

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.109
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2012)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –

Unified modeling language profile for SDL-2010

Recommendation ITU-T Z.109

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.109 (04/2012) i

Recommendation ITU-T Z.109

Specification and Description Language – Unified modeling
language profile for SDL-2010

Summary

Objective: Recommendation ITU-T Z.109 defines a unified modeling language (UML) profile that
maps to SDL-2010 semantics so that UML is able to be used in combination with the ITU-T
Specification and Description Language.

Coverage: This Recommendation presents a definition of the UML-to-SDL-2010 mapping for use in
the combination of SDL-2010 and UML.

Application: The main area of application of this Recommendation is the specification of
telecommunication systems. The combined use of SDL-2010 and UML permits a coherent way to
specify the structure and behaviour of telecommunication systems, together with data.

Status/Stability: This Recommendation is the complete reference manual describing the UML to
SDL-2010 mapping for use in the combination of SDL-2010 and UML. It replaces the previous
Recommendation ITU-T Z.109 that concerned earlier versions of UML and Specification and
Description Language.

Associated work: Recommendations ITU-T Z.100, ITU-T Z.101, ITU-T Z.102, ITU-T Z.103,
ITU-T Z.104 and ITU-T Z.107 concerning the ITU-T Specification and Description Language 2010
(SDL-2010).

History

Edition Recommendation Approval Study Group

1.0 ITU-T Z.109 1999-11-19 10

2.0 ITU-T Z.109 2007-06-13 17

3.0 ITU-T Z.109 2012-04-29 17

ii Rec. ITU-T Z.109 (04/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.109 (04/2012) iii

Table of Contents

 Page

1 Scope and objectives .. 1

1.1 Conformance .. 1

1.2 Restrictions on SDL-2010 and UML ... 2

1.3 Mapping .. 2

2 References... 2

3 Definitions .. 3

3.1 Terms defined elsewhere .. 3

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 4

5 Conventions and names .. 4

5.1 Conventions .. 4

5.2 Names and name resolution: NamedElement ... 5

5.3 Transformation ... 7

6 Summary of stereotypes and metaclasses ... 8

6.1 Stereotype summary ... 8

6.2 Metaclass summary .. 9

7 Structure .. 11

7.1 Structure metamodel diagrams ... 12

7.2 ActiveClass ... 13

7.3 ChoiceType ... 16

7.4 Classifier ... 17

7.5 Connector ... 19

7.6 DataTypeDefinition .. 21

7.7 Interface .. 23

7.8 LiteralType ... 24

7.9 Operation .. 25

7.10 Package ... 27

7.11 Parameter .. 28

7.12 Port ... 30

7.13 Property .. 31

7.14 Signal .. 34

7.15 Specification ... 35

7.16 StructureType ... 35

7.17 Syntype ... 36

7.18 Timer .. 37

iv Rec. ITU-T Z.109 (04/2012)

 Page

8 State machines .. 37

8.1 State machine metamodel diagrams ... 38

8.2 FinalState .. 38

8.3 Pseudostate ... 39

8.4 Region ... 41

8.5 State .. 43

8.6 StateMachine .. 44

8.7 Transition .. 47

9 Actions and activities .. 50

9.1 Action and activity metamodel diagrams ... 52

9.2 Activity ... 53

9.3 ActivityFinalNode .. 54

9.4 AddStructuralFeatureValueAction ... 54

9.5 AddVariableValueAction ... 55

9.6 Break ... 56

9.7 CallOperationAction ... 56

9.8 ConditionalNode ... 57

9.9 Continue ... 58

9.10 CreateObjectAction .. 59

9.11 ExpressionAction ... 59

9.12 LoopNode ... 60

9.13 OpaqueAction ... 61

9.14 ResetAction .. 61

9.15 Return ... 62

9.16 SequenceNode .. 62

9.17 SendSignalAction ... 63

9.18 SetAction .. 63

9.19 Stop ... 64

9.20 TimerConstraint .. 64

9.21 Variable .. 65

10 ValueSpecification .. 66

10.1 ValueSpecification metamodel diagrams ... 67

10.2 ActiveAgentsExpression .. 70

10.3 AnyExpression ... 70

10.4 ClosedRange ... 71

10.5 ConditionalExpression ... 71

10.6 ConditionItem ... 72

10.7 EqualityExpression ... 73

10.8 ImperativeExpression ... 73

 Rec. ITU-T Z.109 (04/2012) v

 Page

10.9 LiteralValue .. 74

10.10 NowExpression ... 74

10.11 OpenRange ... 75

10.12 OperationApplication ... 75

10.13 PidExpression ... 76

10.14 PidExpressionKind ... 77

10.15 RangeCheckExpression .. 77

10.16 RangeCondition .. 78

10.17 SdlExpression ... 78

10.18 SizeConstraint ... 79

10.19 StateExpression .. 79

10.20 TimerActiveExpression .. 80

10.21 TimerRemainingDuration ... 80

10.22 TypeCheckExpression .. 81

10.23 TypeCoercion ... 81

10.24 ValueReturningCallNode ... 82

10.25 VariableAccess ... 83

11 Context parameters ... 83

11.1 Context parameter metamodel diagrams .. 84

11.2 ActualContextParameter ... 86

11.3 AgentContextParameter ... 87

11.4 AgentTypeContextParameter ... 88

11.5 CompositeStateTypeContextParameter .. 89

11.6 FormalContextParameter .. 89

11.7 GateContextParameter .. 90

11.8 GateConstraint .. 91

11.9 InterfaceContextParameter ... 92

11.10 ProcedureContextParameter ... 92

11.11 SignalContextParameter ... 93

11.12 SortContextParameter ... 93

11.13 SynonymContextParameter .. 94

11.14 TimerContextParameter ... 95

11.15 VariableContextParameter ... 95

12 Predefined data ... 96

12.1 Non-parameterized data types .. 96

12.2 Parameterized data types .. 98

12.3 Pid ... 99

Bibliography... 101

vi Rec. ITU-T Z.109 (04/2012)

Introduction

The UML profile presented in this Recommendation is intended to support the usage of UML
(version 2 or later) as a front-end for tools supporting specification and implementation of reactive
systems, in particular for telecommunication applications. The intention is to enable tool vendors to
create tools that benefit from the closure of semantic variations in UML with SDL-2010 semantics
and benefit from Specification and Description Language tool technology that supports this
particular application area.

The intention is that when the profile is applied to a model, the set of stereotypes and metaclasses
defined in this Recommendation extends the elements in the model and has several consequences:

– additional properties are available as specified by the stereotype attributes;

– constraints defined for the stereotypes apply to the model elements introducing more
semantic checks that need to be fulfilled for the model;

– semantics, in particular dynamic semantics, are defined for the model elements as specified
by the mapping of the stereotyped UML concepts to the SDL-2010 abstract grammar.

The details of the profile mechanism in this Recommendation follow: The Recommendation is
structured in a number of clauses. Each clause defines one stereotype or metaclass (see below).
Each stereotype usually captures the semantics of one SDL-2010 concept based on a UML concept.
A stereotype in most cases constrains a UML element with a multiplicity of [1..1] (that is, the
stereotype is required), but in some cases extends rather than constrains the basic UML language.
The UML user never manually has to apply the stereotype to a UML element: instead stereotypes
are applied automatically when applying the profile to the model itself, or if the user has not kept
within the language defined by this profile a suitable message given to the user. As a consequence,
applying this profile results in extra properties, extra semantic checks, and a well understood
semantics that are usable in tools to provide features like static model analysis, simulation and
application generation as the model is sufficiently well defined to be executable.

Apart from the set of stereotypes, the Recommendation defines a set of metaclasses as extensions to
the UML metamodel in order to represent SDL-2010 expressions and value specifications. That is
because the UML concepts for value specification are not appropriate for this purpose.

This Recommendation introduces no particular textual notation for stereotypes defined by this UML
profile. Instead, a textual notation and its mapping to corresponding model elements has to be
defined by an additional description (possibly a Recommendation or provided by a tool supplier).
So that the application of transformation models of SDL-2010 referenced in this profile are
understandable, the syntax for an appropriate textual notation should be a subset of the concrete
syntax of SDL-2010 or an SDL-like syntax, which is modified to the particular requirements of a
UML-based domain specific language.

The idea is that when a user enters the described syntax, a tool should automatically create the
corresponding model element with the correct stereotype applied.

 Rec. ITU-T Z.109 (04/2012) 1

Recommendation ITU-T Z.109

Specification and Description Language – Unified modeling
language profile for SDL-2010

1 Scope and objectives

This Recommendation defines a unified modeling language (UML) profile for SDL-2010. It
ensures a well-defined mapping between parts of a UML model and the SDL-2010 semantics. The
profile is based upon the UML metamodel and upon the abstract grammar of SDL-2010, and in the
following text is referred to as SDL-UML.

The specializations and restrictions are defined in terms of stereotypes for metaclasses of the UML
metamodel and the abstract grammar of SDL-2010 and are in principle independent of any notation.
However, to generate particular model elements, especially those that are instances of UML actions
or activities, it is assumed that an appropriate notation is specified.

A software tool that claims to support this Recommendation (in the following called a tool) should
be capable of creating, editing, presenting and analysing descriptions compliant with this
Recommendation.

1.1 Conformance

A model that claims to be compliant to this Recommendation shall meet the metamodel constraints
of UML and this Recommendation and, when mapped to the abstract grammar of SDL-2010, shall
conform to the abstract grammar of the ITU-T Z.100 series of Recommendations included by
reference. A model is non-compliant if it does not meet the constraints or if it includes an abstract
grammar that is not allowed by the ITU-T Z.100 series of Recommendations, or has analysable
semantics that are shown to differ from these Recommendations.

The abstract grammar of this Recommendation is a profile of UML and a set of additional
metaclasses, which are specializations of the UML ValueSpecification metaclass. Therefore, any
model that conforms to this Recommendation also conforms to the requirements of UML.

A tool that supports the profile shall support the specializations and restrictions of UML defined in
the profile to conform to the Recommendation and should be capable of exporting such models to
other tools and importing such models from other tools.

A conformance statement clearly identifying the profile features and requirements not supported
should accompany any tool that handles a subset of this Recommendation. If no conformance
statement is provided, it shall be assumed that the tool is fully compliant. It is therefore preferable
to supply a conformance statement; otherwise, any unsupported feature allows the tool to be
rejected as not valid. While it is suggested that tools provide a suitable notation, conformance to any
particular notation is not a requirement.

A compliant tool is a tool that is able to detect non-conformance of a model. If the tool handles a
superset of SDL-UML, it is allowed to categorize non-conformance as a warning rather than a
failure. It is required that for those 'Language Units' (see the UML specification [OMG UML]
clause 2, Conformance) handled by the tool, a compliant tool conforms to the metamodel defined
by this profile combined with the UML specification [OMG UML] and the mapping of those
'Language Units' to the SDL-2010 abstract grammar as defined by this Recommendation.

A fully compliant tool is a compliant tool that supports the complete profile defined by this
Recommendation.

2 Rec. ITU-T Z.109 (04/2012)

A valid tool is a compliant tool that supports a subset of the profile. A valid tool should include
enough of the profile for useful modelling to be done. The subset shall enable the implementation of
structured applications with communicating extended finite state machines.

1.2 Restrictions on SDL-2010 and UML

There are no restrictions on SDL-2010. However, SDL-2010 is only partially covered by
SDL-UML.

A general restriction on SDL-UML is that only the metamodel elements defined in this profile
ensure a one-to-one mapping. In a combined use of UML and SDL-2010, more parts of UML are
usable, but the mapping of these cannot be guaranteed to work the same with different tools.

This profile focuses on the following clauses of the UML Superstructure specification:

– Classes;

– Composite structures;

– Common behaviours;

– Actions;

– Activities;

– State machines.

Metamodel elements defined in these clauses are included in this profile if they are specifically
mentioned in this Recommendation. Any metamodel element of the UML Superstructure
specification that is not mentioned in this Recommendation is not included in this profile. A
metamodel element that is a generalization of one of the included metamodel elements (that is, it is
inherited) is included as part of the definition of the included metamodel element. Other
specializations of such a generalization are only included if they are also specifically mentioned. If
an included metamodel element has a property that is allowed to be non-empty, the metamodel
element for the property is included. However, if the property is constrained so that it is always
empty, such a property is effectively deleted from the model and therefore does not imply the
metamodel element for the property is included.

Metamodel elements introduced in the following clauses of the UML Superstructure specification
are not included in this profile:

– Components;

– Deployments;

– Use cases;

– Interactions;

– Auxiliary constructs;

– Profiles.

1.3 Mapping

UML classes generally represent entity types of SDL-2010. In most cases, the entity kind is
represented by a stereotype. Where predefined model-elements or stereotypes or notation exist in
UML that have a similar meaning as in SDL-2010, they have been used.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the

 Rec. ITU-T Z.109 (04/2012) 3

most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Z.100] Recommendation ITU-T Z.100 (2011), Specification and Description Language –
Overview of SDL-2010.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2011), Specification and Description Language –
Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2011), Specification and Description Language –
Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2011), Specification and Description Language –
Shorthand notation and annotation in SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2011), Specification and Description Language –
Data and action language in SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2012), Specification and Description Language –
Object-oriented data in SDL-2010.

[ITU-T Z.119] Recommendation ITU-T Z.119 (2007), Guidelines for UML profile design.

[OMG UML] OMG. OMG Unified Modeling Language (OMG UML), Superstructure. Version
2.4.1, document no. formal/2011-08-06.
<http://www.omg.org/spec/UML/2.4.1/Superstructure>

NOTE – This Recommendation references specific paragraphs of [ITU-T Z.101], [ITU-T Z.102],
[ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.107] and [OMG UML]. The specific paragraph references are only
valid for the editions specifically referenced above. If a more recent edition of [ITU-T Z.101],
[ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104] and [ITU-T Z.107] or [OMG UML] is used, it is possible that
the corresponding paragraph number or paragraph heading is different.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere: the terms and definitions given
in [ITU-T Z.100] apply.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms, which apply if they are also defined elsewhere:

3.2.1 compliant tool: A tool that is able to detect non-conformance of a model to the profile
defined by this Recommendation.

3.2.2 direct container: A is the direct container of B (B is directly contained in A; A directly
contains B), if A contains B and there is no intermediate C that contains B such that C is contained
in A.

3.2.3 fully compliant tool: A compliant tool that supports the complete profile defined by this
Recommendation.

3.2.4 type conformance: The UML type conformance (applied by "conforms to") is as defined
in clause 7.3.8 Classifier of [UML-SS], and corresponds to SDL-2010 sort compatibility as defined
in clause 12.1.9 of [ITU-T Z.104].

3.2.5 valid tool: A compliant tool that supports a subset of the profile defined by this
Recommendation where the subset enables the definition of models containing structured
applications with communicating extended finite state machines.

4 Rec. ITU-T Z.109 (04/2012)

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

SDL-2010 Specification and Description Language 2010, particularly as it relates to the relevant
ITU-T Z.100 series Recommendations for the term.

SDL-UML The language defined by the UML profile in this Recommendation.

UML Unified Modeling Language 2.0 (see [OMG UML]).

UML-SS OMG UML-2.4 Superstructure Specification (see [OMG UML]).

5 Conventions and names

This clause defines conventions used throughout the rest of this Recommendation and the general
handling of name resolution and template expansion that apply for the whole metamodel.

5.1 Conventions

The conventions defined in [ITU-T Z.119] apply. For convenience, these conventions are repeated
below.

A term in this Recommendation is a sequence of printing characters usually being either an English
word or a concatenation of English words that indicate the meaning of the term.

A term preceded by the word "stereotype" names a UML stereotype used for this profile, according
to the stereotype concept defined in the UML Superstructure specification documentation (usually
in a phrase "The stereotype X extends the metaclass X" where X is a term). If the multiplicity of the
stereotype is [1..1], the stereotype is required (that is, the derived attribute isRequired of the
Extension association between the extended metaclass and the stereotype is true). If the multiplicity
of the stereotype is [0..1], the stereotype is not required.

New metaclasses are also introduced in this Recommendation (usually by a phrase such as "The
abstract metaclass SdlExpression is a specialization of the UML metaclass ValueSpecification").

Some stereotypes and metaclasses are introduced only to define common elements shared between
different metaclasses based on them and an instance of the base stereotype or metaclass is not
allowed: in UML terminology the stereotype or metaclass is abstract and this is stated in the
definition of the stereotype or metaclass.

An underlined term refers to a UML term or a term defined by a stereotype of this profile. A term
starting with a capital letter by convention is the name of a metaclass.

A term is not underlined at the point at which it is introduced (for example, "X" in "The stereotype
X extends the metaclass X", or SdlExpression in the phrase given above). Also in an attribute
definition, neither the name or kind of the attribute is underlined, because the name is a defining
occurrence and use of the kind as a term is obvious from context.

If a stereotype is required and has the same name as the metaclass it extends, the underlined term
refers to both the metaclass and the stereotype. For example, "The visibility of the NamedElement
shall not be package" means the same as the constraint: "The visibility of the <<NamedElement>>
NamedElement shall not be package".

A term in italic in a stereotype or metaclass description refers to an SDL-2010 abstract syntax item.

A term in Courier font refers to some text that appears in the model either as written by a user or to
represent some text created from the expansion of a shorthand notation (as outlined in clause 5.3,
Transformation, below and in detail for the relevant construct).

The terms "supertype" and "subtype" are widely used in this Recommendation, SDL-2010
Recommendations and UML-SS and it is assumed that they are well understood. When the term

 Rec. ITU-T Z.109 (04/2012) 5

"supertype" is used in relation to the metamodel in this Recommendation, for Classifier (and
metaclasses or stereotypes derived from Classifier) supertype corresponds to the general property of
the Classifier. For a Class (and metaclasses or stereotypes derived from Class) supertype
corresponds to the superClass property of the Class (which redefines general from Classifier). The
term "subtype" is the inverse of "supertype": if A is a supertype of B, B is a subtype of A.

The metamodel diagrams in this Recommendation are informative overviews rather than normative.

5.1.1 References

UML-SS [OMG UML]:

 6.3 The UML Metamodel

 18.3.9 Stereotype (from Profiles)

5.2 Names and name resolution: NamedElement

The stereotype NamedElement extends the metaclass NamedElement with multiplicity [1..1].

NOTE – Names are resolved according to the UML name binding rules. However, there are constraints
applied to names that are mapped to the SDL-2010 abstract syntax.

5.2.1 Attributes

No additional attributes are defined.

5.2.2 Constraints

[1] Any item that inherits from NamedElement and maps to SDL-2010 abstract syntax
requiring a Name shall have a name. Any such name shall have a non-empty String value
of characters derived from the syntax as defined in the Notation clause below.

[2] When a complete SDL-UML model maps to the SDL-2010 abstract syntax, no item shall
have the same Name as another item of the same entity kind in the same defining context.

 NOTE – It is always possible to modify a UML model to meet the above naming requirement by
renaming elements that generate name clashes so that the UML model is a valid SDL-UML model
for this profile.

[3] A NamedElement shall have a visibility and qualifiedName.

[4] The visibility of the NamedElement shall not be package.

[5] The visibility of the NamedElement (or of any item derived from it) shall be protected or
private only if the NamedElement is an operation (including a literal) of a data type.

5.2.3 Semantics

The characters of the String for a name are each of the characters of the <name> taken in order.

Whenever a Name is required in the SDL-2010 abstract syntax (usually for the definition of an
item), the Name is mapped from the name of the appropriate item derived from NamedElement.
Whenever an Identifier is required in the SDL-2010 abstract syntax (usually to identify to a defined
item), the Identifier is mapped from the name of the appropriate item derived from NamedElement.
The detail of these mappings is described in the following paragraphs.

When a name maps to a Name, the String value of the name maps to the Token and if two items
have a distinct String value each item maps a different Token. If two items have the same Token
for their Name, they have the same String value for their name. If two items have the same String
value for their name, they have the same Token for their Name, except if two UML elements are
distinguishable by some additional means (such as distinct signatures of operations with the same
name and same type in the same namespace). In such exceptional cases, each name maps to a
different unique Token.

6 Rec. ITU-T Z.109 (04/2012)

When the SDL-2010 abstract syntax requires an Identifier, the String value of the qualifiedName
is used. A qualifiedName is a derived attribute that allows the NamedElement to be identified in a
hierarchy. The Qualifier of the Identifier is a Path-item list that specifies uniquely the defining
context of the identified entity and is derived from the qualifiedName. Starting at the root of the
hierarchy, each name and class pair of the containing namespaces maps to the corresponding
qualifier (Package-qualifier, Agent-qualifier, etc.) and name (Package-name, Agent-name, etc.
respectively) pair. This mapping excludes the name of the NamedElement itself, which maps to the
Name of the Identifier.

NOTE 1 – In SDL-2010 the Qualifier is usually derived by name resolution and context, and Identifier is
usually represented in the concrete syntax by an SDL-2010 <name> and the SDL-2010 qualifier part of an
SDL-2010 <identifier> is omitted. Even in cases where an SDL-2010 qualifier needs to be given, usually
some parts of the SDL-2010 qualifier are optional, so that a full context does not have to be given. Similarly
in UML, qualifiedName is usually derived, and is not given explicitly in the concrete syntax. Thus in both
UML and SDL-2010 an item is usually identified in the concrete syntax simply by a name, whereas in the
metamodel and SDL-2010 abstract syntax the item will be identifed by a qualifiedName and Identifier
respectively.

NOTE 2 – The visibility of a Package contained in another Package or a Class or other entity contained in a
Package is handled by name resolution.

5.2.4 Notation

<name> ::=
 <underline>+ <word> {<underline>+ <word>}* <underline>*
 | <word> <underline>+ [<word>{<underline>+ <word>}* <underline>*]
 | <decimal digit>* <letter> <alphanumeric>*

NOTE – The syntax given for <name> assumes a one-to-one mapping between a <name> and an SDL-2010
<name> that has the same Token. The characters normally allowed in an SDL-2010 <name> are defined by
Recommendation [b-ITU-T T.50]: uppercase letters A (Latin capital letter A) to Z (Latin capital letter Z);
lowercase letters a (Latin small letter a) to z (Latin small letter z); decimal digits 0 (Digit zero) to 9 (Digit
nine) and underline. The above syntax for <name> requires a name to include at least one underline (first
2 alternatives of <name>) or at least one <letter>. The ITU-T T.50 characters do not occur in the abstract
grammar, therefore for alphabets and characters other than the Latin alphabet in Recommendation
[b-ITU-T T.50] there just has to be a consistent mapping of name in an extended alphabet to a Name.
Because the notation is a guideline and not mandatory, it is permitted to extend the syntax of <name> for this
case.

<word> ::=
 <alphanumeric>+

<alphanumeric> ::=
 <letter>
 | <decimal digit>

<letter> ::=
 <uppercase letter> | <lowercase letter>

<uppercase letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M
 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lowercase letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

When a <name> occurs in syntax that defines a name, the qualifiedName is derived from the
defining context. Otherwise, a name shall be bound according to the UML name binding rules and
if necessary the name is qualified by containing namespaces.

 Rec. ITU-T Z.109 (04/2012) 7

It is suggested to use the SDL-2010 syntax for <identifier> in [ITU-T Z.101] for specifying
optionally qualified names.

An alternative suggestion is to use the following UML-like syntax for <identifier> for specifying
optionally qualified names.

<identifier> ::=
 [<containing namespaces>] <name>

<containing namespaces> ::=
 [<name separator>] { <name> <name separator> }+

<name separator> ::=
 <colon> <colon>

<colon> ::= :

In this case, if the <name> of an <identifier> is not unique and is ambiguous in the context where
the <identifier> occurs, it is disambiguated by adding a <containing namespaces> item that contains
one or more <name> elements. In the absence of an initial <name separator>, the right-most
<name> elements in the <containing namespaces> have to unambiguously identify a context where
the <name> of the <identifier> is defined. If the context is not identified unambiguously by the
right-most <name> elements in the <containing namespaces>, further <name> elements are added
until the context is unambiguous. If the initial <name separator> is given, the left-most name is a
name defined at the top level of the model.

5.2.5 References

SDL-2010 [ITU-T Z.101]:

 6.1 Lexical rules

 6.6 Names and identifiers, name resolution and visibility

UML-SS [OMG UML]:

 7.3.34 NamedElement (from Kernel, Dependencies)

 7.3.44 PrimitiveType (from Kernel)

5.3 Transformation

The SDL-2010 abstract syntax of a model is generated from a concrete grammar (as defined outside
the scope of this Recommendation) of an SDL-UML model by the following process.

The model is parsed according to the concrete grammar defined for SDL-UML. Where the concrete
grammar defines shorthand notations, these are expanded during the parsing process before the
corresponding metamodel items are generated.

NOTE – The transformations that are applied to expand shorthand notations of the concrete grammar are
intended to be the same as the models defined for the corresponding shorthand notation in SDL-2010. For
example, an SDL-2010 remote procedure call is expanded into an exchange of implicit signals, and an
SDL-UML remote operation call is similarly expanded into an exchange of signals.

To determine whether a model written in a concrete grammar is valid requires all uses of names to
be resolved, but names are resolved according to the SDL-UML metamodel. It is, therefore, not
possible to parse the model as represented in the concrete grammar independently of generating the
metamodel.

Apart from name resolution, instances of metamodel elements are generated from the concrete
grammar of an SDL-UML model according to the relationship between the concrete grammar and
the metamodel. If the resultant model (expressed in terms of instances of metamodel elements) does
not conform to the abstract grammar of SDL-UML, that model is not valid.

