

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Z.100
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2007)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS
Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language (SDL)

ITU-T Recommendation Z.100

ITU-T Z-SERIES RECOMMENDATIONS
LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109
Application of formal description techniques Z.110–Z.119
Message Sequence Chart (MSC) Z.120–Z.129
Extended Object Definition Language (eODL) Z.130–Z.139
User Requirements Notation (URN) Z.150–Z.159
Testing and Test Control Notation (TTCN) Z.160–Z.199

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE
General principles Z.300–Z.309
Basic syntax and dialogue procedures Z.310–Z.319
Extended MML for visual display terminals Z.320–Z.329
Specification of the man-machine interface Z.330–Z.349
Data-oriented human-machine interfaces Z.350–Z.359
Human-machine interfaces for the management of telecommunications networks Z.360–Z.379

QUALITY
Quality of telecommunication software Z.400–Z.409
Quality aspects of protocol-related Recommendations Z.450–Z.459

METHODS
Methods for validation and testing Z.500–Z.519

MIDDLEWARE
Processing environment architectures Z.600–Z.609

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Z.100 (11/2007) i

ITU-T Recommendation Z.100

Specification and Description Language (SDL)

Summary

Scope-objective
This Recommendation defines SDL (Specification and Description Language) intended for unambiguous specification
and description of telecommunication systems. The scope of SDL is elaborated in clause 1. This Recommendation is a
reference manual for the language.

Coverage
SDL has concepts for behaviour, data description and (particularly for larger systems) structuring. The basis of behaviour
description is extended finite state machines communicating by messages. Data description is based on data types for
values and objects. The basis for structuring is hierarchical decomposition and type hierarchies. These foundations of
SDL are elaborated in the respective main clauses of this Recommendation. A distinctive feature of SDL is the graphical
representation.

Applications
SDL is applicable within standard bodies and industry. The main applications areas for which SDL has been designed are
stated in 1.2, but SDL is generally suitable for describing reactive systems. The range of application is from requirement
description to implementation.

Source
ITU-T Recommendation Z.100 was approved on 13 November 2007 by ITU-T Study Group 17 (2005-2008) under the
ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. Z.100 (11/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. Z.100 (11/2007) iii

CONTENTS

 Page

1 Scope .. 1
1.1 Objective ... 1
1.2 Application .. 1
1.3 System specification .. 2
1.4 Differences between SDL-88 and SDL-92.. 2
1.5 Differences between SDL-92 and SDL-2000 .. 3

2 References ... 4

3 Definitions ... 4

4 Abbreviations ... 5

5 Conventions ... 5
5.1 SDL grammars.. 5
5.2 Basic definitions.. 6
5.3 Presentation style .. 7
5.4 Metalanguages .. 9

6 General rules .. 12
6.1 Lexical rules... 12
6.2 Macro ... 17
6.3 Visibility rules, names and identifiers .. 19
6.4 Informal text... 22
6.5 Drawing rules ... 22
6.6 Partitioning of drawings.. 23
6.7 Comment ... 23
6.8 Text extension .. 24
6.9 Text symbol ... 24

7 Organization of SDL specifications ... 25
7.1 Framework... 25
7.2 Package ... 25
7.3 Referenced definition ... 28

8 Structural concepts... 29
8.1 Types, instances and gates... 29
8.2 Context parameters .. 37
8.3 Specialization ... 42
8.4 Type references... 45
8.5 Associations ... 52

9 Agents... 54
9.1 System .. 58
9.2 Block .. 59
9.3 Process .. 60
9.4 Agent and composite state reference.. 61
9.5 Procedure... 62

iv ITU-T Rec. Z.100 (11/2007)

 Page

10 Communication... 65
10.1 Channel ... 65
10.2 Connection... 68
10.3 Signal.. 69
10.4 Signal list definition... 69
10.5 Remote procedures .. 70
10.6 Remote variables... 73

11 Behaviour .. 76
11.1 Start.. 76
11.2 State ... 76
11.3 Input ... 78
11.4 Priority Input .. 80
11.5 Continuous signal .. 81
11.6 Enabling condition... 81
11.7 Save.. 82
11.8 Implicit transition .. 83
11.9 Spontaneous transition.. 83
11.10 Label... 83
11.11 State machine and Composite state ... 84
11.12 Transition .. 90
11.13 Action ... 95
11.14 Statement list .. 102
11.15 Timer .. 109
11.16 Exception... 110

12 Data .. 115
12.1 Data definitions... 116
12.2 Passive use of data... 138
12.3 Active use of data .. 145

13 Generic system definition.. 152
13.1 Optional definition... 152
13.2 Optional transition string... 153

Annex A – Index of non-terminals.. 155

Annex B – Backwards compatibility ... 172

B.1 Background .. 172

B.2 Lexical rules ... 172

B.3 Macro.. 172

B.4 Context parameters .. 173
B.4.1 Agent context parameter ... 173
B.4.2 Procedure context parameter.. 173
B.4.3 Sort context parameter.. 173

 ITU-T Rec. Z.100 (11/2007) v

 Page

B.5 Agents... 173

B.6 Procedure... 174

B.7 Remote variables ... 174

B.8 Specialization of data types.. 175

B.9 Behaviour of operations .. 175

B.10 Optional definition... 176

B.11 Data definition .. 176

B.12 Data type definition.. 177
B.12.1 Generators ... 177
B.12.2 Operator signatures .. 178

B.13 Syntypes .. 178

B.14 Task.. 178

Annex C – Compliance to this Recommendation... 179

C.1 Definitions of valid tools... 179

C.2 Conformance .. 179

Annex D – SDL Predefined data .. 180

D.1 Introduction.. 180

D.2 Notation... 180
D.2.1 Axioms.. 180
D.2.2 Conditional equations... 182
D.2.3 Equality... 182
D.2.4 Boolean axioms... 182
D.2.5 Conditional term ... 183
D.2.6 Error term .. 183
D.2.7 Unordered literals .. 183
D.2.8 Literal equations.. 184

D.3 Package Predefined .. 184
D.3.1 Boolean sort ... 184
D.3.2 Character sort ... 185
D.3.3 String sort .. 186
D.3.4 Charstring sort .. 187
D.3.5 Integer sort... 187
D.3.6 Natural syntype ... 188
D.3.7 Real sort .. 189
D.3.8 Array sort .. 190
D.3.9 Vector ... 190
D.3.10 Powerset sort .. 191

vi ITU-T Rec. Z.100 (11/2007)

 Page
D.3.11 Duration sort .. 192
D.3.12 Time sort ... 192
D.3.13 Bag sort ... 193
D.3.14 ASN.1 Bit and Bitstring sorts... 194
D.3.15 ASN.1 Octet and Octetstring sorts .. 197
D.3.16 Predefined Exceptions .. 197

Annex E – Reserved for examples .. 198

Annex F – SDL formal definition ... 198

Appendix I – Status of Z.100, related documents and Recommendations ... 199

Appendix II – Guidelines for the maintenance of SDL.. 200

II.1 Maintenance of SDL .. 200
II.1.1 Terminology... 200
II.1.2 Rules for maintenance .. 200
II.1.3 Change request procedure ... 200

Appendix III – Systematic conversion of SDL-92 to SDL-2000 ... 203

 ITU-T Rec. Z.100 (11/2007) vii

Introduction

Status/Stability
This Recommendation is the complete language reference manual supported by guidelines for its usage in
Supplement 1. Annex F gives a formal definition of SDL semantics. The main text of this Recommendation is stable.
Appendix I records the status of ITU-T Rec. Z.100, and should be updated as further studies are completed. The current
2007 text is based on wide user experience of SDL, recent additional user needs, clarifications and corrections.
SDL-2000 as defined in this Recommendation should meet most user needs, but further language extensions are
anticipated for the future with a language revision provisionally called SDL-2008. This text is therefore expected to be
the last update of SDL-2000 as a firm basis for continuing use and SDL-2008.

The main text is accompanied by annexes:
− Annex A Index of non-terminals
− Annex B Backwards compatibility (added 2003)
− Annex C Compliance to this Recommendation (added 2003)
− Annex D SDL predefined data
− Annex E Reserved for examples
− Annex F SDL Formal Definition (published separately)
− Appendix I Status of ITU-T Rec. Z.100, related documents and Recommendations
− Appendix II Guidelines for the maintenance of SDL
− Appendix III Systematic conversion of SDL-92 to SDL-2000

ITU-T Rec. Z.100 has also an independently published supplement:
− Z.100 Supplement 1 SDL+ methodology: use of MSC and SDL (with ASN.1)

Associated work
One method for SDL usage within standards is described in ITU-T Rec. Q.65. A recommended strategy for introducing
a formal description technique like SDL in standards is available in ITU-T Rec. Z.110. For references to additional
material on SDL, and information on industrial usage of SDL, see http://www.sdl-forum.org

Background
Different versions of SDL have been recommended by CCITT and ITU-T since 1976. The SDL-2000 version initially
published in ITU-T Rec. Z.100 (11/99) is a revision of ITU-T Rec. Z.100 (03/93) and incorporates Addendum 1 to
ITU-T Rec. Z.100 (10/96) and parts of ITU-T Rec. Z.105 (03/95). ITU-T Rec. Z.100 (08/02) was a technical update of
ITU-T Rec. Z.100 (11/99) that incorporated a number of technical corrections and amendments, and without the textual
phrase alternative syntax, which had been moved to ITU-T Rec. Z.106 (08/02). This version incorporates a number of
small changes to the text and to SDL standard since 2002 that had previously been documented only in the
Implementers' Guide. This 2007 version is intended as a final text for SDL-2000 prior to a new text and re-organization
of the Z.100 series for revision of SDL provisionally called SDL-2008.

Compared to SDL as defined in 1992, the version defined in ITU-T Rec. Z.100 (11/99) and in this version has been
extended in the areas of object-oriented data, harmonization of a number of features to make the language simpler, and
features to enhance the usability of SDL with other languages such as ASN.1 and UML. Other minor modifications
have been included. Though care has been taken not to invalidate existing documents using SDL as defined in 1992,
some changes may require some descriptions to be updated to use this version. Details on the changes introduced can be
found in 1.5.

 ITU-T Rec. Z.100 (11/2007) 1

ITU-T Recommendation Z.100

Specification and Description Language (SDL)

1 Scope
The purpose of recommending SDL (Specification and Description Language) is to provide a language for
unambiguous specification and description of the behaviour of telecommunication systems. The specifications and
descriptions using SDL are intended to be formal in the sense that it is possible to analyse and interpret them
unambiguously.

The terms specification and description are used with the following meaning:
a) a specification of a system is the description of its required behaviour; and
b) a description of a system is the description of its actual behaviour; that is, its implementation.

A system specification, in a broad sense, is the specification of both the behaviour and a set of general parameters of the
system. However, SDL is intended to specify the behavioural aspects of a system; the general parameters describing
properties like capacity and weight have to be described using different techniques.
NOTE − Since there is no distinction between use of SDL for specification and its use for description, the term specification is used
in this Recommendation for both required behaviour and actual behaviour.

1.1 Objective
The general objectives when defining SDL have been to provide a language that:
a) is easy to learn, use and interpret;
b) provides unambiguous specification for ordering, tendering and design, while also allowing some issues to be

left open;
c) may be extended to cover new developments;
d) is able to support several methodologies of system specification and design.

1.2 Application
This Recommendation is the reference manual for SDL. A methodology framework document, which gives examples
of SDL usage, is available as Supplement 1 to ITU-T Rec. Z.100 produced in the study period 1992-1996. Appendix I
of ITU-T Rec. Z.100 first published in March 1993 also contains methodology guidelines, though these do not exploit
the full potential of SDL.

The main area of application for SDL is the specification of the behaviour of aspects of real-time systems, and the
design of such systems. Applications in the field of telecommunications include:
a) call and connection processing (for example, call handling, telephony signalling, metering) in switching

systems;
b) maintenance and fault treatment (for example, alarms, automatic fault clearance, routine tests) in general

telecommunication systems;
c) system control (for example, overload control, modification and extension procedures);
d) operation and maintenance functions, network management;
e) data communication protocols;
f) telecommunication services.

SDL can, of course, be used for the functional specification of the behaviour of any object whose behaviour can be
specified using a discrete model; that is, where the object communicates with its environment by discrete messages.

SDL is a rich language and can be used for both high level informal (and/or formally incomplete) specifications,
semi-formal and detailed specifications. The user must choose the appropriate parts of SDL for the intended level of
communication and the environment in which the language is being used. Depending on the environment in which a
specification is used, many aspects may be left to the common understanding between the source and the destination of
the specification.

2 ITU-T Rec. Z.100 (11/2007)

Thus SDL may be used for producing:
a) facility requirements;
b) system specifications;
c) ITU-T Recommendations, or other similar Standards (international, regional or national);
d) system design specifications;
e) detailed specifications;
f) system design descriptions (both high level and detailed enough to directly produce implementations);
g) system testing descriptions (in particular in combination with MSC and TTCN).

The user organization can choose the appropriate level of application of SDL.

1.3 System specification
An SDL specification defines system behaviour in a stimulus/response fashion, assuming that both stimuli and
responses are discrete and carry information. In particular, a system specification is seen as the sequence of responses to
any given sequence of stimuli.

The system specification model is based on the concept of communicating extended finite state machines.

SDL also provides structuring concepts that facilitate the specification of large and/or complex systems. These
constructs allow the partitioning of the system specification into manageable units that may be handled and understood
independently. Partitioning may be performed in a number of steps resulting in a hierarchical structure of units defining
the system at different levels.

1.4 Differences between SDL-88 and SDL-92
The language defined in the previous version of this Recommendation was an extension of ITU-T Rec. Z.100 as
published in the 1988 Blue Book. The language defined in the Blue Book is known as SDL-88 and the language defined
in the previous version of this Recommendation was called SDL-92. Every effort had been made to make SDL-92 a
pure extension of SDL-88, without invalidating the syntax or changing the semantics of any existing SDL-88 usage. In
addition, enhancements were only accepted based on need as supported by several ITU-T member-bodies.

The major extensions were in the area of object orientation. While SDL-88 is object-based in its underlying model,
some language constructs had been added to allow SDL-92 to more completely and uniformly support the object
paradigm:
a) packages;
b) system, block, process and service types;
c) system, block, process and service (set of) instances based on types;
d) parameterization of types by means of context parameters;
e) specialization of types, and redefinition of virtual types and transitions.

The other extensions were: spontaneous transition, non-deterministic choice, internal input and output symbol for
compatibility with existing diagrams, a non-deterministic imperative operator any, non-delaying channel, remote
procedure call and value returning procedure, input of variable field, operator definition, combination with external data
descriptions, extended addressing capabilities in output, free action in transition, continuous transitions in same state
with same priority, m:n connections of channels and signal routes at structure boundaries. In addition, a number of
minor relaxations to the syntax have been introduced.

In a few cases, changes were made to SDL-88 where the definition of SDL-88 was not consistent. The restrictions and
changes introduced can be overcome by an automatic translation procedure. This procedure was also necessary to
convert an SDL-88 document in SDL-92 that contained names consisting of words that are keywords of SDL-92.

For the output construct, the semantics were simplified between SDL-88 and SDL-92, and this may have invalidated
some special usage of output (when no to clause is given and there exist several possible paths for the signal) in
SDL-88 specifications. Also, some properties of the equality property of sorts were changed.

For the export/import construct, an optional remote variable definition was introduced, in order to align export of
variables with the introduced export of procedures (remote procedure). This necessitated a change to any SDL-88
document that contained qualifiers in import expressions or introduced several imported names in the same scope with
different sorts. In the (rare) cases where it was necessary to qualify import variables to resolve resolution by context, the
change to make SDL-88 into SDL-92 is to introduce <remote variable definition>s and to qualify with the identifier of
the introduced remote variable name.

 ITU-T Rec. Z.100 (11/2007) 3

For the view construct, the view definition had been made local to the viewing process or service. This necessitated a
change to SDL-88 documents that contained qualifiers in view definitions or in view expressions. To make SDL-88 into
SDL-92 is to remove these qualifiers. This did not change the semantics of the view expressions, since these are
decided by their (unchanged) pid expressions.

The service construct was defined as a primitive concept, instead of being a shorthand form, without extending its
properties. The use of service was not affected by this change, since it has been used anyway as if it were a primitive
concept. The reason for the change is to simplify the language definition and align it with the actual use, and to reduce
the number of restrictions on service, caused by the transformation rules in SDL-88. As a consequence of this change,
the service signal route construct was deleted; signal routes could be used instead. This was only a minor conceptual
change, and had no implications for concrete use (the syntax of SDL-88 service signal route and SDL-92 signal route
were the same).

The priority output construct has been removed from the language. This construct can be replaced by output to self
with an automatic translation procedure.

Some of the definitions of basic SDL were extended considerably, e.g. signal definition. It should be noted that the
extensions were optional, but were used for utilizing the power introduced by the object-oriented extensions, e.g. to use
parameterization and specialization for signals.

Keywords of SDL-92 that are not keywords of SDL-88 are:

any, as, atleast, connection, endconnection, endoperator, endpackage, finalized, gate, interface, nodelay,
noequality, none, package, redefined, remote, returns, this, use, virtual.

1.5 Differences between SDL-92 and SDL-2000
A strategic decision was made to keep SDL stable for the period 1992 to 1996, so that at the end of this period only a
limited number of changes were made to SDL. These were published as Addendum 1 to ITU-T Rec. Z.100 (10/96)
rather than updating the SDL-92 document. Although this version of SDL was sometimes called SDL-96, it was small
change compared with the change from SDL-88 to SDL-92. The changes were:
a) harmonizing signals with remote procedures and remote variables;
b) harmonizing channels and signal routes;
c) adding external procedures and operations;
d) allowing a block or process to be used as a system;
e) state expressions;
f) allowing packages on blocks and processes;
g) parameterless operators.

These have now been incorporated into ITU-T Rec. Z.100, together with a number of other changes to produce a
version of SDL known as SDL-2000. In this Recommendation, the language defined by ITU-T Rec. Z.100 (03/93) with
Addendum 1 to ITU-T Rec. Z.100 (10/96) is still called SDL-92. The 2002 version of SDL-2000 (the name was not
changed) consolidated into ITU-T Rec. Z.100 (11/99) a number of technical changes made to correct errors or to
improve the description of the language and to make a few minor extensions. This document no longer includes the
alternative textual syntax of SDL-2000 that is now defined in ITU-T Rec. Z.106 (08/2002).

The advantages of language stability, which was maintained over the period from 1992 to 1996, began to be outweighed
by the need to update SDL to support and better match other languages that are frequently used in combination with
SDL. Also, modern tools and techniques have made it practical to generate software more directly from SDL
specifications, but incorporating better support for this use in SDL could make further significant gains. While
SDL-2000 is largely an upgrade of SDL-92, it was agreed that some incompatibility with SDL-92 was justified;
otherwise the resulting language would have been too large, too complex and too inconsistent. This subclause provides
information about the changes. How most SDL-92 descriptions might be systematically transformed into SDL-2000 is
given in Appendix III.

Changes have been made in a number of areas, which focus on simplification of the language, and adjustment made to
new application areas:
a) adjustment of syntactical conventions to other languages with which SDL is used;
b) harmonization of the concepts of system, block and process to be based on "agent", and merging of the

concept of signal route into the concept channel;
c) interface descriptions;
d) exception handling;

4 ITU-T Rec. Z.100 (11/2007)

e) support for textual notation of algorithms;
f) composite states;
g) replacement of the service construct with the state aggregation construct;
h) new model for data;
i) constructs to support the use of ASN.1 with SDL previously in ITU-T Rec. Z.105 (03/95).

Other changes are: nested packages, direct containment of blocks and processes in blocks, out-only parameters.

On the syntactic level, SDL-2000 is case-sensitive. Keywords are available in two spellings: all uppercase or all
lowercase. Keywords of SDL-2000 that are not keywords of SDL-92 are:

abstract, aggregation, association, break, choice, composition, continue, endexceptionhandler,
endmethod, endobject, endvalue, exception, exceptionhandler, handle, method, loop, object,
onexception, ordered, private, protected, public, raise, value.

The following keywords of SDL-92 are not keywords in SDL-2000:

all, axioms, constant, endgenerator, endrefinement, endservice, error, for, generator, literal, map,
noequal, ordering, refinement, reveal, reverse, service, signalroute, view, viewed.

The following keywords of SDL-92 are keywords of SDL-2000 to support Annex B:

 endnewtype, fpar, imported, newtype, returns

A small number of constructs of SDL-92 are not available in SDL-2000: view expression, generators, block
substructures, channel substructures, signal refinement, axiomatic definition of data, and macro diagrams. These
constructs were rarely (if ever) used, and the overhead of keeping them in the language and tools did not justify their
retention.

2 References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged
to investigate the possibility of applying the most recent edition of the Recommendations and other references listed
below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

− ITU-T Recommendation T.50 (1992), International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) − Information technology − 7-bit coded character set for information interchange.

 ISO/IEC 646:1991, ISO 7-bit coded character set for information interchange.

3 Definitions
There are numerous terms defined throughout this Recommendation and a list of definitions in this clause would be a
repetition of much of the text of the Recommendation. Therefore, only a few key terms are given in this clause.

3.1 agent: The term agent is used to denote a system, block or process that contains one or more extended finite
state machines.

3.2 block: A block is an agent that contains one or more concurrent blocks or processes and may also contain an
extended finite state machine that owns and handles data within the block.

3.3 body: A body is a state machine graph of an agent, procedure, composite state, or operation.

3.4 channel: A channel is a communication path between agents.

3.5 environment: The environment of the system is everything in the surroundings that communicates with the
system in an SDL-like way.

3.6 gate: A gate represents a connection point for communication with an agent type, and when the type is
instantiated it determines the connection of the agent instance with other instances.

3.7 instance: An instance is an object created when a type is instantiated.

3.8 object: The term object is used for data items that are references to values.

 ITU-T Rec. Z.100 (11/2007) 5

3.9 pid: The term pid is used for data items that are references to agents.

3.10 procedure: A procedure is an encapsulation of part of the behaviour of an agent, that is defined in one place
but may be called from several places within the agent. Other agents can call a remote procedure.

3.11 process: A process is an agent that contains an extended finite state machine, and may contain other processes.

3.12 signal: The primary means of communication is by signals that are output by the sending agent and input by
the receiving agent.

3.13 sort: A sort is a set of data items that have common properties.

3.14 state: An extended finite state machine of an agent is in a state if it is waiting for a stimulus.

3.15 stimulus: A stimulus is an event that can cause an agent that is in a state to enter a transition.

3.16 system: A system is the outermost agent that communicates with the environment.

3.17 timer: A timer is an object owned by an agent that causes a timer signal stimulus to occur at a specified time.

3.18 transition: A transition is a sequence of actions an agent performs until it enters a state.

3.19 type: A type is a definition that can be used for the creation of instances, and can also be inherited and
specialized to form other types. A parameterized type is a type that has parameters. When these parameters are
given different actual parameters, different unparameterized types are defined that, when instantiated, give
instance with different properties.

3.20 value: The term value is used for the class of data that is accessed directly. Values can be freely passed
between agents.

4 Abbreviations
This Recommendation uses the following abbreviations:

SDL-2000 SDL as defined by this Recommendation

SDL-92 SDL as defined by ITU-T Rec. Z.100 (03/93) with Addendum 1 (10/96)

SDL-88 SDL as defined by ITU-T Rec. Z.100 (1988).

5 Conventions
The text of this clause is not normative. Instead, it defines the conventions used for describing SDL. The usage of SDL
in this clause is only illustrative. The metalanguages and conventions introduced are solely introduced for the purpose
of describing SDL unambiguously.

5.1 SDL grammars
A description only conforms with this Recommendation if it conforms to both the Concrete and Abstract Grammar: that
is, the description must be both recognizable as SDL and have the same meaning as defined in this Recommendation. If
further concrete grammars are defined, each of the concrete grammars has a definition of its own syntax and of its
relationship to the abstract grammar (that is, how to transform into the abstract syntax). Using this approach, there is
only one definition of the semantics of SDL: each of the concrete grammars inherits the semantics via its relationship to
the abstract grammar. This approach also ensures that any further grammars are equivalent.

A formal definition of SDL is provided which defines how to transform a system specification into the abstract syntax
and defines how to interpret a specification, given in terms of the abstract grammar. The formal definition is given in
Annex F (published separately).

For some constructs there is no directly equivalent abstract syntax. In these cases, a model is given for the
transformation from concrete syntax into the concrete syntax of other constructs that (directly or indirectly via further
models) have an abstract syntax. Items that have no mapping to the abstract syntax (such as comments) do not have any
formal meaning.

6 ITU-T Rec. Z.100 (11/2007)

5.2 Basic definitions
Some general concepts and conventions are used throughout this Recommendation; their definitions are given in the
following subclauses.

5.2.1 Definition, type and instance
In this Recommendation, the concepts of type and instance and their relationship are fundamental. The schema and
terminology defined below and shown in Figure 5-1 are used.

This subclause introduces the basic semantics of type definitions, instance definitions, parameterized type definitions,
parameterization, binding of context parameters, specialization and instantiation.

Z100_fig 5-1

implied type

type

instantiates as

specializes as

parameterized type

definition

of

of

instance

implied type

instantiates as

defines

with some context parameters,
bound is

with all context parameters,
bound is

instance set
definition

parameterizes
as

Definitions introduce named entities, which are types or instances with implied types or an instance set that defines the
behaviour instances. A definition of a type defines all properties associated with that type. An example of an instance
definition is a state definition. An example of a definition that is a type definition is a signal definition. An example of
an instance set definition is a process definition. Only block or process definitions introduce instance set definitions.

A type may be instantiated in any number of instances. An instance of a particular type has all the properties defined for
that type. An example of a type is a procedure, which may be instantiated by procedure calls.

A parameterized type is a type where some entities are represented as formal context parameters. A formal context
parameter of a type definition has a constraint. The constraints allow static analysis of the parameterized type. Binding
all the parameters of a parameterized type yields an ordinary type. An example of a parameterized type is a
parameterized signal definition where one of the sorts conveyed by the signal is specified by a formal sort context
parameter; this allows the parameter to be of different sorts in different contexts.

An instance is defined either directly or by the instantiation of a type. An example of an instance is a system instance,
which can be defined by a system definition, or is an instantiation of a system type.

Specialization allows one type, the subtype, to be based on another type, its supertype, by adding properties to those of
the supertype or by redefining virtual properties of the supertype. A virtual property may be constrained in order to
provide for analysis of general types.

Binding all context parameters of a parameterized type yields an unparameterized type. There is no supertype/subtype
relationship between a parameterized type and the type derived from it.
NOTE − To avoid cumbersome text, the convention is used that the term instance may be omitted. For example "a
system is interpreted..." means "a system instance is interpreted..." .

Figure 5-1 − The type concept

 ITU-T Rec. Z.100 (11/2007) 7

5.2.2 Environment
Systems specified in SDL behave according to the stimuli exchanged with the external world. This external world is
called the environment of the system being specified.

It is assumed that there are one or more agent instances in the environment, and therefore stimuli flowing from the
environment towards the system have associated identities of these agent instances. These agents have pids that are
distinguishable from any other pid within the system (see 12.1.6).

Although the behaviour of the environment is non-deterministic, it is assumed to obey the constraints given by the
system specification.

5.2.3 Validity and errors
A system specification is a valid SDL system specification only if it satisfies the syntactic rules and the static conditions
of SDL.

If a valid SDL specification is interpreted and a dynamic condition is violated, then an error occurs. Predefined
exceptions (see D.3.16) will be raised when an error is encountered during the interpretation of a system. If the
exception is not handled, the subsequent behaviour of the system cannot be derived from the specification.

5.3 Presentation style
The following presentation style is used to separate the different language issues under each topic.

5.3.1 Division of text
This Recommendation is organized by topics described by an optional introduction followed by titled enumeration
items for:
a) Abstract grammar – Described by abstract syntax and static conditions for well-formedness.
b) Concrete grammar – Described by the graphical syntax, static conditions and well-formedness rules for the

graphical syntax, the relationship of this syntax with the abstract syntax, and some additional drawing rules
(to those in 6.5).

c) Semantics – Gives meaning to a construct, provides the properties it has, the way in which it is interpreted and
any dynamic conditions that have to be fulfilled for the construct to behave well in the SDL sense.

d) Model – Gives the mapping for notations that do not have a direct abstract syntax and modelled in terms of
other concrete syntax constructs. A notation that is modelled by other constructs is known as a shorthand, and
is considered to be derived syntax for the transformed form.

5.3.2 Titled enumeration items
Where a topic has an introduction followed by a titled enumeration item, then the introduction is considered to be an
informal part of this Recommendation presented only to aid understanding and not to make this Recommendation
complete.

If there is no text for a titled enumeration item, the whole item is omitted.

The remainder of this subclause describes the other special formalisms used in each titled enumeration item and the
titles used. It can also be considered as an example of the typographical layout of first-level titled enumeration items
defined above where this text is part of an introductory section.

a) Abstract grammar

The abstract syntax notation is defined in 5.4.1.

If the titled enumeration item Abstract grammar is omitted, then there is no additional abstract syntax for the topic
being introduced and the concrete syntax will map onto the abstract syntax defined by another numbered text clause.

The rules in the abstract syntax may be referred to from any of the titled enumeration items by use of the rule name in
italics.

The rules in the formal notation may be accompanied by paragraphs that define conditions which must be satisfied by a
well-formed SDL definition and which can be checked without interpretation of an instance. The static conditions at
this point refer only to the abstract syntax. Static conditions, which are only relevant for the concrete syntax, are defined
with the concrete syntax. Together with the abstract syntax, the static conditions for the abstract syntax define the
abstract grammar of the language.

8 ITU-T Rec. Z.100 (11/2007)

b) Concrete grammar

The concrete syntax is specified in the extended Backus-Naur Form of syntax description defined in 5.4.2.

The concrete syntax is accompanied by paragraphs defining the static conditions which must be satisfied in a well-
formed text and which can be checked without interpretation of an instance. Static conditions (if any) for the abstract
grammar also apply.

In many cases there is a simple relationship between the concrete and abstract syntax, because the concrete syntax rule
is simply represented by a single rule in the abstract syntax. When the same name is used in the abstract and concrete
syntax in order to signify that they represent the same concept, then the text "< x > in the concrete syntax represents X
in the abstract syntax" is implied in the language description and is often omitted. In this context, case is ignored but
underlined semantic sub-categories (see 5.4.2) are significant.

Concrete syntax that is not a shorthand form is strict concrete syntax. The relationship from concrete syntax to abstract
syntax is defined only for the strict concrete syntax.

The relationship between concrete syntax and abstract syntax is omitted if the topic being defined is a shorthand form
that is modelled by other SDL constructs (see Model below).

When the name of a non-terminal ends in the concrete grammar with the word "diagram" and there is a name in the
abstract grammar that differs only by ending in the word definition, then the two rules represent the same concept. For
example, <system diagram> in the concrete grammar and System-definition in the abstract grammar correspond.

When the name of a non-terminal ends in the concrete grammar with the word "area" and there is a name in the abstract
grammar that differs only by having the word area deleted, then the two rules represent the same concept. For example,
<state partition area> in the concrete grammar and State-partition in the abstract grammar correspond.

c) Semantics

Properties are relations between different concepts in SDL. Properties are used in the well-formedness rules.

An example of a property is the set of valid input signal identifiers of a process. This property is used in the static
condition "For each State-node, all Signal-identifiers (in the valid input signal set) appear in either a Save-signalset or
an Input-node".

All instances have an identity property, but unless this is formed in some unusual way, this identity property is
determined as defined by the general section on identities in 6.3. This is usually not mentioned as an identity property.
Also, it has not been necessary to mention sub-components of definitions contained by the definition since the
ownership of such sub-components is obvious from the abstract syntax. For example, it is obvious that a block
definition "has" enclosed processes and/or blocks.

Properties are static if they can be determined without interpretation of an SDL system specification and are dynamic if
an interpretation of the same is required to determine the property.

The interpretation is described in an operational manner. Whenever there is a list in the Abstract Syntax, the list is
interpreted in the order given. That is, this Recommendation describes how the instances are created from the system
definition and how these instances are interpreted within an "abstract SDL machine". Lists are denoted in the Abstract
Syntax by the suffixes "*" and "+" (see 5.4.1).

Dynamic conditions are conditions that must be satisfied during interpretation and cannot be checked without
interpretation. Dynamic conditions may lead to errors (see 5.2.3).
NOTE − Behaviour of the system is produced by "interpreting" the SDL. The word "interpret" is explicitly chosen
(rather than an alternative such as "executed") to include both mental interpretation by a human and the interpretation of
the SDL by a computer.

d) Model

Some constructs are considered to be "derived concrete syntax" (or a shorthand notation) for other equivalent concrete
syntax constructs. For example, omitting an input for a signal is derived concrete syntax for an input for that signal
followed by a null transition back to the same state.

The properties of a shorthand notation are derived from the way it is modelled in terms of (or transformed to) the
primitive concepts. In order to ensure easy and unambiguous use of the shorthand notations, and to reduce side effects
when several shorthand notations are combined, these concepts are transformed in a specified order as defined in
Annex F.

 ITU-T Rec. Z.100 (11/2007) 9

The result of the transformation of a fragment of derived concrete syntax is usually either another fragment of derived
concrete syntax, or a fragment of concrete syntax. The result of the transformation may also be empty. In the latter case,
the original is removed from the specification.

Transformations can be inter-dependent and therefore the order in which various transformations are applied determines
the validity and meaning of an SDL specification. Precise details of the order of transformation can be found in
Annex F.

5.4 Metalanguages
For the definition of properties and syntaxes of SDL, different metalanguages have been used according to the
particular needs.

The grammar given in this Recommendation has been written to aid the presentation in this Recommendation so that
the rule names are meaningful in the context they are given and can be used in text. This means that there are a number
of apparent ambiguities that can easily be resolved by systematic rewriting of the syntax rules or the application of
semantic rules.

In the following, an introduction of the metalanguages used is given.

5.4.1 Metalanguage for the Abstract Grammar
The following describes the abstract syntax of SDL.

A definition in the abstract syntax can be regarded as a named composite object (a tree) defining a set of
sub-components.

For example, the abstract syntax for channel definition is:
Channel-path :: Originating-gate
 Destination-gate
 Signal-identifier-set

which defines the domain for the composite object (tree) named Channel-path. This object consists of three
sub-components, which in turn might be trees.

The definition
Agent-identifier = Identifier

expresses that an Agent-identifier is an Identifier and therefore cannot syntactically be distinguished from other
identifiers.

An object might also be of some elementary (non-composite) domains. In the context of SDL, these are:
a) Natural objects

Example:
 Number-of-instances :: Nat [Nat]
 Number-of-instances denotes a composite domain containing one mandatory natural (Nat) value and one

optional natural ([Nat]) denoting respectively the initial number and the optional maximum number of
instances.

b) Quotation objects
These are represented as any bold face sequence of uppercase letters and digits.
Example:

 Channel-definition :: Channel-name
 [NODELAY]
 Channel-path-set
 A channel may not be delaying. This is denoted by an optional quotation NODELAY.
c) Token objects
 Token denotes the domain of tokens. This domain can be considered to consist of a potentially infinite set of

distinct atomic objects for which no representation is required.
Example:

 Name :: Token
 A name consists of an atomic object such that any Name can be distinguished from any other name.

10 ITU-T Rec. Z.100 (11/2007)

d) Unspecified objects
 An unspecified object denotes domains which might have some representation, but for which the

representation is of no concern in this Recommendation.
Example:

 Informal-text :: ...
Informal-text contains an object that is not interpreted.

The following operators (constructors) in BNF (see 5.4.2) have the same use in the abstract syntax: "*" for a possibly
empty list, "+" for a non-empty list, "|" for an alternative, and "[" "]" for optionality.

Parentheses are used for grouping of domains that are logically related.

Finally, the abstract syntax uses another postfix operator "-set" yielding a set (unordered collection of distinct objects).

Example:
Agent-graph :: Agent-start-node State-node-set

An Agent-graph consists of an Agent-start-node and a set of State-nodes.

5.4.2 Metalanguage for the Concrete Grammar
In the Backus-Naur Form (BNF) for lexical rules, the terminals are <space> and the printed characters in 6.1.

In the Backus-Naur Form for non-lexical rules, a terminal symbol is one of the lexical units defined in 6.1 (<name>,
<quoted operation name>, <character string>, <hex string>, <bit string>, <special>, <composite special> or
<keyword>). In non-lexical rules, a terminal can be represented by one of the following:
a) a keyword (such as state);
b) the character for the lexical unit if it consists of a single character (such as "=");
c) the lexical unit name (such as <quoted operation name> or <bit string>);
d) the name of a <composite special> lexical unit (such as <implies sign>).

To avoid confusion with BNF grammar, the lexical unit names <asterisk>, <plus sign>, <vertical line>,
<left square bracket>, <right square bracket>, <left curly bracket> and <right curly bracket> are always used rather than
the equivalent characters. Note that the two special terminals <name> and <character string> may also have semantics
stressed as defined below.

The angle brackets and enclosed word(s) are either a non-terminal symbol or one of the lexical units. Syntactic
categories are the non-terminals indicated by one or more words enclosed between angle brackets. For each
non-terminal symbol, a production rule is given in the concrete grammar. For example,
<block reference> ::=
 block <block name> [<number of instances>] referenced <end>

A production rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side of the symbol
"::=", and one or more constructs, consisting of non-terminal and/or terminal symbol(s) at the right-hand side. For
example, <block reference>, <block name> and <end> in the example above are non-terminals; block and referenced
are terminal symbols.

Sometimes the symbol includes an underlined part. This underlined part defines semantic subcategories of the syntactic
construct. For example, <block identifier> is syntactically identical to <identifier>, but semantically it requires the
<identifier> shall identify a block. The meaning of < xxx yyy zzz> is that the item shall have the syntax < zzz> and shall
denote an item that is an "xxx yyy" < zzz>, where "xxx yyy" is some defined category in the semantics of the language
(such as a "state type"). In most cases this avoids having to describe constraints (such as the <expression> shall be a
Boolean <expression>) in the concrete grammar, or the need to introduce a non-terminal such as < Boolean
expression>. Where the further explanation is needed, this is added in the concrete grammar.

Most of the uses of semantic subcategories are for <identifier> and <name>. Subcategories of <name> are a special
case, because they are used in two ways. In cases where < xxx name> occurs in a defining context, the subcategory
means that the <name> defines the Name part of the Identifier of the entity belonging to that xxx class. Usually this is
not stated explicitly because there is a correspondence between rules in the Abstract grammar and Concrete grammar.
Where < xxx name> occurs in a non-defining context, the <name> shall correspond to the Name part of an Identifier of
an entity belonging to the xxx class. In this case < xxx name> is equivalent to < xxx identifier> but with the additional
syntactic constraint that there shall be no <qualifier>.

 ITU-T Rec. Z.100 (11/2007) 11

At the right-hand side of the "::=" symbol, several alternative productions for the non-terminal can be given, separated
by vertical bars ("|”). For example,
<diagram in package> ::=
 <package diagram>
 | <package reference area>
 | <entity in agent diagram>
 | <data type reference area>
 | <signal reference area>
 | <procedure reference area>
 | <interface reference area>
 | <create line area>
 | <option area>

expresses that a <diagram in package> is a <package diagram>, or a <package reference area>, or a
<entity in agent diagram>, or a <data type reference area>, or a <signal reference area>, or a
<procedure reference area>, or an <interface reference area>, or a <create line area> or an <option area>.

Syntactic elements may be grouped together by using curly brackets ("{" and "}"), similar to the parentheses in Meta IV
(see 5.4.1). A curly bracketed group may contain one or more vertical bars, indicating alternative syntactic elements.
For example,
<operation definitions> ::=
 { <operation definition>
 | <operation reference>
 | <external operation definition> }*

Repetition of syntactic elements or curly bracketed groups is indicated by an asterisk ("*") or plus sign ("+"). An
asterisk indicates that the group is optional and can be further repeated any number of times; a plus sign indicates that
the group must be present and can be further repeated any number of times. The example above expresses that
<operation definitions> may contain zero or more definitions of <operation definition> or <operation reference> or
<external operation definition>, and may contain more than one of any of these.

If syntactic elements are grouped using square brackets ("[" and "]"), then the group is optional. For example,
<valid input signal set> ::=
 signalset [<signal list>] <end>
expresses that a <valid input signal set> may, but need not, contain <signal list>.

To support the graphical grammar, the metalanguage has the following metasymbols:
a) set
b) contains
c) is associated with
d) is followed by
e) is connected to
f) is attached to

The set metasymbol is a postfix operator operating on the immediately preceding syntactic elements within curly
brackets, and indicating an (unordered) set of items. Each item may be any group of syntactic elements, in which case it
must be expanded before applying the set metasymbol.

Example:
 { <operation text area>* <operation body area> } set

is a set consisting of zero or more <operation text area>s, and one <operation body area>. The set metasymbol is used
when the position of the syntactic elements relative to one another in the diagram is irrelevant and the elements can be
considered in any order.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as the left-hand argument. The
right-hand argument is either a group of syntactic elements within curly brackets or a single syntactic element. If the
right-hand side of a production rule has a graphical non-terminal symbol as the first element and contains one or more
of these infix operators, then the graphical non-terminal symbol is the left-hand argument of each of these infix
operators. A graphical non-terminal symbol is a non-terminal ending with the word "symbol".

12 ITU-T Rec. Z.100 (11/2007)

The metasymbol contains indicates that its right-hand argument should be placed within its left-hand argument and the
attached <text extension symbol>, if any. The right-hand argument is expanded within the symbol, should not cross the
symbol boundaries and is distinct from any occurrence of the same syntax in another rule. For example,
<package use area> ::=
 <text symbol> contains <package use clause>
<text symbol> ::=

means the following

<package use clause>

The metasymbol is associated with indicates that its right-hand argument is logically associated with its left-hand
argument (as if it were "contained" in that argument, the unambiguous association is ensured by appropriate drawing
rules). The right-hand argument is expanded and is distinct from any occurrence of the same syntax in another rule.

The metasymbol is followed by means that its right-hand argument follows (both logically and in drawing) its left-hand
argument and implies a flow line symbol (see 6.5). The right-hand argument is expanded at the end of the flow line
symbol, and is distinct from any occurrence of the same syntax in another rule.

The metasymbol is connected to means that its right-hand argument is connected (both logically and in drawing) to its
left-hand argument. The right-hand argument is expanded, and is distinct from any occurrence of the same syntax in
another rule (in contrast to is attached to below).

The metasymbol is attached to expresses syntax requirements but not syntax productions. The metasymbol is attached
to requires its right-hand argument and left-hand argument be attached to each other (both logically and in drawing), but
one argument is not expanded with the syntax for the other argument, but each shall exist as separate expansions from
syntax rules (in contrast to is connected to above). Being attached is mutual, so that A is attached to B is always
matched in the syntax by another rule where B is attached to A, though this need not be directly expressed on B. For
example, B may have alternatives B1 and B2 each of which is attached to A. Being attached will usually mean that the
abstract syntax for each side contains the identifier of the other side.

6 General rules

6.1 Lexical rules
Lexical rules define lexical units. Lexical units are terminal symbols of the Concrete grammar.

<lexical unit> ::=
 <name>
 | <quoted operation name>
 | <character string>
 | <hex string>
 | <bit string>
 | <note>
 | <comment body>
 | <composite special>
 | <special>
 | <keyword>

<name> ::=
 <underline>* <word> {<underline>+ <word>}* <underline>*
 | {<decimal digit>}+ { {<full stop>} <decimal digit>+ }*

<word> ::=
 {<alphanumeric>}+

<alphanumeric> ::=
 <letter>
 | <decimal digit>

 ITU-T Rec. Z.100 (11/2007) 13

<letter> ::=
 <uppercase letter> | <lowercase letter>

<uppercase letter> ::=
 A | B | C | D | E | F | G | H | I | J | K | L | M
 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lowercase letter> ::=
 a | b | c | d | e | f | g | h | i | j | k | l | m
 | n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<quoted operation name> ::=
 <quotation mark> <infix operation name> <quotation mark>
 | <quotation mark> <monadic operation name> <quotation mark>

<infix operation name> ::=
 or | xor | and | in | mod | rem
 | <plus sign> | <hyphen>
 | <asterisk> | <solidus>
 | <equals sign> | <not equals sign>
 | <greater than sign> | <less than sign>
 | <less than or equals sign> | <greater than or equals sign>
 | <concatenation sign> | <implies sign>

<monadic operation name> ::=
 <hyphen> | not

<character string> ::=
 <apostrophe> { <general text character>
 | <special>
 | <apostrophe> <apostrophe>
 }* <apostrophe>

<apostrophe> <apostrophe> represents an <apostrophe> within a <character string>.

<hex string> ::=
 <apostrophe> { <decimal digit>
 | a | b | c | d | e | f
 | A | B | C | D | E | F
 }* <apostrophe> { H | h }

<bit string> ::=
 <apostrophe> { 0 | 1
 }* <apostrophe> { B | b }

<note> ::=
 <solidus> <asterisk> <note text> <asterisk>+ <solidus>

<note text> ::=
 { <general text character>
 | <other special>
 | <number sign>
 | <asterisk>+ <not asterisk or solidus>
 | <solidus>
 | <apostrophe> }*

<not asterisk or solidus> ::=
 <general text character> | <other special> | <apostrophe> | <number sign>

<text> ::=
 { <general text character> | <special> | <apostrophe> }*

<general text character> ::=
 <alphanumeric> | <other character> | <space>

<comment body> ::=
 <solidus> <number sign> <comment text> <number sign>+ <solidus>

14 ITU-T Rec. Z.100 (11/2007)

<comment text> ::=
 { <general text character>
 | <other special>
 | <asterisk>
 | <number sign>+ <not number or solidus>
 | <solidus>
 | <apostrophe> }*

<not number or solidus> ::=
 <general text character> | <other special> | <apostrophe> | <asterisk>

<composite special> ::=
 <result sign>
 | <range sign>
 | <composite begin sign>
 | <composite end sign>
 | <concatenation sign>
 | <history dash sign>
 | <greater than or equals sign>
 | <implies sign>
 | <is assigned sign>
 | <less than or equals sign>
 | <not equals sign>
 | <qualifier begin sign>
 | <qualifier end sign>

<result sign> ::=
 <hyphen> <greater than sign>

<range sign> ::=
 <full stop> <full stop>

<composite begin sign> ::=
 <left parenthesis> <full stop>

<composite end sign> ::=
 <full stop> <right parenthesis>

<concatenation sign> ::=
 <solidus> <solidus>

<history dash sign> ::=
 <hyphen> <asterisk>

<greater than or equals sign> ::=
 <greater than sign> <equals sign>

<implies sign> ::=
 <equals sign> <greater than sign>

<is assigned sign> ::=
 <colon> <equals sign>

<less than or equals sign> ::=
 <less than sign> <equals sign>

<not equals sign> ::=
 <solidus> <equals sign>

<qualifier begin sign> ::=
 <less than sign> <less than sign>

<qualifier end sign> ::=
 <greater than sign> <greater than sign>

<special> ::=
 <solidus> | <asterisk> | <number sign> | <other special>

 ITU-T Rec. Z.100 (11/2007) 15

<other special> ::=
 <exclamation mark>
 | <left parenthesis> | <right parenthesis>
 | <plus sign> | <comma> | <hyphen>
 | <full stop> | <colon> | <semicolon>
 | <less than sign> | <equals sign> | <greater than sign>
 | <left square bracket> | <right square bracket>
 | <left curly bracket> | <right curly bracket>

<other character> ::=
 <quotation mark> | <dollar sign> | <percent sign>
 | <ampersand> | <question mark> | <commercial at>
 | <reverse solidus> | <circumflex accent> | <underline>
 | <grave accent> | <vertical line> | <tilde>

<exclamation mark> ::= !

<quotation mark> ::= "

<left parenthesis> ::= (

<right parenthesis> ::=)

<asterisk> ::= *

<plus sign> ::= +

<comma> ::= ,

<hyphen> ::= -

<full stop> ::= .

<solidus> ::= /

<colon> ::= :

<semicolon> ::= ;

<less than sign> ::= <

<equals sign> ::= =

<greater than sign> ::= >

<left square bracket> ::= [

<right square bracket> ::=]

<left curly bracket> ::= {

<right curly bracket> ::= }

<number sign> ::= #

<dollar sign> ::= $

<percent sign> ::= %

<ampersand> ::= &

<apostrophe> ::= '

<question mark> ::= ?

<commercial at> ::= @

<reverse solidus> ::= \

<circumflex accent> ::= ^

<underline> ::= _

<grave accent> ::= `

<vertical line> ::= |

<tilde> ::= ~

16 ITU-T Rec. Z.100 (11/2007)

<keyword>::=
 abstract | active | adding
 | aggregation | alternative | and
 | any | as | association
 | atleast | block | break
 | call | channel | choice
 | comment | composition | connect
 | connection | constants | continue
 | create | dcl | decision
 | default | else | endalternative
 | endblock | endchannel | endconnection
 | enddecision | endexceptionhandler | endinterface
 | endmacro | endmethod | endobject
 | endoperator | endpackage | endprocedure
 | endprocess | endselect | endstate
 | endsubstructure | endsyntype | endsystem
 | endtype | endvalue | env
 | exception | exceptionhandler | export
 | exported | external | fi
 | finalized | from | gate
 | handle | if | import
 | in | inherits | input
 | interface | join | literals
 | loop | macro | macrodefinition
 | macroid | method | methods
 | mod | nameclass | nextstate
 | nodelay | none | not
 | now | object | offspring
 | onexception | operator | operators
 | optional | or | ordered
 | out | output | package
 | parent | priority | private
 | procedure | protected | process
 | provided | public | raise
 | redefined | referenced | rem
 | remote | reset | return
 | save | select | self
 | sender | set | signal
 | signallist | signalset | size
 | spelling | start | state
 | stop | struct | substructure
 | synonym | syntype | system
 | task | then | this
 | timer | to | try
 | type | use | value
 | via | virtual | with
 | xor

<space> ::=

The characters in <lexical unit>s and in <note>s as well as the character <space> and control characters are defined by
the International Reference Version of the International Reference Alphabet (ITU-T Rec. T.50). The lexical unit
<space> represents the T.50 SPACE character (acronym SP), which (for obvious reasons) cannot be shown.

<text> is used in a <comment area> where it is equivalent to a <character string> and in a <text extension area> where
it must be treated as a sequence of other lexical units.

T.50 delete characters are completely ignored. If an extended character set is used, the characters that are not defined by
T.50 may only appear in <text> in a <comment area> or a <character string> in a <comment> or within a <note>.

When an <underline> character is followed by one or more <space>s or control characters, all of these characters
(including the <underline>) are ignored, e.g. A_ B denotes the same <name> as AB. This use of <underline> allows
<lexical unit>s to be split over more than one line. This rule is applied before any other lexical rule.

 ITU-T Rec. Z.100 (11/2007) 17

A (non-space) control character may appear where a <space> may appear, and has the same meaning as a <space>.

An occurrence of a control character is not significant in <informal text> and in <note>. In order to construct a string
expression containing control characters, the <concatenation sign> operator and the literals for control characters must
be used. All spaces in a character string are significant: a sequence of spaces is not treated as one space.

Any number of <space>s may be inserted before or after any <lexical unit>. Inserted <space>s or <note>s have no
syntactic relevance, but sometimes a <space> or <note> is needed to separate one <lexical unit> from another.

In all <lexical unit>s except keywords, uppercase <letter>s and lowercase letters are distinct. Therefore AB, aB, Ab and
ab represent four different <word>s. An all uppercase <keyword> has the same use as the all lowercase <keyword>
with the same spelling (ignoring case), but a mixed case letter sequence with the same spelling as a <keyword>
represents a <word>.

For conciseness within the lexical rules and the Concrete grammar, the lowercase <keyword> as a terminal denotes that
the uppercase <keyword> with the same spelling and may be used at the same place. For example, the keyword
 default
represents the lexical alternatives
 { default | DEFAULT }
NOTE 1 − Boldface lower case is used for keywords within this Recommendation. Distinguishing by font attributes is
not a mandatory requirement, but can be useful to the readers of a specification.

The first character that cannot be part of the <lexical unit> according to the syntax specified above terminates the
<lexical unit>. If a <lexical unit> can be both a <name> and a <keyword>, then it is a <keyword>. If two
<quoted operation name>s differ only in case, the semantics of the lowercase name applies, so that (for example) the
expression "OR"(a, b) means the same as (a or b).
NOTE 2 – Some keywords of SDL are used in ITU-T Rec. Z.106 only.

Special lexical rules apply within a <macro body>.

6.2 Macro
A macro definition contains a collection of lexical units, which can be included in one or more places in the textual
parts of the concrete grammar of an <sdl specification>. Each such place is indicated by a macro call. Before an
<sdl specification> can be analysed, each macro call must be replaced by the corresponding macro definition.

6.2.1 Additional lexical rules
<formal name> ::=
 [<name>%] <macro parameter>
 { [%<name>] %<macro parameter> }*
 [%<name>]

6.2.2 Macro definition
<macro definition> ::=
 macrodefinition <macro name>
 [<macro formal parameters>] <end>
 <macro body>
 endmacro [<macro name>] <end>

<macro formal parameters> ::=
 (<macro formal parameter> { , <macro formal parameter>}*)

<macro formal parameter> ::=
 <name>

<macro body> ::=
 {<lexical unit> | <formal name>}*

<macro parameter> ::=
 <macro formal parameter>
 | macroid

The <macro formal parameter>s must be distinct. Each of the <macro actual parameter>s of a macro call must be
matched one to one with their corresponding <macro formal parameter>s.

The <macro body> must not contain the keyword endmacro and macrodefinition.

18 ITU-T Rec. Z.100 (11/2007)

A <macro definition> contains lexical units.

A <macro name> is visible in the whole system definition, no matter where the macro definition appears. A macro call
may appear before the corresponding macro definition.

A macro definition may contain macro calls, but a macro definition must not call itself either directly or indirectly
through macro calls in other macro definitions.

The keyword macroid may be used as a pseudo macro formal parameter within each macro definition. No
<macro actual parameter>s can be given to it, and it is replaced by a unique <name> for each expansion of a macro
definition (within an expansion, the same <name> is used for each occurrence of macroid).

Example

Below is an example of a <macro definition>:
macrodefinition Exam (alfa, c, s, a);
 block alfa referenced;
 dcl exported c as s Integer := a;
endmacro Exam;

6.2.3 Macro call
<macro call> ::=
 macro <macro name> [<macro call body>] <end>

<macro call body> ::=
 (<macro actual parameter> {, <macro actual parameter>}*)

<macro actual parameter> ::=
 <lexical unit>*

The <lexical unit> cannot be a comma "," or right parenthesis ")". If any of these two characters is required in a
<macro actual parameter>, the <macro actual parameter> must be a <character string>. If the <macro actual parameter>
is a <character string>, the result of the <character string> is used when the <macro actual parameter> replaces a
<macro formal parameter>.

A <macro call> may appear at any place where a <lexical unit> is allowed.

Model

An <sdl specification> may contain macro definitions and macro calls. Before such an <sdl specification> can be
analysed, all macro calls must be expanded. The expansion of a macro call means that a copy of the macro definition
having the same <macro name> as that given in the macro call is expanded to replace the macro call. This means that a
copy of the macro body is created, and each occurrence of the <macro formal parameter>s of the copy is replaced by
the corresponding <macro actual parameter>s of the macro call, then macro calls in the copy, if any, are expanded. All
percent characters (%) in <formal name>s are removed when <macro formal parameter>s are replaced by
<macro actual parameter>s.

There must be one to one correspondence between <macro formal parameter> and <macro actual parameter>.

Example

Below is an example of a <macro call>, within a fragment of a <block diagram>.
.........
block A referenced;
macro Exam (B, C1, S1, 12);
.........

The expansion of this macro call, using the example in 6.2.2, gives the following result.
.........
block A referenced;
block B referenced;
dcl exported C1 as S1 Integer := 12;
.........

 ITU-T Rec. Z.100 (11/2007) 19

6.3 Visibility rules, names and identifiers
Abstract grammar

Identifier :: Qualifier Name
Qualifier = Path-item +
Path-item = Package-qualifier
 | Agent-type-qualifier
 | Agent-qualifier
 | State-type-qualifier
 | State-qualifier
 | Data-type-qualifier
 | Procedure-qualifier
 | Signal-qualifier
 | Interface-qualifier
Package-qualifier :: Package-name
Agent-type-qualifier :: Agent-type-name
Agent-qualifier :: Agent-name
State-type-qualifier :: State-type-name
State-qualifier :: State-name
Data-type-qualifier :: Data-type-name
Procedure-qualifier :: Procedure-name
Signal-qualifier :: Signal-name
Interface-qualifier :: Interface-name
Package-name = Name
Agent-type-name = Name
Agent-name = Name
State-type-name = Name
Data-type-name = Name
Interface-name = Name
Name :: Token

Concrete grammar

<identifier> ::=
 [<qualifier>] <name>

<qualifier> ::=
 <qualifier begin sign> <path item> { / <path item> }* <qualifier end sign>

<string name> ::=
 <character string>
 | <bit string>
 | <hex string>

<path item> ::=
 [<scope unit kind>] <name>

<scope unit kind> ::=
 package
 | system type
 | system
 | block
 | block type
 | process
 | process type
 | state
 | state type
 | procedure
 | signal
 | type
 | operator
 | method
 | interface

20 ITU-T Rec. Z.100 (11/2007)

Scope units are defined by the following non-terminal symbols of the concrete grammar. Some scope unit kinds have
both a textual and a graphical form of definition. These are shown on the same line, with the textual definition shown in
the left-hand column.
 <package diagram>
 <agent diagram>
 <agent type diagram>
 <procedure definition> <procedure diagram>
 <data type definition>
 <interface definition>
 <operation definition> <operation diagram>
 <composite state area>
 <composite state type diagram>
 <sort context parameter>
 <signal definition>
 <signal context parameter>
 <compound statement> <task area>

A scope unit has a list of definitions attached. Each of the definitions defines one or more entities belonging to a certain
entity kind and having an associated name, including the definition of gates, <formal context parameter>s,
<agent formal parameters>s, and <formal variable parameters> contained in the scope unit.

Although <quoted operation name>s and <string name>s have their own syntactical notation, they are in fact <name>s
that represent Names in the Abstract syntax. In the following, they are treated as if they were syntactically also
<name>s.

Entities can be grouped into entity kinds. The following entity kinds exist:
a) packages;
b) agents (system, blocks, processes);
c) agent types (system types, block types, process types);
d) channels, gates;
e) signals, timers, interfaces, data types;
f) procedures, remote procedures;
g) variables (including formal parameters), synonyms;
h) literals, operators, methods;
i) remote variables;
j) sorts;
k) state types;
l) signal lists;
m) exceptions.

A formal context parameter is an entity of the same entity kind as the corresponding actual context parameters.

A reference definition is an entity after the transformation step for <referenced definition> (see 7.3 and Annex F).

Each entity is said to have its defining context in the scope unit that defines it.

Entities are referenced by means of <identifier>s. The <qualifier> within an <identifier> specifies uniquely the defining
context of the entity.

Either the <qualifier> refers to a supertype or the <qualifier> reflects the hierarchical structure from the system or
package level to the defining context, such that the system or package level is the leftmost textual part. The Name of an
entity is then represented by the qualifier, the name of the entity, and, only for entities of kind h), the signature
(see 12.1.7.1, 12.1.4). All entities of the same kind must have different Names.
NOTE 1 − Consequently, no two definitions in the same scope unit and belonging to the same entity kind can have the
same <name>. The only exceptions are operations defined in the same <data type definition>, as long as they differ in
at least one argument <sort> or the result <sort>.

Any <state name>s, <connector name>s, and <gate name>s occurring in channel definitions,
<macro formal parameter>s and <macro name>s have special visibility rules and cannot be qualified. Other special
visibility rules are explained in the appropriate clauses.

 ITU-T Rec. Z.100 (11/2007) 21

NOTE 2 − There is no <scope unit kind> corresponding to the scope units defined by the <task area> and
<compound statement> schemata. Therefore, it is not possible to refer to the identifiers introduced in a definition
attached to these scope units by qualifiers.

An entity can be referenced by using an <identifier>, if the entity is visible. An entity is visible in a scope unit if:
a) it has its defining context in that scope unit; or
b) the scope unit is a specialization and the entity is visible in the base type; and

1) it is not protected from visibility by a special construction defined in 12.1.9.3; and
2) data specialization renaming has not been applied (12.1.3); and
3) it is not a formal context parameter which has already been bound to an actual context parameter (8.2);

or
c) the scope unit has a <package use clause> which mentions a <package diagram> such that:

1) either the <package use clause> has the <definition selection list> omitted or the <name> of the entity is
mentioned in a <definition selection>; and

2) the <package diagram> that is the defining context for the entity either has the <package interface>
omitted or <name> of the entity is mentioned in the <package interface>; or

d) the scope unit contains an <interface definition> which is the defining context of the entity (see 12.1.2); or
e) the scope unit contains a <data type definition> which is the defining context of the entity and it is not

protected from visibility by a special construction defined in 12.1.9.3; or
f) the entity is visible in the scope unit that defines that scope unit.

It is allowed to omit some of the leftmost <path item>s, or the whole <qualifier> of an <identifier> if the omitted
<path item>s can be uniquely expanded to a full <qualifier>.

When the <name> part of an <identifier> denotes an entity that is not of entity kind h), the <name> is bound to an entity
that has its defining context in the nearest enclosing scope unit in which the <qualifier> of the <identifier> is the same
as the rightmost part of the full <qualifier> denoting this scope unit (resolution by container). If the <identifier> does
not contain a <qualifier>, then the requirement on matching of <qualifier>s does not apply.

The binding of a <name> to a definition through resolution by container proceeds in the following steps, starting with
the scope unit denoted by the partial <qualifier>:
a) if a unique entity exists in a scope unit with the same <name> and entity kind, the <name> is bound to that

entity; otherwise
b) if the scope unit is a specialization, step a) is repeated recursively until the <name> can be bound to an entity;

otherwise
c) if the scope unit has a <package use clause> and a unique entity exists and is visible in the <package

diagram>, the <name> is bound to that entity; otherwise
d) if the scope unit has an <interface definition> and a unique entity exists and is visible in the <interface

definition>, the <name> is bound to that entity; otherwise
e) resolution by container is attempted in the scope unit that defines the current scope unit.

With respect to visibility and use of qualifiers, a <package use clause> associated with a scope unit is regarded as
representing a package definition directly enclosing the scope unit and defined in the scope unit where that scope unit is
defined. If the <identifier> does not contain a <qualifier>, a <package use clause> is considered as the nearest enclosing
scope unit to the scope unit with which it is associated and contains the entities visible from the package.
NOTE 3 − In the concrete syntax, packages cannot be defined inside other scope units. The above rule is only for
defining the visibility rules that apply for packages. A consequence of this rule is that names in a package can be
referred to using different qualifiers, one for each enclosed <package use clause> of the package.

When the <name> part of an <identifier> denotes an entity of the entity kind h), the binding of the <name> to a
definition must be resolvable by context. Resolution by context is attempted after resolution by container; that is, if a
<name> can be bound to an entity through resolution by container, that binding is used even if resolution by context
could bind that <name> to an entity also. The context for resolving a <name> is an <assignment> (if the <name>
occurred in an <assignment>), a <decision area> (if the <name> occurred in the <question> or <answer>s of a
<decision area>), or an <expression> that is not part of any other <expression> otherwise. Resolution by context
proceeds as follows:
a) For each <name> occurring in the context, find the set of <identifier>s, such that the <name> part is visible,

having the same <name> and partial <qualifier> taking renaming into account.
b) Construct the product of the sets of <identifier>s associated with each <name>.

