

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.109
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/99)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Specification and
Description Language (SDL)

SDL combined with UML

ITU-T Recommendation Z.109
(Previously CCITT Recommendation)

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

For further details, please refer to ITU-T List of Recommendations.

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of Formal Description Techniques Z.110–Z.119
Message Sequence Chart Z.120–Z.129

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.399

QUALITY OF TELECOMMUNICATION SOFTWARE Z.400–Z.499
METHODS FOR VALIDATION AND TESTING Z.500–Z.599

 Recommendation Z.109 (11/99) i

ITU-T RECOMMENDATION Z.109

SDL COMBINED WITH UML

Summary

Objective
This Recommendation defines the specialized subset of UML that maps directly to SDL and that can
be used in combination with SDL.

Coverage
This Recommendation presents a definition of the UML-to-SDL mapping for use in the combination
of SDL and UML.

Application
The main area of application of this Recommendation is the specification of telecommunication
systems. The combined use of SDL and UML permits a coherent way to specify the structure and
behaviour of telecommunication systems, together with data.

Status/stability
This Recommendation is the complete reference manual describing the UML to SDL mapping for
use in the combination of SDL and UML.

Associated work
Recommendation Z.100: SDL.

Source
ITU-T Recommendation Z.109 was prepared by ITU-T Study Group 10 (1997-2000) and was
approved under the WTSC Resolution No. 1 procedure on 19 November 1999.

ii Recommendation Z.109 (11/99)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on
these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

� ITU 2000

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation Z.109 (11/99) iii

CONTENTS
 Page

1 Introduction... 1
1.1 Objective ... 1

1.2 Principles of the SDL-UML combination ... 1
1.3 Restrictions on SDL and UML... 1

1.4 SDL UML mapping... 1
1.5 Well-formedness rules.. 2

1.6 Conventions... 2
1.7 The structure of this Recommendation... 2

2 References... 2

3 SDL UML ModelElements... 3
3.1 Summary of SDL UML Model Elements .. 3

3.1.1 Stereotypes... 3
3.1.2 TaggedValues... 4
3.1.3 Constraints.. 4

3.2 Core Model Elements .. 4
3.2.1 Abstraction ... 4
3.2.2 Association ... 5
3.2.3 Association class... 6
3.2.4 Association end... 6
3.2.5 Attribute ... 8
3.2.6 BehaviouralFeature ... 9
3.2.7 Binding ... 9
3.2.8 Class... 10
3.2.9 Classifier... 16
3.2.10 Comment .. 16
3.2.11 Component ... 16
3.2.12 Constraint ... 16
3.2.13 Data type .. 17
3.2.14 Dependency.. 17
3.2.15 Element .. 17
3.2.16 ElementOwnership.. 17
3.2.17 ElementResidence... 17
3.2.18 Feature ... 17
3.2.19 Flow ... 17
3.2.20 GeneralizableElement.. 17
3.2.21 Generalization... 17
3.2.22 Interface ... 18

iv Recommendation Z.109 (11/99)

 Page
3.2.23 Method... 19
3.2.24 ModelElement .. 19
3.2.25 Namespace ... 19
3.2.26 Node... 19
3.2.27 Operation.. 19
3.2.28 Parameter ... 20
3.2.29 Permission .. 21
3.2.30 PresentationElement ... 21
3.2.31 Relationship .. 21
3.2.32 StructuralFeature .. 21
3.2.33 TemplateParameter ... 21
3.2.34 Usage ... 21

3.3 Extension mechanisms ... 21

3.4 Data types ... 22
3.5 Behavioural elements ... 22

3.5.1 Common Behaviour .. 22
3.5.2 Signal ... 22

3.6 Collaborations ... 23
3.6.1 AssociationEndRole.. 23
3.6.2 AssociationRole.. 24
3.6.3 ClassifierRole.. 24
3.6.4 Collaboration .. 25
3.6.5 Interaction .. 25
3.6.6 Message.. 25

3.7 Use Cases.. 25
3.8 State machines... 25

3.8.1 CallEvent .. 25
3.8.2 ChangeEvent .. 26
3.8.3 CompositeState... 26
3.8.4 Event .. 26
3.8.5 FinalState.. 26
3.8.6 Guard ... 26
3.8.7 PseudoState.. 27
3.8.8 SignalEvent... 27
3.8.9 SimpleState... 27
3.8.10 State ... 27
3.8.11 StateMachine .. 28
3.8.12 StateVertex... 28
3.8.13 StubState .. 28

 Recommendation Z.109 (11/99) v

 Page
3.8.14 SubmachineState... 28
3.8.15 SynchState.. 29
3.8.16 TimeEvent .. 29
3.8.17 Transition ... 29

3.9 Activity Graphs.. 29

3.10 Model Management ... 29
3.10.1 ElementImport .. 29
3.10.2 Model... 30
3.10.3 Package .. 30
3.10.4 Subsystem... 31

Appendix I – Common Behaviour... 32

 Recommendation Z.109 (11/99) 1

Recommendation Z.109

SDL COMBINED WITH UML
(Geneva, 1999)

1 Introduction
SDL (Specification and Description Language) combined with UML (Unified Modelling Language)
is defined by this Recommendation together with Recommendation Z.100. This Recommendation
defines an SDL UML Profile based upon UML [1], and SDL-2000 [2]. The relevant parts of the
graphical grammar of SDL and other notation elements in SDL are defined in [2].

This Recommendation does not cover combination of UML and MSC [3].

1.1 Objective
The objective is to take advantage of the formal basis of SDL and the expressiveness of UML, in
particular the use of UML class diagrams with associations. By using the specialized subset of UML
defined by this Recommendation, it is possible to express parts of an SDL specification in UML.

1.2 Principles of the SDL-UML combination
This Recommendation defines a UML Specialization and Restriction for combination with SDL (an
SDL UML Profile). It ensures a well-defined mapping between parts of a UML model and an SDL
model. For each of the UML ModelElements that are included in SDL UML, there is a one-to-one
mapping to the corresponding SDL concepts. The mapping is based upon the UML meta-model and
upon the abstract grammar of SDL. A tool that implements SDL UML must support these
specializations and restrictions and be able to provide this one-to-one mapping.
UML specializations and restrictions are defined in terms of the UML meta-model and the abstract
grammar of SDL, i.e. independent of notation.
This Recommendation gives no notation guidelines for SDL UML. For some of the UML elements,
SDL contains elements that have a UML-like graphical notation. A tool for the combined use of
UML and SDL may use a de facto UML graphical notation standard for the UML covered by this
Recommendation, but the SDL specific part of this tool must provide the graphical grammar for
these elements as defined by Recommendation Z.100.

