

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.100
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Annex F1
(10/2016)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language – Overview
of SDL-2010

Annex F1: SDL-2010 formal definition: General
overview

Recommendation ITU-T Z.100 – Annex F1

-

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of formal description techniques Z.110–Z.119

Message Sequence Chart (MSC) Z.120–Z.129

User Requirements Notation (URN) Z.150–Z.159

Testing and Test Control Notation (TTCN) Z.160–Z.179

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.349

Data-oriented human-machine interfaces Z.350–Z.359

Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY

Quality of telecommunication software Z.400–Z.409

Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS

Methods for validation and testing Z.500–Z.519

MIDDLEWARE

Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Z.100/Annex F1 (10/2016) i

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

Annex F1

SDL-2010 formal definition: General overview

Summary

Annex F1 provides the motivation for and the main objectives of a formal semantics definition for

SDL-2010. It gives an overview of the structure of the formal semantics, and it also contains an

introduction to the Abstract State Machine (ASM) formalism, which is used to define the SDL-2010

semantics.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Z.100 1984-10-19 11.1002/1000/2222

1.1 ITU-T Z.100 Annex A 1984-10-19 11.1002/1000/6664

1.2 ITU-T Z.100 Annex B 1984-10-19 11.1002/1000/6665

1.3 ITU-T Z.100 Annex C1 1984-10-19 11.1002/1000/6666

1.4 ITU-T Z.100 Annex C2 1984-10-19 11.1002/1000/6667

1.5 ITU-T Z.100 Annex D 1984-10-19 11.1002/1000/6668

2.0 ITU-T Z.100 1987-09-30 X 11.1002/1000/10954

2.1 ITU-T Z.100 Annex A 1988-11-25 11.1002/1000/6669

2.2 ITU-T Z.100 Annex B 1988-11-25 11.1002/1000/6670

2.3 ITU-T Z.100 Annex C1 1988-11-25 11.1002/1000/6671

2.4 ITU-T Z.100 Annex C2 1988-11-25 11.1002/1000/6672

2.5 ITU-T Z.100 Annex D 1988-11-25 X 11.1002/1000/3646

2.6 ITU-T Z.100 Annex E 1988-11-25 11.1002/1000/6673

2.7 ITU-T Z.100 Annex F1 1988-11-25 X 11.1002/1000/3647

2.8 ITU-T Z.100 Annex F2 1988-11-25 X 11.1002/1000/3648

2.9 ITU-T Z.100 Annex F3 1988-11-25 X 11.1002/1000/3649

3.0 ITU-T Z.100 1988-11-25 11.1002/1000/3153

3.1 ITU-T Z.100 Annex C 1993-03-12 X 11.1002/1000/3155

3.2 ITU-T Z.100 Annex D 1993-03-12 X 11.1002/1000/3156

3.3 ITU-T Z.100 Annex F1 1993-03-12 X 11.1002/1000/3157

3.4 ITU-T Z.100 Annex F2 1993-03-12 X 11.1002/1000/3158

3.5 ITU-T Z.100 Annex F3 1993-03-12 X 11.1002/1000/3159

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/2222
http://handle.itu.int/11.1002/1000/6664
http://handle.itu.int/11.1002/1000/6665
http://handle.itu.int/11.1002/1000/6666
http://handle.itu.int/11.1002/1000/6667
http://handle.itu.int/11.1002/1000/6668
http://handle.itu.int/11.1002/1000/10954
http://handle.itu.int/11.1002/1000/6669
http://handle.itu.int/11.1002/1000/6670
http://handle.itu.int/11.1002/1000/6671
http://handle.itu.int/11.1002/1000/6672
http://handle.itu.int/11.1002/1000/3646
http://handle.itu.int/11.1002/1000/6673
http://handle.itu.int/11.1002/1000/3647
http://handle.itu.int/11.1002/1000/3648
http://handle.itu.int/11.1002/1000/3649
http://handle.itu.int/11.1002/1000/3153
http://handle.itu.int/11.1002/1000/3155
http://handle.itu.int/11.1002/1000/3156
http://handle.itu.int/11.1002/1000/3157
http://handle.itu.int/11.1002/1000/3158
http://handle.itu.int/11.1002/1000/3159
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Z.100/Annex F1 (10/2016)

3.6 ITU-T Z.100 App. I 1993-03-12 X 11.1002/1000/3160

3.7 ITU-T Z.100 App. II 1993-03-12 X 11.1002/1000/3161

4.0 ITU-T Z.100 1993-03-12 X 11.1002/1000/3154

4.1 ITU-T Z.100 (1993) Add. 1 1996-10-18 10 11.1002/1000/3917

5.0 ITU-T Z.100 1999-11-19 10 11.1002/1000/4764

5.1 ITU-T Z.100 (1999) Cor. 1 2001-10-29 17 11.1002/1000/5567

6.0 ITU-T Z.100 2002-08-06 17 11.1002/1000/6029

6.1 ITU-T Z.100 (2002) Amd. 1 2003-10-29 17 11.1002/1000/7091

6.2 ITU-T Z.100 (2002) Cor. 1 2004-08-29 17 11.1002/1000/356

7.0 ITU-T Z.100 2007-11-13 17 11.1002/1000/9262

8.0 ITU-T Z.100 2011-12-22 17 11.1002/1000/11387

8.1 ITU-T Z.100 Annex F1 2000-11-24 10 11.1002/1000/5239

8.2 ITU-T Z.100 Annex F2 2000-11-24 10 11.1002/1000/5576

8.3 ITU-T Z.100 Annex F3 2000-11-24 10 11.1002/1000/5577

8.4 ITU-T Z.100 Annex F1 2015-01-13 17 11.1002/1000/12354

8.5 ITU-T Z.100 Annex F2 2015-01-13 17 11.1002/1000/12355

8.6 ITU-T Z.100 Annex F3 2015-01-13 17 11.1002/1000/12356

9.0 ITU-T Z.100 2016-04-29 17

9.1 ITU-T Z.100 Annex F1 2016-10-29 17

9.2 ITU-T Z.100 Annex F2 2016-10-29 17

9.3 ITU-T Z.100 Annex F3 2016-10-29 17

Keywords

Abstract state machines, ASM, formal definition, overview, overview of semantics, SDL-2010,

specification and description language.

http://handle.itu.int/11.1002/1000/3160
http://handle.itu.int/11.1002/1000/3161
http://handle.itu.int/11.1002/1000/3154
http://handle.itu.int/11.1002/1000/3917
http://handle.itu.int/11.1002/1000/4764
http://handle.itu.int/11.1002/1000/5567
http://handle.itu.int/11.1002/1000/6029
http://handle.itu.int/11.1002/1000/7091
http://handle.itu.int/11.1002/1000/356
http://handle.itu.int/11.1002/1000/9262
http://handle.itu.int/11.1002/1000/11387
http://handle.itu.int/11.1002/1000/5239
http://handle.itu.int/11.1002/1000/5576
http://handle.itu.int/11.1002/1000/5577
http://handle.itu.int/11.1002/1000/12354
http://handle.itu.int/11.1002/1000/12355
http://handle.itu.int/11.1002/1000/12356

 Rec. ITU-T Z.100/Annex F1 (10/2016) iii

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2017

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

iv Rec. ITU-T Z.100/Annex F1 (10/2016)

Table of Contents

 Page

F1.1 Preface .. 1

F1.2 Overview of the semantics ... 3

F1.3 Abstract State Machines ... 7

 Rec. ITU-T Z.100/Annex F1 (10/2016) 1

Recommendation ITU-T Z.100

Specification and Description Language – Overview of SDL-2010

Annex F1

SDL-2010 formal definition: General overview

F1.1 Preface

The formal definition of SDL-2010 provided in this annex is a precise language definition, which

supplements the definition given in the Recommendation text. It is for use by those requiring a very

precise definition of SDL-2010, such as maintainers of the SDL-2010 language, designers of

SDL-2010 tools and users of the SDL-2010 language.

The formal definition consists of three annexes:

Annex F1 This annex provides the motivation for and the main objectives of a formal semantics

definition for SDL-2010. It gives an overview of the structure of the formal semantics,

and contains an introduction to the Abstract State Machine (ASM) formalism, which is

used to define the SDL-2010 semantics.

Annex F2 This annex describes the static semantic constraints of SDL-2010, as well as the

transformations identified by the 'Model' sections of the ITU-T Z.100 series for

SDL-2010.

Annex F3 This annex defines the dynamic semantics of SDL-2010.

F1.1.1 Motivation

SDL-2010 has both a formal syntax and a formal semantics. Annexes F1, F2 and F3 define the formal

semantics of SDL-2010. If there is any inconsistency between Annexes F1, F2 and F3 and other parts

of the ITU-T Z.100 series for SDL-2010, then there is an error that needs correcting. Neither the other

parts of the ITU-T Z.100 series for SDL-2010 nor Annexes F1, F2 and F3 take precedence in this

case.

F1.1.2 Main objectives

A primary objective of a formal SDL-2010 semantics is intelligibility, a prerequisite for correctness,

acceptance and maintainability. Intelligibility is supported by building on well-known mathematical

formalisms and notations, a close correspondence between the specification technique and semantics

to be formalized, and by concise and well-structured documentation.

Maintainability is another important objective because SDL-2010 is an evolving technical standard.