22 ITU-T Rec. Z.100 (11/2007)

c) Consider only those elements in the product, which do not violate any static sort constraints taking into
account also those sorts in packages that are not made visible in a <package use clause>. Each remaining
element represents a possible, statically correct binding of the <name>s in the <expression> to entities.

d) Due to the possibility of polymorphism in <assignment>s (see 12.3.3), the static sort of an <expression> may
not be the same as the static sort of the <variable>, and similarly for the implicit assignments in parameters.
The number of such mismatches is counted for each element.

e) Compare the elements in pairs, dropping those with more mismatches.
f) If there is more than one remaining element, all non-unique <identifier>s must represent the same Dynamic-

operation-signature; otherwise the <name>s in the context cannot be bound to a definition.

It is only allowed to omit the optional <scope unit kind> in a <path item> if the <name> or <quoted operation name>
uniquely determines the scope unit.

There is no corresponding abstract syntax for the <scope unit kind> denoted by operator or method.

6.4 Informal text
Abstract grammar

Informal-text :: ...

Concrete grammar

<informal text> ::=
 <character string>

Semantics

If informal text is used in a specification, it means that this text does not have any semantics defined by SDL. The
semantics of the informal text can be defined by some other means.

6.5 Drawing rules
The size of the graphical symbols can be chosen by the user.

Symbol boundaries must not overlay or cross. An exception to this rule applies for line symbols, which may cross each
other. There is no logical association between symbols that do cross. The following are line symbols:
 <association symbol>
 <channel symbol>
 <create line symbol>
 <dashed association symbol>
 <dependency symbol>
 <flow line symbol>
 <solid association symbol>
 <solid on exception association symbol>
 <specialization relation symbol>

The metasymbol is followed by implies a <flow line symbol>.

Line symbols may consist of one or more straight line segments.

An arrowhead is required on a <flow line symbol>, when it enters another <flow line symbol>, an
<out connector symbol> or a <nextstate area>. In other cases, arrowheads are optional on <flow line symbol>s. The
<flow line symbol>s are horizontal or vertical.

Vertical mirror images of <input symbol>, <output symbol>, <internal input symbol>, <internal output symbol>,
<priority input symbol>, <raise symbol>, <handle symbol>, <comment symbol> and <text extension symbol> are
allowed.

The right-hand argument of the metasymbol is associated with must be closer to the left-hand argument than to any
other graphical symbol. The syntactical elements of the right-hand argument must be distinguishable from each other.

Text within a graphical symbol must be read from left to right, starting from the upper left corner. The right-hand edge
of the symbol is interpreted as a newline character, indicating that the reading must continue at the leftmost point of the
next line (if any).

 ITU-T Rec. Z.100 (11/2007) 23

6.6 Partitioning of drawings
The following definition of partitioning is not part of the Concrete grammar, but the same metalanguage is used.

<page> ::=
 <frame symbol> contains
 { <heading area> <page number area> { <symbol> | <lexical unit> }* }

<heading area> ::=
 <implicit text symbol> contains <heading>

<heading> ::=
 <kernel heading> [<extra heading>]

<kernel heading> ::=
 [<virtuality>]
 <drawing kind> <drawing qualifier> <drawing name>

<drawing kind> ::=
 package | system [type] | block [type] | process [type]
 | state [type] | [exported] procedure | operator | method

<extra heading> ::=
 part of drawing heading not in kernel heading

<page number area> ::=
 [<implicit text symbol> contains <page number> [(<number of pages>)]]

<page number> ::=
 <literal name>

<number of pages> ::=
 <Natural literal name>

<symbol> ::=
 any of the terminals defined with a rule name ending in "symbol"

The <page> is a starting non-terminal; therefore it is not referred to in any production rule. A drawing may be
partitioned into a number of <page>s, in which case the <frame symbol> delimiting the drawing and the drawing
<heading> are replaced by a <frame symbol> and a <heading> for each <page>.

A <symbol> is a graphical non-terminal symbol (see 5.4.2).

The <implicit text symbol> is not shown, but implied, in order to have a clear separation between <heading area> and
<page number area>. The <heading area> is placed at the upper left corner of the <frame symbol>. The
<page number area> is placed at the upper right corner of the <frame symbol>. The <heading> and syntactical units
(<symbol>s and <lexical unit>s) that are allowed on a page depend on the type of drawing.

The <extra heading> must be shown on at least one page of a drawing, but is optional on other pages. The <heading>
and <drawing kind> are elaborated for the particular drawings in the individual clauses of this Recommendation. The
<extra heading> is not defined further by this Recommendation.

<virtuality> denotes the virtuality of the type defined by the drawing (see 8.3.2) and exported whether a procedure is
exported as a remote procedure (see 10.5).

The drawings of SDL are <specification area>, <package diagram>, <agent diagram>, <agent type diagram>,
<procedure diagram>, <operation diagram>, <composite state area>, and <composite state type diagram>.

6.7 Comment
A comment is a notation to represent comments associated with symbols or text.

Concrete grammar

With text, two forms of comments are used. The first form is the <note>.

The concrete syntax of the second form is:

<end> ::=
 [<comment>] <semicolon>

24 ITU-T Rec. Z.100 (11/2007)

<comment> ::=
 comment <comment body>

An <end> in <package text area>, <agent text area>, <procedure text area>, <composite state text area>,
<operation text area>, and <statement list> shall not contain <comment>.

With symbols, the following syntax is used:

<comment area> ::=
 <comment symbol> contains <text>
 is connected to <dashed association symbol>

<comment symbol> ::=

<dashed association symbol> ::=
 - - - - - - - - - - -

One end of the <dashed association symbol> must be connected to the middle of the vertical segment of the
<comment symbol>.

A <comment symbol> can be connected to any graphical symbol by means of a <dashed association symbol>. The
<comment symbol> is considered as a closed symbol by completing (in imagination) the rectangle to enclose the text. It
contains comment text related to the graphical symbol.

6.8 Text extension
Concrete grammar

<text extension area> ::=
 <text extension symbol> contains <text>
 is connected to <solid association symbol>

<text extension symbol> ::=

<solid association symbol> ::=

One end of the <solid association symbol> must be connected to the middle of the vertical segment of the
<text extension symbol>.

A <text extension symbol> can be connected to any graphical symbol that can contain text by means of a
<solid association symbol>. The <text extension symbol> is considered as a closed symbol by completing (in
imagination) the rectangle.

The <text> contained in the <text extension symbol> is a continuation of the text within the graphical symbol and is
considered to be contained in that symbol and is therefore treated as a number of lexical units.

6.9 Text symbol
The <text symbol> is used in all kinds of <diagram>. The content depends on the diagram.

Concrete grammar

<text symbol> ::=

 ITU-T Rec. Z.100 (11/2007) 25

7 Organization of SDL specifications
An SDL system cannot usually be described easily on a single diagram. The language therefore supports the
partitioning of the specification and use of SDL from elsewhere.

7.1 Framework
An <sdl specification> can be described as a monolithic <system specification> (possibly augmented by a collection of
<package diagram>s) or as a collection of <package diagram>s and <referenced definition>s. A <package diagram>
allows definitions to be used in different contexts by "using" the package in these contexts (that is, in systems or
packages which may be independent). A <referenced definition> is a definition that has been removed from its defining
context to gain overview within one system description. It is "inserted" into exactly one place (the defining context)
using a reference. A <specification area> allows a graphical depiction of the relationships between
<system specification> and <package diagram>s.

Abstract grammar

SDL-specification :: [Agent-definition]
 Package-definition-set

The Agent-definition (if present) must have an Agent-type-identifier for an Agent-type-definition with the Agent-kind
SYSTEM.

Concrete grammar

<sdl specification> ::=
 {[<specification area>]
 { <package diagram> | <system specification> }
 <package diagram>* <referenced definition>* }set

<system specification> ::=
 <agent diagram>
 | <typebased agent definition>[is associated with <package use area>]

<specification area> ::=
 <frame symbol> contains {
 { <agent reference area>
 | <typebased agent definition>
 [is connected to {<package dependency area>+ }set]
 }
 {<package reference area>* }set}

Semantics

An SDL-specification has the combined semantics of the system agent (if one is given) with the packages. If no system
agent is specified, the specification provides a set of definitions for use in other specifications.

For an SDL-specification with an Agent-definition, a type is potentially instantiated if it is either instantiated in the
Agent-definition, or instantiated in a potentially instantiated type.

Model

A <system specification> being a <process diagram> or a <typebased process definition> is derived syntax for a
<system diagram> having the same name as the process, containing implicit channels and containing the
<process diagram> or <typebased process definition> as the only definition.

A <system specification> being a <block diagram> or a <typebased block definition> is derived syntax for a
<system diagram> having the same name as the block, containing implicit channels and containing the
<block diagram> or <typebased block definition> as the only definition.

A <package use area> associated with a <typebased agent definition> of a <system specification> is derived syntax for
a <package use area> associated with the <system diagram> derived from the <typebased agent definition>.

7.2 Package
In order for a type definition to be used in different systems it has to be defined as part of a package.
Definitions as parts of a package define types, signal lists, remote specifications and synonyms.
Definitions within a package are made visible to another scope unit by a package use clause.

26 ITU-T Rec. Z.100 (11/2007)

Abstract grammar

Package-definition :: Package-name
 Package-definition-set
 Data-type-definition-set
 Syntype-definition-set
 Signal-definition-set
 Exception-definition-set
 Agent-type-definition-set
 Composite-state-type-definition-set
 Procedure-definition-set

Concrete grammar

<package diagram> ::=
 <frame symbol> contains
 { <package heading>
 { {<package text area>}*
 {<diagram in package>}* } set }
 [is associated with <package use area>]

<package heading> ::=
 package [<qualifier>] <package name>
 [<package interface>]

<package use area> ::=
 <text symbol> contains {<package use clause>}*

<package text area> ::=
 <text symbol> contains
 { <agent type reference>
 | <package reference>
 | <signal definition>
 | <signal reference>
 | <signal list definition>
 | <remote variable definition>
 | <data definition>
 | <data type reference>
 | <procedure definition>
 | <procedure reference>
 | <remote procedure definition>
 | <exception definition>
 | <select definition>
 | <macro definition>
 | <interface reference> }*

<diagram in package> ::=
 <package diagram>
 | <package reference area>
 | <entity in agent diagram>
 | <data type reference area>
 | <signal reference area>
 | <procedure reference area>
 | <interface reference area>
 | <create line area>
 | <option area>

<package reference> ::=
 package [<qualifier>] <package name> referenced <end>

<package reference area> ::=
 <package symbol> contains <package identifier>
 [is connected to {<package dependency area>+ }set]

<package dependency area> ::=
 <dependency symbol> is attached to { <package diagram> | <package reference area> }

 ITU-T Rec. Z.100 (11/2007) 27

<package use clause> ::=
 use <package identifier> [/ <definition selection list>] <end>

<definition selection list> ::=
 <definition selection> { , <definition selection>}*

<definition selection> ::=
 [<selected entity kind>] <name>

<selected entity kind> ::=
 system type
 | block type
 | process type
 | package
 | signal
 | procedure
 | remote procedure
 | type
 | signallist
 | state type
 | synonym
 | remote
 | exception
 | interface

<package interface> ::=
 public <definition selection list>

<package symbol> ::=

<dependency symbol> ::=

The <package use area> must be placed on the top of the <frame symbol>. The optional <qualifier> and
<package name> of a <package reference area> must be contained in the lower rectangle of <package symbol>.

The <package dependency area>s for a <package reference area> are partial specifications of the corresponding
<package use clause> for the <package diagram> (or <package diagram> or <system specification> for a
<package reference area> in a <specification area>), and must be consistent with this <package use clause>.

For each <package identifier> mentioned in a <package use clause>, there must exist a corresponding <package
diagram>. This package may be part of <sdl specification> or may be a package contained in another package or else
there must exist a mechanism for accessing the referenced <package diagram>, just as if it were a part of the
<sdl specification>. This mechanism is not defined in this Recommendation.

If the package is part of <sdl specification> or if there exists a mechanism for accessing the referenced <package
diagram>, there must not be a <qualifier> in <package identifier>.

If the corresponding <package diagram> is contained in another package, the <package identifier> reflects the
hierarchical structure from the outermost <package diagram> to the defined <package diagram>. Leftmost <path item>s
can be omitted.

The <package identifier> must denote a visible package. All <package diagram>s in the <qualifier> of the fully
qualified <package identifier> must be visible. A package is visible if it is either part of the <sdl specification> or if its
<identifier> is visible according to the visibility rules of SDL for <identifier>. The visibility rules of SDL imply that a
<package identifier> can be made visible with a <package use clause> and that a package is visible in the scope in
which it is contained. This scope extends also to the <package use clause> of the container package.

Likewise, if the <system specification> is omitted in an <sdl specification>, there must exist a mechanism for using the
<package diagram>s in other <sdl specification>s. Before the <package diagram>s are used in other
<sdl specification>s, the model for macros and referenced definitions is applied. The mechanism is not otherwise
defined in this Recommendation.

The <selected entity kind> procedure is used for selection of both (normal) procedures and remote procedures. If both
a normal procedure and a remote procedure have the given <name>, procedure denotes the normal procedure. To force
the <definition selection> to denote the remote procedure, the procedure keyword can be preceded by remote.

28 ITU-T Rec. Z.100 (11/2007)

The keyword type is used for selection of a sort name and also a syntype name in a package. The keyword remote is
used for selection of a remote variable definition.

Semantics

The visibility of the name of an entity defined within a <package diagram> is explained in 6.3.

Signals which are not made visible in a use clause can be part of a signal list via a <signal list identifier> made visible
in a use clause and these signals can thereby affect the complete valid input signal set of an agent.

If a name in a <definition selection> denotes a <sort>, the <definition selection> also implicitly denotes the data type
that defined the <sort> and all the literals and operations defined by the data type. If a name in a <definition selection>
denotes a syntype, the <definition selection> also implicitly denotes the data type that defined the
<parent sort identifier> and all the literals and operations defined by the data type.

The <selected entity kind> in <definition selection> denotes the entity kind of the <name>. Any pair of
(<selected entity kind>, <name>) must be distinct within a <definition selection list>. For a <definition selection> in an
<package interface>, the <selected entity kind> may be omitted only if there is no other name having its defining
occurrence directly in the <package diagram>. For a <definition selection> in a <package use clause>,
<selected entity kind> may be omitted if and only if either exactly one entity of that name is mentioned in any
<definition selection list> for the package or the package has no <definition selection list> and directly contains a
unique definition of that name.

Model

A <system diagram> and every <package diagram> has an implicit <package use clause>:
 use Predefined;
where Predefined denotes a package containing the predefined data as defined in Annex D. If no <package use area> is
associated with the diagram, a <package use area> is created and this <package use clause> is inserted.

7.3 Referenced definition
Concrete grammar

<referenced definition> ::=
 <definition> | <diagram>

<definition> ::=
 <procedure definition>
 | <operation definition>
 | <macro definition>

<diagram> ::=
 <package diagram>
 | <agent diagram>
 | <agent type diagram>
 | <composite state area>
 | <composite state type diagram>
 | <procedure diagram>
 | <operation diagram>

For each <referenced definition>, except for <macro definition>, there must be a reference in the associated <package
diagram> or <system specification>. Textual and graphical references are defined as <... reference> and <… reference
area> respectively (for example <block reference> and <block reference area>).

An optional <qualifier> and <name> is present in a <referenced definition> after the initial keyword(s). For each
reference there must exist a <referenced definition> with the same entity kind as the reference, and whose <qualifier>,
if present, denotes a path, from a scope unit enclosing the reference, to the reference. If two <referenced definition>s of
the same entity kind have the same <name>, the <qualifier> of one must not constitute the leftmost part of the other
<qualifier>, and neither <qualifier> can be omitted. The <qualifier> must be present if the <referenced definition> is a
<package diagram>.

It is not allowed to specify a <qualifier> after the initial keyword(s) for definitions which are not
<referenced definition>s.

Model

Before the properties of a <system specification> are derived, each reference is replaced by the corresponding
<referenced definition>. In this replacement, the <qualifier> of the <referenced definition> is removed.

 ITU-T Rec. Z.100 (11/2007) 29

8 Structural concepts
This clause introduces a number of language mechanisms to support the modelling of application-specific phenomena
by instances and application-specific concepts by types. Inheritance is intended to represent concept generalization and
specialization.

The language mechanisms introduced provide:
a) (pure) type definitions that may be defined anywhere in a system or in a package;
b) typebased instance definitions that define instances or instance sets according to types;
c) parameterized type definitions that are independent of the enclosing scope by means of context parameters

and may be bound to specific scopes;
d) specialization of supertype definitions into subtype definitions, by adding properties and by redefining virtual

types and transitions.

8.1 Types, instances and gates
There is a distinction between definition of instances (or set of instances) and definition of types in SDL descriptions.
This clause introduces (in 8.1.1) type definitions for agents, and (in 8.1.3) corresponding instance specifications, while
the introduction of other types are in procedures (9.4), signals (10.3), timers (11.15), sorts (12.1) and interfaces (12.1.2).
An agent type definition is not connected (by channels) to any instances; instead, agent type definitions introduce
gates (8.1.5). These are connection points on the typebased instances for channels.

A type defines a set of properties. All instances of the type (5.2.1) have this set of properties.

An instance (or instance set) always has a type, which is implied if the instance is not explicitly based on a type. For
example, a process diagram has an implied equivalent anonymous process type.

8.1.1 Structural type definitions
These are type definitions for entities that are used in the structure of a specification. In contrast, procedure definitions
are also type definitions, but organize behaviour rather than structure.

8.1.1.1 Agent types
An agent type is a system, block or process type. When the type is used to define an agent, the agent is of corresponding
kind (system, block or process).

Abstract grammar

Agent-type-definition :: Agent-type-name
 Agent-kind
 [Agent-type-identifier]
 Agent-formal-parameter*
 Data-type-definition-set
 Syntype-definition-set
 Signal-definition-set
 Timer-definition-set
 Exception-definition-set
 Variable-definition-set
 Agent-type-definition-set
 Composite-state-type-definition-set
 Procedure-definition-set
 Agent-definition-set
 Gate-definition-set
 Channel-definition-set
 [State-machine-definition]
Agent-kind = SYSTEM | BLOCK | PROCESS
Agent-type-identifier = Identifier
Agent-formal-parameter = Parameter
State-machine-definition :: State-name
 Composite-state-type-identifier

The Composite-state-type-definition identified by the Composite-state-type-identifier of a State-machine-definition of
an Agent-type-definition shall have a Composite-state-formal-parameter list that is the same as the Agent-formal-
parameter list of the Agent-type-definition.

30 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

<agent type diagram> ::=
 { <system type diagram> | <block type diagram> | <process type diagram> }
 [is associated with <package use area>]

<type preamble> ::=
 [<virtuality> | <abstract>]

<agent type additional heading> ::=
 [<formal context parameters>] [<virtuality constraint>]
 <agent additional heading>

The <package use area> must be placed on the top of the <frame symbol>.

Semantics

An Agent-type-definition defines an agent type. All agents of an agent type have the same properties as defined for that
agent type.

The definition of an agent type implies the definition of an interface in the same scope of the agent type (see 12.1.2).
The pid sort implicitly defined by this interface is identified with Agent-type-name and is visible in the same scope unit
as where the agent type is defined.

The complete output set of an agent type is the union of all signals, remote procedures and remote variables mentioned,
either directly or as part of interfaces and signal lists, in the outgoing signal lists associated with the gates of the agent
type.

NOTE − Because every agent type has an implicitly defined interface with the same name, the agent type must have a
different name from every explicitly defined interface, and every agent (these also have implicit interfaces) defined in
the same scope, otherwise there are name clashes.

Other properties defined in an Agent-type-definition such as the Procedure-definition-set, Agent-definition-set, and
Gate-definition-set determine the properties of any Agent-definition based on the type, and are therefore described in
clause 9.

Model

An agent type with an <agent body area> is shorthand for an agent type having only a state machine, but no contained
agents. This state machine is obtained by replacing the <agent body area> by a composite state definition. This
composite state definition has the same name as the agent type and its State-transition-graph is represented by the
<agent body area>. The virtuality of the composite state definition is the same as the virtuality of the agent type.

An agent type with

– a <state partition area> with a <composite state reference area>, or

– <composite state area>

is a shorthand for an agent type having a state machine that is based on an implied composite state type with the same
virtuality as the agent type. The implied state type has the body of the <composite state reference area> or
<composite state area>. If the agent type is a subtype, and if the supertype has a <state partition area>, the implied state
type is a subtype that implicitly inherits the implied state type of the supertype.

Each implied type has a constraint, which is itself (see 8.3.1).

8.1.1.2 System type
A system type definition is a top-level agent type definition. It is denoted by the keywords system type. A system type
definition must not be contained in any other agent or agent type definition. A system type can neither be abstract nor
virtual.

Concrete grammar

<system type diagram> ::=
 <frame symbol> contains {<system type heading> <agent structure area> }
 is connected to {{ <gate on diagram>* }set }

<system type heading> ::=
 system type [<qualifier>] <system type name>
 <agent type additional heading>

 ITU-T Rec. Z.100 (11/2007) 31

A <formal context parameter> of <formal context parameters> must not be an <agent context parameter>,
<variable context parameter> or <timer context parameter>.

The <agent type additional heading> in a <system type diagram> may not include <agent formal parameters>.

Semantics

A <system type diagram> defines a system type.

8.1.1.3 Block type
Concrete grammar

<block type diagram> ::=
 <frame symbol> contains {<block type heading> <agent structure area> }
 is connected to {{ <gate on diagram>* }set }

<block type heading> ::=
 <type preamble>
 block type [<qualifier>] <block type name>
 <agent type additional heading>

The <gate on diagram>s in a <block type diagram> must be outside the diagram frame.

Semantics

A <block type diagram> defines a block type.

8.1.1.4 Process type
Concrete grammar

<process type diagram> ::=
 <frame symbol> contains {<process type heading> <agent structure area> }
 is connected to {{ <gate on diagram>* }set }

<process type heading> ::=
 <type preamble>
 process type [<qualifier>] <process type name>
 <agent type additional heading>

The <gate on diagram>s in a <process type diagram> must be outside the diagram frame.

Semantics

A <process type diagram> defines a process type.

8.1.1.5 Composite state type
Abstract grammar

Composite-state-type-definition :: State-type-name
 [Composite-state-type-identifier]
 Composite-state-formal-parameter*
 State-entry-point-definition-set
 State-exit-point-definition-set
 Gate-definition-set
 Data-type-definition-set
 Syntype-definition-set
 Exception-definition-set
 Composite-state-type-definition-set
 Variable-definition-set
 Procedure-definition-set
 [Composite-state-graph | State-aggregation-node]
Composite-state-type-identifier = Identifier

32 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

<composite state type diagram> ::=
 <frame symbol>
 contains {
 { <composite state type heading> | <state aggregation type heading> }
 <composite state structure area> }
 is connected to { <state connection point area>* }set
 is connected to {{ <gate on diagram>* }set }
 [is associated with <package use area>]

<composite state type heading> ::=
 [<virtuality>]
 state type [<qualifier>] <composite state type name>
 [<formal context parameters>] [<virtuality constraint>]
 [<specialization>]
 [<agent formal parameters>]

<state aggregation type heading> ::=
 [<virtuality>]
 state aggregation type [<qualifier>] <composite state type name>
 [<formal context parameters>] [<virtuality constraint>]
 [<specialization>]
 [<agent formal parameters>]

The <package use area> must be placed on the top of the <frame symbol>.

The <gate on diagram>s in a <composite state type diagram> must be outside the diagram frame.

Semantics

A Composite-state-type-definition defines a composite state type. All composite states of a composite state type have
the same properties as defined for that composite state type. The semantics are further defined in 11.11.

8.1.2 Type expression
A type expression is used for defining one type in terms of another as defined by specialization in 8.3.

Concrete grammar

<type expression> ::=
 <base type> [<actual context parameters>]

<base type> ::=
 <identifier>

It is valid to have <actual context parameters> if and only if <base type> denotes a parameterized type. Context
parameters are defined in 8.2.

Outside a parameterized type, the parameterized type can only be used by referring to its <identifier> in
<type expression>.

Model

A <type expression> yields either the type identified by the identifier of <base type> in cases where there are no actual
context parameters, or an anonymous type defined by applying the actual context parameters to the formal context
parameters of the parameterized type denoted by the identifier of <base type>. The anonymous type definition is
formed by:
1) Copying the definition of the <base type> in the context where the construct using the <type expression>

occurs and changing the name to an anonymous unique name;
2) Replacing each occurrence of each <formal context parameter> name by the corresponding <actual context

parameter> in the copy;
3) Removing the <formal context parameter> from the <formal context parameter list> and removing the

<formal context parameters> if the <formal context parameter list> is empty;
4) Replacing the <type expression> by the anonymous unique name.
NOTE 1 – Two textually identical <type expression>s with the <actual context parameters> denote different types,
because they have different anonymous names. To use the same type binding in different places, a type definition using
the <type expression> should be used to name the <type expression>.

 ITU-T Rec. Z.100 (11/2007) 33

If some actual context parameters are omitted, the type is still parameterized.

In addition to fulfilling any static conditions on the definition denoted by the <base type>, usage of the
<type expression> must also fulfil any static condition on the resultant type.
NOTE 2 – The static properties on the usage of a <type expression> may be violated in the following cases, for
example:
− When a scope unit has signal context parameters or timer context parameters, the condition that stimuli for a

state must be disjoint depends on the actual context parameters that will be used.
− When an output in a scope unit refers to a gate or a channel, which is not defined in the nearest enclosing type

having gates, instantiation of that type results in an erroneous specification if there is no communication path
to the gate.

− When a procedure contains references to signal identifiers, remote variables and remote procedures,
specialization of that procedure inside an agent results in an erroneous specification if the usage of such
identifiers inside the procedure violates valid usage for the process.

− When state types are instantiated as parts of the same state aggregation, the resulting composite state is
erroneous if two or more parts have the same signal in the input signal set.

− When a scope unit has an agent context parameter that is used in an output action, the existence of a possible
communication path depends on which actual context parameter will be used.

− When a scope unit has a sort context parameter, application of an actual sort context parameter will result in an
erroneous specification if a polymorphic assignment to a value is attempted in the specialized type.

− If a formal parameter of a procedure added in a specialization has the <parameter kind> in/out or out, a call in
the supertype to a subtype (using this) will result in an omitted actual in/out or out parameter (that is, in an
erroneous specification).

− If a formal procedure context parameter is defined with an atleast constraint and the actual context parameter
has added a parameter of <parameter kind> in/out or out, a call of the formal procedure context parameter in
the parameterized type may result in an omitted actual in/out or out parameter (that is, in an erroneous
specification).

If the scope unit contains <specialization> and any <actual context parameter>s are omitted in the <type expression>,
the <formal context parameter>s are copied (while preserving their order) and inserted in front of the
<formal context parameter>s (if any) of the scope unit. In place of omitted <actual context parameter>s, the names of
corresponding <formal context parameter>s are inserted as <actual context parameter>s. These
<actual context parameter>s now have the defining context in the current scope unit.

8.1.3 Definitions based on types
A typebased agent definition defines an agent instance set according to a type denoted by <type expression>. The
defined entities get the properties of the types that they are based on.

Concrete grammar

<typebased agent definition> ::=
 <typebased system definition>
 | <typebased block definition>
 | <typebased process definition>

<inherited agent definition> ::=
 <inherited block definition>
 | <inherited process definition>

The agent type denoted by <base type> in the type expression of a <typebased agent definition> or
<inherited agent definition> must contain an unlabelled start transition in its state machine.

In a <typebased agent definition>, <gate definition>s and <interface gate definition>s must be placed outside the
<block symbol> or <process symbol>.

34 ITU-T Rec. Z.100 (11/2007)

8.1.3.1 System definition based on system type
Concrete grammar

<typebased system definition> ::=
 <block symbol> contains <typebased system heading>

<typebased system heading> ::=
 system <system name> <colon> <system type expression>

A <typebased system definition> defines an Agent-definition with Agent-kind SYSTEM that is an instantiation of the
system type denoted by the <system type expression>.

Semantics

A typebased system definition is interpreted as an Agent using the explicit or derived Agent-type-definition of the
system type.

8.1.3.2 Block definition based on block type
Concrete grammar

<typebased block definition> ::=
 <block symbol> contains { <typebased block heading> { <gate>* }set }
 is connected to { {<gate property area>*}set }

<typebased block heading> ::=
 <block name> [<number of instances>] <colon> <block type expression>

<inherited block definition> ::=
 <dashed block symbol> contains { <block identifier> { <gate>* }set }
 is connected to { {<gate property area>*}set }

<dashed block symbol> ::=

The <gate>s are placed near the border of the symbols and associated with the connection point to channels.

An <inherited block definition> shall only appear in a subtype definition. It represents the block defined in the
supertype of the subtype definition.
NOTE – It is allowed to specify additional channels connected to gates of an inherited block.

A <typebased block definition> defines Agent-definitions of Agent-kind BLOCK that is an instantiation of the block
type denoted by the <block type expression>.

Semantics

A typebased block definition is interpreted as an Agent using the explicit or derived Agent-type-definition of the block
type.

8.1.3.3 Process definition based on process type
Concrete grammar

<typebased process definition> ::=
 <process symbol> contains { <typebased process heading> { <gate>* }set }
 is connected to { {<gate property area>*}set }

<typebased process heading> ::=
 <process name> [<number of instances>] <colon> <process type expression>

<inherited process definition> ::=
 <dashed process symbol> contains { <process identifier> { <gate>* }set }
 is connected to { {<gate property area>*}set }

<dashed process symbol> ::=

 ITU-T Rec. Z.100 (11/2007) 35

The <gate>s are placed near the border of the symbols and associated with the connection point to channels.

An <inherited process definition> shall only appear in a subtype definition. It represents the process defined in the
supertype of the subtype definition.

NOTE – It is allowed to specify additional channels connected to gates of the inherited process.

A <typebased process definition> defines an Agent-definition with Agent-kind PROCESS that is an instantiation of the
process type denoted by the <process type expression>.

Semantics

A typebased process definition is interpreted as an Agent using the explicit or derived Agent-type-definition of the
process type.

8.1.3.4 Composite state definition based on composite state type
Concrete grammar

<typebased composite state> ::=
 <state name> [<actual parameters>] <colon> <composite state type expression>

Semantics

A typebased composite state definition and a textual typebased state partition definition define a composite state derived
by transformation from a composite state type.

Model

A <typebased composite state> is transformed to a <composite state area> which has the definitions of the composite
state type as defined by <composite state type expression>.

8.1.4 Abstract type
Concrete grammar

<abstract> ::=
 abstract

<abstract> is part of the type definition. See 8.1.1.1, 8.4, 9.5, 10.3, 12.1.1, and 12.1.9.4.

A type is an abstract type if its definition contains <abstract>.

An abstract procedure cannot be called.

A typebased agent (see 8.1.3) shall not be specified with an abstract agent type as the type.

An abstract type cannot be instantiated. However, a subtype of an abstract data type can be instantiated, if it is not itself
abstract.

8.1.5 Gate
Gates are defined in agent types (block types, process types) or state types and represent connection points for channels,
connecting instances of these types (as defined in 8.1.3) with other instances or with the enclosing frame symbol.

It is possible also to define gates in agents and composite states and this represents a notation for specifying that the
considered entity has a named connection point.

Abstract grammar

Gate-definition :: Gate-name
 In-signal-identifier-set
 Out-signal-identifier-set

Gate-name = Name

In-signal-identifier = Signal-identifier

Out-signal-identifier = Signal-identifier

Concrete grammar

<gate on diagram> ::=
 <gate definition> | <interface gate definition>

36 ITU-T Rec. Z.100 (11/2007)

<gate definition> ::=
 { <gate symbol> | <inherited gate symbol> }
 is associated with { <gate> [<signal list area>] [<signal list area>] }set
 [is connected to <endpoint constraint>]

<endpoint constraint> ::=
 { <block symbol> | <process symbol> | <state symbol> }
 contains <textual endpoint constraint>

<textual endpoint constraint> ::=
 [atleast] <identifier>

<interface gate definition> ::=
 <gate symbol 1>
 is associated with <interface identifier>

<gate symbol> ::=
 <gate symbol 1> | <gate symbol 2>

<gate symbol 1> ::=

<gate symbol 2> ::=

<inherited gate symbol> ::=
 <inherited gate symbol 1> | <inherited gate symbol 2>

<inherited gate symbol 1> ::=

<inherited gate symbol 2> ::=

<gate> ::=
 <gate name>

The <gate on diagram> is outside the diagram frame.

A <gate definition> that is part of a <gate property area> must not contain an <endpoint constraint>.

The <signal list area> elements are associated with the directions of the gate symbol.

<signal list area>s and <endpoint constraint> associated with an <inherited gate symbol> are regarded as additions to
those of the gate definition in the supertype.

An <inherited gate symbol> can only appear in a subtype definition, and it is then a representative for the gate with the
same <gate name> specified in the supertype of the subtype definition.

For each arrowhead on the <gate symbol>, there can be a <signal list area>. A <signal list area> must be
unambiguously close enough to the arrowhead to which it is associated. The arrowhead indicates whether the
<signal list area> represents an In-signal-identifier-set or an Out-signal-identifier-set and denotes the direction of
<signal list>, from or to the type respectively. An In-signal-identifier represents an element in the <signal list> to the
gate. An Out-signal-identifier represents an element in the <signal list> from the gate.

The <identifier> of an <endpoint constraint> with a <block symbol> (<process symbol>, <state symbol>) must denote
the definition of a block type (process type, state type respectively).

A channel connected to a gate must be compatible with the endpoint constraint of the gate. A channel is compatible
with this constraint if the other endpoint of the channel is an agent or state of the type denoted by <identifier> in the
endpoint constraint or a subtype of this type (in case it contains a <textual endpoint constraint> with atleast), and if the
set of signals (if specified) on the channel is equal to or is a subset of the set of signals specified for the gate in the
respective direction.

If the type denoted by <base type> in a <typebased block definition> or <typebased process definition> contains
channels, the following rule applies: for each combination of a gate, a signal, and the direction of the <signal list> of the
gate defined by the type, the type must contain at least one channel that − for the given direction − that is connected to
the frame at this gate and either mentions the signal or has no explicit <signal list> associated.

If the type contains channels mentioning remote procedures or remote variables, a similar rule applies.

 ITU-T Rec. Z.100 (11/2007) 37

Where two <gate constraint>s are specified one must be in the reverse direction to the other, and the
<textual endpoint constraint>s of the two <gate constraint>s must be the same.

If <textual endpoint constraint> is specified for the gate in the supertype, the <identifier> of an (added)
<textual endpoint constraint> must denote the same type or a subtype of the type denoted in the
<textual endpoint constraint> of the supertype.

The <identifier> of <textual endpoint constraint> must denote a block, process type or state type definition.

Semantics

The use of gates in type definitions corresponds to the use of communication paths in the enclosing scope in (set of)
instance specifications.

Model

A <interface gate definition> is shorthand for a <gate definition> having the name of the interface as <gate name> and
the <interface identifier> as the <gate constraint> or <signal list area>.

8.2 Context parameters
In order for a type definition to be used in different contexts, both within the same system specification and within
different system specifications, types may be parameterized by context parameters. Context parameters are replaced by
actual context parameters as defined in 8.1.2.

The following type definitions can have formal context parameters: system type, block type, process type, procedure,
signal, composite state, interface and data type.

Context parameters can be given constraints (that is, required properties any entity denoted by the corresponding actual
identifier must have). The context parameters have these properties inside the type.

Concrete grammar

<formal context parameters> ::=
 <context parameters start> <formal context parameter list> <context parameters end>

<formal context parameter list> ::=
 <formal context parameter> {<end> <formal context parameter> }*

<actual context parameters> ::=
 <context parameters start> <actual context parameter list> <context parameters end>

<actual context parameter list> ::=
 [<actual context parameter>] {, [<actual context parameter>] }*

<actual context parameter> ::=
 <identifier> | <constant primary>

<context parameters start> ::=
 <less than sign>

<context parameters end> ::=
 <greater than sign>

<formal context parameter> ::=
 <agent type context parameter>
 | <agent context parameter>
 | <procedure context parameter>
 | <remote procedure context parameter>
 | <signal context parameter>
 | <variable context parameter>
 | <remote variable context parameter>
 | <timer context parameter>
 | <synonym context parameter>
 | <sort context parameter>
 | <exception context parameter>
 | <composite state type context parameter>
 | <gate context parameter>
 | <interface context parameter>

The scope unit of a type definition with formal context parameters defines the names of the formal context parameters.

38 ITU-T Rec. Z.100 (11/2007)

These names are therefore visible in the definition of the type, and also in the definition of the formal context
parameters.

An <actual context parameter> shall not be a <constant primary> unless it is for a synonym context parameter. A
<constant primary> is a <primary> that is a valid <constant expression> (see 12.2.1).

Formal context parameters can neither be used as <base type> in <type expression> nor in atleast constraints of
<formal context parameters>.

Constraints are specified by constraint specifications. A constraint specification introduces the entity of the formal
context parameter followed by either a constraint signature or an atleast clause. A constraint signature introduces
directly sufficient properties of the formal context parameter. An atleast clause denotes that the formal context
parameter must be replaced by an actual context parameter, which is the same type or a subtype of the type identified in
the atleast clause. Identifiers following the keyword atleast in this clause must identify type definitions of the entity
kind of the context parameter and must be neither formal context parameters nor parameterized types.

A formal context parameter of a type must be bound only to an actual context parameter of the same entity kind that
meets the constraint of the formal parameter.

The parameterized type can only use the properties of a context parameter, which are given by the constraint, except for
the cases listed in 8.1.2.

A context parameter using other context parameters in its constraint cannot be bound before the other parameters are
bound.

Trailing commas may be omitted in <actual context parameters>.

Model

The formal context parameters of a type definition that is neither a subtype definition nor defined by binding formal
context parameters in a <type expression> are the parameters specified in the <formal context parameters>.

Context parameters of a type are bound in the definition of a <type expression> to actual context parameters. In this
binding, occurrences of formal context parameters inside the parameterized type are replaced by the actual parameters.
During this binding of identifiers contained in <formal context parameter>s to definitions (that is, deriving their
qualifier, see 6.3), other local definitions than the <formal context parameters>s are ignored.

Parameterized types cannot be actual context parameters. In order for a definition to be allowed as an actual context
parameter, it must be of the same entity kind as the formal parameter and satisfy the constraint of the formal parameter.

If a scope unit contains <specialization>, any omitted actual context parameter in the <specialization> is replaced by the
corresponding <formal context parameter> of the <base type> in the <type expression> and this
<formal context parameter> becomes a formal context parameter of the scope unit.

8.2.1 Agent type context parameter
Concrete grammar

<agent type context parameter> ::=
 {process type | block type} <agent type name> [<agent type constraint>]

<agent type constraint> ::=
 atleast <agent type identifier> | <agent signature>

An actual agent type parameter must be a subtype of the constraint agent type (atleast <agent type identifier>) with no
addition of formal parameters to those of the constraint type, or it must be compatible with the formal agent signature.

An agent type definition is compatible with the formal agent signature if it has the same kind and if the formal
parameters of the agent type definition have the same sorts as the corresponding <sort>s of the <agent signature>.

8.2.2 Agent context parameter
Concrete grammar

<agent context parameter> ::=
 { process | block } <agent name> [<agent constraint>]

<agent constraint> ::=
 { atleast | <colon> } <agent type identifier> | <agent signature>

<agent signature> ::=
 <sort list>

 ITU-T Rec. Z.100 (11/2007) 39

An actual agent parameter must identify an agent definition. Its type must be a subtype of the constraint agent type
(atleast <agent type identifier>) with no addition of formal parameters to those of the constraint type, or it must be the
type denoted by <agent type identifier> (<colon> <agent type identifier>), or it must be compatible with the formal
<agent signature>.

An agent definition is compatible with the formal <agent signature> if the formal parameters of the agent definition
have the same sorts as the corresponding <sort>s of the <agent signature> or <agent formal parameters>, and both
definitions have the same Agent-kind.

8.2.3 Procedure context parameter
Concrete grammar

<procedure context parameter> ::=
 procedure <procedure name> <procedure constraint>

<procedure constraint> ::=
 atleast <procedure identifier> | <procedure signature in constraint>

<procedure signature in constraint> ::=
 [(<formal parameter> { , <formal parameter> }*)] [<result>]

An actual procedure parameter must identify a procedure definition that is either a specialization of the procedure of the
constraint (atleast <procedure identifier>) or is compatible with the formal procedure signature.

A procedure definition is compatible with the formal procedure signature if:
a) the formal parameters of the procedure definition have the same sorts as the corresponding parameters of the

signature, if they have the same <parameter kind>, and if both have a result of the same <sort> or if neither
returns a result; or

b) each in/out and out parameter in the procedure definition has the same <sort identifier> or
<syntype identifier> as the corresponding parameter of the signature.

8.2.4 Remote procedure context parameter
Concrete grammar

<remote procedure context parameter> ::=
 remote procedure <procedure name> <procedure signature in constraint>

An actual parameter to a remote procedure context parameter must identify a <remote procedure definition> with the
same signature.

8.2.5 Signal context parameter
Concrete grammar

<signal context parameter> ::=
 signal <signal name> [<signal constraint>]
 { , <signal name> [<signal constraint>] }*

<signal constraint> ::=
 atleast <signal identifier> | <signal signature>

<signal signature> ::=
 <sort list>

An actual signal parameter must identify a signal definition that is either a subtype of the signal type of the constraint
(atleast <signal identifier>) or compatible with the formal signal signature.

Semantics

A signal definition is compatible with a formal signal signature if the sorts of the signal are the same sorts as in the sort
constraint list.

8.2.6 Variable context parameter
Concrete grammar

<variable context parameter> ::=
 dcl <variable name> { , <variable name>}* <sort>
 { , <variable name> { , <variable name>}* <sort> }*

40 ITU-T Rec. Z.100 (11/2007)

An actual parameter must be a variable or a formal agent or procedure parameter of the same sort as the sort of the
constraint.

8.2.7 Remote variable context parameter
Concrete grammar

<remote variable context parameter> ::=
 remote <remote variable name> { , <remote variable name>}* <sort>
 { , <remote variable name> { , <remote variable name>}* <sort> }*

An actual parameter must identify a <remote variable definition> of the same sort.

8.2.8 Timer context parameter
Concrete grammar

<timer context parameter> ::=
 timer <timer name> [<timer constraint>]
 { , <timer name> [<timer constraint>] }*

<timer constraint> ::=
 <sort list>

An actual timer parameter must identify a timer definition that is compatible with the formal sort constraint list. A timer
definition is compatible with a formal sort constraint list if the sorts of the timer are the same sorts as in the sort
constraint list.

8.2.9 Synonym context parameter
Concrete grammar

<synonym context parameter> ::=
 synonym <synonym name> <synonym constraint>
 {, <synonym name> <synonym constraint> }*

<synonym constraint> ::=
 <sort>

An actual synonym must be a constant expression of the same sort as the sort of the constraint.

Model

If the actual parameter is a <constant expression> (rather than a <synonym identifier>), there is an implied definition of
an anonymous synonym in the context surrounding the type being defined with the context parameter.

8.2.10 Sort context parameter
Concrete grammar

<sort context parameter> ::=
 [{ value | object }] type <sort name> [<sort constraint>]

<sort constraint> ::=
 atleast <sort> | <sort signature>

<sort signature> ::=
 literals <literal signature> { , <literal signature> }*
 [operators <operation signature in constraint> { , <operation signature in constraint> }*]
 [methods <operation signature in constraint> { , <operation signature in constraint> }*]
 | operators <operation signature in constraint> { , <operation signature in constraint> }*
 [methods <operation signature in constraint> { , <operation signature in constraint> }*]
 | methods <operation signature in constraint> { , <operation signature in constraint> }*

<operation signature in constraint> ::=
 <operation name>[(<formal parameter> { , <formal parameter> }*)] [<result>]
 | <name class operation> [<result>]
If <sort constraint> is omitted, the actual sort can be any sort. Otherwise, an actual sort must be either a subtype without
<renaming> of the sort of the constraint (atleast <sort>), or compatible with the formal sort signature.

 ITU-T Rec. Z.100 (11/2007) 41

A sort is compatible with the formal sort signature if the literals of the sort include the literals in the formal sort
signature and the operations defined by the data type that introduced the sort include the operations in the formal sort
signature and the operations have the same signatures.
The <literal signature> must not contain <named number>.

Model
If the keyword value is given and the actual sort is an object sort, then the actual parameter is treated as the expanded
sort value <sort identifier>. If the keyword object is given and the actual sort is a value sort, then the actual parameter
is treated as the reference sort object <sort identifier>.

8.2.11 Exception context parameter
Concrete grammar

<exception context parameter>::=
 exception <exception name> [<exception constraint>]
 { , <exception name> [<exception constraint>] }*

<exception constraint>::=
 <sort list>

An actual exception parameter must identify an exception with the same signature.

8.2.12 Composite state type context parameter
Concrete grammar

<composite state type context parameter> ::=
 state type <composite state type name> [<composite state type constraint>]

<composite state type constraint> ::=
 atleast <composite state type identifier> | <composite state type signature>

<composite state type signature> ::=
 <sort list>

An actual composite state type parameter must identify a composite state type definition. Its type must be a subtype of
the constraint composite state type (atleast <composite state type identifier>) with no addition of formal parameters to
those of the constraint type or it must be compatible with the formal composite state type signature.

A composite state type definition is compatible with the formal composite state type signature if the formal parameters
to the composite state type definition have the same sorts as the corresponding <sort>s of the
<composite state type constraint>.

8.2.13 Gate context parameter
Concrete grammar

<gate context parameter> ::=
 gate <gate> <gate constraint> [<gate constraint>]

<gate constraint> ::=
 { out [to <textual endpoint constraint>] | in [from <textual endpoint constraint>] }
 [with <signal list>]

out or in in a <gate constraint> denotes the direction of <signal list>, from or to the type respectively. Types from
which instances are defined must have a <signal list> in the <gate constraint>s.

An actual gate parameter must identify a gate definition. Its outward gate constraint must contain all elements
mentioned in the <signal list> of the corresponding formal gate context parameter. The inward gate constraint of the
formal gate context parameter must contain all elements in the <signal list> of the actual gate parameter.

8.2.14 Interface context parameter
Concrete grammar

<interface context parameter> ::=
 interface <interface name> [<interface constraint>]
 { , <interface name> [<interface constraint>] }*

42 ITU-T Rec. Z.100 (11/2007)

<interface constraint> ::=
 atleast <interface identifier>

An actual interface parameter must identify an interface definition. The type of the interface must be a subtype of the
interface type of the constraint (atleast <interface identifier>).

8.3 Specialization
A type may be defined as a specialization of another type (the supertype), yielding a new subtype. A subtype may have
properties in addition to the properties of the supertype, and it may redefine virtual local types and transitions. Except in
the case of interfaces, there is at most one supertype.
Virtual types can be given constraints (that is, properties any redefinition of the virtual type must have). These
properties are used to guarantee properties of any redefinition. Virtual types are defined in 8.3.2.

8.3.1 Adding properties
Concrete grammar

<specialization> ::=
 inherits <type expression> [adding]

<specialization area> ::=
 <specialization relation symbol>
 [is associated with <actual context parameters>]
 is attached to <type reference area>

<specialization relation symbol> ::=

The arrow end of the <specialization relation symbol> points towards the <type reference area>. The type connected to
the arrow end is the supertype, while the other type is the subtype. The connected references must both be of the same
kind. The associated binding of context parameters corresponds to the supertype being a type expression with actual
context parameters.
<type expression> denotes the base type. The base type is said to be the supertype of the specialized type, and the
specialized type is said to be a subtype of the base type. Any specialization of the subtype is also a subtype of the base
type.

If a type subT is a subtype of a (super) type T (either directly or indirectly), then:
a) T must not enclose subT;
b) T must not be a specialization of subT;
c) definitions enclosed by T must not be specializations of subT.

In the case of agent types, these rules must also hold for definitions enclosed in T and, in addition, definitions directly
or indirectly enclosed by T must not be typebased definitions of subT.

The <type expression> of the <specialization> in:
a) <agent additional heading> represents the Agent-type-identifier of Agent-type-definition in 8.1.1.1.
b) <composite state type heading> or <state aggregation type heading> represents the Composite-state-type-

identifier of Composite-state-type-definition in 8.1.1.5.
c) <procedure heading> represents the Procedure-identifier of Procedure-definition in 9.4.

The concrete syntax for specialization of data types is shown in 12.1.3.

Semantics

The resulting content of a specialized type definition with local definitions consists of the content of the supertype
followed by the content of the specialized definition. This implies that the set of definitions of the specialized definition
is the union of those given in the specialized definition itself and those of the supertype. The resulting set of definitions
must obey the rules for distinct names as given in 6.3. However, exceptions to this rule are:
a) a redefinition of a virtual type is a definition with the same name as that of the virtual type;
b) a gate of the supertype may be given an extended definition (in terms of signals conveyed and endpoint

constraints) in a subtype − this is specified by a gate definition with the same name as that of the supertype;
c) if the <type expression> contains <actual context parameters>, any occurrence of the <base type> of the

<type expression> is replaced by the name of the subtype;

 ITU-T Rec. Z.100 (11/2007) 43

d) an operator of the supertype is not inherited if the signature of the specialized operator is the same as the
signature of the base type operator;

e) an operator or non-virtual method (that is, a method that is neither virtual nor redefined) of the supertype is
not inherited if an operator or method with a signature equal to the signature of the specialized operator or
method is already present in the subtype.

The formal context parameters of a subtype are the unbound, formal context parameters of the supertype definition
followed by the formal context parameters of the specialized type (see 8.2).

The formal parameters of a specialized agent type are the formal parameters of the agent supertype followed by the
formal parameters added in the specialization.

The formal parameters of a specialized procedure are the formal parameters of the procedure with the formal
parameters added in the specialization. If the procedure before specialization has a <procedure result>, the parameters
added in the specialization are inserted before the last parameter (the out parameter for the result); otherwise, they are
inserted after the last parameter.

The complete valid input signal set of a specialized agent type is the union of the complete valid input signal set of the
specialized agent type and the complete valid input signal set of the agent supertype respectively.

The resulting graph of a specialized agent type, procedure definition or state type consists of the graph of its supertype
definition followed by the graph of the specialized agent type, procedure definition or state type.

The state-transition graph of a given agent type, procedure definition or state type may have at most one unlabelled start
transition.

A specialized signal definition may add (by appending) sorts to the sort list of the supertype.

A specialized data type definition may add literals, fields, or choices to the inherited type constructors, it may add
operators and methods, and it may add default initializations or default assignment.

The formal parameters of a specialized composite state type are the formal parameters of the composite state type with
the formal parameters added in the specialization.
NOTE − When a gate in a subtype is an extension of gate inherited from a supertype, the <inherited gate symbol> is
used in the concrete syntax.

8.3.2 Virtual type
An agent type, procedure or state type may be specified as a virtual type when it is defined locally to another type
(denoted as the enclosing type). A virtual type may be redefined in specializations of the enclosing type.

Concrete grammar

<virtuality> ::=
 virtual | redefined | finalized

<virtuality constraint> ::=
 atleast <identifier>
<virtuality> and <virtuality constraint> are part of the type definition.
A virtual type is a type having virtual or redefined as <virtuality>. A redefined type is a type having redefined or
finalized as <virtuality>. Only virtual types may be redefined. Every redefined type shall be directly or indirectly (via
another redefined type) a redefinition of a virtual type that is not redefined (that is with <virtuality> virtual).
Every virtual type has associated a virtuality constraint which is an <identifier> of the same entity kind as the virtual
type. If <virtuality constraint> is specified, the virtuality constraint is the contained <identifier>; otherwise, the
virtuality constraint is derived as described below.
A virtual type and its constraints cannot have context parameters.
Only virtual types may have <virtuality constraint> specified.
If <virtuality> is present in both the reference and the referenced definition, then they must be equal. If
<procedure preamble> is present in both procedure reference and in the referenced procedure definition, they must be
equal.
A virtual agent type must have exactly the same formal parameters, and at least the same gates and interfaces with at
least the definitions as those of its constraint. A virtual state type must have at least the same state connection points as
its constraint. A virtual procedure must have exactly the same formal parameters as its constraint. The restrictions on
the arguments of virtual operators and methods are given in 8.3.4.
If both inherits and atleast are used, then the inherited type must be identical to or be a subtype of the constraint.
In the case of an implicit constraint, redefinition involving inherits must be a subtype of the constraint.

44 ITU-T Rec. Z.100 (11/2007)

Semantics
A virtual type may be redefined in the definition of a subtype of the enclosing type of the virtual type. In the subtype it
is the definition from the subtype that defines the type of instances of the virtual type, also when applying the virtual
type in parts of the subtype inherited from the supertype. A virtual type that is not redefined in a subtype definition has
the definition as given in the supertype definition.
Accessing a virtual type by means of a qualifier denoting one of the supertypes implies, however, the application of the
(re)definition of the virtual type given in the actual supertype denoted by the qualifier. A type T whose name is hidden
in an enclosing subtype by a redefinition of T can be made visible through qualification with a supertype name (that is,
a type name in the inheritance chain). The qualifier will consist of only one path item denoting the particular supertype.
A virtual or redefined type that has no <specialization> given explicitly may have an implicit <specialization>. The
virtuality constraint and the possible implicit <specialization> are derived as below.
For a virtual type V and a redefined type R of V, then the following rules apply (all rules are applied in the given order):
a) if the virtual type V has no <virtuality constraint>, the constraint VC for type V is the same as the virtual type

V and denotes the type V; otherwise, the constraint VC is identified by the <virtuality constraint> given with
type V;

b) if the virtual type V has no <specialization> and the constraint VC is the type V, type V does not have an
implicit specialization;

c) if the virtual type V has no <specialization> and the constraint VC is not the type V, the implicit
specialization type VS is the same as the constraint VC;

d) if <specialization> of the virtual type V is present, the specialization type VS must be the same as or a
subtype of the constraint VC;

e) if the redefined type R has no <virtuality constraint>, the constraint RC for type R is the same as the type R;
otherwise, the constraint RC is identified by the <virtuality constraint> given with type R;

f) if the redefined type R has no <specialization>, the implicit specialization type RS for R is the same as the
constraint VC from the type V; otherwise, the specialization type RS is identified by the explicit
<specialization> with type R;

g) the constraint RC must be the same as or a subtype of the constraint VC;
h) specialization type RS for R must be the same as or a subtype of the constraint RC;
i) if R is a virtual type (redefined rather than finalized), the same rules apply for R as for V.
A subtype of a virtual type is a subtype of the original virtual type and not of a possible redefinition.

8.3.3 Virtual transition/save
Transitions or saves of a process type, state type or procedure are specified to be virtual transitions or saves by means of
the keyword virtual. Virtual transitions or saves may be redefined in specializations. This is indicated by transitions or
saves with the same state or signal, respectively, and with the keyword redefined or finalized.

Concrete grammar

The syntax of virtual transition and save is introduced in 9.4 (virtual procedure start), 10.5 (virtual remote procedure
input and save), 11.1 (virtual process start), 11.3 (virtual input), 11.4 (virtual priority input), 11.5 (virtual continuous
signal), 11.7 (virtual save), 11.9 (virtual spontaneous transition), and 11.16.3 (virtual handle).

Virtual transitions or saves must not appear in agent (set of instances) definitions, or in composite state definitions.

A state must not have more than one virtual spontaneous transition.

A redefinition in a specialization marked with redefined may in further specializations be defined differently, while a
redefinition marked with finalized must not be given new definitions in further specializations.

An input or save with <virtuality> must not contain <asterisk>.

Semantics

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual types (see 8.3.2).

A virtual start transition can be redefined to a new start transition.

A virtual priority input or input transition can be redefined to a new priority input or input transition or to a save.

A virtual save can be redefined to a priority input, an input transition or a save.

A virtual spontaneous transition can be redefined to a new spontaneous transition.

A virtual handle transition can be redefined to a new virtual handle transition.

 ITU-T Rec. Z.100 (11/2007) 45

A virtual continuous transition can be redefined to a new continuous transition. The redefinition is indicated by the
same state and priority (if present) as the redefined continuous transition. If several virtual continuous transitions exist
in a state, then each of these must have a distinct priority. If only one virtual continuous transition exists in a state, the
priority may be omitted.

A transition of a virtual remote procedure input transition can be redefined to a new remote procedure input transition
or to a remote procedure save.

A virtual remote procedure save can be redefined to a remote procedure input transition or a remote procedure save.

The transformation for virtual input transition applies for virtual remote procedure input transition also.

In the subtype, it is the definition from the subtype that defines the virtual transition or save. A virtual transition or save
that is not redefined in a subtype definition has the definition as given in the supertype definition.

8.3.4 Virtual methods
Methods of a data type are specified to be virtual methods by means of the keyword virtual in <virtuality>. Virtual
methods may be redefined in specializations. This is indicated by methods with the same <operation name> and with
the keyword redefined or finalized in <virtuality>.

If the derived type contains only an <operation signature> but no <operation definition>, <operation reference>, or
<external operation definition> for the redefined method, then only the signature of the redefined method is changed.

Concrete grammar

The syntax of virtual methods is introduced in 12.1.4.

When a method is redefined in a specialization, its signature must be sort compatible with the corresponding signature
in the base type, and further, if the Result in the Operation-signature denotes a sort A, then the Result of the redefined
method may only denote a sort B such that B is sort compatible with A.

A redefinition of a virtual method must not change the <parameter kind> in any <argument> of the inherited
<operation signature>.

A redefinition of a virtual method must not add <argument virtuality> to any <argument> of the inherited
<operation signature>.

Semantics

Virtual methods do not have a <virtuality constraint> which, in this case only, does not limit redefinition.

Redefinition of virtual methods corresponds closely to redefinition of virtual types (see 8.3.2).

8.3.5 Virtual default initialization
This subclause describes virtual default initialization, as introduced in 12.3.3.2.

Default initialization of instances of a data type is specified to be virtual by means of the keyword virtual in
<virtuality>. A virtual default initialization may be redefined in specializations. This is indicated by a default
initialization with the keyword redefined or finalized in <virtuality>.

If the derived type contains no <constant expression> in its default initialization, then the derived type does not have a
default initialization.

Concrete grammar

The syntax of virtual default initializations is introduced in 12.3.3.2.

Semantics

Redefinition of a virtual default initialization corresponds closely to redefinition of virtual types (see 8.3.2).

8.4 Type references
Type diagrams and entity type definitions may have type references. The referenced definition or diagram defines the
properties of the type, while the type references are only partial definitions. The type is fully described in the referenced
definition or diagram, and this type has the attributes and properties partially specified as part of the type reference.

The same type definition may have several type references. If there are several references to the same type in a scope
unit, this is the same as having one reference. If the referenced type is defined in the same scope unit as the reference,
the type reference specifies that the type is defined in the scope unit of the containing definition or diagram.

46 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

Each of the following is a type reference: <agent type reference>, <agent type reference area>, <composite state type
reference>, <composite state type reference area>, <procedure reference>, <procedure reference area>, <signal
reference>, <signal reference area>, <data type reference>, <data type reference area>, <interface reference>,
<interface reference area> or <type reference area> defined below.

If in a type reference the <qualifier> of the <identifier> (or before the <name>) of the referenced type is omitted or
identifies the scope unit directly enclosing the type reference, the type reference and <referenced definition> are in the
same scope unit.

If in a type reference there is <qualifier> for the <identifier> or before the <name> of the referenced type and the
<qualifier> does not identify the scope unit directly enclosing the type reference, the type reference and <referenced
definition> are in different scope units. In this case the type reference can be removed from model without changing the
semantics of the model and the reference is a form of annotation providing consistent information about the referenced
definition.

If the referenced type is in the same scope unit as the reference, and the <referenced definition> is not syntactically
contained within the scope unit, there shall be at least one type reference for the <referenced definition> as a proxy for
the <referenced definition>. This enables the <referenced definition> to be located, so that the concrete diagrams and
definitions can be mapped to a complete system model corresponding to the abstract grammar.

The partial specification as part of a type reference shall be consistent with the specification of the type definition or
diagram (the <referenced definition>): it shall only contain information that is also specified in the <referenced
definition>. In a partial specification of a variable, for example, if the variable name is given but not the sort of the
variable, there shall be a definition for a variable with that name in the <referenced definition>. In any variable
definition a sort is always defined.

If there is a non-empty <type preamble> in the type reference, this shall be the same as the <type preamble> of the
<referenced definition>.

<agent type reference> ::=
 <system type reference>
 | <block type reference>
 | <process type reference>

<agent type reference area> ::=
 { <system type reference area>
 | <block type reference area>
 | <process type reference area> }
 is connected to { <gate property area>* }set

If there is an <agent type reference area> for the agent defined by an <agent type diagram>, the <gate property area>s
associated with the <agent type reference area> correspond to the <gate on diagram>s associated with the
<agent type diagram>. No <gate property area> associated with the <agent type reference area> must contain
<signal list item>s not contained in the corresponding <gate on diagram>s associated with the <agent type diagram>.

<system type reference> ::=
 system type <system type identifier> referenced <end>

<system type reference area> ::=
 <type reference area>

The <type reference area> that is part of a <system type reference area> must have a <type reference heading> with a
<system type name>.

<block type reference area> ::=
 <type reference area>

<block type reference> ::=
 <type preamble>
 block type <type reference heading> referenced <end>

<type preamble> of a <block type reference> shall correspond to <type preamble> of the referenced <block type
diagram>. If the reference is virtual, the referenced block type shall be virtual. If the reference is abstract, the referenced
block type shall be abstract.

A <type reference heading> that is part of a <block type reference> must have a <block type name>.

 ITU-T Rec. Z.100 (11/2007) 47

The <type reference area> that is part of a <block type reference area> must have a <type reference heading> with a
<block type name>.

<process type reference> ::=
 <type preamble>
 process type <type reference heading> referenced <end>

<process type reference area> ::=
 <type reference area>

<type preamble> of a <process type reference> shall correspond to <type preamble> of the referenced <process type
diagram>. If the reference is virtual, the referenced process type shall be virtual. If the reference is abstract, the
referenced process type shall be abstract.

A <type reference heading> that is part of a <process type reference> must have a <process type name>.

The <type reference area> that is part of a <process type reference area> must have a <type reference heading> with a
<process type name>.

<composite state type reference> ::=
 <type preamble>
 state type <type reference heading> referenced <end>

<composite state type reference area> ::=
 <type reference area>
 is connected to {<gate property area>*}set

<type preamble> of a <composite state type reference> shall correspond to <type preamble> of the referenced
<composite state type diagram>. If the reference is virtual, the referenced composite state type shall be virtual. If the
reference is abstract, the referenced composite state type shall be abstract.

A <type reference heading> that is part of a <composite state type reference> must have a <composite state type
name>.

The <type reference area> that is part of a <composite state type reference area> must have a <type reference heading>
with a <composite state type name>.

If there is a <composite state type reference area> for a composite state defined by a <composite state type diagram>,
the <gate property area>s associated with the <composite state type reference area> correspond to the
<gate on diagram>s associated with the <composite state type diagram>. No <gate property area> associated with the
<composite state type reference area> can contain a <signal list item> that is not contained in the corresponding
<gate on diagram> associated with the <composite state type diagram>.

<procedure reference> ::=
 <type preamble> [exported [as <remote procedure identifier>]]
 procedure <type reference heading> referenced <end>

<procedure reference area> ::=
 <type reference area>

The <type reference area> that is part of a <procedure reference area> must have a <type reference heading> with a
<procedure name>.

