

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.111
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2008)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Application of
formal description techniques

 Notations and guidelines for the definition of
ITU-T languages

Recommendation ITU-T Z.111

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.111 (11/2008) i

Recommendation ITU-T Z.111

Notations and guidelines for the definition of ITU-T languages

Summary

Recommendation ITU-T Z.111 provides meta-grammars for ITU-T Recommendations that define ITU-T languages in
the X.680 series and the Z series of ITU-T Recommendations on languages for specification, implementation, modelling
and testing. This allows the description of these meta-grammars that define the abstract or concrete grammar (syntax,
constraints and semantics) of languages without having to repeat the meta-grammar (such as lexical naming rules, or the
description of Backus-Naur Form syntax) as a preamble or annex to each language definition.

This Recommendation draws common elements from the meta-grammars of various languages, covering issues such as
common lexical rules, the use of a universal character set, and syntax and constraint description for languages at both the
abstract and concrete level.

Source

Recommendation ITU-T Z.111 was approved on 13 November 2008 by ITU-T Study Group 17 (2009-2012) under
Recommendation ITU-T A.8 procedure.

ii Rec. ITU-T Z.111 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.111 (11/2008) iii

CONTENTS

 Page
1 Scope ... 1

1.1 Objective... 1
1.2 Application .. 1

2 References .. 1
3 Definitions .. 1
4 Abbreviations and acronyms... 2
5 Conventions .. 2

5.1 Grammars.. 2
5.2 Basic definitions ... 2
5.3 Presentation style .. 2
5.4 Metalanguages.. 4

Appendix I – Mapping from the metamodel presentation to the textual presentation: High-level description 16
Bibliography ... 17

iv Rec. ITU-T Z.111 (11/2008)

Introduction

Scope-objective: Notations and guidelines for the definition of formal languages are provided.

Coverage: The main features of this Recommendation are notations for defining the abstract and concrete syntaxes of
languages, and a common structure for defining languages.

Applications: This Recommendation should be applied to new and possibly to revised formal language
Recommendations.
Status/Stability: The notation and guidelines given are stable and have been used on some of the existing language
Recommendations, such as Recommendations ITU-T Z.100 and Z.151. There is scope for further guidelines, extensions
to the notations given, algorithms for conversions between the textual and metamodel presentations of abstract
grammars, mappings to XML-based concrete syntaxes for interchange formats, and the possibility of further formal
notations, such as a formal notation for specifying constraints.

Associated work: This Recommendation is generally associated with the study of formal languages for
telecommunications applications in ITU-T, in particular the languages defined by the X.680 series, Z.100 series, Z.120
series, Z.130 series, Z.150 series and Z.160/Z.170 series of ITU-T Recommendations.

This Recommendation is also related to the unified modelling language (UML) and meta object facility (MOF) work of
the object management group (OMG).

Background: Before the introduction of this Recommendation, the language Recommendations defined by ITU-T used
different ways of describing the syntax and semantics of languages. This hinders the understanding, verifiability, and
maintainability of these languages, and prevents their simple harmonization. Some language Recommendations have
used grammars in Backus-Naur Form (BNF) to define concrete syntaxes and, in some cases, abstract syntaxes. More
recent language definitions have used MOF metamodels to capture several aspects of languages. In both approaches,
there has been a separation of abstract grammar from the concrete notation with a defined relationship between them.
Each approach has its benefits and drawbacks. MOF metamodels are appealing due to their graphical nature (where
associations and inherited concepts are explicit), whereas BNF grammars are easily analyzable by tools and there is
considerable experience in their use.

This Recommendation gives guidelines for the definition of MOF-based metamodels describing languages in a way that
is compatible with the approaches based on BNF grammars.

Traditional BNF-based grammars usually lack some of the capabilities of the MOF approach such as inheritance. MOF
and UML-based meta-metamodels contain many features that make metamodels unnecessarily complex, difficult to
understand semantically, and difficult to map to BNF grammars. This Recommendation focuses on a subset of
modelling features that is expressive enough to describe language metamodels and that is isomorphic between the two
approaches.

 Rec. ITU-T Z.111 (11/2008) 1

Recommendation ITU-T Z.111

Notations and guidelines for the definition of ITU-T languages

1 Scope
This Recommendation provides notation and guidelines for the definition of formal languages defined in new and
optionally in revised language Recommendations that define formal languages or description techniques (such as those
listed in 3.1.2 of [b-ITU-T Z.110], Criteria for use of formal description techniques by ITU-T).

1.1 Objective

The objective is to provide a basis for a common structure and meta-grammar notations to be used in formal language
Recommendations, so that it is not necessary for each language Recommendation to describe its structure and the meta-
grammars used: instead each language Recommendation can contain a reference to this Recommendation. By using a
common structure and meta-grammar notations, it is also easier to integrate the different formal languages, therefore
making it easier to use the languages together both with and without the support of tools. The use of a common
structure and meta-grammar notations makes it easier to build tools that combine the ITU-T languages with each other
and other notations. The use of a common structure and meta-grammar notations in different formal language
Recommendations also makes it easier to understand several formal language Recommendations, because the structure
and meta-grammar only has to be learnt once.

1.2 Application

When a new Recommendation is being drafted for a formal language, the application of this Recommendation should
be applied. If it is decided not to apply this Recommendation, the reasons should be stated in the formal language
Recommendation.

When a Recommendation for an existing formal language is being revised, the application of this Recommendation
should be considered taking into account costs and benefits. If this Recommendation is not applied or is applied
partially, the revised formal language Recommendation should at least contain a statement explaining that the structure
and meta-language notations of the formal language Recommendation predated the approval of this Recommendation.

The structure and meta-grammar notations given in this Recommendation are also likely to be useful for the definition
of other formal languages, not just formal languages defined in ITU-T Recommendations. If it is later decided to
consider making a Recommendation for such a formal language, the prior application of this Recommendation will be a
benefit.

2 References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged
to investigate the possibility of applying the most recent edition of the Recommendations and other references listed
below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T T.55] Recommendation ITU-T T.55 (2008), Use of the universal multiple-octet coded character set (UCS).
<http://www.itu.int/rec/T-REC-T.55>

[OMG UML] Unified Modeling Language: Superstructure, version 2.1.2, formal/2007-11-02 of the Object
Management Group (OMG) <http://www.omg.org/cgi-bin/doc?formal/07-011-02>.

3 Definitions
No specific definition is provided in this Recommendation.

http://www.itu.int/rec/T-REC-T.55
http://www.omg.org/cgi-bin/doc?formal/07-011-02

2 Rec. ITU-T Z.111 (11/2008)

4 Abbreviations and acronyms
This Recommendation uses the following abbreviations:

BNF Backus-Naur Form

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

SDL Specification and Description Language

UML Unified Modeling Language

XML eXtensible Markup Language

5 Conventions
If a language Recommendation conforms to this Recommendation, it conforms to the conventions defined in this clause
and therefore these do not need to be repeated in the language Recommendation.

