International Telecommunication Union

ITU-T Z.104

TELECOMMUNICATION Amendment 1
g‘II;,O;_IFIBARDIZATION SECTOR (10/2012)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Specification and
Description Language (SDL)

Specification and Description Language: Data and
action language in SDL-2010

Amendment 1: Replacement Annex C on
language binding

Recommendation ITU-T Z.104 (2011) — Amendment 1

IR

Iinternationsl
Telecommunication
Unien

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGESAND GENERAL SOFTWARE ASPECTSFOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of formal description techniques
Message Sequence Chart (MSC)

User Requirements Notation (URN)

Testing and Test Control Notation (TTCN)

PROGRAMMING LANGUAGES

CHILL: TheITU-T high level language

MAN-MACHINE LANGUAGE

General principles

Basic syntax and dialogue procedures

Extended MML for visual display terminals

Specification of the man-machine interface

Data-oriented human-machine interfaces

Human-machine interfaces for the management of telecommunications networks
QUALITY

Quality of telecommunication software

Quality aspects of protocol-related Recommendations

METHODS

Methods for validation and testing

MIDDLEWARE

Processing environment architectures

Z.100-Z.109
Z.110-72.119
Z.120-72.129
Z.150-7.159
Z.160-Z.179

Z.200-Z.209

Z.300-Z.309
Z.310-2.319
Z2.320-2.329
Z.330-2.349
Z.350-Z.359
Z2.360-2.379

Z.400-Z.409
Z.450-Z.459

Z.500-Z.519

Z.600-Z.609

For further details, please refer to thelist of ITU-T Recommendations.

Recommendation ITU-T Z.104

Specification and Description Language: Data and action language in SDL-2010

Amendment 1

Replacement Annex C on language binding

Summary

Amendment 1 updates Recommendation ITU-T Z.104 to incorporate binding to C language syntax
as an alternative syntax for expressions and statements.

Amendment 1 replaces Annex C of ITU-T Z.104 (2011).

History
Edition Recommendation Approva Study Group
1.0 ITU-T Z.104 2004-10-07 17
20 ITU-T Zz.104 2011-12-22 17
21 ITU-T Z.104 (2011) Amd. 1 2012-10-14 17

Rec. ITU-T Z.104 (2011)/Amd.1 (10/2012) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectua property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

©I1TU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

i Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

http://www.itu.int/ITU-T/ipr/

Table of Contents

Page

ANNEX C —Language DINGINGcc.ooiriiiiieeieee e s 1
C.1l (O3 1= [7="0 7= o1 o [1o IS 2

C.1l1l EXtensionsto1exiCal FUIES........cccoiiirieieiese s 2

C.12 Datatype definition.......ccccocoiiieiiieceese et 7

C.1.3 Useof Cvariable definitions..........ccocoiieieniinenieee e 17

C.14 USEOf C EXPIESSIONS......eeiuitetirieriesieeieeeesesee st ste st sbe st sse e e essessessessesbeseesnis 20

C.15 USEOf C StaEMENES.....ceeieeeeiieesieeiesee e et see e seeeee e saeeaesseesreeeesneens 30

C.16 Package C PredefiNed.........ccccovieiieiieie e e et 37

2T o] ToT | ="o] V20 67

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) i

Recommendation I TU-T Z.104

Specification and Description Language: Data and action language in SDL-2010

Amendment 1
Replacement Annex C on language binding

Replace ITU-T Z.104 (2011) Annex C with Annex C as defined in this amendment and add the
Bibliography specified at the end.

Annex C

L anguage binding
(This annex forms an integral part of this Recommendation.)

This annex defines the use of the syntax of an alternative language within the syntax rules <variable
definition>, <data definition>, <non terminating statement>, <terminating statement> and
<expression>, which are taken as the points of syntax variation. By default an SDL-2010
specification is bound to the native syntax as defined in the main body of this Recommendation or
other Recommendations for SDL-2010.

Each diagram or other definition that is allowed a <package use clause> is bound to a particular
concrete syntax as defined in clause 7.2. The only allowed language <data binding> constructs are
to the default binding package Predefined, which is the language binding for the native
SDL-2010 concrete syntax, or to a package defined in this annex.

Though the syntax within the points of syntax variation looks like another language (such as C,
C++, Java or some other language) the semantics are defined by SDL-2010. The binding to the
SDL-2010 abstract grammar is permitted to invoke complex transformations to achieve the
mapping, and constraints are allowed to exclude constructions permitted by the language concrete
syntax that are not able to be reasonably mapped. A model that includes constructs that do not map
to SDL-2010 does not conform to the SDL-2010 language. A tool that handles constructs that do
not map to SDL-2010 abstract grammar and semantics shall provide an indication if such constructs
are used.

Different languages not only vary in their syntax rules, but also have some differences in the lexical
elements of the language. Therefore, within diagrams bound to the syntax of an aternative language
for certain rules, it is allowed for the lexical rules of SDL-2010 to be extended to include Ilexemes
of the alternative language. This annex aso defines these variations.

To be concise, throughout this annex the phrase "SDL-2010 diagram” is used to mean a "diagram
bound to the native SDL-2010 syntax for the points of syntax variation”, and the phrase "SDL-2010
diagrams' to mean more than one such diagram.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 1

C.1 CLanguagebinding

This clause allows diagrams to be bound to a subset of [b-1SO/IEC 9899] by binding each such
diagram to the package ¢ _Predefined defined at the end of this clause.

To be concise, throughout this clause the phrase "C diagram™ is used to mean a"diagram bound to a
subset of [b-ISO/IEC 9899] for the points of syntax variation”, and the phrase "C diagrams’ to
mean more than one such diagram.

C.1.1 Extensionstolexical rules
Lexical rules define lexical units. Lexical units are terminal symbols of the Concrete grammar.

<lexical unit> ::=
<name>
| <integer name>
| <real name>
| <character string>
| <hex string>
| <bit string>
| <note>
| <comment body>
| <composite special>
| <special>
| <semicolon>
| <other character>
| <quoted operation name>
| <c string literal>
| <keyword>

Therule <lexical unit> is extended to include <c string literal>.

NOTE — No qualifier is alowed for an identifier in the C language syntax, therefore identifiers and names
have the same syntax. The universal character name (of the form \u hex-quad or \U hex-quad hex-quad) are
not allowed, therefore names in the C language have the same syntax as names in SDL-2010.

C.1.11 Ckeywords
The following SDL-2010 lowercase <name> items are also keywords in C diagrams.

| auto | case | char

| const | do | double

| enum | extern | float

| for | goto | inline

| int | long | register

| restrict | short | signed

| sizeof | static | switch

| typedef | union | unsigned
| void | volatile | while

These are keywords only in C diagrams. In SDL-2010 diagrams each of these is treated as a
<name>. In accordance with C and to limit the impact on SDL-2010 of C lexica rules,
corresponding uppercase keywords do not exist. An SDL-2010 <keyword> item as defined in
[ITU-T Z.101] cannot be used as a <name> in C type or variable definitions.

C.1.1.2 Cinteger constants

<integer name> ::=
<decimal digit>+
| <c integer constant>

The lexica rule <integer name> is extended to include <c integer constant>. The form <decimal
digit>+ appliesto SDL-2010 diagrams, and the form <c integer constant> appliesto C diagrams.

2 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

<c integer constant> ::=
<c decimal constant>
[<c octal constant>
[<c hexadecimal constant>

NOTE 1 - Clause 6.4.4.1 of [b-1SO/IEC 9899] but excluding the <c integer suffix>.

<c decimal constant> ::=
<c nonzero digit>
| <c decimal constant> <c digit>

NOTE 2 — Clause 6.4.4.1 of [b-1SO/IEC 9899].

<c octal constant> ::=
0
| <c octal constant> <c octal digit>

NOTE 3 - Clause 6.4.4.1 of [b-1SO/IEC 9899].

<c hexadecimal constant> ::=
<c hexadecimal prefix> <c hexadecimal digit>
| <c hexadecimal constant> <c hexadecimal digit>

NOTE 4 — Clause 6.4.4.1 of [b-ISO/IEC 9899].

<c hexadecimal prefix> ::=
0x

NOTE 5 — Clause 6.4.4.1 of [b-1SO/IEC 9899] without the 0X form.

<c nonzero digit> ::=
1 2| 3 | 4 | 5
| 6 | 7 | 8 | 9

NOTE 6 — Clause 6.4.4.1 of [b-1SO/IEC 9899].

<c octal digit> ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

NOTE 7 — Clause 6.4.4.1 of [b-1SO/IEC 9899].

<c hexadecima digit> ::=

I |
I I |
I I |
I I |
NOTE 8 — Clause 6.4.4.1 of [b-1SO/IEC 9899].

A <c integer constant> has an unbounded integer value determined according to the rules given in
[b-1SO/EC 9899]. The Name of the <c integer constant> is the Name of the <decimal digit> string
starting with a non-zero digit that has this value. The Qualifier for the Identifier of a <c integer
constant> isthe Qualifier for <<package Predefined type Integerss.

>0 oo
Wo oR
0O ~NN
e
mo © N

C.1.1.3 C composite specials

<composite special> ::=
<result sign>
| <range sign>
| <composite begin sign>
| <composite end sign>
| <concatenation sign>
| <history dash sign>
| <greater than or equals sign>
| <implies sign>
| <isassigned sign>
| <lessthan or equals sign>
| <not equals sign>
| <qualifier begin sign>
| <qualifier end sign>
| <c increment operator>

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 3

| <c decrement operator>

| <c equality sign>

| <cinequdlity sign>

[<clogical and sign>

| <c logical or sign>

| <c multiplication assignment sign>
| <c division assignment sign>

| <c remainder assignment sign>

| <c addition assignment sign>

| <c subtraction assignment sign>

| <c shift left assignment sign>

| <c shift right assignment sign>

| <c bitwise and assignment sign>

| <c hitwise excl or assignment sign>
| <c hitwise incl or assignment sign>

The rule <composite specia> is extended to include the additional composite symbols used in C
except those symbols only used for pre-processing and alternatives for: square brackets, curly
brackets and the number sign.
<c pointer operator> i=
<result sign>
<c shift left sign> u=
<qualifier begin sign>
<c shift right sign> =
<qualifier end sign>
The rule <c pointer operator>, <c shift left sign> and <c shift right sign> lexical units are the same
as <result sign>, <qualifier begin sign> and <qualifier end sign>, respectively, and the lexical unit
represented is determined by context. In syntax rules defined for C diagrams these lexical units
always represent <c pointer operator>, <c shift left sign> and <c shift right sign>, respectively.
<c increment operator> R
<plus sign> <plus sign>
<c decrement operator> u=
<hyphen> <hyphen>
<c equality sign> i=
<equals sign> <equals sign>
<cinequality sign> i=
<exclamation mark> <equals sign>
<c logical and sign> u=
<ampersand> <ampersand>
<c logical or sign> u=
<vertical line> <vertica line>
<c multiplication assignment sign> n=
<asterisk> <equals sign>
<c division assignment sign> n=
<solidus> <equals sign>
<c remainder assignment sign> ;=
<percent sign> <equals sign>
<c addition assignment sign> =
<plus sign> <equals sign>

<c subtraction assignment sign> ;=
<hyphen> <equals sign>

<c shift left assgnment sign> =
<less than sign> <less than sign> <equals sign>

4 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

<c shift right assignment sign> ;=
<greater than sign> <greater than sign> <equals sign>

<c hitwise and assignment sign> ;=
<ampersand> <equals sign>

<c hitwise excl or assignment sign> R
<circumflex accent> <equals sign>

<c bitwise incl or assignment sign> u=
<vertical line> <equals sign>
C.1.1.4 C character constants

<c character constant> ::=
<apostrophe> <c char sequence> <apostrophe>

NOTE 1 — Clause 6.4.4.4 of [b-1SO/IEC 9899] without the prefixes for types other than unsigned char.

<c char sequence> ;=
<c char>

NOTE 2 — Clause 6.4.4.4 of [b-1SO/IEC 9899] restricted to a single character, because the "value of an
integer character constant containing more than one character, or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined”. (See clause 6.4.4.4 of
[b-1SO/IEC 9899].)

<c char> ::=
<quotation mark> | <c other character> | <space> | <c escape sequence>

NOTE 3 — Clause 6.4.4.4 of [b-1SO/IEC 9899], modified to use SDL-2010 lexical items.
A <c escape sequence> (see clause C.1.1.5 below) shall map to a single byte character.

The <c character constant> represents the constant unsigned char value corresponding to the
constant expression to_Unsigned char (<<package Predefined type Chars> num(c)), Where
c isthe character specified by the <c character constant>.

C.1.15 Cstringliterals

<c dtring literal> ::=
<quotation mark> [<c s char sequence>] <quotation mark>

There is a clash between <quoted operation name> and <c string literal>. A lexical unit in an
SDL-2010 diagram that starts with a <quotation mark> never represents a <c string literal>.
A lexical unit in a C diagram that starts with a <quotation mark> always represents a <c string
literal>.

A <c string literal> is pointer to the first element of an array of characters derived from the
<character string> where the <c string literal> has a <c s char sequence> the same as the sequence
of characters in a <character string> (after replacement of <c escape character> items in the
<c s char sequence> and <apostrophe> pairs in the <character string>).

A <c string literal> represents a Variable-access for an implicit anonymous unsigned char pointer
(tofirst char of animplicit char array) defined by

synonym anoncp Star Unsigned char = &" (xstring[0]) ;
where
xstring IS an implicit anonymous char array defined by

synonym xstring value inherits Cvector <char,n+l> = c_array init;
where

n is the length of the <character string> (that is, the length in bytes of the <c s char sequence> after
replacement of <c escape character> items), and

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 5

c_array init isthe initialization value using a call of Mmake and calls of mModify (as described for
<c initialize> in clause C.1.3) with each element of the array initialized to the corresponding
character of the string and the string terminates in a zero (anur character).

For example, if the <c string literal> is "aB3", then ¢_array init iS{'a’, 'B', '3', endstr}
where endstr is Integer to Unsigned char (num(<<package Predefined type
Character>>NUL)).

The unsigned char array element i (<n) for the string IS
Integer to Unsigned char (num(zstring[i+1])), where zstring IS the charstring
<character string>.

NOTE 1 — This definition allows a <c string literal> to be used with functions from the C library string.n
(see clause 7.24 of [b-ISO/IEC 9899)), if these functions are defined in an additional package as external
operations or procedures. The operator

<<package C Predefined type Star Unsigned char>> Star Unsigned char to Charstring

alows a<c string literal> (or other unsigned_char array values) to be converted to charstring expressions.

<c s char sequence> ::=
<c schar>
| <c s char sequence> <c s char>

NOTE 2 — Clause 6.4.5 of [b-1SO/IEC 9899].

<cschar>:=
<apostrophe> | <c other character> | <space> | <c escape sequence>

NOTE 3 — Clause 6.4.5 of [b-ISO/IEC 9899], modified to use SDL-2010 lexical items.

<c other character> ::=
<alphanumeric>

| <special> | <dollar sign> | <percent sign>

| <ampersand> | <question mark> | <commercial at>
| <circumflex accent> | <underline> | <grave accent>

| <vertica line> | <tilde>

<C escape sequence> ::=
<c simple escape sequence>
| <c octal escape sequence>
| <c hexadecimal escape sequence>

NOTE 4 — Clause 6.4.4.4 of [b-1SO/IEC 9899] excluding <c universal character name>.

<c simple escape sequence> ;=

<reverse solidus> <apostrophe>
| <reverse solidus> <quotation mark>
| <reverse solidus> <question mark>
| <reverse solidus> <reverse solidus>
[<reverse solidus> a
[<reverse solidus> b
[<reverse solidus> f
| <reverse solidus> n
| <reverse solidus> r
| <reverse solidus> t
| <reverse solidus> v

NOTE 5 — Clause 6.4.4.4 of [b-1SO/IEC 9899].

<c octal escape sequence> ::=
<reverse solidus> <c octal digit> <c octal digit> <c octal digit>

NOTE 6 — Clause 6.4.4.4 of [b-1SO/IEC 9899].

<c hexadecimal escape sequence> ::=
<reverse solidus> x <c hexadecimal digit> <c hexadecimal digit>

NOTE 7 — Clause 6.4.4.4 of [b-ISO/IEC 9899] but always with two hexadecimal digits.

6 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

The characters represented by the aternatives of <c escape sequence> are defined by
[b-1SO/IEC 9899].

C.1.1.6 Cidentifiers, nameresolution and visibility

Concrete grammar
<c identifier> ::=
<name>
NOTE — Clause 6.4.2.1 of [b-ISO/IEC 9899] is redefined as <name> because <c identifier> has the same
syntax as <name>.

In aC diagram, a <c identifier> cannot have a <qualifier>. Identifiers in C language data definitions
and expressions are in principle bound to names according to the SDL-2010 name binding rulesin
clause 6.6 of [ITU-T Z.101]. In a defining context for a Name in the abstract grammar, a
<c identifier> represents the Name. In a non-defining context where a name is used, a <c identifier>
represents an ldentifier and the Qualifier is derived from the name binding. A <c identifier> that
represents an ldentifier may be marked as belonging to a subcategory: for example, <data type c
identifier> requires the Identifier to represent a data type. When a <c identifier> represents an
Identifier, if it cannot be uniquely bound to an Identifier it is ambiguous and therefore invalid.

C.1.1.7 Macrosand pre-processing

It is assumed that pre-processing as defined by [b-1SO/IEC 9899] is applied before any C diagram is
considered as part of an SDL-2010 model, and as a consequence that any C pre-processing tokens
or alternative composite symbols (such as the aternative left curly bracket) are removed from the
contents of a C diagram. It is assumed that SDL-2010 macro processing is applied to the model
after any C pre-processing.

C.1.2 Datatypedefinition

Concrete grammar
<data definition> ::=
<entity in data type>
| <interface definition>
| <c type definition>

A <c type definition> shall only be used in a C diagram.

<c type definition> ::=
typedef <c type specifier> <c declarator> <semicolon>
| <c struct or union specifier> <semicolon>
| <c enum specifier> <semicolon>

NOTE 1 — This is a valid subset of <c declaration> from clause 6.7 of [b-1SO/IEC 9899]. This subset
includes only aternatives starting with the keywords typedef, struct, union and enum. The <c init
declarator list> is simplified to a <c declarator> and is not allowed to be omitted.

<c declarator> ::=
[<c pointer>] <c direct declarator>

NOTE 2 — Clause 6.7.6 of [b-1SO/IEC 9899].

If the <c type qualifier list> of a <c pointer> of a <c declarator> contains a <c type qualifier> that is
congt, it is alowed to modify the contents of the target of the pointer, but the pointer itself should
always point to the same target.

The <c identifier> of a <c declarator> is the <c identifier> of the <c direct declarator> of the
<c declarator>, or if the <c direct declarator> of the <c declarator> contains a <c declarator>
enclosed in <left parenthesis> <right parenthesis>, the <c identifier> of this enclosed
<c declarator>.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 7

<c direct declarator> ::=

<c identifier>
{ <left square bracket> <integer ¢ constant expression> <right square bracket> } *
| <left parenthesis> <c declarator> <right parenthesis>

NOTE 3 — Clause 6.7.6 of [b-1SO/IEC 9899] simplified so that it either starts with a <c identifier> or isa<c
declarator> in parentheses, with the assignment expression constrained to a <c constant expression> without
type qualifiers or static.

<c pointer> ::=

<asterisk> [<c type qualifier list>]
| <asterisk> [<c type qualifier list>] <c pointer>

NOTE 4 — Clause 6.7.6 of [b-1SO/IEC 9899].
<c type qudifier list> ::=

<c type qualifier>
| <c type qudlifier list> <c type qualifier>

NOTE 5 — Clause 6.7.6 of [b-1SO/IEC 9899].

A <c type definition> starting with typedef represents a Syntype-definition. The <c identifier> of
the <c declarator> of the <c type definition> represents the Syntype-name of the Syntype-definition.
The Range-condition of the Syntype-definition is the predefined Boolean value true. There is no
Default-initialization for the Syntype-definition. The Parent-sort-identifier of the Syntype-definition
of the <c type definition> is denoted ps below and is determined as follows.

a)

If the <c declarator> has a <c pointer>, its type is a typed pointer and ps is the Identifier of
this data type. If the <c pointer> does not include another <c pointer> and the <c type
specifier> is the <c type keywords> item void, ps is the Identifier for star void.
Otherwise, if it not star void and there is a (possibly anonymous) visible
Data-type-definition for a subtype of star type where atype Of star type iS bound to
the type (target) of areduced <c declarator> (that is, the <c declarator> with removal of
the <asterisk> and any adjacent <c type qualifier list> from the <c pointer>), ps is the
Identifier of this data type. Otherwise (if it is not star void and no such type is visible),
the <c type definition> represents an anonymous Data-type-definition that is a
Value-data-type-definition in addition to the Syntype-definition represented by the <c type

definition>, and this anonymous type is the sort defined by the concrete SDL-2010 value
type PS inherits Star type < target »>;

where
target iSthetarget type;
Star type is defined as a parameterized datatypein c¢_predefined.

If the reduced <c declarator> contains a <c pointer>, target isatyped pointer to a further
typed pointer with a type for either a visible or an anonymous Data-type-definition
determined in the same way described above. For example, for

typedef Existing type ***Ppp existing type;
defines a syntype Name ppp existing type and Parent-sort-identifier identifying the
anonymous type defined by

value type PS inherits
Star type<value inherits
Star_ type<value inherits Star type<Existing type>>>;

and intermediate anonymous types defined by

value inherits Star type<value inherits Star type<Existing type>> and
value inherits Star type<Existing types uUsSing inline sort definitions for the
tfwo outer star type parameters.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

b)

Clz21

Otherwise, the reduced <c declarator> does not contain a <c pointer> and target is the
type identified for the ps of the reduced <c declarator> (that is, the type of a <c declarator>
with no <c pointer>) as determined in b), c), d) and €) below.

If there is no <c pointer> and the <c identifier> in the <c declarator> of the <c type
definition> is followed by one or more index specifications (<left square bracket>
[<integer c constant expression> | <right square bracket> list in <c direct declarator>), the
type is a C array. The C array has a derived anonymous Data-type-definition that is a
Value-data-type-definition in addition to the Syntype-definition represented by the <c type
definition>. The ps isthe Identifier of this anonymous value type defined by

value type PS inherits Cvector <itemsort, arraysizes;
where

arraysize IS the value of the <Integer ¢ constant expression> for this index
specification,

itemsort IS sort of the following index specification if there is one, or the sort
identified for PS from the <c type specifier> after the typedef as in (c), (d) and (e)
below, and

cvector iSdefined as a parameterized datatypein c_predefined.

If there is a following index specification, for the itemsort there is a further derived
anonymous Data-type-definition that is a Value-data-type-definition in addition to the
Syntype-definition represented by the <c type definition>. This is formed in the same way
as the Data-type-definition for a previous index specification, so that there are as many
anonymous data types as index specifications. For example, for

typedef int x3d[3] [5] [7]
ps is defined by

value type PS inherits
Cvector<value inherits Cvector<value inherits Cvector<int,7>,5>,3>

using inline sort definitions for the two outer itemsort parameters.

If there is no <c pointer> and no index specification after the <c identifier> in the
<c declarator> of the <c type definition>, and the <c type specifier> is <c type keywords>,
ps isthe Identifier for the <c type keywords>. The identified type shall not be void.

Otherwise, if there is no <c pointer> and no index specification after the <c identifier> in
the <c declarator> of the <c type definition>, and the <c type specifier> is a <c identifier>,
it shall identify adatatype and ps isthe Identifier of that data type.

Otherwise, if there is no <c pointer> and no index specification after the <c identifier> in
the <c declarator> of the <c type definition>, and the <c type specifier> is <c struct or
union specifier> or <c enum specifier>, ps is the (possibly anonymous) Identifier of the
data type of the <c type specifier> that is the <c struct or union specifier> or <c enum
specifier>. The <c type specifier> that is the <c struct or union specifier> or <c enum
specifier> represents a Data-type-definition in addition to the Syntype-definition
represented by the <c type definition>.

Data type specifier

Concrete grammar

<c type specifier> ::=

<c type keywords>
| <c struct or union specifier>
| <c enum specifier>
| <datatype c identifier>

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 9

<c type keywords> ::=

void

[signed | unsigned] char

[signed | unsigned] short [int]

[signed | unsigned] int

[signed |unsigned] long[long] [int]

unsigned

I

I

I

I

| signed
I

| float
|

[long] double

NOTE — This is a valid subset of <c type specifier> from clause 6.7.2 of [b-1SO/IEC 9899], modified to
syntactically restrict the allowed lists of keywords used for data types and also removing _Bool, _Complex
and <c atomic type specifier>.

If the <c type specifier> is <c type keywords>, the keyword list represents the Sort for the identified
datatype of <<package C_Predefined-> asfollows:

10

void

char

signed char
unsigned char
short

short int

signed short
signed short int
unsigned short
unsigned short int
int

signed

signed int
unsigned
unsigned int
long

long int

signed long
signed long int
unsigned long
unsigned long int
long long

long long int

signed long long

signed long long int

unsigned long long

unsigned long long int

float

identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package
identifies <<package

Unsigned long long

identifies <<package

Unsigned long long

identifies <<package

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

C_Predefineds>>
C_Predefineds>>
C Predefined>>
C Predefined>>
C Predefineds>>
C Predefineds>>
C_Predefined>»>
C_Predefineds>>
C_Predefineds>>
C Predefineds>>
C Predefined>>
C Predefineds>>
C Predefineds>>
C_Predefined>»>
C_Predefineds>>
C_Predefineds>>
C Predefineds>>
C Predefined>>
C Predefineds>>
C Predefineds>>
C_Predefined>»>
C_Predefineds>>
C_Predefineds>>
C Predefineds>>
C Predefined>>

C Predefineds>>

C _Predefineds>>

C Predefined>>

Void

Signed char
Unsigned char
Unsigned char
Signed short
Signed short
Signed_short
Signed short
Unsigned_ short
Unsigned short
Signed int
Signed int
Signed int
Unsigned_int
Unsigned_int
Signed long
Signed long
Signed long
Signed long
Unsigned long
Unsigned_long
Signed long long
Signed long long
Signed long long
Signed long long

Float

double identifies <<package C Predefined>> Double

long double identifies <<package C Predefined>> Long double
C.1.2.2 Struct or union specifier

Concrete grammar

<c struct or union specifier>::
<c struct or union> [<c identifier>]
<left curly bracket> <c struct declaration list> <right curly bracket>
| <c struct or union> <struct or union data type c identifier>

NOTE 1 - Clause 6.7.2.1 of [b-1SO/IEC 9899].

