDL TriParameterListType
package org.etsi.ttcn.tri;
public interface TriParameterList {
 public int size();
 public boolean isEmpty();
 public java.util.Enumeration getParameters();
 public TriParameter get(int index);
 public void clear();
 public void add(TriParameter parameter);
}

6.3.2.11.1 Methods
size()

Returns the number of parameters in this list.
isEmpty()

Returns true if this list contains no parameters.
getParameters()

Returns an Enumeration over the parameters in the list. The enumeration provides the parameters in the same order
as they appear in the list.

get(int index)

Returns the TriParameter at the specified position.
clear()

Removes all parameters from this TriParameterList.
add(TriParameter parameter)

Adds parameter to the end of this TriParameterList.

6.3.2.12 TriExceptionType

TriExceptionType is mapped to the following interface:
// TRI IDL TriExceptionType
package org.etsi.ttcn.tri;
public interface TriException {
 public byte[] getEncodedException();
 public void setEncodedException(byte[] message);
 public boolean equals(TriException exc);
}

 ITU-T Rec. Z.144 (03/2006) 29

6.3.2.12.1 Methods
- getEncodedException()

Returns the exception encoded according to the coding rules defined in the TTCN-3 specification.
- setEncodedMessage(byte[] exc)

Sets the encoded exception representation of this TriException to exc.
- equals(TriException exc)

Compares exc with this TriException for equality. Returns true if and only if both exceptions have the same
encoded representation, false otherwise.

6.3.2.13 TriTimerIdType

TriTimerIdType is mapped to the following interface:
// TRI IDL TriTimerIdType
package org.etsi.ttcn.tri;
public interface TriTimerId {
 public String getTimerName();
 public boolean equals(TriTimerId timer);
}

6.3.2.13.1 Methods
- getTimerName()

Returns the name of this timer identifier as defined in the TTCN-3 specification. In case of implicit timers the result
is implementation dependent (see 4.1.2).

- equals(TriTimerId timer)

Compares timer with this TriTimerId for equality. Returns true if and only if both timer identifiers represent the
same timer, false otherwise.

6.3.2.14 TriTimerDurationType

TriTimerDurationType is mapped to the following interface:
// TRI IDL TriTimerDurationType
package org.etsi.ttcn.tri;
public interface TriTimerDuration {
 public double getDuration();
 public void setDuration(double duration);
 public boolean equals(TriTimerDuration duration);
}

6.3.2.14.1 Methods
- getDuration()

Returns the duration of a timer as double.
- setDuration(double duration)

Sets the duration of this TriTimerDuration to duration.
- equals(TriTimerDuration duration)

Compares duration with this TriTimerDuration for equality. Returns true if and only if both have the same
duration, false otherwise.

6.3.2.15 TriFunctionIdType

TriFunctionIdType is mapped to the following interface:
// TRI IDL TriFunctionIdType
package org.etsi.ttcn.tri;
public interface TriFunctionId {
 public String toString();
 public String getFunctionName();
 public boolean equals(TriFunctionId fun);
}

6.3.2.15.1 Methods
- toString()

Returns the string representation of the function as defined in TTCN-3 specification.

30 ITU-T Rec. Z.144 (03/2006)

- getFunctionName()

Returns the function identifier as defined in the TTCN-3 specification.
- equals(TriFunctionId fun)

Compares fun with this TriFunctionId for equality. Returns true if and only if both functions have the same
function identifier, false otherwise.

6.3.2.16 TriTestCaseIdType

TriTestCaseIdType is mapped to the following interface:
// TRI IDL TriTestCaseIdType
package org.etsi.ttcn.tri;
public interface TriTestCaseId {
 public String toString();
 public String getTestCaseName();
 public boolean equals(TriTestCaseId tc);
}

6.3.2.16.1 Methods
- toString()

Returns the string representation of the test case as defined in TTCN-3 specification.
- getTestCaseName()

Returns the test case identifier as defined in the TTCN-3 specification.
- equals(TriTestCaseId tc)

Compares tc with this TriTestCaseId for equality. Returns true if and only if both test cases have the same test
case identifier, false otherwise.

6.3.2.17 TriActionTemplateType

Obsolete.

6.3.2.18 TriStatusType

TriStatusType is mapped to the following interface:
// TriStatusType
package org.etsi.ttcn.tri;
public interface TriStatus {
 public final static int TRI_OK = 0;
 public final static int TRI_ERROR = -1;
 public String toString();
 public int getStatus();
 public void setStatus(int status);
 public boolean equals(TriStatus status);
}

6.3.2.18.1 Methods
- toString()

Returns the string representation of the status.
- getStatus()

Returns the status of this TriStatus.
- setStatus(int status)

Sets the status of this TriStatus.
- equals(TriStatus status)

Compares status with this TriStatus for equality. Returns true if and only if they have the same status, false
otherwise.

