

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.109
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2007)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Specification and
Description Language (SDL)

 SDL-2000 combined with UML

ITU-T Recommendation Z.109

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.109 (06/2007) i

ITU-T Recommendation Z.109

SDL-2000 combined with UML

Summary
Objective: ITU-T Recommendation Z.109 defines a UML profile that maps to SDL-2000 semantics
so that UML can be used in combination with SDL.

Coverage: This Recommendation presents a definition of the UML-to-SDL-2000 mapping for use in
the combination of SDL-2000 and UML.

Application: The main area of application of this Recommendation is the specification of
telecommunication systems. The combined use of SDL-2000 and UML permits a coherent way to
specify the structure and behaviour of telecommunication systems, together with data.

Status/stability: This Recommendation is the complete reference manual describing the UML to
SDL-2000 mapping for use in the combination of SDL-2000 and UML. It replaces the previous
Rec. Z.109 that concerned an earlier version of UML and had a different style of profile description.

Associated work: ITU-T Recommendations Z.100, Z.104, Z.105, Z.106 and Z.107 concerning the
ITU-T Specification and Description Language (SDL-2000).

Source
ITU-T Recommendation Z.109 was approved on 13 June 2007 by ITU-T Study Group 17
(2005-2008) under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.109 (06/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. Z.109 (06/2007) iii

CONTENTS

 Page
1 Scope .. 1

1.1 Conformance .. 1
1.2 Notation .. 2
1.3 Restrictions on SDL-2000 and UML ... 2
1.4 Mapping.. 3

2 References... 3

3 Definitions .. 4

4 Abbreviations and acronyms .. 4

5 Conventions, names and templates... 4
5.1 Conventions.. 4
5.2 Names and name resolution: NamedElement... 5
5.3 Template handling .. 7
5.4 Transformation ... 7

6 Stereotype summary ... 8

7 Structure.. 9
7.1 ActiveClass... 10
7.2 Class ... 13
7.3 Connector ... 14
7.4 DataType .. 15
7.5 Enumeration ... 16
7.6 Interface.. 17
7.7 Operation .. 18
7.8 Package... 20
7.9 PassiveClass ... 20
7.10 Port ... 22
7.11 PrimitiveType ... 23
7.12 Property .. 24
7.13 Signal.. 27
7.14 Timer .. 28

8 State machines .. 28
8.1 FinalState.. 28
8.2 Pseudostate ... 29
8.3 Region... 31
8.4 State .. 32
8.5 StateMachine .. 33
8.6 Transition.. 35

iv ITU-T Rec. Z.109 (06/2007)

 Page
9 Actions and activities.. 37

9.1 Activity ... 38
9.2 ActivityFinalNode .. 39
9.3 AddStructuralFeatureValueAction ... 39
9.4 AddVariableValueAction ... 40
9.5 Break... 41
9.6 CallOperationAction... 42
9.7 ConditionalNode... 44
9.8 Continue ... 44
9.9 CreateObjectAction .. 45
9.10 Empty ... 46
9.11 Decision.. 46
9.12 ExpressionAction ... 47
9.13 For... 47
9.14 If ... 49
9.15 LoopNode ... 50
9.16 OpaqueAction... 51
9.17 ResetAction .. 51
9.18 Return ... 52
9.19 SequenceNode .. 52
9.20 SendSignalAction ... 54
9.21 SetAction .. 56
9.22 Stop... 56
9.23 While .. 57

10 ValueSpecification.. 57
10.1 Expression .. 58
10.2 InstanceValue ... 64
10.3 LiteralBoolean .. 66
10.4 LiteralInteger .. 66
10.5 LiteralString.. 67
10.6 LiteralUnlimitedNatural ... 67
10.7 LiteralNull .. 68
10.8 ValueSpecification ... 68

11 Lexical rules ... 69

12 Predefined data ... 72
12.1 Unparameterized types ... 73
12.2 Template data types.. 77
12.3 Array template .. 78
12.4 Bag template... 78

 ITU-T Rec. Z.109 (06/2007) v

 Page
12.5 Powerset template... 78
12.6 String template.. 79
12.7 Vector template .. 79

vi ITU-T Rec. Z.109 (06/2007)

Introduction
The UML profile presented in this Recommendation is intended to support the usage of UML
(version 2 or later) as a front-end for tools supporting specification and implementation of reactive
systems, in particular for telecommunication applications. The intention is to enable tool vendors to
create tools that benefit from the closure of semantic variations in UML with SDL-2000 semantics
and benefit from SDL tool technology that supports this particular application area.

The intention is that when the profile is applied to a model, a set of stereotypes defined in this
Recommendation extends the elements in the model and has several consequences:
– additional properties are available as specified by the stereotype attributes;
– constraints defined for the stereotypes apply to the model elements introducing more

semantic checks that need to be fulfilled for the model;
– semantics, in particular dynamic semantics, are defined for the model elements as specified

by the mapping of the stereotyped UML concepts to the SDL abstract grammar;
– a notation is given for language elements where no specific notation is provided by UML.

The details of the profile mechanism in this Recommendation follows: The Recommendation is
structured in a number of clauses. Each clause defines one stereotype that captures the semantics of
one SDL concept based on a UML concept. The stereotype in most cases constrains the UML
element with a multiplicity of [1..1] (that is, the stereotype is required), but in some cases extends
rather than constrains the basic UML language. The UML user never manually has to apply the
stereotype to a UML element: instead stereotypes are applied automatically when applying the
profile to the model itself, or if the user has not kept within the language defined by this profile a
suitable message can be given to the user. As a consequence, applying this profile results in extra
properties, extra semantic checks, and a well understood semantics that can be used in tools to
provide features like static model analysis, simulation and application generation as the model is
sufficiently well defined to be executable.

This Recommendation introduces notation for concepts that have no standard notation in UML, like
a textual syntax for actions. To be able to uniquely define the mapping between the syntax and the
model, the stereotypes introduced in these clauses extend the corresponding model element with
multiplicity [0..1]. The idea is that when a user enters the described syntax, a tool should
automatically create the corresponding model element with the correct stereotype applied.

 ITU-T Rec. Z.109 (06/2007) 1

ITU-T Recommendation Z.109

SDL-2000 combined with UML

1 Scope
This Recommendation defines a UML profile for SDL-2000. It ensures a well-defined mapping
between parts of a UML model and the SDL-2000 semantics. The profile is based upon the UML
meta-model and upon the abstract grammar of SDL, and in the following is referred to as
SDL-UML.

The specializations and restrictions are defined in terms of the model elements of the UML
meta-model and the abstract grammar of SDL and are in principle independent of notation.
However, to generate the model elements in the UML meta-model a concrete notation will be used,
and it is assumed that this notation is the notation defined by UML with the notation given in the
Recommendation where UML allows options or gives no specific notation.

A software tool that claims to support this Recommendation (in the following called a tool) should
be capable of creating, editing, presenting and analysing descriptions compliant with this
Recommendation.

1.1 Conformance
A model that claims to be compliant to this Recommendation shall meet the meta-model constraints
of UML and this Recommendation and, when mapped to the abstract grammar of SDL, shall
conform to the abstract grammar of the Z.100 series of ITU-T Recommendations included by
reference. A model is non-compliant if it does not meet the constraints or if it includes an abstract
grammar that is not allowed by the Z.100 series of ITU-T Recommendations, or has analysable
semantics that can be shown to differ from these Recommendations. Notation guidelines are given
by this Recommendation, but (unlike SDL-2000 conformance) it is not essential for a model to be
presented using the notation given in this Recommendation for it to conform to this
Recommendation.

The abstract grammar of this Recommendation is a profile of UML and therefore any model that
conforms to this Recommendation also conforms to the requirements of UML.

A tool that supports the profile shall support the specializations and restrictions of UML defined in
the profile to conform to the Recommendation and should be capable of exporting such models to
other tools and importing such models from other tools.

A conformance statement clearly identifying the profile features and requirements not supported
should accompany any tool that handles a subset of this Recommendation. If no conformance
statement is provided, it shall be assumed that the tool is fully compliant. It is therefore preferable
to supply a conformance statement; otherwise, any unsupported feature allows the tool to be
rejected as not valid. While it is suggested that tools follow notation guidelines, this is not a
requirement. The issue of notation compliance is further considered in clause 1.2.

A compliant tool is a tool that is able to detect non-conformance of a model. If the tool handles a
superset of SDL-UML, it is allowed to categorize non-conformance as a warning rather than a
failure. It is required that for those 'Language Units' (see the UML specification [OMG UML]
section 2, Conformance) handled by the tool, a compliant tool conforms to the abstract syntax
defined by this profile combined with the UML specification [OMG UML] and the mapping of
those 'Language Units' to the Z.100 abstract grammar defined by this Recommendation.

A fully compliant tool is a compliant tool that supports the complete profile defined by this
Recommendation.

2 ITU-T Rec. Z.109 (06/2007)

A valid tool is a compliant tool that supports a subset of the profile. A valid tool should include
enough of the profile for useful modelling to be done. The subset shall enable the implementation of
structured applications with communicating extended finite state machines.

1.2 Notation
This Recommendation gives notation guidelines for SDL-UML. For some of the UML elements,
SDL-2000 contains elements that have a UML-like graphical notation, therefore it is preferable (but
not mandatory) if SDL-2000 notation is used for these elements. A tool for the combined use of
UML and SDL-2000 may use a de facto UML graphical notation standard for the SDL-UML
covered by this Recommendation, but the SDL-2000 specific part of this tool should provide the
graphical grammar for these elements as defined by [ITU-T Z.100].

Some UML notation is defined informally or by example in the UML specification [OMG UML],
and the link between concrete notation and abstract grammar is not always well defined. Moreover,
in some cases (in particular the syntax for actions and expressions), the UML specification
[OMG UML] does not provide a complete language because no specific concrete notation is
defined. In practice, the tool that is used defines the actual notation supported. This
Recommendation provides a notation guideline to overcome this issue, by constraining notation in
some cases where the UML specification [OMG UML] has options, and by defining notation in
those cases where the UML specification has no specific notation or where the UML meta-model is
extended by the profile.

In principle, it should be possible to exchange models between tools based on abstract grammar,
provided the tools involved support the same abstract grammar and a common means of
interchanging the abstract grammar. However, evaluating whether a tool actually supports a specific
abstract grammar is difficult without inspecting the internal structure of the tool, so that normally
tools are evaluated by observing how the concrete notation is handled. If the concrete notation
handled by different tools differs significantly, it will be difficult to compare the support of the
abstract grammar. So to compare the abstract grammar of tools without inspecting the contruction
of the tools is easy only if they support the same (or very similar) concrete notation or possibly if
they share an interchange format.

Checking if a model conforms to an abstract grammar has similar problems. Normally, this is
simply done by checking if the model conforms to the concrete notation implemented by a tool, and
checking (or assuming) the tool supports the abstract grammar. To check that a model matches the
abstract grammar is usually done by checking the model matches the concrete notation and
assuming this is correctly mapped to the abstract grammar. If the concrete notation differs, there is a
further issue of determining the mapping to the abstract grammar. For this reason, to validate a
model, if the concrete notation differs from the one given in this Recommendation, the differences
should preferably be minor and how to map to either the notation or the abstract grammar of this
Recommendation shall be defined.

1.3 Restrictions on SDL-2000 and UML
There are no restrictions on SDL-2000. However, SDL-2000 is only partially covered by
SDL-UML. For example, exceptions are not included in this profile.

A general restriction on SDL-UML is that only the meta-model elements defined in this profile
ensure a one-to-one mapping. In a combined use of UML and SDL-2000, more parts of UML can
be used, but the mapping of these cannot be guaranteed to work the same with different tools.

This profile focuses on the following chapters of the UML Superstructure specification:
– Classes;
– Composite Structures;
– Common Behaviours;

 ITU-T Rec. Z.109 (06/2007) 3

– Actions;
– Activities;
– State Machines.

Meta-model elements defined in these clauses are included in this profile, if they are specifically
mentioned in this Recommendation. Any meta-model element of the UML Superstructure
specification that is not mentioned in this Recommendation is not included in this profile. A
meta-model element that is a generalization of one of the included meta-model elements (that is, it
is inherited) is included as part of the definition of the included meta-model element. Other
specializations of such a generalization are only included if they are also specifically mentioned. If
an included meta-model element has a property that is allowed to be non-empty, the meta-model
element for the property is included. However, if the property is constrained so that it is always
empty, such a property is effectively deleted from the model and therefore does not imply the
meta-model element for the property is included.

Meta-model elements introduced in the following clauses of the UML Superstructure specification
are not included in this profile:
– Components;
– Deployments;
– Use Cases;
– Interactions;
– Auxiliary Constructs;
– Profiles.

1.4 Mapping
UML classes generally represent entity types of SDL. In most cases, the entity kind is represented
by stereotypes. Where predefined model-elements or stereotypes or keywords exist in UML that
have a similar meaning as in SDL, they have been used.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Z.100] ITU-T Recommendation Z.100 (2002), Specification and Description Language
(SDL).

[ITU-T Z.105] ITU-T Recommendation Z.105 (2003), SDL combined with ASN.1 modules
(SDL/ASN.1).

[ITU-T Z.106] ITU-T Recommendation Z.106 (2002), Common interchange format for SDL.

[ITU-T Z.119] ITU-T Recommendation Z.119 (2007), Guidelines for UML profile design.

[OMG UML] OMG Unified Modelling Language: Superstructure version 2.1.1 formal/07-02-05.
NOTE – This Recommendation references specific paragraphs of [ITU-T Z.100] and [OMG UML]. The
specific paragraph references are only valid for the editions specifically referenced above. If a more recent
edition of [ITU-T Z.100] or [OMG UML] is used, it is possible that the corresponding paragraph number or
paragraph heading is different.

4 ITU-T Rec. Z.109 (06/2007)

3 Definitions
For the purposes of this Recommendation, the terms and definitions given in [ITU-T Z.100] and the
following apply, and any term defined below applies if it is also defined elsewhere:

3.1 compliant tool: A tool that is able to detect non-conformance of a model to the profile
defined by this Recommendation.

3.2 direct container: A is the direct container of B (B is directly contained in A; A directly
contains B), if A contains B and there is no intermediate C that contains B such that C is contained
in A.

3.3 fully compliant tool: A compliant tool that supports the complete profile defined by this
Recommendation.

3.4 valid tool: A compliant tool that supports a subset of the profile defined by this
Recommendation where the subset enables the definition of models containing structured
applications with communicating extended finite state machines.

4 Abbreviations and acronyms
This Recommendation uses the following abbreviations:

BNF Backus-Naur Form of syntax description

SDL Specification and Description Language

SDL-UML The notation defined by the UML profile in this Recommendation

UML Unified Modelling Language 2.0 (see reference [OMG UML])

UML-SS OMG UML-2.0 Superstructure Specification (see reference [OMG UML])

5 Conventions, names and templates
This clause defines conventions used throughout the rest of this Recommendation and the general
handling of name resolution and template expansion that apply for the whole meta-model.

5.1 Conventions
The conventions defined in [ITU-T Z.119] apply. For convenience, these conventions are repeated
below. The convention for a term enclosed in << and >> is extended to allow SDL qualifiers to be
used. The convention for a term enclosed in < and > is extended to allow SDL concrete syntax to be
used. A convention on the meaning of terms in italics is added.

A term in this Recommendation is a sequence of printing characters usually being either an English
word or a concatenation of English words that indicate the meaning of the term.

A term preceded by the word "stereotype" names a UML stereotype used for this profile, according
to the stereotype concept defined in the UML Superstructure specification documentation (usually
in a phrase "The stereotype X extends the metaclass X" where X is a term). If the multiplicity of the
stereotype is [1..1], the stereotype is required (that is the derived attribute isRequired of the
Extension association between the extended metaclass and the stereotype is true). If the multiplicity
of the stereotype is [0..1], the stereotype is not required.

An underlined term refers to a UML term or a term defined by a stereotype of this profile. A term
starting with a capital letter by convention is the name of a metaclass.

A term enclosed in << and >> as brackets refers to a stereotype described by this profile, except if
preceded by "SDL". For example, SDL <<package Predefined>> is the SDL qualifier (for the
SDL Predefined package).

 ITU-T Rec. Z.109 (06/2007) 5

A term in italic in a stereotype description refers to an SDL-2000 abstract syntax item.

A term in < > brackets refers to a syntax rule defined in this profile, except if preceded by "SDL".
For example SDL <name> refers to the SDL syntax for a name, whereas otherwise <name> refers
to the syntax defined in clause 5.2. The profile includes syntax rules defined in UML-SS, so that if
no explicit definition of a term in < > brackets is given, the syntax rule defined in UML-SS applies.
The following syntax rules from UML-SS are used:
 <assignment specification>, <attr name>, <prop type>, <visibility>, <default>

A term in Courier font (such as pReply in clause 9.6, CallOperationAction) refers to some text that
appears in the model either as written by a user or to represent some text created from the expansion
of a shorthand notation (as outlined in clause 5.4, Transformation, below and in detail for the
relevant construct).

5.1.1 References
UML-SS: 6.4 The UML Meta-model

UML-SS: 8.3.8 Stereotype (from Profiles)

5.2 Names and name resolution: NamedElement
The stereotype NamedElement extends the metaclass NamedElement with multiplicity [1..1].
NOTE – Names are resolved according to the UML name binding rules. However, there are constraints
applied to names that are mapped to the SDL abstract syntax.

5.2.1 Attributes
No additional attributes are defined.

5.2.2 Constraints
Any item that inherits from NamedElement and maps to SDL abstract syntax requiring a Name
shall have a name. Any such name shall have a non-empty String value of characters derived from
the syntax as defined in the Notation clause below.

When a complete SDL-UML model is mapped to the SDL abstract syntax, no item shall have the
same Name as another item of the same entity kind in the same defining context.
NOTE – It is always possible to modify a UML model to meet the above naming requirement by renaming
elements that generate name clashes so that the UML model is a valid SDL-UML model for this profile.

A NamedElement shall have a visibility and qualifiedName.

The visibility of the NamedElement shall not be package.

The visibility of the NamedElement (or of any item derived from it) shall be protected or private
only if the NamedElement is an operation (including a literal) of a data type.

5.2.3 Semantics

The characters of the String for a name are each of the characters of the <name> taken in order.

Whenever a Name is required in the SDL abstract syntax (usually for the definition of an item), the
Name is mapped from the name of the appropriate item derived from NamedElement. Whenever an
Identifier is required in the SDL abstract syntax (usually to identify to a defined item), the Identifier
is mapped from the name of the appropriate item derived from NamedElement. The detail of these
mappings is described in the following paragraphs.

When a name is mapped to a Name, the String value of the name is mapped to the Token and if two
items have a distinct String value each item maps a different Token. If two items that have the same
Token for their Name, they have the same String value for their name. If two items have the same

6 ITU-T Rec. Z.109 (06/2007)

String value for their name, they have the same Token for their Name, except if two UML elements
are distinguishable by some additional means (such as distinct signatures of operations with the
same name and same type in the same namespace). In such exceptional cases, each name is mapped
to a different unique Token.

When the SDL abstract syntax requires an Identifier, the String value of the qualifiedName is used.
A qualifiedName is a derived attribute that allows the NamedElement to be identified in a
hierarchy. The Qualifier of the Identifier is a Path-item list that specifies uniquely the defining
context of the identified entity and is derived from the qualifiedName. Starting at the root of the
hierarchy, each name and class pair of the containing namespaces is mapped to the corresponding
qualifier (Package-qualifier, Agent-qualifier, etc.) and name (Package-name, Agent-name, etc.
respectively) pair. This mapping excludes the name of the NamedElement itself, which maps to the
Name of the Identifier.
NOTE 1 – In SDL the Qualifier is usually derived by name resolution and context, and Identifier can usually
be represented in the concrete syntax by an SDL <name> and the SDL qualifier part of an SDL <identifier>
is omitted. Even in cases where an SDL qualifier needs to be given, usually some parts of the SDL qualifier
can be omitted, so that a full context does not have to be given. Similarly in UML, qualifiedName is usually
derived, and is not given explicitly in the concrete syntax. Thus in both UML and SDL an item can usually
be identified in the concrete syntax simply by a name, whereas in the meta-model and abstract syntax the
item will be identifed by a qualifiedName and Identifier respectively.
NOTE 2 – The visibility of a Package contained in another Package or a Class or other entity contained in a
Package is handled by name resolution.

5.2.4 Notation
<name> ::=
 <underline>+ <word> {<underline>+ <word>}* <underline>*
 | <word> <underline>+ [<word>{<underline>+ <word>}* <underline>*]
 | <decimal digit>* <letter> <alphanumeric>*

NOTE 1 – The syntax given for <name> assumes a one-to-one mapping between a <name> and an SDL
<name> that has the same Token. The characters allowed in an SDL <name> are defined by ITU-T
Rec. T.50: uppercase letters A (Latin capital letter A) to Z (Latin capital letter Z); lowercase letters a (Latin
small letter a) to z (Latin small letter z); decimal digits 0 (Digit zero) to 9 (Digit nine); full stop and
underline. The above syntax for <name> does not allow a full stop and requires a name to include at least
one underline (first 2 alternatives of <name>) or at least one <letter>. UML supports alphabets and
characters other than the Latin alphabet in ITU-T Rec. T.50. If these characters are used in names in this
profile, the corresponding SDL <name> cannot have the same character string. This does not prevent
mapping name in an extended alphabet to a Name, because the T.50 characters do not occur in the abstract
grammar. Because the notation is a guideline rather than being mandatory, it is permitted to extend the
syntax of <name> for this case.
<word> ::=
 <alphanumeric>+

<alphanumeric> ::=
 <letter>
 | <decimal digit>

<letter> ::=
 <uppercase letter> | <lowercase letter>

<uppercase letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M
 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lowercase letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

 ITU-T Rec. Z.109 (06/2007) 7

<decimal digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

When a <name> occurs in syntax that defines a name, the qualifiedName is derived from the
defining context. Otherwise, a name shall be bound according to the UML name binding rules and
if necessary the name is qualified by containing namespaces. The following syntax for <identifier>
is therefore given for specifying optionally qualified names.
<identifier> ::=
 [<containing namespaces>] <name>

<containing namespaces> ::=
 [<name separator>] { <name> <name separator> }+

NOTE 2 – <name separator> is defined in clause 11, Lexical rules.

If the <name> of an <identifier> is not unique and is ambiguous in the context where the
<identifier> occurs, it shall be disambiguated by adding <containing namespaces> that contains one
or more <name>s. In the absence of an initial <name separator>, the right-most <name>s in the
<containing namespaces> shall unambiguously identify a context where the <name> of the
<identifier> is defined. If the context is identified unambiguously by the right-most <name>s in the
<containing namespaces>, it is allowed to add further <name>s to further identify or fully identify
the context. If the initial <name separator> is given, the left-most name shall be a name defined at
the top level of the model.