<c struct or union> ::=

struct
| union

NOTE 2 — Clause 6.7.2.1 of [b-1SO/IEC 9899].

A <c struct or union specifier> that has a <c struct declaration list> represents a Data-type-
definition that is a Value-data-type-definition. The <c identifier> before the <left curly bracket>
represents a Name that is the Sort of the Value-data-type-definition. If the <c identifier> is omitted,
the Value-data-type-definition has an anonymous unique Name. The optional Data-type-identifier
of the Value-data-type-definition is omitted. The Literal-signature-set, Procedure-definition-set,
Data-type-definition-set and Syntype-definition-set of the Value-data-type-definition are empty. The
Satic-operation-signature-set is derived from <c struct declaration list>.

A <c struct or union specifier> that does not have a <c struct declaration list> represents an
Identifier. If <c struct or union> is struct, the following <struct or union data type c identifier>
shall represent an Identifier that identifies a Value-data-type-definition for a structure. If <c struct or
union> is union, the following <struct or union data type c identifier> shall represent an Identifier
that identifies a Value-data-type-definition for a union (a choice in SDL-2010 terminology).

<c struct declaration list> ::=

<c struct declaration>
| <c struct declaration list> <c struct declaration>

NOTE 3 - Clause 6.7.2.1 of [b-1SO/IEC 9899].

<c struct declaration> ::=

<c specifier qualifier list> [<c struct declarator list>] <semicolon>
NOTE 4 — Clause 6.7.2.1 of [b-1SO/IEC 9899] without the static-assert-declaration aternative.
<c specifier qualifier list> ::=
<c type specifier>
NOTE 5 — Clause 6.7.2.1 of [b-1SO/IEC 9899] without <c type qualifier> items.
<c struct declarator list> ::=

<c struct declarator>
| <c struct declarator list> <comma> <c struct declarator>

NOTE 6 — Clause 6.7.2.1 of [b-ISO/IEC 9899)].

<c struct declarator> ::=
<c declarator>
| <c declarator> <colon> <c constant expression>

NOTE 7 — Clause 6.7.2.1 of [b-1SO/IEC 9899], modified so that the <c declarator> before a <colon> is not
optional because SDL-2010 requires afield name. The <c constant expression> has no SDL-2010 meaning.

A <c struct declarator> is afield of a structure or union with a field name that is the <c identifier>
of the <c declarator> of the <c struct declarator>. Each field name of a structure or union
(<cidentifier> of the <c declarator> of a <c struct declarator> of a <c struct declarator list> of a
<c struct declaration> of a <c struct declaration list>) shall be different from every other field name

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 11

of the same structure or union (the <c struct declaration list>). A <c struct declarator> that has a
<c declarator> that contains a <c pointer> is a pointer field. A <c struct declarator> is an array field
if it has a <c declarator> that contains one or more index specifications (<left square bracket>
<Integer ¢ constant expression> <right square bracket> list in <c direct declarator>). A <c struct
declarator> has a field sort that is the Sort determined in the same way as determining the
Parent-sort-identifier of the Syntype-definition of a <c type definition> with a typedef (see
clause C.1.2), except the <c type specifier> is the <c type specifier> of the <c specifier qualifier
list> of the <c struct declaration> that encloses the <c struct declarator list> that encloses the <c
struct declarator>. As a consequence, it is possible that a <c declarator> of a <c struct declarator>
that contains a <c pointer> or index specification represents additional anonymous
Data-type-definition items. The field sort shall not be voiad.

The <c struct declaration list> for a structure s represents (in the Static-operation-signature-set of
the Data-type-definition for s):

a) An Operation-signature for a generic operator named Make Wwith an empty
Formal-argument list and an Operation-result that is the Sort-reference-identifier of the s
structure sort, and the procedure identified by the Operation-signature has a
Result-aggregation that is PART.

b) An Operation-signature for a generic operator named Make Wwith a non-empty
Formal-argument list where each item is the Sort-reference-identifier of the corresponding
(in order) field name, and an Operation-result that is the Sort-reference-identifier of the s
structure sort, each formal parameter of the procedure identified by the Operation-signature
has its Parameter-aggregation that is PART, and a Result-aggregation that is PART.

C) For each field, if the field nameis £n and the field sort is £s, an Operation-signature for the
SDL-2010 <operation signature>

fnExtract (S) -> fs;
for ageneric operator where

fnExtract IS a field-extract-name formed from the concatenation of the field name and
"Extract",

s isanin/out parameter with a PART aggregation kind,
and the result has the same aggregation kind asthe field £n.

NOTE 8 — A specia syntax is provided as described in clause 12.2.3. To use fnExtract t0 extract
the value of field £n from structure variable vs in the context of an expression the notation is:

vs.fn

d) For each field, if the field nameis £n and the field sort is £s, an Operation-signature for the
SDL-2010 <operation signature>
fnModify (S, fs) -> S;
for ageneric operator where
fnModify IS a field-modify-name formed from the concatenation of the field name and
"Modify",
s isanin/out parameter with a PART aggregation kind,
fs isan in parameter with the same aggregation kind asthe field £n,
and the procedure identified by the Operation-signature has a Result-aggregation that is
PART.
NOTE 9 — A special syntax is provided as described in clause 12.3.3.1 modified to use "=" for the
assignment sign. To use £nModi fy t0 assign the value fieldvalue (avalue with the sort of field £n)
tofield £n of structure variable vs, the notation is:

vs.fn = fieldvalue;

12 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

The <c struct declaration list> for a union sort u represents (in the Operation-signature set of the
Data-type-definition for v):

a)

b)

d)

An Operation-signature for a generic operator named Make Wwith an empty
Formal-argument list and an Operation-result that is the Sort-reference-identifier of the u
union sort, and the procedure identified by the Operation-signature has a
Result-aggregation that is PART.

For a unique field sort with the sort ufs (if there are two or more fields with the same sort
there is one unique field sort, ufs), an Operation-signature for a generic operator

Make (ufs) -> U;

for a generic field initialization operator for the leftmost (in the union definition) field with
sort ufs where

ufs isan in parameter with the aggregation kind PART

and the procedure identified by the Operation-signature has a Result-aggregation that is
PART.

For each field, if the field nameis £n and the field sort is £s, an Operation-signature for the

SDL-2010 operation signature
fn (fs) -> U;

for ageneric field association operator where

£n is afield-associate-name which is the same as the field name,

fs isan in parameter with the same aggregation kind asthe field £n,

and the procedure identified by the Operation-signature has a Result-aggregation that is
PART.

For each field, if the field nameis £n and the field sort is £s, an Operation-signature for the

SDL-2010 <operation signature>
fnExtract (U) -> fs;

for a generic operator where

fnExtract IS a field-extract-name formed from the concatenation of the field name and
"Extract",

uisanin/out parameter with a PART aggregation kind,

and the result has the same aggregation kind asthe field £n.

NOTE 10 — A special syntax is provided as described in clause 12.2.3. To use fnExtract to extract
the value of field £n from a choice variable vu in the context of an expression, the notation is:

vu.fn

For each field, if thefield nameis £n and the field sort is £s, an Operation-signature for the

SDL-2010 <operation signature>
fnModify (U, fs) -> U;

for a generic operator where

fnModify IS a field-modify-name formed from the concatenation of the field name and
"Modify",

uisanin/out parameter with a PART aggregation kind,

fs isanin parameter with aPART aggregation kind,

and the procedure identified by the Operation-signature has a Result-aggregation that is
PART.

NOTE 11 — A special syntax is provided as described in clause 12.3.3.1 modified to use "=" for the
assignment sign. To use fnModi fy t0 assign the value of fieldvalue (avalue with the sort of field
£n) tofield £n of achoice variable vu, the notation is:

vu.fn = fieldvalue;

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 13

f) For each field, if the field nameis £n, an Operation-signature for the SDL-2010 <operation

signature>
fnPresent (U) -> <<package Predefined>>Boolean;

for a generic operator where

fnPresent IS a field-present-name formed from the concatenation of the field name and
"Present”,

uisanin/out parameter with an empty <aggregation kind>,

and the procedure identified by the Operation-signature has a Result-aggregation that is
PART.

Whether fnpresent isvisible in a C diagram isimplementation dependent.

0) An Operation-signature for a generic operator named presentExtract based on the
SDL-2010 <operation signature>

PresentExtract (U)-> AnonPresent;

where anonpresent IS defined as aliteral constructor data type that uses the field names of
the choice as literals as described below,

uisanin/out parameter with an empty <aggregation kind>,

and the procedure identified by the Operation-signature has a Result-aggregation that is
PART.

Whether presentExtract isvisiblein aC diagram isimplementation dependent.

The <c struct or union specifier> for a union type u also represents an additional (anonymous)
Data-type-definition, that for the description above is called anonpresent, in the context that the
Data-type-definition for u occurs. Thisis defined with a Literal-signature-set where each field name
of the union u represents a Literal-signature. The order of the literals is the same as the order in
which the field names are specified left to right in the union u. The purpose of this data type is to
allow the operation presentExtract With aresult that corresponds to the field name. The name of
this data type being unknown prevents it being used for other purposes.

C.1.23 Enum specifier

Concrete grammar
<c enum specifier> ::=
enum [<cidentifier>]
<left curly bracket> <c enumerator list> <right curly bracket>
| enum [<c identifier>]
<left curly bracket> <c enumerator list> <comma> <right curly bracket>
| enum <enum data type c identifier>

NOTE 1 - Clause 6.7.2.2 of [b-1SO/IEC 9899].

A <c enum specifier> that has a <left curly bracket> followed by a <c enumerator list> followed by
a<comma> followed by a <right curly bracket> has the same meaning as a <c enum specifier> with
<left curly bracket> followed by the same <c enumerator list> followed by a <right curly bracket>.

A <c enum specifier> that does not have a <c enumerator list> represents an ldentifier that
identifies a Value-data-type-definition for an enumerated type.

A <c enum specifier> that has a <c enumerator list> represents a Data-type-definition that is a
Value-data-type-definition for an enumerated type. The <c identifier> before the <left curly
bracket> represents a Name that is the Sort of the Value-data-type-definition. If the <c identifier> is
omitted, the Value-data-type-definition has an anonymous unique Name. The optional Data-type-
identifier of the Value-data-type-definition is omitted. The Procedure-definition-set, Data-type-
definition-set and Syntype-definition-set of the Value-data-type-definition are empty. The Literal-
signature-set and Static-operation-signature-set are derived from <c enumerator list> as described
below.

Each Literal-signature has a Result that is the Sort of the Value-data-type-definition.

14 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

<c enumerator list> ::=
<c enumerator>
[<c enumerator list> <comma> <c enumerator>

NOTE 2 — Clause 6.7.2.2 of [b-1SO/IEC 9899].
The number of items in the <c enumerator list> shall be less than or equal to I1NT MaX.

<c enumerator> ::=
<c enumeration constant>
[<c enumeration constant> <equals sign> <c constant expression>

NOTE 3 — Clause 6.7.2.2 of [b-ISO/IEC 9899)].

The <c constant expression> shall evaluate to a Natural Simple expression less than or equa to
INT MAX.
<c enumeration constant> ::=
<cidentifier>
NOTE 4 — Clause 6.4.4.3 of [b-1SO/IEC 9899].

Each <c enumerator> represents a Literal-signature.

Each Literal-name is unique within the defining scope unit in the abstract syntax even if the
corresponding <c identifier> of the <c enumeration constant> of the <c enumerator> is not unique.
The unigue Literal-name is derived from:

a) the <c identifier> of the <c enumeration constant> of the <c enumerator>; plus
b) the Result of the Literal-signature.

The Natural value of the <c constant expression> after an <equals sign> represents the
Literal-natural of the Literal-signature.

Each <c enumeration constant> not followed by an <equals sign> in a <c enumerator list> is given
the lowest possible Natural value for the Literal-natural of the Literal-signature not occurring for
any other <c enumeration constant> items of the same <c enumerator list>, considering the
<c enumeration constant> items one by one from left to right.

C.1.24 Sizeof datatypes

As well as representing abstract grammar items described above, a <c type definition> also
represents a synonym definition for the size of the data type as defined below. A synonym
definition is aread-only Variable-definition. The Variable-name is the Name derived from prefixing
the <c identifier> for the data type with "sizeof " as further described below. The Sort-reference-
identifier is the Sort-reference-identifier for the 1nteger data type. The Constant-expression is a
Literal that is a Literal-identifier that is an Identifier for the 1nteger value for the size of the data
type.

NOTE — If the data type has an anonymous name the synonym for the data type size is al'so anonymous.

A <c struct or union specifier> or <c enum specifier> that is not a <c type definition> also
represents a synonym definition for the size of the data type as well as representing a data type
definition. The synonym is named and defined in the same way as <c struct or union specifier> or
<c enum specifier> that is a <c type definition>.

There is only a Variable-definition for the size of a data type, if the data type is defined in a
Cdiagram and every element of the data type has a defined size. The size of the data types
Boolean, Character, Bit, Octet, NumericChar, PrintableChar, TeletexChar and 1aschar Of
<<package Predefined>> have defined sizes and <<package C_Predefineds>> defines the
corresponding Synonyms. sizeof Boolean, sizeof Character, sizeof Bit, sizeof Octet,
sizeof NumericChar, sizeof PrintableChar, sizeof TeletexChar and sizeof IA5Char.
Other data types of <<package Predefined>> SUch as integer are unbounded, and although they

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 15

can be used in C diagrams the size of these data types and any data type having elements of these
types is undefined and the corresponding synonym Variable-definition for the size does not exist.

If the <c type definition> is a <c type definition> for a C array, the size for the Constant-expression
is the value of the <Integer ¢ constant expression> for the number of array elements multiplied by
the size of the item sort of the array.

If the <c type definition> defines the data type as a syntype for another type (a named data type
identified by a <c identifier> or by <c type keywords>), the Constant-expression is the same as the
Constant-expression for the size of the other type.

If the <c type definition> defines a syntype based on a <c type specifier> that is <c struct or union
specifier> or <c enum specifier>, the Constant-expression is the size of the structure or union or
enumerated type defined by the <c struct or union specifier> or <c enum specifier>.

If the <c type definition> is a <c struct or union specifier> for a structure type with a <c struct
declaration list>, the Constant-expression is the size for the struct, which is implementation
dependent but at least the sum of the sizes of al <c struct declarator> items in the <c struct
declaration list>. The size of a <c struct declarator> in a structure that is not a C array is the size of
the Sort of the field sort (that is, the Sort represented by <c type specifier> of the <c specifier
qualifier list> of the <c struct declaration> that encloses the <c struct declarator list> that encloses
the <c struct declarator>). The size of a <c struct declarator> in a structure that is a C array, is the
size of a <c struct declarator> of the array item sort multiplied by the <Integer c constant
expression> for the number of array elements.

If the <c type definition> is a <c struct or union specifier> for a union type with a <c struct
declaration list>, the Constant-expression is the size for the union, which is the maximum of each
of the sizes of all <c struct declarator> items in the <c struct declaration list>. The size of each
<c struct declarator> in a union is the same as the size of the same <c struct declarator> in a
structure.

If the <c type definition> is a <c enum specifier>, the Constant-expression is the same as the
Constant-expression for the synonym <<package C Predefineds>sizeof Signed int.

INn <<package C_Predefineds> the following datatypes are defined with synonyms for their size:
Void has size <<package C Predefined>> sizeof Void

Signed char has size <<package C Predefineds>>
sizeof Signed char

Unsigned char has size <<package C Predefineds>>
sizeof Unsigned char

Signed short has size <<package C Predefined>>
sizeof Signed short

Unsigned short has size <<package C Predefineds>>
sizeof Unsigned short

Signed int has size <<package C Predefineds>>
sizeof Signed int

Unsigned int has size <<package C Predefineds>>
sizeof Unsigned int

Signed long has size <<package C Predefineds>>
sizeof Signed long

Unsigned long has size <<package C Predefineds>>
sizeof Unsigned long

Signed long_ long has size <<package C Predefineds>>
sizeof Signed long_ long

Unsigned long long has size <<package C Predefineds>>
sizeof Unsigned long long

Float has size <<package C_Predefined>> sizeof Float

16 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

Double
Long double

Star Void

Star Signed char
Star Unsigned char
Star Signed short
Star Unsigned short
Star Signed int
Star Unsigned int
Star_ Signed long

Star Unsigned long

has size <<package C Predefined>>

has size <<package C Predefined>>
sizeof Long double

has size <<package C Predefined>>

has size <<package C Predefined>>
sizeof Star Signed char

has size <<package C Predefined>>
sizeof Star Unsigned char

has size <<package C Predefineds>>
sizeof Star Signed short

has size <<package C Predefined>>
sizeof Star Unsigned short

has size <<package C Predefineds>>
sizeof Star Signed int

has size <<package C Predefineds>>
sizeof Star Unsigned int

has size <<package C Predefineds>>
sizeof Star Signed long

has size <<package C Predefineds>>

sizeof Double

sizeof Star Void

sizeof Star Unsigned long

Star Signed long long has size <<package C_ Predefineds>>

sizeof Star Signed long long

Star Unsigned long longhas size <<package C_ Predefineds>>
sizeof Star Unsigned long long

Star_Float has size <<package C Predefineds>>

sizeof Star Float

Star Double has size <<package C Predefined>>

sizeof Star Double

Star_Long_double has size <<package C Predefineds>>

sizeof Star Long double

Other subtypes of the star Type havethe samesize asstar void.
C.1.3 Useof C variabledefinitions

Abstract grammar
The Sort-identifier of a Variable-definition shall not represent the void data type.

Concrete grammar

<variable definition> ::=
dcl <variables of sort> {, <variables of sort> }* <end>
[dcl exported <exported variables of sort> {, <exported variables of sort>}* <end>
| <c declaration>

A <c declaration> shall only be used in a C diagram.

<c declaration> ::=

<c declaration specifiers> <c init declarator list> <semicolon>
NOTE 1 - Clause 6.7 of [b-ISO/IEC 9899] <c declaration> omitting the static assert alternative and modified
to exclude alternatives used for <c type definition> as an alternative of <data definition>. The declaration
specifiers of <c declaration> are restricted to the aternatives defined by <c type specifier> items that start
with a data type name or specific keywords. Compared with [b-1SO/IEC 9899] it is not allowed to omit the
<c init declarator list>.

A <c declaration> represents a Variable-definition-set in the enclosing scope.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 17

A <c declaration specifiers> identifies a Sort-identifier for a sort used in the Variable-definition for
each <c init declarator> of the <c init declarator list>. This is either the sort of the variable or the
target sort for a pointer or the item sort for a C array, depending on the <c declarator> for <c init
declarator> as described below.
<c declaration specifiers> ::=
<c type specifier>

[<c storage class specifier> [<c declaration specifiers> |

| <c type qualifier> [<c declaration specifiers>]
NOTE 2 — Clause 6.7 of [b-ISO/IEC 9899] excluding function-specifier and alignment-specifier aternative.
The syntax is rewritten so that there is one and only one <c type specifier> (that is, <c declaration specifiers>
isnot allowed after <c type specifier>).

If the <c type specifier> is <c type keywords> it identifies a Sort-identifier according to the list
given for the syntax of <c type keywords> above.

If the <c type specifier> is a <data type c identifier> or <c struct or union specifier> with a
<cidentifier>, or <c enum specifier> with a <c identifier>, this <c identifier> represents the
Sort-identifier.

If the <c type specifier> is a <c struct or union specifier> without a <c identifier>, or <c enum
specifier> without a <c identifier>, it identifies the Sort-identifier for an anonymous unique
identifier of the inline type definition given by the <c struct or union specifier> or <c enum
specifier>.

If the <c type specifier> is a <c struct or union specifier> with a <c struct declaration list> or a
<c enum specifier> with a <c enumerator list>, the <c type specifier> is an inline definition of a
data type (see the grammar for <c type specifier>).
<c storage class specifier> ;=
extern
| auto
| register
NOTE 3 — Clause 6.7.1 of [b-ISO/IEC 9899] excluding typedef (used in <c type definition>), static
and _Thread local. The variables specified as static are not considered, as they are difficult to map in
SDL-2010 and can be replaced with system or block variables. The keywords auto and register have no
meaning in SDL-2010 and are ignored.
<c type qudifier> ::=
const
| restrict
| volatile
NOTE 4 — Clause 6.7.3 of [b-I1SO/IEC 9899] excluding _Atomic. The keywords volatile and restrict have
no meaning in SDL-2010 and are ignored.

The keyword const means the item should be initialized and should not be subsequently changed,
but has no mapping to the abstract grammar and is therefore treated as annotation with respect to
the SDL-2010 semantics. It is permitted for a tool to treat the keyword const as defined in
clause 6.7.3 of [b-1SO/IEC 9899].

<c init declarator list> ::=
<c init declarator>
| <c init declarator list> <comma> <c init declarator>

NOTE 5 — Clause 6.7 of [b-1SO/IEC 9899].

<c init declarator> ::=
<c declarator>
| <cdeclarator> <equals sign> <c initializer>

NOTE 6 — Clause 6.7 of [b-1SO/IEC 9899].

18 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

Each <c init declarator> represents a Variable-definition. The <c identifier> (of the <c declarator>
of the <c init declarator>) represents the Variable-name of the Variable-definition. The
Aggregation-kind of the Variable-definition is PART.

If the <c declarator> of a <c init declarator> contains no <c pointer> items and no index
specifications (<left square bracket> <Integer ¢ constant expression> <right square bracket> list),
the Sort-reference-identifier of the Variable-definition is the Sort-identifier from the <c declaration
specifiers> as described above.

If the <c declarator> of a <c init declarator> contains a <c pointer> or one or more index
specifications, its type is a typed pointer, or the type of a C Array and Sort-reference-identifier of
the Variable-definition isthe Identifier of this datatype. The datatypeis derived in the same way as
the Parent-sort-identifier of the Syntype-definition of a <c type definition> with a typedef
(seeclause C.1.2), except the <c type specifier> is the <c type specifier> of the <c declaration
specifiers> of the <c declaration> that encloses the <c init declarator list> that encloses the <c init
declarator>. As a consequence, it is possible that a <c declarator> of a <c init declarator> that
contains a <c pointer> or index specification represents additional anonymous Data-type-definition
items.

If the <c init declarator> contains a <c initializer>, this represents the optional Constant-expression
of the Variable-definition.

If a <c type qualifier> is const for the <c declaration specifiers> of a <c declaration>, each
Variable-definition represented by the <c declaration> is a read-only variable and shall not be used
for the target of an assignment or otherwise modified. In this case, each <cinit declarator> shall
contain a<c initializer> that initializes the variable.
<cinitializer> ::=

<constant ¢ conditional expression>

| <left curly bracket> <c initializer list> <right curly bracket>
| <left curly bracket> <c initializer list> <comma> <right curly bracket>

NOTE 7 — Clause 6.7.9 of [b-1SO/IEC 9899].

The trailing <comma> after a<c initializer list> isignored so this alternative has the same meaning
as the alternative without a <comma>.
<cinitializer list> ::=
<cinitializer>
<cinitializer list> <comma> <c initializer>
NOTE 8 — Clause 6.7.9 of [b-ISO/IEC 9899] excluding designation items.

A <c initializer> shall only contain a <c initializer list> within curly brackets if the variable is a
structure or a union or an array. In the case of a structure, there shall be a <c initializer> in the
<cinitializer list> for every field of the structure and each item shall be compatible with the sort of
the corresponding field. The <c initializer list> represents a call of mMake for the structure with
constants represented by the <c initializer> items as actual parameters. In the case of a union, the
<cinitializer> represents a cal of make for the union with the constant represented by the
<cinitializer> items as the actual parameter. In the case of an array there shall be as many itemsin
the <c initializer list> as there are elements in the array and the sort of each element shall be the
same as the item sort of the array. The <c initializer list> represents a static evaluation of Modify
for the array with the integer value 0O as the index and the constant represented by the first
<cinitializer> as the other 2 parameters. If this is last element of the array, the first parameter of
Modify iSastatic evaluation of the Make operator for the array with one parameter as a default value
for the element type; otherwise it is a static evaluation of Modify with the index value of the next
array element and the constant represented by the next <c initializer>. Nested evaluations of Modify
are repeated until modi fy isevaluated for the last element. For example, in

enum ABC {A, B, C} a3[3] = {A, B, C};

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 19

the<cinitidizer list> {a, B, c} isevauated
Modify (Modify (Modify (Make,C,2),B,1),A,0)
as the Constant-expression for the Variable-definition of a3.

If afield sort or array element sort is itself a structure or array, the <c initializer> for the field or
array element that is a nested <c initializer list> within curly brackets initializes the nested structure
fields or nested array elements.

C.14 Useof C expressions

Concrete grammar
<expression> ::=
<expression0>
| <range check expression>
| <c expression>

The aternatives <expression0> and <range check expression> are not valid in diagrams using
C syntax. The aternative <c expression> isonly valid in diagrams using C syntax.

