

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.105
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2021)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –
SDL-2010 combined with ASN.1 modules

Recommendation ITU-T Z.105

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.105 (06/2021) i

Recommendation ITU-T Z.105

Specification and Description Language – SDL-2010

combined with ASN.1 modules

Summary

Recommendation ITU-T Z.105 defines how Abstract Syntax Notation One (ASN.1) modules are

usable in combination with Specification and Description Language 2010 (SDL-2010). This text

replaces Recommendation ITU-T Z.105 (2003) to align with Recommendations ITU-T Z.100,

ITU-T Z.101, ITU-T Z.102, ITU-T Z.103, ITU-T Z.104, ITU-T Z.106 and ITU-T Z.107 for

SDL-2010. Recommendation ITU-T Z.105 (2003) replaced the semantic mappings from ASN.1 to

SDL-2000 defined in Recommendation ITU-T Z.105 (1999). The use of ASN.1 notation embedded in

the Specification and Description Language previously defined in Recommendation ITU-T Z.107

(1999) is not defined by this Recommendation.

The main area of application of this Recommendation is the specification of telecommunication

systems. The combined use of SDL-2010 and ASN.1 permits a coherent way to specify the structure

and behaviour of telecommunication systems, together with data, messages and encoding of messages

that these systems use.

This version of Recommendation ITU-T Z.105 includes necessary alignments with ASN.1:2002

Recommendations, mapping of XML values, improved mapping of bit string values and mapping of

relevant ASN.1 constructs for extensions.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.105 1995-03-06 10 11.1002/1000/3162

2.0 ITU-T Z.105 1999-11-19 10 11.1002/1000/4765

3.0 ITU-T Z.105 2001-10-29 17 11.1002/1000/5568

4.0 ITU-T Z.105 2003-07-07 17 11.1002/1000/6238

5.0 ITU-T Z.105 2011-12-22 17 11.1002/1000/11392

6.0 ITU-T Z.105 2016-04-29 17 11.1002/1000/12859

7.0 ITU-T Z.105 2019-10-14 17 11.1002/1000/14056

8.0 ITU-T Z.105 2021-06-13 17 11.1002/1000/14675

Keywords

Abstract Syntax Notation 1, ASN1, SDL-2010, Specification and Description Language.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/3162
http://handle.itu.int/11.1002/1000/4765
http://handle.itu.int/11.1002/1000/5568
http://handle.itu.int/11.1002/1000/6238
http://handle.itu.int/11.1002/1000/11392
http://handle.itu.int/11.1002/1000/12859
http://handle.itu.int/11.1002/1000/14056
http://handle.itu.int/11.1002/1000/14675
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.105 (06/2021)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2021

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Z.105 (06/2021) iii

Table of Contents

 Page

1 Scope and objective .. 1

1.1 Objective ... 1

1.2 The characteristics of the combination of SDL-2010 and ASN.1 modules ... 1

1.3 ASN.1 that is usable in combination with SDL-2010 1

1.4 The structure of this Recommendation ... 2

2 References ... 2

3 Definitions .. 3

3.1 Terms defined elsewhere .. 3

3.2 Term defined in this Recommendation .. 3

4 Abbreviations and acronyms .. 3

5 Conventions .. 3

6 Package ... 3

7 Definition and use of data ... 5

7.1 Name mapping .. 5

7.2 Variable and data definitions .. 5

7.3 Type expressions .. 6

7.4 Range condition and size constraint ... 11

7.5 Value expressions ... 12

8 Mapping for information objects, classes and object sets .. 17

8.1 Introduction .. 17

8.2 Information object class definition and assignment 17

8.3 Information object class field type ... 17

8.4 Information object definition and assignment .. 18

8.5 Information from information objects .. 18

8.6 Constraint specification .. 19

9 Mapping of parameterized ASN.1 specifications ... 22

9.1 Parameterized assignment .. 23

9.2 Parameterized type assignment .. 23

9.3 Referencing ASN.1 parameterized type definitions 24

9.4 Referencing ASN.1 parameterized value definitions 25

9.5 Referencing other ASN.1 parameterized definitions 25

10 Definitions in package Predefined for SDL-2010 .. 25

iv Rec. ITU-T Z.105 (06/2021)

Introduction

Objective

This Recommendation defines how Abstract Syntax Notation One (ASN.1) modules are usable in

combination with Specification and Description Language 2010 (SDL-2010). The intention is that

the structure and the behaviour of systems are described with SDL-2010, while parameters of

exchanged messages are described with ASN.1. This Recommendation defines a mapping of ASN.1

constructs to already existing SDL-2010 constructs and contains only a small extension to

Recommendations ITU-T Z.101, ITU-T Z.102, ITU-T Z.103 and ITU-T Z.104 to allow ASN.1

modules to be used.

Coverage

This Recommendation presents a semantic definition for the combination of SDL-2010 and ASN.1

modules. A mapping of the ASN.1 data defined in a module to the corresponding SDL-2010

constructs defined in Recommendations ITU-T Z.101, ITU-T Z.102, ITU-T Z.103 and ITU-T Z.104

is given, including the operators applicable to the ASN.1 data. The ASN.1 data items are then usable

within SDL-2010 (using SDL-2010 notation).

Application

The main area of application of this Recommendation is the specification of telecommunication

systems. The combined use of SDL-2010 and ASN.1 permits a coherent way to specify the structure

and behaviour of telecommunication systems, together with data, messages and encoding of messages

that these systems use.

NOTE – "Specification" in this Recommendation includes definition of requirements in a standard,

Recommendation, or procurement document, and description of an implementation.

A specification conforms to this Recommendation if and only if it conforms to the syntactic and

semantic grammar rules for the formal technical language defined by the Recommendation (which

includes the referenced ASN.1 and SDL-2010 languages). Conformance implies that every possibly

dynamic interpretation of the specification conforms to the language rules. A specification that uses

extensions of the language does not conform.

A tool does not fully support the language if it rejects some constructs of the language or that has a

static or dynamic interpretation of a specification in the language that does not conform to language

semantics.

Status/Stability

This text replaces Recommendation ITU-T Z.105 (2003) to align with Recommendations

ITU-T Z.100, ITU-T Z.101, ITU-T Z.102, ITU-T Z.103, ITU-T Z.104, ITU-T Z.106 and

ITU-T Z.107 for SDL-2010. Recommendation ITU-T Z.105 (2003) defined the semantic mappings

from ASN.1 to SDL-2000 (previously defined in Recommendation ITU-T Z.105 (1999)) and aligned

with ASN.1:2002 Recommendations. The use of ASN.1 notation embedded in the Specification and

Description Language previously defined in the withdrawn Recommendation ITU-T Z.107 (1999) is

not defined by this Recommendation.

It is likely that changes to Recommendations ITU-T X.680, ITU-T X.681, ITU-T X.682 and

ITU-T X.683, ITU-T Z.100, ITU-T Z.101, ITU-T Z.102, ITU-T Z.103, ITU-T Z.104, ITU-T Z.106

or ITU-T Z.107 will require modifications to this Recommendation.

This Recommendation is the complete reference manual describing the combination of SDL-2010

and ASN.1 modules.

 Rec. ITU-T Z.105 (06/2021) 1

Recommendation ITU-T Z.105

Specification and Description Language – SDL-2010

combined with ASN.1 modules

1 Scope and objective

This Recommendation defines how ASN.1 modules are usable in combination with SDL-2010.

ASN.1 modules are imported in SDL-2010 descriptions so that ASN.1 data definitions are mapped

to internal SDL-2010 representation using equivalent SDL-2010 constructs and forming together with

the rest of the SDL-2010 description a complete specification.

SDL-2010 is a language for the specification and description of telecommunication systems.

SDL-2010 has concepts for:

• structuring systems;

• defining behaviour of systems;

• defining data used by systems.

ASN.1 is a language for the definition of data. Related to ASN.1 are encoding rules that define how

ASN.1 values are transferred as bit streams during communication.

1.1 Objective

The combination of SDL-2010 and ASN.1 permits a coherent way of specifying the structure and

behaviour of telecommunication systems, together with data, messages, and encoding of messages

that these systems use. It is possible to describe structure and behaviour using SDL-2010, and data

and messages using ASN.1. It is possible to describe the encoding of these messages by reference to

the relevant encoding rules defined for ASN.1.