5.1 Grammars

A description only conforms with a Recommendation if it conforms to both the Concrete grammar and Abstract
grammar of the corresponding language definition: that is, the description must be both recognizable as the language
defined in the Recommendation and have the same meaning as defined by the Semantics in the Recommendation. If
further concrete grammars are defined (in additional clauses, annexes or Recommendations), each of the concrete
grammars has a definition of its own syntax and of its relationship to the abstract grammar (that is, how to transform
into the abstract syntax). Using this approach, there is only one definition of the semantics of a language: the semantics
of each of the concrete grammars is identified via its relationship to the abstract grammar. This approach also ensures
that any further grammars are equivalent.

For some constructs of the concrete grammar, there may be no directly equivalent abstract syntax. In these cases, a
Model is given for the transformation from concrete syntax into the concrete syntax of other constructs that (directly or
indirectly via further models) have an abstract syntax. Items that have no mapping to the abstract syntax (such as
comments) do not have any formal meaning.

5.2 Basic definitions

Some general concepts and conventions are used throughout a language Recommendation; their definitions are given in
the following subclauses.

5.3 Presentation style

The following presentation style is used to separate the different language issues under each topic.

5.3.1 Division of text

A language Recommendation is organized by language features described by an optional introduction, which by
convention shall be informative rather than normative (see clause 5.3.2), followed by titled enumeration items for:
a) Abstract grammar – Described by abstract syntax (either a textual grammar or a graphical metamodel) and

static conditions (that is, static constraints) for a model in the language to be well-formed for an abstract
model where artifacts of the concrete syntax are ignored.

b) Concrete grammar – Described by the graphical syntax, static conditions and rules for the graphical syntax to
be well-formed (including drawing rules), the relationship of this syntax with the abstract syntax.

c) Semantics – Gives meaning to a construct, provides the properties it has, the way in which it is interpreted and
any dynamic conditions that have to be fulfilled for the construct to behave well in the sense of the language
defined.

d) Model – Gives the mapping for notations that do not have a direct abstract syntax and modelled in terms of
other concrete syntax constructs. A notation that is modelled by other constructs is known as a shorthand, and
is considered to be derived syntax for the transformed form.

 Rec. ITU-T Z.111 (11/2008) 3

To avoid misunderstandings, a language Recommendation that follows this Recommendation and uses informative
introductions shall include a clause that states:
 Where a section has introductory text followed by a titled enumeration items (such as Abstract grammar, Concrete

grammar, Semantics, Model) the introductory text before the first titled enumeration item in a clause is for
information only, and is treated as if written as a NOTE (that is, informative not normative), except if it is
explicitly stated as normative.

5.3.2 Titled enumeration items

Where a topic in the language definition has an introduction followed by a titled enumeration item, the introduction is
considered to be an informal part of the Recommendation presented only to aid understanding and not to make that
Recommendation complete.

If there is no text for a titled enumeration item (Abstract grammar, Concrete grammar, Semantics, Model), the whole
item is omitted.

It is permitted for a Recommendation to define additional titled enumeration items, such as an Example section.

The remainder of this clause describes the other special formalisms used in each titled enumeration item and the titles
used. It can also be considered as an example of the typographical layout of first-level titled enumeration items defined
above where this text is part of an introductory section.

a) Abstract grammar

The notations for defining the abstract grammar are defined in clause 5.4.1. In the rest of this clause, the two notations
are taken as equivalent. A rule in the textual abstract syntax (see clause 5.4.1.1) is equivalent to a model element in a
graphical metamodel (see clause 5.4.1.2). The terms 'model element' and 'graphical metamodel' can be substituted for
'rule' and 'abstract syntax' respectively.

If the titled enumeration item Abstract grammar is omitted, then there is no additional abstract syntax for the topic
being introduced, and the concrete syntax shall map onto the abstract syntax defined by another numbered text clause.

The rules in the abstract syntax may be referred to from any of the titled enumeration items by use of the rule name in
italics.

The rules in the formal notation may be accompanied by paragraphs that define conditions which shall be satisfied by a
well-formed piece (text and/or graphics) in the language being defined and which can be checked without dynamic
interpretation of that piece. The static conditions at this point refer only to the abstract syntax. The static conditions
shall be expressed in natural language, preferably supplemented by expression of the constraints in a more formal
constraint language. Where it is possible to capture a constraint in the abstract syntax rather than by a static condition,
this is preferable provided it does not make the syntax too complex. Static conditions, which are only relevant for the
concrete syntax, are defined with the concrete syntax. Together with the abstract syntax, the static conditions for the
abstract syntax define the abstract grammar of the language.

b) Concrete grammar

The concrete syntax shall be specified in the extended Backus-Naur Form of syntax description defined in clause 5.4.2,
except where a graphical metamodel has been used for the abstract grammar, in which case it is permitted to extend the
abstract metamodel to include concrete attributes. The use of natural language to define concrete syntax or definition by
examples should be avoided.

The concrete syntax is accompanied by paragraphs defining the static conditions which must be satisfied in a well-
formed definition and which can be checked without interpretation of a definition. Static conditions (if any) for the
abstract grammar also apply. Where it is possible to capture a constraint in the concrete syntax rather than by a static
condition, this is preferable provided it does not make the syntax too complex. The concrete grammar should not repeat
constraints present in the abstract grammar.

In many cases there is a simple relationship between the concrete and abstract grammar, because the concrete syntax
rule is simply represented by a single rule (or metamodel element) in the abstract grammar. When the same name is
used in the abstract grammar and concrete syntax in order to signify that they represent the same concept, the text "<x>
in the concrete syntax represents X in the abstract grammar" is implied in the language description and therefore does
not need to be stated explicitly. In this context, spaces and hyphens are treated as equivalent, case is ignored but
underlined semantic sub-categories (see clause 5.4.2) are significant, so that <integer name> represents Integer-name in
the abstract syntax.

Concrete syntax that is not a shorthand form is strict concrete syntax. The relationship from concrete syntax to abstract
syntax is defined only for the strict concrete syntax. Strict syntax is always defined in the Concrete grammar. The
syntax for a shorthand is allowed to be defined in the Model.

4 Rec. ITU-T Z.111 (11/2008)

The relationship between concrete syntax and abstract syntax is omitted if the topic being defined is a shorthand form
that is modelled by other constructs of the defined language (see Model below).

When the name of a non-terminal ends in the concrete grammar with the word "diagram" and there is a name in the
abstract grammar that differs only by ending in the word definition, then the two rules represent the same concept. For
example, <system diagram> in the concrete grammar and System-definition in the abstract grammar correspond.

