

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.143
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2006)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Testing and Test
Control Notation (TTCN)

 Testing and Test Control Notation version 3
(TTCN-3): Operational semantics

ITU-T Recommendation Z.143

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.143 (03/2006) i

ITU-T Recommendation Z.143

Testing and Test Control Notation version 3 (TTCN-3):
Operational semantics

Summary
This Recommendation defines the operational semantics of TTCN-3 (Testing and Test Control Notation 3). The
operational semantics are necessary to unambiguously interpret the specifications made with TTCN-3. This
Recommendation is based on the TTCN-3 core language defined in ITU-T Rec. Z.140.

Source
ITU-T Recommendation Z.143 was approved on 16 March 2006 by ITU-T Study Group 17 (2005-2008) under the
ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.143 (03/2006)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.143 (03/2006) iii

CONTENTS

 Page
1 Scope ... 1
2 References .. 1
3 Definitions and abbreviations.. 1

3.1 Definitions... 1
3.2 Abbreviations... 1

4 Introduction... 1
5 Structure of this Recommendation ... 2
6 Restrictions ... 2
7 Replacement of short forms .. 2

7.1 Order of replacement steps.. 3
7.2 Replacement of global constants and module parameters .. 3
7.3 Embedding single receiving operations into alt statements... 3
7.4 Embedding stand-alone altstep calls into alt statements... 4
7.5 Replacement of interleave statements.. 4
7.6 Replacement of trigger operations .. 16

8 Flow graph semantics of TTCN-3 .. 17
8.1 Flow graphs ... 17
8.2 Flow graph representation of TTCN-3 behaviour... 22
8.3 State definitions for TTCN-3 modules... 27
8.4 Messages, procedure calls, replies and exceptions.. 35
8.5 Call records for functions, altsteps and test cases ... 37
8.6 The evaluation procedure for a TTCN-3 module ... 38

9 Flow graph segments for TTCN-3 constructs ... 40
9.1 Action statement ... 40
9.2 Activate statement... 40
9.3 Alt statement.. 41
9.4 Altstep call .. 47
9.5 Assignment statement .. 47
9.6 Call operation... 47
9.7 Catch operation... 53
9.8 Check operation.. 54
9.9 Clear port operation... 57
9.10 Connect operation ... 57
9.11 Constant definition .. 58
9.12 Create operation.. 59
9.13 Deactivate statement.. 59
9.14 Disconnect operation ... 61
9.15 Do-while statement.. 62
9.16 Done component operation ... 63
9.17 Execute statement ... 64
9.18 Expression... 67
9.18b Flow graph segment <dynamic-error>... 69
9.19 Flow graph segment <finalize-component-init> .. 70
9.20 Flow graph segment <init-component-scope>... 70
9.21 Flow graph segment <parameter-handling>.. 71
9.22 Flow graph segment <statement-block>... 71
9.23 For statement ... 72
9.24 Function call .. 73
9.25 Getcall operation... 77
9.26 Getreply operation... 78
9.27 Getverdict operation .. 78
9.28 Goto statement ... 79

iv ITU-T Rec. Z.143 (03/2006)

 Page
9.29 If-else statement.. 79
9.30 Label statement... 80
9.31 Log statement... 80
9.32 Map operation .. 81
9.33 Mtc operation ... 81
9.34 Port declaration... 82
9.35 Raise operation... 82
9.36 Read timer operation.. 84
9.37 Receive operation.. 85
9.38 Repeat statement... 88
9.39 Reply operation .. 88
9.40 Return statement ... 90
9.41 Running component operation ... 93
9.42 Running timer operation ... 96
9.43 Self operation ... 97
9.44 Send operation.. 97
9.45 Setverdict operation... 100
9.46 Start component operation .. 100
9.47 Start port operation.. 102
9.48 Start timer operation .. 102
9.49 Stop component operation... 104
9.50 Stop execution statement .. 108
9.51 Stop port operation .. 110
9.52 Stop timer operation .. 110
9.53 System operation .. 111
9.54 Timer declaration.. 111
9.55 Timeout timer operation ... 113
9.56 Unmap operation .. 113
9.57 Variable declaration... 114
9.58 While statement .. 116

10 Lists of operational semantic components.. 116
10.1 Functions and states... 116
10.2 Special keywords .. 118
10.3 Flow graphs of TTCN-3 behaviour descriptions .. 119
10.4 Flow graph segments ... 119

 ITU-T Rec. Z.143 (03/2006) 1

ITU-T Recommendation Z.143

Testing and Test Control Notation version 3 (TTCN-3):
Operational semantics

1 Scope
This Recommendation defines the operational semantics of TTCN-3. This Recommendation is based on the TTCN-3
core language defined in ITU-T Rec. Z.140 [1].

2 References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged
to investigate the possibility of applying the most recent edition of the Recommendations and other references listed
below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] ITU-T Recommendation Z.140 (2006), Testing and Test Control Notation version 3 (TTCN-3): Core
language.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. Z.140 [1] apply.

3.2 Abbreviations

This Recommendation uses the following abbreviations:
ASN.1 Abstract Syntax Notation One
BNF Backus-Nauer Form
IDL Interface Description Language
MTC Master Test Component
SUT System Under Test
TTCN Testing and Test Control Notation

4 Introduction
This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semantics is
very limited.

This operational semantics provides a state-oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructs is described by:

1) using state information to define the preconditions for the execution of a construct; and
2) defining how the execution of a construct will change a state.

The operational semantics is restricted to the meaning of behaviour in TTCN-3, i.e., functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g., send and receive operations, if-else-,
or while- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, interleave statements are short forms for series of nested alt statements and the meaning
of each interleave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of a language is based on an abstract syntax tree of the code that shall be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3

2 ITU-T Rec. Z.143 (03/2006)

behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in a function, altstep, test case
or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphs is straightforward.

NOTE – The mapping of TTCN-3 statements onto flow graphs is an informal step and is not defined by using the BNF rules in
ITU-T Rec. Z.140 [1]. The reason for this is that the BNF rules are not optimal for an intuitive mapping because several static
semantic rules are coded into BNF rules in order to allow static semantic checks during the syntax check.

5 Structure of this Recommendation
This Recommendation is structured into four parts:

1) The first part (see clause 6) describes restrictions of the operational semantics, i.e., issues related to the
semantics, which are not covered by this Recommendation.

2) The second part (see clause 7) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacements in a TTCN-3 module can be
seen as pre-processing step before the module can be interpreted according to the following operational
semantics description.

3) The third part (see clause 8) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

4) The fourth part (see clause 9) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, altsteps, test cases
and module control.

6 Restrictions
The operational semantics only covers behavioural aspects of TTCN-3, i.e., it describes the meaning of statements and
operations. It does not provide:

a) A semantics for the data aspects of TTCN-3. This includes aspects like encoding, decoding and the usage
of data imported from non-TTCN-3 specifications.

b) A semantics for the grouping mechanism. Grouping is related to the definitions part of a TTCN-3
module and has no behavioural aspects.

c) A semantics for the import statement. The import of definitions has to be done in the definitions part of
a TTCN-3 module. The operational semantics handles imported definitions as if they are defined in the
importing module.

d) A semantics for the parameterization of ports.

7 Replacement of short forms
Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:
• lists of module parameter, constant and variable declarations of the same type and lists of timer

declarations;
• stand-alone receiving operations;
• stand-alone altsteps calls;
• trigger operations;

• missing return and stop statements at the end of function and test case definitions;

• missing stop execution statements; and

• interleave statements.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters
and global constants, i.e., constants that are defined in the module definitions part. All references to module parameters
and global constants shall be replaced by concrete values. This means, it is assumed that the value of module parameters
and global constants can be determined before the operational semantics becomes relevant.

 ITU-T Rec. Z.143 (03/2006) 3

NOTE 1 – The handling of module parameters and global constants in the operational semantics will be different from their
handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3 behaviour and is not a guideline
for the implementation of a TTCN-3 compiler.
NOTE 2 – The operational semantics handles parameters and local constants in test components, test cases, functions and module
control like variables. The wrong usage of local constants or in, out and inout parameters has to be checked statically.

7.1 Order of replacement steps

The textual replacements of short forms, global constants and module parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values;
3) embedding stand-alone receiving operations into alt statements;

4) embedding stand-alone altstep calls into alt statements;

5) expansion of interleave statements;

6) replacement of all trigger operations by equivalent receive operations and repeat statements;

7) adding return at the end of functions without return statement, adding self.stop operations at
the end of testcase definitions without a stop statement;

8) adding stop at the end a module control part without stop statement.
NOTE – Without keeping this order of replacement steps, the result of the replacements would not represent the defined
behaviour.

7.2 Replacement of global constants and module parameters

Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace all references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements

TTCN-3 receiving operations are: receive, trigger, getcall, getreply, catch, check, timeout, and
done.

NOTE – The operations receive, trigger, getcall, getreply, catch and check operate on ports and they allow
branching due to the reception of messages, procedure calls, replies and exceptions. The operations timeout and done are not
real receiving operations, but they can be used in the same manner as receiving operations, i.e., as alternatives in alt statements.
Therefore, the operational semantics handles timeout and done like receiving operations.

A receiving operation can be used as stand-alone statement in a function, an altstep or a test case. The timeout
operation can also be used as stand-alone statement in module control. In such a case the receiving operation is
considered to be shorthand for an alt statement with only one alternative defined by the receiving operation. For the
operational semantics an alt statement in which the receiving statement is embedded shall replace all stand-alone
occurrences of receiving operations.

 EXAMPLE:
 // The stand-alone occurrence of
 :
 MyCL.trigger(MyType:?);
 :

 // shall be replaced by
 :
 alt {
 [] MyCL.trigger (MyType:?) { }
 }
 :

 // or
 :

4 ITU-T Rec. Z.143 (03/2006)

 MyPTC.done;
 :

 // shall be replaced by
 :
 alt {
 [] MyPTC.done { }
 }
 :

7.4 Embedding stand-alone altstep calls into alt statements

TTCN-3 allows to call altsteps like functions in functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an altstep is given by an alt statement with one branch only that calls the altstep. The alt
statement is responsible for the snapshot that is evaluated within the altstep and for the invocation of the default
mechanism if none of the alternatives in the altstep can be chosen.

NOTE – An altstep used in module control can only include alternatives with timeout operations and an else branch.

 EXAMPLE:
 // The stand-alone occurrence of
 :
 myAltstep(MyPar1Val);
 :

 // shall be replaced by
 :
 alt {
 [] myAltstep(MyPar1Val) { }
 }
 :

7.5 Replacement of interleave statements

The meaning of an interleave statement is defined by its replacement by a series of nested alt statements that has
the same meaning. The algorithm for the construction of the replacement for an interleave statement is described in
this clause. The replacement shall be made on a syntactical level.

Within an interleave statement it is not allowed:

1) to use the control transfer statements for, while, do-while, goto, activate, deactivate,
stop, repeat and return;

2) to call altsteps;
3) to call user-defined functions which include communication operations;
4) to guard branches of the interleave statement with Boolean expressions; and

5) to specify else branches.

Due to these restrictions, all not mentioned stand-alone statements (e.g., assignment, log, send or reply), blocking
call operations and the compound statements interleave, if-else and alt can be used within an interleave
statement.

NOTE 1 – Blocking call operations and if-else statements can be treated like stand-alone statements if they have no
embedded alt statements. In case of embedded alt statements, the alternatives contribute to the interleave statement and
need a special handling. For simplicity, the algorithm below does not distinguish between these two cases.
NOTE 2 – Non-blocking call operations are also allowed in interleave statements, they are considered to be stand-alone
statements.

The algorithm described in this clause only works for interleave statements without embedded interleave
statements. In case of an interleave statement that has embedded interleave statements, the embedded
interleave statements have to be replaced before the algorithm can be applied.

NOTE 3 – Due to the restrictions 1-5, it is always possible to find finite replacements for nested embeddings of interleave
statements.

The replacement algorithm works on a graph representation of an interleave statement and transforms it into a
semantically equivalent tree structure describing a series of nested alt statements. For this, a graph representation of
stand-alone statements, the compound statements if-else, blocking call, alt and interleave is needed.

 ITU-T Rec. Z.143 (03/2006) 5

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of nodes connected by a flow line. This is shown in Figure 1.

P1.send(MyVar);

P1.send(MyVar);

a) TTCN-3 stand-alone statement b) graph representation of a

P1.send(MyVar);
x := 7 + 5;

P1.send(MyVar);

x := 7 + 5;

c) Sequence of TTCN-3 stand-alone statements d) graph representation of c

Figure 1/Z.143 – Graph representation of TTCN-3 stand-alone statements

The graph representation of an if-else statement is shown in Figure 2. An if-else statement is represented by an
IF node with two flow lines connected to the first statement in the two alternatives. An if-else statement without
ELSE branch is represented in the same manner, if there are statements following the if-else statement. In this case
the flow line representing the else branch is connected to the first statement following the if-else statement. An
if-else statement without ELSE branch and without following statements is represented by an IF node with one flow
line only.

NOTE 4 – The inscriptions on the flow lines in Figure 1 are introduced for readability purposes only. The algorithm only uses the
relation expressed by the flow line and not the inscription.

if (x < 7) {
 P1.send(MyVar);
}
else {
 x := 7 + 5;
}
x := x * 2;

IF

P1.send(MyVar);

(x < 7)

x := 7 + 5;

ELSE

x := x * 2;

a) TTCN-3 if-else statement b) Graph representation of a

if (x < 7) {
 P1.send(MyVar);
}
x := x * 2;

IF

P1.send(MyVar);

(x < 7)
ELSE

x := x * 2;

c) TTCN-3 if-else statement without else branch d) Graph representation of c

Figure 2/Z.143 – Graph representation of TTCN-3 if-else statements

6 ITU-T Rec. Z.143 (03/2006)

The graph representation of a blocking call statement is shown in Figure 3. A blocking call statement is represented
by a BLOCKING-CALL node with flow lines connected to the getreply and catch statements of the different
alternatives.

P1.call (MyProc:{-, true}, 20E-3) {
 [] P1.getreply(MyProc:{?,-} {
 setverdict(pass);
 }
 [] P1.catch(MyProc, MyException) {}
 [] P1.catch(timeout) {
 setverdict(fail);
 }
}
x := 7 + 5;

a) TTCN-3 blocking call statement

BLOCKING CALL

P1.call(MyProc:{-,true}, 20E-3)

P1.getreply(MyProc:{?,-})

x := 7 + 5;

setverdict(pass);

P1.catch(MyProc, MyException)

P1.catch(timeout)

setverdict(fail);

b) Graph representation of a

Figure 3/Z.143 – Graph representation of a TTCN-3 blocking call statement

 ITU-T Rec. Z.143 (03/2006) 7

The graph representation of an alt statement is shown in Figure 4. An alt statement is represented by an alt-node
with several flow lines connected to the different alternatives.

alt {
 [x<5] P1.receive(MyMessageOne} {
 setverdict(pass);
 }
 [] P1.receive(MyMessageTwo) {}
 [] T1.timeout {
 setverdict(fail);
 }
}
x := 7 + 5;

a) TTCN-3 alt statement

ALT

P1.receive(MyMessageOne)

x := 7 + 5;

setverdict(pass);

P1.receive(MyMessageTwo)

T1.timeout

setverdict(fail);

[x<5]

b) Graph representation of a

Figure 4/Z.143 – Graph representation of a TTCN-3 alt statement

8 ITU-T Rec. Z.143 (03/2006)

In general, the graph representations of if-else, blocking call and alt statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representations. This is shown in Figure 5
for the alt statement in Figure 4. The algorithm described below will construct such tree representations.

alt {
 [x<5] P1.receive(MyMessageOne} {
 setverdict(pass);
 x := 7 + 5;
 }
 [] P1.receive(MyMessageTwo) {
 x := 7 + 5;
 }
 [] T1.timeout {
 setverdict(fail);
 x := 7 + 5;
 }
}

a) TTCN-3 alt statement that is semantically equivalent to Figure 4-a

ALT

P1.receive(MyMessageOne)

x := 7 + 5;

setverdict(pass);

P1.receive(MyMessageTwo)

T1.timeout

setverdict(fail);

[x<5]

x := 7 + 5; x := 7 + 5;

b) Graph representation of a (semantically equivalent to Figure 4-b)

Figure 5/Z.143 – Graph representation of a TTCN-3 alt statement

 ITU-T Rec. Z.143 (03/2006) 9

An interleave statement can be described by a graph that consists of a set of directed sub-graphs, each of which is
constructed by means of stand-alone statements and the compound statements if-else, blocking call and alt. The
directed sub-graphs describe the interleaved flows of control. An example is shown in Figure 6. The node inscriptions
in Figure 6-b refer to the labels of the TTCN-3 statements in Figure 6-a.

interleave {
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 }

 }
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 }
 [] Comp1.done { } // L8
 }
 x := 7 + 5; // L9
 }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)

 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 }
 }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 }
 }
 }
 }
}

a) TTCN-3 interleave statement

L1

ALT

L2

L3

L4

L6

L7

L8

L5

IF

ALT

L10 L13

BC

ALT

L11 L12

L14

L9

b) Graph representation of a

Figure 6/Z.143 – Graph representation of a TTCN-3 interleave statement

10 ITU-T Rec. Z.143 (03/2006)

Formally, an interleave statement can be described by a graph GI = (St, F) where:

St is the set of allowed TTCN-3 statements; and

F ⊆ (St St) describes the flow relation.

The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.

For the construction algorithm the following functions need to be defined:
• The REACHABLE function returns all statements that are reachable from a statement s in a

graph GI = (St, F):

 REACHABLE (s, GI) = { s } ∪
 { stmt | stmt ∈ St ∧ ∃(s = x1, x2, ... , xn = stmt) where xi ∈ St,
 i ∈ {1...n} ∧ (xi, xi+1)∈ F}

• The SUCCESSORS function returns all successors of a statement s in a graph GI = (St, F):

 SUCCESSORS (s, GI) = { stmt | stmt ∈ St ∧ (s, stmt) ∈ F}
• The ENABLED function returns all statements of a graph GI = (St, F) which have no predecessors:

 ENABLED (GI) = { stmt | stmt ∈ St ∧ (F ∩ (S {s}) = ∅)}
• The KIND function returns the kind or type of a TTCN-3 statement in a graph representing an

interleave statement.