6.4 Constants

Within this Java language, mapping constants have been specified. All constants are defined public final static
and are accessible from every object from every package. The constants defined within this clause are not defined with
the IDL clause. Instead, they result from the specification of the TRI IDL types marked as native.

 ITU-T Rec. Z.144 (03/2006) 31

The following constants can be used to determine the parameter passing mode of TTCN-3 parameters
(see also 6.3.2.10).

• org.etsi.ttcn.tri.TriParameterPassingMode.TRI_IN;
• org.etsi.ttcn.tri.TriParameterPassingMode.TRI_INOUT;
• org.etsi.ttcn.tri.TriParameterPassingMode.TRI_OUT.

The values of instances of these constants shall reflect the parameter passing mode defined in the TTCN-3 procedure
signatures.

For the distinct parameter value null, the encoded parameter value shall be set to Java null.

The following constants shall be used to indicate the local success of a method (see also 6.3.2.18):
• org.etsi.ttcn.tri.TriStatus.TRI_OK;
• org.etsi.ttcn.tri.TriStatus.TRI_ERROR.

6.5 Mapping of interfaces

The TRI IDL definition defines two interfaces, the triCommunication and the triPlatform interface. As the
operations are defined for different directions within this interface, i.e., some operations can only be called by the
TTCN-3 Executable (TE) on the System Adapter (SA) while others can only be called by the SA on the TE. This is
reflected by dividing the TRI IDL interfaces into two sub-interfaces, each suffixed by the called entity.

Table 4/Z.144 – Sub-interfaces

Calling/Called TE SA PA

TE - TriCommunicationSA triPlatformPA

SA TriCommunicationTE - -

PA TriPlatformTE - -

All methods defined in these interfaces should behave as defined in clause 5.

6.5.1 Out and InOut Parameter Passing Mode

The following IDL types are used in out or inout parameter passing mode:
• TriParameter.
• TriParameterList.
• TriBoolean.
• TriTimerDuration.

In case they are used in out or inout parameter passing mode, objects of the respective class will be passed with the
method call. The called entity can then access methods to set the return values.

6.5.2 triCommunication – Interface

The triCommunication interface is divided into two sub-interfaces, the triCommunicationSA interface, defining calls
from the TE to the SA and the triCommunicationTE interface, defining calls from the SA to the TE.

6.5.2.1 triCommunicationSA

The triCommunicationSA interface is mapped to the following interface:
// TriCommunication
// TE -> SA
package org.etsi.ttcn.tri;
public interface TriCommunicationSA {
 // Reset Operation
 // Ref: TRI-Definition 5.5.1
 TriStatus triSAReset();

 // Connection handling operations
 // Ref: TRI-Definition 5.5.2.1
 public TriStatus triExecuteTestCase(TriTestCaseId
 testCaseId,TriPortIdList tsiPorts);
 // Ref: TRI-Definition 5.5.2.2
 public TriStatus triMap(TriPortId compPortId, TriPortId tsiPortId);

32 ITU-T Rec. Z.144 (03/2006)

 // Ref: TRI-Definition 5.5.2.3
 public TriStatus triUnmap(TriPortId compPortId, TriPortId tsiPortId);

 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.1
 public TriStatus triSend(TriComponentId componentId, TriPortId tsiPortId,
 TriAddress sutAddress, TriMessage sendMessage);
 // Ref: TRI-Definition 5.5.3.2
 public TriStatus triSendBC(TriComponentId componentId, TriPortId tsiPortId,
 TriMessage sendMessage);
 // Ref: TRI-Definition 5.5.3.3
 public TriStatus triSendMC(TriComponentId componentId, TriPortId tsiPortId,
 TriAddressList addresses, TriMessage sendMessage);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.1
 public TriStatus triCall(TriComponentId componentId,
 TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriParameterList parameterList);
 // Ref: TRI-Definition 5.5.4.2
 public TriStatus triCallBC(TriComponentId componentId,
 TriPortId tsiPortId,
 TriSignatureId signatureId, TriParameterList parameterList);
 // Ref: TRI-Definition 5.5.4.3
 public TriStatus triCallMC(TriComponentId componentId,
 TriPortId tsiPortId, TriAddressList sutAddresses,
 TriSignatureId signatureId, TriParameterList parameterList);