When the name of a non-terminal ends in the concrete grammar with the word "area" and there is a name in the abstract
grammar that differs only by having the word area deleted, then the two rules represent the same concept. For example,
<state partition area> in the concrete grammar and State-partition in the abstract grammar correspond.

c) Semantics

Properties are relations between different concepts in the defined language. Properties are used in the rules for a model
to be well-formed.

An example (from the specification of SDL in [b-ITU-T Z.100]) of a property is the set of valid input signal identifiers
of a process. This property is used in the static condition "For each State-node, all Signal-identifiers (in the valid input
signal set) appear in either a Save-signalset or an Input-node".

Properties are static if they can be determined without interpretation of definitions in the defined language and are
dynamic if an interpretation of the same is required to determine the property.

The interpretation is described in an operational manner. Whenever there is a list in the abstract syntax, the list is
interpreted in the order given. That is, the Recommendation describes how objects of the semantic domain are created
from a definition and how these objects are interpreted within an "abstract machine". Lists are denoted in the abstract
syntax by the suffixes "*" and "+" (see clause 5.4.1).

Dynamic conditions are conditions to be satisfied during interpretation that cannot be checked without interpretation.
Dynamic conditions may lead to errors.
NOTE − Behaviour of the object of the semantic domain is produced by "interpreting" the definition. The word "interpret" is
explicitly chosen (rather than an alternative such as "executed") to include both mental interpretation by a human and the
interpretation of the definition by a computer.

d) Model

Some constructs are considered to be "derived concrete syntax" (or a shorthand notation) for other equivalent concrete
syntax constructs. For example, omitting an input for a signal is derived concrete syntax for an input for that signal
followed by a null transition back to the same state.

The concrete syntax for a shorthand notation is allowed to be placed either in the Concrete grammar or in the Model.

The properties of a shorthand notation are derived from the way it is modelled in terms of (or transformed to) the
primitive concepts. In order to ensure easy and unambiguous use of the shorthand notations, and to reduce side effects
when several shorthand notations are combined, these concepts are transformed in a specified order.

The result of the transformation of a fragment of derived concrete syntax is usually either another fragment of derived
concrete syntax, or a fragment of concrete syntax. The result of the transformation may also be empty. In the latter case,
the original is removed from the specification.

Transformations can be inter-dependent and therefore the order in which various transformations are applied determines
the validity and meaning of a definition.

5.4 Metalanguages

For the definition of properties and syntaxes of ITU-T languages, different metalanguages are used according to the
particular needs.

In the following, an introduction of the metalanguages used is given.

5.4.1 Metalanguage for the abstract grammar

The abstract grammar of the language defines the relationships between elements of the language, without being
concerned with issues such as punctuation marks that are needed to separate or terminate concrete syntax elements.
There are two notations defined for the abstract grammar: a textual abstract syntax and a graphical metamodel notation.

One notation may not cover exactly everything found in the other notation, but the intention is that concrete grammar
elements that map to the same abstract syntax elements have the same semantics.

 Rec. ITU-T Z.111 (11/2008) 5

5.4.1.1 Textual presentation

The following informally describes the textual presentation of the abstract syntax of ITU-T languages.

A definition rule in the abstract syntax can be regarded as a named composition defining a list of sub-components. The
name starts with a letter (by convention uppercase) and is followed by any number of (by convention lowercase) letters
and single hyphens ending in a (by convention lowercase) letter. When a name is used on the right-hand-side of a rule,
it is allowed to be immediately followed by suffixes as described below.

To avoid confusion with the suffix "-set", a name shall not end in "-set". To avoid confusion with Quotation, a name
should not be in all uppercase letters. The case of names is significant, so that My-item is distinct from My-Item, but the
use of two names that differ only in the case of letters should be avoided, so that tools can be used to correct errors.

By convention names are in italics, which allows the rules and component names of the abstract syntax to be more
easily recognized in the context of the other text and the name to be distinguished when used in plain text. The suffix
"-set" by convention has the word "set" in bold.

A rule starts with the name of the rule followed by either "::" or "=". The rule continues on the same line and subsequent
lines until followed by another rule or any printing character not allowed within a rule (such as a comma "," or a semi-
colon ";"), or the end of the text containing the rules (for example, the end of a file, end of a text box, a heading, or a
paragraph style not allowed for rules). Non-printing characters in rules are separators and are otherwise ignored, but by
convention names of rules are always placed at the start of a new line, and continuation lines for a rule start with a non-
printing character (usually a space or tab character). The characters that are allowed within a rule are ":" (part of "::"),
"=", "*", "+", "[", "]", "|", "{", "}", "." (as part of ".." or "…"), "-", digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and (uppercase and
lowercase) letters (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z).

The symbol "::" can be read as "is defined as" and is used to define a domain in a definition rule.

For example:
Channel-path :: Originating-gate
 Destination-gate
 Signal-identifier-set

which defines the domain for the composition named Channel-path. This consists of three sub-components, which in
turn are compositions or elementary domains (see below). It is allowed for a sub-component to contain the domain
being defined, but (to avoid an infinitely recursive definition) there shall be at least one alternative of the domain
definition that does not include such a sub-component.

It is allowed that a domain has no sub-components, and this is denoted by a "{}" as the right-hand-side of a definition
rule. It is the presence (or absence) of an instance of such a domain that is still significant, and an instance of such a
domain is distinct from an instance of any other domain even if the other domain does not have any components.

The symbol "=" can be read as "is equivalent to" and is used to define an equivalence rule where the name on the left-
hand-side is equivalent to the syntactic expression on the right-hand-side. Wherever the equivalence name defined by
the left-hand-side occurs, syntactically it can be replaced by the expression on the right-hand-side, grouped if the right-
hand-side has multiple components. The reason for using "=" is to avoid repeating a common grouping especially in the
case of alternatives, or to give a more specific name to a domain in a particular context to aid description of the
language.

The definition

Agent-identifier = Identifier

expresses that an Agent-identifier is equivalent to an Identifier and therefore cannot (syntactically in the abstract syntax)
be distinguished from other Identifier items defined in the same way such as a Signal-identifier where:

Signal-identifier = Identifier

The distinction between items defined as equivalent is not syntactic. For example, each Identifier instance has a value,
which allows one instance to be distinguished from another and whether the value is the Identifier for a signal
(Signal-identifier) or agent (Agent-identifier) in the model being defined. The name Agent-identifier is preferable
wherever the Identifier has to identify an agent. The constraint (on the Identifier to identify an agent in this case) may
be implied by general conventions or could be given by natural language and optionally by formal expression (in a
language such as OCL). An alternative to naming equivalences is to name components of a domain (as described
below).

The definition:

Agent-qualifier :: Agent-name

6 Rec. ITU-T Z.111 (11/2008)

expresses that an Agent-qualifier is a domain that has a component that is an Agent-name and Agent-qualifier is distinct
from the domain for Agent-name. For example, if:

Agent-name = Name

Interface-name = Name

then an Agent-qualifier can be distinguished syntactically from an Agent-name and other items that are in the same
domain as Agent-name such as an Interface-name.

