

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.103
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2019)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language –
Shorthand notation and annotation in SDL 2010

Recommendation ITU-T Z.103

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.103 (10/2019) i

Recommendation ITU-T Z.103

Specification and Description Language –

Shorthand notation and annotation in SDL-2010

Summary

Recommendation ITU-T Z.103 defines the shorthand and annotation features of the Specification

and Description Language. Together with Recommendations ITU-T Z.100, ITU-T Z.101, ITU-T

Z.102, ITU-T Z.104, ITU-T Z.105, ITU-T Z.106 and ITU-T Z.107, this Recommendation is part of a

reference manual for the language. The language defined in this document covers features of the

language not included in Basic SDL-2010 in Recommendation ITU-TZ.101 or Comprehensive

SDL-2010 in Recommendation ITU-T Z.102. Features defined in this Recommendation either do not

have their own abstract grammar and are transformed to concrete grammar defined by

Recommendations ITU-T Z.101, ITU-T Z.102 and ITU-T Z.104 (and ITU-T Z.107 for

object-oriented data), or are annotations with no formal meaning.

Coverage

The Specification and Description Language has concepts for behaviour, data description and

(particularly for larger systems) structuring. The basis of behaviour description is extended finite

state machines communicating by messages. Data description is based on data types for values and

objects. The basis for structuring is hierarchical decomposition and type hierarchies. A distinctive

feature of the Specification and Description Language is the graphical representation. This

Recommendation covers the features of the language such as shorthand and alternative graphical

concrete syntax and macros that make SDL-2010 easier and more practical to use. The concrete

grammar given is the graphical representation. The alternative textual programming representation is

given in Recommendation ITU-T Z.106. This Recommendation does not provide a canonical syntax,

but by applying the Model descriptions given a specification can be transformed to Comprehensive

SDL-2010 defined in ITU-T Z.102, or (if no Comprehensive SDL-2010 features are used) to Basic

SDL-2010 as defined in SDL-2010. It should be noted that in both Basic and Comprehensive

SDL-2010 the details of expressions, data definitions and action language, are defined in

Recommendation ITU-T Z.104 (and ITU-T Z.107 for object-oriented data).

Applications

The Specification and Description Language is applicable within standard bodies and industry. The

main application areas for which the Specification and Description Language has been designed are

stated in ITU-T Z.100, but the language is generally suitable for describing reactive systems. The

range of application is from requirement description to implementation. The features of the language

defined in Recommendation ITU-T Z.103 are cumulative with, and rely on, the features defined in

Recommendations ITU-T Z.101, ITU-T Z.102 and ITU-T Z.104 (plus ITU-T Z.107 for

object-oriented data). Therefore the language defined in Recommendation ITU-T Z.103 is practical

for application to all kinds of real time systems (except if ASN.1 is also required in which case

features defined in Recommendation ITU-T Z.105 should also be used, or if the specification needs

to be in text only or interchange format in which case features defined in Recommendation

ITU-T Z.106 should also be used)

ii Rec. ITU-T Z.103 (10/2019)

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.103 2011-12-22 17 11.1002/1000/11390

2.0 ITU-T Z.103 2016-04-29 17 11.1002/1000/12857

3.0 ITU-T Z.103 2019-10-14 17 11.1002/1000/14054

Keywords

Annotation, SDL-2010, shorthand notation, Specification and Description Language.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/11390
http://handle.itu.int/11.1002/1000/12857
http://handle.itu.int/11.1002/1000/14054
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

 Rec. ITU-T Z.103 (10/2019) iii

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers

are cautioned that this may not represent the latest information and are therefore strongly urged to consult the

TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

iv Rec. ITU-T Z.103 (10/2019)

Table of Contents

 Page

1 Scope and objective .. 1

1.1 Objective ... 1

1.2 Application ... 1

2 References ... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Term defined in this Recommendation .. 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 General rules ... 3

6.1 Lexical rules – text in a comment area ... 3

6.2 End terminator, comment and comment area ... 3

6.3 Text extension .. 4

6.4 Solid association symbol .. 5

6.5 The metasymbol is followed by and flow line symbol without arrowhead 5

6.6 Names and identifiers, name resolution and visibility – additional

diagrams ... 6

6.7 Macro .. 6

6.8 Informal text ... 6

6.9 Text symbol .. 6

6.10 Frame symbol, page numbers and multiple page diagrams 6

6.11 Drawing rules ... 7

7 Organization of Specification and Description Language specifications 8

7.1 Framework .. 8

7.2 Package ... 8

7.3 Referenced definition ... 10

8 Structural concepts .. 11

8.1 Types, instances and gates .. 11

8.2 Type references and operation references .. 13

8.3 Context parameters ... 15

8.4 Specialization ... 15

9 Agents ... 15

9.1 System .. 19

9.2 Block ... 19

9.3 Process .. 20

9.4 Procedure .. 20

9.5 Agent and composite state reference .. 22

 Rec. ITU-T Z.103 (10/2019) v

 Page

10 Communication ... 23

10.1 Channel ... 23

10.2 Connection .. 25

10.3 Signal .. 26

10.4 Signal list area .. 26

11 Behaviour .. 26

11.1 Start ... 26

11.2 State .. 26

11.3 Input .. 28

11.4 Priority input ... 29

11.5 Continuous signal ... 30

11.6 Enabling condition .. 30

11.7 Save .. 30

11.8 Implicit transition ... 31

11.9 Spontaneous transition .. 32

11.10 Label (connector name) .. 32

11.11 State machine and composite state ... 32

11.12 Transition .. 35

11.13 Action ... 36

11.14 Statement lists ... 38

11.15 Timer .. 41

12 Data ... 41

12.1 Data definitions .. 41

12.2 Use of data .. 42

12.3 Active use of data ... 42

13 Generic system definition ... 42

13.1 Optional definition .. 42

vi Rec. ITU-T Z.103 (10/2019)

Introduction

This Recommendation is part of the ITU-T Z.100 to ITU-T Z.107 series of Recommendations that

give the complete language reference manual for SDL-2010. The text of this Recommendation is

stable. For more details see Recommendation ITU-T Z.100.

 Rec. ITU-T Z.103 (10/2019) 1

Recommendation ITU-T Z.103

Specification and Description Language –

Shorthand notation and annotation in SDL-2010

1 Scope and objective

This Recommendation defines features of the Specification and Description Language that make the

language practical to use. The features defined in this document cover the shorthand notation and

annotation for the language, which is defined further in the other Recommendations of the

ITU-T Z.100 series. Together with Recommendations [ITU-T Z.100], [ITU-T Z.101],

[ITU-T Z.102], [ITU-T Z.104], [ITU-T Z.105], [ITU-T Z.106] and [ITU-T Z.107], this

Recommendation forms a reference manual for the language.

1.1 Objective

The objective of this Recommendation is to define the features of the Specification and Description

Language that are written using shorthand notation or are used to add annotation. The features

defined in this Recommendation add to SDL-2010 features defined for Basic SDL-2010 or

Comprehensive SDL-2010 or the data and action language in SDL-2010. The features do not rely

on features defined for using ASN.1 or the use of the common interchange format.

Shorthand notation is a concrete grammar that is transformed by a model into further concrete

grammar before the representation as abstract grammar is considered. The use of shorthand notation

is important to make the use of the language practical, because the shorthand is easy to read, write

and understand as well as being concise. A construct written using the concrete grammar defined by

this Recommendation is allowed to contain more than one shorthand; in some cases a shorthand is

transformed through one (or more) other shorthand forms before a concrete grammar that does not

contain any shorthand is obtained from which the abstract grammar is determined. Where the order

of transformation is important, this is defined.

An annotation adds information to a specification in the language that does not change the formal

meaning of the specification. While such information does not change the formal meaning as far as

the Specification and Description Language is concerned, annotations are important to aid

understanding of the purpose and intention of a specification or how an SDL-2010 specification

interacts with or is interpreted by another language (such as the Message Sequence Chart language).

1.2 Application

This Recommendation is part of the reference manual for the Specification and Description

Language. The part of the language defined by this Recommendation includes additional concrete

syntax for shorthand notations and Model sections for the shorthand. It also includes the concrete

syntax for additional annotation not included Basic SDL-2010 or Comprehensive SDL-2010 or the

data and action language in SDL-2010. The part of the language defined in this Recommendation is

required to make the use of the language practical.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

2 Rec. ITU-T Z.103 (10/2019)

[ITU-T Z.100] Recommendation ITU-T Z.100 (2019), Specification and Description Language –

Overview of SDL-2010.

[ITU-T Z.101] Recommendation ITU-T Z.101 (2019), Specification and Description Language –

Basic SDL-2010.

[ITU-T Z.102] Recommendation ITU-T Z.102 (2019), Specification and Description Language –

Comprehensive SDL-2010.

[ITU-T Z.104] Recommendation ITU-T Z.104 (2019), Specification and Description Language –

Data and action language in SDL-2010.

[ITU-T Z.105] Recommendation ITU-T Z.105 (2019), Specification and Description Language –

SDL-2010 combined with ASN.1 modules.

[ITU-T Z.106] Recommendation ITU-T Z.106 (2019), Specification and Description Language –

Common interchange format for SDL-2010.

[ITU-T Z.107] Recommendation ITU-T Z.107 (2019), Specification and Description Language –

Object-oriented data in SDL-2010.

[ITU-T Z.111] Recommendation ITU-T Z.111 (2016), Notations and guidelines for the definition

of ITU-T languages.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

The definitions of [ITU-T Z.100] apply.

3.2 Term defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

The abbreviations and acronyms defined in Recommendation [ITU-T Z.100] apply.

5 Conventions

The conventions defined in [ITU-T Z.100] apply, which includes the conventions defined in

[ITU-T Z.111].

Where an abstract or concrete syntax rule is defined in this Recommendation with the same name as

a rule in [ITU-T Z.101] or [ITU-T Z.102], the rule given here replaces the rule in [ITU-T Z.101] or

[ITU-T Z.102]. Any Abstract grammar or Concrete grammar conditions, Semantics and Model

defined on a named rule in [ITU-T Z.101] or [ITU-T Z.102] apply to the redefined rule, unless

specifically defined otherwise in this Recommendation. Any contradiction between [ITU-T Z.101]

or [ITU-T Z.102] and this Recommendation is an error in the definition of SDL-2010 that needs to

be resolved by further study.

 Rec. ITU-T Z.103 (10/2019) 3

6 General rules

6.1 Lexical rules – text in a comment area

An additional lexical rule is defined for text in a <comment area>:

<text> ::=

 { <general text character> | <special> | <semicolon> | <apostrophe> }*

If the extended character set is used (see [ITU-T Z.102]), all printing characters are permitted to

appear freely in <text> in a <comment area>.

A <text> sequence of lexical units is used in a <comment area> where it is treated as annotation. In

a <comment area> the <text> is a single lexical unit and the sequence of characters for the <text> is

terminated by reaching the end of the text contained in the <comment symbol> or <text extension

symbol> of the <comment area>.

6.2 End terminator, comment and comment area

End terminator and comment are as defined in [ITU-T Z.101] and [ITU-T Z.102].

A comment area is a notation to represent comments associated with symbols.

Concrete grammar

With text, three forms of comments are used. The first form is the <note>, which is considered only

as a unit at the lexical level and therefore does not appear outside lexical rules (see [ITU-T Z.101]).

The second and third forms are a <comment> in an <end> and <comment body> as defined in

[ITU-T Z.101]. The places where <end> (and therefore <comment>) and <comment body> are

allowed are defined in the concrete syntax rules.

With symbols a <comment area> with <text> is used.

<comment area> ::=

 <dashed association symbol> is connected to

 { <comment symbol> | <text extension symbol> } contains <text>

<comment symbol> ::=

<dashed association symbol> ::=

 - - - - - - - - - - -

A <dashed association symbol> is a line symbol.

It is allowed that a <comment area> is connected to any graphical symbol except a

<comment symbol> or <text extension symbol>. One end of the <dashed association symbol> shall

be connected to the middle of the vertical segment of the <comment symbol>. The graphical

symbol shall connect to the other end of the <dashed association symbol>.

The <comment symbol> is considered as a closed symbol by completing (in imagination) the

rectangle to enclose the text. It contains comment text related to the graphical symbol.

Model

A <text extension symbol> in a <comment area> is treated as a <comment symbol>, and the

<comment area> is distinguished from a <text extension area> by the use of the

<dashed association symbol>.

4 Rec. ITU-T Z.103 (10/2019)

In principle the non-terminal <comment area> is added to the concrete syntax for pages (such as

<package page> or <block type page>) so that it is possible to add <comment area> to any symbol

on the page (except a <comment symbol> or <text extension symbol>). For example, a modified

form of <package page> is:

<package page> ::=

 <frame symbol> contains

 { <package heading> <page number area>

 { { <package text area> { is connected to <comment area> }* }*

 { <diagram in package> { is connected to <comment area> }* }* } set }

 [is associated with <package use area>]

For conciseness, it is assumed that this example is used (as further extended to include the syntax

for <text extension area> as given in clause 6.3) as a template to derive the modified syntax for

other pages such as <block type page>.

A <comment area> connected to a symbol has no formal meaning and is therefore removed before

determining the abstract grammar. Each <comment area> for a <package page> is connected to the

symbol for the <package text area> or the <diagram in package> (not to any other <comment

area>).