 // Ref: TRI-Definition 5.5.4.4
 public TriStatus triReply(TriComponentId componentId,
 TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriParameterList parameterList,
 TriParameter returnValue);
 // Ref: TRI-Definition 5.5.4.5
 public TriStatus triReplyBC(TriComponentId componentId,
 TriPortId tsiPortId,
 TriSignatureId signatureId, TriParameterList parameterList,
 TriParameter returnValue);
 // Ref: TRI-Definition 5.5.4.6
 public TriStatus triReplyMC(TriComponentId componentId,
 TriPortId tsiPortId, TriAddressList sutAddresses,
 TriSignatureId signatureId, TriParameterList parameterList,
 TriParameter returnValue);

 // Ref: TRI-Definition 5.5.4.7
 public TriStatus triRaise(TriComponentId componentId, TriPortId tsiPortId,
 TriAddress sutAddress,
 TriSignatureId signatureId,
 TriException exc);
 // Ref: TRI-Definition 5.5.4.8
 public TriStatus triRaiseBC(TriComponentId componentId, TriPortId tsiPortId,
 TriSignatureId signatureId,
 TriException exc);
 // Ref: TRI-Definition 5.5.4.9
 public TriStatus triRaiseMC(TriComponentId componentId,TriPortId tsiPortId,
 TriAddresses sutAddresses,
 TriSignatureId signatureId,
 TriException exc);

 // Miscellaneous operations
 // Ref: TRI-Definition 5.5.5.1
 public TriStatus triSutActionInformal(String description);

}

6.5.2.2 triCommunicationTE

The triCommunicationTE interface is mapped to the following interface:
// TriCommunication
// SA -> TE
package org.etsi.ttcn.tri;
public interface TriCommunicationTE {
 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.4
 public void triEnqueueMsg(TriPortId tsiPortId,
 TriAddress sutAddress, TriComponentId componentId,
 TriMessage receivedMessage);

 // Procedure based communication operations

 ITU-T Rec. Z.144 (03/2006) 33

 // Ref: TRI-Definition 5.5.4.10
 public void triEnqueueCall(TriPortId tsiPortId,
 TriAddress SUTaddress, TriComponentId componentId,
 TriSignatureId signatureId, TriParameterList parameterList);

 // Ref: TRI-Definition 5.5.4.11
 public void triEnqueueReply(TriPortId tsiPortId, TriAddress sutAddress,
 TriComponentId componentId, TriSignatureId signatureId,
 TriParameterList parameterList, TriParameter returnValue);

 // Ref: TRI-Definition 5.5.4.12
 public void triEnqueueException(TriPortId tsiPortId,
 TriAddress sutAddress, TriComponentId componentId,
 TriSignatureId signatureId, TriException exc);
}

6.5.3 triPlatform – Interface

The triPlatform interface is divided into two sub-interfaces, the triPlatformPA interface, defining calls from the TE
to the PA and the triPlatformTE interface, defining calls from the PA to the TE.

6.5.3.1 TriPlatformPA

The triPlatformPA interface is mapped to the following interface:
// TriPlatform
// TE -> PA
package org.etsi.ttcn.tri;
public interface TriPlatformPA {
 // Ref: TRI-Definition 5.6.1
 public TriStatus triPAReset();

 // Timer handling operations
 // Ref: TRI-Definition 5.6.2.1
 public TriStatus triStartTimer(TriTimerId timerId,
 TriTimerDuration timerDuration);

 // Ref: TRI-Definition 5.6.2.2
 public TriStatus triStopTimer(TriTimerId timerId);

 // Ref: TRI-Definition 5.6.2.3
 public TriStatus triReadTimer(TriTimerId timerId,
 TriTimerDuration elapsedTime);

 // Ref: TRI-Definition 5.6.2.4
 public TriStatus triTimerRunning(TriTimerId timerId,
 TriBoolean running);

 // Miscellaneous operations

 // Ref: TRI-Definition 5.6.3.1
 public TriStatus triExternalFunction(TriFunctionId functionId,
 TriParameterList parameterList, TriParameter returnValue);
}

6.5.3.2 TriPlatformTE

The triPlatformTE interface is mapped to the following Java interface:
// TriPlatform
// PA -> TE
package org.etsi.ttcn.tri;
public interface TriPlatformTE {
 // Ref: TRI-Definition 5.6.2.5
 public void triTimeout(TriTimerId timerId);
}

6.6 Optional parameters

Clause 5.4 defines that a reserved value shall be used to indicate the absence of an optional parameter. For the Java
language mapping the Java null value shall be used to indicate the absence of an optional value. For example, if in the
triSend operation the address parameter shall be omitted, the operation invocation shall be
triSend(componentId, tsiPortId, null, sendMessage).