The definition:

Nextstate-node = Dash-nextstate | Named-nextstate

expresses that a Nextstate-node is equivalent to the alternatives on the right-hand-side. Therefore syntactically,

Terminator :: Nextstate-node
 | Stop-node
 | …

has the same meaning as:

Terminator :: {Dash-nextstate | Named-nextstate }
 | Stop-node
 | …

An abstract syntax item might also be of some elementary (non-composite) domains. Predefined elementary domains
are:

a) Natural

 This is the elementary domain of non-negative integers.

 Example:

 Number-of-instances :: Nat [Nat]

 Number-of-instances denotes a composite domain containing one mandatory natural (Nat) value and one
optional natural ([Nat]) value denoting respectively the initial number and the optional maximum number of
instances.

b) Boolean
Boolean denotes the domain of the two Boolean values TRUE and FALSE.

c) Quotation

These are represented as any bold face sequence of uppercase letters and digits. There can be a single
quotation or a number of grouped quotations separated by "|", and in both cases this defines an enumerated
domain with as many values as there are quotations. For example,

 Agent-kind = SYSTEM | BLOCK | PROCESS

The quotation defines an enumerated domain with three values, represented by SYSTEM, BLOCK and
PROCESS. Usually the names used in the abstract syntax correspond to the names in the concrete syntax, in
this case the keywords SYSTEM, BLOCK and PROCESS. In this example, the name Agent-kind is made
equivalent to the enumerated domain. If the quotation group was a component of a domain with other
components (see example Visibility-name below), the enumeration domain has an implicit name only and
cannot be reused in other contexts, and another use of the same quotations defines another implicit domain.
A single quotation corresponds to a domain with just one value, and will usually appear in an option. In such
cases, it is usually preferable to replace the quotation with a Boolean.
Example:

 Channel-definition :: Channel-name
 [NODELAY]
 Channel-path-set

 A channel definition has the property that it does not delay distinguished by an optional quotation
NODELAY. This could be replaced by:

 Channel-definition :: Channel-name
 Is-delaying
 Channel-path-set
 Is-delaying = Boolean := TRUE

 Rec. ITU-T Z.111 (11/2008) 7

 Similarly if there are only two alternatives, this can usually be replaced by a Boolean. For example:

 Category-definition :: Category-name
 { ABSTRACT | CONCRETE }
 Category-details

 could be replaced by:

 Category-definition :: Category-name
 Is-concrete
 Category-details
 Is-concrete = Boolean
d) Token

Token denotes the domain of tokens. This domain can be considered to consist of a potentially infinite set of
distinct atomic objects for which no representation is required.
Example:

 Name :: Token
A name consists of an atomic object such that any Name can be distinguished from any other name.

e) Unspecified items
An unspecified item denotes domains which might have some representation, but for which the representation
is of no concern in the language Recommendation.
Example:

 Informal-text :: ...
Informal-text contains an object that does not have a formally defined content and structure and therefore is
not formally interpreted. The meaning is therefore not formally defined, and if interpretation of the model
leads to interpretation of the informal text, then the further behaviour of the system is not defined.

The following operators (constructors) of BNF (see clause 5.4.2) have the same use in the abstract syntax:
suffix "[n..m]" for a list of between n and m items, where n is a non-negative integer, m is a positive
integer >= n;
suffix "[n]" for a list of exactly n items, where n is a positive integer – equivalent to the suffix [n..n];
suffix "[n..*]" for a list of at least n items, where n is a positive integer;
suffix "*" for a possibly empty list, which is equivalent to the suffix [0..*];
suffix "+" for a non-empty list, which is equivalent to the suffix [1..*];
separator "|" for an alternative;
brackets "[" "]" for meaning the enclosed item or items are optional.

Parentheses "{" and "}" are used for grouping of items that are logically related.

All the operators (including "-set" and "+set" optionally followed by the number of items – see below) are applied to
either a domain name or to a grouping (within "{" and "}").

A domain is allowed to be specified to have a structure derived from another domain, in which case we say the former
(child) domain inherits its structure from the latter (or parent) domain. A child domain has all the sub-components
defined by the parent domain, and it is allowed to add sub-components which follow the inherited components. A child
item object is allowed in any place of the tree of objects where parent item objects are allowed.

For example, the definition:

Agent-identifier (Agent-name) :: Qualifier

defines an Agent-identifier to have the same structure as Agent-name but has another component that is a Qualifier. As
far as the structure is concerned, the above definition is the same as defining:

Agent-identifier :: Agent-name Qualifier

However, the former inheritance definition means that an Agent-identifier instance is allowed wherever an Agent-name
instance is allowed, so rather than specify the alternatives { Agent-identifier | Agent-name }, a single Agent-name is
sufficient.

8 Rec. ITU-T Z.111 (11/2008)

Finally, the abstract syntax uses two other postfix operators "-set" yielding a possibly empty set (unordered collection of
distinct objects) and the postfix operator "+set" yields a set which shall not be empty. These can also have the suffixes
"[n]" for a set of exactly n items, suffix "[n..m]" for a set of between n and m items, suffix "[n..*]" for a set of at least n
items.

Example:
Agent-graph :: Agent-start-node State-node-set

An Agent-graph consists of an Agent-start-node and a possibly empty set of State-nodes.

Where a sub-component is of an elementary domain, or a quotation, a default value can be specified for this sub-
component. For example,

Number-of-instances :: Nat:=1 [Nat]

specifies that the first Nat component will have the value 1, if no value is specifically given in the concrete notation.

Visibility-name :: Name { PUBLIC | PROTECTED | PRIVATE := PUBLIC }

specifies that the second component will have the Quotation value PUBLIC, if no value is specifically given in the
concrete notation.

Suffixes that specify multiplicity for a list or set specify constraints on the grammar if the lower bound is greater than
zero or if an upper bound is given (that is, it is not "*"). Often there are other constraints that need to be specified: for
example, in Number-of-instances if there is a second Nat, this represents the maximum number of instances and has to
be greater than or equal to the initial number of instances given by the first Nat. A natural language description of such
constraints helps explain the reason for the limitation, but writing natural language so that the formulation of the
constraint is clear and unambiguous can be difficult, especially if the text is to be translated into different natural
languages. For that reason, it is desirable that constraints on the grammar are written in a formal notation (such as
OCL). To be able to clearly refer to the domain components of a domain, each domain component can optionally be
given a name starting with a lowercase letter preceding the component domain by a colon, for example:

Number-of-instances :: initialNumber: Nat:=1 [maximumNumber: Nat]

In this case, it is now possible to write Number-of-instances.maximumNumber >= Number-of-instances.initialNumber.
An alternative to named domain components is to introduce an equivalence rules for each component. For example:

Number-of-instances :: Initial-number [Maximum-number]

Initial-number = Nat :=1

Maximum-number = Nat

The main differences are the relative conciseness of the named component notation, and that a component name is local
to a domain whereas an equivalence name can be used in several domains.