• The DISCARD function deletes a statement s or a set of statements S from a graph GI = (St, F) and
returns the resulting graph GI'= (St', F'):
For single nodes:
 DISCARD (s, GI) = GI' where: GI' = (St', F'), with St' = St\{s} and
 F' = F ∩ (St\{s} St\{s}).
For sets of nodes:

 DISCARD (S, GI) = GI' where: GI' = (St', F'), with St' = St\S and F' = F ∩ (St\S St\S).
• The RECEIVING function takes a set of statements of a graph GI and returns all receiving statements:

 RECEIVING (S) = { stmt | stmt ∈ St ∧ KIND(stmt) ∈ {receive, trigger, getcall, getreply, catch,
check, done, timeout}}

• The RANDOM function selects randomly an element s from a given set S and returns s.

 RANDOM (S) = s where s ∈ S

The construction algorithm (see Figure 7) of the tree is a recursive procedure where in each recursive call the successor
nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

 ITU-T Rec. Z.143 (03/2006) 11

CONSTRUCT-SUCCESSORS (statementType *predecessor, graphType GI) {
 // - statementType refers to the type of a node of the tree that is constructed
 // - *predecessor refers to the last node that has been created
 // - graphType denotes type of the graph of TTCN-3 statements
 // - GI is called by value and refers to the subgraph consisting of all remaining TTCN-3
 // statements that have to be taken into consideration

 var graphType myGraph;
 var statementType i, myStmt;
 var statementType *newStmt, *firstInBranch; // pointers for new statement nodes in the
 // tree that is constructed recursively

 // Retrieving sets of TTCN-3 statements that have no predecessors in 'GI'
 var statementSet enabStmts := ENABLED(GI); // all statements without predecessor
 var statementSet enabRecStmts := RECEIVING(enabStmts); // receiving statements in 'enabStmts'
 var statementSet enabNonRecStmts := enabStmts\enabRecStmts;
 // non receiving statements in 'enabStmts'

 if (GI.St == ∅) { // We assume that GI.St refers to the set of statements in GI
 return; // No statements are left, termination criterion of Recursion
 }
 elseif (enabNonRecStmts != ∅) { // Handling of non receiving statements in 'enabStmts'

 myStmt := RANDOM(enabNonRecStmts);
 // There can only be one statement in 'enabNonRec', because the Algorithm
 // continues the construction until there is a branch that contributes to
 // the interlave statement.
 newStmt := create(myStmt, predecessor);
 // Creation of a new tree node representing 'myStmt' in the tree
 // and update of pointers in 'newStmt' and 'predecessor'.

 if (KIND(myStmt) == IF || KIND(myStmt) == BLOCKING_CALL) {
 for each i in SUCCESSORS(myStmt, GI) {

 firstInBranch := create(i, newStmt);
 // Creation of a second node for the first statement of in a branch due to
 // an if-else statement.
 // Note, this create statement will be used to create tree nodes
 // representing the receiving statements in blocking call operations.

 myGraph := DISCARD({i, myStmt} ∪ REACHABLE(myStmt, GI)\REACHABLE(i, GI))
 // Removal of i, myStmt and all statements that are reachable from
 // myStmt but not reachable from i. The latter considers the branching of
 // a flow of control in a subgraph of GI.

 CONSTRUCT-SUCCESSORS(firstInBranch, myGraph); // NEXT RECURSION STEP
 }
 }
 elseif (KIND(myStmt) == ALT) {
 for each (i in SUCCESSORS(myStmt, GI) {

 CONSTRUCT-SUCCESSORS(mystmt, DISCARD(REACHABLE(myStmt, GI)\REACHABLE(i, GI)));
 // NEXT RECURSION STEP, the DISCARD(REACHABLE(myStmt, GI)\REACHABLE(i, GI))
 // argument considers the branching of a flow of control due to different
 // receiving events.
 }
 }
 else { // mystmt is a stand-alone statement
 CONSTRUCT-SUCCESSORS(newSonNode, DISCARD(myStmt, GI));
 // NEXT RECURSION STEP
 }
 }
 else { // Handling of receiving events that interleave
 if (KIND(predecessor) != ALT) { // an alt node is missing and has to be created, if the
 // interleaving is not influenced by an embedded alt statement
 predecessor := create(ALT, predecessor);
 }

 for each i in enabRecStmts) {
 newStmt := create(i, predecessor); // New tree node
 CONSTRUCT-SUCCESSORS(newStmt, DISCARD(i, GI)); // NEXT RECURSION STEP(S)
 }
 }
}

Figure 7/Z.143 – Replacement algorithm for TTCN-3 interleave statements

12 ITU-T Rec. Z.143 (03/2006)

Initially, the CONSTRUCT-SUCCESSORS function (see Figure 7) will be called with a root node of an empty tree and
the graph of TTCN-3 statements describing the interleave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to the interleave statement shown in Figure 6 leads
to the tree shown in Figure 8. The labels refer to the statements in Figure 6-a. Multiple labels are the result of the
duplication of code. The TTCN-3 code that corresponds to the tree in Figure 8 is shown in Figure 9.

NOTE 5 – The example for the application of the algorithm in Figure 7 (see Figures 6, 8 and 9) is very comprehensive. This
example is provided in order to show most of the special situations, i.e., branching and joining of flow lines, an embedded
alt statement, a blocking call statement and an if-else statement.

 ITU-T Rec. Z.143 (03/2006) 13

L1

ALT

L5 L4

ALT

L6

L7

L8

L5

IF

ALT

L9

L9

L10 L13

BC

ALT

L11 L12

L14

L2

L3

ALT

L6

L7

L8

L5

IF

ALT

L10 L13

BC

ALT

L11 L12

L14 L9

L9 IF

L8

ALT

L9

L6

L7

L9

L2

L3

L4

ALT

L2

L3

L4

ALT

L4 L2

L3

L6

L7

L8

ALT

L9

L9

L6

L7

L8

ALT

L9

L9

BC

L10

ALT

L2

L3

L4

ALT

L13

L14

L6

L7

L8

L9

L9

ALT

L1

ALT

L2

L3

L4

ALT

L1

ALT

L2

L3

L4

L6

L7

L8

L9

L9

ALT

L2

L3

L6

L7

L8

L9

L9

ALT

L4

L5

IF

ALT

L10

BC

ALT

L11 L12

ALT

L1

ALT

L2

L3

L4

L13

L14

ALT

L1

ALT

L2

L3

L4

ALT

L1

ALT

L2

L3

L4

L1

ALT

L2

L3

L4 L11 L12

ALT

L11 L12

ALT

L11 L12

ALT

L2

L3

L4

ALT

L2

L3

L4

ALT

L2

L3

L4 L11 L12

ALT

L11 L12

ALT

L11 L12

ALT

L2

L3

L4

ALT

L2

L3

L4

Figure 8/Z.143 – Result of applying the algorithm in Figure 7 to the interleave statement in Figure 6

14 ITU-T Rec. Z.143 (03/2006)

alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 } } } } } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 } } } } } }
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }
 [] T1.timeout { // L4
 alt { // ALT

 ITU-T Rec. Z.143 (03/2006) 15

 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P2.receive(M5) { // L11
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] P2.receive(M6) { // L12
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } } } } }
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }
 [] T1.timeout { // L4
 alt { // ALT

16 ITU-T Rec. Z.143 (03/2006)

 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { // L11
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P2.receive(M6) { // L12
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P2.receive(M5) { // L11
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] P2.receive(M6) { // L12
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } } } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
} } } } } } } }

Figure 9/Z.143 – Semantically equivalent TTCN-3 code for the interleave statement in Figure 6

7.6 Replacement of trigger operations

The trigger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of the trigger operation can be described by its replacement with two receive operations and a
goto statement. The operational semantics assumes that this replacement is done on the syntactical level.

 ITU-T Rec. Z.143 (03/2006) 17

 EXAMPLE 1:
 // The following trigger operation ...

 alt {
 [] MyCL.trigger (MyType:?) { }
 }

 // shall be replaced by ...

 alt {
 [] MyCL.receive (MyType:?) { }
 [] MyCL.receive {
 repeat
 }
 }

If the trigger statement is used in a more complex alt statement, the replacement is done in the same manner.

 EXAMPLE 2:
 // The following alt statement includes a trigger statement ...

 alt {
 [] PCO2.receive {
 stop;
 }
 [] MyCL.trigger (MyType:?) { }
 [] PCO3.catch {
 setverdict(fail);
 stop;
 }
 }

 // which will be replaced by

 alt {
 [] PCO2.receive {
 stop;
 }
 [] MyCL.receive (MyType:?) { }
 [] MyCL.receive {
 repeat;
 }
 [] PCO3.catch {
 setverdict(fail);
 stop;
 }
 }

8 Flow graph semantics of TTCN-3
The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause, flow graphs are
introduced (see 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, altsteps, functions
and component type definitions is explained (see 8.2), module and component states for the description of the execution
states of a TTCN-3 module are defined (see 8.3), the handling of messages, remote procedure calls, replies to remote
procedure calls and exceptions is described (see 8.4) and the evaluation procedure of module control and test cases is
explained (see 8.6).

8.1 Flow graphs

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a flow graph describes
the possible flow of control during the execution of a represented behaviour description.

18 ITU-T Rec. Z.143 (03/2006)

8.1.1 Flow graph frame

A flow graph shall be put into a frame defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refers to the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in Figure 10.

flow graph
MySimpleFlowGraph

inscription

Figure 10/Z.143 – A simple flow graph

8.1.2 Flow graph nodes

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.2.1 Start nodes

Start nodes describe the starting point of a flow graph. A flow graph shall only have one start node. A start node is
shown in Figure 11-a.

a) Flow graph start node b) Flow graph end node

Figure 11/Z.143 – Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see 8.1.2.3) and reference nodes (see 8.1.2.4) that have no successor nodes shall be connected to an
end node to indicate that they describe the last action of a path through a flow graph. An end node is shown in
Figure 11-b.

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e., it is executed in one step. A basic node has a type and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in Figure 12.

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is allowed to assign explicit values in basic nodes by using assignment ':='. An example is shown in
Figure 12-b.

a) b)

Figure 12/Z.143 – Basic nodes with attributes

 ITU-T Rec. Z.143 (03/2006) 19

8.1.2.4 Reference nodes

Reference nodes refer to flow graph segments (see 8.1.4) that are sub-flow graphs. The meaning of a reference node is
defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in Figure 13-a.

segment-reference

segment-reference1

OR
segment-reference2

OR
segment-reference3

a) Single reference node b) OR combination of three reference nodes

Figure 13/Z.143 – Reference node

8.1.2.4.1 OR combination of reference nodes

In some cases, several flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see Figure 13-b). In the actual flow graph representing the module control, a
test case or a function, one alternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases, the same kind of reference node may occur zero, one or more times in a flow graph. In regular
expressions, the possible repetition of parts of a regular expression is described by using the operator symbols '+' (one
or more repetitions) and '*' (zero or more repetitions). As shown in Figure 14, these operators have been adopted to flow
graphs by introducing double-framed reference nodes with associated operator symbols. A single flow (see 8.1.3) line
shall replace a reference node, in case of zero occurrences (using a double-framed reference node with '*'-operator).

segment-reference

+
segment-reference

*

Figure 14/Z.143 – Repetition of reference nodes

An upper bound of possible repetitions of a reference node can be given in form of an integer number in round
parenthesis following the '*' or '+' symbol in the double-framed reference node. The segment reference shown in
Figure 15 may occur from zero up to 5 times.

segment-reference

*(5)

Figure 15/Z.143 – Restricted repetition of a reference node

20 ITU-T Rec. Z.143 (03/2006)

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown below:

 false

true

which is identical to

To support the joining of several flow lines into one flow line on a graphical level, a special join node is introduced.
The join node and an example for its usage are shown below:

 join node:

usage of join node:

Drawing long flow lines in big diagrams as it is, for example, necessary to model the TTCN-3 constructs goto and
label, is awkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown
below.

 Incoming flow line with label: in-label

Outgoing flow line with label: out-label

An outgoing flow line with a label is connected with an incoming flow line with a label, if the labels are identical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
this is considered to be a join of lines to the incoming flow line with an identical label.

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

As shown in Figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
There is only one unlabelled incoming and one or none unlabelled outgoing flow lines. In addition, there might exist
several labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statements goto and alt.

Flow graph segments are put into a frame and the name of the flow graph segment shall follow the keyword segment
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

 ITU-T Rec. Z.143 (03/2006) 21

segment-ref

segment SegmentName

inscription…

…

…

…

…
LI1
…
LIn

LO1 LO2 … LOm

Figure 16/Z.143 – Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in Figure 17.

 This is a comment in
a comment symbol

inscription

Comment related to
flow line

Comment related to
basic node

a) Comment symbol b) Usage of comment symbols

Figure 17/Z.143 – Flow graph representation of comments

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e., all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT function is
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef.NEXT(bool) := successorNodeRef where:
• actualNodeRef is the reference of a basic flow graph node;
• successorNodeRef is the reference of a successor node of the node referenced by actualNodeRef;
• bool is a Boolean specifying whether the true or the false successor is returned

(see 8.1.3).

22 ITU-T Rec. Z.143 (03/2006)

8.2 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e., for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
c) function definitions;
d) altstep definitions;
e) component type definitions.

The module control specifies the test campaign, i.e., the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in Figures 18 to 22 and the flow graph segments presented in clause 8 are only templates.
They include placeholders for information that has to be provided in order to produce a concrete flow graph or flow
graph segment. The placeholders are marked with '<' and '> parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:
1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type

definitions a concrete flow graph segment is constructed.
2) For the module control and for each test case, altstep, function and component type definition a concrete

flow graph (with reference nodes) is constructed.
3) In a stepwise procedure all reference nodes in the concrete flow graphs are replaced by corresponding

flow graph segment definitions until all flow graphs only include one start node, end nodes and basic
flow graph nodes.

NOTE 1 – Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3 behaviour is
based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in a flow graph, i.e., parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2 – An unconnected part of a flow graph is a result of the mechanical replacement procedure. For the construction of an
optimal flow graph representation the different combinations of TTCN-3 statements also has to be taken into consideration.
However, the goal of this Recommendation is to provide a correct and complete semantics, not an optimal flow graph
representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 module is:
 module <identifier> <module-definitions-part> control <statement-block>

For the flow graph behaviour representation the following information is relevant only:
 module <identifier> <statement-block>

This is comparable to a function definition and therefore the flow graph representation of module control is similar to
the flow graph representation of a function (see 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE – The meaning of the module definitions part is outside the scope of this operational semantics. Module parameters are
defined as global constants at run-time. References to module parameters have to be replaced by their concrete values on a
syntactical level (see 8.3).

 ITU-T Rec. Z.143 (03/2006) 23

The scheme of the flow graph representation of the module control is shown in Figure 18. The flow graph name
control identifies the flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <stop-entity-op> covers the case
where no explicit stop operation is specified, i.e., the operational semantics assumes that a stop operation is
implicitly added.

flow graph control

<init-component-scope>

// The module control behaves like a
// component and therefore, its scope
// has to be initialized.

<statement-block>

// The body of the module control
// specifies the statements to be
// executed.

*(1)

<stop-entity-op>

// For the case that an explicit stop
// operation is missing at the end of
// module control

Figure 18/Z.143 – Flow graph representation of module control

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definition is:
 testcase <identifier> (<parameter>) <testcase-interface> <statement-block>

The <testcase-interface> above refers to the (mandatory) runs on and the (optional) system clauses in the
test case definition. The flow graph description of a test case describes the behaviour of the MTC. The information
provided by the <testcase-interface> is not relevant for the MTC. It will be used by the execute statement,
but needs not to be represented in the flow graph representation of a test case. Thus, for the flow graph representation
the following information is relevant only:
 testcase <identifier> (<parameter>) <statement-block>

24 ITU-T Rec. Z.143 (03/2006)

The scheme of the flow graph representation of a test case is shown in Figure 19. The flow graph name
<identifier> refers to the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <stop-entity-op> covers the case
where no explicit stop operation for the MTC is specified, i.e., the operational semantics assumes that a stop
operation is implicitly added.

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

<statement-block>

// The body of the test case specifies
// the statements to be executed
// by the MTC.

*(1)

<stop-mtc>

// For the case that an explicit stop
// operation is missing at the end of
// the test case

Figure 19/Z.143 – Flow graph representation of test cases

8.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 function is:
 function <identifier> (<parameter>) [<function-interface>] <statement-block>

The optional <function-interface> above refers to the runs on and the return clauses in the function
definition. The information provided by the <function-interface> is not relevant for the behaviour description.
It will be used for static semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph
representation the following information is relevant only:
 function <identifier> (<parameter>) <statement-block>

The semantics will access flow graphs representing functions by using the function names.

 ITU-T Rec. Z.143 (03/2006) 25

The scheme of the flow graph representation of a function is shown in Figure 20. The flow graph name
<identifier> refers to the name of the represented function. The reference node <return-without-value>
covers the case where no explicit return statement is specified, i.e., the operational semantics assumes that a
return statement is implicitly added.

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

<statement-block>

// The body of the function specifies
// the statements to be executed
// by the component.

*(1)

<return-without-value>

// For the case that an explicit
// return statement is missing at the
// end of the function.

Figure 20/Z.143 – Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 altstep is:
altstep <identifier> (<parameter>) [<altstep-interface>]
 <constant-variable-timer-declarations>
 { <receiving-branch> | <else-branch> }*

The optional <altstep-interface> above refers to the runs on clause in the altstep definition. The information
provided by the <altstep-interface> is not relevant for the behaviour description. It will be used for static
semantics checks, but needs not to be represented in the flow graph. Thus, for the flow graph representation the
following information is relevant only:
altstep <identifier> (<parameter>) [<altstep-interface>]
 <constant-variable-timer-declarations>
 { <receiving-branch> }*
 [<else-branch>]

NOTE – Only the alternatives up to the first else branch and the first else branch are taken into consideration. Branches following
the first else branch are unreachable.

The semantics will access flow graphs representing altsteps by using the altstep names.

