INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.120

TELECOMMUNICATION (11/1999)
STANDARDIZATION SECTOR
OF ITU

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Message
Sequence Chart

Message Sequence Chart (MSC)

ITU-T Recommendation Z.120

(Formerly CCITT Recommendation)

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) 7.100-Z.109

Application of Formal Description Techniques Z.110-Z.119

Message Sequence Chart 7.120-7.129
PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language 7.200-2.209
MAN-MACHINE LANGUAGE

General principles 7.300-Z.309

Basic syntax and dialogue procedures 7.310-2.319

Extended MML for visual display terminals 7.320-72.329

Specification of the man-machine interface 7.330-7.399
QUALITY OF TELECOMMUNICATION SOFTWARE 7.400-Z.499
METHODS FOR VALIDATION AND TESTING Z.500-Z.599

For further details, please refer to the list of ITU-T Recommendations.

ITU-T RECOMMENDATION Z.120

MESSAGE SEQUENCE CHART (MSC)

Summary

Scope/objective

The purpose of recommending MSC (Message Sequence Chart) is to provide a trace language for the
specification and description of the communication behaviour of system components and their
environment by means of message interchange. Since in MSCs the communication behaviour is
presented in a very intuitive and transparent manner, particularly in the graphical representation, the
MSC language is easy to learn, use and interpret. In connection with other languages it can be used
to support methodologies for system specification, design, simulation, testing, and documentation.

Coverage

This Recommendation presents a syntax definition for Message Sequence Charts in textual and
graphical representation. An informal semantics description is provided.

Application

MSC is widely applicable. It is not tailored for one single application domain. An important area of
application for MSC is an overview specification of the communication behaviour for real time
systems, in particular telecommunication switching systems. By means of MSCs, selected system
traces, primarily "standard" cases, may be specified. Non-standard cases covering exceptional
behaviour may be built on them. Thereby, MSCs may be used for requirement specification,
interface specification, simulation and validation, test case specification and documentation of real
time systems. MSC may be employed in connection with other specification languages, in particular
SDL. In this context, MSCs also provide a basis for the design of SDL-systems.

Status/Stability

MSC is stable. This Recommendation is a natural continuation of its 1996 version, adding concepts
for:

. data;

. time;

. control flow;

. object orientation on MSC document.

Associated work

— ITU-T Recommendation Q.65 (1997), The unified functional methodology for the
characteristics of services and network capabilities.

— ITU-T Recommendation X.210 (1993) | ISO/IEC 10731:1994, Information technology —
Open Systems Interconnection — Basic Reference model: Conventions for the definition of
OSI services.

— ITU-T Recommendation X.292 (1998), OSI conformance testing methodology and
framework for protocol Recommendations for ITU-T applications — The tree and tabular
combined notation (TTCN).

— ITU-T Recommendation Z.100 (1999), Specification and Description Language (SDL).
- UML 1.2, OMG 1999.

Source

ITU-T Recommendation Z.120 was revised by ITU-T Study Group 10 (1997-2000) and was
approved under the WTSC Resolution No. 1 procedure on 19 November 1999.

ITU-T Z.120 (11/1999) i

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the
ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on
these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

i ITU-T Z.120 (11/1999)

1.1
1.2
1.3

1.4

2.1
2.2
23
24
2.5

4.1
4.2
43
4.4
45
4.6
4.7
4.8
49
4.10
4.11

5.1
52
53
54
5.5
5.6
5.7

CONTENTS

IOt OAUCTION - et e e e e e e et e e e e e e e e e ree e e e eeeeeeneaannns
ODbJECtIVES OF MISC ...t et e et e e e aae e essae e esaaeeenaee s

Organization of the Recommendationccoecuieriiniiienieniiieieie e

Meta-language for textual grammar............ccceeeeiieeiiieeiieeee e

Meta-language for graphical grammar...........cccceoueviireiiienieneneeceee e

GEINETAL RULES ... e eeeeeeeeeeeeeneennnne

LEXICAL RULES. .ot e e e e e e e re e e e e e e e e e e

Visibility and Naming RUIEScccoeiviiiriiiiiiiiiiciieeceee e

COIMUMIEIIE .o e e e et e e e et eeeaeeeeeeaeeeennnnas

Drawing

RULES e

Paging Of MISCSooueiieciiiecee ettt e e e tae e e aa e e s eaae e eaneeeennes

Message

Sequence Chart dOCUMENL..........c.eevviieriiiiiieiieeie e

BaASIC IMISC e nnnnnen

Message
Instance

Message

SeqUENCE CRATT.......ooiiieiiieiieciie ettt et

CONELOL FLOW . e e e e e e e e e e ae e e e e e e e

ENVITONMENT QN GALES ...t e e e e e e e eeeeeeeeeeaeaeaeaeaeaeeaaeaaaaaaaaaaaaanns

GENETAl OTAETING.....cuviieeiiie ettt eee et e et e e e e e st eesteeesabeeessaeesssseeessaeessseeensseens

COMAITION. .. eeeeeeeeeeeeeeeeeeeee ettt eee et ee e e e e e eeeeeaee e eeeeeaeeeeneeeeeeaeaeeeeeeeeeeenennesnennennnne

Data con

[01S] o SRS

IO OAUCTION - et e e e e e e e et e e e e e e e e e re e eaeeeeeeerenannns

Syntax interface to external data languagescceecveeviieriienienieeiieeeeee e

Semantic interface to external data 1anguagescccccveeveieeriieenciie e

DeClaring datac.ooouiiiiieiie ettt e ene

STATIC DIALA ..o e e e e et e e e e e e e e e e e e aeeeeeeeraaaaaeaaaaaans

Dynamic Data........cc.ooiuiiiiiiiiieiieieeee et

Bindings

ITU-T Z.120 (11/1999)

iii

5.8 Data in message and timer ParameterS..........ccuverueeeveerieerieerieenreeieenieeereesseesneeeseenens 60
5.9 Data in instance Creation ParamMeELeTS........c.veerveeeruveererreerreeesreeesreeeesreeesseeessseesssseesnnns 62
510 Data in aCtION DOXESeeuviuieiiiiieiieieniiesieete ettt sttt ettt et sttt st sbe et sae e 62
511 ASSUMEd DAt TYPES....eeecuiieiiiieeiieeeiie ettt ettt sae e et e e eaeestaeesneeesnreeennns 63
6 TIME COMCEPLS ..vveevieniieiieetteeie ettt e et et e e te et e e e e bt e esbeebeesabeenbeensseenseenseesnseeseesnsean 63
6.1 TIMeEd SEMANTICS.....eeuiiiieiiiiirieete ettt sttt sbe e 63
6.2 REIAtiVe TIMINEG....eeiiiiieiiieeciie ettt e e e st e e st e et ae e saeeesaaeensaaeenneas 64
6.3 ADSOIULE TIMING ..vieiiieiiieiie ettt ettt ettt e e be et e eebeebeeesbeebaesaseenseasnnas 64
6.4 TIME DOMAIN ..ttt ettt e e eaeeas 64
6.5 Static and Dynamic Time Variables..........cccccoeviiiiiiniiiniieiieeie e 65
6.6 TIME OFESEL ..ottt ettt e as 65
6.7 Time Points, Measurements, and INtervalsooovvvuvviiiiiiiiiiiiiiiieeeeeeeeiieeeeeeeen 65
6.8 TIME POINES ..ttt ettt et e eaaeas 65
6.9 IMEASUTEIMENESeeuiieniiiiiieiie ettt ettt ettt ettt e bt st e b e e bt e sbeesareenbeesaneene 66
6.10 Time INTEIVAl....cocuiiiiiiiiie et st ettt 66
7 SHIUCTUTAL COMCEPLSveevvieiieeiiieeiie ettt ettt e et eseaeebeesseeenbeennaeenseas 69
7.1 {003 (<4 T 1 BSOS PURU SRR 69
7.2 INTINE EXPIESSION ..eeuviieeiriieeiieeeiieeeiteeeieeeeteeestaeeestreeesaseeesaeeeseeessseeessseeessseeensseennssens 71
7.3 IMISC TEIRTEIICE ..ottt sttt et et ettt 75
7.4 INStanCe dECOMPOSITIONeecuviiieiiieeiieeeiie et e eetee et e et e et e e etaeeereeessseeessseeeesseeenneas 79
7.5 High-1evel MSC (HMSC) ..ottt ettt et 87
8 Message Sequence Chart DOCUMENTccoviieiiieeiiieeiie et 91
8.1 MSC DOCUMENES ...ttt ettt ettt et beesaee e 91
8.2 INStanCe dECOMPOSITIONcecuviieeiiieeiieeeiieeeiee e et e e e e et e e eteeeesreeesnseeessseeensseeennens 92
8.3 Instance INhErItanCe.co.eivueiiiriiiiiceeeee e 93
9 Simple Message Sequence Charts...........ceeevierieiieeiiienieeieeee et 94
9.1 BaSic MISC ...ttt ettt ettt et ae e 94
9.2 MESSAZE OVETTAKING eeeuvieiieeiiieiie ettt ettt ettt e et e st e e teesaaeesbeessaesnbeenseeenseens 95
93 IMSC DASIC COMCEPLS ..vveeuerieeeiieeiteeeiieeeieeeeseeeesteeesseeesreeessseeessseeasseessseesssseessseeennses 96
94 MSC-composition through labelled conditionscceevveeviieniieniienieeiieieeeee 97
9.5 MSC With tiME SUPETVISION ...eceuvieiiiieeiiieeitieeeieeeeiieeesieeesteeesreeessseeesaeeessseesssseeensees 100
9.6 MSC With MESSAZE LOSS ..eeuvvieiiieiiiiiiieeie ettt et es 101
9.7 L0CaAl CONAIEIONS ...ttt et ettt st 102

iv ITU-T Z.120 (11/1999)

Page

10 DIAtA ..ot ettt 103
11 THIMIC .ottt st ettt et s h ettt 106
12 Creating and terminating PrOCESSESecveerurerrueerurerieerieeseeereesseesreenseessseesseesseessses 109
13 L0107 (7o 10) s WSS SRR 110
14 GENETAl OTAETING.....cuviieeiiie ettt et e et e et e e st e e e teeesabeeesaeesssaeeesseeensseeensneens 111
14.1 Generalized ordering within @ COT@ZIONcccueieiiieeiiieeciiie e e 111
14.2 Generalized ordering between different inStancescccceeveveeviienieecieeniienieeieenee. 112
15 ININE EXPIESSIONSvviieiiiieeiiieeeiiieeeiieesieeertee ettt e ette e e teeeeteeesteeessbeesssseeesseeenseeennneas 113
15.1 Inline Expression with alternative COMPOSItION..........cocuerierueirieriierieienieneeieeeeniens 113
15.2 Inline EXpression With atescccccccuieeiiiiiiiiieiiie e e e 116
15.3 Inline Expression with parallel composition............ccccoevreiiieniieniieniieieeieeeeee e, 117
16 IMISC TRIBTEICES ...ttt sttt ettt e e e s 118
L16.1 MSC TEIRIENCE .ttt st et et e st e e e s e eneeas 118
16.2 MSC reference With ate..........cccieviiiiiiiiieeiieieee et 119
17 High-Level MSC (HMSC) ...uiiiieiteieeee ettt st 120
17.1 High-Level MSC With fTe€ 00Dooioouiieiiiieeiieeeeeeee et 120
17.2 High-Level MSC With LOOP.....cccuiiiiiiiieiieiiieiecieee ettt 121
17.3 High-Level MSC with alternative COmMpOSItioNccccveeevveeeiieeniieesieeeeiee e 121
17.4 High-Level MSC with parallel composition............ccceeveeeiiienieeiiienieeiieeie e 123
ANNEX A —INACX .ttt st et 125

ITU-T Z.120 (11/1999) v

ITU-T Recommendation Z.120

MESSAGE SEQUENCE CHART (MSC)
(revised in 1999)

1 Introduction

1.1 Objectives of MSC

Message Sequence Charts (MSC) is a language to describe the interaction between a number of
independent message-passing instances. The main characteristics of the MSC language are the
following.

* MSC is a scenario language. An MSC describes the order in which communications and other
events take place. Additionally, it allows for expressing restrictions on transmitted data values
and on the timing of events.

* MSC supports complete and incomplete specifications. It has the possibility to describe
incomplete behaviours used in early analysis and for documentation purposes.

* MSC is a graphical language. The two-dimensional diagrams give overview of the behavior of
communicating instances. The textual form of MSC is mainly intended for exchange between
tools and as a base for automatic formal analysis.

* MSC is a formal language. The definition of the language is given in natural language as well as
in a formal notation.

» MSC is a practical language. MSC is used throughout the engineering process. Its use ranges
from domain analysis and idea generation via the requirements capture and design phases to
testing. MSC is used in slightly different ways in the various phases, and it is important that MSC
has formal expressive power as well as intuitive appearance.

* MSC is widely applicable. It is not tailored for one single application domain.

* MSC supports structured design. Simple scenarios (described by Basic Message Sequence
Charts) can be combined to form more complete specifications by means of High-level Message
Sequence Charts. MSCs are gathered in an MSC document. A modular design of scenarios is
supported by mechanisms for decomposition and reuse.

* MSC is often used in conjunction with other methods and languages. Its formal definition enables
formal and automated validation of an MSC with respect to a model described in a different
language. MSC can, for example be used in combination with SDL and TTCN.

* The usual interpretation of a scenario specified in an MSC is that the actual implementation
should at least exhibit the behaviour expressed in the scenario. Alternative interpretations are also
possible. An MSC can, for example, be used to specify disallowed scenarios.

1.2 Organization of the Recommendation

The document is structured in the following manner: In 2, general rules concerning syntax, drawing
and paging are outlined. In 3, a definition for the Message Sequence Chart document is provided.
Section 4 contains the definition of Message Sequence Charts and the basic constituents, i.e.
instance, message, general ordering, condition, timer, action, instance creation and termination.
Section 5 contains the data concepts and Section 0 defines the concepts for Time. In 7, higher level
concepts concerning structuring and modularisation are introduced. These concepts support a top
down specification and permit a refinement of individual instances by means of coregion (7.1) and
instance decomposition (7.4). Inline expression are defined in 7.2 and MSC references 7.3. High
level MSC (7.4) - permits MSC composition and reusability of (parts of) MSCs on different levels.

ITU-T Z.120 (11/1999) 1

In 0, examples are provided for all MSC-constructs. Annex A contains an index for the <keyword>s
and non-terminals.

1.3 Meta-language for textual grammar

In the Backus-Naur Form (BNF) a terminal symbol is either indicated by not enclosing it within
angle brackets (that is the less-than sign and greater-than sign, < and >) or it is one of the two
representations <name> and <character string>.

The angle brackets and enclosed word(s) are either a non-terminal symbol or one of the two
terminals <character string> or <name>. Syntactic categories are the non-terminals indicated by one
or more words enclosed between angle brackets. For each non-terminal symbol, a production rule is
given either in concrete textual grammar or in concrete graphical grammar. For example

<instance parameter decl> ::=
inst <instance parm decl list> <end>

A production rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side
of the symbol ::=, and one or more constructs, consisting of non-terminal and/or terminal symbol(s)
at the right-hand side. For example, < instance parameter decl > and < instance parm decl list > and
<end> in the example above are non-terminals; inst is a terminal symbol.

Sometimes a symbol includes an underlined part. This underlined part stresses a semantic aspect of
that symbol, e.g. <msc name> is syntactically identical to <name>, but semantically it requires the
name to be a Message Sequence Chart name.

At the right-hand side of the ::= symbol several alternative productions for the non-terminal can be
given, separated by vertical bars (|). For example,
<incomplete message area> ::=

<lost message area>
| <found message area>

expresses that an <incomplete message area> is either a <lost message area> or a <found message
area>.

Syntactic elements may be grouped together by using curly brackets ({ and }). A curly bracketed
group may contain one or more vertical bars, indicating alternative syntactic elements. For example,

<msc document body> ::=
{ <message sequence chart> | <msc diagram> }*

Repetition of curly bracketed groups is indicated by an asterisk (*) or plus sign (+). An asterisk
indicates that the group is optional and can be further repeated any number of times; a plus sign
indicates that the group must be present and can be further repeated any number of times. The
example above expresses that an <msc document body> may be empty but may also contain any
number of <message sequence chart>s and/or <msc diagram>s.

If syntactic elements are grouped using square brackets ([and]), then the group is optional. For
example

<identifier> ::=
[<qualifier>] <name>

expresses that an <identifier> may, but need not, contain <qualifier>.

2 ITU-T Z.120 (11/1999)

The meta-language operators have the following presidence order. The operator that binds the
weakest is the alternative operator “/”. Then follows the left-to-right sequencing. Operators “+” and
“*#” bind stronger than the sequencing, and finally the brackets “[....]” and “{ ... } bind the strongest.

14 Meta-language for graphical grammar

The meta-language for the graphical grammar is based on a few constructs which are described
informally below. The graphical syntax is not precise enough to describe the graphics such that there
are no graphical variations. Small variations on the actual shapes of the graphical terminal symbols
are allowed. These include, for instance, shading of the filled symbols, the shape of an arrow head
and the relative size of graphical elements. Whenever necessary the graphical syntax will be
supplemented with informal explanation of the appearance of the constructions.

The meta-language consists of a BNF-like notation with the special meta-constructions: contains, is
followed by, is associated with, is attached to, above and set. These constructs behave like normal
BNF production rules, but additionally they imply some logical or geometrical relation between the
arguments. The is attached to construct behaves somewhat differently as explained below. The left-
hand side of all constructs except above must be a symbol. A symbol is a non-terminal that produces
in every production sequence exactly one graphical terminal. We will consider a symbol that is
attached to other areas or that is associated with a text string as a symbol too. The explanation is
informal and the meta-language does not precisely describe the geometrical dependencies.

contains

"<areal> contains <area2>" means that <area2> is contained within <areal>, in principle
geometrically, but also logically.

\

<msc refereffce are::=
<msc reference syi\bol>
contains {<msc ref expr> [<actual gate areaN*]}
is attached to {<instance axis symbol>*}set

Figure 1/Z.120 — Example for ‘contains’

is followed by

"<areal> is followed by <area2>" means that <area2> is logically and geometrically related to
<areal>.

ITU-T Z.120 (11/1999) 3

<instance area> ::=
<instance head area>fis followed b} <instance body area>
<instance body area> ::=
<instance axis symbol>
is followed by { <instance end symbol> | <stop symbol> }

Figure 2/7.120 — Example for ‘is followed by’

is associated with

"<areal> is associated with <area2>" means that <area2> will expand to a text string which is
affiliated with <areal>. There is no closer geometrical association between the areas than the idea
that they should be seen as associated with each other.

<lost message area> ::=
<lost message symbol>
is associated with <myfg identification
[is associated with jJinstance identification>|<gate name>}|
is attached to <instance axis symbol>

Figure 3/Z.120 — Example for ‘is associated with’

is attached to

"<areal> is attached to <area2>" is not like a normal BNF production rule and its usage is restricted.
<area2> must be a symbol or a set of symbols. The meaning of production rule "<P>::=<areal> is
attached to <area2>" is that, if non-terminal <P> is expanded using this rule, only the symbol
<areal> is produced. Instead of also producing <area2>, an occurrence of <area2> is identified
which is produced by one of the other productions. The result of the is attached to construct is a
logical and geometrical relation between <areal> and the symbol <area2> from the implied
occurrence. In case the right-hand side is a set of symbols, there is a relation between <areal> and all
elements of the set.

4 ITU-T Z.120 (11/1999)

—
—

<message area> ::=
<message symbol>
is associated with <msg jdentificafion>
is attached to { <messdge start area> <messag¢ end area> }

Figure 4/7.120 — Example for ‘is attached to’

Notice that if symbol A is attached to symbol B, then symbol B is also attached to symbol A.
Henceforth, an attachment between two symbols is always defined twice in the grammar. We follow
one of the non-terminals above to see this:

<message end area> ::=
<message in area> | <gate in area> | <gate out def area> | <inline expr>

<message in area> ;1=
<message in symbol>
is attached to <instance axis symbol>
is attached to <message symbol>

<message in symbol> ::=
<void symbol>

Thus a <message symbol> is attached to a <message in symbol> and vice versa.

The “is attached to” construct may be specialized by prefixing or appending indications to where the
construct is attached. The modifiers may be top, bottom, left, right or any combination of these. This
means that we may have constructs like “<areal> bottom is attached to top or right <area2>”
meaning that the bottom part of <areal> is attached logically and geometrically to the top or right
side of <area2>.

above

"<areal> above <area2>" means that <areal> and <area2> are logically ordered. This is
geometrically expressed by ordering <areal> and <area2> vertically. If two <area>s have the same
vertical coordinate then no ordering between them is defined, except that an output of a message
must occur before an input.

ITU-T Z.120 (11/1999) 5

<event layer> ::=
<event area> | <event area> above <event layer>

Figure 5/7Z.120 — Example for ‘above’

Figure 5 describes a sequence of events. When the events are on different instances, the geometrical
vertical coordinate is of no semantical significance. Figure 5 describes the following sequence:

1,j: reference mr1: MyMSC gate g output sl to k;
k: input sl from mrl via g;

k: output s2 to i

i: input s2 from k;

set

The set metasymbol is a postfix operator operating on the immediately preceding syntactic elements
within curly brackets, and indicating a (unordered) set of items. Each item may be any group of
syntactic elements, in which case it must be expanded before applying the set metasymbol.

<text layer> ::=
{<text area>*} set

is a set of zero or more <text area>s.

<msc body area> ::=
{ <instance layer> <text layer> <gate def layer>
<event layer> <connector layer> } set

is an unordered set of the elements within the curly brackets.

2 General Rules

2.1 Lexical Rules

Lexical rules define lexical units. Lexical units are the terminal symbols of the Concrete textual
syntax.

<lexical unit> ::=
<word>
| <character string>
| <special>
| <composite special>
| <note>
| <keyword>

<word> ::=
{<alphanumeric> | <full stop>}*
<alphanumeric>
{<alphanumeric> | <full stop>}*

6 ITU-T Z.120 (11/1999)

<alphanumeric> ::=

<letter> ::=
|

<decimal digit> ::=

<national> ::=

<left square bracket> ::=

<right square bracket> ::

<left curly bracket> ::=

<vertical line> ::=

<right curly bracket> ::=

<left open> ::=

<left closed> ::=

<right open> 1=

<right closed> ::=

<abs time mark> ::=

<rel time mark> ::=

<overline> ::=

<letter>

<decimal digit>
<national>

A [B [C |
N [O [P |

a b Jc |

n lo |p |

0 | 1 | 2 | 3
I v @

<left square bracket>
<right square bracket>
<left curly bracket>
<vertical line>

<right curly bracket>
<overline>

<upward arrow head>

[

]

{

}

<left square bracket>

<right square bracket>

@
&

<upward arrow head> ::=

<full stop> ::==

<underline> ::=

<left angular bracket> ::

<right angular bracket>

A

v oIA

|t [J [K |L |M
[V W [X |Y |Z
i 13y [k [1 |m
v [w [x |y |z
18 19

ITU-T Z.120 (11/1999)

<character string> ::=
<apostrophe>{<alphanumeric>
| <other character>
| <special>
| <full stop>
| <underline>
| <space>
| <apostrophe><apostrophe>} * <apostrophe>

<text> ==
{ <alphanumeric>
| <other character>
| <special>
| <full stop>
| <underline>
| <space>
| <apostrophe> } *

<apostrophe> ::=

<other character> ::=
? & [% [+ |- [V |/ |>

<special> ::=

<composite special> ::=
<qualifier left> | <qualifier right>

<qualifier left> ::=
<<

<qualifier right> ::=
>>

<note> ::=
[* <text> */

<name> ::=
{<letter> | <decimal digit> | <underline> | <full stop>}+

<keyword> ::=

action
after

all

alt

as

before
begin
block

by

call
comment
concurrent
condition
connect
create

data
decomposed
def

empty

end
endafter
endbefore
endconcurrent
endexpr

ITU-T Z.120 (11/1999)

endinstance
endmethod
endmsc
endsuspension
env
equalpar
escape

exc

expr
external
finalized
found
from

gate

in

inf

inherits
inline

inst
instance
int_boundary
label
language
loop

lost
method
msc
mscdocument
msg
nestable
nonnestable
offset

opt

order
otherwise
out

par
parenthesis
process
receive
redefined
reference
related
replyin
replyout
seq

service
shared
startafter
startbefore
starttimer
stop
stoptimer
suspension
system

text

time
timeout
timer

to

undef
using
utilities

ITU-T Z.120 (11/1999)

9

variables
via
virtual
when
wildcards

<space> ::=
ITU-T Alphabet No. 5 character for a space

The <national> characters are represented above as in the International Reference Version of CCITT
Alphabet No.5 (Recommendation T.50). The responsibility for defining the national representations
of these characters lies with national standardisation bodies.

Control characters are defined as in recommendation T.50. A sequence of control characters may
appear where a <space> may appear, and has the same meaning as a <space>. The <space>
represents the CCITT Alphabet No. 5 character for a space.

An occurrence of a control character is not significant in <note>. A control character cannot appear
in character string literals if its presence is significant.

In all <lexical unit>s upper case and lower case letters are distinct, which means that AB, ab, Ab and
aB are four different lexical units.

A <lexical unit> is terminated by the first character which cannot be part of the <lexical unit>
according to the syntax specified above. When an <underline> character is followed by one or more
<space>s, all of these characters (including the <underline>) are ignored, e.g. A B denotes the same
<name> as AB. This use of <underline> allows <lexical unit>s to be split over more than one line.

When the character / is immediately followed by the character * outside of a <note>, it starts a
<note>.The character * immediately followed by the character / in a <note> always terminates the
<note>. A <note> may be inserted before or after any <lexical unit>.

A data string is a string of characters that will be analyzed by an analyzer external to MSC. The MSC
lexical analyzer needs to return the data string as one token that will in turn be given to the external
analyzer.

Since it would be preferable that the data string can be recognized from MSC and from the data
language without a number of extra delimiting characters, concepts are defined in the MSC grammar
to match most data languages directly.

Three concepts of parenthesis are defined: the normal parenthesis that may be nested meaning that
parentheses may have parentheses nested inside, the non-nestable parentheses where everything
inside the parenthesis is considered irrelevant, the symmetrical parenthesis where the opening and
the closing parenthesis are equal. The actual parenthesis delimiters are declared inside the heading of
the MSC document.

To make the approach applicable in all circumstances an escape is also define to describe when
parenthesis delimiters are to be considered in other ways than as parenthesis delimiters.

<string> ::=
<pure data string>

<pure data string> ::=
<non-parenthesis> [<parenthesis>] [<pure data string>]

10 ITU-T Z.120 (11/1999)

<parenthesis> ::=
<nestable par> | <equal par> | <non-nestable par>

<nestable par> ::=
<open par> <pure data string> <close par>

The <open par> and <close par> must be corresponding parenthesis delimiters defined in a
parenthesis pair in the MSC document heading defined in 5.2.
<non-parenthesis> ::=
{<non-par-non-escape> |
<escapechar> {<escapechar> | <open par> | <close par>} }*
<non-par-non-escape> ::=
character string containing no escape char and no parenthesis delimiters and

not the possible terminators »,” ”’)”” ”’;” . =" =" or comment

<equal par> ::=
<delim> <unmatched string> <delim>

<unmatched string> ::=
<non-parenthesis™> [<nestable par>] [<unmatched string>]

<non-nestable par> ::=
<open par> <text> <close par>

The <open par> and <close par> must be corresponding parenthesis delimiters defined in a
parenthesis pair in the MSC document heading.

If the <string> needs to contain the characters that would otherwise terminate a <non-par-non-
escape>, they must either be contained within a parenthesis or escaped.

2.2 Visibility and Naming Rules

Entities are identified and referred to by means of associated names. Entities are grouped into entity
classes to allow flexible naming rules. The following entity classes exist:

a) MSC document

b) MSC

c) instance

d) condition

e) timer

f) message

g) gate

h) split time interval connector
1) variable

J) general name

The scope units are the whole system of MSC documents, one MSC document and one MSC.

The whole system of MSC documents is the scope for defining MSC document names (which are
equivalent to instance kind names).

ITU-T Z.120 (11/1999) 11

The MSC document is the scope for defining MSCs, instances, conditions, timers, messages, split
time interval connectors, variables and general names.

The MSC is the scope for defining gates and MSC formal parameters. Formal parameters take
precedence over entities defined in the MSC document.

Instance without explicit kind will take its name as its implicit kind.

Messages going in and out of decomposed instances must be redeclared with the same name and
signature within the MSC document defining the decomposition. A message signature consists of the
message parameters' types and order.

A gate is referenced from outside of its defining MSC, and only in a reference to that MSC.

In the textual notation it is sometimes necessary to introduce specific identifiers for individual
objects that need no explicit naming in the graphical notation. An example is MSC references where
the graphical notation can easily handle two or more occurrences of the same MSC reference while
the textual notation must distinguish them by unique individual identifiers.