8 Rec. ITU-T Z.109 (04/2012)

Conformance to the rules of the abstract grammar of SDL-UML is a necessary (but not sufficient)
condition for an SDL-UML model to be a valid model.

The model expressed in terms of instances of SDL-UML metamodel elements maps to a model
expressed in the abstract grammar of SDL-2010. The behaviour of this resultant model is
determined by the semantics of SDL-2010. Any static semantic constraints of SDL-2010 are
reflected in constraints of the SDL-UML metamodel. To obtain the dynamic behaviour of the
resultant model, this model is interpreted according to the dynamic semantics of SDL-2010. The
model is not valid if violation of a dynamic constraint of SDL-2010 is possible during interpretation
of the model expressed in the abstract grammar of SDL-2010.

6 Summary of stereotypes and metaclasses

6.1 Stereotype summary

The following table gives a summary of the stereotypes defined in this profile with the
UML metaclass each stereotype extends and if the stereotype is abstract.

Stereotype
Stereotyped

metaclass
Stereotype

abstract

ActiveClass Class

Activity Activity

ActivityFinalNode ActivityFinalNode abstract

AddStructuralFeatureValueAction AddStructuralFeatureValueAction

AddVariableValueAction AddVariableValueAction

Break OpaqueAction

CallOperationAction CallOperationAction

ChoiceType Class

Classifier Classifier

ConditionalNode ConditionalNode

Connector Connector

Continue OpaqueAction

CreateObjectAction CreateObjectAction

DataTypeDefinition Class

ExpressionAction ValueSpecificationAction

FinalState FinalState

Interface Interface

LiteralType Class

LoopNode LoopNode

OpaqueAction OpaqueAction abstract

Operation Operation

Package Package

Parameter Parameter

Port Port

Property Property

Pseudostate Pseudostate

 Rec. ITU-T Z.109 (04/2012) 9

Stereotype
Stereotyped

metaclass
Stereotype

abstract

Region Region

ResetAction SendSignalAction

Return ActivityFinalNode

SendSignalAction SendSignalAction

SequenceNode SequenceNode

SetAction SendSignalAction

Signal Signal

Specification Model

State State

StateMachine StateMachine

Stop ActivityFinalNode

StructureType Class

Syntype Class

Timer Signal

Transition Transition

TimerConstraint OpaqueExpression

Variable Variable

6.2 Metaclass summary

The following tables give a summary of metaclasses defined in this profile for representing
SDL-2010 expressions and context parameters. In general, the introduced metaclasses are
specializations of the UML metaclass ValueSpecification (see clause 7.3.55 of [OMG UML]) or of
the metaclass Element (see clause 7.3.14 of [OMG UML]). For the metamodel diagrams, semantics
and associated constraints of metaclasses to represent SDL-2010 expressions see clause 10. For the
metamodel diagrams, semantics and associated constraints of metaclasses to represent context
parameters see clause 11.

If an introduced metaclass is a direct subtype of the metaclass ValueSpecification or the metaclass
Element, this is indicated in the second column of the table. The third column indicates if the
metaclass is for SDL-2010 expressions or if it is for context parameters. The fourth column
indicates if the metaclass is abstract.

Metaclass
Specialized UML

metaclass
Represents Abstract

metaclass

ActiveAgentsExpression – SDL-2010
expressions

ActualContextParameter Element Context parameters

AgentContextParameter – Context parameters

AgentTypeContextParameter – Context parameters

AnyExpression – SDL-2010
expressions

ClosedRange – SDL-2010
expressions

10 Rec. ITU-T Z.109 (04/2012)

Metaclass
Specialized UML

metaclass
Represents Abstract

metaclass

CompositeStateTypeContextParameter – Context parameters

ConditionalExpression – SDL-2010
expressions

ConditionItem ValueSpecification SDL-2010
expressions

abstract

EqualityExpression – SDL-2010
expressions

FormalContextParameter Element Context parameters abstract

GateConstraint Element Context parameters

GateContextParameter – Context parameters

ImperativeExpression – SDL-2010
expressions

abstract

InterfaceContextParameter – Context parameters

LiteralValue – SDL-2010
expressions

NowExpression – SDL-2010
expressions

OpenRange – SDL-2010
expressions

OperationApplication – SDL-2010
expressions

PidExpression – SDL-2010
expressions

ProcedureContextParameter – Context parameters

RangeCheckExpression – SDL-2010
expressions

RangeCondition ValueSpecification SDL-2010
expressions

SdlExpression ValueSpecification SDL-2010
expressions

abstract

SignalContextParameter – Context parameters

SizeConstraint – SDL-2010
expressions

SortContextParameter – Context parameters

StateExpression – SDL-2010
expressions

SynonymContextParameter – Context parameters

TimerActiveExpression – SDL-2010
expressions

TimerContextParameter – Context parameters

TimerRemainingDuration – SDL-2010
expressions

 Rec. ITU-T Z.109 (04/2012) 11

Metaclass
Specialized UML

metaclass
Represents Abstract

metaclass

TypeCheckExpression – SDL-2010
expressions

TypeCoercion – SDL-2010
expressions

ValueReturningCallNode – SDL-2010
expressions

VariableAccess – SDL-2010
expressions

VariableContextParameter – Context parameters

7 Structure

The stereotypes below define static structural aspects of an SDL-UML model.

The following packages from UML are included:

– Communications

– Constructs (from Infrastructure library)

– Dependencies

– Interfaces

– InternalStructures

– Models

– Kernel

– Ports.

The following metaclasses from UML are included:

– Class

– Connector

– Interface

– Model

– Operation

– Package

– Parameter

– Port

– Property

– Signal.

The metaclass ValueSpecification is included in clause 10.

12 Rec. ITU-T Z.109 (04/2012)

7.1 Structure metamodel diagrams

Figure 7-1 – Structure stereotypes

 Rec. ITU-T Z.109 (04/2012) 13

Figure 7-2 – Data type stereotypes

7.2 ActiveClass

The stereotype ActiveClass extends the metaclass Class with multiplicity [0..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

The concept of an active class (a class with isActive true) is separated from a data type definition (a
Class with isActive false) to distinguish the classes for executable agents that map onto SDL-2010
agent types.

Specialization: A specializing active class A2 is able to add attributes, port, operations, behaviour
specifications and nested classifiers to those inherited from its supertype A1 (see clause 8.4.1 in
[ITU-T Z.102]).

Redefinition: If a classifier C2 specializes a more general supertype C1, an enclosed active class EA
of C2 is able to redefine an active class EA that is specified in C1.

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the
common constraints and semantics see clause 7.4.

7.2.1 Attributes

• isConcurrent: Boolean

 defines the concurrency semantics of an active class. If isConcurrent is false, all
contained instances execute interleaved. If isConcurrent is true, contained instances
execute concurrently, provided they are not also contained in an instance for which
isConcurrent is false.

7.2.2 Constraints

[1] An <<ActiveClass>> Class shall have isActive true.

[2] The clientDependency shall not include an InterfaceRealization, because interfaces are not
realized directly but only via ports.

[3] If isConcurrent is false, the isConcurrent property of any contained instance shall be false.

[4] If the <<ActiveClass>> Class has a classifierBehavior, it shall be a StateMachine.

[5] If an <<ActiveClass>> Class has a classifierBehavior and it has a superClass that also has a
classifierBehavior, the StateMachine of the subclass shall redefine the StateMachine of the
superClass.

 NOTE 1 – The reason is that in SDL-2010 the state machines of agents automatically extend each
other, whereas they do not in UML.

14 Rec. ITU-T Z.109 (04/2012)

[6] An ownedAttribute that has a type that is an <<ActiveClass>> Class and where
aggregationKind composite shall not have public visibility.

 NOTE 2 – An agent instance set cannot be made visible outside the enclosing agent type.

[7] A nestedClassifier shall not have public visibility.

 NOTE 3 – An agent type, data type, interface type or signal definition cannot be made visible
outside the enclosing agent type.

[8] An ownedConnector shall not have public visibility.

 NOTE 4 – A channel cannot be made visible outside the enclosing agent type that owns the
channel.

[9] An ownedPort shall have public visibility.

 NOTE 5 – Gates are visible outside the enclosing agent type.

[10] An ownedBehavior shall not have public visibility.

 NOTE 6 – A procedure or composite state type cannot be made visible outside the enclosing agent
type.

[11] An ownedBehavior shall be a set of StateMachine items (one or more).

The following constraints shall apply, when the isConcurrent property of an <<ActiveClass>> Class
is true and the owner is a <<Specification>> Model (indicating a system agent type):

[12] There shall be at least one ownedAttribute that has a type that is an <<ActiveClass>> Class
or the classifierBehavior shall not be empty.

[13] The superClass property shall be empty.

[14] The redefinedClassifier shall be empty.

[15] If present, the formalContextParameterList shall not contain items that are of kind
AgentContextParameter, VariableContextParameter or TimerContextParameter.

7.2.3 Semantics

An <<ActiveClass>> Class maps to an Agent-type-definition.

The name of the <<ActiveClass>> Class maps to the Agent-type-name of the Agent-type-definition.

The isConcurrent attribute maps to the Agent-kind of the Agent-type-definition. If isConcurrent is
true and the owner is a <<Specification>> Model, the <<ActiveClass>> Class maps to an Agent-
type-definition with an Agent-kind SYSTEM. If isConcurrent is true and the owner is not a
<<Specification>> Model, the Agent-kind is a BLOCK; otherwise (isConcurrent false) the Agent-
kind is a PROCESS.

NOTE 1 – The concurrency behaviour is that state machines within a PROCESS instance (for the instance
itself and contained PROCESS instances) are interleaved, and agent instances directly contained within a
BLOCK (even multiple instances of the same PROCESS) are logically concurrent. Actual concurrency
depends on implementation constraints such as the number of execution engines.

If the isAbstract property is true, the optional Abstract node in the abstract syntax of an Agent-type-
definition is present.

The qualifiedName of the optional general property maps to the Agent-type-identifier of the Agent-
type-definition that represents inheritance in the SDL-2010 abstract syntax.

If the redefinedClassifier property is not empty, this is an implicit generalization of another
<<ActiveClass>> Class. In this case, the qualifiedName of the redefinedClassifier maps to the
Agent-type-identifier of the Agent-type-definition.

The nestedClassifier, ownedAttribute, ownedConnector, ownedPort and ownedBehavior
associations map to the rest of the contents of the Agent-type-definition as described below.

 Rec. ITU-T Z.109 (04/2012) 15

 Mappings of nested classifiers

A nestedClassifier that is an <<ActiveClass>> Class maps to an element of the Agent-type-
definition-set of the Agent-type-definition.

A nestedClassifier that is a <<DataTypeDefinition>> Class maps to a Value-data-type-definition
that is an element of the Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is an Interface maps to an Interface-type-definition that is an element of the
Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is a Signal maps to a Signal-definition that is an element of the Signal-
definition-set of the Agent-type-definition.

 Mappings of owned attributes

An ownedAttribute is a Property. The mapping defined in clause 7.13, applies.

An ownedAttribute that maps to a Variable-definition (see clause 7.13) is an element of the
Variable-definition-set of the Agent-type-definition. An ownedAttribute that is visible outside the
<<ActiveClass>> Class (public visibility) and that has a type that is a <<DataTypeDefinition>>
Class or <<Interface>> Interface is the Variable-definition for an exported variable and also maps
to an implicit Signal-definition pair for accessing this exported variable in the defining context of
the Agent-type-definition.

An ownedAttribute that maps to an Agent-definition (see clause 7.13) is an element of the Agent-
definition-set of the Agent-type-definition.

 Mappings of connectors and ports

Each Connector of the ownedConnector maps to an element of the Channel-definition-set of the
Agent-type-definition.

Each Port of the ownedPort maps to an element of the Gate-definition-set of the Agent-type-
definition.

 Mappings of ownedBehavior

Each Behavior of the ownedBehavior maps to an element of either the Composite-state-type-
definition-set or the Procedure-definition-set. If the owned Behavior is the method of an Operation,
it is an element of the Procedure-definition-set; otherwise it is an element of the Composite-state-
type-definition-set.

The StateMachine that is the Behavior of the optional classifierBehavior maps to the State-machine-
definition of the Agent-type-definition (see clause 8.6). The name of the optional classifierBehavior
maps to the State-name of the State-machine-definition. The Composite-state-type-identifier of this
State-machine-definition identifies the Composite-state-type derived from the StateMachine that is
the classifierBehavior.

NOTE 2 – The UML StateMachine maps to the behaviour of an SDL-2010 composite state type, and the
State-machine-definition references this behaviour.

The ownedParameter set of the <<StateMachine>> StateMachine that is the classifierBehavior
maps to the Agent-formal-parameter list of the Agent-type-definition. The specific mappings are
defined in clause 7.11.

NOTE 3 – It is a semantic variation in UML-SS whether one or more behaviours are triggered when an event
satisfies multiple outstanding triggers.

NOTE 4 – It is currently not allowed to give actual parameter value to a formal parameter of an agent (see
clause 9.10).

An event satisfies only one trigger (a signal initiates only one input transition).

16 Rec. ITU-T Z.109 (04/2012)

NOTE 5 – In UML-SS, ordering of the events in the input pool and therefore the selection of the next event
to be considered is a semantic variation.

At any specific wait point (that is, in a specific state), events for a trigger of higher priority are
considered before those of triggers of lower priority. Within a given trigger priority, the events in
the input pool are considered in the order of arrival in the input pool; therefore if all triggers have
the same priority, the events are considered in order of arrival. If an event in the input pool of
events satisfies no triggers at a wait point, it is left in the input pool if it is deferred at that wait
point, or (if it is not deferred) it is consumed triggering an empty transition leading to the same wait
point.

7.2.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.1 Structural type definitions

 8.1.3 Abstract type

 8.2 Type references and operation references

 8.4 Specialization

UML-SS [OMG UML]:

 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 13.3.8 Class (from Communications)

7.3 ChoiceType

The ChoiceType stereotype is a subtype of the <<DataTypeDefinition>> Class. The metamodel
diagram for the stereotype is defined in Figure 7-2.

The <<ChoiceType>> Class corresponds to an SDL-2010 choice data type and it maps to a Value-
data-type-definition. A choice data type comprises a set of different data types, but only one of
those types is used as the actual type for a value for any given assignment or subsequent access. In
SDL-UML, the ownedAttribute items of a <<ChoiceType>> Class represent the different variants
of a choice type.

Specialization and redefinition for choice types is not supported in SDL-2010.

7.3.1 Attributes

No additional attributes.

7.3.2 Constraints

[1] The ownedAttribute shall not be empty.

[2] An ownedAttribute shall have a type that is a <<DataTypeDefinition>> Class (or one of its
subtypes) or <<Interface>> Interface.

[3] A Property that is an ownedAttribute item shall have a multiplicity of [0..1].

[4] The general and redefinedClassifer properties shall be empty.

 Rec. ITU-T Z.109 (04/2012) 17

7.3.3 Semantics

A <<ChoiceType>> Class represents a choice data type of the concrete grammar of SDL-2010 and
it maps to a Value-data-type-definition. Before the mapping is carried out, the transformation as
specified in clause 12.1.6.3 of [ITU-T Z.101] shall be applied.

In addition, the mappings specified in the context of the <<DataTypeDefinition>> Class
(clause 7.6) apply.

7.3.4 References

SDL-2010 [ITU-T Z.101]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.1.6.3 Choice data types

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.4 Classifier

The stereotype Classifier extends the metaclass Classifier with multiplicity [1..1]. The metamodel
diagram is defined in Figure 7-1.

A <<Classifier>> Classifier represents the SDL-2010 concepts for specialization and redefinition of
type definitions. In addition, this stereotype introduces support for SDL-2010 context parameters,
which are used instead of UML templates in order to specify generic type definitions (see
clause 11).

Hence, the <<Classifier>> Classifier defines a common set of constraints, which also apply to
metaclasses that inherit from the Classifier metaclass. In particular, the following metaclasses,
which are relevant for SDL-UML, directly or indirectly inherit from Classifier:

• Class

• Signal

• Interface

• StateMachine

• Activity.

In general, each stereotype that extends one of the metaclasses listed above defines the specific
semantics for specialization and redefinition. The common mechanisms of both concepts are
described in the following paragraphs.

Specialization: A Classifier C2 that specializes another Classifier C1 is able to add particular kinds
of features to those inherited from its superClass C1 (see clause 8.4.1 in [ITU-T Z.102]). The kinds
of features that it is possible to add to a Classifier depend on the stereotype applied to a specific
Classifier instance. Hence, the semantics is defined in the scope of the relevant stereotypes.

NOTE 1 – The SDL-2010 concept of renaming is not supported in SDL-UML.

Redefinition: If a Classifier C2 specializes a more general superClass C1, an enclosed classifier EC
of C2 is able to redefine (see clause 7.3.47 [OMG UML]) the Classifier EC, which is specified in C1.
In SDL-2010, this corresponds to the redefinition of virtual types (see clause 8.4.2 in
[ITU-T Z.102]). The redefined Classifier EC of C1 corresponds to an SDL-2010 type that is denoted
as 'virtual'. The redefining Classifier EC of C2 represents a 'redefined' type of SDL-2010. When the
isLeaf property of a Classifier is true, this corresponds to an SDL-2010 type denoted as 'finalized'
and therefore this Classifier is no longer redefinable.

18 Rec. ITU-T Z.109 (04/2012)

NOTE 2 – The redefinition of a classifier EC of C1 by a classifier EC of C2 implies that EC of C2 is an implicit
specialization of EC of C1.

NOTE 3 – The SDL-2010 concept of virtuality constraints is not supported in SDL-UML.

NOTE 4 – Parameterized types: Each actual context parameter in the actualContextParameterList
corresponds, by position, to a formal context parameter in the formalContextParameterList of the supertype.

7.4.1 Attributes

• formalContextParameterList: FormalContextParameter [0..*] {ordered}

 specifies the formal context parameters of a data type definition (see clause 11.6).

• actualContextParameterList: ActualContextParameter [0..*] {ordered}

 specifies the actual context parameters of a data type definition (see clause 11.2).

NOTE – An SdlExpression represents an actual synonym context parameter. A variable access expression
has to be used in order to access a synonym context parameter.

7.4.2 Constraints

[1] Except for <<Interface>> Interface, the general property of a Classifier shall contain at
most one element.

 NOTE 1 – Except for an interface definition, multiple inheritances are not allowed for SDL-2010
type definitions.

[2] A Classifier that is a subtype and its more general supertype shall have the same kind of
stereotype applied.

[3] Multiple redefinitions are not allowed, so there shall be at most one element in the
redefinedClassifier property of a Classifier.

[4] A Classifier and its redefinedClassifier shall have the same name.

 NOTE 2 – In SDL-2010, redefined types have the same name as the original type.

[5] A Classifier and its redefinedClassifier shall have the same kind of stereotype applied.

[6] If the redefinedClassifier property is not empty, the general property shall be absent.

 NOTE 3 – When a Classifier A in context AB is a redefinition of another Classifier A in context AA,
this implies an implicit generalization so that A in context AB is a subtype of A in context AA.

[7] The actualContextParameterList and formalContextParameterList shall be empty except in
the stereotypes <<DataTypeDefinition>> Class, <<Interface>> Interface, <<ActiveClass>>
Class, <<StateMachine>> StateMachine or <<Signal>> Signal.

 NOTE 4 – The SDL-2010 concept of context parameters is applicable only for agent type
definitions, state type definitions, procedure definitions, signal definitions or data type definitions.

[8] The number of actualContextParameterList items shall be less than or equal to the number
of formalContextParameterList items in the supertype.

7.4.3 Semantics

 Specialization and redefinition

The stereotypes for metaclasses that inherit from Classifier define the semantics of redefinition and
specialization.

NOTE – The set of features inherited by a subtype are derived from the inheritedMember property of that
subtype.

 Rec. ITU-T Z.109 (04/2012) 19

 Parameterized types

A parameterized type is a type that has at least one formalContextParameterList item or has a
supertype with at least one formalContextParameterList item and less actualContextParameterList
items than the number of formalContextParameterList items in the supertype. A parameterized type
has isAbstract true.

NOTE – An SDL-2010 type with unbound formal parameters is abstract (see clause 8.1.3 of [ITU-T Z.102]).

A Classifier with an actualContextParameterList is an anonymous type (it has an anonymous unique
name) that is defined by applying the actual context parameters to the parameterized supertype as
specified in clause 8.1.2 of [ITU-T Z.102]. This anonymous type is then used as type in the context
where the actual context parameters are given to the parameterized supertype, for example, as the
supertype for inheritance in a type definition. If the Classifier is a parameterized type, it does not
have a mapping to the SDL-2010 abstract grammar. Otherwise (that is, all the formal context
parameters are bound) the resulting Classifier is mapped to the SDL-2010 abstract grammar in the
same manner as any other non-parameterized type.

7.4.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.1.3 Abstract type

 8.2 Type references and operation references

 8.3 Context parameters

 8.4 Specialization

 8.4.1 Adding properties

 8.4.2 Virtuality and virtual type

UML-SS [OMG UML]:

 7.3.8 Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)

 7.3.47 RedefinableElement (from Kernel)

7.5 Connector

The stereotype Connector extends the metaclass Connector with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

In UML-SS, Connector is a general concept for a communication link between two instances and
the mechanism for communication could be by parameter passing in variables or slots, via pointers
or some other means. In this profile Connector items only provide communication by signals, which
are identified by the information flows associated with the Connector and the Connector maps to a
Channel-definition.

7.5.1 Attributes

• delay: Boolean

 If true, the signals transported on the connector are potentially delayed. The default
value is true.

7.5.2 Constraints

[1] In the case of an InformationItem associated with an InformationFlow associated with a
Connector, the represented property of the InformationItem shall be a Signal or an
Operation or an Interface.

20 Rec. ITU-T Z.109 (04/2012)

[2] There shall always be exactly 2 end properties.

[3] A ConnectorEnd that is part of the end property shall have empty lowerValue and
upperValue properties.

[4] The role property of a ConnectorEnd that is part of the end property of the Connector shall
be a Port.

[5] The type property shall be empty.

[6] The redefinedConnector property shall be empty.

[7] The isStatic property shall be false.

[8] There shall be at least one InformationFlow associated with a Connector.

7.5.3 Semantics

A <<Connector>> Connector maps to a Channel-definition.

The name attribute defines the Channel-name.

If the delay attribute of a <<Connector>> Connector is false, this maps to NODELAY. Otherwise
the NODELAY is omitted.

An InformationFlow associated with a <<Connector>> Connector maps to an item in the Channel-
path-set of a Channel-definition as follows:

• The conveyed property of an InformationFlow defines the Signal-identifier-set of the
Channel-path.

• If the conveyed property is omitted, the Signal-identifier-set of a Channel-path is computed
based on the realizedInterface and requiredInterface of the Port items attached to the
Connector that is associated with the InformationFlow.

• If the conveyed property refers to an Interface, the Signal-identifier-set of a Channel-path is
computed according to the transformation rules of SDL-2010 (see clause 7.7).

• The informationSource and informationTarget properties of an InformationFlow map to the
Originating-gate and Destination-gate of a Channel-path. The Gate-identifier is derived
from the name of the Port given by the informationSource or the informationTarget
property.

NOTE 1 – InformationFlow in one direction only (with or without any InformationItem) implies that the
channel is unidirectional. InformationFlow in both directions (with or without any InformationItem) implies
that the channel is bidirectional.

NOTE 2 – If the partWithPort property of a ConnectorEnd is non-empty, Gate-identifier contains as its last
path-name (before the name of the gate) the name of the part identified with partWithPort.

7.5.4 References

SDL-2010 [ITU-T Z.101]:

 10.1 Channel

UML-SS [OMG UML]:

 9.3.6 Connector (from InternalStructures)

 9.3.7 ConnectorEnd (from InternalStructures, Ports)

 17.2 InformationFlows (from InformationFlows)

 Rec. ITU-T Z.109 (04/2012) 21

7.6 DataTypeDefinition

The stereotype DataTypeDefinition extends the metaclass Class with multiplicity [0..1]. The
metamodel diagram for the stereotype is defined in Figure 7-2. The concept of date type definition
(a class with isActive false) is separated from active class (a class with isActive true).

The <<DataTypeDefinition>> Class represents a Value-data-type-definition in the SDL-2010
abstract syntax. In particular, this stereotype introduces the features of redefinition and
specialization that are inherited by the subtypes of the <<DataTypeDefinition>> Class.

Specialization: A specializing data type D2 is able to add literals, fields, choice variants, context
parameters, and operations; and add default initializations or default assignments to those features
inherited from its supertype D1 (see clauses 8.4 in [ITU-T Z.102] and 12.1.9 in [ITU-T Z.104]). In
the case of parameterized data types (a data type definition with context parameters), a subtype is
allowed to add additional formal context parameters or to bind inherited formal context parameters
of its supertype to actual context parameters.

Redefinition: If a Classifier C2 specializes a more general superClass C1, an enclosed data type ED
of C2 is able to redefine a data type ED that is specified in C1.

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the
common constraints and semantics see clause 7.4.

Subtypes: The following subtypes are specified for the <<DataTypeDefinition>> Class:

• <<LiteralType>> Class that corresponds to types defined by a set of literal names.

• <<ChoiceType>> Class that corresponds to an SDL-2010 choice data type.

• <<StructureType>> Class that represents an SDL-2010 structure data type.

• <<Syntype>> Class that represents an SDL-2010 syntype definition.

7.6.1 Attributes

• isPredefined: Boolean

 if true, a data type definition represents one of the predefined data types. The default
value of the property is false.

