

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.104
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2004)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Encoding of SDL data

ITU-T Recommendation Z.104

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
Testing and Test Control Notation (TTCN) Z.140–Z.149
User Requirements Notation (URN) Z.150–Z.159

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-computer interfaces for the management of telecommunications networks Z.360–Z.369

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Distributed processing environment Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.104 (10/2004) i

ITU-T Recommendation Z.104

Encoding of SDL data

Summary
Encoding of SDL data enables communication of data values between pieces of SDL in an
implementation independent way.

Data values can be encoded in a text format defined by this Recommendation. Alternatively, when
the data is defined in ASN.1, sets of standardized ASN.1 encoding rules can be invoked.

The results of encoding can be used internally in the SDL model or to communicate between SDL
models or between SDL and other non-SDL elements such as test environments.

Source
ITU-T Recommendation Z.104 was approved on 7 October 2004 by ITU-T Study Group 17
(2001-2004) under the ITU-T Recommendation A.8 procedure.

Keywords
ASN.1, Data, Encoding, ITU-T Rec. Z.100, ITU-T Rec. Z.105, SDL.

ii ITU-T Rec. Z.104 (10/2004)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2005

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Z.104 (10/2004) iii

CONTENTS
 Page
1 Scope .. 1

1.1 Use of encode and decode .. 1

2 References... 2

3 Definitions .. 2

4 Abbreviations.. 2

5 Conventions .. 2

6 General rules... 3
6.1 Lexical rules ... 3

7 Organization of SDL specifications.. 4
7.1 Framework.. 4
7.2 Package... 4

8 Structural Concepts... 4
8.1 Types, instances and gates.. 4
8.2 Context parameters... 6
8.3 Specialization ... 6
8.4 Type references .. 6
8.5 Associations.. 6

9 Agents ... 6

10 Communication .. 6
10.1 Channel... 6
10.2 Connection.. 7
10.3 Signal.. 7
10.4 Signal list definition ... 7
10.5 Remote procedures ... 7
10.6 Remote variables .. 7
10.7 Communication path encoding rules, encode and decode.............................. 7

11 Behaviour.. 12
11.1 Start... 12
11.2 State .. 12
11.3 Input.. 12
11.4 Priority Input .. 13
11.5 Continuous signal ... 13
11.6 Enabling condition.. 13
11.7 Save .. 13
11.8 Implicit transition ... 13
11.9 Spontaneous transition.. 13
11.10 Label ... 13

iv ITU-T Rec. Z.104 (10/2004)

 Page
11.11 State machine and Composite state .. 13
11.12 Transition.. 13
11.13 Action ... 13
11.14 Statement list .. 14
11.15 Timer .. 14
11.16 Exception.. 14

12 Data... 15
12.1 Data definitions .. 15
12.2 Passive use of data.. 15
12.3 Active use of data ... 15

13 Generic system definition ... 15

Annex A – Specification of the set of text encoding rules... 16
A.1 Boolean... 16
A.2 Character... 16
A.3 String .. 16
A.4 Charstring, IA5String, NumericString, PrintableString, VisibleString.......... 16
A.5 Integer... 17
A.6 Natural .. 17
A.7 Real... 17
A.8 Array... 18
A.9 Vector ... 18
A.10 Powerset ... 18
A.11 Duration.. 19
A.12 Time.. 19
A.13 Bag.. 19
A.14 Bit, Bitstring ... 20
A.15 Octet, Octetstring.. 20
A.16 Pid, pid sorts ... 21
A.17 Null ... 21
A.18 Enumerated (literal list) .. 21
A.19 Structures.. 22
A.20 Choice... 22
A.21 Inherits and syntype.. 22

 ITU-T Rec. Z.104 (10/2004) v

Introduction
Encoding provides a way to specify how data values are encoded when information is
communicated between pieces of SDL.

In general, only values can be passed between separate pieces of SDL and between SDL and its
environment. For this reason, encoding as defined by this Recommendation only applies to value
sorts of data: encoding of object sorts of data is not supported. This is consistent with the use of
data within SDL signal communication, where replicates of the object data items are created (except
in the case that an instance of a process contains both the sender and receiver).

It is expected that the specification of encoding for SDL data will normally be used either on a
channel that represents a normative interface, or for data to be encapsulated in some other data item
to be handled in some transparent way.

When encoding is specified on a channel, this will be transparent to the rest of the SDL model if the
receiving agents do not use the additional syntax for input given in the Recommendation. If neither
end of the channel lead to the SDL environment, the encoding specification is merely adding the
encoding requirements to the rest of the SDL and the encoding is removed during normal signal
input. If the source or destination of the signal is the SDL environment, the encoding is putting a
requirement on the encoding of messages to or from the environment.

The encapsulation of data within another data item typically happens within layered protocols
where communication between the two layers can correspond to a channel between two SDL
agents. Encoding provides the possibility to simplify SDL models. At one layer the signal output
can be encoded, but when signal is received from the channel, the encoding can be ignored so that a
signal of any of the encoded types is received. The data can be stored at the receiver layer (or be
encapsulated for further layers) and be passed to a peer. When the data is output to the original
layer, decoding can take place, restoring the original signal.

Encoding and decoding are also provided as data expressions so that encapsulation (and its reversal)
does not have to be done as part of input and output.

Other uses of encoding are envisaged, particularly for the text encoding. The text encoding is likely
to be useful for testing and validating SDL models, as well as providing an ASN.1 independent
encoding, though the set of text encoding rules is designed for transfer of information as text
characters to other automata rather than to be read by humans.

Because encoding is primarily concerned with communication, encoding is related to the data
conveyed by sets of signals and is related to interface, gates and channels. There is specific support
for the use of an ASN.1 ABSTRACT-SYNTAX name in an interface to imply a set of signals based
on a top level CHOICE type in the ABSTRACT-SYNTAX.

This Recommendation does not provide for the specification of encoding for variables.

 ITU-T Rec. Z.104 (10/2004) 1

ITU-T Recommendation Z.104

Encoding of SDL data

1 Scope
This Recommendation extends SDL to provide mechanisms to specify data encoding, so that data
passed between different parts of an SDL system (or between SDL systems) has an
implementation-independent encoding.

A mechanism is provided that allows the encoding to be based on different rules. One encoding is
defined where the result is a text string. Alternatively, for data that is based on ASN.1 definitions or
can be mapped to ASN.1 definitions, the sets of encoding rules defined in the X.69x series of
Recommendations can be used.

1.1 Use of encode and decode
Within a separately implemented piece of SDL, the way data values are represented does not need
to be known and the implementation ensures that the data behaves in the way expected.