While lines and spatial proximity can be used to tie constructs together in a graphic description, a
textual notation will need identifiers for the same purpose. In some cases, the graphic notation will
also need identifiers on entities because a relation which is spatially far distributed shall be
described. Such identifiers can be found on a number of constructs. The MSC reference contains an
identifier, the gates may be identified by names. Such names are either contained in a symbol (like
the MSC reference), spatially adjacent described in the graphical grammar as is associated with (like
message gates on a diagram), or a special naming symbol containing the name, which is attached to
the construct (like for instance event areas). When gates have no explicit name, an implicit name is
constructed.
<general name area> ::=
<general name symbol> contains <name>

is attached to {<instance event area> | <inline expression area>
<operand area>}

<general name symbol> ::=

=

The <general name symbol> may also be mirrored. The contained <name> is contained within the
circle segment, but may extend beyond the symbol through the open end. The <general name area>
is attached to other constructs through the straight line.

23 Comment

There are three kinds of comments.

Firstly there is the note which occurs only in the textual syntax (see lexical rules).

Secondly there is the comment which is a notation to represent informal explanations associated with
symbols or text.

The concrete texual syntax of the comments is:

<end> ::=
[<comment>];

<comment> ::=
comment <character string>

12 ITU-T Z.120 (11/1999)

In the concrete graphical grammar the following syntax is used:

<comment area> ::=

<comment symbol> contains <text>

<comment symbol> ::=

A <comment symbol> can be attached to the graphical symbols.

Thirdly there is the text which may be used for the purpose of global comments.

Text in textual grammar is defined by:

<text definition> ::=

text <character string> <end>

In graphical grammar text is defined by:

<text area> ::=

<text symbol> contains <text>

<text symbol> ::=

24

?

Drawing Rules

The size of the graphical symbols can be chosen by the user. Symbol boundaries must not overlap or
cross. An exception to this rule applies

a)

b)

g)
h)

)

for the crossing of message symbol, reply symbol and general ordering symbol with message
symbol, reply symbol, general ordering symbol, lines in timer symbols, createline symbol,
instance axis symbol, method symbol, suspension symbol, coregion symbol, dashed line in
comment symbol and condition symbol,

for the crossing of lines in timer symbols with message symbol, reply symbol, general
ordering symbol, lines in timer symbols, createline symbol, dashed line in comment symbol
and condition symbol,

for the crossing of message symbol, reply symbol and general order symbol with the inline
expression symbol or exc inline expression symbol when the in and out events of message
symbol, reply symbol and general ordering symbol are not connected to the same instance
axis.

for the crossing of createline symbol with message symbol, reply symbol, general ordering
symbol, lines in timer symbols, instance axis symbol, method symbol, suspension symbol,
coregion symbol and dashed line in comment symbol,

for the crossing of condition symbol with instance axis symbol, method symbol, coregion
symbol, message symbol, reply symbol, general ordering symbol, lines in timer symbols,

for the crossing of inline expression symbol with instance axis symbol,
for the crossing of reference symbol with instance axis symbol and method symbol,

for the crossing of action symbol with instance axis symbol in line form, and the overlap of
action symbol with instance axis symbol in column form,

Overlap of method symbol, suspension symbol and coregion symbol with instance axis
symbol,

Overlap of method symbol with method symbol and suspension symbol,

ITU-T Z.120 (11/1999) 13

k) for the crossing of hmsc line symbol with hmsc line symbol.

There are two forms of the instance axis symbol and the coregion symbol: the single line form and
the column form. It is not allowed to mix both forms within one instance except single line axis with
column form coregions.

If a shared condition (see 4.7) crosses an instance which is not involved in this condition the instance
axis is drawn through.

If a shared reference (see 7.3) crosses an instance which is not involved in this reference the instance
axis is drawn through.

If a shared inline expression (see 7.2) crosses an instance which is not involved in this inline
expression the instance axis may not be drawn through.

In case where the instance axis symbol has the column form, the vertical boundaries of the action
symbol have to coincide with the column lines.

Message lines may be horizontal or with downward slope (with respect to the direction of the arrow),
and they may be a connected sequence of straight line segments.

If an incoming event and an outgoing event are on the same point of an instance axis, then it is
interpreted as if the incoming event is drawn above the outgoing event. A general ordering cannot be
attached to this point. It is not allowed to draw two or more outgoing events on the same point. It is
not allowed to draw two or more incoming events on the same point. The following events are
incoming events: message input, found message, receive, found receive, reply-in, found reply-in and
time-out. The following events are outgoing events: message output, lost message, call, lost call,
reply-out, lost reply-out, timer start, timer stop and instance creation.

2.5 Paging of MSCs

MSCs can be partitioned over several pages. The partitioning may be both horizontal and vertical.
The partitioning may alternatively be circumvented by means of MSC composition or instance
decomposition (see 7.4).

If an MSC is partitioned vertically into several pages, then the <msc heading> is repeated on each
page, but the instance end symbol may only appear on one page (on the "last” page for the instance
in question). For each instance the <instance head area> must appear on the first page where the
instance in question starts and must be repeated in dashed form on each of the following pages where
it is continued.

If messages, timers, create statements or conditions are continued from one page to the next page
then the entire text associated with the message, timer, create or condition must be present on the
first page and all or part of the text may be repeated on the next page.

Page numbering must be included on the pages of an MSC in order to indicate the correct position of
the pages. Pages must be numbered in pairs: ”v-h” where v’ is the vertical page number and ”h” the
horizontal page number. Arabic numerals must be used for the vertical numbers and English upper
case letters (‘A° to ‘Z°) for the horizontal. If the range ‘A‘ -°Z‘ is not sufficient then it is extended
with ‘AA‘ to ‘AZ‘, ‘BA‘ to ‘BZ* etc.

3 Message Sequence Chart document

The Message Sequence Chart document defines an instance kind and the associated collection of
message sequence charts, which again defines a set of traces. MSC documents can be described
graphically or textually. Since the Message Sequence Chart document defines the instances used
within the message sequence charts, Message Sequence Chart documents define the instance
decomposition structures.

14 ITU-T Z.120 (11/1999)

The Message Sequence Chart document header contains the document name and optionally,
following the keyword related to, the identifier (pathname) of the document to which the MSCs
refer. This document may be described in SDL, UML, TTCN, etc.

Concrete textual grammar

<textual msc document> ::=

<document head> ::=

<textual defining part> :

<textual utility part> ::=

<document head>
<textual defining part> <textual utility part>

mscdocument <instance kind> [related to <sdl reference> |
[<inheritance>] <end>

<using clause>

<containing-clause>

<message decl clause>

<timer decl clause>

[<data definition>]

[<parenthesis declaration> |

<defining msc reference>*

utilities [<containing-clause>] <defining msc reference>*

<defining msc reference> ::=

<virtuality> ::=

<using clause> ::=

<containing-clause> ::=

<instance item> ::=

<inheritance> ::=

<message decl clause> ::

<timer decl clause> ::=

<sdl reference> ::=

<identifier> ::=

<qualifier> ::=

reference [<virtuality>] <msc name>

virtual | redefined | finalized

{using <instance kind> <end> }*

{inst <instance item>}+

<instance name> [: <instance kind> | [<inheritance>]
[<decomposition™>]
{ <dynamic decl list> | <end>}

inherits <instance kind>

{msg <message decl> <end>}*

{timer <timer decl> <end>}*

<sdl document identifier>

[<qualifier>] <name>

<qualifier left> <text> <qualifier right>

The text in a qualifier must not contain '<<' or >>'.

ITU-T Z.120 (11/1999)

15

The decomposed-clause in <instance item> does not apply to lists used in <document head>, but to
decomposition of instances in high-level MSCs.

Concrete graphical grammar

<msc document area> ::=
<frame symbol> contains {<document head>
is followed by <defining part area> is followed by <utility part area>}

<defining part area> ::=
{{<defining msc reference area>*} set} is followed by <separator area>

<utility part area> ::
[<containing area> is followed by] {<defining msc reference area>*} set

<containing area> ::=
<containing-clause>

<defining msc reference area> ::=
<msc reference symbol>
contains [<virtuality>] <msc name>

Static Requirements

Instances contained in the MSCs referenced from the defining part and utility part must only be
chosen from the list of instances of the <containing-clause> in the <document head> and the start of
the utility part.

The optional containing-clause of the utility part will include instances that are contained within the
MSC:s of the utility part, but not of the defining part.

Instances contained in the <containing-clause> may be decomposed in some of the MSCs. Let the
instance x contained in MSC m be decomposed as xm. Then the defining part of the MSC document
for x must contain the MSC xm. All instances that are decomposed in MSCs must be declared as
decomposed in the containing-clauses.

When there is an inherits-clause inside the containing-clause, and the inheriting instance kind is
itself defined by an MSC document, there must be a corresponding inherits-clause of its <document
head>.

The <virtuality>-clause of the defining MSC reference must correspond to the <msc heading> of the
definition of the MSC.

A redefined or finalized MSC must have a corresponding MSC in the inherited instance kind which
is not finalized in the inherited instance kind.

Semantics

A Message Sequence Chart document is a collection of Message Sequence Charts, optionally
referring to a corresponding SDL-document.

The MSC document defines an instance or instance kind. An instance has a collection of Message
Sequence Charts associated. The MSCs are scenarios of interaction between the instances contained
in the defined instance. The defining part (defining MSCs) defines the collection of MSC traces
while the utility part contains only patterns (utility MSCs) reused by the defining part. Nevertheless
it is allowed for the MSCs in the utility part to reference MSCs of the defining part.

16 ITU-T Z.120 (11/1999)

The meaning of the optional inherits-clause is the same as

1) including all instances of the inherited kind into the containing-clauses of the inheriting kind,

2) including all defining MSCs of the inherited kind into the defining part of the inheriting kind
and

3) including all utility MSCs of the inherited kind into the utility part of the inheriting kind.

4) replacing every virtual or redefined MSCs of the inherited kind with the corresponding

redefined or finalized MSC of the inheriting kind.

The optional using-clause defines usage of MSC documents as libraries of MSCs. The meaning of
the using-clause is to include the defining part of the library MSC in the utility part of the enclosing
MSC document.

The instance names may be qualified by names of enclosing instances.

The keyword decomposed in the containing-clause indicates that the instance is decomposed within
at least one MSC.

4 Basic MSC

4.1 Message Sequence Chart

A Message Sequence Chart, which is normally abbreviated to MSC, describes the message flow
between instances. One Message Sequence Chart describes a partial behaviour of a system. Although
the name Message Sequence Chart obviously originates from its graphical representation, it is used
both for the textual and the graphical representation.

An MSC is described either by instances and events or by an expression that relates MSC references
without explicitly mentioning the instances (see 7.5).

Concrete textual grammar

<message sequence chart> ::=
[<virtuality>] mse <msc head> { <msc> | <hmsc> } endmsc <end>

<msc> =
<msc body>

<msc head> ::=
<msc name>[<msc parameter decl>] [<time offset>]<end>
[<msc inst interface>] <msc gate interface>

<msc parameter decl> ::=
([<data parameter decl>][<instance parameter decl>]
[<message parameter decl>][<timer parameter decl>])

<instance parameter decl> ::=
inst <instance parm decl list> <end>
<instance parm decl list> ::=
<instance parameter name> [: <instance kind>] [,<instance parm decl list>]
<instance parameter name> ::=
<instance name>
<message parameter decl> ;=
msg <message parm decl list>
<message parm decl list> ::=
<message decl list>

ITU-T Z.120 (11/1999) 17

<timer parameter decl> ::=

<timer parm decl list> ::=

<msc inst interface> ::=

<instance kind> ::=

<kind denominator> ::=

<msc gate interface> ::=

<msc gate def> ::=

<msg gate> ::=

<method call gate> ::=

<reply gate> ::==

<create gate> ::=

<order gate> ::=

<msc body> ::=

<msc statement> ::=

<event definition> ::=

<instance event list> ::=

<instance event> ::=

<orderable event> ::=

timer <timer parm decl list>

<timer decl list>

<containing-clause>

[<kind denominator> | <identifier>

system | block | process | service | <name>

<msc gate def>*

gate { <msg gate> | <method call gate> | <reply gate>|
<create gate> | <order gate> } <end>

<def in gate> | <def out gate>

<def out call gate> | <def in call gate>

<def out reply gate> | <def in reply gate>

<def create in gate> | <def create out gate>

<def order in gate> | <def order out gate>

<msc statement>*

<text definition> | <event definition>

<instance name> : <instance event list>
| <instance name list> : <multi instance event list>

<instance event> +

<orderable event> | <non-orderable event>

[label <event name> <end>]

{ <message event> | <incomplete message event> |

<method call event> | <incomplete method call event> | <create> |
<timer statement> | <action> }

[before <order dest list>] [after <order dest list>] <end>

[time <time dest list> <end>]

The optional label <event name> ; is used when the event is generally ordered.

18 ITU-T Z.120 (11/1999)

<order dest list> ::=
<order dest> [, <order dest list>]

<time dest list> ::=
<time interval> [<time dest>] [, <time dest list>]

<time dest> ::=
<event name> | [begin | end] <reference identification>

The time relation for orderable events is used to express timing. In the relative timing case, timing is
given with respect to a previous event. In the absolute timing, the absolute time is assigned.

The <gate name> in <order dest> refers to a <def order out gate>, <actual order in gate>, <inline
order out gate> or <def order out gate>. The <event name> in <order dest> refers to an <orderable
event>.
<non-orderable event> ::=
<start method> | <end method> | <start suspension> | <end suspension>
<start coregion> | <end coregion> | <shared condition> |

<shared msc reference> | <shared inline expr> |
<instance head statement> | <instance end statement> | <stop>

<instance name list> ::=
<instance name> { , <instance name> }* | all

<multi instance event list> ::=
<multi instance event> *

<multi instance event> ::=
<condition> | <msc reference> | <inline expr>

Static Requirements

For each <instance head statement> there must also be a corresponding <instance end statement> or
a <stop> event. For each instance there must be no events before its <instance head statement> is
defined. For each instance there must be no events after its <instance end statement>. For each
instance there must be not more than one <instance head statement> and not more than one <instance
end statement>.

The instances specified within the <msc> or <hmsc> must be a subset of the instances specified in
the enclosing <textual msc document>.

The <containing-clause>, if present, must contain the same instances as specified within the <msc>
or <hmsc>.

For <hmsc>s, decomposition of instances must be described in the decomposition-clause of the
<containing-clause> in the MSC heading.

Concrete graphical grammar

<msc diagram> ::=
<simple msc diagram> | <hmsc diagram>

ITU-T Z.120 (11/1999) 19

<simple msc diagram> ::=

<hmsc diagram> ::=

<msc symbol> ::=

<frame symbol> ::=

<msc heading> ::=

<msc body area> ::=

<instance layer> ::=

<text layer> ::=

<gate def layer> ::=

<event layer> ::=

<connector layer> ;1=

<event area> .=

<instance event area> ::=

<shared event area> ::=

<msc symbol>
contains <msc heading> <msc body area>

<msc symbol>
contains {<msc heading> [<containing-clause>]} <mscexpr area>

<frame symbol> is attached to { <def gate area>* } set

msc <msc name>[<msc parameter decl>] [<time offset> |

{ <instance layer> <text layer> <gate def layer>
<event layer> <connector layer> } set

{ <instance area>* } set

{ <text area>* } set

{ <def gate area>* } set

<event area> | <event area> above <event layer>

{ <message area>* | <incomplete message area>* |
<method call area>* | <incomplete method call area>*
<reply area>* | <incomplete reply area>*} set

<instance event area>
<shared event area>
<create area>

{<message event area>

<method call event area>

<reply event area>

<timer area>

<concurrent area>

<method area>

<suspension area>

<action area>}

[is followed by <general name area>]

<condition area>
<msc reference area>
<inline expression area>

20 ITU-T Z.120 (11/1999)

Static Requirements

All messages and timers with parameters must be declared in the enclosing MSC document.
Instances used within the MSCs must also be defined in the enclosing MSC document.

The instance kinds of the instance parameters must be defined in the enclosing MSC document.
Instance kinds are defined by the fact that instances of the specified kind are contained in the MSC
document. When the instance kind is not present in the parameter declaration, this is equivalent to
any kind.

Semantics

An MSC describes the communication between a number of system components, and between these
components and the rest of the world, called environment. For each system component covered by an
MSC there is an instance axis. The communication between system components is performed by
means of messages. The sending and consumption of messages are two asynchronous events. It is
assumed that the environment of an MSC is capable of receiving and sending messages from and to
the Message Sequence Chart; no ordering of message events within the environment is assumed.

A global clock is assumed for one Message Sequence Chart. Along each instance axis the time is
running from top to bottom, however, a proper time scale is not assumed. If no coregion or inline
expression is introduced (see 7.1, 7.2) a total time ordering of events is assumed along each instance
axis. Events of different instances are ordered via messages - a message must first be sent before it is
consumed - or via the generalized ordering mechanism. With this generalized ordering mechanism
"orderable events" on different instances (even in different MSCs) can be ordered explicitly. No
other ordering is prescribed. A Message Sequence Chart therefore imposes a partial ordering on the
set of events being contained. A binary relation which is transitive, antisymmetric and irreflexive is
called partial order.

For the message inputs (labelled by in(mi)) and outputs (labelled by out(mi)) of the Message
Sequence Chart in Figure 6(a) we derive the following ordering relation: out(m2) < in(m2), out(m3)
< in(m3), out(m4) < in(m4), in(m1) < out(m2) < out(m3) < in(m4), in(m2) < out(m4) together with
the transitive closure.

The partial ordering can be described in a minimal form (without an explicit representation of the
transitive closure) by its connectivity graph (Figure 6(b)).

in(ml)
msc event ordering
proc_a proc b proc_c v
[[1 [1 | out(m2y————" in(m2)
ml >
\/
m} > out(m3) — in(m3)
< m4
EEEE— . EE—— v \/
in(m4)« out(m4)
(a) (b)

Figure 6/Z.120 — Message Sequence Chart and corresponding connectivity graph

ITU-T Z.120 (11/1999) 21

A formal semantics of MSCs based on process algebra is provided in Annex B. The semantics of an
MSC can be related to the semantics of SDL by the notion of a reachability graph. Each
sequentialization of an MSC describes a trace from one node to another node (or a set of nodes) of
the reachability graph describing the behaviour of an SDL system specification. The reachability
graph consists of nodes and edges. Nodes denote global system states. A global system state is
determined by the values of the variables and the state of execution of each process and the contents
of the message queues. The edges correspond to the events which are executed by the system e.g. the
sending and the consumption of a message or the execution of a task. A sequentialization of an MSC
denotes one total ordering of events compatible with the partial ordering defined by the MSC.

In the textual representation, the <event definition> is provided either by an <instance name>
followed by the attached <event list> or by <instance name list> followed by an attached <multi
instance event> whereby a colon symbol serves as separator. The nonterminal <instance event>
denotes either an event which is attached to one single instance, e.g. <action> or a shared object e.g.
<shared condition> whereby the keyword shared together with the instance list or the keyword all is
used to denote the set of instances by which the condition is shared. A shared object may be
represented alternatively by <multi instance event>. The different notations are introduced in order to
facilitate an instance oriented description on the one hand and an event oriented description on the
other hand. Both notations may be mixed arbitrarily.

The instance oriented description lists events in association with an instance.

Within the event oriented textual representation, the events may be listed in form of a possible
execution trace and not ordered with respect to instances.

The optional <msc interface> which describes the interface of the MSC with its environment consists
of the <msc inst interface> and the <msc gate interface>. The <msc inst interface> provides a
declaration of the instances i.e. <instance name> and optionally <instance kind>. Since normally one
MSC only consists of a section of a system run the <msc inst interface> describes the connection
points of instances to the environment. The <msc gate interface> provides a definition of message
and ordering gates contained in the MSC. Message gates define the connection points of messages
with the environment. Optionally, gate names may be associated to gates.

4.2 Instance

A Message Sequence Chart is composed of interacting instances. An instance of an instance kind has
the properties of this kind. Related to SDL, an instance may be an SDL-system, block, process, or
service. Within the instance heading the instance kind name, e.g. process name, may be specified in
addition to the instance name.

Within the instance body the ordering of events is specified.

Concrete textual grammar

<instance head statement> ::=
instance [<instance kind> | [<decomposition>] <end>

<instance end statement> ::=
endinstance <end>

Concrete graphical grammar

<instance area> ::=
<instance fragment area> [is followed by <instance area> |

22 ITU-T Z.120 (11/1999)

<instance fragment area> ::=
<instance head area> is followed by <instance body area>

<instance head area> ::=
<instance head symbol>
is associated with <instance heading>
[is attached to <createline symbol>
[is attached to
{{<int symbol> | <abs time symbol>}*}sef]]

<instance heading> ::=
<instance name> [[:] <instance kind>] [<decomposition> |

<instance head symbol> ::=
<instance body area> ::=

<instance axis symbol>
is followed by { <instance end symbol> | <stop symbol> }

<instance axis symbol> ::=
{ <instance axis symbol1> | <instance axis symbol2> }
is attached to { <event area>* } set

<instance axis symboll> 1=

<instance axis symbol2> ::

<instance end symbol> ::=

The <instance heading> may be placed above or inside of the <instance head symbol> or split such
that the <instance name> is placed inside the <instance head symbol> whereas the <instance kind>
and <decomposition> is placed above. If the <instance heading> is split, the colon symbol is
optional.

All instance fragments with the same name must be placed directly under each other when occuring
on the same page.

To indicate that an MSC reference contains only instance creation or only instance stop, the fragment
ends must be attached onto the MSC reference symbol.

Semantics

Within the Message Sequence Chart body the instances are defined. The instance end symbol
determines the end of a description of the instance within an MSC. It does not describe the
termination of the instance (see 4.11). Correspondingly, the instance head symbol determines the

ITU-T Z.120 (11/1999) 23

start of a description of the instance within an MSC. It does not describe the creation of the instance
(see 4.10). All instance fragments with the same name constitute the same instance.

In the context of SDL an instance may refer to a process (keyword process), service (keyword
service), block (keyword block), or system (keyword system). Outside of SDL, it may refer to any
kind of entity. The instance definition provides an event description for message inputs and message
outputs, method calls and replies, actions, shared and local conditions, timer events, instance
creation, instance stop. Outside of coregions (see 7.1) and inline expressions (see 7.2) a total ordering
of events is assumed along each instance-axis. Within coregions no ordering of events is assumed if
no further synchronization constructs in form of general order relations are prescribed.

4.3 Message

A message within an MSC is a relation between an output and an input. The output may come from
either the environment (through a gate) or an instance, or be found; and an input is to either the
environment (through a gate) or an instance or is lost.

A message exchanged between two instances can be split into two events: the message input and the
message output; e.g. the second message in Figure 6(a) can be split into out(m2) (output) and in(m?2)
(input). In a message parameters may be assigned (see 5.8).

The correspondence between message outputs and message inputs has to be defined uniquely. In the
textual representation normally the mapping between inputs and outputs follows from message name
identification and address specification. In the graphical representation a message is represented by
an arrow.

The loss of a message, i.e. the case where a message is sent but not consumed, is indicated by the
keyword lost in the textual representation and by a black hole in the graphical representation.

Symmetrically, a spontaneously found message, i.e. a message which appears from nowhere, is
defined by the keyword found in the textual representation and by a white hole in the graphical
representation.

By means of the keyword before and after in the textual representation, an ordering of message
events on different instances may be defined. In the graphical representation, synchronisation
constructs in form of connection lines define these generalized ordering concepts.

The time interval on a timed message gives the delay between the message output and the message
input. Also, the message input of an incomplete message input as well as the message output of an
incomplete message output can be time constrained. In addition, the message out and the message in
event can be time constrained with respect to other events.

Concrete textual grammar

<message event> ::=
<message output> | <message input>

<message output> ::=
out <msg identification> to <input address>

<message input> ::=
in <msg identification> from <output address>

<incomplete message event> ::=
<incomplete message output> | <incomplete message input>

<incomplete message output> ::=
out <msg identification> to lost [<input address™>]

24 ITU-T Z.120 (11/1999)

<incomplete message input> ::=
in <msg identification> from found [<output address>]

<msg identification> ::=
<message name> [, <message instance name> | [(<parameter list>) |

The <message instance name> is needed only in the textual notation.

<output address> ::=
<instance name> | { env | <reference identification>} [via <gate name>]

<reference identification> ::=
reference <msc reference identification>
| inline <inline expr identification>

The <gate name> refers to a <def in gate>. If the keyword env is used alone it means that the <output
address> denotes a <def in gate> which has an implicit name given by the corresponding <msg
identification> and direction in.

<input address> ::=
<instance name> | { env | <reference identification>} [via <gate name>]

The <gate name> refers to a <def out gate>. If the keyword env is used alone it means that the <input
address> denotes a <def out gate> which has an implicit name given by the corresponding <msg
identification> and direction out.

Static Requirements

For messages exchanged between instances the following rules must hold: To each <message
output> one corresponding <message input> has to be specified and vice versa. In case, where the
<message name> and the <address> are not sufficient for a unique mapping the <message instance
name> has to be employed.

It is not allowed that the <message output> is causally depending on its <message input> via other
messages or general ordering constructs. Such causal dependence is the case if the connectivity graph
(see Figure 6) contains loops. If a <parameter list> is specified for a <message input> then it has to
be specified also for the corresponding <message output> and vice versa The <parameter list> for
<message output> consists only of <expression>s and the <parameter list> for <message input>
consists only of <pattern>s.

Concrete graphical grammar

<message event area> ::=
{ <message out area> | <message in area> }
{is followed by <general order area> }*
{is attached to <general order area> }*

Message events may be generally ordered in a number of different general order relations. Message
events appear on either side of the order relation.
<message out area> ;=
<message out symbol>

is attached to <instance axis symbol>
is attached to <message symbol>

ITU-T Z.120 (11/1999) 25

[is attached to
{<int symbol> | <abs time symbol> }*]

<message out symbol> ::=
<void symbol>

<void symbol> ::=
The <void symbol> is a geometric point without spatial extension.

The <message out symbol> is actually only a point which is on the instance axis. The end of the
message symbol which has no arrow head is also on this point on the instance axis.

<message in area> ::=
<message in symbol>
is attached to <instance axis symbol>
is attached to <message symbol>
[is attached to
{<int symbol> | <abs time symbol> }*]

<message in symbol> ::=
<void symbol>

The <message in symbol> is actually only a point which is on the instance axis. The end of the
message symbol which is the arrow head is also pointing on this point on the instance axis.

<message area> ::=
<message symbol>
is associated with <msg identification> [time <time interval>]
is attached to {<message start area> | <message end area>}

<message start area> ::=
<message out area> | <actual out gate area>
| <def in gate area> | <inline gate area>

<message end area> ::=
<message in area> | <actual in gate area>
| <def out gate area> | <inline gate area>

<message symbol> ::=
_
The mirror image of the <message symbol> is allowed. The point of the arrow head must be on the
instance axis.

In the graphical representation the message instance name is not necessary for a unique syntax
description.

<incomplete message area> ::=
{ <lost message area> | <found message area> }
{ is followed by <general order area> }*
{ is attached to <general order area> }*

<lost message area> ::=
<lost message symbol> is associated with <msg identification>

[is associated with { <instance name> | <gate name> } |
is attached to <message start area>

26 ITU-T Z.120 (11/1999)

<lost message symbol> ::=

—»e

The <lost message symbol> describes the event of the output side, i.e. the solid line starts on the
<message start area> where the event occurs. The optional intended target of the message can be
given by an identifier associated with the symbol. The target identification should be written close to
the black circle, while the message identification should be written close to the arrow line.

The mirror image of the symbol may also be used.

<found message area> ::=
<found message symbol> is associated with <msg identification>
[is associated with { <instance name> | <gate name> } |
is attached to <message end area>

<found message symbol> ::=

40

The <found message symbol> describes the event of the input side (the arrowhead) which must be on
a <message end area>. The instance or gate which supposedly was the origin of the message is
indicated by the optional identification given by the text associated with the circle of the symbol. The
message identification should be written close to the arrow line.

The mirror image of the symbol may also be used.

Static Requirements

A <parameter list> of a <message area> where both ends are attached to <instance event area>s
consists of <bindings>. A <parameter list> of a <message area> where one end is attached to an
<output event area> and the other to a gate or is lost, consists of <expression>s. A <parameter list>
of a <message area> where one end is attached to an <input event area> and the other to a gate or is
found, consists of <pattern>s.

Semantics

For an MSC the message-output denotes the message sending, the message-input the message
consumption. No special construct is provided for message reception (input into the buffer).

An incomplete message is a message which is either an output (where the input is lost/unkown) or an
input (where the output is found/unknown).

For the case where message events coincide with other events, see the drawing rules in 2.4.

4.4 Control Flow

MSC may describe control flows of not only via asynchronous messages, but also by means of calls
and replies.

A method is a named unit of behavior inside an instance. A method may be invoked remotely and the
results of the calculations of the method may be returned through a reply to the caller. The reply will
have the same name as the corresponding call.