Apart from the language extensions that are incorporated into this Recommendation, further language

features under consideration. Therefore, the mathematical formalism has to be sufficiently rich and

flexible such that the formal semantics can be adapted and extended with a reasonable effort.

SDL-2010 can be classified as a model-oriented formal description technique (FDT) for the

specification of distributed and concurrent systems, which means that an SDL-2010 specification

explicitly defines a set of computations. This calls for an operational semantics in order to achieve a

close correspondence with the specification, and thus improve its intelligibility. In addition,

operational semantics lends itself naturally to executability, see [b-Eschbach], [b-Eschbach 2001]

and [b-Glässer], given the availability of tools, which is another explicit objective.

2 Rec. ITU-T Z.100/Annex F1 (10/2016)

F1.1.3 References and definitions

The references and definitions of the main body of Recommendation ITU-T Z.100 apply throughout

Annexes F1, F2 and F3.

F1.1.4 Bibliographical references (for this annex only)

[b-ASM] www.eecs.umich.edu/gasm/ (accessed 12 September 2016)

[b-Blass] Blass, A. and Gurevich, Y. (2003), Abstract State Machines capture parallel

algorithms, ACM Transactions on Computational Logic, Vol. 4, No. 4, ACM.

 NOTE – The axiomatic definition of abstract state machines for sequential algorithms

is modified to capture parallel algorithms. Specifically, Bounded Exploration is

replaced by Background, Proclet (subprocess of a parallel algorithm that contains no

unbounded parallelism) and Bounded Sequentiality to ensure that the number of state

elements involved in a given computation step is bounded, with the bound depending

only on the algorithm and not on the state.

[b-Blass 2008] Blass, A. and Gurevich, Y. (2008), Abstract State machines capture parallel

algorithms: Correction and extension. ACM Transactions on Computational

Logic, Vol. 9, No. 3, ACM.

 NOTE – The postulates presented in [b-Blass] do not allow proclets to be created on the

fly. On the fly creation of proclets is required to correct one of the flaws identified in

the examples in Section 8 of [b-Blass]. Other flaws in the earlier article have also been

corrected.

[b-Börger] Börger, E. (2003), The ASM Refinement Method, Formal Aspects of

Computing Vol. 15, pp. 237-257, BCS.

[b-Börger & Stärk] Börger, E., and Stärk, R. S. (2003), Abstract State Machines: A Method for

High-Level System Design and Analysis, Springer-Verlag.

 NOTE – Design and analysis for multi-agent as well as single agent abstract state

machines. Used here to clarify the coherence condition.

[b-Eschbach] Eschbach, R., Glässer, U., Gotzhein, R., and Prinz, A. (2000), On the Formal

Semantics of SDL-2000: A Compilation Approach Based on an Abstract SDL

Machine, in: Y. Gurevich, M. Odersky, P. Kutter, L. Thiele (Eds.), Abstract

State Machines – Theory and Applications, Lecture Notes in Computer

Science, Vol. 1912, Springer-Verlag.

[b-Eschbach 2001] Eschbach, R., Glässer, U., Gotzhein, R., von Löwis, M., and Prinz, A. (2001),

Formal Definition of SDL-2000: Compiling and Running SDL Specifications

as ASM Models, Journal of Universal Computer Science Vol. 7, No. 11, pp.

1024-1049, Springer.

[b-Glässer] Glässer, U., Gotzhein, R., Prinz, A. (2003), The formal semantics of SDL-2000

– Status and perspectives, Computer Networks, Vol. 42, No. 3, pp. 343-358,

Elsevier Sciences.

 NOTE – The design objectives of the SDL semantics include executability,

intelligibility, conciseness and flexibility as well as the ideals of correctness and

completeness (for which indisputable evidence cannot be inferred from the SDL

grammars and textual description). The decision to base the SDL formal semantics on

ASM is documented, and the ITU-T approach is described. This approach entails

analysis of an SDL model and synthesis of an ASM program that defines the behaviour

of SDL agents. Execution is defined in terms of the SDL virtual machine, which

provides operating system functionality that controls the execution of ASM programs

on the logical hardware of the SDL abstract machine (SAM).

http://www.eecs.umich.edu/gasm/

 Rec. ITU-T Z.100/Annex F1 (10/2016) 3

[b-Glässer 2007] Glässer, U., Gurevich, Y., and Veanes, M. (2007), Abstract Communication

Model for Distributed Systems, IEEE Transactions on Software Engineering,

Vol. 30, No. 7,pp. 458-472.

 NOTE – A high level abstract model for message based communication networks is

presented. The model is based on distributed abstract state machines, has been

implemented in AsmL and has been used for testing distributed systems.

[b-Glausch] Glausch, A. and Reisig, W. (2007), A Semantic Characterization of

Unbounded-Nondeterministic Abstract State Machines, in T Mossakowski et

al. (Eds.) CALCO 2007, LNCS 4624, Springer-Verlag.

 NOTE – The axiomatic definition given by Gurevich for the sequential algorithms

captured by ASMs is extended to nondeterministic ASMs. Unbounded nondeterminism

means that there may be uncountably many update sets that could be produced by an

algorithm in a given state. However, so long as each of these is bounded in size, the fact

that only one of them is applied means that the number of state elements involved in a

computation step is bounded.

[b-Gurevich] Gurevich, Y. (1995), Evolving algebras 1993: Lipari guide, in Specification

and validation methods, Börger, E. (ed.), pp. 9-36, Oxford University Press.

[b-Gurevich 2000] Gurevich, Y. (2000), Sequential Abstract State Machines Capture Sequential

Algorithms, Microsoft Research.

F1.2 Overview of the semantics

In order to define the formal semantics of SDL-2010, the language definition is decomposed into

several parts:

– grammar

– well-formedness conditions

– transformation rules

– dynamic semantics.

The starting point for defining the formal semantics of SDL-2010 is a syntactically correct SDL-2010

specification, represented as an abstract syntax tree (AST).

The first three parts of the formal semantics are collectively referred to as static semantics or static

aspects in the context of SDL-2010 (see Figure F1-1), and are described in Part 2 of the formal

definition, i.e., Annex F2.

Figure F1-1 – Static aspects of SDL-2010

The grammar defines the set of syntactically correct SDL-2010 specifications. The ITU-T Z.100

series for SDL-2010 defines a concrete graphical grammar, a concrete textual grammar, and an

4 Rec. ITU-T Z.100/Annex F1 (10/2016)

abstract grammar. The syntax of the concrete grammars is defined formally using the Backus-Naur

form (BNF) with some extensions to capture the graphical language constructs (see clause 5.4.1 of

[ITU-T Z.111]). The abstract grammar is obtained from the concrete grammars by removing

irrelevant details such as separators and lexical rules, and by applying transformation rules (see

below). The syntax of the abstract grammar is defined in the textual presentation metalanguage for

abstract grammar (see clause 5.4.1.1 of [ITU-T Z.111]).

From the specifications that are correct with respect to the grammar syntax, the well-formedness

conditions define the specifications that are also correct with respect to context information. For

example, the well-formedness conditions define what names it is allowed to use at a given place, or

what kind of values it is allowed to assign to variable. The well-formedness conditions are defined in

terms of first order predicate calculus (PC1).

Furthermore, some language constructs appearing in the concrete grammars are replaced by other

language elements in the abstract grammar using transformation rules to keep the set of core concepts

small. These transformations are described in the 'Model' paragraphs of the ITU-T Z.100 series for

SDL-2010, and are formally expressed as rewrite rules.

The dynamic semantics apply only to syntactically correct SDL-2010 specifications that satisfy the

well-formedness conditions. The dynamic semantics defines the set of computations associated with

a specification, and are described in Part 3 of the formal definition, i.e., Annex F3.

F1.2.1 Grammar

The grammar of SDL-2010 is formalized as described above. The primary concrete grammar is given

for SDL-GR. Most of the grammar of SDL-GR is textual, but it has some graphical elements. To

enable formalisation of SDL-2010 specifications into ASM, any SDL-GR graphical element is

changed to the equivalent concrete textual representation (SDL-PR) defined in [ITU-T Z.106]. The

grammar in the ITU-T Z.100 series for SDL-2010 is designed to be a presentation grammar: it is not

made to generate a parser automatically. Moreover, some restrictions that finally guarantee

uniqueness of the semantics cannot be expressed in BNF and have been stated in the text instead.

Therefore, the grammar is defined using BNF and some text (mostly for the precedence rules). The

translation from the concrete textual SDL-2010 representation to the abstract syntax representation

of SDL-2010 (called AS1) consists of two steps. The first step from the concrete textual SDL-2010

representation to AS0 (the concrete syntax with irrelevant details such as separators and lexical rules

removed) is not formally defined, but is derived from the correspondence between the two grammars,

which is almost one-to-one. The second step, translating AS0 to AS1, is formally captured by a set

of transformation rules (see Annex F2).

F1.2.2 Well-formedness conditions

The well-formedness conditions define additional constraints that a well-formed SDL-2010

specification has to satisfy. These constraints cannot be expressed using context-free grammar rules,

but they are static, and can be defined and checked independently of the dynamic semantics of

SDL-2010 (see Annex F2). An SDL-2010 specification is valid if and only if it satisfies the syntactical

rules and the static conditions of SDL-2010. In fact, the well-formedness conditions refer to the

syntax, but they have not been stated in the concrete syntax because they are not expressible in a

context-free grammar.