5.2.5 References
SDL: 6.1 Lexical rules

SDL: 6.3 Visibility rules, names and identifiers

UML-SS: 7.3.33 NamedElement (from Kernel, Dependencies)

UML-SS: 17.4.3 String (from PrimitiveTypes)

5.3 Template handling
Template parameters shall be expanded according to UML expansion rules before application of
this profile, and therefore are not treated by this profile. For example, the ownedTemplateSignature,
templateBinding, owningParameter and templateParameter are expanded before mapping to
SDL abstract syntax.

5.3.1 References
UML-SS: 17.5 Templates

5.4 Transformation
The SDL abstract syntax of a model is generated from the concrete syntax of the SDL-UML model
by the following process.

The concrete syntax of the model is parsed according to the SDL-UML concrete grammar. Where
the concrete grammar defines shorthand notations, these are expanded during the parsing process
before the corresponding meta-model items are generated.
NOTE 1 – The transformation models that are applied to expand shorthand notations are intended to be the
same as expanding the corresponding shorthand notation in SDL. For example, an SDL remote procedure
call is expanded into an exchange of implicit signals, and an SDL-UML remote operation call is also
expanded into an exchange of signals.

To check if the concrete grammar is completely valid requires uses of names to be resolved, but
Names are resolved according the SDL-UML meta-model. The parsing of the concrete grammar

8 ITU-T Rec. Z.109 (06/2007)

cannot therefore be done in complete isolation to generating the meta-model. For this reason,
generating meta-model elements from the concrete syntax has to be done in parallel with parsing
the concrete syntax. If the concrete model does not conform to the concrete grammar (syntax and
static conditions for the concrete syntax, including the use of names) of SDL-UML, the model is not
valid.
NOTE 2 – There is a general assumption that notation given in UML-SS and its relationship with the
UML-SS meta-model is well-defined, and usually is not supplemented in this Recommendation. It is
considered that if this assumption is false, it is an issue for the UML-SS and not an issue for this
Recommendation. Where notation is not given in UML-SS, it is defined in this Recommendation.

Apart from the issue of name resolution mentioned above, the meta-model is generated from the
concrete model according to the relationship between the concrete grammar and the meta-model. If
the model expressed as meta-model elements does not conform to the abstract grammar
(meta-classes, associations and constraints) of SDL-UML, the model is not valid.

Conforming to the meta-model rules of SDL-UML is a necessary (but not sufficient) condition for a
model to be a valid model.

The model expressed as SDL-UML meta-model elements is mapped to a model in the abstract
grammar of SDL. The behaviour of the model is determined by the behaviour defined for the SDL
abstract grammar. The static conditions of SDL are reflected in the constraints of the SDL-UML
meta-model. However, if during interpretation of the model expressed in the abstract grammar of
SDL, any dynamic condition of SDL is not met, the model is not valid.

6 Stereotype summary
The following table gives a summary of the stereotypes defined in this profile with the
UML metaclass each stereotype extends.

Stereotype Stereotyped metaclass

ActiveClass Class
Activity Activity
ActivityFinalNode ActivityFinalNode
AddStructuralFeatureValueAction AddStructuralFeatureValueAction
AddVariableValueAction AddVariableValueAction
Break OpaqueAction
CallOperationAction CallOperationAction
Class Class
ConditionalNode ConditionalNode
Connector Connector
Continue OpaqueAction
CreateObjectAction CreateObjectAction
DataType DataType
Decision ConditionalNode
Empty OpaqueAction
Enumeration Enumeration
Expression Expression
ExpressionAction OpaqueAction
FinalState FinalState

 ITU-T Rec. Z.109 (06/2007) 9

Stereotype Stereotyped metaclass

For LoopNode
If ConditionalNode
InstanceValue InstanceValue
Interface Interface
LiteralInteger LiteralInteger
LiteralNull LiteralNull
LiteralString LiteralString
LiteralUnlimitedNatural LiteralUnlimitedNatural
LoopNode LoopNode
OpaqueAction OpaqueAction
Operation Operation
Package Package
PassiveClass Class
Port Port
PrimitiveType PrimitiveType
Property Property
Pseudostate Pseudostate
Region Region
ResetAction OpaqueAction
Return ActivityFinalNode
SendSignalAction SendSignalAction
SequenceNode SequenceNode
SetAction OpaqueAction
Signal Signal
State State
StateMachine StateMachine
Stop ActivityFinalNode
Timer Signal
Transition Transition
ValueSpecification ValueSpecification
While LoopNode

7 Structure
The stereotypes below define static structural aspects of an SDL-UML model.

The following packages from UML are included:
– Communications
– Constructs (from Infrastructure library)
– Dependencies
– Interfaces
– InternalStructures

10 ITU-T Rec. Z.109 (06/2007)

– Kernel
– Ports
– PrimitiveTypes (from Infrastructure library)

The following metaclasses from UML are included:
– Class
– Connector
– DataType
– Enumeration
– Interface
– Operation
– Package
– Port
– PrimitiveType
– Property
– Signal
– Timer

The metaclass ValueSpecification is included in clause 10, ValueSpecification.

7.1 ActiveClass
The stereotype ActiveClass is a concrete subtype of the stereotype Class.
NOTE – The concept of an active class (a class with isActive true) is separated from passive class (a class
with isActive false) to distinguish the classes for executable agents that map onto SDL agent types.

7.1.1 Attributes
Stereotype attributes:
– isConcurrent: Boolean defines the concurrency semantics of an active class. If isConcurrent

is false, all contained instances execute interleaved. If isConcurrent is true, contained
instances execute concurrently, provided they are not also contained in an instance for
which isConcurrent is false.

7.1.2 Constraints
• An <<ActiveClass>> Class shall have isActive == true.
• If isConcurrent is false, isConcurrent of any contained instance shall be false.
• If the <<ActiveClass>> Class has a classifierBehavior, it shall be a StateMachine.
• If an <<ActiveClass>> Class has a classifierBehavior and it has a superClass that is another

<<ActiveClass>> Class that also has a classifierBehavior, the StateMachine of the
sub-class shall redefine the StateMachine of the superClass. The reason is that in SDL the
state machines of agents automatically extend each other, whereas this is not the case in
UML.

• An <<ActiveClass>> Class used as the type of a composite property object (of another
<<ActiveClass>> Class) shall have isAbstract == false (that is a typebased agent in an
agent type shall not be based on an abstract type).

• An ownedAttribute that has a type that is an <<ActiveClass>> Class and where
aggregationKind == composite shall not have public visibility (an agent instance set cannot
be made visible ouside the enclosing agent type).

 ITU-T Rec. Z.109 (06/2007) 11

• A nestedClassifier shall not have public visibility (an agent type, data type, interface type or
signal definition cannot be made visible outside the enclosing agent type).

• An ownedConnector shall not have public visibility (a channel cannot be made visible
outside the enclosing agent type that owns the channel).

• An ownedPort shall have public visibility (gates are visible ouside the enclosing agent
type).

• An ownedBehavior shall not have public visibility (a procedure or composite state type
cannot be made visible outside the enclosing agent type).

• An ownedBehavior shall only contain a StateMachine.

7.1.3 Semantics
An <<ActiveClass>> Class is mapped to an Agent-type-definition.

The name of the Class maps to the Agent-type-name of the Agent-type-definition.

The isConcurrent attribute maps to the Agent-kind of the Agent-type-definition. If isConcurrent ==
true, the Agent-kind is a BLOCK, otherwise (isConcurrent == false) the Agent-kind is a PROCESS.
NOTE 1 – The concurrency behaviour is that state machines within a PROCESS instance (for the instance
itself and contained PROCESS instances) are interleaved, and agent instances directly contained within a
BLOCK (even multiple instances of the same PROCESS) are logically concurrent. Actual concurrency
depends on implementation constraints such as the number of execution engines.

The qualifiedName of the optional general property (and thus the generalization property and the
derived property superClass) maps to the Agent-type-identifier of the Agent-type-definition that
represents inheritance in the SDL abstract syntax.

The nestedClassifier, ownedAttribute, ownedConnector, ownedPort and ownedOperation
associations map to the rest of the contents of the Agent-type-definition as described below.

A nestedClassifier that is an <<ActiveClass>> Class maps to an element of the Agent-type-
definition-set of the Agent-type-definition.

A nestedClassifier that is a <<PassiveClass>> Class maps to an Object-data-type-definition that is
an element of the Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is DataType maps to a Value-data-type-definition that is an element of the
Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is an Interface maps to an Interface-type-definition that is an element of the
Data-type-definition-set of the Agent-type-definition.

A nestedClassifier that is a Signal maps to a Signal-definition that is an element of the Signal-
definition-set of the Agent-type-definition.

An ownedAttribute is a Property. The mapping defined in clause 7.12, Property, applies.

An ownedAttribute that maps to a Variable-definition (see clause 7.12, Property) is an element of
the Variable-definition-set of the Agent-type-definition. An ownedAttribute that is visible outside
the <<ActiveClass>> Class (public visibility) and that has a type that is a DataType or
<<PassiveClass>> Class is the Variable-definition for an exported variable and also maps to an
implicit Signal-definition pair for accessing this exported variable in the defining context of the
Agent-type-definition.

An ownedAttribute that maps to an Agent-definition (see clause 7.12, Property) is an element of the
Agent-definition-set of the Agent-type-definition.

Each Connector of the ownedConnector maps to an element of the Channel-definition-set of the
Agent-type-definition.

12 ITU-T Rec. Z.109 (06/2007)

Each Port of the ownedPort maps to an element of the Gate-definition-set of the Agent-type-
definition.

Each Behavior of the ownedBehavior maps to an element of either the Composite-state-type-
definition-set or the Procedure-definition-set. If the owned Behavior is the method of an Operation,
it is an element of the Procedure-definition-set, otherwise it is an element of the Composite-state-
type-definition-set. The StateMachine that is the Behavior of the optional classifierBehavior maps to
the State-machine-definition of the Agent-type-definition (see clause 8.5, StateMachine). The name
of the optional classifierBehavior is mapped to the State-name of the State-machine-definition. The
Composite-state-type-identifier of this State-machine-definition identifies the Composite-state-type
derived from the StateMachine that is the classifierBehavior.
NOTE 2 – The UML StateMachine maps to the behaviour of an SDL composite state type, and the
State-machine-definition references this behaviour.

The ownedParameter set of the Behavior of classifierBehavior maps to the Agent-formal-parameter
list of the Agent-type-definition.
NOTE 3 – It is a semantic variation in UML-SS whether one or more behaviours are triggered when an event
satisfies multiple outstanding triggers.
NOTE 4 – It is currently not allowed to give actual parameter value to a formal parameter of an agent (see
clause 9.9, CreateObjectAction).

An event satisfies only one trigger (a signal can initiate only one input transition).
NOTE 5 – In UML-SS, ordering of the events in the input pool and therefore the selection of the next event
to be considered is a semantic variation.

At any specific wait point (that is, in a specific state), events for a trigger of higher priority are
considered before those of triggers of lower priority. Within a given trigger priority, the events in
the input pool are considered in the order of arrival in the input pool, therefore if all triggers have
the same priority, the events are considered in order of arrival. If an event in the input pool of
events satisfies no triggers at a wait point, it is left in the input pool if it is deferred at that wait
point, or (if it is not deferred) it is consumed triggering an empty transition leading to the same wait
point.

7.1.4 Notation
The UML presentation option for active class (see Figure 13.14 – Active class in UML-SS) is used,
and defines that an active class shall be shown using an extra vertical bar on either side.

7.1.5 References
SDL: 8.1.1 Structural type definitions

 8.2 Context parameters

 8.3 Specialization

 8.4 Type references

UML-SS: 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 13.3.8 Class (from Communications)

 ITU-T Rec. Z.109 (06/2007) 13

7.2 Class
The stereotype Class extends the merged metaclass Class with multiplicity [1..1]. The stereotype
Class is abstract.
NOTE 1 – SDL-UML separates the merged metaclass Class into ActiveClass for components of a system
that have behaviour based on state machines, and PassiveClass for data that is contained within the state
machines or passed as information between state machines. ActiveClass and PassiveClass are key
stereotypes in this profile.
NOTE 2 – In UML-SS, the metaclass Class is the merger of Class (from Kernel), the Class (from
StructuredClasses) and the Class (from Communications). The metaclass Class (from StructuredClasses)
extends the UML metaclass Class (from Kernel) with the capability to have an internal structure and ports.
The metaclass Class (from Communications) is a specialization of BehavioredClassifier and a merge of
Class (from Kernel). The UML metaclass Class (from Communications) is either active (each of its instances
having its own thread of control) or passive (its instances executing within the context of some other object).
NOTE 3 – The merged metaclass Class has following properties because of the specializations from other
metaclasses: classifierBehavior in Class (from Communications) from BehavioredClassifier (from
BasicBehaviors, Communications); interfaceRealization in Class (from Communications) from
BehavioredClassifier (from Interfaces); ownedBehavior in Class (from Communications) from
BehavioredClassifier (from BasicBehaviors, Communications); ownedConnector in Class (from
StructuredClasses) from EncapsulatedClassifier from StructuredClassifier; ownedParameter in a Class (from
Kernel) that is specialized as a Behavior; ownedPort in Class (from StructuredClasses) from
EncapsulatedClassifier; ownedReception from Class (from Communications); ownedTrigger in Class (from
Communications) from BehavioredClassifier (from BasicBehaviors, Communications).

7.2.1 Attributes
No additional attributes.

7.2.2 Constraints
• Every <<Class>> Class shall be either an <<ActiveClass>> Class or a <<PassiveClass>>

Class.
• Multiple inheritances are not allowed, so there shall be at most one element in the

generalization property of the <<Class>> Class.
• A <<Class>> Class that redefines another Class (as specified by redefinedClassifier) shall

have the same name as the redefined Class, because in SDL redefined types have the same
name as the original type.

• The clientDependency shall not include an InterfaceRealization, because interfaces are not
realized directly but only via ports.

7.2.3 Semantics
The concrete subtypes of the stereotype Class give its semantics.

7.2.4 Notation
The concrete subtypes of the stereotype Class give its notation.

7.2.5 References
UML-SS: 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

14 ITU-T Rec. Z.109 (06/2007)

 13.3.8 Class (from Communications)

7.3 Connector
The stereotype Connector extends the metaclass Connector with multiplicity [1..1].
NOTE – In UML-SS, connector is a general concept for a communication link between two instances and
the mechanism for communication could be by parameter passing in variables or slots, via pointers or some
other means. In this profile connectors only provide communication by signals, which are identified by the
information flows associated with the connector and the connector maps to a Channel-definition.

7.3.1 Attributes
Stereotype attributes:
– delay: Boolean If true the signals transported on the connector are delayed. The default

value is true.

7.3.2 Constraints
• In the case of an InformationItem associated with an InformationFlow associated with a

Connector, the represented property of the InformationItem shall be a Signal or an
Operation or an Interface.

• There shall always be exactly 2 end properties.
• A ConnectorEnd that is part of the end property shall have empty lowerValue and

upperValue properties.
• The role property of a ConnectorEnd that is part of the end property of the Connector shall

be a Port.
• The type property shall be empty.
• The redefinedConnector property shall be empty.
• The isStatic property shall be false.
• There shall be at least one InformationFlow associated with a Connector.

7.3.3 Semantics
A <<Connector>> Connector maps to a Channel-definition.

The name attribute defines the Channel-name.

An InformationFlow associated with a <<Connector>> Connector defines the Signal-identifier-set
of a Channel-path as follows. The conveyed InformationItem set of each InformationFlow defines
the Signal-identifier-set of the Channel-path. If the InformationItem set is omitted, then the
Signal-identifier-set is computed based on the realized and required interface of the attached Port. If
the InformationFlow conveys an Interface, then the Signal-identifier-set is computed according to
the transformation rules of Z.100 (see clause 7.6, Interface).

InformationFlow in one direction only (with or without InformationItems) implies that the channel
is unidirectional.

InformationFlow in both directions (with or without InformationItems) implies that the channel is
bidirectional.

If the delay attribute is false, this maps to NODELAY. If the delay attribute is true, NODELAY is
omitted.

The end property defines the gates of each Channel-path as follows.

The role of a ConnectorEnd that is part of the end property maps to an Originating-gate or
Destination-gate in each Channel-path. If the role corresponds to the source of the InformationFlow

 ITU-T Rec. Z.109 (06/2007) 15

for the Channel-path, the role maps to an Originating-gate, otherwise, it maps to a Destination-
gate. The Gate-identifier is derived from the name of the Port given by the role.

If the partWithPort is non-empty, Gate-identifier contains as its last path-name (before the name of
the gate) the name of the part identified with partWithPort.

7.3.4 Notation
No additional notation, but additional meaning is given to the position of arrows on connectors. The
notation in UML-SS 9.3.6 is used together with the notation for information flows on connectors as
described in UML-SS 17.2.

An example:

If delay is false for the connector, the information flow arrows are at the end of the connector lines.
If true, the arrows are as shown in the figure above.

7.3.5 References
SDL: 10.1 Channel

UML-SS: 9.3.6 Connector (from InternalStructures)

 9.3.7 ConnectorEnd (from InternalStructures, Ports)

 17.2 InformationFlows (from InformationFlows)

7.4 DataType
The stereotype DataType extends the metaclass DataType with multiplicity [1..1].
NOTE – A <<DataType>> Datatype is a PrimitiveType (which captures the non-parameterized predefined
data types of SDL) or an Enumeration (which corresponds to types defined by a set of literal names) or a
value type (typically a structured data type, but could be simply a collection of operations). If it is a value
type with at least one ownedAttribute, it is a value structure type (see also the definition of an object
structure type by a <<PassiveClass>> Class with an ownedAttribute set that is not empty). A value type
without an ownedAttribute that is neither a PrimitiveType nor an Enumeration is a collection of operations.
If some of these operations have a result of the type, these denote values of the type. For example, the basis
of a type for imaginary numbers could be a type called Imaginary with an operation
makeImaginary(Integer,Integer)->Imaginary together with other appropriate operations and
makeImaginary(-1,2) would denote a value of the type.

7.4.1 Attributes
No additional attributes.

7.4.2 Constraints
• An ownedAttribute shall have a type that is a <<PassiveClass>> Class or a Datatype.

NOTE – A data type cannot contain agent instance sets or variables. A data type with an
ownedAttribute is a value structure type and each ownedAttribute is field of the structure.

• interfaceRealization shall be empty.
• There shall be at most one element in the generalization property of the type, as multiple

inheritances are not allowed in SDL.
• Each ownedOperation association shall specify one of the operations defined for the

specific data type.

16 ITU-T Rec. Z.109 (06/2007)

• The name of a <<DataType>> Datatype that is not a PrimitiveType shall not be one of the
names required for a <<PrimitiveType>> PrimitiveType.

7.4.3 Semantics
The following semantics only apply if the <<Datatype>> Datatype is neither a <<PrimitiveType>>
PrimitiveType nor an <<Enumeration>> Enumeration.

A <<Datatype>> Datatype is mapped to a Value-data-type-definition.

Every <<Datatype>> Datatype has an operation for equality in the SDL-UML model that maps to
the SDL operation equal for the Value-data-type-definition. If an explicit definition of the equality
operation is given, this is used; otherwise, the operation is an implicit operation that matches the
default SDL semantics for equal.

The name of the <<Datatype>> Datatype maps to the Sort of the Value-data-type-definition.

The qualifiedName of the optional general, if present, maps to the Data-type-identifier of the
Value-data-type-definition that represents inheritance in the SDL abstract syntax.

The ownedOperation items are mapped to the Static-operation-signature-set of the Value-data-type-
definition.

An ownedBehavior maps to a Procedure-definition in the Procedure-definition-set in the nearest
enclosing scope that contains the Value-data-type-definition.

A <<Datatype>> Datatype with an ownedAttribute set that is not empty represents a structure and
each ownedAttribute represents a field. An ownedAttribute maps to operations in the
Static operation-signature-set in the SDL abstract syntax for the field operations. These operations
are determined and corresponding items implied in the SDL-UML model in the same way as the
field operations for a <<PassiveClass>> Class with an ownedAttribute set that is not empty (see
clause 7.9, PassiveClass). If ownedOperation associations are defined, the defined operation
signatures are added to the Static-operation-signature-set. The contained Data-type-definition-set,
Syntype-definition-set and Exception-definition-set are empty.

7.4.4 Notation
UML standard syntax is used.

7.4.5 References
SDL: 12.1 Data definitions

 12.1.2 Data type definition

 12.1.9.4 Syntypes

 12.1.3 Specialization of data types

 12.1.7.2 Structure data types

UML-SS: 7.3.11 DataType (from Kernel)

7.5 Enumeration

The stereotype Enumeration extends the metaclass Enumeration with multiplicity [1..1].
NOTE – An enumeration is a data type that has values that are user defined literals and is simply mapped to
an SDL data type that has literals defined.

7.5.1 Attributes
No additional attributes.

 ITU-T Rec. Z.109 (06/2007) 17

7.5.2 Constraints
• The ownedAttribute set shall be empty.
NOTE – An enumeration is allowed to be a structured data type.

7.5.3 Semantics
An <<Enumeration>> Enumeration is mapped to a Value-data-type-definition.

The name maps to the Sort of the Value-data-type-definition.

The generalization property maps to the Data-type-identifier that represents inheritance in the SDL
abstract syntax.

The ownedLiteral property maps to the Literal-signature-set.
Each ownedOperation association maps to an element of the Static-operation-signature-set. The
contained Data-type-definition-set, Syntype-definition-set and Exception-definition-set are empty.

7.5.4 Notation
UML standard syntax is used.

7.5.5 References
SDL: 12.1 Data definitions

 12.1.2 Data type definition

 12.1.3 Specialization of data types

 12.1.7.1 Literals

UML-SS: 7.3.16 Enumeration (from Kernel)

7.6 Interface
The stereotype Interface extends the metaclass Interface with multiplicity [1..1].
NOTE – An interface defines public features that are used to communicate with an object. In SDL-UML,
these are signals, remote variables and remote procedures. Accesses to remote variables and calls of remote
procedures are signal exchanges in the SDL abstract grammar, so the components of a SDL-UML interface
map to signals in the corresponding Interface-definition.

7.6.1 Attributes
No additional attributes.

7.6.2 Constraints
• Each nestedClassifier shall be a Signal.
• The ownedReception property shall be empty.

7.6.3 Semantics
A <<Interface>> Interface is mapped to an Interface-definition.

The name defines the Sort of the Interface-definition.

The general property defines the Data-type-identifier list that represents inheritance in the
SDL abstract syntax. Each general property shall be an Interface.

The nestedClassifier, ownedAttribute, ownedOperation properties define the rest of the contents of
the interface.

The ownedAttribute, ownedOperation properties are transformed to signals according to the
SDL rules for remote variables (see clause 10.6 of [ITU-T Z.100]) and remote procedures (see

18 ITU-T Rec. Z.109 (06/2007)

clause 10.5 of [ITU-T Z.100]) and are thus mapped to Signals in the Signal-definition-set of the
Interface-definition.