26 ITU-T Rec. Z.143 (03/2006)

The scheme of the flow graph representation of an altstep is shown in Figure 21. The flow graph name
<identifier> refers to the name of the represented altstep. The reference node
<successful-altstep-termination> covers the case where the altstep terminates after the selection and
execution of an alternative. The reference node <unsuccessful-altstep-termination> specifies the case
where no alternative of the altstep has been executed.

*
// Constants, variables and timers
// may be declared and initialized

<constant-definition>
OR

<variable-declaration>
OR

<timer-declaration>

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

*(1)

<return-without-value>

// For case where no else branch is
// specified and none of the
// alternatives can be selected.

// Alternative
// branches

<receiving-branch> OR
<altstep-call-branch>

OR <else-branch>

+

Figure 21/Z.143 – Flow graph representation of altsteps

8.2.6 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definition is:
 type component <identifier> <port-constant-variable-timer-declarations>

The semantics will access flow graphs representing types by using the component type names.

 ITU-T Rec. Z.143 (03/2006) 27

The scheme of the flow graph representation of a component type definition is shown in Figure 22. The flow graph
name <identifier> refers to the name of the represented component type.

 flow graph <identifier>

<finalise-component-init>

// Ports are created

// Constants, variables and timers
// are declared and initialized

// The 'father' component waits for the
// completion of the component creation,
// i.e., is in a 'blocking' state.

// The created component gives the
// control back to the 'father' component.

// The new component goes into a
// 'blocking' state and waits to be
// started.

<port-declaration>
OR

<constant-definition>
OR

<variable-declaration>
OR

<timer-declaration>

*

<init-component-scope>

// The component scope is initialized

Figure 22/Z.143 – Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of a flow graph the following function is required:
 The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of a flow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names and to component
type definitions.

8.3 State definitions for TTCN-3 modules

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of test components and ports. Module
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

8.3.1 Module state

As shown in Figure 23 a module state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES, MTC,
TC-VERDICT, DONE and SNAP-ACTIVE. ALL-ENTITY-STATES describes the state of the module control and during
the execution of a test case the states of the instantiated test components. ALL-PORT-STATES, the MTC reference and
the TC-VERDICT are only relevant during test case execution. ALL-PORT-STATES describes the states of the different
ports. MTC provides a reference to the Main Test Component (MTC), TC-VERDICT stores the actual global test verdict
of a test case, DONE is a list of all stopped test components during test case execution and SNAP-ACTIVE is used as
part of the snapshot of the MTC. SNAP-ACTIVE stores the number of active test components when the MTC takes a
snapshot. It is used for the evaluation of the operations all component.done and all component.running.

NOTE 1 – The number of updates of TC-VERDICT is identical to the number of test components that have terminated.

28 ITU-T Rec. Z.143 (03/2006)

The behaviour of module control (M-CONTROL in Figure 23) is handled like a normal test component and its state is
the first element in ALL-ENTITY-STATES of a module state.

ALL-ENTITY-STATES ALL-PORT-STATES MTC TC-
VERDICT DONE SNAP-

ACTIVE
 M-CONTROL ES1 ... ESn P1 … Pn

Figure 23/Z.143 – Structure of a module state

NOTE 2 – Port states may be considered to be part of the entity states. By connect and map ports are made visible for other
components and therefore, this operational semantics handles ports on the top level of a module state.

8.3.1.1 Accessing the module state

The MTC, TC-VERDICT and SNAP-ACTIVE are parts of a module state and handled like global variables, i.e., the
keywords MTC and TC-VERDICT can be used to retrieve and to change the values of the corresponding module state.

NOTE 1 – There only exists one module state during the interpretation of a TTCN-3 module. Therefore the keywords MTC and
TC-VERDICT can be considered as globally unique identifiers for the evaluation procedure.

For the handling of the lists ALL-ENTITY-STATES, ALL-PORT-STATES and DONE the list operations add, append,
delete, member, first, length, next, random and change can be used. They have the following meaning:

• myList.add(item) adds item as first element into the list myList;
• myList.append(item) appends item as last element into the list myList;
• myList.delete(item) deletes item from the list myList;
• myList.member(item) returns true if item is an element of the list myList, otherwise false;

• myList.first() returns the first element of myList;
• myList.length() returns the length of myList;
• myList.next(item) returns the element that follows item in myList, or NULL if item is the last element in

myList;
• MyList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean

condition <condition> or NULL, if no element of myList fulfils <condition>;

• MyList.change(<operation>) allows to apply <operation> on all elements of myList.
NOTE 2 – The operations random and change are not common list operations. They are introduced to explain the meaning of the
keywords all and any in TTCN-3 operations.

8.3.2 Entity states

Entity states are used to describe the actual states of module control and test components. In the module state, entity
states are handled in the list ALL-ENTITY-STATES. The structure of an entity state is shown in Figure 24.

<identifier> STATUS CONTROL

-STACK
DEFAULT-

LIST
DEFAULT-
POINTER

VALUE-
STACK

E-
VERDICT

TIMER-
GUARD

DATA-
STATE

TIMER-
STATE

SNAP-
DONE

Figure 24/Z.143 – Structure of an entity state

The <identifier> is a unique identifier of an entity, i.e., module control of test component, in the test system. Such
unique identifiers are created implicitly for the module control, the mtc and the test system when a module starts
execution or a test case is executed by means of the execute statement. The identifier is used to identify and address
entities in the test system, e.g., in case of send operations with to clauses or receive operations with from clauses.

The STATUS describes whether the module control or a test component is ACTIVE, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of a test case. Test components may be blocked during the
creation of other test components, i.e., during the execution of a create operation. The status SNAPSHOT indicates
that the component is active, but in the evaluation phase of a snapshot. The status REPEAT denotes that the component
is active and in an alt statement that should be re-evaluated due to a repeat statement.

The CONTROL-STACK is a stack of flow graph node references. The top element in CONTROL-STACK is the flow
graph node that has to be interpreted next. The stack is required to model function calls in an adequate manner.

 ITU-T Rec. Z.143 (03/2006) 29

The DEFAULT-LIST is a list of activated defaults, i.e., it is a list of pointers that refer to the start nodes of activated
defaults. The list is in the reverse order of activation, i.e., the default that has been activated first is the last element in
the list.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK is a stack of values of all possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the mtc operation will be pushed onto the VALUE-STACK. In addition to the values of all data types known in a
module we define the special value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used
to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of a test component. The E-VERDICT is ignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as a timer binding (see 8.3.2.4 and Figure 28).

The DATA-STATE is considered to be a list of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function calls. Each list in the list of lists of variable bindings describes the known variables and
their values in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of variable
bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in 8.3.2.2.

The TIMER-STATE is considered to be a list of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function calls. Each list in the list of lists of timer bindings describes the known timers and their
status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of timer states
from the timer state. A description of the timer state part of an entity state can be found in 8.3.2.4.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e., SNAP-DONE is a list of component identifiers of stopped
components.

8.3.2.1 Accessing entity states

The <identifier> is the unique identifier of an entity state, which can be used to access the component represented by
entity state and the different parts of the entity state.

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variables that are globally visible, i.e., the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved
or changed by using the "dot" notation, e.g., myEntity.STATUS, myEntity.DEFAULT-POINTER and
myEntity.E-VERDICT, where myEntity refers to an entity state.

NOTE – In the following, we assume that we can use the "dot" notation by using references and unique identifiers. For example,
in myEntity.STATUS, myEntityState may be pointer to an entity state or be the value of the <identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
'dot' notation myEntity.CONTROL-STACK, myEntity.DEFAULT-LIST and myEntity.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

• myStack.push(item) pushes item onto myStack;
• myStack.pop() pops the top item from myStack;
• myStack.top() returns the top element of myStack or NULL if myStack is empty;

• myStack.clear() clears myStack, i.e., pops all items from myStack;
• myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operations is defined in 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
• NEW-ENTITY (entityIdentifier, flow-graph-node-reference);

30 ITU-T Rec. Z.143 (03/2006)

creates a new entity state and returns its reference. The components of the new entity state have the following values:
• <identifier> is set to entityIdentifier and shall be a globally unique identifier;
• STATUS is set to ACTIVE;

• flow-graph-node-reference is the only (top) element in CONTROL-STACK;
• DEFAULT-LIST is an empty list;
• DEFAULT-POINTER has the value NULL;

• VALUE-STACK is an empty stack;
• E-VERDICT is set to none;

• TIMER-GUARD is a new timer binding (see 8.3.2.4) with name GUARD, status IDLE and no default
duration;

• DATA-STATE is an empty list;
• TIMER-STATE is an empty list;
• SNAP-DONE is an empty list.

During the traversal of a flow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:
myEntity.NEXT-CONTROL(myBool) {
 successorNode := myEntity.CONTROL-STACK.NEXT(myBool).top();
 myEntity.CONTROL-STACK.pop();
 myEntity.CONTROL-STACK.push(successorNode);
}

8.3.2.2 Data state and variable binding

As shown in Figure 25, the data state DATA-STATE of an entity state is a list of lists of variable bindings. Each list of
variable bindings defines the variable bindings in a certain scope unit. Adding a new list of variable bindings
corresponds to entering a new scope unit, e.g., a function is called. Deleting a list of variable bindings corresponds to
leaving a scope unit, e.g., a function executes a return statement.

VariableBinding1

VariableBindingn

VariableBinding1

VariableBindingx

root

Figure 25/Z.143 – Structure of the DATA-STATE part of an entity state

The structure of a variable binding is shown in Figure 26. A variable has a name, a <location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> is a unique identifier of the storage location of the
value of the variable. The VALUE part of a variable binding describes the actual value of a variable.

NOTE – Unique location identifiers shall be provided automatically when a variable is declared.

VAR-NAME <location> VALUE

Figure 26/Z.143 – Structure of a variable binding

 ITU-T Rec. Z.143 (03/2006) 31

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by value is handled like the declaration of a new variable, i.e., a new variable
binding is appended to the list of variable bindings of the scope of the called function or executed test
case. The new variable binding uses the formal parameter name as VAR-NAME, receives a new location
and gets the value that is passed into the function or test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the called
function or executed test case. The new variable binding also uses the formal parameter name as
VAR-NAME, but receives no new location and no new value. The new variable binding gets a copy of
<location> and VALUE of the variable that is passed in by reference.

When updating a variable value, e.g., in case of an assignment to a variable, the variable name is used to identify a
location and all variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

8.3.2.3 Accessing data states

The value of a variable can be retrieved by using the "dot" notation myEntity.myVar.VALUE, where myEntity refers to
an entity state and myVar is the name of a variable.

For the handling of variables and variable scope the following functions are considered to be defined:
a) The VAR-SET function: myEntity.VAR-SET (myVar, myValue)
 sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition,

the VALUE part of all variables with the same location as variable myVar will also be set to myVal.
b) The INIT-VAR function: myEntity.INIT-VAR (myVar, myVal)
 creates a new variable binding for a variable myVar with the initial value myVal in the actual scope unit

of an entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial
value is created. A new and unique <location> value is automatically created.

c) The GET-VAR-LOC function: myEntity.GET-VAR-LOC (myVar)
 retrieves the location of variable myVar owned by myEntity.
d) The INIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)
 creates a new variable binding for a variable myVar with the location myLoc in the actual scope unit of

myEntity. The variable will be initialized with the value of another variable with the location myLoc.
NOTE – Variables with the same location are a result of parameterization by reference. Due to the handling of
reference parameters as described in 8.3.2.2, all variables with the same location will have identical values during their
lifetime.

e) The INIT-VAR-SCOPE function: myEntity.INIT-VAR-SCOPE ()
 initializes a new variable scope in the data state of entity myEntity, i.e., an empty list is appended as first

list in the list of lists of variable bindings.
f) The DEL-VAR-SCOPE function: myEntity.DEL-VAR-SCOPE ()
 deletes a variable scope of the data state of myEntity, i.e., the first list in the list of lists of variable

bindings is deleted.

32 ITU-T Rec. Z.143 (03/2006)

8.3.2.4 Timer state and timer binding

As shown in Figures 27 and 25, the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are a list of lists of bindings and each list of bindings defines the valid bindings in a certain scope.
Adding a new list corresponds to entering a new scope unit and deleting a list of bindings corresponds to leaving a
scope unit.

TimerBinding1

TimerBindingn

TimerBinding1

TimerBindingx

root

Figure 27/Z.143 – Structure of the TIMER-STATE part of an entity state

The structure of a timer binding is shown in Figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (Figure 26).

TIMER-NAME <location> STATUS DEF-DURATION ACT-DURATION TIME-LEFT SNAP-VALUE SNAP-STATUS

Figure 28/Z.143 – Structure of a timer binding

STATUS denotes whether a timer is active, inactive or has timed out. The corresponding STATUS values are IDLE,
RUNNING and TIMEOUT. DEF-DURATION describes the default duration of a timer. ACT-DURATION stores the
actual duration with which a running timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE – DEF-DURATION is undefined if a timer is declared without default duration. ACT-DURATION and TIME-LEFT are set
to 0.0 if a timer is stopped or times out. If a timer is started without duration, the value of DEF-DURATION is copied into
ACT-DURATION. A dynamic error occurs if a timer is started without a defined duration.

SNAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshot,
SNAP-VALUE gets the actual value of ACT-DURATION – TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS. The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS.

Timer can be only passed by reference into functions, i.e., the mechanism is similar to the mechanism for variables
described in 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets copies of
<location>, STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS from the
timer that is passed in by reference. When updating a timer all timer bindings with the same <location> value are
updated at the same time.

8.3.2.5 Accessing timer states

The values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

• myEntity.myTimer.STATUS;
• myEntity.myTimer.DEF-DURATION;
• myEntity.myTimer.ACT-DURATION;
• myEntity.myTimer.TIME-LEFT;
• myEntity.myTimer.SNAP-VALUE;

 ITU-T Rec. Z.143 (03/2006) 33

• myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of a test component or module control
that owns the timer myTimer.

For changing the values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and
SNAP-STATUS of a timer timer-name, the generic TIMER-SET operation has to be used, for example:

• myEntity.TIMER-SET(myTimer, STATUS, myVal).

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
all timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can also be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS.

For the handling of timers, timer scope and snapshot the following functions have to be defined:
a) The INIT-TIMER function: myEntity.INIT-TIMER (myTimer, myDuration)
 creates a new timer binding for a timer myTimer with the default duration myDuration in the actual scope

of an entity myEntity. Using the keyword NONE as myDuration means that a timer without default
duration is created.

b) The GET-TIMER-LOC function: myEntity.GET-TIMER-LOC (myTimer)
 retrieves the location of timer myTimer owned by myEntity.
c) The INIT-TIMER-LOC function: myEntity.INIT-TIMER-LOC (myTimer, myLocation)
 creates a new timer binding for a timer myTimer with the location myLocation in the actual scope unit of

myEntity. The timer will be initialized with the values of STATUS, DEF-DURATION, ACT-DURATION
and TIME-LEFT of another timer with the location <location>.

NOTE – Timers with the same location are a result of parameterization by reference. Due to the handling of timer
reference parameters as described in 8.3.2.3, all timers with the same location will have identical values for STATUS,
DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) The INIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()
 initializes a new timer scope in the timer state of entity myEntity, i.e., an empty list is appended as first

list in the list of lists of timer bindings.
e) The DEL-TIMER-SCOPE function: myEntity.DEL-TIMER-SCOPE ()
 deletes a timer scope of the timer state of entity myEntity, i.e., the first list in the list of lists of timer

bindings is deleted.
f) The SNAP-TIMER function: myEntity.SNAP-TIMER ()
 makes an update of SNAP-VALUE and SNAP-STATUS, in all timers owned by myEntity, i.e.:

 myEntity.SNAP-TIMERS () {
 for all myTimer in TIMER-STATE {
 myEntity.myTimer.SNAP-VALUE := myEntity.myTimer.ACT-DURATION –
 myEntity.myTimer.TIME-LEFT;
 myEntity.myTimer.SNAP-STATUS := myEntity.myTimer.STATUS;
 }

8.3.3 Port states

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES list (see Figure 23). The structure of a port state is shown in Figure 29. The PORT-NAME refers to
the port name that is used to identify the port by the test component OWNER that owns the port. STATUS provides the
actual status of the port. A port may either be STARTED or STOPPED.

NOTE – A port in a test system is uniquely identified by the owning test component <owner> and by the port name <port-name>
local to <owner>.

The CONNECTIONS-LIST of a port state keeps track of the connections between the different ports in the test system.
The mechanism is explained in 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUS is STOPPED.

34 ITU-T Rec. Z.143 (03/2006)

PORT-NAME OWNER STATUS CONNECTIONS-LIST VALUE-QUEUE SNAP-VALUE

Figure 29/Z.143 – Structure of a port state

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of a connect
operation. Thus, a component can afterwards use its local port name to address the remote queue. As shown in
Figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the local name used by the REMOTE-ENTITY to address the queue.
TTCN-3 supports one-to-many connections of ports and therefore all connections of a port are organized in a list.

NOTE 1 – Connections made by map operations are also handled in the list of connections. The map operation:
map(PTC1:MyPort, system.PCO1) leads to a new connection (system, PCO1) in the port state of MyPort owned by PTC1.
The remote side to which PCO1 is connected to, resides inside the SUT. Its behaviour is outside the scope of this semantics.
NOTE 2 – The operational semantics handles the keyword system as a symbolic address. A connection (system, myPort) in
the list of connections of a port indicates that the port is mapped onto the port myPort in the test system interface.

REMOTE-ENTITY REMOTE-PORT-NAME

Figure 30/Z.143 – Structure of a connection

8.3.3.2 Handling of port states

The queue of values in a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE function references the queue that shall be accessed.

NOTE 1 – The queue operations enqueue, dequeue, first and clear have the following meaning:

• myQueue.enqueue(item) puts item as last item into myQueue;
• myQueue.dequeue() deletes the first item from myQueue;
• myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;

• myQueue.clear() removes all elements from myQueue.

The handling of port states is supported by the following functions:
a) The NEW-PORT function: NEW-PORT (myEntity, myPort)
 creates a new port and returns its reference. The new port is owned by myEntity and has the name myPort

to the port identified by the test component myEntity and the port name myPort. The status of the new
port is STARTED. The CONNECTIONS-LIST and the VALUE-QUEUE are empty. The SNAP-VALUE has
the value NULL (i.e., the input queue of the new port is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)
 returns a reference to the port identified by the test component myEntity that owns the port and the port

name myPort.
c) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)
 returns the reference to the port that is owned by test component myRemoteEntity and connected to a port

identified by myEntity and myPort. The symbolic address SYSTEM is returned, if the remote port is
mapped onto a port in the test system interface.