When information is communicated between pieces of SDL that are separately implemented, data
values need to be passed using an encoding that can be processed by all the pieces of SDL that use
the information. For example, if a Boolean value is passed, it could be passed as a single bit and it
would need to be defined if a zero bit represents true or false. To enable the Boolean value to be
communicated correctly, both sender and receiver need to apply the same set of encoding rules.
Before the value is sent, or once the value has been received, it is possible that the information may
be represented in a different way. For example, in part of a system with good support for 16-bit
Integers, where the amount of storage is not important but accessing individual bits is inefficient, a
Boolean might be best represented 16 bits, with 16 zero bits representing false and any other set of
bits representing true. In another part of the same system Boolean may be better implemented as a
single octet.

Communication in SDL takes place via channels, which are explicit or implicit. Channel
communication can be between parts of the SDL system, or between parts of the system and the
environment.

The communication that takes place on a channel either corresponds to a protocol or can be
considered as a protocol. In general, a channel used for communication carries several different
signals in each direction. Typically, the signals in one direction are different from the signals in the
other direction. Occasionally, a channel conveys signals in one direction only, but this is unusual.

A channel between two agents carries the signals for a protocol between those two agents. If it
assumed that any type of signal can be received at any time, each encoded type of signal in one
direction must be distinct from all other types of signals in the same direction, otherwise, the
receiving agent will not be able to distinguish one signal from another. Two instances of a signal
with the same data output from the same agent on the same channel will have the same encoding. If
the type of signal or the data or the originating agent instance is different, the encoded information
is different. The originating agent is included because every signal instance conveys the pid of its
originating agent instance as an implicit parameter, otherwise two signal instances of a signal with
the same data output on the same channel have the same encoding.

2 ITU-T Rec. Z.104 (10/2004)

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

– ITU-T Rec. X.680 (2002) | ISO/IEC 8824-1:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

– ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002, Information technology – ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER).

– ITU-T Rec. X.691 (2002) | ISO/IEC 8825-2:2002, Information technology – ASN.1
encoding rules: Specification of Packed Encoding Rules (PER).

– ITU-T Rec. X.693 (2001) | ISO/IEC 8825-4:2002, Information technology – ASN.1
encoding rules: XML Encoding Rules (XER).

– ISO/IEC 10646:2003, Information technology – Universal Multiple-Octet Coded Character
Set (UCS).

– ITU-T Rec. Z.100 (2002), Specification and Description Language (SDL).
– ITU-T Rec. Z.105 (2003), SDL combined with ASN.1 modules (SDL/ASN.1).

3 Definitions
3.1 decode (process): The process to construct an SDL data value from a text string or
bit-pattern that is assumed to be an encoding of the SDL data value using the same encoding rules
as those used in the decode.

3.2 decoding: The result of a decode process.

3.3 encode (process): The process of producing an encoding.

3.4 encoding: The text string or bit-pattern resulting from the application of a set of encoding
rules to an SDL data value.

3.5 set of encoding rules: One of the sets of (ASN.1) encoding rules defined in the X.69x
series of ITU-T Recommendations, or the set of text encoding rules defined in 10.7.1 and Annex A
of this Recommendation, or an implementation-dependant or application-dependant set of encoding
rules defined by a procedure code invoked according to this Recommendation (see 10.7).

4 Abbreviations
ASN.1 Abstract Syntax Notation One

SDL Specification and Description Language

5 Conventions
The notation and presentation conventions of ITU-T Rec. Z.100 are used in this Recommendation.

This Recommendation is organized so that numbering of clauses 6 to 13 follows the numbering in
ITU-T Rec. Z.100.

 ITU-T Rec. Z.104 (10/2004) 3

Where an abstract or concrete syntax rule is defined in this Recommendation with the same name as
a rule in ITU-T Rec. Z.100, the rule given here replaces the rule in ITU-T Rec. Z.100. Any
Grammar conditions, Semantics and Model defined on a named rule in ITU-T Rec. Z.100 apply to
the redefined rule, unless specifically defined otherwise in this Recommendation.

Characters are identified by the names (in uppercase letters) they are given in ISO/IEC 10646.

6 General rules
This Recommendation adds additional keywords encode and decode to the lexical rule <keyword>.

6.1 Lexical rules
<keyword> ::=
 abstract | active | adding
 | aggregation | alternative | and
 | any | as | association
 | atleast | block | break
 | call | channel | choice
 | comment | composition | connect
 | connection | constants | continue
 | create | dcl | decision
 | decode | default | else
 | encode | endalternative | endblock
 | endchannel | endconnection | enddecision
 | endexceptionhandler | endinterface | endmacro
 | endmethod | endobject | endoperator
 | endpackage | endprocedure | endprocess
 | endselect | endstate | endsubstructure
 | endsyntype | endsystem | endtype
 | endvalue | env | exception
 | exceptionhandler | export | exported
 | external | fi | finalized
 | from | gate | handle
 | if | import | in
 | inherits | input | interface
 | join | literals | loop
 | macro | macrodefinition | macroid
 | method | methods | mod
 | nameclass | nextstate | nodelay
 | none | not | now
 | object | offspring | onexception
 | operator | operators | optional
 | or | ordered | out
 | output | package | parent
 | priority | private | procedure
 | protected | process | provided
 | public | raise | redefined
 | referenced | rem | remote
 | reset | return | save
 | select | self | sender
 | set | signal | signallist
 | signalset | size | spelling
 | start | state | stop
 | struct | substructure | synonym
 | syntype | system | task
 | then | this | timer
 | to | try | type
 | use | value | via
 | virtual | with | xor

4 ITU-T Rec. Z.104 (10/2004)

7 Organization of SDL specifications

7.1 Framework
The Framework of SDL specifications is as defined in ITU-T Rec. Z.100.

7.2 Package
Model

When an ASN.1 module is used as a package and a <definition selection> in the <package use
clause> referring to the ASN.1 has the <selected entity kind> interface and the <name> is the name
of a CHOICE data type, there is an implied interface. This implied interface has the same name as
the CHOICE and defines signals equivalent to the CHOICE alternatives.

8 Structural Concepts
The structural concepts are as defined in ITU-T Rec. Z.100 with the addition of the optional
identification of a set of encoding rules for gates and channels. Otherwise, the structural concepts
are as defined in ITU-T Rec. Z.100.

8.1 Types, instances and gates
This Recommendation adds the optional identification of a set of encoding rules to the definition of
gates.

