
 
 

 

I n t e r n a t i o n a l  T e l e c o m m u n i c a t i o n  U n i o n  

 
 

ITU-T  Z.100 
TELECOMMUNICATION 
STANDARDIZATION SECTOR 
OF ITU 

Annex F1 
(10/2016)    

 

SERIES Z: LANGUAGES AND GENERAL SOFTWARE 
ASPECTS FOR TELECOMMUNICATION SYSTEMS 

Formal description techniques (FDT) – Specification and 
Description Language (SDL) 

 

 Specification and Description Language – Overview 
of SDL-2010 

Annex F1: SDL-2010 formal definition: General 
overview 

 

 

Recommendation  ITU-T  Z.100  –  Annex F1 

 

 



- 

ITU-T Z-SERIES RECOMMENDATIONS 

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS 

  

FORMAL DESCRIPTION TECHNIQUES (FDT)  

Specification and Description Language (SDL) Z.100–Z.109 

Application of formal description techniques Z.110–Z.119 

Message Sequence Chart (MSC) Z.120–Z.129 

User Requirements Notation (URN) Z.150–Z.159 

Testing and Test Control Notation (TTCN) Z.160–Z.179 

PROGRAMMING LANGUAGES  

CHILL: The ITU-T high level language Z.200–Z.209 

MAN-MACHINE LANGUAGE  

General principles Z.300–Z.309 

Basic syntax and dialogue procedures Z.310–Z.319 

Extended MML for visual display terminals Z.320–Z.329 

Specification of the man-machine interface Z.330–Z.349 

Data-oriented human-machine interfaces Z.350–Z.359 

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379 

QUALITY  

Quality of telecommunication software Z.400–Z.409 

Quality aspects of protocol-related Recommendations Z.450–Z.459 

METHODS  

Methods for validation and testing Z.500–Z.519 

MIDDLEWARE  

Processing environment architectures Z.600–Z.609 

  

For further details, please refer to the list of ITU-T Recommendations. 

 

 



 

  Rec. ITU-T Z.100/Annex F1 (10/2016) i 

Recommendation ITU-T Z.100 

Specification and Description Language – Overview of SDL-2010 

 

Annex F1 

 

SDL-2010 formal definition: General overview 

 

Summary 

Annex F1 provides the motivation for and the main objectives of a formal semantics definition for 

SDL-2010. It gives an overview of the structure of the formal semantics, and it also contains an 

introduction to the Abstract State Machine (ASM) formalism, which is used to define the SDL-2010 

semantics. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 
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Recommendation ITU-T Z.100 

Specification and Description Language – Overview of SDL-2010 

 

Annex F1 

 

SDL-2010 formal definition: General overview 

F1.1 Preface 

The formal definition of SDL-2010 provided in this annex is a precise language definition, which 

supplements the definition given in the Recommendation text. It is for use by those requiring a very 

precise definition of SDL-2010, such as maintainers of the SDL-2010 language, designers of 

SDL-2010 tools and users of the SDL-2010 language. 

The formal definition consists of three annexes: 

Annex F1 This annex provides the motivation for and the main objectives of a formal semantics 

definition for SDL-2010. It gives an overview of the structure of the formal semantics, 

and contains an introduction to the Abstract State Machine (ASM) formalism, which is 

used to define the SDL-2010 semantics. 

Annex F2 This annex describes the static semantic constraints of SDL-2010, as well as the 

transformations identified by the 'Model' sections of the ITU-T Z.100 series for 

SDL-2010. 

Annex F3 This annex defines the dynamic semantics of SDL-2010. 

F1.1.1 Motivation 

SDL-2010 has both a formal syntax and a formal semantics. Annexes F1, F2 and F3 define the formal 

semantics of SDL-2010. If there is any inconsistency between Annexes F1, F2 and F3 and other parts 

of the ITU-T Z.100 series for SDL-2010, then there is an error that needs correcting. Neither the other 

parts of the ITU-T Z.100 series for SDL-2010 nor Annexes F1, F2 and F3 take precedence in this 

case. 

F1.1.2 Main objectives 

A primary objective of a formal SDL-2010 semantics is intelligibility, a prerequisite for correctness, 

acceptance and maintainability. Intelligibility is supported by building on well-known mathematical 

formalisms and notations, a close correspondence between the specification technique and semantics 

to be formalized, and by concise and well-structured documentation. 

Maintainability is another important objective because SDL-2010 is an evolving technical standard. 

Apart from the language extensions that are incorporated into this Recommendation, further language 

features under consideration. Therefore, the mathematical formalism has to be sufficiently rich and 

flexible such that the formal semantics can be adapted and extended with a reasonable effort. 

SDL-2010 can be classified as a model-oriented formal description technique (FDT) for the 

specification of distributed and concurrent systems, which means that an SDL-2010 specification 

explicitly defines a set of computations. This calls for an operational semantics in order to achieve a 

close correspondence with the specification, and thus improve its intelligibility. In addition, 

operational semantics lends itself naturally to executability, see [b-Eschbach], [b-Eschbach 2001] 

and [b-Glässer], given the availability of tools, which is another explicit objective. 



 

2 Rec. ITU-T Z.100/Annex F1 (10/2016) 

F1.1.3 References and definitions 

The references and definitions of the main body of Recommendation ITU-T Z.100 apply throughout 

Annexes F1, F2 and F3. 

F1.1.4 Bibliographical references (for this annex only) 

[b-ASM]   www.eecs.umich.edu/gasm/ (accessed 12 September 2016) 

[b-Blass]   Blass, A. and Gurevich, Y. (2003), Abstract State Machines capture parallel 

algorithms, ACM Transactions on Computational Logic, Vol. 4, No. 4, ACM.  

    NOTE – The axiomatic definition of abstract state machines for sequential algorithms 

is modified to capture parallel algorithms. Specifically, Bounded Exploration is 

replaced by Background, Proclet (subprocess of a parallel algorithm that contains no 

unbounded parallelism) and Bounded Sequentiality to ensure that the number of state 

elements involved in a given computation step is bounded, with the bound depending 

only on the algorithm and not on the state. 

[b-Blass 2008]  Blass, A. and Gurevich, Y. (2008), Abstract State machines capture parallel 

algorithms: Correction and extension. ACM Transactions on Computational 

Logic, Vol. 9, No. 3, ACM. 

    NOTE – The postulates presented in [b-Blass] do not allow proclets to be created on the 

fly. On the fly creation of proclets is required to correct one of the flaws identified in 

the examples in Section 8 of [b-Blass]. Other flaws in the earlier article have also been 

corrected. 

[b-Börger]   Börger, E. (2003), The ASM Refinement Method, Formal Aspects of 

Computing Vol. 15, pp. 237-257, BCS. 

[b-Börger & Stärk] Börger, E., and Stärk, R. S. (2003), Abstract State Machines: A Method for 

High-Level System Design and Analysis, Springer-Verlag. 

    NOTE – Design and analysis for multi-agent as well as single agent abstract state 

machines. Used here to clarify the coherence condition. 

[b-Eschbach]  Eschbach, R., Glässer, U., Gotzhein, R., and Prinz, A. (2000), On the Formal 

Semantics of SDL-2000: A Compilation Approach Based on an Abstract SDL 

Machine, in: Y. Gurevich, M. Odersky, P. Kutter, L. Thiele (Eds.), Abstract 

State Machines – Theory and Applications, Lecture Notes in Computer 

Science, Vol. 1912, Springer-Verlag. 

[b-Eschbach 2001] Eschbach, R., Glässer, U., Gotzhein, R., von Löwis, M., and Prinz, A. (2001), 

Formal Definition of SDL-2000: Compiling and Running SDL Specifications 

as ASM Models, Journal of Universal Computer Science Vol. 7, No. 11, pp. 

1024-1049, Springer. 

[b-Glässer]   Glässer, U., Gotzhein, R., Prinz, A. (2003), The formal semantics of SDL-2000 

– Status and perspectives, Computer Networks, Vol. 42, No. 3, pp. 343-358, 

Elsevier Sciences.  

    NOTE – The design objectives of the SDL semantics include executability, 

intelligibility, conciseness and flexibility as well as the ideals of correctness and 

completeness (for which indisputable evidence cannot be inferred from the SDL 

grammars and textual description). The decision to base the SDL formal semantics on 

ASM is documented, and the ITU-T approach is described. This approach entails 

analysis of an SDL model and synthesis of an ASM program that defines the behaviour 

of SDL agents. Execution is defined in terms of the SDL virtual machine, which 

provides operating system functionality that controls the execution of ASM programs 

on the logical hardware of the SDL abstract machine (SAM). 

http://www.eecs.umich.edu/gasm/
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[b-Glässer 2007] Glässer, U., Gurevich, Y., and Veanes, M. (2007), Abstract Communication 

Model for Distributed Systems, IEEE Transactions on Software Engineering, 

Vol. 30, No. 7,pp. 458-472. 