<type preamble> of a <procedure reference> shall correspond to <type preamble> of the referenced
<procedure definition>. If the reference is virtual, the referenced procedure shall be virtual. If the reference is abstract,
the referenced procedure shall be abstract. If exported is given in a <type reference heading>, the referenced type shall
be an exported procedure and if a <remote procedure identifier> is also given, the procedure shall identify the same
remote procedure definition.

A <type reference heading> that is part of a <procedure reference> must have a <procedure name>.

<signal reference> ::=
 <type preamble>
 signal <type reference heading> referenced <end>

<signal reference area> ::=
 <type reference area>

<type preamble> of a <signal reference> shall correspond to <type preamble> of the referenced <signal definition>. If
the reference is virtual, the referenced signal shall be virtual. If the reference is abstract, the referenced signal shall be
abstract.

48 ITU-T Rec. Z.100 (11/2007)

A <type reference heading> that is part of a <signal reference> must have a <signal name>.

The <type reference area> that is part of a <signal reference area> must have a <type reference heading> with a
<signal name>.

<data type reference> ::=
 <type preamble>
 { value | object } type <type reference heading> referenced <end>

<data type reference area> ::=
 <type reference area>

<type preamble> of a <data type reference> shall correspond to <type preamble> of the referenced <data type
definition>. If the reference is virtual, the referenced data type shall be virtual. If the reference is abstract, the
referenced data type shall be abstract.

A <type reference heading> that is part of an <data type reference> must have an <data type name>.

The <type reference area> that is part of a <data type reference area> must have a <type reference heading> with a
<data type name>.

<interface reference> ::=
 [<virtuality>]
 interface <type reference heading> referenced <end>

<interface reference area> ::=
 <type reference area>

<virtuality> of a <interface reference> must correspond to <virtuality> of the referenced <interface definition>. If the
reference is virtual, the referenced interface must be virtual.

A <type reference heading> that is part of an <interface reference> must have an <interface name>.

The <type reference area> that is part of an <interface reference area> must have <type reference heading> with an
<interface name>.

<operation reference> ::=
 { operator | method } <operation signature> referenced <end>

<arguments> and <result> in <operation reference> may be omitted if there is no other <operation reference> within
the same sort which has the same name, and an <operation signature> is present. In this case, the <arguments> and the
<result> are derived from the <operation signature>.

<type reference area> ::=
 { <basic type reference area> | <iconized type reference area> }
 is connected to { <package dependency area>* <specialization area>* } set

The <package dependency area> for a <type reference area> is a partial specification of the corresponding
<package use clause> for the type diagram, and must be consistent with this.

The <specialization area> shall be connected to the upper part of the <basic type reference area>, or
<iconized type reference area>, using the end of the <specialization relation symbol> that has no arrow. There must
only be one <specialization area> for all <type reference area>s except an interface reference.

The <specialization area> corresponds to the <specialization> of the referenced type. The connected
<type reference area> must correspond to the <base type> in the <type expression> of the <specialization>. The
<actual context parameters> in the <specialization area> must correspond to the <actual context parameters> in the
<type expression>.

<basic type reference area> ::=
 <class symbol>
 contains {
 <graphical type reference heading>
 <attribute properties area>
 <behaviour properties area> }

 ITU-T Rec. Z.100 (11/2007) 49

<class symbol> ::=

The relative positioning of the two lines dividing the <class symbol> into three compartments is allowed to be different
than as shown.

<graphical type reference heading> ::=
 { <type reference kind symbol> contains system | <system type symbol> }
 <system type type reference heading>
 | { <type reference kind symbol> contains block | <block type symbol> }
 <block type type reference heading>
 | { <type reference kind symbol> contains process | <process type symbol> }
 <process type type reference heading>
 | { <type reference kind symbol> contains state | <composite state type symbol> }
 <composite state type type reference heading>
 | { <type reference kind symbol> contains procedure | <procedure symbol> }
 <procedure type reference heading>
 | <type reference kind symbol> contains signal
 <signal type reference heading>
 | { <type reference kind symbol> contains { value | object } | <data symbol> }
 <data type type reference heading>
 | { <type reference kind symbol> contains interface | <data symbol> }
 <interface type reference heading>

The <graphical type reference heading> shall be placed in the uppermost compartment of the containing
<class symbol>.

<type reference heading> ::=
 <type preamble>
 [exported [as <remote procedure identifier>]]
 [<qualifier>] <name> [<formal context parameters>]

<type preamble> must correspond to <type preamble> of the referenced type. If the reference is virtual, the referenced
type must be virtual. If the reference is abstract, the referenced type must be abstract. If exported is given in a
<type reference heading>, the referenced type has to be an exported procedure and if a <remote procedure identifier> is
also given, the procedure has to identify the same remote procedure definition.

The <formal context parameters> corresponds to <formal context parameters> of the referenced type. The
<formal context parameter list> must correspond to the <formal context parameter list> of the referenced type.

<type reference kind symbol> ::=
 « »

The <type reference kind symbol> has the appearance of a LEFT-POINTING DOUBLE ANGLE QUOTATION and
RIGHT-POINTING DOUBLE ANGLE QUOTATION character pair on a single line with enough space between these
two characters for the contained keyword.

The <type reference kind symbol> is placed above or to the left of the <type reference heading>.

<data symbol> ::=

NOTE 1 − The <data symbol> is a rectangle without any visible frame. This implies that a
<graphical type reference heading> not containing a <type reference kind symbol> actually contains a <data symbol>.

The <data symbol> corresponds to a <data type definition> or an <interface definition>.

If the <graphical type reference heading> contains a symbol other than a <type reference kind symbol>, this symbol
must be placed in the upper, right corner of the <graphical type reference heading>.

50 ITU-T Rec. Z.100 (11/2007)

<iconized type reference area> ::=
 <system type symbol> contains <system type type reference heading>
 | <block type symbol> contains <block type type reference heading>
 | <process type symbol> contains <process type type reference heading>
 | <composite state type symbol> contains <composite state type type reference heading>
 | <procedure symbol> contains <procedure type reference heading>
NOTE 2 − There is no <iconized type reference area> corresponding to signals, interfaces, nor to object and value
types.

<system type symbol> ::=
 <block type symbol>

<block type symbol> ::=

<process type symbol> ::=

<composite state type symbol> ::=

<procedure symbol> ::=

<gate property area> ::=
 <gate definition> | <interface gate definition>

<attribute properties area> ::=
 { { <attribute property> <end> }* }set

The first <attribute property> in an <attribute properties area> must be placed uppermost in the middle compartment of
the containing <class symbol>. Each subsequent <attribute property> must be placed below the previous one.

 <behaviour properties area> ::=
 { { <behaviour property> <end> }* }set

The first <behaviour property> in a <behaviour properties area> must be placed uppermost in the lower compartment of
the containing <class symbol>. Each subsequent <behaviour property> must be placed below the previous one.

<attribute property> ::=
 <variable property>
 | <field property>
 | <signal parameter property>
 | <interface variable property>

An <attribute property> provides a partial specification of properties of variables or fields being defined in the type
definition that is referenced by the type reference. The elements of <attribute property> must be consistent with the
corresponding properties in the referenced type definition.

<variable property> ::=
 [<local> | <exported>] <variable name> [<sort>]

<local> ::=
 <hyphen>

<exported> ::=
 <plus sign>

A <variable property> corresponds to a <variable definition> in an agent type, procedure or composite state type.
<local> indicates a local variable; <exported> indicates an exported variable. <variable name> and <sort>, if present,
must be the same as in the corresponding variable definition.

 ITU-T Rec. Z.100 (11/2007) 51

<field property> ::=
 [<symbolic visibility>] <field name> [<sort>]

<symbolic visibility> ::=
 <private>
 | <public>
 | <protected>

<private> ::=
 <hyphen> | private

<public> ::=
 <plus sign> | public

<protected> ::=
 <number sign> | protected

A <field property> corresponds to a <field> in a data type. <private> (<public>, <protected>) corresponds to private
(public, protected) <visibility> in the corresponding field. <field name> and <sort>, if present, must be the same as in
the corresponding field definition.

<signal parameter property> ::=
 <sort>

A <signal parameter property> corresponds to a signal parameter in a signal definition. The sort must correspond to a
<sort> in the <sort list> in <signal definition item> of the corresponding signal definition. The
<signal parameter property>s in <attribute properties area> shall occur in the same order (top to bottom as placed in the
<class symbol>) as the corresponding <sort>s in the referenced <signal definition item>.

<interface variable property> ::=
 <remote variable name> [<sort>]

An <interface variable property> corresponds to an <interface variable definition> in an interface. The <sort> must be
the same as the <sort> in the interface variable definition.

<behaviour property> ::=
 { operator <operation property> }
 | { method <operation property> }
 | { procedure <procedure property> }
 | { signal <signal property> }
 | { exception <exception property> }
 | { timer <timer property> }
 | { <interface use list> }

A <behaviour property> provides a partial specification of properties of procedures and operations being defined in the
type definition that is referenced by the type reference, and this specification must be consistent with the corresponding
definitions in the corresponding type definition.

<operation property> ::=
 [<symbolic visibility>] <operation name>
 <procedure signature>

An <operation property> corresponds to an <operation definition> in an object or value type reference. <private>
(<public>, <protected>) corresponds to private (public, protected) <visibility> in the corresponding operation
definition. The list of <formal parameter>s, <result>, and <raises> in <procedure signature>, if present, must be the
same as the <formal parameter>s, <result>, and <raises>, respectively, in the corresponding operation definition.

<procedure property> ::=
 [<local> | <exported>] <procedure name>
 <procedure signature>

A <procedure property> in an agent type reference corresponds to a <procedure definition> in the agent type. <local>
indicates a local procedure; <exported> indicates an exported procedure. The list of <formal parameter>s, <result>, and
<raises> in <procedure signature>, if present, must be the same as the <procedure formal parameters>,
<procedure result>, and <raises>, respectively, in the corresponding procedure definition.

A <procedure property> in an interface reference corresponds to an <interface procedure definition> in an interface.
<local> must not be present in an interface reference. <procedure signature>, if present, must be the same as in the
corresponding interface procedure definition.

52 ITU-T Rec. Z.100 (11/2007)

<signal property> ::=
 <signal name> [<sort list>]

A <signal property> in an agent type reference corresponds to a signal handled in an input in the agent type.

A signal property in an interface reference corresponds to a <signal definition item> in a <signal definition> in the
<interface definition>. The <sort list>, if present, must be the same as in the corresponding <signal definition item>.

<exception property> ::=
 <exception name> [<sort list>]

An <exception property> in a type reference corresponds to an <exception definition item> in the type definition being
referenced by the type reference. The <sort list>, if present, must be the same as in the corresponding
<exception definition item>.

<timer property> ::=
 <timer name> [<sort list>]

A <timer property> in a type reference corresponds to a <timer definition item> in the type definition being referenced
by the type reference. The <sort list>, if present, must be the same as in the corresponding <timer definition item>.

An <interface use list> corresponds to an <interface use list> of the interface definition being referenced by the type
reference. Each <signal list item> must correspond to a <signal list item> in the <interface use list> of the referenced
interface definition.

Model

A <type reference heading> without a <qualifier> before the <name> is derived syntax in which the entity identified by
the <qualifier> is the enclosing context.

A type reference in which the entity identified by the <qualifier> of the <type reference heading> is different from the
enclosing context is considered moved to the context given by the qualifier and therefore the visibility rules of that
context apply.

Multiple type references in the same context that refer to the same entity class and have the same qualifier and the same
name are equivalent to one type reference from that context with all <attribute property> and <behaviour property>
elements of all the references.

After reducing multiple type references, the type reference, in which the <qualifier> of the <type reference heading> is
the same as the enclosing context, is replaced by the referenced type. Each reference is replaced by the corresponding
<referenced definition>. If a text area (e.g., <agent text area>) contains a textual reference to a type diagram (i.e.,
<agent type reference>, <composite state type reference>, or <procedure reference>), this reference is removed, and the
referenced diagram is inserted in the area containing diagrams nested within the diagram containing the text area. If a
text area contains a textual reference to a type definition (i.e. a <procedure reference>, <operation reference>, <signal
reference>, <data type reference>, or <interface reference>), this reference is removed and the referenced definition is
inserted in a text area nested within the diagram containing the graphical reference.
NOTE 3 − The model for type references, in which the entity identified by the <qualifier> of the
<type reference heading> is different from the enclosing context, means that the referenced type can be an otherwise
invisible type within a scope directly within the enclosing context.

8.5 Associations
An association expresses a binary relationship between two entity types, not necessarily distinct. Associations are
intended to provide structured annotations to indicate additional properties of the types the associations are connected
to, in a diagram or definition containing type references. The meaning of these properties is not defined by this
Recommendation; that is, the meaning can be defined by some other Recommendation or standard or common
specification or common understanding. An SDL system that contains an association has the same meaning and
behaviour (as defined by this Recommendation), if the association is deleted.

Concrete grammar

<association area> ::=
 <association symbol>
 [is associated with <association name>]
 is attached to { <linked type reference area> <linked type reference area> } set
 is associated with {<association end area> <association end area>} set

The <linked type reference area>s are attached at either end of the <association symbol> and the <association end area>
nearest to the corresponding end of the <association symbol> is relevant for that <linked type reference area>.

 ITU-T Rec. Z.100 (11/2007) 53

<association symbol> ::=
 <association not bound symbol>
 | <association end bound symbol>
 | <association two ends bound symbol>
 | <composition not bound symbol>
 | <composition part end bound symbol>
 | <composition composite end bound symbol>
 | <composition two ends bound symbol>
 | <aggregation not bound symbol>
 | <aggregation part end bound symbol>
 | <aggregation aggregate end bound symbol>
 | <aggregation two ends bound symbol>

<association not bound symbol> ::=

<association end bound symbol>::=

<association two ends bound symbol>::=

<composition not bound symbol> ::=

<composition part end bound symbol> ::=

<composition composite end bound symbol> ::=

<composition two ends bound symbol> ::=

<aggregation not bound symbol> ::=

<aggregation part end bound symbol> ::=

<aggregation aggregate end bound symbol> ::=

<aggregation two ends bound symbol> ::=

<association end area> ::=
 { [<role name>] [<multiplicity>] [<ordering area>] [<symbolic visibility>] }set

<multiplicity> ::=
 <range condition>

<ordering area> ::=
 ordered

<linked type reference area> ::=
 <agent type reference area>
 | <data type reference area>
 | <interface reference area>

An <association symbol> is allowed to link agent types, interfaces or data types.

If an <association end area> corresponds to an agent type or an interface, protected visibility shall not be used in the
other <association end area> of the <association area>.

If two different <association area>s identify the same type, in the <association end area>s opposite to this common type
the <role name>s (if given) must be different.

There must not be a set of <association area>s containing composition such that a type is linked by composition back to
itself, either directly or indirectly.

54 ITU-T Rec. Z.100 (11/2007)

If the composite end (the end with a diamond) of a <composition not bound symbol>,
<composition part end bound symbol>, <composition composite end bound symbol>, or <composition two ends
bound symbol> is attached to a <linked type reference area> that identifies a data type or interface, the opposite
<association end area> must be connected to a <linked type reference area> that identifies a data type or interface,
respectively.

The base sort of the <range condition> in <multiplicity> must be the Predefined Natural sort.

Semantics

An association links the two entity types in some way not further defined by this Recommendation.

9 Agents
An agent definition defines an (arbitrarily large) set of agents. An agent is characterized by having variables,
procedures, a state machine (given by an explicit or implicit composite state type) and sets of contained agents.

There are two kinds of agents: blocks and processes. A system is the outermost block. The state machine of a block is
interpreted concurrently with its contained agents, while the state machine of a process is interpreted alternating with
its contained agents.

Abstract grammar

Agent-definition :: Agent-name
 Number-of-instances
 Agent-type-identifier
Number-of-instances :: Initial-number [Maximum-number]
Initial-number = Nat
Maximum-number = Nat

Concrete grammar

<agent diagram> ::=
 { <system diagram> | <block diagram> | <process diagram> }
 [is associated with <package use area>]

<agent instantiation> ::=
 [<number of instances>]
 <agent additional heading>

<agent additional heading> ::=
 [<specialization>] [<agent formal parameters>]

<agent formal parameters> ::=
 (<parameters of sort> {, <parameters of sort>}*)

<parameters of sort> ::=
 <variable name> {, <variable name>}* <sort>

<number of instances> ::=
 ([<initial number>] [, [<maximum number>]])

<initial number> ::=
 <Natural simple expression>

<maximum number> ::=
 <Natural simple expression>

<agent structure area> ::=
 { {<agent text area>}*
 {<entity in agent diagram>}*
 { <interaction area> | <agent body area> } }set

<agent body area> ::=
 { [<on exception association area>] [<start area>]
 { <state area> | <exception handler area> | <in connector area> }* }set

 ITU-T Rec. Z.100 (11/2007) 55

<frame symbol> ::=

The <package use area> must be placed on the top of the <frame symbol> of the <system diagram>, <block diagram>,
or <process diagram>.

<agent text area> ::=
 <text symbol>
 contains {
 [<valid input signal set>]
 { <signal definition>
 | <signal reference>
 | <signal list definition>
 | <variable definition>
 | <remote procedure definition>
 | <remote variable definition>
 | <data definition>
 | <data type reference>
 | <timer definition>
 | <interface reference>
 | <macro definition>
 | <exception definition>
 | <procedure definition>
 | <procedure reference>
 | <select definition>
 | <agent type reference>
 | <agent reference> }* }

<entity in agent diagram>::=
 <agent type diagram>
 | <agent type reference area>
 | <composite state area>
 | <composite state type diagram>
 | <composite state type reference area>
 | <procedure diagram>
 | <procedure reference area>
 | <data type reference area>
 | <signal reference area>
 | <association area>

<interaction area> ::=
 {{ <agent area>
 | <create line area>
 | <channel definition area>
 | <state partition area> }+ }set

<agent area> ::=
 <agent reference area>
 | <agent diagram>
 | <typebased agent definition>
 | <inherited agent definition>

<create line area> ::=
 <create line symbol>
 is attached to {<create line endpoint area> <create line endpoint area>}

<create line endpoint area> ::=
 <agent area> | <agent type area> | <state partition area>

56 ITU-T Rec. Z.100 (11/2007)

<agent type area> ::=
 <agent type reference area>
 | <agent type diagram>

<create line symbol> ::=
 <dependency symbol>

<valid input signal set> ::=
 signalset [<signal list>] <end>

The following is valid for agents in general. Special properties of systems, blocks and processes are treated in separate
clauses on these concepts.

The initial number of instances and maximum number of instances contained in Number-of-instances are derived from
<number of instances>. If <initial number> is omitted, then <initial number> is 1. If <maximum number> is omitted,
then <maximum number> is unbounded.

The <number of instances> used in the derivation is the following:
a) If there is no <agent reference> for the agent, then the <number of instances> in the <agent diagram> or in the

<typebased agent definition> is used. If it does not contain a <number of instances>, then the
<number of instances> where both <initial number> and <maximum number> are omitted is used.

b) If both the <number of instances> in <agent diagram> and the <number of instances> in an <agent reference>
or <agent reference area> are omitted, then the <number of instances> where both <initial number> and
<maximum number> are omitted is used.

c) If either the <number of instances> in <agent diagram> or the <number of instances> in an <agent reference>
or <agent reference area> are omitted, then the <number of instances> is the one which is present.

d) If both the <number of instances> in <agent diagram> and the <number of instances> in an <agent reference>
or <agent reference area> are specified, then the two <number of instances> must be equal lexically and this
<number of instances> is used.

The <initial number> of instances must be less than or equal to <maximum number> and <maximum number> must be
greater than zero.

In <agent instantiation>, if <agent formal parameters> are present, <number of instances> must be present, even if both
<initial number> and <maximum number> are omitted.

An <agent text area> is permitted to contain an <agent reference> only if the directly enclosing <agent structure area>
contains an <interaction area>.

In an <agent diagram>, the <gate on diagram>s must be outside the diagram frame.

The Agent-definition-set in the Abstract grammar of the implied agent type (see Model) corresponds to the
<agent area>s.

The Channel-definition-set in the Abstract grammar of the implied agent type corresponds to the
<channel definition area>s.

The arrowhead on the <create line symbol> indicates the <agent area> or <agent type area> of an agent or agent type
upon which a create action is performed. <create line symbol>s are optional, but if used then there must be a create
request for the agent (or agent type) at the arrowhead end of the <create line symbol> in the agent (or agent type or state
machine) at the originating end of the <create line symbol>. The create action can be inherited and need thus not be
specified directly in the agent or agent type. This rule applies after transformation of <option area>.
NOTE 1 − This rule can be independently applied before or after transformation of <transition option area>.

The <state partition area> of <interaction area> identifies the state machine (composite state) of the agent, which may
be given directly as an agent graph or by reference to a state definition.

<start area> can only be omitted in an agent type diagram.

If there is an <agent reference area> for the agent, the <gate property area>s associated with the <agent reference area>
correspond to the <gate on diagram>s associated with the <agent diagram>. No <gate property area> associated with
the <agent reference area> can contain a <signal list item> that is not contained in the corresponding
<gate on diagram>s associated with the <agent diagram>. A corresponding rule applies if there is an <agent reference>
for the agent.

A <package dependency area> connected to an <agent reference area> must be consistent with the <package use area>
of the referenced diagram.

 ITU-T Rec. Z.100 (11/2007) 57

The use and syntax of <valid input signal set> is defined in clause 9.

Semantics

An Agent-definition has a name, which can be used in qualifiers in conjunction with system, block or process
depending on the kind of the agent.

An agent definition defines a set of agents. Several instances of the same agent set may exist at the same time and be
interpreted asynchronously and in parallel or alternating with each other and with instances of other agent sets in the
system.

The first value in the Number-of-instances represents the number of instances of the agent set which exist when the
system or containing entity is created (initial instances), the second value represents the maximum number of
simultaneous instances of the agent set.

The behaviour of an Agent-definition in an Agent-definition-set depends on whether the containing Agent-definition is a
block or process, and therefore is defined for block and process separately.

An agent instance has a communicating extended finite state machine defined by its explicit or implicit state machine
definition. Whenever the state machine is in a state, on input of a given signal it will perform a certain sequence of
actions, denoted as a transition. The completion of the transition results in the state machine of the agent instance
waiting in another state, which is not necessarily different from the first one.

When an agent is interpreted, the initial agents it contains are created. The signal communication between the finite
state machines of these initial agents, the finite state machine of the agent and their environment commences only when
all the initial agents have been created. The time taken to create an agent may or may not be significant. The formal
parameters of the initial agents have no associated data items (they are "undefined").

Agent instances exist from the time that the containing agent is created or they can be created by create request actions
of agents being interpreted; their interpretations start when their start action is interpreted; they may cease to exist by
performing stop actions.

When the state machine of an agent interprets a stop, if this agent was a concurrent container it will continue to handle
the implicit remote procedure calls mediating the access to the global variables. The state machine of such an agent
remains in this "stopping condition" until all contained agents have terminated, after which the agent terminates. While
in the stopping condition, the agent will not accept any stimuli other than the implicit set and get remote procedure calls
introduced for each global variable, if any. After an agent has terminated, its pid is no longer valid.

If an agent has no other explicit or implicit state machine, there is a state machine that has just a Stop-node. As soon as
all the initial contained agents have been created the agent enters a stopping condition. An agent with no contained
initial instances and no contained state machines therefore ceases to exist as soon as it is created.

Signals received by agent instances are denoted as input signals, and signals sent from agent instances are denoted as
output signals. <valid input signal set> of an agent defines the valid input signal set of its state machine.

Calling and serving remote procedure calls, and accessing remote variables, also correspond to exchange of signals
(see 10.5 and 10.6 respectively).

Signals may be consumed by the state machine of an agent instance only when it is in a state. The complete valid input
signal set is the union of:
a) the set of signals in all channels or gates leading to the state machine of the agent;
b) the <valid input signal set> of the agent;
c) the <valid input signal set> of the state machine of the agent;
d) the implicit input signals introduced as in 10.5 and 10.6; and
e) the timer signals.

Exactly one input port is associated with the finite state machine of each agent instance. Signals that are sent to a
container agent are delivered to the input port of the agent, provided that the signal appears on a (explicit or implicit)
channel connected to its state machine. Signals occurring only in the <valid input signal set> must not be used for
external communication. They serve for the communication between instances within the same instance set.

The finite state machine of an agent is either waiting in a state or active, performing a transition. For each state, there is
a save signal set (see also 11.7). When waiting in a state, the first input signal whose identifier is not in the save signal
set is taken from the queue and consumed by the agent. A transition may also be initiated as a spontaneous transition
independent of any signals being present in the queue.

58 ITU-T Rec. Z.100 (11/2007)

The input port may retain any number of input signals, so that several input signals can be queued for the finite state
machine of the agent instance. The set of retained signals is ordered in the queue according to their arrival time. If two
or more signals arrive on different paths "simultaneously", they are arbitrarily ordered.

When the agent is created, its finite state machine is given an empty input port, and local variables of the agent are
created.

When a container agent instance is created, the initial agents of the contained agent sets are created. If the container is
created by a <create body>, parent of the contained agents (see Model below) receives the pid of the container. The
formal parameters are variables, which are created either when the system is created (but no actual parameters are
passed to them and therefore they are "undefined") or when the agent instance is dynamically created.

The definition of an agent implies the definition of an interface in the same scope of the agent (see 12.1.2). The pid sort
implicitly defined by this interface is identified with Agent-name and is visible in the same scope unit as where the
agent is defined.
NOTE 2 − Because every agent has an implicitly defined interface with the same name, the agent must have a different
name from every explicitly defined interface, and every agent type (these also have implicit interfaces) defined in the
same scope; otherwise, there are name clashes.

The complete output set of an agent set is the same as the complete output set of the type of the agent set.

Model

An <agent diagram> has an implied anonymous agent type that defines the properties of the agent.

An agent with an <agent body area> is shorthand for an agent having only a state machine, but no contained agents.
This state machine is obtained by replacing the <agent body area> by a composite state definition. This composite state
definition has the same name as the agent and its State-transition-graph is represented by the <agent body area>.

In all agent instances, four anonymous variables of the pid sort of the agent (for agents not based on an agent type) or
the pid sort of the agent type (for typebased agents) are declared and are, in the following, referred to by self, parent,
offspring and sender. They give a result for:
a) the agent instance (self);
b) the creating agent instance (parent);
c) the most recent agent instance created by the agent instance (offspring);
d) the agent instance from which the last input signal has been consumed (sender) (see also 11.3).

These anonymous variables are accessed using pid expressions as further explained in 12.3.4.3.

For all agent instances created when the containing instance is created, parent is initialized to Null.

For all newly created agent instances, sender and offspring are initialized to Null.

9.1 System
A system is the outermost agent and has the Agent-kind SYSTEM. It is defined by a <system diagram>. The semantics
of agents applies with the additions provided in this subclause.

Abstract grammar

An Agent with the Agent-kind SYSTEM must not be contained in any other Agent. It must contain either at least one
Agent-definition or an explicit or implicit State-machine-definition.

The definitions of all signals, channels, data types and syntypes used in the interface with the environment and between
contained agents of the system (including itself) are contained in the Agent-definition of the system.

The Initial-number of instances is 1 and the Maximum-number of instances is 1.
NOTE − <number of instances> cannot be specified.

Concrete grammar

<system diagram> ::=
 <frame symbol> contains {<system heading> <agent structure area> }
 is connected to { {<gate on diagram>}* }set
 [is associated with <package use area>]

<system heading>::=
 system <system name> <agent additional heading>

 ITU-T Rec. Z.100 (11/2007) 59

The <agent additional heading> in a <system diagram> shall not include <agent formal parameters>.

The <gate on diagram>s in a <system diagram> shall not include <channel identifier>s.

Semantics

An Agent-definition with the Agent-kind SYSTEM is the SDL representation of a specification or description of a
system. A system is the outermost block. This means that agents within a system are blocks and processes that are
interpreted concurrently with each other and with the possible state machine of the system.

A system is separated from its environment by a system boundary and contains a set of agents. Communication between
the system and the environment or between agents within the system can take place using signals, remote procedures
and remote variables. Within a system, these communication means are conveyed on explicit or implicit channels. The
channels connect the contained agents to one another or to the system boundary.

A system instance is an instantiation of a system type identified by an Agent-definition with the Agent-kind SYSTEM.
The interpretation of a system instance is performed by an abstract SDL machine, which thereby gives semantics to the
SDL concepts. To interpret a system instance is to:
a) initiate the system time;
b) interpret the contained agents and their connected channels; and
c) interpret the optional state machine of the system.

9.2 Block
A block is an agent with the Agent-kind BLOCK. The semantics of agents therefore applies with the additions provided
in this subclause. A block is defined by a <block diagram>.

The instances contained within a block instance are interpreted concurrently and asynchronously with each other and
with the state machine of the containing block instance. All communication between different contained instances
within a block is performed asynchronously using signal exchange, either explicitly or implicitly using, for example,
remote procedure calls.

Concrete grammar

<block diagram> ::=
 <frame symbol> contains {<block heading> <agent structure area> }
 is connected to { {<gate on diagram> }* }set
 is associated with { <external channel identifiers> }* }set
 [is associated with <package use area>]

<block heading> ::=
 block [<qualifier>] <block name> <agent instantiation>

A <gate on diagram> identifies a gate associated with the connection point for channels. In the case of an
<agent structure area> that is an <interaction area>, <gate on diagram>s are placed close to the endpoint of internal
channels outside the <frame symbol>.

The <external channel identifiers> identify external channels connected to channels in the <block diagram>. It is placed
outside the <frame symbol>, close to the endpoint of internal channels at the <frame symbol>.

Semantics

A block definition is an agent definition that defines a container for a state machine (possibly with no behaviour) and
zero or more process or block definitions.

A block instance is an instantiation of a block type identified by an Agent-definition with the Agent-kind BLOCK. To
interpret a block instance is to:
a) interpret the contained agents and their connected channels;
b) interpret the state machine of the block (if present).

In a block with a finite state machine, the finite state machine is created as part of the creation of the block (and its
contained agents), and it is interpreted concurrently with the agents in the block.

A block with a variable definition but no state machine has an associated implicit state machine that is interpreted
concurrently with agents in the block.

60 ITU-T Rec. Z.100 (11/2007)

Access from contained agents in the block to a variable of the block is covered by two implicitly defined remote
procedures for setting and getting the data item associated with the variable. These procedures are provided by the state
machine of the block.

Model

A block b with a state machine and variables is modelled by keeping the block b (without the variables) and
transforming the state entity and variables into a separate state machine (sm) in the block b. For each variable v in b,
this state machine will have a variable v and two exported procedures set_v (with an in-parameter of the sort of v) and
get_v (with a return type being the sort of v). Each assignment to v from enclosed definitions is transformed to a remote
call of set_v. Each occurrence of v in expressions in enclosed definitions is transformed to a remote call of get_v. These
occurrences also apply to occurrences in procedures defined in block b, as these are transformed into procedures local
to the calling agents.

A block b with only variables and/or procedures is transformed as above, with the graph of the generated state machine
having just one state, where it inputs the generated set and get procedures.

The channels connected to the state machine are transformed so that they are connected to sm.

This transformation takes place after types and context parameters have been transformed.

9.3 Process
A process is an agent with the Agent-kind PROCESS. The semantics of agents therefore applies with the additions
provided in this subclause. A process is defined by a <process diagram>.

A process is used to introduce shared data into a specification, allowing the variables of the containing process to be
used or by using objects. All instances in a process can access the local variables of the process.

To achieve safe communication despite the sharing of data in a process, all instances are interpreted using alternating
semantics. This implies that for any two instances inside a process no two transitions are interpreted in parallel and also
that the interpretation of a transition in one instance is not interrupted by another instance. When an instance is waiting,
for example, for a remote procedure call return, it is in a state; therefore an alternate instance can be interpreted.

Abstract grammar

An Agent-definition with the Agent-kind PROCESS must either contain at least one Agent-definition or it shall have an
explicit or implicit State-machine-definition.

The contained Agent-definitions of an Agent-definition with the Agent-kind PROCESS shall all have the Agent-kind
PROCESS.

Concrete grammar

<process diagram> ::=
 <frame symbol> contains {<process heading> <agent structure area> }
 is connected to { {<gate on diagram> }* }set
 is associated with { <external channel identifiers> }* }set
 [is associated with <package use area>]

<process heading> ::=
 process [<qualifier>] <process name> <agent instantiation>

A <gate on diagram> identifies a gate associated with the connection point to channels. In the case of an
<agent structure area> that is an <interaction area>, <gate on diagram>s are placed close to the endpoint of internal
channels outside the <frame symbol>.

The <external channel identifiers> identify external channels connected to channels in the <process diagram>. It is
placed outside the <frame symbol>, close to the endpoint of internal channels at the <frame symbol>.

Semantics

A process definition is an agent definition that defines a container for a state machine (possibly with no behaviour) and
zero or more process definitions. A process instance is an instantiation of a process type identified by an Agent-
definition with the Agent-kind PROCESS.

An instance of a process with contained process instance sets is interpreted by interpreting the instances in the contained
process instance sets alternating with each other and with the state machine of the containing process instance, if any.
Alternating interpretation implies that only one of the instances inside the alternating context can interpret a transition at
a time, and also that once interpretation of a transition of an involved process instance has started, it continues until a

 ITU-T Rec. Z.100 (11/2007) 61

(explicit or implicit) state is reached or the process instance terminates. The state can be an implicit state introduced by
transformations (for example, due to a remote procedure call).

A process with variable definitions and contained processes, but without an explicit state machine, has an associated
implicit state machine that is interpreted alternating with the contained processes.
NOTE − State aggregation has also alternating interpretation. However, alternating processes of a process each have
their own input port and their own self, parent, offspring and sender. In the case of state aggregation there is only one
input port and one set of self, parent, offspring and sender belonging to the container agent.

9.4 Agent and composite state reference
Concrete grammar

<agent reference> ::=
 <block reference>
 | <process reference>

<agent reference area> ::=
 { <system reference area>
 | <block reference area>
 | <process reference area> }
 [is connected to { <package dependency area>+ }set]

<system reference area> ::=
 <block symbol> contains
 { system <system name> }

A <system reference area> must only be used as part of a <specification area>.

<block reference> ::=
 block <block name> [<number of instances>] referenced <end>

<block reference area> ::=
 <block symbol> contains
 { { <block name> [<number of instances>] } {<gate>*}set }
 is connected to { <gate property area>* }set

<block symbol> ::=

The <gate>s are placed near the border of the <block symbol> and are associated with the connection point to channels.
They are placed close to the endpoint of the channels at the <block symbol>.

<process reference> ::=
 process <process name> [<number of instances>] referenced <end>

<process reference area> ::=
 <process symbol> contains
 { { <process name> [<number of instances>] } {<gate>*}set }
 is connected to { {<gate property area>*}set }

<process symbol> ::=

The <gate>s are placed near the border of the <process symbol> and are associated with the connection point to
channels. They are placed close to the endpoint of the channels at the <process symbol>.

<composite state reference area> ::=
 <state symbol> contains { <state name> { <gate>*}set }

Model

Each reference is replaced by the corresponding <referenced definition>. If a text area (e.g., <agent text area>) contains
an <agent reference>, this reference is removed, and the referenced diagram is inserted in the area containing diagrams
nested within the diagram containing the text area.

62 ITU-T Rec. Z.100 (11/2007)

9.5 Procedure
Procedures are defined by means of procedure definitions. The procedure is invoked by means of a procedure call
identifying the procedure definition. Parameters are associated with a procedure call. Which variables are affected by
the interpretation of a procedure is controlled by the parameter passing mechanism. Procedure calls may be actions or
expressions (value returning procedures only).

Abstract grammar

Procedure-definition :: Procedure-name
 Procedure-formal-parameter*
 [Result]
 [Procedure-identifier]
 Data-type-definition-set
 Syntype-definition-set
 Variable-definition-set
 Composite-state-type-definition-set
 Procedure-definition-set
 Procedure-graph
Procedure-name = Name
Procedure-formal-parameter = In-parameter
 | Inout-parameter
 | Out-parameter
In-parameter :: Parameter
Inout-parameter :: Parameter
Out-parameter :: Parameter
Parameter :: Variable-name
 Sort-reference-identifier
Result :: Sort-reference-identifier
Procedure-graph :: [On-exception]
 [Procedure-start-node]
 State-node-set
 Free-action-set
 Exception-handler-node-set
Procedure-start-node :: [On-exception]
 Transition
Procedure-identifier = Identifier

If a Procedure-definition contains Result, it corresponds to a value returning procedure.

In an SDL-specification, all potentially instantiated procedures must have a Procedure-start-node.

Concrete grammar

<procedure definition> ::=
 <external procedure definition>
 | {<package use clause>}*
 <procedure heading>
 [<end> <entity in procedure>+]
 [<virtuality>] [<comment body>] <left curly bracket>
 <statement list>
 <right curly bracket>

The optional <virtuality> before <left curly bracket> <statement list> in <procedure definition> applies to the start
transition of the procedure, which in this case is the statement list.

<variable definition> in a <procedure definition> cannot contain exported <variable name>s (see 12.3.1).

<procedure diagram> ::=
 <frame symbol> contains {
 <procedure heading>
 { <procedure text area>*
 <procedure area>*
 <procedure body area> }set }
 [is associated with <package use area>]

 ITU-T Rec. Z.100 (11/2007) 63

<procedure heading> ::=
 <procedure preamble>
 procedure [<qualifier>] <procedure name>
 [<formal context parameters>] [<virtuality constraint>]
 [<specialization>]
 [<procedure formal parameters>]
 [<procedure result>] [<raises>]

<procedure preamble> ::=
 <type preamble> [exported [as <remote procedure identifier>]]

<procedure formal parameters> ::=
 (<formal variable parameters> {, <formal variable parameters> }*)

<formal variable parameters> ::=
 <parameter kind> <parameters of sort>

<parameter kind> ::=
 [in/out | in | out]

<procedure result> ::=
 <result sign> [<variable name>] <sort>

<raises> ::=
 raise <exception identifier> {, <exception identifier>}*

<procedure area> ::=
 <procedure diagram>
 | <procedure reference area>
 | <composite state type diagram>
 | <composite state type reference area>

<entity in procedure> ::=
 <variable definition>
 | <data definition>
 | <data type reference>
 | <procedure reference>
 | <procedure definition>
 | <exception definition>
 | <select definition>
 | <macro definition>

<procedure text area> ::=
 <text symbol> contains
 { <variable definition>
 | <data definition>
 | <data type reference>
 | <procedure reference>
 | <procedure definition>
 | <exception definition>
 | <select definition>
 | <macro definition> }*

<procedure signature> ::=
 [(<formal parameter> { , <formal parameter> }*)] [<result>] [<raises>]

<external procedure definition> ::=
 procedure <procedure name> <procedure signature> external <end>

An external procedure cannot be mentioned in a <type expression>, in a <formal context parameter>, or in a
<procedure constraint>.

<procedure body area> ::=
 { [<on exception association area>] [<procedure start area>]
 {<state area> | <exception handler area> | <in connector area> }* } set

64 ITU-T Rec. Z.100 (11/2007)

<procedure start area> ::=
 <procedure start symbol>
 contains { [<virtuality>] }
 [is connected to <on exception association area>]
 is followed by <transition area>

<procedure start symbol> ::=

The <package use area> must be placed on the top of the <frame symbol>.

The <on exception association area> of a <procedure body area> identifies the exception handler associated with the
whole graph. The originating end must not be connected to any symbol.

An exported procedure cannot have formal context parameters and its enclosing scope must be an agent type or agent
definition.

If present, exported is inherited by any subtype of a procedure. A virtual exported procedure must contain exported in
all redefinitions. Virtual types including virtual procedures are described in 8.3.2. The optional as clause in a
redefinition must denote the same <remote procedure identifier> as in the supertype. If omitted in a redefinition, the
<remote procedure identifier> of the supertype is implied.

Two exported procedures in an agent cannot mention the same <remote procedure identifier>.

If an exception can be raised in a procedure when no exception handler is active with the corresponding handler clause
(that is, it is not handled), the <raises> must mention this exception. An exception is considered as not handled in a
procedure if there is a potential control flow inside the procedure producing that exception, and none of the exception
handlers activated in this control flow handle the exception.

If exported is given in a procedure reference, the referenced procedure has to be an exported procedure and if a
<remote procedure identifier> is also given, the procedure has to identify the same remote procedure definition.

Semantics

A procedure is a means of giving a name to an assembly of items and representing this assembly by a single reference.
The rules for procedures impose a discipline upon the way in which the assembly of items is chosen, and limit the scope
of the name of variables defined in the procedure.

exported in a <procedure preamble> implies that the procedure may be called as a remote procedure, according to the
model in 10.5.

A procedure variable is a local variable within the procedure that cannot be exported. It is created when the procedure
start node is interpreted, and it ceases to exist when the return node of the procedure graph is interpreted.

The interpretation of a Call-node (represented by a <procedure call area>, see 11.13.3, or a <call statement>, see 11.14),
a Value-returning-call-node (represented by a <value returning procedure call>, see 12.3.5), or an Operation-
application (represented by an <operation application>, see 12.2.7) causes the creation of a procedure instance and the
interpretation to commence in the following way:
a) A local variable is created for each In-parameter, having the Name and Sort of the In-parameter. The variable

is associated with the result of the expression by interpreting an assignment between the variable and the
expression given by the corresponding actual parameter if present. Otherwise, the variable gets no associated
data item; that is, it becomes "undefined".

b) A local variable is created for each Out-parameter, having the Name and Sort of the Out-parameter. The
variable gets no data item; that is, it becomes "undefined".

c) A local variable is created for each Variable-definition in the Procedure-definition.
d) Each Inout-parameter denotes a variable that is given by the actual parameter expression in 11.13.3. The

contained Variable-name is used throughout the interpretation of the Procedure-graph when referring to the
data item associated with the variable or when assigning a new data item to the variable.

e) The Transition contained in the Procedure-start-node is interpreted.
f) Before interpretation of a Return-node contained in the Procedure-graph, the Out-parameters are given the

data items of the corresponding local variable.

 ITU-T Rec. Z.100 (11/2007) 65

The nodes of the procedure graph are interpreted in the same manner as the equivalent nodes of an agent; that is, the
procedure has the same complete valid input signal set as the enclosing agent, and the same input port as the instance of
the enclosing agent that has called it, either directly or indirectly.
NOTE – The Call-node is always in the same enclosing agent as the Procedure-definition, because a subtype
Procedure-definition is implicitly created locally if necessary (see 11.13.3). In any such subtype, identifiers of items
(such as variables) external to the Procedure-definition are bound in the context of the super type Procedure-definition
rather than the context of the Call-node if that is different.

An external procedure is a procedure whose <procedure body area> is not included in the SDL description (see 13).

Model

A formal parameter with no explicit <parameter kind> has the implicit <parameter kind> in.

When a <variable name> is present in <procedure result>, then all <return area>s within the procedure graph without an
<expression> are replaced by a <return area> containing <variable name> as the <expression>.

A <procedure result> with <variable name> is derived syntax for a <variable definition> with <variable name> and
<sort> in <variables of sort>. If there is a <variable definition> involving <variable name>, no further
<variable definition> is added.

A <procedure start area> which contains <virtuality> or a <statement list> in a <procedure definition> following
<virtuality> is called a virtual procedure start. Virtual procedure start is further described in 8.3.3.

A <procedure definition> (other than an <external procedure definition>) is derived syntax for a <procedure diagram>,
having the same <procedure preamble> and a single <start area> with the same <virtuality>. The <transition area> of
the <start area> consists of a <task area> containing the <statement list> of the <procedure definition> followed by an
unlabelled <return area>. The <entity in procedure>s of the <procedure definition> are inserted into a <procedure text
area> of the <procedure diagram>.

This transformation takes place after the transformation of <compound statement>.

10 Communication

10.1 Channel
Abstract grammar

Channel-definition :: Channel-name
 [NODELAY]
 Channel-path-set
Channel-path :: Originating-gate
 Destination-gate
 Signal-identifier-set
Originating-gate = Gate-identifier
Destination-gate = Gate-identifier
Gate-identifier = Identifier
Agent-identifier = Identifier
Channel-name = Name

The Channel-path-set contains at least one Channel-path and no more than two. When there are two paths, the channel
is bidirectional and the Originating-gate of each Channel-path must be the same as the Destination-gate of the other
Channel-path.

If the Originating-gate and the Destination-gate are the same agent, the channel must be unidirectional (there must be
only one element in the Channel-path-set).

The Originating-gate or Destination-gate must be defined in the same scope unit in the abstract syntax in which the
channel is defined.

NODELAY denotes that the channel has no delay.

A channel is allowed to connect the two directions of a bidirectional gate to each other.

Each gate and the channel must have at least one common element in their signal lists in the same direction.

66 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

<channel definition area> ::=
 <channel symbol>
 is associated with
 { [<channel name>] { [<signal list area>] [<signal list area>] }set }
 is attached to {
 { <agent area> | <state partition area> | <gate on diagram> }
 { <agent area> | <state partition area> | <gate on diagram> } }set

If the <channel symbol> is attached to an <agent area> that is a <typebased agent definition>, there must be a <gate> in
the <typebased agent definition> placed near the channel attachment to the symbol for the agent. This <gate> represents
either the Destination-gate or Originating-gate, with the other gate determined by the other end of the channel.

When a <channel symbol> is attached to a <state partition area>, the <state partition area> denotes the state machine of
the agent directly enclosing the channel definition. If the <state partition area> is a <typebased state partition
definition>, there must be a <gate> in the <typebased state partition definition> placed near the channel attachment to
the symbol for the state partition. This <gate> represents either the Destination-gate or Originating-gate, with the other
gate determined by the other end of the channel.

For the end of the <channel symbol> that is attached directly to an <agent area> or <state partition area> where the
agent or state machine contains the <channel identifier>s for the channel in <external channel identifiers>, the channel
is attached to the implicit gate introduced by the <external channel identifiers>. Otherwise, in the case of no <external
channel identifiers> match, there is an implicit gate on the agent or state attached to the <channel definition area>. This
gate obtains the <signal list> of the respective <channel definition area> as its corresponding gate constraint. The
channel is attached to that gate. This <gate> represents either the Destination-gate or Originating-gate, with the other
gate determined by the other end of the channel.

For the end of the <channel symbol> that is attached directly to a <gate on diagram>, this represents the Destination-
gate or Originating-gate, with the other gate determined by the other end of the channel.

<channel symbol> ::=
 <delaying channel symbol 1>
 | <delaying channel symbol 2>
 | <nondelaying channel symbol 1>
 | <nondelaying channel symbol 2>

<delaying channel symbol 1> ::=

<delaying channel symbol 2> ::=

<nondelaying channel symbol 1> ::=

<nondelaying channel symbol 2> ::=

For each arrowhead on the <channel symbol>, there must be at most one <signal list area>. Each <signal list area> must
be unambiguously close enough to one of the arrowheads. This arrowhead indicates the direction of the channel path
the signal list with which it is associated.

The arrowheads for <nondelaying channel symbol 1> and <nondelaying channel symbol 2> are placed at the end(s) of
the channel and indicate that the channel has no delay.

Semantics
A Channel-definition represents a transportation path for signals (including the implicit signals implied by remote
procedures and remote variables, see 10.5 and 10.6). A channel can be considered as one or two independent
unidirectional channel paths between two agents or between an agent and its environment. A channel may also connect
the state machine (composite state) of an agent with the environment and with contained agents.
The Signal-identifier-set in each Channel-path in the Channel-definition contains the signals that may be conveyed on
that Channel-path.
Signals conveyed by channels are delivered to the destination endpoint.

 ITU-T Rec. Z.100 (11/2007) 67

Signals are presented at the destination endpoint of a channel in the same order they have been presented at its origin. If
two or more signals are presented simultaneously to the channel, they are arbitrarily ordered.
A channel with delay may delay the signals conveyed by the channel. That means that a First-In-First-Out (FIFO)
delaying queue is associated with each direction in a channel. When a signal is presented to the channel, it is put into
the delaying queue. After an indeterminate and non-constant time interval, the first signal instance in the queue is
released and given to one of the endpoints, which is attached to the channel.
Several channels may exist between the same two endpoints. The same signal type can be conveyed on different
channels.
When a signal instance is sent to an instance of the same agent instance set, interpretation of the Output-node either
implies that the signal is put directly in the input port of the destination agent, or that the signal is sent via a channel
without delay which connects the agent instance set to itself.
A remote procedure or remote variable on a channel is mentioned as outgoing from an importer and incoming to an
exporter.

Model
If the <channel name> is omitted from a <channel definition area>, the channel is implicitly and uniquely named.

A channel with both endpoints being gates of one <typebased agent definition> represents individual channels from
each of the agents in this set to all agents in the set, including the originating agent. Any resulting bi-directional channel
connecting an agent in the set to the agent itself is split into two unidirectional channels.

If an agent or agent type contains explicit or implicit gates not attached by explicit channels, implicit channels are
derived according to the following three transforms, which must be applied after the transform for typebased creation in
 11.13.2 is applied.
Transform 1:

Insertion of channels between instance sets inside the agent or agent type and between the instance sets and
the agent state machine;

Transform 2:
Insertion of channels from a gate on the agent or agent type to gates on instance sets inside the agent or agent
type and to gates on the agent state machine;

Transform 3:
Insertion of channels from gates on instance sets inside the agent or agent type and from gates on the agent
state machine to gates on the agent or agent type.

These transforms are described in detail below. They are applied in the order given.

In the transforms, one signal list element (interfaces, signals, remote procedures or remote variables) matches another
signal list element if:
a) both denote the same interface, signal, remote procedure or remote variable; or
b) the first denotes a signal or remote procedure or remote variable, and the second denotes an interface and the

interface includes the signal or remote procedure or remote variable; or
c) both denote interfaces, and the second signal list element inherits the first signal list element.

Transform 1: Insertion of implicit channels between entities inside one agent or agent type
a) If an element of the outgoing signal list associated with a gate of an instance in an agent (or agent type)

matches an element of an incoming signal list associated with a gate of another instance in the same agent (or
agent type respectively); and

b) if neither of these gates has an explicit channel attached to it,

then
a) if no implicit channel exists between the two gates, a uni-directional implicit channel is created from the gate

where the element is outgoing to the gate where the element is incoming, and this channel is non-delaying if it
is within a process (or process type) and otherwise it is delaying; and

b) the element is added to the signal list of the implied channel.

Transform 2: Insertion of implicit channels from the gates on an agent or agent type
a) If an element of the incoming signal list associated with a gate outside an agent (or agent type) matches an

element of an incoming signal list associated with a gate of an instance in the agent (or agent type
respectively); and

68 ITU-T Rec. Z.100 (11/2007)

b) if there is no explicit channel inside the agent (or agent type respectively) attached to the gate outside the
agent (or agent type respectively) and no explicit channel attached to the gate of the instance inside the agent
(or agent type respectively),

then
a) if no implicit channel exists between the two gates, a uni-directional implicit channel is created from the gate

outside the agent (or agent type respectively) to the gate of the instance inside the agent (or agent type
respectively), and this channel is non-delaying if it is within a process (or process type) and otherwise it is
delaying; and

b) the element is added to the signal list of the implied channel.

Transform 3: Insertion of implicit channels from the gates on instances

The following is applied for insertion of implicit channels from the gates on instance sets within the agent or agent type
to the gates on the agent or agent type:
a) If an element of the outgoing signal list associated with a gate outside an agent (or agent type) matches an

element of an outgoing signal list associated with a gate of an instance in the agent (or agent type
respectively); and

b) if there is no explicit channel attached to the gate outside the agent (or agent type respectively) and no explicit
channel connected to the gate of the instance inside the agent (or agent type respectively),

then
a) if no implicit channel exists between the two gates in the direction to the gate outside the agent (or agent type

respectively), a uni-directional implicit channel is created from the gate of the instance inside the agent (or
agent type respectively) to the gate outside the agent (or agent type respectively), and this channel is non-
delaying if it is within a process (or process type) and otherwise it is delaying; and

b) the element is added to the signal list of the implied channel.

10.2 Connection
Concrete grammar

<external channel identifiers> ::=
 <channel identifier> { , <channel identifier}*

A <channel symbol> in a <channel definition area> is attached to an <external channel identifiers> connected to the
enclosing frame symbol.

The <channel identifier>s in the <external channel identifiers> must denote channels attached to the enclosing agent.
Each channel attached to the enclosing agent must be mentioned in at least one <external channel identifiers>.

Model

Connections are shorthand constructs and are transformed to gates.

Each different connection between a channel and <external channel identifiers> in a given scope unit defines one
implicit gate on the scope unit. All channels in the <external channel identifiers> are attached to that gate. The gate
constraints of the implicit gate are derived from the channels connected to the gate.

The name of the gate is a unique and unambiguous derived name. In the surrounding scope unit, the <channel definition
area> that is identified by the <channel identifier> is attached to that implicit gate. Inside the scope unit, the channels
that are associated with the external channel by means of the <external channel identifiers> are connected to the
implicit gate.

When a diagram is directly contained within another diagram (that is, it is not referenced), each
<external channel identifiers> is omitted, because the external channels attached to the same point on the frame of the
diagram from outside the diagram are shown directly. The identities of the channels and gates are derived from the
attachment (see 10.1).

 ITU-T Rec. Z.100 (11/2007) 69

10.3 Signal
Abstract grammar

Signal-definition :: Signal-name
 Sort-reference-identifier*
 [Signal-identifier]
Signal-identifier = Identifier
Signal-name = Name

The optional Signal-identifier of a Signal-definition identifies the base type (if any). The Sort-reference-identifier list is
the list defined for the base type (if any) followed by the additional sorts defined for this signal type.

Concrete grammar

<signal definition>::=
 <type preamble>
 signal <signal definition item> { , <signal definition item> }* <end>

<signal definition item> ::=
 <signal name>
 [<formal context parameters>]
 [<virtuality constraint>]
 [<specialization>]
 [<sort list>]

<sort list> ::=
 (<sort> { , <sort>}*)

<formal context parameter> in <formal context parameters> must be a <sort context parameter>. The <base type> as
part of <specialization> must be a <signal identifier>.

Each <signal definition item> represents one Signal-definition. Each <sort> in the <sort list> adds a Sort-reference-
identifier to the end of the Sort-reference-identifier list.

An abstract signal can only be used in specialization and signal constraints.

Semantics

A signal instance is a flow of information between agents, and is an instantiation of a signal type defined by a signal
definition. A signal instance can be sent by either the environment or an agent and is always directed to either an agent
or the environment. A signal instance is created when an Output-node is interpreted and ceases to exist when an Input-
node is interpreted.

The semantics of <virtuality> is defined in 8.3.2.

10.4 Signal list definition
A <signal list identifier> may be used in <signal list> as shorthand for a list of signal identifiers, remote procedures,
remote variables, timer signals, and interfaces.

Concrete grammar

<signal list definition> ::=
 signallist <signal list name> <equals sign> <signal list> <end>

<signal list area> ::=
 <signal list symbol> contains <signal list>

<signal list symbol> ::=

<signal list> ::=
 <signal list item> { , <signal list item>}*

70 ITU-T Rec. Z.100 (11/2007)

<signal list item> ::=
 <signal identifier>
 | (<signal list identifier>)
 | <timer identifier>
 | [procedure] <remote procedure identifier>
 | [interface] <interface identifier>
 | [remote] <remote variable identifier>

The <signal list>, which is constructed by replacing all <signal list identifier>s in the list by the list of
<signal identifier>s or <timer identifier>s they denote and by replacing all the <remote procedure identifier>s and all
the <remote variable identifier>s by one of the implicit signals each of them denotes (see 10.5 and 10.6), corresponds to
a Signal-identifier-set in the Abstract grammar.

A <signal list item> which is an <identifier> denotes a <signal identifier> or <timer identifier> or <interface identifier>
if this is possible according to the visibility rules, or else a <remote procedure identifier> if this is possible according to
the visibility rules, or else a <remote variable identifier>. To force a <signal list item> to denote a
<remote procedure identifier>, <interface identifier> or <remote variable identifier>, the keyword procedure, interface
or remote respectively can be used.

The <signal list> must not contain the <signal list identifier> defined by the <signal list definition> either directly or
indirectly (via another <signal list identifier>).

10.5 Remote procedures
A client agent may call a procedure defined in another agent by a request to the server agent through a remote
procedure call of a procedure in the server agent.

Concrete grammar

<remote procedure definition> ::=
 remote procedure <remote procedure name>
 <procedure signature> <end>

<remote procedure call area> ::=
 <procedure call symbol> contains <remote procedure call body>
 [is connected to <on exception association area>]

<remote procedure call body> ::=
 <remote procedure identifier> [<actual parameters>]
 <communication constraints>

<communication constraints> ::=
 {to <destination> | timer <timer identifier> | <via path>}*

A <remote procedure definition> introduces the name and signature for imported and exported procedures.

An exported procedure is a procedure with the keyword exported.

The association between an imported procedure and an exported procedure is established by both referring to the same
<remote procedure definition>.

The <remote procedure identifier> following as in an exported procedure definition must denote a
<remote procedure definition> with the same signature as the exported procedure. In an exported procedure definition
with no as clause, the name of the exported procedure is implied and the <remote procedure definition> in the nearest
surrounding scope with same name is implied.

A remote procedure mentioned in a <remote procedure call body> must be in the complete output set (see 8.1.1.1 and 9)
of an enclosing agent type or agent set.

If <destination> in a <remote procedure call body> is a <pid expression> with a sort other than Pid (see 12.1.6), then
the <remote procedure identifier> must represent a remote procedure contained in the interface that defined the pid sort.

When the <destination> and the <via path> are omitted, there is a syntactic ambiguity between
<remote procedure call body> and <procedure call body>. In this case, the contained <identifier> denotes a
<procedure identifier> if this is possible according to the visibility rules and otherwise a <remote procedure identifier>.

The <timer identifier> of <communication constraints> must not have the same <identifier> as an
<exception identifier>.

 ITU-T Rec. Z.100 (11/2007) 71

In a <remote procedure call body>, a <communication constraints> list is associated with the last
<remote procedure identifier>. For example, in
 call p to call q timer t via g
the timer t as well as gate g would apply to the call of q.

A <communication constraints> shall contain no more than one <destination> and no more than one <timer identifier>.

Model

A remote procedure call by a requesting agent causes the requesting agent to wait until the server agent has interpreted
the procedure. Signals sent to the requesting agent while it is waiting are saved. The server agent will interpret the
requested procedure in the next state where save of the procedure is not specified, subject to the normal ordering of
reception of signals. If neither <save area> nor <input area> is specified for a state, an implicit transition consisting of
the procedure call only and leading back to the same state is added. If an <input area> is specified for a state, an implicit
transition consisting of the procedure call followed by <transition area> is added. If a <save area> is specified for a
state, an implicit save of the signal for the requested procedure is added.

A remote procedure call body
 Proc(apar) to destination timer timerlist via viapath

is modelled by an exchange of implicitly defined signals. If the to or via clauses are omitted from the remote procedure
call, they are also omitted in the following transformations. The channels are explicit if the remote procedure has been
mentioned in the <signal list> (the outgoing for the importer and the incoming for the exporter) of at least one gate or
channel connected to the importer or exporter. The requesting agent sends a signal containing the actual parameters of
the procedure call, except actual parameters corresponding to out-parameters, to the server agent and waits for the
reply. In response to this signal, the server agent interprets the corresponding remote procedure, sends a signal back to
the requesting agent with the results of all in/out-parameters and out-parameters, and then interprets the transition.

There are two implicit <signal definition>s for each <remote procedure definition> in a <system diagram>. The
<signal name>s in these <signal definition>s are denoted by pCALL and pREPLY respectively, where p is uniquely
determined. The signals are defined in the same scope unit as the <remote procedure definition>. Both pCALL and
pREPLY have a last parameter of the predefined Integer sort.

On each channel mentioning the remote procedure, the remote procedure is replaced by pCALL. For each such channel,
a new channel is added in the opposite direction; this channel carries the signal pREPLY. The new channel has the same
delaying property as the original one.
a) For each imported procedure, two implicit Integer variables n and newn are defined, and n is initialized to 0.
NOTE 1 – The parameter n is introduced to recognize and discard reply signals of remote procedure calls that were left
through associated timer expiry.
 The <remote procedure call area> is transformed as below:

newn=n

(aINOUTpar,newn)pREPLY * /*saving
other signals*/

wait in state pWAITpWAIT

 (apar,n) TO destination VIA viapathpCALL

n:=n+1;

false

 where apar is the list of actual parameters except actual parameters corresponding to out-parameters, and

aINOUTpar is the modified list of actual in/out-parameters and out-parameters, including an additional
parameter if a value returning remote procedure call is transformed.

 For every exception contained in the <raises> of a remote procedure p and all predefined exceptions e, a
signal eRAISE is defined which can transport all exception parameters of e. The following will be inserted
into the state pWAIT:

72 ITU-T Rec. Z.100 (11/2007)

(params,newn) eRAISE

pWAIT

newn=n

true
false

e(params)

 For a timer t included in <communication constraints>, an additional exception with the same name and the
same parameters is implicitly inserted in the same scope as the timer definition, and there must not be an
explicitly defined exception with the same name as the timer in the same scope unit where the timer is
defined.

 Additionally, the following will be inserted for a timer t that is included in <communication constraints>:

(aparams) t

pWAIT

t(aparams)

 where aParams stands for implicitly defined variables with the sort of the parameters contained in the timer
definition.

 In all states of the agent except pWAIT

-

pREPLY,
eRAISE

All states
except
PWAIT

*(pWAIT)

 is inserted.
b) In the server agent, an implicit exception handler pEXC and an implicit Integer variable n is defined for each

explicit or implicit <input area> being a remote-procedure input. Furthermore, there is one ivar variable for
each such <input area> defined in the scope where the explicit or implicit remote procedure input occurs. If a
value returning remote procedure call is transformed, an implicit variable res with the same sort as <sort> in
<procedure result> is defined.

 To all <state area>s with a remote procedure input transition, the following <input area> replaces the remote
procedure input and leads to the transition for the remote procedure:

pCALL (fpar, n)

(aINOUTpar,n)
pREPLY TO ivar

ivar:=
SENDER

Proc
(params)
Proc(fpar) pEXC

Z.100_F 10.5.1
or,

 ITU-T Rec. Z.100 (11/2007) 73

pCALL (fpar, n)

(aINOUTpar,res,n)
pREPLY TO ivar

ivar:=
SENDER

Proc
(params)

res:=CALL
Proc(fpar) pEXC

Z.100_F 10.5.2
if a value returning remote procedure call was transformed.

 To all <state area>s, with a remote procedure save, the following <save area> is added:

pCALL

 To all <state area>s with a <remote procedure reject>, the following <input area> is added followed by the
transition for the remote procedure reject:

(params, n)
TO SENDER eRAISE

pCALL

 To all other <state area>s excluding implicit states derived from input, the following <input area> is added:

pCALL (params, n)

(aINOUTpar, n)
pREPLY TO ivar

ivar:=
SENDER

-
/*same state*/

Proc
(params)

Proc
(params) pEXC

Z.100_F 10.5.3

 For every exception e contained in the <raises> of the remote procedure, and for every predefined exception,

the following is inserted:

(params,n)
TO ivar

pEXC

e(params)

eRAISE

e(params)

 If an exception handler is associated with a remote-procedure input, the exception handler becomes associated

with the resulting signal input (not shown in the model above).