6.3 Text extension

Concrete grammar

<text extension area> ::=

 <solid association symbol> is connected to

 <text extension symbol> contains

 { { <name>

 | <integer name>

 | <real name>

 | <character string>

 | <hex string>

 | <bit string>

 | <note>

 | <comment body>

 | <composite special>

 | <special>

 | <semicolon>

 | <other character>

 | <quoted operation name>

 | <keyword> } *

 }

<text extension symbol> ::=

It is allowed to connect a <text extension area> to any graphical symbol that contains text to be

analysed as lexical units (except another <text extension symbol>). One end of the

<solid association symbol> shall be connected to the middle of the vertical segment of the

<text extension symbol>. The graphical symbol shall connect to the other end of the

<solid association symbol>.

The <text extension symbol> is considered as a closed symbol by completing (in imagination) the

rectangle.

The <text extension symbol> is allowed to contain a list of lexical items (such as <name>, <note>

or <keyword>). Whether a particular lexical item is allowed will depend on the graphical symbol

that connects to the <text extension area> and the model given below.

 Rec. ITU-T Z.103 (10/2019) 5

Model

In principle, the non-terminal <text extension area> is added to the concrete syntax for pages (such

as <package page> or <block type page>) so that <text extension area> is allowed to be added to

any symbol (except a <comment symbol> or <text extension symbol>) on the page. It is allowed for

a symbol to have both a <text extension area> and a <comment area>. For example, a modified

form of <package page> is:

<package page> ::=

 <frame symbol> contains

 { <package heading> <page number area>

 { { <package text area>

 [is connected to <text extension area>]

 { is connected to <comment area> }* }*

 { <diagram in package>

 [is connected to <text extension area>]

 { is connected to <comment area> }* }*

 } set }

 [is associated with <package use area>]

Each <comment area> of a <package page> is connected to the symbol for the <package text area>

or the <diagram in package> (not to the optional <text extension area> or any other <comment

area>). The <comment area> is removed as described in clause 6.2 before determining the abstract

grammar.

NOTE – Only one <text extension area> is allowed.

For conciseness, it is assumed that this example is used as a template to derive the modified syntax

for other pages such as <block type page>.

The list of lexical items contained in the <text extension symbol> is a continuation of text within

the graphical symbol. The graphical symbol is therefore transformed by adding the list of lexical

items in the <text extension symbol> to the end of the items in the graphical symbol, and the <text

extension symbol> is removed. The validity and meaning of any particular lexical item therefore

depends on the particular graphical symbol and the context in which it is used. This transformation

is applied before any transformation relating to the graphical symbol or its contents.

Sometimes a symbol contains more than one item of text. For example, the <block symbol> for a

<typebased block definition> contains text for the <typebased block heading> and for each <gate>

item. In this case, it is the text item that appears first in the syntax that is extended. The <text

symbol> is a special case, because the contents are always treated as a single text item; therefore the

text extends the whole contents of the <text symbol>.

6.4 Solid association symbol

See [ITU-T Z.101].

6.5 The metasymbol is followed by and flow line symbol without arrowhead

The flow line symbol without arrowhead is added to make specifications more readable by omitting

unnecessary arrowheads.

Concrete grammar

The concrete syntax for <flow line symbol> is extended to allow a <flow line symbol without

arrowhead> as an alternative.

<flow line symbol> ::=

 <flow line symbol without arrowhead>

 | <flow line symbol with arrowhead>

6 Rec. ITU-T Z.103 (10/2019)

<flow line symbol without arrowhead> ::=

<flow line symbol without arrowhead> is a line symbol.

A <flow line symbol without arrowhead> shall not be used in a diagram where it merges with

another <flow line symbol>, or an <out connector symbol> or a <nextstate area>.

A <flow line symbol without arrowhead> has the same representation as a <solid association

symbol>. If there is any ambiguity in a diagram, the symbol is taken to be a <solid association

symbol>, and if a <flow line symbol> is required instead (representing is followed by) a <flow line

symbol with arrowhead> should be used.

Model

A <flow line symbol without arrowhead> is transformed to a <flow line symbol with arrowhead>.

6.6 Names and identifiers, name resolution and visibility – additional diagrams

An identifier is used to identify an item of a particular entity kind with a specific name defined in a

specific scope unit context. As well as a Name, an Identifier has a Qualifier that gives the path to

the definition of the identifier. In the concrete syntax the <qualifier> is usually minimized or

omitted if it is possible to resolve the identity without full qualification, to avoid the specification

becoming unreadable due to all the qualification. The minimization or omission of qualifiers is a

shorthand notation that should in principle appear in this Recommendation, but is fully described in

[ITU-T Z.101] because of the importance of this shorthand for usage of the language.

This Recommendation introduces concrete syntax for the following scope unit kinds in addition to

those defined in Basic SDL-2010:

 system <system diagram>

 block <block diagram>

 process <process diagram>

6.7 Macro

See [ITU-T Z.102].

6.8 Informal text

See [ITU-T Z.101].

6.9 Text symbol

See [ITU-T Z.101].

6.10 Frame symbol, page numbers and multiple page diagrams

Basic SDL-2010 is extended to allow multiple page diagrams.

General rules are described here.

Every page of a diagram has a heading, which identifies the diagram kind (such as process type)

and the identity (usually as an unqualified name if this is unambiguous) for the corresponding

abstract grammar item. The concrete grammar for multiple pages is the same for every page, and it

is required that the information given is consistent on every page. Consistency means that in a

heading if an item (such as abstract as a <type preamble>) appears on one page, it should appear

identically on all other pages, but for convenience it is permitted to omit additional information on

all but one page and the combined heading formed from a combination of all pages. It is suggested

that at least one page (with an appropriate <page number>) has the full heading. The formal correct

presentation is for every diagram page to have the same identical full heading.

 Rec. ITU-T Z.103 (10/2019) 7

If there is a <package use area> the formal correct presentation is for every diagram page to have

the same <package use area>, but for convenience it is permitted to omit information in the

<package use area> of some pages or to omit the <package use area> altogether on a page, provided

the package use information for the diagram is given in at least one <package use area>. It is

suggested that one page with the full heading for the diagram also has a <package use area> that

gives the full package use information.

Model

If a diagram has several pages, and the headings are different on different pages a consistent

heading is derived (if possible; otherwise the diagram is probably invalid).

The full formal correct <package use area> is derived from combining the content of every

<package use area> on all the pages. Any duplication of package use information is removed.

A diagram with several pages is logically replaced by a diagram with one larger page with the

consistent heading and an arbitrary <page number>. Forming the single page diagram is a

topological transformation, where to join two pages together, a break is made in the frame of each

and the line of the frames are joined so there is a single line around the content of both original

pages. Additional diagrams are added in the same way until a single line surrounds all the contents

of all the original pages. The items related to the frames remain connected, attached or associated

with the new frame, and are moved with the frame as it is reshaped to make it rectangular again.

The headings and page numbers are removed and replaced by the consistent heading and arbitrary

<page number> in the top left and right corners respectively.

6.11 Drawing rules

The size of the graphical symbols is chosen by the user (in principle, but tools possibly limit user

choice).

Symbol boundaries shall not overlay or cross except line symbols, which are allowed to cross each

other. There is no logical association between symbols that do cross. The following are line

symbols:

 <channel symbol 1>

 <channel symbol 2>

 <create line symbol>

 <dashed association symbol>

 <flow line symbol>

 <flow line symbol without arrowhead>

 <solid association symbol>

Vertical mirror images of <input symbol>, <output symbol>, <internal input symbol>,

<internal output symbol>, <priority input symbol>, <comment symbol> and

<text extension symbol> are allowed.

Text within a graphical symbol is read from left to right, starting from the upper left corner. The

right-hand edge of the symbol is interpreted as a newline character, indicating that the reading

continues at the leftmost point of the next line (if any). Text within a graphical symbol should be

contained within the symbol (that is, not overlapping the lines forming the border of the symbol or

boundary of the symbol for unclosed symbols such as the <comment symbol>), so that no part of

the text is read as associated with some other symbol. However, a symbol often contains more than

one text item, for example, a <typebased block definition> contains text for both a <typebased

block heading> and a number of <gate> items. Different text items should not overlap, should be

sufficiently separated to be distinct, and in a diagram should be should be unambiguously nearer to

any construct they are related to than any other text item.

8 Rec. ITU-T Z.103 (10/2019)

7 Organization of Specification and Description Language specifications

7.1 Framework

The concrete syntax of a system specification is extended to allow agent diagrams as well as

typebased agent definitions.

Concrete grammar

<system specification> ::=

 <agent diagram>

 | <typebased agent definition>[is associated with <package use area>]

Model

A <system specification> being an <agent diagram> that is a <process diagram> or a

<typebased agent definition> that is a <typebased process definition> is derived syntax for a

<system diagram> having the same name as the process, containing implicit channels and

containing the <process diagram> or <typebased process definition> as the only definition. Using

this model satisfies the constraint the Agent-kind is SYSTEM. The transformation of a

<process diagram> into a <system diagram> containing the <process diagram> is carried out before

the transformation of the contained <process diagram> into a <typebased process definition> and a

corresponding <process type diagram>.

A <system specification> being an <agent diagram> that is a <block diagram> or a

<typebased agent definition> that is a <typebased block definition> is derived syntax for a

<system diagram> having the same name as the block, containing implicit channels and containing

the <block diagram> or <typebased block definition> as the only definition. Using this model

satisfies the constraint the Agent-kind is SYSTEM. The transformation of a <block diagram> into a

<system diagram> containing the <block diagram> is carried out before the transformation of the

contained <block diagram> into a <typebased block definition> and a corresponding

<block type diagram>.

A <system diagram> is derived syntax for a <typebased system definition> and a corresponding

<system type diagram>.

A <package use area> associated with a <typebased agent definition> of a <system specification> is

derived syntax for a <package use area> associated with the <system diagram> derived from the

<typebased agent definition>.

7.2 Package

Package is extended to allow textual references (to agent types, contained packages, procedures,

composite state types and interface definitions), contained procedure definitions and create line

annotation. Basic SDL-2010 is extended to allow more than one page for a <package diagram>.

Package reference is extended to allow it to be used as annotation that references a package defined

elsewhere.

Concrete grammar

<package diagram> ::=

 <package page>+

<package reference area> ::=

 <package symbol> contains [<qualifier>] <package name>

The <package reference area> is extended compared to Basic SDL-2010 to include an optional

<qualifier>. The optional <qualifier> and <package name> of a <package reference area> shall be

contained in the lower rectangle of <package symbol>.

 Rec. ITU-T Z.103 (10/2019) 9

If in a <package reference area> there is a <qualifier> before the <name> of the referenced package

and the <qualifier> does not identify the scope unit directly enclosing the package reference, the

package reference and referenced package are in different scope units. In this case, it is possible to

remove the <package reference area> from the model without changing the semantics of the model

and the reference is a form of annotation providing consistent information about the referenced

package with no representation in the abstract grammar. Otherwise, for a <package reference area>

where the <qualifier> of the <name> of the referenced package is omitted or identifies the scope

unit directly enclosing the <package reference area>, the package reference and referenced package

are logically in the same scope unit: the scope unit containing the reference.

<package text area> ::=

 <text symbol> contains

 { <signal definition list>

 | <data definition>

 | <remote procedure definition>

 | <remote variable definition>

 | <select definition>

 | <macro definition>

 | <signal list definition>

 | <agent type reference>

 | <package reference>

 | <procedure definition>

 | <procedure reference>

 | <composite state type reference>}*

The <package text area> is extended compared to Comprehensive SDL-2010 to include the textual

references: <agent type reference>, <package reference>, <procedure reference>, and

<composite state type reference>; and to allow <signal list definition> and <procedure definition>.

<agent type reference> ::=

 <system type reference>

 | <block type reference>

 | <process type reference>

<system type reference> ::=

 system type <system type name> [<formal context parameters>] referenced <end>

<block type reference> ::=

 <type preamble> block type

 [<qualifier>] <block type name> [<formal context parameters>] referenced <end>

<process type reference> ::=

 <type preamble> process type

 [<qualifier>] <process type name> [<formal context parameters>] referenced <end>

<composite state type reference> ::=

 <type preamble> state [aggregation] type

 [<qualifier>] <composite state type name>

 [<formal context parameters>] referenced <end>

If the keyword aggregation is present in the <composite state type reference>, the referenced

definition shall have a <state aggregation type heading> and a <composite state type heading>

otherwise.

<package reference> ::=

 package [<qualifier>] <package name> referenced <end>

<diagram in package> ::=

 <package reference area>

 | <entity in agent diagram>

 | <option area>

 | <create line area>

The <diagram in package> of Comprehensive SDL-2010 is extended to allow the <create line area>

annotation.

10 Rec. ITU-T Z.103 (10/2019)

Model

A <package reference> in a <package text area> is removed from the <package text area> and

transformed to a <package reference area> where the <package symbol> contains the same

<package identifier>. The <package reference area> is placed in the <package diagram> containing

the <package text area>.

A <system type reference> in a <package text area> is removed from the <package text area> and

transformed to a <system type reference area> where the <system type symbol> contains the same

<system type name> and <formal context parameters>. The <system type reference area> is placed

in the <package diagram> containing the <package text area>.

A <block type reference> in a <package text area> is removed from the <package text area> and

transformed to a <block type reference area> where the <block type symbol> contains the same

<type preamble>, <qualifier>, <block type name> and <formal context parameters>. The <block

type reference area> is placed in the <package diagram> containing the <package text area>.

A <process type reference> in a <package text area> is removed from the <package text area> and

transformed to a <process type reference area> where the <process type symbol> contains the same

<type preamble>, <qualifier>, <block type name> and <formal context parameters>. The <process

type reference area> is placed in the <package diagram> containing the <package text area>.