There are five kinds of well-formedness conditions:

– Scope/visibility rules: The definition of an entity introduces an identifier used as the reference

to the entity. Only the use of visible identifiers is allowed. The scope/visibility rules are

applied to determine whether the corresponding definition of an identifier is visible or not.

– Disambiguation rules: Sometimes a name might refer to several identifiers. Rules are applied

to find out the correct one.

 Rec. ITU-T Z.100/Annex F1 (10/2016) 5

– Data type consistency rules: These rules ensure that dynamically, no operation is applied to

operands that do not match its argument types. More specifically, the data type of an actual

parameter has to be compatible with that of the corresponding formal parameter; and the data

type of an expression has to be compatible with that of the variable to which the expression

is assigned.

– Special rules: There are some rules applicable to specific entities. For example, it is not

allowed to export a procedure variable (that is, a variable defined within a procedure).

– Plain syntax rules: There are some rules that refer to the correctness of the concrete syntax,

and that have no counterpart in the abstract syntax. For instance, the names at the beginning

and at the end of a definition in SDL-PR have to match.

F1.2.3 Transformation rules

For a language with a rich syntax, it is important to identify the core concepts matching the intentions

of the language designer. Further language constructs that are introduced for convenience, but do not

add to the expressiveness of the language (such as shorthand notations), can be replaced using these

core concepts. Since replacements, which are described by transformation rules, can be formalized,

it suffices to define the dynamic semantics only for the core concepts, which adds to its conciseness

and intelligibility. In Figure F1-1, the general approach is shown. The language is defined with its

concrete grammar using lexical and syntax rules. Consistency constraints are defined on this concrete

grammar.

The ITU-T Z.100 series for SDL-2010 prescribes the transformation of SDL-2010 specifications by

a sequence of transformation steps. Each transformation step consists of a set of single

transformations as stated in the Model clauses, and determines how to handle one special class of

shorthand notations. The result of one step is used as input for the next step.

To formalize the transformation rules of SDL-2010, the rewrite rules in PC1 are used. These rules

define patterns of the AST, which are to be replaced by other AST patterns. In fact, several groups of

such rewrite rules are defined that are applied in turn. A single transformation is realized by the

application of a rewrite rule to the concrete specification, which essentially means to replace parts of

the specification by other parts as defined by the rule (see Annex F2).

F1.2.4 Dynamic semantics

The dynamic semantics (clauses F3.2 and F3.3) consists of the following parts (see Figure F1-2):

a) The SDL-2010 Abstract Machine (SAM): this is defined using ASM. The definition of the

SAM is divided into three parts, corresponding to the abstract syntax:

i) basic signal flow concepts (such as signals, timers, gates, channels) defined in terms of

an ASM model in clause F3.2.1.1;

ii) various types of ASM agents to model corresponding SDL-2010 agents in clause

F3.2.1.2; and

iii) signal processing and behaviour primitives (the abstract machine instructions of the

SAM) in clause F3.2.1.4 (that uses the interface to the data type part in clause F3.2.1.3).

b) The compilation function (clause F3.2.2): this maps the AST of an SDL-2010 specification

to SAM behaviour primitives that model the actions of the SDL-2010 agents. The compilation

function amounts to an abstract compiler taking the AST of the state machines as input and

transforming it to SAM instructions.

c) The SAM Programs (clause F3.2.3): these define the set of computations. These programs

consist of an initialization phase and an execution phase. SAM programs have fixed parts

that are the same for all SDL-2010 specifications, and variable parts that are generated from

the abstract syntax representation of a given SDL-2010 specification.

6 Rec. ITU-T Z.100/Annex F1 (10/2016)

i) The initialization (clause F3.2.3.1) phase handles static structural properties of the

specification. The pre-initial state of a system is defined followed by several initialization

programs. The initial system state is then reached by creating the SDL-2010 system

agent, and by activating this agent in the pre-initial state. The initialization recursively

unfolds the static structure of the system, creating further SDL-2010 agents as specified

so that all the initial objects are created. The same process is initiated in the subsequent

execution phase, whenever SDL-2010 agents are created. From this point of view, the

initialization merely describes the instantiation of the SDL-2010 system agent.

ii) The execution (clause F3.2.3.2) phase is modelled by distinguishing two alternating

phases, namely the selection and the firing of transitions.

d) The data semantics (clause F3.3): this is separated from the rest of the semantics by an

interface (clause F3.2.1.3). The use of an interface is intentional at this place. It allows the

data model to be exchanged, if for some application area another data model is more

appropriate than the SDL-2010 built-in model. Moreover, the SDL-2010 built-in model can

be changed this way without affecting the rest of the semantics.

Figure F1-2 – Overview of the dynamic semantics

The formal semantics is formalized starting from the abstract syntax AS1 of SDL-2010. From this

abstract syntax, a behaviour model for SDL-2010 specifications is derived that can be understood as

abstract code generated from an SDL-2010 specification. The approach chosen here is based on an

abstract operational view using the ASM formalism as the underlying mathematical framework for a

rigorous semantic definition of the SAM model. The compilation defines an abstract compiler

mapping the behaviour parts of SDL-2010 to abstract code (denotational semantics). Finally, the

initialization describes an interpretation of the abstract syntax tree to build the initial system structure

(operational semantics).

The dynamic semantics associates a particular distributed, real-time ASM with each SDL-2010

specification. Intuitively, an ASM consists of a set of autonomous agents cooperatively performing

concurrent machine runs. The behaviour of an agent is determined by an ASM program, each

consisting of a transition rule that defines the set of possible computations (called "runs" in the context

of ASM). Each agent has its own partial view on a global state, which is defined by a set of static and

dynamic functions and domains. By having non-empty intersections of partial views, interaction

among agents can be modelled. An introduction to the ASM model, and the notation used in

Annexes F1, F2 and F3, is given in clause F1.3.

 Rec. ITU-T Z.100/Annex F1 (10/2016) 7

F1.3 Abstract State Machines

This clause explains the basic notions and concepts of Abstract State Machines (ASM) as well as the

notation used in these Annexes F1, F2 and F3 to define the SDL-2010 abstract machine model. The

objective here is to provide an intuitive understanding of the formalism; for a rigorous definition of

the mathematical foundations of ASM and its application, the reader is referred to [b-Gurevich],

[b-Blass], [b-Blass 2008], [b-Glausch], [b-Börger & Stärk] and [b-Börger]. A discussion and

motivation of the appropriateness of the semantic framework used here is given in [b-Eschbach],

[b-Eschbach 2001] and [b-Glässer]. Further references on ASM-related material can also be found on

the ASM webpages [b-ASM].

The ASM model used to define the dynamic semantics of SDL-2010 is explained in several steps.

Firstly, the basic ASM model with a single agent is treated (see clause F1.3.1). Next, this model is

extended to cover multi-agent systems (see clause F1.3.2). Then, open systems, i.e., systems

interacting with an environment they cannot control, are addressed by adding the notion of external

world (see clause F1.3.3). Finally, the model is extended by introducing a notion of real-time

behaviour (see clause F1.3.4). To illustrate these steps, an ASM model for a simple system is

developed, step-by-step. The final ASM model of this system is summarized in clause F1.3.5.

Additional notation used to define the dynamic semantics of SDL-2010 is explained in clause F1.3.6.

Example (Informal description):

In order to illustrate the ASM model, a simple resource management system (RMS) consisting of a

group of n > 1 agents competing for a resource (for instance, a device or service) is defined.

Informally, this system is characterized as follows:

– There is a set of m tokens, m< n, used to grant exclusive or non-exclusive (shared) access to

the resource.

– Depending on whether the desired access mode is exclusive or shared, an agent must own all

tokens or one token, respectively, before the agent may access the resource.

– An agent is idle when not competing for a resource, waiting when trying to obtain access to

the resource, or busy while owning the right to access the resource.

– Once an agent is waiting, it remains so until it obtains access to the resource.

– A busy agent releases the resource when it is no longer needed, as indicated by a stop

condition for that agent that is externally set. On releasing the resource, all tokens owned by

the agent are returned.

– Stop conditions are only indicated when an agent is busy. This is an integrity constraint on

the behaviour of the external world.

– Initially, all agents are idle, and all tokens are available.

The system will be defined step by step, as the explanations of the ASM model proceed, starting with

the basic ASM model with a single agent. The final ASM model of this system is summarized in

clause F1.3.5.

F1.3.1 Basic ASM model

F1.3.1.1 Overview

An abstract state machine (ASM) is a model of computation that treats first-order structures as

dynamic entities whose states can change during a computation.

An abstract state machine has a set states S, a subset of initial states S0 S and a function τ: S → S,

called the one-step transformation. Every state is a first-order structure. All the states of an ASM have

the same signature, which is also called the signature of the ASM, and all the states have the same

base set, also called the base set of the ASM. τ does not change the base set, but it does, in general,

change the values of the functions in a state.

8 Rec. ITU-T Z.100/Annex F1 (10/2016)

The behaviour of an abstract state machine is modelled as a run or sequence of states. A run starts

with an initial state, and each subsequent state is derived from its predecessor by application of the

one-step transformation. Each application of the one-step transformation is called a move.