NOTE 2 − There is a possibility of deadlock using the remote procedure construct, especially if no <destination> is
given, or if <destination> does not denote a <pid expression> of an agent which is guaranteed by the specification to
exist at the time of receiving the pCALL signal. Associated timers allow the deadlock to be avoided.

10.6 Remote variables
In SDL, a variable is always owned by, and local to, an agent instance. Normally, the variable is visible only to the
agent instance that owns it and to the contained agents. If an agent instance in another agent needs to access the data
items associated with a variable, a signal interchange with the agent instance owning the variable is needed.

This can be achieved by the following shorthand notation, called imported and exported variables. The shorthand
notation may also be used to export data items to other agent instances within the same agent.

74 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

<remote variable definition> ::=
 remote <remote variable name> {,<remote variable name>}* <sort>
 {, <remote variable name> {, <remote variable name>}* <sort>}*
 <end>

<import expression> ::=
 import (<remote variable identifier> <communication constraints>)

<export body> ::=
 (<variable identifier> { , <variable identifier> }*)

A <remote variable definition> introduces the name and sort for imported and exported variables.

An exported variable definition is a variable definition with the keyword exported.

The association between an imported variable and an exported variable is established by both referring to the same
<remote variable definition>.

Imported variables are specified as part of the output set of the enclosing active entity. Exported variables are specified
as part of the complete input set of the enclosing active entity.

The agent instance that owns a variable whose data items are exported to other agent instances is called the exporter of
the variable. Other agent instances that use these data items are known as importers of the variable. The variable is
called exported variable.

The <remote variable identifier> following as in an exported variable definition must denote a
<remote variable definition> of the same sort as the exported variable definition. In the case of no as clause, the remote
variable definition in the nearest enclosing scope unit with the same name and sort as the exported variable definition is
denoted.

A remote variable mentioned in an <import expression> must be in the complete output set (see 8.1.1.1 and 9) of an
enclosing agent type or agent set.

The <variable identifier> in <export body> must denote a variable defined with exported.

If <destination> in an <import expression> is a <pid expression> with a sort other than Pid (see 12.1.6), then the
<remote variable identifier> must represent a remote variable contained in the interface that defined the pid sort.

Model

An agent instance may be both importer and exporter of the same remote variable.
a) Export operation
 Exported variables have the keyword exported in their <variable definition>s, and have an implicit copy to be

used in import operations.
 An export operation is the interpretation of an <export body> by which an exporter discloses the current result

of an exported variable. An export operation causes the storing of the current result of the exported variable
into its implicit copy.

b) Import operation
 An import operation is the interpretation of an <import expression> by which an importer accesses the result

of an exported variable. The result is stored in an implicit variable denoted by the <remote variable identifier>
in the <import expression>. The exporter containing the exported variable is specified by the <destination> in
the <import expression>. If no <destination> is specified, then the import is from an arbitrary agent instance
exporting the same remote variable. The association between the exported variable in the exporter and the
implicit variable in the importer is specified by referring to the same remote variable in the export variable
definition and in the <import expression>.

An import operation is modelled by exchange of implicitly defined signals. The importer sends a signal to the exporter,
and waits for the reply. In response to this signal, the exporter sends a signal back to the importer with the result
contained in the implicit copy of the exported variable.

If a default initialization is attached to the export variable or if the export variable is initialized when it is defined, then
the implicit copy is also initialized, with the same result as the export variable.

 ITU-T Rec. Z.100 (11/2007) 75

There are two implicit <signal definition>s for each <remote variable definition> in a system definition. The
<signal name>s in these <signal definition>s are denoted by xQUERY and xREPLY respectively, where x denotes the
<name> of the <remote variable definition>. The signals are defined in the same scope unit as the
<remote variable definition>. The signal xQUERY has an argument of the predefined sort Integer and xREPLY has
arguments of the sort of the variable and Integer. The implicit copy of the exported variable is denoted by imcx.

On each channel mentioning the remote variable, the remote variable is replaced by xQUERY. For each such channel, a
new channel is added in the opposite direction; this channel carries the signal xREPLY. In the case of a channel, the
new channel has the same delaying property as the original one.

For each predefined exception (denoted as predefExc), an additional anonymous signal (denoted as predefExcRAISE)
is defined.
a) Importer
 For each imported variable, two implicit Integer variables n and newn are defined, and n is initialized to 0. In

addition, an implicit variable x of the sort of the remote variable is defined in the context of the <import
expression>.

 The <import expression>
 import (x to destination via via-path)
 is transformed to the following, where the to clause is omitted if the destination is not present, and the via

clause is omitted if it is not present in the original expression:

* /*all other
signals */

predef_
ExcRAISE

newn
=n

(x,newn) xREPLY

anonymous
unique state xWAIT

TO destination VIA viapath xQUERY(n)

n:=n+1;

false
true

predefExc

 followed by the symbol that originally contained the <import expression> with the <import expression>

replaced by x.
 In all other states, xREPLY is saved.
 NOTE 1 – The return statement terminates the implicit procedure introduced according to 11.12.1.
 For every timer t included in <communication constraints>, an additional exception with the same name and

the same parameters is implicitly inserted in the same scope as the timer definition. In that case, there must
not be an exception with the same name in the scope unit of the timer definition.

 Additionally, the following will be inserted for every timer t that is included in <communication constraints>:

 t
(aParams)

xWAIT

t(aParams)

 where aParams stands for implicitly defined variables with the sort of the parameters contained in the timer
definition.

 The result of the transformation is encapsulated in an implicit procedure, as described in 11.12.1. Every
<on exception association area> attached to the import shall be attached to a call of the implicit procedure.

b) Exporter
 To all <state area>s of the exporter, excluding implicit states derived from import, the following <input area>

is added:

76 ITU-T Rec. Z.100 (11/2007)

TO ivar

xEXC

predefExc

predefExc_
RAISE

predefExc

xEXC

-

xREPLY(imcx,n)
TO ivar

ivar:=
SENDER

xQUERY
(n)

 For each such state, ivar will be defined as variable of sort Pid, and n as a variable of type Integer.
 The <export statement>
 export x;
 is transformed to the following:
 imcx := x;
NOTE 2 − There is a possibility of deadlock using the import construct, especially if no <destination> is given, or if
<destination> does not denote a <pid expression> of an agent which is guaranteed by the specification to exist at the
time of receiving the xQUERY signal. Specifying a set timer in the <expression> avoids such a deadlock.

11 Behaviour

11.1 Start
Abstract grammar

State-start-node :: [On-exception]
 [State-entry-point-name]
 Transition

Concrete grammar

<start area> ::=
 <start symbol> contains { [<virtuality>] [<state entry point name>]}
 [is connected to <on exception association area>]
 is followed by <transition area>

<start symbol> ::=

If <state entry point name> is given in a <start area>, the <start area> must be the <start area> of a <composite state
area>.

Semantics

The Transition of the State-start-node is interpreted.

Model

A <start area> which contains <virtuality> is called a virtual start. Virtual start is further described in 8.3.3.

A <start area> contained in a <composite state area> is defined in 11.11.

11.2 State
Abstract grammar

State-node :: State-name
 [On-exception]

 Save-signalset
 Input-node-set
 Spontaneous-transition-set
 Continuous-signal-set

 ITU-T Rec. Z.100 (11/2007) 77

 Connect-node-set
 [Composite-state-type-identifier]
State-name = Name

State-nodes within a State-transition-graph or Procedure-graph must have different State-names.

For each State-node, all Signal-identifiers (in the complete valid input signal set) appear in either a Save-signalset or an
Input-node.

The Signal-identifiers in the Input-node-set must be distinct.

A State-node with Composite-state-type-identifier represents a composite state.

Concrete grammar

<state area> ::=
 <state symbol> contains <state list>
 [is connected to <on exception association area>]
 is associated with
 { <input association area>
 | <priority input association area>
 | <continuous signal association area>
 | <spontaneous transition association area>
 | <save association area>
 | <connect association area> }*

<state symbol> ::=

<state list> ::=
 { <basic state name> | <composite state item> }
 { , { <basic state name> | <composite state item> } }*
 | <asterisk state list>

<basic state name> ::=
 <state name>

<asterisk state list> ::=
 <asterisk> [(<state name> { , <state name>}*)]

<composite state item> ::=
 <composite state name> [<actual parameters>]
 | <typebased composite state>

<composite state name> ::=
 <state name>

<input association area> ::=
 <solid association symbol> is connected to <input area>

<save association area> ::=
 <solid association symbol> is connected to <save area>

<spontaneous transition association area> ::=
 <solid association symbol> is connected to <spontaneous transition area>

A <state area> represents one or more State-nodes.

A <basic state name> is the name of a state that does not have a <composite state area>, and is not defined in a
<typebased composite state>. A <composite state name> is the name of a state that has a <composite state area>, or is
defined in a <typebased composite state>.

A given state may have at most one exception handler associated.

When the <state list> contains one <state name>, then the <state name> represents a State-node. For each State-node,
the Save-signalset is represented by the <save area> and any implicit signal saves. For each State-node, the Input-node-
set is represented by the <input area> and any implicit input signals. For each State-node, a Spontaneous-transition is
represented by a <spontaneous transition area>.

A <state name> may appear in more than one <state area> of a body.

78 ITU-T Rec. Z.100 (11/2007)

The <state name>s in an <asterisk state list> must be distinct and must be contained in other <state list>s in the
enclosing body or in the body of a supertype.

A <composite state item> or <typebased composite state> shall only contain <actual parameters> if it is in a
<state area> that coincides with a <nextstate area>. In this case the <state area> must only contain one <composite state
name> and, optionally, <actual parameters>.

The <solid association symbol>s originating from a <state symbol> may have a common originating path.

<connect association area> is only allowed for a <state area> with <state list> that contains a <composite state item>.

Semantics

A state represents either a basic state or a composite state application.

The semantics for composite state application is given in 11.11.

A basic state represents a particular condition in which the state machine of an agent may consume a signal instance. If
a signal instance is consumed, the associated transition is interpreted. A transition may also be interpreted as the result
of a continuous signal or a spontaneous transition.

For each state, the Save-signals, Input-nodes, Spontaneous-signals, and Continuous-signals are interpreted in the
following steps. Each time the steps are repeated, the set of signals considered is updated to the signals on the input
port; otherwise, the same set is considered in each step.
a) If the input port contains a signal matching a priority input of the current state, the first such signal is

consumed (see 11.4); otherwise
b) in the order of the signals on the input port:

1) the Provided-expressions of the Input-node corresponding to the current signal are interpreted in
arbitrary order, if any;

2) if the current signal is enabled, this signal is consumed (see 11.6); otherwise
3) the next signal on the input port is selected.

c) If no enabled signal was found, in priority order of the Continuous-signals, if any, with Continuous-signals of
equal priority being considered in an arbitrary order and no priority being treated as the lowest priority:
1) the Continuous-expression contained in the current Continuous-signal is interpreted;
2) if the current continuous signal is enabled, this signal is consumed (see 11.5); otherwise
3) the next continuous signal is selected.

d) If no enabled signal was found, as soon as the signals on the input port differ from the set of signals already
considered, or if there is an Input-node with a Provided-expression that could have changed, or Continuous-
expression that could have changed, these steps are repeated. A Provided-expression or Continuous-
expression can change only if it contains a NOW-expression, Timer-active-expression, Any-expression, or
Variable-access to a variable defined in an enclosing process that is changed by assignment in another agent
instance or another state partition.

At any time in a state which contains Spontaneous-transitions, the state machine may interpret the Provided-expression
of a Spontaneous-transition and subsequently, if the Spontaneous-transition was enabled, the Transition of one of the
Spontaneous-transitions (see 11.9), or the Transition of one of the Spontaneous-transitions, if there was no Provided-
expression.

Model

When the <state list> of a <state area> contains more than one <state name> item, a copy of that <state area> is created
for each such <state name>. Then the <state area> is replaced by these copies.

When several <state area>s contain the same <state name>, these <state area>s are combined into one <state area>
having that <state name>.

A <state area> with an <asterisk state list> is transformed to a set of <state area>s, one for each <state name> of the
body in question, except for those <state name>s and <composite state name>s contained in the <asterisk state list>.

11.3 Input
Abstract grammar

Input-node :: [PRIORITY]
 Signal-identifier

 ITU-T Rec. Z.100 (11/2007) 79

 [Variable-identifier]*
 [Provided-expression]
 [On-exception]
 Transition
Variable-identifier = Identifier

The length of the list of optional Variable-identifiers must be the same as the number of Sort-reference-identifiers in the
Signal-definition denoted by the Signal-identifier.

The sorts of the variables must correspond by position to the sorts of the data items that can be carried by the signal.

Concrete grammar

<input area> ::=
 <input symbol> contains { [<virtuality>] <input list> }
 [is connected to <on exception association area>]
 { is connected to <enabling condition association area>
 | is followed by <transition area> }

The <enabling condition association area> defines the <transition area> in the case of an enabling condition.

<input symbol> ::=
 <plain input symbol>
 | <internal input symbol>

<plain input symbol> ::=

<internal input symbol> ::=

<input list> ::=
 <stimulus> { , <stimulus> }*
 | <asterisk input list>

<stimulus> ::=
 <signal list item>
 [([<variable>] { , [<variable>] }*) | <remote procedure reject>]

<remote procedure reject> ::=
 raise <exception raise>

<asterisk input list> ::=
 <asterisk>

An <input area> whose <input list> contains one <stimulus> corresponds to one Input-node. Each of the
<signal identifier>s or <timer identifier>s contained in an <input symbol> gives the name of one of the Input-nodes that
this <input symbol> represents.
NOTE − There is no difference in meaning between a <plain input symbol> and an <internal input symbol>.

A <state area> may contain at most one <asterisk input list>. A <state area> must not contain both <asterisk input list>
and <asterisk save list>.

A <remote procedure reject> may be specified only if the <signal list item> denotes a <remote procedure identifier>.
The <exception identifier> in the <remote procedure reject> must be mentioned in the <remote procedure definition>.

A <signal list item> must not denote a <remote variable identifier> and if it denotes a <remote procedure identifier> or
a <signal list identifier>, the <stimulus> parameters (including the parenthesis) must be omitted.

When the <input list> contains one <stimulus>, then the <input area> represents an Input-node. In the Abstract
grammar, timer signals (<timer identifier>) are also represented by Signal-identifier. Timer signals and ordinary signals
are distinguished only where appropriate, as in many respects they have similar properties. The exact properties of timer
signals are defined in 11.15.

Commas may be omitted after the last <variable> in <stimulus>.

80 ITU-T Rec. Z.100 (11/2007)

In the Abstract Grammar, the <remote procedure identifier>s are also represented as Signal-identifiers.

Semantics

An input allows the consumption of the specified input signal instance. The consumption of the input signal makes the
information conveyed by the signal available to the agent. The variables associated with the input are assigned the data
items conveyed by the consumed signal.

The data items are assigned to the variables from left to right. If there is no variable associated with the input for a sort
specified in the signal, the corresponding data item is discarded. If there is no data item associated with a sort specified
in the signal, the corresponding variable becomes "undefined".

The sender of the consuming agent (see clause 9, Model) is given the pid of the originating agent, as carried by the
signal instance.

Signal instances flowing from the environment to an agent instance within the system will always carry a pid different
from any in the system.

Model

A <stimulus> whose <signal list item> is a <signal list identifier> is derived syntax for a list of <stimulus>s without
parameters and is inserted in the enclosing <input list> or <priority input list>. In this list, there is a one-to-one
correspondence between the <stimulus>s and the members of the signal list.

When the <stimulus> list of an <input area> contains more than one <stimulus>, a copy of the <input area> is created
for each such <stimulus>. Then the <input area> is replaced by these copies.

When one or more of the <variable>s of a <stimulus> are <indexed variable>s or <field variable>s, then all the
<variable>s are replaced by unique, new, implicitly declared <variable identifier>s. Directly following the <input area>,
a <task area> is inserted which in its <task body> contains an <assignment> for each of the <variable>s, assigning the
result of the corresponding new variable to the <variable>. The results will be assigned in the order from left to right of
the list of <variable>s. This <task area> becomes the first <action area> in the <transition area>.

An <asterisk input list> is transformed to a list of <input area>s, one for each member of the complete valid input signal
set of the enclosing <agent diagram>, except for <signal identifier>s of implicit input signals introduced by the
concepts in 10.5, 10.6, 11.4, 11.5 and 11.6 and for <signal identifier>s contained in the other <input list>s and
<save list>s of the <state area>.

An <input area> that contains <virtuality> is called a virtual input transition. Virtual input transition is further described
in 8.3.3.

11.4 Priority Input
In some cases, it is convenient to express that reception of a signal takes priority over reception of other signals. This
can be expressed by means of priority input.

Concrete grammar

<priority input association area> ::=
 <solid association symbol> is connected to <priority input area>

<priority input area> ::=
 <priority input symbol> contains { [<virtuality>] <priority input list> }
 [is connected to <on exception association area>]
 is followed by <transition area>

<priority input symbol> ::=

<priority input list> ::=
 <stimulus> {, <stimulus>}*

A <priority input association area> represents an Input-node with PRIORITY.

Semantics

If an Input-node of a state has PRIORITY, the signal is a priority signal and will be consumed before any other signals
are consumed, provided it has an enabled transition.

 ITU-T Rec. Z.100 (11/2007) 81

Model

A <priority input area> which contains <virtuality> is called a virtual priority input. Virtual priority input is further
described in 8.3.3.

11.5 Continuous signal
In describing systems, the situation may arise where a transition should be interpreted when a certain condition is
fulfilled. A continuous signal interprets a Boolean expression and the associated transition is interpreted when the
expression returns the predefined Boolean value true.

Abstract grammar

Continuous-signal :: [On-exception]
 Continuous-expression
 [Priority-name]
 Transition
Continuous-expression = Boolean-expression
Priority-name = Nat

Concrete grammar

<continuous signal association area> ::=
 <solid association symbol> is connected to <continuous signal area>

<continuous signal area> ::=
 <enabling condition symbol>
 contains {
 [<virtuality>] <continuous expression>
 [[<end>] priority <priority name>] }
 [is connected to <on exception association area>]
 is followed by <transition area>

<continuous expression> ::=
 <Boolean expression>

<priority name> ::=
 <Natural literal name>

Semantics

The Continuous-expression is interpreted as part of the state to which its Continuous-signal is associated (see 11.2). If
the Continuous-expression returns the predefined Boolean value true, the continuous signal is enabled.

The continuous signal having the lowest value for Priority-name has the highest priority.

Model

A <continuous signal area> that contains <virtuality> is called a virtual continuous signal. Virtual continuous transition
is further described in 8.3.3.

11.6 Enabling condition
An enabling condition makes it possible to impose an additional condition on the consumption of a signal, beyond its
reception, or to impose a condition on a spontaneous transition.

Abstract grammar

Provided-expression = Boolean-expression

Concrete grammar

<enabling condition association area> ::=
 <solid association symbol> is connected to <enabling condition area>

<enabling condition area> ::=
 <enabling condition symbol> contains <provided expression>
 is followed by <transition area>

82 ITU-T Rec. Z.100 (11/2007)

The <transition area> corresponds to the Transition of the Input-node or Spontaneous-transition for the Provided-
expression. The syntax appears here to get the correct graphical production of a flow line from the <enabling condition
symbol> to the transition.

<enabling condition symbol> ::=

<provided expression> ::=
 <Boolean expression>

When the <provided expression> contains an <imperative expression>, then Provided-expression is a Value-returning-
call-node containing only the Procedure-identifier of the procedure implicitly defined by the Model below. Otherwise,
Provided-expression is represented by <provided expression>.

Semantics

The Provided-expression of an Input-node is interpreted as part of the state this Input-node is attached to (see 11.2).

A signal in the input port is enabled, if all the Provided-expressions of an Input-node return the predefined Boolean
value true, or if the Input-node does not have a Provided-expression. The Provided-expression of a Spontaneous-
transition can be interpreted at any time while the agent is in the state.

Model

When the <provided expression> contains an <imperative expression>, a procedure with an anonymous name is
implicitly defined. This procedure returns a Boolean type and contains a single <return area> with the <provided
expression> as its <return body>.
NOTE − The <Boolean expression> may be further transformed according to the model of <import expression>.

11.7 Save
A save specifies a set of signal identifiers and remote procedure identifiers whose instances are not relevant to the agent
in the state to which the save is attached, and which need to be saved for future processing.

Abstract grammar

Save-signalset = Signal-identifier-set

Concrete grammar

<save area> ::=
 <save symbol> contains { [<virtuality>] <save list> }

<save symbol> ::=

<save list> ::=
 <signal list>
 | <asterisk save list>

<asterisk save list> ::=
 <asterisk>

A <save list> represents the Signal-identifier-set.

A <state area> may contain at most one <asterisk save list>. A <state area> must not contain both <asterisk input list>
and <asterisk save list>.

Semantics

A signal in a Save-signalset is not enabled.

The saved signals are retained in the input port in the order of their arrival.

The effect of the save is valid only for the state to which the save is attached. In the following state, signal instances that
have been "saved" are treated as normal signal instances.

 ITU-T Rec. Z.100 (11/2007) 83

Model

An <asterisk save list> is transformed to a list of <stimulus>s containing the complete valid input signal set of the
enclosing <agent diagram>, except for <signal identifier>s of implicit input signals introduced by the concepts
in 10.5, 10.6, 11.4, 11.5 and 11.6 and for <signal identifier>s contained in the other <input list>s and <save list>s of the
<state area>.

A <save area> or <save area> which contains <virtuality> is called a virtual save. Virtual save is further described
in 8.3.3.

11.8 Implicit transition
Any signal not handled by an explicit input or save is consumed by an implicit transition (a transition of an implicit
<input area> - see below) without a change of state.

Model
A <state area> has an implicit <input area> for <signal identifier>s contained in the complete valid input signal set of
an <agent diagram> that are not (explicitly or via <asterisk input list> or <asterisk save list>) in the set of contained in
the <input list>s, <priority input list>s and the <save list> of the <state area>.
This implicit <input area> has a <transition area> that only contains a <nextstate area> leading back to the same <state
area>.

11.9 Spontaneous transition
A spontaneous transition specifies a state transition without any signal reception.

Abstract grammar

Spontaneous-transition :: [On-exception]
 [Provided-expression]
 Transition

Concrete grammar

<spontaneous transition area> ::=
 <input symbol> contains { [<virtuality>] <spontaneous designator> }
 [is connected to <on exception association area>]
 { is connected to <enabling condition association area>
 | is followed by <transition area> }

The <enabling condition association area> defines the <transition area> in the case of an enabling condition.

<spontaneous designator> ::=
 none

Semantics

A spontaneous transition allows the activation of a transition without any stimuli being presented to the agent. The
activation of a spontaneous transition is independent of the presence of signal instances in the input port of the agent.
No priority exists between transitions activated by signal reception and spontaneous transitions.

After activation of a spontaneous transition, the sender expression of the agent returns self.

Model

A <spontaneous transition area> that contains <virtuality> is called a virtual spontaneous transition. Virtual
spontaneous transition is further described in 8.3.3.

11.10 Label
Abstract grammar
Free-action :: Connector-name
 Transition
Connector-name = Name

Concrete grammar

84 ITU-T Rec. Z.100 (11/2007)

<in connector area> ::=
 <in connector symbol> contains <connector name>
 is followed by <transition area>

<in connector symbol> ::=

The term "body" is used to refer to a state machine graph, possibly after transformation from a <statement list> and
after transformation from a type. A body therefore refers to the <statement list> in <procedure definition> and
<operation definition>, <agent body area>, <procedure body area>, <operation body area>, or <composite state body
area> and <state aggregation body area>.

All the <connector name>s defined in a body must be distinct.

A label <in connector area> is the entry point of a transfer of control from the corresponding joins with the same
<connector name>s in the same body.

Transfer of control is only allowed to labels within the same body. It is permissible to have a join from the body of the
specialization to a connector defined in the supertype.

An <in connector area> represents the continuation of a <flow line symbol> from a corresponding <out connector area>
with the same <connector name> in the same <agent body area> or <procedure body area>.

Semantics

A Free-action defines the target of a Join-node.

11.11 State machine and Composite state
A composite state is a state that may either consist of sequentially interpreted substates (with associated transitions), or
of an aggregation of substates interpreted in an interleaving mode. A substate is a state, so a substate may in turn be a
composite state.

The properties of a composite state (substates, transitions, variables, and procedures) are defined by a <composite state
area> or a <composite state type diagram>, and by the specification of a <state area> with <composite state name>
within a state machine or a composite state. Transitions associated with a composite state apply to all substates of the
composite state.

Abstract grammar

Composite-state-formal-parameter = Agent-formal-parameter
State-entry-point-definition = Name
State-exit-point-definition = Name
Entry-procedure-definition = Procedure-definition
Exit-procedure-definition = Procedure-definition
Named-start-node :: State-entry-point-name
 [On-exception]
 Transition
State-entry-point-name = Name

A procedure with states is a procedure that contains a state (explicit or implicit) or calls a procedure with states.

Entry-procedure-definition of a Composite-state-graph or State-aggregation-node is a procedure without parameters
explicitly defined in the Composite-state-graph or State-aggregation-node respectively with the name entry. An entry
procedure shall not be a procedure with states.

Exit-procedure-definition of a Composite-state-graph or State-aggregation-node is a procedure without parameters
explicitly defined in the Composite-state-graph or State-aggregation-node respectively with the name exit. An exit
procedure shall not be a procedure with states.

Concrete grammar

<composite state area> ::=
 <composite state graph area> | <state aggregation area>

Semantics

A composite state is created when the enclosing entity is created, and deleted when the enclosing entity is deleted.

 ITU-T Rec. Z.100 (11/2007) 85

Local variables will be created and deleted when the composite state is created and deleted respectively. If a
<variable definition> contains a <constant expression>, the <variable definition> is assigned the result of the
<constant expression> at creation time. If no <constant expression> is present, the result of the <variable definition> is
undefined.

Composite-state-formal-parameters are local variables that are created when the composite state is created. A variable
is assigned the result of the expression given by the corresponding actual parameter if present in the Nextstate-node
when the composite state is entered. Otherwise, the result of the variable becomes undefined.

A transition emanating from a substate has higher priority than a conflicting transition emanating from any of the
containing states. Conflicting transitions are transitions triggered by the same input, priority input, save or continuous
signal.

Entry-procedure-definition and Exit-procedure-definition, if defined, are called implicitly when the state is entered and
exited, respectively. It is not mandatory to define either or both procedures. The entry procedure is called before the
start transition is invoked, or if the state is re-entered as a result of interpreting a Nextstate-node with HISTORY. The
exit procedure is invoked after a Return-node of the Composite-state-graph is interpreted and before a transition
attached directly to the State-node is interpreted, if there are such transitions. When an exception is raised in a
composite state, the exit procedure is not invoked.

Model

A <composite state area> has an implied anonymous composite state type that defines the properties of the composite
state.

A <composite state area> that is a specialization is shorthand for defining an implicit composite state type and one
typebased composite state of this type.

11.11.1 Composite State Graph
In a composite state graph, the transitions are interpreted sequentially.

Abstract grammar

Composite-state-graph :: State-transition-graph
 [Entry-procedure-definition]
 [Exit-procedure-definition]
 Named-start-node-set

State-transition-graph :: [On-exception]
 [State-start-node]
 State-node-set
 Free-action-set
 Exception-handler-node-set

In an SDL-specification, all potentially instantiated agents must have a State-start-node. There must be exactly one
unlabelled State-start-node in an agent.

Concrete grammar

<composite state graph area> ::=
 <frame symbol> contains {
 { <composite state heading> <composite state structure area> }
 is connected to {<state connection point area>* } set
 is connected to { {<gate on diagram> | <external channel identifiers>}* }set
 [is associated with <package use area>]

<composite state heading> ::=
 state [<qualifier>] < state name>
 [<agent formal parameters>] [<specialization>]

<composite state structure area> ::=
 { <composite state text area>*
 <entity in composite state area>*
 { <composite state body area> | <state aggregation body area> } }set

Composite-state-graph represents <composite state body area>.

86 ITU-T Rec. Z.100 (11/2007)

A <composite state structure area> shall contain a <state aggregation body area> only if it is directly contained in a
<state aggregation area> or a <composite state type diagram> with a <state aggregation type heading>; otherwise it
contains a <composite state body area>.

<composite state text area> ::=
 <text symbol> contains
 { <valid input signal set>
 | <variable definition>
 | <data definition>
 | <data type reference>
 | <procedure definition>
 | <procedure reference>
 | <exception definition>
 | <select definition>
 | <macro definition>}*

<entity in composite state area> ::=
 <procedure area>
 | <data type reference area>
 | <composite state area>
 | <composite state type diagram>
 | <composite state type reference area>

<composite state body area> ::=
 { [<on exception association area>] <start area>*
 { <state area> | <exception handler area> | <in connector area> }* } set

There shall be at most one <valid input signal set> in the <composite state text area>s of a <composite state graph area>
(or the corresponding composite state type definition). A <valid input signal set> must not be contained in a
<composite state text area> of a <state aggregation area> (or the corresponding composite state type definition).

The <package use area> must be placed on the top of the <frame symbol>.

At most, one of the <start area>s shall be unlabelled. Each additional labelled entry and exit point must be defined by a
corresponding <state connection point area>. Each additional labelled <start area> shall contain a different <state entry
point name>.

A <start area> with a <state entry point name> (a labelled start) in a <composite state body area> shall refer only to
<state entry point>s of the <composite state graph area> directly enclosing the <composite state body area>. A
<return area> with a <state exit point> (a labelled return) in a <composite state body area> shall refer only to
<state exit point>s in of the <composite state graph area> directly enclosing the <composite state body area>.

If a <composite state body area> contains at least one <state area> different from asterisk state, a <start area> must be
present.

<variable definition> in a <composite state text area> cannot contain exported <variable name>s, if the
<composite state area> is enclosed by a <procedure diagram>.

A <channel definition area> may only be connected to a <composite state graph area> where the
<composite state graph area> is the <state partition area> representing the state machine of an agent.

Semantics

If a Composite-state-graph contains at least one State-start-node but no State-nodes, the Composite-state-graph shall be
interpreted as an encapsulated part of a transition.

The unlabelled State-start-node of the Composite-state-graph is interpreted as the default entry point of the composite
state. It is interpreted when the Nextstate-node has no State-entry-point. Named-start-nodes are interpreted as additional
entry points of the composite state. The State-entry-point of a Nextstate-node defines which named start transition is
interpreted.

An Action-return-node in a composite state is interpreted as the default exit point of the composite state. Interpretation
of an Action-return-node triggers the Connect-node without a Name in the enclosing entity. Additional Named-return-
nodes shall be interpreted as additional exit points of the composite state. Interpretation of a Named-return-node will
trigger an exit transition in the enclosing entity contained in a Connect-node with the same Name.

The nodes of the state graph are interpreted in the same manner as the equivalent nodes of an agent or procedure graph.
That is, the state graph has the same complete valid input signal set as the enclosing agent, and the same input port as
the instance of the enclosing agent.

 ITU-T Rec. Z.100 (11/2007) 87

Model
NOTE − It is possible to specify a <composite state area> that only consists of transitions associated with an asterisk
state, without <start area> and without any substates. These transitions may either be terminated by a <dash nextstate>
or by a <return area>. These transitions apply when the agent or procedure is in the composite state. The nextstate of
such a transition terminated by <dash nextstate> is the composite state; however, the Exit-procedure-definition and
Entry-procedure-definition of the composite state are not called.

If the <composite state area> consists of no <state area>s with <state name>s but only a <state area> with <asterisk>,
the asterisk state is transformed into a <state area> with an anonymous <state name> and a <start area> leading to this
<state area>.

11.11.2 State aggregation
A state aggregation is a partitioning of a composite state. It consists of multiple composite states, which have an
interpretation of alternating transitions. At any given time, each partition of a state aggregation is in one of the states of
that partition, or (for one of the partitions only) in a transition, or has completed and is waiting for other partitions to
complete. Each transition runs to completion.

Abstract grammar

State-aggregation-node :: State-partition-set
 [Entry-procedure-definition]
 [Exit-procedure-definition]
State-partition :: Name
 Composite-state-type-identifier
 Connection-definition-set
Connection-definition :: Entry-connection-definition | Exit-connection-definition
Entry-connection-definition :: Outer-entry-point Inner-entry-point
Outer-entry-point :: State-entry-point-name | DEFAULT
Inner-entry-point :: State-entry-point-name | DEFAULT
Exit-connection-definition :: Outer-exit-point Inner-exit-point
Outer-exit-point :: State-exit-point-name | DEFAULT
Inner-exit-point :: State-exit-point-name | DEFAULT

The State-entry-point-name in the Outer-entry-point must denote a State-entry-point-definition of the Composite-state-
type-definition where the State-aggregation-node occurs. The State-entry-point-name of the Inner-entry-point must
denote a State-entry-point-definition of the composite state in the State-partition. Likewise, the State-exit-points must
denote exit points in the inner and outer composite state, respectively. DEFAULT indicates the unlabelled entry and
exit points.

For each State-partition, each of the entry points of the container state shall appear in exactly one Connection-
definition. For each State-partition, each of the exit points of the State-partition shall appear in exactly one Connection-
definition.

The input signal sets of the State-partitions within a composite state must be disjoint. The input signal set of a State-
partition is defined as the union of all signals appearing in an Input-node or the Save-signalset inside the composite
state type, including nested states, and procedures mentioned in Call-nodes.

Concrete grammar

<state aggregation area> ::=
 <frame symbol> contains {
 <state aggregation heading>
 <composite state structure area> }
 is connected to {<state connection point area>* } set
 is connected to { {<gate on diagram> | <external channel identifiers>}* }set
 [is associated with <package use area>]

<state aggregation heading> ::=
 state aggregation [<qualifier>] < state name>
 [<agent formal parameters>][<specialization>]

<state aggregation body area> ::=
 { { <state partition area> | <state partition connection area>}* }set

88 ITU-T Rec. Z.100 (11/2007)

<state partition area> ::=
 <composite state reference area>
 | <composite state area>
 | <typebased state partition definition>
 | <inherited state partition definition>

<typebased state partition definition> ::=
 <state symbol> contains { <typebased state partition heading> { <gate>*}set }

<typebased state partition heading> ::=
 <state name> <colon> <composite state type expression>

<inherited state partition definition> ::=
 <dashed state symbol> contains { <composite state identifier> { <gate>*}set }

<dashed state symbol> ::=

<state partition connection area> ::=
 <solid association symbol>
 is attached to <frame symbol>
 is attached to <state partition area>
 is connected to { <outer graphical point> <inner graphical point> }

The <solid association symbol> is attached at one end to the <frame symbol> of the enclosing diagram and the
<outer graphical point> is placed nearby outside this <frame symbol> of the enclosing diagram. The <solid association
symbol> is attached at the other end to a <state partition area> and the <inner graphical point> is placed nearby. The
<outer graphical point> shall refer only to names defined as state entry or exit points of the enclosing diagram. The
<inner graphical point> shall refer only to names defined as state entry or exit points of the <state partition area>.

<outer graphical point> ::=
 { <state entry points> | <state exit points> }

<inner graphical point> ::=
 { <state entry points> | <state exit points> }

The <gate>s contained in <state symbol>s are placed near the border of the symbols and associated with the connection
point to channels. They are placed close to the endpoint of the channels at the <state symbol>.

A <gate> is allowed in a <state symbol> of a <typebased state partition definition> or <composite state reference area>
of a <state partition area> only if the <state partition area> represents the state machine of an agent or agent type.

Semantics

If a Composite-state-type-definition contains a State aggregation-node, the composite states of each State-partition are
interpreted in an interleaving manner at the transition level. Each transition runs to completion before another transition
is interpreted. The creation of a composite state with state partition implies the creation of each contained State-
partition and its connections. If the Composite-state-type-definition of a State-partition has Composite-state-formal-
parameters, these formal parameters are undefined when the state is entered.

The unlabelled State-start-nodes of the partitions are interpreted in any order as the default entry point of the composite
state. They are interpreted when the Nextstate-node has no State-entry-point. Named-start-nodes are interpreted as
additional entry points of the composite state. If the composite state is entered through the Outer-entry-point of Entry-
connection-definitions, the start transition of the partition with the corresponding Inner-entry-point is interpreted. The
state partitions are entered in an undetermined order, after the entry procedure of the state aggregation is completed.

When each and every partition has interpreted (in any order) an Action-Return-node or Named-return-node, the
partitions exit the composite state. The Exit-connection-definitions associate the exit points from the partitions with the
exit points of the composite state. If different partitions exit the composite state through different exit points, the exit
point of the composite state is chosen in a non-deterministic way. The exit procedure of the state aggregation is
interpreted after all state partitions have been completed. Signals in the input set of a partition that completed its return
node are saved until all other partitions have been completed.

The nodes of the state partition graphs are interpreted in the same manner as the equivalent nodes of an agent, or
procedure graph, with the only difference that they have disjoint input signal sets. The state partitions share the same
input port as the enclosing agent.

 ITU-T Rec. Z.100 (11/2007) 89

An input transition associated with a composite state application containing a State-aggregation-node applies to all
states of all state partitions, and it implies a default termination of all these. If such a transition terminates with a
Nextstate-node with HISTORY, all partitions re-enter into their respective substates.

Model

If an entry point of the state aggregation is not connected to any entry point of a state partition, an implicit connection to
the unlabelled entry is added. Likewise, if an exit point of a partition is not connected to any exit point of the state
aggregation, a connection to the unlabelled exit is added.

If there are signals in the complete valid input set of an agent that are not consumed by any state partition of a certain
composite state, an additional implicit state partition is added to that composite state. This implicit partition has only an
unlabelled start transition and a single state containing all implicit transitions (including those for exported procedures
and exported variables). When one of the other partitions exits, an implicit signal is sent to the agent, which is
consumed by the implicit partition. After the implicit partition has consumed all the implicit signals, it exits through a
State-return-node.

11.11.3 State connection point
State connection points are defined in composite states, both directly specified composite states and state types, and the
state connection points represent connection points for entry and exit of a composite state.

Concrete grammar

<state connection point area> ::=
 <state connection point symbol>
 is associated with { <state entry points> | <state exit points> }

<state connection point symbol> ::=
 <state connection point symbol 1> | <state connection point symbol 2>

<state connection point symbol 1> ::=

<state connection point symbol 2> ::=

<state entry points> ::=
 <state entry point>
 | (<state entry point> { , <state entry point> }*)

<state exit points> ::=
 <state exit point>
 | (<state exit point> { , <state exit point> }*)

<state entry point> ::=
 <state entry point name>

<state exit point> ::=
 <state exit point name>

For <state connection point symbol 1>, the <state connection point area> must contain <state entry points>; otherwise
the <state connection point area> must contain <state exit points>.

In <state connection point symbol 1> and <state connection point symbol 2>, the centre of the circle must be placed on
the edge of the <frame symbol> to which it is connected.
NOTE – The reason for the brackets around the state entry or exit points is to make it easy to see the beginning and end
of the list. In the case of a single point the brackets can be omitted because there must be at least one point and this
should be easy to find.

A State-entry-point-definition defines an entry point on a <composite state area>. A State-exit-point-definition defines
an exit point on a <composite state area>.

Each composite state has implicitly defined two anonymous state connection points. These are the default entry and exit
point that correspond to an unlabelled State-start-node and Return-node respectively.

90 ITU-T Rec. Z.100 (11/2007)

11.11.4 Connect
Abstract grammar

Connect-node :: [State-exit-point-name]
 [On-exception]
 Transition
State-exit-point-name = Name

Concrete grammar

<connect association area> ::=
 <solid association symbol> is associated with { [<virtuality>] [<connect list>] }
 [is connected to <on exception association area>]
 is followed by <exit transition area>

<connect list> ::=
 <state exit point list>
 | <asterisk connect list>

<state exit point list> ::=
 { <state exit point> | default } { , { <state exit point> | default}}*

<asterisk connect list> ::=
 <asterisk> [(<state exit point list>)]

<exit transition area> ::=
 <transition area>

A <connect association area> with at most one <state exit point> represents a Connect-node. If no <connect list> is
given, the State-exit-point-name is omitted.

The <connect list> must only refer to visible <state exit point>s.

Semantics

A Connect-node represents an exit point on a composite state. Interpretation is resumed at this point if in the
Composite-state-graph there is interpretation of a Return-node addressing a State-exit-point-definition in the set of
State-exit-point-name as part of the Connect-node.

A Connect-node without a State-exit-point-name corresponds to an unlabelled Return-node in a composite state.

Model

default in a <state exit point list> represents an unlabelled <return area>.

When the <connect list> of a certain <connect association area> contains more than one <state exit point name>, a copy
of the <connect association area> is created for each such <state exit point name>. Then the <connect association area>
is replaced by these copies.

A <connect list> that contains an <asterisk connect list> is transformed into a list of <state exit point>s, one for each
<state exit point> of the <composite state area> in question (including the unlabelled <return area>) except those
mentioned in parentheses after the <asterisk>. The list of <state exit point>s is then transformed as described above.

11.12 Transition

11.12.1 Transition body
Abstract grammar

Transition :: Graph-node*
 { Terminator | Decision-node }
Graph-node :: { Task-node
 | Output-node
 | Create-request-node
 | Call-node
 | Compound-node
 | Set-node
 | Reset-node } [On-exception]

 ITU-T Rec. Z.100 (11/2007) 91

Terminator :: { Nextstate-node
 | Stop-node
 | Return-node
 | Join-node
 | Continue-node
 | Break-node
 | Raise-node } [On-exception]

Concrete grammar

<transition area> ::=
 [<transition string area> is followed by]
 <terminator area>

<terminator area> ::=
 <state area>
 | <nextstate area>
 | <decision area>
 | <stop symbol>
 | <merge area>
 | <out connector area>
 | <return area>
 | <transition option area>
 | <raise area>

<transition string area> ::=
 <action area>
 [is followed by <transition string area>]

<action area> ::=
 <task area>
 | <output area>
 | <create request area>
 | <procedure call area>
 | <remote procedure call area>

A transition consists of a sequence of actions to be performed by the agent.

The <transition area> represents Transition and <transition string area> represents the list of Graph-nodes.

A <transition area> in an <operation body area> shall not contain a <state area> or a <nextstate area>.

Semantics

A transition performs a sequence of actions. During a transition, the data of an agent may be manipulated and signals
may be output. The transition will end with the state machine of the agent entering a state, with a stop, with a return or
with the transfer of control to another transition.

A transition in one process of a block can be interpreted at the same time as a transition in another process of the same
block (provided they are not both enclosed by a process) or of another block. Transitions of processes contained in a
process are interpreted interleaving, that is, only one contained process interprets a transition at a time until it reaches a
nextstate (run-to-completion). A valid model of the interpretation of an SDL system is a complete interleaving of
different processes at the level of all actions that cannot be transformed (by the rules given in the Model sections of this
Recommendation) into other actions, and are not excluded because they are in a transition alternating with a transition
that is being interpreted (see 9.3).

An undefined amount of time may pass while an action is interpreted. It is valid for the time taken to vary each time the
action is interpreted. It is also valid for the time taken to be the same at each interpretation or for it to be zero (that is,
the result of now, see 12.3.4.1, is not changed).

Model

A transition action may be transformed to a list of actions (possibly containing implicit states) according to the
transformation rules for <import expression> (see 10.6) and remote procedure call (see 10.5). To preserve an exception
handler associated with the original action, terminator, or decision, this list of actions is encapsulated in a new,
implicitly defined procedure with an anonymous name, with a single <start area> having the list of actions as its
<transition area>.

92 ITU-T Rec. Z.100 (11/2007)

The old action is replaced by a call to this anonymous procedure. If an exception handler was associated with the
original action, the exception handler is associated with the call to this anonymously defined procedure.

If the transformed construct occurred in a terminator area or decision area, the original terminator area or decision area
is replaced by a call to this anonymous procedure, followed by the new terminator area or decision area. If an exception
handler was associated with the original terminator area or decision area, the exception handler is associated with the
call to this anonymous procedure and with the new terminator area or decision area.

No exception handler is associated with the body of the anonymous procedure or with any part of this body.

11.12.2 Transition terminator

11.12.2.1 Nextstate
Abstract grammar

Nextstate-node = Dash-nextstate | Named-nextstate

Named-nextstate :: State-name
 [Nextstate-parameters]
Nextstate-parameters :: [Expression]*
 [State-entry-point-name]

Dash-nextstate :: [HISTORY]

Nextstate-parameters shall only be present if State-name denotes a composite state.

The State-name specified in a nextstate must be the name of a state within the same State-transition-graph or
Procedure-graph.

Concrete grammar

<nextstate area> ::=
 <state symbol> contains <nextstate body>

<nextstate body>::=
 <state name> [<actual parameters>] [via <state entry point name>]
 | <dash nextstate>

<dash nextstate> ::=
 <hyphen>
 | <history dash nextstate>

<history dash nextstate> ::=
 <history dash sign>

A Nextstate-node with HISTORY represents a <history dash nextstate>.

If a transition is terminated by a <history dash nextstate>, the <state area> must be a <composite state area>.

If <state entry point name> is given, the <nextstate area> must refer to a composite state with the state entry point.

If <actual parameters> is given, the <nextstate area> must refer to a composite state with <agent formal parameters>.

The <transition area> contained in a <start area> must not lead, directly or indirectly, to a <dash nextstate>. The
<transition area> contained in a <start area> or a <handle area> must not lead, directly or indirectly, to a
<history dash nextstate>.

An <on exception association area> within a <start area> or associated to a whole body must not, directly or indirectly
(through <on exception association area>s within <exception handler area>s), lead to an <exception handler area>
containing <dash nextstate>s.

Semantics

A nextstate represents a terminator of a transition. It specifies the state of the agent, procedure, or composite state when
terminating the transition.

An empty Dash-nextstate means that the state is entered again. An empty Dash-nextstate for a composite state implies
that the next state is the composite state.
NOTE − If there is only one state that can lead to the Dash-nextstate, the Dash-nextstate has the same meaning as a
Nextstate-node that has the State-name of this state.

 ITU-T Rec. Z.100 (11/2007) 93

When a Dash-nextstate with HISTORY is interpreted, the next state is the one in which the current transition was
activated. If interpretation re-enters a composite state, its entry procedure is invoked.

If a State-entry-point-name is given, the next state is a composite state, and interpretation continues with the State-start-
node that has the same name in the Composite-state-graph.

11.12.2.2 Join
A join alters the flow in a body by expressing that the next <action area> to be interpreted is the one that contains the
same <connector name>.

Abstract grammar

Join-node :: Connector-name

Concrete grammar

<merge area> ::=
 <merge symbol> is attached to <flow line symbol>

<merge symbol> ::=
 <flow line symbol>

<flow line symbol> ::=

<out connector area> ::=
 <out connector symbol> contains <connector name>

<out connector symbol> ::=
 <in connector symbol>

For each <out connector area> in a body area (<agent body area>, <composite state body area>,
<exception handler body area>, <operation body area> or <procedure body area>), there must be exactly one
<in connector area> in that body area with the same <connector name>.

If a <merge area> is included in a <transition area>, it is equivalent to specifying an <out connector area> in the
<transition area> which contains a unique <connector name> and attaching an <in connector area>, with the same
<connector name> to the <flow line symbol> in the <merge area>.

Semantics

When a Join-node is interpreted, interpretation continues with the Free-action named with Connector-name.

11.12.2.3 Stop
Abstract grammar

Stop-node :: { }

Concrete grammar

<stop symbol> ::=

A <stop symbol> represents a Stop-node.

Semantics

The stop causes the agent interpreting it to perform a stop.

This means that the retained signals in the input port are discarded and the state machine of the agent goes into a
stopping state. When all contained agents have ceased to exist, the agent itself will cease to exist.

The interpretation of a Stop-node in a Procedure-graph or State-transition-graph causes the agent interpreting that
Procedure-graph to stop. Interpretation of the procedure, operation, compound statement, or composite state terminates
and the stop propagates outwards to the caller and is treated as if a Stop-node were interpreted at the place of the
procedure call, operation application, invocation of the compound statement, or entrance to the composite state.
Termination propagates outwards until the containing agent is reached.

94 ITU-T Rec. Z.100 (11/2007)

11.12.2.4 Return
Abstract grammar

Return-node = Action-return-node
 | Value-return-node
 | Named-return-node
Action-return-node :: { }
Value-return-node :: Expression
Named-return-node :: State-exit-point-name

An Action-return-node must only be contained in the Procedure-Graph of a Procedure-definition without Result or a
Composite-state-graph. A Value-return-node must only be contained in the Procedure-Graph of a Procedure-definition
containing Result. A Named-return-node must only be contained in a Composite-state-graph.

The Expression of a Value-return-node must be sort compatible with the sort of the Result of the enclosing Procedure.

Concrete grammar

<return area> ::=
 <return symbol>
 [is connected to <on exception association area>]
 [is associated with <return body>]

<return body> ::=
 <expression>
 | {via <state exit point>}

<return symbol> ::=

<expression> in <return area> is allowed if and only if the enclosing scope is an operator, method, or a procedure that
has a <procedure result>.

<state exit point> is allowed if and only if the enclosing scope is a composite state containing the specified
<state exit point>.

The <expression> in <return area> shall not be omitted if the enclosing scope is an operator or method with an
<operation result> or a value returning procedure with a <procedure result> without a <variable name>.

NOTE – If the <expression> is omitted in an operator or method with an <operation result> or a value returning
procedure with a named <procedure result>, the model in 9.4 adds the procedure result variable as the <expression>.

Semantics

A Return-node in a procedure is interpreted in the following way:
a) All variables created by the interpretation of the Procedure-start-node will cease to exist.
b) The interpretation of the Procedure-graph is completed and the procedure instance ceases to exist.
c) If a Value-return-node is interpreted, the result of Expression is interpreted in the same way as an Expression

assigned to a variable with the sort of the result (see 12.3.3), but without the result being associated with a
variable or a range check taking place; then the object or value result is returned to the calling context.

d) Hereafter, interpretation of the calling context continues at the node following the call.

A Return-node in a composite state results in activation of a Connect-node. For a Named-return-node, interpretation
continues at the Connect-node with the same name. For an Action-return-node, interpretation continues at the Connect-
node without a name.

11.12.2.5 Raise
Abstract grammar

Raise-node :: Exception-identifier
 [Expression]*

The length of the list of optional Expressions must be the same as the number of Sort-reference-identifiers in the
Exception-definition denoted by the Exception-identifier.

 ITU-T Rec. Z.100 (11/2007) 95

Each Expression must have a sort that is compatible with the corresponding (by position) Sort-reference-identifier in
the Exception-definition.

Concrete grammar

<raise area> ::=
 <raise symbol> contains <raise body>

<raise symbol> ::=

<raise body> ::=
 <exception raise>

<exception raise> ::=
 <exception identifier> [<actual parameters>]

A <raise body> represents a Raise-node.

Semantics

Interpretation of a Raise-node creates an exception instance (see 11.16 for the interpretation of an exception instance).
The data items that are conveyed by the exception instance are the results of the actual parameters of the <raise body>.
If an Expression in the list of optional Expressions is omitted (that is, if the corresponding <expression> in
<actual parameters> is omitted), no data item is conveyed with the corresponding place of the exception instance, that
is, the corresponding place is "undefined".

If a syntype is specified in the exception definition, and an expression is specified in the <raise body>, the range check
defined in 12.1.9.5 is applied to the expression.
NOTE – A <raise area> of a remote procedure call is according to the model (of remote procedure calls). The model for
transition terminators in 11.12.1 applies after this transformation.

11.13 Action

11.13.1 Task
Abstract grammar

Task-node = Assignment
 | Assignment-attempt
 | Informal-text

Concrete grammar

<task area> ::=
 { <task symbol> contains <task body> | <start timer area> | <stop timer area> }
 [is connected to <on exception association area>]
 | <macro symbol> contains { <macro name> [<macro call body>] }

<task body> ::=
 <statement list>
 | <informal text>

<task symbol> ::=

<macro symbol> ::=

<start timer area> ::=
 <start timer symbol> contains <set body>

96 ITU-T Rec. Z.100 (11/2007)

<start timer symbol> ::=

<stop timer area> ::=
 <stop timer symbol> contains <reset body>

<stop timer symbol> ::=

The trailing <end> in <statement list> of a <task body> may be omitted.

A <task area> containing any other <statement list> represents a Compound-node. The Connector-name is represented
by a newly created anonymous name. The Variable-definition-set is represented by the list of all <variable definition>s
in <statement list>. The Transition is represented by the <statements> in the <statement list>, or by the <statements> in
the <statement list> followed by a Break-node with Connector-name, if the <statement list> is not terminating
(see 11.14).
NOTE – If the <statement list> contains a single <statement>, in the Compound-node the Variable-definition-set is
empty, there is no Exception-handler-node, and the Init-graph-node and Step-graph-node lists are empty. The
Transition of the Compound-node consists of either the Terminator for the statement (for example for a <stop
statement>) or Graph-node for the <statement> (typically a Task-node that is an Assignment) followed by a Break-
node with the Connector-name for the Compound-node. This is therefore equivalent to replacing the Compound-node
by the Terminator or Graph-node for the <statement>.

Semantics

The interpretation of a Task-node is the interpretation of the Assignment, Assignment-attempt or the interpretation of the
Informal-text.

The interpretation of a Compound-node is given in 11.14.1. The interpretation of Assignment and Assignment-attempt is
given in 12.3.3.

A task area creates its own scope.

Model

If the <statement list> of a <task body> is empty, the <task area> is removed. Any syntactic item leading to such an
empty <task area> shall then lead directly to the item following the <task area>.

A <task area> defined by a <macro symbol> is transformed into a <task area> defined by a <task symbol> containing a
<macro call> with the same <macro name> and <macro call body>, if one was present.

A <start timer area> is transformed into a <task area> defined by a <task symbol> containing a <set statement> with
the same <set body> as the <start timer area>. A <stop timer area> is transformed into a <task area> defined by a
<task symbol> containing a <reset statement> with the same <reset body> as the <stop timer area>.

11.13.2 Create
Abstract grammar

Create-request-node :: { Agent-identifier | THIS }
 [Expression]*

The length of the list of optional Expressions must be the same as the number of Agent-formal-parameters in the Agent-
definition of the Agent-identifier.

Each Expression corresponding by position to an Agent-formal-parameter must have a sort that is compatible with the
sort of the Agent-formal-parameter in the Agent-definition denoted by Agent-identifier.

Concrete grammar

<create request area> ::=
 <create request symbol> contains <create body>
 [is connected to <on exception association area>]

 ITU-T Rec. Z.100 (11/2007) 97

<create request symbol> ::=

<create body> ::=
 { <agent identifier> | <agent type identifier> | this } [<actual parameters>]

<actual parameters> ::=
 (<actual parameter list>)

<actual parameter list> ::=
 [<expression>] { , [<expression>] }*

Commas after the last <expression> in <actual parameter list> may be omitted.

this shall only be specified in an <agent type diagram> and in scopes enclosed by an <agent type diagram>.

A <create request area> represents a Create-request-node.

Semantics

The create action causes the creation of an instance of the set identified by Agent-identifier either inside the agent that
performs the create, or in an agent that contains the agent that performs the create. The parent of the created agents (see
clause 9, Model) has the same pid as returned by self of the creating agent. self of the created agents (see clause 9,
Model) and offspring of the creating agent (see clause 9, Model) have both the same unique, new pid.

When an agent instance is created, it is given an empty input port, variables are created and the actual parameter
expressions are interpreted in the given order, and assigned (as defined in 12.3.3) to the corresponding formal
parameters. If the created agent has contained agent sets, then the initial instances of these sets are created. Then the
agent starts by interpreting the start node in the agent graph, and the start nodes of the initial contained agents are
interpreted in some order, before transitions caused by signals are interpreted.

The created agent is then interpreted asynchronously and concurrently or alternating with other agents depending on the
kind of the containing agent (system, block, process).

If an attempt is made to create more agent instances than specified by the maximum number of instances in the agent
definition, then no new instance is created, the offspring of the creating agent (see clause 9, Model) has the result Null
and interpretation continues.

If an <expression> in <actual parameters> is omitted, the corresponding formal parameter has no data item associated;
that is, it is "undefined".

If the <agent type identifier> is used in a <create body>, then the corresponding agent type may not be defined as
<abstract> or contain formal context parameters.

If both an instance set and an agent type with the same name are defined in a scope unit and a create statement in this
scope unit uses this name, then an instance is created in the instance set and not based on the agent type. Note that it is
possible to create an instance of the agent type by defining an instance set based on the agent type and then creating an
instance in this set.

THIS identifies the Agent-identifier (which may be an anonymous implied identifier) of the set of instances of the agent
in which the create is being interpreted.

Model

If <agent type identifier> is used in a <create request area>, the following models apply:
a) If there is one instance set (explicit or implicit) of the indicated agent type in the agent containing the instance

that performs the create, the <agent type identifier> is derived syntax denoting this instance set.
b) If there is more than one (explicit) instance set, it is determined at interpretation time in which set the instance

will be created. The <create request area> is in this case replaced by a non-deterministic decision using any
followed by one branch for each instance set. In each of the branches, a create request for the corresponding
instance set is inserted.

c) If there is no explicit instance set of the indicated agent type in the containing agent, the
<agent type identifier> in the <create request area> is derived syntax for the implicit instance set in this
context, which has a unique name.

NOTE – A context never has more than one implicit instance set of a given agent type.

98 ITU-T Rec. Z.100 (11/2007)

11.13.3 Procedure call
Abstract grammar

Call-node :: [THIS]
 Procedure-identifier
 [Expression]*

Value-returning-call-node :: [THIS]
 Procedure-identifier
 [Expression]*

The length of the list of optional Expressions must be the same as the number of the Procedure-formal-parameters in
the Procedure-definition denoted by the Procedure-identifier.

Each Expression corresponding by position to an In-parameter must be sort compatible with the sort of the Procedure-
formal-parameter.

Each Expression corresponding by position to an Inout-parameter or Out-parameter must be a Variable-identifier with
the same Sort-reference-identifier as the Procedure-formal-parameter.

Concrete grammar

<procedure call area> ::=
 <procedure call symbol> contains <procedure call body>
 [is connected to <on exception association area>]

<procedure call symbol> ::=

<procedure call body> ::=
 [this] <procedure type expression> [<actual parameters>]

In the following text <procedure identifier> means the <procedure identifier> for the <base type> of the <procedure
type expression>, and if the <procedure type expression> is a <procedure identifier> is simply this
<procedure identifier>.

An <expression> in <actual parameters> corresponding to a formal in/out or out parameter cannot be omitted and must
be a <variable access> or <extended primary>.

The <procedure identifier> must denote a procedure that contains a start transition.

If this is used, <procedure identifier> must denote an enclosing procedure.

A <procedure call area> represents a Call-node. A <value returning procedure call> (see 12.3.5) represents a Value-
returning-call-node.

Semantics

The interpretation of a procedure Call-node or Value-returning-call-node interprets the actual parameter expressions in
the order given. If no exceptions are raised by the parameter interpretation, interpretation is then transferred to the
procedure definition referenced by the Procedure-identifier, and that procedure graph is interpreted (the explanation is
contained in 9.4).

If an <expression> in <actual parameters> is omitted, the corresponding formal parameter has no data item associated;
that is, it is "undefined".

If an argument sort of the Call-node or Value-returning-call-node for an In-parameter or Inout-parameter of the
procedure is a syntype, the range check defined in 12.1.9.5 is applied to the result of the Expression. If the range check
is the predefined Boolean value false at the time of interpretation, then the predefined exception OutOfRange
(see D.3.16) is raised instead of interpreting further actual parameters or the procedure definition.

If OutOfRange is not raised, the interpretation of the transition containing a Call-node continues when the interpretation
of the called procedure is finished.

If OutOfRange is not raised, the interpretation of the transition containing a Value-returning-call-node continues when
the interpretation of the called procedure is finished. The result of the called procedure is returned by the Value-
returning-call-node.

A Value-returning-call-node has a sort, which is the sort of the result obtained by the interpretation of the procedure.

 ITU-T Rec. Z.100 (11/2007) 99

If the result sort of a value returning procedure call is a syntype, the range check defined in 12.1.9.5 is applied to the
result of the procedure call. If the range check is the predefined Boolean value false at the time of interpretation, then
the predefined exception OutOfRange (see D.3.16) is raised.

If THIS is present and the procedure is specialized, the Procedure-identifier refers to the identifier of the specialized
procedure. For a procedure that is not specialized or if THIS is absent, the Procedure-identifier refers to the identifier
of the procedure that is not specialized.

Model

If the <procedure identifier> is not defined within the enclosing agent, the procedure call is transformed into a call of a
local, implicitly created subtype of the procedure.

11.13.4 Output
Abstract grammar

Output-node :: Signal-identifier
 [Expression]*
 [Signal-destination]
 Direct-via
Signal-destination = Expression | Agent-identifier | THIS
Direct-via = { Channel-identifier | Gate-identifier }-set
Channel-identifier = Identifier

The length of the list of optional Expressions must be the same as the number of Sort-reference-identifiers in the
Signal-definition denoted by the Signal-identifier.

Each Expression must be sort compatible with the corresponding (by position) Sort-identifier-reference in the
Signal-definition.

For each Channel-identifier in Direct-via, there must exist zero or more channels such that the channel via this path is
reachable with the Signal-identifier from the agent, and the Channel-path in the direction from the agent must include
Signal-identifier in its set of Signal-identifiers.

For each Gate-identifier in Direct-via, there must exist zero or more channels such that the gate via this path is
reachable with the Signal-identifier from the agent and the Out-signal-identifier-set of the gate must include the Signal-
identifier.

Concrete grammar

<output area> ::=
 <output symbol> contains <output body>
 [is connected to <on exception association area>]

<output symbol> ::=
 <plain output symbol>
 | <internal output symbol>

<plain output symbol> ::=

<internal output symbol>::=

NOTE 1 − There is no difference in meaning between a <plain output symbol> and an <internal output symbol>.

<output body> ::=
 <signal identifier> [<actual parameters>] {, <signal identifier> [<actual parameters>] }*
 <communication constraints>

<destination> ::=
 <pid expression0> | <agent identifier> | this

<via path> ::=
 via { <channel identifier> | <gate identifier> }

100 ITU-T Rec. Z.100 (11/2007)

The <pid expression0> or the <agent identifier> in <destination> represents the Signal-destination. There is a syntactic
ambiguity between <pid expression0> and <agent identifier> in <destination>. If <destination> can be interpreted as a
<pid expression0> without violating any static conditions, it is interpreted as <pid expression0>, otherwise as
<agent identifier>. <agent identifier> must denote an agent, which is reachable from the originating agent.

Signals mentioned in <output body>s of the state machine of an agent type must be in the complete valid input signal
set of the agent type or in the <signal list> of a gate in the direction from the agent type.

The <communication constraints> (see 10.5) in an <output body> shall contain no timer <timer identifier> clause. It
contains at most one to <destination> clause and zero or more <via path>s.

Each <via path> of <communication constraints> represents a Channel-identifier or Gate-identifier in the Direct-via.

this may only be specified in an <agent type diagram> and in scopes enclosed by an <agent type diagram>.

If <destination> is a <pid expression0> with a static sort other than Pid (see 12.1.6), the <signal identifier> must
represent a signal defined or used by the interface that defined the pid sort.

The <gate identifier> in <via path> may be used to identify a gate that is defined using <interface gate definition>.

Semantics

Stating an Agent-identifier in Signal-destination indicates Signal-destination as any existing instance of the set of agent
instances indicated by Agent-identifier. If no instances exist, the signal is discarded.

Stating THIS in a Signal-destination refers to the set of instances of the agent in which the output is being interpreted.

If no Channel-identifier or Gate-identifier is specified in Direct-via and no Signal-destination is specified, any agent for
which there exists a communication path may receive the signal.