34 ITU-T Rec. Z.144 (03/2006)

6.7 TRI initialization

All methods are non-static, i.e., operations can only be called on objects. As this Recommendation does not define
concrete implementation strategies of TE, SA, and PA, the mechanism whereby the TE, the SA, or the PA get to know
the handles on the respective objects, is out of the scope of this Recommendation.

Tool vendors shall provide methods to the developers of SA and PA to register the TE, SA, and PA to their respective
communication partner.

6.8 Error handling

Beside the error handling as defined in 5.2, no additional error handling is defined within this Java language mapping.
In particular, no exception handling mechanisms are defined.

7 ANSI-C language mapping

7.1 Introduction

This clause defines the TRI ANSI-C language mapping for the abstract data types specified in 5.3. For basic IDL types,
the mapping conforms to OMG recommendations.

7.2 Names and scopes

C parameter identifiers shall start with a lower case letter, and the subsequent parts building the parameter identifier will
start with a capital letter. For example, the IDL parameter SUTaddress maps to sutAddress in C.

Abstract data type identifiers in C omit the trailing Type used in the IDL definition. For example, the IDL type
TriPortIdType maps to TriPortId in C.

Older C specifications have restricted the identifier uniqueness to the most significant 8 characters. Nevertheless, the
recent ANSI-C specifications have moved this limitation to the 31 most significant characters. Aside from this issue, no
naming or scope conflicts have been identified in this mapping.

7.2.1 Abstract type mapping

TRI ADT ANSI-C Representation Notes and comments

TriAddress BinaryString
TriAddressList typedef struct TriAddressList

{

 TriAddress** addrList;

 long int length;

} TriAddressList;

NOTE – No special values mark the
end of addrList[]. The length
field shall be used to traverse this array
properly.

TriComponentId typedef struct TriComponentId

{

 BinaryString compInst;

 String compName;

 QualifiedName compType;

} TriComponentId;

NOTE – compInst is for component
instance.

TriComponentIdList typedef struct
TriComponentIdList

{

 TriComponentId** compIdList;

 long int length;

} TriComponentIdList;

NOTE – No special values mark the
end of compIdList[]. The length
field shall be used to traverse this array
properly.

TriException BinaryString
TriFunctionId QualifiedName
TriMessage BinaryString

 ITU-T Rec. Z.144 (03/2006) 35

TRI ADT ANSI-C Representation Notes and comments

TriParameterList typedef struct TriParameterList

{

 TriParameter** parList;

 long int length;

} TriParameterList;

NOTE – No special values mark the
end of parList. The length field
shall be used to traverse this array
properly.

TriParameter typedef struct TriParameter

{

 BinaryString par;

 TriParameterPassingMode mode;

} TriParameter;

TriParameterPassingMode typedef enum

{

 TRI_IN = 0,

 TRI_INOUT = 1,

 TRI_OUT = 2

} TriParameterPassingMode;

NOTE – The values of instances of this
type shall reflect the parameter passing
mode defined in the corresponding
TTCN-3 procedure signatures.

TriPortIdList typedef struct TriPortIdList

{

 TriPortId** portIdList;

 long int length;

} TriPortIdList;

NOTE – No special values mark the
end of portIdList[]. The length
field shall be used to traverse this array
properly.

TriPortId typedef struct TriPortId

{

 TriComponentId compInst;

 char* portName;

 long int portIndex;

 QualifiedName portType;

 void* aux;

} TriPortId;

NOTE 1 – compInst is for
component instance.
NOTE 2 – For a singular (non-array)
declaration, the portIndex value
should be –1.
NOTE 3 – The aux field is for future
extensibility of TRI functionality.

TriSignatureId QualifiedName

TriStatus long int

#define TRI_ERROR -1

#define TRI_OK 0

NOTE – All negative values are
reserved for future extension of TRI
functionality.

TriTestCaseId QualifiedName
TriTimerDuration Double
TriTimerId BinaryString NOTE – Pending statement on timer

and snapshot semantics may influence
future representation.

7.2.2 ANSI-C type definitions

C ADT Type definition Notes and comments

BinaryString typedef struct BinaryString

{

 unsigned char* data;

 long int bits;

 void* aux;

} BinaryString;

NOTE 1 – data is a non-null-
terminated string.
NOTE 2 – bits is the number of bits
used in data. Bits value –1 is used to
denote omitted value.
NOTE 3 – The aux field is for future
extensibility of TRI functionality.