 τ τ τ moves

s0 S0 s1 s2 ... states

F1.3.1.2 States

The base set of the abstract state machine, which is the base set of every state of the ASM, contains

three distinct elements: true, false and undefined. The base set also contains an infinite number of

reserve elements. A state also has functions and predicates that are defined over the base set. All

functions are total, with undefined being used to mimic partial functions. Predicates are functions

whose only possible values are true or false. Special unary predicates called domain names identify

members of the base set as belonging to particular domains. This allows states to be viewed as many-

sorted structures.

Embedded within a state are certain substructures or background classes [b-Blass] and

[b-Blass 2008]. One such background includes true, false, the domain name BOOLEAN and the

Boolean operators. The backgrounds used in modelling SDL-2010 include numbers, sets and

sequences. A minimal background is defined in [b-Blass] and [b-Blass 2008] to characterize the

ASMs that model parallel algorithms.

F1.3.1.3 One-step transformation

The one-step transformation τ updates the values of functions. In general, for s S, some equivalences

hold in s but not in τ(s) and vice versa. In some cases, τ has no effect, so s and τ(s) are the same.

To express the relationship between s and τ(s) more precisely, the changes effected by τ are described

in terms of an update set. An update set Δ is a set of triples <f, [a], b> where f is a function symbol,

[a] is a tuple of elements of the base set of the abstract state machine that respects the signature of f,

and b is an element of the base set. The relationship between s and τ(s) is expressed by stating that Δ

contains all information of the form f [a]= b that is not true in the state s but is true in τ(s) [b-Blass].

The pair <f, [a]> is also called a location of a state s. This captures the idea of updating the value of

a variable in a conventional imperative programming language. A member <f, [a], b> of an update

set is also known as an update and may be written f [a]:= b to reinforce the idea of variable

assignment.

An abstract state machine provides a model of computation for an algorithm that is expressed as a

program using a programming-style syntax. The algorithm defines the update set for every state of

the ASM. To facilitate the study of the kinds of algorithms captured by different kinds of ASM,

axioms [b-Blass] have been developed to define classes of ASMs in a syntax-independent way

[b-Glausch]. As well as capturing the ideas of state and one-step transformation outlined above (the

Sequential Time and Abstract State postulates, [b-Blass] and [b-Gurevich 2000]), axioms aim to

capture the idea that the amount of computation required to move from s to τ(s) must be bounded,

where the bound depends only on the algorithm and not on the state.

F1.3.1.4 Specifying an abstract state machine

An ASM specification consists of a set of declarations that define its vocabulary (signature), and a

transition rule that defines the one-step transformation τ: S → S. The transition rule (ASM program)

is defined using a pseudo-code-like syntax based on terms defined over the signature.

 Rec. ITU-T Z.100/Annex F1 (10/2016) 9

F1.3.1.5 Specifying the vocabulary (Signature)

All the states of an ASM have the same vocabulary. The vocabulary comprises function names,

predicate names and domain names. Names in the vocabulary have a specified arity, and are

interpreted over the base set of the states of an ASM. The interpretation of names respects their arity.

The following notational conventions are used when declaring names.

– Domain names start with an uppercase letter and presented in small-capitalized italics (as in

AGENT), except when denoting a non-terminal of the SDL-2010 abstract grammar. In that

case, domain names are written as the SDL-2010 non-terminals, i.e., in italics, hyphenated,

and starting with an uppercase letter (as in Agent-definition). A domain name D is declared

by domain D. A domain name is interpreted as a unary predicate which yields true for the

members of the base set that belong to the domain.

– Function names are written in italics starting with a lowercase letter (as in mode). A function

name f is declared by f: D1D2...Dn D0, where n is the arity of f, and D0, D1, D2... Dn are

domain names. A function name is interpreted as a function over the base set. The

interpretation respects the arity of f.

– Predicate names that are not Domain names are also written in italics (as in available). A

predicate name p is declared by p: D1D2...Dn BOOLEAN. A predicate is interpreted as a

function whose value is either true or false.

Declarations also include qualifiers, which specify further restrictions on their allowable

interpretations. Qualifiers on name declarations constrain interpretation of the one-step

transformation.

– Static names are qualified by the keyword static. A name that is declared static has the same

interpretation in every state of an ASM. This means that the one-step transformation cannot

update a static name. So the interpretation of a static domain name yields true for the same

elements in every state, and a static function name yields the same value for a given argument

tuple in every state of an ASM.

– Dynamic names are qualified by one of the keywords controlled, shared or monitored. The

one-step transformation can change the value of the interpretation of a dynamic name. A

dynamic function can yield different values for a given set of arguments in different states of

an ASM. An ASM can be subject to external environmental influences. ASM agents can

communicate [b-Glässer 2007]. When any of these situations is specified, the keywords

controlled, shared and monitored constrain visibility and updates of domains, functions and

predicates.

10 Rec. ITU-T Z.100/Annex F1 (10/2016)

Example: Declaring the vocabulary (signature) of the RMS:

static domain AGENT

static domain TOKEN

domain MODE

shared mode: AGENT MODE

controlled owner: TOKEN AGENT

static ag: AGENT

idle: AGENT BOOLEAN

waiting: AGENT BOOLEAN

busy: AGENT BOOLEAN

available: TOKEN BOOLEAN

monitored stop: AGENT BOOLEAN

domain names AGENT, TOKEN and MODE are introduced to represent the (single) agent of the system,

the set of tokens, and the different access modes (exclusive, shared), respectively. The names mode

and owner denote dynamic functions; they are used to model the current access mode of an agent and

the current owner of a token, respectively. The 0-ary function name ag refers to a value of the domain

AGENT. idle, waiting, busy, and available are names of derived, dynamic predicates. stop denotes a

monitored predicate, which will be explained later.

The vocabularies we will consider also include predefined names, which include all the items in the

background classes of the ASM. These include the equality sign, the 0-ary predicate names true, false

and undefined, the domain names BOOLEAN, NAT and REAL, as well as the names of frequently used

standard functions (such as Boolean operations , , , , , and set operations , , , , ,

etc.). The full collection of predefined names is listed in clause F1.3.6. Interpretation of predefined

names is constrained to the usual meanings of those names.

The notational conventions described above enable declaration of basic names that are interpreted

directly over the ASM base set. As well as basic names, the signature of an ASM may include derived

names, whose interpretation depends on the interpretation of the basic names. Derived names are

defined using logical formulae involving other names. The interpretation of a derived name is

determined by the interpretations of those other names, and ultimately by the interpretation of base

names.

Let derivedName be an n-ary name, and let formula(v1,...,vn) denote a formula of the domain D with

free variables v1,...,vn of domains D1,...,DN, n 0. The general form of a derived name definition is:

 derivedNameDefinition::= derivedName(v1:D1,...,vn:Dn):D =def formula(v1,...,vn)

The result domain D is omitted in case of a derived domain definition.

Example (Definitions):

The following derived predicates are defined to refer to the status of an agent/token in a given state:

MODE =def {exclusive, shared}

idle(a:AGENT): BOOLEAN =def a.mode = undefined t TOKEN: t.owner a

waiting(a:AGENT): BOOLEAN =def a.mode undefined t TOKEN: t.owner a

busy(a:AGENT): BOOLEAN =def a.mode undefined t TOKEN: t.owner = a

available(t:TOKEN): BOOLEAN =def t.owner = undefined

An agent a is, for instance, idle if the function mode yields the value undefined for that agent, and a

does not hold any token. A token t is available if no agent is holding t.

For an improved readability, use of the "."-notation is allowed for unary functions and predicates. For

instance, a.mode is equivalent to mode(a).

 Rec. ITU-T Z.100/Annex F1 (10/2016) 11

F1.3.1.6 Initial states

The set of initial states S0 S is defined by constraints imposed on domains, functions and predicates

as associated with the names in V. The initial constraints for predefined domains and operations are

given implicitly (see clause F1.3.6). Initial constraints have the following general form:

initially ClosedFormula

Example (Initial states):

The following constraints define the set of initial states of the system RMS:

initially AGENT = {ag}

initially a AGENT: a.idle t TOKEN: t.available

The first constraint defines the initial set AGENT to consist of a single element ag. The second

constraint expresses that initially, the agent of RMS is idle (a.mode = undefined), and all tokens are

available (t.owner = undefined). Note that no constraint on stop is defined.

F1.3.1.7 State transitions and runs

A (global) state s S is given by an interpretation of the names in V over the base set of M. State

transitions can be defined in terms of partial reinterpretations of dynamic domains, functions and

predicates. This gives rise to the notions of location as a conceptual means to refer to parts of global

states, and of update to describe state changes.

A location of a state s of M is a pair locs = <f, s(x)>, where f is a dynamic name in V, and s(x) is a

sequence of elements of the base set according to the arity of f. An update of s is a pair s = <locs,

s(y)>, where s(y) identifies an element of the base set as the new value to be associated with the

location locs. To fire s means to transform s into a state s' of M such that fs'(s(x)) = s(y), while all

other locations loc's of s, loc's locs, remain unaffected. In other words, firing an update modifies the

interpretation of a state in a well-defined way.