• defaultValue: SdlExpression [0..1]

 a constant expression that defines the optional default initialization of a data type
definition.

NOTE 1 – The defaultValue maps to the Default-initialization of a Data-type-definition or Syntype-definition
of any otherwise un-initialized property of an active class or local variable definition within an activity (see
clause 12.3.3.2 of [ITU-T Z.101]).

NOTE 2 – Redefinition of a defaultValue occurs if both a subtype and an associated supertype have defined
a defaultValue. In this case, it is the defaultValue of the subtype that specifies the default initialization of the
subtype (see clause 12.3.3.2 of both [ITU-T Z.104] and [ITU-T Z.107]).

7.6.2 Constraints

[1] A <<DataTypeDefinition>> Class shall have isActive false.

[2] A <<DataTypeDefinition>> Class shall have no classifierBehavior.

[3] A nestedClassifier shall be a <<DataTypeDefinition>> Class (including its subtypes, e.g.,
<<LiteralType>>).

[4] An ownedAttribute where aggregation is composite shall have a type that is a
<<DataTypeDefinition>> Class (including its subtypes, e.g., <<LiteralType>>) or
<<Interface>> Interface.

[5] The ownedConnector, the ownedPort and the ownedTrigger properties shall be empty.

[6] Each ownedBehavior shall be an <<Activity>> Activity.

22 Rec. ITU-T Z.109 (04/2012)

[7] The ownedReception shall be empty.

[8] If only the stereotype <<DataTypeDefinition>> is applied, the ownedAttribute property of
a Class shall be empty.

[9] The isPredefined property shall only be true, when the <<DataTypeDefinition>> Class is
contained in the package Predefined.

 NOTE 1 – The predefined data types of SDL-UML are specified in clause 12.

[10] The defaultValue shall be an SdlExpression with isConstant true.

[11] If present, the formalContextParameterList shall only contain items that are of kind
SynonymContextParameter or SortContextParameter.

7.6.3 Semantics

A <<DataTypeDefinition>> Class that is not parameterized (or has all the formal context
parameters of its parameterized supertype bound – see below) maps to a Value-data-type-definition.
The name of the <<DataTypeDefinition>> Class maps to the Sort.

A nestedClassifier that is a <<DataTypeDefinition>> Class (except of <<Syntype>> Class) maps to
a Value-data-type-definition that is an element of the Data-type-definition-set.

A nestedClassifier that is a <<Syntype>> Class maps to a Syntype-definition and is an element of
the Syntype-definition-set.

An ownedBehavior maps to a Procedure-definition in the Procedure-definition-set of the Value-
data-type-definition.

The ownedOperation items are mapped to items in the Static-operation-signature-set of the Value-
data-type-definition.

The optional defaultValue maps to the Default-initialization of a Value-data-type-definition.

If the isAbstract property is true, the optional Abstract node in the abstract syntax of a Value-data-
type-definition is present.

The qualifiedName of the optional general property maps to the Data-type-identifier of the Value-
data-type-definition that represents inheritance in the SDL-2010 abstract syntax.

If the redefinedClassifier property is not empty, this is an implicit generalization of another
<<DataTypeDefinition>> Class. In this case, the qualifiedName of the redefinedClassifier maps to
the Data-type-identifier of the Value-data-type-definition.

 Model for inheritance of operations

For the inheritance of Operation items specified in a <<DataTypeDefinition>> Class that is a
supertype of a subtype, the rules specified in clause 12.1.9 of [ITU-T Z.104] apply.

NOTE – The set of operations or attributes inherited by a subtype is derived from the inheritedMember
property of that subtype.

7.6.4 References

SDL-2010 [ITU-T Z.101]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.3.3.2 Default initialization

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.1.3 Abstract type

 Rec. ITU-T Z.109 (04/2012) 23

 8.2 Type references and operation references

 8.4 Specialization

 8.4.2 Virtuality and virtual type

SDL-2010 [ITU-T Z.104]:

 12.1.9 Specialization of data types

 12.3.3.2 Default initialization

 14 Package Predefined

SDL-2010 [ITU-T Z.107]:

 12.3.3.2 Default initialization

UML-SS [OMG UML]:

 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 7.3.47 RedefinableElement (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 13.3.8 Class (from Communications)

7.7 Interface

The stereotype Interface extends the metaclass Interface with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

An interface defines public features that are used to communicate with an object. In SDL-UML,
these are signals, remote variables and remote procedures. Accesses to remote variables and calls of
remote procedures are signal exchanges in the SDL-2010 abstract grammar, so the components of
an SDL-UML interface map to signals in the corresponding Interface-definition.

Specialization: A specializing interface is able to add signals, remote procedures and remote
variables to those inherited from its supertypes. In contrast to value data type definitions, an
interface multiple-inheritance is allowed (see clauses 12.1.2 and 12.1.9 in [ITU-T Z.104]).

Redefinition: If an enclosing agent A2 (an active class) specializes a more general agent A1, an
enclosed interface EI of A2 is able to redefine an interface EI that is specified in A1.

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the
common constraints and semantics see clause 7.4.

7.7.1 Attributes

No additional attributes.

7.7.2 Constraints

[1] Each nestedClassifier shall be a Signal.

[2] The ownedReception property shall be empty.

[3] If the general property is not empty, each referenced element shall be an Interface.

24 Rec. ITU-T Z.109 (04/2012)

[4] If the redefinedInterface property is not empty, each referenced element shall be an
Interface.

[5] If present, the formalContextParameterList shall only contain items that are of kind
SignalContextParameter or SortContextParameter.

7.7.3 Semantics

An <<Interface>> Interface maps to an Interface-definition.

The name defines the Sort of the Interface-definition.

The general property defines the optional Data-type-identifier list that represents inheritance in the
SDL-2010 abstract syntax.

If the redefinedClassifier property is not empty, this is an implicit generalization of another
<<Interface>> Interface. In this case, the qualifiedName of the redefinedClassifier maps to the
Data-type-identifier of the Interface-definition.

The nestedClassifier, ownedAttribute, and ownedOperation properties define the rest of the contents
of the interface.

The ownedAttribute and ownedOperation properties are transformed to signals according to the
SDL-2010 rules for remote variables (see clause 10.6 of [ITU-T Z.102]) and remote procedures (see
clause 10.5 of [ITU-T Z.102]) and are thus mapped to Signal items in the Signal-definition-set of
the Interface-definition.

Each nestedClassifier property (each of which is a Signal, see constraints above) maps to an
element of the Signal-definition-set of the Interface-definition.

7.7.4 References

SDL-2010 [ITU-T Z.102]:

 8.4.2 Virtuality and virtual type

 10.5 Remote procedures

 10.6 Remote variables

SDL-2010 [ITU-T Z.104]:

 12.1.2 Interface definition

 12.1.9 Specialization of data types

UML-SS [OMG UML]:

 7.3.24 Interface (from Interfaces)

 13.3.15 Interface (from Communications)

7.8 LiteralType

The stereotype LiteralType is a subtype of the <<DataTypeDefinition>> Class. The metamodel
diagram for the stereotype is defined in Figure 7-2.

A <<LiteralType>> Class corresponds to an SDL-2010 literal data type and its owned attributes
represent the set of user-defined literals. A <<LiteralType>> Class maps to a Value-data-type-
definition in the SDL-2010 abstract syntax.

Specialization: When a literal type is specialized, the subtype is able to add additional literals (in
terms of ownedAttribute items) and operations.

 Rec. ITU-T Z.109 (04/2012) 25

7.8.1 Attributes

No additional attributes.

7.8.2 Constraints

[1] The ownedAttribute property shall not be empty.

[2] The owner and the type property of each ownedAttribute shall be equal.

 NOTE – In contrast to a choice type, which consists of different kinds of data types, each literal of a
literal type shall be of the same type.

[3] The literalValue property of an ownedAttribute, which is a <<Property>> Property, shall be
distinct from the literalValue property of every other ownedAttribute.

7.8.3 Semantics

For the mapping of a <<LiteralType>> Class to a Value-data-type-definition, the mappings defined
in clause 7.6 apply.

Each item of the ownedAttribute property of a <<LiteralType>> Class maps to a Literal-signature
in the Literal-signature-set of a Value-data-type-definition. The unique Literal-name is derived
from the name of the ownedAttribute plus the name of the enclosing <<LiteralType>> Class. The
literalValue maps to the Result of the Literal-signature.

NOTE – A <<LiteralType>> Class implies a set of Static-operation-signature items as specified in
clause 12.1.6.1 of [ITU-T Z.101].

7.8.4 References

SDL-2010 [ITU-T Z.101]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.1.6.1 Literals constructor

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.9 Operation

The stereotype Operation extends the metaclass Operation with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

An operation is a feature that determines how an object behaves. If the operation is contained in an
agent (that is, an <<ActiveClass>> Class), its method has to be a state machine (see clause 8.6) and
maps to a procedure. An operation contained in an interface is treated as a remote procedure.
Otherwise, the operation has to be an activity (see clause 9.2) and maps to an operation of the
SDL-2010 data type for the <<DataTypeDefinition>> Class that contains the operation.

7.9.1 Attributes

• isOperator: Boolean

 if true, the Operation of a data type definition represents an SDL-2010 operator;
otherwise it is an SDL-2010 method. The default value of the property is true.

7.9.2 Constraints

[1] If the owner of an <<Operation>> Operation is a <<DataTypeDefinition>> Class, the
method associated with the <<Operation>> Operation shall be an Activity.

26 Rec. ITU-T Z.109 (04/2012)

[2] If the owner of an <<Operation>> Operation is an <<ActiveClass>> Class, the method
associated with the <<Operation>> Operation shall be a StateMachine.

[3] Both the <<Operation>> Operation and the corresponding method shall be defined in the
scope of the same owner.

[4] The ownedParameter set of the <<Operation>> Operation shall be the same as the
ownedParameter set of the method implementing the operation.

[5] The raisedException shall be empty.

[6] If the isOperator property is true, the redefinedOperation property shall be empty.

 NOTE 1 – Redefinition is only allowed for an Operation that represents an SDL-2010 method of a
data type definition (see clause 12.1.3 of [ITU-T Z.107]).

 NOTE 2 – The generalization and redefinition of a procedure definition is determined by the
Behavior specifying the method of an operation.

[7] If the redefinedOperation property is not empty, an Operation and its redefinedOperation
shall have the same parameters except for the result parameter.

[8] If the redefinedOperation property is not empty, the result parameter of an Operation shall
be the same type or a subtype as the result parameter of the redefinedOperation.

7.9.3 Semantics

 Operation in an active class

An <<Operation>> Operation directly contained in an <<ActiveClass>> Class maps to a
Procedure-definition. The name defines the Procedure-name. The rest of the mapping to a
Procedure-definition is defined in clause "Mapping to a procedure definition" below.

 Operation in a data type definition representing an operator

An <<Operation>> Operation directly contained in a <<DataTypeDefinition>> Class and with an
isOperator property of true maps to a Static-operation-signature and an anonymous Procedure-
definition identified by the Procedure-identifier in the abstract syntax for the Operation-signature.

The Procedure-definition is placed in the same context as the data type corresponding to the
<<DataTypeDefinition>> Class. The rest of the mapping to a Procedure-definition is defined in
clause "Mapping to a procedure definition" below.

The name of an <<Operation>> Operation defines the Operation-name of the Operation-signature.

An ownedParameter defines a Formal-argument or the Operation-result of the Operation-
signature. The detailed mappings are specified in clause 7.11.

NOTE 1 – When an <<Operation>> Operation of a <<DataTypeDefinition>> Class is inherited from a
supertype, the transformation specified in clause 7.11.3 has to be applied before the operation is mapped.

 Operation in a data type definition representing a method

An <<Operation>> Operation directly contained in a <<DataTypeDefinition>> Class and with an
isOperator property of false represents an SDL-2010 method. Before any mappings, the
transformation specified in clause 12.1.3 of [ITU-T Z.104] has to be applied.

An Operation with an isLeaf property of false maps to a Dynamic-operation-signature; otherwise it
maps to a Static-operation-signature. Furthermore, the Operation maps to an anonymous
Procedure-definition identified by the Procedure-identifier in the abstract syntax for the Operation-
signature.

The Procedure-definition is placed in the same context as the data type corresponding to the
<<DataTypeDefinition>> Class. The rest of the mapping to a Procedure-definition is defined in
"Mapping to a procedure definition" below.

 Rec. ITU-T Z.109 (04/2012) 27

The name of an <<Operation>> Operation defines the Operation-name of the Operation-signature.

An ownedParameter defines a Formal-argument or the Operation-result of the Operation-
signature. The detailed mappings are specified in clause 7.11.

 Operation in an interface

An <<Operation>> Operation contained in an Interface maps to signals according to the rules
described in clause 7.7.3.

 Mapping to a procedure definition

If the <<Operation>> Operation maps to a Procedure-definition (named or anonymous), each
ownedParameter defines a Procedure-formal-parameter or the Result of the Procedure-definition.
The detailed mappings are specified in clause 7.11.

The Behavior identified by the method property defines the Procedure-graph, Data-type-definition-
set, and Variable-definition-set of the Procedure-definition.

NOTE 2 – The Operation metaclass does not inherit from the Classifier metaclass that introduces the feature
of generalization. Therefore, while it is not allowed to specialize an <<Operation>> Operation directly, it is
possible to specialize the Behavior specifying the method of an Operation.

NOTE 3 – In UML-SS, an operation is not allowed to directly contain an operation itself, so therefore when
the model is mapped to the SDL-2010 abstract syntax, there will never be a procedure contained within a
procedure (that is, a local procedure).

7.9.4 References

SDL-2010 [ITU-T Z.101]:

 9.4 Procedure

 12.1.3 Operation signature

SDL-2010 [ITU-T Z.102]:

 10.5 Remote procedures

 10.6 Remote variables

SDL-2010 [ITU-T Z.104]:

 12.1.3 Operation signature

SDL-2010 [ITU-T Z.107]:

 12.1.3 Operation signature

UML-SS [OMG UML]:

 7.3.5 BehavioralFeature (from Kernel)

 7.3.37 Operation (from Kernel, Interfaces)

 13.3.3 BehavioralFeature (from BasicBehaviors, Communications)

 13.3.22 Operation (from Communications)

7.10 Package

The stereotype Package extends the metaclass Package with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

The concept of a package in UML is simply mapped to a package in SDL-2010.

28 Rec. ITU-T Z.109 (04/2012)

7.10.1 Attributes

No additional attributes are defined.

7.10.2 Constraints

[1] All ownedMember elements of the Package shall belong to items for which mappings or
transformations are described in this profile.

[2] The packageMerge composition shall be empty.

[3] The name of the Package shall not be empty.

7.10.3 Semantics

A <<Package>> Package maps to a Package-definition.

The name of the package maps to the Package-name of the Package-definition.

The elements of the ownedMember composition define the contents of the package, that is, the
Package-definition-set, Data-type-definition-set, Syntype-definition-set, Signal-definition-set,
Agent-type-definition-set, Composite-state-type-definition-set and Procedure-definition-set. Each
ownedMember that is a nestedPackage maps to an element of the Package-definition-set of the
Package-definition. An ownedMember that is not a nestedPackage is mapped as defined in other
clauses to a Data-type-definition, Syntype-definition, Signal-definition, Agent-type-definition,
Composite-state-type-definition or Procedure-definition element of the corresponding set of the
Package-definition.

NOTE – The UML ElementImport and PackageImport (which are not stereotyped in this profile) define the
import and visibility of elements of the package and define the name resolution of imported package
elements. The resolved items map to Name and Identifier items in the SDL-2010 abstract syntax as described
in clause 5.2.

7.10.4 References

SDL-2010 [ITU-T Z.101]:

 7.2 Package

UML-SS [OMG UML]:

 7.3.38 Package (from Kernel)

7.11 Parameter

The stereotype Parameter extends the metaclass Parameter with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

Depending on the context in which a Parameter is used, it represents a formal parameter of a
procedure or an agent, or it represents a formal argument of an operation signature. In SDL-UML, a
Parameter has an aggregation kind, which is in contrast to UML. Furthermore, the Parameter
stereotype implements the SDL-2010 concept of anchored sorts.

7.11.1 Attributes

• anchored: AnchoredKind [0..1]

 This optional parameter represents an SDL-2010 anchored sort for parameters used for
operations of data type definitions.

• aggregation: AggregationKind

 The aggregation kind of a parameter. The default value is none.

 Rec. ITU-T Z.109 (04/2012) 29

7.11.2 Constraints

[1] The anchored property shall only be present for an <<Operation>> Operation that is owned
by a <<DataTypeDefinition>> Class.

 NOTE 1 – In SDL-2010, an anchored sort is legal concrete syntax only if it occurs within a
data type definition.

[2] If the anchored property is present, the type property of a Parameter shall refer to the next
enclosing <<DataTypeDefinition>> Class.

 NOTE 2 – An SDL-2010 anchored sort shall name the sort introduced by the enclosing data type
definition.

[3] The aggregation shall not be of AggregationKind shared.

7.11.3 Semantics

 Parameters of a procedure definition

If the <<Operation>> Operation maps to a Procedure-definition (named or anonymous), each
Parameter that does not have a return direction defines (in order) a Procedure-formal-parameter.
The direction (in, inout, or out) of an ownedParameter determines (respectively) if the
corresponding Procedure-formal-parameter is an In-parameter or Inout-parameter or Out-
parameter. Each of these formal parameters is a Parameter and detailed mappings are defined
below.

A Parameter that does have a direction of return defines the Result of the Procedure-definition. The
Sort-reference-identifier of the Result is determined in the same way as for a <<Property>>
Property (see clause 7.13.3). The aggregation property maps to the Result-aggregation of a Result.
If the aggregation is of AggregationKind none, the Aggregation-kind is REF. Otherwise, if the
aggregation is of AggregationKind composite, the Aggregation-kind is PART.

NOTE 1 – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of
[ITU-T Z.101]), whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support
object-oriented data.

 Agent formal parameters of an agent type definition

The ownedParameter set of a <<StateMachine>> StateMachine that specifies the classifierBehavior
of an <<ActiveClass>> Class maps to the Agent-formal-parameter list of the Agent-type-definition.
Each of these formal parameters is a Parameter and detailed mappings are defined below.

 Mapping to a parameter

An ownedParameter of an <<Operation>> Operation or <<ActiveClass>> Class representing a
Parameter is mapped as described below.

The name and type (including the multiplicity) of the ownedParameter define, respectively, the
Variable-name and the Sort-reference-identifier of the Parameter. The Sort-reference-identifier is
determined in the same way as for a <<Property>> Property (see clause 7.13.3). The aggregation
property of an ownedParameter maps to the Parameter-aggregation of a Procedure-formal-
parameter. If the aggregation is of AggregationKind none, the Aggregation-kind is REF.
Otherwise, if the aggregation is of AggregationKind composite, the Aggregation-kind is PART.

 Formal arguments and result of an operation signature

The ownedParameter set of an <<Operation>> Operation that defines an Operation-signature is
mapped as follows:

For each ownedParameter that does not have a return direction, the type and multiplicity together
define (in order of the parameters) a Formal-argument of the Operation-signature with a type

30 Rec. ITU-T Z.109 (04/2012)

determined in the same way as for a <<Property>> Property (see clause 7.13.3). The type of the
<<Operation>> Operation defines the Operation-result of the Operation-signature.

NOTE 2 – For the mapping to an Operation-signature, the aggregation property is ignored.

 Transformation of anchored parameters

Before an inherited Operation of a <<DataTypeDefinition>> Class that is a subtype of a supertype
(its general property is not empty) is mapped to an Operation-signature, the transformation as
specified in clause 12.1.9 of [ITU-T Z.104] has to be applied on each ownedParameter that has an
anchored property.

7.11.4 References

UML-SS [OMG UML]:

 7.3.42 Parameter (from Kernel)

SDL-2010 [ITU-T Z.101]:

 8.1.1.1 Agent types

 9.4 Procedure

 12.1.3 Operation signature

SDL-2010 [ITU-T Z.104]:

 12.1.3 Operation signature

 12.1.9 Specialization of data types

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

7.12 Port

The stereotype Port extends the metaclass Port with multiplicity [1..1]. The metamodel diagram for
the stereotype is defined in Figure 7-1.

An SDL-UML port defines an SDL-2010 Gate. The required interfaces characterize the requests
from the classifier to its environment through the port and therefore define the outgoing signals for
the Gate. The provided interfaces of a port characterize requests to the classifier that are permitted
through the port and therefore define the incoming signals for the Gate.

7.12.1 Attributes

No additional attributes.

7.12.2 Constraints

[1] The redefinedPort property shall be empty.

[2] The aggregationKind shall be composite.

[3] The isDerived and isDerivedUnion properties shall be false.

[4] The isReadOnly property shall be true.

[5] The defaultValue property shall be empty.

[6] The subsettedProperty property shall be empty.

[7] The qualifier property shall be empty.

[8] The isStatic property shall be false.

[9] The lowerValue and upperValue properties shall be ValueSpecification items that evaluate
to 1.

 Rec. ITU-T Z.109 (04/2012) 31

[10] The isService property shall be false.

7.12.3 Semantics

A <<Port>> Port maps to a Gate-definition.

The name defines the Gate-name.

The list of required interfaces maps to the Out-signal-identifier-set. The set is computed according
to the rules given in clause 12.1.2 of [ITU-T Z.101].

The list of provided interfaces defines the In-signal-identifier-set. The set is computed according to
the rules given in clause 12.1.2 of [ITU-T Z.101].

If isBehavior is true, a channel is constructed in the SDL-2010 abstract syntax that connects the gate
and the state machine of the containing agent.

7.12.4 References

SDL-2010 [ITU-T Z.101]:

 8.1.4 Gate

 12.1.2 Interface definition

UML-SS [OMG UML]:

 9.3.12 Port (from Ports)

7.13 Property

The Property extends the metaclass Property with multiplicity [1..1]. The metamodel diagram for
the stereotype is defined in Figure 7-1.

A property is an attribute that corresponds to a variable definition, an agent instance, or a field of a
structure type, or a literal signature of a literal type or a variant of a choice type in SDL-2010.

NOTE – The mappings of properties (ownedAttribute) owned by data type definition are specified in the
context of the specific stereotypes.

7.13.1 Attributes

• initialNumber: UnlimitedNatural [0..1]

 defines the initial number of instances created when an instance of the containing
classifier is created.

• literalValue: UnlimitedNatural [0..1]

 defines the literal number of an attribute owned by a literal type.

7.13.2 Constraints

[1] The type shall not be omitted.

[2] If the upperValue is omitted, the lowerValue shall also be omitted.

[3] If the upperValue is included, the lowerValue shall also be included.

 NOTE 1 – The upper and lower bounds of multiplicity are optional in UML-SS.

[4] If the upperValue value is greater than 1 and isOrdered is true, isUnique shall be false,

 NOTE 2 – That is because there is not a predefined SDL-2010 data type that is ordered and requires
each of its elements to have unique values.

[5] The initialNumber shall be included only if the type is an <<ActiveClass>> Class.

[6] The value of the initialNumber shall not be less than the lowerValue.

[7] The value of the initialNumber shall not be greater than the upperValue.

32 Rec. ITU-T Z.109 (04/2012)

[8] The literalValue shall be included only if the type is a <<LiteralType>> Class.

[9] The isDerived shall be false.

[10] The isDerivedUnion shall be false.

[11] If isReadOnly is true, the type shall be a <<DataTypeDefinition>> Class.

 NOTE 3 – A Property with isReadOnly is true corresponds to a synonym definition in the concrete
grammar of SDL-2010.

[12] The defaultValue shall be an SdlExpression with isConstant true.

[13] The redefinedProperty shall be empty.

 NOTE 4 – Since <<Property>> Property maps to variable definition or an identifier of an agent or
data type in SDL-2010, the feature of redefinition is not applicable. That is because these kinds of
SDL-2010 elements cannot be redefined.

[14] The aggregation shall not be of AggregationKind shared.

7.13.3 Semantics

 Mapping to Variable-definition

A <<Property>> Property owned by an <<ActiveClass>> Class or <<StateMachine>>
StateMachine maps to Variable-definition, if its type is a <<DataTypeDefinition>> Class (or an
<<Interface>> Interface) and its isReadOnly property is false.

The aggregation property maps to the Aggregation-kind of a Variable-definition. If the aggregation
is of AggregationKind none, the Aggregation-kind is REF. Otherwise, if the aggregation is of
AggregationKind composite, the Aggregation-kind is PART.

NOTE 1 – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of
[ITU-T Z.101]), whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support
object-oriented data.

The name defines the Variable-name. The defaultValue defines the Constant-expression. The Sort-
reference-identifier is the Sort-identifier of the sort derived from the type property. The Sort-
identifier is determined as follows:

• If there is no upperValue and no lowerValue, the name of the type maps to the Sort-
identifier.

• Otherwise, the Sort-identifier identifies an anonymous sort formed from the SDL-2010
predefined Bag (if isOrdered is false and isUnique is false) or Powerset (if isOrdered is
false and isUnique is true) or String (if isOrdered is true) datatype instantiated with the
sort given by the type as the ItemSort. The anonymous sort is a Value-data-type-definition
or Syntype-definition in the same context as the Variable-definition. If the upperValue value
is omitted or the lowerValue value is zero and the upperValue value is unlimited (* value in
UML), there are no size constraints and the anonymous sort is a Value-data-type-definition
with its components derived from the instantiated predefined data type. Otherwise, the
lowerValue value and upperValue value map (as described below) to a Range-condition of
the anonymous sort, which is a Syntype-definition. The Parent-sort-identifier of this
Syntype-definition is a reference to another anonymous sort that is the Value-data-type-
definition derived in the same way as the case with no size constraints.