Each nestedClassifier property (each of which is a Signal, see constraints above) maps to an
element of the Signal-definition-set of the Interface-definition.

7.6.4 Notation
UML standard syntax is used.

7.6.5 References
SDL: 12.1 Data definitions

 10.5 Remote procedures

 10.6 Remote variables

UML-SS: 7.3.24 Interface (from Interfaces)

 13.3.15 Interface (from Communications)

7.7 Operation
The stereotype Operation extends the metaclass Operation with multiplicity [1..1].
NOTE – An operation is a feature that determines how an object behaves as described by its method. If the
operation is contained in an agent (that is an <<ActiveClass>> Class), the method has to be a state machine
and maps to a procedure. An operation contained in an interface is treated as a remote procedure. Otherwise,
the operation has to be an activity and maps to an operation of the SDL data type for the <<PassiveClass>>
Class or <<DataType>> DataType that contains the operation.

7.7.1 Attributes
No additional attributes.

7.7.2 Constraints
• If the class of an <<Operation>> Operation is a <<PassiveClass>> Class or <<DataType>>

DataType, the <<Operation>> Operation shall not be generalized: that is, there shall not be
an operation that inherits from an operation defined in a passive class or data type, and the
method associated with the <<Operation>> Operation shall be an Activity.

• If the class of an <<Operation>> Operation is an <<ActiveClass>> Class, the method
associated with the <<Operation>> Operation shall be a StateMachine.

• Both the <<Operation>> Operation and the dynamically corresponding method shall be
defined in the same Class.

• The ownedParameter set of the <<Operation>> Operation shall be the same as the
ownedParameter set of the method implementing the operation.

• The raisedException shall be empty.
• The name and ownedParameter set of the <<Operation>> Operation shall be the same as

the name and ownedParameter set of any redefined operation (as given by the
redefinedOperation property).

7.7.3 Semantics
An <<Operation>> Operation directly contained in an <<ActiveClass>> Class is mapped to a
Procedure-definition. The name defines the Procedure-name. The rest of the Procedure-definition
is defined as described below.

An <<Operation>> Operation directly contained in a <<PassiveClass>> Class or <<DataType>>
DataType is mapped to an Operation-signature and an anonymous Procedure-definition identified

 ITU-T Rec. Z.109 (06/2007) 19

by the Identifier in the abstract syntax for the Operation-signature. The Procedure-definition is
placed in the same context as the data type corresponding to the <<PassiveClass>> Class or
<<DataType>> DataType. The rest of the Procedure-definition is defined as described below. The
name defines the Operation-name of the Operation-signature. In each ownedParameter that does
not have a return direction, the type and multiplicity together define (in order of the parameters) a
Formal-argument of the Operation-signature with a type determined in the same way as in a
<<Property>> Property (see clause 7.12, Property). The type of the <<Operation>> Operation
defines the Result of the Operation-signature.
NOTE 1 – The type of the <<Operation>> Operation is derived from the ownedParameter that has a return
direction.

An <<Operation>> Operation contained in an Interface is mapped to signals according to the rules
described in clause 7.6 for Interface semantics.

If the <<Operation>> Operation maps to a Procedure-definition (named or anonymous), each
ownedParameter that does not have a return direction defines (in order) a Procedure-formal-
parameter where the name and type (including the multiplicity) of the ownedParameter define
respectively the Variable-name and the Sort-reference-identifier of the Parameter. The
Sort-reference-identifier is determined in the same way as for a <<Property>> Property (see
clause 7.12, Property). The direction (in, inout, or out) of each ownedParameter that does not have a
return direction determines (respectively) if the corresponding Procedure-formal-parameter is an
In-parameter or Inout-parameter or Out-parameter. The type of the <<Operation>> Operation
defines the Result of the Procedure-definition. The Behavior identified by the method property
defines the Procedure-graph, Data-type-definition-set, and Variable-definition-set of the
Procedure-definition. The general property (derived from generalization) maps to the optional
Procedure-identifier that is part of the Procedure-definition and identifies the inherited procedure
(if any).

The following properties of an Operation are ignored when mapping to SDL:
– isQuery
– bodyCondition
– precondition
– postcondition
NOTE 2 – In UML-SS, an operation cannot itself directly contain an operation, so that when the model is
mapped to the Z.100 abstract syntax, there will never be a procedure contained within a procedure (that is a
local procedure).

7.7.4 Notation
UML standard syntax is used.

7.7.5 References
SDL: 9.5 Procedure

 12.1.4 Operations

 10.5 Remote procedures

 10.6 Remote variables

UML-SS: 7.3.5 BehavioralFeature (from Interfaces)

 7.3.36 Operation (from Kernel, Interfaces)

 13.3.3 BehavioralFeature (from BasicBehaviors, Communications)

 13.3.22 Operation (from Communications)

20 ITU-T Rec. Z.109 (06/2007)

7.8 Package
The stereotype Package extends the metaclass Package with multiplicity [1..1].
NOTE – The concept of a package in UML is simply mapped to a package in SDL.

7.8.1 Attributes
No additional attributes are defined.

7.8.2 Constraints
• All ownedMember elements of the Package shall belong to items for which mappings or

transformations are described in this profile.
• The packageMerge composition shall be empty.
• The name of the Package shall not be empty.
NOTE – ownedTemplateSignature and templateBinding should always be empty after template expansion.

7.8.3 Semantics
A <<Package>> Package is mapped to a Package-definition.

The name of the package maps to the Package-name of the Package-definition.

The elements of the ownedMember composition define the contents of the package, that is the
Package-definition-set, Data-type-definition-set, Syntype-definition-set, Signal-definition-set,
Agent-type-definition-set, Composite-state-type-definition-set and Procedure-definition-set. Each
ownedMember that is a nestedPackage maps to an element of the Package-definition-set of the
Package-definition. An ownedMember that is not a nestedPackage is mapped as defined in other
sections to a Data-type-definition, Syntype-definition, Signal-definition, Agent-type-definition,
Composite-state-type-definition or Procedure-definition element of the corresponding set of the
Package-definition.
NOTE – The UML ElementImport and PackageImport (which are not stereotyped in this profile) define the
import and visibility of elements of the package and define the name resolution of imported package
elements. The resolved items map to Name and Identifier items in the SDL abstract syntax as described in
clause 5.2.

7.8.4 Notation
UML standard syntax is used.

7.8.5 References
SDL: 7.2 Package

UML-SS: 7.3.37 Package (from Kernel)

7.9 PassiveClass
The stereotype PassiveClass is a concrete subtype of the stereotype Class.
NOTE – The concept of a passive class (a class with isActive false) is separated from active class (a class
with isActive true) to distinguish the classes for reference types that map onto object data types in SDL.

7.9.1 Attributes
No additional attributes are defined.

7.9.2 Constraints
• A <<PassiveClass>> Class shall have isActive == false.
• A <<PassiveClass>> Class shall have no classifierBehavior.

 ITU-T Rec. Z.109 (06/2007) 21

• A nestedClassifier shall be a <<PassiveClass>> Class or a Datatype (which includes
PrimitiveType or EnumerationType) or an Interface.

• An ownedAttribute where aggregation == composite shall have a type that is a
<<PassiveClass>> Class or a Datatype.

• The ownedConnector shall be empty.
• The ownedPort shall be empty.
• The ownedTrigger shall be empty.
• Each ownedBehavior shall be a StateMachine that does not contain State elements and has

an Activity that only contains one SequenceNode.
• The ownedReception should be empty.

7.9.3 Semantics
A <<PassiveClass>> Class is mapped to an Object-data-type-definition.

The name of the <<PassiveClass>> Class maps to the Sort.

The qualifiedName of the optional general if present (and thus the generalization property and the
derived property superClass) maps to the Data-type-identifier of the Object-data-type-definition that
represents inheritance in the SDL abstract syntax.

The nestedClassifier, ownedAttribute and ownedOperation associations map to the rest of the
contents of the Object-data-type-definition as described below.

A nestedClassifier that is a <<PassiveClass>> Class maps to an Object-data-type-definition that is
an element of the Data-type-definition-set of the Data-type-definition.

A nestedClassifier that is a Datatype (which includes EnumerationType or PrimitiveType) maps to
a Value-data-type-definition that is an element of the Data-type-definition-set of the Data-type-
definition.

A nestedClassifier that is an Interface maps to an Interface-definition that is an element of the Data-
type-definition-set of the Data-type-definition.

A <<PassiveClass>> Class with an ownedAttribute set that is not empty represents a structure and
each ownedAttribute represents a field. An ownedAttribute maps to operations in the Dynamic-
operation-signature-set in the SDL abstract syntax for the field operations as described in
[ITU-T Z.100]. The operations are equivalent to supporting the following methods:

– Make (field-sort-list) -> S;

– virtual field-modify-operation-name (field-sort) -> S;

– virtual field-extract-operation-name -> field-sort;

– field-presence-operation-name -> Boolean;

where:

S is the qualifiedName of the <<PassiveClass>> Class, field-sort-list is each field-sort (see below)
listed in order of the ownedAttribute list, field-sort is the qualifiedName of the type of the
ownedAttribute, field-modify-operation-name is the name of the ownedAttribute concatenated with
"Modify", field-extract-operation-name is the name of the ownedAttribute concatenated with
"Extract", field-presence-operation-name is the name of the ownedAttribute concatenated with
"Present", and virtual denotes the method can be redefined if the <<PassiveClass>> Class is
specialized. The corresponding items are implied in the SDL-UML model so that the operations are
valid in expressions.

22 ITU-T Rec. Z.109 (06/2007)

An ownedBehavior maps to a Procedure-definition in the Procedure-definition-set in the nearest
enclosing scope that contains the Object-data-type-definition.

The ownedOperation items are mapped to items in the Dynamic-operation-signature-set. The
implicit parameter corresponding to the containing class is considered virtual, the rest of the
parameters and the return type are non-virtual.

7.9.4 Notation
UML standard class syntax is used.

7.9.5 References
SDL: 8.2 Context parameters

 8.3 Specialization

 8.4 Type references

 12.1.2 Data type definition

 12.1.3 Specialization of data types

 12.1.7.2 Structure data types

UML-SS: 7.3.6 BehavioredClassifier (from Interfaces)

 7.3.7 Class (from Kernel)

 9.3.1 Class (from StructuredClasses)

 9.3.8 EncapsulatedClassifier (from Ports)

 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 13.3.8 Class (from Communications)

7.10 Port
The stereotype Port extends the metaclass Port with multiplicity [1..1].
NOTE – An SDL-UML port defines an SDL Gate. The required interfaces characterize the requests from the
classifier to its environment through the port and therefore define the outgoing signals for the Gate. The
provided interfaces of a port characterize requests to the classifier that are permitted through the port and
therefore define the incoming signals for the Gate.

7.10.1 Attributes
No additional attributes.

7.10.2 Constraints

The <<Port>> Port referenced by redefinedPort shall have the same name as the current Port.

The aggregationKind shall be composite.

The isDerived and isDerivedUnion properties shall be false.

The isReadOnly property shall be true.

The defaultValue property shall be empty.

The subsettedProperty property shall be empty.

The qualifier property shall be empty.

The isStatic property shall be false.

 ITU-T Rec. Z.109 (06/2007) 23

The lowerValue and upperValue properties shall be ValueSpecifications that evaluate to 1.

The isService property shall be false.

7.10.3 Semantics
A <<Port>> Port is mapped to a Gate-definition.

The name defines the Gate-name.

The requiredInterface property maps to the Out-signal-identifier-set. The set is computed according
to the rules given in clause 12.1.2 of [ITU-T Z.100].

The providedInterface property defines the In-signal-identifier-set. The set is computed according
to the rules given in clause 12.1.2 of [ITU-T Z.100].

If isBehavior is true, a channel is constructed in the SDL abstract syntax that connects the gate and
the state machine of the containing agent.

7.10.4 Notation
UML standard syntax is used.

7.10.5 References
SDL: 8.1.5 Gate

UML-SS: 9.3.11 Port (from Ports)

7.11 PrimitiveType
The stereotype PrimitiveType extends the metaclass PrimitiveType with multiplicity [1..1].
NOTE – A primitive type defines a predefined data type. For SDL-UML these are the predefined data items
of SDL, or local definitions that specialize the data item.

7.11.1 Attributes
No additional attributes.

7.11.2 Constraints
• The ownedAttribute set shall be empty.
• The name shall be one of the following: Boolean, Integer, UnlimitedNatural,

Character, Charstring, Real, Duration, Time, Bit, Bitstring, Octet, Octetstring or
Pid.

• The generalization property shall be empty.
• Each ownedOperation association shall specify one of the operations defined for the

specific data type (see clause 12, Predefined Data, clauses 12.1.6 and D.3 of
[ITU-T Z.100]).

7.11.3 Semantics

If no ownedOperation associations are defined, each <<PrimitiveType>> PrimitiveType is mapped
to a predefined Syntype-definition or a predefined Value-data-type-definition as detailed in the next
paragraph. All the contents of the Value-data-type-definition (such as the Literal-signature-set) are
implied from the mapping to the specific definition of the SDL <<package Predefined>> item as
further defined in clause 12.1. The corresponding items (such as ownedBehavior for the operations)
are implied in the SDL-UML meta-model and therefore can be used in expressions.

The name UnlimitedNatural maps to the Syntype-name for
 SDL <<package Predefined>> Natural Syntype-definition,

24 ITU-T Rec. Z.109 (06/2007)

otherwise the name maps to the Sort of the Value-data-type-definition as follows:
 Array maps to the Sort for SDL <<package Predefined>> Array.
 Bag maps to the Sort for SDL <<package Predefined>> Bag.
 Bit maps to the Sort for SDL <<package Predefined>> Bit.
 Bitstring maps to the Sort for SDL <<package Predefined>> Bitstring.
 Boolean maps to the Sort for SDL <<package Predefined>> Boolean.
 Character maps to the Sort for SDL <<package Predefined>> Character.
 Charstring maps to the Sort for SDL <<package Predefined>> Charstring.
 Duration maps to the Sort for SDL <<package Predefined>> Duration.
 Integer maps to the Sort for SDL <<package Predefined>> Integer.
 Octet maps to the Sort for SDL <<package Predefined>> Octet.
 Octetstring maps to the Sort for
 SDL <<package Predefined>> Octetstring.
 Pid maps to the Sort for SDL <<package Predefined>> Pid.
 Powerset maps to the Sort for SDL <<package Predefined>> Powerset.
 Real maps to the Sort for SDL <<package Predefined>> Real.
 String maps to the Sort for SDL <<package Predefined>> String.
 Time maps to the Sort for SDL <<package Predefined>> Time.
 Vector maps to the Sort for SDL <<package Predefined>> Vector.

If ownedOperation associations are defined, the <<PrimitiveType>> PrimitiveType is mapped to a
Value-data-type-definition that has a Data-type-identifier for the inherited SDL <<package
Predefined>> item that has the Sort for the name as defined above, or for UnlimitedNatural a
Syntype-definition with the Parent-sort-identifier Integer and a Value-data-type-definition that has
a Data-type-identifier for SDL <<package Predefined>> Integer. Therefore if ownedOperation
associations are defined, a local item is introduced that inherits from the item of the same name in
SDL <<package Predefined>> and adds the defined operation signatures to the Static-operation-
signature-set. The contained Data-type-definition-set, Syntype-definition-set and Exception-
definition-set are empty.

7.11.4 Notation
UML standard syntax is used.

7.11.5 References
SDL: 12.1 Data definitions

 12.1.2 Data type definition

 12.1.6 Pid and pid sorts

 12.1.9.4 Syntypes

 D.3 Package Predefined

UML-SS: 7.3.43 PrimitiveType (from Kernel)

7.12 Property
The stereotype Property extends the metaclass Property with multiplicity [1..1].

 ITU-T Rec. Z.109 (06/2007) 25

NOTE – A property is an attribute that corresponds to variables and agent instance sets in SDL, or fields of a
structure.

7.12.1 Attributes
Stereotype attributes:
– initialNumber: UnlimitedNatural [0..1] defines the initial number of instances created when

an instance of the containing classifier is created.
– referenceSort: Boolean determines the treatment of a variable or field as a value sort or

reference sort and has a default value false.

7.12.2 Constraints
• The aggregation shall not be shared.
• If a <<Property>> Property has aggregation that is composite, the type shall be a

<<PassiveClass>> Class with at least one ownedAttribute or an <<ActiveClass>> Class.
• The type shall not be omitted.
• If the upperValue is omitted, the lowerValue shall also be omitted.
• If the upperValue is included, the lowerValue shall also be included.
 NOTE – The upper and lower bounds on multiplicity are optional in UML-SS.
• If the type is an <<ActiveClass>> Class, the lowerValue shall be omitted or shall be zero.
• If the upperValue value is greater than 1 and isOrdered is true, isUnique shall be false,

because there is not a predefined SDL data type that is ordered and requires each of its
elements to have unique values.

• The initialNumber shall be included only if the type is an <<ActiveClass>> Class. The
value of the InitialNumber shall not be greater than the upperValue.

• isDerived shall be false.
• isDerivedUnion shall be false.
• If isReadOnly is true, the type shall be a DataType or <<PassiveClass>> Class.
• The defaultValue shall be a constant expression.

7.12.3 Semantics
If isreadOnly is false and has an aggregationKind that is none and type is a <<PassiveClass>> Class
or an Interface or a DataType (which includes PrimitiveType and Enumeration), the <<Property>>
Property is mapped to a Variable-definition. The name defines the Variable-name. The
defaultValue defines the Constant-expression. The Sort-reference-identifier is the Sort-identifier of
the sort derived from the type property. The Sort-identifier is determined as follows:
– If there is no upperValue and no lowerValue, the name of the type maps to the Sort-

identifier;
– Otherwise, the Sort-identifier identifies an anonymous sort formed from the SDL

predefined Bag (if isOrdered is false and isUnique is false) or Powerset (if isOrdered is
false and isUnique is true) or String (if isOrdered is true) datatype instantiated with the
sort given by the type as the ItemSort. The anonymous sort is a Value-data-type-definition
or Syntype-definition in the same context as the Variable-definition. If the upperValue value
is omitted or the lowerValue value is zero and the upperValue value is unlimited (* in the
concrete syntax), there are no size constraints and the anonymous sort is a Value-data-type-
definition with its components derived from the instantiated predefined data type.
Otherwise the lowerValue value and upperValue value map to a Range-condition of the
anonymous sort, which is a Syntype-definition. The Parent-sort-identifier of this Syntype-

26 ITU-T Rec. Z.109 (06/2007)

definition is a reference to another anonymous sort that is the Value-data-type-definition
derived in the same way as the case with no size constraints.

If isreadOnly is true, the type is required to be either a DataType (which includes PrimitiveType
and Enumeration) or a <<PassiveClass>> Class. When isreadOnly is true, the <<Property>>
Property is mapped to a Constant-expression each time the <<Property>> Property is used in an
expression. The defaultValue defines the Constant-expression.

If the type is an <<ActiveClass>> Class, the <<Property>> Property is mapped to an Agent-
definition. The name defines the Agent-name. The type property defines the Agent-type-identifier
that represents the type in the SDL abstract syntax. The initialNumber defines the Initial-number.
The upperValue defines the Maximum-number. If the initialNumber is omitted, the lowerValue
defines the Initial-number. If both the initialNumber and lowerValue are omitted, the Initial-number
is 1.
NOTE 1 – It is possible for the number of instances to go below the Initial-number.
NOTE 2 – In UML the multiplicity of a property is separate from the type of the property; whereas in SDL,
the bounds, uniqueness of values and ordering of elements are considered to be part of a data type and, if
these differ, two types are considered to be different and incompatible. If two properties have the same type
but have different bounds and both map to Bags, Powersets or Strings, the bounds are treated as a size
constraints, so in these special cases two types could be compatible if they both had the same kind and item
sort. The mappings defined above result in anonymous data types for each property, which has multiple
values, with the consequence that such properties cannot be compatible even for the special cases. In SDL it
is possible to define a type that has a specific name and item sort (and in the case of a Vector the upper
bound) and to use this for different variable definitions so that the value of one variable can be assigned to
another using the same type.

7.12.4 Notation
UML standard syntax is used with the following extensions. The property type <prop type> shall
not be omitted. In a part symbol, the initialNumber is optionally specified as a slash followed by an
<integer name> after the multiplicity if (and only if) the <prop type> denotes an <<ActiveClass>>
Class.
<property> ::=
 [<visibility>] [<solidus>]
 <name> <colon> <prop type> [<multiplicity>]
 [<solidus> <integer name>]
 [<equals sign> <default>]

<multiplicity> ::=
 <left square bracket> <range condition> <right square bracket>
 [<left curly bracket>
 <order designator> [<comma> <uniqueness designator>]
 | <uniqueness designator> [<comma> <order designator>]
 <right curly bracket>]

<order designator> ::=
 ordered | unordered

<uniqueness designator> ::=
 unique | nonunique

<range condition> ::=
 <range> { <comma> <range> }*

<range> ::=
 <closed range>
 | <open range>
 | <asterisk>

<closed range> ::=
 <constant> <range sign> [<constant> | <asterisk>]

 ITU-T Rec. Z.109 (06/2007) 27

<open range> ::=
 <constant>
 | { <equality sign>
 | <not equals sign>
 | <less than sign>
 | <greater than sign>
 | <less than or equals sign>
 | <greater than or equals sign> } <constant>

An <open range> that is <constant> is a shorthand form for <equality sign> <constant>.

An <asterisk> for a <range> or within an <open range> is valid only for a <range> for an
UnlimitedNatural in a <multiplicity>. The <asterisk> represents an unlimited natural number.
<constant> ::=
 <expression>

7.12.5 References
SDL: 9 Agents

 12.3.1 Variable definition

 D.3.3 String

 D.3.9 Vector

 D.3.10 Powerset

 D.3.13 Bag

UML-SS: 7.3.32 MultiplicityElement (from Kernel)

 7.3.44 Property (from Kernel, Association Classes)

 7.3.49 StructuralFeature (from Kernel)

 7.3.52 TypedElement (from Kernel)

7.13 Signal
The stereotype Signal extends the metaclass Signal with multiplicity [1..1].
NOTE – A signal represents the type for communication message instances and maps to a Signal-definition.

7.13.1 Attributes
No additional attributes.

7.13.2 Constraints
• A <<Signal>> Signal shall not have operations.

7.13.3 Semantics
A <<Signal>> Signal is mapped to a Signal-definition. The Name defines the Signal-name. The
type of each ownedAttribute defines the corresponding Sort-reference-identifier.

7.13.4 Notation
UML standard syntax is used.

7.13.5 References
SDL: 10.3 Signal

UML-SS: 13.3.24 Signal (from Communications)

28 ITU-T Rec. Z.109 (06/2007)

7.14 Timer
The Timer stereotype is a subtype of the stereotype Signal.

7.14.1 Attributes
Stereotype attributes:
– default: Duration This represents the default duration for the timer.

7.14.2 Constraints
No additional constraints.

7.14.3 Semantics
A <<Timer>> Signal maps to a Timer-definition. The name attribute defines the Timer-name. The
type of each ownedAttribute defines the corresponding Sort-reference-identifiers.