8.1.1 Structural type definitions
The structural type definitions are as defined in ITU-T Rec. Z.100.

8.1.2 Type expressions
Type expressions are as defined in ITU-T Rec. Z.100.

8.1.3 Definitions based on types
Definitions based on types are as defined in ITU-T Rec. Z.100.

8.1.4 Abstract types
Abstract types are as defined in ITU-T Rec. Z.100.

8.1.5 Gates
A gate can have a set of encoding rules. An output of signal from an agent via the gate is encoded as
specified by the set of encoding rules. Information received via the gate is decoded according to the
set of encoding rules. If no specific set of encoding rules is given, the encoding is not defined by the
SDL specification.
Abstract grammar

Gate-definition :: Gate-name
 [Encoding-rules]
 In-signal-identifier-set
 Out-signal-identifier-set

If there is a set of Encoding-rules, the In-signal-identifier-set and Out-signal-identifier-set shall not
contain any implicit signals for remote procedures or remote variables.

 ITU-T Rec. Z.104 (10/2004) 5

If an external channel with a set of Encoding-rules is connected to the gate of an agent or composite
state, the Encoding-rules of the Gate-definition for the gate shall be the same as the Encoding-rules
for the channel. There shall be, at most, one such channel connected to the gate and the signals
conveyed in a direction for the gate shall be the same as the signals conveyed in the corresponding
direction in the channel.

If an internal channel of an agent or agent type is connected to the gate of the agent or agent type
that has a Gate-definition with a set of Encoding-rules, the Encoding-rules of the channel shall be
the same. The signals conveyed in a direction for the gate shall be the same as the signals conveyed
in the corresponding direction in the channel. There can be more than one such internal channel.
Concrete grammar

<gate definition> ::=
 { <gate symbol> | <inherited gate symbol> }
 is associated with { <gate> [<encoding rules>]
 [<signal list area>] [<signal list area>] } set
 [is connected to <endpoint constraint>]

NOTE 1 − When a gate in a subtype is an extension of a gate inherited from a supertype, the
<inherited gate symbol> is used in the concrete syntax.
NOTE 2 − If a different encoding is required in each direction, the communication has to be specified by two
gates that each carry signals in one direction.
<interface gate definition> ::=
 <gate symbol 1>
 is associated with { <interface identifier> [<encoding rules>] }

A specification of <encoding rules> that is associated with an <inherited gate symbol> shall
specify the same set of Encoding-rules as the Encoding-rules of the corresponding gate definition in
the supertype if that gate has an Encoding-rules. If there is no set of <encoding rules> that is
associated with an <inherited gate symbol>, and there is a set of Encoding-rules for the gate in the
supertype, the inherited gate has this set of Encoding-rules. If there is no set of Encoding-rules for
the gate in the supertype, the presence and value of the inherited gate Encoding-rules is determined
by the presence and value of the <encoding rules>.
Semantics

The set of Encoding-rules of a Gate-definition of an agent type or composite state type corresponds
to the set of Encoding-rules of the channel in the enclosing scope in (the set of) instance
specifications. The encoding used in the behaviour of the type can be determined independently of
the actual channel that is connected to the gate of the instance.
Model

The set of Encoding-rules of a Gate-definition of the implied agent type of an <agent diagram> (or
the implied composite state type of a <composite state area>) is the same as the set of Encoding-
rules of the external channel (explicit or implied) from which the Gate-definition is derived. There
is no Encoding-rules in this Gate-definition if there is none in the external channel.

The set of Encoding-rules of an implied Gate-definition of a system Agent-type-definition (whether
defined by a <system type> or implied from a <system diagram>) is the same as the set of
Encoding-rules of the internal channel (explicit or implied) from which the Gate-definition is
derived. There is no Encoding-rules in this Gate-definition if there is none in the internal channel.

If an explicit <gate on diagram> is given for the <system type diagram> or <system diagram>, the
set of Encoding-rules of the corresponding Gate-definition of the Agent-type-definition is
determined by the <encoding rules> of the <gate on diagram> if the <encoding rules> is present. If
the <encoding rules> is absent, the set of Encoding-rules is determined from the internal channel in
the same way as for an implied Gate-definition.

6 ITU-T Rec. Z.104 (10/2004)

8.2 Context parameters
Context parameters (including gate context parameters) are as defined in ITU-T Rec. Z.100.
NOTE − When a gate in parameterized type is defined by a formal context parameter, the set of encoding
rules of the gate in a specialized type used to define instances will be determined by the actual gate definition
identified by the actual context parameter.

8.3 Specialization
Specialization is as defined in ITU-T Rec. Z.100.

8.4 Type references
Type references are as defined in ITU-T Rec. Z.100.
NOTE – A <gate property area> in a type reference is a <gate definition> or <interface gate definition> and
therefore can contain an <encoding rules> specification which must be consistent with the definition given
with the type.

8.5 Associations
Associations are as defined in ITU-T Rec. Z.100.

9 Agents
Agents are as defined in ITU-T Rec. Z.100.

10 Communication
Encoding of data extends the definition of channels and connections.

The encoding rules grammar is defined.

10.1 Channel
A channel connecting two agents determines the encoding (if any) to be used for communication
between the agents. A channel that is connected to the environment of an agent, has the encoding
defined (if any) for that gate connecting it with the environment.
Abstract grammar

Channel-definition :: Channel-name
 [Encoding-rules]
 [NODELAY]
 Channel-path-set

The Originating-gate or Destination-gate shall have the same Encoding-rules as the Channel-
definition. If the Channel-definition has no Encoding-rules, neither the Originating-gate nor
Destination-gate shall have an Encoding-rules.
Concrete grammar

<channel definition area> ::=
 <channel symbol>
 is associated with
 { [<channel name> [<encoding rules>]]
 { [<signal list area>] [<signal list area>] } set }
 is connected to {
 { <agent area> | <state partition area> | <gate on diagram> }
 { <agent area> | <state partition area> | <gate on diagram> } } set

NOTE 1 − If a different encoding is required in each direction, the communication has to be specified by two
channels that each carry signals in one direction.

 ITU-T Rec. Z.104 (10/2004) 7

Semantics

The Encoding-rules of a Channel-definition connected to a set of instance specifications is used in
the behaviour of the instances.
Model

If the <encoding rules> is omitted and the <channel symbol> is connected to a <gate on diagram>
with an <encoding rules>, the Channel-definition has the same Encoding-rules as the Gate-
definition of the <gate on diagram>. If the Gate-definition has no Encoding-rules, the Channel-
definition has no Encoding-rules.

Implicit channels have no Encoding-rules if the gates they are connected to have no Encoding-
rules. Otherwise the Encoding-rules of an implicit channel is the same as the Encoding-rules of
each of the gates.
NOTE 2 − If the channel is connected to the frame of the enclosing diagram and there is no <gate on
diagram>, this represents a connection.

10.2 Connection
Model

The Encoding-rules of an implicit gate of a connection is the same as the connected external
channel. A channel without an <encoding rules> (or an implicit channel) that is connected to a gate
that has an Encoding-rules has the same Encoding-rules.