A method call may be either asynchronous or synchronizing. An asynchronous call implies that the
caller may continue without waiting for the reply of the call. On the other hand, a synchronizing call
implies that the caller will enter a suspension region where no events occur until the reply of the call
returns. Since method calls may occur inside decomposed instances the methods and suspension
regions may be omitted. If the <method symbol> and <suspension

ITU-T Z.120 (11/1999) 27

symbol> is used the <method symbol> indicates that an instance is active. The <suspension symbol>
indicates that an instance is suspended, typically waiting for some kind of blocking condition to be
resolved (e.g. waiting for the reply of a synchronous call) or to get access to some shared resource
(e.g. CPU) in order to continue with an ongoing task. The normal instance axis symbol (<instance
axis symboll1> or <instance axis symbol2>) in this context means that the instance is inactive and
waiting for an in event (<message input> or <call in>) to be activated and start one of the tasks it is
capable to perform. The symbol which describes the activation level of an instance does not imply
any dynamic effects on the formal semantics, which only considers event ordering, but only poses
requirements on where messages may have their in and out events.

Method calls and method replies may also be incomplete such that either the call or the reply gets
lost.

Analogeous to time constraints for messages, method calls and method replies can be time
constrained.

Concrete Textual Grammar

<method call event> ::=
<call out> | <call in> |<reply out> | <reply in>

<call out> ::=
call <msg identification> to <input address>

<call in> ;=
receive <msg identification> from <output address>

<reply out> ::=
replyout <msg identification> to <input address>

<reply in> ::=
replyin <msg identification> from <output address>

<incomplete method call event> ::=
<incomplete call out> | <incomplete call in> |
<incomplete reply out> | <incomplete reply in>

<incomplete call out> ::=
call <msg identification> to lost [<input address>]

<incomplete call in> ::=
receive <msg identification> from found [<output address>]

<incomplete reply out> ::=
replyout <msg identification> to lost [<input address>]

<incomplete reply in> ::=
replyin <msg identification> from found [<output address>]

28 ITU-T Z.120 (11/1999)

<start method> ::=

<end method> ::=

<start suspension> ::=

<end suspension>::=

method <end>

endmethod <end>

suspension <end>

endsuspension <end>

Concrete graphical grammar

<method call area> ::=

<method identification> ::

<method call start area> ::

<method call end area> ::

<reply area> ::=

<reply start area> ::=

<message symbol>

is associated with <method identification>[time <time interval>]
is attached to { <method call start area> <method call end area> }
is attached to {<instance axis symbol>}

[is attached to {<method area>}]

call <msg identification>

<call out area> | <actual out gate area> |
<def in gate area> | <inline gate area>
is attached to <instance axis symbol>
is attached to <message symbol>

[is attached to <suspension symbol>]
[is attached to

{<int symbol> | <abs time symbol> }*]

<call in area> | <actual in gate area> |
<def out gate area> | <inline gate area>
is attached to <instance axis symbol>
is attached to <message symbol>

[is attached to <method symbol>]

[is attached to

{<int symbol> | <abs time symbol> }*]

<reply symbol>
is associated with <msg identification>[time <time interval>]
is attached to { <reply start area> <reply end area>}

<reply out area> | <actual out gate area> |
<def in gate area> | <inline gate area>

is attached to <instance axis symbol>

is attached to <reply symbol>

[is attached to <method symbol>]

[is attached to

{<int symbol> | <abs time symbol> }*]

ITU-T Z.120 (11/1999)

29

<reply end area> ::=
<reply in area> | <actual in gate area> |
<def out gate area> | <inline gate area>
is attached to <instance axis symbol>
is attached to <reply symbol>
[is attached to <suspension symbol>]
[is attached to
{<int symbol> | <abs time symbol> }*]

<reply symbol> ::=

<incomplete method call area> ::=
{ <lost method call area> | <found method call area> }
{ is followed by <general order area> } *
{ is attached to <general order area> }*

<lost method call area> ::=
<lost message symbol> is associated with <method identification>
[is associated with { <instance name> | <gate name> } |
is attached to <method call start arca>

<found method call area> ::=
<found message symbol> is associated with <method identification>
[is associated with { <instance name> | <gate name> } |
is attached to <method call end area>

<incomplete reply area> ::=
{ <lost reply area> | <found reply area> }
{ is followed by <general order area> } *
{ is attached to <general order area> }*

<lost reply area> ::=
<lost reply symbol> is associated with <msg identification>
[is associated with { <instance name> | <gate name> } |
is attached to <reply start area>

<lost reply symbol> ::=
“ e
<found reply area> ::=
<found reply symbol> is associated with <msg identification>

[is associated with { <instance name> | <gate name> } |
is attached to <reply end area>

<found reply symbol> ::=
-0

<method call event area> ::=
{<call out area> | <call in area>}
{is followed by <general order area> }*
{is attached to <general order area> }*

30 ITU-T Z.120 (11/1999)

<call out area> ::=

<call out symbol> ::=

<call in area> ::=

<call in symbol> ::=

<reply event area> ::=

<reply out area> ::=

<reply out symbol> ::=

<reply in area> ::=

<reply in symbol> ::=

<method area> ::=

<method event layer>::=

<method event area>::=

<method symbol> ::=

<call out symbol>
is attached to <instance axis symbol>
is attached to <message symbol>

<void symbol>

<call in symbol>
is attached to <instance axis symbol>
is attached to <message symbol>

<void symbol>

{<reply out area> | <reply in area>}

{is followed by <general order area> }*
{is attached to <general order area> }*

<reply out symbol>
is attached to <instance axis symbol>
is attached to <message symbol>

<void symbol>

<reply in symbol>
is attached to <instance axis symbol>
is attached to <message symbol>

<void symbol>

<method symbol>

is attached to <instance axis symbol>
[contains <method event layer>]

<method event area> | <method event area> above <method event layer>

<event area>

<suspension area> ::=

<suspension symbol>
is attached to <instance axis symbol>
[contains <suspension event layer>]

<suspension event layer>::=

<method invokation area>
| <method invokation area> above <suspension event layer>

ITU-T Z.120 (11/1999)

31

<method invokation area> ::=
<method start area>
is followed by <method area>
is followed by <method end area>

<method start area> ::=
<call in area> | <found method call area>

<method end area> ::=
<reply out area> | <lost reply area>

<suspension symbol> ::=

Static Requirements

The following grammatical rules refer to events on a specific instance:

<start method> <instance event list> <end method>

<start suspension> <instance event list> < end suspension>

<call out> <instance event list> <reply in>, where the <reply in> corresponds to the <call out>.
<call in><instance event list><reply out>, where <reply out> corresponds to <call in>.

A <start method> may only follow directly after a <call in> event, <incomplete call in> event,
<message input> event, <incomplete message input> event, <end suspension> or a <create> event
where the created instance is subject to the <start method>. A method symbol may end at any time,
but an <end method> must always follow directly after a <reply out> or an <incomplete reply out>
event.

Dynamically call and reply (if any) must come in pairs. A specific instance that emits a <call out>
event may not emit another call out event before a corresponding <reply in> event is received or an
<call in> event is received that is causally dependent upon its <call out event> (i.e. calls and replies
may be nested). If a suspension region starts directly after an outgoing call it ends with the
corresponding reply.

All <instance event>s are allowed on method symbols. Methods may be superimposed on methods
and suspension regions. By “superimposed” we mean that the regions may be drawn with a small
horizontal offset relative to the method or suspension region in which it is contained.

Suspension regions are not allowed to contain any events. A suspension region may however be
superimposed by a method region when the suspension region starts with a <call out> and
consequently is called recursively with a <call in> (directly or indirectly).

32 ITU-T Z.120 (11/1999)

A suspension region may end at any time if it does not follow directly after a <call out> event, in
which case it ends with the corresponding <reply in> event.!

4.5 Environment and Gates

The gates represent the interface between the MSC and its environment. Any message or order
relation attached to the MSC frame constitutes a gate. See Figure 7 for examples of gates.

A message gate always has a name. The name can be defined explicitly by a name associated with
the gate on the frame. Otherwise the name is given implicitly by the direction of the message through
the gate and the message name, e.g. "in_X" for a gate receiving a message X from its environment.

The message gates are used when references to the MSC are put in a wider context in another MSC.
The actual gates on the MSC reference are then connected to other message gates or instances.
Similar to gate definitions, actual gates may have explicit or implicit names.

Order gates represent incompleted order relations where an event inside the MSC will be ordered
relative to an event in the environment. Order gates are always explicitly named. Order gates are
considered to have direction - from the event ordered first to the event coming after it.

Also order gates are used on references to MSCs in other MSCs. The actual order gates of the MSC
reference are connected to other order gates or to events.

Create gates represent the possibility to divide the creation event from the created instance.

Gates on inline expressions are similar to gates on MSC frames and MSC references, but the
difference lies in the fact that the inline expression frame is both the frame of gate definition (on the
inside) and the symbol of actual gate use (on the outside). In the case where the inline actual gate is
directly drawn to another frame (inline expression or MSC diagram frame), the arrowheads on the
intersection points can be omitted to prevent cluttering the diagram with very tight arrowheads.

I Additional static requirements may be added to the static requirements to fit a specific execution model or
come out as a consequence when that model is traced. For example if the control flow of a purely
procedural language is described (i.e. no parallelism), then a <call out> event must always be followed by a
<start suspension> or if each instance always is able to handle events (i.e. has its own CPU), then a
suspension region may only start after a <call out> event.

ITU-T Z.120 (11/1999) 33

actual message gate
with implicit name
out_sl

msc Gates

order gate

definition with

name g
actual gate h of message gate definition
MyMsc with implicit name in_s3

Figure 7/72.120 — Example of gates

Concrete textual grammar

<actual out gate> ::=
[<gate name>] out <msg identification> to <input dest>

<actual in gate> ::=
[<gate name> | in <msg identification> from <output dest>

<input dest> ::=
lost [<input address>] | <input address>

<output dest> ::=
found [<output address> | | <output address>

<def in gate> ::=
[<gate name> | out <msg identification> to <input dest>

<def out gate> ::=
[<gate name> | in <msg identification> from <output dest>

If the <gate name> is omitted, an implicit name given by direction and corresponding <msg
identification> is assumed.

<actual order out gate> ::=
<gate name> before <order dest>

<order dest> ::=
<event name> | { env | <reference identification>} via <gate name>

34 ITU-T Z.120 (11/1999)

The <event name> refers to an orderable event. The <gate name> refers to either a <def order out
gate>, <actual order in gate>, <inline order out gate> or <inline order in gate>.

<actual order in gate> ::=
<gate name>
[after <order dest list>]

<def order in gate> ::=
<gate name> before <order dest>

The first <gate name> defines the name of this order gate.

<def order out gate> ::=
<gate name>
[after <order dest list>]

<actual create out gate> ::=
create out <create gate identification> create <create target>

<actual create in gate> ::=
create in <create gate identification>

<create target> ::=
<instance name> | { env | <reference identification>} [via <gate name>]

<def create in gate> ::=
create out [<create gate identification>] create <create target>

<def create out gate> ::=
create in <create gate identification>

If the <gate name> is omitted, an implicit name given by direction and corresponding <msg
identification> is assumed. The <gate name> defines the name of this order gate.

<inline out gate> ::=
<def out gate>
[external out <msg identification> to <input dest>]

<inline in gate> ::=
<def in gate>
[external in <msg identification> from <output dest>]

<inline out call gate> ::=
<def out call gate>
[external call <msg identification> to <input dest>]

<inline in call gate> ::=
<def in call gate>
[external receive <msg identification> from <output dest>]

<inline out reply gate> ::=
<def out reply gate>
[external replyout <msg identification> to <input dest>]

<inline in reply gate> ::=
<def in reply gate>
[external replyin <msg identification> from <output dest>]

ITU-T Z.120 (11/1999) 35

<inline create out gate> ::=
<def create out gate>
[external <create>]

<inline create in gate> ::=
<def create in gate>
[external create from <create source>]

<create source> ::=
<instance name> |
{env | <reference identification>} [via <create gate identification>]

<inline order out gate> ::=
<gate name>
[[after <order dest list>] external before <order dest>]

<inline order in gate> ::=
<gate name> before <order dest>
[external [after <order dest list>]]

<actual out call gate> ::=
[<gate name>] call <msg identification> to <input dest>

<actual in call gate> ::=
[<gate name>] receive <msg identification> from <output dest>

<def in call gate> ::=
[<gate name>] call <msg identification> to <input dest>

<def out call gate> ::=
[<gate name>] receive <msg identification> from <output dest>

If the <gate name> is omitted, an implicit name given by direction and corresponding <msg
identification> is assumed.

<actual out reply gate> ::=
[<gate name>] replyout <msg identification> to <input dest>

<actual in reply gate> ::=
[<gate name>] replyin <msg identification> from <output dest>

<def in reply gate> ::=
[<gate name> | replyout <msg identification> to <input dest>

<def out reply gate> ::=
[<gate name>] replyin <msg identification> from <output dest>

If the <gate name> is omitted, an implicit name given by direction and corresponding <msg
identification> is assumed.

36 ITU-T Z.120 (11/1999)

Concrete graphical grammar

<inline gate area> ::=
{ <inline out gate area> | <inline in gate area> |
<inline create out gate area> | <inline create in gate area> |
<inline out call gate area> | <inline in call gate area> |
<inline out reply gate area> | <inline in reply gate area> }
[is associated with <gate identification>]

<inline out gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to { <message symbol>| <found message symbol> } |
[is attached to { <message symbol> | <lost message symbol> } |

<inline in gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to { <message symbol> | <lost message symbol>}]
[is attached to { <message symbol> | <found message symbol>} |

<inline out call gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to { <message symbol>| <found message symbol> } |
[is attached to { <message symbol> | <lost message symbol> } |

<inline in call gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to { <message symbol> | <lost message symbol>}]
[is attached to { <message symbol> | <found message symbol>} |

<inline out reply gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to { <reply symbol>| <found reply symbol> }]
[is attached to { <reply symbol> | <lost reply symbol> }]

<inline in reply gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to { <reply symbol> | <lost reply symbol>}]
[is attached to { <reply symbol> | <found reply symbol>}]

<inline create out gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to <createline symbol>]
[is attached to <createline symbol>]

ITU-T Z.120 (11/1999)

37

<inline create in gate area> ::=
<void symbol>
is attached to <inline expression symbol>
[is attached to <createline symbol>]
[is attached to <createline symbol> |

An inline expression gate is normally attached to one message symbol inside the inline expression
frame, and a message symbol outside the inline expression frame. When there is no symbol attached
on the inside of the gate, this means that there is an incomplete message which is associated with the
gate.

<inline order gate area> ::=
<inline order out gate area> | <inline order in gate area>

<inline order out gate area> ::=
<void symbol>
is attached to <inline expression symbol>
is attached to <general order symbol>
[is attached to <general order symbol> |

The first <general order symbol> is a general ordering relation inside the inline expression such that
the event inside the expression is before the gate. The optional <general order symbol> refers to a
general order relation attached to the gate outside the inline expression.

<inline order in gate area> ::=
<void symbol>
is attached to <inline expression symbol>
is attached to <general order symbol>
[is attached to <general order symbol> |

The first <general order symbol> is a general ordering relation inside the inline expression such that
the gate is before the event inside the expression. The optional <general order symbol> refers to a
general order relation attached to the gate outside the inline expression.

<def gate area> ::=
{ <def out gate area> |[<def in gate area>|
<def order out gate area> | <def order in gate area>
<def out call gate area> | <def in call gate area>
<def out reply gate area> | <def in reply gate area>
<def create out gate area> | <def create in gate area>}
is attached to <msc symbol>

<def out gate area> ::=
<void symbol> [is associated with <gate identification>]
is attached to { <message symbol> | <found message symbol> }

The <message symbol> or <found message symbol> must have its arrow head end attached to the
<def out gate area>.

<def in gate area> ::=
<void symbol>[is associated with <gate identification>]
is attached to { <message symbol> | <lost message symbol> }

38 ITU-T Z.120 (11/1999)

The <message symbol> or <lost message symbol> must have its open end attached to the <def in
gate area>.

<def out call gate area> ::=
<void symbol> [is associated with <gate identification> |
is attached to { <message symbol> | <found message symbol> }

The <message symbol> or <found message symbol> must have its arrow head end attached to the
<def out call gate area>.

<def in call gate area> ::=
<void symbol>[is associated with <gate identification>]
is attached to { <message symbol> | <lost message symbol> }

The <message symbol> or <lost message symbol> must have its open end attached to the <def in call
gate area>.

<def out reply gate area> ::=
<void symbol> [is associated with <gate identification>]
is attached to { <reply symbol> | <found reply symbol> }

The <reply symbol> or <found reply symbol> must have its arrow head end attached to the <def out
reply gate area>.
<def in reply gate area> ::=

<void symbol>[is associated with <gate identification>]
is attached to { <reply symbol> | <lost reply symbol> }

The <reply symbol> or <lost reply symbol> must have its open end attached to the <def in reply gate
area>.

<def order out gate area> ::=
<void symbol>[is associated with <gate identification>]
is attached to <general order area>

<def order in gate area> ::=
<void symbol>[is associated with <gate identification>]
is followed by <general order area>

<def create out gate area> ::=
<void symbol> [is associated with <create gate identification>]
is attached to <createline symbol>

The <createline symbol> must have its arrow head end attached to the <def create out gate area>.

<def create in gate area> ::=
<void symbol>[is associated with <create gate identification>]
is attached to <createline symbol>

ITU-T Z.120 (11/1999) 39

The <createline symbol> must have its open end attached to the <def create in gate area>.

<gate identification> ::=
<gate name>

<create gate identification> ::=
[<gate identification> : | <instance kind>

The <instance kind> refers to the instance kind of the instance to be created. The instance kind may
also correspond to a singular <instance name>.

<actual gate area> ;==
<actual out gate area> | <actual in gate area> |
<actual out call gate area> | <actual in call gate area> |
<actual out reply gate area> | <actual in reply gate area> |
<actual create out gate area> | <actual create in gate area> |
<actual order out gate area> | <actual order in gate area>

<actual out gate area> ::=
<void symbol> [is associated with <gate identification>]
is attached to <msc reference symbol>
[is attached to { <message symbol> | <lost message symbol> }]

The <actual out gate area> is attached to the open end of the <message symbol> or <lost message
symbol>.
<actual in gate area> ::=
<void symbol> [is associated with <gate identification™>]

is attached to <msc reference symbol>
[is attached to { <message symbol> | <found message symbol> }]

The <actual in gate area> is attached to the arrow head end of the <message symbol> or <found
message symbol>.
<actual out call gate area> ::=
<void symbol> [is associated with <gate identification>]

is attached to <msc reference symbol>
[is attached to { <message symbol> | <lost message symbol> }]

The <actual out call gate area> is attached to the open end of the <message symbol> or <lost
message symbol>.
<actual in call gate area> ::=
<void symbol> [is associated with <gate identification>]

is attached to <msc reference symbol>
[is attached to { <message symbol> | <found message symbol> }]

40 ITU-T Z.120 (11/1999)

The <actual in call gate area> is attached to the arrow head end of the <message symbol> or <found
message symbol>.
<actual out reply gate area> ::=
<void symbol> [is associated with <gate identification>]
is attached to <msc reference symbol>
[is attached to { <reply symbol> | <lost reply symbol> }]
The <actual out reply gate area> is attached to the open end of the <reply symbol> or <lost reply
symbol>.
<actual in reply gate area> ::=
<void symbol> [is associated with <gate identification>]

is attached to <msc reference symbol>
[is attached to { <reply symbol> | <found reply symbol> }]

The <actual in reply gate area> is attached to the arrow head end of the <reply symbol> or <found
reply symbol>.
<actual create out gate area> 1=
<void symbol> [is associated with <create gate identification™>]

is attached to <msc reference symbol>
[is attached to <createline symbol>]

The <actual create out gate area> is attached to the open end of the <createline symbol>.

<actual create in gate area> ::=
<void symbol> [is associated with <create gate identification>]
is attached to <msc reference symbol>
[is attached to <createline symbol>]

The <actual create in gate area> is attached to the arrow head end of the <createline symbol>.

<actual order out gate area> ::=
<void symbol> [is associated with <gate identification>]
is attached to <msc reference symbol>
is followed by <general order area>

<actual order in gate area> 1=
<void symbol>[is associated with <gate identification>]
is attached to <msc reference symbol>
is attached to <general order area>

Static Requirements

Defined <gate name>s of an MSC are allowed to be ambiguous, but references to ambiguous <gate
name>s are illegal.

For gate connections the associated gate definition must correspond with the actual gate.
Correspondance means for messages that the message attached to the gate definition is of the same
type as the message attached to the actual gate. The directions should also correspond.

ITU-T Z.120 (11/1999) 41

The kind of the gate definition must be the same as that of the connected actual gate. The kinds of
gates are message gates, ordering gates, and create-gates.

4.6 General ordering

General ordering is used to impose additional orderings upon events that are not defined by the
normal ordering given by the MSC semantics. For example, to specify that an event on one instance
must happen before an otherwise unrelated event on another instance, or to specify orderings on
events contained within a coregion.

Concrete textual grammar

The textual grammar is given in 4.1.

Concrete graphical grammar

<general order area> ::=
<general order symbol>
is attached to <ordered event area>

<general order symbol> ::=
<general order symbol1> | <general order symbol2>

<general order symbol1> ::=

The <general order symboll> is allowed to have a staircase like shape. There cannot be both
upwards and downwards steps on the same ordering. This means that it may consist of consecutive
vertical and horizontal segments. Segments of <general order symbol1> may overlap, but this is only
allowed if it is unambiguous which <general order symbol1>s are involved. That means that no new
orders may be implied.

The <general order symbol1> may only occur inside an <instance axis symbol2> (column form). The
connection lines from the <general order symbol1> to the <ordered event area>s that it orders must
be horizontal.

<general order symbol2> ::=
Y

The <general order symbol2> may have any orientation and also be curved.

<ordered event area> ::=
<actual order in gate area>
| <actual order out gate area>
| <def order in gate area>
| <def order out gate area>
| <inline order gate area>
| <message event area>
| <incomplete message area>
| <method call event area>
| <incomplete method call area>
| <reply event area>
| <incomplete reply area>
| <timer area>

42 ITU-T Z.120 (11/1999)

| <create area>
| <action symbol>

Static Requirements

The partial order on events defined by the general ordering constructs and the messages must be
irreflexive.

Semantics

The general order symbols describe orders between events which otherwise would not be ordered.
This is particularly useful when events in a coregion should be more ordered than all possible
permutations.

In the graphical notation when using the <general order symboll>, the event that is graphically
higher must occur before the lower event. When using the <general order symbol2> the arrow points
from one event to another event that comes after.

The textual grammar defines the partial order relations by the keywords before and after. They
indicate directly in what order the involved events must come in the legal traces. Timing relations are
defined by the keyword time. They indicate in what time quantified order the involved events must
come in the legal traces.

Example of general ordering

Figure 8shows four examples which describe the same general ordering. The following orders are
implied:

a before b, a before d, c before b, ¢c before d. a and ¢ are unordered and b and d are unordered.

msc X1 msc X2

Teeesd

| | b
b d
ER I I —4 RIS
| |
—
msc X3 msc X4
a
—»l

Figure 8/Z.120 — Example for general ordering

ITU-T Z.120 (11/1999) 43

4.7 Condition

Conditions can be used to restrict the traces that an MSC can take, or the way in which they are
composed into High-Level MSCs. There are two types of condition: setting and guarding conditions.
Setting conditions set or describe the current global system state (global condition), or some non-
global state (nonglobal condition). In the latter case the condition may be local, i.e. attached to just
one instance.

Guarding conditions restrict the behaviour of an MSC by only allowing the execution of events in a
certain part of the MSC depending on their values. This part, which is the scope of the condition, is
either the complete MSC or the innermost operand of an inline expression or a branch of an HMSC.
The guard must be placed at the beginning of this scope. The condition is either a (global or non-
global) state, which the system should be in (as defined by prior setting conditions), or a Boolean
expression in the data language.

In the textual representation the condition has to be defined for each instance to which it is attached
using the keyword condition together with the condition name. If the condition refers to more than
one instance then the keyword shared together with the list of instances that the condition is referred
on must be added. A global condition, that is, one referring to all instances, may be defined by means
of the keywords shared all. Guarding conditions are shown with the keywords condition and when,
setting conditions only with the keyword condition. In the graphical syntax, the keyword when is
included in the condition symbol for guarding conditions; for setting conditions there is no extra
keyword or symbol.

Guarding conditions can be used for example in inline expressions (see 7.2) to determine which
operand of an alt expression is applicable depending on choices that have been made in previous alt
expressions, or in HMSCs (see 7.5).

Concrete textual grammar

<shared condition> ::=
[<shared>] <condition identification> <shared> <end>

<condition identification> ::=
condition <condition text>

<condition text> 1=
<condition name list> | when { <condition name list> | (<expression>) } |
otherwise

<condition name list> ::=
<condition name>{ , <condition name> }*

<shared> ::=
shared { [<shared instance list>]| all }

<shared instance list> ::=
<instance name> [, <shared instance list>]

<condition> ::=
[<shared>] <condition identification> <end>

The optional <shared> before <condition identification> in the concrete textual grammar is
analogous to the optinonal <shared> in the concrete graphical grammar (see below).

44 ITU-T Z.120 (11/1999)

Static Requirements

For each <instance name> contained in a <shared instance list> of a <condition>, an instance with a
corresponding shared <condition> must be specified. If instance b is contained in the <shared
instance list> of a shared <condition> attached to instance a then instance a must be contained in the
<shared instance list> of the corresponding shared <condition> attached to instance b. If instance a
and instance b share the same <condition> then for each message exchanged between these
instances, the <message input> and <message output> must be placed either both before or both after
the <condition>.

If two conditions are ordered directly (because they have an instance in common) or ordered
indirectly via conditions on other instances, this order must be respected on all instances that share
these two conditions. According to the possibilities of an instance oriented and an event oriented
syntax description (see 4.1) there are two syntax forms for conditions: within the instance oriented
description the <shared condition> form is used whereas in the event oriented description a multi
instance form is used employing a <multi instance event list> followed by a colon and the non-
terminal <condition>. (see4.1). In the <shared condition> form the keyword shared is used
consistently also for local conditions, therefore within the non-terminal <shared> the <shared
instance list> is optional.

Otherwise can only occur as the guard of exactly one operand of an alternative expression.

Concrete graphical grammar

<condition area> ::=
<condition symbol> contains <condition text> [<shared>]
is attached to { <instance axis symbol>* } set

<condition symbol> ::=

< b

The <condition area> may refer to just one instance, or is attached to several instances. If a shared
<condition> crosses an <instance axis symbol> which is not involved in this condition the <instance
axis symbol> is drawn through:

| |

The <shared> instances have no <instance area> in the diagram since there are no events on these
instance, but these <shared> instances are still covered by the condition. If there are any ambiguities
regarding ordering on <shared> instances, they must be represented in the diagram explicitly with an
<instance area>.

Static Requirements

A guarding condition must be placed at the beginning of its scope, where a scope is either a whole
MSC, an operand of an inline expression, or a branch of an HMSC.

A guarding condition should always cover all ready instances of its scope. An instance is ready if it
contains an event that may be executed before any other event in the scope.

ITU-T Z.120 (11/1999) 45

If a guard contains a data expression, then this expression must be of type Boolean. If this expression
furthermore contains dynamic variables, it may only cover a single instance, which thus must be the
only ready instance of the scope.

Semantics

Setting conditions define the actual system state of the instance(s) that share the condition. Guarding
conditions can be used to restrict the possible ways in which an MSC can be continued.

The events in the scope guarded by a guarding condition can only be executed if the guarding
condition is true at the time the first such event is executed. If the condition is an expression in the
data language, this means that it evaluates to 'true'. If the guard is a set of condition names, the /ast
setting condition on that set of instances must have a non-empty intersection with the guard. Only
setting conditions on exactly the same instances are checked; conditions that set the state of a subset
or superset of these instances do not.

Specific interpretations of guards in inline expressions are given in 7.2. The otherwise guard is true
if guards of all other operands of the alternative expression are false.

4.8 Timer

In MSCs either the setting of a timer and a subsequent time-out due to timer expiration or the setting
of a timer and a subsequent timer stop may be specified. In addition, the individual timer constructs -
timer setting, stop/time-out - may be used separately, e.g. in case where timer expiration or time
supervision is split between different MSCs. In the graphical representation the start symbol has the
form of an hour glass connected with the instance axis by a line symbol. Time-out is described by a
message arrow pointing at the instance which is attached to the hour glass symbol. The stop symbol
has the form of a cross symbol which is connected with the instance by a line.

The specification of timer instance name and timer duration is optional both in the textual and
graphical representation.

A timer can be started with or without a duration. For the duration, there is the possibility to express
a lower and upper bound for the timeout to occur. The upper bound for a timeout can be defined to
be infinity which is represented by the keyword inf. The start, stop and timeout events of a timer can
be time constrained in addition. This timing is then represented in the time relation of orderable
events.