7.14.4 Notation
The notation for a timer is a classifier symbol with the keyword <<timer>>.

7.14.5 References
SDL: 11.15 Timer

8 State machines
The finite state machine models of SDL-UML provide details of how a model behaves in terms of
state transitions for the protocol part of a system.

The following metaclasses from the UML package BehaviorStateMachines are included:
– FinalState
– Pseudostate
– Region
– State
– StateMachine
– Transition

8.1 FinalState
The stereotype FinalState extends the metaclass FinalState with multiplicity [1..1].
NOTE – When a FinalState is reached the containing graph completes. In SDL-UML a graph for a procedure
will complete with a <<Return>> ActivityFinalNode. In this case, there is no mapping to the SDL abstract
syntax for FinalState, because the return node terminates the graph. A FinalState that is not in a procedure
graph maps to an Action-return-node or Named-return-node for the enclosing composite state.

8.1.1 Attributes
No additional attributes.

8.1.2 Constraints
• If the <<FinalState>> FinalState is part of the region of a <<StateMachine>> StateMachine

that maps to a Procedure-graph, the name of the <<FinalState>> FinalState shall be empty
and any Transition that has the <<FinalState>> FinalState as its target shall end in a
<<Return>> ActivityFinalNode.

NOTE – The Action-return-node or Value-return-node of the procedure is defined by the <<Return>>
ActivityFinalNode.

 ITU-T Rec. Z.109 (06/2007) 29

8.1.3 Semantics
If the <<FinalState>> FinalState has an empty name and it is not part of the region of a
<<StateMachine>> StateMachine that maps to a Procedure-graph, the <<FinalState>> FinalState is
mapped to a Stop-node or an Action-return-node. It is mapped to a Stop-node if (and only if) it is
part of the region of a <<StateMachine>> StateMachine that is the classifierBehavior of an
<<ActiveClass>> Class.
NOTE – In UML FinalState the context object of the state machine is terminated if all enclosed regions are
terminated, whereas in SDL an explicit stop is required, but, on the other hand, in SDL it is not allowed to
have a return node in the state machine of an agent.

If the <<FinalState>> FinalState has a non-empty name, it is mapped to a Named-return-node
where the name defines the State-exit-point-name.

8.1.4 Notation
UML standard syntax is used.

8.1.5 References
SDL: 11.12.2.4 Return

UML-SS: 15.3.2 FinalState (from BehaviorStateMachines)

8.2 Pseudostate
The stereotype Pseudostate extends the metaclass Pseudostate with multiplicity [1..1].
NOTE – A Pseudostate is used instead of a state before initial or state entry point transitions, when there is a
junction of transitions, when there is a decision to make a choice of transitions, when the transition leads to a
history nextstate, or after a transition to lead to a state exit point or terminate the state graph. They allow
more complex transitions between states to be built from simpler, shorter transitions that end or start (or start
and end) in a Pseudostate. They map to start, next state (with history), decision, join and free action, return
and stop nodes in the SDL state transition graph.

8.2.1 Attributes
No additional attributes.

8.2.2 Constraints
• A Transition shall have an empty guard property if the Transition is an outgoing property of

a <<Pseudostate>> Pseudostate with kind == initial.
• A Transition shall have an empty trigger property if the Transition is an outgoing property

of a <<Pseudostate>> Pseudostate with kind == initial.
• The classifierBehavior of a non-abstract <<ActiveClass>> Class shall have a

<<Pseudostate>> Pseudostate with kind == initial.
• The kind property of <<Pseudostate>> Pseudostate shall not be join or fork or

shallowHistory.
• A <<Pseudostate>> Pseudostate with kind == deepHistory or with kind == exitPoint or

with kind == terminate shall not have an outgoing property.
• A Transition shall have a non-empty guard property Constraint (a Boolean Expression) if

the Transition is an outgoing property of a <<Pseudostate>> Pseudostate with kind ==
choice.

• Each guard of each Transition that is an outgoing property of a <<Pseudostate>>
Pseudostate with kind == choice shall be an Expression with two operand properties. One
operand shall be identical in every such guard of the <<Pseudostate>> Pseudostate, and for
the purposes of description is called the left-hand operand. For the purposes of description

30 ITU-T Rec. Z.109 (06/2007)

the other operand is called the right-hand operand, and shall evaluate to a value set
(possibly with just one element) with elements of the same data type as the left-hand
operand. The value set defined by a right-hand operand shall be statically determinable.

8.2.3 Semantics
A <<Pseudostate>> Pseudostate with kind == initial is mapped to a Procedure-start-node in a
region that defines a Procedure-graph and State-start-node in a region that defines a Composite-
state-graph. The outgoing property maps to the Graph-node list of the Transition of the Procedure-
start-node or State-start-node. The target property of this outgoing property Transition maps to the
last item of the Transition (a Terminator or Decision-node) of the Procedure-start-node or State-
start-node in the same way as the target is mapped in clause 8.6 for a Transition.

A <<Pseudostate>> Pseudostate with kind == deepHistory is mapped to a Nextstate-node that is a
Dash-nextstate with HISTORY.

A <<Pseudostate>> Pseudostate with kind == junction is mapped to a Free-action and one or more
Join-node elements. The name property defines the Connector-name in the Free-action and each
Join-node. The effect of the outgoing property maps to the Graph-node list of the Transition of the
Free-action. The target property of this outgoing property Transition maps to the last item of the
Transition (a Terminator or Decision-node) of the Free-action in the same way as the target is
mapped in clause 8.6 for a Transition. There is a Join-node for each Transition that has a target
property that is a <<Pseudostate>> Pseudostate with kind == junction and the Join-node is the
Terminator of the Transition with its Graph-node list derived from the effect of the Transition.
NOTE – UML-SS has a constraint "a junction vertex must have at least one incoming and one outgoing
transition". Pseudostate maps to both the Join-node elements and the Free-action labels, so the possibility
(allowed in [ITU-T Z.100]) to have a Free-action without a corresponding Join-node is not allowed.

A <<Pseudostate>> Pseudostate with kind == choice is mapped to a Decision-node. The outgoing
property Transition maps to the Decision-question and Decision-answer-set. The common left-hand
operand (see Constraints above) of the guard properties of the outgoing properties maps to the
Decision-question. The right-hand operand (see Constraints above) of a guard property of an
outgoing property Transition maps to the Range-condition of a Decision-answer and the effect of
this outgoing property maps to the Graph-node list of the Transition of the same Decision-answer.
The target property of this outgoing property Transition maps to the last item of the Transition
(a Terminator or Decision-node) of the same Decision-answer in the same way as the target is
mapped in clause 8.6 for a Transition.

A <<Pseudostate>> Pseudostate with kind == entryPoint is mapped to a Start-state-node. The name
property defines the State-entry-point-name. The effect of the outgoing property defines the Graph-
node list of the Transition. The target property of this outgoing property Transition maps to the last
item of the Transition (a Terminator or Decision-node) of the Start-state-node in the same way as
the target is mapped in clause 8.6 for a Transition.

A <<Pseudostate>> Pseudostate with kind == exitPoint is mapped to a Named-return-node. The
name property defines the State-exit-point-name.

A <<Pseudostate>> Pseudostate with kind == terminate is mapped to a Stop-node.

8.2.4 Notation
UML standard syntax is used. The notation for a <<Pseudostate>> Pseudostate with kind == choice
is as shown in the example in UML-SS Figure 15.23. In this example, "id" corresponds to the left-
hand operand described in the Constraints clause above and ">=10" and "<10" to the right-hand
operand. The form on the left of UML-SS Figure 15.23 is preferred. The left-hand operand can be
an expression of any complexity. The expression for a right-hand operand is typically a single value
or defines a range of values. In this example, "id" is a question and ">=10" and "<10" are answers:

 ITU-T Rec. Z.109 (06/2007) 31

the syntax for <question> and <answer> of clause 9.13.4 <<For>> LoopNode shall be used in these
contexts.
NOTE – Neither UML shallow history nor SDL dash next state notations are supported, so that to return to
the current state, the state name must be given explicitly.

8.2.5 References
SDL: 11.1 Start

 11.12.2.2 Join

 11.10 Label

 11.13.15 Decision

 11.12.2.3 Stop

UML-SS: 15.3.8 Pseudostate (from BehaviorStateMachines)

 15.3.9 PseudostateKind (from BehaviorStateMachines)

8.3 Region
The stereotype Region extends the metaclass Region with multiplicity [1..1].
NOTE – A region contains states and transitions and is mapped to the definition of how a procedure or a
composite state behaves. For the composite state mapping of a StateMachine, a single region maps to a
Composite-state-graph, whereas two or more regions map to a State-aggregation-node (see clause 8.5). A
region in SDL-UML is always part of a StateMachine and is never part of a State, because the region of a
State is constrained to be empty.

8.3.1 Attributes
No additional attributes.

8.3.2 Constraints
• A Region that extends another Region (as specified by an extendedRegion property) shall

have the same name as the extended Region.
• The triggers in the different orthogonal regions shall refer to disjoint sets of signals.

8.3.3 Semantics
A <<Region>> Region that is the region of StateMachine with a specification is mapped to a
Procedure-graph, and the subvertex set of Vertex elements (State, Pseudostate, or FinalState) of the
region together with the transition elements of the region that reference these Vertex elements
define the Procedure-graph.

A <<Region>> Region that is the only region of a StateMachine without a specification is mapped
to a Composite-state-graph, and the subvertex set of Vertex elements (State, Pseudostate, or
FinalState) of the region together with the transition elements of the region that reference these
Vertex elements define the Composite-state-graph of the StateMachine mapping. Each State-node
or Free-action derived from these Vertex elements are elements of the State-node-set and
Free-node-set, respectively of the State-transition-graph of the Composite-state-graph.

Otherwise, each <<Region>> Region that is one of two or more regions of a StateMachine without
a specification is mapped to a State-partition and to a Composite-state-type-definition with a unique
State-type-name. Each State-partition is an element of the State-partition-set of the State-
aggregation-node of the Composite-state-type-definition of the StateMachine mapping. The
mapping to a State-partition and the corresponding inner Composite-state-type-definition is
described in more detail in the following paragraphs.

32 ITU-T Rec. Z.109 (06/2007)

Each Pseudostate with kind entryPoint (in the connectionPoint property of the containing
StateMachine) maps to a distinct State-entry-point-definition of the Composite-state-type-definition.
The Connection-definition-set of the State-partition contains an Entry-connection-definition that
connects the State-entry-point-definition of the outer Composite-state-type-definition to the
corresponding State-entry-point-definition of the inner Composite-state-type-definition.

Each Pseudostate with kind exitPoint in the connectionPoint property of the containing
StateMachine maps to a distinct State-exit-point-definition of the Composite-state-type-definition.
The Connection-definition-set of the State-partition contains an Exit-connection-definition that
connects the State-exit-point-definition of the outer Composite-state-type-definition to the
corresponding State-exit-point-definition of the inner Composite-state-type-definition.

The Name maps to the Name of the State-partition.

The Composite-state-type-identifier of the State-partition identifies the inner Composite-state-type-
definition.

The subvertex and transition properties of the Region map to the Composite-state-graph of the inner
Composite-state-type-definition in the same way that a Composite-state-graph is derived for only
one region in a StateMachine. See the clauses covering subclasses of Vertex (that is State,
Pseudostate, or FinalState) and the Transition clause for more details.

8.3.4 Notation
UML standard syntax is used.

8.3.5 References
SDL: 8.1.1.5 Composite state type

 11.11.2 State aggregation

UML-SS: 13.3.2 Behavior (from BasicBehaviors)

 15.3.10 Region (from BehaviorStateMachines)

8.4 State
The stereotype State extends the metaclass State with multiplicity [1..1].
NOTE – A state represents a condition where an object is waiting for some condition to be fulfilled: usually
for an event to occur. A state in SDL-UML maps to an SDL state.

8.4.1 Attributes

No additional attributes.

8.4.2 Constraints
• The doActivity property shall be empty.
• The entry and exit properties shall be empty, because entry/exit actions are not supported.
• The isComposite property shall be false, because only decomposition using submachine

properties is allowed and a State shall have an empty region property.
• In the Transition set defined by the outgoing properties of a State, the signal property of

each event property that is a SignalEvent of each trigger shall be distinct.

8.4.3 Semantics
A <<State>> State is mapped to a State-node.

The name maps to the State-name.

 ITU-T Rec. Z.109 (06/2007) 33

A ConnectionPointReference that is part of the connection property and corresponds to an Exit-
Connection-Point (a Pseudostate with kind exitPoint in the connectionPoint property of the
containing StateMachine) maps to a member of the Connect-node-set.
The submachine property maps to Composite-state-type-identifier.

A deferrableTrigger property maps to an element of the Save-signal-set.
The outgoing property (inherited from Vertex) maps to the Input-node-set, Spontaneous-transition-
set and Continuous-signal-set. See clause 8.6 on Transition for more details on the mapping to the
Input-node-set, Spontaneous-transition-set and Continuous-signal-set.

8.4.4 Notation
UML standard syntax is used.

8.4.5 References
SDL: 11.2 State

UML-SS: 15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines)

 15.3.16 Vertex (from BehaviorStateMachines)

8.5 StateMachine
The stereotype StateMachine extends the metaclass StateMachine with multiplicity [1..1].
NOTE – An SDL-UML StateMachine either maps to the graph of an SDL procedure or an SDL composite
state type. The two cases are distinguished by whether or not the StateMachine has a specification. If it does,
then it is the procedure case; otherwise, it is a composite state type. Because there are two different
mappings, some constraints on StateMachine are dependent on whether there is a specification or not.

8.5.1 Attributes
No additional attributes.

8.5.2 Constraints
• Each ownedAttribute property shall have an aggregation that is composite.
NOTE 1 – As a consequence, the part properties are the same as the ownedAttribute properties.
• The isReentrant property shall be false.
• If the StateMachine has a specification property, the specification property shall be an

Operation.
NOTE 2 – The other possibility, Reception, is not allowed.
• If the StateMachine has a specification property, the ownedParameter list of the

StateMachine shall be the same as the ownedParameter list of the Operation that is the
specification property.

• The ownedConnector shall be empty.
• The redefinedClassifier property shall be empty.
• If the StateMachine redefines another Behavior (as specified by redefinedBehavior), the

Behavior shall be a StateMachine.
• If the StateMachine redefines another StateMachine (as specified by redefinedBehavior, or

extendedStateMachine), it shall have the same name as the redefined StateMachine.
• If the StateMachine is the classifierBehavior of a Class, the redefinedBehavior property

shall be empty.
• If the StateMachine is not the classifierBehavior of a Class, then the extendedStateMachine

property shall be empty.

34 ITU-T Rec. Z.109 (06/2007)

If a StateMachine is mapped to a Composite-state-type (see the Semantics clause below):
• The returnedResult property shall be empty (so that StateMachine does not return a result).

If a StateMachine is mapped to a Procedure-graph (see the Semantics clause below):
• There shall only be one Region.
• The connectionPoint property shall be empty.
• The classifierBehavior shall be empty.
• The ownedPort shall be empty.
• The general property shall be empty.
NOTE 3 – A Procedure-graph never inherits directly from another graph. Instead, a Procedure-definition
mapped from an <<Operation>> Operation with a general property that is not empty has a
Procedure-identifier for an inherited Procedure-definition mapped from the general property, and inherits
the Procedure-graph of this Procedure-definition.
• The specification shall not be an Operation contained in an Interface.

8.5.3 Semantics
A <<StateMachine>> StateMachine is mapped to a Composite-state-type-definition or a
Procedure-graph. If the StateMachine has a specification, the StateMachine is mapped to the
Procedure-graph (as defined by its contained Region) of the Procedure-definition from the
mapping of the <<Operation>> Operation identified by the specification. If the StateMachine does
not have a specification, the StateMachine is mapped to a Composite-state-type-definition.

Semantics for the Procedure-graph case (where the Procedure-definition is the mapping of
<<Operation>> Operation identified by the specification):

The region property defines the Procedure-graph through the subvertex set of Vertex elements
(State, Pseudostate, or FinalState) of the region together with the transition elements of the region
that reference these Vertex elements. Each State-node or Free-action derived from these Vertex
elements are elements of the State-node-set and Free-node-set respectively of the Procedure-graph.
NOTE 1 – A Pseudostate with kind initial defines the Procedure-start-node.

The nestedClassifier and ownedAttribute associations (both inherited from Class via Behavior)
define the rest of the contents of the state machine according to the following paragraphs.

A nestedClassifier that is a Datatype, EnumerationType or PrimitiveType defines a Value-
data-type-definition that is an element of the Data-type-definition-set of the Procedure-definition.

A nestedClassifier that is an Interface defines an Interface-definition that is an element of the Data-
type-definition-set of the Procedure-definition.

A nestedClassifier that is a <<PassiveClass>> Class defines an Object-type-definition that is an
element of the Data-type-definition-set of the Procedure-definition.

A nestedClassifier that is a <<StateMachine>> StateMachine defines a Composite-state-type-
definition that is an element of the Composite-state-type-definition-set of the Procedure-definition.

An ownedOperation defines a Procedure-definition that is an element of the Procedure-definition-
set of the Procedure-definition mapping the Operation identified by the specification.

An ownedAttribute maps to a Variable-definition in the Variable-definition-set of the Procedure-
definition.

Semantics for the Composite-state-type-definition case:

The name defines the State-type-name. If the region contains only one Region, the content of the
region is mapped to a Composite-state-graph of the Composite-state-type-definition, otherwise the

 ITU-T Rec. Z.109 (06/2007) 35

region maps to a State-aggregation-node of the Composite-state-type-definition with one State-
partition for each contained Region.

Each connectionPoint with kind entryPoint defines an element of the State-entry-point-definition-set
and each connectionPoint with kind exitPoint defines an element of State-exit-point-definition-set.
The ownedParameter property defines the Composite-state-formal-parameters.

The nestedClassifier and ownedAttribute associations define the rest of the contents of the state
machine according to the following paragraphs.

A nestedClassifier that is a Datatype, EnumerationType or PrimitiveType defines a Value-data-
type-definition that is an element of the Data-type-definition-set.
A nestedClassifier that is an Interface defines an Interface-definition that is an element of the Data-
type-definition-set.
A nestedClassifier that is a <<PassiveClass>> Class defines an Object-type-definition that is an
element of the Data-type-definition-set.
A nestedClassifier that is a <<StateMachine>> StateMachine defines a Composite-state-type-
definition that is an element of the Composite-state-type-definition-set.
An ownedOperation defines a Procedure-definition that is an element of the Procedure-definition-
set.
An ownedAttribute maps to a Variable-definition in the Variable-definition-set.
The general property (derived from generalization) maps to the optional Composite-state-type-
identifier.
NOTE 2 – If a StateMachine is a classifierBehavior and it has an ownedParameter set, these parameters are
used as parameters when creating instances of the containing Class. See clause 7.1.3 the semantics for
ActiveClass.

8.5.4 Notation
UML standard syntax is used.

8.5.5 References
SDL: 8.1.1.5 Composite state type

 9.5 Procedure

UML-SS: 13.3.2 Behavior (from BasicBehaviors)

 13.3.4 BehavioredClassifier (from BasicBehaviors, Communications)

 15.3.12 StateMachine (from BehaviorStateMachines)

8.6 Transition
The stereotype Transition extends the metaclass Transition with multiplicity [1..1].
NOTE – A transition is the part of a state transition graph that defines what happens when the object goes
from one vertex in the graph to another vertex. Each vertex is usually a state, but may be a pseudostate.
Signals (including timer signals) timers are used to trigger transitions. Standard UML notation and semantics
are used.

8.6.1 Attributes
Stereotype attributes:
– priority: UnlimitedNatural

36 ITU-T Rec. Z.109 (06/2007)

8.6.2 Constraints
– The Transition shall have kind == external or local. The UML concept of internal

transitions is not allowed.
– The trigger property shall not be empty.
– The port of the Trigger that is the trigger property of the Transition shall be empty.
– The event property of the trigger property shall be a MessageEvent or ChangeEvent.
– The effect property shall reference an Activity.
NOTE – There is a constraint on states that signals for each transition have to be distinct, so that a given
signal is not allowed to trigger more than one transition.

8.6.3 Semantics
In this clause the term 'trigger event of a <<Transition>> Transition' means the Event that is the
event property of the Trigger that is the trigger property of the Transition. The Event is a
MessageEvent (an AnyReceiveEvent, a SignalEvent, or a CallEvent) or ChangeEvent.

If the <<Transition>> Transition has a Transitionkind that is local, it is expanded according to the
mapping rules given for asterisk state list in the Model clause in 11.2 in [ITU-T Z.100] before
applying any expansions or mappings below.

If the trigger event of a <<Transition>> Transition is an AnyReceiveEvent, the transition is
expanded according to the Model in SDL 11.3 (for transforming asterisk input list) before applying
any expansions or mappings below.

If the trigger event of a <<Transition>> Transition is a CallEvent, the transition is expanded
according to the Model in SDL 10.5 before any expansions or mappings below.

If the trigger event of a <<Transition>> Transition is a SignalEvent and the name of the Signal is
"none" or "NONE" (case sensitive therefore excludes "None"), the Transition is mapped to a
Spontaneous-transition. The effect property maps to the Graph-node list of the Transition of the
Spontaneous-transition.

If the trigger event of a <<Transition>> Transition is a SignalEvent and the name of the Signal is
neither "none" nor "NONE" (so it does not map to Spontaneous-transition), the Transition is
mapped to an Input-node. The qualifiedName of the Signal maps to the Signal-identifier of the
Input-node, and for each <attr name> in the <assignment specification> (see the Notation given in
UML-SS 13.3.25) the qualifiedName of the attribute (with this name) of the context object owning
the triggered behavior is mapped to the corresponding (by order) Variable-identifier of the Input-
node. The effect property maps to the Graph-node list of the Transition of the Input-node.
NOTE 1 – There is no UML meta-model element that corresponds simply and directly to the <attr name>.
Instead the UML-SS informally relates the syntax element to the attribute of the context object.

If the trigger event of a <<Transition>> Transition is a ChangeEvent, the transition is mapped to a
Continuous-signal. The changeExpression maps to the Continuous-expression of the Continuous-
signal. The effect property maps to the Graph-node list of the Transition of the Continuous-signal.
The priority maps to the Priority-name.

If the <<Transition>> Transition has an empty trigger property and a non-empty guard property, the
Transition is mapped to a Continuous-signal. The guard maps to the Continuous-expression of the
Continuous-signal. The effect property maps to the Graph-node list of the Transition of the
Continuous-signal. The priority maps to the Priority-name.
NOTE 2 – It is a consequence of the SDL semantics that in the Transition set defined by the outgoing
properties of a State, when evaluating the guard of each Continuous-signal (each Transition with only a
guard and an empty trigger), an unevaluated guard of a Transition with a lowest priority attribute is evaluated
before any unevaluated guard of a Transition with a higher priority attribute.