• The mapping of lowerValue value and upperValue value to a Range-condition (see above)
is to a Condition-item-set consisting of one Condition-item. If the upperValue value is
unlimited, the Condition-item is an Open-range where the Operator-identifier identifies the
">=" (greater than or equal to) operator for the parent sort, and the lowerValue value maps
to the Constant-expression of this Open-range. Otherwise (when upperValue value is not
unlimited), the Condition-item is a Closed-range, and the lowerValue value maps to the

 Rec. ITU-T Z.109 (04/2012) 33

first Constant-expression of the Closed–range and the upperValue value maps to the
second Constant-expression of the Closed–range.

NOTE 2 – In UML the multiplicity of a property is separate from the type of the property; whereas in
SDL-2010, the bounds, uniqueness of values and ordering of elements are considered to be part of a data
type and, if these differ, two types are considered to be different and incompatible. If two properties have the
same type but have different bounds and both map to Bags, Powersets or Strings, the bounds are treated as
size constraints, so in these special cases two types could be compatible if they both had the same kind and
item sort. The mappings defined above result in anonymous data types for each property, which has multiple
values, with the consequence that such properties cannot be compatible even for the special cases. In
SDL-2010 it is possible to define a type that has a specific name and item sort (and in the case of a Vector
the upper bound) and to use this for different variable definitions so that the value of one variable is
assignable to another using the same type.

 Mapping to Constant-expression

If isReadOnly is true, the type is required to be a <<DataTypeDefinition>> Class. In this case, the
<<Property>> Property maps to a Variable-definition as described above. The <<Property>>
Property maps to a Variable-access each time the <<Property>> Property is used in an expression.

 Mapping to Agent-definition

If the type is an <<ActiveClass>> Class, the <<Property>> Property maps to an Agent-definition.
The name defines the Agent-name. The type property defines the Agent-type-identifier that
represents the type in the SDL-2010 abstract syntax. The initialNumber defines the Initial-number.
The upperValue defines the Maximum-number. If the initialNumber is omitted, the lowerValue
defines the Initial-number. If both the initialNumber and lowerValue are omitted, the Initial-number
is 1. The lowerValue defines the Lower-bound.

NOTE 3 – It is possible for the number of agent instances to go below the Initial-number.

7.13.4 References

SDL-2010 [ITU-T Z.101]:

 9 Agents

 12.3.1 Variable definition

SDL-2010 [ITU-T Z.104]:

 14.3 String sort

 14.9 Vector sort

 14.10 Powerset sort

 14.13 Bag sort

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

UML-SS [OMG UML]:

 7.3.33 MultiplicityElement (from Kernel)

 7.3.45 Property (from Kernel, Association Classes, Interfaces)

 7.3.50 StructuralFeature (from Kernel)

 7.3.53 TypedElement (from Kernel)

34 Rec. ITU-T Z.109 (04/2012)

7.14 Signal

The stereotype Signal extends the metaclass Signal with multiplicity [1..1]. The metamodel diagram
for the stereotype is defined in Figure 7-1.

A signal represents the type for communication message instances and maps to a Signal-definition.

Specialization: A specializing signal is allowed to append additional attributes to those inherited
from its supertype (see clause 8.4.1 in [ITU-T Z.102]).

Redefinition: If an enclosing agent A2 (an active class) specializes a more general agent A1, an
enclosed signal ES of A2 is able to redefine a signal ES that is specified in A1. This corresponds to
the redefinition of virtual signal types (see clause 8.4.2 in [ITU-T Z.102]).

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the
common constraints and semantics see clause 7.4.

7.14.1 Attributes

No additional attributes.

7.14.2 Constraints

[1] The aggregation of an ownedAttribute shall not be of AggregationKind shared.

[2] If present, the formalContextParameterList shall only contain items that are of kind
SortContextParameter.

7.14.3 Semantics

A <<Signal>> Signal maps to a Signal-definition. The name defines the Signal-name and the
general property maps to the optional Signal-identifier.

If the redefinedClassifier property is not empty, this is an implicit generalization of another
<<Signal>> Signal. In this case, the qualifiedName of the redefinedClassifier maps to the Signal-
identifier.

Each ownedAttribute maps to an item in the Signal-parameter list. The type of an ownedAttribute
defines the Sort-reference-identifier and its aggregation property defines the Aggregation-kind. If
the aggregation is of AggregationKind none, the Aggregation-kind is REF. Otherwise, if the
aggregation is of AggregationKind composite, the Aggregation-kind is PART.

NOTE 1 – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of
[ITU-T Z.101]), whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support
object-oriented data.

If the isAbstract property is true, the optional Abstract node in the abstract syntax of a Signal-
definition is present.

7.14.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.3 Abstract type

 8.4.1 Adding properties

 10.3 Signal

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

UML-SS [OMG UML]:

 13.3.24 Signal (from Communications)

 Rec. ITU-T Z.109 (04/2012) 35

7.15 Specification

The stereotype Specification extends the metaclass Model with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 7-1.

7.15.1 Attributes

No additional attributes are defined.

7.15.2 Constraints

[1] All ownedMember elements of the Model shall be a <<Package>> Package or an
<<ActiveClass>> Class.

[2] At least one ownedMember shall be of type <<ActiveClass>> Class.

[3] The packageMerge composition shall be empty.

[4] The name of the Package shall not be empty.

7.15.3 Semantics

A <<Specification>> Model maps to an SDL-specification.

Each nestedPackage maps to the Package-definition-set. An ownedMember that is an
<<ActiveClass>> Class maps to the optional Agent-definition and the name maps to the Agent-
name. The Initial-number of the Agent-definition is 1. The qualifiedName of <<ActiveClass>>
forms the Agent-type-identifier of the Agent-definition.

7.15.4 References

SDL-2010 [ITU-T Z.101]:

 7.1 Framework

UML-SS [OMG UML]:

 17.3.1 Model (from Models)

7.16 StructureType

The stereotype StructureType is a subtype of the <<DataTypeDefinition>> Class. The metamodel
diagram for the stereotype is defined in Figure 7-2.

The <<StructureType>> Class represents an SDL-2010 structure data type and it maps to a Value-
data-type-definition. A structure data type consists of a set of mandatory or optional fields that are
allowed to have different types. It is allowed to omit optional fields in a value for a structure type,
whereas mandatory fields always have to be present.

Specialization: When a structure type is specialized, its subtypes are able to add additional fields (in
terms of ownedAttribute items) and operations.

7.16.1 Attributes

No additional attributes.

7.16.2 Constraints

[1] The ownedAttribute property shall not be empty.

[2] An ownedAttribute shall have a type that is a <<DataTypeDefinition>> Class (or one of its
subtypes) or <<Interface>> Interface.

7.16.3 Semantics

A <<StructureType>> Class maps to a Value-data-type-definition. Depending on the multiplicity of
the Property that is an ownedAttribute item, a distinction is made between the following three cases:

36 Rec. ITU-T Z.109 (04/2012)

• A multiplicity of [0..1] is an optional data field.

• A multiplicity of [1..1] is a mandatory data field.

• In all other cases, an anonymous data type has to be derived from the multiplicity and the
type of an ownedAttribute as specified in clause 7.13.3.

Each ownedAttribute implies a set of implicit defined operations as specified in clause 12.1.6.2 of
[ITU-T Z.104]. During the computation of these operations, also the defaultValue of an
ownedAttribute is evaluated.

NOTE – The defaultValue of an ownedProperty corresponds to the default initialization of a data field.

In addition, the mappings specified in the context of the <<DataTypeDefinition>> Class (see
clause 7.6) apply.

7.16.4 Notation

UML standard syntax is used.

7.16.5 References

SDL-2010 [ITU-T Z.104]:

 12.1 Data definitions

 12.1.1 Data type definition

 12.1.6.2 Structure data types

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

7.17 Syntype

The Syntype stereotype is a subtype of the <<DataTypeDefinition>> Class. The metamodel
diagram for the stereotype is defined in Figure 7-2.

The Syntype stereotype represents an SDL-2010 syntype and it maps to a Syntype-definition. The
Syntype stereotype constrains a predefined or user-defined data type in order to restrict the usable
set of valid values. The association between a <<Syntype>> Class and the constrained
<<DataTypeDefinition>> Class shall be established by a Dependency.

7.17.1 Attributes

• constraint: RangeCondition

 The range condition that defines the constraint.

7.17.2 Constraints

[1] The type of the constraint property of a <<Syntype>> Class and the supplier of a
Dependency (between the constrained data type and its associated syntype) shall refer to the
same <<DataTypeDefinition>> Class.

[2] The ownedAttribute and ownedOperation properties shall be empty.

[3] The general and redefinedClassifier properties shall be empty.

 NOTE – An SDL-2010 syntype cannot be generalized or redefined.

7.17.3 Semantics

The name property of a <<Syntype>> Class maps to the Name and the constraint maps to the
Range-condition of a Syntype-definition. In addition, the qualifiedName of the constraint maps to
the Parent-sort-identifier.

 Rec. ITU-T Z.109 (04/2012) 37

The optional defaultValue maps to the Default-initialization of a Syntype-definition.

7.17.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.1 Syntypes

 12.1.8.2 Constraint

UML-SS [OMG UML]:

 13.3.8 Class (from Communications)

 7.3.12 Dependency (from Dependencies)

7.18 Timer

The Timer stereotype is a subtype of the stereotype Signal (see clause 7.14). The metamodel
diagram for the stereotype is defined in Figure 7-1.

7.18.1 Attributes

• defaultValue: SdlExpression [0..1]

 The optional default value for timer initialization.

7.18.2 Constraints

[1] The defaultValue shall be an SdlExpression with isConstant true.

[2] The general and redefinedClassifier properties shall be empty.

 NOTE – In contrast to a <<Signal>> Signal, neither redefinition nor generalization is allowed for a
<<Timer>> Signal. That is because these features are not applicable to an SDL-2010 timer
definition.

7.18.3 Semantics

A <<Timer>> Signal maps to a Timer-definition. The name attribute defines the Timer-name. The
type of each ownedAttribute defines a corresponding item in the list of Sort-reference-identifiers. If
present, the defaultValue maps to the optional Timer-default-initialization.

7.18.4 References

SDL-2010 [ITU-T Z.101]:

 11.15 Timer

UML-SS [OMG UML]:

 13.3.24 Signal (from Communications)

8 State machines

The finite state machine models of SDL-UML provide details of how a model behaves in terms of
state transitions for the protocol part of a system.

The following metaclasses from the UML package BehaviorStateMachines are included:

– FinalState

– Pseudostate

– Region

– State

– StateMachine

38 Rec. ITU-T Z.109 (04/2012)

– Transition.

8.1 State machine metamodel diagrams

Figure 8-1 – State machine stereotypes

8.2 FinalState

The stereotype FinalState extends the metaclass FinalState with multiplicity [1..1]. The metamodel
diagram of the stereotype is defined in Figure 8-1.

When a FinalState is reached the containing graph completes. In SDL-UML a graph for a procedure
will complete with a <<Return>> ActivityFinalNode. In this case, there is no mapping to the
SDL-2010 abstract syntax for FinalState because the return node terminates the graph. A FinalState
that is not in a procedure graph maps to an Action-return-node or Named-return-node for the
enclosing composite state.

8.2.1 Attributes

No additional attributes.

8.2.2 Constraints

[1] If the <<FinalState>> FinalState is part of the region of a <<StateMachine>> StateMachine
that maps to a Procedure-graph, the name of the <<FinalState>> FinalState shall be empty
and any Transition that has the <<FinalState>> FinalState as its target shall end in a
<<Return>> ActivityFinalNode.

 NOTE – The Action-return-node or Value-return-node of the procedure is defined by the
<<Return>> ActivityFinalNode.

8.2.3 Semantics

 Mapping to an Action-return-node or a Stop-node

If the <<FinalState>> FinalState has an empty name and it is not part of the region of a
<<StateMachine>> StateMachine that maps to a Procedure-graph, the <<FinalState>> FinalState
maps to a Stop-node or an Action-return-node. It maps to a Stop-node if (and only if) it is part of the
region of a <<StateMachine>> StateMachine that is the classifierBehavior of an <<ActiveClass>>
Class.

 Rec. ITU-T Z.109 (04/2012) 39

NOTE – In UML FinalState the context object of the state machine is terminated if all enclosed regions are
terminated, whereas in SDL-2010 an explicit stop is required, but, on the other hand, in SDL-2010 it is not
allowed to have a return node in the state machine of an agent.

 Mapping to a Named-return-node

If the <<FinalState>> FinalState has a non-empty name, it maps to a Named-return-node where the
name defines the State-exit-point-name.

8.2.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.4 Return

UML-SS [OMG UML]:

 15.3.2 FinalState (from BehaviorStateMachines)

8.3 Pseudostate

The stereotype Pseudostate extends the metaclass Pseudostate with multiplicity [1..1]. The
metamodel diagram for the stereotype is defined in Figure 8-1.

A Pseudostate is used instead of a state before initial or state entry point transitions, when there is a
junction of transitions, when there is a decision to make a choice of transitions, when the transition
leads to a history nextstate, or after a transition to lead to a state exit point or terminate the state
graph. They allow more complex transitions between states to be built from simpler, shorter
transitions that end or start (or start and end) in a Pseudostate. They map to start, next state (with
history), decision, join and free action, return and stop nodes in the SDL-2010 state transition graph.

8.3.1 Attributes

• decisionQuestion: SdlExpression [0..1]

 An optional expression that defines the question for a choice Pseudostate.

8.3.2 Constraints

[1] A Transition shall have an empty guard property if the Transition is an outgoing property of
a <<Pseudostate>> Pseudostate with kind initial.

[2] A Transition shall have an empty trigger property if the Transition is an outgoing property
of a <<Pseudostate>> Pseudostate with kind initial.

[3] The classifierBehavior of a <<ActiveClass>> Class with isAbstract false shall have a
<<Pseudostate>> Pseudostate with kind initial.

[4] The kind property of <<Pseudostate>> Pseudostate shall not be join or fork.

[5] A <<Pseudostate>> Pseudostate with kind of deepHistory or shallowHistory or exitPoint or
terminate shall not have an outgoing property.

[6] The optional decisionQuestion shall only be present for a <<Pseudostate>> Pseudostate
with kind choice.

[7] A Transition shall have a non-empty guard property Constraint (a RangeCondition or the
predefined "else" guard) and an empty trigger property if the Transition is an outgoing
property of a <<Pseudostate>> Pseudostate with kind choice.

[8] Each Boolean guard of each Transition that is an outgoing property of a <<Pseudostate>>
Pseudostate with kind choice, except the predefined "else" guard, shall be a
RangeCondition.

40 Rec. ITU-T Z.109 (04/2012)

[9] A <<Pseudostate>> Pseudostate with kind choice shall have at most one outgoing
Transition with an empty trigger property and an "else" guard. The Constraint representing
this guard shall have a specification property that is a RangeCondition that always evaluates
to true.

8.3.3 Semantics

 Mapping of an initial node

A <<Pseudostate>> Pseudostate with kind initial is mapped to a Procedure-start-node in a region
that defines a Procedure-graph and State-start-node in a region that defines a Composite-state-
graph. The outgoing Transition maps to the Graph-node list of the Transition of the Procedure-
start-node or State-start-node. The target property of this outgoing Transition maps to the last item
of the Transition (a Terminator or Decision-node) of the Procedure-start-node or State-start-node
in the same way as the target is mapped in clause 8.7 for a Transition.

If the outgoing Transition of a <<Pseudostate>> Pseudostate with kind initial is redefining (the
redefinedTransition property is not empty) another transition, the redefining Transition specifies the
Transition of a Procedure-start-node or State-start-node.

NOTE 1 – When the outgoing transition of an initial node is redefined this corresponds to a virtual procedure
start (see clause 9.4 in [ITU-T Z.102]) or a virtual process start (see clause 11.1 in [ITU-T Z.102]).

NOTE 2 – A Pseudostate cannot be redefined, so that an outgoing Transition of the Pseudostate has to be
used for the purpose of redefinition.

 Mapping of a deep history node

A <<Pseudostate>> Pseudostate with kind deepHistory maps to a Nextstate-node that is a Dash-
nextstate with HISTORY.

 Mapping of a shallow history node

A <<Pseudostate>> Pseudostate with kind shallowHistory maps to a Nextstate-node that is a Dash-
nextstate without HISTORY.

 Mapping of a junction node

A <<Pseudostate>> Pseudostate with kind junction maps to a Free-action and one or more Join-
node elements. The name property defines the Connector-name in the Free-action and each Join-
node. The effect of the outgoing property maps to the Graph-node list of the Transition of the Free-
action. The target property of this outgoing property Transition maps to the last item of the
Transition (a Terminator or Decision-node) of the Free-action in the same way as the target is
mapped in clause 8.7 for a Transition. There is a Join-node for each Transition that has a target
property that is a <<Pseudostate>> Pseudostate with kind junction and the Join-node is the
Terminator of the Transition with its Graph-node list derived from the effect of the Transition.

NOTE 3 – UML-SS has a constraint "a junction vertex must have at least one incoming and one outgoing
transition". Pseudostate maps to both the Join-node elements and the Free-action labels, so the possibility
(allowed in SDL-2010) to have a Free-action without a corresponding Join-node is not allowed.

 Mapping of a choice node

A <<Pseudostate>> Pseudostate with kind choice maps to a Decision-node. The decisionQuestion
maps to the Decision-question and the outgoing Transition items map to the Decision-answer-set.
The Boolean guard property of each outgoing Transition maps to the Range-condition of the
corresponding Decision-answer. The effect of this outgoing Transition maps to the Graph-node list
of the Transition of the same Decision-answer.

The target property of each outgoing Transition maps to the last item of the Transition
(a Terminator or Decision-node) of the same Decision-answer in the same way as the target is

 Rec. ITU-T Z.109 (04/2012) 41

mapped in clause 8.7 for a Transition. An outgoing property with an "else" guard property maps to
an Else-answer where the Transition is mapped in the same way as for a Boolean guard property.

 Mapping of an entry point

A <<Pseudostate>> Pseudostate with kind entryPoint maps to a State-start-node. The name
property defines the State-entry-point-name. The effect of the outgoing Transition defines the
Graph-node list of the Transition. The target property of this outgoing Transition maps to the last
item of the Transition (a Terminator or Decision-node) of the State-start-node in the same way as
the target is mapped in clause 8.7 for a Transition.

If the outgoing Transition of a <<Pseudostate>> Pseudostate with kind entryPoint is redefining (the
redefinedTransition property is not empty) another transition, the redefining Transition specifies the
Transition of the State-start-node.

 Mapping of an exit point

A <<Pseudostate>> Pseudostate with kind exitPoint maps to a Named-return-node. The name
property defines the State-exit-point-name.

 Mapping of a termination node

A <<Pseudostate>> Pseudostate with kind terminate maps to a Stop-node.

8.3.4 References

SDL-2010 [ITU-T Z.101]:

 11.1 Start

 11.10 Label (connector name)

 11.12.2.2 Join

 11.12.2.3 Stop

 11.13.5 Decision

SDL-2010 [ITU-T Z.102]:

 8.4.3 Virtual transition/save

 9.4 Procedure

 11.1 Start

UML-SS [OMG UML]:

 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.4 Region

The stereotype Region extends the metaclass Region with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 8-1.

A region contains states and transitions and maps to the definition of how a procedure or a
composite state behaves. For the composite state mapping of a StateMachine, a single region maps
to a Composite-state-graph, whereas two or more regions map to a State-aggregation-node (see
clause 8.5). A region in SDL-UML is always part of a StateMachine and is never part of a State,
because the region of a State is constrained to be empty.

8.4.1 Attributes

No additional attributes.

42 Rec. ITU-T Z.109 (04/2012)

8.4.2 Constraints

[1] A Region that extends another Region (as specified by an extendedRegion property) shall
have the same name as the extended Region.

[2] The triggers in the different orthogonal regions shall refer to disjoint sets of signals.

[3] The extendedRegion property of a Region shall be empty.

 NOTE – The redefinition of a procedure or composite state type is determined by the StateMachine
that contains a Region.

8.4.3 Semantics

 Mapping to a Procedure-graph

A <<Region>> Region that is the region of StateMachine with a specification maps to a Procedure-
graph, and the subvertex set of Vertex elements (State, Pseudostate or FinalState) of the region
together with the transition elements of the region that reference these Vertex elements, define the
Procedure-graph.

 Mapping to a Composite-state-graph

A <<Region>> Region that is the only region of a StateMachine without a specification maps to a
Composite-state-graph, and the subvertex set of Vertex elements (State, Pseudostate, or FinalState)
of the region together with the transition elements of the region that reference these Vertex
elements, define the Composite-state-graph of the StateMachine mapping. Each State-node or Free-
action derived from these Vertex elements are elements of the State-node-set and Free-node-set,
respectively, of the State-transition-graph of the Composite-state-graph.

 Mapping to a Composite-state-type-definition

Otherwise, each <<Region>> Region that is one of two or more region items of a StateMachine (the
outer Composite-state-type-definition) without a specification maps to a State-partition and to an
inner Composite-state-type-definition with a unique State-type-name. Each State-partition is an
element of the State-partition-set of the State-aggregation-node of the outer Composite-state-type-
definition of the StateMachine mapping. The mapping to a State-partition and the corresponding
inner Composite-state-type-definition is described in more detail in the following paragraphs.

Each Pseudostate with kind entryPoint (in the connectionPoint property of the containing
StateMachine) maps to a distinct State-entry-point-definition of the inner Composite-state-type-
definition.

Because a Pseudostate of kind entryPoint is directly owned by a StateMachine and not by one of its
region items, the association between a State-entry-point-definition and its containing Composite-
state-type-definition has to be determined. For this purpose, the container property (which refers to
the containing Region) of the outgoing Transition of a Pseudostate with kind entryPoint is used to
determine the containing Composite-state-type-definition. The result of determination is mapped so
that the Connection-definition-set of the State-partition contains an Entry-connection-definition that
connects the State-entry-point-definition of the outer Composite-state-type-definition to the
corresponding State-entry-point-definition of the inner Composite-state-type-definition.

NOTE 1 – The State-entry-point-names of the Outer-entry-point and Inner-entry-point of an Entry-
connection-definition are equal. That is because a Pseudostate with kind entryPoint maps to a State-entry-
point-definition of the outer as well as of the inner Composite-state-type-definition.

Each Pseudostate with kind exitPoint in the connectionPoint property of the containing
StateMachine maps to a distinct State-exit-point-definition of the Composite-state-type-definition.

Because a Pseudostate of kind exitPoint is directly owned by a StateMachine and not by one of its
region items, the association between a State-exit-point-definition and its containing Composite-
state-type-definition has to be determined. For this purpose, the container property (which refers to

 Rec. ITU-T Z.109 (04/2012) 43

the containing Region) of the incoming Transition of a Pseudostate with kind exitPoint is used to
determine the containing Composite-state-type-definition. The result of determination is mapped so
that the Connection-definition-set of the State-partition contains an Exit-connection-definition that
connects the State-exit-point-definition of the outer Composite-state-type-definition to the
corresponding State-exit-point-definition of the inner Composite-state-type-definition.

NOTE 2 – The State-exit-point-names of the Outer-exit-point and Inner-exit-point of an Exit-connection-
definition are equal. That is because a Pseudostate with kind exitPoint maps to a State-entry-point-definition
of the outer as well as of the inner Composite-state-type-definition.

The name maps to the Name of the State-partition.

The Composite-state-type-identifier of the State-partition identifies the inner Composite-state-type-
definition.

The subvertex and transition properties of the Region map to the Composite-state-graph of the inner
Composite-state-type-definition in the same way that a Composite-state-graph is derived for only
one region in a StateMachine. See clauses 8.5, 8.3 and 8.2 covering subclasses of Vertex (that is,
State, Pseudostate, or FinalState, respectively) and clause 8.7 for more details.

8.4.4 References

SDL-2010 [ITU-T Z.101]:

 8.1.1.5 Composite state type

SDL-2010 [ITU-T Z.102]:

 11.11.2 State aggregation

UML-SS [OMG UML]:

 13.3.2 Behavior (from BasicBehaviors)

 15.3.10 Region (from BehaviorStateMachines)

8.5 State

The stereotype State extends the metaclass State with multiplicity [1..1]. The metamodel diagram
for the stereotype is defined in Figure 8-1.

A state represents a condition where an object is waiting for some condition to be fulfilled: usually
for an event to occur. A state in SDL-UML maps to an SDL-2010 state.

8.5.1 Attributes

No additional attributes.

8.5.2 Constraints

[1] The doActivity property shall be empty.

[2] The entry and exit properties shall be empty, because entry/exit actions are not supported.

[3] The isComposite property shall be false, because only decomposition using submachine
properties is allowed and a State shall have an empty region property.

[4] If a trigger of an outgoing Transition has an omitted port property, the associated signal
shall only be used in another outgoing Transition or deferrableTrigger when the
corresponding port property is not empty.

 NOTE 1 – This constraint specifies that signal without via gate shall only be used for another input
or save with a gate.

44 Rec. ITU-T Z.109 (04/2012)

[5] If a trigger of an outgoing Transition has a port property, the associated signal shall not be
used in another outgoing Transition or deferrableTrigger with a port that has the same
name.

 NOTE 2 – This constraint specifies the rule for a signal with via gate.

[6] The event property of the deferrableTrigger property of a State shall be a SignalEvent.