The full use of SDL-2010 (including data types) is supported by this Recommendation.

1.2 The characteristics of the combination of SDL-2010 and ASN.1 modules

Systems described in SDL-2010 combined with ASN.1 modules have the following characteristics:

• structure and behaviour are defined using SDL-2010 concepts;

• the SDL-2010 signal structure, i.e., the signal parameter types and their subtypes are defined

in ASN.1 modules;

• it is allowed to define internal data by either ASN.1 types or SDL-2010 sorts;

• it is possible to define encoding of data values defined in ASN.1 by reference to the relevant

encoding rules. Encoding is not in the scope of this Recommendation.

1.3 ASN.1 that is usable in combination with SDL-2010

The use of ASN.1 as defined in [ITU-T X.680], [ITU-T X.681], [ITU-T X.682] and [ITU-T X.683]

is supported in combination with SDL-2010, with a recognition that it is not possible to successfully

map some ASN.1 constructs to SDL-2010 (or at least the mapping has not been identified and

specified in this Recommendation). Source ASN.1 constructs that cannot be mapped to SDL-2010

are treated during the transformation to SDL-2010 as if they were not present and should thus not

cause any problems for the successful transformation of other constructs. Such constructs are the

extension marker and exception marker defined in [ITU-T X.680], which are optionally present in

ASN.1 but are ignored in the transformation to SDL-2010. Some constructs of ASN.1 are never

transformed to SDL-2010 as such, but contain information that directs the transformation or is used

2 Rec. ITU-T Z.105 (06/2021)

in the transformation. The prominent examples of such constructs are relational constraints as defined

in [ITU-T X.682], and information object classes and information object sets (see clause 8).

The use of SDL-2010 as defined in [ITU-T Z.100], [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103],

[ITU-T Z.104], [ITU-T Z.106] and [ITU-T Z.107] is supported.

ASN.1 modules that are used in the transformation to SDL-2010 are also usable for the generation of

encoders and decoders, provided that encoding rules are defined. The SDL-2010 data specification

implicitly derived from ASN.1 modules should not be used for generation of encoders and decoders,

because it is possible to lose some information that is relevant for encoding in the transformation to

SDL-2010.

1.4 The structure of this Recommendation

This Recommendation is not self-contained: the mapping defined in this Recommendation is based

on [ITU-T X.680], [ITU-T X.681], [ITU-T X.682], [ITU-T X.683], [ITU-T Z.100], [ITU-T Z.101],

[ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104] and [ITU-T Z.106]. The language as defined in

[ITU-T Z.100], [ITU-T Z.101], [ITU-T Z.102], [ITU-T Z.103], [ITU-T Z.104], [ITU-T Z.106] and

[ITU-T Z.107] applies, except that the rule sdl specification is extended to allow direct use of

ASN.1 modules. This Recommendation is structured in the following manner:

Clause 6 defines the changes to SDL-2010 in order to incorporate ASN.1 modules.

Clause 7 defines the mapping of [ITU-T X.680] ASN.1 types and values to SDL-2010 data in order

to incorporate ASN.1 data types and values.

Clause 8 defines the mapping of ASN.1 types defined using information objects, classes and

information object sets. The use of [ITU-T X.682] constructs is also treated in this clause.

Clause 9 defines the mapping of parameterized ASN.1 types to SDL-2010 data in order to incorporate

parameterized ASN.1 data types.

Clause 10 lists items in the package Predefined needed to support the use of ASN.1.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.680] Recommendation ITU-T X.680 (2021) | ISO/IEC 8824-1:2021, Information

technology – Abstract Syntax Notation One (ASN.1): Specification of basic

notation.

[ITU-T X.681] Recommendation ITU-T X.681 (2021) | ISO/IEC 8824-2:2021, Information

technology – Abstract Syntax Notation One (ASN.1): Information object

specification.

[ITU-T X.682] Recommendation ITU-T X.682 (2021) | ISO/IEC 8824-3:2021, Information

technology – Abstract Syntax Notation One (ASN.1): Constraint specification.

[ITU-T X.683] Recommendation ITU-T X.683 (2021) | ISO/IEC 8824-4:2021, Information

technology – Abstract Syntax Notation One (ASN.1): Parameterization of

ASN.1 specifications.

 Rec. ITU-T Z.105 (06/2021) 3

[ITU-T Z.100] Recommendation ITU-T Z.100 (2021), Specification and Description

Language – Overview of SDL-2010.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2021), Specification and Description

Language – Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2021), Specification and Description

Language – Comprehensive SDL-2010.

[ITU-T Z.103] Recommendation ITU-T Z.103 (2021), Specification and Description

Language – Shorthand notation and annotation in SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2021), Specification and Description

Language – Data and action language in SDL-2010.

[ITU-T Z.106] Recommendation ITU-T Z.106 (2021), Specification and Description

Language – Common interchange format for SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2021), Specification and Description

Language – Object-oriented data in SDL-2010.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere: the definitions of [ITU-T Z.100]

apply for SDL-2010 items and the definitions of [ITU-T X.680] apply for ASN.1 items.

3.2 Term defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

The abbreviations defined in [ITU-T Z.100] and [ITU-T X.680] apply, in particular SDL-2010 from

[ITU-T Z.100] and ASN.1 from [ITU-T X.680].

5 Conventions

In subsequent clauses, the ASN.1 grammar identifies the ASN.1 production rules and items that are

mapped to SDL-2010, and the Model describes the mapping to SDL-2010.

6 Package

ASN.1 grammar

ModuleDefinition, ModuleIdentifier, DefinitiveIdentification, Imports and Exports are defined

in clause 13.1 of [ITU-T X.680].

Model

The rules sdl specification and <module definition> are defined in [ITU-T Z.106] as follows:

<sdl specification> ::=

 { { <package diagram> | <package definition> |

 <system specification> | <textual system specification> |

 <module definition> }

 <referenced definition>* }set

4 Rec. ITU-T Z.105 (06/2021)

NOTE 1 – After mapping according to this Recommendation the ASN.1 module definition is replaced by an

SDL-2010 <package diagram> (or equivalent <package definition>).

<module definition> ::=

 ModuleDefinition

where the non-terminal ModuleDefinition is defined in clause 13.1 of [ITU-T X.680].

A <module definition> has the same meaning as a <package diagram> with a <package text area>

where:

• ModuleIdentifier (without any DefinitiveIdentification) corresponds to the <package

name>;

• Imports corresponds to the <package use clause>s;

• Exports corresponds to the <package public> in the <package text area> of the <package

diagram>;

• the remaining parts of the ModuleDefinition are transformed into items in the <package text

area> of the <package diagram>.

An ASN.1 ModuleDefinition is transformed into the equivalent SDL-2010 before it is considered as

a package, and before any SDL-2010 transformations. In this transformation, names are transformed

into fully qualified identifiers where SDL-2010 requires or allows an identifier rather than a name.

However, for conciseness, this is often omitted from the examples in this Recommendation.

Example

The ASN.1 module definition:

myway DEFINITIONS ::=

 BEGIN

 EXPORTS yes, no;

 yes BOOLEAN ::= TRUE

 no BOOLEAN ::= FALSE

END

is the same as:

package myway

public synonym yes, synonym no;

synonym yes Boolean = true;

synonym no Boolean = false;

Similarly, when the package is used in the imports of another package:

IMPORTS yes FROM myway;

This is the same as the <package reference clause>:

use myway/yes;

NOTE 2 – Because SDL-2010 does not support object identifier values for package identification, ASN.1

modules with the same modulereference (see clause 12.5 of [ITU-T X.680]) but different

DefinitiveIdentification will potentially cause name resolution problems.

 Rec. ITU-T Z.105 (06/2021) 5

7 Definition and use of data

The different definitions of the use of data are described in the following way:

ASN.1 grammar Defining the grammar production rules representing the construction to be

represented in SDL-2010.

Model Describing the transformations of the different parts of the ASN.1 grammar into

SDL-2010 productions.

This part is referencing both the SDL-2010 grammar, represented as sdl

grammar rule, and the ASN.1 grammar, represented as ASN1GrammarRule.