The timeout period of a timer is defined as follows:

[0, inf), if no duration is given

[<duration min>, inf), if only the minimal duration is given

[0, <duration max>], if only the maximal duration is given
[<duration min>, <duration max>], if minimal and maximal duration are given

Concrete textual grammar

<timer statement> ::=
<starttimer> | <stoptimer> | <timeout>

<starttimer> ::=

starttimer <timer name> [, <timer instance name> |

[<duration>] [(<parameter list>)]
<duration> ::=

<left square bracket>

[<min durationlimit>] [, <max durationlimit>] <right square bracket>
<durationlimit> ::=

<expression string> | inf

46 ITU-T Z.120 (11/1999)

<stoptimer> ::=

<timeout> ::=

stoptimer <timer name> [, <timer instance name> |

timeout <timer name> [, <timer instance name>]
[(<parameter list>)]

Where the <timer name> is not sufficient for a unique mapping the <timer instance name> must be

employed.

Static Requirements

The <parameter list> for <starttimer> consists only of <expression>s and the <parameter list> for
<timeout> consists only of <pattern>s.

Concrete graphical grammar

<timer area> ::=

<timer start area> ::=

<timer start areal> ::=

<timer start area2> ::=

<timer start symbol> ::=

<start symbol 1> ::

<start symbol2> ::

{ <timer start area> | <timer stop area> | <timeout area> }
{is followed by <general order area> }*
{is attached to <general order area> }*

<timer start areal> | <timer start area2>

<timer start symbol> is associated with <timer name>
[<duration>] [(<parameter list>)]
is attached to <instance axis symbol>
[is attached to
{<int symbol> | <abs time symbol> }*]
[is attached to {<restart symbol> | <timer stop symbol2>
| <timeout symbol3> }]

<restart symbol> is associated with <timer name>
[<duration>] [(<parameter list>)]
is attached to <instance axis symbol>
[is attached to
{<int symbol> | <abs time symbol> }*¥]
is attached to <timer start symbol>
[is attached to { <timer stop symbol2> | <timeout symbol3> }]

<start symbol 1> | <start symbol2>

X
—X

ITU-T Z.120 (11/1999)

47

<restart symbol> ::=

|
—X

<timer stop areal> | <timer stop area2>

<timer stop area> ::=

<timer stop areal> ::
<timer stop symbol1> is associated with <timer name>
is attached to <instance axis symbol>
[is attached to
{<int symbol> | <abs time symbol> }*]

<timer stop area2> ::=
<timer stop symbol2> is associated with <timer name>
is attached to <instance axis symbol>
[is attached to
{<int symbol> | <abs time symbol> }*¥]
is attached to { <timer start symbol> | <restart symbol> }

<timer stop symbol> ::=
<timer stop symbol1> | <timer stop symbol2>

—X

<timer stop symbol1> ::=

<timer stop symbol2> ::

<timeout area> ::=
<timeout areal> | <timeout area2>

<timeout areal> ::=
<timeout symbol> is associated with <timer name>
[(<parameter list>)]
is attached to <instance axis symbol>
[is attached to
{<int symbol> | <abs time symbol> }*¥]

<timeout symbol> ::=
<timeout symbol1> | <timeout symbol2>

X

<timeout symbol1> ::

<timeout symbol2> ::
X

<timeout symbol3> [is associated with <timer name>

<timeout area2> ::=

48 ITU-T Z.120 (11/1999)

(<parameter list>)]
is attached to <instance axis symbol>
[is attached to
{<int symbol> | <abs time symbol> }*¥]
is attached to { <timer start symbol> | <restart symbol> }

<timeout symbol3> ::=

Static Requirements

A <parameter list> of a <timer start area>, consists of <expression>s. A <parameter list> of a
<timeout area>, consists of <pattern>s.

Semantics

Start denotes setting the timer and stop denotes cancelling of the timer. Time-out corresponds to the
consumption of the timer signal.

For the case where timer events coincide with other events, see the drawing rules in 2.4.

4.9 Action

In addition to message exchange the actions may be specified in MSCs. An action is an atomic event
that can have either informal text associated with it, or formal data statements. Informal text is
enclosed in single quotes to distinguish it from data statements. The data statements consist of a
comma seperated list of statements, where each statement may be a binding, a define statement, or an
undefine statement.

Concrete textual grammar

<action> ::=
action <action statement>

<action statement> ::=
<informal action> | <data statement list>

<informal action> ::=
<character string>

Concrete graphical grammar

<action area> ::=
<action symbol>
is attached to <instance axis symbol>
[top or bottom is attached to top or bottom
{ {<int symbol> | <abs time symbol> }* } sef]
{ is followed by <general order area> }*
{ is attached to <general order area> }*
contains <action statement>

<action symbol> ::=

ITU-T Z.120 (11/1999) 49

In case where the instance axis has the column form, the width of the <action symbol> must coincide
with the width of the column.

Semantics

An action describes an internal atomic activity of an instance. When an action contains data
statements, the event modifies the state through evaluating each statement concurrently. This
concurrency reflects the atomicity of an action.

4.10 Instance creation

Analogously to SDL, creation and termination of instances may be specified within MSCs. An
instance may be created by another instance. No message events before the creation can be attached
to the created instance.

Concrete textual grammar

<create> ::=
create <instance name> [(<parameter list>) |

For each <create> there must be a corresponding instance with the specified name. An instance can
be created only once, i.e. within one simple MSC, two or more <create>s with the same name must
not appear.

Concrete graphical grammar

<create area> ::=
<createline symbol> [is associated with <parameter list>]
is attached to
{ {<instance axis symbol> | <def create in gate area> |
<actual create out gate area> }
{ <instance head area> | <def create out gate area> |
<actual create in gate area> }} set
{ is followed by <general order area> }*
{ is attached to <general order area> }*
[is attached to
{{<int symbol> | <abs time symbol>}*}set]

The creation event is depicted by the end of the <createline symbol> that has no arrowhead. The
creation event is attached to an instance axis. If the <create area> is generally ordered, this ordering
applies to the creation event. If a time constraint is assigned, it applies to the creation event. The
arrowhead points to the <instance head symbol> of the created instance.

<createline symbol> ::=

— - — >

The mirror image of the <createline symbol> is allowed.

Semantics

Create defines the dynamic creation of an instance by another. Dynamically there can be only one
creation in the life of an instance and no events on the instance may take place before its creation.

For the case where the instance creation coincides with other events, see the drawing rules in 2.4

50 ITU-T Z.120 (11/1999)

4.11 Instance stop

The instance stop is the counterpart to the instance creation, except that an instance can only stop
itself whereas an instance is created by another instance.

Concrete textual grammar

<stop> ::=
stop <end>

Concrete graphical grammar

X

The stop at the end of an instance represents the termination of this instance.

<stop symbol> ::=

Semantics

Dynamically there can be only one stop event in the life of an instance and no events may take place
after the instance stop.

5 Data concepts

5.1 Introduction

Data is incorporated into MSC into a number of places, such as message passing, action boxes, and
MSC references. Data is used in two distinguishable ways: statically, such as in the parameterisation
of an MSC diagram, or dynamically, such as in the acquisition of a value through a message receipt.
To enable MSC to be used with data languages of the user’s choice, no MSC specific language is
defined. Instead MSC has a number of points in the definition where a string representing some
aspect of data usage is required, such as expressions or type declarations. In order to define the
semantics of MSC with data a number of functions are required that extract the required information
from such strings to interface to the MSC data concepts.

5.2 Syntax interface to external data languages

Where a terminal string to the data language is used, the production name is prefixed with underlined
words suggestive of its actual interface meaning. For example, <variable string> is a terminal string
that is to be parsed in the data language as a variable. The list of terminal data strings is:

* <variable string>,
o <type ref string>,
» <data definition string>,

e <expression string>.

In order that data be distinguishable in MSC, parenthesis delimiters and escape characters are
defined. The actual syntax for data strings are given in 2.1. The idea is that data strings in the data
language will be recognizable without excessive use of escape sequences and special delimiters.

ITU-T Z.120 (11/1999) 51

Concrete textual grammar

<parenthesis declaration> ::=
parenthesis <par decl list> <end>

<par decl list> ::=
{ <nestable par pair> | <equal par delim> | <non-nestable par pair>
| <escape decl>}
[, <par decl list>]

<nestable par pair> ::=
nestable <left delim>, <right delim> <end>

<equal par delim> ::==
equalpar <left delim> <end>

<non-nestable par pair> ::=
nonnestable <left delim>, <right delim> <end>

<escape decl> ::=
escape <escapechar>

<left delim> ::=
<delim> <open par> <delim>

<right delim> ::=
<delim> <close par> <delim>

<delim> ::=
<apostrophe>
| <alphanumeric>
| <other character>
| <special>
| <full stop>
| <underline>

<open par> ::=
<character string>

<close par> ::=
<character string>

<escapechar> ::=
<character string>
The <delim>s are the same on both sides of the declared left and right delimiters. The interpretation
is that the chosen delimiter character must not occur in the text defining the open and close
parentheses.

Semantics

The syntactic interface gives instructions to how the lexical analyzer should extract data strings from
the MSC notation as a whole. The lexical analyzer is given the start of a data string and applies the
parenthesis declarations to determine when to terminate the string and pass it to the data language
analyzer that is external to the MSC interpretation as such.

There are 3 types of parentheses and one escape mechanism. See 2.1 for closer syntactic explanation
of the four concepts. A nestable parenthesis is a parenthesis where the string between the left and
right delimiters may also contain parentheses that should be recognized. The parenthesizing must in
the end be balanced.

The equal parenthesis uses the same delimiter on left and right side. Thus such parentheses cannot be
nested since the left and right delimiters cannot be distinguished.

52 ITU-T Z.120 (11/1999)

Finally there is the non-nestable parenthesis where the insides should simply be ignored. The lexical
analyzer will search for the matching right delimiter.

The escape mechanism is interpreted such that the string following the escape should be considered
to constitute the insides of a parenthesis and not a delimiter or escape character.
53 Semantic interface to external data languages

In order to define the semantics of an MSC with data a number of functions relating to the data
strings have to be supplied, ranging from functions to ensure that the data strings are syntactically
well formed, to semantic functions that can evaluate data expressions. That is, the semantics of an
MSC is parameterised by these data functions, and an MSC analysis tool would have only to be
provided with instances of these functions to compute the MSC semantics. The functions can be
separated into those required for static requirements and the remainder for dynamic semantics.

Static requirements interface functions

To check that each of the four kinds of data <string> conform to their grammar, four well-
formedness predicates are required that are to be satisfied only when their argument strings correctly
parse. Thus we require four predicates Wfl, W2, W13, and W{4 having the following signatures:

WT1: <variable string> — Bool

W12: <data definition string> — Bool
Wi13: <type ref string> — Bool

Wit4 <expression string> — Bool

To ensure that the data strings not only parse correctly, but also conform to the static requirements of
the language, we require three type checking functions to be defined. The first of these functions, Tcl
for < data definition string>s requires no additional arguments.

Tcl: <data definition string> — Bool

The second function Tc2 is to check <type ref string>s, but as these strings may use information
defined in the <data definition string>, such as the definition of constants used to supply array
bounds, or references to type definitions, the function has to take these as parameters.

Tc2: <data definition string> — <type ref string> — Bool

The type-checking function for <expression string>s, Tc3, has to be parameterised by the <data
definition string>, together with information defined by the variable and wildcard declarations. The
latter information can be coded as a set of pairs, the first element being a <variable string> and the
second its corresponding <type ref string>, regardless of whether the <variable string> refers to a
variable declaration or a wildcard declaration. Thus the signature for Tc3 is:

Tc3:<data definition string> X (<variable string> X <type ref string>)-set —
<expression string> — Bool

In several places the static requirements of MSC requires that variable names be unique, and so a
function EqVar to compare variable names is also required in the interface:

EqVar: <variable string> X <variable string>) — Bool

The last function is used in checking type conformance between different data strings, for example to
check that the type of a variable is the same as that of an expression to which it is being assigned. It
is sufficient to have a function that can check an expression has a required type; again contextual
information from the data definition strings, and the variable/wildcard declarations is required.

ITU-T Z.120 (11/1999) 53

Tc4: <data definition string> X (<variable string> % <type ref string>)-set —

(<type ref string> X <expression string>) — Bool

Dynamic semantic interface functions

Four functions are required to define the dynamic semantics of MSC with data. The first three of
these are functions over the syntax of the data language, and only the fourth, Eval, is a semantic
evaluation function. The syntactic functions are required to deal with data expressions that contain
wildcards as these have different semantics from plain expressions found in many data languages.
The dynamic semantics makes transformations from expressions that contain wildcards to ones that
do not via the first three functions.

The first function, Vars, is used to extract the <variable string>s from an <expression string>, and is
required both to perform dynamic semantic checks, such as variables being written before being
read, and as a means to identify wildcards. Because the semantics treats multiple wildcards appearing
in one expression as independent quantities, Vars has to identify how many times a <variable string>
appears in an expression. Just as the function Tc4 is parameterised by <data definition string>s and
variable/wildcard declaration information, so is Vars. The result of applying Vars to a data
expression is a set of pairs, the first element of each pair being a <variable string> and the second the
number of occurrences of the variable in the expression. Only variables appearing in the expression
are to appear in the functions result. The signature of Vars is given by:

Vars: <data definition string> X (<variable string> X <type ref string>)-set —
<expression string> — (<variable string> X Nat)-set

For example, the application of Vars to the expression “f(x, ¢, x +y)”, where x and y are declared as
variables/wildcards and c is a constant would produce the set:

{2, D},

since x appears twice in the expression and y appears once.

In order that an expression containing multiple identical wildcards be correctly evaluated separate
occurrences must be replaced by unique variable names. This requires the next two functions,
Replace that can substitute an occurrence of a variable or wildcard string in an expression with
another variable string, and NewVar that can generate a new variable string. The substitute function
takes as arguments a <data definition string™>, the variable string that is to be substituted, a number
defining which occurrence is to be substituted, the replacement variable string, and finally the
expression to be transformed. The <data definition string> has to be supplied as an argument because
— depending upon the data language — identifiers can be overloaded as constants/variables, etc., and
distinguishing between a variable identifier and other identifiers requires contextual information. The
signature is:

Replace: <data definition string> —
<variable string> X Nat x <variable string> — <expression string> —

<expression string>

The result of Replace(data defs)(x, 2, z)(f(x, ¢, x +y)) could be the expression f(x, ¢, z +y), or f(z, c,
X +y), depending on how indexing is done. In supplying a Replace function for a data language, we
do not specify how occurrences of variables are to be indexed, as the function is used in the dynamic
semantics to replace all wildcards, their order of replacement being unimportant.

The substitution of wildcards requires that new variable strings be created, and this is achieved by
supplying a NewVar function to the interface. Given a set of <variable string>s the

54 ITU-T Z.120 (11/1999)

function is required to generate a new <variable string> that is different from any in the supplied set.
As for Replace, the names of other defined identifiers will have to be taken into account from the
data definition strings. The NewVar signature is:

New Var: <data definition string> — <variable string>-set — <variable string>

The Eval function is used to evaluate a data expression, and provides the semantic interface to MSC.
The Eval function returns the value of a data expressions in some data domain. For example
evaluating an integer expression will result in an integer value. In general expressions will return
more complex values representing structured types, such as arrays, etc. Implicitly, the data domains
are part of the semantic interface, and will be represented by U, a universe of data values that
includes structured values. Eval takes a <data definition string> as its first argument, to provide
contextual information about the second argument, the expression string to be evaluated. The final
argument represents the state information and consists of bindings between variable strings and their
domain values. The result of the function is a domain value.

Eval: <data definition string> — <expression string> — (<variable string> x U)-set - U

The Eval function is partial and is only defined if all variables appearing in the expression have
defined values in the state argument.

5.4 Declaring data

The declaration of data mostly takes place in an MSC document, the only exception being static
variables, which are declared in an MSC head. MSC document declarations include:

» messages and timers that have data parameters,
* dynamic variables,

* wildcard symbols,

* data definitions.

In addition, the data string parentheses and escape-character are also declared in an MSC document.
Messages that have parameters are declared so that the type and number of parameters are defined.
Messages that do not have parameters need not be declared. Dynamic variables are declared inside
an MSC document’s instance list, as dynamic variables are owned by instances. A declaration gives
the names of the variables and defines their type. Variables that are to represent wildcards are
declared together with their type in the MSC document, as are the data definitions. The data
definitions consist of text in the data language that, for example, defines structured types, constants,
and functions signatures. It must provide all information required to type check and evaluate data
expressions used in MSCs within the scope of the enclosing MSC document.

Concrete textual grammar

<message decl list> ::=
<message decl> <end> [<message decl list>]

<message decl> ::=
<message name list> [: (<type ref list>)]

<message name list> ::=
<message name> [, <message name list>]

<timer decl list> ::=
<timer decl> <end> [<timer decl list> |

ITU-T Z.120 (11/1999) 55

<timer decl> ::=
<timer name list> [<duration>] [: (<type ref list>)]

<timer name list> ::=

<timer name> [, <timer name list>]
<type ref list> ::=

<type ref string> [, <type ref list>]

<dynamic decl list> ::=
variables <variable decl list>

<variable decl list> ::=
<variable decl item> <end> [<variable decl list>]

<variable decl item> ::=
<variable list> : <type ref string>

<variable list> ::=

<variable string> [, <variable list> |
<data definition> ::=

[language <data language name> <end>]

[<wildcard decl>]
[data <data definition string> <end>]

<wildcard decl> ::=
wildcards <variable decl list>

Concrete graphical grammar

The data concepts are contained within textual parts and no graphical grammar is needed.

Static Requirements

All messages and timers that possess parameters must be declared in the <document head>. The
number and type of parameters of a message or timer that carries data must also be given at its
declaration. A type is given in the parameter data language as defined by <type ref string>. All type
references used in variable, wildcard, timer and message declaration must be legally defined in the
context of the <data definition string™>s according to the rules of the data language, that is the type
references must be syntactically correct according to the W13 function and type correct according to
the Tc2 function. All variable and wildcard declarations must be legal according to the Wfl function,
and all their names must be unique as judged by the EqVar function. The <data definition string>
must contain all the information to be used in performing the static and dynamic semantic checks
required by this standard. Although this string may not form legal fragments of the intended data
language, they must represent a formalised abstraction of the language and have legal syntax and
(static) semantics, that is they must be syntactically correct according to W2 function and type
correct according the the Tcl function. For example, it would be reasonable to give only procedure
headers that define a function’s signature and not its complete header/body, but such abstraction
would have to be formalised and capable of being checked via the interface functions.

Semantics

A wildcard is used in data expressions as a “don’t care” value. In defining the meaning of an MSC
with data, a wildcard will generate a set of concrete traces corresponding to each uninterpreted trace,
where each concrete trace is derived from the uninterpreted trace by substituting a different concrete
value for the wildcard. If an expression contains multiple occurrences of a wildcard then each
represents a different reference, so that different concrete values will, in general, be substituted for
each occurrence.

56 ITU-T Z.120 (11/1999)

5.5 Static Data

Optionally an MSC can define a formal parameter list. A corresponding MSC reference must define
a list of actual parameters. An MSC parameter list declares a list of formal parameter variables,
whose scope is the MSC body. When a parameter appears in the body, it must only be used in
expressions that reference its value, hence they cannot be modified dynamically.

Concrete textual grammar

<data parameter decl> ::=
<variable decl list>

<actual data parameters> ::=
<actual data parameter list>

<actual data parameter list> ::=
<expression string™> [, <actual data parameter list>]

Static Requirements

The <data parameter decl> declares the formal parameters of an MSC. Each formal parameter in the
declaration must be unique within the declaration and also different from all dynamic variables and
wildcards declared in the owning MSC document. Each variable must be well formed according to
Wf1, and its type reference well formed and type correct in the context of the enclosing MSC
document data string according to W13 and Tc2, respectively. The number and type of parameters
must be adhered to in an MSC reference via its <actual data parameter list>; type conformance is
performed by the Tc4 function, given the context of the MSC data definition string and the formal
parameter declaration. Each actual parameter is an expression that may contain variables and
wildcards. All variables appearing in the <actual data parameter list> must be static variables
declared in the enclosing MSC; dynamic variables are forbidden.

Semantics

The meaning of an MSC reference with actual parameters is “call by value”, in which the formal
parameters are substituted by the actual parameters wherever they appear in its body. However, if
there are multiple wildcards given in the <actual data parameter list> then each of these represents a
separate and unique reference that will be semantically distinguished in the body of the referenced
MSC by substituting them with distinct new variable names, each allowed to take any value in their
domains. Evaluating the actual parameters is done by the Eval function once the wildcards have been
identified and replaced by new unique variables. Replacement is done by first extracting all the
expression variables/wildcards using the Vars function, and then using the MSC document wildcard
declarations to identify which are the expression wildcards. Finally the wildcards are replaced using
the Subst function with new variables generated by the NewVar function. These new variables can
take any value in their data domains.

5.6 Dynamic Data

Dynamic data refers to MSC variables that can be assigned and reassigned values through action
boxes, message and timer parameters, and instance creation. The value that a dynamic variable may
possess at any point in a trace will, in general, depend upon the previous events in the trace. The
home of a dynamic variable is an instance, and its declaration is given in the MSC document. Only
events on the owning instance of a dynamic variable are allowed to modify its value, although other
instances may reference it under certain restrictions.

The mechanism for assigning or modifying the value of a dynamic variable is that of a binding,
which consists of a pattern and an expression. Bindings occur as a result of message passing, timer

ITU-T Z.120 (11/1999) 57

set, timer timeout or instance creation via their parameter lists, or in action boxes. The dynamic
semantics defines a set of current bindings for each event in an execution trace, and is called the
event’s state. The use of wildcards in expressions results in underspecification in MSC. Each
wildcard is allowed to range over all values of its domain type.

In a defining MSC there must be no trace through an MSC in which a variable is referenced without
being defined. That is, each variable appearing in an expression must be bound in the state used to
compute the value of the expression. In a utility MSC, references to undefined variables are
permitted.

A state associated with a current event is computed from previous states together with the data
content of that event. The previous states used to compute the new state depend upon the type of
event, all are derived from at least the last non-creating event executed on the same instance as the
current event. In addition, for message receiving events and for the first event on a created instance,
the state of the corresponding send or creating events is also used in the computation. Effectively,
this means that a state is maintained by each instance, and a new state is derived from the instance’s
previous state together with state information passed to the instance through messaging, or from the
parent instance in the case of instance creation. Because information is allowed to flow between
instances via message passing and instance creation, the state associated with each event may contain
bindings to variables not owned by the instance upon which the event occurs. The rules governing
the access to the value of variables owned by foreign instances are defined as follows.

If a sending event or a create event has a binding to a variable x in its associated state, and x appears
in one of its parameter expressions, and x is not owned by the receiving or created instance, then the
binding is to be added to the resulting state of the receiving event, or replace a binding if one exists
in the old state. That is, if the value of x is recorded in the state of the sending/creating instance, then
this binding is implicitly inherited by the state of the receiving/created instance, so long as x is not
owned by the receiving/created instance.

If x is owned by the receiving instance then the binding defined in the sending event can only be
inherited if x is not bound in the state of the receiving instance and x is not bound in the parameter
list. That is, it can only be inherited if x is undefined by the receiving instance and also by the
message parameters.

If x 1s owned by the receiving/created instance and x is bound in the message parameters, then the
new state takes this binding. That is, x becomes bound to the value defined by the expression part of
the parameter binding. This is the normal mode of parameter binding.

If x is owned by the receiving instance and is bound in the old state of this instance, but is not bound
in the parameter list, then this old binding is retained in the new state. That is, the binding of the
sending event is not inherited. This reflects the expectation that a variable, once defined on its
instance can only have its value modified explicitly. All references to it must take the last explicitly
defined value.

In summary, if X is not bound either in the old state or in the parameter list, then the binding from the
sending event can be inherited. Intuitively, the binding of a variable can be inherited from another
instance only if the variable is sent to the instance by appearing in a parameter’s expression.
However, a binding cannot be inherited if the variable is owned and in scope by the receiving
instance, as the local binding takes precedence. Thus, the value of a variable can be transmitted by a
chain of messages to other instances, so long as each message explicitly references the variable in its
parameter list.

5.7 Bindings

Bindings are more general than simple assignments found in programming languages because of the
use of wildcard symbols, which permit underspecification. A binding consists of an expression part
and a pattern part that are connected by a bind symbol. The bind symbol has a left and a right form
both of which are equivalent, but which permits a more natural reading of a binding associated with a

58 ITU-T Z.120 (11/1999)

message or timer. Wildcard symbols can be used in a binding wherever a variable could be used, but
have a different interpretation from variables that amounts to them taking all permissible values
rather than one assigned value.

The pattern part of a binding consists of either a wildcard or a dynamic variable; the expression part
is a data expression, which may contain wildcards, dynamic variables, and static variables. In MSC
the wildcard symbols are user defined, but we shall use “ ” in the following examples to be the
wildcard. The example below shows equivalent left and right binding that are free from wildcards:

x=y+3, y+3=x

The forgoing bindings can be read as an assignment, or binding, of the value of the expression
‘y + 3’ to the variable x. If a wildcard is used in place of the x, as in the following example, then no
assignment is made and so the grammar for message parameters allows an equivalent shorthand of
just using the expression, also shown. This shorthand is useful where the sending value of a
parameter is specified but the receiving instance does not bind this value to any of its dynamic
variables.

_=y+3, y+3

Wildcards are used in expressions to represent “don’t care” values. If the dynamic semantics
prescribes a single uninterpreted trace through an MSC that contains an expression wildcard, then
any value may be substituted for the wildcard to give a legal concrete trace. Furthermore, if there are
multiple occurrences of wildcards (even those using the same wildcard symbol), then each of these is
independent and so can be substituted with different values. Suppose in the expression _ + 3 that the
wildcard ¢ ° must be of type Natural (i.e. a non-negative integer), then semantically it can be
substituted with any of the values 0, 1, 2, Thus the values that the expression can take are 3, 4, 5,
... . In the expression _+ , the two occurrences of the wildcard symbols are independent, and so
both the first and second occurrence are free to range independently over the natural numbers. For
example, the first wildcard can take the value 1 and the second the value 3 to give the result 4. If the
same values are required, then a variable can be bound to a wildcard in an action box and then this
variable be used in the expression in place of the wildcards. Given the initial binding of x to a
wildcard, then x + x can only be evaluated to even natural numbers.

Concrete textual grammar

<binding> ::=
<left binding> | <right binding>
<left binding> ::=
<pattern> <left bind symbol> <expression>
<left bind symbol> ::=
<right binding> ::=
<expression> <right bind symbol> <pattern>
<right bind symbol> ::=
<expression> ::=
<expression string>
<pattern> ::=
<variable string> | <wildcard>
<wildcard> ::=

<wildcard string>

ITU-T Z.120 (11/1999) 59

Static Requirements

The expression part of a binding must comply with the static requirements rules of the data language
given the context of the <data definition string> defined in the <document head> according to the
functions W13 and Tc3. All variables appearing in an expression must be declared as static variables,
dynamic variables, or wildcards; all other identifiers must either be defined via the <data definition
string> or be predefined in the data language. All pattern variables must be declared as dynamic
variables owned by the correct instance — the correct instance being determined by the event in
which the binding appears.

The type of the pattern must match the type of the expression in a binding. Type equivalence can be
checked by applying the function Tc4 to both pattern and expression.

Semantics

A binding, or list of bindings, is evaluated in the context of a state and gives rise to a new state. A
state consists of a set of bindings between variables and their values. To evaluate a binding, its
expression is first evaluated using the current state, where the values of variables in the expression
are taken from its binding in the state. If there is no binding of an expression variable in the current
state, then there is an illegal reference to an undefined variable in the expression. The resulting value
computed from the expression is bound to the pattern variable and the resulting new binding is added
to the current state to form the new state. If the pattern variable is already bound in the current state
then it is superseded in the new state by the new binding.

If the pattern part of a binding is a wildcard, then the binding does not modify the state. If the
expression part of a binding contains wildcards, then each is replaced by unique new variables that
are allowed to take any value in their domain. Evaluating an expression is done by the Eval function
once the wildcards have been identified and replaced by new unique variables. Replacement is done
by first extracting all the expression variables/wildcards using the Vars function, and then using the
MSC document wildcard declarations to identify which are the expression wildcards. Finally the
wildcards are replaced using the Replace function with new variables generated by the NewVar
function. These variables can take any value in the trace semantics of an MSC.

5.8 Data in message and timer parameters

Dynamic data partakes in messages and timers via their parameter lists. A parameter list consists of a
list of parameters, which may be bindings, expressions, or patterns. The static requirements
determine which of these three options can or must be used. For completed messages in an MSC, a
binding or an expression can be used, but not a pattern. In this context an expression is a shorthand
for binding to a wildcard. For incomplete messages more complex rules apply.

Incomplete messages occur when a message originates or terminates at a gate, or is a lost or found
message. When a message terminates at or originates from a gate, bindings cannot be explicitly
defined in its parameter list since they only make sense when both the source and destination
instances are known. Bindings will be dynamically inferred in the semantics by pairing up patterns
and expressions given by the two messages matched across the gate. For a message that is sent from
an instance and terminates at a gate only the expression can be given. For a message that is picked up
from a gate and sent to an instance, only the pattern can be given. Similar restrictions are placed
upon lost and found messages. In the example in Figure 9, the dynamic semantics will match the
message request across the gate g and infer the binding y + 3 =: x. If a message both originates and
terminates at a gate then no parameter information is permitted.