QualifiedName typedef struct QualifiedName

{

 char* moduleName;

 char* objectName;

 void* aux;

} QualifiedName;

NOTE 1 – The moduleName and
objectName fields are the TTCN-3
identifiers literally.
NOTE 2 – The aux field is for future
extensibility of TRI functionality.

36 ITU-T Rec. Z.144 (03/2006)

7.2.3 IDL-type mapping

IDL type ANSI-C Representation Notes and comments

Boolean unsigned char From OMG IDL to C++ mapping
String char* From OMG IDL to C++ mapping

7.2.4 TRI operation mapping

IDL Representation ANSI-C Representation

TriStatusType triSAReset() TriStatus triSAReset()

TriStatusType triExecuteTestCase

 (in TriTestCaseIdType testCaseId,

 in TriPortIdListType tsiPortList)

TriStatus triExecuteTestCase

 (const TriTestCaseId* testCaseId,

 const TriPortIdList* tsiPortList)

TriStatusType triMap

 (in TriPortIdType compPortId,

 in TriPortIdType tsiPortId)

TriStatus triMap

 (const TriPortId* compPortId,

 const TriPortId* tsiPortId)

TriStatusType triUnmap

 (in TriPortIdType compPortId,

 in TriPortIdType tsiPortId)

TriStatus triUnmap

(const TriPortId* compPortId,

 const TriPortId* tsiPortId)

TriStatusType triSend

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriMessageType sendMessage)

TriStatus triSend

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriMessage* sendMessage)

TriStatusType triSendBC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriMessageType sendMessage)

TriStatus triSendBC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriMessage* sendMessage)

TriStatusType triSendMC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressListType SUTaddresses,

 in TriMessageType sendMessage)

TriStatus triSendMC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddressList* sutAddresses,

 const TriMessage* sendMessage)

void triEnqueueMsg

 (in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriComponentIdType componentId,

 in TriMessageType receivedMessage)

void triEnqueueMsg

(const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriComponentId* componentId,

 const TriMessage* receivedMessage)

TriStatusType triCall

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList)

TriStatus triCall

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList)

TriStatusType triCallBC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList)

TriStatus triCallBC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList)

TriStatusType triCallMC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressListType SUTaddresses,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList)

TriStatus triCallMC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddressList* sutAddresses,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList)

 ITU-T Rec. Z.144 (03/2006) 37

IDL Representation ANSI-C Representation

TriStatusType triReply

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList,

 in TriParameterType returnValue)

TriStatus triReply

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList,

 const TriParameter* returnValue)

TriStatusType triReplyBC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList,

 in TriParameterType returnValue)

TriStatus triReplyBC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList,

 const TriParameter* returnValue)

TriStatusType triReplyMC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressListType SUTaddresses,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList,

 in TriParameterType returnValue)

TriStatus triReplyMC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddressList* sutAddresses,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList,

 const TriParameter* returnValue)

TriStatusType triRaise

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriSignatureIdType signatureId,

 in TriExceptionType exc)

TriStatus triRaise

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriSignatureId* signatureId,

 const TriException* exception)

TriStatusType triRaiseBC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriSignatureIdType signatureId,

 in TriExceptionType exc)

TriStatus triRaiseBC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriSignatureId* signatureId,

 const TriException* exception)

TriStatusType triRaiseMC

 (in TriComponentIdType componentId,

 in TriPortIdType tsiPortId,

 in TriAddressListType SUTaddresses,

 in TriSignatureIdType signatureId,

 in TriExceptionType exc)

TriStatus triRaiseMC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriAddressList* sutAddresses,

 const TriSignatureId* signatureId,

 const TriException* exception)

void triEnqueueCall

 (in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriComponentId componentId,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList)

void triEnqueueCall

 (const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriComponentId* componentId,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList)

void triEnqueueReply

 (in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriComponentIdType componentId,

 in TriSignatureIdType signatureId,

 in TriParameterListType parameterList,

 in TriParameterType returnValue)

void triEnqueueReply

 (const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriComponentId* componentId,

 const TriSignatureId* signatureId,

 const TriParameterList* parameterList,

 const TriParameter* returnValue)

38 ITU-T Rec. Z.144 (03/2006)

IDL Representation ANSI-C Representation

void triEnqueueException

 (in TriPortIdType tsiPortId,

 in TriAddressType SUTaddress,

 in TriComponentIdType componentId,

 in TriSignatureIdType signatureId,

 in TriExceptionType exc)

void triEnqueueException

 (const TriPortId* tsiPortId,

 const TriAddress* sutAddress,

 const TriComponentId* componentId,

 const TriSignatureId* signatureId,

 const TriException* exception)