7.1 Name mapping

ASN.1 grammar

ASN.1 names are ASN.1 lexical items defined in clause 11 of [ITU-T X.680] such that only letters,

digits, and hyphens are allowed in ASN.1 names. If the hyphen character is used in SDL-2010, this

would be interpreted as the minus operator.

Model

ASN.1 names containing hyphen characters are mapped to lexically similar SDL-2010 names except

that hyphen characters are converted to underline characters.

Example

The ASN.1 name my-example-name is mapped to my_example_name in SDL-2010.

7.2 Variable and data definitions

7.2.1 Type assignment

ASN.1 grammar

TypeAssignment, Type, ConstrainedType and Constraint are defined in clause 16.1 of

[ITU-T X.680], clause 17.1 of [ITU-T X.680], clause 49.1 of [ITU-T X.680] and clause 49.6 of

[ITU-T X.680], respectively.

Model

If the Type is a typereference, then the TypeAssignment is the same as a syntype definition (see

[ITU-T Z.101] and clause 12.1.8.1 of [ITU-T Z.104]) containing only the SDL-2010 equivalent of

the Type.

If the Type is a ConstrainedType, then the TypeAssignment is the same as a syntype definition

(see [ITU-T Z.101] and clause 12.1.8.1 of [ITU-T Z.104]) containing only the SDL-2010 equivalent

of the Constraint.

If the Type is a neither a typereference nor a ConstrainedType, the TypeAssignment is represented

by a data type definition with an empty or omitted data type definition body and where formal

context parameters is omitted (see [ITU-T Z.101] and clause 12.1.1 of [ITU-T Z.104]).

Example

The ASN.1 type assignment:

Mytype ::= AnotherType -- typereference

is the same as:

syntype Mytype = AnotherType endsyntype Mytype; /* full qualification omitted here. */

6 Rec. ITU-T Z.105 (06/2021)

The ASN.1 type assignment:

S ::= INTEGER (0..5 | 10)

is the same as:

syntype S = <<package Predefined>>Integer constants (0..5,10) endsyntype S;

The ASN.1 type assignment:
Integerlist ::= SEQUENCE OF INTEGER

is the same as:

value type Integerlist {

 inherits <<package Predefined>>String

 < <<package Predefined>> Integer> ('' = <<package Predefined>> Emptystring) }

7.2.2 Value assignment

ASN.1 grammar

ValueAssignment and XMLValueAssignment are defined in clause 16.2 of [ITU-T X.680].

Model

The ValueAssignment and XMLValueAssignment are represented by an internal synonym

definition item in a <synonym definition> (see clause 12.1.8.3 of [ITU-T Z.104]).

Example

The ASN.1 definition:

yes BOOLEAN ::= TRUE

is the same as:

synonym yes <<package Predefined>>Boolean = <<package Predefined>> true;

7.3 Type expressions

7.3.1 Sequence

ASN.1 grammar

SequenceType, ComponentType, ExtensionAndException, OptionalExtensionMarker,

ExtensionAdditionGroup and VersionNumber are defined in clause 25.1 of [ITU-T X.680].

SetType is defined in clause 27.1 of [ITU-T X.680].

Model

A SequenceType is represented as a structure definition (see [ITU-T Z.101] and clause 12.1.6.2

of [ITU-T Z.104]) containing a field for each NamedType of the SequenceType. The field

contains one field name, which is the same as the ASN.1 identifier of the NamedType, and a

field sort that is the Type transformed to an SDL-2010 sort identifier.

If the ComponentType containing the NamedType is OPTIONAL, the SDL-2010 field has the

keyword optional.

If the ComponentType containing the NamedType has a DEFAULT Value, the SDL-2010 field

has the keyword default and the value is transformed into the constant expression after default.

 Rec. ITU-T Z.105 (06/2021) 7

A ComponentType that is COMPONENTS OF Type is represented as a list of ordered fields,

one for each field associated to Type. These fields are inserted in the position of the COMPONENTS

OF Type in the order that the fields exist in the Type.

The occurrences of ExtensionAndException and OptionalExtensionMarker in SequenceType are

ignored in the transformation.

The occurrences of ExtensionAdditionGroup in ExtensionAddition are transformed so that version

brackets ("[[", "]]") and VersionNumber are ignored.

Example

The ASN.1 type:

S ::= SEQUENCE {

 a INTEGER,

 b IA5String OPTIONAL,

 c PrintableString DEFAULT "d"}

is the same as:

value type S

{ struct

 a <<package Predefined>> Integer;

 b <<package Predefined>> IA5String optional;

 c <<package Predefined>> PrintableString default 'd';

}

NOTE 1 – There is no distinction between use of keyword SEQUENCE and SET. This is a relaxation

compared to [ITU-T X.680].

NOTE 2 – In this Recommendation, tags are not necessary to distinguish between components of the same

type: ASN.1 automatic tagging is assumed.

7.3.2 Sequenceof

ASN.1 grammar

SequenceOfType is defined in clause 26.1 of [ITU-T X.680].

Model

Specifying a SequenceOfType is the same as specifying the Predefined String sort having the

SDL-2010 transform of Type as the first <actual context parameter> and the name Emptystring

defined as the literal name for the empty string.

If an ASN.1 size constraint is specified for Type, the SequenceOfType is a syntype having the

transformed size constraint (see clause 7.4) as a <constraint> that is a <size constraint> (see

clause 12.1.8.2 of [ITU-T Z.101]). The parent sort of the syntype is the SequenceOfType without

the ASN.1 size constraint. This parent sort has an implicit and unique name and is defined in the

nearest scope unit enclosing the occurrence of the SequenceOfType.

8 Rec. ITU-T Z.105 (06/2021)

Example

The ASN.1definition:
phonenumber ::= SEQUENCE SIZE (8) OF INTEGER (0..9)

is the same as the three SDL-2010 definitions:

value type S1

{

 inherits <<package Predefined>> String <S2> ('' = Emptystring)

}

syntype S2 = <<package Predefined>> Integer constants (0..9) endsyntype;

syntype phonenumber = S1 constants size (8) endsyntype phonenumber;

7.3.3 Choice

ASN.1 grammar

ChoiceType, ExtensionAdditionAlternative and ExtensionAdditionAlternativesGroup are

defined in clause 29.1 of [ITU-T X.680].

Model

A ChoiceType is represented as a <choice definition> (see [ITU-T Z.101] and clause 12.1.6.3 of

[ITU-T Z.104]) containing a <field> for each NamedType of the ChoiceType.

The occurrences of ExtensionAndException and OptionalExtensionMarker in ChoiceType are

ignored in the transformation.

The occurrences of ExtensionAdditionAlternativesGroup in ExtensionAdditionAlternatives are

transformed so that version brackets ("[[", "]]") and VersionNumber are ignored.

Example

The ASN.1 choice type:

C ::= CHOICE {

a INTEGER,

b REAL }

is the same as:

value type C

{ choice

 a <<package Predefined>> Integer;

 b <<package Predefined>> Real;

}

7.3.4 Enumerated

ASN.1 grammar

EnumeratedType and EnumerationItem are defined in clause 20.1 of [ITU-T X.680] and

ExceptionSpec (used in EnumeratedType) is defined in clause 53.4 of [ITU-T X.680].

 Rec. ITU-T Z.105 (06/2021) 9

Model

An EnumeratedType is represented by a data type definition where formal context parameters

is omitted and the <data type definition body> (see [ITU-T Z.101] and clause 12.1.1 of

[ITU-T Z.104]) is a <data type constructor> that is a <literal list> (see [ITU-T Z.101] and

clause 12.1.6.1 of [ITU-T Z.104]). For each EnumerationItem, the identifier is transformed into a

<literal signature> that has the same name as the EnumerationItem. If the EnumerationItem

contains a SignedNumber (or DefinedValue), the <literal name> of the <literal signature> is

followed by the SDL-2010 transform of the SignedNumber (or DefinedValue respectively) to form

a <named number>.

The extension markers ("...") and ExceptionSpec in EnumeratedType are ignored in the

transformation to SDL-2010.