    NOTE – A high level abstract model for message based communication networks is 

presented. The model is based on distributed abstract state machines, has been 

implemented in AsmL and has been used for testing distributed systems. 

[b-Glausch]   Glausch, A. and Reisig, W. (2007), A Semantic Characterization of 

Unbounded-Nondeterministic Abstract State Machines, in T Mossakowski et 

al. (Eds.) CALCO 2007, LNCS 4624, Springer-Verlag. 

    NOTE – The axiomatic definition given by Gurevich for the sequential algorithms 

captured by ASMs is extended to nondeterministic ASMs. Unbounded nondeterminism 

means that there may be uncountably many update sets that could be produced by an 

algorithm in a given state. However, so long as each of these is bounded in size, the fact 

that only one of them is applied means that the number of state elements involved in a 

computation step is bounded. 

[b-Gurevich]  Gurevich, Y. (1995), Evolving algebras 1993: Lipari guide, in Specification 

and validation methods, Börger, E. (ed.), pp. 9-36, Oxford University Press. 

[b-Gurevich 2000] Gurevich, Y. (2000), Sequential Abstract State Machines Capture Sequential 

Algorithms, Microsoft Research. 

F1.2 Overview of the semantics 

In order to define the formal semantics of SDL-2010, the language definition is decomposed into 

several parts: 

– grammar 

– well-formedness conditions 

– transformation rules  

– dynamic semantics. 

The starting point for defining the formal semantics of SDL-2010 is a syntactically correct SDL-2010 

specification, represented as an abstract syntax tree (AST). 

The first three parts of the formal semantics are collectively referred to as static semantics or static 

aspects in the context of SDL-2010 (see Figure F1-1), and are described in Part 2 of the formal 

definition, i.e., Annex F2. 

 

Figure F1-1 – Static aspects of SDL-2010 

The grammar defines the set of syntactically correct SDL-2010 specifications. The ITU-T Z.100 

series for SDL-2010 defines a concrete graphical grammar, a concrete textual grammar, and an 
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abstract grammar. The syntax of the concrete grammars is defined formally using the Backus-Naur 

form (BNF) with some extensions to capture the graphical language constructs (see clause 5.4.1 of 

[ITU-T Z.111]). The abstract grammar is obtained from the concrete grammars by removing 

irrelevant details such as separators and lexical rules, and by applying transformation rules (see 

below). The syntax of the abstract grammar is defined in the textual presentation metalanguage for 

abstract grammar (see clause 5.4.1.1 of [ITU-T Z.111]). 

From the specifications that are correct with respect to the grammar syntax, the well-formedness 

conditions define the specifications that are also correct with respect to context information. For 

example, the well-formedness conditions define what names it is allowed to use at a given place, or 

what kind of values it is allowed to assign to variable. The well-formedness conditions are defined in 

terms of first order predicate calculus (PC1). 

Furthermore, some language constructs appearing in the concrete grammars are replaced by other 

language elements in the abstract grammar using transformation rules to keep the set of core concepts 

small. These transformations are described in the 'Model' paragraphs of the ITU-T Z.100 series for 

SDL-2010, and are formally expressed as rewrite rules. 

The dynamic semantics apply only to syntactically correct SDL-2010 specifications that satisfy the 

well-formedness conditions. The dynamic semantics defines the set of computations associated with 

a specification, and are described in Part 3 of the formal definition, i.e., Annex F3. 

F1.2.1 Grammar 

The grammar of SDL-2010 is formalized as described above. The primary concrete grammar is given 

for SDL-GR. Most of the grammar of SDL-GR is textual, but it has some graphical elements. To 

enable formalisation of SDL-2010 specifications into ASM, any SDL-GR graphical element is 

changed to the equivalent concrete textual representation (SDL-PR) defined in [ITU-T Z.106]. The 

grammar in the ITU-T Z.100 series for SDL-2010 is designed to be a presentation grammar: it is not 

made to generate a parser automatically. Moreover, some restrictions that finally guarantee 

uniqueness of the semantics cannot be expressed in BNF and have been stated in the text instead. 

Therefore, the grammar is defined using BNF and some text (mostly for the precedence rules). The 

translation from the concrete textual SDL-2010 representation to the abstract syntax representation 

of SDL-2010 (called AS1) consists of two steps. The first step from the concrete textual SDL-2010 

representation to AS0 (the concrete syntax with irrelevant details such as separators and lexical rules 

removed) is not formally defined, but is derived from the correspondence between the two grammars, 

which is almost one-to-one. The second step, translating AS0 to AS1, is formally captured by a set 

of transformation rules (see Annex F2). 

F1.2.2 Well-formedness conditions 

The well-formedness conditions define additional constraints that a well-formed SDL-2010 

specification has to satisfy. These constraints cannot be expressed using context-free grammar rules, 

but they are static, and can be defined and checked independently of the dynamic semantics of 

SDL-2010 (see Annex F2). An SDL-2010 specification is valid if and only if it satisfies the syntactical 

rules and the static conditions of SDL-2010. In fact, the well-formedness conditions refer to the 

syntax, but they have not been stated in the concrete syntax because they are not expressible in a 

context-free grammar. 

There are five kinds of well-formedness conditions: 

– Scope/visibility rules: The definition of an entity introduces an identifier used as the reference 

to the entity. Only the use of visible identifiers is allowed. The scope/visibility rules are 

applied to determine whether the corresponding definition of an identifier is visible or not. 

– Disambiguation rules: Sometimes a name might refer to several identifiers. Rules are applied 

to find out the correct one. 



 

  Rec. ITU-T Z.100/Annex F1 (10/2016) 5 

– Data type consistency rules: These rules ensure that dynamically, no operation is applied to 

operands that do not match its argument types. More specifically, the data type of an actual 

parameter has to be compatible with that of the corresponding formal parameter; and the data 

type of an expression has to be compatible with that of the variable to which the expression 

is assigned. 

– Special rules: There are some rules applicable to specific entities. For example, it is not 

allowed to export a procedure variable (that is, a variable defined within a procedure). 

– Plain syntax rules: There are some rules that refer to the correctness of the concrete syntax, 

and that have no counterpart in the abstract syntax. For instance, the names at the beginning 

and at the end of a definition in SDL-PR have to match. 

F1.2.3 Transformation rules 

For a language with a rich syntax, it is important to identify the core concepts matching the intentions 

of the language designer. Further language constructs that are introduced for convenience, but do not 

add to the expressiveness of the language (such as shorthand notations), can be replaced using these 

core concepts. Since replacements, which are described by transformation rules, can be formalized, 

it suffices to define the dynamic semantics only for the core concepts, which adds to its conciseness 

and intelligibility. In Figure F1-1, the general approach is shown. The language is defined with its 

concrete grammar using lexical and syntax rules. Consistency constraints are defined on this concrete 

grammar. 

The ITU-T Z.100 series for SDL-2010 prescribes the transformation of SDL-2010 specifications by 

a sequence of transformation steps. Each transformation step consists of a set of single 

transformations as stated in the Model clauses, and determines how to handle one special class of 

shorthand notations. The result of one step is used as input for the next step. 

To formalize the transformation rules of SDL-2010, the rewrite rules in PC1 are used. These rules 

define patterns of the AST, which are to be replaced by other AST patterns. In fact, several groups of 

such rewrite rules are defined that are applied in turn. A single transformation is realized by the 

application of a rewrite rule to the concrete specification, which essentially means to replace parts of 

the specification by other parts as defined by the rule (see Annex F2). 