 ITU-T Rec. Z.109 (06/2007) 37

If the <<Transition>> Transition has an empty trigger property and an empty guard property, the
Transition is mapped to a Connect-node. The effect property maps to the Graph-node list of the
Transition of the Connect-node. If the source of the Transition is a ConnectionPointReference, the
qualifiedName of the exit property Pseudostate of the ConnectionPointReference maps to State-
exit-point-name. If the source is a State, the State-exit-point-name is empty.

If a <<Transition>> Transition has a non-empty trigger property and non-empty guard property, the
guard is mapped to the Transition as follows. A Decision-node is inserted first in the Transition
with a Decision-answer with a Boolean Range-condition that is the Constant-expression true and
another Decision-answer for false. The specification property of the guard property of the
Transition maps to Decision-question of the Decision-node. The false Decision-answer has a
Transition that is a Dash-nextstate without HISTORY. The effect property of the Transition maps
to the Graph-node list of the Transition of the true Decision-answer.
NOTE 3 – The mapping to a Decision-node instead of mapping to an enabling condition (a Provided-
expression) makes it possible to access the signal parameters from the expression in the guard and also
means that the signal is consumed even if guard is false, whereas if an enabling condition is false the signal
is not consumed.
NOTE 4 – The mapping to a Decision-node works because entry/exit actions are not allowed on states. If
such actions were allowed, the exit and entry actions of the states would be incorrectly invoked even when
taking the false branch through the decision.

A target property that is a State maps to a Terminator of the Transition (mapped from the effect)
where this Terminator is a Nextstate-node that is a Named-nextstate without Nextstate-parameters,
and where the qualifiedName of the State maps to the State-name of the Named-nextstate.

A target property that is a ConnectionPointReference maps to a Terminator of the Transition
(mapped from the effect) where this Terminator is a Nextstate-node that is a Named-nextstate with
Nextstate-parameters, and where the qualifiedName of the state property of the
ConnectionPointReference maps to the State-name of the Named-nextstate, and the qualifiedName
of the entry property Pseudostate of the ConnectionPointReference maps to State-entry-point-name
of the Nextstate-parameters.

A target property that is a Pseudostate maps to the last item of the Transition (a Terminator or
Decision-node) as defined in clause 8.2, Pseudostate.

8.6.4 Notation
UML standard syntax is used.

8.6.5 References
SDL: 11.3 Input

 11.9 Spontaneous transition

 11.5 Continuous signal

UML-SS: 13.3.25 SignalEvent (from Communications)

 13.3.31 Trigger (from Communications)

 15.3.1 ConnectionPointReference (from BehaviorStateMachines)

 15.3.14 Transition (from BehaviorStateMachines)

9 Actions and activities
An activity is used to describe how the model behaves, for example the control flow of actions in an
operation body or a transition. When invoked, each action takes zero or more inputs, usually
modifies the state of the system in some way such as a change of the values of an instance, and

38 ITU-T Rec. Z.109 (06/2007)

produces zero or more outputs. The values that are used by an action are described by value
specifications (see clause 10, ValueSpecification), obtained from the output of actions or in ways
specific to the action. The UML specification contains a framework for dealing with actions, but
does not provide syntax. In the stereotypes below, the syntax is given for actions, and these actions
are mapped to the UML framework.

The following packages from UML are included either explicitly or because elements of the
packages are generalizations that are specialized as the elements that are used:
– BasicActions
– BasicActivities
– BasicBehaviors
– CompleteActivities
– CompleteStructuredActivities
– FundamentalActivities
– IntermediateActivities
– IntermediateActions
– StructuredActions
– StructuredActivities

The following metaclasses from UML are included:
– Activity
– ActivityFinalNode
– AddStructuralFeatureValueAction
– AddVariableValueAction
– CallOperationAction
– CreateObjectAction
– ConditionalNode
– LoopNode
– OpaqueAction
– SendSignalAction
– SequenceNode

9.1 Activity
The stereotype Activity extends the metaclass Activity with multiplicity [1..1].
NOTE – An activity defines the effect of a transition or the body of an operation.

9.1.1 Attributes
No additional attributes.

9.1.2 Constraints
• An <<Activity>> Activity shall be empty or contain at most one ActivityNode in its node

property and this node shall be a SequenceNode.

9.1.3 Semantics
An <<Activity>> Activity that is the effect of a Transition is mapped to the Graph-node list of the
Transition for the effect.

 ITU-T Rec. Z.109 (06/2007) 39

An <<Activity>> Activity that has a specification (that is, the Activity is the method of a
BehavioralFeature) is mapped to a Procedure-graph containing only a Procedure-start-node
consisting of a Transition.

The actions contained in the SequenceNode map to the Graph-node list of the Transition.
NOTE – See clause 7.7.3 for the mapping of operations to a Procedure-definition that have a method defined
by an <<Activity>> Activity.

9.1.4 Notation
UML standard syntax is used.

9.1.5 References
SDL: 11.12 Transition

UML-SS: 12.3.4 Activity (from BasicActivities, CompleteActivities, FundamentalActivities,
StructuredActivities)

9.2 ActivityFinalNode
The stereotype ActivityFinalNode extends the metaclass ActivityFinalNode with multiplicity [1..1].
This stereotype is abstract.
NOTE – This abstract stereotype is introduced to ensure that every ActivityFinalNode is one of the subtypes:
<<Return>> ActivityFinalNode or <<Stop>> ActivityFinalNode. As the stereotype is abstract, each instance
has to be one of the concrete subtypes.

9.2.1 Attributes
No additional attributes.

9.2.2 Constraints
No additional constraints.

9.2.3 Semantics
The concrete subtypes of the stereotype ActivityFinalNode give its semantics.

9.2.4 Notation
The concrete subtypes of the stereotype ActivityFinalNode give its notation.

9.2.5 References
UML-SS: 12.3.6 ActivityFinalNode (from BasicActivities, IntermediateActivities)

9.3 AddStructuralFeatureValueAction
The stereotype AddStructuralFeatureValueAction extends the metaclass
AddStructuralFeatureValueAction with multiplicity [1..1].
NOTE – An <<AddStructuralFeatureValueAction>> AddStructuralFeatureValueAction is used to define an
assignment to structural features of a Class or other Classifier.

9.3.1 Attributes
Stereotype attributes:
– assignmentAttempt: Boolean If true, the AddStructuralFeatureValueAction represents

an assignment attempt.

40 ITU-T Rec. Z.109 (06/2007)

9.3.2 Constraints
• The value property shall be a ValuePin.
• The object property shall be a ValuePin.

9.3.3 Semantics
An <<AddStructuralFeatureValueAction>> AddStructuralFeatureValueAction is mapped to a Task-
node that is an Assignment (if the assignmentAttempt property is false) or an AssignmentAttempt (if
the assignmentAttempt property is true). The value property maps to the Expression of the
Assignment or AssignmentAttempt (respectively). The qualifiedName of the structuralFeature
property maps to the Variable-identifier.

The object property together with the structuralFeature property should be transformed according to
the Model in clause 12.3.3.1 of [ITU-T Z.100] before mapping to the SDL abstract syntax. This is
the situation where the <variable> is a <field primary> or <indexed primary>.

9.3.4 Notation
When an <<AddStructuralFeatureValueAction>> AddStructuralFeatureValueAction is defined in
textual syntax (for example when used inside an action symbol), textual notation is used. The
textual notation should follow the following grammar:
<structural feature assignment statement> ::=
 <assignment>
 | <assignment attempt>

<assignment> ::=
 <variable> <is assigned sign> <expression>

<assignment attempt> ::=
 <variable> <is assigned sign> as <less than sign> <identifier> <greater than sign>
 <left parenthesis> <expression> <right parenthesis>

<variable> ::=
 <identifier>
 | <field primary>
 | <indexed primary>

9.3.5 References
SDL: 12.3.3 Assignment and assignment attempt

UML-SS: 11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)

 11.3.47 StructuralFeatureAction (from IntermediateActions)

9.4 AddVariableValueAction
The stereotype AddVariableValueAction extends the metaclass AddVariableValueAction with
multiplicity [1..1].
NOTE – AddVariableValueActions are used to define assignment to local variables of compound statements.

9.4.1 Attributes
Stereotype attributes:
– assignmentAttempt: Boolean If true, the AddVariableValueAction represents an

assignment attempt.

9.4.2 Constraints
• The InputPin in the value property shall be a ValuePin.

 ITU-T Rec. Z.109 (06/2007) 41

9.4.3 Semantics
A <<AddVariableValueAction>> AddVariableValueAction is mapped to an Assignment (if the
assignmentAttempt property is false) or to an AssignmentAttempt (if the assignmentAttempt
property is true). The value property defines the Expression (through the contained
ValueSpecification). The variable property defines the Variable-identifier.

9.4.4 Notation
When an <<AddVariableValueAction>> AddVariableValueAction is defined in textual syntax (for
example when used inside a task box), the textual notation should follow the following grammar:
<variable assignment statement> ::=
 <assignment> | <assignment attempt>

The left-hand side of the assignment or assignment attempt shall not be a <field primary> or
<indexed primary>.

9.4.5 References
SDL: 12.3.3 Assignment and assignment attempt

UML-SS: 11.3.6 AddVariableValueAction

 11.3.52 VariableAction

9.5 Break
The stereotype Break is a concrete subtype of the stereotype OpaqueAction.
NOTE – A <<Break>> OpaqueAction represents a break action within a loop that causes termination of the
enclosing loop labelled by the name given.

9.5.1 Attributes
The <<Break>> OpaqueAction has the following attribute:
– label: String The name of the loop to break out of.

9.5.2 Constraints
• A <<Break>> OpaqueAction shall have an empty input property.
• A <<Break>> OpaqueAction shall only exist inside the bodyPart of a LoopNode that has a

name with a value equal to the label.

9.5.3 Semantics

A <<Break>> OpaqueAction is mapped to a Break-node. The Connector-name is the Connector-
name of the containing LoopNode that has a name with a value equal to the label. See also
clauses 9.13 and 9.21.

9.5.4 Notation
When a <<Break>> OpaqueAction is defined in textual syntax (for example when nested inside a
task box), the following textual notation is used:
<break statement> ::=
 break [<name>] <semicolon>

The label is defined by the <name> part of the textual syntax, if present. If there is no <name>, the
label has the same value as the name of the directly enclosing LoopNode.

9.5.5 References
SDL: 11.14.1 Compound statement

 11.14.6 Loop statement

42 ITU-T Rec. Z.109 (06/2007)

9.6 CallOperationAction
The stereotype CallOperationAction extends the metaclass CallOperationAction with multiplicity
[1..1].
NOTE – A call operation action maps to the call of a procedure in the SDL abstract grammar.

For the description in this clause, the following terminology is used:
• The operation-owner is the Class that has (as an ownedOperation property) the Operation

identified by the operation property of the <<CallOperationAction>> CallOperationAction.
• The active-container is the closest containing <<Active>> Class of the

CallOperationAction.

9.6.1 Attributes
No additional attributes.

9.6.2 Constraints
• The target property shall be a ValuePin.
• If the CallOperationAction maps to a Call-node, the target property shall have the same

Class as the operation-owner, because in this case the CallOperationAction represents the
invocation of a method that acts on the item identified by the target property. For such a
method invocation, if the target property has an <<Active>> Class, the actual target shall be
an InstanceValue that identifies the <<Active>> Class instance.

• The onPort attribute shall be absent if the CallOperationAction maps to a Call-node.
• If the CallOperationAction does not map to a Call-node, the target property shall have an

<<Active>> Class and the actual target shall be an InstanceValue that identifies an
<<Active>> Class instance.

9.6.3 Semantics
A <<CallOperationAction>> CallOperationAction is mapped to a Call-node if:
• The operation-owner is a <<PassiveClass>> Class or a DataType, or
• The active-container is the same as the operation-owner or is a generalization of the

operation-owner.

For mapping to a Call-node, the qualifiedName of the operation property is mapped to the
Procedure-identifier of the Call-node, the target property is mapped to the first item of the
Expression list of the Call-node, and the argument properties map to the Expression list (if the
target property is absent) or the remainder of the Expression list (if the target property is present).

If the criteria for mapping to a Call-node are not satisfied and the <<CallOperationAction>>
CallOperationAction is not invoked as part of an expression, the <<CallOperationAction>>
CallOperationAction is transformed to a signal exchange, so that the nodes below replace the
<<CallOperationAction>> CallOperationAction. This corresponds to the Model in clause 10.5 of
[ITU-T Z.100] for a remote procedure call.

If the criteria for mapping to a Call-node are not satisfied and the <<CallOperationAction>>
CallOperationAction returns a value and is invoked as part of an expression, the
<<CallOperationAction>> CallOperationAction is transformed to a call of an implicitly defined
local operation that has the nodes described below as its body and returns the value of the implicit
variable that received the value from pREPLY. This corresponds to the Model in clause 12.3.5 of
[ITU-T Z.100] for a value returning procedure call that contains a remote procedure call body.

 ITU-T Rec. Z.109 (06/2007) 43

The following nodes are used as the body of the implicit operation where each node is the outgoing
node of the preceding node (except for the false branch of <<Pseudostate>> Pseudostate with kind
== choice):
• An action n := n+1, where n is an implicit integer variable attribute of the active-

container. The variable n is initialized to 0 and is used to recognize and discard replies from
previous operation calls.

• A SendSignalAction to send an implicit signal pCALL for invoking the operation, where p is
uniquely determined for this operation and this signal and a corresponding signal for the
reply, pREPLY, are defined in a scope such as the signals are visible to both the sender and
receiver. The pCALL signal has the same parameters as the original operation omitting
parameters corresponding to out parameters and an additional last parameter that is an
Integer. The signal is sent as:

 pCALL(apar,n)
where apar is the original actual parameter list of the operation call omitting parameters
corresponding to out parameters.

 The target property and onPort property of the SendSignalAction are the same as the
corresponding property of the <<CallOperationAction>> CallOperationAction. The
qualifiedName of signal property of the SendSignalAction identifies pCALL.

• An implicit State with an anonymous name with a set of deferrableTrigger properties that
includes all signals that can be received except the signal pREPLY.

• A Transition that is a SignalEvent for the Signal pREPLY. The pREPLY signal has formal and
actual parameters (aINOUTpar) corresponding to inout and out parameters of the original
operation plus one additional parameter if the operation has a result value and an additional
last parameter that is an Integer. The signal is received as:

 pREPLY(aINOUTpar,newn)
where newn is an implicit integer variable attribute of the active-container, each inout or out
parameter of the signal is received into the corresponding parameter of the operation call,
and the value of the last item in aINOUTpar is received in an implicit variable attribute of
the active-container if the CallOperationAction returns a value.

A <<Pseudostate>> Pseudostate with kind == choice where the common left-hand operand of the
guard properties of the outgoing properties is the Boolean expression n = newn. In both outgoing
properties the effect is empty. In the outgoing property for false, the target property is the State
defined above, because the instance of pREPLY received does not match n. In the outgoing property
for true, the target property is the node that originally followed the <<CallOperationAction>>
CallOperationAction if the operation is not used as an expression.

9.6.4 Notation
The graphical symbol for a CallOperationAction is shown in UML-SS Figure 12.66, which should
contain the textual syntax for <operation application> in clause 9.20.4 for SendSignalAction.

When a CallOperationAction is defined in textual syntax (for example when nested inside a
graphical symbol for calling an operation or as part an action), the grammar that should be used is
the grammar defined for <operation application> in clause 9.20.4 for SendSignalAction.

9.6.5 References
SDL: 10.5 Remote procedure

 11.13.3 Procedure call

 12.1.8 Behaviour of operations

 12.2.7 Operator application

44 ITU-T Rec. Z.109 (06/2007)

 12.3.5 Value returning procedure call

UML-SS: 11.3.10 CallOperationAction (from BasicActions)

9.7 ConditionalNode
The stereotype ConditionalNode extends the metaclass ConditionalNode with multiplicity [1..1].
This stereotype is abstract.
NOTE – This abstract stereotype is introduced to ensure that every ConditionalNode is either a
<<Decision>> ConditionalNode or an <<If>> ConditionalNode. As the stereotype is abstract, each instance
has to be one of the concrete subtypes.

9.7.1 Attributes
No additional attributes.

9.7.2 Constraints
No additional constraints.

9.7.3 Semantics
The concrete subtypes of the stereotype ConditionalNode give its semantics.

9.7.4 Notation
The concrete subtypes of the stereotype ConditionalNode give its notation.

9.7.5 References
UML-SS: 12.3.18 ConditionalNode (from CompleteStructuredActivities, StructuredActivities)

 12.3.17 Clause (from CompleteStructuredActivities, StructuredActivities)

9.8 Continue
The stereotype Continue is a concrete subtype of the stereotype OpaqueAction.
NOTE – A <<Continue>> OpaqueAction represents a continue action within a loop that causes a jump to the
next iteration of the loop or termination of the loop if already in the last iteration.

9.8.1 Attributes
No additional attributes.

9.8.2 Constraints
• A <<Continue>> OpaqueAction shall have an empty input property.
• Each <<Continue>> OpaqueAction shall be within the bodyPart of a LoopNode.

9.8.3 Semantics
A <<Continue>> OpaqueAction is mapped to a Continue-node. The Connector-name is given by
the Connector-name produced by the mapping of the containing LoopNode.

9.8.4 Notation
When a <<Continue>> OpaqueAction is defined in textual syntax (for example when nested inside
a task box), the following textual notation is used:
<continue statement> ::=
 continue <semicolon>

9.8.5 References
SDL: 11.14.6 Loop statement

 ITU-T Rec. Z.109 (06/2007) 45

9.9 CreateObjectAction
The stereotype CreateObjectAction extends the metaclass CreateObjectAction with
multiplicity [1..1].
NOTE – A create object action is used to create instances of agents and store a reference to the created
instance in a variable.

9.9.1 Attributes
No additional attributes.

9.9.2 Constraints
The classifier property shall refer to an <<ActiveClass>> Class.
NOTE – CreateObjectAction is only allowed for an <<ActiveClass>> Class because, to be useful, the
created object reference needs to assign a variable, element of a variable, or a parameter. To create a
<<PassiveClass>> Class object, a <create request> is used and the result can be assigned to a variable.

9.9.3 Semantics
The <<CreateObjectAction>> CreateObjectAction is mapped to a Create-request-node where the
classifier maps to the Agent-identifier, followed by an Assignment of the Offspring-expression to the
Variable-identifier from the qualifiedName of the structuralFeature property of the related
AddStructuralFeatureValueAction or AddVariableValueAction.

9.9.4 Notation
A CreateObjectAction is defined in textual syntax according to the following grammar:
<active object create request> ::=
 <single attribute create request> | <multiple attribute create request>

<single attribute create request> ::=
 <identifier> <is assigned sign> new <create body>

<multiple attribute create request> ::=
 <identifier> <full stop> append
 <left parenthesis> <create body> <right parenthesis>

<create body> ::=
 <identifier>

NOTE 1 – This syntax differs from [ITU-T Z.100]. An <active object create request> corresponds to a create
statement or create request area in [ITU-T Z.100].
NOTE 2 – The syntax above does not allow actual parameters for the create request, which is supported by
SDL, but UML-SS specifically excludes doing anything other than creating the object.

The <identifier> of a <create body> shall identify an <<Active Class>> Class for an agent type. The
classifier of the <<CreateObjectAction>> CreateObjectAction references the Classifier named
<identifier> in the <create body>.

A <single attribute create request> represents a <<CreateObjectAction>> CreateObjectAction that
has a result that is a reference to the created agent, followed by a use of this result as the value for a
related implicit AddStructuralFeatureValueAction (if <identifier> corresponds to a structural
feature) or AddVariableValueAction (if <identifier> corresponds to a variable in a compound
statement).

A <multiple attribute create request> as an action represents a <<CreateObjectAction>>
CreateObjectAction action for the <create body>. The <<CreateObjectAction>>
CreateObjectAction is followed by a related implicit <<CallOperationAction>>
CallOperationAction for an append operation on the structural feature or variable of a compound
statement represented by the <identifier> of the <multiple attribute create request>. Consequently,

46 ITU-T Rec. Z.109 (06/2007)

append has to be valid for the type of the <identifier>: for example, if the multiplicity is [0..*],
append concatenates a value to the end of the string value of the feature or variable.

9.9.5 References
SDL: 11.13.2 Create

UML-SS: 11.3.5 AddStructuralFeatureValueAction (from IntermediateActions)

 11.3.6 AddVariableValueAction (from StructuredActions)

 11.3.16 CreateObjectAction (from IntermediateActions)

 11.3.47 StructuralFeatureAction (from IntermediateActions)

9.10 Empty
The stereotype Empty is a concrete subtype of the stereotype OpaqueAction.
NOTE – An <<Empty>> OpaqueAction represents an action that does nothing.

9.10.1 Attributes
No additional attributes.

9.10.2 Constraints
• An <<ExpressionAction>> OpaqueAction shall have an empty input property.

9.10.3 Semantics
An <<Empty>> OpaqueAction is not mapped to the SDL abstract syntax.

9.10.4 Notation
When an <<Empty>> OpaqueAction is defined in textual syntax (for example when nested inside a
task box), textual notation is used. The textual notation should follow the following grammar:
<empty statement> ::=
 <semicolon>

9.10.5 References
SDL: 11.14.8 Empty statement

9.11 Decision

The stereotype Decision is a concrete subtype of the stereotype ConditionalNode.
NOTE – A <<Decision>> ConditionalNode is used to define textual switch statements and maps to a
Decision-node in SDL. There is no graphical notation, but a Pseudostate with kind == choice (which has no
textual form) also maps to a Decision-node.

9.11.1 Attributes
No additional attributes.

9.11.2 Constraints
• The body property of each Clause shall have exactly one element and this shall be a

SequenceNode.
• The left-hand side of the expression (as defined in clause 9.12, ExpressionAction,

clause 9.16, OpaqueAction and clause 10.1, Expression) of each test of each Clause shall be
the same as the left-hand side of the expression of any other test of a Clause (because these
all map to the same Decision-question), and therefore the left-hand sides of the expressions
are all of the same data type.

 ITU-T Rec. Z.109 (06/2007) 47

9.11.3 Semantics
A <<Decision>> ConditionalNode is mapped to a Decision-node. The Clause defines the Decision-
question and Decision-answer-set. The left-hand side of any test (they are all the same) is an
<<ExpressionAction>> OpaqueAction that maps to Decision-question. For each Clause, the
operation and right-hand side of the test define the Range-condition in each Decision-answer. The
body of the Clause maps to Transition in the corresponding Decision-answer.