The definition:

colours ::= ENUMERATED {blue(3),red, yellow(0)};

is the same as:

value type colours {

 literals blue = 3, red, yellow = 0

}

7.3.5 Integer

ASN.1 grammar

IntegerType, NamedNumberList and NamedNumber are defined in clause 19.1 of [ITU-T X.680].

Model

The ASN.1 IntegerType is mapped to SDL-2010 <<package Predefined>> Integer.

Specifying an IntegerType with a NamedNumberList is the same as specifying a <synonym

definition> (See clause 12.1.8.3 of [ITU-T Z.104]) in the nearest enclosing scope unit with one

<synonym definition item> for each NamedNumber. The identifier of the NamedNumber is

transformed into the <synonym name>. The <sort> of the <synonym definition item> is <<package

Predefined>>Integer. The SignedNumber or DefinedValue of the NamedNumber is used as the

<constant expression> of an <internal synonym definition item>.

Example

The ASN.1 definition:

Standards ::= SEQUENCE OF INTEGER{z100(0),x680(1),z10x(2)}

is the same as:

value type standards inherits

 << package Predefined >> String < <<package Predefined>> Integer> (''= EmptyString);

synonym z100 Integer = 0,

 x680 Integer = 1,

 z10x Integer = 2;

7.3.6 ValueRange

ASN.1 grammar

ValueRange is defined in clause 51.4 of [ITU-T X.680].

10 Rec. ITU-T Z.105 (06/2021)

Model

Specifying an ASN.1 ValueRange restriction is represented as specifying the constrained <sort> and

adding the representation of the ASN.1 ValueRange restriction after the constants keyword in the

<syntype definition> (see [ITU-T Z.101] and clause 12.1.8.1 of [ITU-T Z.104]).

Example

The ASN.1 definition:
S ::= INTEGER(0..5 | 10)

is equivalent to:

syntype S = <<package Predefined>> Integer constants (0..5, 10) endsyntype S;

How the <constraint> is derived is described in clause 7.4 below.

7.3.7 BitString

ASN.1 grammar

BitStringType, NamedBitList and NamedBit are defined in clause 22.1 of [ITU-T X.680].

Model

The ASN.1 BitStringType is mapped to SDL-2010 <<package Predefined>> Bitstring.

Specifying a BitStringType with a NamedBitList is the same as specifying a <synonym definition>

(See clause 12.1.8.3 of [ITU-T Z.104]) in the nearest enclosing scope unit with one <synonym

definition item> for each NamedBit. The identifier of the NamedBit is transformed into the

<synonym name>. The <sort> of the <synonym definition item> is <<package Predefined>>Integer.

The number or the DefinedValue is used as the <constant expression> of the <synonym definition

item>.

7.3.8 OctetString

ASN.1 grammar

OctetStringType is defined in clause 23.1 of [ITU-T X.680].

Model

The ASN.1 type OctetStringType is mapped to SDL-2010 <<package Predefined >> Octetstring.

7.3.9 Setof

ASN.1 grammar

SetOfType is defined in clause 27.1 of [ITU-T X.680].

Model

Specifying a SetOfType is the same as specifying the <<package Predefined>> Bag sort having the

SDL-2010 transform of Type as the first <actual context parameter> and the name Emptybag defined

as the literal name for the empty bag.

If an ASN.1 size constraint is specified for Type, the SetOfType is a syntype having the transformed

size constraint as a <constraint> (see clause 7.4). The parent sort of the syntype is the SetOfType

without the ASN.1 size constraint. This parent sort has an implicit and unique name and is defined in

the nearest scope unit enclosing the occurrence of the SetOfType.

 Rec. ITU-T Z.105 (06/2021) 11

7.4 Range condition and size constraint

ASN.1 grammar

See clause 51.4 of [ITU-T X.680].

Model

In SDL-2010 syntype has a <constraint> that is either a <range condition> or a <size constraint> (see

clause 12.1.8.2 of [ITU-T Z.101]).

A range condition defines a set of values. It is used in SDL-2010 for defining a syntype. It has an

associated parent sort, which is the sort specified in the syntype definition. A value is within the value

set if the operator denoted by the operator identifier yields true when applied to the value.

The operator identifier for a given range condition is thus defined as:

value type A

operators o: S -> Boolean;

/* where o is derived from the ASN.1 concrete syntax as explained below */

endvalue type A;

Each Range in the ASN.1 range condition contributes to the properties of the operator defining the

value set:

o(V) == range1 or range2 or ... or rangeN

If a syntype is specified without a range condition, then the operator result is true.

In the following explanation of how each Range contributes to the operator result, V denotes the

argument value. Each contribution shall be well-formed, which means that used operators shall exist

with a signature appropriate for the context.

• If neither of the keywords MIN and MAX are specified in a ValueRange, a ValueRange

contributes with:

E1 rel1 V and V rel2 E2

where E1 is Value of LowerEndValue and E2 is Value of UpperEndValue.

 If "<" is specified for LowerEndValue then rel1 is the "<" operator; otherwise it is the "<="

operator.

 If "<" is specified for UpperEndValue then rel2 is the "<" operator; otherwise it is the "<="

operator.

 If the keyword MIN is specified and the keyword MAX is not specified, ValueRange

contributes with:

V rel2 E2

 If the keyword MAX is specified and the keyword MIN is not specified, ValueRange

contributes with:

E1 rel1 V

If both keywords MIN and MAX are specified, the operator always yields true.

• A ContainedSubtype (see clause 51.3 of [ITU-T X.680]) contributes with:

o1(V)

 where o1 is the implicit operator defining the value set for the Type mentioned in the

ContainedSubtype.

12 Rec. ITU-T Z.105 (06/2021)

• A SizeConstraint (see clause 51.5 of [ITU-T X.680]) contributes with:

o1(length(V))

where o1 is the implicit operator defining the value set for the <range condition> mentioned

in the SizeConstraint.

• InnerTypeConstraints (see clause 51.8 of [ITU-T X.680]) contributes with either:

 if length(V) = 0 then true else o1(first(V)) and o(Substring(V,2,length(V)-1)) fi; or

 if length(V) = 0 then true else o1(take(V)) and o(del(take(V), V)) fi

 whatever is appropriate for the sort of V. o is the implicit operator InnerTypeConstraints

contributes to and o1 is the implicit operator for Range specified in InnerTypeConstraints.

 InnerTypeConstraints has a contribution for each contained NamedConstraint that

specifies constraints of the field (see clause 7.2.1) denoted by Identifier of the parent sort.

For the purpose of deriving the contributions, a derived ASN.1 type is created as follows:

a) the keyword PRESENT is added to the NamedConstraints that have no ending

keyword (PRESENT, ABSENT or OPTIONAL);

b) NamedConstraints of the form Identifier ABSENT are added for all fields (i.e.,

Identifiers) not mentioned explicitly in a NamedConstraint. The NamedConstraints

are added to the InnerTypeConstraints before the contributions of each

NamedConstraint are derived.

NOTE – In case the governing type is CHOICE, it is possible that the derived type is illegal with

respect to [ITU-T X.680], but it is used only for the purpose of mapping to SDL-2010 and therefore

has no impact on the original ASN.1 type or its encoding.

If a ValueRange is specified for a NamedConstraint, the contribution is:

E and if FPresent(V) then o1(V) else true fi

 where E is the present constraint for the field, F (from the operator name FPresent) is the

name of the optional field and o1 is the implicit operator for the ValueRange. If the

ValueRange is omitted, the contribution is only the present constraint E.

 The present constraint for a field F is:

FPresent(V)

 in case the NamedConstraint for the field contains the keyword PRESENT; and

not FPresent(V)

 in case the NamedConstraint for the field contains the keyword ABSENT. In all other cases,

the present constraint is true.

7.5 Value expressions

7.5.1 Choice value

ASN.1 grammar

ChoiceValue is defined in clause 29.11 of [ITU-T X.680].

Model

A ChoiceValue is represented as an <operator application> (see clause 12.2.6 of [ITU-T Z.101])

having the Value as argument. The <operator identifier> in the <operator application> contains a

<qualifier> representing the Type and an operator name being the identifier.