 NOTE 3 – A SignalEvent is used to represents events for received signals or expired timers, which
are declared in terms of <<Timer>> Signal items.

8.5.3 Semantics

A <<State>> State maps to a State-node. The name maps to the State-name.

A ConnectionPointReference that is part of the connection property and corresponds to an Exit-
Connection-Point (a Pseudostate with kind exitPoint in the connectionPoint property of the
containing StateMachine) maps to a member of the Connect-node-set.

The submachine property maps to Composite-state-type-identifier.

Each item in the deferrableTrigger list maps to a Save-item in the Save-item-set of the Save-
signalset. The qualifiedName of a Signal that is the event of a deferrableTrigger maps to the Signal-
identifier of a Save-item. The qualifiedName of the port property of a deferrableTrigger maps to the
optional Gate-identifier of a Save-item.

The outgoing property (inherited from Vertex) maps to the Input-node-set, Spontaneous-transition-
set and Continuous-signal-set. See clause 8.7 on Transition for more details on the mapping to the
Input-node-set, Spontaneous-transition-set and Continuous-signal-set.

NOTE – The semantics for parameters for state types is defined in clause 8.6.3, subclause “Mapping to a
Composite-state-type-definition”, and clause 8.7.3, subclause “Mappings of the target property”.

8.5.4 References

SDL-2010 [ITU-T Z.102]:

 8.4.3 Virtual transition/save

 11.2 State

 11.7 Save

UML-SS [OMG UML]:

 15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines)

 15.3.16 Vertex (from BehaviorStateMachines)

8.6 StateMachine

The stereotype StateMachine extends the metaclass StateMachine with multiplicity [1..1]. The
metamodel diagram for the stereotype is defined in Figure 8-1.

An SDL-UML StateMachine either maps to the graph of an SDL-2010 procedure or an SDL-2010
composite state type. The two cases are distinguished by whether or not the StateMachine has a
specification. If it does, then it is the procedure case; otherwise, it is a composite state type. Because
there are two different mappings, some constraints on StateMachine are dependent on whether there
is a specification or not.

Specialization: A state machine S2 (subtype) is allowed to specialize from a more general state
machine S1 (supertype). In general, the subtype state machine is allowed to add additional states,
transitions, regions and parameters to those elements inherited from the supertype state machine
(see clause 8.4.1 in [ITU-T Z.102]). When a subtype StateMachine adds additional parameters, they
have to be added after those parameters inherited from the supertype. When a state machine maps to

 Rec. ITU-T Z.109 (04/2012) 45

a procedure, a subtype is not allowed to add additional regions. That is because a state machine that
is the specification of an operation shall consist of one region only.

Redefinition: The redefinition of a state machine ES is only possible if an enclosing classifier C1 is
specialized by a classifier C2 that contains a state machine ES (the redefining state machine) (see
clause 8.4.2 in [ITU-T Z.102]).

NOTE – The features of specialization and redefinition are introduced by the metaclass Classifier. For the
common constraints and semantics see clause 7.4.

8.6.1 Attributes

No additional attributes.

8.6.2 Constraints

[1] The isReentrant property shall be false.

[2] The ownedConnector shall be empty.

[3] If the redefinedClassifier is not empty, the redefining and the redefined StateMachine shall
each have the same ownedParameter list.

If a StateMachine maps to a Composite-state-type (the classifierBehavior property is not empty) the
following constraints apply:

[4] No ownedParameter property shall have a direction=return (so that StateMachine does not
return a result).

[5] The specification property shall be empty.

[6] The classifierBehavior property shall be an <<ActiveClass>> Class.

If a StateMachine maps to a Procedure-graph (the specification property is not empty) the
following constraints apply:

[7] The specification property shall be an Operation.

 NOTE – The other possibility, Reception, is not allowed.

[8] There shall only be one Region.

[9] The connectionPoint property shall be empty.

[10] The classifierBehavior shall be empty.

[11] The ownedPort shall be empty.

[12] The specification shall not be an Operation contained in an Interface.

[13] The ownedParameter list of the StateMachine shall be the same as the ownedParameter list
of the Operation that is the specification property.

8.6.3 Semantics

A <<StateMachine>> StateMachine maps to a Composite-state-type-definition or a
Procedure-graph. If the StateMachine has a specification, the StateMachine maps to the
Procedure-graph (as defined by its contained Region) of the Procedure-definition from the
mapping of the <<Operation>> Operation identified by the specification. If the StateMachine does
not have a specification, the StateMachine maps to a Composite-state-type-definition.

 Mapping to a Procedure-graph

Semantics for the Procedure-graph case (where the Procedure-definition is the mapping of
<<Operation>> Operation identified by the specification):

The region property defines the Procedure-graph through the subvertex set of Vertex elements
(State, Pseudostate, or FinalState) of the region together with the transition elements of the region
that reference these Vertex elements. Each State-node or Free-action derived from these Vertex

46 Rec. ITU-T Z.109 (04/2012)

elements are elements of the State-node-set and Free-node-set, respectively, of the Procedure-
graph.

NOTE 1 – A Pseudostate with kind initial defines the Procedure-start-node.

The nestedClassifier and ownedAttribute associations (both inherited from Class via Behavior)
define the rest of the contents of the state machine according to the following paragraphs.

A nestedClassifier that is a <<DataTypeDefinition>> Class defines a Value-data-type-definition that
is an element of the Data-type-definition-set of the Procedure-definition.

A nestedClassifier that is an Interface defines an Interface-definition that is an element of the Data-
type-definition-set of the Procedure-definition.

A nestedClassifier that is a <<StateMachine>> StateMachine defines a Composite-state-type-
definition that is an element of the Composite-state-type-definition-set of the Procedure-definition.

An ownedOperation defines a Procedure-definition that is an element of the Procedure-definition-
set of the Procedure-definition mapping the Operation identified by the specification.

An ownedAttribute maps to a Variable-definition in the Variable-definition-set of the Procedure-
definition (see clause 7.13).

If the isAbstract property of a <<StateMachine>> StateMachine is true, the optional Abstract node
in the abstract syntax of a Procedure-definition is present.

If the general property is not empty, this refers to the specialization of a procedure definition. In this
case, the qualifiedName of the generalized StateMachine maps to the Procedure-identifier of the
Procedure-definition.

If the redefinedClassifier property is not empty, this is an implicit generalization of another
StateMachine. In this case, the qualifiedName of the redefinedClassifier maps to the Procedure-
identifier of the Procedure-definition.

 Mapping to a Composite-state-type-definition

The name defines the State-type-name. If the region contains only one Region, the content of the
region maps to a Composite-state-graph of the Composite-state-type-definition; otherwise the
region maps to a State-aggregation-node of the Composite-state-type-definition with one State-
partition for each contained Region.

Each connectionPoint with kind entryPoint defines an element of the State-entry-point-definition-set
and each connectionPoint with kind exitPoint defines an element of State-exit-point-definition-set.
The name property of a connectionPoint with kind entryPoint or exitPoint maps to the Name of a
State-entry-point-definition or State-exit-point-definition, respectively.

The ownedParameter property defines the Composite-state-formal-parameters.

The nestedClassifier and ownedAttribute associations define the rest of the contents of the state
machine according to the following paragraphs.

A nestedClassifier that is a <<DataTypeDefinition>> Class defines a Value-data-type-definition that
is an element of the Data-type-definition-set.

A nestedClassifier that is an Interface defines an Interface-definition that is an element of the Data-
type-definition-set.

A nestedClassifier that is a <<StateMachine>> StateMachine defines a Composite-state-type-
definition that is an element of the Composite-state-type-definition-set.

An ownedOperation defines a Procedure-definition that is an element of the Procedure-definition-
set.

An ownedAttribute maps to a Variable-definition in the Variable-definition-set (see clause 7.13).

 Rec. ITU-T Z.109 (04/2012) 47

If the isAbstract property of a <<StateMachine>> StateMachine is true, the optional Abstract node
in the abstract syntax of a Composite-state-type-definition is present.

The general property (derived from generalization) maps to the optional Composite-state-type-
identifier.

If the redefinedClassifier property is not empty, this is an implicit generalization of another
StateMachine. In this case, the qualifiedName of the redefinedClassifier maps to the Composite-
state-type-identifier.

NOTE 2 – If a StateMachine is a classifierBehavior and it has an ownedParameter set, these parameters are
used as parameters when creating instances of the containing Class. See clause 7.2.3.

8.6.4 References

SDL-2010 [ITU-T Z.101]:

 9.4 Procedure

SDL-2010 [ITU-T Z.102]:

 8.1.1.5 Composite state type

 8.1.3 Abstract type

UML-SS [OMG UML]:

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 15.3.12 StateMachine (from BehaviorStateMachines)

8.7 Transition

The stereotype Transition extends the metaclass Transition with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 8-1.

A transition is the part of a state transition graph that defines what happens when the object goes
from one vertex in the graph to another vertex. Each vertex is usually a state, but may be a
pseudostate. Signals (including timer signals) timers are used to trigger transitions. Standard UML
notation and semantics are used.

8.7.1 Attributes

• priority: UnlimitedNatural [0..1]

 The priority determines the order of interpretation of a received signal.

• variableList: Property [0..*] {ordered}

 Reference to owned attributes of a StateMachine used to store submitted values of a
received Event.

8.7.2 Constraints

[1] The Transition shall have kind external or local.

 NOTE 1 – The UML concept of internal transitions is not allowed.

[2] The port of a Trigger that is the trigger property of a Transition shall at most refer to one
Port.

[3] The event property of the trigger property of a <<Transition>> Transition shall be an
AnyReceiveEvent, SignalEvent, CallEvent or ChangeEvent.

 NOTE 2 – A SignalEvent is used to represents events for received signals or expired timers, which
are declared in terms of <<Timer>> Signal items.

48 Rec. ITU-T Z.109 (04/2012)

[4] The effect property shall reference an Activity.

 NOTE 3 – There is a constraint on states that signals for each transition have to be distinct, so that a
given signal is not allowed to trigger more than one transition.

8.7.3 Semantics

A <<Transition>> Transition that is the outgoing property of a <<Pseudostate>> Pseudostate with
kind choice is mapped as defined for Pseudostate in clause 8.3.3.

NOTE 1 – In this clause the term 'trigger event of a <<Transition>> Transition' means the Event that is the
event property of the Trigger that is the trigger property of the Transition. The Event is a MessageEvent (an
AnyReceiveEvent, a SignalEvent, or a CallEvent) or ChangeEvent.

 Transformation of an asterisk state list

If the <<Transition>> Transition has a TransitionKind that is local, it is expanded as specified in
clause 11.2 of [ITU-T Z.103] before applying any expansions or mappings below.

 Transformation of an asterisk input list

If the trigger event of a <<Transition>> Transition is an AnyReceiveEvent, the transition is
expanded as specified in clause 11.3 of [ITU-T Z.103] before applying any expansions or mappings
below.

 Transformation of a remote procedure call

If the trigger event of a <<Transition>> Transition is a CallEvent, the transition is expanded as
specified in clause 10.5 of [ITU-T Z.102] before any expansions or mappings below.

 Mapping to a Spontaneous-transition

If the trigger event of a <<Transition>> Transition is a SignalEvent and the name of the Signal is
"none" or "NONE" (case sensitive therefore excludes "None", etc.), the Transition maps to a
Spontaneous-transition. The effect property maps to the Graph-node list of the Transition of the
Spontaneous-transition.

If a Transition that maps to a Spontaneous-transition is redefining another transition (the
redefinedTransition property is not empty), the redefining Transition specifies the Spontaneous-
transition.

NOTE 2 – A redefining transition that maps to a Spontanous-transition corresponds to a virtual continuous
signal in SDL-2010 (see clause 11.5 in [ITU-T Z.102]).

 Mapping to an Input-node

If the trigger event of a <<Transition>> Transition is a SignalEvent (a received signal or an expired
timer) and the name of the Signal is neither "none" nor "NONE" (so it does not map to
Spontaneous-transition), the Transition maps to an Input-node.

If present, the priority maps to the optional Priority-name of an Input-node.

The qualifiedName of the Signal maps to the Signal-identifier of the Input-node. The
qualifiedName of the port property of the trigger of a Transition maps to the optional Gate-
identifier of the Input-node.

The qualifiedName of each item in the variableList (by order) maps to a Variable-identifier of the
Input-node. The effect property maps to the Graph-node list of the Transition of the Input-node.

NOTE 3 – Because UML provides no concrete mechanisms for storing submitted values of received events,
the variableList property of a Transition is used for this purpose.

If a Transition that maps to an Input-node is redefining another transition (the redefinedTransition
property is not empty), the redefining Transition specifies the Input-node.

 Rec. ITU-T Z.109 (04/2012) 49

NOTE 4 – A redefining transition that maps to an Input-node corresponds to a virtual input (see clause 11.3
in [ITU-T Z.102]) or virtual priority input (see clause 11.4 in [ITU-T Z.102]) in SDL-2010.

 Mapping to a Continuous-signal

If the trigger event of a <<Transition>> Transition is a ChangeEvent, the transition maps to a
Continuous-signal.

The changeExpression maps to the Continuous-expression of the Continuous-signal. The effect
property maps to the Graph-node list of the Transition of the Continuous-signal. The priority maps
to the Priority-name.

If the <<Transition>> Transition has an empty trigger property and a non-empty guard property, the
Transition maps to a Continuous-signal. The guard maps to the Continuous-expression of the
Continuous-signal. The effect property maps to the Graph-node list of the Transition of the
Continuous-signal. The priority maps to the Priority-name.

NOTE 5 – It is a consequence of the SDL-2010 semantics that in the Transition set defined by the outgoing
properties of a State, when evaluating the guard of each Continuous-signal (each Transition with only a
guard and an empty trigger), an unevaluated guard of a Transition with a lowest priority attribute is evaluated
before any unevaluated guard of a Transition with a higher priority attribute.

If a Transition that maps to a Continuous-signal is redefining another transition (the
redefinedTransition property is not empty), the redefining Transition specifies the Continuous-
signal.

NOTE 6 – A redefining transition that maps to a Continuous-signal corresponds to a virtual continuous
signal in SDL-2010 (see clause 11.5 in [ITU-T Z.102]).

 Mapping to a Connect-node

If the <<Transition>> Transition has an empty trigger property and an empty guard property, the
Transition maps to a Connect-node. The effect property maps to the Graph-node list of the
Transition of the Connect-node.

If the source of the Transition is a ConnectionPointReference, the qualifiedName of the exit
property Pseudostate of the ConnectionPointReference maps to State-exit-point-name. If the source
is a State, the State-exit-point-name is empty.

If a Transition that maps to a Connect-node is redefining another transition (the redefinedTransition
property is not empty), the redefining Transition specifies the Connect-node.

NOTE 7 – A redefining transition that maps to a Connect-node corresponds to a virtual connect in SDL-2010
(see clause 11.11.4 in [ITU-T Z.102]).

 Mapping to a Decision-node

If a <<Transition>> Transition has a non-empty trigger property and non-empty guard property and
is not the outgoing property of a <<Pseudostate>> Pseudostate with kind choice, the guard maps to
the Transition as follows:

• A Decision-node is inserted first in the Transition with a Decision-answer with a Boolean
Range-condition that is the Constant-expression true and another Decision-answer for false.

• The specification property of the guard property of the Transition maps to Decision-
question of the Decision-node.

• The false Decision-answer has a Transition that is a Dash-nextstate without HISTORY.

• The effect property of the Transition maps to the Graph-node list of the Transition of the
true Decision-answer.

50 Rec. ITU-T Z.109 (04/2012)

NOTE 8 – The mapping to a Decision-node instead of mapping to an enabling condition (a Provided-
expression) makes it possible to access the signal parameters from the expression in the guard and also
means that the signal is consumed even if guard is false, whereas if an enabling condition is false the signal
is not consumed.

NOTE 9 – The mapping to a Decision-node works because entry/exit actions are not allowed on states. If
such actions were allowed, the exit and entry actions of the states would be incorrectly invoked even when
taking the false branch through the decision.

 Mappings of the target property

A target property that is a State maps to a Terminator of the Transition (mapped from the effect)
where this Terminator is a Nextstate-node that is a Named-nextstate without Nextstate-parameters,
and where the qualifiedName of the State maps to the State-name of the Named-nextstate.

A target property that is a ConnectionPointReference maps to a Terminator of the Transition
(mapped from the effect) where this Terminator is a Nextstate-node that is a Named-nextstate with
Nextstate-parameters, and where the qualifiedName of the state property of the
ConnectionPointReference maps to the State-name of the Named-nextstate, and the qualifiedName
of the entry property Pseudostate of the ConnectionPointReference maps to State-entry-point-name
of the Nextstate-parameters.

A target property that is a Pseudostate maps to the last item of the Transition (a Terminator or
Decision-node) as defined in clause 8.3.3.

8.7.4 References

SDL-2010 [ITU-T Z.102]:

 8.4.3 Virtual transition/save

 10.5 Remote procedure

 11.3 Input

 11.4 Priority Input

 11.5 Continuous signal

 11.8 Spontaneous transition

 11.11.4 Connect

SDL-2010 [ITU-T Z.103]:

 11.2 State

 11.3 Input

UML-SS [OMG UML]:

 13.3.25 SignalEvent (from Communications)

 13.3.31 Trigger (from Communications)

 15.3.1 ConnectionPointReference (from BehaviorStateMachines)

 15.3.14 Transition (from BehaviorStateMachines)

9 Actions and activities

An activity is used to describe how the model behaves, for example, the control flow of actions in
an operation body or a transition. When invoked, each action takes zero or more inputs, usually
modifies the state of the system in some way such as a change of the values of an instance, and

 Rec. ITU-T Z.109 (04/2012) 51

produces zero or more outputs. The values that are used by an action are described by value
specifications (see clause 10), obtained from the output of actions or in ways specific to the action.

The following packages from UML are included either explicitly or because elements of the
packages are generalizations that are specialized as the elements that are used:

– BasicActions

– BasicActivities

– BasicBehaviors

– CompleteActivities

– CompleteStructuredActivities

– FundamentalActivities

– IntermediateActivities

– IntermediateActions

– Kernel

– StructuredActions

– StructuredActivities.

The following metaclasses from UML are included:

– Activity

– ActivityFinalNode

– AddStructuralFeatureValueAction

– AddVariableValueAction

– CallOperationAction

– CreateObjectAction

– ConditionalNode

– LoopNode

– OpaqueAction

– OpaqueExpression

– SendSignalAction

– SequenceNode.

52 Rec. ITU-T Z.109 (04/2012)

9.1 Action and activity metamodel diagrams

Figure 9-1 – Activity stereotypes

Figure 9-2 – Action stereotypes

 Rec. ITU-T Z.109 (04/2012) 53

Figure 9-3 – Auxiliary stereotypes

9.2 Activity

The stereotype Activity extends the metaclass Activity with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 9-1.

An activity defines the effect of a transition or the body of an operation of a data type definition.

9.2.1 Attributes

No additional attributes.

9.2.2 Constraints

[1] Each node of an <<Activity>> Activity shall be an Action or a StructuredActivityNode that
is defined in this profile.

[2] The variable property of an <<Activity>> Activity shall be empty.

[3] The redefinedClassifier and general properties shall be empty.

 NOTE 1 – Neither a procedure graph nor the graph node list of a transition in SDL-2010 is
redefinable.

[4] The redefinedElement property of each node and edge of an <<Activity>> Activity shall be
empty.

[5] The isAbstract property shall be false.

[6] The ownedPort and ownedConnector properties shall be empty.

If an <<Activity>> Activity maps to the Graph-node list of a Transition:

[7] The ownedAttribute and variable properties shall be empty.

[8] The nestedClassifier property shall be empty.

If an <<Activity>> Activity maps to the Procedure-graph of a Procedure-definition:

[9] A nestedClassifer shall be a <<DataTypeDefinition>> Class (including its subtypes).

[10] The specification property shall be an <<Operation>> Operation.

9.2.3 Semantics

 Mapping to a Graph-node

An <<Activity>> Activity that is the effect of a Transition maps to the Graph-node list of the
Transition for the effect. Each node of the Activity maps to an item in the Graph-node list of the
Transition.

 Mapping to a Procedure-definition

An <<Activity>> Activity that has a specification (that is, the Activity is the method of an
Operation) maps to a Procedure-graph containing only a Procedure-start-node consisting of a
Transition. Each Action or ActivityNode of an Activity maps to the Graph-node list of the
Transition.

54 Rec. ITU-T Z.109 (04/2012)

An ownedAttribute maps to a Variable-definition in the Variable-definition-set of the Procedure-
definition (see clause 7.13).

A nestedClassifier that is a <<DataTypeDefinition>> Class maps to a Value-data-type-definition
that is an element of the Data-type-definition-set of the Procedure-definition.

A nestedClassifier that is an Interface maps to an Interface-definition that is an element of the Data-
type-definition-set of the Procedure-definition.

In addition, the mapping rules specified in point [8] above and clause 7.11.3 apply.

9.2.4 References

SDL-2010 [ITU-T Z.101]:

 11.12 Transition

UML-SS [OMG UML]:

 12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
StructuredActivities)

9.3 ActivityFinalNode

The stereotype ActivityFinalNode extends the metaclass ActivityFinalNode with multiplicity [1..1].
This stereotype is abstract and its metamodel diagram is defined in Figure 9-1.

This stereotype is introduced to ensure that every ActivityFinalNode is one of the subtypes:
<<Return>> ActivityFinalNode or <<Stop>> ActivityFinalNode.

9.3.1 Attributes

No additional attributes.

9.3.2 Constraints

No additional constraints.

9.3.3 Semantics

The subtypes of <<ActivityFinalNode>> ActivityFinalNode give its semantics.

9.3.4 References

UML-SS [OMG UML]:

 12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)

9.4 AddStructuralFeatureValueAction

The stereotype AddStructuralFeatureValueAction extends the metaclass
AddStructuralFeatureValueAction with multiplicity [1..1]. The metamodel diagram for the
stereotype is defined in Figure 9-2.

An <<AddStructuralFeatureValueAction>> AddStructuralFeatureValueAction is used to define an
assignment to structural features of a Class or other Classifier.

9.4.1 Attributes

No additional attributes.

9.4.2 Constraints

[1] The value property shall be a ValuePin.

[2] The type of the value and of the structuralFeature property shall refer to a
<<DataTypeDefinition>> Class (which includes its subtypes).

 Rec. ITU-T Z.109 (04/2012) 55

[3] The object property shall be an InputPin and its type property shall refer to an
<<ActiveClass>> Class or <<StateMachine>> StateMachine.

9.4.3 Semantics

An <<AddStructuralFeatureValueAction>> AddStructuralFeatureValueAction maps to an
Assignment.

The value property maps to the Expression of the Assignment and the qualifiedName of the
structuralFeature property maps to the Variable-identifier.

NOTE – In a notation for SDL-UML that supports "extended variables" (notation for indexed elements
and/or field elements of a data item), they are transformed as specified in clause 12.3.3.1 of [ITU-T Z.101]
before the mapping to an AddStructuralFeatureValueAction.

9.4.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.3 Assignment

UML-SS [OMG UML]:

 11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)

 11.3.48 StructuralFeatureAction (from IntermediateActions)

9.5 AddVariableValueAction

The stereotype AddVariableValueAction extends the metaclass AddVariableValueAction with
multiplicity [1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

An <<AddVariableValueAction>> AddVariableValueAction is used to specify a value assignment
to local variables of compound statements.

9.5.1 Attributes

No additional attributes.

9.5.2 Constraints

[1] The value property shall be a ValuePin.

[2] The type of the value or the variable property shall refer to a <<DataTypeDefinition>>
Class (which includes its subtypes) or <<Interface>> Interface.

9.5.3 Semantics

An <<AddVariableValueAction>> AddVariableValueAction maps to an Assignment.

The value property maps to the Expression of the Assignment and the qualifiedName of the variable
property maps to the Variable-identifier.

NOTE – In a notation for SDL-UML that supports extended variables, they are transformed as specified in
clause 12.3.3.1 of [ITU-T Z.101] before the mapping to an AddVariableValueAction.

9.5.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.3 Assignment

UML-SS [OMG UML]:

 11.3.6 AddVariableValueAction (from StructuredActions)

 11.3.53 VariableAction (from StructuredActions)

56 Rec. ITU-T Z.109 (04/2012)

9.6 Break

The stereotype Break is a subtype of the stereotype OpaqueAction. The metamodel diagram for the
stereotype is defined in Figure 9-2.

A <<Break>> OpaqueAction represents a break action that causes termination of an enclosing
statement labelled by the name given. The enclosing statement is a loop node, a sequence node or a
conditional node. A break action causes interpretation to be transferred to the point following the
enclosing node with the matching connector name.

9.6.1 Attributes

No additional attributes.

9.6.2 Constraints

[1] A <<Break>> OpaqueAction shall have an empty input property.

[2] A <<Break>> OpaqueAction shall only be used inside of a LoopNode, ConditionalNode or
SequenceNode that has a name that is the same as the name of the <<Break>>
OpaqueAction.

 NOTE – According to this constraint, the specification of a <<Break>> OpaqueAction is allowed
within a nested StructuredActivityNode that is enclosed by a <<LoopNode>> LoopNode.

9.6.3 Semantics

A <<Break>> OpaqueAction maps to a Break-node and its name property maps to the Connector-
name.