A <procedure reference> in a <package text area> is removed from the <package text area> and

transformed to a <procedure reference area> with the same <procedure reference heading>. The

<procedure reference area> is placed in the <package diagram> containing the <package text area>.

7.3 Referenced definition

Comprehensive SDL-2010 is extended to include referenced definitions that are textual. The

referenced definitions are extended to include agent and state diagrams.

Concrete grammar

<referenced definition> ::=

 <diagram> | <definition>

<definition> ::=

 <procedure definition>

 | <macro definition>

The <referenced definition> of Basic SDL-2010 is extended to include <definition>. Each

alternative of <definition> is a textual definition. For a <macro definition> there is no

corresponding reference. Each <procedure definition> shall have a corresponding <procedure

reference area> or <procedure reference> in the associated <package diagram> or <system

specification>.

NOTE – [ITU-T Z.104] adds operation definition to <definition>.

<diagram> ::=

 <package diagram>

 | <agent diagram>

 | <agent type diagram>

 | <composite state diagram>

 | <composite state type diagram>

 | <procedure diagram>

 | <operation diagram>

The Basic SDL-2010 <diagram> is extended to include <agent diagram> and <composite state

diagram> that are shorthand notations.

 Rec. ITU-T Z.103 (10/2019) 11

8 Structural concepts

8.1 Types, instances and gates

8.1.1 Structural type definitions

8.1.1.1 Agent types

Comprehensive SDL-2010 is extended with a shorthand for an agent type diagram with a body that

gives the state machine of the agent type without explicitly defining a type for the state machine.

Concrete grammar

<agent formal parameters> ::=

 (<aggregation kind> <parameters of sort> {, <aggregation kind> <parameters of sort>}*)

 | [<end>] fpar <aggregation kind> <parameters of sort>

 {, <aggregation kind> <parameters of sort>}*

The Basic SDL-2010 <agent formal parameters> is extended to allow bracketed parameters (as in

SDL-2000) as an alternative concrete syntax.

Model

If an <agent type diagram> (a <system type diagram>, <block type diagram> or <process type

diagram>) has an <agent structure area> that contains an <agent body area> instead of a

<interaction area>, this is shorthand for an agent type that has no contained agents and a state

machine with its type defined by the <agent body area>. The transform is described in the next

paragraph.

A <composite state type diagram> is derived from the <agent type diagram>. This diagram is given

a heading with the same <virtuality>, the key words state type, an anonymous name, the same

<formal context parameters> and same <agent formal parameters> as the <agent type diagram>.

The <agent body area> is copied as the <composite state body area> and any part of a <qualifier> in

the body area that refers to the enclosing agent type is changed to refer to the composite state type

of the agent type. Each <gate on diagram> of the <agent type diagram> is copied as a <gate on

diagram> of the <composite state type diagram> but omitting any <endpoint constraint>. A

<composite state type reference area> for the derived <composite state type diagram> is placed in

the <agent type diagram>. In the <agent type diagram>, the <agent body area> is replaced by a

<state machine area> with a <typebased composite state> that has:

 an anonymous unique name as the <composite state name>;

 the list of names for the <agent formal parameters> of the agent type as the <actual

parameters> in the <nextstate parameters> and with no via <state entry point> in the

<nextstate parameters>;

 the (anonymous) name of the composite state type as the <base type> in the <composite

state type expression> and the list of names of the <formal context parameters> (if any) of

the agent type as the <actual context parameter list> in the <composite state type

expression>.

Each <gate> of the <composite state type diagram> is placed inside the state symbol of the <state

machine area> and is connected by a channel to the gate of the same name on the <agent type

diagram>.

If the <agent type diagram> is defined as a specialization by inheriting another agent type (the

supertype), the composite state type of the state machine of the supertype has to be virtual and the

composite state type name is the same in both the supertype and subtype, because the copied <agent

body area> adds to the supertype.

12 Rec. ITU-T Z.103 (10/2019)

8.1.1.2 System type

Comprehensive SDL-2010 is extended to allow more than one page for a <system type diagram>.

Concrete grammar

<system type diagram> ::=

 <system type page>+

8.1.1.3 Block type

Comprehensive SDL-2010 is extended to allow more than one page for a <block type diagram>.

Concrete grammar

<block type diagram> ::=

 <block type page>+

8.1.1.4 Process type

Comprehensive SDL-2010 is extended to allow more than one page for a <process type diagram>.

Concrete grammar

<process type diagram> ::=

 <process type page>+

8.1.1.5 Composite state type

Comprehensive SDL-2010 is extended to allow more than one page for a <composite state type

diagram>.

Concrete grammar

<composite state type diagram> ::=

 <composite state type page>+

 | <state aggregation type page>+

NOTE It is possible to specify a <composite state type diagram> that only consists of transitions associated

with an asterisk state, without <start area> and without any substates. These transitions are either terminated

by <dash nextstate> or <history dash nextstate> or <return area>. These transitions apply when the agent or

procedure is in the composite state. The nextstate of such a transition terminated by <dash nextstate> or

<history dash nextstate> is the composite state; however, the Exit-procedure-definition and Entry-procedure-

definition of the composite state are not called.

8.1.2 Type expression

See [ITU-T Z.101] and [ITU-T Z.102].

8.1.3 Abstract type

See [ITU-T Z.101].

8.1.4 Gates defined by interface gates

The language is extended to include <interface gate definition> as a shorthand and <signal list area>

of <gate definition> to be optional.

Concrete grammar

<gate on diagram> ::=

 <gate definition> | <interface gate definition>

Basic SDL-2010 <gate on diagram> is extended to allow <interface gate definition> as a shorthand.

 Rec. ITU-T Z.103 (10/2019) 13

<gate definition> ::=

 { { <gate symbol 1> | <inherited gate symbol 1> }

 is associated with
 { <gate> [<signal list area>]}set

 | { <gate symbol 2> | <inherited gate symbol 2> }

 is associated with
 { <gate> [<signal list area> <signal list area>] }set

 } [is connected to <endpoint constraint>]

Comprehensive SDL-2010 <gate definition> is extended to allow <signal list area> to be optional if

this is derivable from the communication channels or <endpoint constraint>.

<interface gate definition> ::=

 { <gate symbol 1> | <inherited gate symbol 1> }

 is associated with <interface identifier>

 [is connected to <endpoint constraint>]

Model

If the set of signals carried by a gate is able to be derived from the communication path or endpoint

constraint of the gate the <signal list area> is optional in the <gate definition>.

An <interface gate definition> is shorthand for a <gate definition> having the name of the interface

as <gate name> and the <interface identifier> as the <signal list area>.

8.2 Type references and operation references

Type definitions such as <procedure definition> have type references. The referenced definition

defines the properties of the type. The type is fully described in the referenced definition.

Type references are extended compared with Basic SDL-2010 to allow items such as the <type

preamble> and <gate property area> to be placed in the type reference as a form of annotation

making the items visible in the type reference.

Concrete grammar

<agent type reference area> ::=

 { <system type reference area>

 | <block type reference area>

 | <process type reference area> }

 { is connected to <gate property area> }*

Basic SDL-2010 <agent type reference area> is extended to allow <gate property area> items.

<gate property area> ::=

 <gate definition> | <interface gate definition>

A <gate property area> is a form of annotation about the gates of the referenced agent. If there is an

<agent type reference area> for the agent defined by an <agent type diagram>, each <gate property

area> associated with the <agent type reference area> corresponds to the <gate on diagram> with

the same <gate> associated with the <agent type diagram>. It is optional whether there is a <gate

property area> for a corresponding <gate on diagram>. If there is a <gate property area>, it is not

required to include each <signal list item> of the <gate on diagram>. No <gate property area>

associated with the <agent type reference area> shall contain <signal list item>s not contained in the

corresponding <gate on diagram>s associated with the <agent type diagram>.

<system type reference area> ::=

 <system type symbol> contains

 { system <system type name> [<formal context parameters>] }

Basic SDL-2010 <system type reference area> is extended to allow <formal context parameters>.

<block type reference area> ::=

 <block type symbol> contains

 { <type preamble> [<qualifier>] <block type name> [<formal context parameters>] }

14 Rec. ITU-T Z.103 (10/2019)

Basic SDL-2010 <block type reference area> is extended to include <type preamble>, <qualifier>

and <formal context parameters>.

<process type reference area> ::=

 <process type symbol> contains

 { <type preamble> [<qualifier>] <process type name> [<formal context parameters>] }

Basic SDL-2010 <process type reference area> is extended to include <type preamble>, <qualifier>

and <formal context parameters>.

<composite state type reference area> ::=

 <composite state type symbol> contains

 { <type preamble>

 [<qualifier>] <composite state type name> [<formal context parameters>] }

 { is connected to <gate property area> }*

Basic SDL-2010 <composite state type reference area> is extended to include <type preamble>,

<qualifier>, <formal context parameters> and connected <gate property area> items.

A <gate property area> is a form of annotation about the gates of the referenced state type. If there

is a <composite state type reference area> for a composite state defined by a <composite state type

diagram>, each <gate property area> associated with the <composite state type reference area>

corresponds to the <gate on diagram> with the same <gate> associated with the <composite state

type diagram>. It is optional whether there is a <gate property area> for a corresponding <gate on

diagram>. If there is a <gate property area>, it is not required to include each <signal list item> of

the <gate on diagram>. No <gate property area> associated with the <composite state type

reference area> is allowed to contain a <signal list item> that is not contained in the corresponding

<gate on diagram> associated with the <composite state type diagram>.

<procedure reference heading> ::=

 <type preamble> [<exported>]

 [<qualifier>] <procedure name> [<formal context parameters>]

Basic SDL-2010 <procedure reference heading> is extended to include <type preamble>, the

<exported> clause, <qualifier> and <formal context parameters>.

If <exported> is given in a <procedure reference heading>, the referenced type shall be an exported

procedure and if a <remote procedure identifier> is also given in <exported>, the referenced

procedure shall identify the same remote procedure definition.

<procedure reference> ::=

 procedure <procedure reference heading> referenced <end>

If there is a non-empty <type preamble> in the type reference, this shall be the same as the <type

preamble> of the <referenced definition>.

NOTE – A <type preamble> is optionally empty; therefore adding <type preamble> to the syntax of type

references does not invalidate the syntax of Basic SDL-2010.

If in a type reference the <qualifier> of the <name> of the referenced type is omitted or identifies

the scope unit directly enclosing the type reference, the type reference and <referenced definition>

are logically in the same scope unit: the scope unit containing the reference.

If in a type reference there is <qualifier> for the <identifier> before the <name> of the referenced

type and the <qualifier> does not identify the scope unit directly enclosing the type reference, the

type reference and <referenced definition> are in different scope units. In this case, it is possible to

remove the type reference from model without changing the semantics of the model, and the

reference is a form of annotation providing consistent information about the referenced definition.

Although the type reference is removed from the model, the additional information given by the

optional items such a <type preamble> or <formal context parameters> is still required to match the

referenced type. For this matching the context for these items is the context of the referenced type

rather than the context of the type reference.

 Rec. ITU-T Z.103 (10/2019) 15

If there is a <formal context parameters> item in the type reference, this shall be the same as the

<formal context parameters> of the <referenced definition>.

Multiple type references in the same context that refer to the same entity class and have the same

qualifier and the same name are equivalent to one type reference from that context with all

attribute property and behaviour property elements of all the references. Such attributes and

properties do not have to be present or complete on each reference, but they all have to be

consistent with the referenced type and therefore with each other.

Model

A <procedure reference> is removed from the containing text area and transformed to a <procedure

reference area> with the same <procedure reference heading> in the scope unit containing the text.

8.3 Context parameters

See [ITU-T Z.102].

8.4 Specialization

Concrete grammar

Specialization is as defined in [ITU-T Z.102], but the following rules apply to shorthand notations

introduced in this Recommendation.

a) Virtual transitions or saves shall not appear in agent (set of instances) definitions, or in

composite state definitions.

b) An input or save with <virtuality> shall not contain <asterisk>.

9 Agents

An additional shorthand diagram is added to Basic SDL-2010 and Comprehensive SDL-2010 to

define a set of agents without the need to explicitly define an agent type: the agent diagram. An

agent diagram has an implicit anonymous agent type defined by the content of the diagram and used

for the agent set.

Other shorthand forms are also added to Basic SDL-2010 and Comprehensive SDL-2010.

Concrete grammar

<agent diagram> ::=

 { <system diagram> | <block diagram> | <process diagram> }

<agent instantiation> ::=

 [<number of instances>]

 <agent additional heading>

NOTE 1 – <agent instantiation> is used in <block diagram> and <process diagram>.

In <agent instantiation>, if <agent formal parameters> are present, <number of instances> shall be

present, even if both <initial number> and <maximum number> are omitted. If both the <number of

instances> in the <agent instantiation> of an <agent diagram> and the <number of instances> in the

<agent reference area> for the <agent diagram> are specified, the two <number of instances> shall

be equal lexically.

<agent structure area> ::=

 { {<agent text area>}*

 {<entity in agent diagram>}*

 { <interaction area> | <agent body area> } }set

16 Rec. ITU-T Z.103 (10/2019)

The Basic SDL-2010 <agent structure area> is extended to allow an <agent body area> instead of

an <interaction area> for the shorthand given in clause 8.1.1.1, where an agent type that has no

contained agents and a state machine with its type defined by the <agent body area>.

<agent body area> ::=

 { [<start area>]

 { <state area> <in connector area> }* }set

<start area> shall only be omitted in an agent type diagram.