10.3 Signal
Signals are as defined in ITU-T Rec. Z.100.

10.4 Signal list definition
Signal list definitions are as defined in ITU-T Rec. Z.100.

10.5 Remote procedures
Remote procedures are as defined in ITU-T Rec. Z.100.

10.6 Remote variables
Remote variables are as defined in ITU-T Rec. Z.100.

10.7 Communication path encoding rules, encode and decode
The set of encoding rules specifies which set of encoding rules is used to encode and decode data
conveyed by a particular channel or gate.
Abstract grammar
Encoding-rules :: Rules-identifier
Encoding-expression :: Signal-identifier
 [Expression]*
 Encoding-path
Encoding-path :: { Channel-identifier | Gate-identifier }
Decoding-expression :: Expression
 Encoding-path
Rule-identifier :: Literal-identifier

8 ITU-T Rec. Z.104 (10/2004)

The Rule-identifier shall be one of the literal identifiers of the data type Encoding (see below in
Semantics). If the actual rule identified corresponds to an encoding defined in the X.69x series of
ITU-T Recommendations, the set of signals carried by an Encoding-path shall correspond to
elements of an ASN.1 CHOICE type that is carried by the channel. The Encoding-path and ASN.1
CHOICE type correspond in one direction if each signal name corresponds to a CHOICE name and
for each signal the (single) parameter of the signal is the same as the data type of the corresponding
CHOICE.

The data type Encoding shall be the Predefined data type Encoding or a data type with the name
Encoding that is a specialization (direct or indirect) of the Predefined data type Encoding. The
specialization shall only add literal names to the Predefined data type Encoding and shall not
change any other properties.

If the Rule-identifier corresponds (by Name) to an Encoding literal defined in the package
Predefined, built-in procedures implied by the standardized sets of encoding rules are invoked
(and other procedures – even if visible with names corresponding as below – are ignored).

If the Rule-identifier corresponds to an additional literal added to a specialization of the predefined
data type Encoding, there shall be a visible procedure with the appropriate signature for each
invocation (implicit or explicit) of the Encoding-expression or Decoding-expression.

The name of the procedure for encode is the name encode concatenated with the name of an
additional Encoding literal (for example, encodemyprotocol where the additional Encoding literal
is myprotocol). This procedure shall have one parameter of the implicit choice type for the relevant
path for the invocation (see below in Semantics). The procedure shall return a Charstring, Bitstring
or Octetstring.

The name of the procedure for decode is the name decode concatenated with the name of an
additional Encoding literal (for example, decodemyprotocol where the additional Encoding literal
is myprotocol). This procedure shall have one parameter of the same type (Charstring, Bitstring or
Octetstring) as the corresponding procedure for encode, and shall return the choice type for the
relevant path for the invocation (see below in Semantics).

Each encode or decode procedure shall be functional (that is, it shall not contain states and shall not
change the value of any SDL variable external to the procedure when it is interpreted).

The length of the list of optional Expressions shall be the same as the number of Sort-reference-
identifiers in the Signal-definition denoted by the Signal-identifier.

Each Expression in an Encoding-expression shall be sort compatible to the corresponding (by
position) Sort-identifier-reference in the Signal-definition denoted by the Signal-identifier.

For a Channel-identifier of an Encoding-path of an agent's Encoding-expression, the channel of this
path shall be reachable with the Signal-identifier from the agent, and the Channel-path in the
direction from the agent must include the Signal-identifier in its set of Signal-identifiers.

For a Gate-identifier of an Encoding-path of an agent's Encoding-expression, the gate shall be a
gate of the agent or reachable via a channel with the Signal-identifier from the agent, and the Out-
signal-identifier-set of the gate shall include the Signal-identifier.

The Expression in a Decoding-expression shall be compatible with the sort generated by an
Encoding-expression using the same Encoding-path in a context where the context of the Decoding-
expression is reachable via the Encoding-path.

 ITU-T Rec. Z.104 (10/2004) 9

Concrete grammar

<encoding rules> ::=
 encode <rules identifier>

<rules identifier> ::=
 <literal>

<encoding expression> ::=
 encode { <signal identifier>[(<actual parameters>)] | <expression> }
 [<encoding path>]

<encoding path> ::=
 as { <channel identifier> | <gate identifier> }

<decoding expression> ::=
 decode <expression> [<encoding path>]

The set of encoding rules of the path identified by the <channel identifier> or <gate identifier> is
used.

If an <encoding expression> contains an <expression> (rather than a signal), the actual signal is
derived from the <expression> as described in the model below. The sort of the <expression> shall
be the sort of the implied choice data type corresponding to the set of signals for the <encoding
path>.

The <encoding path> shall only be omitted from <encoding expression> if there is exactly one path
with encoding for output of the signal in the context of the <encoding expression> and, in this case,
the encoding for that path is used.

The <encoding path> shall only be omitted from <decoding expression> if there is exactly one path
with encoding for input in the context of the decoding expression and, in this case, the encoding for
that path is used.

An <encoding path> used as a <sort> denotes the implicit data defined for the path as defined
below.
Semantics

The Encoding-rules item determines the set of rules used to change the implementation-dependent
encoding for internal data:
– either to a standardized implementation-independent encoding (for one of the data type

Encoding literals text to EXER),
– or to a defined implementation or application encoding (for a literal added to a

specialization of the data type Encoding).

Encode is invoked whenever a signal is output via a path with a set of encoding rules specified and
the corresponding encode procedure is called. When a signal is input from such a path, decode of
the data into the internal encoding is invoked by calling the corresponding decode procedure. This
encode and decode therefore has no impact on the semantics of SDL, as defined in ITU-T Rec.
Z.100, but requires specific encoding of signals for the specified paths and, therefore, enables
different parts of the system to be implemented separately.

When an Encoding-expression or Decoding-expression is interpreted, the appropriate procedure is
called.

Encode relative to the set of encoding rules for a path is invoked in an Encoding-expression to
produce a Charstring, Bitstring or Octetstring depending on the context and the set of encoding
rules used. The Charstring, Bitstring or Octetstring produced by encode is decoded by a Decoding-
expression using the same set of encoding rules for the same path. The set of encoding rules of the
encoding path identified by the Channel-identifier or Gate-identifier or Interface-identifier is used.

10 ITU-T Rec. Z.104 (10/2004)

For an Encoding-expression, the data is encoded as if it were going to be output on that path. The
result is a data type corresponding to the set of encoding rules for the path.

For a Decoding-expression, the data is decoded as if it had been received on the specified path. The
result is an expression corresponding to the implicit data type for input from that channel in the
decode context as defined below. If decoding fails, the InvalidReference exception is raised.