9.6.4 References

SDL-2010 [ITU-T Z.101]:

 11.10 Label (connector name)

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

9.7 CallOperationAction

The stereotype CallOperationAction extends the metaclass CallOperationAction with multiplicity
[1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

Depending on the context, a call operation action maps to the call of a procedure (Call-node) in the
SDL-2010 abstract grammar or it is transformed to an implicit exchange of signals (remote
procedure invocation). For the description in this clause, the following terminology is used:

• The operation-owner is the <<ActiveClass>> Class that has (as an ownedOperation
property) the Operation identified by the operation property of the
<<CallOperationAction>> CallOperationAction.

• The active-container is the closest containing <<ActiveClass>> Class of the
CallOperationAction.

9.7.1 Attributes

• timerConstraint: OpaqueExpression [0..1]

 The optional timer communication constraint for remote procedure calls.

9.7.2 Constraints

[1] The timerConstraint shall be a <<TimerConstraint>> OpaqueExpression.

[2] The target property shall be a ValuePin.

 Rec. ITU-T Z.109 (04/2012) 57

[3] If the CallOperationAction maps to a Call-node, the target, the onPort and the
timerConstraint properties shall be empty.

[4] If the CallOperationAction does not map to a Call-node, the value of the target property
shall be an SdlExpression that conforms to the type of Predefined::Pid.

9.7.3 Semantics

 Mapping to a Call-node

A <<CallOperationAction>> CallOperationAction maps to a Call-node if the active-container is the
same as the operation-owner or is a generalization of the operation-owner.

For mapping to a Call-node, the qualifiedName of the operation property maps to the Procedure-
identifier of the Call-node. The argument property list maps to the Actual-parameters list of the
Call-node.

 Mapping to a remote procedure call

If the criteria for mapping to a Call-node are not satisfied, the <<CallOperationAction>>
CallOperationAction is transformed to a signal exchange as specified in clause 10.5 of
[ITU-T Z.102] for a remote procedure call, including transformation of the optional timerConstraint
property.

9.7.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.3 Procedure call

SDL-2010 [ITU-T Z.102]:

 10.5 Remote procedure

 11.13.3 Procedure call

UML-SS [OMG UML]:

 11.3.10 CallOperationAction (from BasicActions)

9.8 ConditionalNode

The stereotype ConditionalNode extends the metaclass ConditionalNode with multiplicity [1..1].
The metamodel diagram for the stereotype is defined in Figure 9-1.

A <<ConditionalNode>> ConditionalNode is used to define textual switch statements and maps to a
Decision-node in SDL-2010. A Pseudostate with kind choice also maps to a Decision-node.

9.8.1 Attributes

• decisionQuestion: SdlExpression

 An expression that defines the question for a ConditionalNode.

9.8.2 Constraints

[1] Each item in the body of each Clause shall be an Action or a StructuredActivityNode that is
defined in this profile.

[2] Each Clause of a <<ConditionalNode>> ConditionalNode shall have a test part that is an
<<ExpressionAction>> ValueSpecificationAction representing an SDL-2010 range
condition.

[3] A <<ConditionalNode>> ConditionalNode shall have at most one "else" Clause.

 NOTE 1 – It is assumed that the <<ExpressionAction>> ValueSpecificationAction of the test part
always returns true.

58 Rec. ITU-T Z.109 (04/2012)

[4] For every Clause except the "else" Clause, the predecessorClause set shall be empty, so that
there is no requirement that any Clause is evaluated before any other Clause (except the
"else" Clause).

[5] The predecessorClause set for an "else" Clause shall include every other Clause, so that
they all have to be evaluated before the "else" Clause.

[6] For every Clause except the "else" Clause, the successorClause set shall contain only the
"else" Clause if there is one; otherwise the successorClause set shall be empty, because the
order of evaluation is never enforced in SDL-2010.

[7] The successorClause set of the "else" Clause shall be empty.

 NOTE 2 – The "else" Clause is a Clause that is a successor to all others and whose test part always
returns true, so that it is only invoked if all others are false (see UML-SS 12.3.18 ConditionalNode).

[8] The isAssured property shall be true. Therefore either there shall be an "else" Clause, or
there shall be at least one test that succeeds.

9.8.3 Semantics

A <<ConditionalNode>> ConditionalNode maps to a Decision-node. The decisionQuestion
property maps to the common Decision-question. The Clause set (excluding the "else" Clause)
defines the Decision-answer-set of the Decision-body. The test of each Clause is an
<<ExpressionAction>> ValueSpecificationAction that maps to the Range-condition (see
clause 9.11) in each Decision-answer. The body of the Clause maps to Transition in the
corresponding Decision-answer. The "else" Clause (if present) defines the Else-answer; otherwise
there is no Else-answer.

NOTE – The decider property of a Clause, owned by an <<ConditionalNode>> ConditionalNode, references
the same OutputPin as the output property of the <<ExpressionAction>> ValueSpecificationAction used as
the test of that Clause.

9.8.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.5 Decision

UML-SS [OMG UML]:

 12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)

 12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities)

9.9 Continue

The stereotype Continue is a subtype of the stereotype OpaqueAction. The metamodel diagram for
the stereotype is defined in Figure 9-2.

A <<Continue>> OpaqueAction represents a continue action within a loop that causes a jump to the
next iteration of the loop or termination of the loop if already in the last iteration.

9.9.1 Attributes

No additional attributes.

9.9.2 Constraints

[1] A <<Continue>> OpaqueAction shall have an empty input property.

[2] A <<Continue>> OpaqueAction shall only be used inside of a LoopNode that has a name
with a value equal to the name of the <<Continue>> OpaqueAction.

 NOTE – According to this constraint, specification of a <<Continue>> OpaqueAction is allowed
within a nested StructuredActivityNode that is enclosed by a <<LoopNode>> LoopNode.

 Rec. ITU-T Z.109 (04/2012) 59

9.9.3 Semantics

A <<Continue>> OpaqueAction maps to a Continue-node and its name property maps to the
Connector-name.

9.9.4 References

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

9.10 CreateObjectAction

The stereotype CreateObjectAction extends the metaclass CreateObjectAction with
multiplicity [1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

A create object action is used to create instances of agents.

9.10.1 Attributes

• actualParameterList: SdlExpression [0..*] {ordered}

 The list of expressions representing the actual parameters of the agent to be created.

9.10.2 Constraints

[1] The classifier property shall refer to an <<ActiveClass>> Class.

9.10.3 Semantics

The <<CreateObjectAction>> CreateObjectAction maps to a Create-request-node where the
classifier maps to the Agent-identifier. Each SdlExpression in actualParameterList maps to an
Expression of the Actual-parameters list.

NOTE – According to the semantics of SDL-2010 for a Create-request-note (see clause 11.13.2 of
[ITU-T Z.101]), the Pid value for a created agent is stored in its 'self' variable and in the 'offspring' variable
of the creating agent. A variable access expression is used to retrieve the Pid value of the 'offspring' variable,
for instance, in order to send a signal to a newly created agent.

9.10.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.2 Create

UML-SS [OMG UML]:

 11.3.16 CreateObjectAction (from IntermediateActions)

9.11 ExpressionAction

The stereotype ExpressionAction extends the metaclass ValueSpecificationAction with
multiplicity [1..1]. The metamodel diagram for the stereotype is defined in Figure 9-2.

An <<ExpressionAction>> ValueSpecificationAction represents an action that only contains an
expression. This is a utility to simplify the modelling of a <<ConditionalNode>> ConditionalNode
or <<LoopNode>> LoopNode.

9.11.1 Attributes

No additional attributes.

9.11.2 Constraints

[1] The value property of an <<ExpressionAction>> shall be a RangeCondition or an
SdlExpression.

60 Rec. ITU-T Z.109 (04/2012)

 NOTE – The result property of an <<ExpressionAction>> ValueSpecificationAction is only used to
be compliant with the UML-SS in the context of a <<ConditionalNode>> ConditionalNode.

9.11.3 Semantics

If an <<ExpressionAction>> ValueSpecificationAction is used in the context of an
<<ConditionalNode>> ConditionalNode, it maps to a Range-condition (see 9.8). Otherwise, if an
<<ExpressionAction>> ValueSpecificationAction is used in the context of a <<LoopNode>>
LoopNode, it maps to an Expression (see 9.12).

9.11.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.1 Expressions and expressions as actual parameters

UML-SS [OMG UML]:

 11.3.52 ValueSpecificationAction (from IntermediateActions)

9.12 LoopNode

The stereotype LoopNode extends the metaclass LoopNode with multiplicity [1..1]. The metamodel
diagram for the stereotype is defined in Figure 9-1.

A LoopNode represents a Compound-node in the SDL-2010 abstract syntax. It is equivalent to loop
constructs (such as "for" or "while") of traditional programming languages.

9.12.1 Attributes

• stepGraphPart: ExecutableNode [0..*] {ordered}

 The ExecutableNode items to be execute after the body of the loop, normally to carry
out such actions as stepping the loop variables.

9.12.2 Constraints

[1] A LoopNode shall have a name.

[2] The isTestedFirst attribute shall be true.

[3] Each item in the bodyPart shall be an Action or a StructuredActivityNode that is defined in
this profile.

[4] The test part shall only consist of <<ExpressionAction>> ValueSpecificationAction items
that represent an expression of the Predefined::Boolean type.

[5] The result property shall be empty.

[6] The bodyOutput property shall be empty.

[7] The loopVariableInput property shall be empty.

[8] Each item in the setupPart shall be an AddVariableValueAction node (to initialize variables
including loop variables).

[9] The stepGraphPart shall only contain AddVariableValueAction actions or
CallOperationAction actions.

9.12.3 Semantics

A LoopNode maps to a Compound-node. The name of the LoopNode maps to the Connector-name
of the Compound-node.

The variable property maps to the Variable-definition-set of the Compound-node (see clause 9.21).

The setupPart maps to the Init-graph-node list of the Compound-node, defining the initialization of
the loop.

 Rec. ITU-T Z.109 (04/2012) 61

Each <<ExpressionAction>> ValueSpecificationAction contained in the test part maps to an
Expression of the While-graph-node.

The bodyPart maps to the Transition of the Compound-node.

If present, the ExecutableNode items of the stepGraphPart map to the Step-graph-node list.

9.12.4 References

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

UML-SS [OMG UML]:

 12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)

9.13 OpaqueAction

The stereotype OpaqueAction extends the metaclass OpaqueAction with multiplicity [1..1]. This
stereotype is abstract and its metamodel diagram is defined in Figure 9-2.

This stereotype is introduced to ensure that every OpaqueAction is one of the subtypes:
<<Break>> OpaqueAction or <<Continue>> OpaqueAction.

9.13.1 Attributes

No additional attributes.

9.13.2 Constraints

No additional constraints.

9.13.3 Semantics

The subtypes of the stereotype OpaqueAction give its semantics.

9.13.4 References

UML-SS [OMG UML]:

 11.3.26 OpaqueAction (from BasicActions)

9.14 ResetAction

The stereotype ResetAction extends the metaclass SendSignalAction with multiplicity [0..1]. The
metamodel diagram for the stereotype is defined in Figure 9-2.

A timer is cancelled with a reset action represented by a ResetAction stereotype. The reset action
cancels a timer and removes any corresponding timer signals that are queued for the agent instance
executing the timer.

9.14.1 Attributes

No additional attributes.

9.14.2 Constraints

[1] The signal property shall refer to a <<Timer>> Signal.

[2] The onPort property shall be empty.

[3] The number of ownedAttribute items of the referenced signal shall be equal to the number
of argument items of the <<ResetAction>> SendSignalAction.

[4] The type of each argument shall be the same as the type of the corresponding
ownedAttribute of the referenced signal.

62 Rec. ITU-T Z.109 (04/2012)

9.14.3 Semantics

A <<ResetAction>> SendSignalAction maps to a Reset-node. The signal maps to the Timer-
Identifier and the argument list maps to the Expression list.

9.14.4 References

SDL-2010 [ITU-T Z.101]:

 11.15 Timer

UML-SS [OMG UML]:

 11.3.45 SendSignalAction (from BasicActions)

9.15 Return

The stereotype Return is a subtype of the stereotype ActivityFinalNode. The metamodel diagram
for the stereotype is defined in Figure 9-1.

A <<Return>> ActivityFinalNode represents the action to return from a procedure (in the
SDL-2010 abstract grammar) to the point where the procedure was called.

9.15.1 Attributes

• value: SdlExpression [0..1]

 An expression that represents the return value of the operation.

9.15.2 Constraints

[1] The <<Return>> ActivityFinalNode shall be part of an <<Activity>> Activity that is used
to define the behaviour associated with an <<Operation>> Operation.

[2] The value shall be empty if the <<Operation>> Operation does not return a value.
Otherwise, the value shall match the return type of the <<Operation>> Operation.

9.15.3 Semantics

A <<Return>> ActivityFinalNode maps to an Action-return-node if the value property is empty,
otherwise to a Value-return-node. If it maps to a Value-return-node, the value property defines the
Expression in the Value-return-node.

9.15.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.4 Return

9.16 SequenceNode

The stereotype SequenceNode extends the metaclass SequenceNode with multiplicity [1..1]. The
metamodel diagram for the stereotype is defined in Figure 9-1.

A sequence node is a sequence of actions and describes the body of a compound node.

9.16.1 Attributes

No additional attributes.

9.16.2 Constraints

[1] Each executableNode of a SequenceNode shall be an Action or a StructuredActivityNode
that is defined in this profile.

 Rec. ITU-T Z.109 (04/2012) 63

9.16.3 Semantics

 Mapping to a Compound-node

A <<SequenceNode>> SequenceNode maps to a Compound-node.

The name of the <<SequenceNode>> SequenceNode defines the Connector-name of the
Compound-node.

The variable definitions contained in the variable property of the SequenceNode map to the
Variable-definition-set of the Compound-node (see clause 9.21).

The actions contained in the executableNode property of the SequenceNode map to the various
Graph-nodes in the Transition that are contained in the Compound-node.

9.16.4 References

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

UML-SS [OMG UML]:

 12.3.47 SequenceNode (from StructuredActivities)

9.17 SendSignalAction

The stereotype SendSignalAction extends the metaclass SendSignalAction with multiplicity [0..1].
The metamodel diagram for the stereotype is defined in Figure 9-2.

A send signal action outputs a signal from the executing agent, optionally specifying the target
agent and the port used to send the signal.

9.17.1 Attributes

No additional attributes.

9.17.2 Constraints

[1] The target property shall reference a ValuePin.

[2] The value of the target property shall consist of a ValueSpecification that represents a type
that conforms to the type Predefined::Pid.

[3] The onPort property shall reference a Port of the container <<ActiveClass>> Class of the
<<SendSignalAction>> SendSignalAction.

9.17.3 Semantics

A <<SendSignalAction>> SendSignalAction maps to an Output-node. The qualifiedName of signal
property maps to the Signal-identifier. The target property maps to the Signal-destination. The
onPort property maps to the Direct-via. The argument property maps to the Actual-parameters list.

9.17.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.4 Output

UML-SS [OMG UML]:

 11.3.45 SendSignalAction (from BasicActions)

9.18 SetAction

The stereotype SetAction extends the metaclass SendSignalAction with multiplicity [0..1]. The
metamodel diagram for the stereotype is defined in Figure 9-2.

64 Rec. ITU-T Z.109 (04/2012)

The set action gives a timer an expiry time.

9.18.1 Attributes

• timeExpression: SdlExpression

 The time when the timer will expire.

9.18.2 Constraints

[1] The signal property shall refer to a <<Timer>> Signal.

[2] The onPort property shall be empty.

[3] The number of ownedAttribute items of the referenced signal shall be equal to the number
of argument items of the <<SetAction>> SendSignalAction.

[4] The type of each argument shall be the same as the type of the corresponding
ownedAttribute of the referenced signal.

[5] The type property of the timeExpression shall refer to the type Predefined::Time.

9.18.3 Semantics

A <<SetAction>> SendSignalAction maps to a Set-node. The signal maps to the Timer-Identifier.
The argument list maps to the Expression list and timeExpression maps to Time-expression.

9.18.4 References

SDL-2010 [ITU-T Z.101]:

 11.15 Timer

UML-SS [OMG UML]:

 11.3.45 SendSignalAction (from BasicActions)

9.19 Stop

The stereotype Stop is a subtype of the stereotype ActivityFinalNode. The metamodel diagram for
the stereotype is defined in Figure 9-1.

A stop represents the action to terminate the enclosing <<ActiveClass>> Class instance (the
enclosing agent).

9.19.1 Attributes

No additional attributes.

9.19.2 Constraints

No additional constraints.

9.19.3 Semantics

A <<Stop>> ActivityFinalNode maps to a Stop-node.

9.19.4 References

SDL-2010 [ITU-T Z.101]:

 11.12.2.3 Stop

9.20 TimerConstraint

The stereotype TimerConstraint extends the metaclass OpaqueExpression with a multiplicity of
[0..1]. The metamodel diagram for the stereotype is defined in Figure 9-3.

 Rec. ITU-T Z.109 (04/2012) 65

A TimerConstraint represents a timer communication constraint for a remote procedure call. Hence,
the application of a TimerConstraint is only possible in the context of a CallOperationAction (see
clause 9.7).

NOTE – A direct mapping to the abstract syntax is not possible because in SDL-2010 a remote procedure
call is transformed to an implicit exchange of signals.

9.20.1 Attributes

• timer: Signal [1]

 A reference to the timer that shall be monitored for expiry.

• variableList: Property [0..*] {ordered}

 References to the variables that shall receive values of the timer signal.

• connect: NamedElement [0..1]

 An optional reference to a labelled element that specifies where interpretation shall
continue when the timer expires before the remote procedure call is finished.

9.20.2 Constraints

No additional constraints.

9.20.3 Semantics

A <<TimerConstraint>> OpaqueExpression has to be considered during the transformation of a
CallOperationAction that represents a remote procedure call.

9.20.4 References

SDL-2010 [ITU-T Z.102]:

 10.5 Remote procedure

UML-SS [OMG UML]:

 7.3.36 OpaqueExpression (from Kernel)

9.21 Variable

The stereotype Variable extends the metaclass Variable with a multiplicity of [1]. The metamodel
diagram for the stereotype is defined in Figure 9-3.

A Variable represents an SDL-2010 local variable definition within a loop or compound statement,
which is only locally accessible. In SDL-UML, a Variable is usable only in the context of a
LoopNode (see clause 9.12) or SequenceNode (see clause 9.16).

NOTE 1 – The stereotype Variable introduces the missing attribute aggregation, which is not supported by
the UML metaclass Variable.

NOTE 2 – In contrast to the Property stereotype, the Variable stereotype cannot be used to specify
SDL-2010 synonyms because this stereotype represents only local variable definitions (see clause 11.14.1 in
[ITU-T Z.102]).

9.21.1 Attributes

• aggregation: AggregationKind [1]

 The aggregation kind of the variable. The default value is none.

9.21.2 Constraints

[1] The type shall be a <<DataTypeDefinition>> Class or an <<Interface>> Interface.

[2] If the upperValue is omitted, the lowerValue shall also be omitted.

66 Rec. ITU-T Z.109 (04/2012)

[3] If the upperValue is included, the lowerValue shall also be included.

 NOTE 1 – The upper and lower bounds of multiplicity are optional in UML-SS.

[4] If the upperValue value is greater than 1 and isOrdered is true, isUnique shall be false.

 NOTE 2 – That is because there is not a predefined SDL-2010 data type that is ordered and requires
each of its elements to have unique values.

[5] The aggregation of a Variable shall not be of kind shared.

9.21.3 Semantics

A <<Variable>> Variable maps to Variable-definition. The aggregation property maps to the
Aggregation-kind of a Variable-definition. If the aggregation is of AggregationKind none, the
Aggregation-kind is REF; otherwise, if the aggregation is of kind composite, the Aggregation-kind
is PART.

NOTE – The aggregation kind 'PART' is a feature of Basic SDL-2010 (see clause 12.3.1 of [ITU-T Z.101]),
whereas the aggregation kind 'REF' is introduced in [ITU-T Z.107] in order to support object-oriented data.

The name defines the Variable-name. The Sort-reference-identifier is the Sort-identifier of the sort
derived from the type property. The Sort-identifier is determined as specified in clause 7.13.

9.21.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.1 Variable definition

SDL-2010 [ITU-T Z.102]:

 11.14.1 Compound and loop statements

SDL-2010 [ITU-T Z.107]:

 12.3.1 Variable definition

UML-SS [OMG UML]:

 12.3.52 Variable (from StructuredActivities)

10 ValueSpecification

A value specification in SDL-UML is specified as a non-terminal expression or a literal value. An
expression is a node in an expression tree that has a number (possibly zero) of operands that
themselves specify values and therefore is expressions or literals. A value is represented textually
and the syntax shall be a textual notation based on the concrete syntax of SDL-2010 or a notation
provided by a tool supplier. Consequently, the components of an expression in SDL-UML usually
have a one-to-one correspondence with respective SDL-2010 abstract syntax items that would result
from analysing the text as SDL-2010.

In contrast to other parts of SDL-UML, value specification items are defined in terms of
metaclasses that are direct or indirect subtypes of the UML ValueSpecification metaclass.

 Rec. ITU-T Z.109 (04/2012) 67

10.1 ValueSpecification metamodel diagrams

Figure 10-1 – SdlExpression

Figure 10-2 – EqualityExpression

Figure 10-3 – ValueReturningCallNode

Figure 10-4 – OperationApplication

68 Rec. ITU-T Z.109 (04/2012)

Figure 10-5 – RangeCheckExpression

Figure 10-6 – TypeCheckExpression

Figure 10-7 – TypeCoercion

Figure 10-8 – ConditionalExpression

Figure 10-9 – ImperativeExpression

 Rec. ITU-T Z.109 (04/2012) 69

Figure 10-10 – TimerExpression

Figure 10-11 – ActiveAgentsExpression

Figure 10-12 – RangeCondition

Figure 10-13 – OpenRange

Figure 10-14 – ClosedRange

70 Rec. ITU-T Z.109 (04/2012)

Figure 10-15 – SizeConstraint

10.2 ActiveAgentsExpression

The metaclass ActiveAgentsExpression is a specialization of the metaclass ImperativeExpression
(see clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-11.

The ActiveAgentsExpression metaclass represents an Active-agents-expression of the abstract
grammar of SDL-2010. Because an Active-agents-expression is one alternative of an Imperative-
expression, it is also an active expression.

10.2.1 Attributes

• agentIdentifier: Property [0..1] {subsets Element::ownedElement}

 the agent instance set, for which the number of active agents is determined.

• isThis: Boolean

 if true, the number of active agents is determined for the enclosing active agent.

10.2.2 Constraints

[1] The type property shall reference the type Predefined::Natural.

[2] If isThis is true, the agentIdentifier shall be empty.

10.2.3 Semantics

The ActiveAgentsExpression metaclass maps to an Active-agents-expression. If isThis is false, the
agentIdentifier property maps to the Agent-identifier of the Active-agents-expression. Otherwise, the
optional THIS element is present in the Active-agent-expression.

10.2.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.4 Active agents expression

10.3 AnyExpression

The metaclass AnyExpression is a specialization of the metaclass ImperativeExpression (see
clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-9.

The AnyExpression metaclass represents an Any-expression of the abstract grammar of SDL-2010.
Because an Any-expression is one alternative of an Imperative-expression, it is also an active
expression.

10.3.1 Attributes

No additional attributes.

10.3.2 Constraints

[1] The type property shall reference a <<DataTypeDefinition>> Class or <<Interface>>
Interface.

 Rec. ITU-T Z.109 (04/2012) 71

10.3.3 Semantics

The AnyExpression metaclass maps to an Any-expression. The type property maps to the Sort-
reference-identifier of the Any-expression.

10.3.4 References

SDL-2010 [ITU-T Z.104]:

 12.3.4.6 Any Expression

10.4 ClosedRange

The metaclass ClosedRange is a specialization of the metaclass ConditionItem (see clause 10.6).
The metamodel diagram for the metaclass is defined in Figure 10-14.

A closed range condition constrains a data type with a lower and upper bound. Only if a value for
such a constrained data type is within the specified boundaries, is the closed range condition
fulfilled.

The ClosedRange maps to the Closed-range alternative of a Condition-item node in the SDL-2010
abstract syntax.

10.4.1 Attributes

• firstConstant: OpenRange {subsets Element::ownedElement}

 the lower bound value of a closed range.

• secondConstant: OpenRange {subsets Element::ownedElement}

 the upper bound value of a closed range.

10.4.2 Constraints

[1] The operationIdentifier properties of the firstConstant and secondConstant shall reference
an operation with a signature as follows:

 "<="(P, P): Predefined::Boolean

 where the P in the operation signature is the type of the constrained data type.

[2] The type property shall be the type Predefined::Boolean.

10.4.3 Semantics

The metaclass ClosedRange maps to a Closed-range. The firstConstant property maps to the first
Open-range and the secondConstant maps to the second Open-range of a Closed-range.

10.4.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

10.5 ConditionalExpression

The metaclass ConditionalExpression is a specialization of the metaclass SdlExpression and its
metamodel diagram is defined in Figure 10-8.

The ConditionalExpression metaclass represents a Conditional-expression in the SDL-2010 abstract
syntax. A conditional expression consists of a Boolean expression, a consequence expression and an
alternative expression. If the Boolean expression returns the value true, than the consequence
expression is invoked. Otherwise, the alternative expression is invoked.

72 Rec. ITU-T Z.109 (04/2012)

10.5.1 Attributes

• booleanExpression: SdlExpression (subsets Element::ownedElement)

 the Boolean expression for the decision.

• alternativeExpression: SdlExpression (subsets Element::ownedElement)

 the expression that is evaluated when the result of the decision is false.