The following gives a more formal abstract description of the textual abstract grammar defined in the notation itself as
far as possible and supplementary to the text above:

Grammar :: Rule-set

Rule :: Definition-rule | Equivalence-rule

Definition-rule :: Name [Non-terminal-domain] [Expression]

Equivalence-rule :: Name Expression

Expression :: Alternatives | Composition | Option | List | Set | [Component-name] Domain

Alternatives :: Expression[2..*]

Composition :: Expression[1..*]

Option :: Expression

List :: Expression minimum: Nat:=0 [maximum: Nat]

Set :: Expression minimum: Nat:=0 [maximum: Nat]

Domain :: Non-terminal-domain

 | Elementary-domain

 | Enumeration-domain

Non-terminal-domain :: Name

 Rec. ITU-T Z.111 (11/2008) 9

Elementary-domain :: Elementary-domain-kind [Default-elementary-value]

Elementary-domain-kind = NAT | TOKEN | BOOLEAN | UNSPECIFIED

Default-elementary-value = Token

Enumeration-domain :: Quotation-set [Default-enumeration-value]

Default-enumeration-value :: Quotation

Component-name = Token

Name = Token

There should normally be one Rule from which every other Rule can be reached.

The same character string always maps to the same Token value, and two different character strings map to different
Token values. The character strings Token, Nat, Boolean and Informal-text shall not be used for a Name, because these
are reserved for each of the respective domains.

A Name is a Token that is represented by a character string starting with a letter, followed by any number of
alphanumeric characters and single hyphens and terminating in an alphanumeric. Each Name of a Definition-rule or
Equivalence-rule shall have a Token value distinct from the Token value of the Name of any other Definition-rule or
Equivalence-rule.

A Non-terminal-domain has a Token that is represented by name starting with a letter, followed by any number of
alphanumeric characters and single hyphens and terminating in an alphanumeric. The Name of a Non-terminal-domain
shall have the same Token value as the Name of a Definition-rule or Equivalence-rule.

NAT, TOKEN, BOOLEAN and UNSPECIFIED are represented by Token, Nat, Boolean and Informal-text
respectively.

A Default-elementary-value is a Token that is represented in the case of Nat (NAT) by a non-negative integer (a string
of digits) and in the case of Boolean (BOOLEAN) by one of the strings TRUE or FALSE. If the Elementary-domain-
kind of an Elementary-domain is Token or Informal-text, then assignment is not allowed and the Default-enumeration-
value shall be omitted. If the Elementary-domain-kind of an Elementary-domain is Nat, then Default-enumeration-value
shall be a Token for an integer. If the Elementary-domain-kind of an Elementary-domain is Boolean, then Default-
enumeration-value shall be a Token for a Boolean value.

Quotation is represented by bold face sequence of uppercase letters and digits, called a quotation in this paragraph. The
same quotation always maps to the same Quotation value and two different quotations map to different Quotation
values. The quotation for a Quotation shall not be the same as the character string for a Token. An Enumeration-domain
is represented either by a single quotation or by a list of quotations separated by "|" characters. When a "|" character is
between two quotations, it is a separator for an Enumeration-domain rather than for Alternatives. The Default-
enumeration-value (if present) of an Enumeration-domain shall be one of the Quotation values in the Quotation-set of
the Enumeration-domain.

Alternatives or Composition within an Expression that is Alternatives or Composition or List or Set are grouped by "{"
and "}" brackets in the concrete notation.

The minimum Nat for a List or Set is the minimum number of elements, and the maximum Nat is the maximum number.
If a maximum exists, it must be greater than or equal to the minimum. If maximum is omitted, there is no maximum
number of elements. The notation for a list or set is explained above.

10 Rec. ITU-T Z.111 (11/2008)

5.4.1.2 Metamodel presentation

The following describes an alternative to the textual presentation introduced in clause 5.4.1.1. This metamodel
representation of the abstract syntax of ITU-T languages is explained using a meta-metamodel (Figure 1).

Figure 1 – Meta-metamodel for metamodeling language elements

The meta-metamodel elements described below are represented using UML in Figure 1, except where otherwise noted.
Note that, in order to better align metamodels based on Z.111 with MOF and UML, Token elements are shown with the
"String" keyword in metamodels, including the meta-metamodel in Figure 1.

In the following, a Named element is a meta-class that contains a name attribute of the Token primitive type (shown
visually as String). Some Token values represent Nat values (that is non-negative Integers), and two distinct Token
values represent the Boolean true and false values. These Token values for Nat and Boolean shall only be used in the
value of a DefaultValue and shall not be used for the Token value of any name. When deriving the Token from a
character string in the concrete notation, the Token value depends on the character string and the case of letters in the
character string are taken into account. The same character string in the concrete notation for names shall always
produce the same Token, so that constraints on Token values are constraints on character string in the concrete notation
for the name attributes. Two name attributes are the same if they have the same Token value, otherwise they are distinct.
i) Class is a Named element that contains one or more Attribute items and can participate in binary Association

relations via one or both of the AssociationEnd attributes of each Association. A Class can inherit the
Attribute and AssociationEnd (and hence Association) items from another Class (single inheritance only).

 Each Class shall have a name with a Token value that is distinct from the Token value for the name of any
other Class (including predefined primitives), or any Enumeration.

 Class
name :

 String

Attribute
name : String
multiplicityMin : Nat = 1
multiplicityMax : Nat [0..1] = 1

 AssociationEnd

name : String [0..1]
multiplicityMin : Nat = 1
multiplicityMax : Nat [0.. 1] = 1
isOrdered : Boolean = false
isNavigable : Boolean = false
isComposite : Boolean = false

end

endClass

0..*

1

endType
1

inheritedFrom

 0..1

inheritedFrom

0..*

attribute {ordered} 0..*

1

Association

target
1

1

associationLink

1

source

1

attributeType

DataType

1

 EnumeratedType

 DefaultValue

defaultValue 0..1

1

0 1

<< enumeration >>
Primitive

Boolean
Unspedified
Nat
String

 Enumeration
name : String

 Literal

name : String

Literal {unordered}

1..*

1

name

 PrimitiveType
name

1

0..*

name : String

 Rec. ITU-T Z.111 (11/2008) 11

 The inheritedFrom attribute (if present) of Class references the parent Class of a Class. An inherited Class of
a Class is either the parent Class or any inherited Class of the parent Class, transitively. A Class shall not
have itself as an inherited Class. The attribute list of a Class includes the attribute list of the parent Class, so
that the same Attribute shall be referenced by each element of the attribute list of the parent Class and the
corresponding (by order) element of the attribute list of the Class. A Class that inherits from a parent Class
includes each end reference to an AssociationEnd of parent Class and is the endClass of the AssociationEnd.
A Class that inherits from a parent Class is referenced as an endType by each AssociationEnd that references
the parent Class as an endType. Multiple classification is not allowed, that is, an instance of a Class C1 cannot
be an instance of another Class C2, if C1 is not inherited (directly or transitively) from C2.