F1.2.4 Dynamic semantics 

The dynamic semantics (clauses F3.2 and F3.3) consists of the following parts (see Figure F1-2): 

a) The SDL-2010 Abstract Machine (SAM): this is defined using ASM. The definition of the 

SAM is divided into three parts, corresponding to the abstract syntax: 

i) basic signal flow concepts (such as signals, timers, gates, channels) defined in terms of 

an ASM model in clause F3.2.1.1; 

ii) various types of ASM agents to model corresponding SDL-2010 agents in clause 

F3.2.1.2; and 

iii)  signal processing and behaviour primitives (the abstract machine instructions of the 

SAM) in clause F3.2.1.4 (that uses the interface to the data type part in clause F3.2.1.3). 

b) The compilation function (clause F3.2.2): this maps the AST of an SDL-2010 specification 

to SAM behaviour primitives that model the actions of the SDL-2010 agents. The compilation 

function amounts to an abstract compiler taking the AST of the state machines as input and 

transforming it to SAM instructions. 

c) The SAM Programs (clause F3.2.3): these define the set of computations. These programs 

consist of an initialization phase and an execution phase. SAM programs have fixed parts 

that are the same for all SDL-2010 specifications, and variable parts that are generated from 

the abstract syntax representation of a given SDL-2010 specification. 
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i) The initialization (clause F3.2.3.1) phase handles static structural properties of the 

specification. The pre-initial state of a system is defined followed by several initialization 

programs. The initial system state is then reached by creating the SDL-2010 system 

agent, and by activating this agent in the pre-initial state. The initialization recursively 

unfolds the static structure of the system, creating further SDL-2010 agents as specified 

so that all the initial objects are created. The same process is initiated in the subsequent 

execution phase, whenever SDL-2010 agents are created. From this point of view, the 

initialization merely describes the instantiation of the SDL-2010 system agent. 

ii) The execution (clause F3.2.3.2) phase is modelled by distinguishing two alternating 

phases, namely the selection and the firing of transitions. 

d) The data semantics (clause F3.3): this is separated from the rest of the semantics by an 

interface (clause F3.2.1.3). The use of an interface is intentional at this place. It allows the 

data model to be exchanged, if for some application area another data model is more 

appropriate than the SDL-2010 built-in model. Moreover, the SDL-2010 built-in model can 

be changed this way without affecting the rest of the semantics. 

 

Figure F1-2 – Overview of the dynamic semantics 

The formal semantics is formalized starting from the abstract syntax AS1 of SDL-2010. From this 

abstract syntax, a behaviour model for SDL-2010 specifications is derived that can be understood as 

abstract code generated from an SDL-2010 specification. The approach chosen here is based on an 

abstract operational view using the ASM formalism as the underlying mathematical framework for a 

rigorous semantic definition of the SAM model. The compilation defines an abstract compiler 

mapping the behaviour parts of SDL-2010 to abstract code (denotational semantics). Finally, the 

initialization describes an interpretation of the abstract syntax tree to build the initial system structure 

(operational semantics). 

The dynamic semantics associates a particular distributed, real-time ASM with each SDL-2010 

specification. Intuitively, an ASM consists of a set of autonomous agents cooperatively performing 

concurrent machine runs. The behaviour of an agent is determined by an ASM program, each 

consisting of a transition rule that defines the set of possible computations (called "runs" in the context 

of ASM). Each agent has its own partial view on a global state, which is defined by a set of static and 

dynamic functions and domains. By having non-empty intersections of partial views, interaction 

among agents can be modelled. An introduction to the ASM model, and the notation used in 

Annexes F1, F2 and F3, is given in clause F1.3. 
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F1.3 Abstract State Machines 

This clause explains the basic notions and concepts of Abstract State Machines (ASM) as well as the 

notation used in these Annexes F1, F2 and F3 to define the SDL-2010 abstract machine model. The 

objective here is to provide an intuitive understanding of the formalism; for a rigorous definition of 

the mathematical foundations of ASM and its application, the reader is referred to [b-Gurevich], 

[b-Blass], [b-Blass 2008], [b-Glausch], [b-Börger & Stärk] and [b-Börger]. A discussion and 

motivation of the appropriateness of the semantic framework used here is given in [b-Eschbach], 

[b-Eschbach 2001] and [b-Glässer]. Further references on ASM-related material can also be found on 

the ASM webpages [b-ASM]. 

The ASM model used to define the dynamic semantics of SDL-2010 is explained in several steps. 

Firstly, the basic ASM model with a single agent is treated (see clause F1.3.1). Next, this model is 

extended to cover multi-agent systems (see clause F1.3.2). Then, open systems, i.e., systems 

interacting with an environment they cannot control, are addressed by adding the notion of external 

world (see clause F1.3.3). Finally, the model is extended by introducing a notion of real-time 

behaviour (see clause F1.3.4). To illustrate these steps, an ASM model for a simple system is 

developed, step-by-step. The final ASM model of this system is summarized in clause F1.3.5. 

Additional notation used to define the dynamic semantics of SDL-2010 is explained in clause F1.3.6. 

Example (Informal description): 

In order to illustrate the ASM model, a simple resource management system (RMS) consisting of a 

group of n > 1 agents competing for a resource (for instance, a device or service) is defined. 

Informally, this system is characterized as follows: 

– There is a set of m tokens, m< n, used to grant exclusive or non-exclusive (shared) access to 

the resource. 

– Depending on whether the desired access mode is exclusive or shared, an agent must own all 

tokens or one token, respectively, before the agent may access the resource. 

– An agent is idle when not competing for a resource, waiting when trying to obtain access to 

the resource, or busy while owning the right to access the resource. 

– Once an agent is waiting, it remains so until it obtains access to the resource. 

– A busy agent releases the resource when it is no longer needed, as indicated by a stop 

condition for that agent that is externally set. On releasing the resource, all tokens owned by 

the agent are returned. 

– Stop conditions are only indicated when an agent is busy. This is an integrity constraint on 

the behaviour of the external world. 

– Initially, all agents are idle, and all tokens are available. 

The system will be defined step by step, as the explanations of the ASM model proceed, starting with 

the basic ASM model with a single agent. The final ASM model of this system is summarized in 

clause F1.3.5. 

F1.3.1 Basic ASM model 

F1.3.1.1 Overview 

An abstract state machine (ASM) is a model of computation that treats first-order structures as 

dynamic entities whose states can change during a computation. 

An abstract state machine has a set states S, a subset of initial states S0  S and a function τ: S → S, 

called the one-step transformation. Every state is a first-order structure. All the states of an ASM have 

the same signature, which is also called the signature of the ASM, and all the states have the same 

base set, also called the base set of the ASM. τ does not change the base set, but it does, in general, 

change the values of the functions in a state. 
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The behaviour of an abstract state machine is modelled as a run or sequence of states. A run starts 

with an initial state, and each subsequent state is derived from its predecessor by application of the 

one-step transformation. Each application of the one-step transformation is called a move. 

 τ  τ  τ  moves 

s0  S0  s1  s2  ... states 

 

F1.3.1.2 States 

The base set of the abstract state machine, which is the base set of every state of the ASM, contains 

three distinct elements: true, false and undefined. The base set also contains an infinite number of 

reserve elements. A state also has functions and predicates that are defined over the base set. All 

functions are total, with undefined being used to mimic partial functions. Predicates are functions 

whose only possible values are true or false. Special unary predicates called domain names identify 

members of the base set as belonging to particular domains. This allows states to be viewed as many-

sorted structures. 

Embedded within a state are certain substructures or background classes [b-Blass] and 

[b-Blass 2008]. One such background includes true, false, the domain name BOOLEAN and the 

Boolean operators. The backgrounds used in modelling SDL-2010 include numbers, sets and 

sequences. A minimal background is defined in [b-Blass] and [b-Blass 2008] to characterize the 

ASMs that model parallel algorithms. 

F1.3.1.3 One-step transformation 

The one-step transformation τ updates the values of functions. In general, for s  S, some equivalences 

hold in s but not in τ(s) and vice versa. In some cases, τ has no effect, so s and τ(s) are the same. 

To express the relationship between s and τ(s) more precisely, the changes effected by τ are described 

in terms of an update set. An update set Δ is a set of triples <f, [a], b> where f is a function symbol, 

[a] is a tuple of elements of the base set of the abstract state machine that respects the signature of f, 

and b is an element of the base set. The relationship between s and τ(s) is expressed by stating that Δ 

contains all information of the form f [a]= b that is not true in the state s but is true in τ(s) [b-Blass]. 

The pair <f, [a]> is also called a location of a state s. This captures the idea of updating the value of 

a variable in a conventional imperative programming language. A member <f, [a], b> of an update 

set is also known as an update and may be written f [a]:= b to reinforce the idea of variable 

assignment. 

An abstract state machine provides a model of computation for an algorithm that is expressed as a 

program using a programming-style syntax. The algorithm defines the update set for every state of 

the ASM. To facilitate the study of the kinds of algorithms captured by different kinds of ASM, 

axioms [b-Blass] have been developed to define classes of ASMs in a syntax-independent way 

[b-Glausch]. As well as capturing the ideas of state and one-step transformation outlined above (the 

Sequential Time and Abstract State postulates, [b-Blass] and [b-Gurevich 2000]), axioms aim to 

capture the idea that the amount of computation required to move from s to τ(s) must be bounded, 

where the bound depends only on the algorithm and not on the state. 