9.11.4 Notation
When a <<Decision>> ConditionalNode is defined in textual syntax, the textual notation should
follow the following grammar:
<decision statement> ::=
 switch (<question>)
 <left curly bracket> <decision statement body> <right curly bracket>

<decision statement body> ::=
 <algorithm answer part>+ [<algorithm else part>]

<algorithm answer part> ::=
 case <range condition> <colon> <statement>

<algorithm else part> ::=
 default <colon> <statement>

<question> ::=
 <expression> | <character string> | any

9.12 ExpressionAction
The stereotype ExpressionAction is a concrete subtype of the stereotype OpaqueAction.
NOTE – An <<ExpressionAction>> OpaqueAction represents an action that only contains an expression.
This is a utility to simplify the modelling of (for example) if and decision statements.

9.12.1 Attributes
No additional attributes.

9.12.2 Constraints
• An <<ExpressionAction>> OpaqueAction shall have exactly one element in its input

property and this shall be a ValuePin.
• The value property of the input property of an <<ExpressionAction>> OpaqueAction shall

contain a <<ValueSpecification>> ValueSpecification that follows the rules in clause 10,
ValueSpecification.

9.12.3 Semantics
An <<ExpressionAction>> OpaqueAction is mapped to an Expression as defined by the
<<ValueSpecification>> ValueSpecification in the contained ValuePin.

9.12.4 Notation
The notation for expressions is defined in clause 10, ValueSpecification.

9.13 For
The stereotype For is a concrete subtype of the stereotype LoopNode.
NOTE – A LoopNode stereotyped by <<For>> represents a traditional programming language for loop.

48 ITU-T Rec. Z.109 (06/2007)

9.13.1 Attributes
Stereotype attributes:
– stepGraphPart: SequenceNode [1..1]. The SequenceNode to execute after the body of the

loop, normally to carry out such actions as stepping the loop variables.

9.13.2 Constraints
• The setupPart shall have exactly one executableNode element and this shall be a

SequenceNode. Each executableNode of this SequenceNode shall be either an
AddVariableValueAction node (to initialize variables including loop variables), or a
CallOperationAction node (to invoke an operation needed before entering the loop).

• The executableNode of a stepGraphPart shall be an AddVariableValueAction or a
CallOperationAction.

9.13.3 Semantics
The loopVariable maps to the Variable-definition-set of the Compound-node.

The setupPart maps to the Init-graph-node list of the Compound-node, defining the initialization of
the loop.

The stepGraphPart maps to Step-graph-node list.

Otherwise, the semantics are as defined for the stereotype LoopNode.

9.13.4 Notation
When an <<For>> LoopNode is defined in textual syntax (for example when used inside a task
box), the textual notation should follow the following grammar:
<for statement> ::=
 for <left parenthesis> [<for setup>] ; [<loop test>] ; [<for step>] <right parenthesis>
 <loop body>

 <for setup> ::=
 <for setup item> { <comma> <for setup item> }*

<for setup item> ::=
 <local variable definition>
 | <assignment>
 | <operation application>

<for step> ::=
 <for step item> { <comma> <for step item> }*

<for step item> ::=
 <assignment>
 | <operation application>

Each <local variable definition> in a <for setup item> shall include an <is assigned sign>
<expression> for the variable <name> that represents the AddVariableValueAction of the setupPart.
To avoid ambiguity with <assignment>, one <name> is allowed in the <local variable definition>
(<comma> <name> is not permitted). The <name> corresponds to a loopVariable.

Each <assignment> in a <for setup item> represents an AddVariableValueAction of the setupPart.

Each <operation application> in a <for setup item> represents a CallOperationAction of the
setupPart.

The sequence order for these setupPart actions is the order in which they occur (left to right) in the
<for setup>.

Each <assignment> in a <for step item> represents an AddVariableValueAction of the
stepGraphPart.

 ITU-T Rec. Z.109 (06/2007) 49

Each <operation application> in a <for step item> represents a CallOperationAction of the
stepGraphPart.

The sequence order for these setupPart actions is the order in which they occur (left to right) in the
<for step>.

9.13.5 References
SDL: 11.14.1 Compound Statement

 11.14.6 Loop statement

9.14 If
The stereotype If is a concrete subtype of the stereotype ConditionalNode.
NOTE – An <<If>> ConditionalNode is used to define a textual if statement and maps to a Decision-node in
SDL. There is no graphical notation, but a Pseudostate with kind == choice (which has no textual form) also
maps to a Decision-node.

9.14.1 Attributes
No additional attributes.

9.14.2 Constraints
• An <<If>> ConditionalNode shall have either one or two Clause elements. If it has one

Clause, this shall have a test that is an <<ExpressionAction>> OpaqueAction with an
OpaqueExpression of Boolean type. If it has two Clause elements, it shall have one Clause
that has a test that is an <<ExpressionAction>> OpaqueAction with an OpaqueExpression
of type Boolean and one else clause (following the definition of 'else clause' in 12.3.11 in
the UML specification) that shall have no test.

• The body of each Clause shall have exactly one element and this shall be a SequenceNode.

9.14.3 Semantics
An <<If>> ConditionalNode is mapped to a Decision-node. The test (an <<ExpressionAction>>
OpaqueAction) in one of the clauses defines the Expression of the Decision-question. The body of
this Clause defines the Decision-answer-set of the Decision-node. This set will only contain one
Decision-answer. This Decision-answer will have a Range-condition representing True and a
Transition that is defined by the body of this Clause.

The body of the other Clause (that shall be an else clause according to the constraints above), if
present, defines the optional Else-answer.

9.14.4 Notation
When an <<If>> ConditionalNode is defined in textual syntax (for example when used inside a task
box), the textual notation should follow the following grammar:
<if statement> ::=
 if <left parenthesis> <expression> <right parenthesis> <statement>
 [else <statement>]

The <expression> represents the test. The non-optional <statement> represents the body of the
Clause with the test. If the second <statement> is present, it represents the body of the else Clause.
If it is absent, this body is an <<Empty>> OpaqueAction.

9.14.5 References
SDL: 11.13.5 Decision

 11.14.4 If statement

50 ITU-T Rec. Z.109 (06/2007)

9.15 LoopNode
The stereotype LoopNode extends the metaclass LoopNode with multiplicity [1..1]. This stereotype
is abstract.
NOTE – This abstract stereotype is introduced to ensure that every LoopNode is a <<For>> LoopNode or a
<<While>> LoopNode and to introduce constraints that apply in both cases. As the stereotype is abstract,
each instance has to be one of the concrete subtypes.

9.15.1 Attributes
No additional attributes.

9.15.2 Constraints
General class constraints that apply to the stereotypes <<For>> and <<While>> in this profile are:
• A LoopNode shall have a name.
• The isTestedFirst attribute shall be true.
• The bodyPart shall have exactly one element and this shall be a SequenceNode.
• The test shall have one element that is an <<ExpressionAction>> OpaqueAction with an

OpaqueExpression of Boolean type.
• The result property shall be empty.
• The bodyOutput property shall be empty.
• The loopVariableInput property shall be empty.

9.15.3 Semantics
A LoopNode maps to a Compound-node. The name of the LoopNode maps to the Connector-name
of the Compound-node.

The Transition of the Compound-node is a Decision-node. The test property maps to the Decision-
question and the first executableNode element of the bodyPart property maps to the Transition part
of the Decision-answer. The Range-condition part of the Decision-answer is always a
representation of the range condition "==true". The Decision-node has an Else-answer that consists
of Break-node with a Connector-name that is the same as the Connector-name of the Compound-
node.
NOTE – After the Decision-node has been interpreted, the Compound-node behaviour is to interpret the
Step-graph-node list followed by re-interpretation of the Transition in a loop. The loop is terminated if the
Else-answer is reached, or if either the Decision-answer or Step-graph-node list terminates the loop.

Its concrete subtypes give additional semantics.

9.15.4 Notation

The syntax for loops given in this profile is given by <for statement> and <while statement> in the
notation for If stereotype and While stereotype respectively. The following are common elements:
<loop test> ::=
 <expression>

<loop body> ::=
 <statement>

The <loop test> represents the test.

The <loop body> represents the bodyPart.
NOTE – The loop statement syntax of [ITU-T Z.100] is not supported.

 ITU-T Rec. Z.109 (06/2007) 51

9.15.5 References
SDL: 11.14.1 Compound Statement

 11.14.6 Loop statement

UML-SS: 12.3.35 LoopNode (from CompleteStructuredActivities, StructuredActivities)

9.16 OpaqueAction
The stereotype OpaqueAction extends the metaclass OpaqueAction with multiplicity [1..1]. This
stereotype is abstract.
NOTE – This abstract stereotype is introduced to ensure that every OpaqueAction is one of the subtypes:
<<Break>> OpaqueAction or <<Continue>> OpaqueAction or <<Empty>> OpaqueAction or
<<ExpressionAction>> OpaqueAction or <<ResetAction>> OpaqueAction or
<<SetAction>> OpaqueAction. As the stereotype is abstract, each instance has to be one of the concrete
subtypes.

9.16.1 Attributes
No additional attributes.

9.16.2 Constraints
No additional constraints.

9.16.3 Semantics
The concrete subtypes of the stereotype OpaqueAction give its semantics.

9.16.4 Notation
The concrete subtypes of the stereotype OpaqueAction give its notation.

9.16.5 References
UML-SS: 11.3.26 OpaqueAction (from BasicActions)

9.17 ResetAction
A timer is cancelled with a reset action represented by a ResetAction stereotype. The ResetAction
stereotype is a concrete subtype of the stereotype OpaqueAction.
NOTE – The reset action cancels a timer and removes any corresponding timer signals that are queued for
the agent instance executing the timer.

9.17.1 Attributes

The stereotype has the following attributes:
– parameterlist: part ValueSpecification [*]. The expressions that correspond to the actual

parameters of the timer.
– timer: Signal: The <<Timer>> Signal that represents the timer that is started by the action.

9.17.2 Constraints
• Each item in the parameterlist shall match the corresponding ownedAttribute of the timer.

9.17.3 Semantics
A <<ResetAction>> OpaqueAction is mapped to a Reset-node. The timer maps to the Timer-
Identifier. The parameterlist maps to the Expression list.

52 ITU-T Rec. Z.109 (06/2007)

9.17.4 Notation
The syntax for the reset actions is as follows:
<reset> ::=
 reset <identifier> [<left parenthesis> <expression list> <right parenthesis>]

The <identifier> identifies the timer. The <expression list> is the parameterlist.

9.17.5 References
SDL: 11.15 Timer

9.18 Return
The stereotype Return is a concrete subtype of the stereotype ActivityFinalNode.
NOTE – A return represents the action to return from a procedure (in the SDL abstract grammar) to the point
where the procedure was called.

9.18.1 Attributes
Stereotype attributes:
– value: OpaqueAction [0..1] An <<ExpressionAction>> OpaqueAction that represents the

return value of the operation.

9.18.2 Constraints
• The <<Return>> ActivityFinalNode shall be part of an <<Activity>> Activity that is used

to define the behaviour associated with an <<Operation>> Operation.
• The value shall be empty if the <<Operation>> Operation does not return a value.

Otherwise, the value shall match the return type of the <<Operation>> Operation.
• The OpaqueAction in the value property shall be an <<ExpressionAction>> OpaqueAction.

9.18.3 Semantics
A <<Return>> ActivityFinalNode is mapped to an Action-return-node if the value property is
empty, otherwise to a Value-return-node. If it is mapped to a Value-return-node, the value property
defines the Expression in the Value-return-node.

9.18.4 Notation
When a <<Return>> ActivityFinalNode is defined in textual syntax (for example when used inside
a task box), the textual notation should follow the following grammar:
<return statement> ::=
 return [<return body>] <semicolon>

<return body> ::=
 <expression>

If <<Return>> ActivityFinalNode is shown graphically, the UML notation is used with the addition
of the <return body> (if there is one) close to the symbol.

The <expression> gives the value of the <<Return>> ActivityFinalNode.

9.18.5 References
SDL: 11.12.2.4 Return statement

9.19 SequenceNode
The stereotype SequenceNode extends the metaclass SequenceNode with multiplicity [1..1].
NOTE – A sequence node is a sequence of actions and is either a node of an activity or describes the body of
a compound node.

 ITU-T Rec. Z.109 (06/2007) 53

9.19.1 Attributes
No additional attributes.

9.19.2 Constraints
• Each ExecutableNode that is an executableNode property of a SequenceNode and is an

Action shall be an AddStructuralFeatureValueAction or an AddVariableValueAction or a
CallOperationAction or a CreateObjectAction or an OpaqueAction or a SendSignalAction.

• Each ExecutableNode that is an executableNode property of a SequenceNode and is a
StructuredActivityNode shall be a ConditionalNode or a LoopNode.

9.19.3 Semantics
A <<SequenceNode>> SequenceNode that is the node of an Activity is mapped as described in
clause 9.1.

A <<SequenceNode>> SequenceNode that is not a node of an Activity is mapped to a Compound-
node. The variable definitions contained in the variable property of the SequenceNode map to the
Variable-definition-set of the Compound-node. The multiplicity of a variable is mapped to a type in
the same way as in a Property (see clause 7.12, Property). The actions contained in the
executableNode property of the SequenceNode map to the various Graph-nodes in the Transition
that are contained in the Compound-node. The name of the <<SequenceNode>> SequenceNode
defines the Connector-name of the Compound-node.

9.19.4 Notation
NOTE – The UML-SS document does not define syntax for a SequenceNode. In this profile, SequenceNode
is defined using textual syntax (for example when showing a sequence of actions in an action symbol) as
follows:
<compound statement> ::=
 <left curly bracket> <statement list> <right curly bracket>

<statement list> ::=
 <variable definition>* <statement>*

<variable definition> ::=
 <local variable definition> <semicolon>

<local variable definition> ::=
 [<aggregation kind>] <identifier> [<multiplicity>]
 <name> [<is assigned sign> <expression>]
 { <comma> <name> [<is assigned sign> <expression>] }*

<aggregation kind> ::=
 part

<statement> ::=
 <empty statement>
 | <compound statement>
 | <algorithm action statement>
 | <if statement>
 | <decision statement>
 | <while statement>
 | <for statement>
 | <terminating statement>
 | <labelled statement>

<terminating statement> ::=
 <return statement>
 | <break statement>
 | <continue statement>
 | <stop statement>

54 ITU-T Rec. Z.109 (06/2007)

<algorithm action statement> ::=
 <output> <semicolon>
 | <active object create request> <semicolon>
 | <set> <semicolon>
 | <reset> <semicolon>

<labelled statement> ::=
 <name> <colon> <statement>

If the statement is labelled (a <labelled statement>), the <name> is the name of the corresponding
statement (the CreateObjectAction, SendSignalAction, CallOperationAction,
AddVariableValueAction, AddStructuralFeatureValueAction, OpaqueAction, ConditionalNode,
LoopNode or ActivityFinalNode represented by <statement> of <labelled statement>); otherwise,
the name is given an anonymous unique name.

9.19.5 References
SDL: 11.14.1 Compound statement

UML-SS: 12.3.47 SequenceNode (from StructuredActivities)

9.20 SendSignalAction
The stereotype SendSignalAction extends the metaclass SendSignalAction with multiplicity [1..1].
NOTE – A send signal action outputs a signal from the executing agent, optionally specifying the target
agent and the port used to send the signal.

9.20.1 Attributes
No additional attributes.

9.20.2 Constraints
The target property shall reference a ValuePin.

The onPort property shall reference a Port of the container <<ActiveClass>> Class of the
<<SendSignalAction>> SendSignalAction.

9.20.3 Semantics
A <<SendSignalAction>> SendSignalAction is mapped to an Output-node. The qualifiedName of
signal property maps to the Signal-identifier. The target property maps to the Signal-destination.
The onPort property maps to the Direct-via. The argument property maps to the Expression list.

9.20.4 Notation
UML standard notation is used to show a SendSignalAction in a transition oriented statemachine
syntax with the text content of the symbol being as in <output body> below. For an example, see
UML-SS Figure 15.44 – Symbols for Signal Receipt, Sending and Actions on transition.

When a SendSignalAction is defined in textual syntax (for example, when nested inside an action
sequence symbol), textual notation as defined in the following grammar should be used:
<output> ::=
 output <output body>
 | <circumflex accent> <output body>

NOTE 1 – The <circumflex accent> is an extension compared with Z.100 syntax. It is not necessary for a
tool to support both alternatives.
<output body> ::=
 <operation application> { <comma> <operation application> }*

The following syntax is used for both SendSignalAction and in clause 9.6.4 CallOperationAction
and therefore the <type expression> represents the signal property (of <<SendSignalAction>>

 ITU-T Rec. Z.109 (06/2007) 55

SendSignalAction) or the operation property (of <<CallOperationAction>> CallOperationAction)
respectively.
<operation application> ::=
 <operator application>
 | <method application>

<operator application> ::=
 <type expression> [<actual parameters>] <communication constraints>

<method application> ::=
 <primary> <full stop> <type expression> [<actual parameters>]
 <communication constraints>

<type expression> ::=
 <type identifier>

NOTE 2 – The use of <primary> in a <method application> of an <output body> is explained with
<communication constraints> below.
<actual parameters> ::=
 <left parenthesis> <actual parameter list> <right parenthesis>

<actual parameter list> ::=
 [<expression>] { <comma> [<expression>] }*

The optional <actual parameters> represent the argument list. If the <actual parameters> are
omitted, the list is empty.
<communication constraints> ::=
 [<via path>]

<via path> ::=
 via <identifier>

A <via path> represents the onPort and, if omitted, the onPort is empty.
NOTE 3 – To specify a specific destination, the <method application> syntax is used, where the <primary>
specifies the destination. By comparison, SDL allows a destination to be given in
<communication constraints>.

The <primary> of a <method application> used as an <output body> represents the target and shall
not be a <literal>. The <primary> shall be an <operation application>, a bracketed <expression>, an
<extended primary>, or an <active primary> that is a reference to an element of an instance of an
<<ActiveClass>> Class (an agent instance) or a reference to an instance of an <<ActiveClass>>
Class (an agent instance set). A self, parent, offspring or sender <pid expression> is a valid <primary>.

9.20.5 References
SDL: 11.13.4 Output

UML-SS: 11.3.45 SendSignalAction (from BasicActions)
NOTE – The syntax for <range condition> is given in clause 7.12.4, the notation for Property.

The <question> represents the left-hand side of every test expression (the question). The
<range condition> of each <algorithm answer part> determines the operator for the expression and
the value for the right-hand side of the expression. If the <range condition> consists of a single
<open range>, the operator is the operator corresponding to the <equality sign>, <not equals sign>,
<less than sign>, <greater than sign>, <less than or equals sign>, or <greater than or equals sign>.
Otherwise, <range condition> is evaluated to a set value that contains the values specified by the
<range condition> and the operator is the membership operator for the left-hand side of the test
being in this set. The type of the set is the set of all possible values of the type of the left-hand side
of the test. The <statement> of the <algorithm answer part> represents the body of the Clause with
the test. The test for the <algorithm else part> is the question not being in the set of values covered

56 ITU-T Rec. Z.109 (06/2007)

by any of the right-hand sides (that is the test is true only if all other tests are false). The
<statement> of the <algorithm else part> represents the body of the else Clause.

9.20.6 References
SDL: 11.13.5 Decision

 11.14.5 Decision statement

9.21 SetAction
A timer is started with a set action represented by a SetAction stereotype. The SetAction stereotype
is a concrete subtype of the stereotype OpaqueAction.
NOTE – The set action gives a timer an expiry time.

9.21.1 Attributes
The stereotype has the following attributes:
– parameterlist: part ValueSpecification [*] The expressions that correspond to the actual

parameters of the timer.
– timer: Signal The <<Timer>> Signal that represents the

timer that is started by the action.
– timeExpression: ValueSpecification The duration that determines when the timer

will expire.

9.21.2 Constraints
• Each item in the parameterlist shall match the corresponding ownedAttribute of the timer.
• The timeExpression shall be of the Time type.

9.21.3 Semantics
A <<SetAction>> OpaqueAction is mapped to a Set-node. The timer maps to the Timer-Identifier.
The parameterlist maps to the Expression list and timeExpression maps to Time-expression.

9.21.4 Notation
The syntax for the set actions is as follows:
<set> ::=
 set <identifier> [(<expression list>)] [<is assigned sign> <expression>]

The <identifier> identifies the timer. The <expression list> is the parameterlist. If
<is assigned sign> <expression> is omitted, the timeExpression is set to now + the default duration
of the timer. Otherwise, the <expression> gives the timeExpression.

9.21.5 References
SDL: 11.15 Timer

9.22 Stop

The stereotype Stop is a concrete subtype of the stereotype ActivityFinalNode.
NOTE – A stop represents the action to terminate the enclosing <<ActiveClass>> Class instance (the
enclosing agent).

9.22.1 Attributes
No additional attributes.

 ITU-T Rec. Z.109 (06/2007) 57

9.22.2 Constraints
No additional constraints.

9.22.3 Semantics
A <<Stop>> ActivityFinalNode is mapped to a Stop-node.

9.22.4 Notation
The <<Stop>> ActivityFinalNode may only be used in textual syntax for transitions. The textual
notation should adhere to the following grammar:
<stop statement> ::=
 stop <semicolon>

9.22.5 References
SDL: 11.12.2.3 Stop statement

9.23 While
The stereotype While is a concrete subtype of the stereotype LoopNode.
NOTE – A LoopNode stereotyped by <<While>> represents a traditional programming language while loop.

9.23.1 Attributes
No additional attributes.

9.23.2 Constraints
• The setupPart property of a <<While>> LoopNode shall be empty.
• The loopVariable property of a <<While>> LoopNode shall be empty.

9.23.3 Semantics
The Variable-definition-set is empty.

The Init-graph-node list is empty.

The Step-graph-node list is empty.

Otherwise, the semantics are as defined for the stereotype LoopNode.

9.23.4 Notation
When a <<While>> LoopNode is defined in textual syntax (for example when used inside a task
box), the textual notation should follow the following grammar:
<while statement> ::=
 while <left parenthesis> <loop test> <right parenthesis> <loop body>

The relationship to the meta-model elements is defined in clause 9.15, LoopNode.

9.23.5 References
SDL: 11.14.1 Compound Statement

 11.14.6 Loop statement

10 ValueSpecification
A value is specified as a non-terminal expression or a literal for one of the values of a primitive type
or a reference to an object that contains a value. An expression is a node in an expression tree that
has a number (possibly zero) of operands that themselves specify values and therefore can be
expressions, literals or instance values. A value is represented textually and the syntax is a concrete

58 ITU-T Rec. Z.109 (06/2007)

textual syntax based on SDL. Consequently, the components of an expression in SDL-UML usually
have a one-to-one correspondence with respective SDL abstract syntax items that would result from
analysing the text as SDL.