1.3 Restrictions on SDL and UML
There are no restrictions on SDL. However, not all of SDL is covered by SDL UML.
A general restriction on SDL UML is that only the ModelElements defined in the SDL UML Profile
ensure a one-to-one mapping. In a combined use of UML and SDL, more parts of UML can be used,
but the mapping of these cannot be guaranteed to work the same with different tools.

1.4 SDL UML mapping
The SDL UML mapping is defined by means of the UML extension mechanisms: Stereotypes,
Tagged Values, and Constraints, by restricting the use of UML, and by attaching more specific
meanings to UML.
UML classes generally represent entity types of SDL. In most cases the entity kind is represented by
stereotypes. Where predefined model elements, stereotypes or keywords exist in UML that have a
similar meaning as in SDL, they have been used.

2 Recommendation Z.109 (11/99)

1.5 Well-formedness rules
Two general well-formedness rules on SDL UML are:
• Only model elements that have mappings to SDL (and defined by this Recommendation)

can be used;
• The SDL UML model shall adhere to the (static) semantics of SDL.
An implication of these rules is e.g. that the ownedElement of a class that represents an SDL type
must be an SDL UML class, which represent a type defined in the scope unit of the SDL type.

For each of the model elements of SDL UML, specific well-formedness rules are described.

1.6 Conventions
The definition of SDL UML follows the same organization as the definition of the UML Semantics.
For each UML ModelElement, a table describes the mapping to SDL, followed by possible
restrictions and specializations. Each table follows the generalization hierarchy of the meta-model,
and has an entry for each model element, attribute and association that are considered or has a
mapping. Elements of the abstract grammar of SDL are hyphenated and in italics, e.g. Variable-
definition.

Notation
not applicable not used in SDL UML

no concept no corresponding concept in SDL
default default mapping

mandatory mandatory mapping
^ the super-classes of the model element for which special mapping applies

. attribute of the model element
= possible value of attribute

-> association of the model element

1.7 The structure of this Recommendation
This Recommendation is organized according to the meta-model of UML. The reason for this is the
intended use of this Recommendation: "Which parts of UML can be used in combination with SDL
and how they would map to SDL". The mapping between UML and SDL could as well have had
SDL as the starting point.
In case of differences between this Recommendation and Recommendation Z.100 [2] on the
description of SDL, the definition in Recommendation Z.100 [2] applies.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] Unified Modelling Language (UML) (OMG UML Specification v. 1.3: OMG document
ad/99-06-08).

 Recommendation Z.109 (11/99) 3

[2] ITU-T Recommendation Z.100 (1999), Specification and Description Language (SDL).
[3] ITU-T Recommendation Z.120 (1999), Message Sequence Charts (MSC).

3 SDL UML ModelElements
The main structure of SDL UML Profile follows the meta-model of UML. Correspondence to SDL is
defined by mapping the UML meta-model to the grammar of SDL.

3.1 Summary of SDL UML Model Elements
SDL UML provides a specialization and restrictions of the following model elements:
– Model management:

• Package
• Model

– Classes, with stereotypes:
• «system»
• «block»
• «process»
• «procedure»
• «interface»
• «object»
• «value»
• «state»

– «signal» Classifier
– Associations:

• composition as a partial representation of containment between agents
• association stereotype with gate representing a gate with endpoint constraint
• other associations representing the corresponding associations in SDL

– Generalization
– Dependencies:

• «import»
• «create»

– State machine

3.1.1 Stereotypes
The following UML standard elements are used:

Name Applies to Description
model Package::Model SDL specification (from Model Management)
interface Classifier::Interface Interface
signal Classifier Signal definition
create Dependency::Usage Create
import Dependency::Permission Package reference clause

4 Recommendation Z.109 (11/99)

This Recommendation defines the following stereotypes:

Name Applies to Description

system Class System (is also stereotype of Model in UML, but here Class
is used)

block Class Block
process Class Process
procedure Class Procedure
object Class Object Type
value Class Value Type
state Class Composite state type
gate Association Gate with endpoint constraint
signature Operation Formal parameters of agents

3.1.2 TaggedValues
This Recommendation defines the following tagged values:

Name Applies to Description

encloser Class Specifies the enclosing type (scope unit). The value is the type
identifier.

 Specifies the <virtuality> of a type, procedure or operator.
• virtual Class • virtual
• redefined • redefined
• finalized • finalized
remote • Attribute • Remote variable
 • Procedure • Remote procedure
 Values are Boolean.

3.1.3 Constraints

Name Applies to Description

atleast Class Represents a virtuality constraint on a virtual type
atleast Parameter Represents a virtuality constraint on a context parameter

3.2 Core Model Elements
Restrictions, specializations and mappings that apply to the general elements of the Core UML
meta-model are given in this subclause. They apply if nothing else is specified for more specific
model elements.

3.2.1 Abstraction
Not applicable.

 Recommendation Z.109 (11/99) 5

3.2.2 Association
In this version of the Recommendation, associations are used for representing the following SDL
concepts:
• Composite aggregation for containment, i.e. entity sets contained in entities;
• Possible connections of agent sets (by channels connecting gates with interfaces) as part of

the internal structure of an agent;
• Gate with endpoint constraint by a stereotyped association with gate.
A subset of associations other than these are valid (and described below), but are considered as
comments and mapped to the corresponding associations in SDL.
Associations do not cover sets of types being connected by channels:
1) Associations are used to define properties of types, while channels are used (in SDL

structure diagrams) to define links between sets of instances. Different channels can connect
different typed-based sets based on the same type. Therefore, the connection of agent sets by
means of channels is represented by collaborations in UML.

2) As basis for the use of collaborations, all agent types that have interfaces and gates that may
be connected by channels will, in the SDL UML mapping, have implicit associations. These
associations do not imply properties of the associated classes.

3.2.2.1 Composite aggregation
Composite aggregation is used to represent that instances of an agent type contain type-based sets of
agents. For example, the instances of a system type contain sets of blocks. The sets are represented
by the endpoints of the composite aggregation, with the role names being the names of the sets and
the multiplicity being the number of instances.

Composition aggregation has not exactly the same meaning in UML as containment in SDL. This
Recommendation imposes the more restricted meaning of SDL containment to UML composition.
An element of a contained agent set cannot change set membership, as is the case in UML. A
contained agent set and its members cannot exist without the container, in the same way as in UML.