F1.3.1.4 Specifying an abstract state machine 

An ASM specification consists of a set of declarations that define its vocabulary (signature), and a 

transition rule that defines the one-step transformation τ: S → S. The transition rule (ASM program) 

is defined using a pseudo-code-like syntax based on terms defined over the signature. 
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F1.3.1.5 Specifying the vocabulary (Signature) 

All the states of an ASM have the same vocabulary. The vocabulary comprises function names, 

predicate names and domain names. Names in the vocabulary have a specified arity, and are 

interpreted over the base set of the states of an ASM. The interpretation of names respects their arity. 

The following notational conventions are used when declaring names. 

– Domain names start with an uppercase letter and presented in small-capitalized italics (as in 

AGENT), except when denoting a non-terminal of the SDL-2010 abstract grammar. In that 

case, domain names are written as the SDL-2010 non-terminals, i.e., in italics, hyphenated, 

and starting with an uppercase letter (as in Agent-definition). A domain name D is declared 

by domain D. A domain name is interpreted as a unary predicate which yields true for the 

members of the base set that belong to the domain. 

– Function names are written in italics starting with a lowercase letter (as in mode). A function 

name f is declared by f: D1D2...Dn  D0, where n is the arity of f, and D0, D1, D2... Dn are 

domain names. A function name is interpreted as a function over the base set. The 

interpretation respects the arity of f. 

– Predicate names that are not Domain names are also written in italics (as in available). A 

predicate name p is declared by p: D1D2...Dn  BOOLEAN. A predicate is interpreted as a 

function whose value is either true or false. 

Declarations also include qualifiers, which specify further restrictions on their allowable 

interpretations. Qualifiers on name declarations constrain interpretation of the one-step 

transformation. 

– Static names are qualified by the keyword static. A name that is declared static has the same 

interpretation in every state of an ASM. This means that the one-step transformation cannot 

update a static name. So the interpretation of a static domain name yields true for the same 

elements in every state, and a static function name yields the same value for a given argument 

tuple in every state of an ASM. 

– Dynamic names are qualified by one of the keywords controlled, shared or monitored. The 

one-step transformation can change the value of the interpretation of a dynamic name. A 

dynamic function can yield different values for a given set of arguments in different states of 

an ASM. An ASM can be subject to external environmental influences. ASM agents can 

communicate [b-Glässer 2007]. When any of these situations is specified, the keywords 

controlled, shared and monitored constrain visibility and updates of domains, functions and 

predicates. 
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Example: Declaring the vocabulary (signature) of the RMS: 

static domain AGENT 

static domain TOKEN 

domain MODE 

shared mode: AGENT  MODE 

controlled owner: TOKEN  AGENT 

static ag:  AGENT 

idle: AGENT  BOOLEAN 

waiting: AGENT  BOOLEAN 

busy: AGENT  BOOLEAN 

available: TOKEN  BOOLEAN 

monitored stop: AGENT  BOOLEAN 

domain names AGENT, TOKEN and MODE are introduced to represent the (single) agent of the system, 

the set of tokens, and the different access modes (exclusive, shared), respectively. The names mode 

and owner denote dynamic functions; they are used to model the current access mode of an agent and 

the current owner of a token, respectively. The 0-ary function name ag refers to a value of the domain 

AGENT. idle, waiting, busy, and available are names of derived, dynamic predicates. stop denotes a 

monitored predicate, which will be explained later. 

The vocabularies we will consider also include predefined names, which include all the items in the 

background classes of the ASM. These include the equality sign, the 0-ary predicate names true, false 

and undefined, the domain names BOOLEAN, NAT and REAL, as well as the names of frequently used 

standard functions (such as Boolean operations , , , , , and set operations , , , , , 

etc.). The full collection of predefined names is listed in clause F1.3.6. Interpretation of predefined 

names is constrained to the usual meanings of those names. 

The notational conventions described above enable declaration of basic names that are interpreted 

directly over the ASM base set. As well as basic names, the signature of an ASM may include derived 

names, whose interpretation depends on the interpretation of the basic names. Derived names are 

defined using logical formulae involving other names. The interpretation of a derived name is 

determined by the interpretations of those other names, and ultimately by the interpretation of base 

names. 

Let derivedName be an n-ary name, and let formula(v1,...,vn) denote a formula of the domain D with 

free variables v1,...,vn of domains D1,...,DN, n  0. The general form of a derived name definition is: 

  derivedNameDefinition::= derivedName(v1:D1,...,vn:Dn):D =def formula(v1,...,vn) 

The result domain D is omitted in case of a derived domain definition. 

Example (Definitions): 

The following derived predicates are defined to refer to the status of an agent/token in a given state: 

MODE =def   {exclusive, shared} 

idle(a:AGENT): BOOLEAN =def a.mode = undefined  t  TOKEN: t.owner  a 

waiting(a:AGENT): BOOLEAN =def a.mode  undefined  t  TOKEN: t.owner  a 

busy(a:AGENT): BOOLEAN =def a.mode  undefined  t  TOKEN: t.owner = a 

available(t:TOKEN): BOOLEAN =def t.owner = undefined 

An agent a is, for instance, idle if the function mode yields the value undefined for that agent, and a 

does not hold any token. A token t is available if no agent is holding t. 

For an improved readability, use of the "."-notation is allowed for unary functions and predicates. For 

instance, a.mode is equivalent to mode(a). 
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F1.3.1.6 Initial states 

The set of initial states S0  S is defined by constraints imposed on domains, functions and predicates 

as associated with the names in V. The initial constraints for predefined domains and operations are 

given implicitly (see clause F1.3.6). Initial constraints have the following general form: 

initially ClosedFormula 

 

Example (Initial states): 

The following constraints define the set of initial states of the system RMS: 

initially AGENT = {ag} 

initially a  AGENT: a.idle  t  TOKEN: t.available 

The first constraint defines the initial set AGENT to consist of a single element ag. The second 

constraint expresses that initially, the agent of RMS is idle (a.mode = undefined), and all tokens are 

available (t.owner = undefined). Note that no constraint on stop is defined. 

F1.3.1.7 State transitions and runs 

A (global) state s  S is given by an interpretation of the names in V over the base set of M. State 

transitions can be defined in terms of partial reinterpretations of dynamic domains, functions and 

predicates. This gives rise to the notions of location as a conceptual means to refer to parts of global 

states, and of update to describe state changes. 

A location of a state s of M is a pair locs = <f, s(x)>, where f is a dynamic name in V, and s(x) is a 

sequence of elements of the base set according to the arity of f. An update of s is a pair s = <locs, 

s(y)>, where s(y) identifies an element of the base set as the new value to be associated with the 

location locs. To fire s means to transform s into a state s' of M such that fs'(s(x)) = s(y), while all 

other locations loc's of s, loc's  locs, remain unaffected. In other words, firing an update modifies the 

interpretation of a state in a well-defined way. 

The potential behaviour of a basic ASM is captured by a program P, which is defined by a transition 

rule (see clauses F1.3.1.8 and F1.3.1.10). For each state s  S, a program P of M defines an update 

set s(P) as a finite set of updates of s. s(P) is consistent, if and only if it does not contain any two 

updates s, 's such that s = <locs, s(y)>, 's = <locs, s(y')>, and s(y)  s(y'). The firing of a consistent 

update set s(P) in state s means to fire all its members simultaneously, i.e., to produce (in one atomic 

step) a new state s' such that for all locations locs = <f,s(x)> of s, fs'(s(x)) = s(y), if <<f,s(x)>,s(y)>  

s(P), and fs'(s(x)) = fs(s(x)) otherwise, and is called state transition. Firing an inconsistent update set 

has no effect, i.e., s' = s. 

NOTE – In the context of the SDL-2010 semantics, an inconsistent update set indicates an error in the semantic 

model. The ASM semantics ensures that such errors do not destroy the notion of state. 

The behaviour of a single-agent ASM M is modelled through (finite or infinite) runs of M, where a 

run is a sequence of state transitions of the form: 

 s0(P)   s1(P)  s2(P)   moves 

s0   s1  s2  ...  states 

such that s0  S0, and si+1 is obtained from si, for i  0, by firing si(P) on si, where si(P) denotes an 

update set defined by the program P of M on si (see clause F1.3.1.10). The meaning of an ASM is 

defined to be the set of all its runs. In the sequel, we restrict attention to runs starting in an initial 

state, also called regular runs. 
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F1.3.1.8 Transition rules 

Transition rules specify update sets over ASM states. Complex rules are formed from elementary 

rules using various rule constructors. The elementary form of transition rule is called update 

instruction. 