If there is a process instance that contains both the sender and the receiver, then the data items conveyed by the signal
instance are the results of the actual parameters of the output. Otherwise, the data items conveyed by the signal instance
are newly created replicates of the results of the actual parameters of the output and share no references with the results
of the actual parameters of the output. When there are cycles of references in the result of the actual parameters, the
conveyed data items will also contain these cycles. Each conveyed data item will be equal to the corresponding actual
parameter of the output.

If an <expression> in <actual parameters> is omitted, no data item is conveyed with the corresponding place of the
signal instance; that is, the corresponding place is "undefined".

The pid of the originating agent is also conveyed by the signal instance.

If a syntype is specified in the signal definition and an expression is specified in the output, then the range check
defined in 12.1.9.5 is applied to the expression.

If <destination> is a <pid expression0> and the static sort of the pid expression is Pid, then the compatibility check for
the dynamic sort of the pid expression (see 12.1.6) is performed for the signal denoted by the Signal-identifier.

The signal instance is then delivered to a communication path able to convey it. The set of communication paths able to
convey the signal instance can be restricted by the <via path>s clause to include at least one of the paths mentioned in
the Direct-via.

If Signal-destination is an Expression, the signal instance is delivered to the agent instance denoted by Expression. If
this instance does not exist or is not reachable from the originating agent, the signal instance is discarded.

If Signal-destination is an Agent-identifier, the signal instance is delivered to an arbitrary instance of the agent instance
set denoted by Agent-identifier. If no such instance exists, the signal instance is discarded.

NOTE 2 − If Signal-destination is Null in an Output-node, the signal instance will be discarded when the Output-node
is interpreted.

If no Signal-destination is specified, the receiver is selected in two steps. First, the signal is sent to an agent instance set,
which can be reached by the communication paths able to convey the signal instance. This agent instance set is
arbitrarily chosen. Second, when the signal instance arrives at the end of the communication path, it is delivered to an
instance of the agent instance set. The instance is arbitrarily selected. If no instance can be selected, the signal instance
is discarded.

When a signal instance is delivered to an instance of an agent instance set and there is an internal communication path
that conveys the signal to the state machine of the agent instance, the signal instance is delivered to that state machine.
Otherwise a communication path within the agent instance able to convey the signal instance is arbitrarily chosen and
the signal instance is delivered to an instance set of a contained agent.

 ITU-T Rec. Z.100 (11/2007) 101

Note that specifying the same Channel-identifier or Gate-identifier in the Direct-via of two Output-nodes does not
automatically mean that the signals are queued in the input port in the same order as the Output-nodes are interpreted.
However, order is preserved if the two signals are conveyed by identical delaying channels, or only conveyed by
channels with no delay.

Model

If several pairs of <signal identifier> and <actual parameters> are specified in an <output body>, this is derived syntax
for specifying a sequence of <output body>s (in <output area>s or <output statement>s, respectively) in the same order
as specified in the original <output body>, each containing a single pair of <signal identifier> and <actual parameters>.
The to <destination> clause and the <via path>s are repeated in each of the <output body>s.

11.13.5 Decision
Abstract grammar

Decision-node :: Decision-question
 [On-exception]
 Decision-answer-set
 [Else-answer]

Decision-question = Expression
 | Informal-text

Decision-answer :: { Range-condition | Informal-text }
 Transition

Else-answer :: Transition

The Constant-expressions of the Range-conditions must be of a compatible sort. If the Decision-question is an
Expression, the Range-condition of the Decision-answers must be sort compatible with the sort of the Decision-
question.

Concrete grammar

<decision area> ::=
 <decision symbol> contains <question>
 [is connected to <on exception association area>]
 is followed by <decision body>

<decision symbol> ::=

<question> ::=
 <expression> | <informal text> | any

<decision body> ::=
 { <answer part>+ [<else part>] } set

<answer part> ::=
 <flow line symbol> is associated with <graphical answer>
 is followed by <transition area>

<graphical answer> ::=
 [<answer>] | ([<answer>])

<answer> ::=
 <range condition> | <informal text>

<else part> ::=
 <flow line symbol> is associated with else
 is followed by <transition area>

The <graphical answer> and else may be placed along the associated <flow line symbol>, or over the
<flow line symbol>.

The <flow line symbol>s originating from a <decision symbol> may have a common originating path.

A <decision area> represents a Decision-node.

102 ITU-T Rec. Z.100 (11/2007)

The <answer> of <graphical answer> must be omitted if and only if the <question> consists of the keyword any. In this
case, no <else part> may be present.

Semantics

A decision transfers the interpretation to the outgoing path, whose Range-condition contains the result given by the
interpretation of the question. The determination of whether the Decision-question is contained in each Decision-
answer is carried out once for each Decision-answer in an arbitrary order until a Range-condition containing the
Decision-question is identified, or until this determination requires interpretation of an operation application that raises
an exception, or an Informal-text is chosen. A set of possible answers to the question is defined, each of them specifying
the set of actions to be interpreted for that path choice.

One of the answers may be the complement of the others. This is achieved by specifying the Else-answer, which
indicates the set of activities to be performed when the result of the expression on which the question is posed is not
covered by the results specified in the other answers.

Whenever the Else-answer is not specified, and the result from the evaluation of the question expression does not match
one of the answers, then the predefined exception NoMatchingAnswer is raised.

There is syntactic ambiguity between <informal text> and <character string> in <question> and <answer>. If the
<question> and all <answer>s are <character string>s, all of these are interpreted as <informal text>. If the <question>
or any <answer> is a <character string> and this does not match the context of the decision, the <character string>
denotes <informal text>.

The context of the decision (that is, the sort) is determined without regard to <answer>s that are <character string>s.

Model

Using only any in a <decision area> is shorthand for using <any expression> in the decision. Assuming that the
<decision body> consists of N <answer part>s, any in <decision area> is then a shorthand for writing
any(data_type_N), where data_type_N is an anonymous syntype defined as:
 syntype data_type_N =
 <<package Predefined>> Integer { constants 1:N; }

The omitted <graphical answer>s are shorthands for writing the literals 1 through N as the <constant> of the
<range condition>s in the N <graphical answer>s.

11.14 Statement list
A statement list can be used in a <task area>, <procedure definition>, or <operation definition> to define variables local
to the statement list and a number of actions to be interpreted. The purpose of a statement list is to allow concise textual
descriptions of algorithms to be combined with the graphical SDL form. The semantics of a statement list are
determined by transformation of the statements according to the models below, so that the statements are effectively
interpreted left to right.

A variable definition statement can introduce variables at the beginning of a <statement list>. In contrast to
<variable definition> in 12.3.1, initialization of variables in this context is not required to be a <constant expression>.

Concrete grammar

<statement list> ::=
 <variable definitions> <statements>

<variable definitions> ::=
 { <variable definition statement> }*

<statements> ::=
 <statement>*

<statement> ::=
 <empty statement>
 | <compound statement>
 | <assignment statement>
 | <output statement>
 | <create statement>
 | <set statement>
 | <reset statement>
 | <export statement>
 | <call statement>
 | <expression statement>

 ITU-T Rec. Z.100 (11/2007) 103

 | <if statement>
 | <decision statement>
 | <loop statement>
 | <terminating statement>
 | <labelled statement>
 | <exception statement>

<terminating statement> ::=
 <return statement>
 | <stop statement>
 | <break statement>
 | <loop break statement>
 | <loop continue statement>
 | <raise statement>

A <loop break statement> and <loop continue statement> may only occur within a <loop statement>.

A <terminating statement> may only occur as the last <statement> in <statements>. If the last <statement> in
<statement list> is a <terminating statement>, the <statement list> is terminating.

<variable definition statement> ::=
 dcl <local variables of sort> { , <local variables of sort> }* <end>

<local variables of sort> ::=
 <variable name> { , <variable name>}* <sort> [<is assigned sign> <expression>]

A <statement list> represents a list of Graph-nodes.

Model

If the <statement list> contains <variable definitions>, the following is performed for each
<variable definition statement>. A new <variable name> is created for each <variable name> in the
<variable definition statement>. Each occurrence of <variable name> in the following <variable definition statement>s
and within <statements> is replaced by the corresponding newly created <variable name>.

For each <variable definition statement>, a <variable definition> is formed from the <variable definition statement> by
omitting the initializing <expression> (if present) and inserted as a <variable definition statement> in place of the
original <variable definition statement>. If an initializing <expression> is present, an <assignment statement> is
constructed for each <variable name> mentioned in the <local variables of sort> in the order of their occurrence, where
<variable name> is given the result of <expression>. These <assignment statement>s are inserted at the front of
<statements> in the order of their occurrence.
NOTE − If the <statement list> is empty, it will be represented by a Break-node as explicated in 9.4 and 11.14.1,
Concrete grammar.

11.14.1 Compound statement
Multiple statements may be grouped into a single statement.

Abstract grammar

Compound-node :: Connector-name
 Variable-definition-set
 [Exception-handler-node]
 Init-graph-node*
 Transition
 Step-graph-node*
Init-graph-node = Graph-node
Step-graph-node = Graph-node
Continue-node :: Connector-name
Break-node :: Connector-name

104 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

<compound statement> ::=
 [<comment body>] <left curly bracket> <statement list> <right curly bracket>

The <compound statement> represents a Compound-node. The Connector-name is represented by a newly created
anonymous name. The Variable-definition-set is represented by the list of all <variable definition>s in <statement list>.
The Transition is represented by the transform of the <statements> in <statement list>, or by the transform of
<statements> in <statement list> followed by a Break-node with Connector-name, if the <statement list> is not
terminating.

Semantics

A <compound statement> creates its own scope.

The interpretation of a Compound-node proceeds as follows:
a) A local variable is created for each Variable-definition in the Variable-definition-set.
b) The list of Init-graph-nodes is interpreted.
c) The Transition is interpreted.
d) When a Continue-node with a Connector-name matching Connector-name is interpreted, the list of Step-graph-

nodes is interpreted and further interpretation continues at step (c).
e) When the interpretation of the Compound-node terminates, all variables created by the interpretation of the

Compound-node will cease to exist. Interpretation of a Compound-node terminates:
i) when a Break-node is interpreted; or
ii) when a Continue-node with a Connector-name different from the Connector-name in Compound-node is

interpreted; or
iii) when a Return-node is interpreted; or
iv) when an exception instance is created that is not handled within the Transition of the Compound-node.

f) Hereafter, interpretation continues as follows:
i) If the interpretation of the Compound-node terminated due to the interpretation of a Break-node with a

Connector-name matching Connector-name, then interpretation continues at the node following the
Compound-node; otherwise

ii) If the interpretation of the Compound-node terminated due to the interpretation of a Break-node,
Continue-node or Return-node, then the interpretation continues with interpretation of the Break-node,
Continue-node or Return-node, respectively, at the point of invocation of the Compound-node; otherwise

iii) If the interpretation of the Compound-node terminated due to the creation of an exception instance, the
interpretation continues as described in 11.16.

11.14.2 Transition actions and terminators as statements
Within a statement list, an assignment statement is not preceded by the task keyword, and a procedure call does not
need the call keyword. Constructs similar to those in <action area>s (see 11.12.1) as well as some of the constructs in
<terminator area> (see 11.12.1) can be used as <statement>s in a <statement list>.

Concrete grammar

<assignment statement> ::=
 <assignment> <end>

<output statement> ::=
 output <output body> <end>

<create statement> ::=
 create <create body> <end>

<set statement> ::=
 set <set body> <end>

<reset statement> ::=
 reset <reset body> <end>

<export statement> ::=
 export <export body> <end>

 ITU-T Rec. Z.100 (11/2007) 105

<return statement> ::=
 return [<return body>] <end>

<stop statement> ::=
 stop <end>

<raise statement> ::=
 raise <raise body> <end>

<call statement> ::=
 [call] { <procedure call body> | <remote procedure call body> } <end>

An <assignment statement> represents an Assignment or Assignment-attempt.

An <output statement> represents an Output-node as further discussed in 11.13.4.

A <create statement> represents a Create-request-node as further discussed in 11.13.2.

A <set statement> represents a Set-node as further discussed in 11.15.

A <reset statement> represents a Reset-node as further discussed in 11.15.

A <return statement> is only allowed within a <procedure definition> or within an <operation definition>.

A <return statement> represents a Return-node as further discussed in 11.12.2.4.

A <stop statement> represents a Stop-node.

A <raise statement> represents a Raise-node as further discussed in 11.12.2.5.

The keyword call cannot be omitted if the <call statement> is syntactically ambiguous with an operation application or
variable with the same name.
NOTE 1 − This ambiguity is not resolved by context.

A <call statement> represents a Call-node as further discussed in 11.13.3.
NOTE 2 − The Model for <export statement> is given in 10.6.

11.14.3 Expressions as statements
Expressions that are operation applications can be used as statements, in which case the <operation application> is
interpreted and the result is ignored.

Concrete grammar

<expression statement> ::=
 <operation application> <end>

Model

An <expression statement> is transformed into a <call statement>, where the <procedure call body> is constructed from
the <operation identifier> and the <actual parameters> of the <operation application>.

11.14.4 If statement
The <Boolean expression> is interpreted and if it returns the predefined Boolean value true, the
<consequence statement> is interpreted; otherwise, the <alternative statement>, if present, is interpreted.

Concrete grammar

<if statement> ::=
 if (<Boolean expression>) <consequence statement>
 [else <alternative statement>]

<consequence statement> ::=
 <statement>

<alternative statement> ::=
 <statement>

An <alternative statement> associates with the closest preceding <consequence statement>.

106 ITU-T Rec. Z.100 (11/2007)

Model

The <if statement> is equivalent to the following <decision statement>:
 decision <Boolean expression> {
 (true) : <consequence statement>
 (false) : <alternative statement>
 }
If <alternative statement> was not present, an <empty statement> is inserted in its place. The <decision statement> is
then transformed as in 11.14.5.

11.14.5 Decision statement
The decision statement is a concise form of decision. The <expression> is evaluated and the <algorithm answer part>
whose <range condition> contains the result of the expression is interpreted. Overlapping range conditions are not
allowed. Unlike in a <decision area> (see 11.13.5), it is not necessary for the expression to match one of the range
conditions. If there is no match and an <alternative statement> exists, the <alternative statement> is interpreted. If there
is no match and an <alternative statement> does not exist, interpretation continues after the <decision statement>.

Concrete grammar

<decision statement> ::=
 decision (<question>) [<comment body>] <left curly bracket>
 <decision statement body>
 <right curly bracket>

<decision statement body> ::=
 <algorithm answer part>+ [<algorithm else part>]

<algorithm answer part> ::=
 (<answer>) <colon> <statement>

<algorithm else part> ::=
 else <colon> <alternative statement>

A <decision statement> represents a Decision-node, where each <algorithm answer part> represents a Decision-answer,
and the <algorithm else part> represents the Else-answer, if present, constructed from the transformation of the
<statement>.

11.14.6 Loop statement
The <loop statement> provides a generalized facility for bounded or unbounded iteration of a <loop body statement>,
with an arbitrary number of loop variables. These variables may be defined within the <loop statement> and are stepped
in ways specified by the <loop step>. They may be used both to generate successive results and to accumulate results.
When the <loop statement> terminates, a <finalization statement> may be interpreted in the context of the loop
variables.

The <loop body statement> is interpreted repeatedly. The interpretation of the loop is controlled by the presence of any
<loop clause>. A <loop clause> may begin with a <loop variable indication> which provides a convenient way to
declare and initialize local loop variables. The scope and lifetime of any variable defined in a <loop variable indication>
are effectively those of the <loop statement>. If initialization is present as an <expression> in a
<loop variable definition>, the expression is evaluated only once before the first interpretation of the loop body.
Alternatively, any visible variable can be defined as a loop variable and can have a data item assigned to it. Before each
iteration, all <Boolean expression> elements are evaluated. Interpretation of the <loop statement> is terminated if any
one <Boolean expression> element returns false. Consequentially, if there is no <Boolean expression> present,
interpretation of the <loop statement> will continue until the <loop statement> is exited non-locally. If a
<loop variable indication> is present in that <loop clause>, the <loop step> in each loop clause computes and assigns
the result of the respective loop variable at the end of each iteration. If a <loop variable indication> was not present in a
<loop clause>, or if a <loop step> was not present, no assignment statement to the loop variable is performed. The
<loop variable indication>, <Boolean expression>, and <loop step> are optional. A loop variable is visible but must not
be assigned to in the <loop body statement>.

Interpretation of the loop body also terminates when a break is reached. Reaching a continue statement causes
interpretation of the loop to jump immediately to the next iteration. (See also <break statement> in 11.14.7.)

If a <loop statement> is terminated "normally" (that is, by a <Boolean expression> evaluating to the predefined
Boolean value false), the <finalization statement> is interpreted. A loop variable is visible and retains its result when
the <finalization statement> is interpreted. A break or continue statement within the <finalization statement> terminates
the next outer <loop statement>.

 ITU-T Rec. Z.100 (11/2007) 107

Concrete grammar

<loop statement> ::=
 loop ([<loop clause> { ; <loop clause> }*])
 <loop body statement> [then <finalization statement>]

<loop body statement> ::=
 <statement>

<finalization statement> ::=
 <statement>

<loop clause> ::=
 [<loop variable indication>]
 , [<Boolean expression>]
 <loop step>

<loop step> ::=
 [, [{ <expression> | [call] <procedure call body> }]]

<loop variable indication> ::=
 <loop variable definition>
 | <variable identifier> [<is assigned sign> <expression>]

<loop variable definition> ::=
 dcl <variable name> <sort> <is assigned sign> <expression>

<loop break statement> ::=
 break <end>

<loop continue statement> ::=
 continue <end>

The keyword call cannot be omitted in a <loop step> if this would lead to an ambiguity with an operation application or
variable with the same name.

The <procedure identifier> in the <procedure call body> of a <loop step> must not refer to a value returning procedure
call.

A <finalization statement> associates with the closest preceding <loop body statement>.

A <loop statement> represents a Compound-node. The Connector-name is represented by a newly created anonymous
name, referred to as Label.

The Variable-definition-set is represented by the list of <variable definition statement>s constructed from the
<variable name> and <sort> mentioned in each <loop variable definition>.

The list of Init-graph-nodes is represented by the transform of the <statement list> constructed from
<assignment statement>s formed from each <loop variable indication> in the order of their occurrence.

An <assignment statement> is constructed from each <loop clause> between the <variable name> or
<variable identifier> and the <expression> in <loop step>, if both <loop variable indication> and <expression> were
present. <statements> is constructed by taking these <assignment statement> elements in sequence, or the
<expression>or <procedure call body> in <loop step>, if no <assignment statement> was constructed. <statements>
represents the list of Step-graph-nodes.

The Transition is represented by a <decision area> constructed in the following manner: The <question> is obtained by
combining all <Boolean expression> items through the predefined operator "and" of type Boolean into an
<expression>. The single <answer part> contains the <expression> True as <answer> and has a <transition area>
obtained by transforming the <loop body statement>. The <transition area> of the <else part> is obtained by
transforming the <finalization statement> and is inserted only if a <finalization statement> was originally present.

A <loop continue statement> represents a Continue-node. The Connector-name is represented by Label of the
innermost enclosing loop statement.

Model

Every occurrence of a <loop break statement> inside a <loop clause> or the <loop body statement> or a
<finalization statement> of another <loop statement> contained within this <loop statement>, all not occurring within
another inner <loop statement>, is replaced by
 break Label ;

108 ITU-T Rec. Z.100 (11/2007)

where Label is the newly created anonymous name of the represented Compound-node. If a <Boolean expression> is
absent in a <loop clause>, the predefined Boolean value true is inserted as the <Boolean expression>.

Then the <loop statement> is replaced by the so modified <loop statement> followed by a <labelled statement> with
<connector name> Break.

11.14.7 Break and labelled statements
A <break statement> is a more restrictive form of a <merge area>.

A <break statement> causes the interpretation to be immediately transferred to the statement following the one with the
matching <connector name>.

Concrete grammar

<break statement> ::=
 break <connector name> <end>

<labelled statement> ::=
 <connector name> : <statement>

A <break statement> must be contained in a statement that has been labelled with the given <connector name>.

A <break statement> represents a Break-node with the Connector-name represented by <connector name>.

A <labelled statement> represents a Compound-node. The Transition is represented by the result of transforming the
<statement>.

11.14.8 Empty statement
A statement may be empty, signified by using a single semicolon. The <empty statement> has no effect.

Concrete grammar

<empty statement> ::=
 <end>

Model

The transform of the <empty statement> is the empty text.

11.14.9 Exception statement
A statement can be encapsulated within an exception handler.

Concrete grammar

<exception statement> ::=
 try <try statement> <handle statement>+

<try statement> ::=
 <statement>

<handle statement> ::=
 handle (<exception stimulus list>) <statement>

A <handle statement> associates with the closest preceding <try statement>. The <try statement> must not be a
<break statement>.

The exception handler constructed in Model represents the optional Exception-handler-node of the Compound-node
represented by the <compound statement> that is obtained from the <try statement> (see 11.14.1).

Semantics

An <exception statement> creates its own scope with an exception handler.

Model

If the <try statement> was not a <compound statement>, the <try statement> is first transformed into a
<compound statement> containing only the <try statement> in its <statement list>.

Then the (transformed) <try statement> and all <handle statement>s are transformed. For each <handle statement>, a
<handle area> is constructed, where the <transition area> is constructed from the transformation of the <statement> and
the <exception stimulus list> is taken from the <handle statement>.

 ITU-T Rec. Z.100 (11/2007) 109

The constructed <handle area>s are collected into an <exception handler body area>, and finally, an <exception handler
area> is formed from this <exception handler body area> and given an anonymous name.

11.15 Timer
Abstract grammar

Timer-definition :: Timer-name
 Sort-reference-identifier*
Timer-name = Name
Set-node :: Time-expression
 Timer-identifier
 Expression*
Reset-node :: Timer-identifier
 Expression*
Timer-identifier = Identifier
Time-expression = Expression

The sorts of the list of Expressions in the Set-node and Reset-node must correspond by position to the list of Sort-
reference-identifiers directly following the Timer-name identified by the Timer-identifier.

Concrete grammar

<timer definition> ::=
 timer
 <timer definition item> { , <timer definition item>}* <end>

<timer definition item> ::=
 <timer name> [<sort list>] [<timer default initialization>]

<timer default initialization> ::=
 <is assigned sign> <Duration constant expression>

<reset body> ::=
 (<reset clause> { , <reset clause> }*)

<reset clause> ::=
 <timer identifier> [(<expression list>)]

<set body> ::=
 <set clause> { , <set clause> }*

<set clause> ::=
 ([<Time expression> ,] <timer identifier> [(<expression list>)])

A <set clause> may omit <Time expression>, if <timer identifier> denotes a timer which has a
<timer default initialization> in its definition.
NOTE − The mapping of the concrete syntax to the abstract syntax for timers is given in 11.13.1.

Semantics

A timer instance is an object, which can be active or inactive. Two occurrences of a timer identifier followed by an
expression list refer to the same timer instance only if the equality expression (see 12.2.7) applied to all corresponding
expressions in the two lists yields the predefined Boolean value true (that is, if the two expression lists have the same
result).

When an inactive timer is set, a Time value is associated with the timer. Provided there is no reset or other setting of
this timer before the system time reaches this Time value, a signal with the same name as the timer is put in the input
port of the agent. The same action is taken if the timer is set to a Time value less than or equal to now. After
consumption of a timer signal, the sender expression yields the same result as the self expression. If an expression list
is given when the timer is set, the results of these expression(s) are contained in the timer signal in the same order. A
timer is active from the moment of setting up to the moment of consumption of the timer signal.

If a sort specified in a timer definition is a syntype, then the range check defined in 12.1.9.5 applied to the
corresponding expression in a set or reset must be the predefined Boolean value true; otherwise, the predefined
exception OutOfRange is raised.

When an inactive timer is reset, it remains inactive.

110 ITU-T Rec. Z.100 (11/2007)

When an active timer is reset, the association with the Time value is lost; if there is a corresponding retained timer
signal in the input port, then it is removed, and the timer becomes inactive.

When an active timer is set, this is equivalent to resetting the timer, immediately followed by setting the timer. Between
this reset and set, the timer remains active.

Before the first setting of a timer instance, it is inactive.

The Expressions in a Set-node or Reset-node are evaluated in the order given.

Model

A <set clause> with no <Time expression> is derived syntax for a <set clause> where <Time expression> is:
 now + <Duration constant expression>

where <Duration constant expression> is derived from the <timer default initialization> in timer definition.

A <task area> may contain several <reset clause>s or <set clause>s. This is derived syntax for specifying a sequence of
<task area>s, one for each <reset clause> or <set clause> such that the original order in which they were specified in
<task area> is retained. This shorthand is expanded before shorthands in the contained expressions are expanded.

11.16 Exception
An exception instance transfers control to an exception handler.

Abstract grammar

Exception-definition :: Exception-name
 Sort-reference-identifier*
Exception-name = Name
Exception-identifier = Identifier

Concrete grammar

<exception definition> ::=
 exception <exception definition item> { , <exception definition item> }* <end>

<exception definition item> ::=
 <exception name> [<sort list>]

Semantics

An exception instance denotes that an exceptional situation (typically an error situation) has occurred while interpreting
a system. An exception instance is created implicitly by the underlying system or explicitly by a Raise-node, and the
exception instance ceases to exist if it is caught by a Handle-node or Else-handle-node.

Creation of an exception instance breaks the normal flow of control within an agent, operation or procedure. If an
exception instance is created within a called procedure, operation, or compound statement and is not caught there, the
procedure, operation, or compound statement, respectively, terminates and the exception instance propagates
(dynamically) outwards to the caller and is treated as if it were created at the place of the procedure call, operation
application, or invocation of the compound statement. This rule also holds for calls of remote procedures; and in this
case, the exception instance propagates back to the calling process instance in addition to being propagated within the
called agent instance.

A number of exception types are predefined within the package Predefined. These exception types are the ones that can
be created by the underlying system implicitly. It is also allowed for the specifier to create instances of these exception
types explicitly.

If an exception instance is created within an agent instance and is not caught there, the further behaviour of the system
is undefined.

11.16.1 Exception handler
Abstract grammar

Exception-handler-node :: Exception-handler-name
 [On-exception]
 Handle-node-set
 [Else-handle-node]
Exception-handler-name = Name

 ITU-T Rec. Z.100 (11/2007) 111

The Exception-handler-nodes within a given State-transition-graph or Procedure-graph must all have different
Exception-handler-names.
NOTE − An Exception-handler-name can have the same name as a State-name. They are, however, different.

The Exception-identifiers in the Handler-node-set must be distinct.

Concrete grammar

<exception handler area> ::=
 <exception handler symbol> contains <exception handler list>
 [is connected to <on exception association area>]
 is associated with <exception handler body area>

<exception handler symbol> ::=

<exception handler body area> ::=
 <handle association area>*

<handle association area> ::=
 <solid association symbol> is connected to <handle area>

<exception handler list> ::=
 <exception handler name> { , <exception handler name> }*
 | <asterisk exception handler list>

<asterisk exception handler list> ::=
 <asterisk> [(<exception handler name> { , <exception handler name>}*)]

An <exception handler area> represents one or more Exception-handler-nodes. The <solid association symbol>s
originating from an <exception handler symbol> may have a common originating path. An <exception handler area>
must contain <state name> (not <asterisk state list>) if it coincides with an <on exception area>.

When the <exception handler list> contains one <exception handler name>, the <exception handler name> represents
an Exception-handler-node. For each Exception-handler-node, the Handle-node-set is represented by the <handle
area>s containing <exception identifier>s in their <exception stimulus list>s. For each Exception-handler-node, the
Else-handle-node is represented by an explicit or implicit <handle area> in which the <exception stimulus list> is an
<asterisk exception stimulus list>.

The <exception handler name>s in an <asterisk exception handler list> must be distinct and must be contained in other
<exception handler list>s in the enclosing body or in the body of a supertype.

An <exception handler area> contains at most one <asterisk exception stimulus list> (see 11.16.3).

An <exception handler area> has at most one <exception handler area> associated.

Semantics

An exception handler represents a particular condition in which an agent, operation, or procedure may handle an
exception instance that it has created. Handling an exception instance results in a transition. The state of the process or
procedure is not changed.

If the Exception-handler-node has no Handle-node with the same Exception-identifier as the exception instance, the
exception instance is caught by the Else-handle-node. If there is no Else-handle-node, the exception instance is not
handled in that exception handler.

Model

When the <exception handler list> of an <exception handler area> contains more than one <exception handler name>, a
copy of the <exception handler area> is created for each such <exception handler name>. Then the <exception handler
area> is replaced by these copies.

An <exception handler area> with an <asterisk exception handler list> is transformed to a list of <exception handler
area>s, one for each <exception handler name> of the body in question, except for those <exception handler name>s
contained in the <asterisk exception handler list>.

112 ITU-T Rec. Z.100 (11/2007)

11.16.2 On-Exception
Abstract grammar

On-exception :: Exception-handler-name

The Exception-handler-name specified in On-exception must be the name of an <exception handler area> within the
same State-transition-graph or Procedure-graph.

Concrete grammar

<on exception association area> ::=
 <solid on exception association symbol> is connected to
 { <on exception area> | <exception handler area> }

<solid on exception association symbol> ::=

<on exception area> ::=
 <exception handler symbol> contains <exception handler name>

An <exception handler name> may appear in more than one <exception handler area> of a body.

A <solid on exception association symbol> may consist of several horizontal and vertical line segments. The arrowhead
must be attached to the <on exception area> or <exception handler area>.

Semantics

An On-exception indicates which exception handler an agent, operation, or procedure should enter if the agent or
procedure creates an exception instance. Through an <on exception association area> or a <handle statement>, an
exception handler is associated with another entity. An exception handler is said to be active whenever it is able to react
on creation of an exception instance.

Several exception handlers may be active at the same time. For each agent, procedure or operation instance, there are
several exception scopes that might contain an active exception handler. The exception scopes, in the order of
increasing locality, are:
a) the entire graph of the instance;
b) the composite states (if a composite state is being interpreted);
c) the graph of the composite states (if any);
d) the current state;
e) the transition for the stimulus in the current state, or the start transition;
f) the current exception state;
g) the transition for the current handle clause; and
h) the current action.

Due to nesting of composite states, more than one exception handler for a composite state or composite state graph may
be active at any time.

When an exception instance is created, the active exception handlers are visited in the order of decreasing locality.
When an exception state is visited, the exception handler is of the current exception scope deactivated. If no exception
handler is active for a certain exception scope, or if the exception state does handle the exception, the next exception
scope is visited.

No exception handler is active during the interpretation of a <constant expression>.

An exception handler may be associated with a whole agent/procedure/operation graph, a start transition, a state, an
exception handler, a state trigger (an input or a handle) with its associated transition, a transition action (most kinds of),
or a transition terminator (some kinds of). The following text describes for each case when the exception handler is
activated and deactivated.
a) Whole agent/procedure/operation graph
 The exception handler is activated at the start of interpretation of the graph of the agent, operation or

procedure instance; the exception handler is deactivated when the agent, operation or procedure instance
enters a stopping condition or ceases to exist.

 ITU-T Rec. Z.100 (11/2007) 113

b) Start transition
 The exception handler is activated when interpretation of the start transition starts in the agent, operation or

procedure; the exception handler is deactivated when the agent or procedure interprets a Nextstate-node or
enters a stopping condition or ceases to exist.

c) Composite state
 The exception handler is activated when the composite state is entered; it is active for the composite state

including any Connect-nodes or transitions attached to the state. It is deactivated when interpretation enters
another state.

d) Composite state graph
 The exception handler is activated before the entry procedure of a composite state is invoked. It is deactivated

after the exit procedure of the composite state is completed.
e) State
 The exception handler is activated whenever the agent or procedure enters the given state. The exception

handler is deactivated when the agent or procedure interprets a Nextstate-node or enters a stopping condition
or ceases to exist.

f) Exception handler
 The exception handler is activated whenever the agent or procedure enters the given exception handler; the

exception handler is deactivated when the agent or procedure interprets a Nextstate-node or enters a stopping
condition or ceases to exist.

g) Input
 The exception handler for the stimulus is activated whenever interpretation of the given Input-node is started

in the agent or procedure. The exception handler is deactivated when the agent or procedure interprets a
Nextstate-node, or enters a stopping condition or ceases to exist.

h) Handle
 The exception handler for the current Handle-node is activated whenever interpretation of the Transition of

Handle-node is started in the agent, operation or procedure. The exception handler is deactivated when the
agent, operation or procedure interprets a Nextstate-node.

i) Decision
 The exception handler is activated whenever interpretation of the given decision starts in the agent, operation

or procedure. The exception handler is deactivated when the agent or procedure enters the transition of a
decision branch (that is, the exception handler covers the expression of the decision and whether the
expression matches any of the ranges of the decision branches).

j) Transition action (except decision)
 The exception handler is activated whenever interpretation of the given action is started in the agent,

operation or procedure. The exception handler is deactivated when the agent or procedure interpretation of the
action is complete.

k) Transition terminator (with expressions)
 The exception handler is activated whenever the agent, operation or procedure enters the given terminator.

The exception handler is deactivated when interpretation of the terminator is completed.

Any exception handler is deactivated when it handles an exception and creates an exception instance. The exception
handlers for actions and terminators also cover the actions that result from the model for <transition area>, for example
<import expression>.

NOTE − The rules above imply that, in some cases, several exception handlers may be deactivated at the same time.
For example, if an exception handler for a state and one for an associated input transition are active at the same time,
both exception handlers are deactivated when the input transition interprets a Nextstate-node. Exception handlers of the
syntactical context cover implicit states or stimuli; that is, <on exception association area>s are copied into the model.

Model

When several <exception handler area>s contain the same <exception handler name>, these <exception handler area>s
are concatenated into one <exception handler area> having that <exception handler name>.

In a specialization, the association with the exception handler is considered as a part of the graph or the transition. If a
virtual transition is redefined, the new transition replaces an <on exception association area> of the original transition.
If a graph or a state is inherited in a specialization, any associated exception handler is inherited as well.

114 ITU-T Rec. Z.100 (11/2007)

11.16.3 Handle
Abstract grammar

Handle-node :: Exception-identifier
 [Variable-identifier]*
 [On-exception]
 Transition
Else-handle-node :: [On-exception]
 Transition

The length of the list of optional Variable-identifiers in Handle-node must be the same as the number of Sort-reference-
identifiers in the Exception-definition denoted by the Exception-identifier.

The sorts of the variables must correspond by position to the sorts of the data items that can be carried by the exception.

Concrete grammar

<handle area> ::=
 <handle symbol> contains { [<virtuality>] <exception stimulus list> }
 [is connected to <on exception association area>]
 is followed by <transition area>

<handle symbol> ::=

<exception stimulus list> ::=
 <exception stimulus> { , <exception stimulus> }*
 | <asterisk exception stimulus list>

<exception stimulus> ::=
 <exception identifier> [([<variable>] { , [<variable>] }*)]

<asterisk exception stimulus list> ::=
 <asterisk>

The path to <transition area> in <handle area> must originate in <handle symbol>.

A <handle area>, whose <exception stimulus list> contains one <exception stimulus>, corresponds to one Handle-node.
Each <exception identifier> contained in a <handle symbol> gives the name of one of the Handle-nodes which this
<handle symbol> represents. A <handle area> with <asterisk exception stimulus list> represents an Else-handle-node.

When the <exception stimulus list> contains one <exception stimulus>, the <handle area> represents a Handle-node. A
<handle area> with <asterisk exception stimulus list> represents an Else-handle-node.

Commas may be omitted after the last <variable> in <exception stimulus>.

Semantics

A Handle-node consumes an instance of the specified exception type. The consumption of the exception instance makes
the information conveyed by the exception instance available to the agent or procedure. The variables mentioned in the
Handle-node are assigned the data items conveyed by the consumed exception instance.

The data items are assigned to the variables from left to right. If no variable is mentioned for a given parameter position
in the exception, the data item at this position is discarded. If no data item is associated with a given parameter position,
the corresponding variable becomes "undefined".

The sender expression is given the same result as the self expression.
NOTE − The state expression does not change to the name of the exception handler.

Model

When the <exception stimulus list> of a certain <handle area> contains more than one <exception stimulus>, a copy of
the <handle area> is created for each <exception stimulus>. Then the <handle area> is replaced by these copies.

When one or more of the <variable>s of a certain <exception stimulus> are <indexed variable>s or <field variable>s,
all the <variable>s are replaced by unique, new, implicitly declared <variable identifier>s. Immediately before the
<transition area> of the <handle area>, a <task area> is inserted which in its <task body> contains an <assignment> for
each of the <variable>s, assigning the result of the corresponding new variable to the <variable>. The results are

 ITU-T Rec. Z.100 (11/2007) 115

assigned in the order from left to right of the list of <variable>s. This <task area> becomes the first <action area> in the
<transition area>.

A <handle area> which contains <virtuality> is called a virtual handle transition. Virtual handle transitions are further
described in 8.3.3.

12 Data
The concept of data in SDL is defined in this clause. This includes the data terminology, the concepts to define new
data types and the predefined data.

Data in SDL is principally concerned with data types. A data type defines a set of elements or data items, referred to as
sort, and a set of operations that can be applied to these data items. The sorts and operations define the properties of the
data type. These properties are defined by data type definitions.

A data type consists of a set, which is the sort of the data type, and one or more operations. As an example, consider the
predefined data type Boolean. The sort Boolean of the data type Boolean consists of the elements true and false. Among
the operations of the data type Boolean are "=" (equal), "/=" (not equal), "not", "and", "or", "xor", and "=>" (implies).
As a further example, consider the predefined data type Natural. It has the sort Natural consisting of the elements 0, 1,
2, etc., and the operations "=", "/=", "+", "–", "*", "/", "mod", "rem", "<", ">", "<=", ">=", and power.

SDL provides several predefined data types, which are familiar in both their behaviour and syntax. The predefined data
types are described in Annex D.

Variables are objects that can be associated with an element of a sort by assignment. When the variable is accessed, the
associated data item is returned.

The elements of the sort of a data type are either values, objects which are references to values, or pids, which are
references to agents. The sort of a data type may be defined in the following ways:
a) Explicitly enumerating the elements of the sort.
b) Forming the Cartesian product of sorts S1, S2, … Sn; the sort is equal to the set that consists of all tuples that

can be formed by taking the first element from sort S1, taking the second element from sort S2, … , and
finally, taking the last element from sort Sn.

c) The sorts of pids are defined by defining an interface (see 12.1.2).
d) Several sorts are predefined and form the basis of the predefined data types described in Annex D. The

predefined sorts Any and Pid are described in 12.1.5 and 12.1.6.

If the elements of a sort are objects, the sort is an object sort. If the elements of a sort are pids, the sort is a pid sort. The
elements of a value sort are values.

Operations are defined from and to elements of sorts. For instance, the application of the operation for summation ("+")
from and to elements of the Integer sort is valid, whereas summation of elements of the Boolean sort is not.

Each data item belongs to exactly one sort. That is, sorts never have data items in common.

For most sorts there are literal forms to denote elements of the sort: for example, for Integers, "2" is used rather than
"1 + 1". There may be more than one literal to denote the same data item; for example, 12 and 012 can be used to
denote the same Integer data item. The same literal denotation may be used for more than one sort; for example, 'A' is
both a Character and a Character String of length one. Some sorts may have no literal forms to denote the elements of
the sort; for example, the sorts can also be formed as the Cartesian product of other sorts. In that case, the elements of
these sorts are denoted by operations that construct the data item from elements of the component sort(s).

An expression denotes a data item. If an expression does not contain a variable or an imperative expression, e.g. if it is a
literal of a given sort, each occurrence of the expression will always denote the same data item. These "passive"
expressions correspond to a functional use of the language.

An expression that contains variables or imperative expressions may be interpreted as having different results during the
interpretation of an SDL system, depending on the data item associated with the variables. The active use of data
includes assignment to variables, use of variables, and initialization of variables. The difference between active and
passive expressions is that the result of a passive expression is independent of when it is interpreted, whereas an active
expression may have different results depending on the current values, objects, or pids associated with variables or the
current system state.

116 ITU-T Rec. Z.100 (11/2007)

12.1 Data definitions
Data definitions are used to define data types. The basic mechanisms to define data are data type definitions (see 12.1.1)
and interfaces (see 12.1.2). Specialization (see 12.1.3) allows the definition of a data type to be based on another data
type, referred to as its supertype. The definition of the sort of the data type as well as operations implied for the sort are
given by data type constructors (see 12.1.7). Additional operations can be defined as described in 12.1.4.
Subclause 12.1.8 shows how to define the behaviour of the operations of a data type.

Since predefined data is defined in a predefined and implicitly used package Predefined (see 7.2 and D.3), the
predefined sorts (for example, Boolean and Natural) and their operations may be freely used throughout the system. The
semantics of Equality (12.2.5), Conditional expressions (12.2.6), and Syntypes (12.1.9.4) rely on the definition of the
Boolean data type (see D.3.1). The semantics of Name class (see 12.1.9.1) also relies on the definition of Character and
Charstring (see D.3.2 and D.3.4).

Abstract grammar

Data-type-definition = Value-data-type-definition
 | Object-data-type-definition
 | Interface-definition
Value-data-type-definition :: Sort
 Data-type-identifier
 Literal-signature-set
 Static-operation-signature-set
 Dynamic-operation-signature-set
 Procedure-definition-set
 Data-type-definition-set
 Syntype-definition-set
 Exception-definition-set
Object-data-type-definition :: Sort
 Data-type-identifier
 Literal-signature-set
 Static-operation-signature-set
 Dynamic-operation-signature-set
 Procedure-definition-set
 Data-type-definition-set
 Syntype-definition-set
 Exception-definition-set
Interface-definition :: Sort
 Data-type-identifier*
 Signal-definition-set
 Exception-definition-set
Data-type-identifier = Identifier
Sort-reference-identifier = Sort-identifier
 | Syntype-identifier
 | Expanded-sort
 | Reference-sort
Sort-identifier = Identifier
Expanded-sort = Sort-identifier
Reference-sort = Sort-identifier
Sort = Name

A Data-type-definition introduces a sort that is visible in the enclosing scope unit in the abstract syntax. It may
additionally introduce a set of literals and operations.

Each Procedure-definition of the Procedure-definition-set of a Value-data-type-definition or Object-data-type-
definition is a Procedure-definition associated with an Operation-signature according to the Model in 12.1.8, Behaviour
of operations for an enclosed Data-type-definition. It is not allowed to define procedures directly within a data type
definition.

Concrete grammar

<data definition> ::=
 <data type definition>
 | <interface definition>
 | <syntype definition>
 | <synonym definition>

 ITU-T Rec. Z.100 (11/2007) 117

A data definition represents a Data-type-definition if it is a <data type definition>, <interface definition>, or <syntype
definition>.

<sort> ::=
 <basic sort> [(<range condition>)]
 | <anchored sort>
 | <expanded sort>
 | <reference sort>
 | <pid sort>
 | <inline data type definition>
 | <inline syntype definition>

<inline data type definition> ::=
 { value | object } [<data type specialization>]
 [[<comment body>] <left curly bracket> <data type definition body>
 <right curly bracket>]

<inline syntype definition> ::=
 syntype <basic sort>
 [[<comment body>] <left curly bracket>
 { <default initialization> [[<end>] <constraint>] | <constraint> } <end>
 <right curly bracket>]

<basic sort> ::=
 <datatype type expression>
 | <syntype>

<anchored sort> ::=
 this [<basic sort>]

<expanded sort> ::=
 value { <basic sort> | <anchored sort> }

<reference sort> ::=
 object { <basic sort> | <anchored sort> }

<pid sort> ::=
 <sort identifier>

An <anchored sort> with <basic sort> is only allowed within the definition of <basic sort>.

An <anchored sort> is legal concrete syntax only if it occurs within a <data type definition>. The <basic sort> in the
<anchored sort> must name the <sort> introduced by the <data type definition>.

Semantics

A data definition is used either for the definition of a data type or interface or the definition of a synonym for an
expression as further defined in 12.1, 12.1.9.4, or 12.1.9.6.

Each <data type definition> introduces a sort with the same name as the <data type name> (see 12.1.1). Each <interface
definition> introduces a sort with the same name as the <interface name> (see 12.1.2).
NOTE 1 − To avoid cumbersome text, the convention is used that the phrase "the sort S" is often used instead of "the
sort defined by the data type S" or "the sort defined by the interface S" when no confusion is likely to arise.

A <sort identifier> names a <sort> introduced by a data type definition.

A sort is a set of elements: values, objects (that is, references to values) or pids (that is, references to agents). Two
different sorts have no elements in common. A <value data type definition> introduces a sort that is a set of values. An
<object data type definition> introduces a sort that is a set of objects. An <interface definition> introduces a pid sort.

If a <sort> is an <expanded sort>, then variables, synonyms, fields, parameters, return, signals, timers, and exceptions
defined with that <sort> will be associated with values of the sort rather than with references to these values, even if the
sort has been defined as a set of objects. An Expanded-sort is represented by an <expanded sort>.

If a <sort> is a <reference sort>, then variables, synonyms, fields, parameters, return, signals, timers, and exceptions
defined with that <sort> will be associated with references to values of the sort rather than with values of the sort, even
if the sort has been defined as a set of values. A Referenced-sort is represented by a <reference sort>.

The meaning of an <anchored sort> is given in 12.1.3.

The <sort identifier> in a <pid sort> must reference a pid sort.

118 ITU-T Rec. Z.100 (11/2007)

Model

An <expanded sort> with a <basic sort> that represents a value sort is replaced by the <basic sort>.

A <reference sort> with a <basic sort> that represents an object sort is replaced by the <basic sort>.
NOTE 2 − As a consequence, the keyword value has no effect if the sort has been defined as a set of values, and the
keyword object has no effect if the sort has been defined as a set of objects.

An <anchored sort> without a <basic sort> is a shorthand for specifying a <basic sort> referencing the name of the data
type definition or syntype definition in the context of which the <anchored sort> occurs.

A <sort> that is a <basic sort> with a <range condition> is derived concrete syntax for a <syntype> of an implied
<syntype definition> having an anonymous name. This anonymously named <syntype definition> is defined with its
elements restricted by the <range condition>, if the <basic sort> has been constructed using the literal data type
constructor; otherwise, the <range condition> is part of a <size constraint>.

An <inline data type definition> is derived concrete syntax for a <basic sort> of an implied <data type definition>
having an anonymous name. This anonymously named <data type definition> is derived from the
<inline data type definition> by inserting type and the anonymous name after value or object in the
<inline data type definition>. Each <inline data type definition> defines a different implied <data type definition>.

An <inline syntype definition> is derived concrete syntax for a <basic sort> of an implied <syntype definition> having
an anonymous name. This anonymously named <syntype definition> is derived from the <inline syntype definition> by
inserting the anonymous name and <equals sign> after syntype in the <inline syntype definition>.

12.1.1 Data type definition
A data type definition has a body that usually contains a data type constructor and an indication whether the data type is
a value or object data type.

The data type constructor defines how to construct sets of values (structured values, literal values, and choice values). If
the data type definition is a value type, these values are the elements of the sort. If the data type definition is an object
type, these values are referenced by the elements of the sort.

Concrete grammar

<data type definition> ::=
 {<package use clause>}*
 <type preamble> <data type heading> [<data type specialization>]
 { <end>
 | [<comment body>] <left curly bracket> <data type definition body>
 <right curly bracket> }

<data type definition body> ::=
 {<entity in data type>}* [<data type constructor>] <operations>
 [<default initialization> <end>]

<data type heading> ::=
 { value | object } type <data type name>
 [<formal context parameters>] [<virtuality constraint>]

<entity in data type> ::=
 <data type definition>
 | <syntype definition>
 | <synonym definition>
 | <procedure definition>
 | <procedure reference>
 | <exception definition>

<operations> ::=
 <operation signatures>
 <operation definitions>

A <value data type definition> contains the keyword value in <data type heading>. An <object data type definition>
contains the keyword object in <data type heading>.

A <formal context parameter> of <formal context parameters> must be either a <sort context parameter> or a
<synonym context parameter>.

 ITU-T Rec. Z.100 (11/2007) 119

For each <operation signature> of <operation signatures>, there shall be one and only one corresponding definition
(<operation definition> or <operation reference> or <external operation definition>) in the <operation definitions> of
the <operations>.

A <procedure definition> or <procedure reference> is only allowed as an <entity in data type> if the <procedure
definition> or <procedure reference> is the result of transforming an <operation definition> or <operation diagram> of
an enclosed <data type definition> as described in 12.1.8, Behaviour of operations.

Semantics

A <data type definition> consists of a <data type constructor> which describes the elements of the sort (see 12.1.6) and
operations induced by the way the sort is constructed, and <operations> which defines a set of operations that can be
applied to the elements of a sort (see 12.1.4). A data type may also be based on a supertype through specialization
(see 12.1.3).

12.1.2 Interface definition
Interfaces are defined in packages, agents or agent types. An interface defines a pid sort, which has elements that are
references to agents.

An interface may define signals, remote procedures, remote variables, and exceptions. The defining context of entities
defined in the interface is the scope unit of the interface, and the entities defined are visible where the interface is
visible. An interface may also refer to signals, remote procedures, or remote variables defined outside the interface by
the <interface use list>.

An interface is used in a signal list to denote that the signals, remote procedure calls, and remote variables of the
interface definition are included in the signal list.

Concrete grammar

<interface definition> ::=
 {<package use clause>}*
 [<virtuality>] <interface heading>
 [<interface specialization>] <end>
 | {<package use clause>}*
 [<virtuality>] <interface heading>
 [<interface specialization>] [<comment body>] <left curly bracket>
 <entity in interface>* [<interface use list>]
 <right curly bracket>

<interface heading> ::=
 interface <interface name>
 [<formal context parameters>] [<virtuality constraint>]

<entity in interface> ::=
 <signal definition>
 | <interface variable definition>
 | <interface procedure definition>
 | <exception definition>

<interface use list> ::=
 use <signal list> <end>

<interface variable definition> ::=
 dcl <remote variable name> { , <remote variable name>}* <sort> <end>

<interface procedure definition> ::=
 procedure <remote procedure name> <procedure signature> <end>

The <formal context parameters> shall only contain <signal context parameter>,
<remote procedure context parameter>, <remote variable context parameter>, <sort context parameter> or
<exception context parameter>.

The defining context of entities defined in the interface (<entity in interface>) is the scope unit of the interface, and the
entities defined are visible where the interface is visible.

Model

The semantics of <virtuality> is defined in 8.3.2.

120 ITU-T Rec. Z.100 (11/2007)

The content of an interface is the set of all signals, remote procedures and remote variables that are defined in an
<entity in interface> of the interface or referenced in the <interface use list> or included in the interface by
specialization (that is, inheritance or context parameterization).

The inclusion of an <interface identifier> in a <signal list> means that all signal identifiers, remote procedure identifiers
and remote variable identifiers forming part of the <interface definition> are included in the <signal list>.

Interfaces are implicitly defined by agent and agent type definitions and by the state machines of agent and agent type
definitions. The implicitly defined interface for an agent or an agent type has the same name and is defined in the same
scope unit as the agent or agent type that defined it. The implicitly defined interface for a state machine has the same
name as the containing agent or agent type but is defined in the same scope unit as the state machine that defined it, i.e.
inside the agent or agent type.

Internally connected gates of an agent (or agent type) are explicit or implicit gates of the agent (or agent type
respectively) that are connected via implicit or explicit channels to the gates of either the state machine of the agent (or
agent type respectively) or a contained agent. The interface defined by an agent or agent type contains in its
<interface specialization> all interfaces given in the incoming signal list associated with internally connected gates. The
interface contains in its <interface use list> all signals, remote variables and remote procedures given in the incoming
signal list associated with internally connected gates. In addition, the interface for an agent type that inherits another
agent type also contains in its <interface specialization> the implicit interface defined by the inherited agent type.
NOTE 1 − Because every agent and agent type has an implicitly defined interface with the same name, any explicitly
defined interface must have a different name from every agent and agent type defined in the same scope; otherwise,
there are name clashes.

The interface defined by a state machine of an agent or agent type contains in its <interface specialization> the interface
defined by the agent or agent type itself except any part of that interface concerned only with contained agents.
However, the interface also contains in its <interface specialization> all interfaces given in the incoming signal list
associated with any explicit or implicit gates of the state machine. The interface also contains in its <interface use list>

all signals, remote variables and remote procedures given in the incoming signal list associated with explicit or implicit
gates of the state machine. If the containing entity is an agent type that inherits another agent type, then the interface
will also contain in its <interface specialization> the implicit interface of the state machine of the inherited agent type.

The interface defined by a typebased agent contains in its <interface specialization> the interface defined by its type.
NOTE 2 − To avoid cumbersome text, the convention is used that the phrase "the pid sort of the agent A" is often used
instead of "the pid sort defined by the interface implicitly defined by the agent A" when no confusion is likely to arise.

12.1.3 Specialization of data types
Specialization allows the definition of a data type based on another (super) type.

Concrete grammar

<data type specialization> ::=
 inherits <data type type expression> [<renaming>] [adding]

<interface specialization> ::=
 inherits <interface type expression> { , <interface type expression> }* [adding]

<renaming> ::=
 (<rename list>)

<rename list> ::=
 <rename pair> { , <rename pair> }*

<rename pair> ::=
 <operation name> <equals sign> <base type operation name>
 | <literal name> <equals sign> <base type literal name>

The Data-type-identifier in the Data-type-definition represented by the <data type definition> in which
<data type specialization> (or <interface specialization>) is contained identifies the data type represented by the
<data type type expression> in its <data type specialization> (see also 8.1.2).

An Interface-definition may contain a list of Data-type-identifiers. The interface denoted by an Interface-definition is a
specialization of all the interfaces denoted by the Data-type-identifiers.

 ITU-T Rec. Z.100 (11/2007) 121

The resulting content of a specialized interface definition (<interface specialization>) consists of the content of the
supertypes followed by the content of the specialized definition. This implies that the set of signals, remote procedures
and remote variables of the specialized interface definition is the union of those given in the specialized definition itself
and those of the supertypes. The resulting set of definitions must obey the rules given in 6.3.

The <data type constructor> must be of the same kind as the <data type constructor> used in the <data type definition>
of the sort referenced by <data type type expression> in the <data type specialization>. That is, if the
<data type constructor> used in a (direct or indirect) supertype was a <literal list> (<structure definition>,
<choice definition>), then the <data type constructor> must also be a <literal list> (<structure definition>,
<choice definition>).

Renaming can be used to change the name of inherited literals, operators, and methods in the derived data type.

All <literal name>s and all <base type literal name>s in a <rename list> must be distinct.

All <operation name>s and all <base type operation name>s in a <rename list> must be distinct.

A <base type operation name> specified in a <rename list> must be an operation with <operation name> defined in the
data type definition defining the <base type> of <data type type expression>.

Semantics

The sort defined by the specialization is a subsort of the sort defined by the base type. The sort defined by the base type
is a supersort of the sort defined by the specialization.

Sort compatibility determines when a sort can be used in place of another sort, and when it cannot. This relation is used
for assignments (see 12.3.3), for parameter passing (see 12.2.7 and 9.4), for re-declaration of parameter types during
inheritance (see 12.1.2), and for actual context parameters (see 8.1.2).

Let T and V be two sorts. V is sort compatible with T if and only if either:
a) V and T are the same sort;
b) V is directly sort compatible with T;
c) T is denoted by a <sort identifier> or object <sort identifier> or value <sort identifier>, and the <sort

identifier> is defined by an object type or an interface and, for some sort U, V is sort compatible with U and
U is sort compatible with T.

NOTE 1 − Sort compatibility is transitive only for sorts defined by object types or interfaces, but not for sorts defined
by value types.

Let T and V be sorts. V is directly sort compatible with T if and only if either:
a) V is denoted by a <basic sort> and T is an object sort and T is a supersort of V;
b) V is denoted by an <anchored sort> of the form this T;
c) V is denoted by a <reference sort> of the form object T;
d) T is denoted by a <reference sort> of the form object V;
e) V is denoted by an <expanded sort> of the form value T;
f) T is denoted by a <expanded sort> of the form value V; or
g) V is denoted by a <pid sort> (see 12.1.2) and T is a supersort of V.

Model

The model for specialization in 8.3 is used, augmented as follows.

A specialized data type is based on another (base) data type by using a <data type definition> in combination with a
<data type specialization>. The sort defined by the specialization is disjoint from the sort defined by the base type.

If the sort defined by the base type has literals defined, the literal names are inherited as names for literals of the sort
defined by the specialized type unless literal renaming has taken place for that literal. Literal renaming has taken place
for a literal if the base type literal name appears as the second name in a <rename pair>, in which case the literal is
renamed to the first name in that pair.

If the base type has operators or methods defined, the operation names are inherited as names for operators or methods
of the sort being defined, subject to the restrictions stated in 8.3.1, unless the operator or method has been declared as
private (see 12.1.9.3) or operation renaming has taken place for that operator or method. Operation renaming has taken
place for an operator or method if the inherited operation name appears as the second name in a <rename pair>, in
which case the operator or method is renamed to the first name in that pair.

122 ITU-T Rec. Z.100 (11/2007)

When several operators or methods of the <base type> of <sort type expression> have the same name as the
<base type operation name> in a <rename pair>, then all of these operators or methods are renamed.

In every occurrence of an <anchored sort> in the specialized type, the <basic sort> is replaced by the subsort.

The argument sorts and result of an inherited operator or method are the same as those of the corresponding operator or
method of the base type, except that in every <argument> containing an <anchored sort> in the inherited operator or
method the <basic sort> is replaced by the subsort. For inherited virtual methods, <argument virtuality> is added to an
<argument> containing an <anchored sort>, if it is not already present.
NOTE 2 − According to the model for specialization in 8.3, an operator is only inherited if its signature contained at
least one <anchored sort> or renaming had taken place.

12.1.4 Operations
Abstract grammar

Dynamic-operation-signature = Operation-signature
Static-operation-signature = Operation-signature
Operation-signature :: Operation-name
 Formal-argument*
 [Result]
 Identifier
Operation-name = Name
Formal-argument = Virtual-argument
 | Nonvirtual-argument
Virtual-argument :: Argument
Nonvirtual-argument :: Argument
Argument = Sort-reference-identifier

The Identifier in an operator signature is an anonymous identifier for the anonymous procedure corresponding to the
operation.

A Virtual-argument shall reference the Sort of an Object-data-type-definition.

The notion of sort compatibility is extended to Operation-signatures. An Operation-signature S1 is sort compatible
with an Operation-signature S2 when:
a) S1 and S2 have the same number of Formal-arguments; and
b) for every Virtual-argument A of S1, the sort identified by its Sort-reference-identifier is sort compatible with

the sort identified by the Sort-reference-identifier of the corresponding argument in S2;
c) for every Nonvirtual-argument A of S1, the sort identified by its Sort-reference-identifier is the same sort as

the sort identified by the Sort-reference-identifier of the corresponding argument in S2.

Concrete grammar

<operation signatures> ::=
 [<operator list>] [<method list>]

<operator list> ::=
 operators <operation signature> { <end> <operation signature> }* <end>

<method list> ::=
 methods <operation signature> { <end> <operation signature> }* <end>

<operation signature> ::=
 <operation preamble>
 { <operation name> | <name class operation> }
 [<arguments>] [<result>] [<raises>]

<operation preamble> ::=
 [<virtuality> [<visibility>] | <visibility> [<virtuality>]]

<operation name> ::=
 <operation name>
 | <quoted operation name>

<arguments> ::=
 (<argument> { , <argument> }*)

 ITU-T Rec. Z.100 (11/2007) 123

<argument> ::=
 [<argument virtuality>] <formal parameter>

<formal parameter> ::=
 <parameter kind> <sort>

<argument virtuality> ::=
 virtual

<result> ::=
 <result sign> <sort>

In an Operation-signature, each Sort-reference-identifier in Formal-argument is represented by an argument <sort>,
and the Result is represented by the result <sort>. A <sort> in an <argument> that contains <argument virtuality>
represents a Virtual-argument, otherwise the <sort> of the <argument> represents a Nonvirtual-argument.

The Operation-name is unique within the defining scope unit in the abstract syntax even though the corresponding
<operation name> may not be unique. The unique Operation-name is derived from:
a) the <operation name>; plus
b) the (possible empty) list of argument sort identifiers; plus
c) the result sort identifier; plus
d) the sort identifier of the data type definition in which the <operation name> is defined.

<quoted operation name> allows for operator and method names that have special syntactic forms. The special syntax is
introduced so that, for example, arithmetic operations and Boolean operations can have their usual syntactic form. That
is, the user can write "(1 + 1) = 2" rather than having to use, for example, equal(add(1,1),2).

If <operation signature> is contained in an <operator list>, then the <operation signature> represents a Static-operation-
signature, and the <operation signature> must not contain <virtuality> or <argument virtuality>.

If <operation signature> is contained in a <method list> and <virtuality> is not present, then the <operation signature>
represents a Static-operation-signature and none of the <argument>s should contain <argument virtuality>.

If <operation signature> is contained in a <method list> and <virtuality> is present, then the <operation signature>
represents a Dynamic-operation-signature. In this case, a set of Dynamic-operation-signatures is formed consisting of
the Dynamic-operation-signature represented by the <operation signature> and any element in the signature set of the
matching method in the supertype with an Operation-name derived from the same <operation name> taking renaming
into account, and such that the Operation-signature is sort compatible with the Operation-signature in the supertype, if
any.

This set must be closed in the following sense: for any two Operation-signatures Si and Sj in the set of Operation-
signatures, the unique Operation-signature S such that:
a) S is sort compatible with Si and Sj; and
b) for any Operation-signature Sk that is sort compatible with both Si and Sj, Sk is also sort compatible with S,

is also in the set of Dynamic-operation-signatures.

This condition ensures that the set of Dynamic-operation-signatures forms a lattice and guarantees that a unique best
matching Operation-signature can be found when interpreting an operation application (see 12.2.7). If the set of
Dynamic-operation-signatures does not satisfy this condition, the <sdl specification> is invalid.
NOTE − Specialization of a type may require that additional Operation-signatures be added to the <method list> to
satisfy this condition.

<result> in <operation signature> may be omitted only if the <operation signature> occurred in a <method list>.

<argument virtuality> is legal only if <virtuality> contained the keywords virtual or redefined.

Semantics

The quoted forms of infix or monadic operators or methods are valid names for operators or methods.

An operator or method has a result sort, which is the sort identified by the result.

Model

If <operation signature> is contained in a <method list>, this is derived syntax and is transformed as follows: an
<argument> is constructed from the keyword virtual, if <virtuality> was present, the <parameter kind> in/out, and the
<sort identifier> of the sort being defined by the enclosing <data type definition>. If there are no <arguments>, then

124 ITU-T Rec. Z.100 (11/2007)

<arguments> is formed from the constructed <argument> and inserted into the <operation signature>. If there are
<arguments>, the constructed <argument> is added to the start of the original list of <argument>s in the <arguments>.

If the <sort> of an <argument> is an <anchored sort>, the <argument> implicitly contains <argument virtuality>. If an
<operation signature> contains the keywords redefined in <virtuality>, for every <argument> in the matching
<operation signature> of the base type, if this <argument> (implicitly or explicitly) contains <argument virtuality>, then
the corresponding <argument> in <operation signature> implicitly also contains <argument virtuality>.

An <argument> without an explicit <parameter kind> has the implicit <parameter kind> in.

12.1.5 Any
Every value or object type is (directly or indirectly) a subtype of the abstract object type Any. When a variable is
declared to be of sort Any, data items belonging to any value or object sort may be assigned to that variable.