<agent text area> ::=

 <text symbol>

 contains {

 { <valid input signal set>

 | <signal definition list>

 | <variable definition>

 | <data definition>

 | <timer definition>

 | <remote procedure definition>

 | <remote variable definition>

 | <macro definition>

 | <select definition>

 | <signal list definition>

 | <procedure definition>

 | <procedure reference>

 | <imported procedure specification>

 | <imported variable specification>

 | <block reference>

 | <process reference>

 | <block type reference>

 | <process type reference>

 | <composite state type reference> }* }

The Comprehensive SDL-2010 <agent text area> is extended to allow <signal list definition>,

<procedure definition>, <imported procedure specification>, <imported variable specification>,

textual <block reference>, textual <process reference>, textual <block type reference>, textual

<process type reference> and textual <composite state type reference>. A signal list definition> is

an alternative syntax for an <interface definition>. A <procedure definition> is a textual alternative

to a <procedure diagram>.

NOTE 2 A composite state reference is not allowed in an <agent text area>. The composite state is instead

referenced by an item in a <state area> of a <agent body area> or a <state machine area> of an <interaction

area>.

<imported procedure specification> ::=

 imported procedure <remote procedure identifier> <end>

 { [<end>] returns <sort> <end>

 | [<end>] fpar <formal parameter> {, <formal parameter> }*

 [<end> returns <sort>] <end> }

An <imported procedure specification> has no SDL-2010 meaning and is treated as a comment,

though to be compatible with SDL-2000 and SDL-92 the <remote procedure identifier> should

refer to a remote procedure that is consistent with the <formal parameter>s and returned <sort>.

<imported variable specification> ::=

 imported
 <remote variable identifier> {, <remote variable identifier> }* <sort>

 {, <remote variable identifier> {, <remote variable identifier> }* <sort>}* <end>

An <imported variable specification> has no SDL-2010 meaning and is treated as comment, though

to be compatible with SDL-2000 and SDL-92 each <remote variable identifier> should refer to a

remote variable that is consistent with the <sort>.

 Rec. ITU-T Z.103 (10/2019) 17

<block reference> ::=

 block <block name> [<number of instances>] referenced <end>

<process reference> ::=

 process <process name> [<number of instances>] referenced <end>

<interaction area> ::=

 { [<state machine area>]

 { <agent area> | <create line area> | <channel definition area>}*

 }set

The Basic SDL-2010 <interaction area> is extended to allow a <create line area> as annotation, and

it is allowed to omit the <state machine area> (see Model below).

<create line area> ::=

 <create line symbol>

 is attached to {<create line endpoint area> <create line endpoint area>}

<create line endpoint area> ::=

 <agent area> | <agent type reference area> | <state partition area>

<create line symbol> ::=

The arrowhead on the <create line symbol> indicates the <agent area> or <agent type reference

area> of an agent or agent type upon which a create action is performed. <create line symbol>s are

optional and have no formal meaning, but if used, then there shall be a create request for the agent

(or agent type) at the arrowhead end of the <create line symbol> in the agent (or agent type or state

machine) at the originating end of the <create line symbol>. This rule applies after transformation

of <option area>. The create action is possibly inherited and therefore need not be specified directly

in the agent or agent type.

<agent area> ::=

 <typebased agent definition>

 | <inherited agent definition>

 | <agent reference area>

The <agent area> of Comprehensive SDL-2010 is extended to include <agent reference area>.

<inherited block definition> ::=

 <dashed block symbol> contains

 { <block name> [<number of instances>] { <gate>* }set }

 { is connected to <gate property area> }*

The <inherited block definition> of Comprehensive SDL-2010 is extended to allow <gate property

area> items.

<inherited process definition> ::=

 <dashed process symbol>

 contains { <process name> [<number of instances>]{ <gate>* }set }

 { is connected to <gate property area> }*

The <inherited process definition> of Comprehensive SDL-2010 is extended to allow <gate

property area> items.

<state machine area> ::=

 <state symbol>

 contains { { <typebased composite state> | <composite state list item> } { <gate>*}set }

 | <inherited state machine>

<state machine area> is extended compared to Comprehensive SDL-2010 to include <inherited

state machine>.

Model

An <agent diagram> is shorthand for an <agent type diagram>. The corresponding <agent reference

area> to the <agent diagram> in an <agent area> is shorthand for an <agent type reference area> to

18 Rec. ITU-T Z.103 (10/2019)

the <agent type diagram> and a <typebased agent definition> that uses the agent type. The <agent

diagram> is transformed into an <agent type diagram> as described in the next paragraph. When an

<agent structure area> is used in an <agent diagram>, the <agent diagram> is first replaced by an

<agent type diagram>, then any <agent body area> in the <agent structure area> of <agent type

diagram> is replaced as in clause 8.1.1.1.

The pages of the <agent diagram> are first combined into a single page. The page of the <agent

type diagram> is formed from the page of the <agent diagram> by inserting the keyword type after

the keyword system, block or process and changing the name to a unique anonymous name. The

<agent structure area> is copied from the <agent diagram> to the <agent type diagram>. In the

<agent structure area>, any part of a <qualifier> that refers to the agent of the <agent diagram> is

changed to refer to the agent type of the <agent type diagram>. For each <external channel

identifiers> list outside the frame of the agent diagram (<block diagram> or <process diagram>),

there is a connected <gate on diagram> for the agent type diagram with a unique anonymous name,

and any <channel definition area> attached to the <external channel identifiers> is attached to the

<gate on diagram>. There is also a connected <gate on diagram> for the agent type diagram with a

unique anonymous name, for each channel attached to the <agent reference area> for the <agent

diagram> that does not appear in <external channel identifiers> of the <agent diagram>.

An <agent diagram> that has specialization (an <agent instantiation> with an <agent additional

heading> containing a <specialization>) is shorthand for defining an implicit agent type and one

typebased agent of this type.

If the <state machine area> is omitted from an <interaction area>, this is a shorthand for a <state

machine area> containing a <typebased composite state> with a <composite state name> that has

the same name as the agent name and a <composite state type expression> that is an anonymous

name for the type for a minimal state machine: a State-start-node followed by a Stop-node. The

start transition of the minimal state machine is virtual (in a subtype it is allowed to be redefined or

finalized).

A <composite state diagram> is shorthand for a <composite state type diagram> and it has a

corresponding <state machine area> or <state area> or <composite state reference area> referencing

the <composite state diagram>. A <state machine area> or <state area> that references the

<composite state diagram> contains a <composite state list item> with a <composite state name>

that identifies the <composite state diagram>. The <composite state list item> is transformed into a

<typebased composite state> as described in clause 11.2. Each <gate> of the transformed <state

machine area> identifies the anonymously named <gate on diagram> of the <composite state type

diagram> that corresponds to the set of channels connected to the original <state machine area> at

the same point. The identified channels all join the transformed <state machine area> at the same

place close to the <gate>, which is inside the <state machine area>. A <composite state reference

area> that references a <composite state diagram> is transformed as described in clause 9.5.

A <block reference> in an <agent text area> is removed from the <agent text area> and transformed

to a <block reference area> where the <block symbol> contains the same <block name> and

<number of instances>. The <block reference area> is placed in the <agent structure area>

containing the <agent text area>.

A <process reference> in an <agent text area> is removed from the <agent text area> and

transformed to a <process reference area> where the <process symbol> contains the same <process

name> and <number of instances>. The <process type reference area> is placed in the <agent

structure area> containing the <agent text area>.

A <block type reference> in an <agent text area> is removed from the <agent text area> and

transformed to a <block type reference area> where the <block type symbol> contains the same

<type preamble>, <qualifier>, <block type name> and <formal context parameters>. The <block

type reference area> is placed in the <agent structure area> containing the <agent text area>.

 Rec. ITU-T Z.103 (10/2019) 19

A <process type reference> in an <agent text area> is removed from the <agent text area> and

transformed to a <process type reference area> where the <process type symbol> contains the same

<type preamble>, <qualifier>, <process type name> and <formal context parameters>. The

<process type reference area> is placed in the <agent structure area> containing the <agent text

area>.

A <procedure reference> in an <agent text area> is removed from the <agent text area> and

transformed to a <procedure reference area> with the same <procedure reference heading>. The

<procedure reference area> is placed in the <agent structure area> containing the <agent text area>.

A <composite state type reference> in an <agent text area> is removed from the <agent text area>

and transformed to a <composite state type reference area> with the same <type preamble>,

<qualifier>, <composite state type name> and <formal context parameters>. The <composite state

type reference area> is placed in the <agent structure area> containing the <agent text area>.

9.1 System

A system diagram is shorthand for a typebased system that is based on an implicit type described by

the content of the system diagram. (See the Model for <agent diagram> above).

Concrete grammar

<system diagram> ::=

 <system page>+

<system page> ::=

 <frame symbol> contains {<system heading> <page number area> <agent structure area> }

 [is associated with <package use area>]

<system heading> ::=

 system <system name> <agent additional heading>

The <agent additional heading> in a <system diagram> shall not include <agent formal

parameters>.

9.2 Block

A block diagram is shorthand for a typebased block that is based on an implicit type described by

the content of the block diagram (see the Model for <agent diagram> above).

Concrete grammar

<block diagram> ::=

 <block page>+

<block page> ::=

 <frame symbol> contains {<block heading> <page number area> <agent structure area> }

 { is associated with <external channel identifiers> }*

 [is associated with <package use area>]

<block heading> ::=

 block [<qualifier>] <block name> <agent instantiation>

The <external channel identifiers> identify external channels connected to channels in the <block

diagram>. It is placed outside the <frame symbol>, close to the endpoint of internal channels at the

<frame symbol>.

20 Rec. ITU-T Z.103 (10/2019)

9.3 Process

A process diagram is shorthand for a typebased process that is based on an implicit type described

by the content of the process diagram (see the Model for <agent diagram> above).

Concrete grammar

<process diagram> ::=

 <process page>+

<process page> ::=

 <frame symbol> contains{<process heading> <page number area> <agent structure area> }

 { is associated with <external channel identifiers> }*

 [is associated with <package use area>]

<process heading> ::=

 process [<qualifier>] <process name> <agent instantiation>

The <external channel identifiers> identify external channels connected to channels in the <process

diagram>. It is placed outside the <frame symbol>, close to the endpoint of internal channels at the

<frame symbol>.

9.4 Procedure

The syntax for procedures is extended compared with Comprehensive SDL-2010 to allow

procedures to be defined textually, external procedures and various extensions to the syntax of

procedures.

Concrete grammar

<procedure definition> ::=

 <external procedure definition>

 | <internal procedure definition>

<internal procedure definition> ::=

 {<package use clause>}*

 <procedure heading> [<end> <entity in procedure>+]

 [<virtuality>] [<comment body>] <left curly bracket>

 <statements> <end>*

 <right curly bracket>

The optional <virtuality> before <left curly bracket> <statements> in <internal procedure

definition> applies to the start transition of the procedure, which in this case is the list of statements.

The definition of exported variables is not allowed in a <variable definition> in a <procedure

definition>.

A list of <statements> in an <internal procedure definition> following <virtuality> of virtual or

redefined is a virtual procedure start. Virtual procedure start is further described in clause 8.4.3 of

[ITU-T Z.102].

<procedure formal parameters> ::=

 (<formal variable parameters> {, <formal variable parameters> }*)

 | [<end>] fpar <formal variable parameters> {, <formal variable parameters> }*

Basic SDL-2010 <procedure formal parameters> syntax is extended to allow bracketed parameters

(as in SDL-2000) as an alternative concrete syntax.

<parameter kind> ::=

 [in/out | in | out]

The Basic SDL-2010 <parameter kind> is extended to allow the <parameter kind> to be empty.

<procedure result> ::=

 <result sign> <result aggregation> [<variable name>] <sort>

 | returns <result aggregation> [<variable name>] <sort>

 Rec. ITU-T Z.103 (10/2019) 21

The Basic SDL-2010 <procedure result> is extended to allow a <result sign> (as in SDL-2000) as

an alternative concrete syntax. Also it is allowed to name the result, in which case it is a variable

available for use in the procedure.

<entity in procedure> ::=

 <variable definition>

 | <data definition>

 | <select definition>

 | <macro definition>

 | <procedure definition>

 | <procedure reference>

Comprehensive SDL-2010 <entity in procedure> is extended to allow <procedure definition> and

<procedure reference> items in the procedure.

<external procedure definition> ::=

 procedure <procedure name> <procedure signature> external <end>

An external procedure shall not be mentioned in a <type expression>, in a <formal context

parameter> or in a <procedure constraint>.

Semantics

An external procedure is a procedure whose <procedure body area> is not included in the

SDL-2010 description (for further information see clause 13 of [ITU-T Z.102]).

Model

A formal parameter with no explicit <parameter kind> has the implicit <parameter kind> in.

When a <variable name> is present in <procedure result>, each <return area> within the procedure

graph without an <expression> is replaced by a <return area> containing <variable name> as the

<expression>.

A <procedure result> with <variable name> is derived syntax for a <variable definition> (that is an

<entity in procedure> of the procedure) with <variable name> and <sort> in <variables of sort>. If

there is a <variable definition> involving <variable name> in a <variable definition> it shall have

the same sort as the result, but no further <variable definition> is added.

An <internal procedure definition> is derived syntax for a <procedure diagram> that is a single

<procedure page>, having the same <procedure preamble> and <procedure body area> that is a

single <procedure start area> with the same <virtuality> as given in the <internal procedure

definition>. The <transition area> of the <procedure start area> consists of a <task area> containing

the <statements> of the <internal procedure definition> followed by an unlabelled <return area>.