For a path that has encoding, a data type is implicitly defined that corresponds to the SDL:

value type Implicitname /* an implicit and unique name */
{ choice
 signal1 value
 { struct
 1 Sort11 optional;
 2 Sort12 optional;
 3 Sort13 optional;
 /* ... and so on for each parameter of signal1 */
 } ;
 signal2 value
 { struct
 1 Sort21 optional;
 2 Sort22 optional;
 3 Sort23 optional;
 /* ... and so on for each parameter of the signal2 */
 } ;
 signal3 NULL; /* no parameters */
 /* ... and so on for each signal */
}

where

signal1, signal2 etc. are the names of the signals carried by the path, and
Sort11, Sort12 etc. are data types corresponding to the parameters of signal1, and
Sort21, Sort22 etc. are data types corresponding to the parameters of signal2.

For a signal that has no parameters, the data type is the predefined NULL data type.

If the path is bidirectional and a signal is carried in both directions, there is only one choice in the
implicit data type for this signal.

The implicit identifier of this data type is denoted by the as <channel identifier> or <gate identifier>
for the path, so that a legal variable declaration is:

dcl message as user_input;

where user_input is the name of a channel or gate with encoding and a valid assignment is:

message := decode encoded_value as user_input;

The following enumerated data type for the standardized set of encoding rules shall be added to the
package Predefined as defined in D.3/Z.100 in order to support the encoding of SDL data:

value type Encoding
 { literals text, BER, CER, DER, APER, UPER, CAPER, CUPER, BXER, CXER, EXER }

which is used to denote the required set of encoding rules as follows:

text for the set of text encoding rules defined in this Recommendation and produces a
Charstring;
BER for the set of Basic Encoding Rules of ASN.1 and produces an Octetstring;
CER for the set of Canonical Encoding Rules of ASN.1 and produces an Octetstring;
DER for the set of Distinguished Encoding Rules of ASN.1 and produces an Octetstring;

 ITU-T Rec. Z.104 (10/2004) 11

APER for the basic Aligned variant of the Packed Encoding Rules of ASN.1 and produces an
Octetstring;
UPER for the basic Unaligned variant of the Packed Encoding Rules of ASN.1 and produces
a Bitstring;
CAPER for the Canonical Aligned variant of the Packed Encoding Rules of ASN.1 and
produces an Octetstring;
CUPER for the Canonical Unaligned variant of the Packed Encoding Rules of ASN.1 and
produces a Bitstring;
BXER for the Basic variant of the XML Encoding Rules of ASN.1 and produces a
Charstring;
CXER for the Canonical variant of the XML Encoding Rules of ASN.1 and produces a
Charstring;
EXER for the Extended variant of the XML Encoding Rules of ASN.1 and produces a
Charstring.

The synonym PER is added to the package Predefined as an alternative for APER as follows:

synonym PER Encoding = APER;

The operator last of the data type Encoding is redefined to an unknown name, and therefore
cannot be accessed, so that an application or implementation is able to extend the data type
Encoding without any change where only the above rules are used. The data type Encoding can be
specialized adding additional literals.
Model

If an <encoding expression> contains an <expression>, the choice present is determined from the
expression and the signal with the same name as the choice is output with the values of the signal
parameters given by the expression.

10.7.1 The set of text encoding rules
The set of text encoding rules is provided so that information can be conveyed on communication
paths by means of text strings between elements in the system, and between the system and the
environment. The encoding of characters is not defined. Though the text strings are, in general,
readable by humans, that is not the purpose of the text encoding rules.
Semantics

If the set of encoding rules is specified as text the result of an encoding is a Charstring.

The actual string is determined as follows:
LEFT CURLY BRACKET and RIGHT CURLY BRACKET { } delimit the values of data
types and show where the values start and stop, except where they occur within the
encoding of a Charstring in which case they represent the actual <left curly bracket> or
<right curly bracket> characters of ITU-T Rec. Z.100;
COMMA characters are used to delimit elements within a list (for example in a struct
encoding);
Otherwise the actual string of characters is determined for each data type as defined below
and illustrated as the 'Generated CharString' in the examples.

A complete signal is encoded as a list of values and is treated as a choice encoding of the implied
data type for the path with encoding.

The details of text encoding are given in Annex A.

12 ITU-T Rec. Z.104 (10/2004)

10.7.2 The sets of encoding rules standardized in the ITU-T X.69x series
The use of one of the names BER, CER, DER, APER, UPER, CAPER, CUPER, BXER, CXER or EXER
(corresponding to an X.69x series set of encoding rules – see 10.7 Semantics above) shall only be
specified if the signals carried by the path are defined as an ASN.1 CHOICE data type. The values
are, therefore, encoded according to this data type treated as an ASN.1 ABSTRACT-SYNTAX.

11 Behaviour

11.1 Start
Start is as defined in ITU-T Rec. Z.100.

11.2 State
If during the consideration of the signals on the input port, the signal being considered does not
correspond to any of the signals valid for any of the states of the agent (for example because the
message received cannot be decoded to a valid signal), the InvalidReference exception is raised.

11.3 Input
If an <encoded input> is given for a path (a channel or gate), the messages that can be received
from that path are received and stored in the variable given in their encoded form. These signals
cannot be specified in any other input or saved for the same state. If the same signals can be
received from another path, they are still assigned to the variable, which has to be sort compatible
with the encoding for the path. Although the model given below describes the signals as first being
decoded and then encoded again, it is expected that real implementations will optimize this to
copying the encoded value to the variable given in the <encoded input>.
Concrete grammar

<input list> ::=
 <stimulus> { , <stimulus> }*
 | <asterisk input list>
 | <encoded input>

<encoded input> ::=
 encode <variable> [<encoding path>]

The <encoding path> shall only be omitted from <encoded input> if there is exactly one path with
encoding leading to the context of the input that has a set of encoding rules that produces the sort
(Charstring, Octetstring or Bitstring) of the <variable>.
Semantics

If the signal specified in the input is received via a channel that has a set of encoding rules
specified, the signal is decoded according to that set of encoding rules.
Model

For each of the signals that can be received from the channel or gate specified in an <encoded
input>, there is an implied input. This implied input is equivalent to assigning the values conveyed
by signal to implicit local variables of appropriate types followed by an implied task. This implied
task assigns the <variable> the value of an encoding expression for the signal and values received
from the implicit variables using the set of encoding rules for the path of the <encoded input>. After
the implied task, the transition following encoded input is interpreted.

 ITU-T Rec. Z.104 (10/2004) 13

11.4 Priority Input
Semantics

If the signal specified in the priority input is received via a channel that has a set of encoding rules
specified, the signal is decoded according to that set of encoding rules.