The set of bindings defined or formed by a message’s parameters results in a change of state at the
receiving event. The bindings are evaluated concurrently, and are used to update the old state. As the
bindings are concurrent, the set of variables appearing as pattern variables in the bindings must be
distinct to prevent two bindings attempting to bind two values to the one variable. Furthermore, the

60 ITU-T Z.120 (11/1999)

pattern variables must all be owned by the receiving instance, as this instance is allowed only to
modify its own variables and no others.

msc A msc B

Client Server

request(y + 3) request(x)
> g g >

Figure 9/7.120 — Messages, expressions, patterns and gates

Concrete textual grammar

<parameter list> ::=
<parameter defn> [, <parameter list>]

<parameter defn> ::=
<binding> | <expression> | <pattern>

Static Requirements

The number and type of message or timer parameters must comply with the types defined in the
message or timer declaration. The type of a binding is determined from either its pattern or
expression as they also must match. Type conformance is checked using the Tc4 function. In a
parameter list, the set of pattern variables must be unique and must all be owned by the receiving
instance of the message. As the bindings of a message parameter list are evaluated concurrently, this
prevents ambiguity.

Only a binding or an expression can be given as message parameters in completed messages; patterns
cannot. Only an expression can be given for incomplete sending events; bindings or patterns cannot.
Only patterns can be given for incomplete receiving events; bindings or expressions cannot.

Semantics

Message parameters are responsible for updating state in message receive events. Output events do
not modify state, and their state is simply inherited from the last non-create event on their instance.

For completed messages all bindings in the message parameter list of the receiving event are
evaluated using the old state, and the resulting bindings are used to update the old state to form the
new state. That is, a new binding is added to the old state, or if an already bound variable in the old
state is rebound in the parameter list, then the newer binding replaces the old one in the new state.
Variables that appear in the expression parts of a parameter list also contribute to the updating of the
old state. The bindings of these referenced variables are taken from the state of the sending event and
also used to update the old state, except for variables that are owned by the receiving instance. In the
latter case the binding is only added if the variable is not bound in the old state and is not bound by
the parameter list.

ITU-T Z.120 (11/1999) 61

For incomplete message receiving events, firstly bindings are dynamically created by pairing the
matching parameter expressions from the corresponding send event with the patterns of the receiving
event. The resulting bindings are then evaluated as for completed messages, and the state modified in
the same way.

5.9 Data in instance creation parameters

Dynamic data in instance creation events is treated similarly to message parameters. However as
there is no created event corresponding to the creating event, the state is modified by the create event
according to any bindings in its parameter list. But this modified state is only used in evaluating the
next event on the created instance, and not the next event on the creating instance. The state that
existed prior to the create event is used to evaluate the subsequent event on the creating instance. All
variables used as pattern variables in a create parameter list must be owned by the created instance.

5.10 Data in action boxes

Data can appear in action boxes as a comma separated list of statements. A statement is either a
define statement, an undefine statement, or a binding. A define statement is used to indicate that a
variable has been assigned some unspecified value; it is the equivalent of a binding of a variable to a
wildcard. That is, “def x” is the equivalent of “x := ”, where “ ” is a wildcard. An undefine
statement is used to indicate that a variable is no longer bound, i.e. that the variable cannot be legally
referenced, or has moved out of scope. Inside a single action box the statements are evaluated
concurrently, not sequentially, as a consequence of which the static requirements rules forbid
ambiguity between different statements attempting to bind different values to the same variable.
Sequencing can be achieved by sequencing action boxes.

(132

Concrete textual grammar

<data statement list> ::=
<data statement> [, <data statement list> |

<data statement> ::=
<define statement> | <undefine statement> | <binding>

<define statement> ::=
def <variable identifier>

<undefine statement> ::=
undef <variable identifier>

Static Requirements

All variables occurring in a define statement, undefine statement, or the pattern part of a binding
must be dynamic variables owned by the instance on which their enclosing action box appears, and
furthermore they must be distinct. The latter is required because the statements of an action box are
concurrently evaluated.

Semantics

Each statement in an action box is evaluated using the state of the previous non-creating event on the
same instance. The resultant state is derived from the old by updating the bindings made or destroyed
by each of the statements. Because of the static requirements, there can be no ambiguity in forming
the resulting state. For bindings, the pattern variables become bound in the new state to the values of
their expressions. An undefine statement removes the variable’s binding from the old state, if there is
one, in forming the new state. A define statement adds or replaces a binding from the old state with
one in which the statement’s variable is bound to a wildcard.

62 ITU-T Z.120 (11/1999)

5.11 Assumed Data Types

There are three places in this standard where the MSC language assumes the existence of data types.
These are:

* Boolean valued expressions used in guarding conditions (Section 4.7),
* Natural number expressions used to define loop boundaries (Section 7.2),
 Time expressions used in specifying timing constraints (Section 6).

In keeping with approach to data used within this standard these types have to be defined as part of
the user’s chosen data language and not part of the MSC language. However, they are required to
have the specific interpretations as the MSC semantics are defined in terms of these interpretations.
Thus, the type of expressions used in guarding conditions must have the standard Boolean domain
consisting of a true and false element only.

For loop boundaries the domain of the type must be the natural numbers, equipped with the usual
subtraction operation (required to compute the difference between the lower and upper bound of a
loop). This condition can be relaxed to permit the domain to be a subset of the natural numbers, since
most (programming) languages only have finite representations. This does not effect the semantics of
loops, just that boundary values will be limited to the permitted subset. In particular infinite loops
still can be expressed by using the keyword inf.

The requirements for the time type are more abstract and are defined as:
* the domain must be a total order with a least element, or origin, of time zero,
* the domain must be closed under an addition operation, used to compute time offsets.

These are the minimal requirements that enable the semantics of timed MSCs to be defined. In
practice a user would have a richer type that supported extra time operations declared in the data
definition part of the MSC document. As with the natural numbers, the actual domain can be
permitted to be a subset of the required ideal domain to allow for limitations in actual data languages.
The total ordering requirement reflects the linear time model used in MSC, as opposed to, say,
branching time. The closure of addition means that time can never be exhausted.

6 Time concepts

Time concepts are introduced into MSC to support the notion of quantified time for the description
of real-time systems with a precise meaning of the sequence of events in time. MSC events are
instantaneous. Time constraints can be specified in order to define the time at which events may
occur.

Each MSC contains instances with associated events. Classical MSC disregarding time can be
interpreted as a set of traces of events. In the untimed interpretation, all time related features are
considered to be comments/annotations only. In the timed interpretation, the progress of time is
represented explicitely in a quantified manner, i.e. the traces of events are enhanced with a special
event which represents the passage of time. The untimed interpretation of an MSC is a superset of
the timed interpretation of an MSC reduced to the untimed features.

Timing in MSC enhances the traces of an MSC with quantitative time values, which represent the
time distance between pairs of events. The time progress (i.e. clocking) is equal for all instances in
an MSC. Also, all the clock values are equal, i.e. a global clock is assumed. All events are
instantaneous, i.e. atomic and do not consume time.

6.1 Timed Semantics

The timed semantics of an MSC can be represented by traces with special time events such as

ITU-T Z.120 (11/1999) 63

{el, e2, 13, e4,t5, €6, €7, ¢8,... }

The triple (e4, t5, e6) means for example that after the occurrence of event e4 time t4 passes until
event €6 occurs. Events with no time event in between (such as el and e2) occur simultaneously, i.e.
without any delay. It is assumed that time is progressing and not stagnating. Progressing means that
after each event in a trace there is eventually a time event. Non-stagnation means that there is an
upper bound on the number of ‘normal events’ in between a timed event and the succeeding timed
event.

The above trace is equal to the trace below (by making the zero delay explicit):
{el, 0, e2, 13, e4, 15, €6, 0,¢e7,0,e8,... }

The untimed semantics of an MSC containing traces
{el,e2,e3,... }

correspond to a set of traces with arbitrary delay in between the events, i.e.
{el, any time, €2, any time, €3, any time, ...}

On the other hand, the untimed reduct of a timed trace
{el, t1,e2,t2,e3,13, e4, t4, e5,t5,... }

is
{el,e2,e3, ...}

It is intentional that in the timed semantics a trace of an MSC begins with a ‘normal’ event, i.e. for
every event except for the first one there is a preceding event. Timing can be defined with respect to
the preceding event.

In general, there is not a unique start event neither for an instance of an MSC nor for an MSC as a
whole. An MSC defines a set of traces with potentially different start events.

6.2 Relative Timing

Relative timing uses pairs of events - preceding and subsequent events, where the preceding event
enables (directly or indirectly, i.e. via some intermediate events) the subsequent event. For the use of
relative timing please refer to Section 6.10 on Time Intervals.

Relative timing can be specified by the use of arbitrary expressions of type Time, i.e. referencing
parameters, wildcards and dynamic variables. The concrete value of a relative time expression is
evaluated once the new state of the event relating to this relative timing has been evaluated. Please
refer to Section 5.6. for the notion of new state.

6.3 Absolute Timing

Absolute timing is used to define occurrence of events at points in time that relate to the value of the
global clock.

Absolute timing can be specified by the use of arbitrary expressions of type Time, i.e. referencing
parameters, wildcards and dynamic variables. The concrete values of a time constraint are evaluated
at the start of a time interval once the new state of the event relating to the start of the time interval
has been evaluated. Please refer to Section 5.6. for the notion of new state.

6.4 Time Domain

The time domain can be dense or discrete. It must be a total order with a least element, or origin, of
time zero. It must be closed under an addition operation, used to compute time offsets.

64 ITU-T Z.120 (11/1999)

Examples for a time domain are the non-negative Rational Numbers enhanced with a time unit being
either h (indicating hours), min (indicating minutes), s (indicating seconds), ms (indicating
milliseconds), us (indicating microseconds), and ns (indicating nanoseconds).

Static Requirements

The time domain must be a total order with a least element, or origin, of time zero. It must be closed
under an addition operation, used to compute time offsets.

6.5 Static and Dynamic Time Variables

An MSC can use static or dynamic time variables. These variables are like any other variable except
that they are of the type Time of the MSC.

Static Requirements

Static and dynamic time variables adhere to the requirements of other static and dynamic variables as
described in the section on Data Concepts (5).

6.6 Time Offset

An MSC can be assigned a time offset, which is used as an offset to all absolute time values within
that MSC. The time offset is defined by an expression of the time domain of the MSC. In MSC
without an explicit time offset, a time offset of 0 is assumed by default.

Concrete textual grammar
<time offset> ::=
offset <time expression>
Concrete graphical grammar

Not needed.

Static Requirements

In the offset declaration, only an expression of type Time must be given. The expression must refer
to declared MSC parameters only.

6.7 Time Points, Measurements, and Intervals

Time constraints can be defined as time points, i.e. concrete time values, or as time intervals, i.e.
ranges of time values within given bounds. Time observations are described by measurements.

6.8 Time Points
Concrete textual grammar

<time point> ::=
[<abs time mark>] <time expression>

Time points are defined by expressions of type Time. The optional absolute time mark indicates an
absolute timing.

Concrete graphical grammar

Not needed.

ITU-T Z.120 (11/1999) 65

Static Requirements

The evaluation of a time point yields a concrete quantified time. An event without time constraints
can occur at any time.

6.9 Measurements

Measurements are used to observe the delay between the enabling and occurrence of an event (for
relative timing) and to measure the absolute time of the occurrence of an event (for absolute timing).
In order to distinguish a relative from an absolute measurement, different time marks (i.e. ‘&’ for
absolute and ‘?’ for relative) are used.

Measurements can be tied to time intervals. For each measurement, a time variable has to be declared
for the respective instance.

Concrete textual grammar

<measurement> ::=
<rel measurement>
<abs measurement>

<rel measurement>::=
<rel time mark> <time pattern>

<abs measurement>::=
<abs time mark> <time pattern>

Concrete graphical grammar

Not needed.

Static Requirements

Measurements must use only patterns of type Time, which refer to dynamic variables that are
declared in the enclosing MSC document for the respective instance.

Semantics

The evaluation of the delay (in the relative case) and of the value of the global clock (in the absolute
case) and the binding to the time variable is part of the evaluation of the new state of the event to
which the measurement relates to.

6.10 Time Interval

Time intervals are used to define constraints on the timing for the occurrence of events: the delay
between a pair of events can be constrained by defining a minimal or maximal bound for the delay
between the two events.

A time interval does not imply that the events must occur. The fulfillment of a time constraint is
validated only if the event relating to the end of that time intervals occurs in the trace. An MSC trace
has to fulfill all its time constraints, i.e. if a trace violates a time constraint the trace is illegal.

Time intervals can be used for relative timing as well as for absolute timing. Time intervals can be
specified by the use of arbitrary expressions of type Time, i.e. referencing to parameters, wildcards
and dynamic variables. The concrete values of a time constraint imposed by a time interval are
evaluated at the start of a time interval once the new state of the event relating to the start of the time
interval has been evaluated. Please refer to Section 5.6. for the notion of new state.

66 ITU-T Z.120 (11/1999)

The order of a pair of events related to a time constraint is determined by the dynamic semantics and
not by the time constraint.

By means of interval boundaries, each event can impose constraints on time intervals, in which it is
involved. However, these are taken into account only if the event refers to the start of a time interval,
what is determined dynamically. In the case that an event refers to the end of a time interval, its time
constraints are of no concern. The textual and graphical representation of an MSC indicate the
potential pairs of events only. Such a pair of event is indicated either by connecting the interval
boundaries of two events, by connecting split interval boundaries via an interval label, or via
message gates.

Concrete textual grammar

<time interval> ::=
[<interval label>] <singular time>
| [<interval label>] <bounded time>
[<measurement> |

<interval label> ::=
int_boundary <.interval name>

<singular time> ::=
<left closed> <time point> <right closed>
<measurement™>

<bounded time> ::=
[<abs time mark>] { <left open> | <left closed> }
[<time point>] , [<time point>]
{ <right open> | <right closed> }

Static Requirements

Within a time interval, either only relative time expressions or only absolute time expressions must
be used. Either the minimal, the maximal bound or both bounds are given. An interval must define at
least one of the two bounds.

An absolute time interval must be of the form [@1,@3) or @][1,3).

Time intervals can be defined for any two events within an MSC document.

Concrete graphical grammar

<time interval area> ::=
<interval area>
| <abs time area>

<interval area> ::=
<int symbol>
is associated with <time interval>
is followed by { <cont interval> | <interval arca 2>}

<interval area 2> ::=
<int symbol>
[is associated with <time interval>]

<cont interval> ::=
<cont int symbol>
is associated with <interval name>

ITU-T Z.120 (11/1999) 67

<int symbol> ::=

{<int symbol 1> | <int symbol 2> }

is attached to

{ <message out symbol> |[<message in symbol> |
<reply symbol> | <action symbol> |
<timer start symbol> | <timer stop symbol> |<timeout symbol> |
<restart symbol> | <createline symbol> |
<inline expression symbol> | <separator symbol>
<msc reference symbol> | <par frame symbol>
<instance head symbol> }

<int symbol 1> ::=

<int symbol 2> ::=

The time interval symbols <int symbol 1> and <int symbol 2> may be mirrored horizontally and vertically. The mirror
of <int_symbol 1> must not be attached to <int symbol 1>.

<cont int symbol> ::=

O

The continuation symbol for time intervals <cont int symbol> may be mirrored vertically. The mirror of <cont int
symbol> must not be attached to <int symbol 1> and <int symbol 2> as well as <cont int symbol> must not be attached
to the mirror of <int symbol 1> or <int symbol 2>.

<abs time area>::=
<abs time symbol>
is associated with { <abs time expr> | <abs measurement>}
is attached to
{ <message out symbol> |[<message in symbol> | <action symbol> |
<timer start symbol> | <timer stop symbol> |<timeout symbol> |
<inline expression symbol> | <separator symbol> |
<msc reference symbol> | <par frame symbol> |
<call in symbol> | <call out symbol> | <reply symbol>}

<abs time symbol>::=

<abs time expr>::=
<abs time mark> <time expression>

68 ITU-T Z.120 (11/1999)

The graphical representation of a relative timing interval uses dashed lines with two arrow heads
(such as empty arrow heads) that indicate the starting and the finishing event for this interval.

Small variations on the actual shapes of the arrow heads such as shading or the shape if the arrow
heads are allowed. However, it is recommended that the arrow heads of time intervals are
distinuguishable from the arrow heads of message or create events.

The graphical representation of an absolute timing interval uses one dashed line to point at the
absolutely timed event.

Time intervals can be split into several parts, which are logically connected via a label. In the course
of execution, split intervals are joined to constitute the start and end of an interval.

The horizontal lines of the relative and absolute time symbols can be represented by arbitrary
polylines and can be stretched and squeezed. But, the vertical lines of the relative time symbols must
remain vertical. The final part of an absolute time polyline must be horizontal and must be associated
with the absolute time expression or the absolute measurement, respectively.

Semantics

In every trace of an MSC there has to be a unique correspondence between the start and the end of a
split time interval (i.e. joining of split time intervals is done at execution time only). For example, in
a trace there must not be two ends for an interval.

7 Structural concepts

In Section 7, high level structural concepts are introduced. Coregions makes it possible to describe
areas where the events may come in any order. Inline expressions help structure notions of
alternatives, parallel composition and loops. MSC references are used to refer other MSCs from
within an MSC. HMSCs abstract from instances and give overview of more complicated behaviors.

MSC references and inline expressions may have time constraints. Timing is interpreted with respect
to the dynamically determined start and end events of the MSC reference and the inline expression,
respectively.

7.1 Coregion

The total ordering of events along each instance (see 4.2) in general may not be appropriate for
entities referring to a higher level than simple-processes.

Therefore, a coregion is introduced for the specification of unordered events on an instance. Such a
coregion in particular covers the practically important case of two or more incoming messages where
the ordering of consumption may be interchanged. Conversely, when broadcasting messages, the
sending of two or more outgoing messages may be interchanged. A generalized ordering can be
defined by means of general ordering relations.

Concrete textual grammar

<start coregion>::=
concurrent <end>

<end coregion> ::=
endconcurrent <end>

Concrete graphical grammar

<concurrent area> ::=
<coregion symbol>
is attached to <instance axis symbol>
contains <coevent layer>

ITU-T Z.120 (11/1999) 69

<coregion symbol> ::=
<coregion symbol1> | <coregion symbol2>

<coevent layer> ::=
<coevent area> | <coevent area> above <coevent layer>

<coevent area> ::=
{ <message event area> | <incomplete message area> | <action area>
<timer area> | <create area> }*

<coregion symbol1> ::

<coregion symbol2> ::

T T

I I

1 1

Drawing rule: The statement that the <coregion symbol> is attached to the <instance axis symbol>
means that the <coregion symbol> must overlap the <instance axis symbol> as in the following
example:

1 1

Figure 10/Z.120 — Different forms of coregion

<coregion symbol1> must not be attached to <instance axis symbol2>.

Static Requirements

On a specific instance, between <start coregion> and <end coregion>, there may only be <orderable
event>s

Semantics

For MSCs a total ordering of events is assumed within each instance. By means of a coregion an
exception to this can be made: events contained in the coregion are unordered if no further
synchronization constructs in form of general order relations are prescribed.

If a timer start and the corresponding time-out or stop are contained in a coregion, then an implicit
general ordering relation is assumed between the start and the time-out/stop.

70 ITU-T Z.120 (11/1999)

7.2 Inline expression

By means of inline operator expressions, composition of event structures may be defined inside of an
MSC. The operators refer to alternative, parallel composition, iteration, exception and optional

regions.

Timed inline expressions allow to constrain or to measure the execution time of alternative, parallel
composition, iteration, exception and optional regions. Both, relative and absolute time intervals

(with or without measurements) can be used.

Time intervals may refer to the start or/and the end of an inline expression. The start value is when
the first event dynamically takes place, and the end is when the last event takes place. Therefore the

time intervals apply to all instances involved in an inline expression.

Concrete textual grammar

<shared inline expr> ::=

<extra-global> ::=

<shared loop expr> ::=

<shared opt expr> ::=

<shared exc expr> ::=

<shared alt expr> ::=

<shared par expr> ::=

[<extra-global>]{ <shared loop expr> | <shared opt expr> |
<shared alt expr> | <shared par expr> | <shared exc expr> }
[startbefore <time dest list> <end>]

[startafter <time dest list> <end>]

[endbefore <time dest list> <end>]

[endafter <time dest list> <end>]

external

loop [<loop boundary>] begin [<inline expr identification> |<shared> <end>
[<inline gate interface> | [<instance event list>]
loop end [<time interval>] <end>

opt begin [<inline expr identification>] <shared> <end>
[<inline gate interface>] [<instance event list>]
opt end [<time interval>] <end>

exc begin [<inline expr identification>] <shared> <end>
[<inline gate interface> | [<instance event list>]
exc end [<time interval>] <end>

alt begin [<inline expr identification>] <shared> <end>

[<inline gate interface> | [<instance event list>]

{ alt <end> [<inline gate interface> | [<instance event list>] } *
alt end [<time interval>] <end>

par begin [<inline expr identification>] <shared> <end>

[<inline gate interface>] [<instance event list>]

{ par <end> [<inline gate interface> | [<instance event list>] }*
par end [<time interval>] <end>

ITU-T Z.120 (11/1999)

71

<inline expr> ::=
[<extra-global>] {<loop expr> | <opt expr> | <alt expr> |
<par expr> | <exc expr>}

<loop expr> ::=
loop [<loop boundary>] begin [<inline expr identification> | <end>
[<inline gate interface>] <msc body>
loop end [<time interval>] <end>

<opt expr> ::=
opt begin [<inline expr identification> | <end>
[<inline gate interface>] <msc body>
opt end [<time interval>] <end>

<exc expr> ==
exc begin [<inline expr identification> | <end>
[<inline gate interface>] <msc body>
exc end [<time interval>] <end>

<alt expr> ::=
alt begin [<inline expr identification> | <end>
[<inline gate interface> | <msc body>
{ alt <end> [<inline gate interface>] <msc body> }*
alt end [<time interval>] <end>

<par expr> ::=
par begin [<inline expr identification>] <end>
[<inline gate interface>] <msc body>
{ par <end> [<inline gate interface>] <msc body> }*
par end [<time interval>] <end>

<loop boundary> ::=
<left angular bracket> <inf natural> [, <inf natural>]
<right angular bracket>

<inf natural> ::=
inf | <expression>

<inline expr identification> ::=
<inline expr name>

<inline gate interface> ::=
{ gate <inline gate> <end>}*

<inline gate> ::=
<inline out gate> | <inline in gate> |
<inline create out gate> | <inline create in gate> |
<inline out call gate> | <inline in call gate> |
<inline out reply gate> | <inline in reply gate> |
<inline order out gate> | <inline order in gate>

Concrete graphical grammar

<inline expression area> ::=
{ <loop area> | <opt area> | <par area> | <alt area> | <exc area> }
[top or bottom is attached to top or bottom

72 ITU-T Z.120 (11/1999)

<loop area> ::=

<opt area> ::=

<exc area> ::=

<par area> ::=

<alt area> ::=

{ {<int symbol> | <abs time symbol> }* } sef]
[is attached to <msc symbol>]
[is followed by <general name area>]

<inline expression symbol> [is attached to <time interval area>] contains
{ loop [<loop boundary>] <operand area> }

is attached to { <instance axis symbol>* } set

is attached to { <inline gate area>* | <inline order gate area>* } set

<inline expression symbol> [is attached to <time interval area>] contains
{ opt <operand area> }

is attached to { <instance axis symbol>* } set

is attached to { <inline gate area>* | <inline order gate area>* } set

<exc inline expression symbol>

[is attached to <time interval area>] contains

{ exc <operand area> }

is attached to { <instance axis symbol>* } set

is attached to { <inline gate area>* | <inline order gate area>* } set

<inline expression symbol> [is attached to <time interval area>] contains
{ par <operand area>

{ is followed by <separator arca> is followed by <operand area> }* }

is attached to { <instance axis symbol>* } set

is attached to { <inline gate area>* | <inline order gate area>* } set

<inline expression symbol> [is attached to <time interval area>] contains
{ alt <operand area>

{ is followed by <separator area> is followed by <operand area> }* }

is attached to { <instance axis symbol> }* set

is attached to {<inline gate area>* | <inline order gate area>* } set

<inline expression symbol> ::=

-/

<exc inline expression symbol> ::=

<operand area> ::=

{ <event layer> | <inline gate area> | <inline order gate area> }* set
[is followed by <general name area>|

ITU-T Z.120 (11/1999)

73

<separator area> ::=
<separator symbol>

<separator symbol> ::=

Static Requirements

The <inline expression area> may refer to just one instance, or be attached to several instances. If a
shared inline expression crosses an instance, which is not involved in this inline expression, it is
optional to draw the instance axis through the inline expression.

All exception expressions must be shared by all instances in the MSC.

Extra-global inline expressions are those having the keyword external in the textual notation or
crossing the MSC frame in the graphical notation. The latter graphical situation is described in the
grammar as being “atfached to <msc symbol>”. Extra-global expressions must also cover all
instances in the MSC.

Data expressions defining loop boundaries may contain static variables and wildcards, but must not
contain dynamic variables.

Semantics

The operator keywords seq, alt, par, loop, opt and exc which in the graphical representation are
placed in the left upper corner denote respectively alternative composition, parallel composition,
iteration, optional region and exception. In the graphical form a frame encloses the operands, the
dashed lines denote operand separators.

The seq operator represents the weak sequencing operation. A guarded seq operand with a false
guard is dynamically illegal.

The alt operator defines alternative executions of MSC sections. This means that if several MSC
sections are meant to be alternatives only one of them will be executed. In the case where alternative
MSC sections have common preamble the choice of which MSC section will be executed is
performed after the execution of the common preamble. Alternative operands with a guard that
evaluates to false cannot be chosen. If all the operands have false guards, no legal trace can go
through this alt-expression, i.e. it is dynamically illegal.

One operand of an alt-expression may be guarded by otherwise. Otherwise is interpreted as the
conjunction of the negations of the guards of all the other operands. Thus the otherwise guard is frue
only if the guards of all other operands of the alternative expression are false. An operand without
guard is considered to have a frue guard and the otherwise branch will be impossible to reach.

The par operator defines the parallel execution of MSC sections. This means that all events within
the parallel MSC sections will be executed, but the only restriction is that the event order within each
section will be preserved. Parallel operands with a guard that evaluates to false are excluded from the
parallel composition. If all operands have false guards, the par-expression evaluates to empty.

The loop construct can have several forms. The most basic form is ”loop <n,m>" where n and m are
expressions of type natural numbers. This means that the operand may be executed at least n times
and at most m times. The expressions may be replaced by the keyword inf, like ”loop <n,inf>". This
means that the loop will be executed at least n times. If the second operand is omitted like in "’loop
<n>" it is interpreted as “loop <n,n>". Thus "loop <inf>" means an infinite loop. If the loop bounds
are omitted like in ”loop”, it will interpreted as ’loop <1,inf>". If the first operand is greater than the
second one, the loop will be executed 0 times. The passes of a loop are connected by means of the
weak sequential composition.

74 ITU-T Z.120 (11/1999)

When the loop operand is guarded, the loop is terminated when the guard is false and continued
when the guard is #rue as long as the upper bound has not been reached. Thus a loop will equal an
empty MSC if the guard is false the first time the loop is entered. If the lower boundery of the loop is
not reached due to the guard, the whole loop is interpreted as dynamically illegal. The upper
boundary represents an upper limit to the number of iterations of the loop.

The opt operator is the same as an alternative where the second operand is the empty MSC. A
guarded opt expression will always go through the option operand if the guard is true.

The exc operator is a compact way to describe exceptional cases in an MSC. The meaning of the
operator is that either the events inside the <exc inline expression symbol> are executed and then the
MSC is finished or the events following the <exc inline expression symbol> are executed. The exc
operator can thus be viewed as an alternative where the second operand is the entire rest of the MSC.
All exception expressions must be shared by all instances in the MSC. The exception expression is a
shorthand for an alternative expression where the rest of the enclosing frame is the second operand.

In the textual representation, the optional <inline gate interface> defines the messages entering or
leaving the inline expression via gates. By means of message name identification and optional gate
name identification, the <inline gate interface> also defines the direct message connection between
two inline expressions.

Extra-global inline expressions are associated with corresponding inline expressions on the enclosing
instance. This means that when interpreted as decomposition, the inline expression will combine its
operands one by one with the operands of other inline expressions. See 7.4 for more details. In the
context of the innermost enclosing MSC document an extra-global inline expression is interpreted
just as any other inline expression.

The time constraints referring to the start and end event of an inline expression are graphically
attached to the <inline expression symbol> and given in the textual syntax after the keywords loop
end, opt end, exc end, alt end, and par end. Time constraints referring either to the start or the end
of an inline expression are attached to top or bottom of the <inline expression symbol>. In the
textual syntax the keywords startbefore, startafter, endbefore, and endafter are used to indicate
that the start event of the inline expression is before or after certain events, or that the end event of
the inline expression is before or after certain events, respectively. See 0 for more explanation of the
time constructs.

7.3 MSC reference

MSC references are used to refer to other MSCs of the MSC document. The MSC references are
objects of the type given by the referenced MSC.