 Rec. ITU-T Z.105 (06/2021) 13

Example

The ChoiceValue:

myvalue : Mychoice

is represented as:

myvalue(Mychoice)

In the case that a ChoiceValue denotes one of several operator applications (e.g., a field of more than

one choice sort), a qualifier is used:

MyType ::= CHOICE ………

myvalue : Mychoice

which is then represented as:

<<type Mytype>> myvalue(Mychoice)

7.5.2 Composite primary

A composite primary is built up of the values for the SDL-2010 representation of respective

composite types.

7.5.2.1 Sequence value

ASN.1 grammar

SequenceValue, XMLSequenceValue, ComponentValueList and XMLComponentValueList are

defined in clause 25.18 of [ITU-T X.680].

NOTE – There is no distinction between SetValue and SequenceValue. This is a relaxation compared to

[ITU-T X.680].

Model

The SequenceValue and XMLSequenceValue are mapped to synonym definition item. In the

mapping the ComponentValueList or XMLComponentValueList is provided to the operator to

make a structure value in SDL-2010. The SDL-2010 data type constructor requires that all the fields

are given as input so that fields that are omitted in ComponentValueList have to be provided empty

in SDL-2010. The application of structure data type constructor will have the same effects in

SDL-2010 as it would in ASN.1.

Example

MYTYPE ::= SEQUENCE{

 a INTEGER,

 b INTEGER OPTIONAL,

 c INTEGER DEFAULT 0,

 d INTEGER,

 e INTEGER OPTIONAL,

 f INTEGER DEFAULT 0

}

myValue MYTYPE ::= {a 1, b 1, c 1, d 1}

In this example fields a, b, c and d of myValue have a value assigned and fields e and f have no

assignment.

synonym myValue MYTYPE = (. 1, 1, 1, 1, , .);

The consequence would be that fields a, b, c and d of myValue would be set to 1, e would be absent

and f would get the default value 0.

14 Rec. ITU-T Z.105 (06/2021)

7.5.2.2 Sequence of value

ASN.1 grammar

SequenceOfValue and XMLSequenceOfValue are defined in clause 26.3 of [ITU-T X.680].

Model

A SequenceOfValue and XMLSequenceOfValue are both represented as:

MkString(E1) // MkString(E2)// ... // MkString(En)

where E1, E2, ..., En are the values of the SequenceOfValue or XMLValueOrEmpty of the

XMLSequenceOfValue in the order of appearance. If no Value or XMLValue is specified, the

SequenceOfValue or XMLSequenceOfValue are represented as the name Emptystring.

The Type qualifier of the Composite Primary that contains the SequenceOfValue precedes each

MkString operator or the Emptystring literal, respectively.

7.5.2.3 Object identifier value

ASN.1 grammar

ObjectIdentifierValue is defined in clause 32.3 of [ITU-T X.680].

Model

ObjectIdentifierValue is ignored in the transformation to SDL-2010.

ObjectIdentifierValue is in ASN.1 used to distinguish between the modules that have the same

names but different object identifiers. Because the module names and object identifiers are not

uniquely mapped to a package identifier that is used in package use clauses, the object identifier

component is ignored in the transformation to SDL-2010. The identification of appropriate modules

is thus open to manual or tool specific solutions.

7.5.2.4 Real value

ASN.1 grammar

RealValue and XMLRealValue are defined in clause 21.6 of [ITU-T X.680].

The form 0 is used for zero values; the alternate form for NumericRealValue shall not be used for

zero values.

The associated type for value definition and subtyping purposes is:

SEQUENCE {

 mantissa INTEGER,

 base INTEGER (2|10),

 exponent INTEGER

 -- The associated mathematical real number is "mantissa"

 -- multiplied by "base" raised to the power "exponent"

 }

Model

An ASN.1 NumericalRealValue and XMLNumericRealValue are mapped to an SDL-2010 real

sort value with the actual value calculated in the transformation. The SpecialRealValue and

XMLSpecialRealValue shall be transformed to the largest possible positive or negative value

respectfully.

NOTE – The transformation of SpecialRealValue is not in accordance with the intended ASN.1 semantics

because this is a directive to the encoder/decoder to use a special code indicating the – (minus infinite) values.

Since encoding is not related to data in SDL-2010 transformed from ASN.1data, such relaxation should be

acceptable.

 Rec. ITU-T Z.105 (06/2021) 15

Example

The ASN.1 definition:

r50 REAL ::= { mantissa 5, base 10, exponent 1}

is the same as:

synonym r50 Real = 50.0;

7.5.2.5 Integer value

ASN.1 grammar

IntegerValue and XMLIntegerValue are defined in clause 19.9 of [ITU-T X.680].

Model

An IntegerValue and XMLIntegerValue are mapped to an SDL-2010 <<package Predefined >>

Integer sort value with the same actual value.

7.5.2.6 Boolean value

ASN.1 grammar

BooleanValue and XMLBooleanValue are defined in clause 18.3 of [ITU-T X.680].

Model

A BooleanValue and XMLBooleanValue are mapped to an SDL-2010 <<package Predefined >>

Boolean sort value where TRUE and <true> map to Boolean literal true and FALSE and <false> map

to Boolean literal false.

7.5.3 String primary

ASN.1 grammar

CharacterStringValue and XMLCharacterStringValue are defined in clause 40.3 of

[ITU-T X.680].

BitStringValue and XMLBitStringValue are defined in clause 22.9 of [ITU-T X.680].

Model

An ASN.1 StringValue containing a cstring (ASN.1 name for character string delimited by " at both

beginning and end) represents a <character string literal identifier> consisting of the Type and a

<character string literal> with the same <text> as the ASN.1 String Text. The Type for cstring is an

IA5Type as defined by this Recommendation.

A BitStringValue containing a bstring or hstring are mapped to SDL-2010 <<package

Predefined>> Bitstring operators with the same syntax provided that the length of the governing bit

string type is not constrained.

Provided that the length of the governing bit string type is constrained, the rules below apply.

A BitStringValue containing a bstring or hstring are mapped to SDL-2010 <<package

Predefined>> Bitstring operators with the same syntax. However, if the length of the bstring or

hstring is smaller than the maximal length of the governing bit string type, the bstring or hstring is

expanded to the maximal length with all trailing bits sets to 0.

16 Rec. ITU-T Z.105 (06/2021)

A BitStringValue defined using IdentifierList is evaluated as having the bit value 1 at all bit

positions defined by identifier listed in IdentifierList. The value of the bits remaining until the

maximal length of the governing bit string type is set to 0. The resulting string is mapped to SDL-2010

<<package Predefined>> Bitstring operators preceded by an ' character and followed by the pair of

characters 'B.

An XMLBitStringValue containing an xmlbstring is mapped to SDL-2010 <<package

Predefined>> Bitstring operators preceded by a ' character and followed by the pair of characters 'B.

However, if the length of the xmlbstring is smaller than the maximal length of the governing bit

string type, the xmlbstring is expanded to the maximal length with all trailing bits sets to 0.

Example

Use a bit string type to model the values of a bit map, a fixed-size ordered collection of logical

variables indicating whether a particular condition holds for each of a correspondingly ordered

collection of objects.

DaysOfTheWeek ::= BIT STRING {

 sunday(0), monday (1), tuesday(2),

 wednesday(3), thursday(4), friday(5),

 saturday(6) } (SIZE (7))

 sunnyDaysLastWeek1 DaysOfTheWeek ::= {sunday, monday, wednesday}

 sunnyDaysLastWeek2 DaysOfTheWeek ::= '1101000'B

The mapping to SDL-2010 gives the following:

synonym sunday Integer = 0;

synonym monday Integer = 1;

synonym tuesday Integer = 2;

synonym wednesday Integer = 3;

synonym thursday Integer = 4;

synonym friday Integer = 5;

synonym saturday Integer = 6;

synonym sunnyDaysLastWeek1 DaysOfTheWeek = '1101000'B;

synonym sunnyDaysLastWeek2 DaysOfTheWeek = '1101000'B;

Use a bit string type to model the values of a bit map, a variable-size ordered collection of logical

variables indicating whether a particular condition holds for each of a correspondingly ordered

collection of objects.