• consequenceExpression: SdlExpression (subsets Element::ownedElement)

 the expression that is evaluated when the result of the decision is true.

10.5.2 Constraints

[1] The type of the booleanExpression shall be the type Predefined::Boolean.

[2] The alternativeExpression and the consequenceExpression shall have the same type.

[3] The type property of a ConditionalExpression shall be the type Predefined::Boolean.

10.5.3 Semantics

A ConditionalExpression maps to a Conditional-expression. The booleanExpression maps to the
Boolean-expression, the consequenceExpression to the Consequence-expression, and the
alternativeExpression to the Alternative-expression of a Conditional-expression. If one of the
properties of a ConditionalExpression references SdlExpression with isConstant is false, the
ConditionalExpression represents an Active-expression; otherwise it is a Constant-Expression.

10.5.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.5 Conditional expression

10.6 ConditionItem

The metaclass ConditionItem is a specialization of the UML metaclass ValueSpecification. This
metaclass is abstract and the metamodel diagram for the metaclass is defined in Figure 10-12.
Subtypes of this metaclass are the ClosedRange (see 10.4), OpenRange (see 10.11) and
SizeConstraint (see 10.18) metaclasses. A ConditionItem is only usable in combination with a
RangeCondition.

The ConditionItem metaclass represents a Condition-item in the SDL-2010 abstract syntax. The
subtypes of this metaclass are mapped to the alternatives Open-range, Closed-range or Size-
constraint.

10.6.1 Attributes

No additional attributes.

10.6.2 Constraints

[1] The type property of a ConditionItem shall be the type Predefined::Boolean.

[2] The owner of a ConditionItem shall be a RangeCondition.

10.6.3 Semantics

The subtypes of the ConditionItem metaclass define the semantics.

10.6.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

 Rec. ITU-T Z.109 (04/2012) 73

UML-SS [OMG UML]:

 7.3.55 ValueSpecification (from Kernel)

10.7 EqualityExpression

The metaclass EqualityExpression is a specialization of the metaclass SdlExpression. The
metamodel diagram for the metaclass is defined in Figure 10-2.

The EqualityExpression metaclass represents an Equality-expression in the SDL-2010 abstract
syntax. An equality expression consists of two operands, which are compared. If the result of both
operands is equal, than the result of the equality expression is a Boolean value of true; otherwise,
the result is a Boolean value of false.

10.7.1 Attributes

• firstOperand : SdlExpression {subsets Element::ownedElement}

 The left-hand expression to be compared for equality.

• secondOperand : SdlExpression {subsets Element::ownedElement}

 The right-hand expression to be compared for equality.

10.7.2 Constraints

[1] The type property of an EqualityExpression Expression shall be of the type
Predefined::Boolean.

[2] The type of the firstOperand shall conform to the type of the secondOperand or vice versa.

10.7.3 Semantics

An EqualityExpression maps to an Equality-expression. The firstOperand maps to the First-
operand and the secondOperand maps to the Second-operand of a Conditional-expression. If one of
the properties of an EqualityExpression references an SdlExpression with isConstant is true, the
EqualityExpression represents a Constant-expression; otherwise it is an Active-Expression.

10.7.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.4 Equality expression

10.8 ImperativeExpression

The metaclass ImperativeExpression is specialization of the metaclass SdlExpression. This
metaclass is abstract, and the metamodel diagram for the metaclass is defined in Figure 10-9.
Subtypes of ImperativeExpression are the metaclasses StateExpression (see 10.19), AnyExpression
(see 10.3), PidExpression (see 10.13), NowExpression (see 10.10), TimerRemainingDuration (see
10.21), TimerActiveExpression (see 10.20) and ActiveAgentsExpression (see 10.2).

The ImperativeExpression metaclass represents an Imperative-expression of the abstract grammar
of SDL-2010. In addition, an Imperative-expression is also an Active-expression. An imperative
expression is used to access the system clock, special agent variables, the Pid of an agent or the
status of timers.

10.8.1 Attributes

No additional attributes.

10.8.2 Constraints

[1] The isConstant property shall be true.

74 Rec. ITU-T Z.109 (04/2012)

10.8.3 Semantics

A subtype of an ImperativeExpression is always mapped to the Active-Expression alternative of an
Expression. Further semantics and mapping rules are specified in the context of the subtypes of the
ImperativeExpression metaclass.

10.8.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4 Imperative expression

10.9 LiteralValue

The metaclass LiteralValue is a subtype of the metaclass SdlExpression. The metamodel diagram
for the metaclass is defined in Figure 10-1.

The metaclass LiteralValue represents a Literal in the SDL-2010 abstract syntax. A literal
represents a concrete value for a particular data type. In addition, a Literal is always a Constant
expression in the SDL-2010 abstract syntax.

10.9.1 Attributes

• value: String

 This represents the concrete value for a data type.

10.9.2 Constraints

[1] The type property shall reference a <<DataTypeDefinition>> Class.

[2] The isConstant property shall be true.

10.9.3 Semantics

The LiteralValue maps to a Literal (a Constant-expression) in the SDL-2010 abstract syntax. The
qualifiedName of the type property of a LiteralValue maps to the Qualifier part of the Literal-
identifier. In addition, the value property of a LiteralValue maps to the Name part of the Literal-
identifier.

10.9.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.2 Literal

10.10 NowExpression

The metaclass NowExpression is a subtype of the metaclass ImperativeExpression (see 10.8). The
metamodel diagram for the metaclass is defined in Figure 10-9.

The NowExpression metaclass represents a Now-expression of the abstract grammar of SDL-2010.
With a now expression the current value of the system clock is obtained. In consequence, the type
of the result value is always the predefined Time type.

10.10.1 Attributes

No additional attributes.

10.10.2 Constraints

[1] The type property shall be the type Predefined::Time.

10.10.3 Semantics

The NowExpression metaclass maps to a Now-expression.

 Rec. ITU-T Z.109 (04/2012) 75

10.10.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.1 Now expression

10.11 OpenRange

The metaclass OpenRange is a subtype of the metaclass ConditionItem (see 10.6). The metamodel
diagram for the metaclass is defined in Figure 10-13.

An open range condition constrains a data type only with one boundary value (a constant
expression) and an associated range operator (an infix operator). The OpenRange metaclass
represents the Open-range alternative of a Condition-item node in the SDL-2010 abstract syntax.

10.11.1 Attributes

• operationIdentifier: Operation

 the operation (infix operator) for the range operator.

• constantExpression: SdlExpression {subsets Element::ownedElement}

 the boundary value of an open range.

10.11.2 Constraints

[1] The operationIdentifier property shall reference an <<Operation>> Operation with a result
type of Predefined::Boolean.

[2] Each parameter of the referenced operationIdentifier shall the same type as the constrained
data type.

[3] The constantExpression property shall only consist of an SdlExpression with isConstant =
true.

[4] The type property of the OpenRange shall be the type Predefined::Boolean.

10.11.3 Semantics

The OpenRange metaclass maps to an Open-range. The operationIdentifier property maps to the
Operation-identifier and the constantExpression maps to the Constant-expression of the Open-
range. Further semantics is specified in clause 12.1.8.2 of [ITU-T Z.101]

10.11.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

10.12 OperationApplication

The metaclass OperationApplication is a subtype of the metaclass SdlExpression. The metamodel
diagram for the metaclass is defined in Figure 10-4.

An operation application represents the invocation of an operation of a <<DataTypeDefinition>>
Class and maps to an Operation-application.

10.12.1 Attributes

• operationIdentifier: Operation

 Identifies the operation to be invoked.

• actualParameterList: SdlExpression [0..*] {subsets Element::ownedElement, ordered}

 the list of actual parameters for the operation application.

76 Rec. ITU-T Z.109 (04/2012)

10.12.2 Constraints

[1] The type of each item in the actualParameterList shall conform to the type of the
corresponding parameter of the operation.

[2] The operationIdentifier property shall identify an <<Operation>> Operation that is owned
by a <<DataTypeDefinition>> Class.

[3] The type property of an OperationApplication shall be of the same type as the operation
referenced by the operationIdentifier property.

[4] The isConstant property shall be true only if each element in the expression list has an
isConstant property of true.

10.12.3 Semantics

The OperationApplication metaclass maps to an Expression that is an Operation-application. The
qualifiedName property of the operationIdentifier maps to the Operator-identifier, and each
SdlExpression in the actualParameterList maps to an Expression of the Actual-parameters list of the
Operation-application.

If all elements in the actualParameterList are expressions with isConstant true, the
OperationApplication represents a Constant-expression; otherwise, it represents an Active-
expression.

10.12.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.6 Operation application

10.13 PidExpression

The metaclass PidExpression is a subtype of the metaclass ImperativeExpression (see 10.8). The
metamodel diagram for the metaclass is defined in Figure 10-9.

The PidExpression metaclass represents a Pid-expression of the abstract grammar of SDL-2010. A
pid expression accesses one out of four anonymous variables of an agent and returns the associated
pid value. A pid expression is always an active expression because it is one alternative of the
imperative expression.

10.13.1 Attributes

• expressionKind: PidExpressionKind

 Defines the kind of the pid expression

10.13.2 Constraints

[1] The type property of a PidExpression shall conform to the type Predefined::Pid.

10.13.3 Semantics

The PidExpression metaclass maps to one out of four alternatives of a Pid-expression. Depending
on the value of the expressionKind property, a PidExpression maps to a Self-expression, a Parent-
expression, an Offspring-expression or a Sender-expression.

10.13.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.2 Pid expression

 Rec. ITU-T Z.109 (04/2012) 77

10.14 PidExpressionKind

The enumeration type PidExpressionKind determines the kind of a PidExpression. The metamodel
diagram is defined in Figure 10-9.

10.14.1 Attributes

No additional attributes.

10.14.2 Constraints

No additional constraints.

10.14.3 Semantics

For the enumeration type PidExpressionKind the following enumeration literals and mappings are
defined:

• self representing the Self-expression;

• parent representing the Parent-expression;

• offspring representing the Offspring-expression;

• sender representing the Sender-expression.

10.14.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.2 Pid expression

10.15 RangeCheckExpression

The metaclass RangeCheckExpression is a specialization of the metaclass SdlExpression (see
clause 10.17). The metamodel diagram for the metaclass is defined in Figure 10-5.

A range check expression is used in order to check if a given value or expression meets the range
conditions criteria.

10.15.1 Attributes

• rangeCondition: RangeCondition {subsets Element::ownedElement}

 the range condition to be verified.

• expression: SdlExpression {subsets Element::ownedElement }

 the value to be verified.

• parentSortIdentifier: Classifier

 a reference to a <<DataTypeDefinition>> Class that defines the parent sort.

10.15.2 Constraints

[1] The type property of a RangeCheckExpression shall be the type Predefined::Boolean.

[2] The parentSortIdentifier shall reference a <<DataTypeDefinition>> Class.

[3] The type of the expression shall conform to type identified by the parentSortIdentifier.

10.15.3 Semantics

A RangeCheckExpression maps to a Range-check-expression. The rangeCondition property maps
to the Range-condition and the expression property maps to the Expression of a Range-check-
expression. If the expression property references an SdlExpression with isConstant true, the
RangeCheckExpression represents a Constant-expression; otherwise it is an Active-Expression.

78 Rec. ITU-T Z.109 (04/2012)

10.15.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.7 Range check expression

10.16 RangeCondition

The metaclass RangeCondition is a specialization of the UML metaclass ValueSpecification. The
metamodel diagram for the metaclass is defined in Figure 10-12.

A range condition defines a set of values for a range check. A RangeCondition is used in the
context of a RangeCheckExpression, a <<Syntype>> Class, a <<Property>> Property, a
<<Decision>> ConditionalNode, an <<If>> ConditionalNode or a <<Pseudostate>> Pseudostate
with kind choice.

10.16.1 Attributes

• conditionItemSet: ConditionItem [*] {subsets Element::ownedElement}

 References all condition items specified for a range condition.

10.16.2 Constraints

[1] The type property of a RangeCondition shall be the type Predefined::Boolean.

10.16.3 Semantics

A RangeCondition maps to a Range-condition. The conditionItemSet property maps to the
Condition-item-set of the Range-condition.

10.16.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

UML-SS [OMG UML]:

 7.3.55 ValueSpecification (from Kernel)

10.17 SdlExpression

The metaclass SdlExpression is a specialization of the UML metaclass ValueSpecification. This
metaclass is abstract, and the metamodel diagram for the metaclass is defined in Figure 10-1.
Subtypes of the metaclass are the metaclasses RangeCheckExpression (see clause 10.15),
ConditionalExpression (see clause 10.5), OperationApplication (see clause 10.12),
ValueReturningCallNode (see clause 10.24), ImperativeExpression (see clause 10.8) and
EqualityExpression (see clause 10.7).

Depending on the isConstant property, the SdlExpression metaclass represents a Constant-
expression or an Active-expression alternative of an Expression. For both alternatives of an
Expression in the SDL-2010 abstract syntax further alternatives exist. The semantics and mapping
rules for the different alternatives of an Expression depends on the above listed subtypes of the
SdlExpression metaclass.

10.17.1 Attributes

• isConstant: Boolean

 True if the expression is a constant expression, otherwise it is an active expression.

10.17.2 Constraints

[1] The type property of an SdlExpression shall not be empty.

 Rec. ITU-T Z.109 (04/2012) 79

10.17.3 Semantics

Its subtypes specify the semantics and mapping rules of an SdlExpression.

10.17.4 References

SDL-2010 [ITU-T Z.101]:

 12.2.1 Expressions and expressions as actual parameters

UML-SS [OMG UML]:

 7.3.55 ValueSpecification (from Kernel)

10.18 SizeConstraint

The metaclass SizeConstraint is a subtype of the metaclass ConditionItem (see clause 10.6). The
metamodel diagram for the metaclass is defined in Figure 10-15. A size constraint is usable only to
constrain multi-value data types that own a length() operator, e.g., the SDL-UML predefined
String data type. The SizeConstraint metaclass maps to the Size-constraint alternative of the
Condition-item node in the SDL-2010 abstract syntax.

10.18.1 Attributes

• operationIdentifier: Operation

 the length() operator for the verification of the size.

• conditionItemSet: ConditionItem [0..*] {subsets Element::ownedElement}

 references all condition items specified for a size range.

10.18.2 Constraints

[1] The operationIdentifier property shall reference an <<Operation>> Operation with a
signature as follows: length(P): Predefined::Natural

 where the P in the operation signature is the type of the constrained data type.

[2] The type property of a SizeConstraint shall be the type Predefined::Boolean.

10.18.3 Semantics

A SizeConstraint maps to a Size-constraint in the SDL-2010 abstract syntax. The
operationIdentifier property maps to the Operation-identifier and the conditionItemSet maps to the
Condition-item-set of the Size-constraint.

10.18.4 References

SDL-2010 [ITU-T Z.101]:

 12.1.8.2 Constraint

10.19 StateExpression

The metaclass StateExpression is a subtype of the metaclass ImperativeExpression (see clause
10.8). The metamodel diagram for the metaclass is defined in Figure 10-9.

The StateExpression metaclass represents a State-expression of the abstract grammar of SDL-2010.
A state expression returns the name of the most recently entered state in terms of a Charstring.
Because a State-expression is one alternative of an Imperative-expression, it is also an active
expression.

10.19.1 Attributes

No additional attributes.

80 Rec. ITU-T Z.109 (04/2012)

10.19.2 Constraints

[1] The type property shall be the type Predefined::Charstring.

10.19.3 Semantics

A StateExpression maps to a State-expression.

10.19.4 References

SDL-2010 [ITU-T Z.104]:

 12.3.4.7 State expression

10.20 TimerActiveExpression

The metaclass TimerActiveExpression is a subtype of the metaclass ImperativeExpression (see
clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-10.

The TimerActiveExpression metaclass represents a Timer-active-expression of the abstract
grammar of SDL-2010. A timer active expression returns the Boolean value true, if the associated
timer is active. Otherwise, a Boolean value of false is returned. A timer active expression is always
an active expression, because it is one alternative of the imperative expression.

10.20.1 Attributes

• timerIdentifier: Signal

 Reference to the associated timer

• expression: SdlExpression [0..*] {subsets Element::ownedElement}

 Expression list containing the actual parameters of the associated timer.

10.20.2 Constraints

[1] The type property shall be the type Predefined::Boolean.

[2] The type, the order and the number of items in the expression list shall match with the
ownedAttribute items of the associated timer.

10.20.3 Semantics

A TimerActiveExpression maps to a Timer-active-expression. The timerIdentifier maps to Timer-
identifier and the expression list maps to the Expression-list.

10.20.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.3 Timer active expression and timer remaining duration

10.21 TimerRemainingDuration

The metaclass TimerRemainingDuration is a subtype of the metaclass ImperativeExpression (see
clause 10.8). The metamodel diagram for the metaclass is defined in Figure 10-10.

The TimerRemainingDuration metaclass represents a Timer-remaining-duration of the abstract
grammar of SDL-2010. A timer remaining duration returns a value of the predefined type
Duration. The value is the time until the timer will expire. A timer remaining duration is always an
active expression because it is one alternative of the imperative expression.

10.21.1 Attributes

• timerIdentifier: Signal

 Reference to the associated timer.

 Rec. ITU-T Z.109 (04/2012) 81

• expression: ValueSpecification [0..*] {subsets Element::ownedElement}

 Expression list containing the actual parameters of the associated timer.

10.21.2 Constraints

[1] The type property shall be of predefined Duration type.

[2] The type, the order and the number of items in the expression list shall match with the
ownedAttribute items of the associated timer.

10.21.3 Semantics

A TimerRemainingDuration maps to a Timer-remaining-duration. The timerIdentifier maps to
Timer-identifier and the expression list maps to the Expression-list of the Timer-remaining-
duration.

10.21.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.4.3 Timer active expression and timer remaining duration

10.22 TypeCheckExpression

The metaclass TypeCheckExpression is a specialization of the metaclass SdlExpression (see clause
10.17). The metamodel diagram for the metaclass is defined in Figure 10-6.

A type check expression is used to check if the dynamic sort of an expression is sort compatible
with the sort introduced by a referenced data type definition.

10.22.1 Attributes

• expression: SdlExpression {subsets Element::ownedElement}

 The expression whose dynamic sort shall be evaluated.

• parentSortIdentifier: Class

 the data type definition that shall be used for a type check.

10.22.2 Constraints

[1] The type property of a RangeCheckExpression shall be of the predefined Boolean type.

[2] The parentSortIdentifier shall reference a <<DataTypeDefinition>> Class or <<Interface>>
Interface.

[3] The type of the expression shall conform to the type identified by the parentSortIdentifier.

10.22.3 Semantics

A TypeCheckExpression maps to a Type-check-expression. The parentSortIdentifier property maps
to the Parent-sort-identifier and the expression property maps to the Expression of a Type-check-
expression. If the expression property is an SdlExpression with isConstant true, the
TypeCheckExpression represents a Constant-expression; otherwise it is an Active-Expression.

10.22.4 References

SDL-2010 [ITU-T Z.107]:

 12.2.8 Range check expression

10.23 TypeCoercion

The metaclass TypeCoercion is a specialization of the metaclass SdlExpression (see clause 10.17).
The metamodel diagram for the metaclass is defined in Figure 10-7.

82 Rec. ITU-T Z.109 (04/2012)

Type coercion is used in order to change the dynamic sort of an expression.

10.23.1 Attributes

• expression: SdlExpression {subsets Element::ownedElement}

 The expression whose dynamic sort shall be changed.

• sortReferenceIdentifier: Class

 A reference to the data type definition that shall be used as the new dynamic sort.

10.23.2 Constraints

[1] The type and sortReferenceIdentifier properties shall reference the same data type
definition.

[2] The sortReferenceIdentifier shall reference a <<DataTypeDefinition>> Class.

[3] The type property of the expression shall refer to the same data type definition as identified
by the sortReferenceIdentifier, or it shall be a subtype of that data type definition.

10.23.3 Semantics

A TypeCoercion maps to a Type-coercion. The sortReferenceIdentifier property maps to the Sort-
reference-identifier and the expression property maps to the Expression of a Type-coercion. If the
expression property is an SdlExpression with isConstant true, the TypeCoercion represents a
Constant-expression; otherwise it is an Active-Expression.

10.23.4 References

SDL-2010 [ITU-T Z.107]:

 12.2.8.1 Type coercion

10.24 ValueReturningCallNode

The metaclass ValueReturningCallNode is a specialization of the metaclass SdlExpression (see
clause 10.17). The metamodel diagram for the metaclass is defined in Figure 10-3.

A value returning procedure call is used to call a procedure that returns a value. The procedure has
to be owned by an agent. Hence, in SDL-UML, a value returning procedure call is only used to
invoke an <<Operation>> Operation that is owned by an <<ActiveClass>> Class.

10.24.1 Attributes

• operationIdentifier: Operation

 Identifies the procedure to be invoked.

• actualParameterList: SdlExpression [0..*]{subsets Element::ownedElement, ordered}

 the list of actual parameters for the procedure call.

10.24.2 Constraints

[1] The isConstant property shall be false.

[2] In the actualParameterList, the type of each item shall conform to the type of the
corresponding parameter of the operation.

[3] The operationIdentifier property shall identify an <<Operation>> Operation that is owned
by an <<ActiveClass>> Class.

[4] The type property of a ValueReturningCallNode shall be of the same type as the operation
referenced by the operationIdentifier property.

 Rec. ITU-T Z.109 (04/2012) 83

10.24.3 Semantics

A ValueReturningCallNode maps to a Value-returning-call-node. The operationIdentifier property
maps to the Procedure-identifier and each SdlExpression in the actualParameterList maps to an
Expression of the Actual-parameters list of the Value-returning-call-node.

10.24.4 References

SDL-2010 [ITU-T Z.101]:

 11.13.3 Procedure call

 12.3.5 Value returning procedure call

10.25 VariableAccess

The metaclass VariableAccess specializes the metaclass SdlExpression. The metamodel diagram for
the metaclass is defined in Figure 10-1.

The metaclass VariableAccess maps to a Variable-access in the SDL-2010 abstract syntax. The
result of a variable access is the current value of a variable. A Variable-access is always an Active
expression in the SDL-2010 abstract syntax.

10.25.1 Attributes

• variable : TypedElement

 References the Variable or Property that shall be accessed.

10.25.2 Constraints

[1] The variable property shall reference a Variable or a Property.

[2] The type of a VariableAccess shall conform to the type of the referenced Variable or
Property.

[3] The isConstant property shall be false.

10.25.3 Semantics

A VariableAccess maps to a Variable-access (an Active-expression) and the variable property maps
to the Variable-identifier.

10.25.4 References

SDL-2010 [ITU-T Z.101]:

 12.3.2 Variable access

11 Context parameters

Context parameters enable the parameterization of definitions. While context parameters are similar
to UML template parameters, their semantics in SDL-UML is aligned to SDL-2010. The
metamodel for context parameters of SDL-UML is specified in terms of metaclasses that extend the
UML metaclass Element.

NOTE – Remote variable context parameters and remote procedure context parameters are not supported
because remote variables and remote procedures are not represented by particular SDL-UML elements.

84 Rec. ITU-T Z.109 (04/2012)

11.1 Context parameter metamodel diagrams

Figure 11-1 – FormalContextParameter

Figure 11-2 – ActualContextParameters

Figure 11-3 – AgentTypeContextParameter

Figure 11-4 – AgentContextParameter

 Rec. ITU-T Z.109 (04/2012) 85

Figure 11-5 – ProcedureContextParameter

Figure 11-6 – SignalContextParameter

Figure 11-7 – VariableContextParameter

Figure 11-8 – TimerContextParameter

Figure 11-9 – SynonymContextParameter

86 Rec. ITU-T Z.109 (04/2012)

Figure 11-10 – SortContextParameter

Figure 11-11 – CompositeStateTypeContextParameter

Figure 11-12 – GateContextParameter and GateConstraint

Figure 11-13 – InterfaceContextParameter

11.2 ActualContextParameter

The metaclass ActualContextParameter is a specialization of the UML metaclass Element. The
metamodel diagram for the metaclass is defined in Figure 11-2.

The ActualContextParameter metaclass represents an actual context parameter of a parameterized
type.

 Rec. ITU-T Z.109 (04/2012) 87

11.2.1 Attributes

• contextParameter: NamedElement [0..1]

 an actual context parameter corresponding to a formal context parameter that is not a
SynonymContextParameter.

• synonymContextParameter: SdlExpression [0..1] {subsets Element::ownedElement}

 an actual context parameter corresponding to a formal context parameter that is
SynonymContextParameter.

11.2.2 Constraints

[1] If the contextParameter is present, the synonymContextParameter shall be absent.

[2] A contextParameter shall satisfy the constraints for a corresponding actual context paramter
defined in the corresponding formal context parameter.

 NOTE 1 – A formal context parameter corresponds to an actual context parameter if it is in the
same position in the formalContextParameterList of the supertype of the Classifier that owns the
actualContextParameterList containing the actual context parameter as the position of that actual
context parameter in its actualContextParameterList.

[3] If the synonymContextParameter is present, the contextParameter shall be absent.

[4] If the synonymContextParameter is present, its isConstant property shall be true.

[5] The synonymContextParameter shall conform to the type identified by the sort of the
corresponding formal context parameter (see clause 8.3.9 of [ITU-T Z.102]).

 NOTE 2 – An actual context parameter shall be of the same type or a subtype of the type identified
by the atleast clause of the corresponding formal context parameter (see clause 8.3 of
[ITU-T Z.102]).