Note that composite aggregation only implies properties for the type at the composite end. The type
at the other end is not affected.

3.2.2.2 Gate endpoint constraint
An association stereotyped with gate represents that the agent type corresponding to the source end
class has a gate with an endpoint constraint corresponding to the target end class. The name of the
association is the name of the gate. Only interfaces, signals and remote procedures associated with
the outgoing direction of the gate are represented, not signal lists.

6 Recommendation Z.109 (11/99)

3.2.2.3 General associations
Although general associations in SDL UML are comments in the corresponding SDL, this version of
the Recommendation supports only a subset of UML associations.

UML SDL

Association • containment: agent sets as part of entities
• gate with endpoint constraint
• general associations: association as comments, but restricted by the

following association elements not being supported:
 – n-ary associations (n>2)
 – Qualified association ends
 – Association Class
 – Aggregation
 – Changeability
 – Target scope

->connection
^GeneralizableElement not applicable
^ModelElement
.name • containment: not applicable

• gate with endpoint constraint: Gate-name
• otherwise: <association name>

3.2.3 Association class
Not applicable.

3.2.4 Association end
In the following descriptions, when referring to an association end for a binary association, the
source end is the other end; the target end is the one whose properties are being discussed.

An AssociationEnd may represent a partial specification of two SDL concepts:
– Containment:

 • Agents containing other agents: The association must be a composition and the classes
involved must represent agent types.

 • Composite states containing type based states: The association must be a composition
and the classes involved must represent state types.

– The endpoint constraint of a gate: The association must then be stereotyped with «gate».
An AssociationEnd may also just be the end of an ordinary association. It will then just represent the
corresponding association end of the corresponding SDL association. This means that a composition
that is not covered by the two cases above just represent the corresponding composition association
in SDL.

 Recommendation Z.109 (11/99) 7

UML SDL

AssociationEnd • containment
• gate with endpoint constraint in the entities at the source end
• otherwise: <association end>

.aggregation
= composite • containment, that is the end represents an agent (system/block/process) type

that contains sets of blocks and/or processes or the end represents a composite
state with contained type-based states

• otherwise: <association kind> =
 – <composition not bound kind>, or
 – <composition part end bound kind>, or
 – <composition composite end bound kind>, or
 – <composition two ends bound kind>

= aggregate • <association kind> =
 – <aggregation not bound kind>, or
 – <aggregation part end bound kind>, or
 – <aggregation aggregate end bound kind>, or
 – <aggregation two ends bound kind>

= none • if source end of association has aggregation = composite: the target end
represents a set of agents or a type-based composite state as part of a composite
state type

• if association stereotyped with gate: gate with endpoint constraint
.changeability
= none
= frozen
= addOnly

not applicable

.ordering not applicable for containment and for gate endpoint constraint, otherwise:
= unordered • default
= ordered • ordering
.isNavigable not applicable for containment and for gate endpoint constraint, otherwise:
= true • navigable
= false • not applicable
.multiplicity • for containment: represents Number-of-instances

• for gate endpoint constraint: 1
• otherwise: <multiplicity> of <association end>

.targetScope
= instance • entity
= classifier • not applicable

8 Recommendation Z.109 (11/99)

UML SDL

.visibility • for containment: not applicable
• for gate endpoint constraint: not applicable
• otherwise:

= public – exported
= protected: default – not applicable
= private – local
->qualifier not applicable
->specification • for containment: not applicable

• for gate endpoint constraint: interfaces, signals and remote procedures
associated with the outgoing direction of the gate

• otherwise: <specifier>
->type • for containment: type of type-based agent set

• for gate endpoint constraint: the endpoint constraint type
• otherwise: <linked type>

^ModelElement
.name • for containment: Agent-name in Agent-definition

• for gate endpoint constraint: not applicable
• otherwise: <role name>

The type can only denote model elements that are SDL UML classifiers, except interfaces.

3.2.5 Attribute
Attributes represent variables of agents and procedures, or fields of data objects or values, or signal
parameters.

UML SDL

Attribute variable, field or signal parameter
.changeability
= changeable • mandatory
= frozen • not applicable
= addOnly • not applicable
.initialValue <default initialization> [:= <ground expression>] in <variables of sort> in

Variable-definition
.multiplicity Note – May be used for ASN.1 types.
.targetScope
->type Sort-reference-identifier in Variable-definition, as part of Signal-definition,

or as part of field definition
->associationEnd not applicable
^Feature
.ownerScope
= instance • mandatory
= classifier • not applicable

 Recommendation Z.109 (11/99) 9

UML SDL

.visibility
= public • exported variable or public field
= protected • local variables of agents, and protected field
= private • not applicable to variables of agents, but for private fields
-> owner the entity defining the variable or field
^ModelElement
.name Variable-name/<field name>

The type of an attribute is restricted to be a class defined by this Recommendation.
The following rules apply:
• type = class with stereotype «block» or «process»: typed Pid
• type = class with stereotype «object»: object reference variable
• type = class with stereotype «value»: value type variable
Predefined types are represented by corresponding predefined classes of stereotype «process»,
«object» or «value».

3.2.6 BehaviouralFeature

UML SDL

BehaviouralFeature Operator or procedure
.isquery
= true • Static-operator/Dynamic-operator (operator)
= false • Static-operator/Dynamic-operator (method) or Procedure-definition
->Parameter • Argument-list in Signature

• Procedure-formal-parameter*

3.2.7 Binding
A binding is a subclass of Dependency that represents the provision of actual context parameters in
SDL. The binding as an explicit relationship does not exist in SDL, but it may be described in this
way in UML.

For a binding, the arguments represent model elements within the scope (namespace) of the client
that are actual parameters for the templateParameters of the source. The actual parameters must map
to valid context parameters for the SDL type that is represented by the source.
Partially instantiated templates correspond to parameterized types where not all context parameters
are provided.

UML SDL

Binding <type expression> with <actual context parameters>
->argument <actual context parameter>
^Dependency
->client the type being defined using the <type expression>
->supplier the <base type> (in <type expression>)
^ModelElement
.name not applicable

10 Recommendation Z.109 (11/99)

The client and supplier must be classes with the same stereotype.

3.2.8 Class
Classes represent SDL types and procedures. The different kinds of entity types in SDL are
represented by stereotypes.