NOTE 2 – GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote entity is not
known or not required, i.e., there exits only a one-to-one connection for this port.

d) The STATUS of a port is handled like a variable. It can be addressed by qualifying STATUS with a
GET-PORT call:

 GET-PORT(myEntity, myPort).STATUS
e) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)
 adds a connection (myRemoteEntity, myRemotePort) to the list of connections of port myPort owned by

myEntity.

 ITU-T Rec. Z.143 (03/2006) 35

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)
 removes a connection (myRemoteEntity, myRemotePort) from the list of connections of port myPort

owned by myEntity.
g) The SNAP-PORTS function: SNAP-PORTS (myEntity)
 updates SNAP-VALUE for all ports owned by myEntity, i.e.,

 SNAP-PORTS (myEntity) {
 for all ports p /* in the module state */ {
 if (p.OWNER == myEntity) {
 if (p.STATUS == STOPPED) {
 p. SNAP-VALUE := NULL;
 }
 else {
 p. SNAP-VALUE := p.first()
 }
 }
 }
 }

8.3.4 General functions for the handling of module states

The operational semantics assumes the existence of the following functions for the handling of module states.
NOTE 1 – During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the components
of the module state are stored in global variables and not in a complex data object. Thus, the following functions are assumed to
work on global variables and do not address a specific module state object.

a) The DEL-ENTITY function: DEL-ENTITY(myEntity)
 deletes an entity with the unique identifier myEntity. The deletion comprises:

– the deletion of the entity state of myEntity;
– deletion of all ports owned by myEntity;
– deletion of all connections in which myEntity is involved.

b) The UPDATE-REMOTE-REFERENCES function:
 UPDATE-REMOTE-REFERENCES (source, target)

 the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both
entities. The values that will be used for the update are the values of variables and timers owned by
source.

NOTE 2 – The UPDATE-REMOTE-REFERENCES is used during the termination of test cases. It allows updating of
variables of module control, which are passed as reference parameters to test cases.

8.4 Messages, procedure calls, replies and exceptions

The exchange of information among test components and between test components and the SUT is related to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes, these items have to be
constructed, encoded and decoded. The concrete encoding, i.e., mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e., mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In this
Recommendation messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

Messages are related to message-based communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in Figure 31, the operational semantics handles a message
as structured object that consist of a sender, a type and a value part. The sender part identifies the sender entity of a
message, the type part specifies the type of a message and the value part defines the message value.

sender type value

Figure 31/Z.143 – Structure of a message

NOTE – The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the sender information
is or has to be sent and/or received depends on the implementation of the test system, e.g., in some cases, the sender information
may be part of the value part of a message and, therefore, is no separate part of the message structure.

36 ITU-T Rec. Z.143 (03/2006)

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like values of
a record with components representing the parameters. The operational semantics also handles procedure calls and
replies to procedure calls like values in structured types. The structure of a procedure call and the structure of a reply
are presented in Figures 32 and 33.

sender procedure-reference parameter-part

 in-or-inout-parameter1 … in-or-inout-parametern

Figure 32/Z.143 – Structure of a procedure call

sender procedure-reference parameter-part value

 inout-or-out-parameter1 … inout-or-out-parametern

Figure 33/Z.143 – Structure of a reply to a procedure call

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refers to the
sender entity of a call or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in Figure 32 refers to the in parameters and inout parameters
and the parameter-part of the reply in Figure 33 refers to the inout parameters and out parameters of the procedure
to which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1 – As stated in the previous note (see 8.4.1), the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in Figures 32 and 33 is or has to be sent and/or received depends on the
implementation of the test system.
NOTE 2 – For a procedure call, out parameters are of no relevance and are omitted in Figure 32. For a reply to a procedure call,
in parameters are of no relevance and are omitted in Figure 33.
NOTE 3 – The types of parameters and the type of the return value can always be derived unanimously from the related signature
definition.

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in Figure 34. It
consists of four parts. The sender part identifies the sender of the exception; the procedure-reference part refers to the
procedure to which the exception belongs, the type part identifies the type of the exception and the value part provides
the value of the exception. The procedure signature referred to in the procedure reference part defines the list of allowed
types of exceptions. A received exception shall comply with one of the listed types. In general, it can be of any pre- or
user-defined TTCN-3 data type.

sender procedure-reference type value

Figure 34/Z.143 – Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, a reply to a procedure call or an exception are send, call,
reply and raise. All these sending operations are built up in the same manner:

 <port-name>.<sending-operation>(<send-specification>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

 ITU-T Rec. Z.143 (03/2006) 37

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:
CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)
 returns a message, a procedure call, a reply to a procedure call or an exception depending on the

<sending-operation> and the <send-specification> (both, <sending-operation>
and the <send-specification> refer to the corresponding parts in the TTCN-3 sending operation).
The entity reference myEntity is the sender of the item to be sent. This sender information is also
assumed to be part of the item to be sent (Figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, a reply to a procedure call or an exception are receive,
getcall, getreply and catch. All these receiving operations are built up in the same manner:

 <port-name>.<receiving-operation>(<matching-part>) [from <sender>] [<assignment-part>]

The <port-name> and <receiving-operation> define port and operation used for the reception of an item. In
case of one-to-many connections a from clause can be used to select a specific sender entity <sender>. The item to
be received has to fulfil the conditions specified in the <matching-part>, i.e., it has to match. The
<matching-part> may use concrete values, template references, variable values, constants, expressions, functions,
etc. to specify the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:
MATCH-ITEM (myItem, <matching-part>, <sender>)
 returns true if myItem fulfils the conditions of <matching-part> and if myItem has been sent by

<sender>, otherwise it returns false.

8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assignment-part> (see 8.4.5) of the receiving functions receive, getcall, getreply and catch. The
<assignment-part> describes how the parameters of procedure calls and replies, return values encoded in replies,
messages, exceptions and the identifier of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:
RETRIEVE-INFO (myItem, <assignment-part>)

 all values to be retrieved according to the <assignment-part> are retrieved and assigned to the
variables listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e.,
variables with the same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases

Functions, altsteps and test cases are called (or executed) by their name and a list of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parameters in the function or test case definition. The operational semantics handles calls of functions, altsteps
and test cases by using call records as shown in Figure 35. The value of BEHAVIOUR-ID is the name of a function or
test case, value parameters provide concrete values <parId1> ... <parIdn> for the formal parameters
<parId1> ... <parIdn>. Reference parameters provide references to locations of existing variables and timers. Before a
function or test case can be executed an appropriate call record has to be constructed.

behaviour-id value-parameter reference-parameter

 parId1 … parIdn parId1 … parIdn

 value1 … valuen loc1 … locn

Figure 35/Z.143 – Structure of a call record

8.5.1 Handling of call records

The function or test case name and the actual parameter values can be retrieved by using the dot notation,
e.g., myCallRecord.parIdn or myCallRecord.behaviour-id where myCallRecord is a pointer to a call record.

38 ITU-T Rec. Z.143 (03/2006)

For the construction of a call the function NEW-CALL-RECORD is assumed to be available:
NEW-CALL-RECORD(myBehaviour)

creates a new call record for function or test case myBehaviour and returns a pointer to the new record.
The parameter fields of the new call record have undefined values.

myEntity.INIT-CALL-RECORD(myCallRecord)
creates variables and timers for the handling of value and reference parameters in the actual scope of the
test component or module control myEntity. The variables for the handling of value parameters are
initialized with the corresponding values provided in the call record. The variables and timers for the
handling of reference parameters get the provided location. In addition, they get a value of an existing
variable or timer in another scope unit of the component in which the call record was created.

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases

The evaluation procedure for a TTCN-3 module is structured into:
1) initialization phase;
2) update phase;
3) selection phase; and
4) execution phase.

The phases 2), 3) and 4) are repeated until module control terminates. The evaluation procedure is described by means
of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

8.6.1.1 Phase I: Initialization

The initialization phase includes the following actions:
a) Declaration and initialization of variables:

– INIT-FLOW-GRAPHS(); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
// explained in 8.6.2

– Entity := NULL; // Entity will be used to refer to an entity state. An entity state either
// represents module control or a test component.

NOTE – The following global variables ALL-ENTITY-STATES, ALL-PORT-STATES, MTC, TC-VERDICT and DONE
form the module state that is manipulated during the interpretation of a TTCN-3 module (see 8.3.1).

– ALL-ENTITY-STATES := NULL;
– ALL-PORT-STATES := NULL;
– MTC := NULL;
– TC-VERDICT := none;
– DONE := NULL;
– SNAP-DONE := 0;

b) Creation and initialization of module control
– Entity:= NEW-ENTITY (GET-UNIQUE-ID(),GET-FLOW-GRAPH (<moduleId>));
 // A new entity state is created and initialized with the start

// node of the flow graph representing the behaviour of the
// control of the module with the name <moduleId>.
// GET-UNIQUE-ID is explained in 8.6.2.

– Entity.INIT-VAR-SCOPE(); // New variable scope
– Entity.INIT-TIMER-SCOPE(); // New timer scope
– Entity.VALUE-STACK.push(MARK); // A mark is pushed onto the value stack
– ALL-ENTITY-STATES.append(Entity); // The new entity is put into the module state.

 ITU-T Rec. Z.143 (03/2006) 39

8.6.1.2 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Time progress: All running timers are updated, i.e., the TIME-LEFT values of running timers are
(possibly) decreased, and if due to the update a timer expires, the corresponding timer bindings are
updated, i.e., TIME-LEFT is set to 0.0 and STATUS is set to TIMEOUT;

NOTE 1 – The update of timers includes the update of all running TIMER-GUARD timers in module states. TIMER-GUARD
timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and
exceptions (possibly) received from the SUT are put into the port queues at which the corresponding
receptions shall take place.

NOTE 2 – This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase III: Selection

The selection phase consists of the following two actions:
a) Selection: Select a non-blocked entity, i.e., an entity that has the STATUS value ACTIVE or

SNAPSHOT;
b) Storage: Store the identifier of the selected entity in the global variable Entity.

8.6.1.4 Phase IV: Execution

The execution phase consists of the following two actions:
a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of

Entity;
b) Check termination criterion: Stop execution if module control has terminated, i.e., the list of entity

states is empty, otherwise continue with Phase II.
NOTE – The execution step of the selected entity can be seen as a procedure call. The check of the termination criterion is done
when the execution step terminates, i.e., returns the control.

8.6.2 Global functions

The evaluation procedure uses the global functions INIT-FLOW-GRAPHS and GET-UNIQUE-ID:
a) INIT-FLOW-GRAPHS is assumed to be the function that initializes the flow graph handling. The

handling may include the creation of the flow graphs and the handling of the pointers to the flow graphs
and flow graph nodes.

b) GET-UNIQUE-ID is assumed to be a function that returns a unique identifier each time it is called. The
unique identifier may be implemented in form of a counter variable that is increased and returned each
time GET-UNIQUE-ID is called.

The pseudo-code used in the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR***:

a) CONTINUE-COMPONENT: the actual test component continues its execution with the node lying on
top of the control stack, i.e., the control is not given back to the module evaluation procedure described
in this clause.

b) RETURN returns the control back to the module evaluation procedure described in this clause. The
RETURN is the last action of the 'execution step of the selected entity' of the execution phase.

c) ***DYNAMIC-ERROR*** refers to the occurrence of a dynamic error. The error handling procedure
itself is outside the scope of the operational semantics. If a dynamic error occurs all following behaviour
of the test case is meant to be undefined. In this case, resources allocated to the test case shall be cleared
and the error verdict is assigned to the test case. Control is given to the statement in the control part
following the execute statement in which the error occurred. This is modelled by the flow graph segment
<dynamic-error> (clause 9.18b)

NOTE – The occurrence of a dynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g., wrong usage or race condition.

d) APPLY-OPERATOR used as generic function for describing the evaluation of operators
(e.g., +. *, / or –) in expressions (see 9.18.4).

40 ITU-T Rec. Z.143 (03/2006)

9 Flow graph segments for TTCN-3 constructs
The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, altsteps,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this clause. They are presented in an alphabetical order and not in a logical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the left
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic node is interpreted, i.e., changes the module state. It makes use of the functions defined in
clause 8 and the global variables declared and initialized in the evaluation procedure for TTCN-3 modules (see 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement

The syntactical structure of an action statement is:

 action (<informal description>)

The flow graph segment <action-stmt> in Figure 36 defines the execution of the action statement.

nop

segment <action-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

NOTE – The <informal description> parameter of the action statement has no meaning for the operational semantics and is,
therefore, not represented in the flow graph segment.

Figure 36/Z.143 – Flow graph segment <action-stmt>

9.2 Activate statement

The syntactical structure of the activate statement is:

 activate(<altstep-name>([<act-par-desc1>, ... , <act-par-descn>]))

The <altstep-name> denotes the name of an altstep that is activated as default behaviour, and
<act-par-descr1>, ... , <act-par-descrn> describe the actual parameter values of the altstep at the time
of its activation.

It is assumed that for each <act-par-desc1> the corresponding formal parameter identifier <f-par-Id1> is
known, i.e., we can extend the syntactical structure above to:

 activate(<altstep-name>((<f-par-Id1>,<act-par-desc1>), ... , (<f-par-Idn>,<act-par-descn>)))

The flow graph segment <activate-stmt> in Figure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, a call record for the altstep <function-name> is created. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put as first element in the DEFAULT-LIST of the entity that activates the
default.

NOTE – For altsteps that are activated as default behaviour, only value parameters are allowed. In Figure 37, the handling of the
value parameters is described by the flow graph segment <value-par-calculation>, which is defined in 9.24.1.

 ITU-T Rec. Z.143 (03/2006) 41

Figure 37/Z.143 – Flow graph segment <activate-stmt>

9.3 Alt statement

The alt statement is the most complicated and important statement of TTCN-3. It implements the snapshot semantics
and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanism is also
related to the alt statement.

The flow graph representation of the alt statement is provided in Figure 38. The different alternatives due to the
reception of messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of
components are hidden in the flow graph segment <receiving-branch>.

42 ITU-T Rec. Z.143 (03/2006)

segment <alt-stmt>

alt-exit

<receiving-branch> OR
<altstep-call-branch>

OR <else-branch>

+

<default-evocation>

if (Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
}
else { // A new snapshot needs to be taken, the
 // status of the entity is SNAPSHOT (none
 // of the alternatives could be selected
 // and executed) or REPEAT (due to a
 // repeat statement)
 Entity.NEXT-CONTROL(false);
}
RETURN;

// A snapshot is taken<take-snapshot>

// The different alternatives
// are evaluated

// The default mechanism may
// be evoked.

true

false

Figure 38/Z.143 – Flow graph segment <alt-stmt>

9.3.1 Flow graph segment <take-snapshot>

The flow graph segment <take-snapshot> in Figure 39 describes the procedure of taking a snapshot. The snapshot
records values of ports, timers and stopped components.

segment <take-snapshot>

take-snapshot

// Take Snapshot
SNAP-PORTS(Entity); // Ports
Entity.SNAP-TIMER(); // Timer
Entity.SNAP-DONE := copy(DONE); // DONE

// MTC specific snapshot information for the usage of
// 'any component' and 'all component'
if (Entity == MTC) {
 SNAP-ACTIVE := ALL-ENTITY-STATES.length();
}

Entity.STATUS := SNAPSHOT; // new component status
Entity.DEFAULT-POINTER := Entity.DEFAULT-LIST.first();

Entity.NEXT-CONTROL(true);
RETURN;

Figure 39/Z.143 – Flow graph segment <take-snapshot>

 ITU-T Rec. Z.143 (03/2006) 43

9.3.2 Flow graph segment <receiving-branch>

The execution of the flow graph segment <receiving-branch> is shown in Figure 40.

segment <receiving-branch>

<receive-op> OR
<getcall-op> OR
<getreply-op> OR
<catch-op> OR
<timeout-op> OR
<check-op> OR

<done-component-op>

Entity.NEXT-CONTROL(Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();
RETURN;

<expression>

// Boolean expression that
// guards a branch

true

decision

// The receiving branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

decision

false

// The operations may change the status of
// Entity, if the operation is successful.

<statement-block>

true

false

Figure 40/Z.143 – Flow graph segment <receiving-branch>

44 ITU-T Rec. Z.143 (03/2006)

9.3.3 Flow graph segment <altstep-call-branch>

The invocation of an altstep within an alt statement is described by the flow graph segment
<altstep-call-branch> in Figure 41.

segment
<altstep-call-branch>

<altstep-call>

Entity.NEXT-CONTROL(Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();
RETURN;

<expression>

// Boolean expression that
// guards a branch

true

decision

// The branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

decision

false

// The altstep is called, the status of the
// entity may be changed inside the altstep
// by the different alternatives in the
// altstep.

Figure 41/Z.143 – Flow graph segment <altstep-call-branch>

 ITU-T Rec. Z.143 (03/2006) 45

9.3.4 Flow graph segment <else-branch>

The execution of an else branch within an alt statement is described by the flow graph segment <else-branch>
in Figure 42.

segment <else-branch>

<statement-block>

// An else-branch is always selected, i.e.,
// status of Entity will be set of ACTIVE
Entity.STATUS := ACTIVE;

decision

// The branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

else-part

// The statement block in an else branch
// is always executed.

Figure 42/Z.143 – Flow graph segment <else-branch>

46 ITU-T Rec. Z.143 (03/2006)

9.3.5 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of alt statements is described by the flow graph segment
<default-evocation> in Figure 43.