<C expression> :;=
<c assignment expression>

NOTE — Clause 6.5.17 of [b-1SO/IEC 9899] without multiple assignments separated by commas.
C.1.41 Assignment expression

Concrete grammar

<c assignment expression> ::=
<c conditional expression>
| <C unary expression> <c assignment operator> <c assignment expression>

NOTE 1 — Clause 6.5.16 of [b-1SO/IEC 9899].
The <c unary expression> of a<c assignment expression> isvalidif itis
a) a <c postfix expression> that
i) isa<c primary expression> that is <c identifier> for a variable, and has the type of this
variable; or
ii) is a <c expression> in parentheses that is a valid <c unary expression> for a
<c assignment expression>, and has the type of this <c unary expression>; or
iii) is a <c postfix expression> that identifies a C array item (variable, array element or
field) followed by an index specification (<left square bracket> <c expression> <right
square bracket>), and has the element type of the array; or

iv) is a <c postfix expression> that identifies a structure or union item (variable, array
element or field) followed by field selection (<full stop> <c identifier>), and has the
type of the field selected by <c identifier>;

or

b) an <asterisk> (dereference) <c unary operator> followed by a <c cast expression> that is a
<c postfix expression> that is a valid <c unary expression> for a <c assignment
expression>, and <asterisk> (dereference) is defined for the type of the <c unary
expression>; or

C) an <asterisk> (dereference) <c unary operator> followed by a <c cast expression> that is a
cast (<left parenthesis> <c type name> <right parenthesis> <c cast expression>), and
<asterisk> (dereference) is defined for the type of the <c type name >.

20 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

A <c postfix expression> identifies C array if it:

a) isa<c primary expression> that is <c identifier> for avariable that isa C array, or
b) starts with an inner <c postfix expression> that identifies C array.

<c assignment operator> ::=
<equals sign>
| <c multiplication assignment sign>
| <c division assignment sign>
| <c remainder assignment sign>
| <c addition assignment sign>
| <c subtraction assignment sign>
| <c shift left assignment sign>
| <c shift right assignment sign>
| <c bitwise and assignment sign>
| <c bitwise excl or assignment sign>
| <c hitwise incl or assignment sign>

NOTE 2 — Clause 6.5.17 of [b-ISO/IEC 9899].

A <c assignment expression> that is not a <c conditional expression> represents an Operation-
application where the Operator-identifier denotes an Operation-signature for a method of package
C _pPredefined Or an implicit type for a pointer (a subtype of star type Of package
C_predefined). The <c assignment operator> determines the Operation-name of the Operation-
signature (that is, the Operation-name for operators defined by: "=" if the <c assignment operator>
IS <equals sign>; "*=" for the <c multiplication assignment sign>; and so on). The type of the
<cunary expression> determines the type that defines the method. For example, if this is
Signed_int the method is defined by signed int and signed int corresponds to the
Sort-reference-identifier of the first Formal-argument of the Operation-signature. The type of the
inner <c assignment expression> determines the Sort-reference-identifier of the second and last
Formal-argument of the Operation-signature. These items identify a most one
Operation-signature, a method of package C_Predefined Or implicit types for pointers. If no
Operation-signature is identified the <c assignment expression> is not valid. The <c assignment
expression> has a type identified by the Sort-reference-identifier of the Operation-result of the
Operation-signature.

The <c unary expression> represents the Expression for the first item of the Actual-parameters of
the Operation-application.

The inner <c assignment expression> represents the Expression for the second item of the
Actual-parameters of the Operation-application.

C.1.4.2 Conditional expression

Concrete grammar

<c conditional expression> ::=
<c logical or expression>
[<c logical or expression> <question mark>
<c expression> <colon> <c conditional expression>

NOTE - Clause 6.5.15 of [b-1SO/IEC 9899].

<c constant expression> ::=
<c conditional expression>
A <c conditional expression> containing a <question mark> represents a Conditional-expression
(see clause 12.2.5 of [ITU-T Z.101]). In this case, the sort of the <c logical or expression> shall be
scalar sort, which is defined as one of the following:
a) an integer sort (that is, char, Signed char, Unsigned char, Signed short,
Unsigned short, Signed int, Unsigned int, Signed long, Unsigned long long,
Integer Of the sort of adatatype that inherits from one of these); or

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 21

b) a floating sort (Float, Double, Long double, Real Of the sort of a data type that inherits
from one of these); or

C) apointer sort (star_void, asubtype of star void or asubtype of star type); Or
d) aboolean sort (the Boolean sort or the sort of a data type that inherits from Boolean); or
€) apid sort.

An integer, floating, boolean sort (other than Boo1ean) or pid sort <c logical or expression> before
the <question mark> represents the First-operand of a negative ("/=") Equality-expression that is
the Boolean-expression of the Conditional-expression, and the Second-operand of this Equality-
expression is:

a) the value of the sort equivalent to "0" if the sort of the <c logical or expression> is an
integer sort; or

b) the value of the sort equivalent to "0.0" if the sort of the <c logical or expression> is a
floating sort; or

C) the value of the sort equivalent to "false" if the sort of the <c logical or expression> is a
boolean sort; or

d) the Null-literal-signature if the sort of the <c logical or expression> is a pointer sort; or

e) the Null-literal-signature if the sort of the <c logical or expression> isapid.

If the sort of the <c logical or expression> before the <question mark> iSBoolean, the <c logical or
expression> directly represents the Boolean-expression of the Conditional-expression.

The Consequence-expression in the Conditional-expression is represented by the <c expression> in
the <c conditiona expression>. The Alternative-expression is represented by the inner
<c conditional expression> after the <colon>.

C.1.43 Logical and bitwise operation expressions

For most operators the operator is treated in a similar way to operators in the native SDL-2010
syntax: that is, the operator is treated as if it were written as a prefix operator or as a quoted
operator name such as "+" applied to the operands.

In the case of the logical operators (<c logical or sign> ||, <c logical and sign> "&&"), in
[b-1SO/IEC 9899] the left-hand operand is evaluated first and the right-hand operand is only
evaluated if necessary. So these both have to be handled as a Conditional-expression.

Concrete grammar

<c logical or expression> ::=
<c logical and expression>
| <c logical or expression> <c logical or sign> <c logical and expression>

NOTE 1 — Clause 6.5.14 of [b-ISO/IEC 9899].

A <c logica or expression> before a <c logical or sign> of a <c logica or expression> shall not
represent apid sort.

A <clogical or expression> containing a <c logical or sign> represents a Conditional-expression. In
this case, the <c logical or expresson> represents the Boolean-expression of the
Conditional-expression as described in clause C.1.4.2 for the <c logical or expression> of a
<c conditional expression> containing a <question mark>. The sort and vaue of the
Consequence-expression is:

a) the value of the sort equivalent to "1" if the sort of the <c logical or expression> is an
integer sort; or
b) the value of the sort equivalent to "1.0" if the sort of the <c logical or expression> is a

floating sort; or

22 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

C) the value of the sort equivalent to "true" if the sort of the <c logical or expression> is a
boolean sort or Boolean.

The Alternative-expression of the Conditional-expression is represented by the <c logical and
expression> after the <c logical or sign>.
<c logical and expression> ::=
<cinclusive or expression>
| <c logical and expression> <c logical and sign> <c inclusive or expression>

NOTE 2 — Clause 6.5.13 of [b-1SO/IEC 9899].

A <c logica and expression> containing a <c logicd and sign> represents a
Conditional-expression. In this case, the <c logica and expression> represents the
Boolean-expression of the Conditional-expression as described in clause C.1.4.2 for the <c logical
or expression> of a <c conditional expression> containing a <question mark>. The Consequence-
expression of the Conditional-expression is represented by the <c inclusive or expression> after the
<c logical and sign>. The sort and value of the Alternative-expression is:

a) the value of the sort equivalent to "0" if the sort of the <c logical and expression> is an
integer sort; or

b) the value of the sort equivalent to "0.0" if the sort of the <c logical and expression> is a
floating sort; or

C) the value of the sort equivalent to "fa1se" if the sort of the <c logical and expression> is a
boolean sort; or

d) the Null-literal-signature, if the sort of the <c logical and expression> is apid.

<cinclusive or expression> ::=
<c exclusive or expression>
| <cinclusive or expression> <vertical line> <c exclusive or expression>

NOTE 3 — Clause 6.5.12 of [b-ISO/IEC 9899].

<c exclusive or expression> ::=
<c and expression>
| <c exclusive or expression> <circumflex accent> <c and expression>

NOTE 4 — Clause 6.5.11 of [b-1SO/IEC 9899].
<c and expression> ::=
<c equality expression>
[<c and expression> <ampersand> <c equality expression>
NOTE 5 — Clause 6.5.10 of [b-1SO/IEC 9899].

A <cinclusive or expression> containing a <vertical line>, <c exclusive or expression> containing
a <circumflex accent> or <c and expression> containing an <ampersand> represents an
Operation-application where the Operator-identifier denotes an Operation-signature for an
operator of package C Predefined. The infix operator (<vertical line>, <circumflex accent> or
<ampersand>) determines the Operation-name of the Operation-signature (that is, the
Operation-name for operators defined by: » | » for <vertical line>; »~» for <circumflex accent>; n&n
for <ampersand>). The sort of the context of the <c inclusive or expression>, <c exclusive or
expression> or <c and expression> and sorts of the parameters (the Expression items of the
Actual-parameters list) of the operator are used to identify the exact Operation-signature as
described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that
matches the expression with the infix operator, the expression is not valid. The expression before
the infix operator (<c inclusive or expression> for <vertical line>; <c exclusive or expression> for
<circumflex accent>; <c and expression> for <ampersand>) represents the first Expression of the
Actual-parameters list of the Operation-application. The expression after the infix operator
(<cexclusive or expression> for <vertical line>; <c and expression> for <circumflex accent>;

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 23

<c equality expression> for <ampersand>) represents the second (and last) Expression of the
Actual-parameters list of the Operation-application.

C.1.4.4 Equality and relational expressions

Concrete grammar

<c equality expression> ::=
<c relational expression>
[<c equality expression> <c equality sign> <c relational expression>
| <c equality expression> <c inequality sign> <c relational expression>

NOTE 1 - Clause 6.5.9 of [b-1SO/IEC 9899].

A <c equality expression> containing an equality infix operator (<c equality sign> or <c inequality
sign>) represents an Operation-application where the Operator-identifier denotes an Operation-
signature for an operator of package C_Predefined. The equality infix operator determines the
Operation-name of the Operation-signature (that is, the Operation-name for operators defined by:
"==" for <c equality sign>; "!=" for <c inequality sign>). The sort of the context of the <c equality
expression> and sorts of the parameters (the Expression items of the Actual-parameters list) of the
operator are used to identify the exact Operation-signature as described in clauses 6.6 and 12.2.6 of
[ITU-T Z.101]. If no Operation-signature is found that matches the expression with the equality
infix operator, the expression is not valid. The <c equality expression> before the equality infix
operator represents the first Expression of the Actual-parameters list of the Operation-application.
The <c relational expression> after the equality infix operator represents the second (and last)
Expression of the Actual-parameters list of the Operation-application.
<c relational expression> ::=
<c shift expression>

| <c relational expression> <less than sign> <c shift expression>

| <c relational expression> <greater than sign> <c shift expression>

| <c relational expression> <less than or equals sign> <c shift expression>

| <c relational expression> <greater than or equals sign> <c shift expression>

NOTE 2 — Clause 6.5.8 of [b-1SO/IEC 9899].

A <c relationa expression> containing arelational infix operator (<less than sign> or <greater than
sign> or <less than or equals sign> or <greater than or equals sign>) represents an
Operation-application where the Operator-identifier denotes an Operation-signature for an
operator of package C_pPredefined. The relational infix operator determines the Operation-name
of the Operation-signature (that is, the Operation-name for operators defined by: "<" for <less than
sign>; ">" for <greater than sign>; "<=" for <less than or equals sign>; ">=" for <greater than or
equals sign>). The sort of the context of the <c relational expression> and sorts of the parameters
(the Expression items of the Actual-parameters list) of the operator are used to identify the exact
Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-
signature is found that matches the expression with the relational infix operator, the expression is
not valid. The <c relational expression> before the relationa infix operator represents the first
Expression of the Actual-parameters list of the Operation-application. The <c shift expression>
after the relational infix operator represents the second (and last) Expression of the Actual-
parameters list of the Operation-application.

C.1.45 Bit shift expressions

Concrete grammar

<c shift expression> ::=
<c additive expression>
| <c shift expression> <c shift left sign> <c additive expression>
| <c shift expression> <c shift right sign> <c additive expression>

NOTE — Clause 6.5.7 of [b-ISO/IEC 9899].

24 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

A <c shift expression> containing a shift infix operator (<c shift left sign> or <c shift right sign>)
represents an Operation-application where the Operator-identifier denotes an Operation-signature
for an operator of package C_Predefined. The shift infix operator determines the Operation-name
of the Operation-signature (that is, the Operation-name for operators defined by: "<<" for <c shift
left sign>; ">>" for <c shift right sign>). The sort of the context of the <c shift expression> and
sorts of the parameters (the Expression items of the Actual-parameters list) of the operator are used
to identify the exact Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If
no Operation-signature is found that matches the expression with the shift infix operator, the
expression is not valid. The <c shift expression> before the shift infix operator represents the first
Expression of the Actual-parameters list of the Operation-application. The <c additive expression>
after the shift infix operator represents the second (and last) Expression of the Actual-parameters
list of the Operation-application.

C.1.4.6 Binary operation expressions

Concrete grammar
<c additive expression> :;=
<c multiplicative expression>
| <c additive expression> <plus sign> <c multiplicative expression>
| <c additive expression> <hyphen> <c multiplicative expression>

NOTE 1 — Clause 6.5.6 of [b-ISO/IEC 9899].

A <c additive expression> containing an additive infix operator (<plus sign> or <hyphen>)
represents an Operation-application where the Operator-identifier denotes an Operation-signature
for an operator of package C Predefined. The additive infix operator determines the
Operation-name of the Operation-signature (that is, the Operation-name for operators defined by:
"+" for <plus sign>; "-" for <hyphen>). The sort of the context of the <c additive expression> and
sorts of the parameters (the Expression items of the Actual-parameters list) of the operator are used
to identify the exact Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If
no Operation-signature is found that matches the expression with the additive infix operator, the
expression is not valid. The <c additive expression> before the additive infix operator represents the
first Expression of the Actual-parameters list of the Operation-application. The <c multiplicative
expression> after the additive infix operator represents the second (and last) Expression of the
Actual-parameters list of the Operation-application.

<c multiplicative expression> ::=

<c cast expression>
| <c multiplicative expression> <asterisk> <c cast expression>

[<c multiplicative expression> <solidus> <c cast expression>
| <c multiplicative expression> <percent sign> <c cast expression>

NOTE 2 — Clause 6.5.5 of [b-1SO/IEC 9899].

A <c multiplicative expression> containing a multiplicative infix operator (<asterisk> or <solidus>
or <percent sign>) represents an Operation-application where the Operator-identifier denotes an
Operation-signature for an operator of package ¢ pPredefined. The multiplicative infix operator
determines the Operation-name of the Operation-signature (that is, the Operation-name for
operators defined by: =+ for <asterisk>; "/" for <solidus>; "%" for <percent sign>). The sort of the
context of the <c multiplicative expression> and sorts of the parameters (the Expression items of the
Actual-parameters list) of the operator are used to identify the exact Operation-signature as
described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that
matches the expression with the multiplicative infix operator, the expression is not valid. The
<c multiplicative expression> before the multiplicative infix operator represents the first Expression
of the Actual-parameters list of the Operation-application. The <c cast expression> after the
multiplicative infix operator represents the second (and last) Expression of the Actual-parameters
list of the Operation-application.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 25

C.147 Cast expressions

Concrete grammar

<C Cast expression> ;:=
<C unary expression>
| <left parenthesis> <c type name> <right parenthesis> <c cast expression>
NOTE 1 — Clause 6.5.4 of [b-1SO/IEC 9899].
<c type name> ::=
<c specifier qualifier list>
NOTE 2 — Clause 6.7.7 of [b-1SO/IEC 9899] without the abstract declarator suffix.

The representation of a <c cast expression> without a parenthesized <c type name> is given by the
representation of the <c unary expression>. In the following text a <c cast expression> that contains
a parenthesized <c type name> is casting expression, and <c cast expression> after the
parenthesized <c type name> in a<c cast expression> is a casted expression.

The parenthesized <c type name> in a casting expression shall identify a C integer sort or a C
floating sort or a C boolean sort or star void or a subtype of star type. This sort is the casting
sort.

The sort of the casted expression (the casted sort) shall be the sort of <<package Predefineds>
Integer OF aC integer sort or a C boolean sort or star void or asubtype of star type.

The casting expression represents the Operator-application with Operator-identifier of the operator
of the data type for the casting sort to convert a <<package Predefined>> Integer Vaueto a
value of the casting sort. For example, if <c type name> is short int the operator is
to_Signed short Of the data type signed short; if <C type name> iS star Unsigned long the
operator iS Integer to Star Unsigned short Of the datatype star Unsigned long; and if the
<ctype name> iS double the operator iS Integer to Float Of the data type rFiocat. The
Actual-parameters list of the Operator-application has one Expression.

If the casted sort iS <<package Predefined>> Integer SOrt, the Expression of the
Actual-parameters list of the Operator-application is represented by the casted expression.
Otherwise, Expression of the Actual-parameters list of the Operator-application is represented by
another Operator-application to convert the value of the casted expression to the <<package
Predefined>> Integer SOrt. The Actual-parameters list of this Operator-application has one
Expression of the casted sort. For a casted sort that isa C integer sort or C boolean sort, the operator
IS the num operator of the type of the casted sort. For a casted sort that is star void, the operator is
the star void to_ Integer oOperator of the type star void. For a casted sort that is a subtype of
Star_type, the operator isrenamed star_ type to Integer Operator of the subtype of star type
(for example, star Unsigned int to Integer for the type star Unsigned int). The
Expression of the Actual-parameters list of the Operator-application (to convert to the <<package
Predefined>> Integer SOIt) isrepresented by the casted expression.

C.1.4.8 Unary operation expression

Concrete grammar

<C unary expression> ::=
<c postfix expression>
| <c increment operator> <c unary expression>
[<c decrement operator> <c unary expression>
[<C unary operator> <c cast expression>
| sizeof <c unary expression>
| sizeof <left parenthesis> <c type name> <right parenthesis>

NOTE 1 — Clause 6.5.3 of [b-ISO/IEC 9899] excluding the _Alignof aternative.

26 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

<C unary operator> ::=
<ampersand>
| <asterisk>
| <plus sign>
I <hyphen>
| <tilde>
| <exclamation mark>

NOTE 2 — Clause 6.5.3 of [b-1SO/IEC 9899].

A <c unary expression> containing a <c increment operator> or <c decrement operator> represents
an Operation-application where the Operator-identifier denotes an Operation-signature for an
operator of package C Predefined. The <cC increment operator> or <c decrement operator>
determines the Operation-name of the Operation-signature (that is, the Operation-name for
operators defined by: »++n for <c increment operator>; "--" for <c decrement operator>). The sort
of the context of the <c unary expression> and sort of the parameter (the Expression item of the
Actual-parameters list) of the operator are used to identify the exact Operation-signature as
described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that
matches the expression with the <c increment operator> or <c decrement operator>, the expression
is not valid. The <c unary expression> after the <c increment operator> or <c decrement operator>
represents the Expression of the Actual-parameters list of the Operation-application.

A <c unary expression> containing a <c unary operator> represents an Operation-application where
the Operator-identifier denotes an Operation-signature for an operator of package C_Predefined.
The <c unary operator> determines the Operation-name of the Operation-signature (that is, the
Operation-name for operators defined by: & for <ampersand>; "*" for <asterisk>; "+" for <plus
sign>; "-" for <hyphen>; "~" for <tilde>; "!" for <exclamation mark>). The sort of the context of
the <c unary expression> and sort of the parameter (the Expression item of the Actual-parameters
list) of the operator are used to identify the exact Operation-signature as described in clauses 6.6
and 12.2.6 of [ITU-T Z.101]. If no Operation-signature is found that matches the expression with
the <c unary operator>, the expression is not valid. The <c cast expression> after the <c unary
operator> represents the Expression of the Actual-parameterslist of the Operation-application.

A <c unary expression> containing sizeof followed by a <c unary expression> represents an
Expression that is a Variable _access for the sizeof synonym for the data type of the sort of the
<c unary expression>. For example, if the sort is signed_1ong, the <c unary expression> represents
aVariable accessfor the sizeof Signed long.

A <c unary expression> containing sizeof followed by a parenthesized <c type name> represents an
Expression that is a Variable access for the sizeof Synonym for the data type of the <c type
name>. For example, if the <c type name> is signed long, the <C unary expression> represents a
Variable accessfor the sizeof Signed long.

C.1.49 Postfix expression

Concrete grammar

<c postfix expression> ::=
<c primary expression>
| <c call expression>
| <c postfix expression> <left square bracket> <c expression> <right square bracket>
| <c postfix expression> <full stop> <c identifier>
| <c postfix expression> <c pointer operator> <c identifier>
| <c postfix expression> <c increment operator>
| <c postfix expression> <c decrement operator>
| <left parenthesis> <c type name> <right parenthesis>
<left curly bracket> <c initializer list> <right curly bracket>
[<left parenthesis> <c type name> <right parenthesis>
<left curly bracket> <c initiaizer list> <comma> <right curly bracket>

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 27

NOTE 1 — Clause 6.5.2 of [b-ISO/IEC 9899] excluding the alternative with a postfix-expression followed by
a parenthesized argument-expression-list restricted to <c call expression>.

A <c postfix expression> before a sguare bracketed <c expression> or a <full stop> or a
<c increment operator> or a <c decrement operator> shall not be a <c primary expression> that is a
<c constant> or a<c string literal>.

A <c postfix expression> containing an additive postfix operator (<c increment operator> or
<c decrement operator>) represents an Oper ation-application where the Operator-identifier denotes
an Operation-signature for an operator of package C_predefined. The additive postfix operator
determines the Operation-name of the Operation-signature (that is, the Operation-name for
operators defined by: postfix_inc for <c increment operator>; postfix dec for <c decrement
operator>). The sort of the context of the <c multiplicative expression> and sorts of the parameters
(the Expression items of the Actual-parameters list) of the operator are used to identify the exact
Operation-signature as described in clauses 6.6 and 12.2.6 of [ITU-T Z.101]. If no
Operation-signature is found that matches the expression with the multiplicative infix operator, the
expression is not valid. The <c postfix expression> before the additive postfix operator represents
the Expression of the Actual-parameterslist of the Operation-application.

A <c postfix expression> that starts with a parenthesized <c type name> (without or with a
<comma> after the <c initializer list>) is a compound litera and shall not be followed by a
<cincrement operator> or <c decrement operator>. The compound literal represents the static
evaluation of the nested calls of the operators as described in clause C.1.3 and the <c postfix
expression> represents an Operator-application for calling outermost Modi fy operator.
<c call expression> ::=

<c identifier> <left parenthesis> [<c argument expression list>] <right parenthesis>
The <c identifier> in a <c call expression> shall uniquely identify either a Procedure-identifier or
an Operation-identifier. In the context of a <c postfix expression> procedures that do not have a
Result are excluded. The Procedure-identifier or Operation-identifier is determined using the name
of the <c identifier>, the sorts of the argument list and the sort of the context of the <c call
expression> as described in clause 12.2.6 of [ITU-T Z.101]. If more than one procedure or
operation is identified, the <c call expression> is invalid. The <c call expression> represents the
Call-node if it is a <c cal expression>; otherwise the <c cal expression> represents
Value-returning-call-node or Operation-application of the identified procedure or operation.
<c argument expression list> ::=

<c assignment expression>

| <c argument expression list> <comma> <c assignment expression>

NOTE 2 — Clause 6.5.2 of [b-1SO/IEC 9899].

Each <c assignment expression> in the <c argument expression list> represents an Expression in the
Actual-parameters of the Call-node or Value-returning-call-node or Operation-application.

Model

A <c postfix expression> followed by a <c expression> between square brackets is derived concrete

syntax for:
Extract (<c postfix expression>, <c assignment expression>)

treated as a <c call expression> where the <c argument expression list> is the <c postfix
expression> followed by the <c expression>. If this <c postfix expression> is aso a <c postfix
expression> followed by a <c expression> between square brackets, this is similarly derived
concrete syntax. For example, a[i] [j] becomes Extract (Extract (a,1),3). The abstract syntax
Is determined from the derived concrete expression.

28 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

A <field primary> is derived concrete syntax for:
field-extract-name (<primary>)

where the field-extract-name is formed from the concatenation of the field name and "Extract” Iin
that order. The abstract syntax is determined from this concrete expression according to
clause 12.2.1.

A <c postfix expression> followed by a <full stop> and a <c identifier> is derived concrete syntax
for:
field-extract-name (<c postfix expression>)

where the field-extract-name is formed from the concatenation of the field name identified by the

<c identifier> and "Extract" in that order. The abstract syntax is determined from the derived
concrete expression.

A <c postfix expression> followed by <c pointer operator> { - >) and a <c identifier> is transformed
to the dereference operator (*) applied to the <c postfix expression> followed by afield extraction,

so that it is derived concrete syntax for:
field-extract-name ("*" (<c postfix expression>))

where the field-extract-name is formed from the concatenation of the field name and "Extract” in
that order. The field name given by <c identifier> shall be afield for the structure or union pointed
at by the <c postfix expression>. The abstract syntax is determined from this concrete expression.

NOTE 3-— Expression struct _or union pointer->field is the same as
(*struct_or union pointer).field.

C.1.4.10 Primary expression

Concrete grammar
<C primary expression> ::=
<c identifier>
| <c constant>

| <c string literal>
| <left parenthesis> <c expression> <right parenthesis>

NOTE 1 — Clause 6.5.1 of [b-1SO/IEC 9899] excluding generic selection.

NOTE 2 — The lexica rules in clause C.1.1 describe binding to abstract grammar for <c identifier>
(see clause C.1.1.6), <c constant> (see clause C.1.1.4) and <c string literal> (see clause C.1.1.5).

A <cidentifier> of a <c primary expression> is a variable access or a cal of an operation (that has
no parameters) or a call of a value-returning procedure (that has no parameters) or the literal

(enumeration constant) of an enumerated type. If it is not possible to bind the <c identifier> to
exactly one of these items, the <c primary expression> isinvalid.

A C primary expression> represents an Expression that is either a Constant-expression or
Active-expression.

If the <c identifier> is bound to the Variable-name of a Variable-definition, the <c identifier>
represents an Active-expression that is a Variable-access of the identified variable.

If the <c identifier> is bound to the Operation-name of an Operation-signature, the <c identifier>
represents an Active-expression that is an Operation-application of the identified operation.