Concrete grammar

The data type Any can be qualified by package Predefined.

Semantics

Any is implicitly defined by the following <data type definition>, where Boolean is the predefined Boolean sort:
 abstract object type Any
 operators
 equal (this Any, this Any) -> Boolean;
 clone (this Any) -> this Any;
 methods
 virtual is_equal (this Any) -> Boolean;
 virtual copy (this Any) -> this Any;
 endobject type Any;
NOTE 1 − Because all data type constructors implicitly redefine the virtual methods of the data type Any, these
methods cannot be explicitly redefined in a <data type definition>.

In addition, each <object data type definition> introducing a sort named S implies Operation-signatures equivalent to
including the explicit definition in the following <operation signature>s in the <operator list>:
 Null -> this S;
 Make -> this S;

The operators and methods defined by Any are available to any value or object data type.

Each <object data type definition> adds a unique data item denoting a reference that has not yet been associated with a
value. The operator Null returns this data item. Any attempt to obtain an associated value from the object returned by
Null will raise the predefined exception InvalidReference (see D.3.16).

The operator Make introduced by an <object data type definition> creates a new, uninitialized element of the
<result sort> of the Make operator. Each <object data type definition> provides an appropriate definition for the Make
operator.

The operator equal compares two values for equality (when defined by a value type), or compares two values
referenced by objects for equality (when defined by an object type). Let X and Y be the results of its actual parameter
Expressions, then:
a) if either X or Y is Null, the result is the predefined Boolean value true if both are Null, and the predefined

Boolean value false if only one is Null; otherwise
b) if the dynamic sort of Y is not sort compatible with the dynamic sort of X, the result is the predefined Boolean

value false; otherwise
c) the result is obtained by interpreting x.is_equal(y), where x and y represent X and Y, respectively.

The operator clone creates a new data item belonging to the sort of its actual parameter and initializes the newly created
data item by applying copy to that data item, given the original actual parameter. After applying clone, the newly
created data item is equal to the actual parameter. Let Y be the result of its actual parameter Expression, then the
operator clone is defined as:
a) if Y is Null, the result is Null; otherwise
b) if the sort of X is a value sort, let X be an arbitrary element of the sort of X. The result is obtained by

interpreting x.copy(y), where x and y represent X and Y, respectively.

The method is_equal compares this to the actual parameter, component by component, if there are any. If the sort of the

 ITU-T Rec. Z.100 (11/2007) 125

actual parameter is not sort compatible to the sort of this, or this or the actual parameter is Null, the exception
InvalidReference is raised.

Data type definitions may redefine is_equal to account for differences in the semantics of their corresponding sorts. The
type constructors will implicitly redefine is_equal as follows. Let X and Y be the results of its actual parameter
Expressions, then:
a) if the sort of X has been constructed by a <literal list>, then the result is the predefined Boolean value true if

X and Y have the same value for a value data type, or reference the same value for an object data type;
b) if the sort of X has been constructed by a <structure definition>, then the result is the predefined Boolean

value true if, for every component of X, this component is equal to the corresponding component of Y as
determined by interpreting an Equality-expression with these components as the operands, omitting those
components of X and Y that have been defined as optional and which are not present. The method is_equal is
able to return the predefined Boolean value true only if this field is absent in corresponding components of
both Y and X, otherwise the predefined Boolean value false is returned.

The method copy copies the actual parameter onto this, component by component, if there are any. Each data type
constructor adds a method that redefines copy. In general, neither this nor the actual parameter must be Null, and the
sort of the actual parameter must be sort compatible with the sort of this. Every redefinition of copy must satisfy the
post-condition that after application of the copy method, this is_equal to the actual parameter. The method copy returns
this.

Data type definitions may redefine copy to account for differences in the semantics of their corresponding sorts. The
type constructors will automatically redefine copy as follows. Let X and Y be the results of its actual parameter
Expressions, then:
a) if the sort of X has been constructed by a <literal list>, Y is copied onto X;
b) if the sort of X has been constructed by a <structure definition>, for every component of X, the corresponding

component of Y is copied onto that component of X by interpreting xc.Modify(yc) − where xc represents the
component of X, Modify is the field modify method for this component, and yc represents the corresponding
component of Y, omitting those components of X and Y that have been defined as optional and which are not
present.

NOTE 2 − The interpretation of the Modify method involves an assignment of the actual parameter to the formal
parameter and, consequently, a recursive call to the copy method (see 12.3.3).

Model

If a <data type definition> does not contain a <data type specialization>, this is a shorthand notation for a <data type
definition> with a <data type specialization>
 inherits Any;

12.1.6 Pid and pid sorts
Every interface is (directly or indirectly) a subtype of the interface Pid. When a variable is declared to be of sort Pid,
data items belonging to any pid sort may be assigned to that variable.

Concrete grammar

The data type Pid can be qualified by package Predefined.

Semantics

The sort Pid contains a single data item denoted by the literal Null. Null represents a reference that is not associated
with any agent.

An Interface-definition represented by an <interface definition> without an <interface specialization> contains only a
Data-type-identifier denoting the interface Pid.

An element of a pid sort introduced by an interface implicitly defined by an agent definition is associated with a
reference to the agent by the interpretation of a Create-request-node (see 11.13.2).

Each interface adds a compatibility check operation that, given a signal, will determine whether either:
a) the signal is defined or used in the interface; or
b) the compatibility check is satisfied for a pid sort defined by an interface contained in its

<interface specialization>.

If this is not fulfilled, then the predefined exception InvalidReference (see D.3.16) shall be raised. The compatibility
check is defined similarly for remote variables (see 10.6) and remote procedures (see 10.5).

126 ITU-T Rec. Z.100 (11/2007)

NOTE − A pid sort can be polymorphically assigned (see 12.3.3).

12.1.7 Data type constructors
Data type constructors specify the contents of the sort of a data type, either by enumerating the elements that constitute
the sort or by collecting all data items that can be obtained by constructing a tuple from elements of given sorts.

Concrete grammar

<data type constructor> ::=
 <literal list>
 | <structure definition>
 | <choice definition>

12.1.7.1 Literals
The literal data type constructor specifies the contents of the sort of a data type by enumerating the (possibly infinitely
many) elements of the sort. The literal data type constructor implicitly defines operations that allow comparison
between the elements of the sort. The elements of a literal sort are called literals.

Abstract grammar

Literal-signature :: Literal-name
 Result
Literal-name = Name

Concrete grammar

<literal list> ::=
 [<visibility>] literals <literal signature> { , <literal signature> }* <end>

<literal signature> ::=
 <literal name>
 | <name class literal>
 | <named number>

<literal name> ::=
 <literal name>
 | <string name>

<named number> ::=
 <literal name> <equals sign> <Natural simple expression>

In a Literal-signature, the Result is the sort introduced by the <data type definition> defining the <literal signature>.

The Literal-name is unique within the defining scope unit in the abstract syntax even though the corresponding
<literal name> may not be unique. The unique Literal-name is derived from:
a) the <literal name>; plus
b) the sort identifier of the data type definition in which the <literal name> is defined.
NOTE − A <string name> is one of the lexical units <character string>, <bit string>, and <hex string>.

Each result of <Natural simple expression> occurring in a <named number> must be unique among all
<literal signature>s in the <literal list>.

Semantics

A <literal list> defines a sort by enumerating all the elements of the set. Each element in the sort is represented by a
Literal-signature.

Literals formed from <character string> are used for the predefined data sorts Charstring (see D.3.4) and Character (see
 D.3.2). They also have a special relationship with <regular expression>s (see 12.1.9.1). Literals formed from
<bit string> and <hex string> are also used for the predefined data sort Integer (see D.3.5). These literals may also be
defined to have other uses.

A <literal list> redefines the operations (directly or indirectly) inherited from Any as described in 12.1.5.

The meaning of <visibility> in <literal list> is explained in 12.1.9.3.

 ITU-T Rec. Z.100 (11/2007) 127

Model

A <literal name> in a <literal list> is derived syntax for a <named number> containing the <literal name> and
containing a <Natural simple expression> denoting the lowest possible non-negative Natural value not occurring in any
other <literal signature>s of the <literal list>. The replacement of <literal name>s by the <named number>s takes place
one by one from left to right.

A literal list is derived syntax for the definition of operators that establish an ordering of the elements in the sort defined
by the <literal list>:
a) operators that compare two data items with respect to the established ordering;
b) operators that return the first, last, next, or previous data item in the ordering; and
c) an operator that gives the position of each data item in the ordering.

A <data type definition> introducing a sort named S by a <literal list> implies a set of Static-operation-signatures
equivalent to the explicit definitions in the following <operator list>:
 "<" (this S, this S) -> Boolean;
 ">" (this S, this S) -> Boolean;
 "<=" (this S, this S) -> Boolean;
 ">=" (this S, this S) -> Boolean;
 first -> this S;
 last -> this S;
 succ (this S) -> this S;
 pred (this S) -> this S;
 num (this S) -> Natural;
where Boolean is the predefined Boolean sort and Natural is the predefined Natural sort.

The <literal signature>s in a <data type definition> are nominated in ascending order of the
<Natural simple expression>s. For example,
 literals C = 3, A, B;

implies A<B and B<C.

The comparison operators "<" (">","<=",">=") represent the standard less-than (greater-than, less-or-equal-than, and
greater-or-equal-than) comparison between the <Natural simple expression>s of two literals. The operator first returns
the first data item in the ordering (the literal with the lowest <Natural simple expression>). The operator last returns the
last data item in the ordering (the literal with the highest <Natural simple expression>). The operator pred returns the
preceding data item, if one exists, or the last data item, otherwise. The operator succ returns the successor data item in
the ordering, if one exists, or the first data item, otherwise. The operator num returns the Natural value corresponding to
the <Natural simple expression> of the literal.

If <literal signature> is a <regular expression>, this is shorthand for enumerating a (possibly infinite) set of
<literal name>s as described in 12.1.9.1.

12.1.7.2 Structure data types
The structure data type constructor specifies the contents of a sort by forming the Cartesian product of a set of given
sorts. The elements of a structure sort are called structures. The structure data type constructor implicitly defines
operations that construct structures from the elements of the component sorts, projection operations to access the
component elements of a structure, as well as operations to update the component elements of a structure.

Concrete grammar

<structure definition> ::=
 [<visibility>] struct [<field list>] <end>

<field list> ::=
 <field> { <end> <field> }*

<field> ::=
 <fields of sort>
 | <fields of sort> optional
 | <fields of sort> <field default initialization>

<fields of sort> ::=
 [<visibility>] <field name> { , <field name> }* <field sort>

<field default initialization> ::=
 default <constant expression>

128 ITU-T Rec. Z.100 (11/2007)

<field sort> ::=
 <sort>

Each <field name> of a structure sort must be different from every other <field name> of the same
<structure definition>.

Semantics

A <structure definition> defines a structure sort whose elements are all the tuples that can be constructed from data
items belonging to the sorts given in <field list>. An element of a structure sort has as many component elements as
there are <field>s in the <field list>, although a field may not be associated with a data item, if the corresponding
<field> had been declared with the keyword optional, or has not yet been initialized.

A <structure definition> redefines the operations (directly or indirectly) inherited from Any as described in 12.1.5.

The meaning of <visibility> in <fields of sort> and <structure definition> is explained in 12.1.9.3.

Model

A <field list> containing a <field> with a list of <field name>s in a <fields of sort> is derived concrete syntax where
this <field> is replaced by a list of <field>s separated by <end>, such that each <field> in this list resulted from copying
the original <field> and substituting one <field name> for the list of <field name>s, in turn for each <field name> in the
list.

A structure definition is derived syntax for the definition of:
a) an operator, Make to create structures;
b) methods to modify structures and to access component data items of structures; and
c) methods to test for the presence of optional component data items in structures.

The <arguments> for the Make operator contain the list of <field sort>s occurring in the field list in the order in which
they occur. The result <sort> for the Make operator is the sort identifier of the structure sort. The Make operator creates
a new structure and associates each field with the result of the corresponding formal parameter. If the actual parameter
was omitted in the application of the Make operator, the corresponding field gets no value; that is, it becomes
"undefined".

A <structure definition> introducing a sort named S implies a set of Dynamic-operation-signatures equivalent to the
explicit definitions in the following <method list>, for each <field> in its <field list>:
 virtual field-modify-operation-name (<field sort>) -> this S;
 virtual field-extract-operation-name -> <field sort>;
 field-presence-operation-name -> Boolean;

where Boolean is the predefined Boolean sort, and <field sort> is the sort of the field.

The name of the implied method to modify a field, field-modify-operation-name, is the field name concatenated with
"Modify". The implied method to modify a field associates the field with the result of its argument Expression. When
<field sort> is an <anchored sort>, this association takes place only if the dynamic sort of the argument Expression is
sort compatible with the <field sort> of this field. Otherwise, the predefined exception UndefinedField (see D.3.16) is
raised.

The name of the implied method to access a field, field-extract-operation-name, is the field name concatenated with
"Extract". The method to access a field returns the data item associated with that field. If, during interpretation, a field
of a structure is "undefined", then applying the method to access this field to the structure leads to the raise of the
predefined exception UndefinedField.

The name of the implied method to test for the presence of a field data item, field-presence-operation-name, is the field
name concatenated with "Present". The method to test for the presence of a field data item returns the predefined
Boolean value false if this field is "undefined", and the predefined Boolean value true otherwise. A method to test for
the presence of a field data item is only defined if this <field> contained the keyword optional.

If a <field> is defined with a <field default initialization>, this is derived syntax for the definition of this <field> as
optional. When a structure of this sort is created and no actual argument is provided for the default field, an immediate
modification of the field by the associated <constant expression> after structure creation is added.

12.1.7.3 Choice data types
A choice data type constructor is a shorthand notation for defining a structure type with all components optional, and
ensuring that every structure data item will always have exactly one component data item present. The choice data type
thus simulates a sort that is a disjoint sum of the elements of the component sorts.

 ITU-T Rec. Z.100 (11/2007) 129

Concrete grammar

<choice definition> ::=
 [<visibility>] choice [<choice list>] <end>

<choice list> ::=
 <choice of sort> { <end> <choice of sort> }*

<choice of sort> ::=
 [<visibility>] <field name> <field sort>

Each <field name> of a choice sort must be different from every other <field name> of the same <choice definition>.

Semantics

A <choice definition> redefines the operations (directly or indirectly) inherited from Any as described in 12.1.5.

The meaning of <visibility> in <choice of sort> and <choice definition> is explained in 12.1.9.3.

Model

A data type definition containing a <choice definition> is derived syntax and transformed in the following steps: let
Choice-name be the <data type name> of the original data type definition, then:
a) A <value data type definition> with an anonymous name, anon, and a <structure definition> as the type

constructor is added. In the <value data type definition>, for each <choice of sort>, a <field> is constructed
containing the equivalent <fields of sort> with the keyword optional.

b) A <value data type definition> with an anonymous name, anonPresent, is added with a <literal list>
containing all the <field name>s in the <choice list> as <literal name>s. The order of the literals is the same
as the order in which the <field name>s were specified.

c) A <data type definition> with an anonymous name, anonChoice, is constructed as follows:
 object type anonChoice
 struct
 protected Present anonPresent;
 protected Choice anon;
 endobject type anonChoice;
 if the original data type definition had defined an object sort. Otherwise, the <data type definition> is a

<value data type definition>.
d) A <data type definition> is constructed as follows:
 object type Choice-name inherits anonChoice (anonMake = Make,
 anonPresentModify = PresentModify,
 anonPresentExtract = PresentExtract,
 anonChoiceModify = ChoiceModify,
 anonChoiceExtract = ChoiceExtract)
 adding
 operations
 endobject type Choice-name;
 if the original data type definition had defined an object type, and where operations is <operations>, as

defined below. Otherwise, the <data type definition> is a <value data type definition> of the same form but
with the keyword value and endvalue (instead of object and endobject). The <renaming> renames the
mentioned operations inherited from anonChoice to anonymous names.

e) For each <choice of sort>, an <operation signature> is added to the <operator list> of operations representing
an implied operator for creating data items:

 field-name (field-sort) -> Choice-name;
 where field-name is the <field name> and field-sort is the <field sort> in <choice of sort>. The implied

operator for creating data items creates a new structure by calling anonMake, initializing the field Choice with
a newly created structure initialized with <field name>, and assigning the literal corresponding to the
<field name> to the field Present.

f) For each <choice of sort>, <operation signature>s are added to the <method list> of operations representing
implied methods for modifying and accessing data items:

 virtual field-modify (field-sort) -> Choice-name;
 virtual field-extract -> field-sort;
 field-present -> Boolean;

130 ITU-T Rec. Z.100 (11/2007)

 where field-extract is the name of the method implied by anon to access the corresponding field, field-modify
is the name of the method implied by anon to modify that field, and field-present is the name of the method
implied by anon to test for the presence of a field data item. Calls to field-extract and field-present are
forwarded to Choice. Calls to field-modify assign a newly created structure initialized with <field name> to
Choice and assign the literal corresponding to the <field name> to Present.

g) An <operation signature> is added to the <operator list> of operations representing an implied operator for
obtaining the sort of the data item currently present in Choice:

 PresentExtract (Choice-name) -> anonPresent;
 PresentExtract returns the value associated with the Present field.

12.1.8 Behaviour of operations
A <data type definition> allows operations to be added to a data type. The behaviour of operations can be defined in a
manner similar to value returning procedure calls. However, the operations of a data type must not access or change the
global state of the input queues of the agents in which they are called. They therefore only contain a single transition.

Concrete grammar

<operation definitions> ::=
 { <operation definition>
 | <operation reference>
 | <external operation definition> }*

<operation definition> ::=
 {<package use clause>}*
 <operation heading>
 [<end> <entity in operation>+]
 [<comment body>] <left curly bracket>
 <statement list>
 <right curly bracket>

<operation heading> ::=
 { operator | method } <operation preamble> [<qualifier>] <operation name>
 [<formal operation parameters>]
 [<operation result>] [<raises>]
NOTE 1 – <operation preamble> is placed after the keyword operator or method to avoid ambiguity with the optional
<operation signatures> which can also start with an <operation preamble>. The initial keyword of <operation
definitions> is never the same as the initial keyword of an <operation signature>.

<operation identifier> ::=
 [<qualifier>] <operation name>

<formal operation parameters> ::=
 (<operation parameters> {, <operation parameters> }*)

<operation parameters> ::=
 [<argument virtuality>] <parameter kind> <variable name> {, <variable name>}* <sort>

<entity in operation> ::=
 <data definition>
 | <variable definition>
 | <exception definition>
 | <select definition>
 | <macro definition>

<operation result> ::=
 <result sign> [<variable name>] <sort>

<external operation definition> ::=
 { operator | method } <operation signature> external <end>

<arguments> and <result> in <external operation definition> may be omitted if there is no other
<external operation definition> within the same sort which has the same name, and an <operation signature> is present.
In this case, the <arguments> and the <result> are derived from the <operation signature>.

For each <operation signature>, at most one corresponding <operation definition> can be given.

 ITU-T Rec. Z.100 (11/2007) 131

The <statement>s in <operation definition> may contain neither an <imperative expression> nor an <identifier> defined
outside the enclosing <operation definition> or <operation diagram> respectively, except for <synonym identifier>s,
<operation identifier>s, <literal identifier>s and <sort>s.

If an exception can be raised in an operation when no exception handler is active with the corresponding on-exception
clause (that is, it is not handled), <raises> must mention this exception. An exception is considered as not handled in an
operation if there is a potential control flow inside the operation producing that exception, and none of the exception
handlers activated in this control flow handle the exception.

The list of <variable name>s is considered to bind tighter than the list of <operation parameters> within
<formal operation parameters>.

<operation diagram> ::=
 <frame symbol> contains {
 <operation heading>
 { <operation text area>* <operation body area> }set }
 [is associated with <package use area>]

<operation body area> ::=
 { [<on exception association area>] [<procedure start area>]
 { <in connector area> | <exception handler area> }* } set

<operation text area> ::=
 <text symbol> contains
 { <data definition>
 | <variable definition>
 | <macro definition>
 | <exception definition>
 | <select definition> }*

The <package use area> must be placed on the top of the <frame symbol>.

The <start area> in <operation diagram> must not contain <virtuality>.

For each <operation signature>, at most one corresponding <operation diagram> can be given.

<operation body area> as well as the <statement>s in <operation definition> may contain neither an
<imperative expression> nor an <identifier> defined outside the enclosing <operation definition> or
<operation diagram> respectively, except for <synonym identifier>s, <operation identifier>s, <literal identifier>s and
<sort>s.

Semantics

An operator is a constructor for elements of the sort identified by the result. It must always return either a value, or a
newly constructed object. In contrast, a method may return an existing object.

An operator must not modify objects that are reachable by following references from the actual parameters or the actual
parameters themselves. An object is considered modified in an operator if there is a potential control flow inside the
operator resulting in that modification.

An operation definition is a scope unit defining its own data and variables that can be manipulated inside the
<operation body area>.

If the <operation heading> begins with the keyword operator, then <operation definition> defines the behaviour of an
operator. If the <operation heading> begins with the keyword method, then <operation definition> defines the
behaviour of a method.

Variables introduced in <formal operation parameters> are local variables of the operator or method, and can be
modified within <operation body area>.

An <external operation definition> is an operator or method whose behaviour is not included in the SDL description
(see clause 13).

Model

For every <operation definition> or <operation diagram> which does not have a corresponding <operation signature>,
an <operation signature> is constructed.

An <operation definition> or <operation diagram> is transformed into a <procedure definition> or
<procedure diagram> (with a <procedure reference> to the diagram) respectively in the enclosing context of the directly
enclosing <data definition> for the data type. The <procedure definition> or <procedure diagram> has a <procedure

132 ITU-T Rec. Z.100 (11/2007)

name> derived from the <operation name>, <procedure formal parameters> derived from the
<formal operation parameters>, and a <result> derived from the <operation result>. In the case of an <operation
diagram>, the <procedure body area> is derived from the <operation body area>. The <procedure name> derived from
the <operation name> is not known directly in the concrete grammar, therefore the procedure can only be called by the
invocation of the operation. When an <operation definition> is transformed, the <operation definition> is removed and
the <procedure definition> is placed after the <data definition> for the data type. When an <operation diagram> is
transformed, the <procedure diagram> replaces the <operation diagram>. A <procedure reference> that references the
<procedure diagram> is placed after the <data definition> for the data type.
NOTE 2 − The <data definition> for the data type is a <data type definition>, or a <syntype definition> that is a
shorthand for introducing a <data type definition> with an anonymous name (see 12.1.9.4 Model).

The Procedure-definition corresponding to the resultant <procedure definition> or <procedure diagram> is associated
with the Operation-signature represented by the <operation signature>.

If the <operation definition> or <operation diagram> defines a method, then during the transformation into a
<procedure definition> or <procedure diagram> an initial parameter with <parameter kind> in/out is inserted into
<formal operation parameters>, with the argument <sort> being the sort that is defined by the <data type definition>
that constitutes the scope unit in which the <operation definition> occurs. The <variable name> in
<formal operation parameters> for this inserted parameter is a newly formed anonymous name.

NOTE 3 − It is not possible to specify an <operation definition> for a <literal signature>.

If any <operation definition> or <operation diagram> contains informal text, then the interpretation of expressions
involving the application of the corresponding operator or method is not formally defined by SDL but may be
determined from the informal text by the interpreter. If informal text is specified, a complete formal specification has
not been given in SDL.

12.1.9 Additional data definition constructs
This subclause introduces further constructs that may be used for data.

12.1.9.1 Name class
A name class is shorthand for writing a (possibly infinite) set of literal names or operator names defined by a regular
expression.

A <name class literal> is an alternative way of specifying a <literal name>. A <name class operation> is an alternative
way of specifying an <operation name> of a nullary operation.

Concrete grammar

<name class literal> ::=
 nameclass <regular expression>

<name class operation> ::=
 <operation name> in nameclass <regular expression>

<regular expression> ::=
 <partial regular expression> { [or] <partial regular expression> }*

<partial regular expression> ::=
 <regular element> [<Natural literal name> | <plus sign> | <asterisk>]

<regular element> ::=
 (<regular expression>)
 | <character string>
 | <regular interval>

<regular interval> ::=
 <character string> { <colon> | <range sign> } <character string>

The names formed by the <regular expression> must satisfy either the lexical rules for names or <character string>,
<hex string>, or <bit string> (see 6.1).

The <character string>s in a <regular interval> must both have a length of one, excluding the leading and trailing
<apostrophe>s.

A <name class operation> can only be used in an <operation signature>. An <operation signature> containing
<name class operation> must only occur in an <operator list> and must not contain <arguments>.

 ITU-T Rec. Z.100 (11/2007) 133

When a name contained in the equivalent set of names of a <name class operation> occurs as the <operation name> in
an <operation application>, it must not have <actual parameters>.

The equivalent set of names of a name class is defined as the set of names that satisfy the syntax specified by the
<regular expression>. The equivalent sets of names for the <regular expression>s contained in a <data type definition>
must not overlap.

Model

A <name class literal> is equivalent to this set of names in the abstract syntax. When a <name class operation> is used
in an <operation signature>, a set of <operation signature>s is created by substituting each name in the equivalent set of
names for the <name class operation> in the <operation signature>.

A <regular expression> which is a list of <partial regular expression>s without an or specifies that the names can be
formed from the characters defined by the first <partial regular expression> followed by the characters defined by the
second <partial regular expression>.

When an or is specified between two <partial regular expression>s, then the names are formed from either the first or
the second of these <partial regular expression>s. or is more tightly binding than simple sequencing.

If a <regular element> is followed by <Natural literal name>, the <partial regular expression> is equivalent to the
<regular element> being repeated the number of times specified by the <Natural literal name>.

If a <regular element> is followed by '*' the <partial regular expression> is equivalent to the <regular element> being
repeated zero or more times.

If a <regular element> is followed by <plus sign> the <partial regular expression> is equivalent to the
<regular element> being repeated one or more times.

A <regular element> which is a bracketed <regular expression> defines the character sequences defined by the
<regular expression>.

A <regular element> which is a <character string> defines the character sequence given in the character string (omitting
the quotes).

A <regular element> which is a <regular interval> defines all the characters specified by the <regular interval> as
alternative character sequences. The characters defined by the <regular interval> are all the characters greater than or
equal to the first character and less than or equal to the second character according to the definition of the Character sort
(see D.2).

The names generated by a <name class literal> are defined first by length (a shorter literal comes before any longer
ones) then in lexicographical order according to the ordering of the character sort. The characters are considered case
sensitive.
NOTE − Examples can be found in Annex D.

12.1.9.2 Name class mapping
A name class mapping is shorthand for defining a (possibly infinite) number of operation definitions ranging over all
the names in a <name class operation>. The name class mapping allows behaviour to be defined for the operators and
methods defined by a <name class operation>. A name class mapping takes place when an <operation name> that
occurred in a <name class operation> within an <operation signature> of the enclosing <data type definition> is used in
<operation definitions> or <operation diagram>s.

A spelling term in a name class mapping refers to the character string that contains the spelling of the name. This
mechanism allows the Charstring operations to be used to define name class mappings.

Concrete grammar

<spelling term> ::=
 spelling (<operation name>)

A <spelling term> is legal concrete syntax only within an <operation definition> or <operation diagram>, if a name
class mapping has taken place.

Model

A name class mapping is shorthand for a set of <operation definition>s or a set of <operation diagram>s. The set of
<operation definition>s is derived from an <operation definition> by substituting each name in the equivalent set of
names of the corresponding <name class operation> for each occurrence of <operation name> in the <operation
definition>. The derived set of <operation definition>s contains all possible <operation definition>s that can be
generated in this way. The same procedure is followed for deriving a set of <operation diagram>s.

134 ITU-T Rec. Z.100 (11/2007)

The derived <operation definition>s and <operation diagram>s are considered legal even though a <string name> is not
allowed as an <operation name> in the concrete syntax.

The derived <operation definition>s are added to <operation definitions> (if any) in the same <data type definition>.
The derived <operation diagram>s are added to the list of diagrams where the original <operation definition> had
occurred.

If an <operation definition> or <operation diagram> contains one or more <spelling term>s, each <spelling term> is
replaced with a Charstring literal (see D.3.4).

If, during the above transformation, the <operation name> in the <spelling term> had been replaced by an
<operation name>, the <spelling term> is shorthand for a Charstring derived from the <operation name>. The
Charstring contains the spelling of the <operation name>.

If, during the above transformation, the <operation name> in the <spelling term> had been replaced by a
<string name>, the <spelling term> is shorthand for a Charstring derived from the <string name>. The Charstring
contains the spelling of the <string name>.

12.1.9.3 Restricted visibility
Concrete grammar

<visibility> ::=
 public | protected | private

<visibility> must not precede a <literal list>, <structure definition>, or <choice definition> in a <data type definition>
containing <data type specialization>. <visibility> must not be used in an <operation signature> that redefines an
inherited operation signature.

Semantics

<visibility> controls visibility of a literal name or operation name.

When a <literal list> is preceded by <visibility>, this <visibility> applies to all <literal signature>s. When a
<structure definition> or <choice definition> is preceded by <visibility>, then this <visibility> applies to all implied
<operation signatures>.

When a <fields of sort> or <choice of sort> is preceded by a <visibility>, this <visibility> applies to all implied
<operation signatures>.

If a <literal signature> or <operation signature> contains the keyword private in <visibility>, then the Operation-name
derived from this <operation signature> is only visible within the scope of the <data type definition> that contains the
<operation signature>. When a <data type definition> containing such <operation signature> is specialized, the
<operation name> in <operation signature> is implicitly renamed to an anonymous name. Every occurrence of this
<operation name> within the <operation definitions> or <operation diagram>s corresponding to this
<operation signature> is renamed to the same anonymous name, when the <operation signature> and the corresponding
operation definition are inherited by specialization.
NOTE 1 − As a consequence, the operator or method defined by this <operation signature> can only be used in
operation applications within the data type definition that originally defined this <operation signature>, but not in any
subtype thereof.

If a <literal signature> or <operation signature> contains the keyword protected in <visibility>, then the Operation-
name derived from this <operation signature> is only visible within the scope of the <data type definition> that contains
the <operation signature>.
NOTE 2 − Because inherited operators and methods are copied into the body of the subtype, the operator or method
defined by this <operation signature> can be accessed within the scope of any <data type definition> that is a subtype of
the <data type definition> that originally defined this <operation signature>.
NOTE 3 − If a <literal signature> or <operation signature> does not contain <visibility>, the Operation-name derived
from this <operation signature> is visible everywhere where the <sort name> that is defined in the enclosing <data type
definition> is visible.

Model

If a <literal signature> or <operation signature> contains the keyword public in <visibility>, this is derived syntax for a
signature having no protection.

 ITU-T Rec. Z.100 (11/2007) 135

12.1.9.4 Syntypes
A syntype specifies a subset of the elements of a sort. A syntype used as a sort has the same semantics as the sort
referenced by the syntype except for checks that data items belong to the specified subset of the elements of the sort.

Abstract grammar

Syntype-identifier = Identifier
Syntype-definition :: Syntype-name
 Parent-sort-identifier
 Range-condition
Syntype-name = Name
Parent-sort-identifier = Sort-identifier

Concrete grammar

<syntype> ::=
 <syntype identifier>

<syntype definition> ::=
 {<package use clause>}*
 syntype <syntype name> <equals sign> <parent sort identifier>
 [<comment body>] <left curly bracket>
 [{ <default initialization> [[<end>] <constraint>] | <constraint> } <end>]
 <right curly bracket>
 | {<package use clause>}*
 <type preamble> <data type heading> [<data type specialization>]
 [<comment body>] <left curly bracket>
 <data type definition body> <constraint> <end>
 <right curly bracket>

<parent sort identifier> ::=
 <sort>

A <syntype> is an alternative for a <sort>.

A <syntype definition> with the keywords value type or object type is derived syntax defined below.

A <syntype definition> with the keyword syntype in the concrete syntax corresponds to a Syntype-definition in the
abstract syntax.

When a <syntype identifier> is used as a <sort> in <arguments> when defining an operation, the sort for the
corresponding Formal-arguments is the Parent-sort-identifier of the syntype.

When a <syntype identifier> is used as a result of an operation, the sort of the Result is the Parent-sort-identifier of the
syntype.

When a <syntype identifier> is used as a qualifier for a name, the Qualifier is the Parent-sort-identifier of the syntype.

If the keyword syntype is used and the <constraint> is omitted, then the <syntype identifier>s for the syntype are in the
Abstract grammar represented as the Parent-sort-identifier.

If a <constraint> could be interpreted as either belonging to the <default initialization> or the <syntype definition>, it
shall be considered part of the <default initialization>.

Semantics

A syntype definition defines a syntype, which references a sort identifier and a constraint. Specifying a syntype
identifier is the same as specifying the parent sort identifier of the syntype, except for the following cases:
a) assignment to a variable declared with a syntype (see 12.3.3);
b) output of a signal if one of the sorts specified for the signal is a syntype (see 10.3 and 11.13.4);
c) calling a procedure when one of the sorts specified for the procedure in parameter variables is a syntype

(see 9.4 and 11.13.3);
d) creating an agent when one of the sorts specified for the agent parameters is a syntype (see 9.3 and 10.3);
e) input of a signal and one of the variables which is associated with the input has a sort which is a syntype (see

 11.3);
f) calling an operation application that has a syntype defined as either an argument sort or a result sort (see

 12.2.7);

136 ITU-T Rec. Z.100 (11/2007)

g) set or reset clause or active expression on a timer and one of the sorts in the timer definition is a syntype (see
 11.15 and 12.3.4.4);

h) remote variable or remote procedure definition if one of the sorts for derivation of implicit signals is a syntype
(see 10.5 and 10.6);

i) procedure formal context parameter with an in/out or out parameter in <procedure signature> matched with
an actual context parameter where the corresponding formal parameter or the in/out or out parameter in the
<procedure signature> is a syntype;

j) <any expression>, where the result will be within the range (see 12.3.4.5);
k) raise of an exception if one of the sorts specified for the exception is a syntype (see 11.12.2.5).

When a syntype is specified in terms of <syntype identifier>, then the two syntypes must not be mutually defined.

A syntype has a sort which is the sort identified by the parent sort identifier given in the syntype definition.

A syntype has a Range-condition that constrains the sort. If a range condition is used, the sort is constrained to the set of
data items specified by the constants of the syntype definition. If a size constraint is used, the sort is constrained to
contain data items given by the size constraint.

Model

A <syntype definition> with the keywords value type or object type can be distinguished from a <data type definition>
by the inclusion of a <constraint>. Such a <syntype definition> is shorthand for introducing a <data type definition>
with an anonymous name followed by a <syntype definition> with the keyword syntype based on this anonymously
named sort and including <constraint>.

12.1.9.5 Constraint
Abstract grammar
Range-condition :: Condition-item-set
Condition-item = Open-range | Closed-range
Open-range :: Operation-identifier
 Constant-expression
Closed-range :: Open-range
 Open-range

Concrete grammar

<constraint> ::=
 constants (<range condition>)
 | <size constraint>

<range condition> ::=
 <range> { , <range> }*

<range> ::=
 <closed range>
 | <open range>

<closed range> ::=
 <constant> { <colon> | <range sign> } <constant>

<open range> ::=
 <constant>
 | { <equals sign>
 | <not equals sign>
 | <less than sign>
 | <greater than sign>
 | <less than or equals sign>
 | <greater than or equals sign> } <constant>

<size constraint> ::=
 size (<range condition>)

<constant> ::=
 <constant expression>

 ITU-T Rec. Z.100 (11/2007) 137

The symbol "<" must only be used in the concrete syntax of the <range condition> if that symbol has been defined with
an <operation signature>:
 "<" (P, P) -> <<package Predefined>>Boolean;
where P is the sort of the syntype, and similarly for the symbols ("<=", ">", ">=", respectively). These symbols
represent Operation-identifier.

A <closed range> must only be used if the symbol "<=" is defined with an <operation signature>:
 "<=" (P, P) -> <<package Predefined>>Boolean;
where P is the sort of the syntype.

A <constant expression> in a <range condition> must have the same sort as the sort of the syntype.

A <size constraint> must only be used in the concrete syntax of the <range condition> if the symbol Length has been
defined with an <operation signature>:
 Length (P) -> <<package Predefined>>Natural;
where P is the sort of the syntype.

Semantics

A constraint defines a range check. A range check is used when a syntype has additional semantics to the sort of the
syntype [see 12.3.1, 12.1.9.4 and the cases where syntypes have different semantics − see the subclauses referenced in
items a) to k) in 12.1.9.4, Semantics]. A range check is also used to determine the interpretation of a decision (see
 11.13.5).

The range check is the application of the operation formed from the range condition or size constraint. For syntype
range checks, the application of this operation must be equivalent to the predefined Boolean value true; otherwise, the
predefined exception OutOfRange (see D.3.16) is raised. The range check is derived as follows:
a) Each <open range> or <closed range> in the <range condition> has a corresponding Open-range (predefined

Boolean or) or Closed-range (predefined Boolean and) in the Condition-item.
b) An <open range> of the form <constant> is equivalent to an <open range> of the form = <constant>.
c) For a given expression, A, then:

1) an <open range> of the form = <constant>, /= <constant>, < <constant>, <less than or equals sign>
<constant>, > <constant>, and <greater than or equals sign> <constant>, has sub-expression in the range
check of the form A = <constant>, A /= <constant>, A < <constant>, A <less than or equals sign>
<constant>, A > <constant>, and A <greater than or equals sign> <constant> respectively;

2) a <closed range> of the form first <constant> : second <constant> has a sub-expression in the range
check of the form first <constant> <less than or equals sign> A and A <less than or equals sign> second
<constant> where and corresponds to the predefined Boolean and;

3) a <size constraint> has a sub-expression in the range check of the form Length(A) = <range condition>.
d) There is a predefined Boolean or operation for the distributed operation over all the data items in the

Condition-item-set. The range check is the expression formed from the predefined Boolean or of all the sub-
terms derived from the <range condition>.

If a syntype is specified without a <constraint> then the range check is the predefined Boolean value true.

12.1.9.6 Synonym definition
A synonym gives a name to a constant expression that represents one of the data items of a sort.

Concrete grammar

<synonym definition> ::=
 synonym <synonym definition item> { , <synonym definition item> }*<end>

<synonym definition item> ::=
 <internal synonym definition item>
 | <external synonym definition item>

<internal synonym definition item> ::=
 <synonym name> [<sort>] <equals sign> <constant expression>

<external synonym definition item> ::=
 <synonym name> <predefined sort> = external

The <constant expression> in the concrete syntax denotes a Constant-expression in the abstract syntax as defined in
 12.2.1.

138 ITU-T Rec. Z.100 (11/2007)

If a <sort> is specified, the result of the <constant expression> has a static sort of <sort>. It must be possible for
<constant expression> to have that sort.

If the sort of the <constant expression> cannot be uniquely determined, then a sort must be specified in the
<synonym definition>.

The <constant expression> must not refer to the synonym defined by the <synonym definition>, either directly or
indirectly (via another synonym).

An <external synonym definition item> defines a <synonym> whose result is not defined in a specification (see 13).

Semantics

The result that the synonym represents is determined by the context in which the synonym definition appears.

If the sort of the constant expression cannot be uniquely determined in the context of the synonym, then the sort is given
by the <sort>.

A synonym has a result, which is the result of the constant expression in the synonym definition.

A synonym has a sort, which is the sort of the constant expression in the synonym definition.

12.2 Passive use of data
The following subclauses define how sorts, literals, operators, methods and synonyms are interpreted in expressions.

12.2.1 Expressions
Abstract grammar

Expression = Constant-expression
 | Active-expression
Constant-expression = Literal
 | Conditional-expression
 | Equality-expression
 | Operation-application
 | Range-check-expression
Active-expression = Variable-access
 | Conditional-expression
 | Operation-application
 | Equality-expression
 | Imperative-expression
 | Range-check-expression
 | Value-returning-call-node
 | State-expression

Concrete grammar

For simplicity of description, no distinction is made between the concrete syntax of Constant-expression and Active-
expression.

<expression> ::=
 <expression0>
 | <range check expression>

<expression0> ::=
 <operand>
 | <create expression>
 | <value returning procedure call>

<operand> ::=
 <operand0>
 | <operand> <implies sign> <operand0>

<operand0> ::=
 <operand1>
 | <operand0> { or | xor } <operand1>

 ITU-T Rec. Z.100 (11/2007) 139

<operand1> ::=
 <operand2>
 | <operand1> and <operand2>

<operand2> ::=
 <operand3>
 | <operand2> { <greater than sign>
 | <greater than or equals sign>
 | <less than sign>
 | <less than or equals sign>
 | in } <operand3>
 | <equality expression>

<operand3> ::=
 <operand4>
 | <operand3> { <plus sign> | <hyphen> | <concatenation sign> } <operand4>

<operand4> ::=
 <operand5>
 | <operand4> { <asterisk> | <solidus> | mod | rem } <operand5>

<operand5> ::=
 [<hyphen> | not] <primary>

<primary> ::=
 <operation application>
 | <literal>
 | (<expression>)
 | <conditional expression>
 | <spelling term>
 | <extended primary>
 | <active primary>
 | <synonym>

<active primary> ::=
 <variable access>
 | <imperative expression>

<expression list> ::=
 <expression> { , <expression> }*

<simple expression> ::=
 <constant expression>

<constant expression> ::=
 <constant expression0>

An <expression0> that does not contain any <active primary>, a <create expression>, or a
<value returning procedure call> is a <constant expression0>. A <constant expression0> represents a Constant-
expression in the abstract syntax.

An <expression> that is not a <constant expression> represents an Active-expression.

If an <expression> contains an <extended primary>, the <extended primary> is replaced at the concrete syntax level as
defined in 12.2.4 before relationship to the abstract syntax is considered.

<operand>, <operand1>, <operand2>, <operand3>, <operand4> and <operand5> offer special syntactic forms for
operator and method names. The special syntax is introduced, for example, so that arithmetic operations and Boolean
operations can have their usual syntactic form. That is, the user can write "(1 + 1) = 2" rather than being forced to use,
for example, equal(add(1,1),2). Which sorts are valid for each operation will depend on the data type definition.

A <simple expression> must contain only literals, operators, and methods defined within the package Predefined, as
defined in Annex D.

Semantics

An infix operator or method in an expression has the normal semantics of an operator or method but with infix or
quoted prefix syntax.

A monadic operator or method in an expression has the normal semantics of an operator or method but with the prefix
or quoted prefix syntax.

140 ITU-T Rec. Z.100 (11/2007)

Infix operators or methods have an order of precedence that determines the binding of operators or methods. When the
binding is ambiguous, then binding is from left to right.

When an expression is interpreted, it returns a data item (a value, object or pid). The returned data item is referred to as
the result of the expression.

The (static) sort of an expression is the sort of the data item that would be returned by the interpretation of the
expression as determined from analysis of the specification without consideration of the interpretation semantics. The
dynamic sort of an expression is the sort of the result of the expression. The static and dynamic sort of active
expressions may differ due to polymorphic assignments (see 12.3.3). For a constant expression, the dynamic sort of an
expression is its static sort.
NOTE − To avoid cumbersome text, the word "sort" always refers to a static sort, unless preceded by the word
"dynamic". For clarity, "static sort" is written explicitly in some cases.

Each Constant-expression is interpreted once during initialization of the system, and the result of the interpretation is
preserved. Whenever the value of the Constant-expression is needed during interpretation, a complete replicate of that
computed value is used.

Model

An expression of the form:
 <expression> <infix operation name> <expression>
is derived syntax for:
 <quotation mark> <infix operation name> <quotation mark> (<expression>, <expression>)
where <quotation mark> <infix operation name> <quotation mark> represents an Operation-name.

Similarly,
 <monadic operation name> <expression>
is derived syntax for:
 <quotation mark> <monadic operation name> <quotation mark> (<expression>)
where <quotation mark> <monadic operation name> <quotation mark> represents an Operation-name.

12.2.2 Literal
Abstract grammar

Literal :: Literal-identifier
Literal-identifier = Identifier

The Literal-identifier denotes a Literal-signature.

Concrete grammar

<literal> ::=
 <literal identifier>

<literal identifier> ::=
 [<qualifier>] <literal name>

Whenever a <literal identifier> is specified, the unique Literal-name in Literal-identifier is derived in the same way,
with the result sort derived from context. A Literal-identifier is derived from context (see 6.3) so that if the
<literal identifier> is overloaded (that is, the same name is used for more than one literal or operation), then the Literal-
name identifies a visible literal with the same name and result sort consistent with the literal. Two literals with the same
<name> but differing by result sorts have different Literal-names.

It must be possible to bind each unqualified <literal identifier> to exactly one defined Literal-identifier that satisfies the
conditions in the construct in which the <literal identifier> is used.

Wherever a <qualifier> of a <literal identifier> contains a <path item> with the keyword type, then the <sort name>
after this keyword does not form part of the Qualifier of the Literal-identifier, but is used to derive the unique Name of
the Identifier. In this case, the Qualifier is formed from the list of <path item>s preceding the keyword type.

Semantics

A Literal returns the unique data item corresponding to its Literal-signature.

The sort of the <literal> is the Result in its Literal-signature.

 ITU-T Rec. Z.100 (11/2007) 141

12.2.3 Synonym
Concrete grammar

<synonym> ::=
 <synonym identifier>

Semantics

A synonym is shorthand for denoting an expression defined elsewhere.

Model

A <synonym> represents the <constant expression> defined by the <synonym definition> identified by the
<synonym identifier>. An <identifier> used in the <constant expression> represents an Identifier in the abstract syntax
according to the context of the <synonym definition>.

12.2.4 Extended primary
An extended primary is a shorthand syntactic notation. However, apart from the special syntactic form, an extended
primary has no special properties and denotes an operation and its parameter(s).

Concrete grammar

<extended primary> ::=
 <indexed primary>
 | <field primary>
 | <composite primary>

<indexed primary> ::=
 <primary> (<actual parameter list>)
 | <primary> <left square bracket> <actual parameter list> <right square bracket>

<field primary> ::=
 <primary> <exclamation mark> <field name>
 | <primary> <full stop> <field name>
 | <field name>

<field name> ::=
 <name>

<composite primary> ::=
 [<qualifier>] <composite begin sign> <actual parameter list> <composite end sign>

Model

An <indexed primary> is derived concrete syntax for:
 <primary> <full stop> Extract (<actual parameter list>)
The abstract syntax is determined from this concrete expression according to 12.2.1.

A <field primary> is derived concrete syntax for:
 <primary> <full stop> field-extract-operation-name
where the field-extract-operation-name is formed from the concatenation of the field name and "Extract" in that order.
The abstract syntax is determined from this concrete expression according to 12.2.1. The transformation according to
this model is performed before the modification of the signature of methods in 12.1.4.

When the <field primary> has the form <field name>, this is derived syntax for:
 this ! <field name>

A <composite primary> is derived concrete syntax for:
 <qualifier> Make (<actual parameter list>)
if any actual parameters were present, or:
 <qualifier> Make
otherwise, and where the <qualifier> is inserted only if it was present in the <composite primary>. The abstract syntax
is determined from this concrete expression according to 12.2.1.

142 ITU-T Rec. Z.100 (11/2007)

12.2.5 Equality expression
Abstract grammar

Equality-expression :: First-operand
 Second-operand
First-operand = Expression
Second-operand = Expression

An Equality-expression represents the equality of either references or values of its First-operand and its Second-
operand.

Concrete grammar

<equality expression> ::=
 <operand2> { <equals sign> | <not equals sign> } <operand3>

An <equality expression> is legal concrete syntax only if the sort of one of its operands is sort compatible to the sort of
the other operand.

Semantics

Interpretation of the Equality-expression proceeds by interpretation of its First-operand and its Second-operand.

If, after interpretation, both operands are objects, then the Equality-expression denotes reference equality. It returns the
predefined Boolean value true if and only if both operands are either Null or reference the same object data item.

If, after interpretation, both operands are pids, then the Equality-expression denotes agent identity. It returns the
predefined Boolean value true if and only if both operands are either Null or reference the same agent instance.

If, after interpretation, either one of the operands is a value, the Equality-expression denotes equality of values and the
<equality expression> returns the result of the application of the equal operator to First-operand and Second-operand,
where equal is the Operation-identifier represented by the <operation identifier> in the <operation application>:
 equal(<operand2>, <operand3>)

Model

The concrete syntax form:
 <operand2> <not equals sign> <operand3>
is derived concrete syntax for:
 not (<operand2> = <operand3>)
where not is an operation of the predefined Boolean data type.

12.2.6 Conditional expression
Abstract grammar

Conditional-expression :: Boolean-expression
 Consequence-expression
 Alternative-expression
Boolean-expression = Expression
Consequence-expression = Expression
Alternative-expression = Expression

A Conditional-expression is an Expression, which is interpreted as either the Consequence-expression or the
Alternative-expression.

The sort of the Consequence-expression must be the same as the sort of the Alternative-expression.

Concrete grammar

<conditional expression> ::=
 if <Boolean expression>
 then <consequence expression>
 else <alternative expression>
 fi

<consequence expression> ::=
 <expression>

<alternative expression> ::=
 <expression>

 ITU-T Rec. Z.100 (11/2007) 143

The sort of the <consequence expression> must be the same as the sort of the <alternative expression>.

Semantics

A conditional expression represents an Expression that is interpreted as either the Consequence-expression or the
Alternative-expression.

If the Boolean-expression returns the predefined Boolean value true, then the Alternative-expression is not interpreted.
If the Boolean-expression returns the predefined Boolean value false, then the Consequence-expression is not
interpreted.

A conditional expression has a sort, which is the sort of the consequence expression (and also the sort of the alternative
expression).

The result of the conditional expression is the result of interpreting the Consequence-expression or the Alternative-
expression.

The static sort of a conditional expression is the static sort of the Consequence-expression (which is also the sort of the
Alternative-expression). The dynamic sort of the conditional expression is the dynamic sort of the result of interpreting
the conditional expression.

12.2.7 Operation application
Abstract grammar

Operation-application :: Operation-identifier
 [Expression]*
Operation-identifier = Identifier

The Operation-identifier denotes an Operation-signature, either a Static-operation-signature or a Dynamic-operation-
signature. Each Expression in the list of Expressions after the Operation-identifier must be sort compatible with the
corresponding (by position) sort in the list of Formal-arguments of the Operation-signature.

Each Operation-signature has associated a Procedure-definition, as described in 12.1.8.

Each Expression corresponding by position to an Inout-parameter or Out-parameter in the Procedure-definition
associated with the Operation-signature must be a Variable-identifier having the same Sort-reference-identifier as the
corresponding (by position) sort in the list of Formal-arguments of the Operation-signature.

Concrete grammar

<operation application> ::=
 <operator application>
 | <method application>

<operator application> ::=
 <operation identifier> [<actual parameters>]

<method application> ::=
 <primary> <full stop> <operation identifier> [<actual parameters>]

Whenever an <operation identifier> is specified, the unique Operation-name in Operation-identifier is derived in the
same way. The list of argument sorts is derived from the actual parameters and the result sort is derived from context
(see 6.3). Therefore, if the <operation name> is overloaded (that is, the same name is used for more than one literal or
operation), the Operation-name identifies a visible operation with the same name and the argument sorts and result sort
consistent with the operation application. Two operations with the same <name> but differing by one or more of the
argument or result sorts have different Operation-names.

It must be possible to bind each unqualified <operation identifier> to exactly one defined Operation-identifier which
satisfies the conditions in the construct in which the <operation identifier> is used.

When the operation application has the syntactical form:
 <operation identifier> [<actual parameters>]
then, during derivation of the Operation-identifier from context, the form:
 this <full stop> <operation identifier> [<actual parameters>]
is also considered. The model in 12.3.2 is applied before resolution by context is attempted.

Wherever a <qualifier> of an <operation identifier> contains a <path item> with the keyword type, then the
<sort name> after this keyword does not form part of the Qualifier of the Operation-identifier, but is used to derive the
unique Name of the Identifier. In this case, the Qualifier is formed from the list of <path item>s preceding the keyword
type.

144 ITU-T Rec. Z.100 (11/2007)

If all the <expression>s in the parenthesized list of <expression>s are <constant expression>s, the
<operation application> represents a Constant-expression as defined in 12.2.1.

A <method application> is legal concrete syntax only if <operation identifier> represents a method.

An <expression> in <actual parameters> corresponding to an Inout-parameter or Out-parameter in the Procedure-
definition associated with the Operation-signature cannot be omitted and must be a <variable access> or
<extended primary>.
NOTE − <actual parameters> may be omitted in an <operation application> if all actual parameters have been omitted.

Semantics

Resolution by context (see 6.3) guarantees that an operation is selected such that the types of the actual arguments are
pairwise sort compatible with the types of the formal arguments.

An operation application with an Operation-identifier that denotes a Static-operation-signature is interpreted by
transferring the interpretation to the Procedure-definition associated with the Operation-signature and that procedure
graph is interpreted (the explanation is contained in 9.4).

An operation application with an Operation-identifier that denotes a Dynamic-operation-signature is interpreted by the
following steps:
a) the actual parameters are interpreted;
b) if the result of an actual parameter corresponding to a Virtual-argument was Null, predefined exception

InvalidReference is raised;
c) all Dynamic-operation-signatures are collected into a set such that the operation signature formed from an

Operation-name derived from the <operation name> in <operation identifier> and the dynamic sorts of the
result of interpreting the actual parameters is sort compatible with the candidate Dynamic-operation-
signature;

d) the unique Dynamic-operation-signature that is sort compatible with all other Dynamic-operation-signatures
in this set is selected; and

e) the interpretation is transferred to the Procedure-definition associated with the selected Operation-signature
and that procedure graph is interpreted (the explanation is contained in 9.4).

The existence of such a unique signature is guaranteed by the requirement that the set of Dynamic-operation-signatures
form a lattice (see 12.1.4).

The list of actual parameter Expressions in an Operation-application is interpreted in the order given from left to right
before the operation itself is interpreted.

If an argument sort of the operation signature is a syntype, then the range check defined in 12.1.9.5 is applied to the
result of the Expression. If the range check is the predefined Boolean value false at the time of interpretation, then the
predefined exception OutOfRange (see D.3.16) is raised.

The interpretation of the transition containing the <operation application> continues when the interpretation of the
called procedure is finished. The result of the operation application is the result returned by the interpretation of the
referenced procedure definition.

If the result sort of the operation signature is a syntype, then the range check defined in 12.1.9.5 is applied to the result
of the operation application. If the range check is the predefined Boolean value false at the time of interpretation, then
the predefined exception OutOfRange (see D.3.16) is raised.

An <operation application> has a sort, which is the sort of the result obtained by the interpretation of the associated
procedure.

Model

The concrete syntax form:
 <expression> <full stop> <operation identifier> [<actual parameters>]
is derived concrete syntax for:
 <operation identifier> new-actual-parameters
where new-actual-parameters is <actual parameters> containing only <expression>, if <actual parameters> was not
present; otherwise, new-actual-parameters is obtained by inserting <expression> before the first optional expression in
<actual parameters>.

 ITU-T Rec. Z.100 (11/2007) 145

If the <primary> of a <method application> is not a variable or this, there is an implicit assignment of the <primary> to
an implicit variable with the sort of the first parameter of the operation (that is, the method sort). The assignment is
placed before the action in which the <method application> occurs. The implicit variable replaces the <primary> in the
<method application>.

12.2.8 Range check expression
Abstract grammar

Range-check-expression :: Range-condition Expression

Concrete grammar

<range check expression> ::=
 <operand2> in type { <sort identifier> <constraint> | <sort> }

The sort of <operand2> must be the same as the sort identified by <sort identifier> or <sort>.

Semantics

A Range-Check-Expression is an expression of the predefined Boolean sort which has the result true if the result of the
Expression fulfils the Range-condition corresponding to <constraint> as defined in 12.1.9.5; otherwise, it has the result
false.

Model

Specifying a <sort> is derived syntax for specifying the <constraint> of the data type that defined the <sort>. If that
data type was not defined with a <constraint>, the <range check expression> is not evaluated and the
<range check expression> is derived syntax for specifying the predefined Boolean value true.

12.3 Active use of data
This subclause defines the use of data and declared variables, how an expression involving variables is interpreted, and
the imperative expressions, which obtain results from the underlying system.

A variable has a sort and an associated data item of that sort. The data item associated with a variable may be changed
by assigning a new data item to the variable. The data item associated with the variable may be used in an expression by
accessing the variable.

Any expression containing a variable is considered to be "active", because the data item obtained by interpreting the
expression may vary according to the data item last assigned to the variable. The result of interpreting an active
expression will depend on the current state of the system.

12.3.1 Variable definition
A variable has a data item associated, or it is "undefined".

Abstract grammar

Variable-definition :: Variable-name
 Sort-reference-identifier
 [Constant-expression]
Variable-name = Name

If the Constant-expression is present, it must be one of following:
1) the same sort as the Sort-reference-identifier denoted, or
2) if the denoted sort is an object sort OS, the sort denoted by value OS, or
3) if the denoted sort is a value sort VS, the sort denoted by object VS.

Concrete grammar

<variable definition> ::=
 dcl [exported] <variables of sort> {, <variables of sort> }* <end>

<variables of sort> ::=
 <variable name> [<exported as>] { , <variable name> [<exported as>] }*
 <sort> [<is assigned sign> <constant expression>]

<exported as> ::=
 as <remote variable identifier>

146 ITU-T Rec. Z.100 (11/2007)

<exported as> may only be used for a variable with exported in its <variable definition>. Two exported variables in an
agent cannot mention the same <remote variable identifier>.

The Constant-expression is represented by:
a) if a <constant expression> is given in the <variable definition>, then this <constant expression>;
b) else, if the data type that defined the <sort> has a <default initialization>, then the <constant expression> of

the <default initialization>.

Otherwise, the Constant-expression is not present.

Semantics

When a variable is created and the Constant-expression is present, then the variable is associated with:
1) the result of the Constant-expression, if the sort of the variable and the Constant-expression are the same;
2) an object (distinct from any other object) that references the Constant-expression, if the variable has an object

sort and the Constant-expression has a value sort;
3) the value referenced by the Constant-expression, if the variable has a value sort and the Constant-expression

has an object sort.

Otherwise, if no Constant-expression applies, the variable has no data item associated: that is, the variable is
"undefined".

If Sort-reference-identifier is a Syntype-identifier, Constant-expression is present and the result of the Constant-
expression does not comply with the Range-condition, the predefined exception OutOfRange is raised (see D.3.16).

The keyword exported allows a variable to be used as an exported variable as elaborated in 10.6.

12.3.2 Variable access
Abstract grammar

Variable-access = Variable-identifier

Concrete grammar

<variable access> ::=
 <variable identifier>
 | this

this must only occur in method definitions.

Semantics

A variable access is interpreted as giving the data item associated with the identified variable.

A variable access has a static sort, which is the sort of the variable identified by the variable access. It has a dynamic
sort, which is the dynamic sort of the data item associated with the identified variable.

A variable access has a result, which is the data item last associated with the variable. If the variable is "undefined", a
Raise-node for the predefined exception UndefinedVariable (see D.3.16) is interpreted.

Model

A <variable access> using the keyword this is replaced by the anonymous name introduced as the name of the leading
parameter in <arguments> according to 12.1.8.

12.3.3 Assignment and assignment attempt
An assignment creates an association from the variable to the result of interpreting an expression. In an assignment
attempt, this association is created only if the dynamic sorts of the variable and the expression are compatible.

Abstract grammar

Assignment :: Variable-identifier
 Expression

Assignment-attempt :: Variable-identifier
 Expression

In an Assignment, the sort of the Expression must be sort compatible with the sort of the Variable-identifier.

In an Assignment-attempt, the sort of the Variable-identifier must be sort compatible with the sort of the Expression.

 ITU-T Rec. Z.100 (11/2007) 147

If the variable is declared with a Syntype and the Expression is a Constant-expression, then the range check defined in
 12.1.9.5 above applied to the Expression must be the predefined Boolean value true.

Concrete grammar

<assignment> ::=
 <variable> <is assigned sign> <expression>

<variable> ::=
 <variable identifier>
 | <extended variable>

If the <variable> is a <variable identifier>, then the <expression> in the concrete syntax represents the Expression in
the abstract syntax. An <extended variable> is derived syntax and is replaced at the concrete syntax level as defined in
 12.3.3.1 before relationship to the abstract syntax is considered.

If the <variable identifier> has been declared with an object sort and the sort of the <expression> is a (direct or indirect)
supersort of the sort of the <variable identifier>, the <assignment> represents an Assignment-attempt. Otherwise, the
<assignment> represents an Assignment.

Semantics

An Assignment is interpreted as creating an association from the variable identified in the assignment with the result of
the expression in the assignment. The previous association of the variable is lost.

The manner in which this association is established depends on the sort of the <variable identifier> and the sort of the
<expression>:
a) If the <variable identifier> has a value sort, then the result of the Expression is copied onto the value currently

associated with Variable-identifier by interpreting the copy method defined by the data type definition that
introduced the sort of the <variable identifier>, given Variable-identifier and Expression as actual parameters.
If the Expression is Null, the predefined exception InvalidReference (see D.3.16) is raised.

b) If the <variable identifier> has an object sort and the result of the Expression is an object, the Variable-
identifier is associated with the object that is the result of Expression. It is not allowed that the sort of the
<expression> is a syntype that restricts the elements of the sort of the <variable identifier>.

c) If the <variable identifier> has an object sort and the result of the Expression is a value, a clone of the result
of Expression is constructed by interpreting the clone operator defined by the data type definition that
introduced the sort of the <variable identifier>, given Expression as actual parameter. The Variable-identifier
is associated with a reference to the cloned value. It is not allowed that the sort of the <expression> is a
syntype that restricts the elements of the sort of the <variable identifier>.

d) If the <variable identifier> has a pid sort and the result of the Expression is a pid, the Variable-identifier is
associated with the pid that is the result of Expression.

If the variable is declared with a syntype, the range check defined in 12.1.9.5 is applied to the expression. If this range
check returns the predefined Boolean value false, then the predefined exception OutOfRange (see D.3.16) is raised.

When an Assignment-attempt is interpreted, if the dynamic sort of the Expression is sort compatible with the sort of the
Variable-identifier, an Assignment involving the Variable-identifier and the Expression is interpreted. Otherwise, the
Variable-identifier is associated with Null.
NOTE − Through an assignment attempt, it is possible to determine the dynamic sort of an Expression.

12.3.3.1 Extended variable
An extended variable is a shorthand syntactic notation; however, apart from the special syntactic form, an extended
variable has no special properties and denotes an operation and its parameters.

Concrete grammar

<extended variable> ::=
 <indexed variable>
 | <field variable>

<indexed variable> ::=
 <variable> (<actual parameter list>)
 | <variable> <left square bracket> <actual parameter list> <right square bracket>

<field variable> ::=
 <variable> <exclamation mark> <field name>
 | <variable> <full stop> <field name>

148 ITU-T Rec. Z.100 (11/2007)

Model
<indexed variable> is derived concrete syntax for:
 <variable> <is assigned sign> <variable> <full stop> Modify (expressionlist)
where expressionlist is constructed by appending <expression> to the <actual parameter list>. The abstract grammar is
determined from this concrete expression according to 12.2.1. The same model applies to the second form of
<indexed variable>.

The concrete syntax form:
 <variable> <exclamation mark> <field name> <is assigned sign> <expression>
is derived concrete syntax for:
 <variable> <full stop> field-modify-operation-name (<expression>)
where the field-modify-operation-name is formed from the concatenation of the field name and "Modify". The abstract
syntax is determined from this concrete expression according to 12.2.1. The same model applies to the second form of
<field variable>.