MSC references may not only refer to a single MSC, but also to MSC reference expressions. MSC
reference expressions are textual MSC expressions constructed from the operators alt, par, seq,
loop, opt, and exc, and MSC references with possible actual parameters.

The alt, par, loop, opt and exc operators are described in 7.2. The seq operator denotes the weak
sequencing operation where only events on the same instance are ordered.

Plain MSC references may have actual parameters that must match the corresponding parameter
declarations of the MSC definition.

The actual gates of the MSC reference may connect to corresponding constructs in the enclosing
MSC. By corresponding constructs we mean that an actual message gate may connect to another
actual message gate or to an instance or to a message gate definition of the enclosing MSC.
Furthermore an actual order gate may connect to another actual order gate, or an orderable event or
an order gate definition.

ITU-T Z.120 (11/1999) 75

The unrestricted use of gates in an MSC reference can lead easily to the construction of MSCs that
contain unexpected deadlocks. Therefore, we define some rules that restrict the graphical use of
gates. The basic rule is that the graphical vertical order of gated messages, etc., appearing as gate
definitions in a referenced MSC must be reproduced by the actual gated messages, etc., appearing in
the referring MSC. This rule prevents the gate equivalent of drawing messages arrows with an
upward slope. The complete set of rules is given in the section on graphic Static Requirements.

We also note that the appearance of a gated message on an MSC reference does not guarantee that
this message will appear in all traces (indeed in any trace). For example, the gated message may
originate and terminate inside optional in-line expressions within their defining MSCs.

Timed MSC references are used to constrain or to measure the execution time of referenced MSC
and MSC reference expressions.

Time intervals may refer to the start or/and the end of an MSC reference. The start value is when the
first event dynamically takes place, and the end is when the last event takes place.

Concrete textual grammar

<shared msc reference> ::=
reference [<msc reference identification> :]
<msc ref expr> [time <time interval>] <shared> <end>
[startbefore <time dest list> <end>]
[startafter <time dest list> <end>]
[endbefore <time dest list> <end>]
[endafter <time dest list> <end>]
<reference gate interface>

<msc reference> ::=
reference [<msc reference identification>:]
<msc ref expr> [time <time interval>] <end>
<reference gate interface>

<msc reference identification> ::=
<msc reference name>

<msc ref expr> ::=
<msc ref par expr> { alt <msc ref par expr> } *

<msc ref par expr> ::
<msc ref seq expr> { par <msc ref seq expr> }*

<msc ref seq expr> ::=
<msc ref ident expr> { seq <msc ref ident expr> }*

<msc ref ident expr> ::=
loop [<loop boundary>] <msc ref ident expr> |
exc <msc ref ident expr> |
opt <msc ref ident expr> |
empty |
<parent>* <msc name> [<actual parameters>] |
(<msc ref expr>)

<actual parameters> ::=
([<actual data parameters>]
[<actual instance parameters>][<actual message parameters>]
[<actual timer parameters>])

<actual instance parameters> ::=
inst <actual instance parm list> <end>

76 ITU-T Z.120 (11/1999)

<actual instance parm list> ::=
<actual instance parameter> [,<actual instance parm list>]

<actual instance parameter> ::=
<instance name>

<actual message parameters> ::=
msg <actual message list> <end>

<actual message list> ::=
<message name> [, <actual message list>]

<actual timer parameters> ::=
timer <actual timer list> <end>

<actual timer list> ::=
<timer name> [, <actual timer list>]

<parent> ::=
#

<reference gate interface> ::=
{ <end> gate <ref gate> } *

<ref gate> ::=
<actual out gate> | <actual in gate> |
<actual order out gate> | <actual order in gate> |
<actual create out gate> | <actual create in gate> |
<actual out call gate> | <actual in call gate> |
<actual out reply gate> | <actual in reply gate>

Static Requirements

An MSC reference must attach to every instance present in the enclosing diagram which is contained
in the MSC that the MSC reference refers. If two diagrams referenced by two MSC references in an
enclosing diagram share the same instances, these instances must also appear in the enclosing
diagram.

The interface of the MSC reference must match the interface of the MSCs referenced in the
expression, i.e. any gates attached to the reference must have a corresponding gate definition in the
referenced MSCs. The correspondence is given by the direction and name of the message associated
with the gate and if present by the gate name which is unique within the referenced expression.

In case where <msc ref expr> consists of a textual operator expression instead of a simple <msc
name> and when more than one MSC reference refer the same MSC, the optional <msc reference
name> in <msc reference identification> has to be employed in order to address an MSC reference in
the message definition (see 4.3).

The <reference gate interface> must list all gates of the diagram.

Concrete graphical grammar

<msc reference area> ::=
<msc reference symbol>
[top or bottom is attached to top or bottom
{ {<int symbol> | <abs time symbol> }* } sef]
contains { <msc ref expr> [time <time interval>]

ITU-T Z.120 (11/1999) 77

[<actual gate area>* | } set
is attached to { <instance axis symbol>* } set
is attached to { <actual gate area>* } set

<msc reference symbol> ::=

()

The <msc reference area> may be attached to one or more instances. If a shared <msc reference
area> crosses an <instance axis symbol> which is not involved in this MSC reference the <instance
axis symbol> is drawn through.

Static Requirements

The graphic order of the formal gates of the MSC definition referred by the MSC reference must be
preserved by the actual gates of the MSC reference. In the textual notation this means that the order
of the <msc gate interface> is the same as the order of the actual gates in the <reference gate
interface>.

When an MSC reference contains reference expressions the situation is more complex. In general we
have to build up a set of possible vertical orders from the constituent parts of the MSC expression.
The actual vertical order used on the MSC reference must then be amongst this set.

When an expression consists of just an MSC name, the set of vertical orderings is taken to consist of
just one element, namely the vertical order defined by the referenced MSC.

For an alternative expression each operand must define the same set of vertical orderings, which is
then taken as the set representing the expression. This definition also covers optional and exceptional
expressions, which are taken as shorthand forms of alternatives.

In the case of a parallel expression the set of vertical orderings is constructed by interleaving the
orderings defined by each operand. For example, if we have e par f, where e defines the set of
vertically ordered gates {<a, b>, <b, a>} and f defines the set {<u, v>}, then we have to interleave
<u, v> with <a, b> to give six derived orderings, and also interleave <u, v> with <b, a>, to give a
further 6 orderings. Thus e par f defines a set of twelve possible vertical orderings. So the actual gate
ordering on the MSC reference must be one of these twelve orderings.

The set of orderings defined by e seq fis given by appending each of the orderings defined by f onto
the end of each of the orderings defined by e. For example, if e defines the set of vertically ordered
gates {<a, b>, <b, a>} and f defines the set {<u, v>}, then the resulting set is {<a, b, u, v>, <b, a, u,
V>4,

MSC references must not directly or indirectly refer to their enclosing MSC (recursion).

MSC actual parameters must match the corresponding parameter declarations of the MSC definition.
The elements separated by <end> in the <actual parameters> must correspond one-to-one with the
elements separated by <end> in the <parameter declaration> of the MSC definition.

Actual instance parameters must have the same kind as the instance parameter declaration. The kind
of the actual instance parameter may be of a kind inherited from the kind of the instance parameter
declaration.

Actual messages must have the same message signature as the message of the message parameter
declaration. To have the same signature for a message means that the list of parameters to the
message is the same for the actual message and the message parameter declaration.

Actual timers must have the same timer signature as the timer of the timer parameter declaration. To
have the same signature fora timer means that the list of parameters of the timer is the same for the
actual timer and the timer parameter declaration.

78 ITU-T Z.120 (11/1999)

An MSC containing references and actual parameter bindings is illegal if, after repeatedly expanding
the references and binding actual parameters, an illegal MSC results.

Semantics

Each MSC can be seen as a definition of an MSC type. MSC types can be used in other MSC types
through MSC references.

An MSC type may be attached to its environment via -gates. Gates are used to define the connection
points in case where an MSC type is used in another type. Gate identifiers may be associated to the
connection points in form of names.

Instances that are attached to the MSC reference are default actual instance parameters to the MSC
reference. This means that if the instance kind is unambiguously identifying the formal instance
parameter, the attached instances need not appear in the actual parameter list.

An MSC reference may be attached to instances which are not contained in the referenced diagram.

In general, the MSC reference may refer to a textual MSC expression. In the simple case, where the
MSC expression consists of an MSC name only, the MSC reference points to a corresponding MSC
type definition. The correspondence is given by the MSC name, which is unique within the MSC
document. When the MSC has actual parameters, the result is that the formal parameters of the
referenced diagram are replaced by the actual parameters of the MSC reference.

In the textual representation, the <reference gate interface> defines the messages entering or leaving
the MSC reference via gates. By means of message name identification and optional gate name
identification, the <reference gate interface> also defines the direct message connection between two
MSC references.

An MSC reference with the keyword empty refers to an MSC with no events and no instances.

A <parent> prefix of an MSC reference indicates that the MSC reference refers the MSC which it
redefines through inheritance rather than the MSC with that name within the inheriting instance kind.
The <parent> prefix can be repeated in order to access grandparents etc.

The time constraints referring to the start and end event of an MSC expression are graphically
attached to the <msc reference symbol> and given in the textual syntax after the keyword time. Time
constraints referring either to the start or the end of an MSC expression are attached to top or
bottom of the <msc reference symbol>. In the textual syntax the keywords startbefore, startafter,
endbefore, and endafter are used to indicate that the start event of the MSC expression is before or
after certain events, or that the end event of the MSC expression is before or after certain events,
respectively.

7.4 Instance decomposition

An MSC document contains a set of instances. Each instance is of an instance kind. Instances that
have no reference to the instance kind implicitly have the instance kind with the same name as the
instance. In order to describe interaction on different levels of detail MSC introduces decomposition.

The inner structure and behavior of an instance kind is defined through an MSC document with the
same name as the instance kind. Thus there will be a hierarchy of MSC documents defining the
instance hierarchy. To indicate how the behaviors of the different levels are related, the behavior of
an instance inside an MSC diagram can be specified to be refined in an MSC of the MSC document
defining the instance being decomposed.

Thus an MSC document may be interpreted relative to its own instances only, disregarding any
decomposition, or it may be interpreted relative to lower levels of instances by following the
decomposition relations.

ITU-T Z.120 (11/1999) 79

MSC requires that there is a structural similarity between the decomposed instance and the
corresponding decomposition, but there is no requirement that there should be some behavioral
refinement.

Concrete textual grammar

<decomposition> ::=
decomposed [<substructure reference> |

<substructure reference> ::=
as <message sequence chart name>

Concrete graphical grammar

The graphical grammar is given in Section 4.2.

Static Requirements

To each instance containing the keyword decomposed a corresponding refining MSC has to be
specified with the same name as the decomposed instance. If the <substructure reference> is added
after decomposed then the refining MSC must have the name specified in the <substructure
reference>.

The decomposed instance can be understood as a sequence of language constructs of which some
should be interpreted as gates relative to the decomposition diagram. An overview of the gateable
concepts are given in Figure 11. There are peer gates and decomposition gates. Peer gates are known
also from the connection of MSC references, while the decomposition gates are only relevant for
decomposed instances.

gateable concept

/\

decomposition specific peer gates

MSC MSC Inline Message
reference reference expr.

expression Method General Create
calls / order line
replies

Figure 11/Z.120 — Gateable concepts

The interpretation of the decomposition specific gate concepts is given in the semantics section
below. The interpretation of the peer gates is given in the chapter on gates and on method calls.

Statically the graphic order of the gates must be preserved from the decomposed instance to the
decomposition diagram, meaning that if the two vertical edges of the decomposition diagram are
superimposed the sequence of the gate definitions of the diagram must be the same as that of the
decomposed instance. In the textual notation this means that the order of the <msc gate interface> is
the same as the order of the corresponding events on the decomposed instance.

80 ITU-T Z.120 (11/1999)

Take instance i in MSC M in MSC document D of Figure 12. Along the instance there is in sequence
an alternative expression, a simple MSC reference (to 4), an output of message s and an MSC
reference expression (B alt C). The decomposition is found in MSC iM of Figure 16 and it contains
in sequence an extra-global inline expression, a simple MSC reference (to i4), an output peer gate of
message s and an MSC reference expression (iB alt iC).

With the peer gates this sequencing is simple as there are events on the decomposed instance to
match peer gates on the decomposition. With decomposition specific gateable concepts the situation
is slightly more involved. The constructs on an instance that are not matched by a gateable concept
are disregarded from the static requirements on the decomposition. Such constructs are actions,
timers and coregions. Coregions are in this respect considered a plain instance area.

When the decomposed instance is stopped, the decomposition must include stops on all its contained
instances.

Static Requirements

The following static requirement must hold for MSC references covering a given instance. Let i be a
decomposed instance inside MSC M (Figure 12). Let i in M be decomposed as iM (Figure 16). Let
there be an MSC reference 4 covering i inside M. This A4 is then a gateable MSC reference. It must
be matched by a corresponding global? reference in iM to (say) i4 (Figure 17) defined in the MSC
document defining i. i inside 4 must then be decomposed as i4 (Figure 13).

The following static requirement holds for inline expressions covering a given decomposed instance
(see Figure 12). The decomposition must contain a corresponding inline expression of the same
operation and operand structure (see Figure 16). The inline expression in the decomposition must be
extra-global (see inline expressions) indicating that the operands are connected to other operands of
similar inline expressions when interpreted through decomposition. When interpreted only in the
context of the closest enclosing MSC document and extra-global inline expression is treated as a
plain global inline expression.

Recursively every operand of the inline expression have the same static requirements as the whole
decomposed instance.

The following static requirement holds for MSC reference expressions covering a given decomposed
instance. The decomposition must contain a corresponding MSC reference expression with the same
expression structure. Each of the operands of the MSC reference expression must obey the static
requirements for MSC reference expressions or MSC references.

An instance that is decomposed in one MSC must be decomposed in all MSCs that are dependent
upon this MSC through referencing.

Semantics

The semantics of decomposition is defined through a model of transformation. The following is an
algorithm that will transform an MSC including decomposition of one MSC document to another
MSC of another (constructed) MSC where the decomposed instance has been split into its
components. An example will accompany the transformations.

2 By “global” we mean “covering all instances in the MSC document”.

ITU-T Z.120 (11/1999) 81

msc document D
containing k, i ;
messages p,q,I,V,W,s;

msc M
k i decom as iM
— —
alt r
| g
q
4—
[A J
s
P
>
)_>
[[

Figure 12 /Z.120 — Top level MSC document and defining MSC

msc A

i decomposed as iA|

1 [1

P

/7 /1

msc B

i decomposed as iB

L1 1
q v
0 /.

msc C
i decomposed as iC
C 1 1
w
/1 /]

Figure 13/Z.120 — Utilities on upper level

Rule 1. Transform MSC reference expressions to inline expressions.

82

ITU-T Z.120 (11/1999)

msc M
k idecoEQEldasiM
alt r
S
9|
[A J
s
. P
alt [B]T:
_____ _|_________l______-
¢]
— E——

Figure 14/Z.120 — Having used Rule 1

Rule 2: Resolve the MSC references by substituting the contents of the MSC diagrams wherever the
references appear. Match the gates.

ITU-T Z.120 (11/1999) 83

msc M

k i deco as iM
— [

1 deco&m__e_ld as 1A

p
<

[

i decomposed as iM

S

>
]
alt 1 decom;jgfﬁi as iB
\%

q >

[

[

Figure 15/Z.120 — Having used Rule 2

The algorithm has now reached a diagram where the decompositions occur piecewise and according
to the static requirements. The instances that are not decomposed are trivially connected through
gates.

Now the algorithm turns to the decomposition and there is a need to show the definition of the MSC
document i.

84 ITU-T Z.120 (11/1999)

msc document i
containing m, n ;
messages p,q,I,V,W,s;

msc iM
m n
L1 1
alt) r
¢
q
47
[A J
S
P
NV
_ [iB alt iC W I
)_>
[[

Figure 16/Z.120 — Lower level MSC document

msc iA

msc iB msc iC
m n m n
L1 [1 L1 [1
v W %
<« "y e
/] [/ /] [/

Figure 17/Z.120 — Utilities on lowest level

ITU-T Z.120 (11/1999)

Please notice the extra-global inline expression and that the static requirements are fulfilled in iM
relative to i in M of MSC document D in Figure 12.

Rule 3: Transform decomposed instances with merely peer gates by pure substitution of the diagram
contents and matching the peer gates.

85

msc M
k i deco as iM
— [
alt T
P
q
<—
| —
m n
1 1
p
| g
/T /|
m n
L1 1
- >
/T /|
alt
m n
1 1
v
<7q‘ >
/T /|
m n
L1 1
%
< w
>
/T /|
| —

Figure 18/Z.120 — Having used Rule 3

Rule 3 gives instructions to substitute simple MSCs and match their gates. From the example one can
see the substitutions and the substitutes. From the starting point in Figure 15 consider the
decomposition of i in M given by iM found in Figure 16. From the top and down, the following
substitutions occur. Firstly leave the inline expression to the next rule below. Secondly in iM there is
the reference to iA which corresponds well with the fragment indicated. Use i4 in Figure 17 for
substitution. Thirdly there is the output of s decomposed directly in iM. Use the portion of iM
between the reference to i4 and the MSC reference expression as the substitute. Fourthly arrive at the
MSC reference expression (iB alt iC) and find that this corresponds well with the inline expression.
Perform substitution according to the same principles within each operand.

Rule 4: Transform inline expressions by substituting with the corresponding extra-global inline
expressions such that the operands are connected in a one-one-relation. When there are nested
expressions, this rule is applied recursively on every operand.

86 ITU-T Z.120 (11/1999)

msc M
k m n
C 1 1 1
alt T
>
q
<«
p
P
S
>
alt q v
D J— >
< = W
>
| — /0 /|

Figure 19/Z.120 — Having applied Rule 4

In Figure 19 Rule 4 has been applied and the extra-global expression has been substituted in operand
by operand. Furthermore the diagram has been simplified by combining the fragments to one
instance each.

The resulting MSC M would have been an MSC in an MSC document D' that would contain
instances k, m, n.

The transformation scheme could equally well have been expressed by following the decomposition
first before resolving the references. More notation would have been needed for the intersection
between an MSC reference (expression) and decomposition diagram contents.

7.5 High-level MSC (HMSC)

High-level MSCs provide a means to graphically define how a set of MSCs can be combined. An
HMSC is a directed graph where each node is either :

- a start symbol (there is only one start symbol in each HMSC),
- an end symbol,

- an MSC reference,

- a condition,

- a connection point, or

- a parallel frame.

The flow lines connect the nodes in the HMSC and they indicate the sequencing that is possible
among the nodes in the HMSC. The incoming flow lines are always connected to the top edge of the
node symbols whereas the outgoing flow lines are connected to the bottom edge. If there is more
than one outgoing flow line from a node this indicates an alternative.

The MSC references can be used either to reference a single MSC or a number of MSCs using a
textual MSC expression.

ITU-T Z.120 (11/1999) 87

The conditions in HMSCs can be used to indicate global system states or guards and impose
restrictions on the MSCs that are referenced in the HMSC.

The parallel frames contain one or more small HMSCs and indicate that the small HMSCs are the
operands of a parallel operator, i.e. the events in the different small HMSCs can be interleaved.

The connection points are introduced to simplify the layout of HMSCs and have no semantical
meaning.

High-level MSCs can be constrained and measured with time intervals for MSC expressions. In
addition, the execution time of a parallel frame of an HMSC can be constrained or measured. The
interpretation is similar to the interpretation of Timed MSC expressions.

Concrete textual grammar

<hmsc> ::=
expr <msc expression>

<msc expression> ::=
<start> {<node expression> | <text definition>} *

<start> .:=
<label name list> <end>

<node expression> ::=
<label name> : { <node> seq (<label name list>) | end }<end>

<label name list> ::=

<label name> { alt <label name> }*

<node> ::=
(<msc ref expr>) [<time interval>]
| <par expression> [<time interval>]
| <condition identification>
| connect
<par expression> ::=
expr <msc expression> endexpr
{ par expr <msc expression> endexpr }*

Static Requirements

All referenced <label name>s in <start> or <node expression> must be defined in the HMSC, i.e.
occur as "<label name>:" in a <node expression>. Every node in the HMSC graph must be reachable
from the <start>, i.e. the graph must be connected.

Concrete graphical grammar

<mscexpr area> ::=
{<text layer> <start area> <node expression area>*
<hmsc end area>* } set

<start area> ::=
<hmsc start symbol> is followed by { <alt op area>" } set

%

<hmsc start symbol> ::=

88 ITU-T Z.120 (11/1999)

<hmsc end area> ::=
<hmsc end symbol> is attached to { <hmsc line symbol>T} set

VAN

<hmsc line symbol1> | <hmsc line symbol2>

<hmsc end symbol> ::

<hmsc line symbol> ::

<hmsc line symbol1> ::

<hmsc line symbol2> ::=

v

<alt op area> ::=
<hmsc line symbol> is attached to { <node area> | <hmsc end symbol> }

<node expression area> ::=
<node area> is followed by { <alt op area>1} set
is attached to { <hmsc line symbol>*} set

<node area> ::=
<hmsc reference area>
| <connection point symbol>
| <hmsc condition area>
| <par expr area>

<hmsc reference area> ::= <msc reference symbol>
[top or bottom is attached to top or bottom
{ {<int symbol> | <abs time symbol> }* } set]
contains <msc ref expr> [time <time interval> |

<connection point symbol> ::=

<hmsc condition area> ::=
<condition symbol> contains <condition text>

<par expr area> ::=
<par frame symbol>
is attached to <hmsc line symbol>
[top or bottom is attached to top or bottom
{ {<int symbol> | <abs time symbol> }* } sef]
contains { <mscexpr area>+} set

<par frame symbol> ::=
<frame symbol>

Drawing rules

The <hmsc line symbol> may be bent and have any direction.

ITU-T Z.120 (11/1999)

That the <hmsc start symbol> is followed by the <alt op area> means that the <hmsc line symbol>s
must be attached to the lower corner of the <hmsc start symbol> as illustrated in Figure 20 where
two line <hmsc line symbol>s follow an <hmsc start symbol> :

Figure 20/Z.120 — HMSC drawing rules

That the <hmsc line symbol> is attached to another symbol in the <alt op area> production rule
means that the <hmsc line symbol>s must be attached to the upper edge of the symbol in question.
For the cases where the symbol is an <msc reference symbol> and an <hmsc end symbol> this is
illustrated in the following example:

N o5

Figure 21/7.120 — HMSC drawing rules

That the <node area> is followed by an <alt op area> in the <node expression area> production rule
means that the <hmsc line symbol>s must be attached to the lower edge of the symbol in the <node
area> as illustrated in the following example that shows how an <msc reference symbol> is followed

by an <alt op area>:

Figure 22/7..120 — HMSC drawing rules

Semantics

The graph describing the composition of MSCs within an HMSC is interpreted in an operational way
as follows. Execution starts at the <hmsc start symbol>. Next, it continues with a node that follows
one of the outgoing edges of this symbol. These nodes are considered to be operands of an alt
operator (see 7.2). After execution of the selected node, the process of selection and execution is
repeated for the outgoing edges of the selected node. Execution of an end node means that execution
of the given HMSC ends. Execution of an MSC reference is according to the description in 7.3.
Execution of a connection point is an empty operation. Execution of a parallel frame consists of
executing the operands of the parallel frame in parallel, as described in

90 ITU-T Z.120 (11/1999)

7.2 for the par operator. A sequential execution of two nodes that are related by an edge is described
by the seq operator (see 7.3).

A guarding condition means that the execution may not continue beyond the condition if it evaluates
to false. If all available branches are blocked by false guards, and no HMSC end has been reached,
the whole HMSC has no legal traces.

MESSAGE SEQUENCE CHART EXAMPLES

This chapter is informative rather than normative.

8 Message Sequence Chart Document

8.1 MSC Documents

The MSC document diagram in Figure 23 shows that the ACContext instance contains the instances
ACSystem, User, Supervisor and NewUser. The defining (or public) MSC diagrams are UserAccess,
PIN Change and NewUser. Notice that NewUser is the name of both a containing instance and a
contained MSC diagram. This is legal since instances and diagrams are of different entity classes.

Furthermore the data language interface is given. The data language is "C" and the underscore
character is used as variable wildcard. The data definitions are given in the file cdefs.h.

msc UserAccess AC System
decomposed as

User AC_UserAccess

|_—|_| :l
< when Idle >

4 A

EstablishAccess(“IllegalPIN™)

mscdocumentACContext L)
instACSystem,instUser,instSupervisor,instNewUser < CardOut
languageC;wildcards __; data#include cdefs.h;

OPY . hen PIN ok >

PIN_Change |< “Please enter” [
'
Open door]

| |
_ e 4
EstablishAccess

Figure 23/Z.120 — MSC document ACContext

To illustrate the static requirements for consistency when decomposing we have also given the MSC
diagram UserAccess referenced from MSC document 4ACContext.

ITU-T Z.120 (11/1999) 91

8.2

The MSC document ACSystem given in Figure 24 is then the description of the instance ACSystem
given in Figure 23. The description shows also inheritance described for the contained instances.
Below in Figure 27 we have shown the definition of the instance kind Entry.

We have also given dynamic variable declarations of the instances and the messages that have

Instance decomposition

msc AC_UserAccess

AccessPoint
decomposed as

AP_UserAccess

Authorizer

mscdocument ACSystem

inst AccessPoint inherits Entry variables m,Cid,PIN:int;
inst Console inherits Entry variables m,Cid,PIN:int;
inst Authorizer variables lv:integer;

msg Code: (int,int);msg AccLevel: (int);

msg mess: (charstring);

language C;wildcards ;data#include cdefs.h;

[AC_UserAccess] [AC_PIN_Change]

AC NewUser

AC_OpenDoor
AC_GivePIN

[AC_EstablishAccess]

Console

] I:I

when

Idle

Cardi< I

PIN
IV ag.

gjess(?x t)
ardOut\

IN o in’’AC_EstablishAccess(“IllegalPIN”

]

T

when PIN

N

“Please erfter

o

AC_OpenDoor

< Idle

Figure 24/7.120 — MSC document on next level down

parameters.

The static requirements for decomposition and MSC references can be checked from the example. In
ACContext we have the MSC UserAccess where the contained instance 4CSystem is decomposed by

AC UserAccess which in turn refers to AC EstablishAccess.

On the other hand the UserAccess refers to EstablishAccess shown in Figure 25.

92

msc EstablishAccess(txt:charstring;)
ACSystem
decomposed as
User AC_EstablishAccess
—— ———1
< when /dle >
Cardld
g
[GivePIN]
I<°0?§ < “TryAgain”
[GivePIN]
alt <€ mess(ixt)
< Idle >
L S ————————— F———
< PIN OK >
I_:rl I_=;|

Figure 25/7.120 — MSC EstablishAccess

ITU-T Z.120 (11/1999)

Inside EstablishAccess which is a utility of ACContext the instance ACSystem is decomposed into
AC EstablishAccess. AC _EstablishAccess thus represents the confluence points of the referencing
and decomposition from UserAccess of ACContext. In other words, whether decomposition or
referencing is followed first, there should be no difference in the end.

In EstablishAccess there is a definiton of a static variable zxt. The actual parameter can be seen in
Figure 24.

For completeness AC EstablishAccess is shown in Figure 26.

msc AC_EstablishAccess(txt:charstring;)

Entry
decomposed as
Entry EstablishAccess Authorizer
Car(!-m_: —1 I_—'_I
PIN -
9| AC_GivePIN]

Code(Cid,PIN)
Achevel(m:ZI\K

Ioop<0y »
‘when (m<2)
“TryAgain”
PIN »[AC_GivePIN]
Code(Cid,PIN)
< AccLevel(m:=lv)

access level

1 alt when (m<2)
lmess(txt; B E\Iot acceptable

| e |
< | PIN OK |>
[—— [——

Figure 26/Z.120 — MSC AC_EstablishAccess

Within AC EstablishAccess there are both state-like conditions used as guards and setting. There are
also Boolean expressions used as guards. Bindings are shown on some of the messages.

8.3 Instance Inheritance

mscdocument Entry;
using HMlIpatterns;
inst Panel; inst Controller;

[Entry_EstablishAccess]

Entry GivePIN

Figure 27/72.120 — MSC document Entry

ITU-T Z.120 (11/1999) 93

mscdocument AcessPoint
inherits Entry;
inst Door;

[AP_UserAccess]

Figure 28/Z.120 — MSC document AccessPoint inheriting from Entry

In the MSC document AccessPoint we see that there is no need to define again the instances Panel
and Controller as they are already defined in the inherited Entry.

9 Simple Message Sequence Charts
9.1 Basic MSC

This example shows a simplified connection set up within a switching system. The example shows
the most basic MSC-constructs: (process) instances, environment, messages, global conditions.