The following metaclasses from the UML Kernel package are included:
– Expression
– InstanceValue
– LiteralInteger
– LiteralNull
– LiteralString
– LiteralUnlimitedNatural
– ValueSpecification

10.1 Expression
The stereotype Expression extends the metaclass Expression with multiplicity [1..1].
NOTE – An expression is a value specification that has the logical form of an operator with operands, though
the concrete syntax may be some other form, such as a conditional expression. The leaf node operand of an
expression is an expression operator that has no operands or a literal specification or an instance value.

10.1.1 Attributes
Stereotype attributes:
– isConstant: Boolean true if the expression is a constant expression. This is a derived

attribute.

The stereotypes that extend expressions and their attributes are defined in the context of the
concrete syntax given in the Notation clause below.

10.1.2 Constraints
• The <<PassiveClass>> Class for a create request shall have an operator with the name

Make that has, as a result, an instance of the <<PassiveClass>> Class.
• In the operand list of an <<Expression>> Expression that is mapped to an Operation-

application, each operand shall match the type of the corresponding parameter of the
operation.

• In the operand list of an <<Expression>> Expression that is mapped to a Conditional-
expression, the first operand shall be a Boolean and each of the other operands shall be of
the same type, that is the type (of the <<Expression>> Expression).

• The type (of the <<Expression>> Expression) shall match the type required in the context
of the <<Expression>> Expression.

10.1.3 Semantics

The isConstant property is false if the <<Expression>> Expression has an operand that is an
<<Expression>> Expression with isConstant false or is an <<InstanceValue>> InstanceValue that
maps to a Variable-access. In all other cases, isConstant is true.

An <<Expression>> Expression is mapped to an Expression. The operand order is defined by the
order in which the operands appear in the concrete syntax (left to right) except where explicitly
noted below.

The symbol of an <<Expression>> Expression is a String. Where the symbol represents an infix
operator, the text string is <quotation mark> infix-operation-name <quotation mark> qualified by
the definition context of the operator. For example, the symbol for <implies sign> is the text string

 ITU-T Rec. Z.109 (06/2007) 59

"=>" (including the quotation marks) normally qualified by the package for predefined data. Where
the symbol represents a monadic prefix operator, the text string is <quotation mark>
monadic-operation-name <quotation mark>. For some expressions (such as
<range check expression>), the symbol is the text string for an implicit identifier derived from the
textual syntax as defined below. In all other cases, the symbol is the text string given for the
operation identifier of the expression with its qualifier.

An <<Expression>> Expression that is a constant expression (isConstant is true) is mapped to an
Expression that is a Constant-expression. An <<Expression>> Expression that is not a constant
expression (isConstant is false) is mapped to an Expression that is an Active-expression. In the
following, Expression is used to mean Constant-expression or Active-expression depending on the
value of isConstant.

Unless explicitly stated otherwise, the <<Expression>> Expression is mapped to the Operation-
application alternative of Expression. When the <<Expression>> Expression is mapped to an
Expression that is an Operation-application, the symbol is used to determine the Operator-
identifier of the Operation-application. The operand list maps to the Expression list of the
Operation-application.

An <<Expression>> Expression with the implicit unique symbol for the range check is mapped to
an Operation-application for the range check.

An <<Expression>> Expression with the implicit unique symbol for conditional expressions is
mapped to a Conditional-expression. The operand list maps to the Boolean-expression,
Consequence-expression, and Alternative-expression of the Conditional-expression.

An <<Expression>> Expression with the symbol for now, self, parent, offspring or state is mapped to a
Now-expression, Self-expression, Parent-expression, Offspring-expression, or State-expression
respectively.

An <<Expression>> Expression with the symbol for active or rem is mapped to a Timer-active-
expression or Timer-remaining-expression respectively. The first operand maps to Timer-identifier
and the remaining operand list maps to the Expression-list.

An <<Expression>> Expression with the symbol for any is mapped to an Any-expression with type
mapped to the Sort-reference-identifier of the Any-expression.

10.1.4 Notation
The grammar is (except where explicitly stated) a subset of the grammar from SDL.

The symbol and operand set of an <<Expression>> Expression are defined as follows:
<expression> ::=
 <expression0>
 | <range check expression>

<range check expression> ::=
 <operand2> in type { <sort identifier> <constraint> | <sort identifier> }

<constraint> ::=
 constants <left parenthesis> <range condition> <right parenthesis>
 | <size constraint>

<size constraint> ::=
 size <left parenthesis> <range condition> <right parenthesis>

The symbol in a <range check expression> is defined by an implicit identifier for the range check
derived from the <constraint> or <sort identifier> of the <range check expression> as defined in
clause 12.1.9.5 of [ITU-T Z.100] and the operand is the <<ValueSpecification>>
ValueSpecification for the <operand2> of the <range check expression>. The range check is an
Operation (with an arbitrary unique name) derived from the <constraint> of the

60 ITU-T Rec. Z.109 (06/2007)

<range check expression> or the <constraint> of the sort identified in the <range check expression>
as defined in clause 12.1.9.5 of [ITU-T Z.100] (and therefore shall be a valid <constraint>
according to [ITU-T Z.100]).
<expression0> ::=
 <operand>
 | <create expression>
 | <value returning procedure call>

<create expression> ::=
 <multiple attribute create request>
 <create request>

<create request> ::=
 new <identifier>

NOTE 1 – The syntax for <create expression> is changed compared with SDL to use the keyword new
instead of create or (in the case of a data type) Make.

The form <multiple attribute create request> shall be used when <<Active Class>> Class instances
are created; otherwise, the form <create request> shall be used.

A <multiple attribute create request> is a shorthand notation for inserting a
<multiple attribute create request> action just before the action where the <create expression>
occurs. The variable assigned in the action replaces the create request in the original expression. If
<create expression> occurs several times in an expression, one distinct variable is used for each
occurrence. In this case, the order of the inserted create requests and variable assignments is the
same as the order of the <create expression>s. From the transform for <create expression>, the
<create expression> in the expression is replaced by a <variable access>, and therefore the
<create expression> is an InstanceValue rather than an Expression.

A <create request> for a <<Passive Class>> Class or a DataType is an invocation of the Make
operation for the type identified by <identifier> and symbol represents this Make. The operand list
is empty.

The symbol in a <value returning procedure call> is the text string for the identity of the called
procedure. The operand set is the actual parameter set of the procedure call.
<operand> ::=
 <operand0>
 | <operand> <implies sign> <operand0>

The symbol in an <operand> with an <implies sign> is the text string for the <implies sign>
qualified by the type for the context and the operand set is the <<ValueSpecification>>
ValueSpecification pair for <operand> and <operand0>.
<operand0> ::=
 <operand1>
 | <operand0> { or | xor } <operand1>

The symbol in an <operand0> with an 'or' or 'xor' is the text string for the respective operator
qualified by the type for the context and the operand set is the <<ValueSpecification>>
ValueSpecification pair for <operand0> and <operand1>.
<operand1> ::=
 <operand2>
 | <operand1> and <operand2>

The symbol in an <operand1> with an 'and' is the text string for 'and' qualified by the type for the
context and the operand set is the <<ValueSpecification>> ValueSpecification pair for <operand1>
and <operand2>.

 ITU-T Rec. Z.109 (06/2007) 61

<operand2> ::=
 <operand3>
 | <operand2> { <greater than sign>
 | <greater than or equals sign>
 | <less than sign>
 | <less than or equals sign>
 | in } <operand3>
 | <equality expression>

The symbol in an <operand2> with a <greater than sign> or <greater than or equals sign> or
<less than sign> or <less than or equals sign> or 'in' is the symbol for the respective operator
qualified by the type for the context and the operand set is the <<ValueSpecification>>
ValueSpecification pair for <operand2> and <operand3>.
<equality expression> ::=
 <operand2> { <equality sign> | <not equals sign> } <operand3>

The symbol in an <equality expression> with an <equality sign> or <not equals sign> is the text
string for the respective sign qualified by the type for the context and the operand set is the
<<ValueSpecification>> ValueSpecification pair for <operand2> and <operand3>.
<operand3> ::=
 <operand4>
 | <operand3> { <plus sign> | <hyphen> | <concatenation sign> } <operand4>

The symbol in an <operand3> with a <plus sign> or <hyphen> or <concatenation sign> is the
symbol for the respective sign qualified by the type for the context and the operand set is the
<<ValueSpecification>> ValueSpecification pair for <operand3> and <operand4>.
<operand4> ::=
 <operand5>
 | <operand4> { <asterisk> | <solidus> | mod | rem } <operand5>

The symbol in an <operand4> with an <asterisk> or <solidus> or mod or rem is the symbol for the
respective sign qualified by the type for the context and the operand set is the
<<ValueSpecification>> ValueSpecification pair for <operand4> and <operand5>.
<operand5> ::=
 [<hyphen> | not] <primary>

The symbol in an <operand5> with a <hyphen> or not is the symbol for the respective sign qualified
by the type for the context and the operand set is the <<ValueSpecification>> ValueSpecification
for the <primary>.
<primary> ::=
 <operation application>
 | <literal>
 | <left parenthesis> <expression> <right parenthesis>
 | <conditional expression>
 | <extended primary>
 | <active primary>

NOTE 2 – The SDL synonym is not included. Instead, a read-only element should be used.

The symbol in an <operation application> is the text string for the name of the called operation
qualified by the type for the context.

A bracketed <expression> is used to syntactically separate the <expression>. The representation as
meta-model elements is otherwise the same as an <expression> without brackets.
<active primary> ::=
 <variable access>
 | <imperative expression>

A <variable access> is an <<InstanceValue>> InstanceValue (see clause 10.2, InstanceValue).

62 ITU-T Rec. Z.109 (06/2007)

<expression list> ::=
 <expression> { , <expression> }*

An <expression list> is an <expression> list and the representation of each <expression> is treated
in turn when the <expression list> is used.
<constant expression> ::=
 <constant expression0>

A <constant expression> is an expression that does not contain an <active primary> or a
<value returning procedure call>. It is treated as an <expression>.

From SDL: 12.2.6 Conditional expression
<conditional expression> ::=
 <Boolean expression>
 <question mark> <consequence expression>
 <colon> <alternative expression>

NOTE 3 – Conditional expressions use a different syntax from [ITU-T Z.100].
<consequence expression> ::=
 <expression>

<alternative expression> ::=
 <expression>

The <Boolean expression> shall not be a <conditional expression>.

The symbol for a <conditional expression> represents the name of the implicit operation for the
conditional expression. The operand list consists of three <<ValueSpecification>>
ValueSpecification items for the <Boolean expression>, <consequence expression>, and
<alternative expression>.

From SDL: 12.2.4 Extended primary
<extended primary> ::=
 <indexed primary>
 | <field primary>
 | <composite primary>

<indexed primary> ::=
 <primary> <left square bracket> <actual parameter list> <right square bracket>

Although the syntax of <actual parameter list> allows each parameter <expression> to be omitted, it
is not allowed to omit any parameter <expression> (that is, actual parameters are not allowed to be
undefined).

The symbol for an <indexed primary> represents the name of the Extract operation for the type of
the <primary>. The operand list is the <<ValueSpecification>> ValueSpecification for the
<primary> followed by <<ValueSpecification>> ValueSpecification list for the
<actual parameter list>. The number of index values and the type of each value shall be consistent
with the definition of the Extract operation for the type of the <primary>.
<field primary> ::=
 <primary> <full stop> <field name> <communication constraints>
 | <field name>

<field name> ::=
 <name>

If <primary> identifies an <<ActiveClass>> Class instance, <field primary> corresponds to an
exchange of implicit signals to import the value of the primary from the active class. The
<field name> shall be the name of a variable part of the type of the <primary>. A non-empty
<communication constraints> is valid in <field primary> only if the field is part of an
<<ActiveClass>> Class.

 ITU-T Rec. Z.109 (06/2007) 63

The alternative of <field primary> starting <field name> is only valid in a method body and is a
shorthand form for this <full stop> <field name> <communication constraints>. The <field name>
shall be the name of a field for the type of the method.

If the field is not part of an <<ActiveClass>> Class, the symbol identifies the field Extract operator
for the field and the operand is the <<ValueSpecification>> ValueSpecification for the <primary>
or the implicit parameter (this) for the target of the method.

If the field is part of another <<ActiveClass>> Class instance, there is an implicit value returning
procedure to return the value. The <field primary> is transformed to <type expression>
<communication constraints> for an <operator application> that is treated as a
<value returning procedure call> (see below), where <type expression> identifies the implicit
operator that does the remote access.
<composite primary> ::=
 <identifier> <composite begin sign> <actual parameter list> <composite end sign>

The <composite primary> has a mandatory <identifier> (instead of the optional qualifier in SDL) to
identify the type of the created value. The symbol identifies the Make operator of the type identified
by the <identifier> and <actual parameter list> represents the operand list. A <composite primary>
is only valid if Make is defined for the type identified by the <identifier>, which acts as a qualifier
for the name of Make.

The syntax from SDL 11.13.2 for <actual parameter list> is given in clause 9.20, SendSignalAction.
<imperative expression> ::=
 <now expression>
 | <pid expression>
 | <timer active expression>
 | <timer remaining duration>
 | <any expression>
 | <state expression>

<now expression> ::=
 now

<pid expression> ::=
 self
 | parent
 | offspring
 | sender

<timer active expression> ::=
 active <left parenthesis> <timer identifier>
 [<left parenthesis> <expression list> <right parenthesis>]
 <right parenthesis>

<timer remaining duration> ::=
 rem <left parenthesis> <timer identifier>
 [<left parenthesis> <expression list> <right parenthesis>]
 <right parenthesis>

<any expression> ::=
 any <left parenthesis> <identifier> <right parenthesis>

The <identifier> of <any expression> shall identify a passive class or a data type.
<state expression> ::=
 state

For each <imperative expression>, the symbol represents an unique identifier for an implicit
operator for that expression. For now, self, parent, offspring and state, the operand list is empty. For
active and rem, the operand list is the identified timer followed by the expression list where each of
the expressions shall be compatible with the timer parameters.

64 ITU-T Rec. Z.109 (06/2007)

For any, the operand list is empty but the type of <<Expression>> Expression is set to the type
identified by <identifier>.
<value returning procedure call> ::=
 [call] [this] <operator application>

This syntax is modified compared with SDL to use <operator application>.

The optional keyword call is to allow a procedure call to be distinguished from other syntactically
equivalent items with the same signature.

If this is used, operator identifier (in the <type expression> of <operator application>) shall denote
an enclosing operation, and if the operation is specialized the identifier of the specialized operation
replaces this identifier. When this is not used, no substitution takes place so the enclosing operation
is called. In all other respects, a <value returning procedure call> is treated as a
<<CallOperationAction>> CallOperationAction.

10.1.5 References
SDL: 12.2.1 Expressions

UML-SS: 7.3.18 Expression (from Kernel)

10.2 InstanceValue
The stereotype InstanceValue extends the metaclass InstanceValue with multiplicity [1..1].
NOTE – An instance value is a value specification that is the result of accessing a structural feature that
maps to a Variable-definition or Parameter in SDL, or is a literal for an enumerated type.

10.2.1 Attributes
No additional attributes.

10.2.2 Constraints
No additional constraints.

10.2.3 Semantics
If the instance is an InstanceSpecification for an Enumeration (that is the <literal> denotes an
enumeration value such as a value for Character, Real, Bit, Bitstring, or a defined
enumeration), the qualifiedName of the <<InstanceValue>> InstanceValue is mapped to a Literal.
Otherwise, the qualifiedName of the <<InstanceValue>> InstanceValue is mapped to a
Variable-access.

10.2.4 Notation
From SDL: 12.3.2 2 Variable access
<variable access> ::=
 <identifier>
 | this

If this is used, the <variable access> shall be in the body of a method and this denotes the object the
method operates on.

The syntax for <literal> differs from the syntax in SDL 12.2.2, because in SDL-UML the lexical
units for string, real, and integer literal names and characters are distinct from other names, whereas
in SDL these are all treated as names.

 ITU-T Rec. Z.109 (06/2007) 65

<literal> ::=
 <literal identifier>
 | <string name>
 | <real name>
 | <integer name>
 | <bit string>
 | <hex string>
 | <character>

<string name> ::=
 <character string>

NOTE 1 – The syntax for <identifier> is given in clause 5.2, Names and name resolution: NamedElement,
and the lexical tokens <character string>, <real name>, <integer name>, <bit string>, <hex string>, and
<character> are described in clause 11, Lexical Rules.

A <string name> represents a LiteralString not an <<InstanceValue>> InstanceValue.

If the <real name> is in a context that requires a Duration value, the <real name> is transformed
into a call of the implicit protected operation duration of Duration with the <real name> as a
parameter and then handled as an <expression>. If the <real name> is in a context that requires a
Time value, the <real name> is transformed into a call of the implicit protected operation time of
Time with the <real name> as a parameter and then handled as an <expression>. Because time
requires a Duration value, an implicit call of duration is invoked. Otherwise a <real name>
represents a literal value of the predefined Real enumeration data type and specializations of that
data type.

An <integer name> represents a LiteralInteger or LiteralNatural (depending on context) not an
<<InstanceValue>> InstanceValue.

If the context where a <bit string> or <hex string> occurs requires an Integer or
UnlimitedNatural value, the <bit string> or <hex string> is transformed to an <expression> that is
a call of the num operation of Bitstring with the <bit string> or <hex string> literal as a parameter.
If the context where a <bit string> or <hex string> occurs requires an OctetString value, the
<bit string> or <hex string> is transformed to an <expression> that is a call of the octetstring
operation of Octetstring with the <bit string> or <hex string> literal as a parameter. If the context
where a <bit string> or <hex string> occurs requires an Octet value, the <bit string> or
<hex string> is transformed to an <expression> that is a call of the Octet operation of Octet with
the <bit string> or <hex string> literal as a parameter. If the context where a <bit string> or
<hex string> occurs requires a Bit value and the <bit string> is '0'B or '1'B, the <bit string>
represents a literal value of the predefined Bit data type and specializations of that data type.
Otherwise, a <bit string> or <hex string> represents a literal value of the predefined Bitstring data
type and specializations of that data type.

A <character> represents a literal value of the predefined enumeration Character data type and
specializations of that data type.

If <identifier> has a name part that corresponds to one of the names defined by the predefined
enumeration Character data type (NUL, SOH … IS1) and is unqualified or is qualified by Character
(or a specialization of it), the <identifier> represents literal value of this data type.
NOTE 2 – It is suggested never to use the names defined by the predefined enumeration Character data type
(NUL, SOH … IS1) except to represent Character values. If used for the name of some other item, such a
name should always be qualified.

If the <identifier> has a name part that is 'true' or 'false' and is unqualified or is qualified by the
predefined Boolean data type (or a specialization of it), the <identifier> represents a
<<LiteralBoolean>> LiteralBoolean not an InstanceValue.

66 ITU-T Rec. Z.109 (06/2007)

If the <identifier> has a name part that is 'NULL', the <identifier> represents a LiteralNull not an
<<InstanceValue>> InstanceValue.

10.2.5 References
SDL: 12.2.2 Literal

 12.3.2 Variable access

UML-SS: 7.3.23 InstanceValue (from Kernel)

10.3 LiteralBoolean
The stereotype LiteralBoolean extends the metaclass LiteralBoolean with multiplicity [1..1].
NOTE – LiteralBoolean is used to represent the Boolean values 'true' and 'false'.

10.3.1 Attributes
No additional attributes.

10.3.2 Constraints
No additional constraints.

10.3.3 Semantics
The value of the <<LiteralBoolean>> LiteralBoolean is mapped to a Literal denoting the literals
true and false in the predefined Boolean data type.

10.3.4 Notation
The notation is defined in clause 10.2.4.

10.3.5 References
SDL: 12.2.2 Literal

UML-SS: 7.3.26 LiteralBoolean (from Kernel)

10.4 LiteralInteger
The stereotype LiteralInteger extends the metaclass LiteralInteger with multiplicity [1..1].
NOTE – A literal integer is denoted by an <integer name> and represents an integer value.

10.4.1 Attributes
No additional attributes.

10.4.2 Constraints
No additional constraints.

10.4.3 Semantics
The value of the <<LiteralInteger>> LiteralInteger is mapped to the Literal for the digit sequence
for the value of the integer.

10.4.5 Notation
An <integer name> represents a <<LiteralInteger>> LiteralInteger except if the context requires an
UnlimitedNatural. The <integer name> determines the integer value.

 ITU-T Rec. Z.109 (06/2007) 67

10.4.6 References
SDL: 12.2.2 Literal

UML-SS: 7.3.27 LiteralInteger (from Kernel)

10.5 LiteralString
The stereotype LiteralString extends the metaclass LiteralString with multiplicity [1..1].
NOTE – A literal string is denoted by a <string name> and represents a string value.

10.5.1 Attributes
No additional attributes.

10.5.2 Constraints
No additional constraints.

10.5.3 Semantics
The value of the <<LiteralString>> LiteralString is mapped to the Literal for the string.

10.5.4 Notation
A <string name> represents a <<LiteralString>> LiteralString and determines its value.

10.5.5 References
SDL: 12.2.2 Literal

UML-SS: 7.3.30 LiteralString (from Kernel)

10.6 LiteralUnlimitedNatural
The stereotype LiteralUnlimitedNatural extends the metaclass LiteralUnlimitedNatural with
multiplicity [1..1].
NOTE – A natural number is denoted by the <integer name> and this represents the value.

10.6.1 Attributes
No additional attributes.

10.6.2 Constraints
No additional constraints.

10.6.3 Semantics
The value of the <<LiteralUnlimitedNatural>> LiteralUnlimitedNatural is mapped to the Literal for
the digit sequence for the value of the integer.

10.6.4 Notation

If the context requires an UnlimitedNatural, an <integer name> represents a
<<LiteralUnlimitedNatural>> LiteralUnlimitedNatural. The <integer name> determines the natural
value.

10.6.5 References
SDL: 12.2.2 Literal

UML-SS: 7.3.31 LiteralUnlimitedNatural (from Kernel)

68 ITU-T Rec. Z.109 (06/2007)

10.7 LiteralNull
The stereotype LiteralNull extends the metaclass LiteralNull with multiplicity [1..1].
NOTE – The literal null denotes a value of a reference type used when no object is referenced.

10.7.1 Attributes
No additional attributes.

10.7.2 Constraints
No additional constraints.

10.7.3 Semantics
The <<LiteralNull>> LiteralNull is mapped to the Operation-application of the parameterless
operator Null appropriate for the context where it is used.

10.7.4 Notation
The notation is defined in clause 10.2.4.

10.7.5 References
SDL: 12.1.5 Any

UML-SS: 7.3.28 LiteralNull (from Kernel)

10.8 ValueSpecification
The stereotype ValueSpecification extends the metaclass ValueSpecification with multiplicity
[1..1].
NOTE – A value specification gives the description of a value that is evaluated by some action.

10.8.1 Attributes
No additional attributes.

10.8.2 Constraints
A ValueSpecification shall not be an OpaqueExpression.
NOTE – A ValueSpecification that is not a LiteralSpecification or InstanceValue could either have been
treated by default as an OpaqueExpression (with [ITU-T Z.100] as the expression language attribute) or as an
Expression. Expression was chosen so that the operators and operands are visible and resolved at the
SDL-UML level rather than be hidden within a (Z.100 language) OpaqueExpression.