11.5 Continuous signal
Continuous signal is as defined in ITU-T Rec. Z.100.

11.6 Enabling condition
Semantics

If the signal specified is received via a channel that has a set of encoding rules specified, the signal
is decoded according to that set of encoding rules.

11.7 Save
Save is as defined in ITU-T Rec. Z.100.

11.8 Implicit transition
Implicit transition is as defined in ITU-T Rec. Z.100.

11.9 Spontaneous transition
Spontaneous transition is as defined in ITU-T Rec. Z.100.

11.10 Label
Label is as defined in ITU-T Rec. Z.100.

11.11 State machine and Composite state
State machine and Composite state are as defined in ITU-T Rec. Z.100.

11.12 Transition
Transition is as defined in ITU-T Rec. Z.100.

11.13 Action

11.13.1 Task
Task is as defined in ITU-T Rec. Z.100.

11.13.2 Create
Create is as defined in ITU-T Rec. Z.100.

11.13.3 Procedure call
Procedure call is as defined in ITU-T Rec. Z.100.

11.13.4 Output
If an <expression output> is given for a path (a channel or gate), the expression is a choice value
used to derive the signal to output. The choice sort corresponds to the set of signals for the path.

If an <encoded output> is given for a path (a channel or gate), the expression given is used as the
signal to output. In the model given below the expression is decoded to check the signal being sent.

14 ITU-T Rec. Z.104 (10/2004)

Concrete grammar

<output body> ::=
 <output body item> {, <output body item> }*
 <communication constraints>

<output body item> ::=
 <signal identifier> [<actual parameters>]
 <expression output>
 | <encoded output>

<expression output> ::=
 <expression>

<encoded output> ::=
 encode <expression>

When an <expression output> is used, there shall be exactly one <via path> in the <communication
constraints> and the sort of the <expression> of the <expression output> shall be the sort of the
implied choice data type corresponding to the set of signals for this path.

When an <encoded output> is used, there shall be exactly one <via path> in the <communication
constraints> and this <via path> shall specify a gate or channel that has a set of encoding rules that
corresponds to the sort (Charstring, Octetstring or Bitstring) of the <expression> of the <encoding
output>.
Semantics

If a signal is output via a path that has a set of encoding rules specified, the signal is encoded
according to that set of encoding rules.
Model

If the <output body item> is an <expression output>, the choice present is determined from the
expression and the signal with the same name as the choice is output with the values of the signal
parameters given by the expression.

If the <output body item> is an <encoded output>, the signal that is output is the signal obtained
from decoding the contents of the expression according to the decoding rule for receiving signals
sent on the specified path. The signal selected is the signal with the same name as the choice present
in the decoding. If the signal is not valid for the path, or decoding fails for any reason (for example
if the string of the expression does not validly correspond to one of the signals for the path), the
OutOfRange exception is raised and no signal is sent, otherwise the value of the decoding is output
as the signal. Because the expression is already encoded as a string for the path, the string value can
be sent with no further conversion.

11.13.5 Decision
Decision is as defined in ITU-T Rec. Z.100.

11.14 Statement list
Statement list is as defined in ITU-T Rec. Z.100.

11.15 Timer
Timer is as defined in ITU-T Rec. Z.100.

11.16 Exception
Exception is as defined in ITU-T Rec. Z.100.

 ITU-T Rec. Z.104 (10/2004) 15

12 Data

12.1 Data definitions
Data definitions are as defined in ITU-T Rec. Z.100 except that <sort> is extended with <encoding
path>.
Concrete grammar

<sort> ::=
 <basic sort> [(<range condition>)]
 | <anchored sort>
 | <expanded sort>
 | <reference sort>
 | <pid sort>
 | <inline data type definition>
 | <inline syntype definition>
 | <encoding path>

12.2 Passive use of data
The abstract syntax of expressions is extended to include encoding and decoding, otherwise the
passive use of data is as defined in ITU-T Rec. Z.100.

12.2.1 Expressions
Encoding and decoding are added as expressions.
Abstract grammar
Active-expression = Variable-access
 | Conditional-expression
 | Operation-application
 | Equality-expression
 | Imperative-expression
 | Range-check-expression
 | Value-returning-call-node
 | State-expression
 | Encoding-expression
 | Decoding-expression

Concrete grammar

<expression0> ::=
 <operand>
 | <create expression>
 | <value returning procedure call>
 | <encoding expression>
 | <decoding expression>

12.3 Active use of data
The abstract syntax of expressions is extended to include encoding and decoding, otherwise the
active use of data is as defined in ITU-T Rec. Z.100.

13 Generic system definition
Generic system definition is as defined in ITU-T Rec. Z.100.

16 ITU-T Rec. Z.104 (10/2004)

Annex A

Specification of the set of text encoding rules

The data types are presented below with data types of Annex D/Z.100 in the order they occur,
followed by other data types.

A.1 Boolean

Boolean values, False and True shall be encoded as LATIN CAPITAL LETTER T and LATIN
CAPITAL LETTER F respectively.

Example
dcl Var_Boolean Boolean;

task Var_Boolean := true;

Generated CharString: T

A.2 Character

Character values shall be encoded as the actual Character with the exception of the ESC character,
which is encoded as two ESCAPE characters. An undefined or missing Character value shall be
encoded as an ESCAPE character followed by the NULL character.
NOTE – The Generated CharString may contain non-printing characters.

Example
dcl Var_Character Character;

task Var_Character := 'M';

Generated CharString: M

A.3 String

String has a parameter for the item sort and shall be encoded as a list of values of the item sort
enclosed in a LEFT CURLY BRACKET and a RIGHT CURLY BRACKET separated by COMMA
characters.

Example
value type IntString inherits String <Integer>;
dcl str IntString;

task str:= ''//mkstring(6)//mkstring(9)//mkstring(1948);

Generated CharString: {6,9,1948}

A.4 Charstring, IA5String, NumericString, PrintableString, VisibleString

Although Charstring is based on String, because it is a predefined data type and is commonly
used, it is given a special encoding. IA5String and Charstring cover the same range of characters
and have the same encoding. NumericString, PrintableString and VisibleString are subsets
of IA5String.

These string types shall be encoded as a string of characters enclosed in APOSTROPHE (')
characters without change except the <apostrophe> (') which shall be encoded as two
APOSTROPHE (') characters.

 ITU-T Rec. Z.104 (10/2004) 17

NOTE 1 – Within a character string <comma>s, <left curly brackets> and <right curly bracket>s are treated
as normal characters.
NOTE 2 – The Generated CharString may therefore contain non-printing characters including end of file
or end of record characters.