 The name (if present) of each AssociationEnd that has an end in a given Class shall be distinct from the Token
value for the name (if present) of any AssociationEnd that has an end in the Class or any inherited Class.

ii) Attribute is a Named element. It is a meta-class for an ordered element of a Class that has a DataType and an
optional DefaultValue.

 The name of each attribute of a given Class shall be distinct from the name of any other attribute of the Class
or any inherited Class and shall also be distinct from the name (if present) of any AssociationEnd that has an
end in the Class or any inherited Class.

 The multiplicity of an Attribute is given by multiplicityMin and multiplicityMax, which have default values
of 1 if they are omitted in concrete notation. However, if in the concrete notation the maximum is given by
"*", the maximum is empty and there is no upperbound on the number of Attribute instances. If
multiplicityMax is present, it shall be greater than 0 and also greater than or equal to multiplicityMin.

 If the Attribute has a DataType that is a PrimitiveType Token or PrimitiveType Unspecified, the DefaultValue
shall be absent. If a DefaultValue is present, its Token value shall represent a value of the DataType of the
Attribute (that is, it shall be true or false for a Boolean, a non-negative integer for a Nat, or a quotation Literal
for an Enumeration).

iii) DataType is a meta-class that is either a PrimitiveType or an EnumeratedType.
iv) PrimitiveType is a DataType where the type is predefined (one of Token, Nat, Boolean, Unspecified) primitive

identified by the Primitive value of the name attribute of the PrimitiveType. Unspecified is a primitive that
might have some representation, but for which the representation is of no concern in the language
Recommendation.

v) EnumeratedType is a DataType where the type is an Enumeration identified by its name attribute.
vi) Enumeration is a Named element that represents a (quotation) DataType whose values are represented by a

set of literal elements.
 Each Enumeration shall have a name with a Token value that is distinct from the Token value for the name of

any other Enumeration or any Class (including predefined primitives).
vii) Literal is a Named element contained in an Enumeration that is one of the values of an Enumeration. The

name of each literal of an Enumeration shall be distinct for any other literal of the Enumeration, but it is
permitted for the name to be the same as the literal of another Enumeration.

viii) DefaultValue is a meta-class for the optional component of an Attribute that identifies a default value of the
appropriate type (see Attribute).

ix) Association is a meta-class for the relation between Class meta-classes. It has two AssociationEnd attributes
(source and target) for the logical connection of the Association with the related Class meta-classes.

 An Association shall have at least one AssociationEnd that is navigable (isNavigable = true). An Association
is represented by a line in the concrete notation. An Association navigable in only one direction is represented
by a line with an arrow on the navigable end.

x) AssociationEnd is a meta-class for the end of an Association. It has Boolean attributes that determine if the
AssociationEnd is composite (isComposite), navigable (isNavigable) or ordered (isOrdered). If the
AssociationEnd is navigable (isNavigable = true), the name shall not be empty, and the name (which
corresponds to the role name of the AssociationEnd) shall be distinct from the name of any other
AssociationEnd that is an end of the Class that is the source of the AssociationEnd.

 An AssociationEnd shall not be both the source and target of an Association. In the following, an
AssociationEnd that is the source of an Association is called a source AssociationEnd, and an AssociationEnd
that is the target of an Association is called a target AssociationEnd.

 The Class of the endType of a source AssociationEnd is derived and is the same as the Class of the endClass
of the target AssociationEnd of the Association that is the source of the source AssociationEnd. The Class of
the endType of a target AssociationEnd is also derived and is the same as the Class of the endClass of the
source AssociationEnd of the Association that is the target of the target AssociationEnd. More formally:

12 Rec. ITU-T Z.111 (11/2008)

 source AssociationEnd.endType = AssociationEnd.associationlink.target.endClass; and
 target AssociationEnd.endType = AssociationEnd.associationlink.source.endClass.
 A source AssociationEnd is allowed to be composite (isComposite = true), and in this case, the Class with the

source AssociationEnd as an end has as a component an item (or a collection of items – see multiplicity) with
the endType of the source AssociationEnd. A Class with a non-composite source AssociationEnd is related
(by the Association) to an item or collection with the endType of the source AssociationEnd. In the concrete
notation, an AssociationEnd that is composite is represented by filled diamond at the AssociationEnd that is
the source.

 The AssociationEnd that is the target of an Association shall not be composite (isComposite = false).
 An AssociationEnd has a multiplicity defined by the values of the multiplicityMin and multiplicityMax, which

are natural numbers. Although default values are given for the values, it is not allowed to omit the values in
the concrete notation. If, in the concrete notation, the maximum is given by "*", the maximum is empty and
there is no upperbound on the number of instances. If multiplicityMax is present, it shall be greater than 0 and
also greater than or equal to multiplicityMin. If multiplicityMax is equal to multiplicityMin, then it is sufficient
in the metamodel representation to show only one number (e.g., 1 instead of 1..1).

 If multiplicityMax is larger than 1 or omitted, the AssociationEnd denotes a collection of items. By default,
this collection is ordered (isOrdered = true), so the collection is a list. If the collection is not ordered
(isOrdered = false), the collection will normally be a set (but is allowed to be a bag). In a set, each item in the
collection has a different value. In a bag, there may be any number of items with the same value.

Several modelling elements commonly used in class diagrams should be avoided when describing metamodels for
abstract syntaxes. These include:
– Packages: A structuring mechanism that does not add semantic value at the abstract level.
– Visibility of attributes and association ends: This has no impact on the abstract model as it is hidden.
– Absence of association multiplicities: To avoid ambiguities in the understanding of default multiplicities

(according to standards or people), multiplicities at association ends are required to be explicit.
– Multiple inheritance: May require name resolution and hence should be avoided.
– Operations: Not usually needed in the abstract model. Operations on model elements (in a language such as

OCL) are useful to describe constraints formally, but constraints should also be expressed in natural language
as well as formally so the intent can be captured.

– Abstract classes: Not needed because the mapping between a concrete syntax and an abstract syntax can
prevent the instantiation of such classes.

– Interfaces: Not needed since there are no operations on instances.
– Do not include layout elements (graphical information such as colour, positions, shapes, sizes).

5.4.2 Metalanguage for the concrete grammar

The syntax of the concrete grammar is defined by the extended Backus-Naur Form (BNF) defined in more detail in this
clause. If necessary, syntax is supplemented by further definition in natural language and preferably also in a formal
language such as OCL. The concrete syntax is mapped to the abstract syntax (either implicitly as described in
clause 5.3.2 b) Concrete Grammar above or explicitly) and the constraints and semantics of the abstract grammar apply.