12.3.3.2 Default initialization
A default initialization allows initialization of all variables of a specified sort with the same data item, when the
variables are created.

Concrete grammar

<default initialization> ::=
 default [<virtuality>] [<constant expression>]

A <data type definition> or <syntype definition> must contain at most one <default initialization>.

The <constant expression> may only be omitted if <virtuality> is redefined or finalized.

Semantics

A default initialization may be added to the <operations> of a data type definition. A default initialization specifies that
any variable declared with the sort introduced by the data type definition or syntype definition initially is associated
with the result of the <constant expression>.

Model

A default initialization is shorthand for specifying an explicit initialization for all those variables that are declared to be
of <sort>, but where the <variable definition> was not given a <constant expression>.

If no <default initialization> is given in <syntype definition>, then the syntype has the <default initialization> of the
<parent sort identifier>, provided its result is in the range.

Any sort that is defined by an <object data type definition> is implicitly given a <default initialization> of Null, unless
an explicit <default initialization> was present in the <object data type definition>.

Any pid sort is treated as if implicitly given a <default initialization> of Null.

If the <constant expression> is omitted in a redefined default initialization, the explicit initialization is not added.

12.3.4 Imperative expressions
Imperative expressions obtain results from the underlying system state.

The transformations described in the Models of this subclause are made at the same time as the expansion for import is
made. A label attached to an action in which an imperative expression appears is moved to the first task inserted during
the described transformation. If several imperative expressions appear in an expression, the tasks are inserted in the
same order as the imperative expressions appear in the expression.

Abstract grammar

Imperative-expression = Now-expression
 | Pid-expression
 | Timer-active-expression
 | Timer-remaining-duration
 | Any-expression
 | State-expression

 ITU-T Rec. Z.100 (11/2007) 149

Concrete grammar

<imperative expression> ::=
 <now expression>
 | <import expression>
 | <pid expression>
 | <timer active expression>
 | <timer remaining duration>
 | <any expression>
 | <state expression>

Imperative expressions are expressions for accessing the system clock, the result of imported variables, the pid
associated with an agent, the status of timers or for supplying unspecified data items.

12.3.4.1 Now expression
Abstract grammar

Now-expression :: { }

Concrete grammar

<now expression> ::=
 now

Semantics

The now expression is an expression which accesses the system clock variable to determine the absolute system time.

The now expression represents an expression requesting the current value of the system clock giving the time. The
origin and unit of time are system dependent. Unless otherwise specified, the time unit is 1 second. Whether two
occurrences of now in the same transition give the same value is system dependent. However, it always holds that:
 now <= now;

A now expression has the Time sort.

12.3.4.2 Import expression
Concrete grammar

The concrete syntax for an import expression is defined in 10.6.

Semantics

In addition to the semantics defined in 10.6, an import expression is interpreted as a variable access (see 12.3.2) to the
implicit variable for the import expression.

Model

The import expression has implied syntax for the importing of the result as defined in 10.6 and also has an implied
Variable-access of the implied variable for the import in the context where the <import expression> appears.

The use of <import expression> in an expression is shorthand for inserting a task just before the action, where the
expression occurs which assigns to an implicit variable the result of the <import expression> and then uses that implicit
variable in the expression. If <import expression> occurs several times in an expression, one variable is used for each
occurrence.

12.3.4.3 Pid expression
Abstract grammar

Pid-expression = Self-expression
 | Parent-expression
 | Offspring-expression
 | Sender-expression
Self-expression :: { }
Parent-expression :: { }
Offspring-expression :: { }
Sender-expression :: { }

150 ITU-T Rec. Z.100 (11/2007)

Concrete grammar

<pid expression> ::=
 self
 | parent
 | offspring
 | sender

<create expression> ::=
 create <create body>

A <create expression> represents a Create-request-node as further discussed in 11.13.2.

Semantics

A pid expression accesses one of the implicit anonymous variables self, parent, offspring, or sender (see clause 9,
Model). The self, parent, offspring or sender pid expression has a result, which is the last pid associated with the
corresponding implicit variable as defined in clause 9.

The dynamic sort of a <pid expression> is the dynamic sort of its result.

A parent, offspring, or sender pid expression has a static sort, which is Pid.

If a <create expression> includes an <agent identifier>, it has a static sort, which is the pid sort of the agent denoted by
<agent identifier>. If a <create expression> includes an <agent type identifier>, it has a static sort, which is the pid sort
of the agent type identified by the <agent type identifier>. If the <create expression> includes this, it has a static sort,
which is the pid sort of the agent or agent type in which the create expression occurs. If the <create expression>
includes this and it occurs in a context that is not inside an agent or agent type (for example in a global procedure), then
it has the static sort Pid.

A self expression has a static sort, which is the pid of the agent or agent type in which the self expression occurs. If it
occurs in a context that is not inside an agent or agent type (for example in a global procedure), it has the static sort Pid.

Model

The use of <create expression> in an expression is shorthand for inserting a create request just before the action where
the <create expression> occurs followed by an assignment of offspring to an implicitly declared anonymous variable of
the same sort as the static sort of the <create expression>. The implicit variable is and then used in the expression. If
<create expression> occurs several times in an expression, one distinct variable is used for each occurrence. In this case,
the order of the inserted create requests and variable assignments is the same as the order of the <create expression>s.

If the <create expression> contains an <agent type identifier>, then the transformations that are applied to a create
statement that contains an <agent type identifier> are also applied to the implicit create statements resulting from the
transformation of a <create expression> (see 11.13.2).

12.3.4.4 Timer active expression and timer remaining duration
Abstract grammar

Timer-active-expression :: Timer-identifier
 Expression*

Timer-remaining-duration :: Timer-identifier
 Expression*

The sorts of the Expression list in the Timer-active-expression or Timer-remaining-duration shall correspond by
position to the Sort-reference-identifier list directly following the Timer-name (11.15) identified by the Timer-identifier.

Concrete grammar

<timer active expression> ::=
 active (<timer identifier> [(<expression list>)])

<timer remaining duration> ::=
 rem (<timer identifier> [(<expression list>)])

Semantics

The timer of a Timer-active-expression or Timer-remaining-duration is the timer identified by Timer-identifier and set
with the same results as denoted by the Expression list (if any). The expressions are interpreted in the order given.

 ITU-T Rec. Z.100 (11/2007) 151

If a sort specified in a timer definition is a syntype, then the range check defined in 12.1.9.5 applied to the
corresponding expression in <expression list> must be the predefined Boolean value true; otherwise, the predefined
exception OutOfRange (see D.3.16) is raised.

A Timer-active-expression is an expression of the predefined Boolean sort, which has the result true, if the timer active
(see 11.15). Otherwise, the Timer-active-expression has the result false.

A Timer-remaining-duration is an expression of the predefined Duration sort. The result value is the time the timer was
last set to minus now. If the timer has never been set the value is undefined and the exception UndefinedVariable is
raised.

12.3.4.5 Any expression
Any-expression is useful for modelling behaviour, where stating a specific data item would imply over-specification.
From a result returned by an Any-expression, no assumption can be made on other results returned by the interpretation
of Any-expression.

Abstract grammar

Any-expression :: Sort-reference-identifier

Concrete grammar

<any expression> ::=
 any (<sort>)

The <sort> must contain elements.

Semantics

An Any-expression returns an unspecified element of the sort or syntype designated by Sort-reference-identifier, if that
sort or syntype is a value sort. If Sort-reference-identifier denotes a Syntype-identifier, the result will be within the
range of that syntype. If the sort or syntype designated by Sort-reference-identifier is an object sort or pid sort, the Any-
expression returns Null.

12.3.4.6 State expression
Abstract grammar

State-expression :: { }

Concrete grammar

<state expression> ::=
 state

Semantics

A state expression interpreted as a Charstring that contains the spelling of the name of the most recently entered state of
the nearest enclosing scope unit. If there is no such state, <state expression> denotes the empty string ('').

12.3.5 Value returning procedure call
The abstract grammar for a value returning procedure call and static semantic constraints are shown in 11.13.3.

Concrete grammar

<value returning procedure call> ::=
 [call] <procedure call body>
 | [call] <remote procedure call body>

The keyword call cannot be omitted if the <value returning procedure call> is syntactically ambiguous with an
operation (or variable) with the same name followed by a parameter list.
NOTE 1 − This ambiguity is not resolved by context.

A <value returning procedure call> must not occur in the <Boolean expression> of a <continuous signal area> or
<enabling condition area>.

The <procedure identifier> in a <value returning procedure call> must identify a procedure having a
<procedure result>.

An <expression> in <actual parameters> corresponding to a formal in/out or out parameter cannot be omitted and must
be a <variable identifier>.

152 ITU-T Rec. Z.100 (11/2007)

After the Model for this has been applied, the <procedure identifier> must denote a procedure that contains a start
transition.

If this is used, <procedure identifier> must denote an enclosing procedure.

The <procedure call body> represents a Value-returning-call-node, where Procedure-identifier is represented by the
<procedure identifier>, and the list of Expressions is represented by the list of actual parameters. The
<remote procedure call body> represents a Value-returning-call-node, where Procedure-identifier contains only the
Procedure-identifier of the procedure implicitly defined by the Model below. The semantics of the Value-returning-
call-node is shown in 11.13.3.

Model

If the <procedure identifier> is not defined within the enclosing agent, the procedure call is transformed into a call of a
local, implicitly created, subtype of the procedure.

this implies that when the procedure is specialized, the <procedure identifier> is replaced by the identifier of the
specialized procedure.

When the <value returning procedure call> contains a <remote procedure call body>, a procedure with an anonymous
name is implicitly defined, where <sort> in <procedure result> of the procedure definition denoted by the
<procedure identifier> is the return sort of this anonymous procedure. This anonymous procedure has a single <start
area> containing a <return area> with <remote procedure call body> as its <expression>.

NOTE 2 − This transformation is not applied again to the implicit procedure definition.

13 Generic system definition
A system specification may have optional parts and system parameters with unspecified results in order to meet various
needs. Such a system specification is called generic. Its generic property is specified by means of external synonyms
(which are analogous to formal parameters of a procedure definition). A generic system specification is tailored by
selecting a suitable subset of it and providing a data item for each of the system parameters. The resulting system
specification does not contain external synonyms, and is called a specific system specification.

A generic system definition is a system definition that contains a synonym defined by an
<external synonym definition item> (see 12.1.9.6), an operation defined by an <external operation definition>
(see 12.1.8), a procedure defined by an <external procedure definition> (see 9.4), or <informal text> in a transition
option (see 13.2). A specific system definition is created from a generic system definition by providing results for the
<external synonym definition item>s, as providing behaviour for <external operation definition>s and <external
procedure definition>s, and transforming <informal text> to formal constructs. How this is accomplished, and the
relation to the abstract grammar, is not part of the language definition.

13.1 Optional definition
Concrete grammar

<select definition> ::=
 select if (<Boolean simple expression>) <end>
 { <agent type reference>
 | <agent reference>
 | <signal definition>
 | <signal list definition>
 | <signal reference>
 | <remote variable definition>
 | <remote procedure definition>
 | <data definition>
 | <data type reference>
 | <interface reference>
 | <timer definition>
 | <variable definition>
 | <procedure definition>
 | <procedure reference>
 | <select definition>
 | <macro definition>
 | <exception definition> }+
 endselect <end>

 ITU-T Rec. Z.100 (11/2007) 153

<option area> ::=
 <option symbol> contains
 { select if (<Boolean simple expression>)
 { <agent type diagram>
 | <agent type reference area>
 | <agent area>
 | <channel definition area>
 | <agent text area>
 | <procedure text area>
 | <composite state type diagram>
 | <composite state type reference area>
 | <state partition area>
 | <procedure area>
 | <create line area>
 | <option area> } + }

<option symbol> ::=
 { <dashed line symbol> is attached to <dashed line symbol>
 <dashed line symbol> is attached to <dashed line symbol>
 <dashed line symbol> is attached to <dashed line symbol>
 { <dashed line symbol> is attached to <dashed line symbol> }+ }set

<dashed line symbol> ::=

The <option symbol> must form a dashed rectilinear polygon having solid corners, for example:

An <option symbol> logically contains the whole of any one-dimensional graphical symbol cut by its boundary (that
is, with one end point inside).

The only visible names in a <Boolean simple expression> of a <select definition> are names of external synonyms
defined outside of any <select definition>s or <option area>s and literals and operations of the data types defined within
the package Predefined as defined in Annex D.

A <select definition> may contain only those definitions that are syntactically allowed at that place.

An <option area> may appear anywhere, except within an <agent body area>. An <option area> may contain only those
areas and diagrams that are syntactically allowed at that place.

Model

If the result of the <Boolean simple expression> is the predefined Boolean value false, the constructs contained in the
<select definition> or <option symbol> are not selected. In the other case, the constructs are selected.

The <select definition> and the <option area> are deleted at transformation and are replaced by the contained selected
constructs, if any. Any connectors connected to an area within non-selected <option area>s are removed too.

13.2 Optional transition string
Concrete grammar

<transition option area> ::=
 <transition option symbol> contains <alternative question>
 is followed by <decision body>

<alternative question> ::=
 <simple expression>
 | <informal text>

<transition option symbol> ::=

154 ITU-T Rec. Z.100 (11/2007)

The <flow line symbol>s in <decision body> are connected to the bottom of the <transition option symbol>.

The <flow line symbol>s originating from a <transition option symbol> may have a common originating path.

Every <constant expression> in <answer> of a <decision body> must be a <simple expression>. The <answer>s in the
<decision body> in a <transition option area> must be mutually exclusive. If the <alternative question> is an
<expression>, the Range-condition of the <answer>s in the <decision body> must be of the same sort as of the
<alternative question>.

There is a syntactic ambiguity between <informal text> and <character string> in <alternative question> and <answer>s
in the <decision body>. If the <alternative question> and all <answer>s are <character string>s, all of these are
interpreted as <informal text>. If the <alternative question> or any <answer> is a <character string> and this does not
match the context of the transition option, the <character string> denotes <informal text>.

No <answer> in <answer part>s of a <decision body> of a <transition option area> can be omitted.

Model

Constructs in an <answer part> are selected if the <answer> contains the result of the <alternative question>. If none of
the <answer>s contain the result of the <alternative question>, then the constructs in the <else part> are selected.

If no <else part> is provided and none of the outgoing paths are selected, then the selection is invalid.

The <transition option area> is deleted at transformation and replaced by the contained selected constructs.

 ITU-T Rec. Z.100 (11/2007) 155

Annex A

Index of non-terminals
(This annex forms an integral part of this Recommendation)

The following non-terminals are intentionally defined and not used: <macro call>, <page>, <comment area>,
<text extension area>, <sdl specification>.

abstract, 34
use in syntax, 29
use in text, 34, 96

action_area, 90
use in syntax, 90
use in text, 79, 92, 103, 113

active_primary, 138
use in syntax, 137
use in text, 138

actual_context_parameter, 36
use in syntax, 36
use in text, 32, 37

actual_context_parameter_list, 36
use in syntax, 36

actual_context_parameters, 36
use in syntax, 32, 41
use in text, 32, 37, 42, 48

actual_parameter_list, 95
use in syntax, 95, 139, 140, 146
use in text, 95, 140, 146

actual_parameters, 95
use in syntax, 34, 69, 76, 91, 94, 95, 97, 98, 142
use in text, 77, 91, 94, 96, 97, 99, 104, 131, 142, 143, 150

agent_additional_heading, 53
use in syntax, 29, 53, 58
use in text, 42, 58

agent_area, 55
use in syntax, 54, 55, 65, 151
use in text, 55, 65

agent_body_area, 54
use in syntax, 54
use in text, 30, 57, 83, 92, 152

agent_constraint, 38
use in syntax, 38

agent_context_parameter, 38
use in syntax, 37
use in text, 30

agent_diagram, 53
use in syntax, 24, 28, 55
use in text, 19, 23, 55, 56, 57, 79, 82

agent_formal_parameters, 171
use in syntax, 31, 53, 84, 86
use in text, 19, 30, 38, 53, 55, 58, 91, 171, 201

agent_instantiation, 53
use in syntax, 58, 59
use in text, 55

agent_reference, 60
use in syntax, 54, 151, 172, 174
use in text, 55, 56, 61

agent_reference_area, 60
use in syntax, 24, 55
use in text, 55, 56

agent_signature, 171
use in syntax, 38
use in text, 38, 170, 171

agent_structure_area, 54

use in syntax, 30, 58, 59
use in text, 55, 58, 59

agent_text_area, 171
use in syntax, 54, 151
use in text, 23, 51, 54, 55, 61, 171

agent_type_additional_heading, 29
use in syntax, 30, 31
use in text, 30

agent_type_area, 55
use in syntax, 55
use in text, 55

agent_type_constraint, 38
use in syntax, 38

agent_type_context_parameter, 38
use in syntax, 37

agent_type_diagram, 29
use in syntax, 28, 54, 55, 151
use in text, 19, 23, 46, 96, 98

agent_type_reference, 45
use in syntax, 25, 54, 151, 172, 174
use in text, 45, 51

agent_type_reference_area, 45
use in syntax, 53, 54, 55, 151
use in text, 45, 46

aggregation_aggregate_end_bound_symbol, 52
use in syntax, 52

aggregation_not_bound_symbol, 52
use in syntax, 52

aggregation_part_end_bound_symbol, 52
use in syntax, 52

aggregation_two_ends_bound_symbol, 52
use in syntax, 52

algorithm_answer_part, 105
use in syntax, 105
use in text, 104, 105

algorithm_else_part, 105
use in syntax, 105
use in text, 105

alphanumeric, 12
use in syntax, 12, 13

alternative_expression, 141
use in syntax, 141
use in text, 141, 181

alternative_question, 152
use in syntax, 152
use in text, 152

alternative_statement, 104
use in syntax, 104, 105
use in text, 104

ampersand, 15
use in syntax, 14

anchored_sort, 115
use in syntax, 115, 116
use in text, 116, 120, 122, 127

answer, 100
use in syntax, 100, 105

156 ITU-T Rec. Z.100 (11/2007)

use in text, 21, 100, 101, 106, 152
answer_part, 100

use in syntax, 100
use in text, 101, 106, 152

any_expression, 149
use in syntax, 147
use in text, 101, 134

apostrophe, 15
use in syntax, 13
use in text, 13, 131

argument, 121
use in syntax, 121
use in text, 44, 120, 121, 122

argument_virtuality, 121
use in syntax, 121, 129
use in text, 44, 120, 121, 122

arguments, 121
use in syntax, 121, 176
use in text, 47, 122, 126, 129, 131, 134, 145

assignment, 145
use in syntax, 103, 176
use in text, 21, 79, 113, 145

assignment_statement, 103
use in syntax, 101
use in text, 102, 103, 106

association_area, 52
use in syntax, 54
use in text, 53

association_end_area, 52
use in syntax, 52
use in text, 52, 53

association_end_bound_symbol, 52
use in syntax, 52

association_not_bound_symbol, 52
use in syntax, 52

association_symbol, 52
use in syntax, 52
use in text, 22, 52, 53

association_two_ends_bound_symbol, 52
use in syntax, 52

asterisk, 15
use in syntax, 13, 14, 76, 78, 81, 89, 110, 113, 131, 137
use in text, 10, 44, 86, 89

asterisk_connect_list, 89
use in syntax, 89
use in text, 89

asterisk_exception_handler_list, 110
use in syntax, 109
use in text, 110

asterisk_exception_stimulus_list, 113
use in syntax, 112
use in text, 110, 113

asterisk_input_list, 78
use in syntax, 78
use in text, 78, 79, 81, 82

asterisk_save_list, 81
use in syntax, 81
use in text, 78, 81, 82

asterisk_state_list, 76
use in syntax, 76
use in text, 77, 110

attribute_properties_area, 49
use in syntax, 48
use in text, 49, 50

attribute_property, 49
use in syntax, 49
use in text, 49, 50, 51

axiomatic_operation_definitions, 178
use in syntax, 179
use in text, 178, 179, 180

axioms, 178
use in syntax, 178, 179
use in text, 180, 182

base_type, 32
use in syntax, 32
use in text, 32, 33, 36, 37, 42, 48, 68, 97, 119, 120

basic_sort, 115
use in syntax, 115, 116
use in text, 116, 120

basic_state_name, 76
use in syntax, 76
use in text, 76

basic_type_reference_area, 48
use in syntax, 47
use in text, 48

behaviour_properties_area, 49
use in syntax, 48
use in text, 49

behaviour_property, 50
use in syntax, 49
use in text, 49, 50, 51

bit_string, 13
use in syntax, 12, 19
use in text, 10, 125, 131

block_diagram, 58
use in syntax, 53
use in text, 18, 25, 54, 58

block_heading, 58
use in syntax, 58

block_reference, 60
use in syntax, 60
use in text, 10, 28

block_reference_area, 60
use in syntax, 60
use in text, 28

block_symbol, 60
use in syntax, 33, 35, 60
use in text, 33, 36, 60

block_type_diagram, 30
use in syntax, 29
use in text, 30, 46

block_type_heading, 30
use in syntax, 30

block_type_reference, 46
use in syntax, 45
use in text, 46

block_type_reference_area, 46
use in syntax, 45
use in text, 46

block_type_symbol, 49
use in syntax, 48, 49

Boolean_axiom, 180
use in syntax, 179

break_statement, 106
use in syntax, 101
use in text, 105, 106, 107

call_statement, 103
use in syntax, 101
use in text, 63, 104

channel_definition_area, 65
use in syntax, 54, 151
use in text, 55, 65, 66, 67, 85, 201

channel_symbol, 65
use in syntax, 65
use in text, 22, 65, 67

character_string, 13
use in syntax, 12, 19, 21, 131
use in text, 10, 13, 16, 18, 101, 125, 131, 152

choice_definition, 127
use in syntax, 124

 ITU-T Rec. Z.100 (11/2007) 157

use in text, 119, 127, 132, 133
choice_list, 127

use in syntax, 127
use in text, 127

choice_of_sort, 127
use in syntax, 127
use in text, 127, 128, 133

circumflex_accent, 15
use in syntax, 14

class_symbol, 48
use in syntax, 48
use in text, 48, 49, 50

closed_range, 135
use in syntax, 135
use in text, 135, 136

colon, 15
use in syntax, 14, 33, 34, 38, 87, 105, 131, 135
use in text, 38

comma, 15
use in syntax, 14

comment, 23
use in syntax, 23
use in text, 16, 23

comment_area, 23
use in syntax, 153
use in text, 16

comment_body, 13
use in syntax, 12, 23, 61, 102, 104, 115, 117, 118, 128, 133

comment_symbol, 23
use in syntax, 23
use in text, 22, 23

comment_text, 13
use in syntax, 13

commercial_at, 15
use in syntax, 14

communication_constraints, 69
use in syntax, 69, 73, 98
use in text, 69, 71, 74, 98

composite_begin_sign, 14
use in syntax, 13, 140

composite_end_sign, 14
use in syntax, 13, 140

composite_primary, 140
use in syntax, 139
use in text, 140

composite_special, 13
use in syntax, 12
use in text, 10, 201

composite_state_area, 83
use in syntax, 28, 54, 85, 87
use in text, 19, 23, 30, 34, 75, 76, 83, 84, 85, 86, 88, 89, 91

composite_state_body_area, 85
use in syntax, 84
use in text, 83, 85, 92

composite_state_graph_area, 84
use in syntax, 83
use in text, 85

composite_state_heading, 84
use in syntax, 84

composite_state_item, 76
use in syntax, 76
use in text, 77

composite_state_name, 76
use in syntax, 76
use in text, 76, 77, 83

composite_state_reference_area, 61
use in syntax, 87
use in text, 30, 87

composite_state_structure_area, 84
use in syntax, 31, 84, 86

use in text, 85
composite_state_text_area, 85

use in syntax, 84
use in text, 23, 85

composite_state_type_constraint, 40
use in syntax, 40
use in text, 41

composite_state_type_context_parameter, 40
use in syntax, 37

composite_state_type_diagram, 31
use in syntax, 28, 54, 62, 85, 151
use in text, 19, 23, 31, 46, 83, 85

composite_state_type_heading, 31
use in syntax, 31
use in text, 42

composite_state_type_reference, 46
use in text, 45, 46, 51

composite_state_type_reference_area, 46
use in syntax, 54, 62, 85, 151
use in text, 45, 46

composite_state_type_signature, 40
use in syntax, 40

composite_state_type_symbol, 49
use in syntax, 48, 49

composition_composite_end_bound_symbol, 52
use in syntax, 52
use in text, 53

composition_not_bound_symbol, 52
use in syntax, 52
use in text, 53

composition_part_end_bound_symbol, 52
use in syntax, 52
use in text, 53

composition_two_ends_bound_symbol, 52
use in syntax, 52
use in text, 53

compound_statement, 102
use in syntax, 101
use in text, 19, 20, 64, 102, 107

concatenation_sign, 14
use in syntax, 13, 14, 137
use in text, 16

conditional_equation, 180
use in syntax, 179

conditional_expression, 141
use in syntax, 137
use in text, 181

connect_association_area, 89
use in syntax, 76
use in text, 77, 89

connect_list, 89
use in syntax, 89
use in text, 89

consequence_expression, 141
use in syntax, 141
use in text, 141, 181

consequence_statement, 104
use in syntax, 104
use in text, 104

constant, 135
use in syntax, 135
use in text, 101, 135, 136

constant_expression, 138
Duration

use in syntax, 108
use in text, 108

use in syntax, 126, 135, 136, 138, 144, 146, 175
use in text, 37, 40, 45, 84, 101, 111, 127, 135, 136, 139,

142, 144, 146, 147, 152
constraint, 135

158 ITU-T Rec. Z.100 (11/2007)

use in syntax, 115, 133, 143
use in text, 134, 136, 143

context_parameters_end, 37
use in syntax, 36

context_parameters_start, 36
use in syntax, 36

continuous_expression, 80
use in syntax, 80

continuous_signal_area, 80
use in syntax, 80
use in text, 80, 150

continuous_signal_association_area, 80
use in syntax, 76

create_body, 95
use in syntax, 95, 103, 148
use in text, 57, 96

create_expression, 148
use in syntax, 137
use in text, 138, 148, 149

create_line_area, 55
use in syntax, 26, 54, 151
use in text, 10, 11

create_line_endpoint_area, 55
use in syntax, 55

create_line_symbol, 55
use in syntax, 55
use in text, 22, 55

create_request_area, 95
use in syntax, 90
use in text, 96

create_request_symbol, 95
use in syntax, 95

create_statement, 103
use in syntax, 101
use in text, 103

dash_nextstate, 91
use in syntax, 91
use in text, 86, 91

dashed_association_symbol, 23
use in syntax, 23
use in text, 22, 23

dashed_block_symbol, 33
use in syntax, 33

dashed_line_symbol, 151
use in syntax, 151

dashed_process_symbol, 34
use in syntax, 34

dashed_state_symbol, 87
use in syntax, 87

data_definition
use in syntax, 25, 54, 62, 85, 129, 151, 172, 174
use in text, 115, 130, 174

data_symbol, 49
use in syntax, 48
use in text, 49

data_type_constructor, 124
use in syntax, 117
use in text, 117, 119

data_type_definition, 117
object

use in text, 116, 117, 123, 147
use in syntax, 115, 117, 174, 175
use in text, 19, 20, 47, 49, 115, 116, 117, 119, 120, 122,

124, 125, 127, 128, 130, 131, 132, 133, 134, 146, 180
value

use in text, 116, 117, 127, 128, 201
data_type_definition_body, 117

use in syntax, 115, 117, 133
data_type_heading, 117

use in syntax, 117, 133

use in text, 117
data_type_reference, 47

use in syntax, 26, 54, 62, 85, 151, 172, 174
use in text, 45, 47, 51

data_type_reference_area, 47
use in syntax, 26, 53, 54, 85
use in text, 10, 11, 45, 47

data_type_specialization, 173
use in syntax, 115, 117, 133, 175
use in text, 119, 120, 124, 132, 173, 175

decimal_digit, 12
use in syntax, 12, 13

decision_area, 100
use in syntax, 90
use in text, 21, 100, 101, 104, 106

decision_body, 100
use in syntax, 100, 152
use in text, 101, 152

decision_statement, 104
use in syntax, 101
use in text, 104, 105

decision_statement_body, 104
use in syntax, 104

decision_symbol, 100
use in syntax, 100
use in text, 100

default_initialization, 146
use in syntax, 115, 117, 133, 175, 176
use in text, 134, 144, 146, 147

definition, 27
use in syntax, 27

definition_selection, 26
use in syntax, 26
use in text, 20, 27

definition_selection_list, 26
use in syntax, 26
use in text, 20, 27

delaying_channel_symbol_1, 65
use in syntax, 65

delaying_channel_symbol_2, 65
use in syntax, 65

dependency_symbol, 26
use in syntax, 26, 55
use in text, 22

destination, 98
use in syntax, 69
use in text, 69, 72, 73, 75, 98, 99

diagram, 28
use in syntax, 27
use in text, 24

diagram_in_package, 26
use in syntax, 25
use in text, 10, 11

dollar_sign, 15
use in syntax, 14

drawing_kind, 22
use in syntax, 22
use in text, 23

else_part, 100
use in syntax, 100
use in text, 100, 106, 152

empty_statement, 107
use in syntax, 101
use in text, 104, 107

enabling_condition_area, 80
use in syntax, 80
use in text, 150

enabling_condition_association_area, 80
use in syntax, 78, 82
use in text, 78, 82

 ITU-T Rec. Z.100 (11/2007) 159

enabling_condition_symbol, 81
use in syntax, 80
use in text, 81

end, 23
use in syntax, 17, 18, 26, 36, 46, 47, 49, 55, 60, 61, 62, 68,

69, 73, 80, 102, 103, 104, 106, 107, 108, 109, 115, 117,
118, 121, 124, 126, 127, 128, 129, 133, 136, 144, 151,
171, 172, 173, 174, 175, 176, 178, 181, 182

use in text, 10, 11, 23, 95, 126, 171, 172, 174
endpoint_constraint, 35

use in syntax, 35
use in text, 35, 36

entity_in_agent_diagram, 54
use in syntax, 26, 54
use in text, 10, 11

entity_in_composite_state_area, 85
use in syntax, 84

entity_in_data_type
use in syntax, 117
use in text, 117, 175

entity_in_interface, 118
use in syntax, 118
use in text, 118

entity_in_operation, 129
use in syntax, 128, 173

entity_in_procedure, 62
use in syntax, 61
use in text, 64

equality_expression, 140
use in syntax, 137
use in text, 140

equals_sign
use in syntax, 13, 14, 68, 119, 125, 133, 135, 136, 140
use in text, 116

equation, 179
use in syntax, 178, 182
use in text, 178, 182

error_term, 181
use in syntax, 179
use in text, 181

exception_constraint, 40
use in syntax, 40

exception_context_parameter, 40
use in syntax, 37
use in text, 118

exception_definition, 109
use in syntax, 26, 54, 62, 85, 117, 118, 129, 151, 172, 174,

175
exception_definition_item, 109

use in syntax, 109
use in text, 51

exception_handler_area, 109
use in syntax, 54, 63, 85, 110, 129
use in text, 91, 107, 110, 112

exception_handler_body_area, 109
use in syntax, 109
use in text, 92, 107

exception_handler_list, 109
use in syntax, 109
use in text, 110

exception_handler_symbol, 109
use in syntax, 109, 110
use in text, 110

exception_property, 51
use in syntax, 50
use in text, 51

exception_raise, 94
use in syntax, 78, 94

exception_statement, 107
use in syntax, 101

use in text, 107
exception_stimulus, 113

use in syntax, 112
use in text, 113

exception_stimulus_list, 112
use in syntax, 107, 112
use in text, 107, 110, 113

exclamation_mark, 14
use in syntax, 14, 139, 146
use in text, 146

exit_transition_area, 89
use in syntax, 89

expanded_sort, 115
use in syntax, 115
use in text, 116, 120

export_body, 73
use in syntax, 103
use in text, 73

export_statement, 103
use in syntax, 101
use in text, 75, 104

exported, 50
use in syntax, 50, 51
use in text, 50, 51

exported_as, 144
use in syntax, 144
use in text, 144

expression, 137
Boolean

use in syntax, 80, 81, 104, 105, 141
use in text, 81, 104, 105, 106, 150

constant
use in syntax, 179
use in text, 138

pid
use in text, 69, 72, 73, 75

Time
use in syntax, 108
use in text, 108

use in syntax, 93, 95, 100, 102, 105, 137, 138, 141, 145
use in text, 10, 21, 64, 75, 93, 94, 95, 96, 97, 99, 102, 104,

105, 106, 138, 142, 143, 145, 146, 150, 152, 178
expression_list, 138

use in syntax, 108, 149
use in text, 149

expression_statement, 104
use in syntax, 101
use in text, 104

expression0, 137
constant

use in syntax, 138
use in text, 138

pid
use in syntax, 98
use in text, 98, 99

use in syntax, 137
use in text, 138

extended_primary, 139
use in syntax, 137
use in text, 97, 138, 142

extended_variable, 146
use in syntax, 145
use in text, 145

external_channel_identifiers, 67
use in syntax, 58, 59, 84, 86
use in text, 58, 59, 65, 67

external_operation_definition, 129
use in syntax, 128
use in text, 11, 44, 117, 129, 130, 150, 151, 173

160 ITU-T Rec. Z.100 (11/2007)

external_procedure_definition, 62
use in syntax, 61
use in text, 64, 150, 151

external_synonym_definition_item, 136
use in syntax, 136
use in text, 136, 150, 151

extra_heading, 22
use in syntax, 22
use in text, 23

field, 126
use in syntax, 126
use in text, 50, 126, 127

field_default_initialization, 126
use in syntax, 126
use in text, 127, 175

field_list, 126
use in syntax, 126
use in text, 126, 127

field_name, 140
use in syntax, 139, 146
use in text, 140, 146

field_primary, 139
use in syntax, 139
use in text, 140

field_property, 50
use in syntax, 49
use in text, 50

field_sort, 126
use in syntax, 126, 127
use in text, 126, 127, 128

field_variable, 146
use in syntax, 146
use in text, 79, 113, 146

fields_of_sort, 126
use in syntax, 126
use in text, 126, 127, 133

finalization_statement, 105
use in syntax, 105
use in text, 105, 106

flow_line_symbol, 92
use in syntax, 92, 100
use in text, 22, 83, 92, 100, 152

formal_context_parameter, 37
use in syntax, 36
use in text, 19, 30, 32, 37, 63, 68, 117

formal_context_parameter_list, 36
use in syntax, 36
use in text, 32, 48

formal_context_parameters, 36
use in syntax, 29, 31, 48, 62, 68, 117, 118, 175
use in text, 30, 32, 37, 48, 68, 117, 118

formal_name, 17
use in syntax, 17
use in text, 18

formal_operation_parameters, 174
use in syntax, 128
use in text, 129, 130, 173, 201

formal_parameter, 121
use in syntax, 38, 40, 62, 121, 171
use in text, 51, 172

formal_variable_parameters, 62
use in syntax, 62, 172
use in text, 19

frame_symbol, 54
use in syntax, 22, 24, 25, 30, 31, 58, 59, 62, 84, 86, 87, 129
use in text, 23, 26, 29, 31, 54, 58, 59, 63, 85, 87, 88, 129

full_stop, 15
use in syntax, 12, 14, 139, 142, 146
use in text, 140, 142, 143, 146

gate, 35

use in syntax, 33, 34, 35, 41, 60, 61, 87
use in text, 33, 34, 60, 61, 65, 87

gate_constraint, 41
use in syntax, 41
use in text, 36, 41

gate_context_parameter, 41
use in syntax, 37

gate_definition, 35
use in syntax, 35, 49
use in text, 33, 35, 36

gate_on_diagram, 35
use in syntax, 30, 31, 58, 59, 65, 84, 86
use in text, 30, 31, 35, 46, 55, 56, 58, 59, 65

gate_property_area, 49
use in syntax, 33, 34, 45, 46, 60
use in text, 35, 46, 56

gate_symbol, 35
use in syntax, 35
use in text, 36

gate_symbol_1, 35
use in syntax, 35

gate_symbol_2, 35
use in syntax, 35

general_text_character, 13
use in syntax, 13

graphical_answer, 100
use in syntax, 100
use in text, 100, 101

graphical_type_reference_heading, 48
use in syntax, 48
use in text, 48, 49

grave_accent, 15
use in syntax, 14

greater_than_or_equals_sign, 14
use in syntax, 13, 14, 135, 137
use in text, 136

greater_than_sign, 15
use in syntax, 13, 14, 37, 135, 137

handle_area, 112
use in syntax, 109
use in text, 91, 107, 110, 113

handle_association_area, 109
use in syntax, 109

handle_statement, 107
use in syntax, 107
use in text, 107, 110

handle_symbol, 112
use in syntax, 112
use in text, 22, 113

heading, 22
use in syntax, 22
use in text, 23

heading_area, 22
use in syntax, 22
use in text, 23

hex_string, 13
use in syntax, 12, 19
use in text, 10, 125, 131

history_dash_nextstate, 91
use in syntax, 91
use in text, 91

history_dash_sign, 14
use in syntax, 14, 91

hyphen, 15
use in syntax, 13, 14, 50, 91, 137

iconized_type_reference_area, 49
use in syntax, 47
use in text, 48, 49

identifier, 19
agent

 ITU-T Rec. Z.100 (11/2007) 161

use in syntax, 95, 98
use in text, 98, 148

agent_type
use in syntax, 38, 95
use in text, 38, 96, 148, 149

agent_type_
use in text, 96

block
use in syntax, 33
use in text, 10

channel
use in syntax, 67, 98
use in text, 58, 65, 67

composite_state
use in syntax, 87

composite_state_type
use in syntax, 40
use in text, 40

exception
use in syntax, 62, 94, 113
use in text, 69, 78, 110, 113

gate
use in syntax, 98
use in text, 99

interface
use in syntax, 35, 41, 68
use in text, 36, 41, 69, 118

literal
use in text, 182

operation
use in syntax, 173

package
use in syntax, 26
use in text, 27

procedure
use in syntax, 38, 171
use in text, 38, 69, 97, 106, 150

process
use in syntax, 34

remote_procedure
use in syntax, 46, 48, 62, 68, 69, 172
use in text, 47, 48, 63, 69, 78, 79, 172

remote_variable
use in syntax, 68, 73, 144, 172
use in text, 69, 73, 78, 144, 173

signal
use in syntax, 39, 68, 98
use in text, 39, 68, 69, 78, 79, 82, 98, 99

signal_list
use in syntax, 68
use in text, 27, 68, 69, 78, 79

sort
use in syntax, 116, 143, 175
use in text, 38, 40, 116, 120, 122, 143, 175

synonym
use in syntax, 139
use in text, 40, 129, 130, 139

syntype
use in syntax, 133
use in text, 38, 134

system_type
use in syntax, 46

timer
use in syntax, 68, 69, 108, 149
use in text, 69, 78, 98, 108

use in syntax, 32, 35, 36, 43

use in text, 10, 20, 21, 27, 32, 36, 43, 45, 69, 129, 130, 139,
179, 201

value
use in syntax, 182
use in text, 179, 181, 182

variable
use in syntax, 73, 105, 144, 145
use in text, 73, 79, 106, 113, 145, 146, 150

if_statement, 104
use in syntax, 101
use in text, 104

imperative_expression, 147
use in syntax, 138
use in text, 81, 129, 130

implies_sign, 14
use in syntax, 13, 14, 137
use in text, 10

import_expression, 73
use in syntax, 147
use in text, 73, 74, 81, 90, 112, 148

imported_procedure_specification, 172
use in syntax, 172, 174
use in text, 171, 172, 174

imported_variable_specification, 172
use in syntax, 172, 174
use in text, 171, 173, 174

in_connector_area, 82
use in syntax, 54, 63, 85, 129
use in text, 83, 92

in_connector_symbol, 83
use in syntax, 82, 92

indexed_primary, 139
use in syntax, 139
use in text, 140

indexed_variable, 146
use in syntax, 146
use in text, 79, 113, 146

infix_operation_name, 13
use in syntax, 12
use in text, 138

informal_text, 21
use in syntax, 94, 100, 152, 176
use in text, 16, 101, 150, 151, 152

inherited_agent_definition, 33
use in syntax, 55
use in text, 33

inherited_block_definition, 33
use in syntax, 33
use in text, 33

inherited_gate_symbol, 35
use in syntax, 35
use in text, 35, 42

inherited_gate_symbol_1, 35
use in syntax, 35

inherited_gate_symbol_2, 35
use in syntax, 35

inherited_process_definition, 34
use in syntax, 33
use in text, 34

inherited_state_partition_definition, 87
use in syntax, 87

initial_number, 54
use in syntax, 53
use in text, 55

inline_data_type_definition, 115
use in syntax, 115
use in text, 116

inline_syntype_definition, 115
use in syntax, 115
use in text, 116

162 ITU-T Rec. Z.100 (11/2007)

inner_graphical_point, 87
use in syntax, 87
use in text, 87

input_area, 78
use in syntax, 76
use in text, 70, 71, 72, 74, 76, 78, 79, 82

input_association_area, 76
use in syntax, 76

input_list, 78
use in syntax, 78
use in text, 78, 79, 82

input_symbol, 78
use in syntax, 78, 82
use in text, 22, 78

interaction_area, 54
use in syntax, 54
use in text, 55, 56, 58, 59

interface_constraint, 41
use in syntax, 41

interface_context_parameter, 41
use in syntax, 37

interface_definition, 117
use in syntax, 115, 174
use in text, 19, 20, 21, 47, 49, 51, 115, 116, 118, 124

interface_gate_definition, 35
use in syntax, 35, 49
use in text, 33, 36, 99

interface_heading, 118
use in syntax, 118

interface_procedure_definition, 118
use in syntax, 118
use in text, 51

interface_reference, 47
use in syntax, 26, 54, 151, 172, 174
use in text, 45, 47, 51

interface_reference_area, 47
use in syntax, 26, 53
use in text, 10, 11, 45, 47

interface_specialization, 119
use in syntax, 118
use in text, 118, 119, 124

interface_use_list, 118
use in syntax, 50, 118
use in text, 51, 117, 118

interface_variable_definition, 118
use in syntax, 118
use in text, 50

interface_variable_property, 50
use in syntax, 50
use in text, 50

internal_input_symbol, 78
use in syntax, 78
use in text, 22, 78

internal_output_symbol, 98
use in syntax, 98
use in text, 22, 98

internal_synonym_definition_item, 136
use in syntax, 136

is_assigned_sign, 14
use in syntax, 14, 102, 105, 108, 144, 145
use in text, 146

kernel_heading, 22
use in syntax, 22

keyword, 15
use in syntax, 12
use in text, 10, 16, 17, 170, 201

labelled_statement, 106
use in syntax, 101
use in text, 106

left_curly_bracket, 15

use in syntax, 14, 61, 102, 104, 115, 117, 118, 128, 133
use in text, 10, 61

left_parenthesis, 14
use in syntax, 14

left_square_bracket, 15
use in syntax, 14, 139, 146
use in text, 10

legacy_data_inheritance, 173
use in syntax, 173
use in text, 175

legacy_data_type_definition
use in syntax, 174, 175
use in text, 173, 174, 175, 176

legacy_external_operator_definition, 173
use in syntax, 175
use in text, 173, 175

legacy_generator_actual
use in syntax, 175
use in text, 175

legacy_generators
use in syntax, 175
use in text, 175

legacy_inheritance_list, 173
use in syntax, 173

legacy_inherited_operator, 173
use in syntax, 173

legacy_literal_renaming, 173
use in syntax, 173
use in text, 173

legacy_operator_definition, 173
use in syntax, 175
use in text, 173, 175

legacy_operator_reference, 173
use in syntax, 175
use in text, 173, 175

legacy_operator_signature
use in syntax, 176
use in text, 176

legacy_operator_signatures
use in syntax, 175
use in text, 175, 176

legacy_procedure_signature, 171
use in syntax, 171, 172, 173
use in text, 171

legacy_syntype_definition
use in syntax, 174, 175
use in text, 174, 175, 176

legacy_task_body, 176
use in syntax, 176

less_than_or_equals_sign, 14
use in syntax, 13, 14, 135, 137
use in text, 136

less_than_sign, 15
use in syntax, 13, 14, 37, 135, 137

letter, 12
use in syntax, 12
use in text, 16

lexical_unit, 12
use in syntax, 17, 18, 22
use in text, 16, 17, 18, 23

linked_type_reference_area, 53
use in syntax, 52
use in text, 52, 53

literal, 139
use in syntax, 137
use in text, 139

literal_equation, 182
use in syntax, 179
use in text, 180, 182

literal_identifier, 139

 ITU-T Rec. Z.100 (11/2007) 163

use in syntax, 139
use in text, 129, 130, 139, 179, 181, 182

literal_list, 124
use in syntax, 124, 175, 181
use in text, 119, 123, 125, 127, 132, 133, 175, 201

literal_name, 125
base_type

use in syntax, 119
use in text, 119

Natural
use in syntax, 22, 80, 131

Natural_
use in text, 131

use in syntax, 22, 119, 124, 125, 139
use in text, 119, 125, 126, 131

literal_quantification, 182
use in syntax, 182
use in text, 182

literal_signature, 124
use in syntax, 40, 124, 175, 181
use in text, 40, 125, 126, 130, 133

local, 50
use in syntax, 50, 51
use in text, 50, 51

local_variables_of_sort, 102
use in syntax, 102
use in text, 102

loop_body_statement, 105
use in syntax, 105
use in text, 105, 106

loop_break_statement, 106
use in syntax, 101
use in text, 102, 106

loop_clause, 105
use in syntax, 105
use in text, 105, 106

loop_continue_statement, 106
use in syntax, 101
use in text, 102, 106

loop_statement, 105
use in syntax, 101
use in text, 102, 105, 106

loop_step, 105
use in syntax, 105
use in text, 105, 106

loop_variable_definition, 105
use in syntax, 105
use in text, 105, 106

loop_variable_indication, 105
use in syntax, 105
use in text, 105, 106

lowercase_letter, 12
use in syntax, 12

macro_actual_parameter, 18
use in syntax, 18
use in text, 17, 18

macro_body, 17
use in syntax, 17
use in text, 17

macro_call, 17
use in syntax, 153
use in text, 18, 95

macro_call_body, 18
use in syntax, 18, 94
use in text, 95

macro_definition, 17
use in syntax, 26, 28, 54, 62, 85, 129, 151, 172, 174
use in text, 17, 28

macro_formal_parameter, 17
use in syntax, 17, 170

use in text, 17, 18, 20, 201
macro_formal_parameters, 170

use in syntax, 17
use in text, 17

macro_parameter, 17
use in syntax, 17

macro_symbol, 94
use in syntax, 94
use in text, 95

maximum_number, 54
use in syntax, 53
use in text, 55

merge_area, 92
use in syntax, 90
use in text, 92, 106

merge_symbol, 92
use in syntax, 92

method_application, 142
use in syntax, 142
use in text, 142, 143

method_list, 121
use in syntax, 121
use in text, 121, 122, 127, 128

monadic_operation_name, 13
use in syntax, 12
use in text, 138

multiplicity, 52
use in syntax, 52
use in text, 53

name, 12
agent

use in syntax, 38
agent_type

use in syntax, 38
association

use in syntax, 52
block

use in syntax, 33, 58, 60
use in text, 10

block_type
use in syntax, 30
use in text, 46

channel
use in syntax, 65
use in text, 66

composite_state
use in text, 77

composite_state_type
use in syntax, 31, 40
use in text, 46

connector
use in syntax, 82, 92, 106
use in text, 20, 83, 92, 106

data_type
use in syntax, 117
use in text, 47, 116, 127

drawing
use in syntax, 22

exception
use in syntax, 40, 51, 109, 181
use in text, 181

exception_handler
use in syntax, 109, 110
use in text, 110, 112

field
use in syntax, 50, 126, 127
use in text, 50, 126, 127, 128

gate

164 ITU-T Rec. Z.100 (11/2007)

use in syntax, 35
use in text, 20, 35, 36

interface
use in syntax, 41, 118
use in text, 47, 116

literal
use in syntax, 125
use in text, 127

macro
use in syntax, 17, 18, 94
use in text, 17, 18, 20, 95

operation
use in syntax, 50, 121, 131, 132, 173, 182
use in text, 132, 182

package
use in syntax, 25, 26
use in text, 26

procedure
use in syntax, 38, 51, 62
use in text, 47, 130

process
use in syntax, 34, 59, 60

process_type
use in syntax, 31
use in text, 46

remote_procedure
use in syntax, 69, 118

remote_variable
use in syntax, 39, 50, 73, 118, 172

role
use in syntax, 52
use in text, 53

signal
use in syntax, 39, 51, 68
use in text, 47, 70, 73

signal_list
use in syntax, 68

sort
use in syntax, 40, 171, 175
use in text, 133, 139, 142

state
use in syntax, 34, 61, 76, 87, 91
use in text, 20, 76, 77, 86, 110

state_entry_point
use in syntax, 75, 88, 91
use in text, 75, 85, 91

state_exit_point
use in syntax, 88
use in text, 89

synonym
use in syntax, 39, 136

syntype
use in syntax, 133, 176

system
use in syntax, 33, 58, 60

system_type
use in syntax, 30
use in text, 46

timer
use in syntax, 39, 51, 108

use in syntax, 12, 17, 19, 26, 48, 140
use in text, 10, 16, 17, 19, 20, 21, 27, 28, 45, 51, 73, 139,

142, 201
value

use in syntax, 179, 182
use in text, 182

variable
use in syntax, 39, 50, 53, 62, 102, 105, 129, 144,

172, 174
use in text, 50, 62, 64, 85, 93, 102, 106, 129, 130

name_class_literal, 131
use in syntax, 124
use in text, 131, 132

name_class_operation, 131
use in syntax, 40, 121
use in text, 131, 132

named_number, 125
use in syntax, 124
use in text, 40, 125, 175

nextstate_area, 91
use in syntax, 90
use in text, 22, 77, 82, 90, 91

nextstate_body, 91
use in syntax, 91

noequality, 180
use in syntax, 179
use in text, 180

nondelaying_channel_symbol_1, 65
use in syntax, 65
use in text, 65

nondelaying_channel_symbol_2, 65
use in syntax, 65
use in text, 65

not_asterisk_or_solidus, 13
use in syntax, 13

not_equals_sign, 14
use in syntax, 13, 14, 135, 140
use in text, 140

not_number_or_solidus, 13
use in syntax, 13

note, 13
use in syntax, 12
use in text, 16, 23

note_text, 13
use in syntax, 13

now_expression, 147
use in syntax, 147

number_of_instances, 53
use in syntax, 33, 34, 53, 60
use in text, 10, 55, 58, 171

number_of_pages, 22
use in syntax, 22

number_sign, 15
use in syntax, 13, 14, 50

on_exception_area, 110
use in syntax, 110
use in text, 110

on_exception_association_area, 110
use in syntax, 54, 63, 69, 75, 76, 78, 79, 80, 82, 85, 89, 93,

94, 95, 97, 98, 100, 109, 112, 129
use in text, 63, 74, 91, 110, 112

open_range, 135
use in syntax, 135
use in text, 135, 136

operand, 137
use in syntax, 137
use in text, 138

operand0, 137
use in syntax, 137

operand1, 137
use in syntax, 137
use in text, 138

operand2, 137
use in syntax, 137, 140, 143
use in text, 138, 140, 143

operand3, 137

 ITU-T Rec. Z.100 (11/2007) 165

use in syntax, 137, 140
use in text, 138, 140

operand4, 137
use in syntax, 137
use in text, 138

operand5, 137
use in syntax, 137
use in text, 138

operation_application, 141
use in syntax, 104, 137
use in text, 63, 104, 131, 140, 142, 143, 178

operation_body_area, 129
use in syntax, 129
use in text, 11, 83, 90, 92, 130

operation_definition, 128
use in syntax, 28, 128
use in text, 11, 19, 44, 51, 83, 101, 103, 117, 129, 130, 132,

173
operation_definitions, 128

use in syntax, 117, 179
use in text, 11, 117, 129, 132, 133, 173

operation_diagram, 129
use in syntax, 28
use in text, 19, 23, 117, 129, 130, 132, 133

operation_heading, 128
use in syntax, 128, 129, 173
use in text, 130, 173

operation_identifier, 129
use in syntax, 142
use in text, 104, 129, 130, 140, 142, 143, 179

operation_name, 121
base_type

use in syntax, 119
use in text, 119, 120

use in syntax, 40, 119, 121, 128, 129, 173
use in text, 44, 119, 121, 122, 130, 131, 132, 133, 142, 173

operation_parameters, 129
use in syntax, 129, 174
use in text, 129

operation_preamble, 121
use in syntax, 121, 128
use in text, 129

operation_property, 50
use in syntax, 50
use in text, 51

operation_reference, 47
use in syntax, 128
use in text, 11, 44, 47, 51, 117, 173

operation_result, 174
use in syntax, 128
use in text, 93, 129, 130, 174

operation_signature, 121
use in syntax, 47, 121, 129
use in text, 44, 47, 117, 121, 122, 123, 128, 129, 130, 131,

132, 133, 135, 180, 182
operation_signature_in_constraint, 40

use in syntax, 40
operation_signatures, 121

use in syntax, 117, 179
use in text, 117, 129, 133

operation_text_area, 129
use in syntax, 129
use in text, 11, 23

operations, 117
use in syntax, 117, 179
use in text, 117, 128, 146, 179

operator_application, 142
use in syntax, 142

operator_list, 121
use in syntax, 121

use in text, 121, 123, 125, 128, 131, 180
operator_name

use in syntax, 175, 176
option_area, 151

use in syntax, 26, 151
use in text, 10, 11, 55, 152

option_symbol, 151
use in syntax, 151
use in text, 151, 152

ordering_area, 53
use in syntax, 52

other_character, 14
use in syntax, 13

other_special, 14
use in syntax, 13, 14

out_connector_area, 92
use in syntax, 90
use in text, 83, 92

out_connector_symbol, 92
use in syntax, 92
use in text, 22

outer_graphical_point, 87
use in syntax, 87
use in text, 87

output_area, 98
use in syntax, 90
use in text, 99

output_body, 98
use in syntax, 98, 103
use in text, 98, 99

output_statement, 103
use in syntax, 101
use in text, 99, 103

output_symbol, 98
use in syntax, 98
use in text, 22

package_dependency_area, 26
use in syntax, 25, 26, 48, 60
use in text, 27, 48, 56

package_diagram, 25
use in syntax, 24, 26, 28
use in text, 10, 11, 19, 20, 21, 23, 24, 27, 28

package_heading, 25
use in syntax, 25

package_interface, 26
use in syntax, 25
use in text, 20, 27

package_reference, 26
use in syntax, 25

package_reference_area, 26
use in syntax, 25, 26
use in text, 10, 11, 26, 27

package_symbol, 26
use in syntax, 26
use in text, 26

package_text_area, 25
use in syntax, 25
use in text, 23

package_use_area, 25
use in syntax, 24, 25, 29, 31, 53, 58, 59, 62, 84, 86, 129
use in text, 11, 25, 26, 27, 29, 31, 54, 56, 63, 85, 129

package_use_clause, 26
use in syntax, 25, 61, 117, 118, 128, 133, 173
use in text, 11, 20, 21, 27, 48

page, 22
use in syntax, 153
use in text, 23

page_number, 22
use in syntax, 22

page_number_area, 22

166 ITU-T Rec. Z.100 (11/2007)

use in syntax, 22
use in text, 23

parameter_kind, 62
use in syntax, 62, 121, 129
use in text, 32, 38, 44, 64, 122, 130

parameters_of_sort, 53
use in syntax, 53, 62, 171

parent_sort_identifier, 133
use in syntax, 133, 176
use in text, 27, 147

partial_regular_expression, 131
use in syntax, 131
use in text, 131

path_item, 19
use in syntax, 19
use in text, 20, 21, 27, 139, 142

percent_sign, 15
use in syntax, 14

pid_expression, 148
use in syntax, 147
use in text, 148

pid_sort, 116
use in syntax, 115
use in text, 116, 120

plain_input_symbol, 78
use in syntax, 78
use in text, 78

plain_output_symbol, 98
use in syntax, 98
use in text, 98

plus_sign, 15
use in syntax, 13, 14, 50, 131, 137
use in text, 10, 131

primary, 137
constant

use in syntax, 36
use in text, 37

use in syntax, 137, 139, 142
use in text, 37, 140, 143

priority_input_area, 79
use in syntax, 79
use in text, 80

priority_input_association_area, 79
use in syntax, 76
use in text, 79

priority_input_list, 79
use in syntax, 79
use in text, 79, 82

priority_input_symbol, 79
use in syntax, 79
use in text, 22

priority_name, 80
use in syntax, 80

private, 50
use in syntax, 50
use in text, 50, 51

procedure_area, 62
use in syntax, 62, 85, 151

procedure_body_area, 63
use in syntax, 62
use in text, 63, 64, 83, 92, 130

procedure_call_area, 97
use in syntax, 90
use in text, 63, 97

procedure_call_body, 97
use in syntax, 97, 103, 105, 150
use in text, 69, 104, 106, 150

procedure_call_symbol, 97
use in syntax, 69, 97

procedure_constraint, 171

use in syntax, 38
use in text, 38, 63, 171

procedure_context_parameter, 38
use in syntax, 37

procedure_definition, 61
use in syntax, 26, 27, 54, 62, 85, 117, 151, 172, 174, 175
use in text, 19, 47, 51, 61, 62, 64, 83, 101, 103, 117, 130

procedure_diagram, 62
use in syntax, 28, 54, 62
use in text, 19, 23, 64, 85, 130

procedure_formal_parameters, 172
use in syntax, 62
use in text, 51, 62, 130, 172, 201

procedure_heading, 62
use in syntax, 61, 62
use in text, 42

procedure_preamble, 62
use in syntax, 62
use in text, 43, 63, 64

procedure_property, 51
use in syntax, 50
use in text, 51

procedure_reference, 46
use in syntax, 26, 54, 62, 85, 117, 151, 172, 174, 175
use in text, 45, 47, 51, 117, 130

procedure_reference_area, 47
use in syntax, 26, 54, 62
use in text, 10, 11, 45, 47

procedure_result, 172
use in syntax, 62
use in text, 42, 51, 62, 64, 71, 93, 150, 172, 201

procedure_signature, 62
use in syntax, 50, 51, 62, 69, 118
use in text, 51, 134, 201

procedure_signature_in_constraint, 38
use in syntax, 38, 171

procedure_start_area, 63
use in syntax, 63, 129
use in text, 64

procedure_start_symbol, 63
use in syntax, 63

procedure_symbol, 49
use in syntax, 48, 49

procedure_text_area, 62
use in syntax, 62, 151
use in text, 23, 64

process_diagram, 59
use in syntax, 53
use in text, 25, 54, 59

process_heading, 59
use in syntax, 59

process_reference, 60
use in syntax, 60

process_reference_area, 60
use in syntax, 60

process_symbol, 60
use in syntax, 34, 35, 60
use in text, 33, 36, 61

process_type_diagram, 30
use in syntax, 29
use in text, 31, 46

process_type_heading, 30
use in syntax, 30

process_type_reference, 46
use in syntax, 45
use in text, 46

process_type_reference_area, 46
use in syntax, 45
use in text, 46

process_type_symbol, 49

 ITU-T Rec. Z.100 (11/2007) 167

use in syntax, 48, 49
protected, 50

use in syntax, 50, 181
use in text, 50, 51

provided_expression, 81
use in syntax, 80
use in text, 81

public, 50
use in syntax, 50
use in text, 50, 51

qualifier, 19
drawing

use in syntax, 22
use in syntax, 19, 25, 26, 30, 31, 48, 58, 59, 62, 84, 86,

128, 129, 139, 140
use in text, 10, 20, 21, 26, 27, 28, 45, 51, 139, 140, 142,

201
qualifier_begin_sign, 14

use in syntax, 14, 19
use in text, 201

qualifier_end_sign, 14
use in syntax, 14, 19
use in text, 201

quantification, 179
use in syntax, 179
use in text, 179

quantified_equations, 179
use in syntax, 179
use in text, 178, 179

question, 100
use in syntax, 100, 104
use in text, 21, 100, 101, 106

question_mark, 15
use in syntax, 14

quotation_mark, 14
use in syntax, 12, 14
use in text, 138

quoted_operation_name, 12
use in syntax, 12, 121
use in text, 10, 17, 19, 21, 121

raise_area, 93
use in syntax, 90
use in text, 94

raise_body, 94
use in syntax, 93, 103
use in text, 94

raise_statement, 103
use in syntax, 101
use in text, 104

raise_symbol, 93
use in syntax, 93
use in text, 22

raises, 62
use in syntax, 62, 121, 128
use in text, 51, 63, 70, 72, 129

range, 135
use in syntax, 135

range_check_expression, 143
use in syntax, 137
use in text, 143

range_condition, 135
use in syntax, 52, 100, 115, 135, 175, 176
use in text, 53, 101, 104, 116, 135, 136, 175

range_sign, 14
use in syntax, 13, 131, 135

reference_sort, 116
use in syntax, 115
use in text, 116, 120

referenced_definition, 27
use in syntax, 24

use in text, 20, 24, 28, 45, 51, 61
regular_element, 131

use in syntax, 131
use in text, 131, 132

regular_expression, 131
use in syntax, 131
use in text, 125, 126, 131

regular_interval, 131
use in syntax, 131
use in text, 131, 132

remote_procedure_call_area, 69
use in syntax, 90
use in text, 70

remote_procedure_call_body, 69
use in syntax, 69, 103, 150
use in text, 69, 150

remote_procedure_context_parameter, 38
use in syntax, 37
use in text, 118

remote_procedure_definition, 69
use in syntax, 26, 54, 151, 172, 174
use in text, 38, 69, 70, 78

remote_procedure_reject, 78
use in syntax, 78
use in text, 72, 78

remote_variable_context_parameter, 39
use in syntax, 37
use in text, 118

remote_variable_definition, 172
use in syntax, 25, 54, 151, 172, 174
use in text, 2, 39, 73, 74, 172

rename_list, 119
use in syntax, 119
use in text, 119

rename_pair, 119
use in syntax, 119, 173
use in text, 120, 173

renaming, 119
use in syntax, 119, 173
use in text, 40, 128

reset_body, 108
use in syntax, 94, 103
use in text, 95

reset_clause, 108
use in syntax, 108
use in text, 108

reset_statement, 103
use in syntax, 101
use in text, 95, 103

restricted_equation, 180
use in syntax, 180

restriction, 180
use in syntax, 180
use in text, 181

result, 121
use in syntax, 38, 40, 62, 121
use in text, 47, 51, 122, 129, 130

result_sign, 14
use in syntax, 13, 62, 121, 129, 172, 174

return_area, 93
use in syntax, 90
use in text, 64, 81, 85, 86, 89, 93, 150, 201

return_body, 93
use in syntax, 93, 103
use in text, 81

return_statement, 103
use in syntax, 101
use in text, 103

return_symbol, 93
use in syntax, 93

168 ITU-T Rec. Z.100 (11/2007)

reverse_solidus, 15
use in syntax, 14

right_curly_bracket, 15
use in syntax, 14, 61, 102, 104, 115, 117, 118, 128, 133
use in text, 10

right_parenthesis, 15
use in syntax, 14

right_square_bracket, 15
use in syntax, 14, 139, 146
use in text, 10

save_area, 81
use in syntax, 76
use in text, 70, 72, 76, 82

save_association_area, 76
use in syntax, 76

save_list, 81
use in syntax, 81
use in text, 79, 81, 82

save_symbol, 81
use in syntax, 81

scope_unit_kind, 19
use in syntax, 19
use in text, 20, 21

sdl_specification, 24
use in syntax, 153
use in text, 17, 18, 24, 27, 122

select_definition, 151
use in syntax, 26, 54, 62, 85, 129, 151, 172, 174
use in text, 152, 174

selected_entity_kind, 26
use in syntax, 26
use in text, 27

semicolon, 15
use in syntax, 14, 23

set_body, 108
use in syntax, 94, 103
use in text, 95

set_clause, 108
use in syntax, 108
use in text, 108

set_statement, 103
use in syntax, 101
use in text, 95, 103

signal_constraint, 39
use in syntax, 39

signal_context_parameter, 39
use in syntax, 37
use in text, 19, 118

signal_definition, 68
use in syntax, 25, 54, 118, 151, 172, 174
use in text, 19, 47, 51, 70, 73

signal_definition_item, 68
use in syntax, 68
use in text, 50, 51, 68

signal_list, 68
use in syntax, 41, 55, 68, 81, 118
use in text, 11, 36, 41, 65, 68, 69, 70, 98, 118

signal_list_area, 68
use in syntax, 35, 65
use in text, 35, 36, 65

signal_list_definition, 68
use in syntax, 25, 54, 151, 172, 174
use in text, 69

signal_list_item, 68
use in syntax, 68, 78
use in text, 46, 51, 56, 69, 78, 79

signal_list_symbol, 68
use in syntax, 68

signal_parameter_property, 50
use in syntax, 49

use in text, 50
signal_property, 51

use in syntax, 50
use in text, 51

signal_reference, 47
use in syntax, 25, 54, 151, 172, 174
use in text, 45, 47, 51

signal_reference_area, 47
use in syntax, 26, 54
use in text, 10, 11, 45, 47

signal_signature, 39
use in syntax, 39

simple_expression, 138
Boolean

use in syntax, 151, 174
use in text, 152

Natural
use in syntax, 54, 125
use in text, 125, 126

use in syntax, 152
use in text, 138, 152

size_constraint, 135
use in syntax, 135
use in text, 116, 135, 136

solid_association_symbol, 24
use in syntax, 23, 76, 79, 80, 87, 89, 109
use in text, 22, 24, 77, 87, 110

solid_on_exception_association_symbol, 110
use in syntax, 110
use in text, 22, 110

solidus, 15
use in syntax, 13, 14, 137

sort, 115
predefined

use in syntax, 136
result

use in text, 123
use in syntax, 39, 40, 50, 53, 62, 68, 73, 102, 105, 118,

121, 126, 129, 133, 136, 143, 144, 149, 171, 172, 174,
175, 176, 179, 182

use in text, 20, 27, 38, 40, 50, 64, 68, 71, 106, 116, 121,
122, 126, 129, 130, 134, 136, 143, 144, 146, 149, 150,
172, 173, 174, 176, 179, 182

sort_constraint, 40
use in syntax, 40, 171
use in text, 40

sort_context_parameter, 171
use in syntax, 37
use in text, 19, 40, 68, 117, 118, 171

sort_list, 68
use in syntax, 38, 39, 40, 51, 68, 108, 109, 171
use in text, 50, 51, 68

sort_name
use in syntax, 175

sort_signature, 40
use in syntax, 40
use in text, 171

space, 16
use in syntax, 13
use in text, 10, 16

special, 14
use in syntax, 12, 13
use in text, 10

specialization, 41
use in syntax, 31, 53, 62, 68, 84, 86
use in text, 32, 37, 42, 43, 48, 68

specialization_area, 41
use in syntax, 48
use in text, 48

specialization_relation_symbol, 41

 ITU-T Rec. Z.100 (11/2007) 169

use in syntax, 41
use in text, 22, 41, 48

specification_area, 24
use in syntax, 24
use in text, 23, 24, 27, 60

spelling_term, 182
use in syntax, 137
use in text, 132, 182

spontaneous_designator, 82
use in syntax, 82

spontaneous_transition_area, 82
use in syntax, 76
use in text, 76, 82

spontaneous_transition_association_area, 76
use in syntax, 76

start
use in syntax, 173
use in text, 173

start_area, 75
use in syntax, 54, 85
use in text, 56, 64, 75, 85, 86, 90, 91, 129, 150

start_symbol, 75
use in syntax, 75

start_timer_area, 94
use in syntax, 94
use in text, 95

start_timer_symbol, 94
use in syntax, 94

state_aggregation_area, 86
use in syntax, 83
use in text, 85

state_aggregation_body_area, 86
use in syntax, 84
use in text, 83, 85

state_aggregation_heading, 86
use in syntax, 86

state_aggregation_type_heading, 31
use in syntax, 31
use in text, 42, 85

state_area, 76
use in syntax, 54, 63, 85, 90
use in text, 71, 72, 74, 76, 77, 78, 79, 81, 82, 83, 85, 86, 90,