Figure 43/Z.143 – Flow graph segment <default-evocation>

 ITU-T Rec. Z.143 (03/2006) 47

9.4 Altstep call

As shown in Figure 44, the call of an altstep is handled like a function call.

segment <altstep-call>

<function-call>
// Reference to the flow graph segment
// describing the function call

Figure 44/Z.143 – Flow graph segment <altstep-call>

9.5 Assignment statement

The syntactical structure of an assignment statement is:

 <varId> := <expression>

The value of the expression <expression> is assigned to variable <varId>. The execution of an assignment
statement is defined by the flow graph segment <assignment-stmt> in Figure 45.

segment <assignment-stmt>

assignment-stmt
(varId)

Entity.VAR-SET(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression is evaluated and the
// result is pushed onto the value stack

Figure 45/Z.143 – Flow graph segment <assignment-stmt>

9.6 Call operation

The syntactical structure of the call operation is:
 <portId>.call (<callSpec> [<blocking-info>]) [to <component-expression>] [<call-reception-part>]

The optional <blocking-info> consists of either the keyword nowait or a duration for a timeout exception. The
optional <component-expression> in the to clause refers to the receiver entity. It may be provided in form of a
variable value or the return value of a function. The optional <call-reception-part> denotes the alternative receptions in
case of a blocking call operation.

The operational semantics distinguishes between blocking and non-blocking call operations. A call is non-blocking
if the keyword nowait is used in the call operation, or if the called procedure is non-blocking, i.e., defined by using
the keyword noblock. A blocking call has a <call-reception-part>.

48 ITU-T Rec. Z.143 (03/2006)

The flow graph segment <call-op> in Figure 46 defines the execution of a call operation. It reflects the distinction
between blocking and non-blocking calls.

<blocking-call-op>
OR

<non-blocking-call-op>

segment <call-op>

// A call operation may be blocking
// or non-blocking

Figure 46/Z.143 – Flow graph segment <call-op>

For blocking and non-blocking call operations a receiver entity may be specified in form of an expression. The
possibilities are shown in Figures 47 and 48.

<b-call-without-duration>
OR

<b-call-with-duration>

segment <blocking-call-op>

// A blocking call may or may not
// be supervised by TIMER-GUARD

Figure 47/Z.143 – Flow graph segment <blocking-call-op>

<nb-call-with-receiver>
OR

<nb-call-without-receiver>

segment <non-blocking-call-op>

// A non-blocking call may or may
// not have a receiver
// specification

Figure 48/Z.143 – Flow graph segment <non-blocking-call-op>

 ITU-T Rec. Z.143 (03/2006) 49

9.6.1 Flow graph segment <nb-call-with-receiver>

The flow graph segment <nb-call-with-receiver> in Figure 49 defines the execution of a non-blocking call
operation where the receiver is specified in form of an expression.

nb-call-with-receiver
(portId, callSpec)

segment <nb-call-with-receiver>

let {
 var receiver := Entity.VALUE-STACK.top();
 var remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure 49/Z.143 – Flow graph segment <nb-call-with-receiver>

50 ITU-T Rec. Z.143 (03/2006)

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb-call-without-receiver> in Figure 50 defines the execution of a non-blocking
call operation without a to-clause.

nb-call-without-receiver-op

(portId, callSpec)

segment <nb-call-without-receiver-op>

let {
 var remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, callSpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 50/Z.143 – Flow graph segment <nb-call-without-receiver>

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b-call-without-duration> shown in Figure 51 describes the execution
of a blocking call without a given duration as time guard.

segment <b-call-without-duration>

<nb-call-with-receiver>
OR

<nb-call-without-receiver>

// Call of remote procedure

<call-reception-part>
// Handling of replies and
// exceptions of the called
// procedure.

Figure 51/Z.143 – Flow graph segment <b-call-without-duration>

 ITU-T Rec. Z.143 (03/2006) 51

9.6.4 Flow graph segment <b-call-with-duration>

The flow graph segment <b-call-with-duration> (see Figure 52) describes the execution of a blocking call
with a duration as time guard.

segment <b-call-with-duration>

<nb-call-with-receiver>
OR

<nb-call-without-receiver>

// Call of remote procedure

<call-reception-part>
// Handling of replies and
// exceptions of the called
// procedure.

<expression>

// The expression shall evaluate
// to a float value which defines
// the duration of the guarding
// timer.

set-timer-guard

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION :=
 Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

start-timer-guard

Entity.TIMER-GUARD.STATUS := RUNNING;
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

Figure 52/Z.143 – Flow graph segment <b-call-with-duration>

52 ITU-T Rec. Z.143 (03/2006)

9.6.5 Flow graph segment <call-reception-part>

The flow graph segment <call-reception-part> (see Figure 53) describes the handling of replies, exceptions
and the timeout exception of a blocking call operation.

segment <call-reception-part>

b-call-exit

<receiving-branch> OR
<catch-timeout-exception>

+

if (
 Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
 // To assure a defined state of Entity
 Entity.TIMER-GUARD.STATUS := IDLE;
}
else { // A new snapshot needs to be taken, the
 // status of the entity is SNAPSHOT (none
 // of the alternatives could be selected
 // and executed)
 Entity.NEXT-CONTROL(false);
}
RETURN;

// A snapshot is taken<take-snapshot>

// Branches with getcall and catch
// operations related to the call and
// a timeout exception (if the call is
// guarded by a duration) are handled
// by this node

true

false

Figure 53/Z.143 – Flow graph segment <call-reception-part>

 ITU-T Rec. Z.143 (03/2006) 53

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <catch-timeout-exception> (see Figure 54) is for the handling of a timeout exception
of a blocking call operation that is guarded by a duration.

Figure 54/Z.143 – Flow graph segment <catch-timeout-exception>

9.7 Catch operation

The syntactical structure of the catch operation is:
 <portId>.catch (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

Apart from the catch keyword this syntactical structure is identical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the catch operation in the same manner as the receive
operation. This is also shown in the flow graph segment <catch-op> (Figure 55), which defines the execution of a
catch operation. This figure refers to flow graph segments related to the receive operation (see 9.37).

<receive-with-sender>
OR

<receive-without-sender>

segment <catch-op>

// Distinction due to the optional
// from-clause

Figure 55/Z.143 – Flow graph segment <catch-op>

54 ITU-T Rec. Z.143 (03/2006)

9.8 Check operation

The syntactical structure of the check operation is:

<portId>.check(receive|getcall|catch|getreply (<matchingSpec>)
 [from <component-expression>]) [-> <assignmentPart>]

The optional <component-expression> in the from clause refers to the sender entity. It may be provided in
form of a variable value or the return value of a function, i.e., it is assumed to be an expression. The optional
<assignmentPart> denotes the assignment of received information if the received information matches to the
matching specification <matchingSpec> and to the (optional) from clause.

The operational semantics handles the operations receive, getcall, catch and getreply in the same manner,
i.e., they are described by referencing the same flow graph segments <receive-with-sender> and
<receive-without-sender>. The check operation also handles the different operations in the same manner.
Thus the flow graph segment <check-op> in Figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments
<receive-with-sender> and <receive-without-sender> is that the received items are not deleted after
the match.

<check-with-sender>
OR

<check-without-sender>

segment <check-op>

// Distinction due to the optional
// from clause

Figure 56/Z.143 – Flow graph segment <check-op>

 ITU-T Rec. Z.143 (03/2006) 55

9.8.1 Flow graph segment <check-with-sender>

The flow graph segment <check-with-sender> in Figure 57 defines the execution of a check operation where
the sender is specified in form of an expression.

Figure 57/Z.143 – Flow graph segment <check-with-sender>

56 ITU-T Rec. Z.143 (03/2006)

9.8.2 Flow graph segment <check-without-sender>

The flow graph segment <check-without-sender> in Figure 58 defines the execution of a check operation
without a from clause.

Figure 58/Z.143 – Flow graph segment <check-without-sender>

 ITU-T Rec. Z.143 (03/2006) 57

9.9 Clear port operation

The syntactical structure of the clear port operation is:

 <portId>.clear

The flow graph segment <clear-port-op> in Figure 59 defines the execution of the clear port operation.

clear-port-op
(portId)

segment <clear-port-op>

GET-PORT(Entity, portId).clear;

Entity.NEXT-CONTROL(true);

RETURN;

Figure 59/Z.143 – Flow graph segment <clear-port-op>

9.10 Connect operation

The syntactical structure of the connect operation is:

 connect(<component-expression1>:<portId1>, <component-expression2>:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component-expression1> and <component-expression2>. The references may be stored in variables or
are returned by a function, i.e., they are expressions, which evaluate to component references. The value stack is used
for storing the component references.

The execution of the connect operation is defined by the flow graph segment <connect-op> shown in Figure 60.
In the flow graph description the first expression to be evaluated refers to <component-expression1> and the
second expression to <component-expression2>, i.e., the <component-expression2> is on top of the
value stack when the connect-op node is executed.

Figure 60/Z.143 – Flow graph segment <connect-op>

58 ITU-T Rec. Z.143 (03/2006)

9.11 Constant definition

The syntactical structure of a constant definition is:

 const <constType> <constId> := <constType-expression>

The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.
NOTE – Global constants are replaced by their values in a pre-processing step before this semantics is applied (see 9.2). Local
constants are treated like variable declarations with initialization. The correct usage of constants, i.e., constants shall never occur
on the left side of an assignment, shall be checked during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in Figure 61 defines the execution of a constant declaration where the
value of the constant is provided in the form of an expression.

Figure 61/Z.143 – Flow graph segment <constant-definition>

 ITU-T Rec. Z.143 (03/2006) 59

9.12 Create operation

The syntactical structure of the create operation is:

 <componentTypeId>.create

The flow graph segment <create-op> in Figure 62 defines the execution of the create operation.

Figure 62/Z.143 – Flow graph segment <create-op>

9.13 Deactivate statement

The syntactical structure of a deactivate statement is:

 deactivate [(<default-expression>)]

The deactivate statement specifies the deactivation of one or all active defaults of the entity that executes the
deactivate statement. If one default shall be deactivated, the optional <default-expression> shall evaluate
to a default reference which identifies the default to be deactivated. The call of a deactivate statement without
<default-expression> deactivates all active defaults.

60 ITU-T Rec. Z.143 (03/2006)

The execution of a deactivate statement is defined by the flow graph segment <deactivate-stmt> in
Figure 63-a.

<deactivate-one-default>
OR

<deactivate-all-defaults>

segment <deactivate-stmt>

// A deactivate statement deactivates
// one or all active defaults

Figure 63-a/Z.143 – Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deactivate-one-default> in Figure 63-b specifies the deactivation of one active
default. The value of the expression <default-expression> shall evaluate to a default reference. The expression
may be provided in form of a variable value or value returning function. The deactivate statement removes the
specified default from the DEFAULT-LIST of the entity that executes the deactivate statement.

Figure 63-b/Z.143 – Flow graph segment <deactivate-one-default>

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in Figure 63-c specifies the deactivation of all active defaults. The
deactivate statement clears the DEFAULT-LIST of the entity that executes the deactivate statement.

segment
<deactivate-all-defaults>

deactivate-all-defaults

Entity.DEFAULT-LIST := NULL;
RETURN;

Figure 63-c/Z.143 – Flow graph segment <deactivate-all-defaults>

 ITU-T Rec. Z.143 (03/2006) 61

9.14 Disconnect operation

The syntactical structure of the disconnect operation is:

 disconnect(<component-expression1>:<portId1>,
 <component-expression2>:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component-expression1> and <component-expression2>. The references may be stored in variables or
are returned by functions, i.e., they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The execution of the disconnect operation is defined by the flow graph segment <disconnect-op> shown in
Figure 64. In the flow graph segment the first expression to be evaluated refers to <component-expression1>
and the second expression to <component-expression2>, i.e., the <component-expression2> is on top of
the value stack when the disconnect-op node is executed.

Figure 64/Z.143 – Flow graph segment <disconnect-op>

62 ITU-T Rec. Z.143 (03/2006)

9.15 Do-while statement

The syntactical structure of the do-while statement is:

 do <statement-block>
 while (<boolean-expression>)

The execution of a do-while statement is defined by the flow graph segment <do-while-stmt> shown in
Figure 65.

if (Entity.VALUE-STACK.top()) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
Entity.VALUE-STACK.pop();
RETURN;

segment <do-while-stmt>

decision

false

true

<statement-block>

<expression>

// The expression shall evaluate to
// a Boolean value.

Figure 65/Z.143 – Flow graph segment <do-while-stmt>

 ITU-T Rec. Z.143 (03/2006) 63

9.16 Done component operation

The syntactical structure of the done component operation is:

 <component-expression>.done

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by a function, i.e., it is an expression. For simplicity, the keywords 'all component' and 'any component' are
considered to be special expressions.

The flow graph segment <done-op> in Figure 66 defines the execution of the done component operation.

done-component-op

segment <done-op>

if (Entity.VALUE-STACK.top() == 'all component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (SNAP-ACTIVE == 2) { // only MTC and Control are running
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // DONE is successful
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
}
else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' is not allowed
 }
 else {
 if (Entity.SNAP-DONE.length() > 0) {
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // DONE is successful
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
 }
 else {
 if (Entity.SNAP-DONE.member(Entity.VALUE-STACK.top())) {
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // DONE is successful
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
}
Entity.VALUE-STACK.pop(); // clean value stack
RETURN;

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

true false

Figure 66/Z.143 – Flow graph segment <done-component-op>

64 ITU-T Rec. Z.143 (03/2006)

9.17 Execute statement

The syntactical structure of the execute statement is:

 execute(<testCaseId>([<act-par1>, ... , <act-parn>)]) [, <float-expression>])

The execute statement describes the execution of a test case <testCaseId> with the (optional) actual parameters
<act-par1>, ... , <act-parn>. Optionally the execute statement may be guarded by a duration provided in
form of an expression that evaluates to a float. If, within the specified duration, the test case does not return a verdict,
a timeout exception occurs, the test case is stopped and an error verdict is returned.

NOTE – The operational semantics models the stopping of the test case by a stop of the MTC. In reality, other mechanisms may
be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the
TTCN-3 module) is blocked until the test case terminates, and for the further test case execution the flow of control is
given to the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execute-stmt> in Figure 67 defines the execution of an execute statement.

<execute-without-timeout>
OR

<execute-timeout>

segment <execute-stmt>

// An execute statement may or may
// not be guarded by a timeout

Figure 67/Z.143 – Flow graph segment <execute-stmt>

 ITU-T Rec. Z.143 (03/2006) 65

9.17.1 Flow graph segment <execute-without-timeout>

The execution of a test case starts with the creation of the mtc. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the
MTC can be described by using create and start statements:

 var mtcType MyMTC := mtcType.create;
 MyMTC.start(TestCaseName(P1...Pn));

The flow graph segment <execute-without-timeout> in Figure 68 defines the execution of an execute
statement without the occurrence of a timeout exception by using the flow graph segments of the operations create
and start.

segment <execute-without-timeout>

init-test-case-state

MTC := Entity.VALUE-STACK.top();
TC-VERDICT := none;
DONE := NULL;

Entity.NEXT-CONTROL(true);
RETURN;

<create-op>

// Creation of the MTC

<start-component-op> // Start of MTC

wait-for-termination

Entity.STATUS := BLOCKED;
// MTC will set status to ACTIVE
// before it terminates
Entity.NEXT-CONTROL(true);
RETURN;

Figure 68/Z.143 – Flow graph segment <execute-without-timeout>

66 ITU-T Rec. Z.143 (03/2006)

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execute-timeout> in Figure 69 defines the execution of an execute statement that is
guarded by a timeout value. The flow graph segment also models the creation and start of the MTC by a create and a
start operation. In addition, TIMER-GUARD guards the termination.

Figure 69/Z.143 – Flow graph segment <execute-timeout>

 ITU-T Rec. Z.143 (03/2006) 67

9.18 Expression

For the handling of expressions, the following four cases have to be distinguished:
a) the expression is a literal value (or a constant);
b) the expression is a variable;
c) the expression is an operator applied to one or more operands;
d) the expression is a function or operation call.

The syntactical structure of an expression is:
 <lit-val> | <var-val> | <func-op-call> | <operand-appl>

where:
 <lit-val> denotes a literal value;

 <var-val> denotes a variable value;

 <func-op-call> denotes a function or operation call;

 <operator-appl> denotes the application of arithmetic operators like +, –, not, etc.

The execution of an expression is defined by the flow graph segment <expression> shown in Figure 70.

<lit-value>
OR

<var-value>
OR

<func-op-call>
OR

<operator-appl>

segment <expression>

// The four alternatives
// describe the four
// possibilities for
// expressions as
// described in this
// clause.

Figure 70/Z.143 – Flow graph segment <expression>

9.18.1 Flow graph segment <lit-value>

The flow graph segment <lit-value> in Figure 71 pushes a literal value onto the value stack of an entity.

lit-value
(value)

segment <lit-value> Entity.VALUE-STACK.push(value);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 71/Z.143 – Flow graph segment <lit-value>

68 ITU-T Rec. Z.143 (03/2006)

9.18.2 Flow graph segment <var-value>

The flow graph segment <var-value> in Figure 72 pushes the value of a variable onto the value stack of an entity.

var-value
(var-name)

segment <var-value> Entity.VALUE-STACK.push(Entity.var-name.VALUE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 72/Z.143 – Flow graph segment <var-value>

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <func-op-call> in Figure 73 refers to calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

<activate-stmt> OR <create-op> OR
<function-call> OR <mtc-op> OR

<read-timer-op> OR <running-timer-op> OR
<running-component-op> OR
<self-op> OR <system-op> OR

<verdict.get-op> OR <execute-stmt>

segment <func-op-call>

Figure 73/Z.143 – Flow graph segment <func-op-call>

9.18.4 Flow graph segment <operator-appl>

The flow graph representation in Figure 74 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing of
the result are considered to be part of the operator application (Entity.APPLY-OPERATOR(operator) statement
in Figure 74), i.e., are not modelled by the operational semantics.

operator-appl
(operator)

segment <operator-appl>

<expression>

+

// For an n-nary operator,
// n operands in form of
// evaluated expressions have
// to be pushed onto the
// value stack

Entity.APPLY-OPERATOR(operator);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 74/Z.143 – Flow graph segment <operator-appl>

 ITU-T Rec. Z.143 (03/2006) 69

9.18b Flow graph segment <dynamic-error>

In case of a dynamic error the flow graph segment <dynamic-error> (see Fiogure 74-b) is invoked by the test
system. All resources allocated to the test case are cleared and the error verdict is assigned to the test case. Control is
given to the statement in the control part following the execute statement in which the error occurred.