Example
dcl Var_Charstring Charstring;

task Var_Charstring := 'Fred''s world;

Generated CharString: 'Fred's world'

A.5 Integer

Integer shall be encoded as a decimal integer notation without leading DIGIT ZERO characters
where negative numbers are immediately preceded by a HYPHEN-MINUS without leading DIGIT
ZERO characters. Zero shall never be treated as a negative number.

Example
dcl i Integer;

task i := 2-7;

Generated CharString: –5

A.6 Natural

Natural is a syntype of Integer and shall therefore have the same encoding as Integer.

A.7 Real
The value 0.0 shall be encoded as DIGIT ZERO followed by FULL STOP followed by
DIGIT ZERO.

Any negative value shall be encoded as a HYPHEN-MINUS immediately followed by the encoding
of the value negated (a positive Real value).

A positive Real value shall be encoded as a single digit in the range 1 to 9, followed by a FULL
STOP, followed by at least one and up to 11 decimal fraction digits, followed by LATIN SMALL
LETTER E 'e', followed by an exponent. The exponent is the Integer encoding of the exponent
value: the power to the base 10 to apply to the first part of the number. The exponent may be
negative.

Trailing fractional zero digits can be omitted. Some Real values cannot be precisely encoded and it
is possible that unequal Real values that have very small difference have the same encoding. In any
case, whether a Real value is precisely correct within an application will depend on how Real has
been implemented. For example, if the Real value 2.0/7.0 is actually stored as the ratio of two
integers (2 and 7), this is absolutely precise, whereas a more conventional encoding could be
0.2857142857, which is only correct to 10 decimal places.

Examples
dcl p, q, r1, r2 Real := 2000.0, 7.0, 0, 0;

task r1:= p/q;
task r2:= q/p;

Generated CharString for r1: 2.85714285714e2

Generated CharString for r2: 3.5e-3

18 ITU-T Rec. Z.104 (10/2004)

A.8 Array

Array has two parameters: an index sort and a component sort. Either sort can in principle be any
sort, but usually the index sort has a finite number of values.

Where the index sort has a finite number of ordered values an Array shall be encoded as a list of
element encoding values, one for each element, separated by COMMA characters within a single
pair of LEFT CURLY BRACKET and RIGHT CURLY BRACKET characters.

Example
value type ABC {literals A, B, C};
value type A1 inherits Array <ABC, Integer>;
dcl avalue, bvalue A1;

task avalue:= (. 3 .);
task bvalue[A]:= 3;
task bvalue[B]:= 5;
task bvalue[C]:= 7;

Generated CharString for avalue:{3,3,3}

Generated CharString for bvalue:{3,5,7}

It is possible the index is not ordered (that is, the "<" operator is not defined, or for example the
index sort is a structure or choice). It is also possible the index sort does not have a finite number
of values (that is, no possible number of values is infinite for example CharString or Real). For
unordered or infinite index sort, the Array shall be encoded as the most frequent value followed by
pairs of values for each element. If two or more values occur with the highest frequency one of
these is chosen on an arbitrary basis as the most frequent value. Each pair shall be between a LEFT
CURLY BRACKET and a RIGHT CURLY BRACKET and separated by a COMMA: the first
value is an index value and the second value is element value. No index values in the pairs shall be
repeated.

Example
value type Dehashing inherits Array <CharString, CharString> := (.''.);
/* note that the default value is an empty string */
dcl hashtable Dehashing;

task htable ('ac'):= 'action';
task htable ('ab'):= 'ability';
task htable ('zzzz'):= 'end of document';

Generated CharString for htable: {'',{'ab','ability'},{'ac','action'},{'zzzz','end of document'}}

A.9 Vector
Vector is a special case of Array that always has index sort that is a subset of Natural with a range
from 1 to a specified maximum value and any item sort. Vector shall therefore be encoded in the
same way as an Array with a finite number of ordered index values: that is a list of element
encoding values, one for each element, separated by COMMA characters within a single LEFT
CURLY BRACKET and RIGHT CURLY BRACKET pair.

A.10 Powerset

A Powerset of a sort represents a mathematical set whose elements are all members of the sort.
Where the sort has a finite number of ordered values, the Powerset of the sort shall be encoded as a
bit string (a string of DIGIT ZERO and DIGIT 1 characters) enclosed in APOSTROPHE (')
characters. Each bit position in this bit string represents if a value of the sort is present or absent in
the set. A DIGIT 1 represents that the value is present and a DIGIT ZERO that the value is absent.
The leftmost bit represents the smallest value of the element sort, and each other bit represents a
value of the element sort larger than values for the bits to the left.

 ITU-T Rec. Z.104 (10/2004) 19

Example
value type Shortalpha {literals a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v};
/* note Shortalpha has 22 values */
value type Psa inherits Powerset<Shortalpha>;
dcl letters_used Psa;

task letters_used := (. h, c, u, r .);

Generated CharString: '0010000100000000010010'

Where the sort does not have a finite number of ordered values, the Powerset of the sort shall be
encoded as the encoding of each element value present separated by COMMA characters enclosed
in a LEFT CURLY BRACKET and RIGHT CURLY BRACKET pair. The element values may be
in any order.

Example
value type Pchrstr inherits Powerset<Charstring>;
dcl strings_used Pchrstr;

task strings_used := (. 'me', 'you', 'us', 'me', 'again', 'hey', 'you' .);

Generated CharString: {'again','hey','you','me','us'}

A.11 Duration

Duration is used to denote 'a time interval'. Unless specified otherwise, the default value of the unit
of Duration is one second.

Duration values shall be encoded as a pair of integers separated by a COMMA enclosed in a LEFT
CURLY BRACKET and RIGHT CURLY BRACKET pair: the first integer give the number of
units and the second integer any fractional part in nano (10-9) units. By default these are seconds
and nano-seconds. The value may be negative, in which case the encoding of the negated value
shall be used with a HYPHEN-MINUS inserted immediately before the first integer.

Example
dcl dvar Duration;

task dvar := -17.00000007;

Generated CharString: {-17,700}

A.12 Time

Time is used to denote 'a point in time'. The value of a unit of Time shall be the same as the value of
the unit of Duration. The origin of Time units is not specified by this Recommendation, but
corresponds to the system clock being at zero: that is, NOW gives the value 0.0. It is allowed for
Time values to be negative.

Time values shall be encoded in the same way as Duration.

Example
dcl tvar Time;

task tvar:= 17.0000017;

Generated CharString: {17,17000}

A.13 Bag

Bag shall be encoded in the same way as a Powerset with an element sort that does not have a
finite ordered set of values, but with each element value preceded by an integer followed by
COLON. The integer is the number of times the element sort occurs in the Bag value.