– update instruction 

Rule ::= f(t1,...,tn) := t0          (n  0) 

Here, f is a non-static name of V denoting either a controlled or a shared function, predicate or domain, 

and t0,t1,...,tn are terms over V identifying, for a given state s, the location loc = <f,<s(t1),..., s(tn)>> to 

be changed and the new value s(t0) to be assigned, respectively. In other words, the above update 

instruction specifies the update set {<<f,<s(t1),..., s(tn)>>, s(t0)>}, consisting of a single update. Note 

that only locations related to (non-static) basic names may occur at the left-hand side of an update 

instruction. 

Example (Update instruction): 

Let t be a variable denoting a token and ag be an agent. 

t.owner : = ag                       specifies the update set {<<owner, <s(t)>>, s(ag)>} 

ag.mode : = undefined          specifies the update set {<<mode, <s(ag)>>, s(undefined)>} 

The construction of complex transition rules out of elementary update instructions is recursively 

defined by means of ASM rule constructors. For the ASM model applied to define the SDL-2010 

semantics, six different constructors (if-then, do-in-parallel, do-forall, choose, extend, let) are used. 

These constructors are listed below, with an informal description of their meaning. Here, Rule, Rulei 

denote transition rules, g denotes a Boolean term, and v,v1,...,vn denote free variables over the base 

set of M. The scope of a rule constructor is expressed by appropriate keywords, and can additionally 

be indicated by indentation. The closing keywords can be omitted, if no confusion arises. If closing 

keywords are omitted, the corresponding constructor extends as much as possible, but not over the 

next where-clause. 

– if-then-constructor 

Rule ::=  if g then 

  Rule1 

  [else 

  Rule2] 

  endif 

The update set specified by Rule in a given state s is defined to be the update set of Rule1 or Rule2, 

depending on the value of g in state s. Without the optional else-part, the update set defined by Rule 

is the update set of Rule1 or the empty update set. Sometimes, elseif is used as abbreviation for else if. 

– do-in-parallel-constructor 

Rule ::=  [do in-parallel] 

  Rule1 

  ... 

  Rulen 

  [enddo] 

The update set defined by Rule in state s is defined to be the union of the update sets of Rule1 through 

Rulen. In other words, the order in which transition rules belonging to the same block are stated is 

irrelevant. For brevity, the keywords do in-parallel and enddo may be omitted, where no confusion 

arises. Hence, an ASM program often appears as a collection of rules rather than a monolithic block 

rule. 

– do-forall-constructor 
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Rule ::=  do forall v: g(v) 

     Rule0(v) 

    enddo 

The effect of Rule is that Rule0 is fired simultaneously for all elements v of the base set of M for which 

the Boolean condition g(v) holds in state s, where v is a free variable in Rule0. More precisely, s(Rule) 

is the union of all update sets s(Rule0(v)) such that g(v) holds in state s. Recall that update sets are 

required to be finite; therefore, g(v) must hold for a finite number of values only. 

– choose-constructor 

Rule ::=  choose v: g(v) 

     Rule0(v) 

    endchoose 

The effect of Rule is that Rule0 is fired for an element v of the base set of M for which the condition 

g(v) holds in state s, where v is a free variable in Rule0. More precisely, s(Rule) is some update set 

s(Rule0(v)) such that g(v) holds in state s, or the empty update set if no such v exists. 

– extend-constructor 

Rule ::= extend D with v1,...,vn 

    Rule0(v1,...,vn) 

   endextend 

The effect of Rule when fired at state s is that n reserve elements of s (see clause F1.3.1.2) are 

imported into the dynamic domain D (while being removed from the reserve), that v1,...,vn become 

bound to one of the imported elements each, and then Rule0(v1,...,vn) is fired. 

The extend constructor can be used to mimic object-based ASM definitions, where objects are 

dynamically created. Thus, for each object to be created, an element from the reserve is assigned to 

the corresponding domain, and initialized. 

NOTE – extend can be defined in terms of the import constructor (not shown here); however, the import 

constructor is not used in the formal definition of SDL-2010. 

– let-constructor 

Rule ::=  let v = expression in 

     Rule0(v) 

    endlet 

The effect of Rule when fired in some state s is that v is bound to the value of expression, and that 

Rule0 is fired with this value. 

Example (Transition rule with if-then and choose): 

The following transition rule defines the behaviour of agent ag when requesting shared access, i.e., 

when ag.mode = shared. The rule applies the if-then-constructor, the choose-constructor, and an 

update instruction. 

if ag.mode = shared  ag.waiting then 

 choose t: t  TOKEN  t.available 

  t.owner := ag 

 end choose 

endif 

The precise meaning of the rule is given by its update set with respect to a state s, which is either 

{<<owner, <s(t)>>, s(ag)>} for some token s(t) available in s, if all further predicates stated in the if-

then-constructor hold in s, or the empty update set otherwise. 
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F1.3.1.9 Abbreviations 

Rules can be structured using abbreviations, consisting of rule macros and derived names, which 

may have parameters. This allows for hierarchical definitions, and the stepwise refinement of 

complex rules, which supports the understanding of ASM model definitions. 

Derived names are introduced (as explained in clauses F1.3.1.5 and F1.3.5.3), i.e., by declaration and 

definition, or alternatively, in the compact form, by combining declaration and definition. 

– rule-macro-definition 

 Let Rule0 denote a transition rule with free variables v1,...,vn of domains D1,...,DN, n  0. The 

general form of a rule macro definition is: 

RuleMacroDefinition ::=  RuleMacroName(v1:D1,...,vn:DN)  

        Rule0(v1,...,vn) 

 Rule macro names are, by convention, written in small capitals, with a leading capital letter 

(as in SHAREDACCESS). 

– where-part 

 By default, rule macros and derived names have a global scope. However, their scope can 

also be restricted to a particular transition rule Rule by using the where-part. 

Rule ::=  Rule0 

where 

 ( RuleMacroDefinition  |  DerivedNameDefinition )+ 

endwhere 

– rule-macro-constructor 

 Rule macros are applied in transition rules as follows: 

Rule ::=  RuleMacroName(t1,...,tn) 

 Formally, rule macros are syntactical abbreviations, i.e., each occurrence of a macro in a rule 

is to be replaced textually by the related macro definition (replacing formal parameters by 

actual parameters). 

Example (Rule macro): 

The transition rule from the previous example can be stated using rule macros, and be defined as a 

macro itself. Here, SHAREDACCESS is a macro definition with global scope that can be used in other 

places of the ASM model definition. GETTOKEN is a parameterized macro definition with a local scope 

restricted to the rule SharedAccess, with formal parameter a. When GETTOKEN is applied in 

SHAREDACCESS, a is replaced by the actual parameter ag. 

SHAREDACCESS  

 if ag.mode = shared  ag.waiting then 

  GETTOKEN(ag) 

 endif 

 where 

  GETTOKEN(a:AGENT)  

  choose t: t  TOKEN  t.available 

     t.owner := a 

  end choose 

 endwhere 
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F1.3.1.10 ASM programs 

An ASM program P is given by a framed transition rule (or rule for short) of the following form: 

Rule 

As already mentioned, rule macro definitions may either have a local or a global scope. To have a 

global scope, the macro definitions can be given outside the ASM program and can thus also be 

applied in the ASM program. 

In the basic ASM model there is just one ASM program, which is statically associated with an 

implicitly defined agent executing this program. The next clause allows several ASM programs to be 

defined and associated with different agents that are introduced dynamically during abstract machine 

runs. 

Example (ASM program): 

The ASM program P of the system RMS is defined as follows: 

do in-parallel 

 SHAREDACCESS 

 EXCLUSIVEACCESS 

 RELEASEACCESS 

enddo 

where 

SHAREDACCESS  

 if ag.mode = shared  ag.waiting then 

  choose t: t  TOKEN  t.available 

   t.owner := ag 

  endchoose 

 endif 

EXCLUSIVEACCESS  

 if ag.mode = exclusive  t  TOKEN: t.available then 

  do forall t: t  TOKEN 

   t.owner := ag 

  enddo 

 endif 

RELEASEACCESS  

 if ag.busy  ag.stop then 

  do in-parallel 

   ag.mode := undefined 

   do forall t: t  TOKEN  t.owner = ag 

    t.owner := undefined 

   enddo 

  enddo 

 endif 

endwhere 

The ASM program is defined by a single transition rule as shown in the frame. The transition rule 

uses the do-in-parallel-constructor and 3 rule macros, which results in a hierarchical rule definition. 
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F1.3.2 Distributed multi-agent ASM 

Mathematical modelling of concurrent and reactive systems requires more than the basic ASM model 

described above. This section presents the concept of a distributed ASM operating in parallel with its 

external environment, where the environment behaves as one or more ASMs. 

A distributed Abstract State Machine M is defined over a given vocabulary V by its states S, its initial 

states S0  S, its agents A, and its programs P. These items will be explained in the following 

subclauses insofar as they differ from the basic ASM model. 