The <entity in procedure> items of the <internal procedure definition> are inserted into a

<procedure text area> of the <procedure diagram> and allow local items (such as variables) of the

procedure to be defined. This transformation takes place after handling any <select definition> or

<macro definition> in the <internal procedure definition>.

A <procedure reference> as an <entity in procedure> of a <procedure text area> is removed from

the <procedure text area> and transformed to a <procedure reference area> with the same

<procedure reference heading> in the procedure containing the <procedure text area>. The

<procedure reference> transformations take place after transformation of each <internal procedure

definition> to a <procedure diagram>.

22 Rec. ITU-T Z.103 (10/2019)

9.5 Agent and composite state reference

Basic SDL-2010 is extended to include references to agent diagrams and composite state diagrams

of a state aggregation. Both the references and the diagram are shorthand notations.

Concrete grammar

<agent reference area> ::=

 { <block reference area>

 | <process reference area> }

<block reference area> ::=

 <block symbol> contains

 { { <block name> [<number of instances>] } }

<process reference area> ::=

 <process symbol> contains

 { { <process name> [<number of instances>] } }

<composite state reference area> ::=

 <state symbol> contains { <state name> }

NOTE – A <composite state reference area> is used only in a <state partition area> of a <state aggregation

body area> to reference a <composite state diagram> for the partition, and in this case a composite state

reference for the same <composite state name> in the <composite state text area> of the <aggregation

structure area> that contains the <state aggregation body area> with the <composite state reference area> in

its <state partition area> is annotation. A <composite state diagram> is used by a composite state application

that has a <composite state list item> with a <composite state name> naming the <composite state diagram>,

and in this case a composite state reference for the same <composite state name> in a text area is annotation.

Model

The <agent diagram> referenced by an <agent reference area> is a shorthand that is transformed

into an <agent type diagram> (see the transformation of <agent diagram> under Model in clause 9).
An <agent reference area> is transformed to a <typebased agent definition> that uses the <agent

type diagram> and an <agent type reference area> for the <agent type diagram>. The <typebased

agent definition> has the same symbol (<block symbol> or <process symbol>) as the <agent

reference area>, which contains a typebased heading (<typebased block heading> or <typebased

process heading>) and a <gate> for each <external channel identifiers> list on the <agent diagram>.

Each <gate> of the <typebased agent definition> is the anonymous unique name of the <gate on

diagram> of the <agent type diagram> formed from the <external channel identifiers> on the

<agent diagram> or a channel connected to <agent reference area> for the <agent diagram> that

does not appear in the <external channel identifiers>. The <gate> is placed so that the set of

channels (for the <external channel identifiers>) or channel (not in <external channel identifiers>) is

associated with this <gate>. In the <typebased agent definition>, the <block name> or <process

name> is the same as the <block name> or <process name> of the <agent reference area>. The

<number of instances> of the <typebased agent definition> is the same as the <number of

instances> present in the <agent reference area> or <agent diagram> (if both are given or one is

omitted), or is empty if both are omitted. In the <typebased agent definition>, the <block type

expression> or <process type expression> is the anonymous unique name of the <agent type

diagram>.

A <composite state diagram> referenced by <composite state reference area> as a <state partition

area> is a shorthand that is transformed into a <composite state type diagram> (see the

transformation of <composite state diagram> in Model under clause 11.11). A <composite state

reference area> is transformed to a <typebased state partition definition> that uses the <composite

state type diagram>, and a <composite state type reference area> for the <composite state type

diagram>. The <state symbol> of the <typebased state partition definition> contains the same

<composite state name> as the <composite state reference area>, and the <composite state type

expression> is the anonymous unique name of the <composite state type diagram>. The <typebased

 Rec. ITU-T Z.103 (10/2019) 23

state partition definition> replaces the <composite state reference area> as the <state partition area>

so that each <state partition connection area> attached to the <state partition area> is unchanged.

10 Communication

10.1 Channel

Concrete grammar

<channel definition area> ::=

 <channel symbol 1>

 is associated with
 { [<channel name>] [<signal list area>] }set

 is attached to {

 { <agent area> | <state machine area> | <gate on diagram>

 | <external channel identifiers> }

 { <agent area> | <state machine area> | <gate on diagram>

 | <external channel identifiers> } }set

 | <channel symbol 2>

 is associated with
 { <channel name> [<signal list area>] [<signal list area>] }set

 is attached to {

 { <agent area> | <state machine area> |<gate on diagram>

 | <external channel identifiers> }

 { <agent area> | <state machine area> |<gate on diagram>

 | <external channel identifiers>} }set

Basic SDL-2010 <channel definition area> is extended to allow the <channel name> and each

<signal list area> to be optional. Basic SDL-2010 <channel definition area> is also extended to

allow the <channel definition area> to be attached to <external channel identifiers> (rather than a

<gate on diagram>) in the case of an <agent diagram> or <composite state diagram> for the state

machine of an agent.

For the end of the <channel symbol 1> or <channel symbol 2> that is attached directly to an <agent

area> or <state machine area> where the agent or state machine contains the <channel identifier>s

for the channel in <external channel identifiers>, the channel is attached to the implicit gate

introduced by the <external channel identifiers>. Otherwise, in the case of no <external channel

identifiers> match, there is an implicit gate on the agent or state attached to the <channel definition

area>. This gate obtains the <signal list> of the respective <channel definition area> as its

corresponding gate constraint. The channel is attached to that gate. This <gate> represents either the

Destination-gate or Originating-gate, with the other gate determined by the other end of the

channel.

If any associated <signal list area> is omitted from a <channel definition area>, the corresponding

set of signals shall be derivable. Derivation is possible if at least one attached <agent area>, <state

machine area> or <gate on diagram> has a defined set of signals for the gate to which the channel is

connected in the direction for the <signal list area>. The signal set is defined by channel connection

to an <agent area> only for a <typebased agent definition>. The signal set is defined by the channel

connection to a <state machine area> only for a <state symbol> containing a <typebased composite

state>. The set of signals is defined if the channel is connected to an <agent area> or <state machine

area> and the set is defined for the gate to which the channel is connected, or if the set is defined for

all internal channels connected to this gate. The set of signals is defined if the channel is connected

to a <gate on diagram>. The set is defined for a gate connected to <external channel identifiers> if

for each external channel either no <signal list area> is omitted or the set for that external channel is

derivable.

24 Rec. ITU-T Z.103 (10/2019)

Model

If the <channel name> is omitted from a <channel definition area>, the channel is implicitly and

uniquely named.

A channel with both endpoints being gates of one <typebased agent definition> represents

individual channels from each of the agents in this set to all agents in the set, including the

originating agent. Any resulting bidirectional channel connecting an agent in the set to the agent

itself is split into two unidirectional channels.

If an associated <signal list area> is omitted from a <channel definition area>, the <signal list area>

is replaced by a <signal list area> derived from the channel connection (see Concrete grammar

above), that corresponds to the In-signal-identifier-set or Out-signal-identifier-set for the

Destination-gate or Originating-gate.

If an agent or agent type contains explicit or implicit gates not attached by explicit channels,

implicit channels are derived according to the following three transforms, which are applied after

the transform for typebased creation is applied.

Transform 1:

 Insertion of channels between instance sets inside the agent or agent type and between the

instance sets and the agent state machine.

Transform 2:

 Insertion of channels from a gate on the agent or agent type to gates on instance sets inside

the agent or agent type and to gates on the agent state machine.

Transform 3:

 Insertion of channels from gates on instance sets inside the agent or agent type and from

gates on the agent state machine to gates on the agent or agent type.

In the transforms, one signal list element (interface, signal, remote procedure or remote variable)

matches another signal list element if:

a) both denote the same interface, signal, remote procedure or remote variable; or

b) the first denotes a signal or remote procedure or remote variable, and the second denotes an

interface and the interface includes the signal or remote procedure or remote variable; or

c) both denote interfaces, and the second signal list element inherits the first signal list

element.

Transform 1: Insertion of implicit channels between entities inside one agent or agent type

a) If an element of the outgoing signal list associated with a gate of an instance in an agent (or

agent type) matches an element of an incoming signal list associated with a gate of another

instance in the same agent (or agent type respectively); and

b) if neither of these gates has an explicit channel attached to it,

then

a) if no implicit channel exists between the two gates, a unidirectional implicit channel is

created from the gate where the element is outgoing to the gate where the element is

incoming, and this channel is non-delaying if it is within a process (or process type) and

otherwise it is delaying; and

b) the element is added to the signal list of the implied channel.

Transform 2: Insertion of implicit channels from the gates on an agent or agent type

a) If an element of the incoming signal list associated with a gate outside an agent (or agent

type) matches an element of an incoming signal list associated with a gate of an instance in

the agent (or agent type respectively); and

 Rec. ITU-T Z.103 (10/2019) 25

b) if there is no explicit channel inside the agent (or agent type respectively) attached to the

gate outside the agent (or agent type respectively) and no explicit channel attached to the

gate of the instance inside the agent (or agent type respectively),

then

a) if no implicit channel exists between the two gates, a unidirectional implicit channel is

created from the gate outside the agent (or agent type respectively) to the gate of the

instance inside the agent (or agent type respectively), and this channel is non-delaying if it

is within a process (or process type) and otherwise it is delaying; and

b) the element is added to the signal list of the implied channel.

Transform 3: Insertion of implicit channels from the gates on instances

The following is applied for insertion of implicit channels from the gates on instance sets within the

agent or agent type to the gates on the agent or agent type:

a) If an element of the outgoing signal list associated with a gate outside an agent (or agent

type) matches an element of an outgoing signal list associated with a gate of an instance in

the agent (or agent type respectively); and

b) if there is no explicit channel attached to the gate outside the agent (or agent type

respectively) and no explicit channel connected to the gate of the instance inside the agent

(or agent type respectively),

then

a) if no implicit channel exists between the two gates in the direction to the gate outside the

agent (or agent type respectively), a unidirectional implicit channel is created from the gate

of the instance inside the agent (or agent type respectively) to the gate outside the agent (or

agent type respectively), and this channel is non-delaying if it is within a process (or

process type) and otherwise it is delaying; and

b) the element is added to the signal list of the implied channel.

10.2 Connection

A connection is the point where a channel inside a frame symbol for an agent diagram is connected

to names of one or more channels outside a frame symbol.

Concrete grammar

<external channel identifiers> ::=

 <channel identifier> { , <channel identifier}*

For a connection, a <channel symbol 1> or <channel symbol 2> in a <channel definition area> is

attached to <external channel identifiers> outside the enclosing <frame symbol> of a page: <block

page> of a <block diagram> or <process page> of a <process diagram> or <composite state graph

page> of the state machine of an agent. The <frame symbol> is associated with the <external

channel identifiers>.

The <channel identifier>s in the <external channel identifiers> shall denote channels of the agent or

agent type enclosing the block or process that is associated with the <external channel identifiers>.

Each channel attached to an <agent area> that is an <agent reference area> shall be mentioned in at

least one <external channel identifiers> of the <agent diagram> referenced by the <agent reference

area>: in the <external channel identifiers> of a <block page> of a <block diagram> or in the

<external channel identifiers> of a <process page> of a <process diagram>.

Model

A connection is part of the shorthand for an agent diagram or the composite state diagram of a state

machine. A connection for an agent diagram is transformed to a <gate on diagram> of the <agent

26 Rec. ITU-T Z.103 (10/2019)

type diagram> derived from the agent diagram, and the corresponding <gate> within the

<typebased agent definition> that replaces the <agent reference area>. A connection for the

composite state diagram of a state machine is transformed to a <gate on diagram> of the

<composite state type diagram> derived from the composite state diagram, and the corresponding

<gate> within the <state machine area> that replaces the original <state machine area>.

The name of each gate is a unique and unambiguous derived name. In the surrounding scope unit,

each <channel definition area> that is identified by a <channel identifier> of <external channel

identifiers> is attached to the <typebased agent definition> that contains the <gate>. Inside an

<agent type diagram> for an agent type formed from the <agent diagram>, each <channel definition

area> that was attached to the <external channel identifiers> in the <agent diagram> is attached to

the <gate on diagram> for the gate. Inside a <composite state type diagram> for a composite state

type formed from the <composite state diagram>, each <channel definition area> that was attached

to the <external channel identifiers> in the <agent diagram> is attached to the <gate on diagram>

for the gate.

10.3 Signal

Signal is as defined in [ITU-T Z.102].

10.4 Signal list area

Concrete grammar

<signal list item> ::=

 <signal identifier>

 | <timer identifier>

 | (<interface identifier>)

 | [procedure] <remote procedure identifier>

 | [remote] <remote variable identifier>

 | [interface] <interface identifier>

The Comprehensive SDL-2010 <signal list item> is extended to allow the keywords procedure,

remote, and interface to be omitted. A <signal list item> which is an <identifier> denotes a <signal

identifier> or <timer identifier> or <interface identifier>, or else a <remote procedure identifier> if

this is possible according to the visibility rules, or else a <remote variable identifier>. To force a

<signal list item> to denote a <remote procedure identifier>, an <interface identifier>, or <remote

variable identifier> the keyword procedure, interface or remote, respectively, is used.

In Comprehensive SDL-2010 a <signal list item> is allowed to contain an <interface identifier>

when it occurs in a <input list> or <priority input list> is a shorthand for the set of signals of the

interface.

11 Behaviour

11.1 Start

Start is as defined in [ITU-T Z.102].