A type in SDL is completely defined by a type definition/diagram and possibly by a type reference
(in case the type definition/diagram is referenced). A class defines parts of the type and possibly a
type reference. The parts it defines depend upon the content of the class compartments and its
composition. The choice of properties to be defined in SDL UML is left to the specifier, but specified
properties shall be consistent with the corresponding properties defined in the SDL type
definition/diagram.
The attributes and associations of a class are restricted/specialized and mapped to SDL as described
in the following table. For each of the different SDL entity kinds, more details are given in
succeeding tables in 3.2.8.1 to 3.2.8.4. Attributes defined in Foundation Package:Auxiliary Elements
are also included here.

UML SDL

Class types and procedures
.isActive
= true • Agent-type-definition
= false • Composite-state-type-definition, Data-type-definition,

Procedure-definition, Signal-definition
^Classifier
->feature • depends on entity kind
->participant – aggregation of
association end:

= composite • contained agent sets
= aggregate • not applicable
= none • if other end of association has aggregation = composite: a

set of entities
^GeneralizableElement <specialization>
.isAbstract abstract
.isLeaf not applicable
.isRoot can be derived from the type definition
->generalization Supertype – the type identified as part of the <type

expression> of <specialization> for the type represented by
the classifier

->specialization can be derived from the generalization
^Namespace scope unit defined by the type
->ownedElement entities in a subset of the set of definitions allowed in the

scope unit – depends on kind of type
^ModelElement

 Recommendation Z.109 (11/99) 11

UML SDL

->taggedValue
• (virtuality) • <virtuality>
• virtual • virtual
• redefined • redefined
• finalized • finalized
->constraint <virtuality constraint>
->supplierDependency Dependencies where this type is a supplier
• Realizes dependency to interfaces

implemented by the class
• <interface gate definition> in with <interface identifier>

• Usage («create») dependency to
classes from which objects are created
by objects of this class

• <create line area>

• Permission («import») dependency
from other packages using the class

• <package use clause>/<definition selection list>

• Annotated generalization relation • <type expression>
->clientDependency Dependencies where this type is a client
• Usage («create») dependency to

classes from which objects create
objects of this class

• <create line area>

• Permission «import» dependency
indicating which package this class
uses

• <package use clause> on this type definition

• Annotated generalization relation • <type expression>
->namespace the owning (enclosing) scope unit of the entity type or

procedure corresponding to the class

12 Recommendation Z.109 (11/99)

3.2.8.1 Agent
The following applies to agent types.

The signature operation feature is introduced in order to specify the formal parameters, as UML does
not provide parameters for classes. It has the format of an operation with the process name as the
operation name and with the sterotype «signature».

UML SDL

{ «system»
 | «block»
 | «process» } Class

Agent-type-definition
• if a templateParameter is defined, it is a parameterized agent type,
• if a generalization is defined, it is a subtype

.isActive
= true • mandatory
= false • not applicable
^Classifier
->feature
• attributes • Variable-definition
• operations • Procedure-definition, or
 • Procedure-definition (signature) that represents <formal parameters> of

the agent type
->participant Containment or other AssociationEnd where agent may be participant
^GeneralizableElement
->generalization the Agent-type-definition identified by Parent-type-identifier as part of this

agent type
^Namespace scope unit defined by the agent type
->ownedElement entities in the subset of <entity in agent> defined below
^ModelElement
->taggedValue
• virtual
• redefined
• finalized

<virtuality> of agent type except for system type

->constraint <virtuality constraint> on agent type except for system type
->namespace • Package-definition with the Agent-type-definition

• Agent-type-definition defining the agent type

The generalization can only be one class, and it must be of the same stereotype as this class.

The ownedElement are restricted to model elements that represent entities in the following subset of
<entity in agent>:
• Signal-definition;
• Variable-definition;
• Procedure-definition;
• <remote procedure definition>;
• <remote variable definition>;
• Data-type-definition;

• Composite-state-type-definition;

 Recommendation Z.109 (11/99) 13

• Interface-definition;
• Agent-type-definition; or
• Agent-definition.
The namespace must be either a package or a class stereotyped with «system», «block», or
«process». The namespace of a «system» or «block» class can not be a «process» class, and the
namespace of a «system» class can not be a «block» or «process» class.

3.2.8.2 Procedure
Procedure is a stereotype of class that corresponds to an SDL procedure. This is done in order to
cover specialization of procedures, which is not part of UML.

UML SDL

«procedure» Class Procedure-definition or <remote procedure definition>
• if a templateParameter is defined it is a parameterized procedure
• if a generalization is defined it is a sub-procedure

.isActive
= false • mandatory
= true • not applicable
->taggedValue
remote

<remote procedure definition>

^Classifier
->feature
• attributes • Variable-definition
• operations • Procedure-definition
->participant not applicable
^GeneralizableElement
->generalization the Procedure-definition identified by the optional Procedure-identifier as

part of the current Procedure-definition
^Namespace scope unit defined by the process type
->ownedElement entities in the subset of <entity in procedure> defined below
^ModelElement
->taggedValue
• virtual
• redefined
• finalized

<virtuality> of procedure
• virtual
• redefined
• finalized

-> namespace • Package-definition with the Procedure-definition
• Agent-type-definition with the Procedure-definition
• Procedure-definition with Procedure-definition

The ownedElement are model elements that represent entities in the following subset of <entity in
procedure>:
• Data-type-definition;
• Variable-definition; or
• Procedure-definition.

14 Recommendation Z.109 (11/99)

The namespace must be a package or a class with stereotype «system», «block», «process», or
«procedure».

3.2.8.3 Data types
Classes stereotyped with value and object represent data types: value is a class that corresponds to an
SDL value-type, and object is a class that corresponds to an SDL object-type.

UML SDL

• «value» Class • Value-type
• «object» Class • Object-type

For both:
• if a templateParameter is defined, it is a parameterized type
• if a generalization is defined, it is a subtype

.isActive
= false • mandatory
= true • not applicable
^Classifier
->feature
• attributes • <field> in <structure definition>
• operations • Static-operator/Dynamic-operator (operators and methods)
->participant containment of the data type or any association endpoint where the type

may be participant
^GeneralizableElement
->generalization the Data-type-definition identified by Data-type-identifier as part of the

current Data-type-definition
^Namespace scope unit defined by the Data-type-definition
->ownedElement Data-type-definitions in the scope unit of the entity type represented by this

class
^ModelElement
->namespace • Package-definition, Agent-type-definition, Procedure-definition, Data-

type-definition with the Data-type-definition

The generalization must be «value» or «object» classes.