DaysOfTheWeekVar ::= BIT STRING {

 sunday(0), monday (1), tuesday(2),

 wednesday(3), thursday(4), friday(5),

 saturday(6) } (SIZE (0..7))

 sunnyDaysLastWeek3 DaysOfTheWeekVar ::= {sunday, monday, wednesday}

 sunnyDaysLastWeek4 DaysOfTheWeekVar ::= '1101'B

The mapping to SDL-2010 would give the following (not repeating the synonyms for bit names):

synonym sunnyDaysLastWeek3 DaysOfTheWeek = '1101000'B;

synonym sunnyDaysLastWeek4 DaysOfTheWeek = '1101000'B;

 Rec. ITU-T Z.105 (06/2021) 17

7.5.4 Element set specification

ASN.1 grammar

ElementSetSpecs is defined in clause 50.1 of [ITU-T X.680].

Model

It is possible to combine two or more value sets using this notation. The resulting set is evaluated in

the transformation and the result is mapped to SDL-2010.

The extension markers ("...") in ElementSetSpecs are ignored in the transformation to SDL-2010.

8 Mapping for information objects, classes and object sets

The mapping of ASN.1 types defined in ASN.1 modules using information objects, information

object classes and information object sets is defined below.

8.1 Introduction

[ITU-T X.681] provides the ASN.1 notation that allows information object classes as well as

individual information objects and sets thereof to be defined and given reference names. An

information object class is a template for a collection of information that makes up the attributes of

any members of that class. Information objects provide a generic table mechanism within the ASN.1

language. Such a generic table defines the association of specific sets of field values or types. This

feature replaces the earlier MACRO construct (available in ASN.1:1990) and is primarily used to fill

in gaps in a type definition dependent on one or more key fields.

This clause assumes that all ASN.1 constructs defined in [ITU-T X.681], [ITU-T X.682] and

[ITU-T X.683] are usable in ASN.1 modules. It then identifies what information contained in ASN.1

information object classes, information objects and information object sets are useful when mapped

to appropriate SDL-2010 targets. The mappings that are possible and useful are defined. It has to be

noted that some information will not be represented in SDL-2010 because of the differences in nature

of the two languages.

8.2 Information object class definition and assignment

ASN.1 grammar

ObjectClassAssignment is defined in clause 9.1 of [ITU-T X.681].

Model

The ObjectClass definitions (see clause 9.2 of [ITU-T X.681]) in ASN.1 have no direct

correspondence in SDL-2010.

8.3 Information object class field type

ASN.1 grammar

ObjectClassFieldType, FixedTypeValueFieldSpec and FixedTypeValueSetFieldSpec are defined

in clauses 14.1, 9.6 and 9.9 of [ITU-T X.681], respectively.

Model

It is possible to define ASN.1 types using ObjectClassFieldType notation to extract information

from the fields of information object class specifications without presence of table constraints. Such

ASN.1 types are able to be mapped to SDL-2010, provided that in their definition only

FixedTypeValueFieldSpec or FixedTypeValueSetFieldSpec items are used. The mapping to an

SDL-2010 value type is done as defined in clause 7.3 once the meaning of the

18 Rec. ITU-T Z.105 (06/2021)

FixedTypeValueFieldSpec or FixedTypeValueSetFieldSpec is determined from the referenced

information object class specifications.

ObjectClassFieldType notation is also used in relation to table constraints as defined in clause 8.6.2.

Example

If the ASN.1 contains the following specification:

EXAMPLE-CLASS ::= CLASS {

 &TypeField OPTIONAL, -- class field 1

 &fixedTypeValueField INTEGER OPTIONAL, -- class field 2

 &variableTypeValueField &TypeField OPTIONAL, -- class field 3

 &FixedTypeValueSetField INTEGER OPTIONAL, -- class field 4

 &VariableTypeValueSetField &TypeField OPTIONAL -- class field 5

}

WITH SYNTAX {

 [TYPE-FIELD &TypeField]

 [FIXED-TYPE-VALUE-FIELD &fixedTypeValueField]

 [VARIABLE-TYPE-VALUE-FIELD &variableTypeValueField]

 [FIXED-TYPE-VALUE-SET-FIELD &FixedTypeValueSetField]

 [VARIABLE-TYPE-VALUE-SET-FIELD &VariableTypeValueSetField]

}

ExampleType ::= SEQUENCE {

 integerComponent1 EXAMPLE-CLASS.&fixedTypeValueField, -- field 1

 integerComponent2 EXAMPLE-CLASS.&FixedTypeValueSetField -- field 2

}

exampleValue ExampleType ::= {

 integerComponent1 123, -- field 1

 integerComponent2 456 -- field 2

}

Things that are able to be mapped to SDL-2010 are ExampleType and exampleValue:

value type ExampleType {

 struct

 integerComponent1 <<package Predefined>> Integer, /* field 1 */

 integerComponent2 <<package Predefined>> Integer /* field 2 */

}

synonym exampleValue ExampleType = (. 123, 456 .);

8.4 Information object definition and assignment

ASN.1 grammar

ObjectAssignment is defined in clause 11.1 of [ITU-T X.681].

Model

Information object definitions in the ASN.1 module have no equivalent mapping in SDL-2010.

8.5 Information from information objects

ASN.1 grammar

InformationFromObjects is defined in clause 15.1 of [ITU-T X.681].

 Rec. ITU-T Z.105 (06/2021) 19

Model

It is possible to reference information from the column of the associated table for an information

object (or an information object set) by the various cases of the InformationFromObjects notation.

In the ASN.1 module, an ASN.1 type is specifiable with fields defined using

InformationFromObjects notation. Such an ASN.1 type is able to be mapped to SDL-2010,

provided that all occurrences of InformationFromObjects notation are expandable to a value or a

type. The ASN.1 type as such is mapped as specified in clause 7.3, while the semantics of

InformationFromObjects expansion follows the ASN.1 semantics.

8.6 Constraint specification

ASN.1 grammar

GeneralConstraint, TableConstraint and UserDefinedConstraint are defined in clause 8.1 of

[ITU-T X.682].

Model

The types specified using TableConstraint are mapped to SDL-2010 according to rules given

in clause 8.6.2. It is not possible to map types specified using UserDefinedConstraint to SDL-2010.

8.6.1 User-defined constraints

ASN.1 grammar

UserDefinedConstraint is defined in clause 9.1 of [ITU-T X.682].

Model

This form of constraint specification is regarded as a special form of ASN.1 comment, since it is not

fully machine-processable. Therefore, it is not possible to map ASN.1 type specifications using

UserDefinedConstraint to SDL-2010.

8.6.2 Table constraints

ASN.1 grammar

TableConstraint, SimpleTableConstraint and ComponentRelationConstraint are defined in

clauses 10.3, 10.3 and 10.7 of [ITU-T X.682], respectively.

Model

Constraint notation is allowed to appear (in round brackets) after any use of the syntactic construct

"Type". Application designers optionally use this notation to define a structured data type with further

constraints on their field values. Examples of such constraints are restricting the range of some

component(s), or to specify a relation between components. The former is a SimpleTableConstraint

and the latter is a ComponentRelationConstraint.

For types with SimpleTableConstraint, the following transformation rules apply.

Before the constrained type is mapped to SDL-2010, some SDL-2010 value types need to be

constructed from the information object class specification and the constraining information object

set specification in the following manner.

a) For each information object set a number of SDL-2010 value type items are created. The

types are generated so that for each field of the information object CLASS associated with

the information object set, one SDL-2010 value type is generated. The name of the type is

the concatenation of the name of the information object set, an underscore ('_') and the name

of the matching class field.

20 Rec. ITU-T Z.105 (06/2021)

b) If the class field is a FixedTypeValueFieldSpec, an SDL-2010 syntype is constructed. The

syntype has a range constraint that is a union of values specified by the matching field of

each information object in the information object set.

c) If the information object class field is a VariableTypeValueFieldSpec, an SDL-2010 choice

type is constructed. The choice type is constructed so that all the types found in the matching

field of all the information objects belonging to the constraining information object set are

included in the choice. The choice field names are derived as lower case equivalents of the

matching types.

The constrained ASN.1-type is now mapped to SDL-2010. The type as such is mapped as defined in

clause 7.3. The SDL-2010 field names are the same as ASN.1 field names. The ASN.1 specification

of optionality is preserved in the transformation. For each ASN.1 field constrained by an information

object set, the SDL-2010 type is specified as type constructed from the information object class

specification and the constraining information object set specification (items (a) to (c)).