10.8.3 Semantics
A <<ValueSpecification>> ValueSpecification is an Expression or InstanceValue or
LiteralSpecification, and the mapping to the abstract grammar is determined by these metaclasses.

10.8.4 Notation
The notation for a ValueSpecification is an <expression> as defined in clause 10.1, Expression.

References

SDL: 12.2.1 Expression

UML-SS: 7.3.54 ValueSpecification (from Kernel)

 ITU-T Rec. Z.109 (06/2007) 69

11 Lexical rules
The following production rules define the lexical structure of SDL-UML text definitions.
<lexical unit> ::=
 <name>
 | <integer name>
 | <real name>
 | <character string>
 | <character>
 | <hex string>
 | <bit string>
 | <note>
 | <composite special>
 | <special>
 | <keyword>
 | <quoted name>

NOTE 1 – The syntax rules for <name>, <alphanumeric>, <letter>, <uppercase letter>, <lowercase letter>
and <decimal digit> are given in clause 5.2.
<integer name> ::=
 <decimal digit>+

<real name> ::=
 <integer name> <full stop> <integer name>
 [{ e | E } [<hyphen> | <plus sign>] <integer name>]

 <quoted name> ::=
 <apostrophe> { <quoted name character><quoted name character>+
 | <reverse solidus><any character except btnfr> } <apostrophe>
 | <apostrophe> <apostrophe>

The second form is used to represent quoted name consisting from only one character and to avoid
its misinterpretation as a <character>.

The third form is used to represent the omission of a name, which typically is not allowed from a
semantic point of view but is accepted in the syntax.
<quoted name character> ::=
 <any character except apostrophe and reverse solidus>
 | <reverse solidus> <any character>

<character string> ::=
 <quotation mark> <charstring character>* <quotation mark>

<charstring character> ::=
 <any character except quotation mark and reverse solidus>
 | <reverse solidus>
 { <reverse solidus>
 | <quotation mark>
 | <quotation mark> b <quotation mark>
 | <quotation mark> t <quotation mark>
 | <quotation mark> n <quotation mark>
 | <quotation mark> f <quotation mark>
 | <quotation mark> r <quotation mark>
 }

<any character> ::=
 Any Unicode character except bell, form feed, newline, carriage return and tab.

<any character except quotation mark and reverse solidus> ::=
 Any Unicode character except
 quotation mark, reverse solidus, bell, form feed, newline, carriage return and tab.

<any character except apostrophe and reverse solidus> ::=
 Any Unicode character except
 apostrophe, reverse solidus, bell, form feed, newline, carriage return and tab.

70 ITU-T Rec. Z.109 (06/2007)

<any character except btnfr> ::=
 Any Unicode character except the characters 'b', 't', 'n', 'f', 'r', apostrophe and reverse solidus.

<character> ::=
 <apostrophe>
 { <any character except apostrophe and reverse solidus>
 | <reverse solidus>
 { <apostrophe>
 | <reverse solidus>
 | <quotation mark> b <quotation mark>
 | <quotation mark> t <quotation mark>
 | <quotation mark> n <quotation mark>
 | <quotation mark> f <quotation mark>
 | <quotation mark> r <quotation mark>
 }
 }
 <apostrophe>

<hex string> ::=
 <apostrophe> { <decimal digit>
 | a | b | c | d | e | f
 | A | B | C | D | E | F
 }* <apostrophe> { H | h }

<bit string> ::=
 <apostrophe> { 0 | 1
 }* <apostrophe> { B | b }

<note> ::=
 <solidus> <asterisk> <note text> <asterisk>+ <solidus>

<note text> ::=
 { <not asterisk or solidus>
 | <asterisk>+ <not asterisk or solidus>
 | <solidus> }*

<not asterisk or solidus> ::=
 Any Unicode character except asterisk and solidus

<composite special> ::=
 <result sign>
 <range sign>
 | <composite begin sign>
 | <composite end sign>
 | <concatenation sign>
 | <history dash sign>
 | <greater than or equals sign>
 | <implies sign>
 | <less than or equals sign>
 | <not equals sign>
 | <name separator>
 | <equality sign>

<result sign> ::=
 <hyphen> <greater than sign>

<range sign> ::=
 <full stop> <full stop>

<composite begin sign> ::=
 <left parenthesis> <full stop>

<composite end sign> ::=
 <full stop> <right parenthesis>

<concatenation sign> ::=
 <solidus> <solidus>

 ITU-T Rec. Z.109 (06/2007) 71

<history dash sign> ::=
 <hyphen> <asterisk>

<greater than or equals sign> ::=
 <greater than sign> <equals sign>

<implies sign> ::=
 <equals sign> <greater than sign>

<is assigned sign> ::=
 <equals sign>

NOTE 2 – The lexical unit <is assigned sign> differs from SDL where <colon> <equals sign> is used for
assignment and a single <equals sign> is used for the <equality sign>, and <is assigned sign> is an
alternative for <composite special>.
<less than or equals sign> ::=
 <less than sign> <equals sign>

<equality sign> ::=
 <equals sign> <equals sign>

NOTE 3 – The lexical unit <equality sign> is added (as compared with SDL) where a single <equals sign> is
used for equality.
<not equals sign> ::=
 <exclamation mark> <equals sign>

NOTE 4 – The lexical unit <not equals sign> differs from SDL where it is defined as <solidus>
<equals sign>.
<name separator> ::=
 <colon> <colon>

<special> ::=
 <solidus> | <asterisk> | <number sign> | <other special>

<other special> ::=
 <exclamation mark> | <left parenthesis> | <right parenthesis>
 | <plus sign> | <comma> | <hyphen>
 | <full stop> | <colon> | <semicolon>
 | <less than sign> | <equals sign> | <greater than sign>
 | <left square bracket> | <right square bracket>
 | <left curly bracket> | <right curly bracket>

<other character> ::=
 <quotation mark> | <dollar sign> | <percent sign>
 | <ampersand> | <question mark> | <commercial at>
 | <reverse solidus> | <circumflex accent> | <underline>
 | <grave accent> | <vertical line> | <tilde>

<exclamation mark> ::= !

<quotation mark> ::= "

<left parenthesis> ::= (

<right parenthesis> ::=)

<asterisk> ::= *

<plus sign> ::= +

<comma> ::= ,

<hyphen> ::= -

<full stop> ::= .

<solidus> ::= /

<colon> ::= :

<semicolon> ::= ;

72 ITU-T Rec. Z.109 (06/2007)

<less than sign> ::= <

<equals sign> ::= =

<greater than sign> ::= >

<left square bracket> ::= [

<right square bracket> ::=]

<left curly bracket> ::= {

<right curly bracket> ::= }

<number sign> ::= #

<dollar sign> ::= $

<percent sign> ::= %

<ampersand> ::= &

<apostrophe> ::= '

<question mark> ::= ?

<commercial at> ::= @

<reverse solidus> ::= \

<circumflex accent> ::= ^

<underline> ::= _

<grave accent> ::= `

<vertical line> ::= |

<tilde> ::= ~

<keyword> ::=
and | any | case | else | for | if | in | mod | neg | new | now | offspring | or | parent | return | self | sender | set | stop |
switch | this | via | while | xor

<space> ::=

The lexical unit <space> represents any non-printing white space character.

12 Predefined data

This clause defines a set of predefined data types as a SDL-UML library. The data types in this
package are implicitly available in models constructed using this profile.

The predefined data types are divided into unparameterized types, which can be used directly and
template types, which are parameterized and need to have all their parameters bound before they
can be used.

The semantics of the data types and operations defined in this clause are given by mapping to the
type with the same name or operator with same signature in the Predefined package (in Annex D
of [ITU-T Z.100]), except if a different mapping is explicitly mentioned below.

In the following, signatures with an infix operation (which includes simple prefix operations) are
shown as:
• "op" (type-of-left-hand-side, type-of-right-hand-side) : type-of-result

For example:
• "not"(Boolean): Boolean

• "+" (Integer, Integer): Integer

define infix operations for the expressions:
• not b

 ITU-T Rec. Z.109 (06/2007) 73

• i + j

where b is a Boolean, i and j are Integer.

Every data type has the operations "=" and "!=" defined with the signatures:
• "=" (DataType, DataType) : Boolean

• "!=" (DataType, DataType) : Boolean

therefore these are not shown below.

12.1 Unparameterized types

These are the following types: Boolean, Integer, UnlimitedNatural, Character, String, Real,
Duration, Time, Bit, Bitstring, Octet, Octetstring and Pid.

12.1.1 Bit

Bit is a predefined SDL-UML DataType.

The values of Bit are represented by the lexical rule <bit string> literals '0'B and '1'B.

Bit has the following operations:
• bit (Integer): Bit
• num (Bit): Integer

12.1.2 Bitstring

Bitstring is a predefined SDL-UML DataType.

The values of Bitstring are represented by the lexical rules <bit string> and <hex string>.

Bitstring has the following methods:
• length(): Integer

• first(): Bit

• last(): Bit

Bitstring has the following infix operations:
• "not"(Bitstring): Bitstring

• "and"(Bitstring, Bitstring): Bitstring

• "or"(Bitstring, Bitstring): Bitstring

• "xor"(Bitstring, Bitstring): Bitstring

• "=>"(Bitstring, Bitstring): Bitstring

• "+"(Bitstring, Bitstring): Bitstring Concatenation. SDL uses //.

Bitstring has the following operations:
• substring(Bitstring, Integer, Integer): Bitstring

• remove(Bitstring, Integer, Integer): Bitstring

• mkstring(Bit): Bitstring

• num(Bitstring): Integer

• bitstring(Integer): Bitstring

• octet(Integer): Bitstring

• [](Bitstring, Integer): Bit

[] is used for indexing. This corresponds to Extract and Modify in SDL. Indexing starts from zero.

74 ITU-T Rec. Z.109 (06/2007)

12.1.3 Boolean

Boolean is a predefined SDL-UML DataType.

It has two literals:
• true

• false

It has the following infix operations:
• "not"(Boolean): Boolean

• "and"(Boolean, Boolean): Boolean

• "or"(Boolean, Boolean): Boolean

• "xor"(Boolean, Boolean): Boolean

• "=>"(Boolean, Boolean): Boolean

12.1.4 Character

Character is a predefined SDL-UML DataType.

The syntax for literals of Character is defined by the lexical rule <character>. In addition,
Character has the following literals:
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

 BS, HT, LF, VT, FF, CR, SO, SI,

 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

 CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1

Character has the following infix operations:
• "<"(Character, Character): Boolean

• ">"(Character, Character): Boolean

• "<="(Character, Character): Boolean

• ">="(Character, Character): Boolean

Character has the following operations:
• num(Character): Integer

• chr(Integer): Character

12.1.5 Duration

Duration is a predefined SDL-UML DataType.

The syntax for literals of the Real is defined by the lexical rule <real name> and there is an implicit
protected operation:
• duration(Real): Duration

A Real literal used where Duration is required has duration implicitly applied.
NOTE – Because duration is protected, it cannot be used explicitly.

Duration has the following public infix operations:
• "+"(Duration, Duration): Duration

• "-"(Duration): Duration

• "-"(Duration, Duration): Duration

• ">"(Duration, Duration): Boolean

 ITU-T Rec. Z.109 (06/2007) 75

• "<"(Duration, Duration): Boolean

• ">="(Duration, Duration): Boolean

• "<="(Duration, Duration): Boolean

• "*"(Duration, Real): Duration

• "*"(Real, Duration): Duration

• "/"(Duration, Real): Duration

12.1.6 Integer

Integer is a predefined SDL-UML Datatype.

The syntax for values of Integer is defined by the lexical rule <integer name>.

Integer has the following infix operations:
• "-" (Integer): Integer

• "+" (Integer, Integer): Integer

• "-" (Integer, Integer): Integer

• "*" (Integer, Integer): Integer

• "/" (Integer, Integer): Integer

• "mod" (Integer, Integer): Integer

• "rem" (Integer, Integer): Integer

• "<" (Integer, Integer): Boolean

• ">" (Integer, Integer): Boolean

• "<=" (Integer, Integer): Boolean

• ">=" (Integer, Integer): Boolean

Integer has the following operations:
• power(Integer, Integer): Integer

12.1.7 Octet

Octet is a predefined SDL-UML DataType.

Octet is defined as a subset of Integer, with the constraint that an Octet value shall have a
length of 8 (that is, if oct is an Octet value, oct.length = 8 shall be true).

12.1.8 Octetstring

Octetstring is a predefined SDL-UML DataType.

The values of Octetstring are represented by the lexical rules <bit string> and <hex string>. In
the case of a <bit string>, it has to have a length that is a multiple of 8.

Octetstring has the following operations:
• bitstring(Octetstring): Bitstring

• octetstring(Bitstring): Octetstring

12.1.9 Pid

Pid is a predefined SDL-UML DataType.

Pid is a reference to an instance of an <<ActiveClass>> Class (an agent in SDL).

76 ITU-T Rec. Z.109 (06/2007)

12.1.10 Real

Real is a predefined SDL-UML DataType.

The syntax for literals of the Real is defined by the lexical rule <real name>.

Real has the following infix operations:
• "-"(Real): Real

• "+"(Real, Real): Real

• "-" (Real, Real): Real

• "*" (Real, Real): Real

• "/" (Real, Real): Real

• "<" (Real, Real): Boolean

• ">" (Real, Real): Boolean

• "<=" (Real, Real): Boolean

• ">=" (Real, Real): Boolean

Real has the following operations:
• float(Integer): Real

• fix (Real): Integer

• power(Real, Real): Real

12.1.11 String

Charstring is a predefined SDL-UML DataType defined as:
• String : < Itemsort -> Character >

Charstring represents the SDL data type CharString.

The syntax for values of Charstring type is defined by the lexical rule <character string>.

An empty Charstring is represented by <apostrophe><apostrophe>.

12.1.12 Time

Time is a predefined SDL-UML DataType.

The syntax for literals of the Real is defined by the lexical rule <real name> and there is an implicit
protected operation:
• time(Duration): Time

NOTE – Because time is protected, it cannot be used explicitly.

A Real literal used where Time is required has duration and time implicitly applied. For example,
if t1 is a Time item in t1 < 1.0 this implies t1 < time(duration(1.0)).

Time has the following public infix operations:
• "<"(Time, Time): Boolean

• "<="(Time, Time): Boolean

• ">"(Time, Time): Boolean

• ">="(Time, Time): Boolean

• "+"(Time, Duration): Time

• "+"(Duration, Time): Time

• "-"(Time, Duration): Time

 ITU-T Rec. Z.109 (06/2007) 77

• "-"(Time, Time): Duration

12.1.13 UnlimitedNatural

UnlimitedNatural is a predefined SDL-UML Datatype.

UnlimitedNatural is defined as a subset of Integer, with the constraint that an
UnlimitedNatural value shall be >= 0.

The <asterisk> notation for an UnlimitedNatural is valid only in a <range> (see the syntax for
<range>).

12.2 Template data types
These provide template types equivalent to SDL predefined types with context parameters.

Each of template data type is an abstract template DataType that can be bound to define a
non-abstract DataType. Each abstract template DataType has the same characteristics as one of the
SDL predefined data type with context parameters.

In the case of Bag, Powerset, String, and Vector, these have the same operators and expression
notation as the implicit anonymous types created by using multiplicity with the type given as a
parameter. However, one advantage of using a bound template type is that the data type is no longer
anonymous, and therefore two items using the same name are of the same type (whereas two items
each using the same type with the same multiplicity actually define two distinct – and therefore
incompatible – types).

12.2.1 Attributes and parameter
There are no additional attributes, but each template has a number of parameters.

12.2.2 Constraints
• A DataType defined by a binding to a template data type shall have non-empty name.

12.2.3 Semantics
The specific semantics is defined for each specific template below.

12.2.4 Notation

The notation for a bound data type is shown using the rectangle symbol with keyword «dataType»
containing the following format:

 «dataType»

Boundtype : Templatetype < Formal -> Actual >

where:

Boundtype is the name of the data type bound to the template data type;

Templatetype is the name of the template data type;

Formal is the name of a formal parameter of the template data type; and

Actual is the actual parameter to replace the formal parameter.

There may be several formal and parameter pairs and these are separated by commas within the less
than (<) and greater than (>) symbols, which delimit the list. For example, the Map (an SDL Array),
which has 2 parameters: the first (named Index) is the data type for the index value and the second

78 ITU-T Rec. Z.109 (06/2007)

(named Itemsort) is the data type for elements. For a data type called CharValidity that is Map
of Boolean values indexed by Character, the text in the data type symbol would be:
CharValidity : Map < Index -> Character, Itemsort -> Boolean >

12.2.5 References

12.3 Array template

Array is a SDL-UML Datatype with two template parameters: Index and ItemSort.

Array maps to the Array of the SDL Predefined package.

A <composite primary> is used to apply the Make operator for Array to generate Array values.

A data type called BoundMap bound to Array has the following operations:
• [](BoundMap, Index): ItemSort

[] is used for indexing. This corresponds to Extract and Modify in SDL.

12.4 Bag template

Bag is a SDL-UML Datatype with one template parameter: ItemSort.

Bag maps to the Bag of the SDL Predefined package.

A <composite primary> is used to apply Make operator for Bag to generate Bag values.

An empty value of a data type bound to Bag is the literal empty.

A data type bound to Bag has the following methods:
• length(): Integer number of items in the bag

A data type called BoundBag bound to Bag has the following infix operations:
• "in"(Itemsort, BoundBag): Boolean is member of
• "and"(BoundBag, BoundBag): BoundBag intersection of bags
• "or"(BoundBag, BoundBag): BoundBag union of bags

A data type called BoundBag bound to Bag has the following operations:
• incl(Itemsort, BoundBag): BoundBag add item to bag
• del(Itemsort, BoundBag): BoundBag delete one of item from bag if present
• "<"(BoundBag, BoundBag): Boolean is proper subbag of
• ">"(BoundBag, BoundBag): Boolean is proper superbag of
• "<="(BoundBag, BoundBag): Boolean is subbag of
• ">="(BoundBag, BoundBag): Boolean is superbag of
• take(BoundBag): Itemsort removes an arbitrary item from the bag

12.5 Powerset template

Powerset is a SDL-UML Datatype with one template parameter: ItemSort.

Powerset maps to the Powerset of the SDL Predefined package.

A <composite primary> is used to apply Make operator for Powerset to generate Powerset values.

An empty value of a data type bound to Powerset is the literal empty.

A data type bound to Powerset has the following methods:
• length(): Integer number of items in the set

 ITU-T Rec. Z.109 (06/2007) 79

A data type called BoundSet bound to Powerset has the following infix operations:
• "in"(Itemsort, BoundSet): Boolean is member of
• "and"(BoundSet, BoundSet): BoundSet intersection of sets
• "or"(BoundSet, BoundSet): BoundSet union of sets

A data type called BoundSet bound to Powerset has the following operations:
• incl(Itemsort, BoundSet): BoundSet add item to be in set
• del(Itemsort, BoundSet): BoundSet delete item from set , so not in set
• "<"(BoundSet, BoundSet): Boolean is proper subset of
• ">"(BoundSet, BoundSet): Boolean is proper superset of
• "<="(BoundSet, BoundSet): Boolean is subset of
• ">="(BoundSet, BoundSet): Boolean is superset of
• take(BoundSet): Itemsort removes an arbitrary item from the set

12.6 String template

String is a SDL-UML Datatype with one template parameter: ItemSort.

String maps to the String of the SDL Predefined package, but the signature of length, first,
and last use method call notation and "+" is used instead of "//" for concatenation.

A <composite primary> is used to apply Make operator for String to generate String values.

An empty value of a data type bound to String is the literal emptystring.

A data type bound to String has the following methods:
• length():Integer

• first():ItemSort

• last():ItemSort

• append(ItemSort)

A data type called BoundString bound to String has the following operations:
• "+"(BoundString, BoundString) : BoundString
 "+" infix operator. Maps to concatenation. Denoted by // in SDL
• [](BoundString , Integer): ItemSort

 [] is used for indexing. This corresponds to Extract and Modify in SDL.
• substring (BoundString , Integer , Integer): BoundString

 This correspond to substring in SDL.
• remove (BoundString , Integer , Integer): BoundString

 This corresponds to remove in SDL.

12.7 Vector template

Vector is a SDL-UML Datatype with two template parameters: ItemSort and MaxIndex.

MaxIndex is an Integer literal that specifies the maximum index value for the Vector.

Map maps to the Vector of the SDL Predefined package.

A <composite primary> is used to apply Make operator for Vector to generate Vector values.

80 ITU-T Rec. Z.109 (06/2007)

A data type called BoundVector bound to Vector has the following operations:
• [](BoundVector, Integer): ItemSort

 [] is used for indexing. This corresponds to Extract and Modify in SDL.

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.109 (06/2007) SDL-2000 combined with UML
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Conformance
	1.2 Notation
	1.3 Restrictions on SDL-2000 and UML
	1.4 Mapping

	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions, names and templates
	5.1 Conventions
	5.2 Names and name resolution: NamedElement
	5.3 Template handling
	5.4 Transformation

	6 Stereotype summary
	7 Structure
	7.1 ActiveClass
	7.2 Class
	7.3 Connector
	7.4 DataType
	7.5 Enumeration
	7.6 Interface
	7.7 Operation
	7.8 Package
	7.9 PassiveClass
	7.10 Port
	7.11 PrimitiveType
	7.12 Property
	7.13 Signal
	7.14 Timer

	8 State machines
	8.1 FinalState
	8.2 Pseudostate
	8.3 Region
	8.4 State
	8.5 StateMachine
	8.6 Transition

	9 Actions and activities
	9.1 Activity
	9.2 ActivityFinalNode
	9.3 AddStructuralFeatureValueAction
	9.4 AddVariableValueAction
	9.5 Break
	9.6 CallOperationAction
	9.7 ConditionalNode
	9.8 Continue
	9.9 CreateObjectAction
	9.10 Empty
	9.11 Decision
	9.12 ExpressionAction
	9.13 For
	9.14 If
	9.15 LoopNode
	9.16 OpaqueAction
	9.17 ResetAction
	9.18 Return
	9.19 SequenceNode
	9.20 SendSignalAction
	9.21 SetAction
	9.22 Stop
	9.23 While

	10 ValueSpecification
	10.1 Expression
	10.2 InstanceValue
	10.3 LiteralBoolean
	10.4 LiteralInteger
	10.5 LiteralString
	10.6 LiteralUnlimitedNatural
	10.7 LiteralNull
	10.8 ValueSpecification

	11 Lexical rules
	12 Predefined data
	12.1 Unparameterized types
	12.2 Template data types
	12.3 Array template
	12.4 Bag template
	12.5 Powerset template
	12.6 String template
	12.7 Vector template