If the <c identifier> is bound to the Procedure-name of a Procedure-definition, the <c identifier>
represents an Active-expression that is a Value-returning-call-node of the identified procedure.

If the <c identifier> is bound to the Identifier for the Literal-signature for an enumeration, the
<c identifier> represents a Constant-expression for the identified Literal.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 29

A <c dtring literal> of a <c primary expression> represents an Active-expression that is a
Variable-access for the <<package Predefined>> Star Unsigned char Synonym of the
<c string literal> as defined in clause C.1.1.5.

A parenthesized <c expression> of a <c primary expression> represents the Expression represented
by the <c expression>.
<c constant> ::=

<c integer constant>

| <real name>
| <c character constant>

NOTE 3 — Clause 6.4.4 of [b-ISO/IEC 9899] but using <real name> for a floating constant and excluding
enumeration constant, because <c identifier> coversthis.

A <c integer constant> of a <c constant> represents a Constant-expression that is a <<package
Predefined>> Integer Literal for the integer valueasin clause C.1.1.2.

A <read name> of a <c constant> represents a Constant-expression that is a <<package
pPredefined>> Real Literal for thereal value of the integer as determined by clause 14.7.1.

A <c character constant> represents a <<package Predefined type Unsigned charss
Constant-expression that is the Operation-application defined in clause C.1.1.4.

C.15 Useof C statements

Statements are allowed in task bodies and in compound statements. A compound statement is itself
a statement and the native SDL-2010 compound statement is extended to include C type definitions
so that it matches the compound statement of clause 6.8 of [b-1SO/IEC 9899].

A statement is either a terminating statement that transfers the thread of control, or otherwise a
non-terminating statement. In a C diagram a terminating statement or non-terminating statement is
always a C statement (which includes the extended compound statement).

C.1.5.1 Compound statement

Abstract grammar

Compound-node " Connector-name
Data-type-definition-set
Variable-definition-set
Init-graph-node*
While-graph-node
Transition
Sep-graph-node*

Compound-node is extended compared with clause 11.14.1 of [ITU-T Z.102] to include a
Data-type-definition-set.

Concrete grammar

<compound statement> ::=
[<connector name> : | [<comment body> |
<left curly bracket>
{ <c type definition> <end> }*
[<variable definitions> <end>]
[<statements>] <end>*
<right curly bracket>

The syntax of <compound statement> is extended compared with clause 11.14.1 of [ITU-T Z.102]
to allow <c type definition> items each of which represents an element of the Data-type-definition-
Set.

30 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

A <comment body> of a <compound statement> is not allowed in C diagrams. A <c type
definition> of a <compound statement> is only allowed in C diagrams.

Semantics
A Compound-node is a scope unit for each Data-type-definition of the Compound-node.

C.15.2 Non-terminating and terminating statement

<non terminating statement> ::=
<statement>
| <compound statement>
| <loop statement>
[<decision statement>
[<c labeled statement>
| <C expression statement>
| <c selection statement>
| <c iteration statement>

In <non terminating statement> the aternatives <statement>, <loop statement> and <decision
statement> are not allowed in C diagrams. In <non terminating statement> the alternatives
<clabeled statement>, <c expression statement>, <c selection statement> and <c iteration
statement> are only allowed in C diagrams.
<terminating statement> ::=
<return statement>
[<stop statement>

| <break statement>
| <C jump statement>

In <terminating statement> the alternatives <return statement>, <stop statement> and <break
statement> are not alowed in C diagrams. The aternative <c jump statement> of <terminating
statement> isonly allowed in C diagrams.

C.15.3 Labded statement

<c labeled statement> ::=
<connector name> <colon> <c statement>
| case <c constant expression> <colon> <c statement>
| default <colon> <c statement>

NOTE — Clause 6.8.1 of [b-1SO/IEC 9899] with <connector name> instead of identifier before the colon.

A <c dstatement> with a <connector name> represents the Compound-statement where the
<connector name> represents the Connector-name, the <c statement> represents the Transition and
the Variable-definition-set, Init-graph-node list, While-graph-node Expression list and Step-graph-
node list are al empty.

A case <c constant expression> or default label shall appear only as part of the <c statement> of a
switch <c selection> statement, and the binding to the abstract grammar for these is described in
clause C.1.5.5. The <c constant expression> of each case label shall have an integer sort. No two of
the case <c constant expression> items in the same switch <c selection> shall have the same value
except any case <c constant expression> item for a switch <c selection> within the switch
<c selection>. There shall be at most one default label for a switch <c selection> except a default
label for aswitch <c selection> within the switch <c selection>.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 31

C.154 C statement

<c statement> ::=
<c labeled statement>
| <compound statement>
| <c expression statement>
| <c selection statement>
| <c iteration statement>
| <C jump statement>

NOTE 1 — Clause 6.8 of [b-1SO/IEC 9899] with <compound statement> for the C compound statement. <c
jump statement> is a <terminating statement>; the other statements are non-terminating.

<C expression statement> ::=

[<c assignment statement> | <c call expression>] <semicolon>
NOTE 2 — Clause 6.8.4 of [b-1SO/IEC 9899] but with expression changed to [<c assignment statement> | <c
call expression> | so that <c expression> is restricted to a <c assignment expression> with a <c assignment
operator> or a <c postfix expression> that is <c identifier> <left parenthesis> [<c argument list>] <right
parenthesis> (a <c call expression>).

<c assignment statement> ;:=
<c postfix expression> <c assignment operator> <c assignment expression>

The <c postfix expression> of a <c assignment statement> shall start with a <c primary> that is a
<cidentifier> for a variable and shall not contain a <c increment operator> or
<c decrement operator>.

A <c assignment statement> represents an Assignment or a Call-node, as further described below.

A <c assignment statement> where the <c assignment operator> is <equals> represents an
Assignment (of a Task-node of a Graph-node of a Transition) as further described below. Otherwise
the <c assignment statement> represents a Call-node. In this case the <c assignment operator>, the
sort of the <c postfix expression> and sort of the <c assignment expression> identify an Operation-
signature in the way described in clause C.1.4.1 (where the <c unary expression> in clause C.1.4.1
is the <c postfix expression> of the <c assignment statement>). If no such method exists, the
<c assignment statement> is invalid. The Call-node invokes Procedure-definition identified by the
Procedure-identifier of the Operation-signature. The <c postfix expression> and <c assignment
expression> represent the first and second Expression of the Actual-parameters list of the
Call-node. If the <c postfix expression> contains <left square bracket> <c expression> <left square
bracket> (an indexed variable) or <full stop> <c identifier> (afield variable), this is an extended
variable used as the first parameter of the procedure.

The <c identifier> that starts the <c postfix expression> of a <c assignment statement> for an
Assignment represents the Variable-identifier of the Assignment. If the <c postfix expression>
contains <left square bracket> <c expression> <left square bracket> (an indexed variable) or <full
stop> <c identifier> (a field variable), this is an extended variable and the Expression that the
<c assignment expression> represents is derived in the same way as for an SDL-2010 extended
variable as described in clause 12.3.3.1 of [ITU-T Z.101]. Otherwise the <c assignment expression>
represents the Expression of the Assignment. However, if the sort of the Expression is not the same
as the sort of the Variable-identifier in the following cases this Expression is the Expression of an
Actual-parameters list of an Operation-application for an operator used to convert the right-hand
side to the type of the left-hand side as described below (or for a Boolean <C assignment
expression> a Boolean-expression).

32 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

The Expression of the Assignment is:

If the type of the Variable-identifier is <<package Predefined>> Integer, and the type
of the right-hand side Expressioniis:

a)

b)

i)

i)

i)

Vi)

a C integer type or a C boolean type, an Operation-application for the num operator for
the C type with the Expresson from the <c assignment expression> as the
Actual-parameterslist of the num operator;

a C floating type, an Operation-application for the fix operator for <<package
Predefined>> Real With Operation-application of the to rReal operator of the C
floating type as the Expression of the Actual-parameters list of the £ix operator. The
Expression from the <c assignment expression> is the Actual-parameters list of the
to Real Operator;

<<package C Predefined>> Star void, an Operation-application for the
Star void to Integer operator of star void with the Expression from the
<cassignment expression> as the Actual-parameters list of the
Star void to_ Integer Operator;

a subtype of <<package C Predefined>> Star_ type, an Operation-application for
the renamed star type to Integer operator of the subtype of star type with the
Expression from the <c assignment expression> as the Actual-parameters list of the
renamed star type to_ Integer Operator;

<<package Predefined>> Real, an Operation-application for the £ix operator for
<<package Predefined>> Real With the Expression from the <c assignment
expression> as the Actual-parameterslist of the £1ix operator;

<<package Predefined>> Boolean, a Conditional-expression with a
Boolean-expression that is the Expression from the <c assignment expression>, a
Consequence-expression that isthe <<package Predefineds>> Integer valuel, anda
Consequence-expression that isthe <<package Predefined>> Integer vValueO.

If the type of the Variable-identifier is a C integer type, and the type of the right-hand side
Expressionis:

)

i)

<<package Predefined>> Integer, an Operation-application for the integer
operator of the type 1ntegern renamed for the C integer type with the Expression from
the <c assignment expression> as the Actual-parameters list of the operator;

a C integer type or a C boolean type or <<package C_Predefined>> Star void Or a
subtype of <<package C_Predefined>> Star type Ol <<package Predefineds>>
Real, an Operation-application for the integer operator of the type Integern
renamed for the left-hand side C integer type with a <<package Predefineds>
Integer EXpression asin a) above as the Actual-parameters list of the operator.

If the type of the Variable-identifier is a C integer type, and the type of the right-hand side
Expressionis:

i)

i)

<<package Predefined>> Integer, an Operation-application for the integer
operator of the type 1ntegern renamed for the C integer type with the Expression from
the <c assignment expression> as the Actual-parameters list of the operator;

a C integer type or a C boolean type or <<package C_Predefined>> Star void Of &
subtype of <<package C_Predefined>> Star type Ol <<package Predefineds>>
Real, an Operation-application for the integer operator of the type Integern
renamed for the left-hand side C integer type with a <<package Predefineds>
Integer EXpression asin a) above as the Actual-parameterslist of the operator.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 33

d)

f)

Q)

If the type of the Variable-identifier isa C floating type, and the type of the right-hand side

Expressionis:

i) <<package Predefined>> Integer, an Operation-application for the
Integer to Float operator for <<package C Predefined>> Float With the
Expression from the <c assignment expression> as the Actual-parameters list of the
operator;

ii) aC integer type or a C boolean type or <<package C_Predefined>> Star void Or a
subtype Oof <<package C Predefineds>> Star type Of <<package Predefineds>>
Real, an Operation-application for the integer to Float operator for <<package
C_Predefined>> Float with a <<package Predefined>> Integer Expron asin
a) above as the Actual-parameters list of the operator.

If the type of the Variable-identifier is <<package C Predefined>> Star void, and the

type of the right-hand side Expression is:

i) <<package Predefineds> Integer, an Operation-application for the
Integer to Star void operator for <<package C Predefineds>> Star void With
the Expression from the <c assignment expression> as the Actual-parameters list of the
operator;

ii) a C integer type or a C boolean type or a subtype of <<package C Predefineds>
Star type Of <<package Predefined>> Real, an Operation-application for the
Integer to Star void Operator for <<package C Predefined>> Star void witha
<<package Predefined>> Integer EXpresson as in a) above as the
Actual-parametersllist of the operator.

If the type of the Variable-identifier is a subtype of <<package C Predefineds>
star type, and the type of the right-hand side Expressionis:

i) <<package Predefined>> Integer, an Operation-application for the renamed
Integer to Star type operator for the subtype of <<package C Predefineds>>
star_type With the Expression from the <c assignment expression> as the
Actual-parameters list of the operator;

ii) aC integer type or a C boolean type or <<package C_Predefined>> Star void Or a
subtype Oof <<package C Predefineds>> Star type Of <<package Predefineds>
Real, an Operation-application for the renamed Integer to Star type operator for
the subtype of <<package C Predefined>> Star type With a <<package
Predefined>> Integer EXpression asin a) above as the Actual-parameters list of the
operator.

If the type of the Variable-identifier is the type of <<package Predefineds>
Charstring, and the type of the right-hand side Expression iS <<package

C_Predefined>> Star Unsigned char, an Operation-application of the <<package
C_Predefined type Star Unsigned _char>> Star Unsigned char to Charstring

operator with the Expression from the <c assignment expression> as the Actual-parameters
list of the operator.

C.155 C sdlection statement

Concrete grammar

<c selection statement> ::=

if <left parenthesis> <c expression> <right parenthesis> <c statement>
| if <left parenthesis> <c expression> <right parenthesis> <c statement> else <c statement>
| switch <left parenthesis> <c expression> <right parenthesis> <c statement>

NOTE — Clause 6.8.4 of [b-ISO/IEC 9899].

34

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

The <c expression> shall be:

a) an integer sort (that is, char, Signed char, Unsigned char, Signed_ short,
Unsigned short, Signed int, Unsigned int, Signed long, Unsigned long long,
Signed long, Unsigned long long, Integer Of the sort of a datatype that inherits from
one of these); or

b) a floating sort (Float, Double, Long double, Real Of the sort of a data type that inherits
from one of these); or

C) provided the <c expression> is not in a switch <c selection statement>, a pointer sort
(star void, asubtypeof star void or asubtype of star type); or

d) aboolean sort (the Boolean sort or the sort of a data type that inherits from Boolean); or

€) apid sort.

A <c selection statement> represents a Compound-node. A newly created anonymous name
represents the Connector-name. The Variable-definition-set, Init-graph-node list, Expression list of
the While-graph-node, and Step-graph-node list of the Compound-node are empty. There is no
Finalization-node in the While-graph-node. The Transition is an empty Graph-node list followed
by a Decision-node and in the case of a switch <c selection statement> a set of case Free-action
items that follow the Decision-node. The <c expression> of the <c selection statement> represents
the Decision-question of the Decision-body of the Decision-node. The Decision-answer-set of the
Decision-body of the Decision-node is represented by the <c statement> after the <right
parenthesis> in the <c selection statement> as described below.

For an if <c selection statement>, the Decision-answer-set has only one element and the
<c statement> after the <right parenthesis> represents the Transition of the Decision-answer of the
Decision-answer-set. The Range-condition for this Decision-answer is represented by an
Open-range where the Operator-identifier identifies the operator of a negative ("/=")
Equality-expression of the sort of <c expression>, the <c expression> represents the First-operand
of the Equality-expression and the Second-operand of the Equality-expressionis:

a) the value of the sort equivalent to "0" if the sort of the <c logical or expression> is an
integer sort; or

b) the value of the sort equivalent to "0.0" if the sort of the <c logical or expression> is a
floating sort; or

C) the value of the sort equivalent to "false" if the sort of the <c logical or expression> is a
boolean sort; or

d) the Null-literal-signature if the sort of the <c logical or expression> is a pointer sort; or

e) the Null-literal-signature if the sort of the <c logical or expression> is a pid.

If there is an else in an if <c selection statement>, the <c statement> after the else represents the
Transition of the optional Else-answer of the Decision-body of the Decision-node.

For a switch <c selection statement>, the <c statement> after the <right parenthesis> represents the
Decision-answer-set and also represents the set of Free-action items following the Decision-node.

Each case <c labeled statement> within this <c statement> (and not within an inner switch
<c selection statement>) represents a Decision-answer. The Range-condition for this
Decision-answer is represented by the <c constant expression> of the case <c labeled statement>.
The Transition for this Decision-answer is a Join-node to an implicit anonymous Connector-name
for the Free-action represented by the <c statement> of the case <c labeled statement>. The
Free-action consists of this Connector-name followed by the Transition represented by the
<c statement> of the case <c labeled statement>. If this <c statement> represents a Graph-node list
without a Terminator or Decision-node, a Join-node to the Free-action for the following case
<c labeled statement> (or default <c labeled statement>) is inserted. If there is no such following

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 35

<c labeled statement>, a Break-node for the Compound-statement is inserted. A default <c labeled
statement> (within the <c statement> after the <right parenthesis> of a switch <c selection
statement> and not within an inner switch <c selection statement>) represents the optiona
Else-answer of the Decision-body of the Decision-node. The Transition for this Else-answer is a
Join-node to an implicit anonymous Connector-name for the Free-action represented by the
<c statement> of the default <c labeled statement>. The Free-action consists of this
Connector-name followed by the Transition represented by the <c statement> of the default
<c labeled statement>. The Transition is completed if necessary by a Join-node or Break-node in
the same way as for a case <c labeled statement>.

C.15.6 Citeration and jump statements

Concrete grammar

<c iteration statement> ::=
while <left parenthesis> <c expression> <right parenthesis> <c statement>
| do <c statement> while
<left parenthesis> <c expression> <right parenthesis> <semicolon>
| for <left parenthesis>
[<c expression> { <comma> <c expression> }*] <semicolon>
[<c expression>] <semicolon>
[<c expression> { <comma> <c expression> } *]
<right parenthesis> <c statement>
NOTE 1 — Clause 6.8.5 of [b-ISO/IEC 9899] with for syntax modified to allow multiple expressions
separated commas because multiple expressions separated by commas are excluded from <c expression>.
Thefor alternative with <c declaration> is excluded.

A <c iteration statement> represents a Compound-node. The Connector-name of the
Compound-node is a newly created anonymous name. The Variable-definition-set of the
Compound-node is empty. The Transition of the Compound-node is the Graph-node represented by
the <c statement> of the <c iteration statement> followed by a Continue-node with the Connector-
name of the Compound-node. The Finalization-node of the While-graph-node is absent.

In awhile <c iteration statement> the Init-graph-node list and Sep-graph-node list are both empty.
The parenthesized <c expression> after while shall be an expression of a scalar sort (see
clause C.1.4.2). This scalar sort expression represents the Boolean Expression that forms the
Expression list of the While-graph-node in the same way as the Boolean-expression of the
Conditional-expression is represented in clause C.1.4.2. If the parenthesized <c expression> after
while is a boolean expression it represents the Boolean Expression that forms the Expression list of
the While-graph-node.

In a do <c iteration statement> the Init-graph-node list is empty and the While-graph-node has an
empty Expression list. The parenthesized <c expression> after while shall be an expression of a
scalar sort (see clause C.1.4.2). This scalar expression represents Boolean Expression in the same
way as the Boolean-expression of the Conditional-expression is represented in clause C.1.4.2. The
Sep-graph-node list is a single Decision-node with the Boolean Expression as the
Decision-gquestion of the Decision-body, and the Decision-answer-set is a single Decision-answer
with the Range-condition represented by the Boolean value false. The Transition of this Decision-
answer is a Break-node with the Connector-name being the anonymous name of the Compound-
node for the <c iteration statement>.

The list of <c expression> items before the <semicolon> of a for <c iteration statement> form an
Expression list for the Init-graph-node list in the order of the <c expression> items left to right.
Each Expression in the list is the Expression of an Assignment-node that is a Task-node in the
Init-graph-node list of the Compound-node.

36 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

The <c expression> between the first and second <semicolon> of afor <c iteration statement> shall
be an expression of a scalar sort and represents the While-graph-node of the Compound-node in the
same way as described above for <c expression> of awhile <c iteration statement>.

The list of <c expression> items after the second <semicolon> of afor <c iteration statement> form
an Expression list for the Step-graph-node item in the order of the <c expression> items left to
right. Each Expression in the list is the Expression of an Assignment-node that is a Task-node in the
Sep-graph-node list of the Compound-node.

Each Assignment-node that is a Task-node in an Init-graph-node or a Sep-graph-node list has an
anonymous implicit variable identified by its Variable-identifier of the same sort as the Expression
of the Assignment-node.
<c jump statement> ::=
goto <c identifier> <semicolon>
[break <semicolon>

| continue <semicolon>
| return [<c expression>] <semicolon>

NOTE 2 — Clause 6.8.6 of [b-1SO/IEC 9899].

A goto <c jump statement> represents a Join-node with the Connector-name represented by the
<c identifier> of the <c jump statement>.

A break <c jump statement> is only valid within the <c statement> in a switch, while, do or for
<c iteration statement>. It is mapped to a join on the anonymous connector anon-break for the
enclosing switch, while, do/ while or for statement.

A break <c jump statement> represents a Break-node and the Connector-name is the name of the
immediately enclosing Compound-node.

A continue <c jump statement> is only valid within the <c statement> in a while, door for
<c iteration statement>. It is mapped to a join on the anonymous connector anon-continue for the
enclosing while, do / while or for statement.

A continue <c jump statement> represents a Continue-node and the Connector-name is the name of
the immediately enclosing Compound-node.

If areturn <c jump statement> with an <c expression> represents a Value-return-node and the
<C expression> represents the Expression of the Value-return-node.

A return <c jump statement> without an <expression> represents an Action-return-node.

C.1.6 Package C_Predefined

In the following definitions, all references to names defined in the package Predefined are treated
as prefixed by the qualification <<package Predefineds>. Similarly, al references to names
defined in the package C Predefined are treated as prefixed by the qualification <<package
C_predefined>>. TOincrease readability, these qualifications are omitted.

The extensions defined in Annex A are used in this package.

There are no literals for the C Integer types. When a <c integer constant> is used, it represents an
Integer literal defined in the package Predefined, SO No ambiguity is introduced between
various integer literals.

Every C Integer type defined below includes a cast operator that converts an integer valueto the C
Integer type. The name of this operator isto_ concatenated with the name of the type.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 37

This package assumes that C Integer types values do not have padding bits, have a sign bit for
signed integers, use two's complement arithmetic and are wrapped when they overflow. For
example, for unsigned char as defined below with 8 hits to Unsigned char(255) +
to Unsigned char (1) = to unsigned char (0) andfor signed char as defined below with 8
bitsto signed char(127) + to Signed char(l) = to signed char(-128).

Library functions of clause 7 of the C standard clause 5.2.4.2 of [b-1SO/IEC 9899] are not included
iNn package C Predefined. The mechanism for including such C library items is implementation
defined, but one possibility is to use the standard header names (such as assert) as the names of
packages. The C library item stdint defines some general cases of integers where the number of
bits for the C Integer typeis v with namesuintn t for the unsigned case and intn_t for the signed
case, the value range for uintn t IS to UintN t(0) 10 to UintN t (power(2,N)-1) and

to UintN t (power(2,N)-1) + to UintN t(1) = to UintN t(0), and the value range for
intN t is to intN t (-power (2,N-1)) to to intN t (power (2,N-1)-1) and
to intN t (power (2,N-1)-1) + to_intN t(1) = to_intN t (-power(2,N-1))

/* */

package C Predefined

/*

The following <package public> defines the synonyms and types that are visible wherever
C _predefined isvisible.

It is not necessary to explicitly list operations as visible, because literals and operations defined by a
type are visible where the type is visible except if the operation has private Vvisibility (in which
case it is only visible within the data type where it is defined) or protected vishility (in which
case the operator is visible only within the data type where it is defined and within any
specidization of this data type).
*/

public

/* synonyms */

synonym CHAR BIT,

synonym CHAR MAX,

synonym CHAR MIN,

synonym DBL DECIMAL DIG,
synonym DBL DIG,

synonym DBL EPSILON,

synonym DBL_MANT DIG,
synonym DBL MAX 10 EXP,
synonym DBL_MAX EXP,

synonym DBL MAX,

synonym DBL MIN_ 10_EXP,
synonym DBL MIN EXP,

synonym DBL_MIN,

synonym DBL TRUE_ MIN,
synonym DECIMAL DIG,

synonym FLT DECIMAL DIG,
synonym FLT DIG,

synonym FLT EPSILON,

synonym FLT MANT DIG,
synonym FLT MAX 10 EXP,
synonym FLT MAX EXP,

synonym FLT MAX,

synonym FLT MIN 10 EXP,
synonym FLT MIN EXP,

synonym FLT MIN,

synonym FLT RADIX,

synonym FLT TRUE MIN,
synonym INT BIT,

synonym INT MAX,

synonym INT MIN,

synonym LDBL DECIMAL DIG,
synonym LDBL DIG,

synonym LDBL EPSILON,
synonym LDBL_MANT DIG,

38 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

synonym LDBL MAX 10_EXP,
synonym LDBL MAX EXP,
synonym LDBL MAX,
synonym LDBL MIN 10 EXP,
synonym LDBL MIN EXP,
synonym LDBL MIN,
synonym LDBL TRUE MIN,
synonym LLONG BIT,
synonym LLONG MAX,
synonym LLONG MIN,
synonym LONG BIT,
synonym LONG MAX,
synonym LONG MIN,
synonym MB LEN MAX,
synonym SCHAR MAX,
synonym SCHAR MIN,
synonym SHRT BIT,
synonym SHRT MAX,
synonym SHRT MIN,
synonym sizeof Bit ,
synonym sizeof Boolean ,
synonym sizeof Character ,

synonym

sizeof Float,

synonym sizeof IA5Char ,

synonym sizeof NumericChar ,
synonym sizeof Octet ,

synonym sizeof PrintableChar ,
synonym sizeof_ Signed_char,
synonym sizeof Signed int,

synonym sizeof Signed_long long,
synonym sizeof Signed long,
synonym sizeof_ Signed_short,
synonym sizeof Star Float,

synonym sizeof Star Signed char,
synonym sizeof Star Signed int,
synonym sizeof Star Signed long long,
synonym sizeof Star Signed long,
synonym sizeof Star Signed short,
synonym sizeof Star Unsigned char,
synonym sizeof Star Unsigned int,
synonym sizeof Star Unsigned long long,
synonym sizeof Star Unsigned long,
synonym sizeof Star Unsigned short,
synonym sizeof Star void,

synonym sizeof TeletexChar ,
synonym sizeof Unsigned char,
synonym sizeof Unsigned_int,
synonym sizeof Unsigned long long,
synonym sizeof_ Unsigned_long,
synonym sizeof Unsigned short,
synonym sizeof void,

synonym UCHAR MAX,

synonym UINT MAX,

synonym ULLONG_ MAX,

synonym ULONG_MAX,

synonym USHRT MAX,

/*types*/

type
type
type
type
type
type
type
type
type
type
type
type
type
type

Cvector,

Double,

Float,

Long Double
Signed char,
Signed int,
Signed long long,
Signed long,
Signed_short,
Star Float

Star Signed char,
Star Signed int,
Star Signed long long,
Star Signed long,

Rec

.ITU-T Z.104 (2011)/Amd.1 (10/2012)

39

type Star_Signed_short,
type Star_ type,

type Star_ Unsigned char,
type Star Unsigned int,
type Star_ Unsigned long_ long,
type Star Unsigned long,
type Star_Unsigned short,
type Star void,

type Unsigned char,

type Unsigned char,

type Unsigned int,

type Unsigned long long,
type Unsigned long,

type Void;

/*

C.1.6.1 Numerical limits

A C implementation is required to document all the limits specified as synonyms in this clause (see

clause 5.2.4.2 of [b-1SO/IEC 9899)).
C.1.6.1.1 Privatelimits

The following external synonyms are additional to limits specified in clause 5.2.4.2 of
[b-ISO/IEC 9899] for use within package C Predefined and are considered private to this
package. Each of these synonyms can therefore be consistently renamed in this package to avoid

name clashes with a C implementation library or items in the system being defined.