The potential behaviour of a basic ASM is captured by a program P, which is defined by a transition

rule (see clauses F1.3.1.8 and F1.3.1.10). For each state s S, a program P of M defines an update

set s(P) as a finite set of updates of s. s(P) is consistent, if and only if it does not contain any two

updates s, 's such that s = <locs, s(y)>, 's = <locs, s(y')>, and s(y) s(y'). The firing of a consistent

update set s(P) in state s means to fire all its members simultaneously, i.e., to produce (in one atomic

step) a new state s' such that for all locations locs = <f,s(x)> of s, fs'(s(x)) = s(y), if <<f,s(x)>,s(y)>

s(P), and fs'(s(x)) = fs(s(x)) otherwise, and is called state transition. Firing an inconsistent update set

has no effect, i.e., s' = s.

NOTE – In the context of the SDL-2010 semantics, an inconsistent update set indicates an error in the semantic

model. The ASM semantics ensures that such errors do not destroy the notion of state.

The behaviour of a single-agent ASM M is modelled through (finite or infinite) runs of M, where a

run is a sequence of state transitions of the form:

 s0(P) s1(P) s2(P) moves

s0 s1 s2 ... states

such that s0 S0, and si+1 is obtained from si, for i 0, by firing si(P) on si, where si(P) denotes an

update set defined by the program P of M on si (see clause F1.3.1.10). The meaning of an ASM is

defined to be the set of all its runs. In the sequel, we restrict attention to runs starting in an initial

state, also called regular runs.

12 Rec. ITU-T Z.100/Annex F1 (10/2016)

F1.3.1.8 Transition rules

Transition rules specify update sets over ASM states. Complex rules are formed from elementary

rules using various rule constructors. The elementary form of transition rule is called update

instruction.

– update instruction

Rule ::= f(t1,...,tn) := t0 (n 0)

Here, f is a non-static name of V denoting either a controlled or a shared function, predicate or domain,

and t0,t1,...,tn are terms over V identifying, for a given state s, the location loc = <f,<s(t1),..., s(tn)>> to

be changed and the new value s(t0) to be assigned, respectively. In other words, the above update

instruction specifies the update set {<<f,<s(t1),..., s(tn)>>, s(t0)>}, consisting of a single update. Note

that only locations related to (non-static) basic names may occur at the left-hand side of an update

instruction.

Example (Update instruction):

Let t be a variable denoting a token and ag be an agent.

t.owner : = ag specifies the update set {<<owner, <s(t)>>, s(ag)>}

ag.mode : = undefined specifies the update set {<<mode, <s(ag)>>, s(undefined)>}

The construction of complex transition rules out of elementary update instructions is recursively

defined by means of ASM rule constructors. For the ASM model applied to define the SDL-2010

semantics, six different constructors (if-then, do-in-parallel, do-forall, choose, extend, let) are used.

These constructors are listed below, with an informal description of their meaning. Here, Rule, Rulei

denote transition rules, g denotes a Boolean term, and v,v1,...,vn denote free variables over the base

set of M. The scope of a rule constructor is expressed by appropriate keywords, and can additionally

be indicated by indentation. The closing keywords can be omitted, if no confusion arises. If closing

keywords are omitted, the corresponding constructor extends as much as possible, but not over the

next where-clause.

– if-then-constructor

Rule ::= if g then

 Rule1

 [else

 Rule2]

 endif

The update set specified by Rule in a given state s is defined to be the update set of Rule1 or Rule2,

depending on the value of g in state s. Without the optional else-part, the update set defined by Rule

is the update set of Rule1 or the empty update set. Sometimes, elseif is used as abbreviation for else if.

– do-in-parallel-constructor

Rule ::= [do in-parallel]

 Rule1

 ...

 Rulen

 [enddo]

The update set defined by Rule in state s is defined to be the union of the update sets of Rule1 through

Rulen. In other words, the order in which transition rules belonging to the same block are stated is

irrelevant. For brevity, the keywords do in-parallel and enddo may be omitted, where no confusion

arises. Hence, an ASM program often appears as a collection of rules rather than a monolithic block

rule.

– do-forall-constructor

 Rec. ITU-T Z.100/Annex F1 (10/2016) 13

Rule ::= do forall v: g(v)

 Rule0(v)

 enddo

The effect of Rule is that Rule0 is fired simultaneously for all elements v of the base set of M for which

the Boolean condition g(v) holds in state s, where v is a free variable in Rule0. More precisely, s(Rule)

is the union of all update sets s(Rule0(v)) such that g(v) holds in state s. Recall that update sets are

required to be finite; therefore, g(v) must hold for a finite number of values only.

– choose-constructor

Rule ::= choose v: g(v)

 Rule0(v)

 endchoose

The effect of Rule is that Rule0 is fired for an element v of the base set of M for which the condition

g(v) holds in state s, where v is a free variable in Rule0. More precisely, s(Rule) is some update set

s(Rule0(v)) such that g(v) holds in state s, or the empty update set if no such v exists.

– extend-constructor

Rule ::= extend D with v1,...,vn

 Rule0(v1,...,vn)

 endextend

The effect of Rule when fired at state s is that n reserve elements of s (see clause F1.3.1.2) are

imported into the dynamic domain D (while being removed from the reserve), that v1,...,vn become

bound to one of the imported elements each, and then Rule0(v1,...,vn) is fired.

The extend constructor can be used to mimic object-based ASM definitions, where objects are

dynamically created. Thus, for each object to be created, an element from the reserve is assigned to

the corresponding domain, and initialized.

NOTE – extend can be defined in terms of the import constructor (not shown here); however, the import

constructor is not used in the formal definition of SDL-2010.

– let-constructor

Rule ::= let v = expression in

 Rule0(v)

 endlet

The effect of Rule when fired in some state s is that v is bound to the value of expression, and that

Rule0 is fired with this value.

Example (Transition rule with if-then and choose):

The following transition rule defines the behaviour of agent ag when requesting shared access, i.e.,

when ag.mode = shared. The rule applies the if-then-constructor, the choose-constructor, and an

update instruction.

if ag.mode = shared ag.waiting then

 choose t: t TOKEN t.available

 t.owner := ag

 end choose

endif

The precise meaning of the rule is given by its update set with respect to a state s, which is either

{<<owner, <s(t)>>, s(ag)>} for some token s(t) available in s, if all further predicates stated in the if-

then-constructor hold in s, or the empty update set otherwise.

14 Rec. ITU-T Z.100/Annex F1 (10/2016)

F1.3.1.9 Abbreviations

Rules can be structured using abbreviations, consisting of rule macros and derived names, which

may have parameters. This allows for hierarchical definitions, and the stepwise refinement of

complex rules, which supports the understanding of ASM model definitions.

Derived names are introduced (as explained in clauses F1.3.1.5 and F1.3.5.3), i.e., by declaration and

definition, or alternatively, in the compact form, by combining declaration and definition.

– rule-macro-definition

 Let Rule0 denote a transition rule with free variables v1,...,vn of domains D1,...,DN, n 0. The

general form of a rule macro definition is:

RuleMacroDefinition ::= RuleMacroName(v1:D1,...,vn:DN)

 Rule0(v1,...,vn)

 Rule macro names are, by convention, written in small capitals, with a leading capital letter

(as in SHAREDACCESS).

– where-part

 By default, rule macros and derived names have a global scope. However, their scope can

also be restricted to a particular transition rule Rule by using the where-part.

Rule ::= Rule0

where

 (RuleMacroDefinition | DerivedNameDefinition)+

endwhere

– rule-macro-constructor

 Rule macros are applied in transition rules as follows:

Rule ::= RuleMacroName(t1,...,tn)

 Formally, rule macros are syntactical abbreviations, i.e., each occurrence of a macro in a rule

is to be replaced textually by the related macro definition (replacing formal parameters by

actual parameters).

Example (Rule macro):

The transition rule from the previous example can be stated using rule macros, and be defined as a

macro itself. Here, SHAREDACCESS is a macro definition with global scope that can be used in other

places of the ASM model definition. GETTOKEN is a parameterized macro definition with a local scope

restricted to the rule SharedAccess, with formal parameter a. When GETTOKEN is applied in

SHAREDACCESS, a is replaced by the actual parameter ag.

SHAREDACCESS

 if ag.mode = shared ag.waiting then

 GETTOKEN(ag)

 endif

 where

 GETTOKEN(a:AGENT)

 choose t: t TOKEN t.available

 t.owner := a

 end choose

 endwhere

 Rec. ITU-T Z.100/Annex F1 (10/2016) 15

F1.3.1.10 ASM programs

An ASM program P is given by a framed transition rule (or rule for short) of the following form:

Rule

As already mentioned, rule macro definitions may either have a local or a global scope. To have a

global scope, the macro definitions can be given outside the ASM program and can thus also be

applied in the ASM program.

In the basic ASM model there is just one ASM program, which is statically associated with an

implicitly defined agent executing this program. The next clause allows several ASM programs to be

defined and associated with different agents that are introduced dynamically during abstract machine

runs.