The flow graph segment <dynamic-error> is invoked by the module control in case that a test case does not
terminate within the specified time-limit (see 9.17.2).

dynamic-error

segment <dynamic-error>

let { // local scope for variable Control

 var Control := ALL-ENTITY-STATES.first(); // module control

 // Reset of module state

 ALL-ENTITY-STATES := NULL;
 ALL-PORT-STATES := NULL;
 MTC := NULL;
 TC-VERDICT := error;
 DONE := NULL;
 SNAP-DONE := 0;

 // Re-insert module control into the module state

 ALL-ENTITY-STATES.append(Control)

 // Update of the entity state of module control

 Control.TIMER-GUARD.STATUS := IDLE;
 Control.STATUS := ACTIVE;

 // Push error verdict (result of test case execution) onto
 // the stack of module control

 Control.VALUE-STACK.push(error);

} // End of local scope
Entity.NEXT-CONTROL(true);
RETURN;

Figure 74-b/Z.143 – Flow graph segment <dynamic-error>

70 ITU-T Rec. Z.143 (03/2006)

9.19 Flow graph segment <finalize-component-init>

The flow graph segment <finalize-component-init> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in Figure 75.

Figure 75/Z.143 – Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>

The flow graph segment <init-component-scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in Figure 76.

init-component-scope

segment <init-component-scope>

// A new variable scope and a new
// timer scope are created
Entity.INIT-VAR-SCOPE();
Entity.INIT-TIMER-SCOPE();

Entity.NEXT-CONTROL(true);
RETURN;

Figure 76/Z.143 – Flow graph segment <init-component-scope>

 ITU-T Rec. Z.143 (03/2006) 71

9.21 Flow graph segment <parameter-handling>

The flow graph segment <parameter-handling> is used in the beginning of flow graphs representing test cases,
altsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph segment <parameter-handling> assumes that the call record of the called test case, altstep or function
is the top of the value stack.

The execution of flow graph segment <parameter-handling> is shown in Figure 77.

parameter-handling

segment
<parameter-handling> Entity.INIT-VAR-SCOPE(); // new variable scope

Entity.INIT-TIMER-SCOPE(); // new timer scope
Entity.INIT-CALL-RECORD(VALUE-STACK.top());
 // parameters are initialized
Entity.VALUE-STACK.pop(); // removal of call record
Entity.VALUE-STACK.push(MARK); // for scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 77/Z.143 – Flow graph segment <parameter-handling>

9.22 Flow graph segment <statement-block>

The syntactical structure of a statement block is:
 { <statement1>; ... ; <statementn> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to be initialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1 – The statement block is not an 'official' TTCN-3 concept. Statement blocks only occur as body of functions, altsteps,
test cases and module control, and within compound statements, e.g., alt, if-else or do-while.
NOTE 2 – Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in alt statements or
call operations.
NOTE 3 – The operational semantics also handles operations and declarations like statements, i.e., they are allowed in statement
blocks.
NOTE 4 – Some TTCN-3 functions, like e.g., system or self, are considered to be expressions, which are not useful as
stand-alone statements in statement blocks. Their flow graph representations are not listed in Figure 78.

72 ITU-T Rec. Z.143 (03/2006)

The flow graph segment <statement-block> in Figure 78 defines the execution of a statement block.

Figure 78/Z.143 – Flow graph segment <statement-block>

9.23 For statement

The syntactical structure of the for-statement is:

 for (<assignment>|<variable-declaration>, <boolean_expression>, <assignment>) <statement-block>

The initialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignments to the index variable. It is also allowed to declare and initialize the index variable directly in the
for-statement. The <boolean-expression> describes the termination criterion of the loop specified by the
for-statement and the <statement-block> describes the loop body.

 ITU-T Rec. Z.143 (03/2006) 73

The execution of the for-statement is defined by the flow graph segment <for-stmt> shown in Figure 79. The
initial <assignment> or alternative variable declaration with assignment <var-declaration-init>
(see 9.57.1) describes the initialization of the index variable. The <assignment> in the true branch of the
decision node describes the manipulation of the index variable. The for-statement is a scope unit for a newly
declared index variable, this is modelled by means of the nodes enter-var-scope and exit-var-scope.

// The index variable is only
// initialized (<assignment>)
// or declared and initialized
// (<var-declaration-init>)

Entity.INIT-VAR-SCOPE();
Entity.VALUE-STACK.push(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

if (Entity.VALUE-STACK.top()== true) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
Entity.VALUE-STACK.pop();
RETURN;

Entity.DEL-VAR-SCOPE();
Entity.VALUE-STACK.clear-until(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

<assignment>
OR

<var-declaration-init>

segment <for-stmt>

decision

false

true

<statement-block>

<expression>

<assignment>

enter-var-scope

exit-var-scope

Figure 79/Z.143 – Flow graph segment <for-stmt>

9.24 Function call

The syntactical structure of a function call is:
 <function-name>([<act-par-desc1>, ... , <act-par-descn>])

The <function-name> denotes the name of a function and <act-par-descr1>, ... , <act-par-descrn>
describe the actual parameter values of the function call.

NOTE 1 – A function call and an altstep call are handled in the same manner. Therefore, the altstep call (see 9.4) refers to this
clause.

It is assumed that for each <act-par-desc1> the corresponding formal parameter identifier <f-par-Id1> is
known, i.e., we can extend the syntactical structure above to:
 <function-name>((<f-par-Id1>,<act-par-desc1>), ... , (<f-par-Idn>,<act-par-descn>))

74 ITU-T Rec. Z.143 (03/2006)

The flow graph segment <function-call> in Figure 80 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <function-name> is created. In the second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function
(<user-def-func-call>), i.e., there exists a flow graph representation for the function, or the called function is a
pre-defined or external function (<predef-ext-func-call>). In case of a user-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return value (has to be pushed
onto the value stack) is in the responsibility of the called function, i.e., is outside the scope of this operational semantics.

NOTE 2 – If the function call models an altstep call, only the <user-def-func-call> branch will be chosen, because there
exists a flow graph representation of the called altstep.
NOTE 3 – The <function call> segment is also used to describe the start of the MTC in an execute statement. In this
case, a call record for the test case is constructed and only the <user-def-func-call> branch will be chosen.

Figure 80/Z.143 – Flow graph segment <function-call>

9.24.1 Flow graph segment <value-par-calculation>

The flow graph segment <value-par-calculation> is used to calculate actual parameter values and to assign
them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:
 (<f-par-Idi>, <act-parameter-desci>)

has to be handled. <act-parameter-desci> that has to be evaluated and <f-par-Idi> is the identifier of a
formal parameter that has a corresponding field in the call record in the value stack.

 ITU-T Rec. Z.143 (03/2006) 75

The execution of flow graph segment <value-par-calculation> is shown in Figure 81.

Figure 81/Z.143 – Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph segment <ref-par-var-calc> is used to retrieve the locations of variables used as actual reference
parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:
 (<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and <f-par-Idi>
is the identifier of a formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph segment <ref-par-var-calc> is shown in Figure 82.

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-var-calc>

// Value assignment to call record
Entity.VALUE-STACK.top().f-par-Id :=
 Entity.GET-VAR-LOCATION(act-par);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 82/Z.143 – Flow graph segment <ref-par-var-calc>

76 ITU-T Rec. Z.143 (03/2006)

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph segment <ref-par-timer-calc> is used to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:
 (<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and <f-par-Idi>
is the identifier of a formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph segment <ref-par-timer-calc> is shown in Figure 83.

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-timer-calc>

// Value assignment to call record
Entity.VALUE-STACK.top().f-par-Id :=
 Entity.GET-TIMER-LOCATION(act-par);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 83/Z.143 – Flow graph segment <ref-par-timer-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph segment <user-def-func-call> (Figure 84) describes the transfer of control to a called
user-defined function.

user-def-func-call
(function-name)

segment <user-def-func-call>

// Storage of return address
Entity.NEXT-CONTROL(true);
// Control is transferred to called function
Entity.CONTROL-STACK.push(GET-FLOW-GRAPH(function-name));

RETURN;

Figure 84/Z.143 – Flow graph segment <user-def-func-call>

 ITU-T Rec. Z.143 (03/2006) 77

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph segment <predef-ext-func-call> (Figure 85) describes the call of a pre-defined or external
function.

<predef-ext-func-call>
(function-name)

segment <predef-ext-func-call>

let { // scope for argument variable
 var argument := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop(); // removal of call record
 // Application of function-name
 function-name(argument);
} // end of scope for argument
Entity.NEXT-CONTROL(true);
RETURN;

Figure 85/Z.143 – Flow graph segment <predef-ext-func-call>

9.25 Getcall operation

The syntactical structure of the getcall operation is:
 <portId>.getcall (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

Apart from the getcall keyword this syntactical structure is identical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the getcall operation in the same manner as the receive
operation. This is also shown in the flow graph segment <getcall-op> (see Figure 86), which defines the execution
of a getcall operation. The figure refers to flow graph segments related to the receive operation (see 9.37).

<receive-with-sender>
OR

<receive-without-sender>

segment <getcall-op>

// Distinction due to the optional
// from-clause

Figure 86/Z.143 – Flow graph segment <getcall-op>

78 ITU-T Rec. Z.143 (03/2006)

9.26 Getreply operation

The syntactical structure of the getreply operation is:

 <portId>.getreply (<matchingSpec>) [from <component-expression>] [-> <assignmentPart>]

Apart from the getreply keyword this syntactical structure is identical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the getreply operation in the same manner as the receive
operation. This is also shown in the flow graph segment <getreply-op> (see Figure 87), which defines the
execution of a getreply operation. The figure refers to flow graph segments related to the receive operation
(see 9.37).

<receive-with-sender>
OR

<receive-without-sender>

segment <getreply-op>

// Distinction due to the optional
// from clause

Figure 87/Z.143 – Flow graph segment <getreply-op>

9.27 Getverdict operation

The syntactical structure of the getverdict operation is:

 getverdict

The flow graph segment <getverdict-op> in Figure 88 defines the execution of the getverdict operation.

getverdict-op

segment <getverdict-op>
// E-VERDICT is pushed onto VALUE-STACK
Entity.VALUE-STACK.push(Entity.E-VERDICT);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 88/Z.143 – Flow graph segment <getverdict-op>

 ITU-T Rec. Z.143 (03/2006) 79

9.28 Goto statement

The syntactical structure of the goto statement is:

 goto <labelId>

The flow graph segment <goto-stmt> in Figure 89 defines the execution of the goto statement.

nop

segment <goto-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

<labelId>

NOTE – The <labelId> parameter of the goto statement indicates the transfer of control to the place at which a
label <labelId> is defined (see also 9.30).

Figure 89/Z.143 – Flow graph segment <goto-stmt>

9.29 If-else statement

The syntactical structure of the if-else statement is:

 if (<boolean-expression>) <statement-block1>
 [else <statement-block2>]

The else part of the if-else statement is optional.

The flow graph segment <if-else-stmt> in Figure 90 defines the execution of the if-else statement.

<statement-block>

*(1)
// Optional else part

<expression>

segment <if-with-else-branch>

decision

falsetrue

<statement-block>

if (Entity.VALUE-STACK.top()) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
Entity.VALUE-STACK.pop();
RETURN;

Figure 90/Z.143 – Flow graph segment <if-else-stmt>

80 ITU-T Rec. Z.143 (03/2006)

9.30 Label statement

The syntactical structure of the label statement is:

 label <labelId>

The flow graph segment <label-stmt> in Figure 91 defines the execution of the label statement.

nop

segment <label-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

<labelId>

NOTE – The <labelId> parameter of the label statement indicates the possibility that a label can be the target for a jump by
means of a goto statement (see also 9.28).

Figure 91/Z.143 – Flow graph segment <label-stmt>

9.31 Log statement

The syntactical structure of the log statement is:

 log (<informal-description>)

The flow graph segment <log-stmt> in Figure 92 defines the execution of the log statement.

nop

segment <log-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

NOTE – The <informal description> parameter of the log statement has no meaning for the operational semantics and
is therefore not represented in the flow graph segment.

Figure 92/Z.143 – Flow graph segment <log-stmt>

 ITU-T Rec. Z.143 (03/2006) 81

9.32 Map operation

The syntactical structure of a map operation is:

 map(<component-expression>:<portId1>, system:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portId1> belongs is referenced by means of the component
reference <component-expression>. The reference may be stored in variables or is returned by a function, i.e., it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE – The map operation does not care whether the system:<portId> statement appears as first or as second parameter. For
simplicity, it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map-op> shown in Figure 93.

Figure 93/Z.143 – Flow graph segment <map-op>

9.33 Mtc operation

The syntactical structure of the mtc operation is:

 mtc

The flow graph segment <mtc-op> in Figure 94 defines the execution of the mtc operation.

mtc-op

segment <mtc-op>

Entity.VALUE-STACK.push(MTC);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 94/Z.143 – Flow graph segment <mtc-op>

82 ITU-T Rec. Z.143 (03/2006)

9.34 Port declaration

The syntactical structure of a port declaration is:

 <portType> <portName>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding type is created. The flow graph segment <port-declaration>
in Figure 95 defines the execution of a port declaration.

port-declaration
(portName)

segment <port-declaration>

// The port name <portName> is copied
// into the node attribute ‘portName’

ALL-PORT-STATES.append(NEW-PORT(Entity, portName);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 95/Z.143 – Flow graph segment <port-declaration>

9.35 Raise operation

The syntactical structure of the raise operation is:

 <portId>.raise (<exceptSpec>) [to <component-expression>]

The optional <component-expression> in the to clause refers to the receiver entity. It may be provided in the
form of a variable value or the return value of a function.

The flow graph segment <raise-op> in Figure 96 defines the execution of a raise operation.

<raise-with-receiver-op>
OR

<raise-without-receiver-op>

segment <raise-op>

// A raise operation may or may not
// have a receiver description.

Figure 96/Z.143 – Flow graph segment <raise-op>

 ITU-T Rec. Z.143 (03/2006) 83

9.35.1 Flow graph segment <raise-with-receiver-op>

The flow graph segment <raise-with-receiver-op> in Figure 97 defines the execution of a raise operation
where the receiver is specified in form of an expression.

raise-with-receiver-op
(portId, exceptSpec)

segment <raise-with-receiver-op>

let {
 var receiver := Entity.VALUE-STACK.top();
 var remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of exception
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise, exceptSpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure 97/Z.143 – Flow graph segment <raise-with-receiver-op>

84 ITU-T Rec. Z.143 (03/2006)

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <raise-without-receiver-op> in Figure 98 defines the execution of a raise operation
without to-clause.

raise-without-receiver-op
(portId, exceptSpec)

segment <raise-without-receiver-op>

let {
 var remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of exception
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise, exceptSpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 98/Z.143 – Flow graph segment <raise-without-receiver-op>

9.36 Read timer operation

The syntactical structure of the read timer operation is:

 <timerId>.read

The flow graph segment <read-timer-op> in Figure 99 defines the execution of the read timer operation.

The read timer operation distinguishes between its usage in a Boolean guard of an alt statement or blocking call
operation and all other cases. If used in a Boolean guard, the result of the read timer operation is based on the actual
snapshot, i.e., the SNAP-STATUS and SNAP-VALUE entries of the timer binding, in all other cases, the STATUS,
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

 ITU-T Rec. Z.143 (03/2006) 85

read-timer-op
(timerId)

segment <read-timer-op>

let { // local scope for variable myValue

 var float myValue;

 if (Entity.STATUS == SNAPSHOT) {
 if (Entity.timerId.SNAP-STATUS == RUNNING) {
 myValue := Entity.timerId.SNAP-VALUE;
 }
 else {
 myValue := 0.0;
 }
 }
 else {
 if (Entity.timerId.STATUS == RUNNING) {
 myValue := Entity.timerId.ACT-DURATION – Entity.timerId.TIME-LEFT;

 }
 else {
 myValue := 0.0;
 }
 }

 Entity.VALUE-STACK.push(myValue);

} // end local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 99/Z.143 – Flow graph segment <read-timer-op>

9.37 Receive operation

The syntactical structure of the receive operation is:

 <portId>.receive (<matchingSpec>) [from <component-expression>] [-> <assignmentPart>]

The optional <component-expression> in the from clause refers to the sender entity. It may be provided in the
form of a variable value or the return value of a function, i.e., it is assumed to be an expression. The optional
<assignmentPart> denotes the assignment of received information if the received message matches to the
matching specification <matchingSpec> and to the (optional) from clause.

The flow graph segment <receive-op> in Figure 100 defines the execution of a receive operation.

<receive-with-sender>
OR

<receive-without-sender>

segment <receive-op>

// Distinction due to the optional
// from clause

Figure 100/Z.143 – Flow graph segment <receive-op>

86 ITU-T Rec. Z.143 (03/2006)

9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <receive-with-sender> in Figure 101 defines the execution of a receive operation
where the sender is specified in form of an expression.

Figure 101/Z.143 – Flow graph segment <receive-with-sender>

 ITU-T Rec. Z.143 (03/2006) 87

9.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <receive-without-sender> in Figure 102 defines the execution of a receive
operation without a from clause.

Figure 102/Z.143 – Flow graph segment <receive-without-sender>

88 ITU-T Rec. Z.143 (03/2006)

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <receive-assignment> in Figure 103 defines the retrieval of information from received
messages and their assignment to variables.

segment <receive-assignment>

receive-assignment
(assignmentPart)

RETRIEVE-INFO(Entity.VALUE-STACK.top().first(), assignmentPart, Entity);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 103/Z.143 – Flow graph segment <receive-assignment>

9.38 Repeat statement

The syntactical structure of the repeat statement is:

 repeat

Basically, the repeat statement is a return statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of the alt statement in which the repeat statement has been
executed. The flow graph segment <repeat-stmt> shown in Figure 104 defines the execution of the repeat
statement.

segment <repeat-stmt>

<return-without-value>

repeat-stmt
Entity.STATUS(REPEAT);
RETURN;

Figure 104/Z.143 – Flow graph segment <repeat-stmt>

9.39 Reply operation

The syntactical structure of the reply operation is:

 <portId>.reply (<replySpec>) [to <component-expression>]

The optional <component_expression> in the to clause refers to the receiver entity. It may be provided in the
form of a variable value or the return value of a function.

 ITU-T Rec. Z.143 (03/2006) 89

The flow graph segment <reply-op> in Figure 105 defines the execution of a reply operation.