*/

/* number of bits for the type Short int*/
synonym SHRT BIT Integer = external;/* 16 */;
/* */

/* number of bits for the type int*/

synonym INT BIT Integer = external;/* 16 */;
/* */

/* number of bits for the type Long_ int*/
synonym LONG BIT Integer = extermnal;/* 32 */;
/* */

/* number of bits for the type Long_ long int*/
synonym LLONG BIT Integer = extermal;/* 64 */;

/*
C.1.6.1.2 Sizesof integer types

The values given here vary according to the implementation, and therefore are given as externa
synonyms. The values in the comments are derived from clause 5.2.4.2.1 of [b-ISO/IEC 9899].

*/

/* number of bits for smallest item that is not a bit-field (byte)*/

synonym CHAR BIT Integer = externmal; /* 8 */
/* */

/* minimum value for type Signed char */

synonym SCHAR MIN Integer = external; /* -128 that is -power (2,

/* */

/* maximum value for type Signed char */

synonym SCHAR MAX Integer = external; /* +127 that is power (2, CHAR BIT-1)

/* */

/* maximum value for type Unsigned char */

synonym UCHAR MAX Integer = external; /* 255 that is power(2,

/* */

/* minimum value for type denoted by char */

CHAR_BIT-1) */
-1 %/
CHAR_BIT) - 1 */

synonym CHAR MIN Integer = external; /* 0 - char treated as a signed integer */

/* */

/* maximum value for type denoted by char */

synonym CHAR MAX Integer = extermal; /* SCHAR MAX - char treated as a signed integer */

/* */

/* maximum number of bytes in a multibyte character,

for any supported locale */

synonym MB LEN MAX Integer = external; /* 1 that is multibyte characters are not

allowed*/
/* */

/* minimum value for type Signed short */

40 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

synonym SHRT MIN Integer = external; /* -32768 that is -power(2,SHRT BIT-1) */
/* */

/* maximum value for type Signed short */

synonym SHRT MAX Integer = extermal; /* +32767 that is power(2,SHRT BIT-1) - 1 */
/* */

/* maximum value for type Unsigned short */

synonym USHRT MAX Integer = external; /* 65535 that is power(2,SHRT BIT) - 1 */
/* */

/* minimum value for type Signed int */
synonym INT MIN Integer = external; /* -32768 that is -power(2,INT BIT-1) */
/* */

/* maximum value for type Signed int */

synonym INT MAX Integer = external; /* +32767 that is power(2,INT BIT-1) - 1 */
/* */

/* maximum value for type Unsigned int */

synonym UINT MAX Integer = external; /* 65535 that is power (2,INT BIT) - 1 */
/* */

/* minimum value for type Signed long */
synonym LONG MIN Integer = extermal; /* -2147483648 that is -power(2,LONG BIT-1) */
/* */

/* maximum value for type Signed long */

synonym LONG_MAX Integer = external; /* +2147483647 that is power (2,LONG BIT-1) - 1 */
/* */

/* maximum value for type Unsigned long */

synonym ULONG MAX Integer = external; /* 4294967295 that is power(2,LONG BIT) - 1 */
/* */

/* minimum value for type Signed long long */
synonym LLONG MIN Integer = external; /* -9223372036854775808

that is -power (2,LLONG BIT-1) */
/* */
/* maximum value for type Signed long long */
synonym LLONG MAX Integer = external; /* +9223372036854775807

that is power (2,LLONG BIT-1) - 1 */
/* */
/* maximum value for type Unsigned long long */
synonym ULLONG MAX Integer = external; /* 18446744073709551615

that is power (2,LLONG BIT) - 1 */
/*

C.1.6.1.3 Characteristicsof floating types

The values given here vary according to the implementation, and therefore are given as externa
synonyms. The values in the comments are derived from clause 5.2.4.2.2 of [b-ISO/IEC 9899].
*/

/* number of decimal digits, n, such that any Double floating-point number with p radix
b digits can be rounded to a floating-point number with n decimal digits and back again
without change to the value */

synonym DBL_DECIMAL DIG Integer = extermal; /* 10 */

/* */

/* number of decimal digits, g, such that any Double floating-point number with g decimal
digits can be rounded into a floating-point number with p radix b digits and back again
without change to the g decimal digit */

synonym DBL DIG Integer = extermal; /* 10 */

/* */

/* the difference between 1 and the least value greater than 1 that is representable in
the Double floating point type*/

synonym DBL EPSILON Real = external; /*10.0E-5%/

/* */

/* number of base-FLT RADIX digits in the Double floating-point significand, p */
synonym DBL MANT DIG Integer = external;

/* */

/* maximum integer such that 10 raised to that power is in the range of representable
finite Double floating-point numbers */

synonym DBL MAX 10 EXP Integer = extermal; /* +37 */

/* */

/*maximum representable finite Double floating-point number*/

synonym DBL MAX Real = extermal; /* 10.0E37 */

/* */

/* maximum integer such that FLT RADIX raised to one less than that power is a
representable finite Double floating-point number */

synonym DBL MAX EXP Integer = external;

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 41

/* */

/* minimum normalized positive double floating-point number*/

synonym DBL MIN Real = external; /* 10.0E-37 */

/* */

/* minimum negative integer such that 10 raised to that power is in the range of
normalized Double floating-point numbers */

synonym DBL_MIN 10 EXP Integer = extermal; /* -37 */

/* */

/* minimum negative integer such that FLT RADIX raised to one less than that power is a
normalized Double floating-point number, emin */

synonym DBL MIN EXP Integer = external;

/* */

/* minimum positive Double floating-point number */

synonym DBL_ TRUE MIN Real = external; /* 10.0E-37 */

/* */

/* number of decimal digits, n, such that any floating-point number in the widest
supported floating type with pmax radix b digits can be rounded to a floating-point
number with n decimal digits and back again without change to the value, */

synonym DECIMAL DIG Integer = external; /* 10 */

/* */

/* number of decimal digits, n, such that any Float floating-point number with p radix b
digits can be rounded to a floating-point number with n decimal digits and back again
without change to the value */

synonym FLT DECIMAL DIG Integer = external; /* 6 */

/* */

/* number of decimal digits, g, such that any Float floating-point number with g decimal
digits can be rounded into a floating-point number with p radix b digits and back again
without change to the g decimal digits */

synonym FLT DIG Integer = external; /* 6 */

/* */

/* the difference between 1 and the least value greater than 1 that is representable in
the Float floating point type*/

synonym FLT EPSILON Real = external; /*10.0E-5%/

/* */

/* number of base-FLT RADIX digits in the Float floating-point significand, p*/

synonym FLT MANT DIG Integer = external;

/* */

/*maximum representable finite Float floating-point number*/

synonym FLT MAX Real = externmal; /* 10.0E37 */

/* */

/* maximum integer such that 10 raised to that power is in the range of representable
finite Float floating-point numbers */

synonym FLT MAX 10 EXP Integer = extermal; /* +37 */

/* */

/* maximum integer such that FLT RADIX raised to one less than that power is a
representable Float finite floating-point number */

synonym FLT MAX EXP Integer = external;

/* */

/* minimum normalized positive Float floating-point number*/

synonym FLT MIN Real = extermal; /* 10.0E-37 */

/* */

/* minimum negative integer such that 10 raised to that power is in the range of
normalized Float floating-point numbers */

synonym FLT MIN 10 EXP Integer = extermnal; /* -37 */

/* */

/* minimum negative integer such that FLT RADIX raised to one less than that power is a
normalized Float floating-point number, emin */

synonym FLT MIN EXP Integer = external; /*

/* */

/* the radix (or base) for floating point numbers */

synonym FLT RADIX Integer = external; /*2

/* */

/* minimum positive Float floating-point number */

synonym FLT TRUE MIN Real = external; /* 10.0E-37 */

/* */

/* number of decimal digits, n, such that any long double floating-point number with p
radix b digits can be rounded to a floating-point number with n decimal digits and back
again without change to the value */

synonym LDBL DECIMAL DIG Integer = external; /* 10 */

/* */

/* number of decimal digits, g, such that any Long double floating-point number with g

42 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

decimal digits can be rounded into a floating-point number with p radix b digits and back
again without change to the g decimal digits*/

synonym LDBL DIG Integer = external; /*10%/

/* */

/* the difference between 1 and the least value greater than 1 that is representable in
the Long double floating point type*/

synonym LDBL_ EPSILON Real = external; /*10.0E-5 */

/* */

/* number of base-FLT RADIX digits in the Long double floating-point significand, */
synonym LDBL MANT DIG Integer = external;

AV

/*maximum representable finite Long double floating-point number*/

synonym LDBL MAX Real = extermal; /* 10.0E37 */

/* */

/* maximum integer such that 10 raised to that power is in the range of representable
finite Long double floating-point numbers */

synonym LDBL MAX 10 EXP Integer = external; /* +37 */

/* */

/* maximum integer such that FLT RADIX raised to one less than that power is a
representable finite Long double floating-point number */

synonym LDBL MAX EXP Integer = external;

/* */

/* minimum normalized positive Long_ double floating-point number*/

synonym LDBL_ MIN Real = external; /* 10.0E-37 */

/* */

/* minimum negative integer such that 10 raised to that power is in the range of
normalized Long double floating-point numbers */

synonym LDBL_MIN 10 _EXP Integer = extermal; /* -37 */

/* */

/* minimum negative integer such that FLT RADIX raised to one less than that power is a
normalized Long double floating-point number, emin */

synonym LDBL MIN EXP Integer = extermnal;

/* */

/* minimum positive Long double floating-point number */

synonym LDBL TRUE MIN Real = external; /* 10.0E-37 */

/*

C.1.6.1.4 Sizesof package Predefined types

The following synonyms are defined for the sizes of some types defined in package Predefined.
Other types defined in package Predefined are unbounded, therefore no synonym is defined for

the size.

*/

synonym sizeof Bit Integer = 1;
synonym sizeof Boolean Integer = 1;
synonym sizeof Character Integer =
synonym sizeof IA5Char Integer = 1;
synonym sizeof NumericChar Integer = 1;
synonym sizeof Octet Integer = 1;

synonym sizeof PrintableChar Integer = 1;
synonym sizeof TeletexChar Integer = 1;

/*

1;

C.1.6.2 Parameterized typesfor integers

A C integer type is one of 5 signed types or 5 unsigned types. signed char, Signed short,
Signed int, Signed long O Signed long long, Unsigned char, Unsigned short,
Unsigned int, Unsigned long Of Unsigned long long

Thetypesfor C integersinherit the parameterized types bel ow with the parameters bound to the size
in bits of the integer type and the other signed or unsigned integer types. The operation identifiers
are overloaded. For a binary operator such as the "+" operator the first and second parameter is any
of the 10 signed and unsigned C integer types or the Integer type. The types for C integers
therefore define 100 binary "+ operators with different signatures. Because the result is always the
Integer type, and the integer literals always represent values of the 1nteger type, it is aways
possible (providing no further overloading of "+ isintroduced by the user) to determine the correct
v operator from the sorts of the parameters.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 43

Except for comparison operators in a context where a Boolean is required and the »s" operator to
obtain a pointer to an object, each operation for a C integer types has an 1nteger result. As a
consequence, it is not necessary to provide operators to convert between C integer types for
expressions. When there is an explicit or implied casting (for example, when an unsigned char
variable ¢ is assigned to a signed short Variable s), the appropriate num operator is used to
convert to 1nteger and the resulting value converted to the target sort: in the example given
to _Signed short (<<type Unsigned char>>num(s)).

C.1.6.2.1 Integern for agenericinteger typewith n bits

This type is defined as a generic type for both signed and unsigned integers. The parameters
Int char, Int_ short, Int int, Int long and Int long long ae bound to each of the
corresponding unsigned integer types to produce a parameterized type integers for signed Integer
types. For unsigned integer types, the parameters int char, Int_short, Int_int, Int_ long and
Int_long long are bound to each of the corresponding signed integer types to produce a
parameterized type Integeru.

Each binary operator is defined for tntegern with Integer, Integer With Integern, Integern
with Integern, and Integern With each of the other 9 integer types, and that are given below in
Integern &S Integerl, Integer2, Integer3, Integer4, Int char, Int short, int int,
Int long and int long long. Each signed integer type is defined using integern with n bound
to the number of bits in Integern, and the other context parameters bound to the other signed
integer types.

There are no literals for 1ntegern or types based on 1ntegern. Instead the values of Integern are
represented by <<type Integernssinteger (i) where i IS an Integer Vvalue between
-power (2,n-1) and power (2,n-1)-1 for signed integer types and zero to power (2,n)-1 for
unsigned integer types. The implicit ordering of valuesin clause 12.1.6.1 of [ITU-T Z.101] does not
apply, therefore unordered is given.

To shorten the description of 1ntegern below, for each operation only the <operation definition> is
given from which the <operation signature> is constructed (see the Model part of clause 12.1.7).

abstract value type Integern <

value type Int char; value type Int short; value type Int int;

value type Int long; value type Int long long;

/* For signed integers these are given actual parameters for unsigned integers:
Int_char=Unsigned char, Int_sort=Unsigned short, Int_int = Unsigned int,
Int long=Unsigned long, Int sort=Unsigned long long.
For unsigned integers these are given actual parameters for signed integers:
Int char=Signed char, Int sort=Signed short, Int int = Signed int,
Int long=Signed long, Int sort=Signed long long */

synonym n Natural; /*number of bits in Integern*/

value type Integerl; value type Integer2; value type Integer3; value type Integer4

/* These are given actual parameters for the other integer types.
For exmaple when definining Signed long long the values are:

Integerl = Signed char, Integer2 = Signed short,
Integer3 = Signed int, Integer4 = Signed long */ >
literals unordered; /* "<", ">" "<=" ©"s=v first, last, pred, succ,

and num are not implicitly defined.
operators and methods signature lists are constructed from the definitions
of the operations below except for operations used here but defined in subtypes.
*
/
operators /* Signatures for operations used here but only defined in subtypes. */
integer (Integer)-> this Integern; /* convert to a C integer */
num (Integern)-> Integer; /* convert to a SDL-2010 Integer */
/* shift left operators */
"<<" (Integern, Integer) -> Integer;
"<<" (Integer,Integern) -> Integer;
/* shift right operators */

44 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

/*

*/
/*

*/

">>" (Integern, 1 Integer) -> Integer;

">>" (Integer, nv Integern) -> Integer;

/* */

"&" (Integern, Integer) -> Integer; /* bitwise 'and' */

A (Integern, Integer) -> Integer; /* bitwise 'xor' */

"|" (Integern, Integer) -> Integer /*bitwise 'or' */
operator integer (i Integer)-> this Integern

is defined for signed/unsigned integers with different body definitions,

and with different names.
operator num (nv this Integern)-> Integer - for signed integers{}
operator num (nv this Integern)-> Natural- for unsigned integers{}

are defined for signed/unsigned integers with different body definitions.

operator

Il&ll

The untyped
The typed

‘address of’
‘address of’
"&" (Integern)-> the typed star type for the integer type,

(in/out nv this Integern)-> Star void external;

the dereference operator

"k n

(the typed star type for the integer type)

operator.
operator

and

-> Integern are

defined using Star type with the integer type as the actual parameter.

Negation
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator
operator

and
n ! n
I|<I|
Il<ll
I|<I|
Il<ll
I|<I|
Il<ll
I|<I|
Il<ll
I|<I|
Il<ll
I|<I|

|l<|l

Ne—n

"=

n

Ne—n

ne—

n

Ne—n

"=

n

Ne—n

"=

n

Me—n

e

Comparisons with

Boolean results */

(

nvl Integern)
nvl Integern,
nvl Integern,
i Integer,
nvl Integern,
nvl Integern,
nvl Integern,
nvl Integern,

nvl Integern)

-> Boolean {return num(nvl)= 0 }
i Integer) Boolean {return num(nvl)< i }
nv2 Integern)

->
-> Boolean {return i < num(nvl)}
nv2 Integerl)
nv2 Integer2)
nv2 Integer3)
nv2 Integer4)

-> Boolean {return num(nvl)< num

-> Boolean {return num(nvl)< num(n

-> Boolean {return num(nvl)< num(nv2)}

)

v2
v2)
v2)
v2)

nvl
nvl
nvl
nvl
nvl

nvl Integern,

Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2

nvl Integern, i

i Integer,

)
nvl Integern, nv2 Integerl) -> Boolean {return num (nvl) <=num nv2)}
nvl Integern, nv2 Integer2) -> Boolean {return num(nvl)<=num(nv2)}
nvl Integern, nv2 Integer3) -> Boolean {return num (nvl) <=num nv2)}
)}

nvl Integern,

nvl
nvl
nvl
nvl

Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2

nvl Integern, i

nvl Integern,
i Integer,
nvl Integern,
nvl Integern,
nvl Integern,
nvl Integern,

nvl
nvl
nvl
nvl
nvl

nvl Integern, nv2 Integern) -> Boolean {return num (nvl) /=num(nv2)

Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2

nvl Integern, i

i Integer,
nvl Integern,
nvl Integern, nv2 Integer2) -> Boolean {return num (nvl
nvl Integern, nv2 Integer3)

nvl Integern, nv2 Integer4) -> Boolean {return num (nvl

nvl
nvl
nvl
nvl

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(nvl
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Integern,nv2
Integern,nv2
Integern,nv2
Integern,nv2

nv2 Integern)

nvl Integern)

nv2 Integer4)

nv2 Integern)
nvl Integern)
nv2 Integerl)
nv2 Integer2)
nv2 Integer3)
nv2 Integer4)

nvl Integern)
nv2 Integerl)

}

}

}
-> Boolean {return num(nvl)< num }
Int_char)—>Boolean{return num (nvl) < num(nv2)
Int_short)->Boolean{return num(nvl)< num(nv2) }
Int_int)->Boolean{return num(nvl)< num(nv2) }
Int_long) ->Boolean{return num(nvl)< num(nv2) }
Int_long long) ->Boolean{return num(nvl)< num(nv2) }

-> Boolean {return num(nvl)<=num(nv2)}

-> Boolean {return num(nvl)<=i }
-> Boolean {return i<=num(nvl) }

(
(
-> Boolean {return num(nvl)< num/(
(
}

Integer)

(

(

(
-> Boolean {return num(nvl)<=num(nv2
Int_char) ->Boolean{return num(nvl) <=num(nv2) }
Int_short)->Boolean{return num(nvl)<=num(nv2) }
Int_int)->Boolean{return num(nvl)<=num(nv2) }
Int_ long) ->Boolean{return num(nvl)<=num(nv2) }
Int long long) ->Boolean{return num(nvl)<=num(nv2) }
Integer) -> Boolean {return num(nvl)= i }
-> Boolean {return num(nvl)= num(nv2)}
-> Boolean {return i= num(nvl) }
-> Boolean {return num(nvl)= num(nv2)}
-> Boolean {return num(nvl)= num(nv2)}
-> Boolean {return num(nvl)= num(nv2)}
-> Boolean {return num(nvl)= num(nv2)}
Int_char)->Boolean{return num(nvl)= num(nv2) }
Int_short)->Boolean{return num(nvl)= num(nv2) }
Int_int)->Boolean{return num(nvl)= num(nv2) }
Int_ long) ->Boolean{return num(nvl)= num(nv2) }
Int_long_ long) ->Boolean{return num(nvl)= num(nv2)

——

-> Boolean {return num(nvl)/=1i}
-> Boolean {return i/—num(nvl)}
-> Boolean {return num(nvl

Integer)

)
)
-> Boolean {return num(nvl)
)
Int_char) ->Boolean{return num(nvl)/=num/(v2)
Int_short)—>Boolean{return num (nvl) /=num(nv2
Int_int)->Boolean{return num(nvl)/=num(nv2) }

)

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 45

)}
)}
v2)
)}
) }
)}
)}
v2)
) }
)}
) }
)}
2)
)}
) }
)}
) }
v2)
)}
)}
)}
)}
v2)
) }
)}

operator "!=" (nvl Integern,nv2 Int_long_long)—>Boolean{return num(nvl)/:num(nv2)}
operator ">" (nvl Integern, nv2 Integern) -> Boolean {return num(nvl)> num(nv2) }
operator ">" (nvl Integern, i Integer) -> Boolean {return num(nvl)> i }
operator ">" (i Integer, nvl Integern) -> Boolean {return i> num(nvl) }
operator ">" (nvl Integern, nv2 Integerl) -> Boolean {return num (nvl) > num(nv2)}
operator ">" (nvl Integern, nv2 Integer2) -> Boolean {return num(nvl)> num(nv2) }
operator ">" (nvl Integern, nv2 Integer3) -> Boolean {return num (nvl) > num(nv2)}
operator ">" (nvl Integern, nv2 Integer4) -> Boolean {return num(nvl)> num(nv2) }
operator ">" (nvl Integern,nv2 Int_char)—>Boolean{return num(nvl)> num(nv2) }
operator ">" (nvl Integern,nv2 Int_ short)->Boolean{return num(nvl)> num(nv2) }
operator ">" (nvl Integern,nv2 Int_int)—>Boolean{return num(nvl) > num(nv2)}
operator ">" (nvl Integern,nv2 Int long)->Boolean{return num(nvl)> num(nv2) }
operator ">" (nvl Integern,nv2 Int_long_long)—>Boolean{return num(nvl) > num(nv2)}
operator ">=" (nvl Integern, i Integer) -> Boolean {return num(nvl)>=1i }
operator ">=" (i Integer, nvl Integern) -> Boolean {return i>=num(nvl) }
operator ">=" (nvl Integern, nv2 Integern) -> Boolean {return num(nvl)>=num(nv2) }
operator ">=" (nvl Integern, nv2 Integerl) -> Boolean {return num(nvl) >=num(nv2) }
operator ">=" (nvl Integern, nv2 Integer2) -> Boolean {return num(nvl)>=num(nv2) }
operator ">=" (nvl Integern, nv2 Integer3) -> Boolean {return num (nvl) >=num(nv2) }
operator ">=" (nvl Integern, nv2 Integer4) -> Boolean {return num(nvl)>= num(nv2)}
operator ">=" (nvl Integern,nv2 Int char)->Boolean{return num(nvl)>=num(nv2) }
operator ">=" (nvl Integern,nv2 Int_short)—>Boolean{return num(nvl)>:num(nv2)}
operator ">=" (nvl Integern,nv2 Int_int)->Boolean{return num(nvl)s=num(nv2) }
operator ">=" (nvl Integern,nv2 Int_long)—>Boolean{return num(nv1)>:num(nv2)}
operator ">=" (nvl Integern,nv2 Int long long) ->Boolean{return num(nvl)>=num(nv2)}
/* unary operators "+", "-" and "~" */
operator "+" (nv Integern)-> Integer { return num(nv);}
operator "-" (nv Integern)-> Integer { return O-num(nv)}
operator "~" (nv Integern)-> Integer { return - (num(nv)+1)}
/* binary arithmetic operators */
operator "*" (nv Integern, i Integer) -> Integer {return num(nv) * i}
operator "/" (nv Integern, i Integer) -> Integer {return num(nv) / i}
operator "%" (nv Integern, i Integer) -> Integer {return num(nv) rem i}
operator "+" (nv Integern, i Integer) -> Integer {return num (nv) }
operator "-" (nv Integern, i Integer) -> Integer {return num(nv) 1}
operator "*" (i Integer, nv Integern) -> Integer {return i * num(nv)}
operator "/" (i Integer, nv Integern) -> Integer {return i / num nv)}
operator "%" (i1 Integer, nv Integern) -> Integer {return i rem num(nv)}
operator "+" (i Integer, nv Integern) -> Integer {return i + num(nv)}
operator "-" (i Integer, nv Integern) -> Integer {return i - num(n)}
operator "*" (nvl Integern, nv2 Integern) -> Integer {return num(nvl) * num(nv2
operator "/" (nvl Integern, nv2 Integern) -> Integer {return num(nvl) / num(nv2
operator "%" (nvl Integern, nv2 Integern) -> Integer {return num(nvl)rem num(
operator "+" (nvl Integern, nv2 Integern) -> Integer {return num(nvl) + num(nv2
operator "-" (nvl Integern, nv2 Integern) -> Integer {return num(nvl) - num(nv2
operator "*" (nvl Integern, nv2 Integerl) -> Integer {return num(nvl) * num(nv2
operator "/" (nvl Integern, nv2 Integerl) -> Integer {return num(nvl) / num(nv2
operator "%" (nvl Integern, nv2 Integerl) -> Integer {return num(nvl)rem num(n
operator "+" (nvl Integern, nv2 Integerl) -> Integer {return num (nvl) + num(nv2
operator "-" (nvl Integern, nv2 Integerl) -> Integer {return num(nvl) - num(nv2
operator "*" (nvl Integern, nv2 Integer2) -> Integer {return num(nvl) * num(nv2
operator "/" (nvl Integern, nv2 Integer2) -> Integer {return num(nvl) / num(nv2
operator "% (nvl Integern, nv2 Integer2) -> Integer {return num (nvl) rem num(nv
operator "+" (nvl Integern, nv2 Integer2) -> Integer {return num(nvl) + num(nv2
operator "-" (nvl Integern, nv2 Integer2) -> Integer {return num(nvl) - num(nv2
operator "*" (nvl Integern, nv2 Integer3) -> Integer {return num(nvl) * num(nv2
operator "/" (nvl Integern, nv2 Integer3) -> Integer {return num(nvl) / num(nv2
operator "%" (nvl Integern, nv2 Integer3) -> Integer {return num(nvl)rem num(n
operator "+" (nvl Integern, nv2 Integer3) -> Integer {return num(nvl) + num(nv2
operator "-" (nvl Integern, nv2 Integer3) -> Integer {return num(nvl) - num(nv2
operator "*" (nvl Integern, nv2 Integer4) -> Integer {return num(nvl) * num(nv2
operator "/" (nvl Integern, nv2 Integer4) -> Integer {return num(nvl) / num(nv2
operator "$" (nvl Integern, nv2 Integer4) -> Integer {return num(nvl)rem num(n
operator "+" (nvl Integern, nv2 Integer4) -> Integer {return num(nvl) + num(nv2
operator "-" (nvl Integern, nv2 Integer4) -> Integer {return num(nvl) - num(nv2
operator "*" (nvl Integern,nv2 Int char)->Integer{return num(nvl) * num(nv2) }
operator "/" (nvl Integern,nv2 Int_char)—>Integer{return num(nvl) / num(nv2) }
operator "%" (nvl Integern,nv2 Int char)->Integer{return num(nvl)rem num(nv2) }
operator "+" (nvl Integern,nv2 Int_char)—>Integer{return num(nvl) + num(nv2) }
operator "-" (nvl Integern,nv2 Int char)->Integer{return num(nvl) - num(nv2) }
operator "*" (nvl Integern,nv2 Int_short)—>Integer{return num(nvl) * num(nv2)}