11.2 State

Concrete grammar

Comprehensive SDL-2010 <state area> is extended to allow the same <state name> to appear in

more than one <state area> of a body, as described in Model below where the <state area> items are

transformed to have only one state name in each <state area>.

 Rec. ITU-T Z.103 (10/2019) 27

<state list> ::=

 { <basic state name> | <typebased composite state> | <composite state list item>}

 { , { <basic state name> | <typebased composite state> | <composite state list item> } }*

 | <asterisk state list>

Basic SDL-2010 <state list> is extended to allow a <composite state list item> (to reference to a

state diagram) and multiple items in the list, and an <asterisk state list> as an alternative.

<asterisk state list> ::=

 <asterisk> [(<state name> { , <state name>}*)]

The <state name>s in an <asterisk state list> shall be distinct and shall be contained in other <state

list>s in the enclosing body or in the body of a supertype.

<composite state list item> ::=

 <composite state name> <nextstate parameters>

A < composite state list item> of a <state list> shall only contain non-empty <nextstate parameters>

if it is in a <state area> that coincides with a <nextstate area>.

The <composite state name> of a <composite state list item> references a <composite state

diagram>.

Model

A <composite state list item> is a shorthand that is transformed to a <typebased composite state>

that defines the name and a <composite state type reference area> that references a <composite state

type diagram> transformed from the <composite state diagram>.

Any <state area> as the <terminator area> of a <transition area> is transformed to a <nextstate

area> as the <terminator area> of the <transition area> and a <state area> that is not a <terminator

area> of a <transition area> (see Model in clause 11.12.1). This is done before combining <state

area> items as described below.

When the <state list> of a <state area> contains more than one <state name> item, a copy of that

<state area> is created for each such <state name>. Then the <state area> is replaced by these

copies.

When two <state area> items that each contain one <state name>, each contain the same <state

name>, these <state area>s are combined into one <state area> having that <state name> with the

<state timer> specified for one (or both if it is the same) <state> items. If any of the combined

<state area> items contains a <typebased composite state>, the <state list> of the combined <state

area> is the <typebased composite state>.

A <composite state diagram> referenced by <composite state list item> of a <state area> or <state

machine area> is a shorthand that is transformed into a <composite state type diagram> (see the

transformation of <composite state diagram> in Model under clause 11.11.1). A <state area> that

contains a <composite state list item> that references a <composite state diagram> is transformed to

a <state area> that contains a <typebased composite state> using the <composite state type

diagram>, and a <composite state type reference area> for the <composite state type diagram>. The

<state area> is associated with the same <input association area>, <priority input area>,

<continuous signal association area>, spontaneous transition area>, <save association area> and

<connect association area> items. A <state machine area> that contains a <composite state list

item> that references a <composite state diagram> is transformed to a <state machine area> that

contains a <typebased composite state> using the <composite state type diagram>, and a

<composite state type reference area> for the <composite state type diagram>. The <typebased

composite state> has the same <composite state name> and <nextstate parameters> as the

<composite state list item>, and the <composite state type expression> is the anonymous unique

name of the <composite state type diagram>.

28 Rec. ITU-T Z.103 (10/2019)

A <state area> with an <asterisk state list> is transformed to a set of <state area>s, one for each

<state name> of the body in question, except for those <state name>s and <composite state name>s

contained in the <asterisk state list>.

11.3 Input

Concrete grammar

<input symbol> ::=

 <plain input symbol>

 | <internal input symbol>

Basic SDL-2010 <input symbol> is extended to allow <internal input symbol> as an alternative to

<plain input symbol>.

<internal input symbol> ::=

NOTE 1 There is no difference in meaning between a <plain input symbol> and an <internal input

symbol>, but the difference enables annotation, for example, to distinguish signals received from within an

agent from signals received from outside the agent.

<input list> ::=

 <stimulus> [<priority clause>] { , <stimulus> [<priority clause>] }*

 | <asterisk input list> [<priority clause>]

Basic SDL-2010 <input list> is extended to allow more than one <stimulus> in an <input list>, an

<asterisk input list> as an alternative, and <priority clause> to specify that the input is a priority

input. Compared with Basic SDL-2010, a <stimulus> is allowed to represent an interface. An

<interface identifier> in a stimulus is a model, as described below.

When the <input list> contains one <stimulus> without a <priority clause>, then the <input area>

represents an Input-node; otherwise the <input list> is shorthand that is transformed as in Model

below so that each resulting <input list> contains one <stimulus> as in Basic SDL-2010.

<asterisk input list> ::=

 <asterisk>

A <state area> shall contain at most one <asterisk input list>. A <state area> shall not contain both

<asterisk input list> and <asterisk save list>.

<via path> ::=

 via { <channel identifier> | <gate identifier> }

The <channel<identifier> for a <via path> of a <stimulus> or <save item> in a composite state type

(that is, after application of the models for agent definition, agent structure with an interaction and

channel to channel connection) shall identify a channel such that the enclosing state machine of the

via path is reachable from the channel with the signal given in the stimulus or save through exactly

one gate of the state machine. See clause 11.3 Concrete grammar of ITU-T Z.103.

Basic SDL-2010 <via path> is extended to allow <channel identifier> as a shorthand for the gate.

The <channel identifier> for a <via path> of a <stimulus> or <save area> in a composite state type

(that is, after application of the models for agent definition, agent structure with an interaction and

channel to channel connection) shall identify a channel such that the enclosing state machine of the

via path is reachable from the channel with the signal given in the stimulus or save through exactly

one gate of the state machine. A <channel identifier> for a <via path> of <communication

constraints> output in a composite state type (that is, after application of the models for agent

definition, agent structure with an interaction, channel to channel connection, remote procedure and

import expressions) shall identify a channel such that the enclosing state machine of the via path is

reachable from the channel with the signal given in the stimulus or save through exactly one gate of

 Rec. ITU-T Z.103 (10/2019) 29

the state machine. If a <via path> has a <channel identifier>, this shall not be a bidirectional

channel with both ends connected to the same state machine.

Model

A <stimulus> whose <signal list item> is an <interface identifier> is derived syntax for a list of

<stimulus> items, that replaces the <interface identifier> in the enclosing <input list> or <priority

input list>. In the list of <stimulus> items, there is a one-to-one correspondence between the

<stimulus> items and the set of signals for the interface. If the original <stimulus> contains a

bracketed variable list, each replacement <stimulus> contains this bracketed variable list. If the

original <stimulus> contains a <via path> each replacement <stimulus> contains this <via path>. If

the original <stimulus> is followed by a <priority clause>, each replacement <stimulus> is followed

by this <priority clause>.

An <asterisk input list> in an <input list> is transformed to a <stimulus> list, one for each member

of the complete valid input signal set of the enclosing agent type, except for any <signal identifier>

of an implicit input signal (for a remote procedure, a remote variable, a priority input, a continuous

signal or an enabling condition) or any <signal identifier> contained in any other <input list> and

<save list> of the <state area>. If the <asterisk input list> is followed by a <priority clause>, each

<stimulus> is followed by this <priority clause>.

NOTE 2 – If the <asterisk input list> is applied to a substate within a composite state graph, the substate has

an input or save for every receivable signal, therefore in this substate it is not possible to trigger a transition

of an input on a composite state application that uses the composite state.

When the <stimulus> list of an <input area> of an <input association area> contains more than one

<stimulus>, a copy of the <input association area> is created for each such <stimulus>. Then the

<input association area> is replaced by these copies.

In an <input area> with one <stimulus>, if the <stimulus> is followed by a <priority clause>, the

input symbol is replaced by a <priority input symbol> containing the <stimulus> followed by the

<priority clause> so that the <input association area> becomes a <priority input association area>.

When one or more of the stimulus variable items of a <stimulus> is an <extended variable>

(an <indexed variable> or <field variable>), then each <extended variable> is replaced by a unique,

new, anonymous implicitly declared <variable identifier> of the same sort as the original <extended

variable>. Directly following the input area (<input area> or <priority input area>), a <task area> is

inserted which in its <task body> contains an <assignment statement> for each of the <extended

variable> items, assigning the result of the corresponding new variable to the <extended variable>.

The results are assigned in the order from left to right of the <extended variable> list. This <task

area> becomes the first <action area> in the <transition area> of the input area.

A <via path> of a <stimulus> with a <channel identifier> is transformed to a <via path> with a

(possibly anonymous) <gate identifier> for the gate where the channel connects (directly or

indirectly) to the enclosing state machine.

A <channel identifier> as a <via path> of <communication constraints> is transformed to the

(possibly anonymous) <gate identifier> for the gate of the channel that connects (directly or

indirectly) to the enclosing state machine.

11.4 Priority input

Concrete grammar

<priority input list> ::=

 <priority stimulus> {, <priority stimulus>}*

 | <asterisk input list> [<priority clause>]

Comprehensive SDL-2010 <priority input list> is extended to allow more than one <priority

stimulus> and an <asterisk input list>.

30 Rec. ITU-T Z.103 (10/2019)

<priority stimulus> ::=

 <stimulus> [<priority clause>]

Comprehensive SDL-2010 <priority stimulus> is extended to allow the <priority clause> to be

omitted.

<priority clause> ::=

 priority [<priority name>]

Comprehensive SDL-2010 <priority clause> is extended to allow the <priority name> to be

omitted.

Model

An <asterisk input list> in a <priority input list> is transformed to a <priority stimulus> list in the

same way as an <asterisk input list> in an <input list> is transformed to a <stimulus> list

(see Model in clause 11.3).

When the <priority stimulus> list of a <priority input area> of a <priority input association area>

contains more than one <priority stimulus>, a copy of the <input association area> is created for

each such <priority stimulus>. Then the <priority input association area> is replaced by these

copies.

A <priority stimulus> without a <priority clause> is transformed into a <priority stimulus> with a

<priority clause> that is priority without a <priority name>.

A <priority clause> without a <priority name> is transformed into a <priority clause> that is

priority n, where n is one greater than the highest explicit <priority name> for a <priority

stimulus> of the same state. The same value is used for all such transformations of the state, so that

each priority stimulus without an explicit <priority name> has the same priority.

A <stimulus> in a <priority input area> with an <indexed variable> item or <field variable> item is

transformed in the same way as for an <input area>.

11.5 Continuous signal

Continuous signal is as defined in [ITU-T Z.102].

11.6 Enabling condition

Enabling condition is as defined in [ITU-T Z.102].

11.7 Save

Concrete grammar

<save list> ::=

 <save item> {, <save item> }*

 | <asterisk save list>

Basic SDL-2010 <save list> is extended to allow more than one <save item> and an <asterisk save

list>.

<asterisk save list> ::=

 <asterisk>

A <state area> is allowed to contain at most one <asterisk save list>. A <state area> shall not

contain both <asterisk input list> and <asterisk save list>.

Model

An <asterisk save list> is transformed to a list of <stimulus> items containing the complete valid

input signal set of the enclosing <agent diagram>, except for any <signal identifier> of an implicit

input signal (for a remote procedure, a remote variable, a priority input, a continuous signal or an

 Rec. ITU-T Z.103 (10/2019) 31

enabling condition) or any <signal identifier> contained in any other <input list> and <save list> of

the <state area>.

NOTE – If the <asterisk save list> is applied to a substate within a composite state graph, the substate has an

input or save for every receivable signal, therefore in this substate it is not possible to trigger a transition of

an input on a composite state application that uses the composite state.

11.8 Implicit transition

Any signal not handled by an explicit input or save is consumed by an implicit transition

(a transition of an implicit <input association area> – see below) without a change of state.

Model

The models are applied for any <state area> as a <terminator area>, any asterisk states, any <state

area> with multiple state names, and combining every <state area> with the same name, before the

model for implicit transition is applied. After applying these models, the set of signals are identified

that are contained in the <input list>s, <priority input list>s and the <save list>s of the <state area>

(explicitly or via <asterisk input list> or <asterisk save list>), and in the following this is called the

local signal set. If the local signal set is the same as the valid input signal set (see below), there are

no implicit <input association area> items; otherwise these items are derived as described below.

Each implicit <input association area> has a <transition area> that only contains a <nextstate area>

leading back to the <state area>.

The valid input signal set for determining implicit transitions is the complete valid input signal set

of the agent type or agent type enclosing the <state area>, or if the <state area> is within a state

partition, the complete valid input signal set of the state partition.

If the <state area> is in an <agent body area> for an <agent diagram>, or is in a <composite state

body area> for a <composite state diagram> referenced by a <state machine area>, the <state area>

is for a state of the state machine of an agent instance, and there is an implicit <input association

area> for each <signal identifier> contained in the valid input signal set that is not in the local signal

set.

If the <state area> is in an <agent body area> for an <agent type diagram>, the <state area> is for a

state of the state machine of an agent type and there is an implicit <input association area> for each

<signal identifier> contained in the valid input signal set that is not in the local signal set.

If the <state area> is in a <procedure body area>, there is an implicit <input association area> for

each <signal identifier> contained in the valid input signal set that is not in the local signal set.

A signal is in the input of a composite state if it is in the local signal set for the <state area> of the

composite state, or in the local signal input set of any enclosing composite state.

If the <state area> is in a <composite state body area> for a <composite state diagram> referenced

by a <composite state name> of a <composite state list item>, the <state area> is for a state within

the composite state. In this case there is an implicit <input association area> for each <signal

identifier> contained in the valid input signal set that is not in the local signal set of the <state area>

and not in any input of the composite state.

If the <state area> is in a <composite state body area> for a <composite state type diagram>

identified by a <typebased composite state>, the <state area> is for a state within the composite

state type. In this case, there is a different derivation of implicit transitions for each composite state

application that uses the <composite state type diagram> and has a different local signal input set.