The grammar should usually be separated into two levels:
1) lexical rules that define the syntax of lexical units such as names, numbers, character strings, composite

symbols (such as "=>") and any reserved keyword names of the language;
2) non-lexical rules that use the lexical rules as terminal symbols.

If the grammar is simple, it is acceptable to include the lexical rules with the non-lexical rules. The definition of
graphical symbols (such as a frame box or a flow line) are treated like keywords and defined in the lexical rules, or as
part of the non-lexical grammar.

In the BNF for lexical rules, the terminals are <space> and the printed characters are specified as terminal symbols by
the defined language. The printed characters are not limited to the Latin alphabet; the universal multiple-octet coded
character set defined in [ITU-T T.55] is allowed to be used. The actual printed character set used and non-printing
characters such as <space> are defined in the formal language Recommendation. Some examples of lexical rules are:

<asterisk> ::= *

<bit string> ::=

 <apostrophe> { 0 | 1 }* <apostrophe> { B | b }

 Rec. ITU-T Z.111 (11/2008) 13

NOTE – It is assumed that characters are ordered and presented left to right then top to bottom as in Latin scripts. If other orderings
(such as right to left, or top to bottom, mixed ordering) are significant, the relationship between the order characters is analysed and
how they are presented has to be defined.

In the Backus-Naur Form for non-lexical rules, a terminal symbol is one of the lexical units defined to be terminal. In
non-lexical rules, a terminal can be represented by one of the following:
a) a keyword (such as state);
b) the character for the lexical unit if it consists of a single character (such as "=");
c) the lexical unit name (such as <quoted operation name> or <bit string>);
d) the name of a <composite special> lexical unit (such as <implies sign> which is defined as "=>").

To avoid confusion with BNF grammar, the lexical unit names <asterisk>, <plus sign>, <vertical line>,
<left square bracket>, <right square bracket>, <left curly bracket> and <right curly bracket> are always used rather than
the equivalent characters (except in the lexical rule that defines the unit – see the example of <asterisk> above). Note
that non-lexical terminals that have multiple instances (typically the lexical units for <name> and <character string>)
are permitted to have semantics stressed as defined below.

The angle brackets and enclosed word(s) are either a non-terminal symbol or one of the lexical units. Syntactic
categories are the non-terminals indicated by one or more words enclosed between angle brackets. For each
non-terminal symbol, a production rule is given in the concrete grammar. For example,

<block reference> ::=

 block <block name> referenced <end>

A production rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side of the symbol
"::=", and one or more constructs, consisting of non-terminal and/or terminal symbol(s) at the right-hand side. For
example, <block reference>, <block name> and <end> in the example above are non-terminals; block and referenced
are terminal symbols. By convention, a rule always starts on a new line and continuation lines start with a non-printing
character (usually a space or tab). The rule continues on the same line and subsequent lines until followed by the start of
another rule (a line starting with non-terminal symbol followed by "::=") or the end of the text containing rules
(indicated by text style, a heading, characters not allowed in rules or some other means).

Sometimes the symbol includes an underlined part. This underlined part stresses a semantic aspect of that symbol.
For example, <block name> is syntactically identical to <name>, but semantically it requires the name to be a block
name.

At the right-hand side of the "::=" symbol, several alternative productions for the non-terminal can be given, separated
by vertical bars ("|"). For example,

<diagram in package> ::=

 <package diagram>
 | <package reference area>
 | <entity in agent diagram>
 | <data type reference area>
 | <signal reference area>
 | <procedure reference area>
 | <interface reference area>
 | <create line area>
 | <option area>

expresses that a <diagram in package> is a <package diagram>, or a <package reference area>, or an
<entity in agent diagram>, or a <data type reference area>, or a <signal reference area>, or a
<procedure reference area>, or an <interface reference area>, or a <create line area> or an <option area>.

Syntactic elements may be grouped together by using curly brackets ("{" and "}"), similar to the parentheses in the
textual presentation of abstract syntax (see clause 5.4.1.1). A curly bracketed group may contain one or more vertical
bars, indicating alternative syntactic elements.

Repetition of syntactic elements or curly bracketed groups is indicated by:
suffix "[n..m]" the group is repeated between n and m items, where n is an integer >=0, m is a positive
integer >= n;
suffix "[n]" the group is repeated exactly n items, where n is a positive integer – equivalent to the suffix [n..n];
suffix "[n..*]" the group is repeated at least n items, where n is a positive integer;

14 Rec. ITU-T Z.111 (11/2008)

suffix "*" the group is optional and repetition of any number of times is allowed – equivalent to the
suffix [0..*];
suffix "+" the group shall be present and repetition of any number of times is allowed – equivalent to the
suffix [1..*].

For example,

<operation definitions> ::=

 { <operation definition>
 | <operation reference>
 | <external operation definition> }+

The example above expresses that <operation definitions> may contain zero or more definitions of <operation
definition> or <operation reference> or <external operation definition>, and may contain more than one of any of these.

A repetition suffix can include a list separator after the repetition. If the repetition uses square brackets ("[" and "]"), a
vertical bar ("|") is placed before the closing square bracket ("]") and the separator is placed between the vertical bar
("|") and the closing square bracket ("]"). If the repetition suffix is an asterisk ("*") or plus sign ("+"), it is followed by
an opening square bracket and vertical line pair ("[|") the separator and then a closing square bracket ("]"). For example,

<two or more declarations> ::=

 { <name>+[|,] : <type> }[2,*| ;]

The example above expresses that <declaration list> contains at least two and possibly many repetitions separated by
semicolons of the sequence: <name> list separated by commas, colon and <type>. This is equivalent to the following
syntax that uses plain repetition (without separators) where <name> is repeated:

<two or more declarations> ::=

 <name> { , <name> }* : <type>

 { ; <name> { , <name> }* : <type> }+

This can also be expressed using recursion instead of repetition as:

<two or more declarations> ::=

 <name list> : <type> ; { <name list> : <type> | < two or more declarations> }

<name list> ::=

 { <name> | <name> , <name list> }

If syntactic elements are grouped using square brackets ("[" and "]"), then the group is optional. For example,

<valid input signal set> ::=

 signalset [<signal list>] <end>

expresses that a <valid input signal set> may, but need not, contain <signal list>. An optional grouping is equivalent to
a repetition suffix [0..1].

If there is any ambiguity between an optional group and the use of square brackets ("[" and "]") for a repetition suffix, it
is a repetition unless there is at least one layout character (such as a space) before the "[" in which case it is an optional
group.