<reply-with-receiver-op>
OR

<reply-without-receiver-op>

segment <reply-op>

// A reply operation may or may not
// have a receiver description.

Figure 105/Z.143 – Flow graph segment <reply-op>

9.39.1 Flow graph segment <reply-with-receiver-op>

The flow graph segment <reply-with-receiver-op> in Figure 106 defines the execution of a reply operation
where the receiver is specified in the form of an expression.

reply-with-receiver-op
(portId, replySpec)

segment <reply-with-receiver-op>

let {
 var receiver := Entity.VALUE-STACK.top();
 var remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of reply
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply, replySpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure 106/Z.143 – Flow graph segment <reply-with-receiver-op>

90 ITU-T Rec. Z.143 (03/2006)

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <reply-without-receiver-op> in Figure 107 defines the execution of a reply
operation without to-clause.

Figure 107/Z.143 – Flow graph segment <reply-without-receiver-op>

9.40 Return statement

The syntactical structure of the return statement is:

 return [<expression>]

The optional <expression> describes a possible return value of a function. The execution of a return statement
means that the control leaves the actual scope unit, i.e., variables and timers only known in this scope have to be deleted
and the value stack has to be updated. A return statement has the effect of a stop component operation, if it is the
last statement in a behaviour description.

NOTE – Test cases and module control will always end with a stop component operation. This is due to their flow graph
representation (see 8.2). Only other test components may terminate with a return statement.

The flow graph segment <return-stmt> in Figure 108 defines the execution of a return statement.

Figure 108/Z.143 – Flow graph segment <return-stmt>

 ITU-T Rec. Z.143 (03/2006) 91

9.40.1 Flow graph segment <return-with-value>

The flow graph segment <return-with-value> in Figure 109 defines the execution of a return that returns a
value specified in form of an expression.

Figure 109/Z.143 – Flow graph segment <return-with-value>

92 ITU-T Rec. Z.143 (03/2006)

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <return-without-value> in Figure 110 defines the execution of a return statement
that returns no value.

return-without-value

segment <return-without-value>

Entity.DEL-VAR-SCOPE(); // The actual variable scope is deleted
Entity.DEL-TIMER-SCOPE(); // The actual timer scope is deleted
Entity.VALUE-STACK.clear-until(MARK);

Entity.CONTROL-STACK.pop(); // return address is lying on the
 // control stack

if (Entity.CONTROL-STACK.top() == NULL) { // return is a stop
 // Update of test case verdict
 if (Entitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail; }
 else {
 if (Entity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc; }
 else {
 if (Entity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 }
 DONE.append(Entity); // update of global DONE variable
 ALL-ENTITY-STATES.delete(Entity);
 DEL-ENTITY(Entity); // Deletion of Entity
}

RETURN;

Figure 110/Z.143 – Flow graph segment <return-without-value>

 ITU-T Rec. Z.143 (03/2006) 93

9.41 Running component operation

The syntactical structure of the running component operation is:

 <component-expression>.running

The running component operation checks whether a component is running or has stopped. The component to be
checked is identified by a component reference, which may be provided in the form of a variable or value returning
function, i.e., it is an expression. For simplicity, the keywords 'all component' and 'any component' are
considered to be special expressions.

The running component operation distinguishes between its usage in a Boolean guard of an alt statement or
blocking call operation and all other cases. If used in a Boolean guard, the result of running component operation
is based on the actual snapshot. In all other cases, evaluates directly the state information.

The result of the running component operation is pushed onto the value stack of the entity, which is called the
operation.

The flow graph segment <running-component-op> in Figure 111 defines the execution of the running
component operation.

decision

segment
<running-component-op>

if (Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
}
else { // Entity is in a snapshot
 Entity.NEXT-CONTROL(false);
}
RETURN;

<expression>

// The expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<running-comp-act> <running-comp-snap>

true false

Figure 111/Z.143 – Flow graph segment <running-component-op>

94 ITU-T Rec. Z.143 (03/2006)

9.41.1 Flow graph segment <running-comp-act>

The flow graph segment <running-comp-act> in Figure 112 describes the execution of the running component
operation outside a snapshot, i.e., the entity is in the status ACTIVE.

running-comp-act

segment
<running-comp-act> if (Entity.VALUE-STACK.top() == 'all component') {

 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (DONE.length() == 0) { // no entity has been stopped
 Entity.VALUE-STACK.push(true);
 }
 else { // at least one component has already been stopped
 Entity.VALUE-STACK.push(false);
 }
 }
}
else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' is not allowed
 }
 else {
 if (ALL-ENTITY-STATES.length() > 2) {
 // at least one PTC is running
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
 }
 else {
 if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 // Specified component is alive
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 112/Z.143 – Flow graph segment <running-comp-act>

 ITU-T Rec. Z.143 (03/2006) 95

9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <running-comp-snap> in Figure 113 describes the execution of the running
component operation during the evaluation of a snapshot, i.e., the entity is in the status SNAPSHOT.

running-comp-snap

segment
<running-comp-snap> if (Entity.VALUE-STACK.top() == 'all component') {

 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (Entity.SNAP-DONE.length() == 0) {
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
}
else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' is not allowed
 }
 else {
 if (SNAP-ACTIVE.length() > 2) {
 // at least one PTC was running when the
 // snapshot has been taken
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
 }
 else {
 if (Entity.SNAP-DONE.member(Entity.VALUE-STACK.top())) {
 // Specified entity has stopped
 Entity.VALUE-STACK.push(false);
 }
 else {
 // Specified entity is considered to be alive
 Entity.VALUE-STACK.push(true);
 }
 }
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 113/Z.143 – Flow graph segment <running-comp-snap>

96 ITU-T Rec. Z.143 (03/2006)

9.42 Running timer operation

The syntactical structure of the running timer operation is:

 <timerId>.running

The flow graph segment <running-timer-op> in Figure 114 defines the execution of the running timer
operation.

The running timer operation distinguishes between its usage in a Boolean guard of an alt statement or blocking
call operation and all other cases. If used in a Boolean guard, the result of running timer operation is based on the
actual snapshot, i.e., the SNAP-STATUS entry of the timer binding, in all other cases, the STATUS entry of the timer
binding determines the result of the operation.

The any keyword is handled as a special value of timerId.

running-timer-op
(timerId)

segment <running-timer-op>

let { // local scope for variable myStatus

 var statusType myStatus; // statusType is a symbolic type for the
 // status values of timers.

 if (timerId == ‘any timer’) {
 if (Entity.STATUS) == SNAPSHOT) {
 timerId := Entity.TIMER-STATE.first.random(SNAP-STATUS == RUNNING);
 }
 else {
 timerId := Entity.TIMER-STATE.first.random(STATUS == RUNNING);
 }
 }

 if (timerId != NULL) {
 myStatus := Entity.timerId.STATUS;
 if (Entity.STATUS == SNAPSHOT) {
 myStatus := Entity.timerId.SNAP-STATUS;
 }

 if (myStatus == RUNNING) {
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
} // end local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 114/Z.143 – Flow graph segment <running-timer-op>

 ITU-T Rec. Z.143 (03/2006) 97

9.43 Self operation

The syntactical structure of the self operation is:

 self

The flow graph segment <self-op> in Figure 115 defines the execution of the self operation.

self-op

segment <self-op>

Entity.VALUE-STACK.push(Entity);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 115/Z.143 – Flow graph segment <self-op>

9.44 Send operation
The syntactical structure of the send operation is:
 <portId>.send (<send-spec>) [to <component-expression>]

The optional <component-expression> in the to clause refers to the receiver entity. It may be provided in form
of a variable value or the return value of a function.

The flow graph segment <send-op> in Figure 116 defines the execution of a send operation.

<send-with-receiver-op>
OR

<send-without-receiver-op>

segment <send-op>

// A send operation may or may not
// have a receiver description.

Figure 116/Z.143 – Flow graph segment <send-op>

98 ITU-T Rec. Z.143 (03/2006)

9.44.1 Flow graph segment <send-with-receiver-op>

The flow graph segment <send-with-receiver-op> in Figure 117 defines the execution of a send operation
where the receiver is specified in the form of an expression.

send-with-receiver-op
(portId, sendSpec)

segment <send-with-receiver-op>

let {
 var receiver := Entity.VALUE-STACK.top();
 var remotePort := GET-REMOTE-PORT(Entity, portId, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of message
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, sendSpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference

Figure 117/Z.143 – Flow graph segment <send-with-receiver-op>

 ITU-T Rec. Z.143 (03/2006) 99

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send-without-receiver-op> in Figure 118 defines the execution of a send
operation without to-clause.

send-without-receiver-op
(portId, sendSpec)

segment <send-without-receiver-op>

let {
 var remotePort := GET-REMOTE-PORT(Entity, portId, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of message
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, sendSpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 118/Z.143 – Flow graph segment <send-without-receiver-op>

100 ITU-T Rec. Z.143 (03/2006)

9.45 Setverdict operation

The syntactical structure of the setverdict operation is:

 setverdict(<verdicttype-expression>)

The <verdicttype-expression> parameter of the setverdict operation is an expression that shall evaluate
to a value of type verdicttype, i.e., none, pass, inconc or fail. The expression is evaluated before the
setverdict operation is applied.

The flow graph segment <setverdict-op> in Figure 119 defines the execution of the setverdict operation.

setverdict-op

segment <setverdict-op>

if (Entity.E-VERDICT == fail or
 Entity.VALUE-STACK.top() == fail) {
 Entity.E-VERDICT := fail;
}
else {
 if (Entity.VALUE-STACK.top() == inconc or
 Entity.E-VERDICT == inconc) {
 Entity.E-VERDICT := inconc;
 }
 else {
 if (Entity.VALUE-STACK.top() == pass or
 Entity.E-VERDICT == pass) {
 Entity.E-VERDICT := pass;
 }
 }
}
Entity.VALUE-STACK.pop() // clear VALUE-STACK
Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression shall evaluate to a value
// of type verdicttype.
// The result of the evaluation is pushed
// onto the VALUE-STACK of Entity

Figure 119/Z.143 – Flow graph segment <setverdict-op>

9.46 Start component operation

The syntactical structure of the start component operation is:

 <component-expression>.start(<function-name>(<act-par-desc1>,..., <act-par-descn>))

The start component operation starts a newly created component. Using a component reference identifies the
component to be started. The reference may be stored in a variable or be returned by a function, i.e., it is an expression
that evaluates to a component reference.

The <function-name> denotes the name of the function that defines the behaviour of the new component and
<act-par-descr1>, ..., <act-par-descrn> provide the description of the actual parameter values of
<function-name>. In functions referenced in start component operations only value parameters are allowed. The
descriptions of the actual parameters are provided in the form of expressions that have to be evaluated before the call
can be executed. The handling of formal and actual value parameters is similar to their handling in function calls
(see 9.24).

The flow graph segment <start-component-op> in Figure 120 defines the execution of the start component
operation. The start component operation is executed in four steps. In the first step, a call record is created. In the

 ITU-T Rec. Z.143 (03/2006) 101

second step, the actual parameter values are calculated. In the third step, the reference of the component to be started is
retrieved, and, in the fourth step, control and call record are given to the new component.

NOTE – The flow graph segment in Figure 120 includes the handling of reference parameters (<ref-var-par-calc>).
Reference parameters are needed to explain reference parameters of test cases. The operational semantics assumes that these
parameters are handled by the MTC.

Figure 120/Z.143 – Flow graph segment <start-component-op>

102 ITU-T Rec. Z.143 (03/2006)

9.47 Start port operation

The syntactical structure of the start port operation is:

 <portId>.start

The flow graph segment <start-port-op> in Figure 121 defines the execution of the start port operation.

start-port-op
(portId)

segment <start-port-op>

GET-PORT(Entity, portId).clear;
GET-PORT(Entity,portId).STATUS := STARTED;

Entity.NEXT-CONTROL(true);

RETURN;

Figure 121/Z.143 – Flow graph segment <start-port-op>

9.48 Start timer operation

The syntactical structure of the start timer operation is:

 <timerId>.start [(<float-expression>)]

The optional <float-expression> parameter of the timer start operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the start operation. The expression shall evaluate to a value of type
float. If provided, the expression shall be evaluated before the start operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <start-timer-op> in Figure 122 defines the execution of the start timer operation.

<start-timer-op-default>
OR

<start-timer-op-duration>

segment <start-timer-op>

// A timer can be started with
// a default duration, or with
// a given duration.

Figure 122/Z.143 – Flow graph segment <start-timer-op>

 ITU-T Rec. Z.143 (03/2006) 103

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-default> in Figure 123 defines the execution of the start timer
operation with the default value.

start-timer-op-default
(timerId)

segment <start-timer-op-default>

// The timer reference <timerId> is copied into the node
// attribute ‘timerId’

if (Entity.timerId.DEF-DURATION == NONE) {
 DYNAMIC-ERROR // Timer has no default duration
}
else {
 Entity.TIMER-SET(timerId, ACT-DURATION, Entity.timerId.DEF-DURATION);
 Entity.TIMER-SET(timerId, TIME-LEFT, Entity.timerId.DEF-DURATION);
 Entity.TIMER-SET(timerId, STATUS, RUNNING);
}

Entity.NEXT-CONTROL(true);
RETURN;

Figure 123/Z.143 – Flow graph segment <start-timer-op-default>

104 ITU-T Rec. Z.143 (03/2006)

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-duration> in Figure 124 defines the execution of the start timer
operation with a provided duration.

start-timer-op-duration
(timerId)

segment <start-timer-op-duration>

// The timer reference <timerId> is copied into the node
// attribute ‘timerId’

Entity.TIMER-SET(timerId, ACT-DURATION, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, TIME-LEFT, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, STATUS, RUNNING);

Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a float. The result is pushed
// onto VALUE-STACK.

Figure 124/Z.143 – Flow graph segment <start-timer-op-duration>

9.49 Stop component operation

The syntactical structure of the stop component statement is:

 <component-expression>.stop

The stop component operation stops the specified component. All test components will be stopped, i.e., the test case
terminates, if the MTC is stopped (e.g., mtc.stop) or stops itself (e.g., self.stop). The MTC may stop all parallel
test components by using the all keyword, i.e., all component.stop.

A component to be stopped is identified by a component reference provided as expression, e.g., a value or value
returning function. For simplicity, the keyword 'all component' is considered to be special values of
<component-expression>. The operations mtc and self are evaluated according to clauses 9.33 and 9.43.

 ITU-T Rec. Z.143 (03/2006) 105

The flow graph segment <stop-component-op> in Figure 125 defines the execution of the stop component
operation.

decision

segment <stop-component-op>

if (Entity.VALUE-STACK.top() == MTC) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-mtc>

true
false

prepare-stop

if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 Entity.NEXT-CONTROL(true);
}
else {
 if (DONE.member(Entity.VALUE-STACK.top())){
 // NULL operation, component already stopped
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(false);
 }
 else {
 // component id has not been allocated
 DYNAMIC-ERROR
 {
}
RETURN;

<stop-component>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

decision

if (Entity.VALUE-STACK.top() == 'all component') {
 Entity.VALUE-STACK.pop(); // clean value stack
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all' not allowed
 }
 else {
 Entity.NEXT-CONTROL(true);
 {
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-all-comp>

true
false

true

false

Figure 125/Z.143 – Flow graph segment <stop-component-op>

106 ITU-T Rec. Z.143 (03/2006)

9.49.1 Flow graph segment <stop-mtc>

The <stop-mtc> flow graph segment in Figure 126 describes the stopping of an MTC of a test case. The effect is that
the test case terminates, i.e., the final verdict is calculated and pushed onto the value stack of module control, all
resources are released, the DONE list of the module state is emptied and all test components including the MTC are
terminated.

stop-mtc

segment <stop-mtc>

let { // local scope for variables

 var Control := ALL-ENTITY-STATES.first(); // module control
 var myEntity := ALL-ENTITY-STATES.next(MTC);

 // Update test case verdict
 while (myEntity != NULL) {
 if (myEntity.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }

 // Deletion of test components, release of resources, clearing done list
 ALL-ENTITY-STATES := NULL;
 ALL-ENTITY-STATES.append(Control); // re-introduction of Control
 ALL-PORT-STATES := NULL;
 SNAP-DONE := NULL;
 DONE := NULL;

 // Update of test case reference parameters
 UPDATE-REMOTE-LOCATIONS(MTC, Control);

 // Deletion of the last reference to the MTC
 MTC := NULL;

 // TC-VERDICT is the result of the execute operation
 Control.VALUE-STACK.push(TC-VERDICT);
 Control.STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

Figure 126/Z.143 – Flow graph segment <stop-mtc-op>

 ITU-T Rec. Z.143 (03/2006) 107

9.49.2 Flow graph segment <stop-component>

The <stop-component> flow graph segment in Figure 127 describes the stopping of a parallel test component,
i.e., not the MTC or module control. The effect is that the test case verdict TC-VERDICT and the list of terminated test
components (DONE) are updated and that the component is deleted from the module state. The <stop-component>
flow graph assumes that the identifier of the component to be stopped is on top of the value stack of the component that
executes the segment.

stop-component

segment <stop-component>

let { // local scope for variable myEntity
 var myEntity := Entity.VALUE-STACK.top();

 // for test continuation, if stop is executed by another component
 if (Entity != myEntity()) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
 }

 // Update test case verdict
 if (myEntity.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }

 // Deletion of test component
 DONE.append(myEntity); // Update of DONE
 DEL-ENTITY(myEntity); // Deletion of entity

} // End of local scope
RETURN;

Figure 127/Z.143 – Flow graph segment <stop-component>

108 ITU-T Rec. Z.143 (03/2006)

9.49.3 Flow graph segment <stop-all-comp>

The <stop-all-comp> flow graph segment in Figure 128 describes the stopping of all parallel test components of a
test case.

stop-all-comp

segment <stop-all-comp>

let { // local scope for variable myEntity
 var myEntity := ALL-ENTITY-STATES.next(MTC);

 // Update test case verdict
 while (myEntity != NULL) {
 if (myEntity.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }

 // Deletion of test components
 myEntity := ALL-ENTITY-STATES.next(MTC);
 while (myEntity != NULL) {
 DONE.append(myEntity); // Update of DONE
 DEL-ENTITY(myEntity); // Deletion of entity
 myEntity := ALL-ENTITY-STATES.next(MTC); // Next component to delete
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 128/Z.143 – Flow graph segment <stop-all-comp>

9.50 Stop execution statement

The syntactical structure of the stop execution statement is:

 stop

The effect of the stop execution statement depends on the entity that executes the stop execution statement:

a) If stop is performed by the module control, the test campaign ends, i.e., all test components and the
module control disappear from the module state.

b) If the stop is executed by the MTC, all parallel test components and the MTC stop execution. The
global test case verdict is updated and pushed onto the value stack of the module control. Finally, control
is given back to the module control and the MTC terminates.

c) If the stop is executed by a test component, the global test case verdict TC-VERDICT and the global
DONE list are updated. Then the component disappears completely from the module.