20 ITU-T Rec. Z.104 (10/2004)

Example
value type B1 inherits Bag <Integer>;

dcl Var_Bag B1;

task Var_Bag := (. 7, 4, 7 .);

Generated CharString: {2:7,1:4}

A.14 Bit, Bitstring

Bit shall be encoded as a single DIGIT ZERO or DIGIT 1 representing a zero and one bit
respectively.

Example
dcl Var_Bit Bit;

task Var_Bit := 1;

Generated CharString: 1

Bitstring shall be encoded as sequence of bits represented by DIGIT ZERO and DIGIT 1
characters enclosed in APOSTROPHE (') characters.

Example
dcl Var_Bit Bit_String;

task Var_Bit := '01011'B;

Generated CharString: '01011'

A.15 Octet, Octetstring

Octet shall be encoded as two characters corresponding to the hexadecimal notation of the Octet.
The alphabetic characters shall be represented by lowercase letters (that is LATIN SMALL LETER
A to LATIN SMALL LETTER F).

Example
dcl oct Octet;

task oct := 62;

Generated CharString: 3e

Octetstring is a sequence of Octet values and shall be encoded as a string of hexadecimal
character pairs enclosed in APOSTROPHE (') characters. The alphabetic characters shall be
represented by lowercase letters.

Example
dcl os Octetstring;

task os:= '12B32D'H;

Generated CharString: '12b32d'

 ITU-T Rec. Z.104 (10/2004) 21

A.16 Pid, pid sorts
To allow flexibility between applications pid values shall be encoded as a CHOICE value
corresponding to the choice definition:
{ choice
 0 ApplicationDefined;
 1 Integer;
 2 OctetString;
 3 BitString;
 4 CharString;
 5 { struct
 identity CharString;
 instance Natural;
 };
}

A value of a pid sort shall be encoded as the corresponding value of the Pid sort.

All pid values shall be encoded using the same choice field as defined above: that is, if one pid
value in an SDL model is encoded using the choice 1 Integer, all other pid values in the same model
shall be encoded using choice 1 Integer. Otherwise which of the above choices is selected is
application dependent. The first choice allows an application defined encoding to be used. The
ApplicationDefined sort is not defined by this Recommendation.

The same agent instance of a model shall always have the same pid value encoding. Two different
agent instances shall always have different encoded pid values. Otherwise the derivation of the
encoded pid values is not further defined by the Recommendation.

Example (using choice 5)
dcl agent_id Pid; /* in second instance of process IPS */

task agent_id := self;

Generated CharString: {5, {IPS, 2}}

A.17 Null
The value Null (see ITU-T Rec. Z.105) shall be encoded as a DIGIT ZERO character.

Example
dcl Var_Null Null;

task Var_Null := Null;

Generated CharString: 0

A.18 Enumerated (literal list)
An enumerated type defined by a literal list or as an ASN.1 ENUMERATED type shall be encoded
as the Natural value given by the application of num operator of the data type to the literal
representing the value to be encoded.

Example
value type Enum
{ literals e1, e2, e3;
};

dcl evar Enum;

task evar := e2;

Generated CharString: 1

22 ITU-T Rec. Z.104 (10/2004)

A.19 Structures
A structure data type value shall be encoded as a list of values for the fields within a LEFT CURLY
BRACKET and RIGHT CURLY BRACKET pair separated by COMMA characters.

Example
value type Record { struct
f1 Integer;
f2 Charstring;
f3 Integer;};
dcl locat Record;
task locat:= (. 17, 'mid-field', 230125 .);

Generated CharString: {1, 'mid-field', 230125}

A.20 Choice
A choice value shall be encoded as a pair of values separated by a COMMA enclosed in a LEFT
CURLY BRACKET and RIGHT CURLY BRACKET pair. The first value is the selected field
indicated by name of the choice. The second value is the CharString for the field value according
to the type of the field.

Example
value type C {choice
cs CharString;
cb Boolean;
};

dcl ChoiceVar C;

task ChoiceVar.cb := true;

Generated CharString: {cb,T}

A.21 Inherits and syntype
A syntype defines a new name for a data type with an optional constraint on the set values. The text
encoding is therefore identical to that of the data type.

A data type that inherits from another data type has the same encoding as the parent data type,
though in the case that additional literal or fields are added, these are added to the encoding.

Geneva, 2005

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure, Internet protocol aspects and Next Generation Networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.104 (10/2004) Encoding of SDL data
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Use of encode and decode

	2 References
	3 Definitions
	4 Abbreviations
	5 Conventions
	6 General rules
	6.1 Lexical rules

	7 Organization of SDL specifications
	7.1 Framework
	7.2 Package

	8 Structural Concepts
	8.1 Types, instances and gates
	8.1.1 Structural type definitions
	8.1.2 Type expressions
	8.1.3 Definitions based on types
	8.1.4 Abstract types
	8.1.5 Gates
	8.2 Context parameters
	8.3 Specialization
	8.4 Type references
	8.5 Associations

	9 Agents
	10 Communication
	10.1 Channel
	10.2 Connection
	10.3 Signal
	10.4 Signal list definition
	10.5 Remote procedures
	10.6 Remote variables
	10.7 Communication path encoding rules, encode and decode
	10.7.1 The set of text encoding rules
	10.7.2 The sets of encoding rules standardized in the ITU-T X.69x series

	11 Behaviour
	11.1 Start
	11.2 State
	11.3 Input
	11.4 Priority Input
	11.5 Continuous signal
	11.6 Enabling condition
	11.7 Save
	11.8 Implicit transition
	11.9 Spontaneous transition
	11.10 Label
	11.11 State machine and Composite state
	11.12 Transition
	11.13 Action
	11.13.1 Task
	11.13.2 Create
	11.13.3 Procedure call
	11.13.4 Output
	11.13.5 Decision
	11.14 Statement list
	11.15 Timer
	11.16 Exception

	12 Data
	12.1 Data definitions
	12.2 Passive use of data
	12.2.1 Expressions
	12.3 Active use of data

	13 Generic system definition
	Annex A - Specification of the set of text encoding rules
	A.1 Boolean
	A.2 Character
	A.3 String
	A.4 Charstring, IA5String, NumericString, PrintableString, VisibleString
	A.5 Integer
	A.6 Natural
	A.7 Real
	A.8 Array
	A.9 Vector
	A.10 Powerset
	A.11 Duration
	A.12 Time
	A.13 Bag
	A.14 Bit, Bitstring
	A.15 Octet, Octetstring
	A.16 Pid, pid sorts
	A.17 Null
	A.18 Enumerated (literal list)
	A.19 Structures
	A.20 Choice
	A.21 Inherits and syntype