Example (ASM program):

The ASM program P of the system RMS is defined as follows:

do in-parallel

 SHAREDACCESS

 EXCLUSIVEACCESS

 RELEASEACCESS

enddo

where

SHAREDACCESS

 if ag.mode = shared ag.waiting then

 choose t: t TOKEN t.available

 t.owner := ag

 endchoose

 endif

EXCLUSIVEACCESS

 if ag.mode = exclusive t TOKEN: t.available then

 do forall t: t TOKEN

 t.owner := ag

 enddo

 endif

RELEASEACCESS

 if ag.busy ag.stop then

 do in-parallel

 ag.mode := undefined

 do forall t: t TOKEN t.owner = ag

 t.owner := undefined

 enddo

 enddo

 endif

endwhere

The ASM program is defined by a single transition rule as shown in the frame. The transition rule

uses the do-in-parallel-constructor and 3 rule macros, which results in a hierarchical rule definition.

16 Rec. ITU-T Z.100/Annex F1 (10/2016)

F1.3.2 Distributed multi-agent ASM

Mathematical modelling of concurrent and reactive systems requires more than the basic ASM model

described above. This section presents the concept of a distributed ASM operating in parallel with its

external environment, where the environment behaves as one or more ASMs.

A distributed Abstract State Machine M is defined over a given vocabulary V by its states S, its initial

states S0 S, its agents A, and its programs P. These items will be explained in the following

subclauses insofar as they differ from the basic ASM model.

F1.3.2.1 Vocabulary

The vocabulary V of a multi-agent ASM M includes distinguished domain names:

controlled domain AGENT

static domain PROGRAM

representing a dynamic set A of agents and an invariant set P of ASM programs, respectively. AGENT,

PROGRAM and program: AGENT PROGRAM constitutes further background classes.

Furthermore, V includes a distinguished function name:

controlled program: AGENT PROGRAM

and a special 0-ary function Self (see clause F1.3.2.2), whose interpretation is different for each agent.

F1.3.2.2 Agents and runs

A multi-agent, distributed ASM has a finite number of agents. Agents can be created and destroyed

dynamically. Each agent executes its own basic ASM. The behaviour of each agent is determined by

a program, which is defined by a transition rule. The association between agents and their behaviour

is specified by the background function program: AGENTPROGRAM. This function can be updated,

allowing agents' behaviour to be modified dynamically, and allowing behaviour to be assigned to

newly created agents.

Agents operate concurrently and interact by sending messages to one another (see [b-Blass] and

[ITU-T Z.101]). More precisely, agents interact by updating locations that are accessible to other

agents. Agents can act as COMMUNICATORS [b-Glässer], whose behaviour is to read input locations,

transform the values read, and update output locations that can be read by other agents. In this way

messages can be passed asynchronously between agents without the original source or the final

destination necessarily having a commonly accessible location. Agents also interact with an external

environment, which can be viewed as an agent in its own right, or as a collection of agents.

A multi-agent distributed ASM is formed by combining its constituent single-agent ASMs. Like a

single agent ASM, it has a set states S, a subset of initial states S0 S and a function τ: S → S, called

the one-step transformation.

To assign a behaviour to an agent of M, the distinguished function program (see clause F1.3.2.1)

yields (for each agent a of M) the program of P to be executed by a. The function program thus allows

the definition (or redefinition) of the behaviour of agents dynamically; it is thereby possible to create

new agents at run time. In a given state s of M, the agents of M are all those elements a of s such that

a.program identifies a behaviour (as defined by some program of P) to be associated with a.

A special 0-ary function Self serves as a self-reference identifying the respective agent calling Self:

monitored Self: AGENT

For every agent, Self has a different interpretation. By using Self as an additional function argument,

each agent a can have its own partial view of a given global state of M on which it fires the rule in

a.program.

 Rec. ITU-T Z.100/Annex F1 (10/2016) 17

Example (Scheme of a distributed ASM):

In the following figure, a particular distributed ASM M, consisting of three agents ag1, ag2, and ag3

is illustrated. The function program associates, with each agent, one of the ASM programs P1, P2,

and P3. Here, ag1 and ag2 are assigned the same program. Program P2 is currently not associated with

any agent; however, this may change during execution, as program is a dynamic function. Each agent

has its own partial view on a given global state s of M, in which it fires the rule of its current program.

In the figure, this view is illustrated by the function view, which yields, for each agent, its local and

its shared state. In fact, the current view of each agent is determined implicitly by the ASM model

definition, including the ASM programs.

The semantic model of concurrency underlying the distributed ASM model defines behaviour in

terms of partially ordered runs. A partially ordered run represents a certain class of (admissible)

machine runs by restricting non-determinism with respect to the order in which the individual agents

may perform their computation steps, so-called moves. To avoid that agents interfere with each other,

moves of different agents need only be ordered if they are causally dependent (as detailed below).

Partially ordered runs

Regarding the moves of an individual agent, these are linearly ordered, whereas moves of different

agents need only be ordered in case they are not independent of each other. Intuitively, independent

moves model concurrent actions that are incomparable with regard to their order of execution. The

precise meaning of independence is implied by the coherence condition in the formal definition of

partially ordered runs [b-Gurevich].

A run of a distributed ASM M is given by a triple (,A,) satisfying the following four conditions:

a) is a partially ordered set of moves, where each move has only a finite number of

predecessors;

b) A is a function on associating agents to moves such that the moves of any single agent of

M are linearly ordered;

c) assigns a state of M to each initial segment Y of , where (Y) is the result of performing

all moves in Y; if Y is empty, then (Y) S0;

d) if y is a maximal element in a finite initial segment Y of and Z = Y – { y }, then A(y) is an

agent in (Z) and (Y) is obtained from (Z) by firing A(y) at (Z) (coherence condition).

Implications

Partially ordered runs have certain characteristic properties that can be stated in terms of

linearizations of partially ordered sets. A linearization of a partially ordered set is a linearly ordered

set ' with the same elements such that if y < z in then y < z in '. Accordingly, the semantic model

of concurrency (as implied by the notion of a partially ordered run) can further be characterized as

follows [b-Gurevich]:

– All linearizations of the same finite initial segment of a run of M have the same final state.

– A property holds in every reachable state of a run of M if and only if it holds in every

reachable state of every linearization of .

F1.3.2.3 Distributed ASM programs

A distributed ASM M has a finite set P of programs. Each program p P is given by a program name

and a transition rule (or rule for short). The program name uniquely identifies p within P, and is

represented by a unary static function. Programs are stated in the following form:

ASM-PROGRAM:

Rule

18 Rec. ITU-T Z.100/Annex F1 (10/2016)

NOTE – Strictly, the program names of M are represented by a distinguished set of elements from the base

set.

Program names are, by convention, hyphenated and written in small capitals, with a leading uppercase

letter (as in RESOURCE-MANAGEMENT-PROGRAM).

By default, the following implicit constraint applies:

initially PROGRAM = {PROGRAM1,...,PROGRAMn}

where PROGRAM1,.. ,PROGRAMN are the names of the programs that are defined in the ASM model.

Example (ASM program):

The distributed ASM program of the system RMS defines a single program as follows:

 RESOURCE-MANAGEMENT-PROGRAM:

 do in-parallel

 SHAREDACCESS

 EXCLUSIVEACCESS

 RELEASEACCESS

 enddo

 where

 SHAREDACCESS

 if Self.mode = shared Self.waiting then

 choose t: t TOKEN t.available

 t.owner := Self

 endchoose

 endif

 EXCLUSIVEACCESS

 if Self.mode = exclusive t TOKEN: t.available then

 do forall t: t TOKEN

 t.owner := Self

 enddo

 endif

 RELEASEACCESS

 if Self.busy Self.stop then

 do in-parallel

 Self.mode := undefined

 do forall t: t TOKEN t.owner = Self

 t.owner := undefined

 enddo

 enddo

 endif

 endwhere

The program of the distributed ASM has the name Resource-Management-Program, and is defined

as the single-agent ASM program before, with one difference: all occurrences of ag have been

replaced by calls of the function Self. This allows the association of the program with different agents,

while accessing the local state of these agents.

F1.3.3 The external world

Following an open system view, interactions between a system and the external world, e.g., the

environment into which the system is embedded, are modelled in terms of various interface

mechanisms. Regarding the reactive nature of distributed systems, it is important to clearly identify

and precisely state:

 Rec. ITU-T Z.100/Annex F1 (10/2016) 19

– preconditions on the expected behaviour of the external world; and

– how external conditions and events affect the behaviour of an ASM model.

This is achieved through a classification of dynamic ASM names into three basic categories of names,

which extends the classification of names shown in Figure F1-3:

– controlled names

These domains, functions or predicates can only be modified by agents of the ASM model, according

to the executed ASM programs. Controlled names are preceded by the keyword controlled at their

point of declaration, and are visible to the environment. See Figure F1-3.

– monitored names

These domains, functions or predicates can only be modified by the environment, but are visible to

ASM agents. Thus, a monitored domain, function or predicate may change its values from state to

state in an unpredictable way, unless this is restricted by integrity constraints (see below). Monitored

names are preceded by the keyword monitored at their point of declaration. See Figure F1-3.

– shared names

These domains, functions or predicates are visible to and may be altered by the environment as well

as by the ASM agents. Therefore, an integrity constraint on shared domains, functions or predicates

is that no interference with respect to mutually updated locations must occur. Hence, it is required

that the environment itself acts like an ASM agent (or a collection of ASM agents). Shared names are

preceded by the keyword shared at their point of declaration. See Figure F1-3.