 ITU-T Rec. Z.143 (03/2006) 109

The flow graph segment <stop-exec-stmt> in Figure 129 describes the execution of the stop statement.

decision

segment <stop-exec-stmt>
if (Entity == All-ENTITY-STATES.first()) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-control>

true
false

decision

if (Entity == MTC.first()) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.VALUE-STACK.push(Entity);
 Entity.NEXT-CONTROL(false);
}
RETURN;

true false

<stop-mtc> <stop-component>

Figure 129/Z.143 – Flow graph segment <stop-exec-stmt>

9.50.1 Flow graph segment <stop-control>

The <stop-control> flow graph segment in Figure 130 describes the stopping of module control. The effect is that
ALL-ENTITY-STATES is set NULL, i.e., the termination condition of the module evaluation procedure (see 8.6) is
fulfilled.

stop-control

segment <stop-control>

ALL-ENTITY-STATES := NULL;
RETURN;

Figure 130/Z.143 – Flow graph segment <stop-control>

110 ITU-T Rec. Z.143 (03/2006)

9.51 Stop port operation

The syntactical structure of the stop port operation is:

 <portId>.stop

The flow graph segment <stop-port-op> in Figure 131 defines the execution of the stop port operation.

stop-port-op
(portId)

segment <stop-port-op>

GET-PORT(Entity,portId).STATUS := STOPPED;

Entity.NEXT-CONTROL(true);

RETURN;

Figure 131/Z.143 – Flow graph segment <stop-port-op>

9.52 Stop timer operation

The syntactical structure of the stop timer operation is:

 <timerId>.stop

The flow graph segment <stop-timer-op> in Figure 132 defines the execution of the stop timer operation.

The all keyword is handled as a special value of timerId.

stop-timer-op
(timerId)

segment <stop-timer-op>

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’

if (timerId == ‘all timer’) {
 Entity.TIMER-STATE.first.change(TIMER-SET(, STATUS, IDLE));
 Entity.TIMER-STATE.first.change(TIMER-SET(, ACT-DURATION, 0.0);
 Entity.TIMER-STATE.first.change(TIMER-SET(, TIME-LEFT, 0.0);
 // Note, the first parameter of the TIMER-SET function is
 // omitted, because it is applied to all timers in the
 // actual scope unit.
}
else {
 Entity.TIMER-SET(timerId, STATUS, IDLE);
 Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
 Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
}

Entity.NEXT-CONTROL(true);
RETURN;

Figure 132/Z.143 – Flow graph segment <stop-timer-op>

 ITU-T Rec. Z.143 (03/2006) 111

9.53 System operation

The syntactical structure of the system operation is:

 system

The flow graph segment <system-op> in Figure 133 defines the execution of the system operation.

system-op

segment <system-op>

Entity.VALUE-STACK.push(system);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 133/Z.143 – Flow graph segment <system-op>

9.54 Timer declaration

The syntactical structure of a timer declaration is:

 timer <timerId> [:= <float-expression>]

The effect of a timer declaration is the creation of a new timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to a value of the type float.

The flow graph segment <timer-declaration> in Figure 134 defines the execution of a timer declaration.

<timer-decl-default>
OR

<timer-decl-no-def>

segment <timer-declaration>

// A timer may be declared with
// or without a default duration

Figure 134/Z.143 – Flow graph segment <timer-declaration>

112 ITU-T Rec. Z.143 (03/2006)

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <timer-decl-default> in Figure 135 defines the execution of a timer declaration where
a default duration in form of an expression is provided.

timer-decl-default
(timerId)

segment <timer-decl-default>

Entity.INIT-TIMER(timerId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of type float

Figure 135/Z.143 – Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <timer-decl-no-def> in Figure 136 defines the execution of a timer declaration where
no default duration is provided, i.e., the default duration of the timer is undefined.

timer-decl-no-def
(timerId)

segment <timer-decl-no-def>

Entity.INIT-TIMER(timerId, NONE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136/Z.143 – Flow graph segment <timer-decl-no-def>

 ITU-T Rec. Z.143 (03/2006) 113

9.55 Timeout timer operation

The syntactical structure of the timeout timer operation is:

 <timerId>.timeout

The flow graph segment <timeout-timer-op> in Figure 137 defines the execution of the timeout timer
operation.

timeout-timer-op
(timerId)

segment <timeout-timer-op>

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’

if (timerId == ‘any timer’) {
 timerId := Entity.TIMER-STATE.first.random(SNAP-STATUS == TIMEOUT);
}

if (timerId != NULL && Entity.timerId.SNAP-STATUS == TIMEOUT) {
 Entity.TIMER-SET(timerId, STATUS, IDLE);
 Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
 Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
 Entity.STATUS := ACTIVE;
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

false true

NOTE 1 – A timeout operation is embedded in an alt statement. Its evaluation is based on the actual snapshot, i.e., the decision
is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is successful, i.e., SNAP-STATUS == TIMEOUT,
the timer is set into an IDLE state and the component state changes from SNAPSHOT to ACTIVE.

NOTE 2 – When the timeout evaluates to true or false, either execution continues with the statement that follows the
timeout operation (true branch), or the next alternative in the alt statement has to be checked (false branch).

NOTE 3 – The any keyword is treated like as special value of timerId.

Figure 137/Z.143 – Flow graph segment <timeout-timer-op>

9.56 Unmap operation

The syntactical structure of the unmap operation is:

 unmap(<component_expression>:<portId1>,system:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portId1> belongs is referenced by means of the component
reference <component-expression>. The reference may be stored in variables or is returned by a function, i.e., it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE – The unmap operation does not care whether the system:<portId> statement appears as first or as second parameter.
For simplicity, it is assumed that it is always the second parameter.

114 ITU-T Rec. Z.143 (03/2006)

The execution of the unmap operation is defined by the flow graph segment <unmap-op> shown in Figure 138.

segment <unmap-op>

<expression>

unmap-op
(portId1,portId2)

let { // beginning of a local scope unit, needed
 // for the local variable comp1
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 DEL-CON(comp1, portId1, system, portId2);
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 138/Z.143 – Flow graph segment <unmap-op>

9.57 Variable declaration

The syntactical structure of a variable declaration is:

 var <varType> <varId> [:= <varType-expression>]

The initialization of a variable by providing an initial value (in form of an expression) is optional. The initial value is
considered to be an expression that evaluates to a value of the type of the variable.

The flow graph segment <variable-declaration> in Figure 139 defines the execution of the declaration of a
variable.

<var-declaration-init>
OR

<var-declaration-undef>

segment <variable-declaration>

// A variable may be declared with
// or without initial value

Figure 139/Z.143 – Flow graph segment <variable-declaration>

 ITU-T Rec. Z.143 (03/2006) 115

9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-init> in Figure 140 defines the execution of a variable declaration
where an initial value in the form of an expression is provided.

var-declaration-init
(varId)

segment <var-declaration-init>

Entity.INIT-VAR(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK;

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of the type of the
// variable that is declared.

Figure 140/Z.143 – Flow graph segment <var-declaration-init>

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in Figure 141 defines the execution of a variable declaration
where no initial value is provided, i.e., the value of the variable is undefined.

var-declaration-undef
(varId)

segment <var-declaration-undef>

Entity.INIT-VAR(varId, NONE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 141/Z.143 – Flow graph segment <var-declaration-undef>

116 ITU-T Rec. Z.143 (03/2006)

9.58 While statement

The syntactical structure of the while statement is:

 while (<boolean-expression>) <statement-block>

The execution of a while statement is defined by the flow graph segment <while-stmt> shown in Figure 142.

if (Entity.VALUE-STACK.top() == true)
{
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

// The expression shall evaluate to
// a Boolean value.

segment <while-stmt>

decision

falsetrue

<statement-block>

<expression>

Figure 142/Z.143 – Flow graph segment <while-stmt>

10 Lists of operational semantic components

10.1 Functions and states

Name Description Clause

ACT-DURATION Duration with which an active timer has been started 8.3.2.4
add List operation: adds an item as first element to a list 8.3.1.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1.1
APPLY-OPERATOR Application of operators like +, – or / 8.6.2
change List operation: changes all elements of a list 8.3.1.1
clear Stack operation 'clear': clears a stack 8.3.2.1
clear Queue operation 'clear': removes all elements from a queue 8.3.3.2
clear-until Stack operation 'clear-until': pops items until a specific item is top element

in the stack.
8.3.2.1

CONNECTIONS-LIST List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.4.4
CONTINUE-COMPONENT The actual component continues its execution 8.6.2
CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2

 ITU-T Rec. Z.143 (03/2006) 117

Name Description Clause

DEF-DURATION Default Duration of a timer 8.3.2.4
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.3.4
DEL-TIMER-SCOPE Deletes a timer scope 8.3.2.5
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation 'first': returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.1.1
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.2.5
GET-UNIQUE-ID Returns a new unique identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD Initializes variables for parameters for procedure-based communication in

the actual scope unit of the test component
8.5.1

INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.2.5
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.2.5
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.2.5
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 8.3.1.1
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a

receiving operation
8.4.5

member List operation: checks if an item is element of a list 8.3.1.1
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD Creates a call record for a function call 8.5.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in a flow graph 8.1.6
next List operation: returns next element in a list 8.3.1.1
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next

flow graph node onto the control stack
8.3.2.1

OWNER Owner of a port 8.3.3
pop Stack operation 'pop': pops an item from a stack 8.3.2.1
PORT-NAME Name of a port. 8.3.3
push Stack operation 'push': pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.3.3.1
REMOTE-PORT-NAME Name of a port in a connection in a port state 8.3.3.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2

118 ITU-T Rec. Z.143 (03/2006)

Name Description Clause

SNAP-ACTIVE Number of active test components when the MTC takes a snapshot (part of
module state)

8.3.1

SNAP-DONE List of terminated test components at the time when a snapshot is taken 8.3.2
SNAP-PORTS Provides the snapshot functionality, i.e., updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.2.4
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and

SNAP-STATUS
8.3.2.5

SNAP-VALUE Snapshot value of a timer 8.3.2.4
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3
STATUS Status (ACTIVE, SNAPSHOT, REPEAT or BLOCKED) of module

control or a test component
8.3.2

STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4
STATUS Status (STARTED or STOPPED) of a port 8.3.3
TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before it times out 8.3.2.4
TIMER-GUARD Timer that guards execute statements and call operations 8.3.2
TIMER-NAME Name of a timer 8.3.2.4
TIMER-SET Setting values of a timer 8.3.2.5
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation 'top': returns the top item from a stack 8.3.2.1
UPDATE-REMOTE-
REFERENCES

Updates timers and variables with the same location in different entities to
the same value

8.3.4

VALUE Value of a variable 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands,

operations and functions
8.3.2

VAR-NAME Name of a variable 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
DYNAMIC-ERROR Describes the occurrence of a dynamic error 8.6.2
<identifier> Unique identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a storage

location for timers and variables
8.3.2.2, 8.3.2.4

10.2 Special keywords

Keyword Description Clause

ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
IDLE STATUS of a timer state 8.3.2.4
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3, 8.3.2.5, 8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing is

addressed
8.3.1.1, 8.3.2.1, 8.3.3,

8.3.3.2, 8.6.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.2.4
SNAPSHOT STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.2.4

 ITU-T Rec. Z.143 (03/2006) 119

10.3 Flow graphs of TTCN-3 behaviour descriptions

Reference

Figure Clause
Module control 18 8.2.2
Test cases 19 8.2.3
Functions 20 8.2.4
Altsteps 21 8.2.5
Component type definitions 22 8.2.6

10.4 Flow graph segments

Related TTCN-3 construct Reference
Identifier

 Figure Clause

<action-stmt> action statement 36 9.1
<activate-stmt> activate statement 37 9.2
<alt-stmt> alt statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> alt statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> call operation 52 9.6.4
<b-call-without-duration> call operation 51 9.6.3
<blocking-call-op> call operation 47 9.6
<call-op> call operation 46 9.6
<call-reception-part> call operation 53 9.6.5
<catch-op> catch operation 55 9.7
<catch-timeout-exception> call operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<clear-port-op> clear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> create operation 62 9.12
<deactivate-stmt> deactivate statement 63 9.13
<default-evocation> alt statement 43 9.3.5
<disconnect-op> disconnect operation 64 9.14
<do-while-stmt> do-while statement 65 9.15
<done-component-op> done component operation 66 9.16
<else-branch> alt statement 42 9.3.4
<execute-stmt> execute statement 67 9.17
<execute-timeout> execute statement 69 9.17.2
<execute-without-timeout> execute statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19
<for-stmt> for statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> getcall operation 86 9.25
<getreply-op> getreply operation 87 9.26
<getverdict-op> getverdict operation 88 9.27

120 ITU-T Rec. Z.143 (03/2006)

Related TTCN-3 construct Reference
Identifier

 Figure Clause

<goto-stmt> goto statement 89 9.28
<if-else-stmt> if-else statement 90 9.29
<init-component-scope> used in component type definitions 76 9.20
<label-stmt> label statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> log statement 92 9.31
<map-op> map operation 93 9.32
<mtc-op> mtc operation 94 9.33
<nb-call-without-receiver> call operation 50 9.6.2
<nb-call-with-receiver> call operation 49 9.6.1
<non-blocking-call-op> call operation 48 9.6
<operator-appl> expression 74 9.18.4
<parameter-handling> handling of parameters of functions, altsteps and test cases 77 9.21
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or external function) 85 9.24.5
<raise-op> raise operation 96 9.35
<raise-with-receiver-op> raise operation 97 9.35.1
<raise-without-receiver-op> raise operation 98 9.35.2
<read-timer-op> read timer operation 99 9.36
<receive-assignment> receive operation 103 9.37.3
<receive-op> receive operation 100 9.37
<receive-with-sender> receive operation 101 9.37.1
<receive-without-sender> receive operation 102 9.37.2
<receiving-branch> alt statement 40 9.3.2
<ref-par-var-calc> call of a function (handling of reference parameters) 82 9.24.2
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<repeat-stmt> repeat statement 104 9.38
<reply-op> reply operation 105 9.39
<reply-with-receiver-op> reply operation 106 9.39.1
<reply-without-receiver-op> reply operation 107 9.39.2
<return-stmt> return statement 108 9.40
<return-with-value> return statement 109 9.40.1
<return-without-value> return statement 110 9.40.2
<running-component-op> component running operation 111 9.41
<running-comp-act> component running operation 112 9.41.1
<running-comp-snap> component running operation 113 9.41.2
<running-timer-op> timer running operation 114 9.42
<self-op> self operation 115 9.43
<send-op> send operation 116 9.44
<send-with-receiver-op> send operation 117 9.44.1
<send-without-receiver-op> send operation 118 9.44.2
<setverdict-op> setverdict operation 119 9.45
<start-component-op> start component operation 120 9.46
<start-port-op> start port operation 121 9.47
<start-timer-op> start timer operation 122 9.48
<start-timer-op-default> start timer operation 123 9.48.1
<start-timer-op-duration> start timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> stop component operation 125 9.49

 ITU-T Rec. Z.143 (03/2006) 121

Related TTCN-3 construct Reference
Identifier

 Figure Clause

<stop-mtc> stop component operation (stop MTC) 126 9.49.1
<stop-component> stop component operation (stop single test component) 127 9.49.2
<stop-all-comp> stop component operation (all component.stop) 128 9.49.3
<stop-exec-stmt> stop execution statement 129 9.50
<stop-control> stop execution statement (stop of module control) 130 9.50.1
<stop-port-op> stop port operation 131 9.51
<stop-timer-op> stop timer operation 132 9.52
<system-op> system operation 133 9.53
<take-snapshot> alt statement 39 9.3.1
<timeout-timer-op> timeout operation 137 9.55
<timer-declaration> timer declaration 134 9.54
<timer-decl-default> timer declaration 135 9.54.1
<timer-decl-no-def> timer declaration 136 9.54.2
<timeout-timer-op> timeout operation 137 9.55
<unmap-op> unmap operation 138 9.56
<user-def-func-call> call of a function (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 140 9.57.1
<var-declaration-undef> variable declaration 141 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 139 9.57
<while-stmt> while statement 140 9.58

Printed in Switzerland
Geneva, 2006

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.143 (03/2006) Testing and Test Control Notation version 3 (TTCN-3): Operational semantics
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of this Recommendation
	6 Restrictions
	7 Replacement of short forms
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations

	8 Flow graph semantics of TTCN-3
	8.1 Flow graphs
	8.2 Flow graph representation of TTCN-3 behaviour
	8.3 State definitions for TTCN-3 modules
	8.4 Messages, procedure calls, replies and exceptions
	8.5 Call records for functions, altsteps and test cases
	8.6 The evaluation procedure for a TTCN-3 module

	9 Flow graph segments for TTCN-3 constructs
	9.1 Action statement
	9.2 Activate statement
	9.3 Alt statement
	9.4 Altstep call
	9.5 Assignment statement
	9.6 Call operation
	9.7 Catch operation
	9.8 Check operation
	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.13.1 Flow graph segment <deactivate-one-default>
	9.13.2 Flow graph segment <deactivate-all-defaults>
	9.14 Disconnect operation
	9.15 Do-while statement
	9.16 Done component operation
	9.17 Execute statement
	9.18 Expression
	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.29 If-else statement
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.36 Read timer operation
	9.37 Receive operation
	9.38 Repeat statement
	9.39 Reply operation
	9.40 Return statement
	9.41 Running component operation
	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.49 Stop component operation
	9.50 Stop execution statement
	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.54 Timer declaration
	9.55 Timeout timer operation
	9.56 Unmap operation
	9.57 Variable declaration
	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