For ASN.1-type specifications using ComponentRelationConstraint, the same type transformation

rules are applied. On top of that, for each ASN.1 type with ComponentRelationConstraint, a check

method that traverses the information object and checks the constraints is also generated. The check

method returns "true" if all relational constraints are respected and "false" if any of the relational

constraints are violated.

The steps for constructing the check method are:

For each element that is involved in relational constraint (has a ComponentRelationConstraint

attached to it or is mentioned in any ComponentRelationConstraint), a local test variable

declaration is generated. The generation follows the following scheme:

'dcl <test var name> <field type>; <test var name> := <field ref>;'

where <test var name> is a unique name for each test variable, <field type> is the type of the element,

<field ref> is a reference to the element. If the element is present, the variable is initialized to the

value of the corresponding field of the object.

For each relational constraint, one test is generated for each combination of constraining values or

types in the object set definition. Each test is generated using the following scheme:

'if (<test expr> and not (<value test>)) then { return false; }

where the <test expr> is the result of combining one test for each constraining value or type using the

'and' operator. For constraining values the test is defined as:

'<test var name> = <test value>'

where <test var name> is the name of the test variable as described above and <test value> is the

corresponding value from the object set definition.

For constraining types, the test is defined as:

'<test var name>.<ispresent method>'

where <test var name> is the name of the test variable as described above and the <ispresent method>

is the method that checks that the corresponding type is present.

The <value test> is the result of combining one test for each value or type of the constrained element

in the object set definition that corresponds to the values and types in the <test expr> above, using

the 'or' operator. For values each test is given as:

'<test var name> = <value>'

where the <test var name> is the name of the variable corresponding to the constrained field and

<value> is a value from the object set definition.

 Rec. ITU-T Z.105 (06/2021) 21

For types, the test is defined as:

'<test var name>.<ispresent method>'

where <test var name> is the name of the variable corresponding to the constrained field and the

<ispresent method> is the method that checks that the corresponding type is present.

For each String field in the type, a loop is generated according to the following scheme:

 'loop(dcl <loop var> Integer := 1; <loop var> <= length(<string field>);

 <loop var> := <loop var> + 1) { <loop body> }'

where <loop var> is a unique variable name, <string field> is a reference to the treated string field

and <loop body> is the result of applying the transformation steps in this clause to the elements in

the string.

Example 1

An example of a type with SimpleTableConstraint:

ErrorReturn ::= SEQUENCE

{

 errorCategory ERROR-CLASS.&category({ErrorSet}) OPTIONAL,

 errors SEQUENCE OF SEQUENCE

 {

 errorCode ERROR-CLASS.&code

 ({ErrorSet}),

 errorInfo ERROR-CLASS.&Type

 ({ErrorSet})

 } OPTIONAL

}

Provided that the specifications of class and object set were:

ERROR-CLASS ::= CLASS

{

 &category PrintableString (SIZE(1)),

 &code INTEGER,

 &Type

}

WITH SYNTAX {&category &code &Type }

ErrorSet ERROR-CLASS ::=

{

 { "A" 1 INTEGER } |

 { "A" 2 REAL } |

 { "B" 1 CHARACTER STRING } |

 { "B" 2 GeneralString }

}

The SDL-2010 types derived from constraint specification would be:

syntype ErrorSet_category = PrintableString (SIZE(1))

 constants 'A', 'B'

endsyntype;

syntype ErrorSet_code = <<package Predefined>> Integer

 constants 1, 2

endsyntype;

value type ErrorSet_Type { choice

 integer <<package Predefined>> Integer;

 real <<package Predefined>> Real;

 characterString <<package Predefined>> CharacterString;

 generalString <<package Predefined>> GeneralString;

}

22 Rec. ITU-T Z.105 (06/2021)

The constructed SDL-2010 type would be the following:

value type ErrorReturn { struct

 errorCategory ErrorSet_category optional;

 errors String <

 { struct

 errorCode ErrorSet_code,

 errorInfo ErrorSet_Type } > optional;

}

No check method would be generated.

Example 2

An example of a type with ComponentRelationConstraint.
ErrorReturn ::= SEQUENCE

{

 errorCategory ERROR-CLASS.&category({ErrorSet}) OPTIONAL,

 errors SEQUENCE OF SEQUENCE

 {

 errorCode ERROR-CLASS.&code

 ({ErrorSet}{@errorCategory}),

 errorInfo ERROR-CLASS.&Type

 ({ErrorSet}{@errorCategory,@.errorCode})

 } OPTIONAL

}

The corresponding SDL-2010 type would be the following:
value type ErrorReturn {

struct

 errorCategory ErrorSet_category optional;

 errors String < value

 { struct

 errorCode ErrorSet_code;

 errorInfo ErrorSet_Type; } > optional;

 method Check() -> Boolean

 { dcl t1 ErrorSet_category;

 dcl p1 Boolean;

 p1 := this.errorCategoryPresent();

 if (p1 = true) { t1 := this.errorCategory; } else { return false; };

 if ((p1 = false) and (this.errorsPresent() = true)) { return false; }

 loop (dcl i1 Integer := 1; i1<=length(errors); i1 := i1+1)

 { dcl t2 ErrorSet_code, t3 ErrorSet_Type;

 t2 := this.errors[i1].errorCode;

 t3 := this.errors[i1].errorInfo ;

 if (t1="A" and not(t2=1 or t2=2)) { return false; }

 if (t1="B" and not(t2=1 or t2=2)) { return false; }

 if (t1="A" and t2=1 and not (t3.integerPresent())) { return false; }

 if (t1="A" and t2=2 and not (t3.realPresent())) { return false; }

 if (t1="B" and t2=1 and not (t3.characterStringPresent())) { return false; }

 if (t1="B" and t2=2 and not (t3.generalStringPresent())) { return false; }

 } /* end of loop */

 return true;

 } /* end of Check*/

} /* end of ErrorReturn */

9 Mapping of parameterized ASN.1 specifications

[ITU-T X.683] defines the way to parameterize ASN.1 specifications. All ASN.1 concepts are able

to be parameterized. This feature allows the partial specification of types or values within an ASN.1

module with the specification being completed by the addition of the actual parameters at instantiation

time.

 Rec. ITU-T Z.105 (06/2021) 23

Clause 8.3 of [ITU-T Z.102] defines an equivalent concept of formal context parameters.

9.1 Parameterized assignment

ASN.1 grammar

There are parameterized assignment statements corresponding to each of the assignment statements

specified in [ITU-T X.680] and [ITU-T X.681].

The ParameterizedAssignment, ParameterizedTypeAssignment,

ParameterizedValueSetTypeAssignment, ParameterizedObjectClassAssignment,

ParameterizedObjectAssignment, ParameterizedObjectSetAssignment constructs are defined

in clauses 8.1 and 8.2 of [ITU-T X.683].

Model

The use of all forms of ParameterizedAssignment is supported within ASN.1 modules.

ParameterizedTypeAssignment is mapped to SDL-2010 as defined in clause 9.2 relying on the

SDL-2010 formal context parameters mechanisms.

ParameterizedValueSetTypeAssignment, ParameterizedObjectClassAssignment,

ParameterizedObjectAssignment, ParameterizedObjectSetAssignment are usable in ASN.1

modules (so they are usable in other ASN.1 specifications), but they are not mapped to SDL-2010

themselves.

9.2 Parameterized type assignment

ASN.1 grammar

ParameterizedTypeAssignment and ParameterList are defined in clauses 8.2 and 8.3 of

[ITU-T X.683].

Model

The difference between ordinary and parameterized ASN.1 types is that ParameterList follows the

typereference and formal parameters contained in ParameterList are used in the Type definition.

A Type defined in ASN.1 using parameters from the ParameterList is mapped to the appropriate

SDL-2010 type (as defined in clause 7.2.1) provided that ASN.1 parameters are either value or type

parameters. Such parameters are mapped to <formal context parameters> of the SDL-2010 type. An

ASN.1 type parameter is mapped to SDL-2010 <sort context parameter> (see clause 8.3.10 of

[ITU-T Z.102]) and an ASN.1 value parameter is mapped to an SDL-2010 <synonym context

parameter list> item (see clause 8.3.9 of [ITU-T Z.102]).