Example (External world):

The vocabulary V of the system RMS is extended by a classification of dynamic functions and

predicates:

 shared mode: AGENT MODE

 controlled owner: TOKEN AGENT

 monitored stop: AGENT BOOLEAN

The function mode, which determines the current access mode, is shared. It may be affected by

externally controlled ‘set’ operations, switching it to one of the values exclusive or shared.

Furthermore, it is reset internally when the resource is released (see clause F1.3.2.3).

The predicate stop represents an external stop request, such as an interrupt, and therefore is

monitored.

Figure F1-3 – Extended classification of ASM names

In general, the influence of the environment on the system through shared and monitored names may

be completely unpredictable. However, preconditions on the expected environment behaviour may

be expressed by stating integrity constraints, which are required to hold in all states and runs of M.

Note that integrity constraints merely express preconditions on the environment behaviour, but not

properties the system is supposed to have.

Integrity constraints are stated in the following form:

IntegrityConstraint ::= constraint ClosedFormula

Example (Integrity constraints):

The following integrity constraint states that stop requests are only generated for busy agents:

20 Rec. ITU-T Z.100/Annex F1 (10/2016)

constraint a AGENT: (a.stop a.busy)

F1.3.4 Real-time behaviour

By introducing a notion of real time and imposing additional constraints on runs, we obtain a

specialized class of ASMs, called distributed real-time ASM, with agents performing instantaneous

actions in continuous time. Essentially, that means that agents fire their rules at the moment they are

enabled.

To incorporate real-time behaviour into the underlying ASM execution model, we introduce a 0-ary

monitored real-valued function currentTime. Intuitively, currentTime refers to the physical time. As

an integrity constraint on the nature of physical time, it is assumed that currentTime changes its values

monotonically increasing over ASM runs.

monitored currentTime: REAL

Consider a given vocabulary V containing REAL (but not currentTime) and let V+ be the extension of

V with the function symbol currentTime. Restrict attention to V+-states where currentTime evaluates

to a real number. One can then define a run R of the resulting machine model as a mapping from the

interval [0,) to states of vocabulary V+ satisfying the following discreteness requirement:

1) for every t 0, currentTime evaluates to t at state R(t);

2) for every > 0, there is a finite sequence 0 = t0 < t1 <…< tn = such that if ti < < < ti+1

then () = ().

where the reduct of R(t) to V is denoted by (t) such that for a given value t, (t) is derived from R(t)

by ignoring the interpretation of the function name currentTime.

Exploiting the discreteness property, one effectively obtains some finite representation (history) for

every finite (sub-) run by abstracting from those states that are not considered as significant such that

they contribute any relevant information to a behaviour description. In particular, one can simply

ignore all states that are identical to their preceding state except that currentTime has increased. From

the above definition of run it follows that only finitely many states are left.

F1.3.5 Example: The system RMS

In this clause, we assemble the pieces of the ASM model definition of the system RMS into their final

version. For better reference, we also repeat the informal description.

F1.3.5.1 Informal description

In order to illustrate the ASM model, a simple resource management system RMS consisting of a

group of n > 1 agents competing for a resource, for instance, a device or service, is defined.

Informally, this system is characterized as follows:

– There is a set of m tokens, m < n, used to grant exclusive or non-exclusive (shared) access to

the resource.

– Depending on whether the desired access mode is exclusive or shared, an agent must own all

tokens or one token, respectively, before he may access the resource.

– An agent is idle when not competing for a resource, waiting when trying to obtain access to

the resource, or busy when owning the right to access the resource.

– Once an agent is waiting, it remains so until it obtains access to the resource.

– A busy agent releases the resource when it is no longer needed, as indicated by a stop

condition for that agent that is externally set. On releasing the resource, all tokens owned by

the agent are returned.

– Stop conditions are only indicated when an agent is busy.

– Initially, all agents are idle, and all tokens are available.

 Rec. ITU-T Z.100/Annex F1 (10/2016) 21

F1.3.5.2 Vocabulary

static domain TOKEN

shared mode: AGENT MODE

controlled owner: TOKEN AGENT

monitored stop: AGENT BOOLEAN

F1.3.5.3 Derived names

MODE =def {exclusive, shared}

idle(a:AGENT): BOOLEAN =def a.mode = undefined t TOKEN: t.owner a

waiting(a:AGENT): BOOLEAN =def a.mode undefined t TOKEN: t.owner a

busy(a:AGENT): BOOLEAN =def a.mode undefined t TOKEN: t.owner = a

available(t:TOKEN): BOOLEAN =def t.owner = undefined

F1.3.5.4 Integrity constraints

constraint a AGENT: (a.stop a.busy)

F1.3.5.5 Initial constraints

initially |AGENT| > 1

initially | TOKEN | < |AGENT|

initially a AGENT: a.program = RESOURCE-MANAGEMENT-PROGRAM

initially a AGENT: a.idle t TOKEN: t.available

F1.3.5.6 ASM programs

RESOURCE-MANAGEMENT-PROGRAM:

do in-parallel
 SHAREDACCESS

 EXCLUSIVEACCESS

 RELEASEACCESS

enddo

where

 SHAREDACCESS

 if Self.mode = shared Self.waiting then

 choose t: t TOKEN t.available

 t.owner := Self

 endchoose

 endif

 EXCLUSIVEACCESS

 if Self.mode = exclusive t TOKEN: t.available then

 do forall t: t TOKEN

 t.owner := Self

 enddo

 endif

 RELEASEACCESS

 if Self.stop then

 Self.mode := undefined

 do forall t: t TOKEN t.owner = Self

 t.owner := undefined

 enddo

 endif

endwhere

F1.3.6 Predefined names and special symbols

To define an ASM model, in particular the ASM model capturing the semantics of SDL-2010, certain

names and their intended interpretation are predefined. These names are grouped and listed in this

clause (where D refers to the syntactic category of domains). For prefix, infix and postfix operators,

22 Rec. ITU-T Z.100/Annex F1 (10/2016)

an underline ("_") is used to indicate the position of their arguments. Moreover, the precedence of the

operators is indicated by prec(n), where n is a number. Higher numbers mean tighter binding.

Monadic operators have a tighter binding than binary ones. Binary operators are associative to the

left.

F1.3.6.1 ASM-specific domains
static domain X ASM base set (meta domain)

static domain BOOLEAN Boolean values

static domain NAT Integer values

static domain REAL Real values

shared domain AGENT ASM agents

static domain PROGRAM ASM programs

static domain TOKEN Syntax tokens (character strings)

_ * Domain constructor: finite sequences of

_ + Domain constructor: non-empty, finite sequences of

_ -set Domain constructor: finite sets of

_ _ prec(7) Tuple domain constructor

_ _ prec(6) Union domain constructor

F1.3.6.2 ASM-specific functions
static undefined: X Indicator for undefined values

monitored Self: AGENT Self reference for ASM agents

controlled program: AGENT PROGRAM Program of an ASM agent

monitored currentTime: REAL The current system time

F1.3.6.3 Boolean functions and predicates
static true: BOOLEAN Predefined literal

static false: BOOLEAN Predefined literal

_ = _ prec(4) Equality

_ _ prec(4) Inequality

_ _ prec(3) Logical and

_ _ prec(2) Logical or

_ _ prec(1) Implication

_ _ prec(1) Logical equivalence

 _ Negation

x D: P(x) prec(0) Existential quantification (at least one element)

!x D: P(x) prec(0) Unique existential quantification (exactly one element)

x D: P(x) prec(0) Universal quantification

F1.3.6.4 Terms
X 0-ary function application

f(t1,..., tn) Function application with n argument expressions

if Formula then Term else Term endif Conditional expression; again we use elseif instead of else if

s-_(_) Tuple selection function (see Tuples below)

mk-_(...) Tuple construction (see Tuples below)

inv-_(...) The inverse of a function or map,

inv-Fun(x) =def take({ a D: Fun(a) =x })

F1.3.6.5 Functions and relations on integers
_ > _, _ _, _ <_, _ _ prec(4) Comparison operators

_ + _ prec(6) Addition

_ - _ prec(6) Subtraction

_ *_ prec(7) Multiplication

_ / _ prec(7) Division

0, 1, ... Integer literals

 Rec. ITU-T Z.100/Annex F1 (10/2016) 23

F1.3.6.6 Functions on sequences
static empty: D * Empty sequence

static head: D * D Head of the sequence (undefined when empty)

static tail: D * D * Tail of the sequence (undefined when empty)

static last: D * D Last element of a sequence (undefined when empty)

static length: D* NAT Length of a sequence

static < >: D n D * Sequence constructor; arguments are listed inside the brackets,

separated by commas

_ ⁀ _ prec(6) Concatenation of sequences

toSet: D * D-set Conversion of the elements of a sequence into a set

_ [_] Access an element of a list; the index within the brackets must be of

type NAT

_ in _ prec(4) Element of?

< <result> | <var> in <seq> : <cond> > Sequence comprehension; acts like a filter on <seq>, i.e., order-

preserving

< <var> in <seq> : <cond> > =def

 < <var> | <var> in <seq> : <cond> >

Abbreviated sequence comprehension

< <result> | <var> in <seq> > =def

 < <result> | <var> in <seq> : true >

Abbreviated sequence comprehension

F1.3.6.7 Functions on sets
_ _ prec(6) Set union

_ _ prec(7) Intersection

_ \ _ prec(6) Set subtraction

_ _ prec(4) Element of?