F1.3.2.1 Vocabulary 

The vocabulary V of a multi-agent ASM M includes distinguished domain names: 

controlled domain AGENT 

static domain PROGRAM 

representing a dynamic set A of agents and an invariant set P of ASM programs, respectively. AGENT, 

PROGRAM and program: AGENT  PROGRAM constitutes further background classes. 

Furthermore, V includes a distinguished function name:  

controlled program: AGENT  PROGRAM 

and a special 0-ary function Self (see clause F1.3.2.2), whose interpretation is different for each agent. 

F1.3.2.2 Agents and runs 

A multi-agent, distributed ASM has a finite number of agents. Agents can be created and destroyed 

dynamically. Each agent executes its own basic ASM. The behaviour of each agent is determined by 

a program, which is defined by a transition rule. The association between agents and their behaviour 

is specified by the background function program: AGENTPROGRAM. This function can be updated, 

allowing agents' behaviour to be modified dynamically, and allowing behaviour to be assigned to 

newly created agents. 

Agents operate concurrently and interact by sending messages to one another (see [b-Blass] and 

[ITU-T Z.101]). More precisely, agents interact by updating locations that are accessible to other 

agents. Agents can act as COMMUNICATORS [b-Glässer], whose behaviour is to read input locations, 

transform the values read, and update output locations that can be read by other agents. In this way 

messages can be passed asynchronously between agents without the original source or the final 

destination necessarily having a commonly accessible location. Agents also interact with an external 

environment, which can be viewed as an agent in its own right, or as a collection of agents. 

A multi-agent distributed ASM is formed by combining its constituent single-agent ASMs. Like a 

single agent ASM, it has a set states S, a subset of initial states S0  S and a function τ: S → S, called 

the one-step transformation. 

To assign a behaviour to an agent of M, the distinguished function program (see clause F1.3.2.1) 

yields (for each agent a of M) the program of P to be executed by a. The function program thus allows 

the definition (or redefinition) of the behaviour of agents dynamically; it is thereby possible to create 

new agents at run time. In a given state s of M, the agents of M are all those elements a of s such that 

a.program identifies a behaviour (as defined by some program of P) to be associated with a. 

A special 0-ary function Self serves as a self-reference identifying the respective agent calling Self: 

monitored Self:  AGENT 

For every agent, Self has a different interpretation. By using Self as an additional function argument, 

each agent a can have its own partial view of a given global state of M on which it fires the rule in 

a.program. 
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Example (Scheme of a distributed ASM): 

In the following figure, a particular distributed ASM M, consisting of three agents ag1, ag2, and ag3 

is illustrated. The function program associates, with each agent, one of the ASM programs P1, P2, 

and P3. Here, ag1 and ag2 are assigned the same program. Program P2 is currently not associated with 

any agent; however, this may change during execution, as program is a dynamic function. Each agent 

has its own partial view on a given global state s of M, in which it fires the rule of its current program. 

In the figure, this view is illustrated by the function view, which yields, for each agent, its local and 

its shared state. In fact, the current view of each agent is determined implicitly by the ASM model 

definition, including the ASM programs. 

The semantic model of concurrency underlying the distributed ASM model defines behaviour in 

terms of partially ordered runs. A partially ordered run represents a certain class of (admissible) 

machine runs by restricting non-determinism with respect to the order in which the individual agents 

may perform their computation steps, so-called moves. To avoid that agents interfere with each other, 

moves of different agents need only be ordered if they are causally dependent (as detailed below). 

Partially ordered runs 

Regarding the moves of an individual agent, these are linearly ordered, whereas moves of different 

agents need only be ordered in case they are not independent of each other. Intuitively, independent 

moves model concurrent actions that are incomparable with regard to their order of execution. The 

precise meaning of independence is implied by the coherence condition in the formal definition of 

partially ordered runs [b-Gurevich]. 

A run  of a distributed ASM M is given by a triple (,A,) satisfying the following four conditions: 

a)  is a partially ordered set of moves, where each move has only a finite number of 

predecessors; 

b) A is a function on  associating agents to moves such that the moves of any single agent of 

M are linearly ordered; 

c)  assigns a state of M to each initial segment Y of , where (Y) is the result of performing 

all moves in Y; if Y is empty, then (Y)  S0; 

d) if y is a maximal element in a finite initial segment Y of  and Z = Y – { y }, then A(y) is an 

agent in (Z) and (Y) is obtained from (Z) by firing A(y) at (Z) (coherence condition). 

Implications 

Partially ordered runs have certain characteristic properties that can be stated in terms of 

linearizations of partially ordered sets. A linearization of a partially ordered set  is a linearly ordered 

set ' with the same elements such that if y < z in  then y < z in '. Accordingly, the semantic model 

of concurrency (as implied by the notion of a partially ordered run) can further be characterized as 

follows [b-Gurevich]: 

– All linearizations of the same finite initial segment of a run of M have the same final state. 

– A property holds in every reachable state of a run  of M if and only if it holds in every 

reachable state of every linearization of . 

F1.3.2.3 Distributed ASM programs 

A distributed ASM M has a finite set P of programs. Each program p  P is given by a program name 

and a transition rule (or rule for short). The program name uniquely identifies p within P, and is 

represented by a unary static function. Programs are stated in the following form: 

ASM-PROGRAM: 

Rule 
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NOTE – Strictly, the program names of M are represented by a distinguished set of elements from the base 

set. 

Program names are, by convention, hyphenated and written in small capitals, with a leading uppercase 

letter (as in RESOURCE-MANAGEMENT-PROGRAM). 

By default, the following implicit constraint applies: 

initially PROGRAM = {PROGRAM1,...,PROGRAMn} 

where PROGRAM1,.. ,PROGRAMN are the names of the programs that are defined in the ASM model. 

Example (ASM program): 

The distributed ASM program of the system RMS defines a single program as follows: 

 RESOURCE-MANAGEMENT-PROGRAM: 

 do in-parallel 

  SHAREDACCESS 

  EXCLUSIVEACCESS 

  RELEASEACCESS 

 enddo 

 where 

   SHAREDACCESS  

     if Self.mode = shared  Self.waiting then 

      choose t: t  TOKEN  t.available 

       t.owner := Self 

      endchoose 

     endif 

   EXCLUSIVEACCESS  

     if Self.mode = exclusive  t  TOKEN: t.available then 

      do forall t: t  TOKEN 

       t.owner := Self 

      enddo 

     endif 

   RELEASEACCESS  

     if Self.busy  Self.stop then 

      do in-parallel 

       Self.mode := undefined 

       do forall t: t  TOKEN  t.owner = Self 

        t.owner := undefined 

       enddo 

      enddo 

     endif 

 endwhere 

The program of the distributed ASM has the name Resource-Management-Program, and is defined 

as the single-agent ASM program before, with one difference: all occurrences of ag have been 

replaced by calls of the function Self. This allows the association of the program with different agents, 

while accessing the local state of these agents. 

F1.3.3 The external world 

Following an open system view, interactions between a system and the external world, e.g., the 

environment into which the system is embedded, are modelled in terms of various interface 

mechanisms. Regarding the reactive nature of distributed systems, it is important to clearly identify 

and precisely state: 
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– preconditions on the expected behaviour of the external world; and 

– how external conditions and events affect the behaviour of an ASM model. 

This is achieved through a classification of dynamic ASM names into three basic categories of names, 

which extends the classification of names shown in Figure F1-3: 

– controlled names 

These domains, functions or predicates can only be modified by agents of the ASM model, according 

to the executed ASM programs. Controlled names are preceded by the keyword controlled at their 

point of declaration, and are visible to the environment. See Figure F1-3. 

– monitored names 

These domains, functions or predicates can only be modified by the environment, but are visible to 

ASM agents. Thus, a monitored domain, function or predicate may change its values from state to 

state in an unpredictable way, unless this is restricted by integrity constraints (see below). Monitored 

names are preceded by the keyword monitored at their point of declaration. See Figure F1-3. 

– shared names 

These domains, functions or predicates are visible to and may be altered by the environment as well 

as by the ASM agents. Therefore, an integrity constraint on shared domains, functions or predicates 

is that no interference with respect to mutually updated locations must occur. Hence, it is required 

that the environment itself acts like an ASM agent (or a collection of ASM agents). Shared names are 

preceded by the keyword shared at their point of declaration. See Figure F1-3. 

 

Example (External world): 

The vocabulary V of the system RMS is extended by a classification of dynamic functions and 

predicates: 

  shared mode:    AGENT  MODE 

  controlled owner:  TOKEN  AGENT 

  monitored stop:   AGENT  BOOLEAN 

The function mode, which determines the current access mode, is shared. It may be affected by 

externally controlled ‘set’ operations, switching it to one of the values exclusive or shared. 