46

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

operator "/" (nvl Integern,nv2 Int_short)—>Integer{return num(nvl) / num nv2)}
operator "%" (nvl Integern,nv2 Int short)->Integer{return num(nvl)rem num(nv2) }
operator "+" (nvl Integern,nv2 Int_short)—>Integer{return num (nvl) + num nv2)}
operator "-" (nvl Integern,nv2 Int short)-s>Integer{return num(nvl) - num(nv2)}
operator "*" (nvl Integern,nv2 Int_int)—>Integer{return num (nvl) * num(nv2)}
operator "/" (nvl Integern,nv2 Int int)->Integer{return num(nvl) / num(nv2)}
operator "%" (nvl Integern,nv2 Int_int)—>Integer{return num (nvl) rem num(nv2)}
operator "+" (nvl Integern,nv2 Int int)-s>Integer{return num(nvl) + num(nv2)}
operator "-" (nvl Integern,nv2 Int_int)—>Integer{return num(nvl) - num(nv2) }
operator "*" (nvl Integern,nv2 Int long)->Integer{return num(nvl) * num(nv2) }
operator "/" (nvl Integern,nv2 Int_long)—>Integer{return num(nvl) / num nv2)}
operator "%" (nvl Integern,nv2 Int long)->Integer{return num(nvl)rem num(nv2) }
operator "+" (nvl Integern,nv2 Int_long)—>Integer{return num(nvl) + num nv2)}
operator "-" (nvl Integern,nv2 Int long)->Integer{return num(nvl) - num(nv2) }
operator "*" (nvl Integern,nv2 Int_long_long)—>Integer{return num(nvl) * num(nv2
operator "/" (nvl Integern,nv2 Int long long)->Integer{return num(nvl) / num(nv2
operator "$" (nvl Integern,nv2 Int_long_long)—>Integer{return num(nvl)rem num (n
operator "+" (nvl Integern,nv2 Int long long)->Integer{return num(nvl) + num(nv2
operator "-" (nvl Integern,nv2 Int long long)->Integer{return num(nvl) - num(nv2
/* shift left other than "<<" (Integern, Integer) and "<<" (Integer, Integern)*/
operator "<<" (nvl Integern,nv2 Integern) ->Integer {return nvl << num(nv2) }
operator "<<" (nvl Integern,nv2 Integerl) ->Integer {return nvl << num(nv2)}
operator "<<" (nvl Integern,nv2 Integer2) ->Integer {return nvl << num(nv2) }
operator "<<" (nvl Integern,nv2 Integer3) ->Integer {return nvl << num(nv2)}
operator "<<" (nvl Integern,nv2 Integer4) ->Integer {return nvl << num(nv2) }
operator "<<" (nvl Integern,nv2 Int_ char) ->Integer {return nvl << num(nv2)}
operator "<<" (nvl Integern,nv2 Int short) ->Integer {return nvl << num(nv2) }
operator "<<" (nvl Integern,nv2 Int_int) ->Integer {return nvl << num(nv2)}
operator "<<" (nvl Integern,nv2 Int long) ->Integer {return nvl << num(nv2) }
operator "<<" (nvl Integern,nv2 Int_ long long)->Integer {return nvl << num(nv2)}
/* shift right other than ">>"(Integern, Integer) and ">>" (Integer, Integern)*/
operator ">>" (nvl Integern,nv2 Integern) ->Integer {return nvl >> num(nv2)}
operator ">>" (nvl Integern,nv2 Integerl) ->Integer {return nvl >> num(nv2) }
operator ">>" (nvl Integern,nv2 Integer2) ->Integer {return nvl >> num(nv2)}
operator ">>" (nvl Integern,nv2 Integer3) ->Integer {return nvl >> num(nv2) }
operator ">>" (nvl Integern,nv2 Integer4d) ->Integer {return nvl >> num(nv2)}
operator ">>" (nvl Integern,nv2 Int char) ->Integer {return nvl >> num(nv2) }
operator ">>" (nvl Integern,nv2 Int short) ->Integer {return nvl >> num(nv2)}
operator ">>" (nvl Integern,nv2 Int int) ->Integer {return nvl >> num(nv2) }
operator ">>" (nvl Integern,nv2 Int long) ->Integer {return nvl >> num(nv2)}
operator ">>" (nvl Integern,nv2 Int long long)->Integer {return nvl >> num(nv2) }
/* Negation and Comparisons with Boolean results */
operator "!" (nvl Integern) -> Integer

return if

operator

nen

return if

operator

nen

return if

operator

nen

return if

operator

nen

return if

operator

nen

return if

operator

nen

return if

operator

nen

return if

operator

|l<|l

return if

operator

|l<|l

return if

operator

|l<|l

return if

operator

|l<|l

return if

operator

|l<|l

return if

operator

ne—n

num(nvl) =
(nvl Integern, i

(nvl Integern,

0 then 1 else 0 fi}
-> Integer
num(nvl)< i then 1 else 0 fi}

nv2 Integern)

Integer)

-> Integer

num(nvl) < num(nv2)then 1 else 0 fi}

(i Integer, nvl

(nvl Integern,

Integern)

-> Integer
i < num(nvl)then 1 else 0 fi}

nv2 Integerl) -> Integer

num(nvl)< num(nv2)then 1 else 0 fi}

(nvl Integern,

nv2 Integer2)

-> Integer

num(nvl)< num(nv2)then 1 else 0 fi}

(nvl Integern,

nv2 Integer3)

-> Integer

num(nvl) < num(nv2)then 1 else 0 fi}

(nvl Integern,

nv2 Integer4)

-> Integer

num(nvl) < num(nv2)then 1 else 0 fi}
(nvl Integern,nv2 Int char)->Integer
num(nvl) < num(nv2)then 1 else 0 fi}
(nvl Integern,nv2 Int short)->Integer
num(nvl) < num(nv2)then 1 else 0 fi}
(nvl Integern,nv2 Int int)->Integer
num(nvl) < num(nv2)then 1 else 0 fi}
(nvl Integern,nv2 Int long) ->Integer
num(nvl) < num(nv2)then 1 else 0 fi}
(nvl Integern,nv2 Int long long) ->Integer
num(nvl) < num(nv2)then 1 else 0 fi}

(nvl Integern,

nv2 Integern)

-> Integer

return if num(nvl) <=num(nv2)then 1 else 0 £i}

operator

ne—n

(nvl Integern,

i Integer)

-> Integer

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

)}
)}
v2) }
)}
)}

47

48

return if num(nvl)<=i then 1 else 0 fi}
operator "<=" (i Integer, nvl Integern) -> Integer
return if i<=num(nvl) then 1 else 0 fi}
operator "<=" (nvl Integern, nv2 Integerl) -> Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern, nv2 Integer2) -> Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern, nv2 Integer3) -> Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern, nv2 Integer4) -> Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern,nv2 Int char)->Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern,nv2 Int short) ->Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern,nv2 Int int)->Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern,nv2 Int long)->Integer
return if num(nvl)<=num(nv2)then 1 else 0 fi}
operator "<=" (nvl Integern,nv2 Int long long)->Integer
return if num(nvl)<=num(nv2)then 1 else 0 £fi}
operator "==" (nvl Integern, i1 Integer) -> Integer
return if num(nvl)= i then 1 else 0 fi}
operator "==" (nvl Integern, nv2 Integern) -> Integer
return if num(nvl)= num(nv2)then 1 else 0 £fi}
operator "==" (i Integer, nvl Integern) -> Integer
return if i= num(nvl) then 1 else 0 fi}
operator "==" (nvl Integern, nv2 Integerl) -> Integer
return if num(nvl)= num(nv2)then 1 else 0 £fi}
operator "==" (nvl Integern, nv2 Integer2) -> Integer
return if num(nvl)= num(nv2)then 1 else 0 £fi}
operator "==" (nvl Integern, nv2 Integer3) -> Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "==" (nvl Integern, nv2 Integer4) -> Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "==" (nvl Integern,nv2 Int char)->Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "==" (nvl Integern,nv2 Int short)->Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "==" (nvl Integern,nv2 Int_ int)->Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "==" (nvl Integern,nv2 Int long)->Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "==" (nvl Integern,nv2 Int long long)->Integer
return if num(nvl)= num(nv2)then 1 else 0 £i}
operator "!=" (nvl Integern, nv2 Integern) -> Integer
return if num(nvl)/=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern, i Integer) -> Integer
return if num(nvl)/=ithen 1 else 0 fi}
operator "!=" (i Integer, nvl Integern)
return if i/=num(nvl)then 1 else 0 £fi}
operator "!=" (nvl Integern, nv2 Integerl) -> Integer
return if num(nvl)/=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern, nv2 Integer2) -> Integer
return if num(nvl)/=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern, nv2 Integer3) -> Integer
return if num(nvl)/=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern, nv2 Integer4) -> Integer
return if num(nvl) /=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern,nv2 Int char)->Integer
return if num(nvl) /=num(nv2)then 1 else 0 fi}

-> Integer

operator "!=" (nvl Integern,nv2 Int short)->Integer
return if num(nvl) /=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern,nv2 Int int)->Integer
return if num(nvl) /=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern,nv2 Int long)->Integer
return if num(nvl)/=num(nv2)then 1 else 0 fi}
operator "!=" (nvl Integern,nv2 Int long long)->Integer

return if
operator ">"
return if

num(nvl) /=num(nv2) then 1 else 0 £fi}
(nvl Integern, nv2 Integern) -> Integer
num(nvl)> num(nv2)then 1 else 0 £fi}

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator ">"
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if
operator
return if

namn

ne—n

nen

Nen

ne—n

ne—n

ne—n

ne—n

ne—n

ne—n

ne—n

ne—n

ne—n

(nvl Integern, i Integer) -> Integer
num(nvl)> i then 1 else 0 fi}

(i Integer, nvl Integern) -> Integer
i> num(nvl) then 1 else 0 fi}

(nvl Integern, nv2 Integerl) -> Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern, nv2 Integer2) -> Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern, nv2 Integer3) -> Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern, nv2 Integer4) -> Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern,nv2 Int char)->Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern,nv2 Int short)->Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern,nv2 Int int)->Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern,nv2 Int long) ->Integer
num(nvl) > num(nv2)then 1 else 0 fi}

(nvl Integern,nv2 Int long long) ->Integer
num(nvl)> num(nv2)then 1 else 0 £i}

(nvl Integern, i Integer) -> Integer
num(nvl)>=1i then 1 else 0 fi}

(1 Integer, nvl Integern) -> Integer
i>=num(nvl) then 1 else 0 fi}

(nvl Integern, nv2 Integern) -> Integer
num(nvl) >=num(nv2) then 1 else 0 £i}

(nvl Integern, nv2 Integerl) -> Integer
num(nvl) >=num(nv2) then 1 else 0 £i}

(nvl Integern, nv2 Integer2) -> Integer
num(nvl) >=num(nv2) then 1 else 0 £i}

(nvl Integern, nv2 Integer3) -> Integer
num(nvl) >=num(nv2) then 1 else 0 fi}

(nvl Integern, nv2 Integer4) -> Integer
num(nvl) >=num(nv2) then 1 else 0 fi}

(nvl Integern,nv2 Int char) ->Integer
num(nvl) >=num(nv2) then 1 else 0 fi}

(nvl Integern,nv2 Int short)->Integer
num(nvl) >=num(nv2) then 1 else 0 £fi}

(nvl Integern,nv2 Int int)->Integer
num(nvl) >=num(nv2) then 1 else 0 £fi}

(nvl Integern,nv2 Int long) ->Integer
num(nvl) >=num(nv2) then 1 else 0 fi}

(nvl Integern,nv2 Int long long) ->Integer
num (nvl) >=num(nv2) then 1 else 0 fi}

/* bitwise logical operators */

/*

*/

/*

ngn

nin

operator
operator
operator "|"
For bitwis
However, t
Here using

Bitwise 'and'
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
operator "&"
Bitwise 'xor'
operator "*"
operator "*"
operator "*"
operator "*"

(nv Integern, i Integer) -> Integer; bitwise 'an
(nv Integern, i Integer) -> Integer; bitwise 'xo
(nv Integern, i Integer) -> Integer; bitwise 'or

'or' are defined for
'and'/'xor',/'or'

e 'and', 'xor' and
he other bitwise

dl
r’

signed/unsigned integers.
operators are defined using the

the signatures above. Bitwise ‘xor’ is defined here.

with signatures other than "&" (Integern, Integer) */

(i Integer, nv Integern) -> Integer {return nv & i}

(nvl Integern, nv2 Integern) -> Integer {return nvl & num(nv2)}
(nvl Integern, nv2 Integerl) -> Integer {return nvl & num(nv2) }
(nvl Integern, nv2 Integer2) -> Integer {return nvl & num(nv2)}
(nvl Integern, nv2 Integer3) -> Integer {return nvl & num(nv2)}
(nvl Integern, nv2 Integer4) -> Integer {return nvl & num(nv2)}
(nvl Integern, nv2 Int char)->Integer{return nvl & num(nv2) }

(nvl Integern, nv2 Int short) -> Integer {return nvl & num(nv2)}
(nvl Integern, nv2 Int Int) -> Integer {return nvl & num(nv2)}
(nvl Integern, nv2 Int long) -> Integer {return nvl & num(nv2)}
(nvl Integern,nv2 Int long long)->Integer{return nvl & num(nv2)}
with signatures other than """ (Integern, Integer) */

(i Integer, nv Integern)-> Integer {return nv " i}

(nvl Integern, nv2 Integern) -> Integer {return nv * num(nv2)}
(nvl Integern, nv2 Integerl) -> Integer {return nv * num(nv2)}
(nvl Integern, nv2 Integer2) -> Integer {return nv * num(nv2)}

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

49

operator "' (nvil Integern, nv2 Integer3) -> Integer {return nv num(nv2)}

operator "*" (nvl Integern, nv2 Integer4) -> Integer {return nv * num nv2)}

operator "*" (nvl Integern, nv2 Int char) -> Integer {return nv ” num(nv2)}

operator "“" (nvl Integern, nv2 Int short) -> Integer {return nv * num nv2)}

operator "*" (nvl Integern, nv2 Int int) -> Integer {return nv * num(nv2)}

operator "“" (nvl Integern, nv2 Int long) -> Integer {return nv * num nv2)}

operator "*" (nvl Integern, nv2 Int long long) -> Integer {return nv * num(nv2)}
/* Bitwise 'or' with signatures other than "|" (Integern, Integer) */

operator "|" (i Integer, nv Integern) -> Integer {return nv | i}

operator "|" (nv Integern, i Integer) -> Integer {return nv | num(nv2)}

operator "|" (nvl Integern, nvl Integern) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Integerl) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Integer2) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Integer3) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Integer4) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Integern) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Int char) -> Integer {return nv | num(nv2)}

operator "|" (nvl Integern, nvl Int short) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Int int) -> Integer {return nv | num(nv2) }

operator "|" (nvl Integern, nvl Int long) -> Integer {return nv | num(nv2)}

operator "|" (nvl Integern, nvl Int long long) -> Integer{return nv | num(nv2) }
/* Real/Float arithemetic */

operator "+" (i this Integern, r Real)->Real{return r+float (num(i))}

operator "+"(r Real, i this Integern)->Real{return r+float (num(i)) }

operator "+" (i this Integern, f Float)->Real{return to Real (f)+float (num(i))}

operator "+'(f Float, i this Integern)—>Real{return to_Real(f)+float(num(i))}

operator "-" (i this Integern, r Real)—>Real{return float(num(i))—r}

operator "-"(r Real, i this Integern)->Real{return r-float (num(i))}

operator "-" (i this Integern, f Float)->Real{return float (num(i))-to_Real (f)}

operator "-"(f Float, i this Integern)->Real{return to Real (f)-float (num(i))}

operator "*" (i this Integern, r Real)—>Real{return r*float(num(i))}

operator "*"(r Real, 1 this Integern)—>Real{return r*float(num('))}

operator "*" (i this Integern, f Float)->Real{return to Real (f)*float (num(i))}

operator "*"(f Float, i this Integern)->Real{return to_Real(f)*float(num(i))}

operator "/"(i this Integern, r Real)->Real{return float (num(i))/r}

operator "/"(r Real, i this Integern) —>Real{return r/float (num (i))}

operator "/"(1 this Integern, f Float)->Real{return float (num(i))/to Real(f)}

operator "/"(f Float, i this Integern)->Real{return to Real (f)/float (num(i))}

/* equal to Real/Float - Boolean and Integer result*/

operator "==" (i this Integern, r Real)—>Boolean{return float (num (1)):r}

operator "=="(r Real, i this Integern)->Boolean{return r=float (num(i)) }

operator "=="(i this Integern, f Float)->Boolean{return float (num(i))=to Real(f)}

operator "=="(f Float, i this Integern)->Boolean{return to_ Real (f)=float (num(i))}

operator "=="(i this Integern, r Real)->Integer{return if i==r then 1 else 0 fi}

operator "=="(r Real, i this Integern)->Integer{return if r==i then 1 else 0 fi}

operator "==" (i this Integern, f Float)->Integer{return if i==f then 1 else 0 fi}

operator "=="(f Float, i this Integern)->Integer{return if r==f then 1 else 0 fi}
/* not equal to Real/Float - Boolean and Integer result*/

operator "!="(i this Integern, r Real)->Boolean{return float (num(i))/=r}

operator "!="(r Real, i this Integern)—>Boolean{return r/= float(num(l))}

operator "!=" (i this Integern, f Float)—>Boolean{return float (num(i)) /=to Real(f)}

operator "!="(f Float, i this Integern)->Boolean{return to Real (f)/=float (num(i))}

operator "!="(i this Integern, r Real)->Integer{return if i!=r then 1 else 0 fi}

operator "!="(r Real, i this Integern)->Integer{return if r!=i then 1 else 0 fi}

operator "!=" (i this Integern, f Float)->Integer{return if i!=f then 1 else 0 fi}

operator "!="(f Float, i this Integern)->Integer{return if r!=f then 1 else 0 fi}
/* less than Real/Float - Boolean and Integer result*/*/

operator "<" (i this Integern, r Real)->Boolean{return float (num(i))<r}

operator "<"(r Real, 1 this Integern)—>Boolean{return r<float(num(1))}

operator "<" (i this Integern, f Float)—>Boolean{return float (num(i)) <to Real(f)}

operator "<"(f Float, i this Integern)->Boolean{return to Real (f)<float (num(i)) }

operator "<" (i this Integern, r Real)->Integer{return if i<r then 1 else 0 fi}

operator "<"(r Real, i this Integern)->Integer{return if r<i then 1 else 0 fi}

operator "<" (i this Integern, f Float)->Integer{return if i<f then 1 else 0 fi}

operator "<"(f Float, i this Integern)->Integer{return if r<f then 1 else 0 fi}

/* less than or equal to Real/Float - Boolean and Integer result*/

operator "<=" (i this Integern,
i this Integern)->Boolean{return r<=float (num/

operator

50

Ne=n (r

r
Real,

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

Real) ->Boolean{return float (num(i))<

r}
)

i)

operator "<=" (i this Integern, f Float)->Boolean{return float (num(i))<=to Real (f
operator "<="(f Float, i this Integern —>Boolean{return to Real (f)<=float (num(i)
operator "<="(i this Integern, r Real)->Integer{return if i<=r then 1 else 0 fi
operator "<="(r Real, i this Integern)->Integer{return if r<=i then 1 else 0 fi
operator "<=" (i this Integern, f Float)->Integer{return if i<=f then 1 else 0 fi
operator "<="(f Float, i this Integern)->Integer{return if r<=f then 1 else 0 fi

/* greater than Real/Float - Boolean and Integer result*/x/

operator ">"(i this Integern, Real) ->Boolean{return float (num(i))>r}
operator ">"(r Real, 1 this Integern)—>Boolean{return r>float(num(1))}
operator ">" (i this Integern, f Float —>Boolean{return float (num (i))>to_Real(f)}
operator ">"(f Float, i this Integern)->Boolean{return to Real (f)>float (num(i)) }
operator ">" (i this Integern, ->Integer{return if i>r then 1 else 0 fi}
operator ">"(r Real, i this Integern)->Integer{return if r>i then 1 else 0 fi}
operator ">" (i this Integern, f Float)->Integer{return if i>f then 1 else 0 fi}
operator ">"(f Float, i this Integern)->Integer{return if r>f then 1 else 0 fi}
/* greater than or equal to Real/Float - Boolean and Integer result*/*/
operator ">="(i this Integern, r Real)->Boolean{return float (num(i))s>=r}
operator ">="(r Real, i this Integern)->Boolean{return r>=float (num(i))}
operator ">="(i this Integern, f Float)->Boolean{return float (num(i))s>=t o_Real (f
operator ">="(f Float, i this Integern)->Boolean{return to Real (f)>= float(num(l)
operator ">=" (i this Integern, r ->Integer{return if i>=r then 1 else 0 fi
operator ">="(r Real, i this Integern)->Integer{return if r>=i then 1 else 0 fi
operator ">="(i this Integern, f Float)->Integer{return if i>=f then 1 else 0 fi
operator ">="(f Float, i this Integern)->Integer{return if r>=f then 1 else 0 fi

/* Prefix increment/decrement */
method "++" -> Integer {this
method "--" -> Integer {this

/* Postfix increment/decrement */
method postfix inc-> r Integer
{ r:=num(this);

this:=<<type Integerns>>integer(r+l) ;

return r

}

method postfix dec-> r Integer
{ r:=num(this);

this:=<<type Integern>>integer(r-1);

return r

/* division

}

/* simple assignment */
method "=" (i Integern
method "=" (i Integer
method "=" (i Integerl
method "=" (i Integer2
method "=" (i Integer3
method "=" (i Integer4
method "=" (i Int char
method "=" (i Int_short
method "=" (i Int int
method "=" (1 Int_long
method "=" (i Int long long

/* multlpllcatlon assignment */
method "*= (i Integern
method "*=" (i Integer
method "*=" (i Integerl
method "*=" (1 Integer2
method "*=" (i Integer3
method "*=" (i Integer4
method "*=" (i Int char
method "*=" (i Int_ short
method "*=" (i Int int
method "*=" (i Int long
method "*=" (i Int long long

assignment */

method "/=" (i Integern
method " /=" (i Integer
method "/=" (i Integerl
method " /=" (i Integer2
method "/=" (i Integer3
method "/=" (i Integer4
method "/=" (i Int_char

)
)
)
)
)
)
)
)
)
)
)

)
)
)
)
)
)
)
)
)
)
)

->
->
->
->
->

->

->
->
->

->

->
->
->
->
->
->
->
->
->

->

->
->
->
->
->
->

->

<<type Integerns>>integer (this+1) ;
<<type Integern>>integer (this-1);

return this }
return this }

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Integer
Integer
Integer
Integer
Integer
Integer
Integer

:=this
:=this
:=this
:=this
:=this
:=this
:=this
:=this
:=this
:=this
:=this

:=this
:=this
:=this
:=this
:=this
:=this
:=this

:=1;

:=integer
:=integer
:=integer
:=integer
:=integer
:=integer
:=integer
:=integer
:=integer
:=integer

L I TR S I R N N

N N N

i);

num
num
num
num
num
num
num

num
num

i;
ij;
i;
i;
ij;
ij;
ij;
ij;
ij;
i;
ij;

return
return
return
return
return
return
return
return
return
return
return

num (
num (
num (
num (
num (
num (
num (
num (
num (
num (
num (

return
return
return
return
return
return
return

num (
num (
num (
num (
num (
num (
num (

num (this) }
num (this) }
num (this) }
num (this) }
num (this) }
num (this) }
num (this) }
num(thls)}