To support the graphical grammar, the metalanguage has the following metasymbols:
a) set
b) contains
c) is associated with
d) is followed by
e) is connected to
f) is attached to

The set metasymbol is a postfix operator operating on the immediately preceding syntactic elements within curly
brackets, and indicating an (unordered) set of items. Each item may be any group of syntactic elements, in which case it
must be expanded before applying the set metasymbol.

 Rec. ITU-T Z.111 (11/2008) 15

Example:

 { <operation text area>* <operation body area> } set

is a set consisting of zero or more <operation text area>s, and one <operation body area>. The set metasymbol is used
when the position of the syntactic elements relative to one another in the diagram is irrelevant and the elements can be
considered in any order.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as the left-hand argument. The
right-hand argument is either a group of syntactic elements within curly brackets or a single syntactic element. If the
right-hand side of a production rule has a graphical non-terminal symbol as the first element and contains one or more
of these infix operators, then the graphical non-terminal symbol is the left-hand argument of each of these infix
operators. A graphical non-terminal symbol is a non-terminal ending with the word "symbol".

The metasymbol contains indicates that its right-hand argument should be placed within its left-hand argument and the
attached <text extension symbol>, if any. The right-hand argument is expanded within the symbol, should not cross the
symbol boundaries and is distinct from any occurrence of the same syntax in another rule. For example,

<package use area> ::=

 <text symbol> contains <package use clause>

<text symbol> ::=

means the following

<package use clause>

The metasymbol is associated with indicates that its right-hand argument is logically associated with its left-hand
argument (as if it were "contained" in that argument, the unambiguous association is ensured by appropriate drawing
rules). The right-hand argument is expanded and is distinct from any occurrence of the same syntax in another rule.

The metasymbol is followed by means that its right-hand argument follows (both logically and in drawing) its left-hand
argument. The right-hand argument is expanded at the end of the implied symbol, and is distinct from any occurrence of
the same syntax in another rule.

The metasymbol is connected to means that its right-hand argument is connected (both logically and in drawing) to its
left-hand argument. The right-hand argument is expanded, and is distinct from any occurrence of the same syntax in
another rule (in contrast to is attached to below).

The metasymbol is attached to expresses syntax requirements but not syntax productions. The metasymbol is attached
to requires its right-hand argument and left-hand argument be attached to each other (both logically and in drawing), but
one argument is not expanded with the syntax for the other argument, but each shall exist as separate expansions from
syntax rules (in contrast to is connected to above). Being attached is mutual, so that A is attached to B is always
matched in the syntax by another rule where B is attached to A, though this need not be directly expressed on B. For
example, B may have alternatives B1 and B2 each of which is attached to A. Being attached will usually mean that the
abstract syntax for each side contains the identifier of the other side.

16 Rec. ITU-T Z.111 (11/2008)

Appendix I

Mapping from the metamodel presentation to the textual presentation: High-level description
(This appendix does not form an integral part of this Recommendation)

The metamodel presentation and the BNF-based textual presentation of the abstract syntax each have benefits and
drawbacks. Metamodels are appealing due to their graphical nature (where associations and inherited concepts are
explicit), whereas BNF grammars are easily analysable by tools and there is considerable experience in their use. A
procedure is outlined here that converts an abstract syntax expressed as a metamodel into an abstract syntax expressed
textually. Leveraging this procedure, an abstract syntax can be expressed as a metamodel for convenience, but can be
subject to validation through grammar-oriented tools.

The following gives the mapping from the concepts in the metamodel presentation of the abstract syntax to the textual
representation of the abstract syntax.

A Class corresponds to a Definition-rule. The name corresponds to the Name. The class referenced by inheritsFrom
corresponds to the Non-terminal-domain, if any. The set of attribute and association end corresponds to the Expression.

If the Attribute or AssociationEnd is named, this corresponds to an Equivalence-rule, where Name is derived from name
and the current class name and the attribute or association end constructs the Expression of the alias as in the following,
and name corresponds also to Symbol in the outer Expression. If the name is unique, it corresponds to Token. Otherwise,
the Expression is constructed as follows.

If multiplicityMin of an Attribute or AssociationEnd is 0 and multiplicityMax of this Attribute or AssociationEnd is 1,
and isNavigable is true, this corresponds to an Option, where Expression is a Symbol corresponding to the type of the
attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 0, and multiplicityMax of this Attribute or AssociationEnd is *,
and isOrdered of this Attribute or AssociationEnd is true, and isNavigable is true, this corresponds to a List, where
Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 1, and multiplicityMax of this Attribute or AssociationEnd is *,
and isOrdered of this Attribute or AssociationEnd is true, and isNavigable is true, this corresponds to a List with a
minimum of one element, where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 0, and multiplicityMax of this Attribute or AssociationEnd is *,
and isOrdered of this Attribute or AssociationEnd is false, and isNavigable is true, this corresponds to a Set, where
Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 1, and multiplicityMax of this Attribute or AssociationEnd is *,
and isOrdered of this Attribute or AssociationEnd is false, and isNavigable is true, this corresponds to a Set with a
minimum of one element where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 1 and multiplicityMax of this Attribute or AssociationEnd is 1,
and isNavigable is true, this corresponds to a Symbol, such that the Symbol is corresponding to the type of the attribute
or association end.

If isComposite of an AssociationEnd is false, then the Symbol is a Name; otherwise, the Symbol is a Non-terminal-
domain.

If an Attribute has a default, then this generates an Assignment, where DefaultValue corresponds to Elementary-domain
and the name of the type of the Attribute corresponds to Token.

Any multiplicityMin and multiplicityMax on an AssociationEnd where isNavigable is false and which is not both 1 in
the case where isComposite is true or is otherwise 0 and *, respectively, generates a constraint on the respective
element.

An Enumeration corresponds to a Non-terminal-domain where the name corresponds to Token, and Expression is an
Alternative where each Symbol is an Elementary-domain corresponding to the literals.

 Rec. ITU-T Z.111 (11/2008) 17

Bibliography

[b-ITU-T Z.100] Recommendation ITU-T Z.100 (2007), Specification and Description Language (SDL).
<http://www.itu.int/rec/T-REC-Z.100>

[b-ITU-T Z.110] Recommendation ITU-T Z.110 (2008), Criteria for use of formal description techniques by ITU-T.
<http://www.itu.int/rec/T-REC-Z.110>

[b-OMG-OCL] Object Constraint Language Specification, Version 2.0, formal/2006-05-01 of the Object
Management Group (OMG). <http://www.omg.org/cgi-bin/doc?formal/2006-05-01>

http://www.itu.int/rec/T-REC-T.55
http://www.itu.int/rec/T-REC-T.55
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.111 (11/2008) – Notations and guidelines for the definition of ITU-T languages
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Objective
	1.2 Application

	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	5.1 Grammars
	5.2 Basic definitions
	5.3 Presentation style
	5.4 Metalanguages

	Appendix I – Mapping from the metamodel presentation to the textual presentation: High-level description
	Bibliography