Consequently, the derived <composite state body area> is (probably) different for each composite

state application. Where there is at least one signal for a composite state application (a <state area>

with a <typebased composite state>), the <typebased composite state> is transformed to reference a

different implied <composite state type diagram> that is a copy of the original <composite state

type diagram> but with the implicit transitions expanded. In this <composite state type diagram>,

32 Rec. ITU-T Z.103 (10/2019)

for each <state area> there is an implicit <input association area> for each <signal identifier>

contained in the complete valid input signal set for the agent or agent type that is not in the local

signal set of the <state area> and not in any input of the composite state application.

NOTE – If composite state (type) or procedure is defined outside a state partition and is used within a state

partition, the model produces implicit transitions for signals that are not allowed in the partition; therefore

these constructs are not valid.

11.9 Spontaneous transition

Spontaneous transition is as defined in [ITU-T Z.102].

11.10 Label (connector name)

Concrete grammar

In addition to Comprehensive SDL-2010 the term body includes <agent body area>, and therefore

all the <connector name>s defined in such a body shall be distinct.

11.11 State machine and composite state

11.11.1 Composite state graph

An additional shorthand diagram is added to Basic SDL-2010 and Comprehensive SDL-2010 to

define a composite state without the need to explicitly define a composite state type: the composite

state diagram. A composite state diagram has an implicit anonymous composite state type defined

by the content of the diagram and used for the composite state.

Concrete grammar

<composite state diagram> ::=

 <composite state graph page>+ | <state aggregation page>+

<composite state graph page> ::=

 <frame symbol> contains {

 { <composite state heading> <composite state structure area> }

 { is connected to <state connection point area> }*

 [is associated with <package use area>]

The <package use area> shall be placed on the top of the <frame symbol>.

<composite state heading> ::=

 <virtuality> state [<qualifier>] <state name>

 [<specialization>] [<agent formal parameters>]

<composite state text area> ::=

 <text symbol> contains

 { <valid input signal set>

 | <variable definition>

 | <data definition>

 | <procedure definition>

 | <procedure reference>

 | <composite state type reference>

 | <select definition>

 | <macro definition> }*

Comprehensive SDL-2010 <composite state text area> is extended to allow a <procedure

definition>, <procedure reference> and <composite state type reference>.

NOTE A composite state reference is not allowed in a <composite state text area>. The composite state is

instead referenced by: an item in a <state area> of a <composite state body area> or a <state partition area>

of a <state aggregation body area>.

 Rec. ITU-T Z.103 (10/2019) 33

Model

A <composite state diagram> is shorthand for a <composite state type diagram> transformed as

described in the next paragraph. The corresponding reference references the <composite state

diagram> by its <state name> and is:

a) a <state area> with a <state list> item that is a <composite state list item>; or

b) a <composite state reference area> in a <state partition area>; or

c) a <state machine area> with a <composite state list item>.

A corresponding <state area> is shorthand for a <composite state type reference area> to the

<composite state type diagram>, and a <state area> containing a <typebased composite state> that

uses the <composite state type diagram>. A corresponding <composite state reference area> is

shorthand for a <composite state type reference area> to the <composite state type diagram> and a

<typebased state partition definition> that uses the <composite state type diagram>. A

corresponding <state machine area> is shorthand for a <composite state type reference area> to the

<composite state type diagram>, and a <state area> containing a <typebased composite state> that

uses the <composite state type diagram>.

The pages of the <composite state diagram> are first combined into a single page. If the composite

state is not an aggregation, the <composite state type diagram> is formed from the <composite state

diagram> by changing the <composite state graph page> into a <composite state type page> by

inserting the keyword type after the keyword state in the heading and changing the name to an

anonymous name. The <composite state type heading> therefore has the <virtuality> given in the

<composite state heading> of the <composite state diagram>. The anonymous name is generated in

the same way for redefinitions, so that the names match for the virtual type and redefinitions. The

<composite state structure area> is copied from the <composite state diagram> to the <composite

state type diagram>. In the <composite state structure area>, any part of a <qualifier> that refers to

the composite state of the <composite state diagram> is changed to refer to the composite state type

of the <composite state type diagram>. If the <composite state diagram> is for a state machine,

there is also a connected <gate on diagram> for the composite state type diagram with a unique

anonymous name, for each channel attached to the <state machine area> for the <composite state

diagram>.

The model for a composite state diagram that is an aggregation is described in clause 11.11.2.

If a composite state consists of no <state area>s with <state name>s but only a <state area> with an

<asterisk>, the asterisk state is transformed into a <state area> with an anonymous <state name>

and a <start area> leading to this <state area>.

A <composite state diagram> that has a specialization (with a <composite state heading> that

contains a <specialization>) is shorthand for defining an implicit composite state type and one

typebased composite state of this type.

A <procedure reference> is removed from the <composite state text area> transformed to a

<procedure reference area> with the same <procedure reference heading> in the composite state or

composite state type containing the <composite state text area>.

A <composite state type reference> is removed from the <composite state text area> and is

transformed to a <composite state type reference area> with the same <type preamble>, <qualifier>,

<composite state type name> and <formal context parameters> in the composite state or composite

state type containing the <composite state text area>.

11.11.2 State aggregation

Comprehensive SDL-2010 is extended to allow a composite state diagram that is an aggregation.

34 Rec. ITU-T Z.103 (10/2019)

Concrete grammar

<state aggregation page> ::=

 <frame symbol> contains {

 <state aggregation heading>

 <aggregation structure area> }

 is connected to {<state connection point area>* } set

 [is associated with <package use area>]

<state aggregation heading> ::=

 <virtuality> state aggregation [<qualifier>] <state name>

 [<specialization>] [<agent formal parameters>]

<state partition area> ::=

 <composite state reference area>

 | <typebased state partition definition>

 | <inherited state partition definition>

Comprehensive SDL-2010 <state partition area> is extended to allow <composite state reference

area> for reference to a <composite state diagram>.

Model

The pages of the <composite state diagram> for an aggregation are first combined into a single

page. The <composite state type diagram> for the aggregation is formed from the <composite state

diagram> by changing the <state aggregation page> into a <state aggregation type page> by

inserting the keyword type after the keyword aggregation in the heading and changing the name to

an anonymous name. The <state aggregation type heading> therefore has the <virtuality> given in

the <state aggregation heading> of the <composite state diagram>. The anonymous name is

generated in the same way for redefinitions, so that the names match for the virtual type and

redefinitions. The <aggregation structure area> is copied from the <composite state diagram> to the

<composite state type diagram>. In the <composite state structure area>, any part of a <qualifier>

that refers to the composite state of the <composite state diagram> is changed to refer to the

composite state type of the <composite state type diagram>.

11.11.3 State connection point

State connection point is as defined in [ITU-T Z.102].

11.11.4 Connect

<connect list> ::=

 <state exit point list>

 | <asterisk connect list>

Comprehensive SDL-2010 <state partition area> is extended to include an <asterisk connect list>,

which is a shorthand.

<state exit point list> ::=

 { <state exit point> | default } { , { <state exit point> | default}}*

Comprehensive SDL-2010 <state exit point list> is extended to allow more than one state exit point

in the list and the keyword default. The keyword default represents a Connect-node without a

State-exit-point-name (and is the same as omitting the <connect list>) and corresponds to an

unlabelled <return area>. It is used when a <state exit point list> should contain the unnamed exit as

well as one or more named exits.

NOTE – It is permitted to have the same state exit point more than once in the <state exit point list>, but this

has the same meaning as one appearance.

<asterisk connect list> ::=

 <asterisk> [(<state exit point list>)]

 Rec. ITU-T Z.103 (10/2019) 35

Model

When the <connect list> of a certain <connect association area> contains more than one <state exit

point name>, a copy of the <connect association area> is created for each such <state exit point

name>. Then the <connect association area> is replaced by these copies.

A <connect list> that contains an <asterisk connect list> is transformed into a list of <state exit

point>s, one for each <state exit point> of the <composite state diagram> in question (including the

unlabelled <return area>) except those mentioned in parentheses after the <asterisk>. The list of

<state exit point>s is then transformed as described above.

11.12 Transition

11.12.1 Transition body

Concrete grammar

<terminator area> ::=

 <state area>

 | <merge area>

 | <nextstate area>

 | <decision area>

 | <stop symbol>

 | <out connector area>

 | <return area>

 | <transition option area>

Comprehensive SDL-2010 <terminator area> is extended to include <state area> and <merge area>.

A <state area> as a <terminator area> is a shorthand combination where a <nextstate area>

coincides with a <state area>, and in this case the <state list> shall contain only one item (one

<basic state name> or one <typebased composite state> or one <composite state list item>). A

<state area> as a <terminator area> shall not have an <asterisk state list>.

A <merge area> is a shorthand for two transitions each ending in an <out connector area> that

contains the same <connector name> as the other transition.

Model

When the <terminator area> of a <transition area> is a <state area>, this is transformed: the <state

area> remains (but not as the <terminator area> and with the <state symbol> content updated), and

a <nextstate area> is introduced as the <terminator area> of the <transition area> instead of the

<state area>. If the original <state area> has a <basic state name> introduced, <nextstate area>

contains the <basic state name>. If the original <state area> has a <composite state name>, the

<nextstate area> contains the <composite state name> and the <nextstate parameters>. The

modified <state area> has the same contents as the original <state area> except the <nextstate

parameters>, which are removed.

11.12.2 Transition terminator

11.12.2.1 Nextstate

Nextstate is as defined in [ITU-T Z.102].

11.12.2.2 Join

The Basic SDL-2010 join is extended to include a merge area.

Concrete grammar

<merge area> ::=

 <merge symbol> is attached to

 { <transition string area> | <terminator area> }

36 Rec. ITU-T Z.103 (10/2019)

<merge symbol> ::=

The <merge symbol> has the same form as a <flow line symbol with arrowhead>, but is

distinguished from a <flow line symbol> by the end with the arrowhead joining a <flow line

symbol> leading to the attached <transition string area> or <terminator area> that is not a <merge

area>, or by joining the <merge symbol> of an attached <terminator area> that is a <merge area>.

Model

If a <merge area> is included in a <transition area>, it is equivalent to specifying an <out connector

area> in the <transition area> which contains a unique <connector name> and attaching an <in

connector area>, with the same <connector name> to the <flow line symbol> in the <merge area>.

A <merge area> is transformed as follows. If it joins a <flow line symbol>, this <flow line symbol>

is split into two <flow line symbol>s by adding an <in connector area> with a unique anonymous

<connector name> that has a <flow line symbol> leading to the original right hand side of the

corresponding is followed by. The original left hand side of the is followed by has a <flow line

symbol> leading to an <out connector area> with the same unique anonymous <connector name>.

The <merge symbol> is replaced by a <flow line symbol> leading to an <out connector area> with

the same unique anonymous <connector name>.

If the <merge symbol> joins the <merge symbol> of an attached <terminator area> that is another

<merge area>, this other <merge area> is transformed first, so that the <merge symbol> then joins a

<flow line symbol> leading to a <terminator area> that is an <out connector area>.

11.12.2.3 Stop

Stop is as defined in [ITU-T Z.101] and [ITU-T Z.102].

11.12.2.4 Return

The Basic SDL-2010 <procedure result> is extended to allow the result to be a named variable, and

it is allowed to omit the <expression> that is a <return body> in a <return area>.

Concrete grammar

If the <procedure result> has a <variable name>, the <expression> that is a <return body> in a

<return area> is optional.

Model

If the <expression> is omitted in an operator or method with an <operation result> or a value

returning procedure with a named <procedure result>, the procedure result variable is used as the

<expression>.

11.13 Action

11.13.1 Task

Concrete grammar

<task area> ::=

 { <task symbol> contains <task body> | <start timer area> | <stop timer area> } |

 <macro symbol> contains { <macro name> [<macro call body>] }

Basic SDL-2010 is extended to allow timer set and reset to be shown with <start timer area> and

<stop timer area>, respectively, and the call of a macro to be shown in a <macro symbol>.

<task body> ::=

 [<variable definitions> <end>] <non terminating statements> <end>*

 | <informal text>

 | <legacy task body>

 Rec. ITU-T Z.103 (10/2019) 37

Comprehensive SDL-2010 is extended to allow <variable definitions> in a <task body> and a

<legacy task body>.

<legacy task body> ::=

 <assignment> { , <assignment> }*

NOTE – The <legacy task body> syntax where a comma rather than <end> is used to separate one

<assignment> from another is provided only so that legacy descriptions are valid, and should not be used in

new descriptions.

<macro symbol> ::=

<start timer area> ::=

 <start timer symbol> contains <set body>

<start timer symbol> ::=

<stop timer area> ::=

 <stop timer symbol> contains <reset body>

<stop timer symbol> ::=

Model

A <task area> defined by a <macro symbol> is transformed into a <task area> defined by a <task

symbol> containing a macro call with the same <macro name> and <macro call body>, if one was

present.

A <start timer area> is transformed into a <task area> defined by a <task symbol> containing a <set

statement> with the same <set body> as the <start timer area>. A <stop timer area> is transformed

into a <task area> defined by a <task symbol> containing a <reset statement> with the same <reset

body> as the <stop timer area>.

11.13.2 Create

Concrete grammar

<create body> ::=

 { <agent identifier> | <agent type identifier> | this } [<actual parameters>]

Basic SDL-2010 <create body> is extended to allow <agent type identifier> as a shorthand.