)}

)}

)}

num(thls
num (this

this) }
this) }
this) }
this) }
this) }
this) }
this) }
this) }
this) }
this) }
this) }

this) }
this) }
this) }
this) }
this) }
this) }
this) }

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

51

method "/=" (i Int_short) -> Integer {this:=this / i; return num(this)}
method "/=" (i Int int) -> Integer {this:=this / i; return num(this)}
method "/=" (i Int_ long) -> Integer {this:=this / i; return num(this)}
method "/=" (i Int long long) -> Integer {this:=this / i; return num(this)}
/* remainder assignment */
method "%=" (i Integern) -> Integer {this:=this % i; return num(this)}
method "%=" (i Integer) -> Integer {this:=this % 1i; return num(this)}
method "$=" (i Integerl) -> Integer {this:=this % 1i; return num(this)}
method "%=" (i Integer2) -> Integer {this:=this % i; return num(this)}
method "$=" (i Integer3) -> Integer {this:=this % 1i; return num(this)}
method "%=" (i Integer4) -> Integer {this:=this % i; return num(this)}
method "%=" (i Int_ char) -> Integer {this:=this % i; return num(this)}
method "$%=" (i Int short) -> Integer {this:=this % i; return num(this)}
method "%=" (i Int_ int) -> Integer {this:=this % 1i; return num(this)}
method "%=" (i Int long) -> Integer {this:=this % i; return num(this)}
method "%=" (i Int long long) -> Integer {this:=this % i; return num(this)}
/* addition assignment */
method "+=" (i Integern) -> Integer {this:=this + i; return num(this)}
method "+=" (i Integer) -> Integer {this:=this + i; return num(this)}
method "+=" (i Integerl) -> Integer {this:=this + i; return num(this)}
method "+=" (i Integer2) -> Integer {this:=this + i; return num(this)}
method "+=" (i Integer3) -> Integer {this:=this + i; return num(this)}
method "+=" (i Integer4) -> Integer {this:=this + i; return num(this)}
method "+=" (i Int_char) -> Integer {this:=this + i; return num(this)}
method "+=" (i Int_ short) -> Integer {this:=this + i; return num(this)}
method "+=" (i Int_int) -> Integer {this:=this + i; return num(this)}
method "+=" (i Int long) -> Integer {this:=this + i; return num(this)}
method "+=" (i Int long long) -> Integer {this:=this + i; return num(this)}
/- subtraction assignment -/
method "-=" (i Integern) -> Integer {this:=this - 1i; return num(this)}
method "-=" (i Integer) -> Integer {this:=this - i; return num(this)}
method "-=" (i Integerl) -> Integer {this:=this - i; return num(this)}
method "-=" (i Integer2) -> Integer {this:=this - i; return num(this)}
method "-=" (i Integer3) -> Integer {this:=this - i; return num(this)}
method "-=" (i Integer4) -> Integer {this:=this - i; return num(this)}
method "-=" (i Int char) -> Integer {this:=this - i; return num(this)}
method "-=" (i Int_ short) -> Integer {this:=this - i; return num(this)}
method "-=" (i Int int) -> Integer {this:=this - i; return num(this)}
method "-=" (i Int long) -> Integer {this:=this - i; return num(this)}
method "-=" (i Int long long) -> Integer {this:=this - i; return num(this)}

/* shift left assignment */

method "<<=" (i Integern) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Integer) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Integerl) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Integer2) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Integer3) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Integer4) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Int char) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Int_short) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Int_ int) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Int_ long) -> Integer {this:=this << i; return num(this)}
method "<<=" (i Int long long) -> Integer {this:=this << i; return num(this)}
/* shift right assignment */
method ">>=" (i Integern -> Integer {this:=this >> i; return num(this)
method ">>=" (i Integer -> Integer {this:=this >> i; return num(this)
method ">>=" (i Integerl -> Integer {this:=this >> i; return num(this)
method ">>=" (i Integer2 -> Integer {this:=this >> i; return num(this)
method ">>=" (i Integer3 -> Integer {this:=this >> i; return num(this

method ">>="

method ">>="

method ">>="

method ">>="

method ">>=" Int long

method ">>=" (i Int long long
/* bitwise and assignment */

)
)
Int char -> Integer {this:=this >> i; return num(this)
Int short -> Integer {this:=this >> i; return num(this)
this:=this >> 1i; return num(this)
this:=this >> 1; return num(this)
this:=this >> 1i; return num(this)

Int int -> Integer
-> Integer

) {
) {
) {
) {
) {
i Integer4) -> Integer {this:=this >> i; return num(this
:) {
) {
) {
) {
) -> Integer {

method "&=" (i Integern) -> Integer {this:=this & i; return num(this)}
method "&=" (i Integer) -> Integer {this:=this & i; return num(this)}
method "&=" (i Integerl) -> Integer {this:=this & i; return num(this)}
method "&=" (i Integer2) -> Integer {this:=this & i; return num(this)}
method "&=" (i Integer3) -> Integer {this:=this & i; return num(this)}
method "&=" (i Integer4) -> Integer {this:=this & i; return num(this)}

52 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

method "&=" (i Int_char) -> Integer {this:=this & i; return num(this)}
method "&=" (i Int_ short) -> Integer {this:=this & i; return num(this)}
method "&=" (i Int_int) -> Integer {this:=this & i; return num(this)}
method "&=" (i Int long) -> Integer {this:=this & i; return num(this)}
method "&=" (i Int long long) -> Integer {this:=this & i; return num(this)}
/* bitwise xor assignment */
method "*=" (i Integern) -> Integer {this:=this * i; return num(this)}
method "*=" (i Integer) -> Integer {this:=this * i; return num(this)}
method "*=" (i Integerl) -> Integer {this:=this *~ i; return num(this)}
method "*=" (i Integer2) -> Integer {this:=this * i; return num(this)}
method "“=" (i Integer3) -> Integer {this:=this *~ i; return num(this)}
method "*=" (i Integer4) -> Integer {this:=this * i; return num(this)}
method "*=" (i Int char) -> Integer {this:=this *~ i; return num(this)}
method "*=" (i Int_ short) -> Integer {this:=this * i; return num(this)}
method "*=" (i Int int) -> Integer {this:=this *~ i; return num(this)}
method "*=" (i Int long) -> Integer {this:=this " i; return num(this)}
method "*=" (i Int long long) -> Integer {this:=this * i; return num(this)}
/* bitwise or assignment */
method "|=" (i Integern) -> Integer {this:=this | i; return num(this)}
method "|=" (i Integer) -> Integer {this:=this | i; return num(this)}
method "|=" (i Integerl) -> Integer {this:=this | i; return num(this)}
method "|=" (i Integer2) -> Integer {this:=this | i; return num(this)}
method "|=" (i Integer3) -> Integer {this:=this | i; return num(this)}
method "|=" (i Integer4) -> Integer {this:=this | i; return num(this)}
method "|=" (i Int char) -> Integer {this:=this | i; return num(this)}
method "|=" (i Int_ short) -> Integer {this:=this | i; return num(this)}
method "|=" (i Int_ int) -> Integer {this:=this | i; return num(this)}
method "|=" (i Int long) -> Integer {this:=this | i; return num(this)}
method "|=" (i Int long long) -> Integer {this:=this | i; return num(this)}

default integer(0) ;
} /* end parameterized value type Integern;

C.1.6.2.2 Integersfor a signed integer type with n bits

The parameters n, Integerl, Integer2, Integer3 and Integer4 from Integern a&'€ left unbound.
Each signed integer type is defined using 1ntegern with n bound to the number of bits, and the
other context parameters bound to the other C signed integer types.

*/
abstract value type Integers inherits Integern
< /* Int_char = */ Unsigned char,
/* Int_ short = */ Unsigned short,
/* Int int = */ Unsigned int
/* Int long = */ Unsigned long,

/* Int long long */ Unsigned long long >
/* this leaves the following parameters unbound:
synonym n Natural;
value type Integerl; value type Integer2;
value type Integer3; value type Integerd */

operator integer (i Integer)-> this Integers
synonym p Integer = power (2,n-1);
{ /* integer (i) of Integers is the unique constructor for Integers values. */
return if i > p-1 then integer((i - (i/p)*p)
/* reduce to integer in range of Integers */
else
if 1 < -p then integer (i - ((i+1)/p)*p)
/* increase to integer in range of Integers */
else integer (i) /* which represents the Integers value */

fi
£i}
operator num (nv this Integers)-> Integer (
/* return the integer value for which integer (num(nv)) = nv */

/* Although this is expressed here as an iterative algorithm,
it is expected that the implementation does the conversion
as an atomic action,
or null action if the effect is to just to do a type conversion. */
return if integer(0) = nv then 0

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 53

else

if (nv > integer (0)) then 1 + num(nv-<<type Integerss>>integer(l)) ;
else /*(nv < integer (0))*/ -1 + num(nv+<<type Integers>>integer (1))
fi
£i}
/* shift left */
operator "<<" (nv Integers, i Integer) -> Integer

/* sign bit propagated left for << */
{return num(nv) * power (2, if i > 0 then i else 0 fi)}
operator "<<" (i Integer, nv Integers) -> Integer
{return i * power (2, if num(nv) > 0 then num(nv) else 0 fi)}
/* shift right */
operator ">>"(nv Integers, i Integer) -> Integer {
/* In clause 6.5.7 of [b-ISO/IEC 9899] for a negative number
the resulting value is implementation-defined.
A negative number is -power (2,n) for the sign bit
plus power(2,m) for each of other 1 bit
where the bits are numbered m to 0 (most to least significant). */
return if i <= 0 then num(nv)
else
if num(nv) > 0 then num(nv)/power (2,1)
else /* num(nv) < 0 */ (num(nv)+power (2,n))/ power(2,1)

fi
£i}
operator ">>"(i Integer, nv Integers) -> Integer {
return if num(nv) <= 0 then i
else

if i >= 0 then i/power (2,num(nv))
else /* 1 < 0 */
(num (<<type Integers>>integer (i))+power(2,n))/ power (2,num(nv)) ;
fi
£i}
/* bit wise and */
operator private bitwise and (il, i2, m Integer) -> Integer
del p, rl, r2 Integer; /* least significant bit is bit 1 */
{ 4if (m=1) return (il > 0) and (i2 > 0) then 1 else 0;

p := power(2,m-1);/*value of bit m */
rl = il rem p;
r2 = 12 rem p;

/* bit m is 1 in i1 if i1-rl1 > 0 */
/* bit m is 1 in i2 if i2-r2 > 0 */
return if ((il-rl) > 0) and ((i2-r2) > 0) then p else 0 fi +
bitwise and (rl, r2, m-1)
}
operator "&" (nv Integers, i Integer) -> Integer
synonym p Integer = power (2,n);
dcl nvi Integer;
{ nvi := num(nv);
i := num(<<type Integers>>integer(i)) ;
return if (nvi < 0) and (i <0) then p else 0 /* the sign bit */ fi
/* add the other bits, in each case removing the sign */
+ bitwise and(nvi + if nvi < 0 then p else 0 fi,
i+ if 1 < 0 then p else 0 fi, n-2)
}
/* bitwise xor*/
operator private bitwise xor (il, 12, m Integer) -> Integer
del p, rl, r2 Integer; /* least significant bit is bit 1 */
{ if (m=1) return if ((il > 0) xor (i2 > 0)) then 1 else 0 fi
power (2,m-1); /*value of bit m */

p =
rl = il rem p;
r2 = 12 rem p;

/* bit m is 1 in i1 if il-rl > 0 */
/* bit m is 1 in i2 if i2-r2 > 0 */
return if ((il-rl) > 0) xor ((i2-r2) > 0) then p else 0 fi +
bitwise xor (rl, r2, m-1)
}
operator "*" (nv Integers, i Integer) -> Integer
synonym p Integer = power (2,n-1);
dcl nvi, i_only bits Integer;
{ nvi := num(nv);
i only bits := i

54 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

/* subtract bits in range to neutralise these*/
- num(<<type Integers>>integer(i));
i := num(<<type Integers>>integer(i)) ;
return 1 only bits +
if (nvi < 0) xor (i <0)
then p else 0 /* the sign bit */

fi + /* add the other bits, in each case removing the sign */

bitwise xor(nvi + if nvi < 0 then p else 0 fi,
i+ if i < 0 then p else 0 fi, n-1);

}

/* bitwise or*/

operator private bitwise or (i1, i2, m Integer) -> Integer
del p, rl, r2 Integer; /* least significant bit is bit 1 */
{ if (m=1l) return if ((il > 0) or (i2 > 0)) then 1 else 0 fi;
p := power(2,m-1); /*value of bit m*/
rl = il rem p;
r2 = 12 rem p;

/* bit m is 1 in i1 if il-rl > 0 */
/* bit m is 1 in i2 if i2-r2 > 0 */
return if ((il-rl) > 0) or ((i2-r2) > 0) then p else 0 fi
+ bitwise or (rl, r2, m-1)
}
operator "|" (nv Integers, i Integer) -> Integer
synonym p Integer = power (2,n);
dcl nvi, i only bits Integer;
{ nvi := num(nv);
i only bits := 1
/* subtract bits in range to neutralise these*/
- num(<<type Integers>>integer(i));
i := num(<<type Integers>>integer(i)) ;
return 1 only bits +
if (nvi < 0) or (i <0)
then p else 0 /* the sign bit */

fi + /* add the other bits, in each case removing the sign */

bitwise or(nvi + if nvi < 0 then p else 0 fi,
i+ if i < 0 then p else 0 fi, n-1);

} /* end parameterized value type Integers;

C.1.6.2.3 Integeru for an unsigned integer type with n bits

The parameters n, Integerl, Integer2, Integers and Integer4 from Integern d'€ left unbound.
Each signed integer type is defined using 1ntegeru with n bound to the number of bits, and the

other context parameters bound to the other C unsigned integer types.

*/
abstract value type Integeru inherits Integern
< /* Int char = */ Signed_ char,
/* Int short = */ Signed_short,
/* Int_int = */ Signed int
/* Int long = */ Signed long,

/* Int long long = */ Signed long long >
/* this leaves the following parameters unbound:
synonym n Natural;
value type Integerl; value type Integer2;
value type Integer3; value type Integerd */

operator integer (i Integer)-> this Integeru
synonym p Integer = power (2,n-1);

/* integer (i) of Integeru is the unique constructor for Integeru values.

{ return if i > p-1 then integer((i - (i/p)*p)
/* reduce to integer in range of Integeru */
else
if i < -p then integer (i - ((i+1)/p)*p)
/* increase to integer in range of Integeru */
else integer (i) /* which represents the Integeru value */
fi
£i}

*/

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

55

operator num (nv this Integeru)-> Natural (
/* return the positive integer value for which integer (num(nv)) = nv */
/* Although this is expressed here as an iteration algorithm,
it is expected that the implementation does the conversion
as an atomic action,
or null action if the effect is to just to do a type conversion. */
if (integer(0) = nv) then return 0;
return 1 + num(nv-<<type Integeru>>integer (1))

}

/* shift left */

operator "<<" (nv Integeru, i Integer) -> Integer
{return num(nv) * power (2, if i > 0 then i else 0 £fi)}
operator "<<" (i Integer, nv Integeru) -> Integer {return i * power (2 num(nv))}
/* shift right */
operator ">>"(nv Integeru, i Integer) -> Integer
{return if i <= 0 then num(nv) else num(nv)/power (2,1i) £i}
operator ">>"(i Integer, nv Integeru) -> Integer {

return if 1 >= 0
then i/power (2,num(nv))
else (num(<<type Integerus>integer(i))+power (2,n))/ power (2,num(nv))fi
}
/*bitwise and*/
operator private bitwise and (il, 12, m Integer) -> Integer
decl p, rl, r2 Integer; /* least significant bit is bit 1 */
{ if (m=1) return if (il > 0) and (i2 > 0) then 1 else 0 fi;

p := power(2,m-1); /*value of bit m */
rl = il rem p;
r2 = 12 rem p;

/* bit m-1 is 1 in i1 if il1-r1l > 0 */
/* bit m-1 is 1 in i2 if i2-r2 > 0 */
return if ((il-rl) > 0) and ((i2-r2) > 0) then p else 0 fi
+ bitwise_and (rl, r2, m-1)
}
operator "&" (nv Integeru, i Integer) -> Integer;
{return bitwise and(num(nv), num(<<type Integerus>integer(i)), n)}
/* bitwise xor*/

operator private bitwise xor (il, 12, m Integer) -> Integer
del p, rl, r2 Integer; /* least significant bit is bit 1 */
{ if (m=1) return if ((il > 0) xor (i2 > 0)) then 1 else 0 fi;
p := power(2,m-1); /*value of bit m */
rl = il rem p;
r2 = 12 rem p;

/* bit m is 1 in i1 if il-rl > 0 */

/* bit m is 1 in i2 if i2-r2 > 0 */

return if ((il-rl) > 0) xor ((i2-r2) > 0) then p else 0 fi
+ bitwise xor (rl, r2, m-1)

}

operator "*" (nv Integeru, i Integer) -> Integer;
dcl i _only bits Integer;
{ i only bits := 1

/* subtract bits in range to neutralise these*/

- num(<<type Integerus>>integer(i));

i := num(<<type Integerus>>integer(i)) ;
return 1 only bits + bitwise xor (num(nv), i, n);

/* bitwise or*/
operator private bitwise or (11, i2, m Integer) -> Integer
decl p, rl, r2 Integer;

{ 4if (m=1) returm if ((il > 0) or (i2 > 0)) then 1 else 0 fi;
p := power(2,m-1); /*value of bit m, least significant bit is bit 1%/
rl = il rem p;
r2 = 12 rem p;

/* bit m is 1 in i1 if i1-rl1 > 0 */

/* bit m is 1 in 12 if i2-r2 > 0 */

return if ((il-rl) > 0) or ((i2-r2) > 0) then p else 0 fi
+ bitwise or (rl, r2, m-1)

}

operator "|" (nv Integeru, i Integer) -> Integer;
dcl i_only bits Integer;
{ i only bits := 1

/* subtract bits in range to neutralise these*/

56 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

- num(<<type Integerus>>integer(i));
i := num(<<type Integeruss>integer(i)) ;
return 1 _only bits + bitwise or(num(nv), i, n);

}

} /* end parameterized value type Integeru;

C.1.6.3 Typesfor void and pointers

The void type comprises an empty set of values; it is an incomplete type that cannot be completed.
Thevoid typeis denoted by a <c type keywords> item void. It is not allowed to define a variable or

parameter with the type void.
*/
abstract value type Void
/* Has an implicit literal signature denoted by null - see [ITU-T Z.107 12.1] */
endvalue type Void;
synonym sizeof Void Integer = 0;
/*
The star void type represents a‘pointer to void’ (an untyped pointer) such as that introduced by a
<c declaration> of the form:

void *id;

The operators star void to Integer and Integer to Star void Of Star void convert to and
from Integer. It isrequired that:
Star void to Integer (Integer to Star void (i)) == i and
Integer to Star void (Star void to Integer (ptr) == ptr

Arithmetic operators are not defined for star void because the size of the pointer is not known.

The dereference operator is not defined for star void because the actual type of the pointer is not
known and therefore the type of the result is not known.
*/
value type Star void {
/* Has an implicit literal signature denoted by null - see [ITU-T Z.107 12.1] */
operator Star void to Integer (ptr Star void) -> Integer external;
operator Integer to Star void (i Integer) -> Star void external;
default null;
} /* end value type Star void; */
synonym sizeof Star void Integer = external /*Depends on the architecture.*/
/*
The parameterized type star_type With a type as an actual parameter defines the typed pointer
type for the type.

It is possible to convert a star void (@ pointer to void) to or from a pointer of any type. If a
pointer to a type is converted to a star void (a pointer to void) and back again, the result
compares equal to the original pointer. The operators to convert to each type from star void and
from each typeto star void are defined in the typed pointer type for the type.

The operators star type to Integer and Integer to Star type Of Star type convert to and
from Integer. It isrequired that:

Star type to Integer(Integer to Star type(i))==1 and

Integer to Star type(Star type to Integer (p)==p and

Star void to Integer(Star type to Star void(p))==Star type to Integer (p)
and

Star void to Star type(Integer to Star void(i))== Integer to Star type(i)

*
/
abstract value type Star type <type Atype, synonym sizeof type Integer>{
operator "&" (in/out x Atype) -> Star type /* address of */
{return Star void to Star type (<<type Atype>>"&" (x)}
operator "*" (p Star type) -> Atype external; /*dereference the Star_ type */
operator Star type to Integer (p Star type) -> Integer external;
operator Integer to Star_ type (i Integer) -> Star type external;

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 57

operator Star type to Star void (p Star type) -> Star void
{ return Integer to Star void(Star_ type to_ Integer(p)) }

operator Star void to Star type (p Star void) -> Star type
{ return Integer to_ Star type(Star void to_ Integer (p)) }

operator "+" (p Star type, i1 Integer) -> Star type /* pointer arithmetic - add */
{ return Integer to_ Star type(Star type to_ Integer(p) + i*sizeof type) }

operator "+" (p Star type, i Signed char) -> Star_type

{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, i Signed short) -> Star type

{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, i1 Signed int) -> Star type

{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, i1 Signed long) -> Star type

{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, 1 Signed long long) -> Star type
{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }

operator "+" (p Star type, i1 Unsigned char) -> Star type

{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, i1 Unsigned short) -> Star type

{ return Integer to_Star type(Star_ type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, 1 Unsigned int) -> Star type

{ return Integer to_Star type(Star_type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, i1 Unsigned long) -> Star type

{ return Integer to_Star type(Star_type to_Integer(p) + i*sizeof type) }
operator "+" (p Star type, i1 Unsigned long long) -> Star type
{ return Integer to_ Star type(Star_ type to Integer(p) + i*sizeof type) }

operator "-" (p Star type, 1 Integer) -> Star type /* pointer arithmetic - sub */
{ return Integer to_ Star type(Star_ type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, 1 Signed char) -> Star type
{ return Integer to_ Star type(Star_ type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, i Signed short) -> Star type
{ return Integer to_ Star type(Star_ type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, i1 Signed int) -> Star type
{ return Integer to_ Star type(Star type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, i Signed long) -> Star type
{ return Integer to_ Star type(Star type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, i Signed long long) -> Star type
{ return Integer to_ Star type(Star type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, 1 Unsigned char) -> Star type
{ return Integer to_ Star type(Star type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, 1 Unsigned short) -> Star type
{ return Integer to Star type(Star type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, 1 Unsigned int) -> Star type
{ return Integer to Star type(Star type to Integer(p) - i*sizeof type) }
operator "-" (p Star type, i Unsigned long) -> Star type
{ return Integer to_ Star type(Star type to_ Integer(p) - i*sizeof type) }
operator "-" (p Star type, i Unsigned long long) -> Star type
{ return Integer to_ Star type(Star type to Integer(p) - i*sizeof type) }
method "++" -> Star type {this := this+l; return this }
method "--" -> Star type {this := this-1; return this }
method postfix inc-> r Star_type {r:= this; this:= r+l; return r }
method postfix dec-> r Star_type {r:= this; this:= r-1; return r }
/* simple assignment */
method "=" (p Star type)->Star type {this:=p;return this}
method "=" (i Integer)->Star type{this:=Integer to_ Star type(i);return this}
method "=" (i Signed char)->Star type{this:=Integer to Star type (num(i));return
this}
method "=" (i Signed short)->Star type
{this:=Integer to Star type(num(i)) ;return this}
method "=" (i Signed int)->Star type{this:=Integer to Star type (num(i));return this}
method "=" (i Signed long)->Star type{this:=Integer to Star type (num(i)) ;return
this}
method "=" (i Signed long long) ->Star type
{this:=Integer to_Star type(num(i));return this}
method "=" (i Unsigned char)->Star type
{this:=Integer to_Star type(num(i));return this}
method "=" (i Unsigned short)->Star type
{this:=Integer to_Star type(num(i));return this}
method "=" (i Unsigned int)->Star type
{this:=Integer to_Star type(num(i));return this}
method "=" (i Unsigned long) ->Star type

58 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

{this:=Integer to_Star type(num(i));return this}
method "=" (i Unsigned long long) ->Star type

{this:=Integer to_Star type(num(i));return this}
/* addition assignment */

method "+=" (i Integer) -> Star type {this:=this + i; return this}
method "+=" Signed char) -> Star type {this:=this + i; return this}
method "+=" (i Signed short) -> Star type {this:=this + i; return this}
method "+=" (i Signed int) -> Star type {this:=this + i; return this}
method "+=" (i Signed long) -> Star_type {this:=this + i; return this}
method "+=" (i Signed long long) -> Star type {this:=this + i; return this}
method "+=" (i Unsigned char) -> Star_type {this:=this + i; return this}
method "+=" (i Unsigned short) -> Star type {this:=this + i; return this}
method "+=" (i Unsigned int) -> Star_type {this:=this + i; return this}
method "+=" (i Unsigned long) -> Star type {this:=this + i; return this}
method "+=" (i Unsigned long long) -> Star type {this:=this + i; return this}

(i
(4
(4
(i
(4
(i
(4
(i
(4
(i
/* subtraction assignment */
(i
(4
(i
(4
!
(4
(4
(4
(4
(4

method "-=" (i Integer) -> Star_type {this:=this - i; return this}
method "-=" (i Signed char) -> Star type {this:=this - i; return this}
method "-=" (i Signed short) -> Star_type {this:=this - i; return this}
method "-=" (i Signed int) -> Star type {this:=this - i; return this}
method "-=" (i Signed long) -> Star type {this:=this - i; return this}
method "-=" (i Signed long_ long) -> Star type {this:=this - i; return this}
method "-=" (i Unsigned char) -> Star type {this:=this - i; return this}
method "-=" (i Unsigned short) -> Star type {this:=this - i; return this}
method "-=" (i Unsigned int) -> Star type {this:=this - i; return this}
method "-=" (i Unsigned long) -> Star type {this:=this - i; return this}
method "-=" (i Unsigned long long) -> Star type {this:=this - i; return this}

/* Other Assignment methods not defined for pointers. */
default null;
}/* end parameterized value type Star type

*/
C.1.6.4 C signed and unsigned char types
A C char isan 8-bit integer, also used to represent character.