The Idle condition is an initial condition, the Seizure condition is intermediate, and Talking condition
is a final condition.

msc connection
process digite process digite
| calling_party | | called party |
when Idle
off hook
= L
< dial tone on
digit
: >
dial_tone off
< _tone_
digit
>
seizure_int >
ack
<
ring_back tone on internal_ringing_on
< —
Seizure
< off hook
answel
. |
< connection
Talking
IR |

Figure 29/7.120 — MSC connection

94 ITU-T Z.120 (11/1999)

msc connection;

inst calling_party: process digite;

inst called party: process digite;

gate out off hook to calling_party;

gate in dial tone on from calling_party;

gate out digit to calling_party;

gate in dial tone off from calling_party;

gate out digit to calling_party;

gate in ring_back tone on from calling_party;
gate in internal_ringing_on from called party;
gate out off hook to called party;

gate in connection from calling_party;

calling_party : instance process digite;
condition when Idle shared all;
in off_hook from env;
out dial tone on to env;
in digit from env;
out dial tone off to env;
in digit from env;
out seizure_int to called party;
in ack from called party;
out ring_back tone on to env;
condition Seizure shared all;
in answer from called party;
out connection to env;
condition Talking shared all;
endinstance;
called party: instance process digite;
condition when Idle shared all;
in seizure_int from calling_party;
out ack to calling_party;
out internal_ringing_on to env;
condition Seizure shared all;
in off_hook from env;
out answer to calling_party;
condition Talking shared all;
endinstance;
endmsc;

9.2 Message overtaking

This example shows the overtaking of two messages with the same message name 'messagel’. In the
textual representation the message instance names (a, b) are employed for a unique correspondence
between message input and output. In the graphical representation messages either are represented by
horizontal arrows, one with a bend to indicate overtaking or by crossing arrows with a downward
slope.

msc message_ overtaking msc message _ overtaking
process digite process digite process digite process digite
instl inst2 instl inst2
messagel
messagel
message ||
- messagel
-

Figure 30/Z.120 — MSC message overtaking

ITU-T Z.120 (11/1999) 95

msc message_overtaking;
inst instl;
inst inst2;
inst1: instance process digite;
out messagel, a to inst2;
out messagel, b to inst2;
endinstance;
inst2: instance process digite;
in messagel, b from inst1;
in messagel, a from instl;
endinstance;
endmsc;

9.3 MSC basic concepts

This example contains the basic MSC constructs: instances, environment, messages, conditions,
actions and time-out. In the graphical representation both types of instance symbols are used: the
single line form and the column form.

msc basic_concepts

process
ISAP_Manager Ini

Initiator | Eesponger I

when Disconnected

| ICONreq ICON ICONind

P

wait

setting_counte

wait

IDISind
«—

disconnected

Figure 31/Z.120 — MSC basic_concepts

Instance oriented textual syntax:

msc basic_concepts;

inst Initiator: process ISAP_Manager Ini;
inst Responder;

gate out ICONreq to Initiator;

gate in ICONind from Responder;

gate in IDISind from Initiator;

Initiator: instance process ISAP_Manager Ini;
condition when Disconnected shared all;

96 ITU-T Z.120 (11/1999)

in ICONreq from env;
out ICON to Responder;
action 'setting_counter';
starttimer T (5);
condition wait shared;
timeout T;
out IDISind to env;
condition disconnected shared;
endinstance;
Responder: instance;
condition when Disconnected shared all;
in ICON from Initiator;
out ICONind to env;
condition wait shared;
endinstance;
endmsc;

Event oriented textual syntax:

msc basic_concepts;

inst Initiator: process ISAP_Manager Ini;
inst Responder;

gate out ICONreq to Initiator;

gate in ICONind from Responder;

gate in IDISind from Initiator;

Initiator: instance process ISAP_Manager Ini;
Responder: instance;
all: condition when Disconnected;
Initiator: in ICONreq from env;
out ICON to Responder;
Responder: in ICON from Initiator;
out ICONind to env;
condition wait;
endinstance;
Initiator: action 'setting_counter';
starttimer T (5);
condition wait;
timeout T;
out IDISind to env;
condition disconnected;
endinstance;
endmsc;

9.4 MSC-composition through labelled conditions

In this example the composition of MSCs by means of global conditions is demonstrated. The final
global condition 'Wait For Resp' of MSC ‘connection request’ is identical with the initial global
condition of MSC connection confirm. Therefore both MSCs may be composed to the resulting MSC
‘connection’ (example 9.5).

The composition is defined by means of the HMSC 'con_setup’given in Figure 34.

ITU-T Z.120 (11/1999) 97

Initiator

I:III

msc connection_request

Responder

I:I

when Disconnected

ICONreq

—xX

ICON

ICONind

Wait_For_Resp

*

*

Figure 32/72.120 —- MSC connection_request

msc connection_request;

inst Initiator;

inst Responder;

gate out ICONreq to Initiator;
gate in ICONind from Responder;

endmsc;

98

instance Initiator;

condition when Disconnected shared all;

in ICONreq from env;
starttimer T;
out ICON to Responder;

condition Wait_For Resp shared all;

endinstance;
instance Responder;

condition when Disconnected shared all;

in ICON from Initiator;
out ICONind to env;

condition Wait_For Resp shared all;

endinstance;

Initiator

I;I

msc connection_confirm

Responder

I;I

when Wait For Resp

T

ICONF

ICONTresp

ICONCcontf]

«

Connected

—

T

Figure 33/Z.120 — MSC connection_confirm

ITU-T Z.120 (11/1999)

msc connection_confirm;

inst Initiator;

inst Responder;

gate in [CONconf from Initiator;
gate out ICONresp to Responder;

endmsc;

instance Inititator;
condition when Wait For Resp shared all;
in ICONF from Responder;
stoptimer T;
out ICONconf to env;
condition Connected shared all;
endinstance;
instance Responder;
condition when Wait For Resp shared all;
in ICONresp from env;
out ICONF to Initiator;
condition Connected shared all;
endinstance;

msc con_setup

< Disconnected >

(connection_request)

{hen Wait_For Resp >

(connection_confirm)

<when Connected >

Figure 34/7.120 — MSC con_setup

msc con_setup;

expr L1;

endmsc;

L1: condition Disconnected seq (L2);

L2 : (connection_request) seq (L3);

L3: condition when Wait For Resp seq (L4);
L4: (connection_confirm) seq (L5);

L5: condition when Connected seq (L6);

L6: end;

ITU-T Z.120 (11/1999)

99

9.5

MSC with time supervision

The MSC ‘connection’ in this example contains a timer stop.

msc connection;

inst Initiator;

inst Responder;

gate out ICONreq to Initiator;

msc connection

Initiator Responder

when Disconnected

ICONreq
T ICON ICONind
> g
Wait_For_Resp
ICONF ICONTresp
¢ «
ICONconf
Connected
| |

Figure 35/Z.120 — MSC connection

gate in ICONind from Responder;
gate out ICONresp to Responder;

gate in ICONinf from Initiator;

100

Initiator: instance;
condition when Disconnected shared all;
in ICONreq from env;

Responder: instance;
condition when Disconnected shared all;
in ICON from Initiator;
out ICONind to env;
condition Wait_For Resp shared all;
in ICONresp from env;

out ICON to Responder;
condition Wait_For Resp shared all;
in ICONF from Responder;

out ICONconf to env;
condition Connected shared all,

ITU-T Z.120 (11/1999)

out ICONF to Initiator;
condition Connected shared all,
endinstance;
endmsc;

9.6 MSC with message loss

The MSC ‘failure’ in this example contains a timer expiration due to a lost message.

msc failure
Initiator Responder

when Disconnected

AL N
Tk ICON

_» Responder

Wait_For_Resp

_>
IDISind

Disconnected

Figure 36/Z.120 — MSC failure

msc failure;

inst Initiator;

inst Responder;

gate out ICONreq to Initator;
gate in IDISind from Initator;

Initiator: instance;
condition when Disconnected shared all;
in ICONreq from env;
starttimer T;
out ICON to lost Responder;
condition Wait_For Resp shared all;
timeout T;
out IDISinf to env;
condition Disconnected shared all;
endinstance;
Responder: instance;
condition when Disconnected shared all;
in ICON from Initiator;
condition Wait_For Resp shared all;
condition Disconnected shared all;
endinstance;
endmsc;

ITU-T Z.120 (11/1999)

101

9.7 Local conditions

In this example local conditions referring to one instance are employed to indicate local states of this
instance.

msc conreq msc confirm
Env 1 Initiator Initiator Responder Env_R
I [| I I [| [| I
disconnected any <. disconnected ¥
ICONTre
E— X—
ICON ICONind
| -
CarD
wait o wait o
| | |

Figure 37/Z.120 — Local conditions

msc conreq;
inst Env_[;
inst Initiator;
Env_I: instance;
out ICONreq to Initiator;
endinstance;
Initiator: instance;
condition disconnected shared;
in ICONreq from Env_I;
condition any shared;
endinstance;
endmsc;

msc confirm;
inst Initiator;
inst Responder, Env_R;
Initiator: instance;
condition any shared;
starttimer T;
out ICON to Responder;
condition wait shared;
endinstance;
Responder: instance;
condition disconnected shared;
in ICON from Initiator;
out ICONind to Env_R;
condition wait shared;
endinstance;
Env_R: instance;
in ICONind from Responder;
endinstance;
endmsc;

102 ITU-T Z.120 (11/1999)

10 Data

msc access_control 1

User Door Controller Central Controller
1
def digit
enter(digit) >
relay(digit =: numl) >
def digit
enter(digit) >
relay(digit =: num?2) >
undef digit

open := valid(num1+num?2),
undef numl, undef num?2

= (when (op@

open signal

¢

‘display green
& unlock door’

(otherwise)

< refuse signal

‘display red’

Figure 38/Z.120 — Data in Action Boxes, Messages, and Conditions

In Figure 38 the instance User is assumed to own the variable digit, and the instance
Central_Controller owns the variables numl and num?2; the declaration of these variables would
occur in the enclosing MSC document which is here shown in Figure 39.

ITU-T Z.120 (11/1999) 103

mscdocument Access_Control System;

inst User variables digit: integer;

inst Door Controller;

inst Central Controller variables num1, num2, ident: integer;
open: boolean; ident: charstring;

msg enter, relay:(integer);

msg request:(integer, charstring);

msg reply:(charstring, integer);

wildcards : charsting; : integer;
data

“valid: integer -> boolean;

. charstring -> charstring;” ;

access_control 1

access_control 2 Authenticate

Figure 39/7.120 — MSC document for Access_Control_System

The first action box on instance User defines the variable digit, the effect of which is to assign digit
an unspecified value; let us call this value v/. This value is then passed to instance Door Controller
via the one parameter of the message enter. The parameter digit occurs as an expression; it is not a
binding because there is no bind symbol, and the static requirements forbid it from being a pattern as
enter is a completed message, i.e. its source and destination are instances. This value v/ of digit is
now available to the instance Door Controller until a new value of digit is received, irrespective of
what happens to the value of digif on its owning instance.

In the first relay message the v/ value of digit is passed as a parameter via the expression part of the
binding digit =: numli. This binding causes the value v/ to become bound to numl on instance
Central Controler.

The second action box on User redefines the value of digit to another unspecified value, say v2. The
semantics permit the values v/ and v2 to be the same. This second value is sent to Door Controller
via the second enter message. Note that the two values of digit may coexist in a trace through the
MSC, although only one value is known to an instance at any particular time.

In the second relay message the v2 value of digit becomes bound to the variable num2 on instance
Central Controller. Thus the value of numl is vI and the value of num?2 is v2.

The final action on User undefines digit, which means that it becomes an unbound variable of User.
Thus any subsequent reference to digit on this instance is illegal, which could occur if another MSC
is sequenced after access control 1. Undefining a variable explicitly removes a variable from scope
until it is either bound via a binding or a def statement.

The action box on Central Controller contains three statements, which are evaluated in parallel. Any
expressions are first evaluated using the old state, thus the expression valid(numl + num?2) is

104 ITU-T Z.120 (11/1999)

evaluated using v/ as the value of numl, and v2 as the value of num?2. After evaluating any
expressions the state is updated according to the bindings, (def if present) and undef statements. In
this case, open is bound to the result of the expression valid(numl + num?2), where the Boolean
function valid is declared/defined in the data section of the enclosing MSC document (Figure 39),
and the variables numl! and num2 become unbound, i.e. out of scope. Since the statements are
evaluated in parallel, they can be given in any order without altering the meaning. So the undef
statements could have been given before the statement binding open.

The value of open is used as a guard in the in-line alternative expression. The guard satisfies the
static requirements, in that the guard variables (here just open) are owned by the active instance
which is Central Controller. The alternative selected depends upon the value of open; if it is true
then the first alternative is chosen else the second alternative is chosen.

Notice that the action boxes appearing in the inline expression contain informal text, as indicated by
the quote characters enclosing the text.

msc access_control 2(user, group: charstring)

User Door Controller Central Controller

| | | | | | | |
w request(_, ident)
>

g
Authenticate(user *) reply(ident ~ group,)
h

** L]

Figure 40/Z.120 — Static Data & Incomplete Message Data

Figure 40 shows MSC access control 2 that has two static formal parameters, user and group, each
of type charstring. If access_ control 2 is referenced in another MSC then two actual parameters
must be given for these formal parameters. The MSC reference Authenticate has one actual
parameter, the expression user * _, where “*” represents string concatenation (defined/declared in the
data section of the enclosing MSC document, Figure 39), and “ “represents a charstring wildcard
(declared in the enclosing MSC document, Figure 39). The MSC access control 2 also uses a
dynamic variable ident, that is owned by the instance Central Controller.

The actual parameter expression given to Authenticate cannot contain dynamic variables, but it can
contain wildcards and static variables, as it does here. The expression user ~ denotes any string that
starts with the value given to the variable user.

The message request is an incomplete message that has two parameters. It is incomplete because it
originates from the gate g. The static requirements for an incomplete message terminating at an
instance tell us that the parameters must consist only of patterns. Thus the first parameter “ ” is a
wildcard pattern which does not result in any binding, and the second is the pattern ident which will
result in ident being dynamically bound to whatever value was sent from the MSC Authenticate.
Notice, only dynamic variables owned by the instance Central Controller or wildcards can appear as
patterns in messages received by this instance.

The message reply is also an incomplete message that has two parameters, but this time it is
incomplete because it terminates at a gate (here /). The static requirements tell us that the parameters
must consist only of expressions, so that the first parameter is the expression ident ~ group, and the

ITU-T Z.120 (11/1999) 105

second is the wildcard “ . Notice parameter expressions can contain static variables (here ident),
dynamic variables (here group) and wildcards.

The value given to the expression ident ~ group will be a string, the initial part consisting of
whatever was sent in the second parameter of the message request, and the second part consisting of
whatever value is supplied for the static variable group in a reference to the MSC access control 2.
The second parameter of reply can be any string. The values of these two parameters are sent with
the reply message and will be dynamically bound to the patterns found on the corresponding receive
reply parameter list found inside the MSC Authenticate.

11 Time

The examples in this section show main features of the time concepts in MSCs. The examples are
taken from a performance test specification for a TINA access session server. The MSCs include a
test component (7C) and a system under test (SUT). The test covers three steps: getting named access
to an access session server, setting the user context for an user and starting a selected service for this
user. These steps are defined as utility MSCs.

The defining MSCs cover the behavioural specification including time constraints (MSC
Black Box Behavior), the measurement specification (MSC Blackballed Measurement Scenario),
and traces of test executions (MSC Black Box Test Execution).

The measurements taken by the test component make use of time variables rell, ..., abs2, which are
declared as dynamic variables of type Time of instance 7C.

mscdocument AS_Performance_Tests_Black_Box

inst TC
variables
rel1, rel2, rel3, abs1, abs2: Time,
userld: userld_T, password: password_T, ..., service: service T;

inst SUT: AS_Server
variables UARef: UAref T,, services: services_T;

msg resolve_request;

msg resolve_reply(lAref_T);

msg requestNamedAccess_request(userld_T, password_T);
msg requestNamedAccess_reply(UAref_T); .. ;

language IDL;
wildcards |Aref: 1Aref T, ..;
data#include AccessSessionServer.idl;

[Black_Box_Behavior J (B lack_Box_Measurement_Sce naricj

[Black_Bo x_Test_Execution]

[Get_NamedAccess j [Set_UserContext(u a: UAref_T)j

[Start_Service (services: Services_Tﬂ

Figure 41/7..120 — MSC document and time variable declaration

106 ITU-T Z.120 (11/1999)

MSC Get_NamedAccess; TC SUT
|—| ’_dmmn_o_sgd_a‘s AS_Server_GNA

call resolve_requést time &rell
P

"sonve. Teply(Ardn time (0,0.7%rel1]

Figure 42/7.120 — Time Constraints and Measurements

The utility MSC shown in Figure 42 uses a relative time measurement to observe the message
duration of the resolve request call. The time variable rell will contain the time it took from the
output of the call by 7TC till the input of the call by SUT. The variable rell is bound when the input of
the call occurs.

The measurement on the duration of the call is subsequently used to restrict the message duration for
resolve reply. The relative time constraint (0,0.7*rell] allows the message to take at most 70 percent
of the time it took to issue the call resolve request from 7C to SUT.

In addition, the measurement on the duration of the call is used to constrain the execution of the
instance 7C: the relative time constraint (rell,3*rell] requires that after the output of the
requestNamedAccess call it takes at least rell and at most 3*3rell to get the reply.

MSC Black_Box_Behavior;

| TC | | SUT

(0,5s]

£

Get_NamedAccess

(0,1s]

I Set_UserContext(UAref)

v_|
VAR

Start_Service(services)

Figure 43/7.120 — Time Constraints for MSC References

ITU-T Z.120 (11/1999) 107

Figure 43 exemplifies the use of time constraints for MSC references: the relative time constraint
(0, 1s] specifies that it takes at most /s to have the MSC Set UserContext executed, i.e. from the start
event to the final event of Set UserContext at most s will pass.

The relative time constraint (0, 5s/ relates the start of Get NamedAccess to the start of Start Service
and specifies that it takes at most 5s to be able to start a service from the time point, when the
procedure to get named access has been started. This constraint impacts also the execution of
Set _UserContext.

MSC Black_Box_Behavior;

[1.6s]
A Get_NamedAccess
\ seq Set_UserContext (ua)time (0,1s]
‘z seq Start_Service (services)

JAN

Figure 44/Z.120 — Time Constraints for HMSC

Figure 44 shows the use of time constraints for HMSC. It is semantically similar to Figure 43 except
that in this figure the relative time constraint /7,6s/ is from start of Get NamedAccess to the end of
Start_Service, 1.e. starting a service takes at least /s and at most 6s.

MS C Black_Box_Measurement_Scenario;

_@"’PSL [TC | [sut

~
~
(0,5s]&rel1 ~

K

~

&rel2 Get_NamedAccess

<- '>J

(0, 2*re|2) &rel3

A
Set_UserContext(ua)
1

\
\
\
\
\
:
v

Ctart Service(services)

Figure 45/7.120 — Observing Time by Measurements

108 ITU-T Z.120 (11/1999)

The MSC Black Box Measurement Scenario in Figure 45 uses absolute measurements (indicated
by @) and relative measurements (indicated by &). Absolute measurements observe the value of the
global clock.

The absolute measurements @abs! and @abs2 give the absolute start and end of the test described
as a sequence of Get NamedAccess, Set UserContext and Start Service. In addition, relative
measurements are used to measure the time distance between pairs of events.

For example, &rell measures the distance between the start event of Get NamedAccess and the start
event of Start Service. This measurement is combined with a constraint (0,5s/ meaning that the
duration between start of Get NamedAccess and start of Start Service is constrained and the time it
takes really (within the given bounds of the constraint) is observed by means of the relative
measurement.

(0, 2*rel2) &rel3 is also a relative time constraint combined with a relative measurement. This
constraint refers to a measurement on the duration between start of Get NamedAccess and its end
taken before.

MSC Black_Box_Test Execution

= TC | [_sur |
~
[355ms] ~
Get_NamedAccess
[201ms]

Gta t_Service(services)

[@498ms]

—

Figure 46/7Z.120 — Singular Time used for System Traces

Figure 46 shows the representation of system traces (e.g. taken from system executions, simulation
or tests) using absolute and relative time point. Absolute time points are indicated by @. /@0]
represents that Get NamedAccess was started at global clock time O (i.e. the global clock has been
resetted). The execution of the sequence Get NamedAccess, Set UserContext and Start Service took
498ms. The execution of Set UserContext took 20Ims. The start event of Start Service occurred
355ms after the start event of Get NamedAccess.

12 Creating and terminating processes

This example shows the dynamic creation of the instance 'subscriber' due to a connection request and
corresponding termination due to a disconnection request.

ITU-T Z.120 (11/1999) 109

msc process_creation

manager
ICONreq > data_ subscriber
IDISind > terminate
]

Figure 47/7..120 — MSC process_creation

msc process_creation;

inst manager;

inst subscriber;

gate out ICONreq to manager;
gate out IDISind to manager;

manager: instance;
in ICONreq from env;
create subscriber(data);
in IDISind from env;
out terminate to subscriber;

endinstance;

subscriber: instance;
in terminate from manager;
stop;

endinstance;

endmsc;

13 Coregion

This example shows a concurrent region which shall indicate that the consumption of 'process datal’
and the consumption of 'process_data2' are not ordered in time, i.e. 'process_datal' may be consumed
before 'process data2' or the other way round.

110 ITU-T Z.120 (11/1999)

msc coregion

process digite process digite
instl inst2
process_datal >
rocess_data2

Figure 48/7.120 — MSC coregion

msc coregion;

inst instl;

inst inst2;

gate out process_datal to instl;
gate out process_data2 to instl;

inst1: instance process digite;
concurrent;
in process_datal from env;
in process_data2 from env;
endconcurrent;
out start to inst2;
endinstance;
inst2: instance process digite;
in start from instl;
endinstance;
endmsc;

14 General ordering

14.1 Generalized ordering within a coregion

This example shows a generalized ordering within a coregion by means of 'connections', i.e. the
ordering is described by means of the connections relating the events within the coregion. Within the
MSC ‘connectivity’ the following ordering is defined: ICONreq < ICONind < ICONresp, ICONreq <
IDIsind.

It shows the situation where IDISind is unordered with repect to ICONind and ICONresp.

ITU-T Z.120 (11/1999) 111

msc connectivity
Inres_service Inres_service

[]
U T [lconeq]
: : HE |

: : | |I.
| i f...liconmd |§ b lCON

msc connectivity

ICONreq

......... |< ICONresp I . _____ | ICONTresp

Figure 49/7.120 — MSC connectivity in two graphical variants

msc connectivity;

inst Inres_service;

gate out ICONreq to Inres_service;
gate in ICONind from Inres_service;
gate in IDISind from Inres_service;
gate out ICONTresp to Inres_service;

Inres_service: instance;
concurrent;
in ICONreq from env before Labell, Label2;
label Labell; out ICONind to env before Label3;
label Label2; out IDISind to env;
label Label3; in ICONresp from env;
endconcurrent;
endinstance;
endmsc;

14.2 Generalized ordering between different instances

This example shows the use of synchronization constructs taken over from Time sequence diagrams
in order to describe a generalized ordering between different instances. The line (bended or with
downward slope) between the message input ‘ICONreq’ and the message output ‘ICONind’ denotes
the ordering ICONreq < ICONind.

msc TSD msc TSD
Initiator Responder Initiator Responder
ICONreq ICONTreq
—> s
v ICONind e 1CONind
AT —> 9
IDISind IDISind
ICONTresp ICONresp
]
— — — —

Figure 50/Z.120 — MSC TSD in two graphical variants

112 ITU-T Z.120 (11/1999)

msc TSD;

inst Initiator;

inst Responder;

gate out ICONTreq to Initiator;
gate in ICONind from Responder;
gate in IDISind from Initiator;
gate out ICONresp to Responder;

instance Initiator;
in ICONreq from env before Labell;
out IDISind to env;

endinstance;

instance Responder;
label Labell; out ICONind to env;
in ICONresp from env;

endinstance;

endmsc;

15 Inline Expressions

15.1 Inline Expression with alternative composition

In this example the successful connection case is combined with the failure case within one MSC by
means of the alternative inline expression (MSC ‘alternative’). Within MSC ‘exception’ the same
situation is described by means of an equivalent exception inline expression.

msc alternative

Initiator Responder
I I I I
| |
< when Disconnected >
ICONreq ICON ICONind
. >
TX——
< Wait_For Resp >
alt
TZ
IDISind
< Disconnected >
ICONHK ICONresp
M >
ICONconf
¢
< Connected >
| |
I I

Figure 51/Z.120 — Inline alternative expression

ITU-T Z.120 (11/1999) 113

msc alternative;

inst Initiator;

inst Responder;

gate out ICONTreq to Initiator;
gate in ICONind from Responder;
gate in IDISind from Initiator;
gate out ICONresp to Responder;
gate in ICONconf from Initiator;

Initiator: instance;
Responder: instance;
all: condition when Disconnected;
Initiator: in ICONreq from env;
out ICON to Responder;
starttimer T;
Responder: in ICON from Initiator;
out ICONind to env;
all: condition Wait for Resp;
alt begin;
Initiator: timeout T;
out IDISind to env;
all: condition Disconnected;
alt;
Responder: in ICONresp from env;
out ICONF to Initiator;
Initiator: in ICONF from Responder;

stoptimer T;
out ICONconf to env;

all: condition Connected;
alt end;
Initiator: endinstance;
Responder: endinstance;

endmsc;

The exc operator is the same as an alternative where the second operand is the entire rest of the MSC
as illustrated by the following example:

MSC 'alternative' means exactly the same as MSC 'exception':

114 ITU-T Z.120 (11/1999)

msc exception

Initiator Responder
| | | |
| |
< when Disconnected >
ICONreq ICON ICONind
- -

X——
< Wait For Resp >

Ecj
T —

IDISind

< Connected >
— —

<
< Disconnected >
-, | ICENI-_ _Ica\lre-sp
T]]
ICONconf
- —————

Figure 52/7.120 — Inline exception expression

msc exception;

inst Initiator;

inst Responder;

gate out ICONreq to Initiator;
gate in ICONind from Responder;
gate in IDISind from Initiator;
gate out ICONresp to Responder;
gate in ICONconf from Initiator;

endmsc;

Initiator: instance;

Responder: instance;

all: condition when Disconnected;

Initiator: in ICONreq from env;
out ICON to Responder;
starttimer T;

Responder: in ICON from Initiator;
out ICONind to env;

all: condition Wait_for Resp;
exc begin;

Initiator: timeout T;
out IDISind to env;
all: condition Disconnected,

exc end;

Responder: in ICONresp from env;
out ICONF to Initiator;

Initiator: in ICONF from Responder;
stoptimer T;
out ICONconf to env;

all: condition Connected;

Initiator: endinstance;

Responder: endinstance;

ITU-T Z.120 (11/1999)

115

15.2 Inline Expression with gates

This example describes the scenario of 15.1 in a slightly modified form: The message 'ICONF' from
'Responder' is connected via gates with the alternative inline expression attached to 'Initiator'. The
message TCONF' from 'Responder’ is transferred via gate gl (on both alternatives) to 'Initiator'. It
describes the situation where 'Initiator' is waiting for an answer from 'Responder'. Two cases are
combined in MSC 'very advanced":

a) the 'Responder' is not answering in time: the message input ICONF' is discarded after
timeout and disconnection of 'Initiator’,
b) the 'Responder’ is answering in time which leads to a successful connection.
msc very_advanced
Initiator Responder
I I I I
ICONTreq ICON ICONind
>
TX—
alt
T
< IDISind
ICONF ICONF ICONresp
< -1 <
91
NG~ ICONF
< 91
ICONconf
-
] I

Figure 53/Z.120 — Inline expression with gates

msc very advanced;
inst Initiator;
inst Responder;

gate out ICONreq to Initiator;
gate in ICONind from Responder;
gate in IDISind from Initiator;
gate out ICONresp to Responder;
gate in ICONconf from Initiator;

Initiator: instance;

Responder: instance;

Initiator: in ICONreq from env;
out ICON to Responder;
starttimer T;

Responder: in ICON from Initiator;
out ICONind to env;

in ICONresp from env;
out ICONF to inline altref via g1;
Initiator: alt begin altref;
gate g out ICONF to Initiator
external in ICONF from Responder;
timeout T;
out IDISind to env;

116 ITU-T Z.120 (11/1999)

in ICONF from env via gi;

alt;
gate g1 out ICONF to Initiator;
in ICONF from env via gi;
stoptimer T;
out ICONconf to env;
alt end;
Initiator: endinstance;
Responder: endinstance;

endmsc;

15.3 Inline Expression with parallel composition

This example shows how a parallel inline expression describes the interleaving of a connection
request initiated by ‘Station Res’, i.e. ‘MDAT(CR)’ followed by ‘ICONind’, with a disconnection
request initiated by the environment, i.e. ‘IDISreq’ followed by ‘MDAT(DR)’.

msc parallel

Station_Ini Station Res

ICONreq

parl .
MDAT(CR) > ICONind

MDAT(DR) IDISreq

o R

Figure 54/7.120 — Inline parallel expression

msc parallel;

inst Station_Ini;

inst Station_Res;

gate out ICONreq to Station_Ini;
gate in ICONind from Station_Res;
gate out [DISreq to Station_Res;
gate in IDISind from Station_Ini;

Station_Ini: instance;
in ICONreq from env;
starttimer T;
Station_Res: instance;
all: par begin;
Station_Ini: out MDAT(CR) to Station_Res;
Station_Res: in MDAT(CR) from Station_Ini;
out ICONind to env;
par;
Station_Res: in IDISreq from env;
out MDAT(DR) to Station Ini;

Station_Ini: in MDAT(DR) from Station_Res;
par end;
Station_Res: endinstance;

Station_Ini: stoptimer T;

ITU-T Z.120 (11/1999) 117

out IDISind to env;
endinstance;
endmsc;

16 MSC references
16.1 MSC reference

Within this example the MSC references ‘data_transmission’ are employed to denote two successful
data transmissions referring to the same MSC definition.