11.2.3 Semantics

An ActualContextParameter is part of the context parameter concept that is described in
clauses 8.1.2 and 8.3 of [ITU-T Z.102]. Before an SDL-UML element with context parameters is
mapped to the SDL-2010 abstract syntax, a non-parameterized anonymous type definition is
generated by expanding a parameterized type as specified in clause 8.1.2 of [ITU-T Z.102].

11.2.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.3 Context parameters

 8.3.9 Synonym context parameter

 8.3.10 Sort context parameter

UML-SS [OMG UML]:

 7.3.34 NamedElement (from Kernel, Dependencies)

11.3 AgentContextParameter

The metaclass AgentContextParameter is a subtype of the metaclass FormalContextParameter. The
metamodel diagram for the metaclass is defined in Figure 11-4.

The metaclass AgentContextParameter represents an agent context parameter. An agent context
parameter specifies parameterization by a process or block agent.

88 Rec. ITU-T Z.109 (04/2012)

11.3.1 Attributes

• isExact: Boolean

 if true, the contextParameter of the corresponding actual context parameter shall be the
type identified by the atLeastClause.

• agentSignature: Parameter [0..*]

 {subsets FormalContextParameter::signature, ordered}

 a <<Parameter>> Parameter list that defines the agent signature constraint.

11.3.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall reference an
<<ActiveClass>> Class.

[2] If present, the atLeastClause shall refer to an <<ActiveClass>> Class that does not
represent a system type (see clause 7.2.3).

 NOTE – The atLeastClause property represents an agent type identifier in the concrete syntax of
SDL-2010.

[3] If the isExact property is true, the type property of the corresponding actual context
parameter and the atLeastClause shall refer to the same <<ActiveClass>> Class.

[4] If the isExact property is false, the type of the corresponding actual context parameter shall
conform to the <<ActiveClass>> Class that is referenced by the atLeastClause.

[5] If agentSignature is not empty, the formal parameters of the <<ActiveClass>> Class
identified by the type of the actual context parameter shall be compatible with the
agentSignature.

11.3.3 Semantics

No additional semantics.

11.3.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.2 Agent context parameter

11.4 AgentTypeContextParameter

The metaclass AgentTypeContextParameter is a subtype of the metaclass FormalContextParameter.
The metamodel diagram for the metaclass is defined in Figure 11-3.

The metaclass AgentTypeContextParameter represents an agent type context parameter. An agent
type context parameter specifies parameterization by a process or block type.

11.4.1 Attributes

• agentSignature: Parameter [0..*]

 {subsets FormalContextParameter:: signature, ordered}

 a <<Parameter>> Parameter list that defines the agent signature constraint.

11.4.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to an
<<ActiveClass>> Class.

[2] If present, the atLeastClause shall refer to an <<ActiveClass>> Class that does not
represent a system type (see clause 7.2.3).

 Rec. ITU-T Z.109 (04/2012) 89

[3] If agentSignature is not empty, the formal parameters of the actual context parameter shall
be compatible with the agentSignature.

11.4.3 Semantics

No additional semantics.

11.4.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.1 Agent type context parameter

11.5 CompositeStateTypeContextParameter

The metaclass CompositeStateTypeContextParameter is a subtype of the metaclass
FormalContextParameter. The metamodel diagram for the metaclass is defined in Figure 11-11.

The metaclass CompositeStateTypeContextParameter represents a composite state type context
parameter. A composite state type context parameter specifies parameterization by a composite
state type.

11.5.1 Attributes

• compositeStateTypeSignature: Parameter [0..*]

 {subsets FormalContextParameter:: signature, ordered}

 a <<Parameter>> Parameter list that defines the composite state type signature
constraint.

11.5.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to a
<<StateMachine>> StateMachine.

[2] If present, the atLeastClause shall refer to a <<StateMachine>> StateMachine.

[3] If compositeStateTypeSignature is present, the ownedParameter list of the
<<StateMachine>> StateMachine referenced by the corresponding actual context parameter
shall conform to the compositeStateTypeSignature.

11.5.3 Semantics

No additional semantics.

11.5.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.11 Composite state type context parameter

11.6 FormalContextParameter

The metaclass FormalContextParameter is a specialization of the UML metaclass Element. This
metaclass is abstract, and the metamodel diagram for the metaclass is defined in Figure 11–1.

The FormalContextParameter metaclass is the superClass of all metaclasses representing a specific
formal context parameter kind.

When a FormalContextParameter is present in the definition of a Classifier, this Classifier is a
parameterized type. A non-parameterized type is obtained as an expansion of a parameterized type

90 Rec. ITU-T Z.109 (04/2012)

by providing corresponding (in order of occurrence) actual context parameters to replace the use of
each formal context parameter in the parameterized type.

11.6.1 Attributes

• contextParameter: NamedElement {subsets Element::ownedElement}

 specifies the element that is used as the formal context parameter.

• atLeastClause: NamedElement [0..1]

 constrains the corresponding actual context parameter for the current formal context
parameter.

• /signature: NamedElement [0..*] {union, subsets ::ownedElement}

 constrains the corresponding actual context parameter. This is a derived union.

NOTE – A formal context parameter in the concrete syntax of SDL-2010 optionally has a constraint, which
is either an atleast constraint or a signature constraint. The atLeastClause represents an atleast constraint
and the signature defines a signature constraint.

11.6.2 Constraints

[1] If the atLeastClause is present, the signature shall be absent.

[2] The contextParameter of the corresponding actual context parameter shall conform to the
type identified by the atLeastClause (see clause 8.3 of [ITU-T Z.102]).

[3] If the signature is present, the atLeastClause shall be absent.

[4] The contextParameter of the corresponding actual context parameter shall be of a type that
contains elements that meet the constraints for the elements identified in the signature.

 NOTE 1 – An actual context parameter shall be of the same type or a subtype of the type identified
by the atleast clause of the corresponding formal context parameter (see clause 8.3 of
[ITU-T Z.102])

[5] A FormalContextParameter shall not be used as a supertype in a generalization and it shall
not be used as an atLeastClause of another FormalContextParameter.

 NOTE 2 – It is not allowed to use a formal context parameter as the base type in a type expression
or in an atleast constraint of a formal context parameter (see clause 8.3 of [ITU-T Z.102]).

11.6.3 Semantics

Before an SDL-UML element having defined context parameters is mapped to the SDL-2010
abstract syntax, all formal context parameters have to be replaced by the corresponding actual
context parameters as defined in clause 8.1.2 of [ITU-T Z.102].

11.6.4 References

SDL-2010 [ITU-T Z.102]:

 8.1.2 Type expression

 8.3 Context parameters

 8.3.10 Sort context parameter

 8.3.9 Synonym context parameter

UML-SS [OMG UML]:

 7.3.34 NamedElement (from Kernel, Dependencies)

11.7 GateContextParameter

The metaclass GateContextParameter is a subtype of the metaclass FormalContextParameter. The
metamodel diagram for the metaclass is defined in Figure 11-12.

 Rec. ITU-T Z.109 (04/2012) 91

The metaclass GateContextParameter represents a gate context parameter. A gate context parameter
specifies parameterization by a gate.

11.7.1 Attributes

• inGate: GateConstraint[0..1] {subsets FormalContextParameter::signature}

 defines a list of signals that are receivable by a specific agent type.

• outGate: GateConstraint[0..1] {subsets FormalContextParameter::signature}

 defines a list of signals that a specific agent type is capable of sending.

11.7.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall reference a
<<Port>> Port.

[2] The atLeastClause shall be empty.

[3] It is allowed to omit at most only one of the inGate or outGate properties.

[4] If inGate and outGate are present, both shall have the same endpointConstraint.

[5] If the inGate GateConstraint is present, the signals defined by its signalList (if present) shall
contain all those signals defined by the required <<Interface>> Interface of the <<Port>>
Port of the corresponding actual context parameter.

[6] If the outGate GateConstraint is present, the signals defined by its signalList shall be
included in the set of signals defined by the provided <<Interface>> Interface of the
<<Port>> Port that is the corresponding actual context parameter.

11.7.3 Semantics

No additional semantics.

11.7.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.12 Gate context parameter

11.8 GateConstraint

The metaclass GateConstraint is a subtype of the metaclass Element. The metamodel diagram for
the metaclass is defined in Figure 11-12.

The metaclass GateConstraint represents a gate constraint of a gate context parameter.

11.8.1 Attributes

• signalSet: Classifier[0..*]

 defines a list of signals that are used to constrain the set of input or output signals of a
port.

• endpointConstraint: Class[0..1]

 the source or destination for specified signals of a port.

11.8.2 Constraints

[1] Each item referenced in the signalSet shall be a <<Signal>> Signal or <<Interface>>
Interface.

[2] The endpointConstraint property shall reference an <<ActiveClass>> Class.

92 Rec. ITU-T Z.109 (04/2012)

11.8.3 Semantics

No additional semantics.

11.8.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.12 Gate context parameter

11.9 InterfaceContextParameter

The metaclass InterfaceContextParameter is a subtype of the metaclass FormalContextParameter.
The metamodel diagram for the metaclass is defined in Figure 11-13.

The metaclass InterfaceContextParameter represents an interface context parameter. An interface
context parameter specifies parameterization by an interface.

11.9.1 Attributes

No additional attributes.

11.9.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to an
<<Interface>>Interface.

[2] The signature shall be empty.

[3] If present, the atLeastClause shall refer to an <<Interface>> Interface.

[4] If the atLeastClause is present, the <<Interface>>Interface referenced by the corresponding
actual context parameter shall conform to the <<Interface>> Interface of the atLeastClause.

11.9.3 Semantics

No additional semantics.

11.9.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.13 Interface context parameter

11.10 ProcedureContextParameter

The metaclass ProcedureContextParameter is a subtype of the metaclass FormalContextParameter.
The metamodel diagram for the metaclass is defined in Figure 11-5.

The metaclass ProcedureContextParameter represents a procedure context parameter. A procedure
context parameter specifies parameterization by a procedure.

11.10.1 Attributes

• procedureSignature: Operation[0..1]

 {subsets FormalContextParameter::signature, ordered}

 the <<Operation>> Operation that defines the procedure signature constraint.

11.10.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to an
<<Operation>> Operation.

 Rec. ITU-T Z.109 (04/2012) 93

[2] If present, the atLeastClause shall refer to an <<Operation>> Operation.

[3] Each ownedParameter of the <<Operation>> Operation that is the actual context parameter
shall have the same type and the same aggregation as the corresponding ownedParameter of
the procedureSignature, and (if present) both shall have the same type.

[4] Each ownedParameter that has a direction of out or inout of the <<Operation>> Operation
that is the actual context parameter shall have the same type as the corresponding
ownedParameter of the procedureSignature.

11.10.3 Semantics

No additional semantics.

11.10.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.3 Procedure context parameter

11.11 SignalContextParameter

The metaclass SignalContextParameter is a subtype of the metaclass FormalContextParameter. The
metamodel diagram for the metaclass is defined in Figure 11-6.

The metaclass SignalContextParameter represents a signal context parameter. A signal context
parameter specifies parameterization by a signal.

11.11.1 Attributes

• signalSignature [0..*] {subsets FormalContextParameter::signature, ordered}

 a list of items that define the signal signature constraint.

11.11.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall refer to a
<<Signal>>Signal.

[2] If present, the atLeastClause shall refer to a <<Signal>> Signal.

[3] Each item of the signalSignature shall be a <<Property>> Property.

[4] If signalSignature is present, each ownedProperty of the <<Signal>> Signal that is the
actual context parameter shall have the same type and the same aggregation as the
corresponding <<Property>> Property of the signalSignature.

11.11.3 Semantics

No additional semantics.

11.11.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.5 Signal context parameter

11.12 SortContextParameter

The metaclass SortContextParameter is a subtype of the metaclass FormalContextParameter. The
metamodel diagram for the metaclass is defined in Figure 11-10.

The metaclass SortContextParameter represents a sort context parameter. A sort context parameter
specifies parameterization by a type.

94 Rec. ITU-T Z.109 (04/2012)

11.12.1 Attributes

• literalSignature: Property[0..*]

 {subsets FormalContextParameter::signature, ordered}

 a list of literals that are a part of the sort signature.

• operatorSignature: Operation[0..*]

 {subsets FormalContextParameter::signature }

 a set of operation signatures for operators and that are a part of the sort signature.

• methodSignature: Operation[0..*]

 {subsets FormalContextParameter::signature }

 a set of operation signatures for methods and that are a part of the sort signature.

11.12.2 Constraints

[1] The contextParameter of the corresponding actual context parameter shall reference a
<<DataTypeDefinition>> Class or <<Interface>> Interface.

[2] If present, the atLeastClause shall refer to a <<DataTypeDefinition>> Class or
<<Interface>> Interface.

[3] If the signature is not empty, each item defined by the literalSignature, operatorSignature
and methodSignature shall match with a corresponding item of the current actual context
parameter.

11.12.3 Semantics

No additional semantics.

11.12.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.10 Sort context parameter

11.13 SynonymContextParameter

The metaclass SynonymContextParameter is a subtype of the metaclass FormalContextParameter.
The metamodel diagram for the metaclass is defined in Figure 11-9.

The metaclass SynonymContextParameter represents a synonym context parameter. A synonym
context parameter specifies parameterization by a constant value.

11.13.1 Attributes

• sort: Classifier {subsets FormalContextParameter::signature}

11.13.2 Constraints

[1] The corresponding actual context parameter shall be a synonymContextParameter.

[2] The atLeastClause shall be empty.

[3] The sort shall refer to a <<DataTypeDefinition>> Class or <<Interface>> Interface.

[4] The type property of an SdlExpression that is the actual context parameter and the sort
property of a SynonymContextParameter shall reference the same type definition.

11.13.3 Semantics

No additional semantics.

 Rec. ITU-T Z.109 (04/2012) 95

11.13.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.9 Synonym context parameter

11.14 TimerContextParameter

The metaclass TimerContextParameter is a subtype of the metaclass FormalContextParameter. The
metamodel diagram for the metaclass is defined in Figure 11-8.

The metaclass TimerContextParameter represents a timer context parameter. A timer context
parameter specifies parameterization by a timer.

11.14.1 Attributes

• sortList: Classifier[0..*] {subsets FormalContextParameter::signature, ordered}

 a list of references to data type or interface definitions that constrain the timer used as
the actual context parameter.

11.14.2 Constraints

[1] The contextParameter shall be a <<Timer>> Signal.

[2] The contextParameter of the corresponding actual context parameter shall refer to a
<<Timer>> Signal.

[3] The atLeastClause shall be empty.

[4] If sortList is present, each item of the sortList shall refer to a <<DataTypeDefinition>>
Class or <<Interface>> Interface.

[5] If sortList is present, each ownedProperty of the <<Timer>> Signal that is the actual
context parameter shall have a type that is equal to the corresponding item of the sortList.

11.14.3 Semantics

No additional semantics.

11.14.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.8 Timer context parameter

11.15 VariableContextParameter

The metaclass VariableContextParameter is a subtype of the metaclass FormalContextParameter.
The metamodel diagram for the metaclass is defined in Figure 11-7.

The metaclass VariableContextParameter represents a variable context parameter. A variable
context parameter specifies parameterization by a variable.

11.15.1 Attributes

No additional attributes.

11.15.2 Constraints

[1] The contextParameter shall be a <<Property>> Property that represents a variable definition
(see clause 7.13.3).

96 Rec. ITU-T Z.109 (04/2012)

[2] The contextParameter of the corresponding actual context parameter shall refer to a
<<Property>> Property that represents a variable definition (see clause 7.13.3).

[3] The atLeastClause and the signature shall be empty.

11.15.3 Semantics

No additional semantics.

11.15.4 References

SDL-2010 [ITU-T Z.102]:

 8.3 Context parameters

 8.3.6 Variable context parameter

12 Predefined data

This clause defines a set of predefined data types as a UML model library for SDL-UML. The data
types are contained in a <<Package>> Package named Predefined and they are implicitly available
in models with applied SDL-UML profile. In order to mark a data type definition as predefined, all
<<DataTypeDefinition>> Classes specified in this clause have an isPredefined property of true.

The predefined data types are divided into non-parameterized types, which are used directly, and
parameterized types, which need to have all their context parameters bound before they are usable.

The semantics of the data types and their provided operations are defined in clause 14 of
[ITU-T Z.104]), except if a different semantics is explicitly mentioned below.

12.1 Non-parameterized data types

The non-parameterized data types of SDL-2010 are the following types: Boolean, Integer,
Natural, Character, String, Real, Duration, Time, Bit, Bitstring, Octet and Octetstring.
In SDL-UML, these data types are represented as instances of <<DataTypeDefinition>> Class or
<<LiteralType>> Class or <<Syntype>> Class with names equal to those defined in SDL-2010.

12.1.1 Boolean

The predefined data type Boolean is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.1
of [ITU-T Z.104].

12.1.2 Character

The predefined data type Character is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.2
of [ITU-T Z.104].

12.1.3 Charstring

The predefined data type Charstring is represented as an instance of <<DataTypeDefinition>>
Class that is a subtype of the parameterized String <<DataTypeDefinition>> Class.

The formalContextParameterList is empty.

The actualContextParameterList consists of:

• An ActualContextParameter with an empty synonymContextParameter and a
contextParameter that refers to the Character <<DataTypeDefinition>> Class. This is a
concrete binding to the formal context parameter Itemsort of String.

 Rec. ITU-T Z.109 (04/2012) 97

The SDL-UML data type definition Charstring provides the same operations as defined in
clause 14.4 of [ITU-T Z.104].

12.1.4 Integer

The predefined data type Integer is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.5
of [ITU-T Z.104].

12.1.5 Natural syntype

The predefined syntype Natural is represented as an instance of <<Syntype>> Class, which has a
Dependency association to the constrained Integer <<LiteralType>> Class. The constant property
of the Natural <<Syntype>> Class consists of a RangeCheckExpression representing the concrete
syntax expression constants >= 0 as defined in clause 14.6 of [ITU-T Z.104].

12.1.6 Real

The predefined data type Real is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.7
of [ITU-T Z.104].

12.1.7 Duration

The predefined data type Duration is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.11
of [ITU-T Z.104].

12.1.8 Time

The predefined data type Time is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.12
of [ITU-T Z.104].

12.1.9 Bit

The predefined data type Bit is represented as an instance of <<LiteralType>> Class that is a
subtype of Boolean <<LiteralType>> Class. The SDL-UML data type definition Bit provides the
same literals and operations as defined in clause 14.14 of [ITU-T Z.104].

12.1.10 Bitstring

The predefined data type Bitstring is represented as an instance of <<LiteralType>> Class. This
SDL-UML data type definition provides the same literals and operations as defined in clause 14.14
of [ITU-T Z.104].

12.1.11 Octet syntype

The predefined syntype Octet is represented as an instance of <<Syntype>> Class, which has a
Dependency association to the constrained Bitstring <<LiteralType>> Class. The constant
property of the Octet <<Syntype>> Class consists of a RangeCheckExpression representing the
concrete syntax expression size = 8 as defined in clause 14.15 of [ITU-T Z.104].

12.1.12 Octetstring

The predefined data type Octetstring is represented as an instance of <<DataTypeDefinition>>
Class that is a subtype of the parameterized String <<DataTypeDefinition>> Class.

The formalContextParameterList is empty.

The actualContextParameterList consists of:

98 Rec. ITU-T Z.109 (04/2012)

• An ActualContextParameter with an empty synonymContextParameter and a
contextParameter that is a reference to the Octet <<DataTypeDefinition>> Class. This is a
concrete binding to the formal context parameter Itemsort of String.

The SDL-UML data type definition Octetstring provides the same operations as defined in
clause 14.15 of [ITU-T Z.104].

12.2 Parameterized data types

This clause provides parameterized data types for SDL-UML predefined types with context
parameters. Each of these parameterized data types is an instance of <<DataTypeDefinition>> Class
that provides a set of formal context parameters as required for the particular type represented.

12.2.1 Array

The predefined data type Array is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class
with the name Index.

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class
with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition Array provides the same operations as defined in clause 14.8 of
[ITU-T Z.104].

12.2.2 Bag

The predefined data type Bag is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class
with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition Bag provides the same operations as defined in clause 14.13 of
[ITU-T Z.104].

12.2.3 Powerset

The predefined data type Powerset is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class
with the name Itemsort.

The actualContextParameterList is empty.

The SDL-UML data type definition Powerset provides the same operations as defined in
clause 14.10 of [ITU-T Z.104].

12.2.4 String

The predefined data type String is represented as an instance of <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class
with the name Itemsort.

 Rec. ITU-T Z.109 (04/2012) 99

The actualContextParameterList is empty.

The SDL-UML data type definition String provides the same operations as defined in clause 14.3
of [ITU-T Z.104].

12.2.5 Vector

The predefined data type Vector is represented as an instance of <<DataTypeDefinition>> Class
that is a subtype of the parameterized Array <<DataTypeDefinition>> Class.

The formalContextParameterList consists of:

• A SortContextParameter with a contextParameter that is a <<DataTypeDefinition>> Class
with the name Itemsort.

• A SynonymContextParameter with a contextParameter that is a <<Property>> Property
with the name MaxIndex.

The actualContextParameterList property consists of:

• An ActualContextParameter with an empty synonymContextParameter and a
sortContextParameter that is a reference to the Indexsort <<DataTypeDefinition>> Class.
This is a binding to the formal context parameter Index of Array.

• An ActualContextParameter with an empty synonymContextParameter and a
sortContextParameter that is a reference to the Itemsort <<DataTypeDefinition>> Class.
This is a binding to the formal context parameter Itemsort of Array.

In addition, the Vector <<DataTypeDefinition>> Class owns the Indexsort <<Syntype>> Class
as a nestedClassifier. The constant property of the Indexsort <<Syntype>> Class consists of a
RangeCheckExpression representing the concrete syntax expression constants 1:MaxIndex as
defined in clause 14.9 of [ITU-T Z.104].

12.3 Pid

The predefined data type Pid is represented as an instance of <<Interface>> Interface. This
SDL-UML data type definition is the supertype of all interface types (see clause 14.16 of
[ITU-T Z.104]).

Bibliography

[b-ITU-T T.50] Recommendation ITU-T T.50 (1992), International Reference Alphabet (IRA)
(Formerly International Alphabet No. 5 or IA5) − Information technology − 7-bit
coded character set for information interchange.

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.109 (04/2012) – Specification and Description Language - Unified modeling language profile for SDL-2010
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope and objectives
	1.1 Conformance
	1.2 Restrictions on SDL-2010 and UML
	1.3 Mapping

	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions and names
	5.1 Conventions
	5.2 Names and name resolution: NamedElement
	5.3 Transformation

	6 Summary of stereotypes and metaclasses
	6.1 Stereotype summary
	6.2 Metaclass summary

	7 Structure
	7.1 Structure metamodel diagrams
	7.2 ActiveClass
	7.3 ChoiceType
	7.4 Classifier
	7.5 Connector
	7.6 DataTypeDefinition
	7.7 Interface
	7.8 LiteralType
	7.9 Operation
	7.10 Package
	7.11 Parameter
	7.12 Port
	7.13 Property
	7.14 Signal
	7.15 Specification
	7.16 StructureType
	7.17 Syntype
	7.18 Timer

	8 State machines
	8.1 State machine metamodel diagrams
	8.2 FinalState
	8.3 Pseudostate
	8.4 Region
	8.5 State
	8.6 StateMachine
	8.7 Transition

	9 Actions and activities
	9.1 Action and activity metamodel diagrams
	9.2 Activity
	9.3 ActivityFinalNode
	9.4 AddStructuralFeatureValueAction
	9.5 AddVariableValueAction
	9.6 Break
	9.7 CallOperationAction
	9.8 ConditionalNode
	9.9 Continue
	9.10 CreateObjectAction
	9.11 ExpressionAction
	9.12 LoopNode
	9.13 OpaqueAction
	9.14 ResetAction
	9.15 Return
	9.16 SequenceNode
	9.17 SendSignalAction
	9.18 SetAction
	9.19 Stop
	9.20 TimerConstraint
	9.21 Variable

	10 ValueSpecification
	10.1 ValueSpecification metamodel diagrams
	10.2 ActiveAgentsExpression
	10.3 AnyExpression
	10.4 ClosedRange
	10.5 ConditionalExpression
	10.6 ConditionItem
	10.7 EqualityExpression
	10.8 ImperativeExpression
	10.9 LiteralValue
	10.10 NowExpression
	10.11 OpenRange
	10.12 OperationApplication
	10.13 PidExpression
	10.14 PidExpressionKind
	10.15 RangeCheckExpression
	10.16 RangeCondition
	10.17 SdlExpression
	10.18 SizeConstraint
	10.19 StateExpression
	10.20 TimerActiveExpression
	10.21 TimerRemainingDuration
	10.22 TypeCheckExpression
	10.23 TypeCoercion
	10.24 ValueReturningCallNode
	10.25 VariableAccess

	11 Context parameters
	11.1 Context parameter metamodel diagrams
	11.2 ActualContextParameter
	11.3 AgentContextParameter
	11.4 AgentTypeContextParameter
	11.5 CompositeStateTypeContextParameter
	11.6 FormalContextParameter
	11.7 GateContextParameter
	11.8 GateConstraint
	11.9 InterfaceContextParameter
	11.10 ProcedureContextParameter
	11.11 SignalContextParameter
	11.12 SortContextParameter
	11.13 SynonymContextParameter
	11.14 TimerContextParameter
	11.15 VariableContextParameter

	12 Predefined data
	12.1 Non-parameterized data types
	12.2 Parameterized data types
	12.3 Pid

	Bibliography