The ownedElement must be classes that map to Data-type-definitions.
The namespace must be a package, or a class with stereotype «system», «block», «process»,
«procedure», «state», «object», or «value».

3.2.8.4 State
State is a class stereotype that represents an SDL composite state type. SDL has the notion of
composite state type (in addition to composite state), and as UML state machines do not have that, it
is in SDL UML represented by a class with a stereotype state.
The state (entry and exit) connection points are represented as operations, as these are the visible
properties of a composite state type.

 Recommendation Z.109 (11/99) 15

UML SDL

«state» Class Composite-state-type-definition
• if a templateParameter is defined, it is a parameterized composite state

type
• if a generalization is defined, it is a subtype

.isActive
= false • mandatory
= true • not applicable
^Classifier
->feature
• attributes • Variable-definitions
• operations • Procedure-definitions

• state connection points as defined by State-entry-point-definition
->participant not applicable
^GeneralizableElement
->generalization the Composite-state-type-definition identified by [Parent-type-identifier]

as part of this Composite-state-type-definition
^Namespace scope unit defined by this Composite-state-type-definition
->ownedElement entities in the subset of <entity in composite state type> defined below
^ModelElement
.name the State-type-name
->taggedValue
• virtual
• redefined
• finalized

<virtuality> of the composite state type

->constraint <virtuality constraint>
->namespace Package-definition, Agent-type-definition, Procedure-definition,

Composite-state-type-definition with the Composite-state-type-definition

The generalization must be one "state" Class.

The ownedElement must be model elements that represent entities in the subset of <entity in
composite state>, that is:
• Variable-definition;
• Data-type-definition;
• Procedure-definition;
• <textual procedure definition>; or
• Composite-state-type-definition.
The namespace must be a package or a class with stereotype «system», «block», «process»,
«procedure», or «state».

16 Recommendation Z.109 (11/99)

3.2.9 Classifier
A classifier represents the common features of entity types, interface types, signals and procedures.
If not specifically specified for the various kinds, the following applies.

UML SDL

Classifier entity types, interfaces, signals and procedures
->feature variables, procedures, methods, operators, signal parameters – depending on

entity kind
->participant depend on kind of classifier
->powertypeRange not applicable
^GeneralizableElement depends on kind
^Namespace scope unit
->ownedElement entities defined in the scope unit of this entity
^ModelElement
.template the parameterized type if this type is a <formal context parameter>
.templateParameter <formal context parameters> for a parameterized type
->constraint <virtuality constraint>, if present
->supplierDependency depends on kind
->clientDependency depends on kind
->taggedValue <virtuality>, if present
• virtual • virtual
• redefined • redefined
• finalized • finalized

3.2.10 Comment
A comment is an annotation attached to a model element that represents a note or a comment
attached to the SDL entity corresponding to the model element.

3.2.11 Component
Not applicable.

3.2.12 Constraint
General constraints are not supported, as there are no corresponding concepts in SDL. Virtuality
constraints are supported. The UML text is the <virtuality constraint> as text.

UML SDL

Constraint
.body = atleast
– Class name • <virtuality constraint> on a virtual type or virtual procedure/method
– Parameter name • <virtuality constraint> on a <formal context parameter>
->constrainedElement • a virtual type if the constraint is a virtuality constraint on a virtual type

• a <formal context parameter> if the constraint is a virtuality constraint
on a context parameter

^ModelElement
.name not applicable

 Recommendation Z.109 (11/99) 17

3.2.13 Data type
Not applicable.

3.2.14 Dependency
Dependencies are used to represent:
• «create» dependency for create lines;
• «import» dependency to represent that a package uses the definitions of other packages; and
• «realizes» dependency to interfaces supported by the class.

3.2.15 Element
Not applicable in itself, but attributes are used; see the mapping of the more specific meta-model
elements.

3.2.16 ElementOwnership
Not applicable. All contained elements are parts of the specification of the containing scope unit, and
the visibility of contained elements is provided by properties of these.

3.2.17 ElementResidence
Not applicable.

3.2.18 Feature
Abstract class. Attributes and associations are detailed in connection with behaviouralFeature and
structuralFeature.

3.2.19 Flow
Not applicable.

3.2.20 GeneralizableElement
Abstract class. Attributes and associations are detailed in connection with its subclasses.

3.2.21 Generalization
SDL specialization is represented by generalization in UML. This is also done for procedures. The
UML meta-model has the notion of Generalization, while SDL has the opposite notion of
Specialization.
Generalization has the opposite <specialization> counterpart in SDL, but it reflects the
corresponding inheritance property of the subtype.

UML SDL

Generalization <specialization>
.discriminator not applicable
->child a subtype
->parent Parent-type-identifier (<base type> (in <type expression>))of subtype,
->powertype not applicable
^ModelElement
.name not applicable

18 Recommendation Z.109 (11/99)

Generalization applies to the stereotyped classes for the following kinds of types: systems, blocks,
processes, states, objects, values, for procedures, and for interface and signals (Classifiers
stereotyped with «interface» or «signal»).
The parent must be one class with the same stereotype as the subtype, except for interfaces that may
have multiple parents.
The Standard Constraints do not apply.

3.2.22 Interface
Interfaces are Classifiers that map to interfaces in SDL. UML interfaces can only have operations
(corresponding to exported procedures in SDL), while SDL interfaces also can have variables and
signals. In SDL UML, interfaces therefore have a list of operations that represent signals, and
exported variables. The stereotype «signal» is used to indicate signals, while variables and
procedures are represented as operations.
Interfaces can only be applied to classes that represent agent types, not to classes that represent
procedures, state type or data types.

UML SDL

Interface Interface-definition
^Classifier
->feature
• attribute (not supported) • not applicable
• operation • Signal-definition, <remote variable definition> and <remote procedure

definition>
->participant association ends that are interfaces, in which case aggregation = none
^GeneralizableElement
.isAbstract Abstract
.isLeaf not applicable
.isRoot can be derived from the Interface-definition
->generalization super interfaces, which are the interfaces identified by <interface

specialization> for this Interface-definition
->specialization can be derived from the generalization
^Namespace scope unit of this Interface-definition
->ownedElement <entity in interface>: the entities defined in the scope unit of this

Interface-definition
^ModelElement
->supplierDependency realizes dependency representing implements
->clientDependency the opposite of supplierDependency

The ownedElement must be model elements that represent entities in <entity in interface>, that is:
• Signal-definition;
• <remote variable definition>; or
• <remote procedure definition>.