TriStatusType triSUTActionInformal

 (in string description)

TriStatus triSUTActionInformal

 (const char* description)

TriStatusType triPAReset() TriStatus triPAReset()

TriStatusType triStartTimer

 (in TriTimerIdType timerId,

 in TriTimerDurationType timerDuration)

TriStatus triStartTimer

 (const TriTimerId* timerId,

 TriTimerDuration timerDuration)

TriStatusType triStopTimer

 (in TriTimerIdType timerId)

TriStatus triStopTimer

 (const TriTimerId* timerId)

TriStatusType triReadTimer

 (in TriTimerIdType timerId,

 out TriTimerDurationType elapsedTime)

TriStatus triReadTimer

 (const TriTimerId* timerId,

 TriTimerDuration* elapsedTime)

TriStatusType triTimerRunning

 (in TriTimerIdType timerId,

 out boolean running)

TriStatus triTimerRunning

 (const TriTimerId* timerId,

 unsigned char* running)

void triTimeout

 (in TriTimerIdType timerId)

void triTimeout

 (const TriTimerId* timerId)

TriStatusType triExternalFunction

 (in TriFunctionIdType functionId,

 inout TriParameterListType parameterList,

 out TriParameterType returnValue)

TriStatus triExternalFunction

 (const TriFunctionId* functionId,

 TriParameterList* parameterList,

 TriParameter* returnValue)

7.3 Memory management

Obsolete.

7.4 Error handling

No error handling has been defined for this mapping.

8 Use scenarios
This clause contains use scenarios that should help users of the TRI and tool vendors providing the TRI understand the
semantics of the operations defined within this Recommendation.

Three scenarios are defined in terms of Message Sequence Charts (MSC). A scenario consists of a TTCN-3 code
fragment that uses TTCN-3 communication functions to the SUT as well as timer handling functions. The MSC shows
the interactions between the TE, SA, and PA entities together with the SUT.

Please note that the TTCN-3 fragments are not complete, as the main objective of the fragments are the usage of
dynamic behaviour. All of the presented scenarios use a common preamble sequence of TRI operations shown in
Figure 2.

Notice that the MSCs presented in this clause use message pairs to model each TRI operation. The MSC message
triMap followed by triMapOK denotes, for example, that the TRI operation triMap has been invoked by the TE and it
returns successfully from the SA. TRI operation calls are shown using abstract types and values, and are intended to
serve for illustration purposes only. The concrete representation of these parameters in a particular target language is
defined in the respective language mappings.

 ITU-T Rec. Z.144 (03/2006) 39

Figure 2/Z.144 – Common MSC preamble

8.1 First scenario

The first scenario shows some TTCN-3 timer operations, i.e., start and timer running, message-based communication
operations, i.e., send and receive, as well as connection handling operations, i.e., map and unmap.

8.1.1 TTCN-3 fragment
module triScenario1
{
 external function MyFunction();

 type port PortTypeMsg message { inout integer }

 type component MyComponent {
 port PortTypeMsg MyPort;
 timer MyTimer
 }

 type component MyTSI {
 port PortTypeMsg PCO1;
 }

 testcase scenario1() runs on MyComponent system MyTSI
 {
 MyPort.clear;
 MyPort.start;
 MyTimer.start(2);

 map(MyComponent: MyPort, system: PCO1);
 MyPort.send (integer : 5);
 if (MyTimer.running)
 {
 MyPort.receive(integer:7);
 }
 else
 {
 MyFunction();
 }
 unmap(MyComponent: MyPort, system:PCO1);

40 ITU-T Rec. Z.144 (03/2006)

 MyPort.stop;
 }

 control {
 execute(scenario1());
 }

}

8.1.2 Message sequence chart

Figure 3/Z.144 – Use Scenario 1

 ITU-T Rec. Z.144 (03/2006) 41

8.2 Second scenario

The second example shows a similar scenario which also uses timed procedure-based communication operations which
are initiated by the test component MyComponent. In this example MyComponent is assumed to run as the MTC.