Furthermore, it is reset internally when the resource is released (see clause F1.3.2.3). 

The predicate stop represents an external stop request, such as an interrupt, and therefore is 

monitored. 

Figure F1-3 – Extended classification of ASM names 

In general, the influence of the environment on the system through shared and monitored names may 

be completely unpredictable. However, preconditions on the expected environment behaviour may 

be expressed by stating integrity constraints, which are required to hold in all states and runs of M. 

Note that integrity constraints merely express preconditions on the environment behaviour, but not 

properties the system is supposed to have. 

Integrity constraints are stated in the following form: 

IntegrityConstraint ::= constraint ClosedFormula 

Example (Integrity constraints): 

The following integrity constraint states that stop requests are only generated for busy agents: 



 

20 Rec. ITU-T Z.100/Annex F1 (10/2016) 

constraint a  AGENT: (a.stop  a.busy) 

F1.3.4 Real-time behaviour 

By introducing a notion of real time and imposing additional constraints on runs, we obtain a 

specialized class of ASMs, called distributed real-time ASM, with agents performing instantaneous 

actions in continuous time. Essentially, that means that agents fire their rules at the moment they are 

enabled. 

To incorporate real-time behaviour into the underlying ASM execution model, we introduce a 0-ary 

monitored real-valued function currentTime. Intuitively, currentTime refers to the physical time. As 

an integrity constraint on the nature of physical time, it is assumed that currentTime changes its values 

monotonically increasing over ASM runs. 

monitored currentTime:  REAL 

Consider a given vocabulary V containing REAL (but not currentTime) and let V+ be the extension of 

V with the function symbol currentTime. Restrict attention to V+-states where currentTime evaluates 

to a real number. One can then define a run R of the resulting machine model as a mapping from the 

interval [0,) to states of vocabulary V+ satisfying the following discreteness requirement: 

1) for every t  0, currentTime evaluates to t at state R(t); 

2) for every  > 0, there is a finite sequence 0 = t0 < t1 <…< tn =  such that if ti <  <  < ti+1 

then () =  (). 

where the reduct of R(t) to V is denoted by (t) such that for a given value t, (t) is derived from R(t) 

by ignoring the interpretation of the function name currentTime. 

Exploiting the discreteness property, one effectively obtains some finite representation (history) for 

every finite (sub-) run by abstracting from those states that are not considered as significant such that 

they contribute any relevant information to a behaviour description. In particular, one can simply 

ignore all states that are identical to their preceding state except that currentTime has increased. From 

the above definition of run it follows that only finitely many states are left. 

F1.3.5 Example: The system RMS 

In this clause, we assemble the pieces of the ASM model definition of the system RMS into their final 

version. For better reference, we also repeat the informal description. 

F1.3.5.1 Informal description 

In order to illustrate the ASM model, a simple resource management system RMS consisting of a 

group of n > 1 agents competing for a resource, for instance, a device or service, is defined. 

Informally, this system is characterized as follows: 

– There is a set of m tokens, m < n, used to grant exclusive or non-exclusive (shared) access to 

the resource. 

– Depending on whether the desired access mode is exclusive or shared, an agent must own all 

tokens or one token, respectively, before he may access the resource. 

– An agent is idle when not competing for a resource, waiting when trying to obtain access to 

the resource, or busy when owning the right to access the resource. 

– Once an agent is waiting, it remains so until it obtains access to the resource. 

– A busy agent releases the resource when it is no longer needed, as indicated by a stop 

condition for that agent that is externally set. On releasing the resource, all tokens owned by 

the agent are returned. 

– Stop conditions are only indicated when an agent is busy. 

– Initially, all agents are idle, and all tokens are available. 
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F1.3.5.2 Vocabulary 

static domain TOKEN 

shared mode: AGENT  MODE 

controlled owner: TOKEN  AGENT 

monitored stop: AGENT  BOOLEAN 

F1.3.5.3 Derived names 

MODE =def {exclusive, shared} 

idle(a:AGENT): BOOLEAN    =def a.mode = undefined  t  TOKEN: t.owner  a 

waiting(a:AGENT): BOOLEAN   =def a.mode  undefined  t  TOKEN: t.owner  a 

busy(a:AGENT): BOOLEAN   =def a.mode  undefined  t  TOKEN: t.owner = a 

available(t:TOKEN): BOOLEAN  =def t.owner = undefined 

F1.3.5.4 Integrity constraints 

constraint a  AGENT: (a.stop  a.busy) 

F1.3.5.5 Initial constraints 

initially |AGENT| > 1 

initially | TOKEN | < |AGENT| 

initially a  AGENT: a.program = RESOURCE-MANAGEMENT-PROGRAM 

initially a  AGENT: a.idle  t  TOKEN: t.available 

F1.3.5.6 ASM programs 

RESOURCE-MANAGEMENT-PROGRAM: 

do in-parallel 
  SHAREDACCESS 

  EXCLUSIVEACCESS 

  RELEASEACCESS 

enddo 

where 

  SHAREDACCESS  

    if Self.mode = shared  Self.waiting then 

      choose t: t  TOKEN  t.available 

      t.owner := Self 

     endchoose 

    endif 

  EXCLUSIVEACCESS  

    if Self.mode = exclusive  t  TOKEN: t.available then 

      do forall  t: t  TOKEN 

      t.owner := Self 

     enddo 

    endif 

  RELEASEACCESS  

    if Self.stop then 

     Self.mode := undefined 

      do forall t: t  TOKEN  t.owner = Self 

      t.owner := undefined 

     enddo 

    endif 

endwhere 

F1.3.6 Predefined names and special symbols 

To define an ASM model, in particular the ASM model capturing the semantics of SDL-2010, certain 

names and their intended interpretation are predefined. These names are grouped and listed in this 

clause (where D refers to the syntactic category of domains). For prefix, infix and postfix operators, 
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an underline ("_") is used to indicate the position of their arguments. Moreover, the precedence of the 

operators is indicated by prec(n), where n is a number. Higher numbers mean tighter binding. 

Monadic operators have a tighter binding than binary ones. Binary operators are associative to the 

left. 

F1.3.6.1 ASM-specific domains 
static domain X ASM base set (meta domain) 

static domain BOOLEAN Boolean values 

static domain NAT Integer values 

static domain REAL Real values 

shared domain AGENT ASM agents 

static domain PROGRAM ASM programs 

static domain TOKEN Syntax tokens (character strings) 

_ * Domain constructor: finite sequences of 

_ + Domain constructor: non-empty, finite sequences of 

_ -set Domain constructor: finite sets of 

_  _   prec(7) Tuple domain constructor 

_  _   prec(6) Union domain constructor 

F1.3.6.2 ASM-specific functions 
static undefined:  X Indicator for undefined values 

monitored Self:  AGENT Self reference for ASM agents 

controlled program: AGENT  PROGRAM Program of an ASM agent 

monitored currentTime:  REAL The current system time 

F1.3.6.3 Boolean functions and predicates 
static true:  BOOLEAN Predefined literal 

static false:  BOOLEAN Predefined literal 

_ = _   prec(4) Equality 

_  _   prec(4) Inequality 

_  _   prec(3) Logical and 

_  _   prec(2) Logical or 

_  _   prec(1) Implication 

_  _   prec(1) Logical equivalence 

 _ Negation 

x  D: P(x)   prec(0) Existential quantification (at least one element) 

!x  D: P(x)   prec(0) Unique existential quantification (exactly one element) 

x  D: P(x)   prec(0) Universal quantification 

F1.3.6.4 Terms 
X 0-ary function application 

f(t1,..., tn) Function application with n argument expressions 

if Formula then Term else Term endif Conditional expression; again we use elseif instead of else if 

s-_(_) Tuple selection function (see Tuples below) 

mk-_(...) Tuple construction (see Tuples below) 

inv-_(...) The inverse of a function or map, 

inv-Fun(x) =def take({ a  D: Fun(a) =x }) 

F1.3.6.5 Functions and relations on integers 
_ > _, _  _, _ <_, _  _   prec(4) Comparison operators 

_ + _   prec(6) Addition 

_ - _   prec(6) Subtraction 

_ *_   prec(7) Multiplication 

_ / _   prec(7) Division 

0, 1, ... Integer literals 
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F1.3.6.6 Functions on sequences 
static empty:  D * Empty sequence 

static head: D *  D Head of the sequence (undefined when empty) 

static tail: D *  D * Tail of the sequence (undefined when empty) 

static last: D *  D Last element of a sequence (undefined when empty) 

static length: D*  NAT Length of a sequence 

static < >: D n  D *   Sequence constructor; arguments are listed inside the brackets, 

separated by commas 

_ ⁀ _   prec(6) Concatenation of sequences 

toSet: D *  D-set Conversion of the elements of a sequence into a set 

_ [ _ ] Access an element of a list; the index within the brackets must be of 

type NAT 

_ in _   prec(4) Element of? 