*
/
value type Signed char
inherits Integers <
/*n*/ CHAR BIT /*external, usually 8 */,
/*Integerl*/ Signed short,
/*Integer2*/ Signed_ int,
/*Integer3*/ Signed long,
/*Integer4*/ Signed long long >
(to_Signed char = integer);
synonym sizeof Signed char Integer = (CHAR BIT+7)/8 /*usually 1%/;
value type Star Signed char
inherits Star_ type < Signed char, sizeof Signed char>
{ star_Signed char to_Star void = Star type to Star void,
Star_void to Star Signed char = Star_void_to Star type,
Star Signed char to Integer = Star type to Integer,
Integer_ to_Star Signed char = Integer to_Star_ type);
synonym sizeof Star Signed char Integer = sizeof Star void;
value type Unsigned char
inherits Integeru <
/*n*/ CHAR BIT /*external, usually 8 */,
/*Integerl*/ Unsigned_short,
/*Integer2*/ Unsigned int,
/*Integer3*/ Unsigned_ long,
/*Integer4*/ Unsigned long long >
(to _Unsigned char = integer);
synonym sizeof Unsigned char Integer = sizeof Signed char;
value type Star Unsigned char
inherits Star type < Unsigned char, sizeof Unsigned chars>
{ sStar_Unsigned char to_ Star void = Star type to Star void,
Star void to Star Unsigned char = Star void to_ Star type,
Star Unsigned char to Integer = Star type to_ Integer,
Integer to_ Star Unsigned char = Integer to Star type)

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 59

{

operator Star Unsigned char to Charstring (sc Star Unsigned char)-> cs

Charstring
{ cs := "; /*empty string*/
loop ("*"(sc)<>0) /* while character is not NUL */
{ cs := cs//mkstring(chr (num("*"(sc))); /* convert and add to result */
sc := (Star Unsigned char Integer (sc) + sizeof Signed char); /*next char
*/

} /* end of loop body*/
return cs
} /*end of Star Unsigned char to Charstring*/
operator length(sc Star Unsigned char)-> Integer
{ return length(Star Unsigned char to Charstring(sc)) }
} /*end of Star Unsigned char
synonym sizeof Star Unsigned char Integer = sizeof Star void;

/*
C.1.6.5 Csigned and unsigned short types
A C short isa 16-bit integer.

*
/
value type Signed short
inherits Integers <
/*n*/ SHRT BIT /*external, usually 16 */,
/*Integerl*/ Signed_ char,
/*Integer2*/ Signed int,
/*Integer3*/ Signed long,
/*Integer4*/ Signed long long >
(to_Signed short = integer);
synonym sizeof Signed short Integer = (SHRT BIT+7)/8 /*usually 2*/;
value type Star Signed short
inherits Star_ type < Signed_short, sizeof_ Signed short>
{ sStar_Signed short to_ Star void = Star type to Star_ void,
Star void to_Star Signed short = Star_void to_Star type,
Star Signed short to Integer = Star type to Integer,
Integer to_ Star Signed short = Integer to Star type);
synonym sizeof Star Signed short Integer = sizeof Star void;
value type Unsigned short
inherits Integeru <
/*n*/ SHRT BIT /*external, usually 16 */,
/*Integerl*/ Unsigned_char,
/*Integer2*/ Unsigned int,
/*Integer3*/ Unsigned long,
/*Integer4*/ Unsigned long long >
(to_Unsigned short = integer);
synonym sizeof Unsigned short Integer = sizeof Signed short;
value type Star Unsigned short
inherits Star type < Unsigned short, sizeof Unsigned short>
{ Star Unsigned short to Star void = Star type to Star void,
Star void to Star Unsigned short = Star void to Star type,
Star Unsigned short to Integer = Star type to Integer,
Integer to Star Unsigned short = Integer to Star type);
synonym sizeof Star Unsigned short Integer = sizeof Star void;

/*
C.1.6.6 Csdigned and unsigned int types
A Cintisaminimum of 16 bits.

*
/
value type Signed int
inherits Integers <
/*n*/ INT BIT /*external, minimum 16 - same as short */,
/*Integerl*/ Signed char,
/*Integer2*/ Signed_short,
/*Integer3*/ Signed long,
/*Integer4*/ Signed long long >
(to_Signed int = integer);
synonym sizeof Signed int Integer = (INT_BIT+7)/8 /*minimum 2*/;

60 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

value type Star Signed int
inherits Star type < Signed int, sizeof Signed int>
{ sStar_Signed int to Star void = Star_type to_Star void,
Star void to Star Signed int = Star void to_ Star type,
Star_Signed int_ to_Integer = Star type to_Integer,
Integer to Star Signed int = Integer to Star type);
synonym sizeof_ Star Signed_ int Integer = sizeof_ Star_void;
value type Unsigned int
inherits Integeru <
/*n*/ INT BIT /*external, minimum 16 */,
/*Integerl*/ Unsigned char,
/*Integer2*/ Unsigned_short,
/*Integer3*/ Unsigned long,
/*Integer4*/ Unsigned long long >
(to_Unsigned int = integer);
synonym sizeof Unsigned int Integer = sizeof Signed int;
value type Star Unsigned int
inherits Star type < Unsigned int, sizeof Unsigned ints>
{ Star Unsigned int to Star void = Star type to Star void,
Star void to Star Unsigned int = Star void to Star type,
Star Unsigned int to Integer = Star type to Integer,
Integer_ to_Star Unsigned int = Integer to Star type);
synonym sizeof Star Unsigned int Integer = sizeof Star void;

/*
C.1.6.7 Csigned and unsigned long types
A Clong isaminimum of 32 bits.

*
/
value type Signed long
inherits Integers <
/*n*/ LONG BIT /*external, minimum 32 - twice int */,
/*Integerl*/ Signed_ char,
/*Integer2*/ Signed short,
/*Integer3*/ Signed_ int,
/*Integer4*/ Signed long long >
(to_Signed long = integer);
synonym sizeof Signed long Integer = (LONG BIT+7)/8 /*minimum 4%/;
value type Star Signed long
inherits Star type < Signed long, sizeof Signed long>
{ star_Signed long to_Star void = Star_ type to Star void,
Star void to Star Signed long = Star void to Star type,
Star_Signed long to Integer = Star_ type to Integer,
Integer to Star Signed long = Integer to_ Star type);
synonym sizeof Star Signed long Integer = sizeof Star void;
value type Unsigned long
inherits Integeru <
/*n*/ LONG_BIT /*external, minimum 32 */,
/*Integerl*/ Unsigned_ char,
/*Integer2*/ Unsigned_ short,
/*Integer3*/ Unsigned_ int,
/*Integer4*/ Unsigned long long >
(to_Unsigned long = integer);
synonym sizeof Unsigned long Integer = sizeof Signed ilong;
value type Star Unsigned long
inherits Star type < Unsigned long, sizeof Unsigned long>
{ Star Unsigned long to Star void = Star type to Star void,
Star void to Star Unsigned long = Star void to Star type,
Star Unsigned long to Integer = Star type to Integer,
Integer to_ Star Unsigned long = Integer to Star type);
synonym sizeof Star Unsigned long Integer = sizeof Star void;

/*

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

61

C.1.6.8 C digned and unsigned long long types
A Clong long is aminimum of 64 bits.

*
/
value type Signed long long
inherits Integers <
/*n*/ LLONG BIT /*external, minimum 64 - twice long */,
/*Integerl*/ Signed char,
/*Integer2*/ Signed short,
/*Integer3*/ Signed_ int,
/*Integer4*/ Signed long >
(to_Signed long long = integer);
synonym sizeof Signed long long Integer = (LLONG BIT+7)/8 /*minimum 8%*/;
value type Star Signed long long
inherits Star type < Signed long long, sizeof Signed long longs>
{ sStar_Signed long long to Star void = Star type to_Star void,
Star void to Star Signed long long = Star void to Star type,
Star Signed long long to Integer = Star type to Integer,
Integer to_ Star Signed long long = Integer to_ Star type);
synonym sizeof Star Signed long long Integer = sizeof Star void;
value type Unsigned long long
inherits Integeru <
/*n*/ LLONG BIT /*external, minimum 64 */,
/*Integerl*/ Unsigned_ char,
/*Integer2*/ Unsigned short,
/*Integer3*/ Unsigned_ int,
/*Integer4*/ Unsigned long >
(to_Unsigned long = integer);
synonym sizeof Unsigned long long Integer = sizeof Signed long long;
value type Star Unsigned long long
inherits Star type < Unsigned long long, sizeof Unsigned long longs>
{ sStar_Unsigned long long to_Star void = Star_type to_Star void,
Star void to Star Unsigned long long = Star void to_ Star type,
Star _Unsigned long long to Integer = Star_type to Integer,
Integer to Star Unsigned long long = Integer to_ Star type);
synonym sizeof Star Unsigned long long Integer = sizeof Star void;

/*
C.1.6.9 C floating numberstypes

C has three different floating types. Float, Double and Long double With potentialy different
levels of precision and range of the values. By contrast, <<package Predefineds>Real in theory
can represent values to any level of precision and an unbounded range. In practice the
implementation of floating numbers is (usually) dependent on hardware support and therefore is
implementation dependent. The 3 types (Float, Double and Long double) are therefore considered
formally equivalent in this Recommendation except the size of each as defined by synonyms below,
so that bouble and Long_double are each defined as a syntype of Float.

*/

syntype Double = Float {} /* alternative name for Float */

syntype Long double = Float {} /* alternative name for Float */

synonym sizeof Float Integer = extermal /* at least 4 */;

synonym sizeof Double Integer = external /* at least 8 */;
synonym sizeof Long double Integer = external /* at least 16 */;

/*

A new value typeisintroduced for F1oat (rather than define a syntype of rea1) to define arithmetic
operators (such as "+ between each of the C integer types and rFioat. An operator such as "+ is
defined between r1oat and each of the following: rReal, Integer, Signed char, Unsigned char,
Signed short, Unsigned short, Signed int, Unsigned int, Signed long, Unsigned long,
Signed long long and Unsigned long_ long. The corresponding operator is aso defined in each
case Where the sorts of the parameters are interchanged so the second parameter sort is Fiocat and
for the case where both parameter sorts are rFioat. The result sort of each arithmetic operator is
Real. For each such operator name there are therefore 25 signatures.

62 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

Comparison operators (n==m,m1=n nen nyn no_n ny_n) gre defined between the pairs of sorts as
above, but also for both Boolean and Integer results. For each such operator name there are
therefore 50 signatures.

Assignment expression methods (=, mx=n n/=n v _n n__n) gre defined where the right-hand side
iSaFloat, Integer Real OF C integer type and the result is the rea1 value of the updated Fioat
variable.

The operators between C integer types and r1oat are defined with the type for the integer rather
than below, to shorten the description of Float.

Similar to integers, it is assumed that the result of all operators (except comparisons or "&" for
pointers) involving floating numbersis areal. Also, there are no literals for F1oat: the constructor

is the operator
to Float (Real) -> Float;

To shorten the description of rFioat below, for each operation only the <operation definition> is

given from which the <operation signature> is constructed (see the Model part of clause 12.1.7).
value type Float {
literals unordered; /* "<", ">" "<=" vs=v first, last, pred, succ,
and num are not implicitly defined
operators and methods signature lists are constructed from the definitions
of the operations below */
operator to Real (f Float) -> Real external;
operator to Float(r Real) ->Float extermal; /* constructor */
/* the casting operators are not formally defined.
It is assumed that:
to Real (to Float(r)) has the value r, and
to Float (to_Real(f)) has the value f£. */
operator Integer to Float (i Integer) ->Float {return to_ Float (float(i))}

operator "&" (f Float)-> Void star extermal; /* 'address of' operator.*/
operator "+"(f Float)-> Real{return to Real(f)} /*unary plus */
operator "-"(f Float)-> Real{return -to Real(f)} /*unary minus*/

/* addition */

operator "+" (f1l Float, f2 Float)-> Real{return to Real (f1) + to Real (f2)}
operator "+"(f Float, r Real)-> Real{return to Real(f) + r}

operator "+"(r Real, f Float)-> Real{return to Real(f) + r}

operator "+"(f Float, i Integer)-> Real{return to Real(f) + float (i)}
operator "+" (i Integer, f Float)-> Real{return to Real(f) + float (i)}

/* subtraction */

operator "-"(fl Float, f2 Float)-> Real{return to Real (fl1) - to Real(f2)}
operator "-"(f Float, r Real)-> Real{return to Real(f) - r}

operator "-"(r Real, f Float)-> Real{return r - to Real(f) }

operator "-"(f Float, i Integer)-> Real{return to Real (f) - float (i)}
operator "-" (i Integer, f Float)-> Real{return float (i) - to Real(f)}

/* multiplication */

operator "*" (fl Float, f2 Float)-> Real{return to Real (f1) * to Real (f2)}
operator "#*"(f Float, r Real)-> Real{return to Real(f) * r}

operator "*"(r Real, f Float)-> Real{return to Real(f) * r}

operator "*"(f Float, i Integer)-> Real{return to Real (f) * float (i)}
operator "*" (i Integer, f Float)-> Real{return to Real(f) * float (i)}

/* division */

operator "/"(fl Float, f2 Float)-> Real{return to Real (f1) / to Real(£f2)}
operator "/"(f Float, r Real)-> Real{return to Real(f) / r}

operator "/"(r Real, f Float)-> Real{return r / to Real(f)}

operator "/"(f Float, i Integer)-> Real{return to Real (f) / float (i)}
operator "/" (i Integer, f Float)-> Real{return to Real(i) / float(f)}

/* equal to - Boolean result */

operator "=="(fl Float,f2 Float)-> Boolean{return to Real (fl)=to Real (£2)}
operator "=="(f Float, r Real)-> Boolean{return to Real(f) = r}
operator "=="(r Real, f Float)-> Boolean{return r = to_Real (f)}
operator "=="(f Float, i Integer)-> Boolean{return to Real(f) = float (i)}
operator "=="(i Integer, f Float)-> Boolean{return float (i) = to Real (f)}

/* not equal to - Boolean result */

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 63

operator "!="(fl Float,f2 Float)->Boolean{return to Real (f1)/=to Real (£2)}
operator "!="(f Float, r Real)-> Boolean{return to Real (f) /= r}
operator "!="(r Real, f Float)-> Boolean{return r /= to_Real(f)}
operator "!="(f Float, i Integer)-> Boolean{return to Real (f) /= float (i)}
operator "!="(i Integer, f Float)-> Boolean{return float (i) /= to Real(f)}

/* less than - Boolean result */

operator "<"(fl Float,f2 Float)-> Boolean{return to Real (fl)<to Real (f2)}
operator "<"(f Float, r Real)-> Boolean{return to Real(f) < r}

operator "<"(r Real, f Float)-> Boolean{return r < to Real (f)}

operator "<"(f Float, i Integer)-> Boolean{return to Real(f) < float (i)}
operator "<" (i Integer, f Float)-> Boolean{return float (i) < to Real(f)}
/* greater than - Boolean result */

operator ">"(fl Float,f2 Float)-> Boolean{return to Real (f1)>to Real (£2)}
operator ">"(f Float, r Real)-> Boolean{return to Real(f) > r}

operator ">"(r Real, f Float)-> Boolean{return r > to Real (f)}

operator ">"(f Float, i Integer)-> Boolean{return to Real(f) > float (i)}
operator ">" (i Integer, f Float)-> Boolean{return float(i) > to Real(f)}
/* less than or equal - Boolean result */

operator'<=" (f1 Float,f2 Float)-> Boolean{return to Real (f1)<=to Real (£2)}
operator'"<="(f Float, r Real)-> Boolean{return to Real(f) <= r}
operator'"<="(r Real, f Float)-> Boolean{return r <= to_Real (f)}
operator'"<="(f Float, i Integer)-> Boolean{return to Real (f) <= float (i)}
operator"<=" (i Integer, f Float)-> Boolean{return float (i) <= to Real (f)}
/* greater than or equal - Boolean result */

operator">="(f1 Float,f2 Float)-> Boolean{return to Real (f1)>=to Real (£2)}
operator">=" (f Float, r Real)-> Boolean{return to Real (f) >= r}
operator">="(r Real, f Float)-> Boolean{return r >= to_ Real (f)}
operator">="(f Float, i Integer)-> Boolean{return to Real(f) >= float (i)}
operator">=" (i Integer, f Float)-> Boolean{return float (i) >= to Real(f)}
/* equal to - Integer result */

operator "=="(fl Float,f2 Float)-> Integer

{return if to Real(fl)=to Real (f2)then 1 else 0 fi}
operator "=="(f Float, r Real)-> Integer{return if to Real(f) = rthen 1 else 0 fi}
operator "=="(r Real, f Float)-> Integer{return if r = to Real(f)then 1 else 0 fi}
operator "=="(f Float, i Integer)-> Integer

{return if to Real(f) = float(i)then 1 else 0 fi}
operator "==" (i Integer, f Float)-> Integer

{return if float (i) = to Real(f)then 1 else 0 £fi}
/* not equal to - Integer result */
operator "!="(fl Float,f2 Float)->Integer

{return if to Real(fl)/=to_Real (f2)then 1 else 0 fi}
operator "!="(f Float, r Real)-> Integer{return if to Real(f) /= rthen 1 else 0
operator "!="(r Real, f Float)-> Integer{return if r /= to Real(f)then 1 else 0
operator "!="(f Float, i Integer)-> Integer

{return if to Real(f) /= float(i)then 1 else 0 fi}
operator "!="(i Integer, f Float)-> Integer

{return if float (i) /= to_Real(f)then 1 else 0 fi}
/* less than - Integer result */
operator "<" (fl Float,f2 Float)-> Integer

{return if to Real(fl)<to Real(f2) then 1 else 0 fi}
operator "<"(f Float, r Real)-> Integer{return if to Real(f) < r then 1 else 0 fi}
operator "<"(r Real, f Float)-> Integer{return if r < to Real(f) then 1 else 0 fi}
operator "<"(f Float, i Integer)-> Integer

{return if to Real(f) < float(i) then 1 else 0 fi}
operator "<" (i Integer, f Float)-> Integer

{return if float(i) < to Real(f) then 1 else 0 fi}
/* greater than - Integer result */
operator ">"(fl Float,f2 Float)-> Integer

{return if to Real(fl)>to Real(f2) then 1 else 0 fi}
operator ">"(f Float, r Real)-> Integer{return if to Real(f) > r then 1 else 0 fi}
operator ">"(r Real, f Float)-> Integer{return if r > to Real(f) then 1 else 0 fi}
operator ">"(f Float, i Integer)-> Integer

{return if to Real(f) > float(i) then 1 else 0 fi}

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

£i)

£1)

£i)

£1)

operator ">" (i Integer,

f Float)-> Integer

{return if float (i) »> to Real(f) then 1 else 0 fi}
/* less than or equal - Integer result */

operator"<="(f1 Float,f2 Float)-> Integer
{return if to Real (fl)<=to Real(f2) then 1 else 0 fi}

operator"<="(f Float, r Real)-> Integer{return if to Real(f) <= r then 1 else 0

operator"<="(r Real, f Float)-> Integer{return if r <= to Real(f) then 1 else 0

operator"<="(f Float,

i Integer)-> Integer

{return if to Real (f) <= float (i) then 1 else 0 fi}

operator"<=" (i Integer,

f Float)-> Integer

{return if float (i) <= to Real(f) then 1 else 0 fi}
/* greater than or equal - Integer result */

operator">="(fl1 Float,f2 Float)-> Integer
{return if to Real (fl) >=to_Real (f2) then 1 else 0 fi}

operator">="(f Float, r Real)-> Integer{return if to Real(f) »>= r then 1 else 0

operator"s="(r Real, f Float)-> Integer{return if r >= to Real (f) then 1 else 0

operator">="(f Float,

i Integer)-> Integer

{return if to Real (f) >= float (i) then 1 else 0 fi}

operator">=" (i Integer,

f Float)-> Integer

{return if float (i) »>= to Real(f) then 1 else 0 fi}
/* Simple assignment */

method "
method " ="
method " ="
method " ="

(£ Float)
(r Real

(i Signed char) -> Real

{this:=to_Float (float (num(i))); return

-> Real {this:=f;
) -> Real {this:=to Float(r);

to_Real (this) }

(
method " =" (i Signed short) -> Real
{this:=to Float (float (num(i))); return to_ Real (this)}
method " =" (i Signed int) -> Real
{this:=to _Float (float (num(i))); return to_ Real (this)}
method " =" (i Signed long) -> Real
{this:=to_Float (float (num(i))); return to_ Real (this)}
method " =" (i Signed long long) -> Real
{this:=to _Float (float (num(i))); return to Real (this)}
method " =" (i Unsigned char) -> Real
{this:=to Float (float (num(i))); return to Real (this)}
method " =" (i Unsigned short) -> Real
{this:=to_Float (float (num(i))); return to Real (this)}
method " =" (i Unsigned int) -> Real
{this:=to_Float (float (num(i))); return to_Real (this) }
method " =" (i Unsigned long) -> Real
{this:=to_Float (float (num(i))); return to_Real (this) }
method " =" (i Unsigned long long) -> Real
{this:=to_Float (float (num(i))); return to_Real (this) }
/* multiplication assignment */
method " *=" (f Float) -> Real {this:=this
method " *=" (r Real) -> Real {this:=this
method " *=" (i Integer) -> Real {this:=this
method " *=" (i Signed char) -> Real {this:=this
method " *=" (i Signed short) -> Real {this:=this
method " *=" (i Signed int) -> Real {this:=this
method " *=" (i Signed long) -> Real {this:=this
method " *=" (i Signed long_long) -> Real {this:=this
method " *=" (i Unsigned char) -> Real {this:=this
method " *=" (i Unsigned short) -> Real {this::this
method " *=" (i Unsigned int) -> Real {this:=this
method " *=" (i Unsigned long) -> Real {this::this
method " *=" (i Unsigned long long) -> Real {this:=this
/* division assignment */
method " /=" (f Float) -> Real {this:=this
method " /=" (r Real) -> Real {this:=this
method " /=" (i Integer) -> Real {this:=this
method " /=" (i Signed char) -> Real {this::this
method " /=" (i Signed short) -> Real {this:=this
method " /=" (i Signed int) -> Real {this:=this

* Ok X 2k 3k F X X X 3k X X X

NSNS NN

return to_ Real (this)}
return to Real (this)}
(i Integer) -> Real {this:=to Float (float(i)); return to_Real (this)}

return
return
return
return
return
return
return
return
return
return
return
return
return

return
return
return
return
return
return

to_Real (this)
to_Real (this)
to_Real (this)
to_Real (this)
to_Real (this)
to_Real (this)
to_Real (this)
to Real (this)
to Real (this)
to Real (this)
to Real (this)
to Real (this)
to Real (this)

this
this
this
this
this
this

to Real
to Real
to Real
to Real
to Real
to Real

B e e e A

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

65

method " /=" (i Signed long) -> Real {this:=this / i; return to Real (this)}
method " /=" (i Signed long_ long) -> Real {this:=this / i; return to Real(this)}
method " /=" (i Unsigned char) -> Real {this:=this / i; return to Real(this)}
method " /=" (i Unsigned short) -> Real {this:=this / i; return to Real(this)}
method " /=" (i Unsigned_ int) -> Real {this:=this / i; return to Real(this)}
method " /=" (i Unsigned long) -> Real {this:=this / i; return to Real(this)}
method " /=" (i Unsigned long long) -> Real {this:=this / i; return to Real(this)}

/* addition assignment */

method " +=" (f Float) -> Real {this:=this + f; return to Real (this)}
method " +=" (r Real) -> Real {this:=this + r; return to Real(this)}
method " +=" (i Integer) -> Real {this:=this + i; return to Real (this)}
method " +=" (i Signed char) -> Real {this:=this + i; return to Real(this)}
method " +=" (i Signed short) -> Real {this:=this + i; return to Real (this)}
method " +=" (i Signed int) -> Real {this:=this + i; return to Real(this)}
method " +=" (i Signed long) -> Real {this:=this + i; return to Real (this)}
method " +=" (i Signed long long) -> Real {this:=this + i; return to Real(this)}
method " +=" (i Unsigned char) -> Real {this:=this + i; return to Real (this)}
method " +=" (i Unsigned short) -> Real {this:=this + i; return to Real(this)}
method " +=" (i Unsigned int) -> Real {this:=this + i; return to Real (this)}
method " +=" (i Unsigned long) -> Real {this:=this + i; return to Real(this)}
method " +=" (i Unsigned long long) -> Real {this:=this + i; return to Real(this)}
/* subtraction assignment */

method " -=" (f Float) -> Real {this:=this - f; return to Real(this)}
method " -=" (r Real) -> Real {this:=this - r; return to Real(this)}
method " -=" (i Integer) -> Real {this:=this - i; return to Real (this)}
method " -=" (i Signed char) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Signed short) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Signed int) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Signed long) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Signed long_ long) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Unsigned char) -> Real {this:=this - i; return to Real (this)}
method " -=" (i Unsigned short) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Unsigned_ int) -> Real {this:=this - i; return to Real(this)}
method " -=" (i Unsigned long) -> Real {this:=this - i; return to Real (this)}
method " -=" (i Unsigned long long) -> Real {this:=this - i; return to Real(this)}
/* Assignment methods with names " %=" (remainder), " <<=" (shift left),

">>=" (shift right), " &=" (logical and>, " *=" (logical xor),
and "|:" (logical or) are not defined for Float */

default to Float (0.0);
} /* end value type Float*/
value type Star Float
inherits Star_type < Float, sizeof Float >
{ star Float_to_Star void = Star type to Star void,
Star void to Star Float = Star void to_ Star_ type);
synonym sizeof Star Float Integer = sizeof Star void;

/*
C.1.6.10 Parameterized typefor arrays Cvector
Cvector is used to define the types of arrays.

*

/

value type Cvector < type Itemsort; synonym MaxIndex Integer >
inherits Array< Indexsort, Itemsort >
{syntype Indexsort = Integer constants 0:MaxIndex-1;}

/* end value type Cvector

C.1.6.11 Packageend
*/

endpackage C Predefined;
/* */

66 Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012)

Bibliography

[b-ISO/IEC 9899] 1SO/IEC 9899:2011, Information technology — Programming languages — C.

Rec. I TU-T Z.104 (2011)/Amd.1 (10/2012) 67

SeriesA
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommuni cation services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

L anguages and general softwar e aspectsfor telecommunication systems

Printed in Switzerland
Geneva, 2013

	ITU-T Rec. Z.104 Amendment 1 (10/2012) – Specification and Description Language: Data and action language in SDL-2010 Amendment 1: Replacement Annex C on language binding
	Summary
	History
	FOREWORD
	Table of Contents
	Annex C – Language binding
	C.1 C Language binding
	C.1.1 Extensions to lexical rules
	C.1.2 Data type definition
	C.1.3 Use of C variable definitions
	C.1.4 Use of C expressions
	C.1.5 Use of C statements
	C.1.6 Package C_Predefined
	Bibliography