It is not possible to map ASN.1 parameterized types that have parameters other than types or values

to SDL-2010 directly. However, if the parameters are expanded first into types or values, the resulting

ASN.1 type or value is then mapped to SDL-2010 as defined in clause 9.3.

Example

The ASN.1-type definition:

TemplateMessage {INTEGER : minSize, INTEGER : maxSize, IndicatorType } ::=

SEQUENCE

{

 asp INTEGER,

 pdu OCTET STRING(SIZE(minSize..maxSize)),

 indicator IndicatorType

}

is mapped to SDL-2010 type:

24 Rec. ITU-T Z.105 (06/2021)

value type TemplateMessage

< synonym minSize <<package Predefined>> Integer;

 synonym maxSize <<package Predefined>> Integer;

 value type IndicatorType >

struct

{

 asp Integer;

 pdu <<package Predefined>> Octetstring (size(minSize:maxSize));

 indicator IndicatorType;

}

9.3 Referencing ASN.1 parameterized type definitions

ASN.1 grammar

ParameterizedType and ParameterizedValue are defined in clause 9.2 of [ITU-T X.683], and

ActualParameterList is defined in clause 9.5 of [ITU-T X.683].

Model

ParameterizedType and ParameterizedValue references are used in ASN.1 to define new ASN.1

types and values by providing an ActualParameterList.

If the ParameterizedType definition was such that it was possible to map it to SDL-2010 and the

ActualParameterList contains only Type and Value parameters, then ASN.1 references to such

definitions are mapped to SDL-2010 instantiations of the type with context parameters so that

elements of ActualParameterList are mapped to actual context parameter list. Example 1

illustrates one such mapping.

If, according to clause 9.2, the ParameterizedType definition could not be mapped to an SDL-2010-

type definition with context parameters, it is possible to map to SDL-2010 the references to such a

ParameterizedType. In this case, the meaning of the ParameterizedType definition is fully

expanded within ASN.1 to the level of the types defined in clause 7 before a mapping to SDL-2010

is done.

If the ActualParameterList contains ValueSet, DefinedObjectClass, Object or ObjectSet the

mapping of such a type to SDL-2010 is done so that the meaning of the type is fully expanded to the

level of the types defined in clause 7 before a mapping to SDL-2010 is done. Example 2 illustrates

one such mapping.

The ASN.1 types and values derived from referenced ASN.1 parameterized definitions are mapped

to SDL-2010 as defined in clause 7.

Example 1

The parameterized type used in the example in clause 9.2 is used to define simple ASN.1 as follows:
ActualMessage ::= TemplateMessage{10, 20, BOOLEAN}

This is mapped to SDL-2010 type:

value type ActualMessage : TemplateMessage  10, 20, package Predefined Boolean 

Example 2

What follows is an example of the ASN.1-type definition derived using a parameter that is an

information object. The ASN.1 modules need to contain the relevant information object class

definition with parameterized assignment having object of that class as dummy parameter,

information object value assignment and parameterized type definition reference.

MESSAGE-PARAMETERS ::= CLASS {

 &maximum-priority-level INTEGER,

 &maximum-message-buffer-size INTEGER

 Rec. ITU-T Z.105 (06/2021) 25

}

WITH SYNTAX {

 THE MAXIMUM PRIORITY LEVEL IS &maximum-priority-level

 THE MAXIMUM MESSAGE BUFFER SIZE IS &maximum-message-buffer-size

}

Message-PDU { MESSAGE-PARAMETERS : param } ::= SEQUENCE {

 priority-level INTEGER (0..param.&maximum-priority-level),

 message BMPString (SIZE (0..param.&maximum-message-buffer-size))

}

my-message-parameters MESSAGE-PARAMETERS ::= {

 THE MAXIMUM PRIORITY LEVEL IS 10

 THE MAXIMUM MESSAGE BUFFER SIZE IS 2000

}

MY-Message-PDU ::= Message-PDU { my-message-parameters }

The semantics of ASN.1 is that with such definition of class, parameterized type definition and object

value definition, the type resulting from transformation of MY-Message-PDU is equivalent to:

MY-Message-PDU ::= SEQUENCE {

 priority-level INTEGER (0..10),

 message BMPString (SIZE (0..2000))

}

The resulting ASN.1 type is mapped to SDL-2010 type as:

value type MY_Message_PDU {

struct

 priority_level <<package Predefined>> Integer (0..10);

 message <<package Predefined>> BMPCharString (size (0..2000));

}

9.4 Referencing ASN.1 parameterized value definitions

ASN.1 grammar

ParameterizedType and ParameterizedValue are defined in clause 9.2 of [ITU-T X.683], and

ActualParameterList is defined in clause 9.5 of [ITU-T X.683].

Model

ParameterizedValue references are used in ASN.1 to define new ASN.1 values by providing an

ActualParameterList.

ParameterizedValue references are mapped to SDL-2010 in such a way that the meaning of such a

value specification is fully expanded to the level of value assignments defined in clause 7 before a

mapping to SDL-2010 is done.

9.5 Referencing other ASN.1 parameterized definitions

ParameterizedValueSetType, ParameterizedObjectClass, ParameterizedObjectSet and

ParameterizedObject are defined in clause 9.2 of [ITU-T X.683].

ANS.1 modules that contain the specification of value sets, object classes, object sets and objects

defined by referencing the SimpleDefinedType with ActualParameterList are not mapped to

SDL-2010.

10 Definitions in package Predefined for SDL-2010

In SDL-2010 the following items are defined in the package Predefined and support the

combination of ASN.1 modules with SDL-2010:

26 Rec. ITU-T Z.105 (06/2021)

syntype NumericChar,

value type NumericString,
syntype PrintableChar,
value type PrintableString,
syntype TeletexChar,
syntype VideotexChar,
value type VideotexString,
syntype IA5Char,
syntype IA5String,
value type GeneralChar,
value type UniversalChar,
value type UniversalCharString,
syntype UTF8String,
value type GeneralCharString,
syntype GraphicChar,
syntype VisibleChar,
value type VisibleString,
syntype BMPChar,
value type BMPCharString, and

value type NULL.

Printed in Switzerland
Geneva, 2021

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T Z.105 (06/2021) Specification and Description Language – SDL-2010 combined with ASN.1 modules
	Summary
	History
	Keywords
	FOREWORD
	Table of Contents
	Introduction
	1 Scope and objective
	1.1 Objective
	1.2 The characteristics of the combination of SDL-2010 and ASN.1 modules
	1.3 ASN.1 that is usable in combination with SDL-2010
	1.4 The structure of this Recommendation

	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Term defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Package
	<sdl specification> ::=
	<module definition> ::=

	7 Definition and use of data
	7.1 Name mapping
	7.2 Variable and data definitions
	7.2.1 Type assignment
	7.2.2 Value assignment

	7.3 Type expressions
	7.3.1 Sequence
	7.3.2 Sequenceof
	7.3.3 Choice
	7.3.4 Enumerated
	7.3.5 Integer
	7.3.6 ValueRange
	7.3.7 BitString
	7.3.8 OctetString
	7.3.9 Setof

	7.4 Range condition and size constraint
	7.5 Value expressions
	7.5.1 Choice value
	7.5.2 Composite primary
	7.5.2.1 Sequence value
	7.5.2.2 Sequence of value
	7.5.2.3 Object identifier value
	7.5.2.4 Real value
	7.5.2.5 Integer value
	7.5.2.6 Boolean value

	7.5.3 String primary
	7.5.4 Element set specification

	8 Mapping for information objects, classes and object sets
	8.1 Introduction
	8.2 Information object class definition and assignment
	8.3 Information object class field type
	8.4 Information object definition and assignment
	8.5 Information from information objects
	8.6 Constraint specification
	8.6.1 User-defined constraints
	8.6.2 Table constraints

	9 Mapping of parameterized ASN.1 specifications
	9.1 Parameterized assignment
	9.2 Parameterized type assignment
	9.3 Referencing ASN.1 parameterized type definitions
	9.4 Referencing ASN.1 parameterized value definitions
	9.5 Referencing other ASN.1 parameterized definitions

	10 Definitions in package Predefined for SDL-2010