 Recommendation Z.109 (11/99) 19

3.2.23 Method

UML SDL

Method body of Procedure-definition, Static-operator/Dynamic-operator
(operator or method)

.body not applicable
->specification Procedure-formal-parameter*, Signature
^ModelElement
->constraint <virtuality constraint>

The constraint describes that the body of a virtual procedure or operator inherits the constraint
behaviour specification. This is a specialized use of the constraint association of UML Method.

3.2.24 ModelElement
A ModelElement represents common properties of SDL entity (type) definitions. If not specifically
specified for the various specializations, the following applies.

UML SDL

ModelElement entity definition
.name <name> of entity
->clientDependency depends on kind of entity
->constraint depends on kind of entity
->implementationLocation not applicable
->namespace the owning (enclosing) scope unit where the entity is defined
->presentation not applicable
->supplierDependency depends on kind of entity
->templateParameter depends on kind of entity

3.2.25 Namespace
A namespace represents an SDL scope unit.

UML SDL

Namespace scope unit
-> ownedElement entity types defined in the scope unit represented by this model element

The ownedElement must be model elements that represent entities in SDL according to SDL UML.

3.2.26 Node
Not applicable, as deployment specification is outside the scope of SDL and thereby of SDL UML.

3.2.27 Operation
An operation represents a procedure or an operator/method. Operation is just used to represent the
fact that a type defines a procedure or operator/method, together with its signature. A nested
procedure-stereotyped class represents the procedure itself with the same name as the operation.
Operators and methods are not represented by stereotyped classes, but by UML Methods. Operations
sterotyped with «signature» represent the formal parameters of the enclosing agent type.

20 Recommendation Z.109 (11/99)

UML SDL

Operation Procedure-definition, Static-operator/Dynamic-operator (operator or
method) or formal parameters of agent type

.concurrency applicable only for operator and method
= sequential • depends on semantics for data
= guarded • not applicable
= concurrent • depends on semantics for data
.isAbstract
= true • abstract
= false • not abstract
.isLeaf
= true • finalized
= false • virtual or redefined
.isRoot
= true
= false

not applicable

^Feature
.ownerScope
= instance • mandatory
= classifier • not applicable
.visibility
= public • exported procedure, public (<visibility>) for operator/method
= protected: default • local procedures, protected (<visibility>) for operator/method
= private • not applicable for procedures, private (<visibility>) for operator/method

Note that the formal parameters of agents are given by an operation sterotyped with «signature» and
with the same name as the agent being defined by the actual class. Other operations of agents and
procedures represent locally defined procedures.
The virtuality of a procedure is also specified as part of the class representing the procedure. The
virtuality of operators and methods is specified as part of the UML Methods.

Note that the type of a value returning procedure or the result type of an operator can not be
represented directly by a property of the corresponding SDL UML operation, but by a parameter of
kind return.

3.2.28 Parameter
A parameter represents a formal parameter for a procedure, operator or method. Agent type
parameters are represented by parameters (with kind = in) to a procedure with the same as the agent
type and stereotyped with «signature».

 Recommendation Z.109 (11/99) 21

UML SDL

Parameter Procedure-formal-parameter
.default value no concept
.kind
= in • In-parameter (in keyword in <parameter kind>)
= inout • Inout-parameter (in/out keyword in <parameter kind>)
= out • not applicable
= return • <sort> in Result or <operation result>
.name Variable-name
-> type Data-type-reference-identifier or <sort> (in Result as part of

Procedure-definition)

3.2.29 Permission
The "import" permission is used to represent SDL package reference clauses, indicating which
packages this class uses.

UML SDL

Permission «import» <package use clause>
^Dependency
->client the client is a Package-definition or type definition that uses types defined

in the package represented by the supplier
->supplier the supplier is a package used by the client
^ModelElement
.name not applicable

3.2.30 PresentationElement
Not applicable.

3.2.31 Relationship
This is an abstract concept and is not applicable directly.

3.2.32 StructuralFeature
This is an abstract concept, used only for Attribute. See Attribute for details.

3.2.33 TemplateParameter
This represents a context parameter in SDL.

3.2.34 Usage
Usage of the kind create represents create line.

3.3 Extension mechanisms
The extension mechanisms of UML can also be used in SDL UML, but as for UML it is left to the
user of these to provide their meaning.

22 Recommendation Z.109 (11/99)

3.4 Data types
Not used. The predefined types of SDL are assumed being predefined as classes with appropriate
stereotypes and properties.

3.5 Behavioural elements
Although it would be possible, this version of the Recommendation does not provide a detailed
mapping of behavioural elements of UML to SDL, except for signals.

3.5.1 Common Behaviour
It is not foreseen that SDL UML will be used for specifying actions in details, as SDL provides
complete action specification mechanisms. No mapping is thus specified for the Common Behaviour
package. However, an overview of a possible mapping is given in Appendix I.

3.5.2 Signal
Signal is defined in UML as a subclass of Classifier. It corresponds to an SDL signal with the
following restrictions.

UML SDL

«signal» Signal-definition
• if a templateParameter is defined, it is a parameterized signal
• if a generalization is defined, it is a subtype

->context may be derived: the transitions that send signals of this type
->reception may be derived: the agent types that have this signal in its valid input signal

set
^Classifier
->feature The list of Data-type-reference-identifiers as part of Signal-definition, i.e.

signal parameters
->participant not applicable
^GeneralizableElement
->generalization the Signal-definition identified as part of the <type expression> of

<specialization> for this Signal-definition
^Namespace scope unit defined by the Signal-definition
->ownedElement not applicable
^ModelElement
->taggedValue no concept for virtual signals
->constraint not applicable
->supplierDependency not applicable
->clientDependency not applicable
->namespace Package-definition or <agent type definition> defining the Signal-definition

The generalization must be one «signal» classifier.
The namespace must be a package or a class of agents («system», «block», or «process»).

 Recommendation Z.109 (11/99) 23

3.6 Collaborations
A subset of Collaborations is used to represent the internal agent/state machine structure of an agent
and their connections. The contained agent sets are represented by the ownedElements of a
Collaboration:
• AssociationEnds for the agent sets, with collaborationMultiplicity representing the <number

of instances> and the ClassifierRoles the types of the agent sets.
• AssociationRoles for the channels connecting the agent sets.
The notion of Interaction is not used. Interactions as parts of Collaborations are only meant as
behaviour property models, and they correspond to the models described by MSC [3].