8.2.1 TTCN-3 fragment
module triScenario2
{

 signature MyProc (in float par1, inout float par2)
 exception(MyExceptionType);

 type record MyExceptionType { FieldType1 par1, FieldType2 par2 }

 type port PortTypeProc procedure { out MyProc }

 type component MyComponent {
 port PortTypeProc MyPort;
 timer MyTimer = 7
 }

 testcase scenario2() runs on MyComponent
 {
 var float MyVar;

 MyPort.clear;
 MyPort.start;
 MyTimer.start;

 MyVar := MyTimer.read;

 if (MyVar>5.0) {
 MyPort.call (MyProc:{MyVar, 5.7}, 5);
 alt {
 [] MyPort.getreply(MyProc:{-,MyVar*5}) {}
 [] MyPort.catch (MyProc, MyExceptionType:*) {}
 [] MyPort.catch (timeout) {}
 }
 }
MyTimer.stop;
 MyPort.stop;
 }

 control {
 execute(scenario2());
 }

}

42 ITU-T Rec. Z.144 (03/2006)

8.2.2 Message sequence chart

Figure 4/Z.144 – Use Scenario 2

 ITU-T Rec. Z.144 (03/2006) 43

8.3 Third scenario

Use scenario 3 shows the reception of a procedure call as well as a reply and the raising of an exception based on this
received call. Again MyComponent is assumed to run as the MTC. FieldType1, FieldType2, p1, and p2 are assumed to
be defined elsewhere.

8.3.1 TTCN-3 fragment
module triScenario3
{
 signature MyProc (in float par1, inout float par2)
 exception(MyExceptionType);

 type record MyExceptionType { FieldType1 par1, FieldType2 par2 }

 type port PortTypeProc procedure { in MyProc }

 type component MyComponent {
 port PortTypeProc MyPort;
 timer MyTimer = 3
 }

 testcase scenario3(integer x) runs on MyComponent
 {
 MyPort.start;
 MyTimer.start;
 alt
 {
 [] MyPort.getcall(MyProc:{5.0, 6.0})
 {
 MyTimer.stop;
 }
 [x>5] MyTimer.timeout
 {
 MyPort.reply(MyProc:{-, 30.0});
 }
 [x<=5] MyTimer.timeout
 {
 MyPort.raise(MyProc, MyExceptionType:{p1, p2});
 }
 }
 MyPort.stop;
 }

 control {
 execute(scenario3(4));
 }
}

44 ITU-T Rec. Z.144 (03/2006)

8.3.2 Message sequence chart

Figure 5/Z.144 – Use Scenario 3

 ITU-T Rec. Z.144 (03/2006) 45

Annex A (normative)

IDL Summary

This annex summarizes the IDL definition of TRI operations as defined in clause 5.
// ***
// Interface definition for the TTCN-3 Runtime Interface

// ***

module triInterface
{

 //
 // ***
 // Types
 // ***
 //

 // Connection
 native TriPortIdType;
 typedef sequence<TriPortIdType> TriPortIdListType;
 native TriComponentIdType;
 typedef sequence<TriComponentIdType> TriComponentIdListType;

 // Communication
 native TriMessageType;
 native TriAddressType;
 typedef sequence<TriAddressType> TriAddressListType;
 native TriSignatureIdType;
 native TriParameterType;
 typedef sequence<TriParameterType> TriParameterListType;
 native TriExceptionType;

 // Timing
 native TriTimerIdType;
 native TriTimerDurationType;

 // Miscellaneous
 native TriFunctionIdType;
 native TriTestCaseIdType;
 native TriStatusType;

 //
 // ***
 // Interfaces
 // ***
 //

 //
 // ***
 // The communication interface (Ref: TRI-Definition: 5.5)
 // ***
 //
 interface triCommunication
 {

 // Reset operation

 // Ref: TRI-Definition 5.5.1
 TriStatusType triSAReset();

 // Connection handling operations

 // Ref: TRI-Definition 5.5.2.1
 TriStatusType triExecuteTestCase(in TriTestCaseIdType testCaseId,
 in TriPortIdListType tsiPortList);

 // Ref: TRI-Definition 5.5.2.2
 TriStatusType triMap(in TriPortIdType compPortId, in TriPortIdType tsiPortId);

 // Ref: TRI-Definition 5.5.2.3
 TriStatusType triUnmap(in TriPortIdType compPortId, in TriPortIdType tsiPortId);

46 ITU-T Rec. Z.144 (03/2006)

 // Message based communication operations

 // Ref: TRI-Definition 5.5.3.1
 TriStatusType triSend(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriMessageType sendMessage);
 // Ref: TRI-Definition 5.5.3.2
 TriStatusType triSendBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriMessageType sendMessage);
 // Ref: TRI-Definition 5.5.3.3
 TriStatusType triSendMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriMessageType sendMessage);

 // Ref: TRI-Definition 5.5.3.4
 void triEnqueueMsg(in TriPortIdType tsiPortId , in TriAddressType SUTaddress,
 in TriComponentIdType componentId, in TriMessageType receivedMessage);