_ _ prec(4) Not element of?

_ _ prec(4) Subset of?

_ _ prec(4) Proper subset of?

| _ | Size of a set

U _ Big union: union of all sets included within the argument set

 Empty set

static { }: D n D-set Set constructor; comma-separated list of arguments in the brackets

take: D-set D Select an arbitrary element from the set, or undefined for an empty set

_ .. _ prec(5) Integer range from the first value to the second. Empty set when the

second expression is smaller than the first one

{ <result> | <var> <set> : <cond> } Set comprehension, acts like a filter on <set>

{ <var> <set> : <cond> } =def

 { <var> | <var> <set>: <cond> }

Abbreviated set comprehension

{ <result> | <var> <set> } =def

 { <result> | <var> <set>: true }

Abbreviated set comprehension

F1.3.6.8 Patterns and case-expressions

Patterns provide a means to easily access the structure of values. The following patterns are provided:

– Variables: A variable matches any value. However, if the variable is already bound, it only

matches itself.

– Anonymous variables: Anonymous variables are denoted by "*". They are shorthand for

introducing an unused variable.

– Constructor: A constructor is given by its name and the arguments that are again patterns. It

matches any value that is constructed using that constructor and with the arguments matching

their corresponding pattern.

Named pattern: The notation Variable = Pattern introduces a name for (the value matching) the

pattern.

Patterns are used to describe functions on the syntax tree. The non-terminal names of the grammar

are used as the constructor functions.

24 Rec. ITU-T Z.100/Annex F1 (10/2016)

A case expression is used to determine a value depending on pattern matching.

CaseExpression ::= case Term of

 | Pattern1: Term1

 | Pattern2: Term2

 ...

 [otherwise Term0]

 endcase

If the value of Term matches at least one Patterni, then the result of the case expression is given by

the Termi. If no pattern matches, the result is Term0 (if present). Otherwise, the result is undefined.

F1.3.6.9 Union domains

Union domains simply contain the values of their constituent domains.

 D =def D1 D2

F1.3.6.10 Tuples

For every declared tuple domain, several implied constructor and selector functions are defined. A

definition:

 D =def D1 D2
*
 D3-set D1 (D1 D2)

also defines the following functions:

mk-D: D1 D2
* D3-set D1 (D1 D2) D

s-D1: D D1

s-D2-seq: D D2
*

s-D3-set: D D3-set

s2-D1: D D1

s-implicit: D (D1 D2)

When the tuple includes the same domain more than once, selector functions similar to s2-D1 are

defined. For union, the special selector function s-implicit is defined.

F1.3.6.11 Abstract syntax rules

Abstract syntax rules from the language definition are directly translated to the ASM notation, using

certain conventions that will be explained by examples. An abstract syntax rule can be understood as

declaring one or more (tuple) domains, and as defining functions that construct and select values of

the component domains. However, syntax nodes have an identity as opposed to ordinary tuples. There

are syntax rules introducing named constructors as well as named and unnamed unions. Rules

introducing constructors are composed of terminal and non-terminal symbols, they have the form:

Symbol:: Symbol1 Symbol2
+ Symbol3-set [Symbol4]

which is translated to:

Symbol-aux =def Symbol1 Symbol2
* Symbol3-set Symbol4

controlled domain Symbol

controlled contents-Symbol: Symbol Symbol-aux

s-Symbol1(x: Symbol): Symbol1 =def s-Symbol1(x.contents-Symbol)

s-Symbol2-seq(x: Symbol): Symbol2
* =def s-Symbol2-seq(x.contents-Symbol)

s-Symbol3-set(x: Symbol): Symbol3-set =def s-Symbol3-set(x.contents-Symbol)

s-Symbol4(x: Symbol): Symbol4 =def s-Symbol4(x.contents-Symbol)

Moreover, there is an abbreviation mk-Symbol. This abbreviation amounts to creating a new object of

domain Symbol using the extend primitive and to set the contents-Symbol value of the newly produced

object to the result of mk-Symbol-aux. Note that this kind of abbreviation is not a function, but in fact

 Rec. ITU-T Z.100/Annex F1 (10/2016) 25

a rule item. Therefore, it must be used only within rules. The fact that the optional Symbol4 is not

present is expressed in the ASM model by leaving the corresponding value undefined.

An empty sequence of symbols (constructor with no parts) is denoted by ().

The equality for syntax values is always a structural equality, i.e., the contents of the symbols are

compared instead of the symbols themselves.

The syntax rules introducing named unions (i.e., synonyms) have the form:

Symbol = Symbol1 | Symbol2 | ... | Symboln (n 1)

which is translated to:

Symbol =def Symbol1 Symbol2 ... SymbolN

Note that since Symbol is a union domain, the expansion yields a domain definition, but no functions

mk- or s-.

In some cases, it is not necessary to refer to synonyms. Here, unnamed unions may be introduced by:

Symbol :: Symbol1 { Symbol21 | ... | Symbol2N }

instead of introducing synonyms:

Symbol :: Symbol1 Symbol2

Symbol2 = Symbol21 | ... | Symbol2N

For each SDL-2010 keyword KEYWORD, there is an associated keyword domain Keyword with just

one value:

static domain Keyword

It is required that all keyword domains are mutually disjoint.

Given the abstract grammar, there is a derived domain called DefinitionAS1, which is composed of

all abstract syntax symbol domains as follows:

DefinitionAS1 =def Symbol1 Symbol2 ... SymbolN

where Symbol1,Symbol2,...,Symboln is the list of all symbols (terminal and non-terminal) of the

abstract grammar.

There is a similar domain DefinitionAS0 for the concrete grammar (AS0).

To navigate downward in a given abstract syntax tree, the functions s- can be used. To navigate

upward, two parent functions are defined.

controlled parentAS1: DefinitionAS1 DefinitionAS1

controlled parentAS0: DefinitionAS0 DefinitionAS0

Moreover, two functions are defined to find the parent of a particular kind.

26 Rec. ITU-T Z.100/Annex F1 (10/2016)

parentAS0ofKind(from: DefinitionAS0, x: DefinitionAS0-set): DefinitionAS0 =def

 if from = undefined then undefined

 elseif from x then from

 else parentAS0ofKind(from.parentAS0, x)

 endif
parentAS1ofKind(from: DefinitionAS1, x: DefinitionAS1-set): DefinitionAS1 =def

 if from = undefined then undefined

 elseif from x then from

 else parentAS1ofKind(from.parentAS1, x)

 endif

The functions isAncestorAS1 and isAncestorAS0 determine if the first node is an ancestor of the

second one:

isAncestorAS1(n: DefinitionAS1 ,n': DefinitionAS1): BOOLEAN =def

n = n'.parentAS1 isAncestorAS1(n, n'.parentAS1)

isAncestorAS0(n: DefinitionAS0 ,n': DefinitionAS0): BOOLEAN =def

n = n'. parentAS0 isAncestorAS0(n, n'.parentAS0)

The top node of the current abstract or concrete syntax tree is denoted by the following 0-ary

functions:

controlled rootNodeAS1: DefinitionAS1

controlled rootNodeAS0: DefinitionAS0

The abstract syntax tree can be modified using the following derived function:

replaceInSyntaxTree: DefinitionAS0 DefinitionAS0 DefinitionAS0 DefinitionAS0

The first parameter of the function is the old sub-tree, the second one is the new sub-tree and the third

parameter is the old tree. The function returns the new tree, where all old sub-trees are replaced by

the new sub-tree.

Printed in Switzerland
Geneva, 2017

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	F1.1 Preface
	F1.1.1 Motivation
	F1.1.2 Main objectives
	F1.1.3 References and definitions
	F1.1.4 Bibliographical references (for this annex only)

	F1.2 Overview of the semantics
	F1.2.1 Grammar
	F1.2.2 Well-formedness conditions
	F1.2.3 Transformation rules
	F1.2.4 Dynamic semantics

	F1.3 Abstract State Machines
	F1.3.1 Basic ASM model
	F1.3.1.1 Overview
	F1.3.1.2 States
	F1.3.1.3 One-step transformation
	F1.3.1.4 Specifying an abstract state machine
	F1.3.1.5 Specifying the vocabulary (Signature)
	F1.3.1.6 Initial states
	F1.3.1.7 State transitions and runs
	F1.3.1.8 Transition rules
	F1.3.1.9 Abbreviations
	F1.3.1.10 ASM programs

	F1.3.2 Distributed multi-agent ASM
	F1.3.2.1 Vocabulary
	F1.3.2.2 Agents and runs
	F1.3.2.3 Distributed ASM programs

	F1.3.3 The external world
	F1.3.4 Real-time behaviour
	F1.3.5 Example: The system RMS
	F1.3.5.1 Informal description
	F1.3.5.2 Vocabulary
	F1.3.5.3 Derived names
	F1.3.5.4 Integrity constraints
	F1.3.5.5 Initial constraints
	F1.3.5.6 ASM programs

	F1.3.6 Predefined names and special symbols
	F1.3.6.8 Patterns and case-expressions
	F1.3.6.9 Union domains
	F1.3.6.10 Tuples
	F1.3.6.11 Abstract syntax rules