UML is somewhat unclear on the implications of Collaborations for the instances of the Classifier
that is represented by the Collaboration (representedClassifier). This Recommendation defines that a
Collaboration defines the content of instances of the represented Classifier.

3.6.1 AssociationEndRole
An AssociationEndRole may represent one of the following elements of an {<interaction area> |
<agent body area> } set:
• a contained agent set;
• the state machine of the containing agent;
• a gate of the containing agent.

UML SDL

AssociationEndRole The interface classifier associated with a gate of an agent set to which a
channel is connected

.collaborationMultiplicity • If a contained agent set: Number-of-instances
• If the state machine of the agent: not applicable
• If a gate of the containing agent: not applicable

->availableQualifier The set of signals and remote procedures on the channel
->base The interface qualifier represented by the interface of the gate to which the

channel is connected
^AssociationEnd
^GeneralizableElement not applicable
^ModelElement
.name Gate-name

24 Recommendation Z.109 (11/99)

3.6.2 AssociationRole
AssociationRoles represent channels connecting agent sets, the state machine of the containing
agent, and gates of the containing agent.

UML SDL

AssociationRole A Channel-definition
.multiplicity The number of connections implied by the multiplicity of the

AssociationEndRoles at both ends
->base • the implicit association between the types of the agent sets,

• the composite associations between the type of the enclosing agent and
the types of the agent sets, or

• the implicit associations between the composite state type of the state
machine and the containing agent type and the types of the agent sets.

^Association
^GeneralizableElement The channels follows the generalization of the containing agent type,

i.e. the connections of an agent type are inherited
^ModelElement
.name Channel-names

3.6.3 ClassifierRole
A ClassifierRole represents an interface of a gate of an agent set.

UML SDL

ClassifierRole the type of an agent set contained in an agent
.multiplicity the same as the multiplicity of the corresponding AssociationEndRole,

i.e. Number-of-instances
->availableContents the signals and exported procedures that are available through the

interface gate
->availableFeature the signals and exported procedures that are available through the

interface gate
->base the type of the agent set
^Classifier
^GeneralizableElement the interface follows the generalization of the containing agent type,

i.e. they are inherited
^ModelElement
.name agent set name

 Recommendation Z.109 (11/99) 25

3.6.4 Collaboration
A Collaboration represents the internal agent/state machine structure of an agent and their
connections. The properties defined by a Collaboration are properties of all instances of the class
represented by representedClassifier.
The association representedOperation is not used, i.e. SDL entities that would be represented by
Operations do not have their internal structure represented by Collaboration.

UML SDL

Collaboration { <interaction area> | <agent body area> } }set as part of <agent diagram
content>

->constrainingElement not applicable
->interaction not applicable
->ownedElement the elements of { <interaction area> | <agent body area> } }set
->representedClassifier the agent type with the { <interaction area> | <agent body area> } }set

represented by this collaboration
->representedOperation not applicable
^GeneralizableElement follows the corresponding property of the container agent type, i.e. all the

properties of an agent type specified by a Collaboration are inherited
^Namespace the scope unit of the agent type with the { { <interaction area> | <agent

body area> } }set represented by this collaboration. While the
ownedElement of a collaboration only represent the { { <interaction area> |
<agent body area> } }set, the ownedElement of the Namespace of the agent
type represent all entities in the agent type

^ModelElement the attributes and associations from ModelElement are the same as for the
class representing the agent type whose {<interaction area> | <agent body
area>}}set is represented by this Collaboration

3.6.5 Interaction
Not applicable.

3.6.6 Message
Not applicable.

3.7 Use Cases
Use Cases are not used in this Recommendation. They describe a system in a form, which is outside
the scope of SDL. They may, however, still be used in combination with SDL UML.

3.8 State machines

3.8.1 CallEvent
A CallEvent represents the input of a remote procedure in SDL.

UML SDL

CallEvent input of remote procedure call
->operation <remote procedure identifier>
^Event
->parameters <procedure formal parameters>

26 Recommendation Z.109 (11/99)

Note that in SDL an input of a remote procedure cannot be discarded, only deferred if not executed.

3.8.2 ChangeEvent
A ChangeEvent represents the input of a continuous signal in SDL.

UML SDL

ChangeEvent Continuous-signal
.changeExpression Continuous-expression
^Event
->parameters not applicable

In SDL the Continuous-signal is only evaluated while no other stimulus are found in the input port.

3.8.3 CompositeState
A CompositeState represents an SDL composite state.

The fact that a composite state type can be a virtual type and a subtype is represented in the class
with stereotype «state».

UML SDL

CompositeState Composite-state-part
->subvertex State-start-nodes, State-nodes and Return-nodes of the Composite-

state-graph
.isConcurrent
= false Composite state that is not a Multi-state
= true Multi-state
.isRegion
= false Composite state as part of a State-machine-definition
= true State-partition

3.8.4 Event
An Event has no counterpart in SDL; however, subclasses of Event have a mapping to SDL.

3.8.5 FinalState
A FinalState represents a return from an SDL composite state.

UML SDL

FinalState Unlabeled Return-node from composite state

3.8.6 Guard
A Guard represents an enabling condition in SDL.

UML SDL

Guard Provided-expression
.expression Boolean-expression

 Recommendation Z.109 (11/99) 27

Note that in UML, if a guard evaluates to false, the input event is discarded, whereas in SDL the
input event is deferred (saved).

3.8.7 PseudoState
A PseudoState represents an abstraction that encompasses different types of transient nodes in a state
machine graph.

UML SDL

PseudoState Nodes in a State-machine-definition
.kind
= initial Unlabeled State-start-node of a composite state
= deepHistory no concept
= shallowHistory no concept
= join no concept
= fork no concept
= junction Join-node for merging, Decision-node for branching
= choice no concept

3.8.8 SignalEvent
A SignalEvent represents the input of a signal in SDL.

UML SDL

SignalEvent input of signal
->signal instance of «signal» Class
^Event
->parameters signal parameters
.kind
= in Mandatory
= inout not applicable
= return not applicable

3.8.9 SimpleState
A SimpleState represents a basic state in SDL.

UML SDL

SimpleState State-node without Composite-state-part

3.8.10 State
A State represents a combination of an SDL state and the contents of an SDL composite state. The
entry- and exit procedures and internal transitions are part of the contents of the SDL composite
state, while deferrableEvent corresponds to save on the state as such.