< <result> | <var> in <seq> : <cond> > Sequence comprehension; acts like a filter on <seq>, i.e., order-

preserving 

< <var> in <seq> : <cond> > =def 

     < <var> | <var> in <seq> : <cond> > 

Abbreviated sequence comprehension 

< <result> | <var> in <seq> > =def 

     < <result> | <var> in <seq> : true > 

Abbreviated sequence comprehension 

F1.3.6.7 Functions on sets 
_  _   prec(6) Set union 

_  _   prec(7) Intersection 

_ \ _   prec(6) Set subtraction 

_  _   prec(4) Element of? 

_  _   prec(4) Not element of? 

_  _   prec(4) Subset of? 

_  _   prec(4) Proper subset of? 

| _ | Size of a set 

U _ Big union: union of all sets included within the argument set 

 Empty set 

static { }: D n  D-set Set constructor; comma-separated list of arguments in the brackets 

take: D-set  D Select an arbitrary element from the set, or undefined for an empty set 

_ .. _   prec(5) Integer range from the first value to the second. Empty set when the 

second expression is smaller than the first one 

{ <result> | <var>  <set> : <cond> } Set comprehension, acts like a filter on <set> 

{ <var>  <set> : <cond> } =def 

     { <var> | <var>  <set>: <cond> } 

Abbreviated set comprehension 

{ <result> | <var>  <set> } =def 

     { <result> | <var>  <set>: true } 

Abbreviated set comprehension 

F1.3.6.8 Patterns and case-expressions 

Patterns provide a means to easily access the structure of values. The following patterns are provided: 

– Variables: A variable matches any value. However, if the variable is already bound, it only 

matches itself. 

– Anonymous variables: Anonymous variables are denoted by "*". They are shorthand for 

introducing an unused variable. 

– Constructor: A constructor is given by its name and the arguments that are again patterns. It 

matches any value that is constructed using that constructor and with the arguments matching 

their corresponding pattern. 

Named pattern: The notation Variable = Pattern introduces a name for (the value matching) the 

pattern. 

Patterns are used to describe functions on the syntax tree. The non-terminal names of the grammar 

are used as the constructor functions. 
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A case expression is used to determine a value depending on pattern matching. 

CaseExpression ::= case Term of 

       | Pattern1: Term1 

       | Pattern2: Term2 

       ... 

       [ otherwise Term0 ] 

      endcase 

If the value of Term matches at least one Patterni, then the result of the case expression is given by 

the Termi. If no pattern matches, the result is Term0 (if present). Otherwise, the result is undefined. 

F1.3.6.9 Union domains 

Union domains simply contain the values of their constituent domains. 

  D =def D1  D2 

F1.3.6.10 Tuples 

For every declared tuple domain, several implied constructor and selector functions are defined. A 

definition: 

  D =def D1  D2
*
  D3-set  D1  (D1  D2) 

also defines the following functions: 

mk-D: D1  D2
*  D3-set  D1  (D1  D2)  D 

s-D1: D  D1 

s-D2-seq: D  D2
* 

s-D3-set: D  D3-set 

s2-D1: D  D1 

s-implicit: D  (D1  D2) 

When the tuple includes the same domain more than once, selector functions similar to s2-D1 are 

defined. For union, the special selector function s-implicit is defined. 

F1.3.6.11 Abstract syntax rules 

Abstract syntax rules from the language definition are directly translated to the ASM notation, using 

certain conventions that will be explained by examples. An abstract syntax rule can be understood as 

declaring one or more (tuple) domains, and as defining functions that construct and select values of 

the component domains. However, syntax nodes have an identity as opposed to ordinary tuples. There 

are syntax rules introducing named constructors as well as named and unnamed unions. Rules 

introducing constructors are composed of terminal and non-terminal symbols, they have the form: 

Symbol:: Symbol1  Symbol2
+  Symbol3-set  [Symbol4] 

which is translated to: 

Symbol-aux =def Symbol1  Symbol2
*  Symbol3-set  Symbol4 

controlled domain Symbol 

controlled contents-Symbol: Symbol  Symbol-aux 

s-Symbol1(x: Symbol): Symbol1 =def s-Symbol1(x.contents-Symbol) 

s-Symbol2-seq(x: Symbol): Symbol2
* =def s-Symbol2-seq(x.contents-Symbol) 

s-Symbol3-set(x: Symbol): Symbol3-set =def s-Symbol3-set(x.contents-Symbol) 

s-Symbol4(x: Symbol): Symbol4 =def s-Symbol4(x.contents-Symbol) 

Moreover, there is an abbreviation mk-Symbol. This abbreviation amounts to creating a new object of 

domain Symbol using the extend primitive and to set the contents-Symbol value of the newly produced 

object to the result of mk-Symbol-aux. Note that this kind of abbreviation is not a function, but in fact 
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a rule item. Therefore, it must be used only within rules. The fact that the optional Symbol4 is not 

present is expressed in the ASM model by leaving the corresponding value undefined. 

An empty sequence of symbols (constructor with no parts) is denoted by ( ). 

The equality for syntax values is always a structural equality, i.e., the contents of the symbols are 

compared instead of the symbols themselves. 

The syntax rules introducing named unions (i.e., synonyms) have the form: 

Symbol = Symbol1 | Symbol2 | ... | Symboln  (n  1) 

which is translated to: 

Symbol =def Symbol1  Symbol2 ... SymbolN 

Note that since Symbol is a union domain, the expansion yields a domain definition, but no functions 

mk- or s-. 

In some cases, it is not necessary to refer to synonyms. Here, unnamed unions may be introduced by: 

Symbol :: Symbol1 { Symbol21 | ... | Symbol2N } 

instead of introducing synonyms: 

Symbol :: Symbol1 Symbol2 

Symbol2 = Symbol21 | ... | Symbol2N 

For each SDL-2010 keyword KEYWORD, there is an associated keyword domain Keyword with just 

one value: 

static domain Keyword 

It is required that all keyword domains are mutually disjoint. 

Given the abstract grammar, there is a derived domain called DefinitionAS1, which is composed of 

all abstract syntax symbol domains as follows: 

DefinitionAS1 =def Symbol1  Symbol2 ... SymbolN 

where Symbol1,Symbol2,...,Symboln is the list of all symbols (terminal and non-terminal) of the 

abstract grammar. 

There is a similar domain DefinitionAS0 for the concrete grammar (AS0). 

To navigate downward in a given abstract syntax tree, the functions s- can be used. To navigate 

upward, two parent functions are defined. 

controlled parentAS1: DefinitionAS1  DefinitionAS1 

controlled parentAS0: DefinitionAS0  DefinitionAS0 

Moreover, two functions are defined to find the parent of a particular kind. 
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parentAS0ofKind(from: DefinitionAS0, x: DefinitionAS0-set): DefinitionAS0 =def 

 if from = undefined then undefined 

 elseif from  x then from 

 else parentAS0ofKind(from.parentAS0, x) 

 endif 
parentAS1ofKind(from: DefinitionAS1, x: DefinitionAS1-set): DefinitionAS1 =def 

 if from = undefined then undefined 

 elseif from  x then from 

 else parentAS1ofKind(from.parentAS1, x) 

 endif 

The functions isAncestorAS1 and isAncestorAS0 determine if the first node is an ancestor of the 

second one: 

isAncestorAS1(n: DefinitionAS1 ,n': DefinitionAS1): BOOLEAN =def 

n = n'.parentAS1  isAncestorAS1(n, n'.parentAS1) 

isAncestorAS0(n: DefinitionAS0 ,n': DefinitionAS0): BOOLEAN =def 

n = n'. parentAS0  isAncestorAS0(n, n'.parentAS0) 

The top node of the current abstract or concrete syntax tree is denoted by the following 0-ary 

functions: 

controlled rootNodeAS1:  DefinitionAS1 

controlled rootNodeAS0:  DefinitionAS0 

The abstract syntax tree can be modified using the following derived function: 

replaceInSyntaxTree: DefinitionAS0  DefinitionAS0  DefinitionAS0  DefinitionAS0 

The first parameter of the function is the old sub-tree, the second one is the new sub-tree and the third 

parameter is the old tree. The function returns the new tree, where all old sub-trees are replaced by 

the new sub-tree. 
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