If an <agent type identifier> is used in a <create body>, then the corresponding agent type shall not

be defined as <abstract> or contain formal context parameters.

Model

If <agent type identifier> is used in a <create body> of a <create request area>, the following

models apply.

a) If there is one instance set (explicit or implicit) of the indicated agent type in the agent

containing the instance that performs the create, the <agent type identifier> is derived

syntax denoting this instance set.

b) If there is more than one (explicit) instance set, it is determined at interpretation time in

which set the instance will be created. The <create request area> is in this case replaced by

a non-deterministic decision using any followed by one branch for each instance set. In

each of the branches, a create request for the corresponding instance set is inserted.

38 Rec. ITU-T Z.103 (10/2019)

c) If there is no explicit instance set of the indicated agent type in the containing agent, the

<agent type identifier> in the <create request area> is derived syntax for the implicit

instance set in this context, which has a unique name.

NOTE – A context never has more than one implicit instance set of a given agent type.

11.13.3 Procedure call

Procedure call is as defined in [ITU-T Z.102].

11.13.4 Output

Concrete grammar

<output symbol> ::=

 <plain output symbol>

 | <internal output symbol>

<internal output symbol> ::=

NOTE There is no difference in meaning between a <plain output symbol> and an <internal output

symbol>.

<output body> ::=

 <output body item> {, <output body item>] }*

 <communication constraints>

Basic SDL-2010 <output body> is extended to allow more than one <output body item>.

Comprehensive SDL-2010 <communication constraints> of an <output body> of an <output area>

is extended to allow more than one to <destination> clause.

Model

The model for a <channel identifier> as a <via path> of <communication constraints> is described

under Concrete grammar in clause 11.3.

If there is more than one <output body item> specified in an <output body> of an <output area>, the

<output area> is transformed to an <output area> sequence each with a single <output body item>

in the same order as specified in the original <output area>. The <communication constraints> are

repeated in each <output body>.

If <communication constraints> of an <output body> of an <output area> contains more than one to

<destination> clause, this is a shorthand for replacing the <output area> by an <output area>

sequence, one for each to <destination>. Each <output area> has the same original <output body

item> list, but in each case the <communication constraints> contains only one to <destination>

taken in order from the original <communication constraints>.

11.13.5 Decision

Concrete grammar

<graphical answer> ::=

 <answer> | (<answer>)

Basic SDL-2010 <graphical answer> is extended to allow the round brackets to be omitted. The two

alternatives of <graphical answer> have the same meaning.

11.14 Statement lists

A <statements> (a list of statements) is used in an <internal procedure definition> to textually

define the actions to be interpreted in the procedure.

 Rec. ITU-T Z.103 (10/2019) 39

Concrete grammar

<statements> ::=

 <non terminating statements> [<end>+ [<connector name> :] <terminating statement>]

 | [<connector name> :] <terminating statement>

The Comprehensive SDL-2010 <statements> list is extended to allow a <connector name> for a

<terminating statement>.

NOTE – If local variables are required in an <internal procedure definition>, it is possible to define them as

an <entity in procedure> or alternatively by using a <compound statement> containing <variable

definitions> as the <statements> list.

<non terminating statement> ::=

 [<connector name> :] <statement>

 | <compound statement>

 | <loop statement>

 | <decision statement>

The <non terminating statement> of Comprehensive SDL-2010 is extended to allow a <connector

name> for a <statement>.

<statement> ::=

 <assignment statement>

 | <set statement>

 | <reset statement>

 | <output statement>

 | <create statement>

 | <export statement>

 | <call statement>

 | <expression statement>

The <statement> of Comprehensive SDL-2010 is extended to include <expression statement>,

which is an operation application used as a statement where the <operation application> is

interpreted and the result is ignored.

<expression statement> ::=

 <operation application>

A <return statement> is allowed in an <internal procedure definition>.

Model

A <non terminating statements> list with a <connector name> before a <terminating statement> is

transformed into <non terminating statements> list, where the <terminating statement> is replaced

by a <compound statement> formed by adding a <left curly bracket> after the <connector name>

and associated colon before the <terminating statement>, and adding a <right curly bracket> after

the <terminating statement>.

A <non terminating statement> with a <connector name> is transformed into a <compound

statement> by adding a <left curly bracket> after the <connector name> and associated colon before

the <statement>, and adding a <right curly bracket> after the <statement>.

An <expression statement> is transformed into a <call statement>, where the <procedure call body>

is constructed from the <operation identifier> and the <actual parameters> of the <operation

application>.

11.14.1 Compound node

Compound node is as defined in [ITU-T Z.102].

40 Rec. ITU-T Z.103 (10/2019)

11.14.2 Decision statement – if statement

An if statement is a limited form of decision statement: a <Boolean expression> is interpreted and if

it returns the predefined Boolean value true, a consequence statement is interpreted; otherwise, an

alternative statement, if present, is interpreted.

Concrete grammar

<decision statement> ::=

 <if statement>

 | [<connector name> :] decision (<question>) [<comment body>]

 <left curly bracket>

 <decision statement body>

 <right curly bracket>

Comprehensive SDL-2010 <decision statement> is extended to include <if statement> as a

shorthand.

<if statement> ::=

 [<connector name> :]

 if (<Boolean expression>) <consequence statement>

 [else [<alternative statement>]]

<consequence statement> ::=

 [<non terminating statement>]

The else and <alternative statement> associates with the closest preceding consequence statement.

<loop decision statement> ::=

 <loop if statement>

 | [<connector name> :] decision (<question>) [<comment body>]

 <left curly bracket>

 <loop decision statement body>

 <right curly bracket>

Comprehensive SDL-2010 <loop decision statement> is extended to include <loop if statement> as

a shorthand. A <loop if statement> is essentially the same as an <if statement> except the possible

kinds of consequence and alternative statement are different.

<loop if statement> ::=

 [<connector name> :]

 if (<Boolean expression>)

 <loop consequence statement>

 [else [<loop alternative statement>]]

<loop consequence statement> ::=

 [<statement in loop> | <loop terminating statement>]

Model

An <if statement> (or <loop if statement>) is transformed to the following <decision statement> (or

<loop decision statement> respectively):
 decision boolean_expression {

 (true) : consequence_statement

 else : alternative_statement

 }

where boolean_expression, consequence_statement and alternative_statement represent actual text

for the <Boolean expression>, <consequence statement> (<loop consequence statement>

respectively) and <alternative statement> (<loop alternative statement> respectively).

 Rec. ITU-T Z.103 (10/2019) 41

11.15 Timer

Concrete grammar

<reset body> ::=

 (<reset clause> { , <reset clause> }*)

 | <asterisk>

Basic SDL-2010 <reset body> is extended to allow more than one <reset clause>, and <asterisk> as

a alternative to the bracket list of reset clauses to reset all timers.

<set body> ::=

 <set clause> { , <set clause> }*

Basic SDL-2010 <set body> is extended to allow more than one <set clause>.

Model

If the <reset body> is an <asterisk>, this is replaced by a bracketed <reset clause> list, with one

<reset clause> for each timer definition of the agent (including those for state timers). Each

replacement <reset clause> is of the form <timer identifier> <asterisk>.

A <set> is allowed to contain several <set clause> items. This is derived syntax for specifying a

sequence of <set> items, one for each <set clause> such that the original order in which they were

specified in the <set> is retained.

A <set statement> is allowed to contain several <set clause> items. This is derived syntax for

specifying a sequence of <set statement> items, one for each <set clause> such that the original

order in which they were specified in the <set> is retained.

A <reset> is allowed to contain several <reset clause> items. This is derived syntax for specifying a

sequence of <reset> items, one for each <reset clause> such that the original order in which they

were specified in the <reset> is retained.

A <reset statement> is allowed to contain several <reset clause> items. This is derived syntax for

specifying a sequence of <reset statement> items, one for each <reset clause> such that the original

order in which they were specified in the <reset> is retained.

The shorthand items for <set>, <set statement>, <reset> and <reset statement> are expanded before

shorthand items in the contained expressions are expanded.

A <timer definition> is allowed to contain several <timer definition item>s. This is derived syntax

for specifying a sequence of <timer definitions>s, one for each <timer definition item>.

12 Data

See Basic SDL-2010, the active use of data as defined in Comprehensive SDL-2010 for any

imperative expression that is an import expression, and [ITU-T Z.104], if any feature defined in that

Recommendation applies. The <signal list definition> shorthand is introduced for interface

definitions below.

12.1 Data definitions

As defined in Basic SDL-2010 and [ITU-T Z.104], if any feature defined in that Recommendation

applies, except for interface definition which is extended for the shorthand <signal list definition>.

12.1.1 Data type definition

As defined in Basic SDL-2010 and [ITU-T Z.104], if any feature defined in that Recommendation

applies.

42 Rec. ITU-T Z.103 (10/2019)

12.1.2 Interface definition

As defined in Basic SDL-2010 and [ITU-T Z.104], if any feature defined in that Recommendation

applies, plus extension of the shorthand <signal list definition>.

Concrete grammar

<signal list definition> ::=

 signallist <interface name> <equals sign> <signal list> <end>

Model

A <signal list definition> is an alternative concrete syntax, and is transformed into an <interface

definition> using the keyword interface with no <package use clause>, no <virtuality>, an

<interface heading> containing the <interface name> (but no <formal context parameters> or

<virtuality constraint>), no <interface type expression> specialization and no <entity in interface>.

The <interface definition> has an <interface use list> with a <signal list> that is the same as the

<signal list> of the <signal list definition>.

12.2 Use of data

As defined in Basic SDL-2010 and [ITU-T Z.104], if any feature defined in that Recommendation

applies.

12.3 Active use of data

As defined in Basic SDL-2010 and [ITU-T Z.104], if any feature defined in that Recommendation

applies.

13 Generic system definition

13.1 Optional definition

Concrete grammar

<select definition> ::=

 select if (<Boolean simple expression>) [<end>]

 { <signal definition list>

 | <data definition>

 | <variable definition>

 | <timer definition>

 | <macro definition>

 | <remote variable definition>

 | <remote procedure definition>

 | <select definition>

 | <operation definition item>

 | <block reference>

 | <process reference>

 | <agent type reference>

 | <composite state type reference>

 | <procedure definition>

 | <imported variable specification>

 | <imported procedure specification>

 | <signal list definition> }+

 endselect <end>

Comprehensive SDL-2010 <select definition> is extended to include <block reference>, <process

reference>, <agent type reference>, <procedure definition>, <imported variable specification>,

<imported procedure specification> and <signal list definition>.

 Rec. ITU-T Z.103 (10/2019) 43

<option area> ::=

 <option symbol> contains

 { select if (<Boolean simple expression>) [<end>]

 { <agent type reference area>

 | <agent area>

 | <channel definition area>

 | <package text area>

 | <agent text area>

 | <procedure text area>

 | <composite state type reference area>

 | <state partition area>

 | <procedure reference area>

 | <option area>

 | <create line area>} + }

Comprehensive SDL-2010 <option area> is extended to include <create line area>.

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy

issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet

of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T Z.103 (10/2019) Specification and Description Language – Shorthand notation and annotation in SDL 2010
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope and objective
	1.1 Objective
	1.2 Application

	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Term defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 General rules
	6.1 Lexical rules – text in a comment area
	6.2 End terminator, comment and comment area
	6.3 Text extension
	6.4 Solid association symbol
	6.5 The metasymbol is followed by and flow line symbol without arrowhead
	6.6 Names and identifiers, name resolution and visibility – additional diagrams
	6.7 Macro
	6.8 Informal text
	6.9 Text symbol
	6.10 Frame symbol, page numbers and multiple page diagrams
	6.11 Drawing rules

	7 Organization of Specification and Description Language specifications
	7.1 Framework
	7.2 Package
	7.3 Referenced definition

	8 Structural concepts
	8.1 Types, instances and gates
	8.1.1 Structural type definitions
	8.1.1.1 Agent types
	8.1.1.2 System type
	8.1.1.3 Block type
	8.1.1.4 Process type
	8.1.1.5 Composite state type

	8.1.2 Type expression
	8.1.3 Abstract type
	8.1.4 Gates defined by interface gates

	8.2 Type references and operation references
	8.3 Context parameters
	8.4 Specialization

	9 Agents
	9.1 System
	9.2 Block
	9.3 Process
	9.4 Procedure
	9.5 Agent and composite state reference

	10 Communication
	10.1 Channel
	10.2 Connection
	10.3 Signal
	10.4 Signal list area

	11 Behaviour
	11.1 Start
	11.2 State
	11.3 Input
	11.4 Priority input
	11.5 Continuous signal
	11.6 Enabling condition
	11.7 Save
	11.8 Implicit transition
	11.9 Spontaneous transition
	11.10 Label (connector name)
	11.11 State machine and composite state
	11.11.1 Composite state graph
	11.11.2 State aggregation
	11.11.3 State connection point
	11.11.4 Connect

	11.12 Transition
	11.12.1 Transition body
	11.12.2 Transition terminator
	11.12.2.1 Nextstate
	11.12.2.2 Join
	11.12.2.3 Stop
	11.12.2.4 Return

	11.13 Action
	11.13.1 Task
	11.13.2 Create
	11.13.3 Procedure call
	11.13.4 Output
	11.13.5 Decision

	11.14 Statement lists
	11.14.1 Compound node
	11.14.2 Decision statement – if statement

	11.15 Timer

	12 Data
	12.1 Data definitions
	12.1.1 Data type definition
	12.1.2 Interface definition

	12.2 Use of data
	12.3 Active use of data

	13 Generic system definition
	13.1 Optional definition