28 Recommendation Z.109 (11/99)

UML SDL

State State-node and contents of Composite-state-part
->deferrableEvent <save part> associated with the State-node
->entry Entry-procedure-definition (of the Composite-state-part)
->exit Exit-procedure-definition (of the Composite-state-part)
->doActivity no concept
->internalTransition internal Transitions (of the Composite-state-part)

3.8.11 StateMachine
A StateMachine represents a state machine of an agent or composite state.

UML SDL

StateMachine State-machine-definition
->context Agent-type-definition with the State-machine-definition or Procedure-

definition with Procedure-graph
->top the enclosing composite state of the State-machine-definition

->transition the State-transition-graph of the State-machine-definition

3.8.12 StateVertex
A StateVertex represents an abstraction of a node in a state machine graph. Possible nodes in SDL
are (in this context): State-node, Nextstate-node, Start-node, Return-node, Stop-node, Decision-node
and <join>.

UML SDL

StateVertex Transition
->outgoing Transitions leading from a node to transition Terminators
->incoming Transitions having the node as transition Terminator
->container the enclosing State-transition-graph

3.8.13 StubState
A StubState has no direct counterpart in SDL. The similar concept in SDL is state entry/exit
connection point. It is regarded as essential in SDL to define the possible entry/exit points as part of
the interface of a composite state, and not to allow entry into any substate.

3.8.14 SubmachineState
It is not obvious from the UML Semantics if a SubmachineState is class-based or not, even though
reuse is mentioned. The closest correspondence is to a type-based composite state in SDL.
Alternatively it corresponds to a composite state reference in SDL, and the fact that the same
submachine state can be referenced more than once in the containing state machine supports this, but
the macro-like expansion described in UML indicates that is not a reference.

 Recommendation Z.109 (11/99) 29

3.8.15 SynchState
A SynchState has no counterpart in SDL.

3.8.16 TimeEvent
A TimeEvent represents the input of a timer in SDL.

UML SDL

TimeEvent input of timer
.when Time-expression
^Event
->parameters Variable-identifier*s in Input-node
.kind
= in mandatory
= inout not applicable
= return not applicable

3.8.17 Transition
A Transition represents a transition in SDL. The only difference is that a transition in SDL is
associated with the source, while this is an association of transition.

UML SDL

Transition Transition
->trigger Input-node or Continuous-signal
->guard Provided-expression
->effect Graph-node* of Transition
->source State-node to which the transition is associated
->target Terminator

When source and target are located in different state machines, the effect will be executed in the
state machine owning the source. When mapping to SDL, an effect crossing a state boundary going
from an inner to an outer state machine will introduce a <state exit point> in the inner state machine.
Contrary, an effect crossing a state boundary going from an outer to an inner state machine will
introduce a <state entry point> in the inner state machine.

3.9 Activity Graphs
Activity Graphs are not used in this Recommendation.

3.10 Model Management
From the Model Management Package, only the Package and Model meta-class are used, not
Subsystem. Model and Package are basic meta-model classes in UML. No special stereotype is
defined, but the use shall be restricted as described in this subclause.

3.10.1 ElementImport
Not applicable.

30 Recommendation Z.109 (11/99)

3.10.2 Model
A Model represents an SDL-specification. This implies that a Model may contain only a set of
packages and one system class.
NOTE – Possibly, also classes in the environment, nested types, interfaces and associations.

UML SDL

Model SDL-specification
^Package
->importedElement no concept
^GeneralizableElement not applicable
^Namespace scope unit
->ownedElement Package-Definition-set [Agent-definition]
^ModelElement
.name no concept (but for further study).
->constraint no concept
->namespace not applicable – an SDL-specification is not defined in a scope unit
.template not applicable
.templateParameter not applicable
->supplierDependency not applicable
->clientDependency not applicable

Only ModelElements that map to contained entities in SDL-specification can be ownedElements of a
Model.

3.10.3 Package
A Package represents an SDL Package-definition.

UML SDL
Package Package-definition
->importedElement

Definitions made visible to this package through <package use clause>
and <definition selection list>

^GeneralizableElement not applicable
^Namespace Package scope unit
->ownedElement Entities in the subset of <entity in package> defined below
^ModelElement
.name
->constraint no concept
->namespace the enclosing scope unit that contains the package, e.g.

SDL-specification or Package-definition
.template not applicable
.templateParameter not applicable
->supplierDependency for a package in a <package use clause> the fact that this package is

used by a number of packages
->clientDependency for a package with a <package use clause> the fact that this package

uses other packages

 Recommendation Z.109 (11/99) 31

The namespace must be Model or Package.
The ownedElement must be model elements that represent the following elements from <entity in
package>:
• Package-definition;
• Agent-type-definition;
• Signal-definition;
• <remote variable definition>;
• Data-type-definition;
• Procedure-definition;
• Composite-state-type-definition; or
• Interface-definition.

An SDL package is completely defined by the Package-definition. A Package defines parts of the
SDL package. The parts it defines depend upon the content of the Package. The choice of this
content is left to the user, but they shall be consistent with the corresponding properties defined in
the SDL Package-definition.

The <interface> of a <package heading> is not covered directly by this extension. Indirectly it can be
represented by the visibility attribute of each Feature in the ownedElements of the Package.

Dependencies between Packages represent <package reference clause>s (in <package reference
area>). The <definition selection list> is not represented. supplierDependency for a package in a
<package use clause> denotes the Dependencies that represent that this package is used by a number
of packages. ClientDependency for a package with a <package use clause> denote the Dependencies
that represent the use of other packages.

3.10.4 Subsystem
Not applicable.

32 Recommendation Z.109 (11/99)

APPENDIX I

Common Behaviour

The following is an overview of a possible mapping of the UML Common Behaviour package.

UML SDL

Action Action
ActionSequence Transition string
Argument Signal parameters of output
AssignmentAction Assignment
AttributeLink The binding of an identifier to the definition of the variable or field
CallAction Remote procedure call or method invocation
ComponentInstance Not applicable
CreateAction Create request
DestroyAction No concept
DataValue Value
Exception Exception instance
Instance Instance/entity
Link No concept
LinkEnd No concept
LinkObject No concept
NodeInstance No concept
Object Type-based entity
Reception Input
ReturnAction Return of a value returning procedure
SendAction Output
Signal Signal – See separate table in 3.5.2.
Stimulus Consumption of a signal or execution of a remote procedure
TerminateAction Stop
UninterpretedAction Informal action

Printed in Switzerland

Geneva, 2000

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