 // Procedure based communication operations

 // Ref: TRI-Definition 5.5.4.1
 TriStatusType triCall(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);
 // Ref: TRI-Definition 5.5.4.2
 TriStatusType triCallBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);
 // Ref: TRI-Definition 5.5.4.3
 TriStatusType triCallMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);

 // Ref: TRI-Definition 5.5.4.4
 TriStatusType triReply(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);
 // Ref: TRI-Definition 5.5.4.5
 TriStatusType triReplyBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);
 // Ref: TRI-Definition 5.5.4.6
 TriStatusType triReplyMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);

 // Ref: TRI-Definition 5.5.4.7
 TriStatusType triRaise(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriSignatureIdType signatureId,
 in TriExceptionType exc);
 // Ref: TRI-Definition 5.5.4.8
 TriStatusType triRaiseBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc);
 // Ref: TRI-Definition 5.5.4.9
 TriStatusType triRaiseMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriSignatureIdType signatureId,
 in TriExceptionType exc);

 // Ref: TRI-Definition 5.5.4.10
 void triEnqueueCall(in TriPortIdType tsiPortId, in TriAddressType SUTaddress,
 in TriComponentIdType componentId, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);

 // Ref: TRI-Definition 5.5.4.11
 void triEnqueueReply(in TriPortIdType tsiPortId, in TriAddressType SUTaddress,
 in TriComponentIdType componentId, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);

 // Ref: TRI-Definition 5.5.4.12
 void triEnqueueException(in TriPortIdType tsiPortId, in TriAddressType SUTaddress,
 in TriComponentIdType componentId, in TriSignatureIdType signatureId,
 in TriExceptionType exc);

 // Miscellaneous operations

 // Ref: TRI-Definition 5.5.5.1
 TriStatusType triSUTactionInformal(in string description);

};

 ITU-T Rec. Z.144 (03/2006) 47

 //
 // ***
 // The platform interface (Ref: TRI-Definition: 5.6)
 // ***
 //
 interface triPlatform
 {

 // Reset Operation

 // Ref: TRI-Definition 5.6.1
 TriStatusType triPAReset();

 // Timer handling operations

 // Ref: TRI-Definition 5.6.2.1
 TriStatusType triStartTimer(in TriTimerIdType timerId,
 in TriTimerDurationType timerDuration);

 // Ref: TRI-Definition 5.6.2.2
 TriStatusType triStopTimer(in TriTimerIdType timerId);

 // Ref: TRI-Definition 5.6.2.3
 TriStatusType triReadTimer(in TriTimerIdType timerId,
 out TriTimerDurationType elapsedTime);

 // Ref: TRI-Definition 5.6.2.4
 TriStatusType triTimerRunning(in TriTimerIdType timerId, out boolean running);

 // Ref: TRI-Definition 5.6.2.5
 void triTimeout(in TriTimerIdType timerId);

 // Miscellaneous operations

 // Ref: TRI-Definition 5.6.3.1
 TriStatusType triExternalFunction(in TriFunctionIdType functionId,
 inout TriParameterListType parameterList,
 out TriParameterType returnValue);

 };
};

48 ITU-T Rec. Z.144 (03/2006)

BIBLIOGRAPHY
– OMG CORBA (V2.2): The Common Object Request Broker: Architecture and Specification, Section 3,

February 1998.

– INTOOL CGI/NPL038 (V2.2): Generic Compiler/Interpreter interface; GCI Interface Specification,
Infrastructural Tools, December 1996.

Printed in Switzerland
Geneva, 2006

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.144 (03/2006) Testing and Test Control Notation version 3 (TTCN-3): Runtime interface (TRI)
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Compliance

	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General structure of a TTCN-3 test system
	4.1 Entities in a TTCN-3 test system
	4.2 Interfaces in a TTCN-3 test system
	4.3 Execution requirements for a TTCN-3 test system

	5 TTCN-3 Runtime Interface and operations
	5.1 Overview of the TRI
	5.2 Error handling
	5.3 Data interface
	5.4 Operation descriptions
	5.5 Communication interface operations
	5.6 Platform interface operations

	6 Java language mapping
	6.1 Introduction
	6.2 Names and scopes
	6.3 Type mapping
	6.4 Constants
	6.5 Mapping of interfaces
	6.6 Optional parameters
	6.7 TRI initialization
	6.8 Error handling

	7 ANSI-C language mapping
	7.1 Introduction
	7.2 Names and scopes
	7.3 Memory management
	7.4 Error handling

	8 Use scenarios
	8.1 First scenario
	8.2 Second scenario
	8.3 Third scenario

	Annex A (normative) IDL Summary
	BIBLIOGRAPHY