The MSC ref has ambiguous gates since they have implicit names, but this is all right as long as ref'is
not used as MSC reference in another diagram.

msc ref
Initiator Medium Responder

IDATreq(d) IDATind(d)
—p (data_transmission J—}

IDATreq(d) IDATind(d)
—» (data_transmission)—>

Figure 55/7..120 — MSC including references to other MSCs

msc data_transmission
Initiator Medium Responder

IDATreq(d) MDATreq(DT,data,num)y | MDATind(DT,data,num)m | IDATind(d) >

T

< MDATind(AK,num) < MDATreq(AK,num)

Figure 56/Z.120 — An MSC that is referenced

msc ref}

inst Initiator;

inst Medium,;

inst Responder;

gate out L1 to reference data_transl;
gate in L2 from reference data_transl;
gate out L3 to reference data_trans2;
gate in L4 from reference data_trans2;

Initiator: instance;
Medium: instance;
Responder: instance;
all: reference data_transl:data_transmission;

gate in IDATreq, L1 from env;
gate out IDATind, L2 to env

118 ITU-T Z.120 (11/1999)

reference data_trans2:data_transmission;

gate in IDATreq, L3 from env
gate out IDATind, L4 to env;

Initiator: endinstance;
Medium: endinstance;
Responder: endinstance;

endmsc;

msc data_transmission;

inst Initiator;

inst Medium;

inst Responder;

gate out IDATreq(d) to Initiator;
gate in IDATind(d) from Responder;

Initiator: instance;

Medium: instance;

Responder: instance;

Initiator: in IDATreq(d) from env;
out MDATreq(DT, data, num) to Medium;
starttimer T;

Medium: in MDATreq(DT, data, num) from Initiator;
out MDATind(DT, data, num) to Responder;

Responder: in MDATind(DT, data, num) from Medium;
out IDATind(d) to env;
out MDATreq(AK, num) to Medium;

Medium: in MDATreq(AK, num) from Responder;
out MDATind(AK, num) to Initiator;

Initiator: in MDATind(AK, num) from Medium,;
stoptimer T;

Initiator: endinstance;

Medium endinstance;

Responder: endinstance;

endmsc;

16.2 MSC reference with gate

This example shows an MSC reference connected with the exterior by a gate. The referenced MSCs
'message lost' and 'time_out' are provided in example Figure 61.

msc flop
User Ini

I

Initiator

1

Responder

loop I

) ICONind
ICONreq .‘ message_lostalt time out)L»

IDISind

]

—

Figure 57/Z.120 — Referring an MSC with message gates

msc flop;

inst User_Ini;

inst Initiator;

inst Responder;

gate in ICONind from failed;

User_Ini: instance;
Initiator: instance;

ITU-T Z.120 (11/1999)

119

Responder: instance;

all: loop begin;
User_Ini: out ICONreq to reference failed,;
Initiator,
Responder: reference failed: message lost alt time out;

gate in ICONreq from User Ini;
gate out ICONind to env;

Initiator: out IDISind to User_Ini;
User_Ini: in IDISind from Initiator;
loop end;
User_Ini: endinstance;
Initiator: endinstance;
Responder: endinstance;

endmsc;

17 High-Level MSC (HMSC)
17.1 High-Level MSC with free loop

MSC 'setup_attach' in this example shows the modelling of the connection setup by means of a free
loop.

msc setup_attach msc setup_attach

| |
| |
<when disconnected > <when disconnected >

O—

l failure | ' connection' failure connection

connected connected

Figure 58/Z.120 — HMSC setup_attach (two different graphical variants)

msc setup_attach;
expr L1;
L1: condition when disconnected seq (L2);
L2 : connect seq (L3 alt L4);
L3: (failure); seq (L1);
L4: (connection); seq (L5);
L5: condition connected seq (L6);
L6: end;
endmsc;

120 ITU-T Z.120 (11/1999)

17.2 High-Level MSC with loop

This example shows the modelling of the connection setup by means of a loop attached to the MSC
reference ‘failure’.

msc setup_loopl V msc setup_loop2 V

<when disconnected > < when disconnected >

failure (loop <0,inf> failur%

1 connection ' 1 connection '

< connected > < connected >

A A

Figure 59/Z.120 — setup_loop in two different variants

msc setup_loopl;
expr L1;
L1: condition when disconnected seq (L2 alt L3);
L2: (failure) seq (L2 alt L3);
L3: (connection) seq (L4);
L4: condition connected seq (L5);
L5: end;
endmsc;

msc setup_loop2;
expr L1;
L1: condition when disconnected seq (L2);
L2: (loop <0,inf> failure) seq (L3);
L3: (connection) seq (L4);
L4: condition connected seq (L5);
L5: end;
endmsc;

17.3 High-Level MSC with alternative composition

MSC ‘alternative’ in this example shows an alternative construct with correct parenthesising where
the branching has a corresponding join construct.

ITU-T Z.120 (11/1999) 121

msc alternative

<when diséonnected >

(message_lost)

(time out)

disconnection

Figure 60/Z.120 — HMSC with alternate expression

msc alternative;
expr L1;

L1: condition disconnected seq (L2 alt L3);

L2: (message lost); seq (L4);

L3: (time_out); seq (L4);

L4: (disconnection); seq (L1);
endmsc;

msc message _lost
Initiator Responder

1

ICONreq

—>
T§§ ICON Responder
—-9
_>

msc time_out
Initiator Responder
ICONrqu
T .
§§ ICON > ICON1n$
I I

msc disconnection

Initiator

I‘IDISind

Figure 61/Z.120 — Simple MSCs referenced from the HMSC in Figure 60

msc message_lost;

inst Initiator;

inst Responder;

gate out ICONreq to Initiator;

Initiator: instance;
in ICONreq from env;
starttimer T;
out ICON to lost Responder;
timeout T;

endinstance;

Responder: instance;
in ICON from Initiator;

122 ITU-T Z.120 (11/1999)

endinstance;
endmsc;

msc time_out;

inst Initiator;

inst Responder;

gate out ICONreq to Initiator;
gate in ICONind from Responder;

Initiator: instance;
in ICONreq from env;
starttimer T;
out ICON to Responder;
timeout T;
endinstance;
Responder: instance;
in ICON from Initiator;
out ICONind to env;
endinstance;
endmsc;

msc disconnection;
inst Initiator;
gate in IDISind from Initiator;

Initiator: instance;
out IDISind to env;
endinstance;
endmsc;

17.4 High-Level MSC with parallel composition

In this example the connection request from the ‘Initiator’ is parallelly merged with the
disconnection request from the ‘Responder’ by means of the parallel HMSC expression.

msc par HMSC

Figure 62/7.120 — HMSC with parallel expression

msc par HMSC;
expr L1;
L1: exprL2;
L2: (CR); seq (L3);
L3: end;
endexpr
par
expr L4;
L4: (DR); seq (L5);
L5: end;
endexpr
seq (L6);

ITU-T Z.120 (11/1999) 123

L6: end;

endmsc;
msc CR msc DR
Station_Ini Station Res Station_Ini Station Res
| | | | |
ICONreq &—MDAT(DR) | IDISreq
»' MDAT(CR) > ICONind - IDISind -
; I I
Figure 63/Z.120 — The MSCs referenced from the HMSC in Figure 62
msc CR;

inst Station_Ini;

inst Station_Res;

gate out ICONreq to Station_Ini;
gate in ICONind from Station Res;

Station_Ini: instance;
in ICONreq from env;
out MDAT(CR) to Station_Res;
endinstance;

Station_Res: instance;
in MDAT(CR) from Station_Ini;
out ICONind to env;
endinstance;

endmsc;

msc DR;

inst Station_Ini;

inst Station_Res;

gate out IDISreq to Station Res;
gate in IDISind from Station_Ini;

Station_Res: instance;
in IDISreq from env;
out MDAT(DR) to Station_Ini;
endinstance;

Station_Ini: instance;
in MDAT(DR) from Station_Res;
out IDISind to env;
endinstance;

endmsc;

124 ITU-T Z.120 (11/1999)

ANNEX A

INDEX

The entries are the <keyword>s and the non-terminals from Concrete textual grammar and Concrete
graphical grammar-.

<abs measurement>, 61, 63 <call out>, 26, 30
<abs time area>, 62, 63 <character string>, 2, 6, 7, 12, 44, 47
<abs time expr>, 63 <close par>, 10, 11, 47
<abs time mark>, 7, 60, 61, 62, 63 <coevent area>, 64
<abs time symbol>, 22, 24, 27, 28, 42, 43, 44, 45, 63, <coevent layer>, 64

67,71, 83 <comment area>, 12
<action area>, 19, 45, 64 <comment symbol>, 12
<action statement>, 44, 45 <comment>, 12
<action symbol>, 38, 45, 63 <composite special>, 6, 8
<action>, 18, 21, 44 <concurrent area>, 19, 64
<actual create in gate area>, 36, 37, 45 <condition area>, 19, 41, 83
<actual create in gate>, 32, 71 <condition identification>, 40, 82
<actual create out gate area>, 36, 37, 45 <condition name list>, 40
<actual create out gate>, 32, 71 <condition symbol>, 41, 83
<actual data parameter list>, 52 <condition text>, 40, 41, 83
<actual data parameters>, 52, 70 <condition>, 18, 40, 41
<actual gate area>, 36, 71 <connection point symbol>, 83
<actual in call gate area>, 36 <connector layer>, 6, 19
<actual in call gate>, 33, 71 <cont int symbol>, 62, 63
<actual in gate area>, 25, 27, 28, 36 <cont interval>, 62
<actual in gate>, 32, 71 <containing area>, 15
<actual in reply gate area>, 36, 37 <containing-clause>, 14, 15, 17, 18, 19
<actual in reply gate>, 33, 71 <coregion symbol>, 64, 65
<actual instance parameter>, 71 <coregion symboll>, 64, 65
<actual instance parameters>, 71 <coregion symbol2>, 64, 65
<actual instance parm list>, 71 <create area>, 19, 38, 45, 64
<actual message list>, 71 <create gate identification>, 32, 33, 36, 37
<actual message parameters™>, 71 <create gate>, 17
<actual order in gate area>, 36, 37, 38 <create source>, 33
<actual order in gate>, 18, 32, 71 <create target>, 32
<actual order out gate area>, 36, 37, 38 <create>, 18, 30, 33, 45
<actual order out gate>, 32, 71 <createline symbol>, 22, 34, 36, 37, 45, 46, 63
<actual out call gate area>, 36 <data definition>, 14, 51
<actual out call gate>, 33, 71 <data parameter decl>, 17, 52
<actual out gate area>, 25, 27, 28, 36 <data statement list>, 44, 57
<actual out gate>, 32, 71 <data statement>, 57
<actual out reply gate area>, 36, 37 <decimal digit>, 6, 8
<actual out reply gate>, 33, 71 <decomposition>, 15, 21, 22, 74
<actual parameters>, 70, 72 <def create in gate area>, 35, 36, 45
<actual timer list>, 71 <def create in gate>, 17, 32, 33
<actual timer parameters>, 71 <def create out gate area>, 35, 36, 45
<alphanumeric>, 6, 7, 47 <def create out gate>, 17, 32, 33
<alt area>, 67 <def gate area>, 19, 35
<alt expr>, 66 <def'in call gate area>, 35
<alt op area>, 82, 83, 84 <def'in call gate>, 17, 33
<apostrophe>, 7, 8, 47 <def in gate area>, 25, 27, 28, 35
<binding>, 54, 56, 57 <def in gate>, 17, 24, 32
<bounded time>, 62 <def in reply gate area>, 35
<call in area>, 27, 28, 29, 30 <def in reply gate>, 17, 33
<call in symbol>, 29, 63 <def order in gate area>, 35, 36, 38
<call in>, 26, 27, 30 <def order in gate>, 17, 32
<call out area>, 27, 28, 29 <def order out gate area>, 35, 36, 38
<call out symbol>, 29, 63 <def order out gate>, 17, 18, 32

ITU-T Z.120 (11/1999) 125

<def out call gate area>, 35

<def out call gate>, 17, 33

<def out gate area>, 25, 27, 28, 35

<def out gate>, 17, 24, 32

<def out reply gate area>, 35

<def out reply gate>, 17, 33

<define statement>, 57

<defining msc reference area>, 15

<defining msc reference>, 14

<defining part area>, 15

<delim>, 10, 47

<document head>, 14, 15, 16, 51, 55

<duration>, 42, 43, 51

<durationlimit>, 42

<dynamic decl list>, 15, 51

<end coregion>, 18, 64, 65

<end method>, 18, 27, 30

<end suspension>, 18, 27, 30

<end>, 2, 12, 14, 15, 16, 17, 18, 21, 27, 40, 46, 47, 50,
51, 64, 66, 67,70, 71, 72, 82

<equal par delim>, 47

<equal par>, 10

<escape decl>, 47

<escapechar>, 10, 47

<event area>, 19, 22, 26, 29, 38

<event definition>, 17, 21

<event layer>, 6, 19, 29, 68

<exc area>, 67

<exc expr>, 66

<exc inline expression symbol>, 67, 68, 69

<expression>, 24, 26, 40, 42, 44, 54, 56, 60, 63, 67, 82

<extra-global>, 66

<found message area>, 2, 25

<found message symbol>, 25, 28, 34, 35, 36

<found method call area>, 28, 30

<found reply area>, 28

<found reply symbol>, 28, 34, 35, 37

<frame symbol>, 15, 19, 63, 83

<full stop>, 6, 7, 8, 47

<gate def layer>, 6, 19

<gate identification>, 34, 35, 36, 37

<general name area>, 12, 19, 67, 68

<general name symbol>, 12

<general order area>, 24, 25, 28, 29, 36, 37, 38, 42, 45

<general order symbol>, 35, 38

<general order symboll>, 38

<general order symbol2>, 38

<hmsc condition area>, 83

<hmsc diagram>, 19

<hmsc end area>, 82

<hmsc end symbol>, 82, 83, 84

<hmsc line symbol>, 82, 83, 84

<hmsc line symbol1>, 82, 83

<hmsc line symbol2>, 82, 83

<hmsc reference area>, 83

<hmsc start symbol>, 82, 83, 84

<hmsc>, 16, 18, 82

<identifier>, 2, 15, 17, 57

<incomplete call in>, 27, 30

<incomplete call out>, 27

<incomplete message area>, 2, 19, 25, 38, 64

<incomplete message event>, 18, 23

<incomplete message input>, 23, 30

126 ITU-T Z.120 (11/1999)

<incomplete message output>, 23

<incomplete method call area>, 19, 28, 38

<incomplete method call event>, 18, 27

<incomplete reply area>, 19, 28, 38

<incomplete reply in>, 27

<incomplete reply out>, 27, 30

<inf natural>, 67

<informal action>, 44

<inheritance>, 14, 15

<inline create in gate area>, 34

<inline create in gate>, 33, 67

<inline create out gate area>, 34

<inline create out gate>, 33, 67

<inline expr identification>, 24, 66, 67

<inline expr>, 5, 18, 66

<inline expression area>, 12, 19, 67, 68

<inline expression symbol>, 34, 35, 63, 67, 68, 69

<inline gate area>, 25, 27, 28, 34, 67, 68

<inline gate interface>, 66, 67, 69

<inline gate>, 67

<inline in call gate area>, 34

<inline in call gate>, 33, 67

<inline in gate area>, 34

<inline in gate>, 32, 67

<inline in reply gate area>, 34

<inline in reply gate>, 33, 67

<inline order gate area>, 34, 38, 67, 68

<inline order in gate area>, 34, 35

<inline order in gate>, 32, 33, 67

<inline order out gate area>, 34

<inline order out gate>, 18, 32, 33, 67

<inline out call gate area>, 34

<inline out call gate>, 33, 67

<inline out gate area>, 34

<inline out gate>, 32, 67

<inline out reply gate area>, 34

<inline out reply gate>, 33, 67

<input address>, 23, 24, 26, 27, 32

<input dest>, 32, 33

<instance area>, 19, 21, 41

<instance axis symbol>, 5, 22, 24, 27, 28, 29, 41, 42,
43,44, 45, 64, 65, 67,72

<instance axis symboll>, 22, 26

<instance axis symbol2>, 22,26, 38, 65

<instance body area>, 21, 22

<instance end statement>, 18, 21

<instance end symbol>, 22

<instance event area>, 12, 19, 25

<instance event list>, 17, 18, 30, 66

<instance event>, 18, 21, 30

<instance fragment area>, 21

<instance head area>, 14, 21, 22, 45

<instance head statement>, 18, 21

<instance head symbol>, 22, 45, 63

<instance heading>, 22

<instance item>, 15

<instance kind>, 14, 15, 17, 21, 22, 36

<instance layer>, 6, 19

<instance name list>, 17, 18, 21

<instance parameter decl>, 2, 17

<instance parameter name>, 17

<instance parm decl list>, 2, 17

<int symbol 1>, 62, 63

<int symbol 2>, 62, 63

<int symbol>, 22, 24, 27, 28, 42, 43, 44, 45, 62, 63, 67,
71,83

<interval area 2>, 62

<interval area>, 62

<interval label>, 62

<keyword>, 2, 6, 8, 119

<kind denominator>, 17

<label name list>, 82

<left angular bracket>, 7, 67

<left bind symbol>, 54

<left binding>, 54

<left closed>, 7, 62

<left curly bracket>, 7

<left delim>, 47

<left open>, 7, 62

<left square bracket>, 6, 7, 42

<letter>, 6, 8

<lexical unit>, 6, 10

<loop area>, 67

<loop boundary>, 66, 67, 70

<loop expr>, 66

<lost message area>, 2, 25

<lost message symbol>, 25, 28, 34, 35, 36

<lost method call area>, 28

<lost reply area>, 28, 30

<lost reply symbol>, 28, 34, 35, 37

<measurement>, 61, 62

<message area>, 2, 19, 25, 38

<message decl clause>, 14, 15

<message decl list>, 17, 50

<message decl>, 15, 50

<message end area>, 5, 25

<message event area>, 19, 24, 38, 64

<message event>, 18, 23

<message in area>, 5, 24, 25

<message in symbol>, 5, 24, 25, 63

<message input>, 23, 24, 26, 30, 40

<message name list>, 50

<message out area>, 24, 25

<message out symbol>, 24, 63

<message output>, 23, 24, 40

<message parameter decl>, 17

<message parm decl list>, 17

<message sequence chart>, 2, 16

<message start area>, 25

<message symbol>, 5, 24, 25, 27, 29, 34, 35, 36

<method area>, 19, 27, 29, 30

<method call area>, 19, 27, 28

<method call end area>, 27, 28

<method call event area>, 19, 28, 38

<method call event>, 18, 26

<method call gate>, 17

<method call start area>, 27, 28

<method end area>, 30

<method event area>, 29

<method event layer>, 29

<method identification>, 27, 28

<method invokation area>, 29, 30

<method start area>, 30

<method symbol>, 26, 27, 28, 29

<msc body area>, 6, 19

<msc body>, 17, 66

<msc diagram>, 2, 19

<msc document area>, 15

<msc expression>, 82

<msc gate def>, 17

<msc gate interface>, 17, 21, 72, 74

<msc head>, 16, 17

<msc heading>, 14, 16, 19

<msc inst interface>, 17, 21

<msc parameter decl>, 17, 19

<msc ref expr>, 70, 71, 82, 83

<msc ref ident expr>, 70

<msc ref par expr>, 70

<msc ref seq expr>, 70

<msc reference area>, 19, 71, 72

<msc reference identification>, 24, 70, 71

<msc reference symbol>, 15, 36, 37, 63, 71, 72, 73, 83,
84

<msc reference>, 18, 70

<msc statement>, 17

<msc symbol>, 19, 35, 67, 68

<msc>, 16, 17, 18

<mscexpr area>, 19, 82, 83

<msg gate>, 17

<msg identification>, 23, 24, 25, 26, 27, 28, 32, 33

<multi instance event list>, 17, 18, 40

<multi instance event>, 18, 21

<name>, 2, 8, 10, 12, 14, 15, 17, 18, 19, 21, 22, 23, 24,
25, 28, 32, 33, 36, 37, 40, 42, 43, 44, 45, 50, 51, 62,
67,70,71, 74, 82

<national>, 6, 9

<nestable par pair>, 47

<nestable par>, 10

<node area>, 83, 84

<node expression area>, 82, 83, 84

<node expression>, 82

<node>, 82

<non-nestable par pair>, 47

<non-nestable par>, 10, 11

<non-orderable event>, 18

<non-parenthesis>, 10

<non-par-non-escape>, 10, 11

<note>, 6, 8, 10

<open par>, 10, 11, 47

<operand area>, 12, 67, 68

<opt area>, 67

<opt expr>, 66

<order dest list>, 18, 32, 33

<order dest>, 18, 32, 33

<order gate>, 17

<orderable event>, 18, 65

<ordered event area>, 38

<other character>, 7, 8, 47

<output address>, 23, 24, 26, 27, 32

<output dest>, 32, 33

<overline>, 7

<par area>, 67

<par decl list>, 47

<par expr area>, 83

<par expr>, 66, 70

<par expression>, 82

<par frame symbol>, 63, 83

<parameter defn>, 56

<parameter list>, 23, 24, 25, 42, 43, 44, 45, 52, 56

ITU-T Z.120 (11/1999) 127

<parent>, 70, 71, 73 <stoptimer>, 42

<parenthesis declaration>, 14, 47 <string>, 10, 11, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55
<parenthesis>, 10 <substructure reference>, 74
<pattern>, 24, 26, 42, 44, 54, 56, 61 <suspension area>, 19, 29
<pure data string>, 10 <suspension event layer>, 29
<qualifier left>, 8, 15 <suspension symbol>, 26, 27, 28, 29, 30
<qualifier right>, 8, 15 <text area>, 6, 12, 19
<qualifier>, 2, 15 <text definition>, 12, 17, 82
<ref gate>, 71 <text layer>, 6, 19, 82
<reference gate interface>, 70, 71, 72, 73 <text symbol>, 12
<reference identification>, 18, 23, 24, 32, 33 <text>, 7,8, 11,12, 15

<rel measurement>, 61 <textual defining part>, 14
<rel time mark>, 7, 61 <textual msc document>, 14, 18
<reply area>, 19, 27 <textual utility part>, 14
<reply end area>, 27, 28 <time dest list>, 18, 66, 70
<reply event area>, 19, 29, 38 <time dest>, 18

<reply gate>, 17, 67 <time interval area>, 62, 67
<reply in area>, 28, 29 <time interval>, 18, 25, 27, 62, 66, 67, 70, 71, 82, 83
<reply in symbol>, 29 <time offset>, 17, 19, 60
<reply in>, 26, 27, 30 <time point>, 60, 62

<reply out area>, 28, 29, 30 <timeout area>, 42, 43, 44
<reply out symbol>, 29 <timeout areal>, 43

<reply out>, 26, 27, 30 <timeout area2>, 43, 44
<reply start area>, 27, 28 <timeout symbol>, 43, 44, 63
<reply symbol>, 27, 28, 34, 35, 37, 63 <timeout symbol1>, 44
<restart symbol>, 43, 44, 63 <timeout symbol2>, 44
<right angular bracket>, 7, 67 <timeout symbol3>, 43, 44
<right bind symbol>, 54 <timeout>, 42

<right binding>, 54 <timer area>, 19, 38, 42, 64
<right closed>, 7, 62 <timer decl clause>, 14, 15
<right curly bracket>, 7 <timer decl list>, 17, 50
<right delim>, 47 <timer decl>, 15, 50, 51
<right open>, 7, 62 <timer name list>, 51

<right square bracket>, 7, 42 <timer parameter decl>, 17
<sdl reference>, 14, 15 <timer parm decl list>, 17
<separator area>, 15, 67, 68 <timer start area>, 42, 44
<separator symbol>, 63, 68 <timer start areal>, 42
<shared alt expr>, 66 <timer start area2>, 42, 43
<shared condition>, 18, 21, 40 <timer start symbol>, 42, 43, 44, 63
<shared event area>, 19 <timer statement>, 18, 42
<shared exc expr>, 66 <timer stop area>, 42, 43
<shared inline expr>, 18, 66 <timer stop areal>, 43
<shared instance list>, 40 <timer stop area2>, 43
<shared loop expr>, 66 <timer stop symbol>, 43, 63
<shared msc reference>, 18, 70 <timer stop symboll>, 43
<shared opt expr>, 66 <timer stop symbol2>, 43
<shared par expr>, 66 <type ref list>, 50, 51
<shared>, 40, 41, 66, 70 <undefine statement>, 57
<simple msc diagram>, 19 <underline>, 7, 8, 10, 47
<singular time>, 62 <unmatched string>, 10
<space>, 7, 8,9, 10 <upward arrow head>, 7
<special>, 6, 7, 8, 47 <using clause>, 14, 15

<start area>, 82 <utility part area>, 15

<start coregion>, 18, 64, 65 <variable decl item>, 51
<start method>, 18, 27, 30 <variable decl list>, 51, 52
<start suspension>, 18, 27, 30 <variable list>, 51

<start symboll>, 43 <vertical line>, 7

<start symbol2>, 43 <virtuality>, 14, 15, 16
<start>, 82 <void symbol>, 5, 24, 25, 29, 34, 35, 36, 37
<starttimer>, 42 <wildcard decl>, 51

<stop symbol>, 22, 46, 63 <wildcard>, 54

<stop>, 6, 18, 46 <word>, 6

128 ITU-T Z.120 (11/1999)

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors
Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits
Series O Specifications of measuring equipment
Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission
Series S Telegraph services terminal equipment
Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

Geneva, 2001

	ITU-T Rec. Z.120 (11/1999) Languages and general software aspects for telecommunication systems
	Summary
	Source
	CONTENTS
	MESSAGE SEQUENCE CHART (MSC)
	1 Introduction
	1.1 Objectives of MSC
	1.2 Organization of the Recommendation
	1.3 Meta-language for textual grammar
	1.4 Meta-language for graphical grammar

	2 General Rules
	2.1 Lexical Rules
	2.2 Visibility and Naming Rules
	2.3 Comment
	2.4 Drawing Rules
	2.5 Paging of MSCs

	3 Message Sequence Chart document
	4 Basic MSC
	4.1 Message Sequence Chart
	4.2 Instance
	4.3 Message
	4.4 Control Flow
	4.5 Environment and Gates
	4.6 General ordering
	4.7 Condition
	4.8 Timer
	4.9 Action
	4.10 Instance creation
	4.11 Instance stop

	5 Data concepts
	5.1 Introduction
	5.2 Syntax interface to external data languages
	5.3 Semantic interface to external data languages
	5.4 Declaring data
	5.5 Static Data
	5.6 Dynamic Data
	5.7 Bindings
	5.8 Data in message and timer parameters
	5.9 Data in instance creation parameters
	5.10 Data in action boxes
	5.11 Assumed Data Types

	6 Time concepts
	6.1 Timed Semantics
	6.2 Relative Timing
	6.3 Absolute Timing
	6.4 Time Domain
	6.5 Static and Dynamic Time Variables
	6.6 Time Offset
	6.7 Time Points, Measurements, and Intervals
	6.8 Time Points
	6.9 Measurements
	6.10 Time Interval

	7 Structural concepts
	7.1 Coregion
	7.2 Inline expression
	7.3 MSC reference
	7.4 Instance decomposition
	7.5 High-level MSC (HMSC)

	8 Message Sequence Chart Document
	8.1 MSC Documents
	8.2 Instance decomposition
	8.3 Instance Inheritance

	9 Simple Message Sequence Charts
	9.1 Basic MSC
	9.2 Message overtaking
	9.3 MSC basic concepts
	9.4 MSC-composition through labelled conditions
	9.5 MSC with time supervision
	9.6 MSC with message loss
	9.7 Local conditions

	10 Data
	11 Time
	12 Creating and terminating processes
	13 Coregion
	14 General ordering
	14.1 Generalized ordering within a coregion
	14.2 Generalized ordering between different instances

	15 Inline Expressions
	15.1 Inline Expression with alternative composition
	15.2 Inline Expression with gates
	15.3 Inline Expression with parallel composition

	16 MSC references
	16.1 MSC reference
	16.2 MSC reference with gate

	17 High-Level MSC (HMSC)
	17.1 High-Level MSC with free loop
	17.2 High-Level MSC with loop
	17.3 High-Level MSC with alternative composition
	17.4 High-Level MSC with parallel composition

	ANNEX A - INDEX