91
state_connection_point_area, 88

use in syntax, 31, 84, 86
use in text, 85, 88

state_connection_point_symbol, 88
use in syntax, 88

state_connection_point_symbol_1, 88
use in syntax, 88
use in text, 88

state_connection_point_symbol_2, 88
use in syntax, 88
use in text, 88

state_entry_point, 88
use in syntax, 88
use in text, 85

state_entry_points, 88
use in syntax, 87, 88
use in text, 88

state_exit_point, 88
use in syntax, 88, 89, 93
use in text, 85, 89, 93

state_exit_point_list, 89
use in syntax, 89
use in text, 89

state_exit_points, 88
use in syntax, 87, 88
use in text, 88

state_expression, 150

use in syntax, 147
use in text, 150, 201

state_list, 76
use in syntax, 76
use in text, 76, 77

state_partition_area, 87
use in syntax, 55, 65, 86, 87, 151
use in text, 8, 30, 56, 65, 85, 87

state_partition_connection_area, 87
use in syntax, 86

state_symbol, 76
use in syntax, 35, 61, 76, 87, 91
use in text, 36, 77, 87

statement, 101
use in syntax, 101, 104, 105, 106, 107
use in text, 95, 102, 103, 105, 106, 107, 129, 130

statement_list, 101
use in syntax, 61, 94, 102, 128, 176
use in text, 23, 61, 64, 83, 95, 101, 102, 103, 106, 107

statements, 101
use in syntax, 101
use in text, 95, 102, 106

stimulus, 78
use in syntax, 78, 79
use in text, 78, 79, 82

stop_statement, 103
use in syntax, 101
use in text, 95, 104

stop_symbol, 92
use in syntax, 90
use in text, 92, 201

stop_timer_area, 94
use in syntax, 94
use in text, 95

stop_timer_symbol, 94
use in syntax, 94

string_name, 19
use in syntax, 125
use in text, 19, 125, 132

structure_definition, 126
use in syntax, 124, 175
use in text, 119, 123, 126, 127, 132, 133, 175, 201

symbol, 22
use in syntax, 22
use in text, 23

symbolic_visibility, 50
use in syntax, 50, 52

synonym, 139
use in syntax, 137
use in text, 136, 139

synonym_constraint, 39
use in syntax, 39

synonym_context_parameter, 39
use in syntax, 37
use in text, 117

synonym_definition, 136
use in syntax, 115, 117, 174, 175
use in text, 136, 139

synonym_definition_item, 136
use in syntax, 136

syntype, 133
use in syntax, 115
use in text, 116, 134

syntype_definition, 133
use in syntax, 115, 117, 174, 175
use in text, 115, 116, 130, 134, 146, 147

syntype_name
use in syntax, 176

system_diagram, 58
use in syntax, 53

170 ITU-T Rec. Z.100 (11/2007)

use in text, 8, 25, 27, 54, 57, 58, 70
system_heading, 58

use in syntax, 58
system_reference_area, 60

use in syntax, 60
use in text, 60

system_specification, 24
use in syntax, 24
use in text, 24, 25, 27, 28

system_type_diagram, 30
use in syntax, 29
use in text, 30

system_type_heading, 30
use in syntax, 30

system_type_reference, 46
use in syntax, 45

system_type_reference_area, 46
use in syntax, 45
use in text, 46

system_type_symbol, 49
use in syntax, 48, 49

task_area, 94
use in syntax, 90
use in text, 19, 20, 64, 79, 95, 101, 108, 113

task_body, 176
use in syntax, 94
use in text, 79, 94, 95, 113, 176

task_symbol, 94
use in syntax, 94
use in text, 95

term, 179
Boolean

use in syntax, 180
use in text, 181

use in syntax, 179
use in text, 179

terminating_statement, 101
use in syntax, 101
use in text, 102

terminator_area, 90
use in syntax, 90
use in text, 103

text, 13
use in syntax, 23
use in text, 16, 24

text_extension_area, 23
use in syntax, 153
use in text, 16

text_extension_symbol, 24
use in syntax, 23
use in text, 11, 22, 24

text_symbol, 24
implicit

use in syntax, 22
use in text, 23

use in syntax, 25, 54, 62, 85, 129, 171
use in text, 11, 24

textual_endpoint_constraint, 35
use in syntax, 35, 41
use in text, 36

tilde, 15
use in syntax, 14

timer_active_expression, 149
use in syntax, 147

timer_constraint, 39
use in syntax, 39

timer_context_parameter, 39
use in syntax, 37
use in text, 30

timer_default_initialization, 108

use in syntax, 108
use in text, 108

timer_definition, 107
use in syntax, 54, 151, 172, 174

timer_definition_item, 108
use in syntax, 108
use in text, 51

timer_property, 51
use in syntax, 50
use in text, 51

timer_remaining_duration, 149
use in syntax, 147

transition_area, 90
use in syntax, 63, 75, 78, 79, 80, 82, 83, 89, 100, 112
use in text, 64, 70, 78, 79, 81, 82, 90, 91, 92, 106, 107, 112,

113
transition_option_area, 152

use in syntax, 90
use in text, 55, 152

transition_option_symbol, 152
use in syntax, 152
use in text, 152

transition_string_area, 90
use in syntax, 90
use in text, 90

try_statement, 107
use in syntax, 107
use in text, 107

type_expression, 31
block

use in syntax, 33
use in text, 33

composite_state
use in syntax, 34, 87
use in text, 34

data_type
use in syntax, 119, 173
use in text, 119

datatype
use in syntax, 115

interface
use in syntax, 119

procedure
use in syntax, 97
use in text, 97

process
use in syntax, 34
use in text, 34

sort
use in text, 120

system
use in syntax, 33
use in text, 33

use in syntax, 41
use in text, 32, 33, 37, 41, 42, 48, 63

type_preamble, 29
use in syntax, 30, 31, 46, 47, 48, 62, 68, 117, 133
use in text, 45, 46, 47, 48

type_reference_area, 47
use in syntax, 41, 46, 47
use in text, 41, 45, 46, 47, 48

type_reference_heading, 48
block_type

use in syntax, 48, 49
composite_state_type

use in syntax, 48, 49
data_type

use in syntax, 48

 ITU-T Rec. Z.100 (11/2007) 171

interface
use in syntax, 48

procedure
use in syntax, 48, 49

process_type
use in syntax, 48, 49

signal
use in syntax, 48

system_type
use in syntax, 48, 49

use in syntax, 46, 47
use in text, 46, 47, 48, 49, 51

type_reference_kind_symbol, 48
use in syntax, 48
use in text, 49

typebased_agent_definition, 33
use in syntax, 24, 25, 55
use in text, 25, 33, 55, 65, 66

typebased_block_definition, 33
use in syntax, 33
use in text, 25, 33, 36

typebased_block_heading, 33
use in syntax, 33

typebased_composite_state, 34
use in syntax, 76
use in text, 34, 76, 77

typebased_process_definition, 34
use in syntax, 33
use in text, 25, 34, 36

typebased_process_heading, 34
use in syntax, 34

typebased_state_partition_definition, 87
use in syntax, 87
use in text, 65, 87

typebased_state_partition_heading, 87
use in syntax, 87

typebased_system_definition, 33
use in syntax, 33
use in text, 33

typebased_system_heading, 33
use in syntax, 33

underline, 15
use in syntax, 12, 14
use in text, 16

unordered, 181
use in syntax, 181
use in text, 181

unquantified_equation, 179
use in syntax, 179, 180

uppercase_letter, 12
use in syntax, 12

valid_input_signal_set, 55
use in syntax, 54, 85, 171
use in text, 11, 56, 57, 85

value_returning_procedure_call, 150
use in syntax, 137
use in text, 63, 97, 138, 150

variable, 145
use in syntax, 78, 113, 145, 146
use in text, 21, 78, 79, 113, 145, 146

variable_access, 144
use in syntax, 138
use in text, 97, 142, 145

variable_context_parameter, 39
use in syntax, 37
use in text, 30

variable_definition, 144
use in syntax, 54, 62, 85, 129, 151, 172, 174
use in text, 50, 62, 64, 73, 84, 85, 95, 101, 102, 144, 146

variable_definition_statement, 102
use in syntax, 101
use in text, 102, 106

variable_definitions, 101
use in syntax, 101
use in text, 102

variable_property, 50
use in syntax, 49
use in text, 50

variables_of_sort, 144
use in syntax, 144
use in text, 64

vertical_line, 15
use in syntax, 14
use in text, 10

via_path, 98
use in syntax, 69
use in text, 69, 98, 99, 201

virtuality, 43
use in syntax, 22, 29, 31, 47, 61, 63, 75, 78, 79, 80, 81, 82,

89, 112, 118, 121, 146
use in text, 23, 43, 44, 45, 47, 61, 64, 68, 75, 79, 80, 82,

113, 118, 121, 122, 129, 146
virtuality_constraint, 43

use in syntax, 29, 31, 62, 68, 117, 118
use in text, 43, 44

visibility, 132
use in syntax, 121, 124, 126, 127
use in text, 50, 51, 125, 126, 127, 132, 133, 175

word, 12
use in syntax, 12
use in text, 16, 201

172 ITU-T Rec. Z.100 (11/2007)

Annex B

Backwards compatibility
(This annex forms an integral part of this Recommendation)

SDL-2000 introduces some syntactic changes to SDL that invalidate descriptions written for older versions of SDL
supported by tools that were available prior SDL-2000 being approved. In most cases the models defined by these legacy
descriptions, if analysed using an appropriate concrete grammar, can be interpreted as SDL-2000 without any change to
the behaviour of the model. The purpose of this annex is to define the concrete grammar for models defined using tools
that supported older versions of SDL, including models produced by tools supporting a version of SDL based on SDL-92
but supporting some SDL-2000 features.

The grammar defined in this annex therefore extends the notation allowed for SDL-2000 without extending the
semantics. This grammar allows SDL-2000 tools to provide backwards compatibility for older descriptions and allows
older tools to be used as tools for a subset of the SDL-2000 language. Moreover, as the Recommendation for SDL-2000
replaces the previous SDL Recommendation as the Recommendation in force, this annex is needed so that existing valid
SDL descriptions using SDL-92 remain valid SDL descriptions.

B.1 Background
The rationale for some changes to the SDL language grammar was to provide a concrete grammar for the language that
could be more easily understood by 21st-century engineers who have learnt programming languages such as C++ and
Java. Some idiosyncratic keywords such as fpar and syntax such as headings were therefore changed. The SDL-92
syntax for such constructs can easily be mapped into SDL-2000.

The semantics supported by SDL-2000 differs from previous versions of SDL. There are some features of SDL-92 that
are not supported in SDL-2000. Models that use view expression, generators, block substructure, channel substructure,
signal refinement or axiomatic definition of data are not compatible with the semantics of SDL-2000, and the grammar
for these features is not included in this annex. SDL-2000 has limited support for graphical macros, and models that used
advanced features for graphical macros in SDL-92 are not supported. Some of these features, such as the advanced
graphical macros or models with implicit channels and signal routes, were not well supported by tools, so the machine-
readable SDL files using these features are unlikely to exist. For this reason, these features of models in SDL-92 have to
be rewritten for use with SDL-2000.

On the other hand SDL-2000 has features that are not supported by SDL-92 or tools such as composite states. To use
these features when modifying an existing model, the model should be converted to SDL-2000. Appendix III describes
an approach to the systematic conversion of SDL-92 to SDL-2000.

B.2 Lexical rules
Previous versions of SDL were not case sensitive. Keywords of the language could be in mixed case, and different
occurrences of the same name could have a different case mix. Although tools may support a mode where they are case
insensitive, a model that is not case correct in the spelling of keywords and inconsistent in the case usage for a name is
not valid according to this annex. The model is required to be case correct according to SDL-2000 lexical rules and
national characters or spaces in names are not permitted.

This annex extends <keyword> to include:
 all | endnewtype | fpar | newtype | returns

B.3 Macro
Concrete grammar

The syntax rule <agent signature> is extended to allow fpar syntax.

<macro formal parameters> ::=
 (<macro formal parameter> { , <macro formal parameter>}*)
 | fpar <macro formal parameter> {, <macro formal parameter>}*

 ITU-T Rec. Z.100 (11/2007) 173

B.4 Context parameters
The signatures of processes and procedures are different in SDL-92: the keyword fpar is used to introduce the list of
sorts and a procedure result is introduced by the keyword returns.

B.4.1 Agent context parameter
Concrete grammar

The syntax rule <agent signature> is extended to allow fpar syntax.

<agent signature> ::=
 <sort list>
 | [<end>] fpar <sort> {, <sort> }

B.4.2 Procedure context parameter
Concrete grammar

The syntax rule <procedure constraint> is extended to allow the <legacy procedure signature>.

<procedure constraint> ::=
 atleast <procedure identifier>
 | <procedure signature in constraint>
 | <legacy procedure signature>

<legacy procedure signature> ::=
 [[<end>] fpar <formal parameter> {, <formal parameter> }*
 [<end> returns <sort>]]
 | [<end>] returns <sort>

B.4.3 Sort context parameter
Concrete grammar

The syntax rule <sort context parameter> is extended to allow the keyword newtype, which has the same meaning as
value type.

<sort context parameter> ::=
 { { value | object } type | newtype } <sort name> <sort constraint>
NOTE – The legacy <sort signature> is not supported.

B.5 Agents
Concrete grammar

The syntax rule <agent formal parameters> is extended to allow the formal parameters to be specified with fpar.

<agent formal parameters> ::=
 (<parameters of sort> {, <parameters of sort>}*)
 | [<end>] fpar <parameters of sort> {, <parameters of sort>}*
NOTE – The optional <end> before the keyword fpar is added to validate models to be defined using tools that require a
semicolon at this point, even though it was only valid in SDL/GR in SDL-92 if a <number of instances> was included.

SDL-92 required an <imported procedure specification> in each process or process type that used a remote procedure,
whereas in SDL-2000 it is sufficient for the remote procedure definition to be visible in the process or process type.
SDL-92 also required an <imported variable specification> in each process or process type that used a remote variable,
whereas in SDL-2000 it is sufficient for the remote variable definition to be visible in the process or process type. The
syntax is extended to allow <imported procedure specification> and <imported variable specification>: the syntax rule
<agent text area> is extended to become:

<agent text area> ::=
 <text symbol>
 contains {
 [<valid input signal set>]
 { <signal definition>
 | <signal reference>

174 ITU-T Rec. Z.100 (11/2007)

 | <signal list definition>
 | <variable definition>
 | <remote procedure definition>
 | <remote variable definition>
 | <data definition>
 | <data type reference>
 | <timer definition>
 | <imported procedure specification>
 | <imported variable specification>
 | <interface reference>
 | <macro definition>
 | <exception definition>
 | <procedure definition>
 | <procedure reference>
 | <select definition>
 | <agent type reference>
 | <agent reference> }* }

<imported procedure specification> ::=
 imported procedure <remote procedure identifier> <end>
 [<legacy procedure signature> <end>]

Model

An <imported procedure specification> has no SDL meaning and is treated as a comment, though to be compatible with
SDL-92 the <remote procedure identifier> should refer to a remote procedure that is consistent with the <formal
parameter>s and returned <sort>.

B.6 Procedure
Concrete grammar

The syntax for <procedure formal parameters> is extended to allow the formal parameters to be specified with fpar.

<procedure formal parameters> ::=
 (<formal variable parameters> {, <formal variable parameters> }*)
 | [<end>] fpar <formal variable parameters> {, <formal variable parameters> }*
NOTE – The optional <end> before the keyword fpar is added to validate models to be defined using tools that required
a semicolon at this point, even though it was not valid in SDL/GR in SDL-92.

The syntax for <procedure result> is extended to allow specification with returns.

<procedure result> ::=
 <result sign> [<variable name>] <sort>
 | returns [<variable name>] <sort>

B.7 Remote variables
Concrete grammar

The rule <remote variable definition> is extended to allow the keyword nodelay.

<remote variable definition> ::=
 remote <remote variable name> {,<remote variable name>}* <sort> [nodelay]
 {, <remote variable name> {, <remote variable name>}* <sort> [nodelay]}* <end>

<imported variable specification> ::=
 imported
 <remote variable identifier> {, <remote variable identifier> }* <sort>
 {, <remote variable identifier> {, <remote variable identifier> }* <sort>}* <end>

Model

The keyword nodelay has no SDL-2000 meaning, though to be compatible with SDL-92 the channel conveying the
signals for the remote variable should be a channel without delay.

 ITU-T Rec. Z.100 (11/2007) 175

An <imported variable specification> has no SDL-2000 meaning and is treated as comment, though to be compatible
with SDL-92 each <remote variable identifier> should refer to a remote variable that is consistent with the <sort>.

B.8 Specialization of data types
The operators inherited in SDL-92 are specified, whereas in SDL-2000 all the visible operators are inherited.

Concrete grammar

The syntax for <data type specialization> is extended to allow specification according to SDL-92 syntax as follows:

<data type specialization> ::=
 inherits <data type type expression> [<renaming> | <legacy data inheritance>] [adding]

<legacy data inheritance> ::=
 [<legacy literal renaming>]
 [[operators] { all | (<legacy inheritance list>) } [<end>]]

<legacy literal renaming> ::=
 literals <rename pair> { , <rename pair> }* <end>

To be consistent with SDL-92, the first name in the <rename pair> in a <legacy literal renaming> should refer to a literal
defined in the base type.

<legacy inheritance list> ::=
 <legacy inherited operator> { , <legacy inherited operator> }*

<legacy inherited operator> ::=
 <operation name> | <rename pair>

To be consistent with SDL-92, the <operation name> or the first name in the <rename pair> in a <legacy literal
renaming> should refer to an operation defined in the base type. Specifying operators all or a named operation without
renaming has no influence on the inherited operations, which are determined according to the SDL-2000 rules.

B.9 Behaviour of operations
Concrete grammar

To be compatible with SDL-92 models, extra syntax is added for operator definitions: <legacy operator definition>,
<legacy operator reference> and <legacy external operator definition>. These are used instead of <operation definitions>
within a <legacy data type definition> (see B.12).

<legacy operator definition> ::=
 {<package use clause>}*
 <operation heading> <end>
 { <entity in operation> }*
 <start>
 endoperator
 [{<operation identifier> | <operation name> }] <end>

<legacy operator reference> ::=
 <operation heading> referenced <end>

<legacy external operator definition> ::=
 operator <operation name> [<legacy procedure signature>] external <end>

An <operation heading> in a <legacy operator definition> or <legacy operator reference> shall use the keyword
operator.

A <legacy operator definition> corresponds to an <operation definition> in SDL-2000.

A <legacy operator reference> corresponds to an <operation reference> in SDL-2000.

A <legacy external operator definition> corresponds to an <external operation definition> in SDL-2000.

<start> is defined in ITU-T Rec. Z.106. The body of the transition for <start> shall contain only items that are allowed in
an operation definition.

The syntax for <formal operation parameters> is extended to allow the formal parameters to be specified with fpar.

176 ITU-T Rec. Z.100 (11/2007)

<formal operation parameters> ::=
 (<operation parameters> {, <operation parameters> }*)
 | [<end>] fpar <operation parameters> {, <operation parameters> }*
NOTE – The optional <end> before the keyword fpar is added to validate models to be defined using tools that required
a semicolon at this point, even though it was not valid in SDL/GR in SDL-92.

The syntax for <operation result> is extended to allow specification with returns.

<operation result> ::=
 <result sign> [<variable name>] <sort>
 | returns [<variable name>] <sort>

B.10 Optional definition
Concrete grammar

To be compatible with SDL-92 models, the syntax is extended to allow <imported variable specification> and <imported
procedure specification> in a <select definition>.

<select definition> ::=
 select if (<Boolean simple expression>) <end>
 { <agent type reference>
 | <agent reference>
 | <signal definition>
 | <signal list definition>
 | <signal reference>
 | <remote variable definition>
 | <remote procedure definition>
 | <data definition>
 | <data type reference>
 | <interface reference>
 | <timer definition>
 | <variable definition>
 | <imported variable specification>
 | <procedure definition>
 | <imported procedure specification>
 | <procedure reference>
 | <select definition>
 | <macro definition>
 | <exception definition> }+
 endselect <end>

B.11 Data definition
Concrete grammar

To be compatible with SDL-92 models, the syntax is extended to allow <legacy data type definition> (see B.12) and
<legacy syntype definition> (see B.13) in a <data definition>.

<data definition> ::=
 <data type definition>
 | <legacy data type definition>
 | <interface definition>
 | <syntype definition>
 | <legacy syntype definition>
 | <synonym definition>

To be consistent with SDL-92, a <sort> in any of the components of a <data definition> should always be a sort or
syntype identifier.

 ITU-T Rec. Z.100 (11/2007) 177

B.12 Data type definition
Concrete grammar

To be compatible with SDL-92 models, the syntax is extended to allow <legacy syntype definition> (see B.13) in <entity
in data type>.

<entity in data type> ::=
 <data type definition>
 | <legacy data type definition>
 | <syntype definition>
 | <legacy syntype definition>
 | <synonym definition>
 | <procedure definition>
 | <procedure reference>
 | <exception definition>

<legacy data type definition> ::=
 newtype <sort name>
 [<formal context parameters>]
 [<data type specialization>
 |<legacy generators>
 |<structure definition>]
 [<literal list>]
 [<legacy operator signatures>]
 { <legacy operator definition>
 | <legacy operator reference>
 | <legacy external operator definition> }*
 [<default initialization> [<end>]]
 [constants <range condition>]
 endnewtype [<sort name>]

To be consistent with SDL-92, the <data type specialization> in a <legacy data type definition> should contain a <legacy
data inheritance> (see B.8).

To be consistent with SDL-92, the <structure definition> in a <legacy data type definition> should not contain
<visibility>, optional or <field default initialization>.

To be consistent with SDL-92, the <literal list> in a <legacy data type definition> should not contain <visibility> or
<named number>.

If a <legacy data type definition> definition contains a <range condition>, it represents the definition of syntype and an
anonymous parent data type.

The definition of a legacy operator shall be defined either by the <legacy operator definition> or the operator referenced
by a <legacy operator reference> or <legacy external operator definition> (see B.9).

B.12.1 Generators
Concrete grammar

Although SDL-2000 does not include generators for data types, parameterized data types in package Predefined of
SDL-2000 replace the generators such as Array that were included in the package Predefined in SDL-92. The <legacy
data type definition> includes the <legacy generators> syntax so that these parameterized data types can be used.

<legacy generators> ::=
 <sort identifier> (<legacy generator actual> { , <legacy generator actual> }*)

<legacy generator actual> ::=
 <sort>
 | <literal signature>
 | <operator name>
 | <constant expression>

The <sort identifier> should identify one of the parameterized data types in package Predefined. The <legacy generator
actual> should be an appropriate actual parameter for the parameterized data types.

178 ITU-T Rec. Z.100 (11/2007)

B.12.2 Operator signatures
Concrete grammar

To be compatible with SDL-92 models, <legacy operator signatures> is allowed as an alternative.

<legacy operator signatures> ::=
 operators
 <legacy operator signature> { <end> <legacy operator signature> }* [<end>]

<legacy operator signature> ::=
 <operator name> : <arguments> -> <sort>

The <legacy operator signature> represents an Operation-Signature.

The <sort> of a <legacy operator signature> represents the Result of the Operation-Signature.

B.13 Syntypes
Concrete grammar

To be compatible with SDL-92 models, <legacy syntype definition> is allowed as an alternative.

<legacy syntype definition> ::=
 syntype
 <syntype name> = <parent sort identifier>
 [<default initialization> [<end>]]
 [constants <range condition>]
 endsyntype [<syntype name>]

See also <legacy data type definition> for syntype combined with a newtype in B.12.

B.14 Task
Concrete grammar

The rule <task body> is extended to allow assignments to be separated as commas as in SDL-92.

<task body> ::=
 <statement list>
 | <informal text>
 | <legacy task body>

<legacy task body> ::=
 | <assignment> { , <assignment> }*

 ITU-T Rec. Z.100 (11/2007) 179

Annex C

Compliance to this Recommendation
(This annex forms an integral part of this Recommendation)

C.1 Definitions of valid tools
C.1.1 compliant SDL tool: A tool that detects non-compliance of a description with ITU-T Rec. Z.100. If the tool
handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

C.1.2 fully compliant SDL tool: A compliant SDL tool that supports the complete grammar defined by ITU-T Recs
Z.100, Z.105 and Z.106.

C.1.3 valid Z.100 SDL tool: A compliant SDL tool that supports the graphical SDL grammar defined in ITU-T Rec.
Z.100.

C.1.4 valid Z.100 SDL with ASN.1 tool: A valid Z.100 SDL tool that also supports ASN.1 as modules according to
ITU-T Rec. Z.105.

C.1.5 valid Z.106 SDL tool: A compliant SDL tool that supports the textual SDL grammar as defined in Level 0 CIF
(clause 5/Z.106), which, by definition, includes the semantics and some concrete syntax of ITU-T Rec. Z.100.

C.1.6 valid Z.106 SDL with ASN.1 tool: A valid Z.106 SDL tool that also supports ASN.1 as modules according to
ITU-T Rec. Z.105.

C.2 Conformance
A conformance statement clearly identifying the language features and requirements not supported should accompany
any tool that handles a subset of this Recommendation and ITU-T Recs Z.105 and Z.106. If no conformance statement is
provided, it shall be assumed that the tool is a fully compliant SDL tool. It is therefore preferable to supply a
conformance statement; otherwise, any unsupported feature allows the tool to be rejected as not valid.

180 ITU-T Rec. Z.100 (11/2007)

Annex D

SDL Predefined data
(This annex forms an integral part of this Recommendation)

D.1 Introduction
Predefined data in SDL are based on abstract data types, which are defined in terms of their abstract properties rather
than in terms of some concrete implementation. Even though the definition of an abstract data type gives one possible
way of implementing that data type, an implementation is not mandated to choose that way of implementing the abstract
data type, as long as the same abstract behaviour is preserved.

The predefined data types, including the Boolean sort that defines properties for two literals true and false, are defined in
this annex. The two Boolean terms true and false must not be (directly or indirectly) defined to be equivalent. Every
Boolean constant expression that is used outside data type definitions must be interpreted as either true or false. If it is
not possible to reduce such an expression to true or false, then the specification is incomplete and allows more than one
interpretation of the data type.

Predefined data are defined in an implicitly used package Predefined (see 7.2). This package is defined in this annex.

D.2 Notation
For this purpose, this annex extends the concrete syntax of SDL by means of describing the abstract properties of the
operations added by a data type definition. However, this additional syntax is used for explanation only and does not
extend the syntax defined in the main text. A specification using the syntax defined in this annex is therefore not valid
SDL.

The abstract properties described here do not specify a specific representation of the predefined data. Instead, an
interpretation must conform to these properties. When an <expression> is interpreted, the evaluation of the expression
produces a value (e.g. as the result of an <operation application>). Two expressions E1 and E2 are equivalent if:
a) there is an <equation> E1 == E2; or
b) one of the equations derived from the given set of <quantified equations>s is E1 == E2; or
c) i) E1 is equivalent to EA; and

ii) E2 is equivalent to EB; and
iii) there is an equation or an equation derived from the given set quantified equations such that EA == EB; or

d) by substituting a sub-term of E1 by a term of the same class as the sub-term producing a term E1A, it is
possible to show that E1A is in the same class as E2.

Otherwise, the two expressions are not equivalent.

Two expressions that are equivalent represent the same value.

Interpretation of expressions conforms to these properties if two equivalent expressions represent the same value, and
two non-equivalent expressions represent different values.

D.2.1 Axioms
Axioms determine which terms represent the same value. From the axioms in a data type definition, the relationship
between argument values and result values of operators is determined and hence meaning is given to the operators.
Axioms are either given as Boolean axioms or in the form of algebraic equivalence equations.

An operation defined by <axiomatic operation definitions> is treated as a complete definition with respect to
specialization. That is, when a data type defined by the package Predefined is specialized and an operation is redefined
in the specialized type, all axioms mentioning the name of the operation are replaced by the corresponding definition in
the specialized type.

Concrete grammar

<axiomatic operation definitions> ::=
 axioms <axioms>

<axioms> ::=
 <equation> { <end> <equation>}* [<end>]

 ITU-T Rec. Z.100 (11/2007) 181

<equation> ::=
 <unquantified equation>
 | <quantified equations>
 | <conditional equation>
 | <literal equation>
 | <noequality>

<unquantified equation> ::=
 <term> == <term>
 | <Boolean axiom>

<term> ::=
 <constant expression>
 | <error term>

<quantified equations> ::=
 <quantification> (<axioms>)

<quantification> ::=
 for all <value name> { , <value name> }* in <sort>
NOTE – for is considered an SDL keyword for the purpose of this Annex.

This annex changes <operations> (see 12.1.1) as described below.
<operations> ::=
 <operation signatures>
 { <operation definitions> | <axiomatic operation definitions> }

<axiomatic operation definitions> can only be used to describe the behaviour of operators.

An <identifier> which is an unqualified name appearing in a <term> can be:
a) an <operation identifier> (see 12.2.7);
b) a <literal identifier> (see 12.2.2);
c) a <value identifier> if there is a definition of that name in a <quantification> of <quantified equations>

enclosing the <term>, which then must have a suitable sort for the context.

Semantics

A ground term is a term that does not contain any value identifiers. A ground term represents a particular, known value.
For each value in a sort there exists at least one ground term which represents that value.

Each equation is a statement about the algebraic equivalence of terms. The left-hand side term and right-hand side term
are stated to be equivalent so that where one term appears, the other term may be substituted. When a value identifier
appears in an equation, then it may be simultaneously substituted in that equation by the same term for every occurrence
of the value identifier. For this substitution, the term may be any ground term of the same sort as the value identifier.

Value identifiers are introduced by the value names in quantified equations. A value identifier is used to represent any
data values belonging to the sort of the quantification. An equation will hold if the same value is simultaneously
substituted for every occurrence of the value identifier in the equation regardless of the value chosen for the substitution.

In general, there is no need or reason to distinguish between a ground term and the result of the ground term. For
example, the ground term for the unity Integer element can be written "1". Usually there are several ground terms which
denote the same data item, e.g. the Integer ground terms "0+1", "3–2" and "(7+5)/12", and it is usual to consider a simple
form of the ground term (in this case "1") as denoting the data item.

A value name is always introduced by quantified equations, and the corresponding value has a value identifier, which is
the value name qualified by the sort identifier of the enclosing quantified equations. For example:
 for all z in X (for all z in X ...)

introduces only one value identifier named z of sort X.

In the concrete syntax of axioms, it is not allowed to specify a qualifier for value identifiers.

Each value identifier introduced by quantified equations has a sort, which is the sort identified in the quantified
equations by the <sort>.

A term has a sort, which is the sort of the value identifier or the result sort of the (literal) operator.

Unless it can be deduced from the equations that two terms denote the same value, each term denotes a different value.

182 ITU-T Rec. Z.100 (11/2007)

D.2.2 Conditional equations
A conditional equation allows the specification of equations that only hold when certain restrictions hold. The
restrictions are written in the form of simple equations.

Concrete grammar

<conditional equation> ::=
 <restriction> { , <restriction> }* ==> <restricted equation>

<restricted equation> ::=
 <unquantified equation>

<restriction> ::=
 <unquantified equation>

Semantics

A conditional equation defines that terms denote the same data item only when any value identifier in the restricted
equation denotes a data item, which can be shown from other equations to satisfy the restrictions.

The semantics of a set of equations for a data type that includes conditional equations is derived as follows:
a) Quantification is removed by generating every possible ground term equation that can be derived from the

quantified equations. As this is applied to both explicit and implicit quantification, a set of unquantified
equations in ground terms only is generated.

b) Let a conditional equation be called a provable conditional equation if all the restrictions (in ground terms
only) can be proved to hold from unquantified equations that are not restricted equations. If there exists a
provable conditional equation, it is replaced by the restricted equation of the provable conditional equation.

c) If there are conditional equations remaining in the set of equations and none of these conditional equations are
a provable conditional equation, then these conditional equations are deleted; otherwise, return to step b).

d) The remaining set of unquantified equations defines the semantics of the data type.

D.2.3 Equality
Concrete grammar

<noequality> ::=
 noequality

Model

Any <data type definition> introducing some sort named S has the following implied <operation signature> in its
<operator list>, unless <noequality> is present in the <axioms>:
 equal (S, S) -> Boolean;
where Boolean is the predefined Boolean sort.

Any <data type definition> introducing a sort named S such that it contains only <axiomatic operation definitions> in
<operator list> has an implied equation set:
 for all a,b,c in S (
 equal(a, a) == true;
 equal(a, b) == equal(b, a);
 equal(a, b) and equal(b, c) ==> equal(a, c) == true;
 equal(a, b) == true ==> a == b;)
and an implied <literal equation>:
 for all L1,L2 in S literals (
 spelling(L1) /= spelling(L2) ==> L1 = L2 == false;)

D.2.4 Boolean axioms
Concrete grammar

<Boolean axiom> ::=
 <Boolean term>

Semantics

A Boolean axiom is a statement of truth that holds under all conditions for the data type being defined.

 ITU-T Rec. Z.100 (11/2007) 183

Model

An axiom of the form:
 <Boolean term>;
is derived syntax for the concrete syntax equation:
 <Boolean term> == << package Predefined/type Boolean >> true;

D.2.5 Conditional term
Semantics

An equation containing a conditional term is semantically equivalent to a set of equations where all the quantified value
identifiers in the Boolean term have been eliminated. This set of equations can be formed by simultaneously substituting,
throughout the conditional term equation, each <value identifier> in the <conditional expression> by each ground term
of the appropriate sort. In this set of equations, the <conditional expression> will always have been replaced by a
Boolean ground term. In the following, this set of equations is referred to as the expanded ground set.

A conditional term equation is equivalent to the equation set that contains:
a) for every equation in the expanded ground set for which the <conditional expression> is equivalent to true, that

equation from the expanded ground set with the <conditional expression> replaced by the (ground)
<consequence expression>; and

b) for every equation in the expanded ground set for which the <conditional expression> is equivalent to false,
that equation from the expanded ground set with the <conditional expression> replaced by the (ground)
<alternative expression>.

Note that in the special case of an equation of the form:
 ex1 == if a then b else c fi;
this is equivalent to the pair of conditional equations:
 a == true ==> ex1 == b;
 a == false ==> ex1 == c;

D.2.6 Error term
Errors are used to allow the properties of a data type to be fully defined even for cases when no specific meaning can be
given to the result of an operator.

Concrete grammar

<error term> ::=
 raise <exception name>

An <error term> must not be used as part of a <restriction>.

It must not be possible to derive from equations that a <literal identifier> is equal to <error term>.

Semantics

A term may be an <error term> so that it is possible to specify the circumstances under which an operator produces an
error. If these circumstances arise during interpretation, then the exception with <exception name> is raised.

D.2.7 Unordered literals
Concrete grammar

<unordered> ::=
 unordered

This annex changes the concrete syntax for the literal list type constructor (see 12.1.7.1) as follows:
<literal list> ::=
 [<protected>] literals [<unordered>]
 <literal signature> { , <literal signature> }* <end>

Model

If <unordered> is used, the Model in 12.1.7.1 is not applied. Consequentially, the ordering operations "<",
">","<=",">=", first, last, pred, succ, and num are not implicitly defined for this data type.

184 ITU-T Rec. Z.100 (11/2007)

D.2.8 Literal equations
Concrete grammar

<literal equation> ::=
 <literal quantification>
 (<equation> { <end> <equation> }* [<end>])

<literal quantification> ::=
 for all <value name> { , <value name> }* in <sort> literals
 | for all <value name> { , <value name> }* in { <sort> | <value identifier> } nameclass

This annex changes the concrete syntax for <spelling term> (see 12.1.9.2) as follows.

<spelling term> ::=
 spelling ({ <operation name> | <value identifier> })

The <value identifier> in a <spelling term> must be a <value identifier> defined by a <literal quantification>.

Semantics

Literal mapping is a shorthand for defining a large (possibly infinite) number of axioms ranging over all the literals of a
sort or all the names in a name class. The literal mapping allows the literals for a sort to be mapped onto the values of the
sort.

<spelling term> is used in literal quantifications to refer to the character string that contains the spelling of the literal.
This mechanism allows the Charstring operators to be used to define literal equations.

Model

A <literal equation> is shorthand for a set of <axioms>. In each of the <equation>s contained in a <literal equation>, the
<value identifier>s defined by the <value name> in the <literal quantification> are replaced. In each derived <equation>,
each occurrence of the same <value identifier> is replaced by the same <literal identifier> of the <sort> of the
<literal quantification> (if literals was used) or by the same <literal identifier> of the nameclass referred to (if nameclass
was used). The derived set of <axioms> contains all possible <equation>s that can be derived in this way.

The derived <axioms> for <literal equation>s are added to <axioms> (if any) defined after the keyword axioms.

If a <literal quantification> contains one or more <spelling term>s, then there is replacement of the <spelling term>s
with Charstring literals (see D.3). The Charstring is used to replace the <value identifier> after the <literal equation>
containing the <spelling term> and is expanded as defined in 12.1.9.2, using <value identifier> in place of
<operation name>.
NOTE − Literal equations do not affect nullary operators defined in <operation signature>s.

D.3 Package Predefined
In the following definitions, all references to names defined in the package Predefined are considered to be treated as
prefixed by the qualification <<package Predefined>>. To increase readability, this qualification is omitted.
/* */
package Predefined
/*

D.3.1 Boolean sort

D.3.1.1 Definition
*/
value type Boolean;
 literals true, false;
 operators
 "not" (this Boolean) -> this Boolean;
 "and" (this Boolean, this Boolean) -> this Boolean;
 "or" (this Boolean, this Boolean) -> this Boolean;
 "xor" (this Boolean, this Boolean) -> this Boolean;
 "=>" (this Boolean, this Boolean) -> this Boolean;
axioms
 not(true) == false;
 not(false) == true ;

 ITU-T Rec. Z.100 (11/2007) 185

/* */
 true and true == true ;
 true and false == false;
 false and true == false;
 false and false == false;
/* */
 true or true == true ;
 true or false == true ;
 false or true == true ;
 false or false == false;
/* */
 true xor true == false;
 true xor false == true ;
 false xor true == true ;
 false xor false == false;
/* */
 true => true == true ;
 true => false == false;
 false => true == true ;
 false => false == true ;
endvalue type Boolean;
/*

D.3.1.2 Usage
The Boolean sort is used to represent true and false values. Often it is used as the
result of a comparison.
The Boolean sort is used widely throughout SDL.

D.3.2 Character sort

D.3.2.1 Definition
*/
value type Character;
 literals
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1,
 ' ', '!', '"', '#', '$', '%', '&', '''',
 '(', ')', '*', '+', ',', '-', '.', '/',
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',
 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '\', ']', '^', '_',
 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '{', '|', '}', '~', DEL;
/* '''' is an apostrophe, ' ' is a space, '~' is a tilde */
/* */
 operators
 chr (Integer) -> this Character;
/* "<", "<=", ">", ">=", and "num" are implicitly defined (see 12.1.7.1). */
axioms
 for all a,b in Character (
 for all i in Integer (
/* definition of Chr */
 chr(num(a)) == a;
 chr(i+128) == chr(i);
));
endvalue type Character;
/*

D.3.2.2 Usage
The Character sort is used to represent characters of the International Reference
Alphabet (ITU-T Rec. T.50).

186 ITU-T Rec. Z.100 (11/2007)

D.3.3 String sort

D.3.3.1 Definition
*/
value type String < type Itemsort >;
/* Strings are "indexed" from one */
 operators
 emptystring -> this String;
 mkstring (Itemsort) -> this String;
 Make (Itemsort) -> this String;
 length (this String) -> Integer;
 first (this String) -> Itemsort;
 last (this String) -> Itemsort;
 "//" (this String, this String) -> this String;
 Extract (this String, Integer) -> Itemsort raise InvalidIndex;
 Modify (this String, Integer, Itemsort) -> this String;
 substring (this String, Integer, Integer) -> this String raise InvalidIndex;
 /* substring (s,i,j) gives a string of length j starting from the ith element */
 remove (this String, Integer, Integer) -> this String;
 /* remove (s,i,j) gives a string with a substring of length j starting from
 the ith element removed */
axioms
 for all e in Itemsort (/*e – element of Itemsort*/
 for all s,s1,s2,s3 in String (
 for all i,j in Integer (
/* constructors are emptystring, mkstring, and "//" */
/* equalities between constructor terms */
 s // emptystring == s;
 emptystring // s == s;
 (s1 // s2) // s3 == s1 // (s2 // s3);
/* */
/* definition of length by applying it to all constructors */
 <<type String>>length(emptystring) == 0;
 <<type String>>length(mkstring(e)) == 1;
 <<type String>>length(s1 // s2) == length(s1) + length(s2);
 Make(s) == mkstring(s);
/* */
/* definition of Extract by applying it to all constructors,
 error cases handled separately */
 Extract(mkstring(e),1) == e;
 i <= length(s1) ==> Extract(s1 // s2,i) == Extract(s1,i);
 i > length(s1) ==> Extract(s1 // s2,i) == Extract(s2,i-length(s1));
 i<=0 or i>length(s) ==> Extract(s,i) == raise InvalidIndex;
/* */
/* definition of first and last by other operations */
 first(s) == Extract(s,1);
 last(s) == Extract(s,length(s));
/* */
/* definition of substring(s,i,j) by induction on j,
 error cases handled separately */
 i>0 and i-1<=length(s) ==>
 substring(s,i,0) == emptystring;
/* */
 i>0 and j>0 and i+j-1<=length(s) ==>
 substring(s,i,j) == substring(s,i,j-1) // mkstring(Extract(s,i+j-1));
/* */
 i<=0 or j<0 or i+j-1>length(s) ==>
 substring(s,i,j) == raise InvalidIndex;
/* */
/* definition of Modify by other operations */
 Modify(s,i,e) == substring(s,1,i-1) // mkstring(e) // substring(s,i+1,length(s)-i);
/* definition of remove */
 remove(s,i,j) == substring(s,1,i-1) // substring(s,i+j,length(s)-i-j+1);
)));
endvalue type String;
/*

D.3.3.2 Usage
The Make, Extract, and Modify operators will typically be used with the shorthand forms
defined in 12.2.4 and 12.3.3.1 for accessing the values of strings and assigning values
to strings.

 ITU-T Rec. Z.100 (11/2007) 187

D.3.4 Charstring sort

D.3.4.1 Definition
*/
value type Charstring
 inherits String < Character > ('' = emptystring)
 adding ;
 operators ocs in nameclass
 '''' ((' ':'&') or '''''' or ('(': '~'))+ '''' -> this Charstring;
/* character strings of any length of any characters from a space ' ' to a tilde '~' */
axioms
 for all c in Character nameclass (
 for all cs, cs1, cs2 in ocs nameclass (
 spelling(cs) == spelling(c) ==> cs == mkstring(c);
/* string 'A' is formed from character 'A' etc. */
 spelling(cs) == spelling(cs1) // spelling(cs2),
 length(spelling(cs2)) == 1 ==> cs == cs1 // cs2;
));
endvalue type Charstring;
/*

D.3.4.2 Usage
The Charstring sort defines strings of characters.
A Charstring literal can contain printing characters and spaces.
A non-printing character can be used as a string by using mkstring, for example
mkstring(DEL).
Example:
synonym newline_prompt Charstring = mkstring(CR) // mkstring(LF) // '$>';

D.3.5 Integer sort

D.3.5.1 Definition
*/
value type Integer;
 literals unordered nameclass (('0':'9')*) ('0':'9'));
 operators
 "-" (this Integer) -> this Integer;
 "+" (this Integer, this Integer) -> this Integer;
 "-" (this Integer, this Integer) -> this Integer;
 "*" (this Integer, this Integer) -> this Integer;
 "/" (this Integer, this Integer) -> this Integer raise DivisionByZero;
 "mod" (this Integer, this Integer) -> this Integer raise DivisionByZero;
 "rem" (this Integer, this Integer) -> this Integer;
 "<" (this Integer, this Integer) -> Boolean;
 ">" (this Integer, this Integer) -> Boolean;
 "<=" (this Integer, this Integer) -> Boolean;
 ">=" (this Integer, this Integer) -> Boolean;
 power (this Integer, this Integer) -> this Integer;
 bs in nameclass '''' ((('0' or '1')*'''B') or ((('0':'9') or ('A':'F'))*'''H'))
 -> this Integer;
axioms noequality
 for all a,b,c in Integer (
/* constructors are 0, 1, +, and unary - */
/* equalities between constructor terms */
 (a + b) + c == a + (b + c);
 a + b == b + a;
 0 + a == a;
 a + (- a) == 0;
 (- a) + (- b) == - (a + b);
 <<type Integer>> - 0 == 0;
 - (- a) == a;
/* */
/* definition of binary "-" by other operations */
 a - b == a + (- b);
/* */
/* definition of "*" by applying it to all constructors */
 0 * a == 0;
 1 * a == a;
 (- a) * b == - (a * b);
 (a + b) * c == a * c + b * c;

188 ITU-T Rec. Z.100 (11/2007)

/* */
/* definition of "<" by applying it to all constructors */
 a < b == 0 < (b - a);
 <<type Integer>> 0 < 0 == false;
 <<type Integer>> 0 < 1 == true ;
 0 < a == true ==> 0 < (- a) == false;
 0 < a and 0 < b == true ==> 0 < (a + b) == true ;
/* */
/* definition of ">", "equal", "<=", and ">=" by other operations */
 a > b == b < a;
 equal(a, b) == not(a < b or a > b);
 a <= b == a < b or a = b;
 a >= b == a > b or a = b;
/* */
/* definition of "/" by other operations */
 a / 0 == raise DivisionByZero;
 a >= 0 and b > a == true ==> a / b == 0;
 a >= 0 and b <= a and b > 0 == true ==> a / b == 1 + (a-b) / b;
 a >= 0 and b < 0 == true ==> a / b == - (a / (- b));
 a < 0 and b < 0 == true ==> a / b == (- a) / (- b);
 a < 0 and b > 0 == true ==> a / b == - ((- a) / b);
/* */
/* definition of "rem" by other operations */
 a rem b == a - b * (a/b);
/* */
/* definition of "mod" by other operations */
 a >= 0 and b > 0 ==> a mod b == a rem b;
 b < 0 ==> a mod b == a mod (- b);
 a < 0 and b > 0 and a rem b = 0 ==> a mod b == 0;
 a < 0 and b > 0 and a rem b < 0 ==> a mod b == b + a rem b;
 a mod 0 == raise DivisionByZero;
/* */
/* definition of power by other operations */
 power(a, 0) == 1;
 b > 0 ==> power(a, b) == a * power(a, b-1);
 b < 0 ==> power(a, b) == power(a, b+1) / a;);
/* */
/* definition of literals */
 <<type Integer>> 2 == 1 + 1;
 <<type Integer>> 3 == 2 + 1;
 <<type Integer>> 4 == 3 + 1;
 <<type Integer>> 5 == 4 + 1;
 <<type Integer>> 6 == 5 + 1;
 <<type Integer>> 7 == 6 + 1;
 <<type Integer>> 8 == 7 + 1;
 <<type Integer>> 9 == 8 + 1;
/* */
/* literals other than 0 to 9 */
 for all a,b,c in Integer nameclass (
 spelling(a) == spelling(b) // spelling(c),
 length(spelling(c)) == 1 ==> a == b * (9 + 1) + c;
);
/* */
/* hex and binary representation of Integer */
 for all b in Bitstring nameclass (
 for all i in bs nameclass (
 spelling(i) == spelling(b) ==> i == <<type Bitstring>>num(b);
));
endvalue type Integer;
/*

D.3.5.2 Usage
The Integer sort is used for mathematical integers with decimal, hex, or binary notation.

D.3.6 Natural syntype

D.3.6.1 Definition
*/
syntype Natural = Integer constants >= 0; endsyntype Natural;
/*

 ITU-T Rec. Z.100 (11/2007) 189

D.3.6.2 Usage
The natural syntype is used when positive integers only are required. All operators will
be the integer operators but when a value is used as a parameter or assigned the value is
checked. A negative value will be an error.

D.3.7 Real sort

D.3.7.1 Definition
*/
value type Real;
 literals unordered nameclass
 (('0':'9')* ('0':'9')) or (('0':'9')* '.'('0':'9')+);
 operators
 "-" (this Real) -> this Real;
 "+" (this Real, this Real) -> this Real;
 "-" (this Real, this Real) -> this Real;
 "*" (this Real, this Real) -> this Real;
 "/" (this Real, this Real) -> this Real raise DivisionByZero;
 "<" (this Real, this Real) -> Boolean;
 ">" (this Real, this Real) -> Boolean;
 "<=" (this Real, this Real) -> Boolean;
 ">=" (this Real, this Real) -> Boolean;
 float (Integer) -> this Real;
 fix (this Real) -> Integer;
axioms noequality
 for all r,s in Real (
 for all a,b,c,d in Integer (
/* constructors are float and "/" */
/* equalities between constructor terms allow to reach always a form
 float(a) / float(b) where b > 0 */
 r / float(0) == raise DivisionByZero;
 r / float(1) == r;
 c /= 0 ==> float(a) / float(b) == float(a*c) / float(b*c);
 b /= 0 and d /= 0 ==>
 (float(a) / float(b)) / (float(c) / float(d)) == float(a*d) / float(b*c);
/* */
/* definition of unary "-" by applying it to all constructors */
 - (float(a) / float(b)) == float(- a) / float(b);
/* */
/* definition of "+" by applying it to all constructors */
 (float(a) / float(b)) + (float(c) / float(d)) ==float(a*d + c*b) / float(b*d);
/* */
/* definition of binary "-" by other operations */
 r - s == r + (- s);
/* */
/* definition of "*" by applying it to all constructors */
 (float(a) / float(b)) * (float(c) / float(d)) == float(a*c) / float(b*d);
/* */
/* definition of "<" by applying it to all constructors */
 b > 0 and d > 0 ==>
 (float(a) / float(b)) < (float(c) / float(d)) == a * d < c * b;
/* */
/* definition of ">", "equal", "<=", and ">=" by other operations */
 r > s == s < r;
 equal(r, s) == not(r < s or r > s);
 r <= s == r < s or r = s;
 r >= s == r > s or r = s;
/* */
/* definition of fix by applying it to all constructors */
 a >= b and b > 0 ==> fix(float(a) / float(b)) == fix(float(a-b) / float(b)) + 1;
 b > a and a >= 0 ==> fix(float(a) / float(b)) == 0;
 a < 0 and b > 0 ==> fix(float(a) / float(b)) == - fix(float(-a)/float(b)) - 1;));
/* */

for all r,s in Real nameclass (
 for all i,j in Integer nameclass (
 spelling(r) == spelling(i) ==> r == float(i);
/* */
 spelling(r) == spelling(i) ==> i == fix(r);

190 ITU-T Rec. Z.100 (11/2007)

/* */
 spelling(r) == spelling(i) // spelling(s),
 spelling(s) == '.' // spelling(j) ==> r == float(i) + s;
/* */
 spelling(r) == '.' // spelling(i),
 length(spelling(i)) == 1 ==> r == float(i) / 10;
/* */
 spelling(r) == '.' // spelling(i) // spelling(j),
 length(spelling(i)) == 1,
 spelling(s) == '.' // spelling(j) ==> r == (float(i) + s) / 10;
));
endvalue type Real;
/*

D.3.7.2 Usage
The real sort is used to represent real numbers.
The real sort can represent all numbers which can be represented as one integer divided
by another.
Numbers which cannot be represented in this way (irrational numbers – for example the
square root of 2) are not part of the real sort. However, for practical engineering a
sufficiently accurate approximation can usually be used.

D.3.8 Array sort

D.3.8.1 Definition
*/
value type Array < type Index; type Itemsort >;
 operators
 Make -> this Array ;
 Make (Itemsort) -> this Array ;
 Modify (this Array,Index,Itemsort) -> this Array ;
 Extract(this Array,Index) -> Itemsort raise InvalidIndex;
axioms
 for all item, itemi, itemj in Itemsort (
 for all i, j in Index (
 for all a, s in Array (
 <<type Array>>Extract(make,i) == raise InvalidIndex;
 <<type Array>>Extract(make(item),i) == item ;
 i = j ==> Modify(Modify(s,i,itemi),j,item) == Modify(s,i,item);
 i = j ==> Extract(Modify(a,i,item),j) == item ;
 i = j == false ==> Extract(Modify(a,i,item),j) == Extract(a,j);
 i = j == false ==> Modify(Modify(s,i,itemi),j,itemj) ==
 Modify(Modify(s,j,itemj),i,itemi);
/*equality*/
 <<type Array>>Make(itemi) = Make(itemj) == itemi = itemj;
 a=s == true, i=j == true, itemi = itemj ==>
 Modify(a,i,itemi) = Modify(s,j,itemj) == true;
/* */
 Extract(a,i) = Extract(s,i) == false ==> a = s == false;)));
endvalue type Array;
/*

D.3.8.2 Usage
An array can be used to define one sort which is indexed by another. For example:
 value type indexbychar inherits Array< Character, Integer >
 endvalue type indexbychar;
defines an array containing integers and indexed by characters.
Arrays are usually used in combination with the shorthand forms of Make, Modify, and
Extract defined in 12.2.4 and 12.3.3.1. For example:
 dcl charvalue indexbychar;

task charvalue := (. 12 .);
 task charvalue('A') := charvalue('B')-1;

D.3.9 Vector

D.3.9.1 Definition
*/
value type Vector < type Itemsort; synonym MaxIndex >
 inherits Array< Indexsort, Itemsort >;
syntype Indexsort = Integer constants 1:MaxIndex endsyntype;

 ITU-T Rec. Z.100 (11/2007) 191

endvalue type Vector;
/*

D.3.10 Powerset sort

D.3.10.1 Definition
*/
value type Powerset < type Itemsort >;
 operators
 empty -> this Powerset;
 "in" (Itemsort, this Powerset) -> Boolean; /* is member of */
 incl (Itemsort, this Powerset) -> this Powerset; /* include item in set */
 del (Itemsort, this Powerset) -> this Powerset; /* delete item from set */
 "<" (this Powerset, this Powerset) -> Boolean; /* is proper subset of */
 ">" (this Powerset, this Powerset) -> Boolean; /* is proper superset of */
 "<=" (this Powerset, this Powerset) -> Boolean; /* is subset of */
 ">=" (this Powerset, this Powerset) -> Boolean; /* is superset of */
 "and" (this Powerset, this Powerset) -> this Powerset; /* intersection of sets */
 "or" (this Powerset, this Powerset) -> this Powerset; /* union of sets */
 length (this Powerset) -> Integer;
 take (this Powerset) -> Itemsort raise Empty;
axioms
 for all i,j in Itemsort (
 for all p,ps,a,b,c in Powerset (
/* constructors are empty and incl */
/* equalities between constructor terms */
 incl(i,incl(j,p)) == incl(j,incl(i,p));
 i = j ==> incl(i,incl(j,p)) == incl(i,p);
/* definition of "in" by applying it to all constructors */
 i in <<type Powerset>>empty == false;
 i in incl(j,ps) == i=j or i in ps;
/* definition of del by applying it to all constructors */
 <<type Powerset>>del(i,empty) == empty;
 i = j ==> del(i,incl(j,ps)) == del(i,ps);
 i /= j ==> del(i,incl(j,ps)) == incl(j,del(i,ps));
/* definition of "<" by applying it to all constructors */
 a < <<type Powerset>>empty == false;
 <<type Powerset>>empty < incl(i,b) == true;
 incl(i,a) < b == i in b and del(i,a) < del(i,b);
/* definition of ">" by other operations */
 a > b == b < a;
/* definition of "=" by applying it to all constructors */
 empty = incl(i,ps) == false;
 incl(i,a) = b == i in b and del(i,a) = del(i,b);
/* definition of "<=" and ">=" by other operations */
 a <= b == a < b or a = b;
 a >= b == a > b or a = b;
/* definition of "and" by applying it to all constructors */
 empty and b == empty;
 i in b ==> incl(i,a) and b == incl(i,a and b);
 not(i in b) ==> incl(i,a) and b == a and b;
/* definition of "or" by applying it to all constructors */
 empty or b == b;
 incl(i,a) or b == incl(i,a or b);
/* definition of length */
 length(<<type Powerset>>empty) == 0;
 i in ps ==> length(ps) == 1 + length(del(i, ps));
/* definition of take */
 take(empty) == raise Empty;
 i in ps ==> take(ps) == i;
));
endvalue type Powerset;
/*

D.3.10.2 Usage
Powersets are used to represent mathematical sets. For example:
 value type Boolset inherits Powerset< Boolean > endvalue type Boolset;
can be used for a variable which can be empty or contain (true), (false) or (true,
false).

192 ITU-T Rec. Z.100 (11/2007)

D.3.11 Duration sort

D.3.11.1 Definition
*/
value type Duration;
 literals unordered nameclass ('0':'9')+ or (('0':'9')* '.' ('0':'9')+);
 operators
 protected duration (Real) -> this Duration;
 "+" (this Duration, this Duration) -> this Duration;
 "-" (this Duration) -> this Duration;
 "-" (this Duration, this Duration) -> this Duration;
 ">" (this Duration, this Duration) -> Boolean;
 "<" (this Duration, this Duration) -> Boolean;
 ">=" (this Duration, this Duration) -> Boolean;
 "<=" (this Duration, this Duration) -> Boolean;
 "*" (this Duration, Real) -> this Duration;
 "*" (Real, this Duration) -> this Duration;
 "/" (this Duration, Real) -> Duration;
axioms noequality
/* constructor is duration(Real)*/
 for all a, b in Real nameclass (
 for all d, e in Duration nameclass (
/* definition of "+" by applying it to all constructors */
 duration(a) + duration(b) == duration(a + b);
/* */
/* definition of unary "-" by applying it to all constructors */
 - duration(a) == duration(-a);
/* */
/* definition of binary "-" by other operations */
 d - e == d + (-e);
/* */
/* definition of "equal", ">", "<", ">=", and "<=" by applying it to all constructors */
 equal(duration(a), duration(b)) == a = b;
 duration(a) > duration(b) == a > b;
 duration(a) < duration(b) == a < b;
 duration(a) >= duration(b) == a >= b;
 duration(a) <= duration(b) == a <= b;
/* */
/* definition of "*" by applying it to all constructors */
 duration(a) * b == duration(a * b);
 a * d == d * a;
/* */
/* definition of "/" by applying it to all constructors */
 duration(a) / b == duration(a / b);
/* */
 spelling(d) == spelling(a) ==>
 d == duration(a);
));
endvalue type Duration;
/*

D.3.11.2 Usage
The duration sort is used for the value to be added to the current time to set timers.
The literals of the sort duration are the same as the literals for the real sort. The
meaning of one unit of duration will depend on the system being defined.
Duration values can be multiplied and divided by real values. Unless otherwise specified,
the time unit is 1 second.

D.3.12 Time sort

D.3.12.1 Definition
*/
value type Time;
 literals unordered nameclass ('0':'9')+ or (('0':'9')* '.' ('0':'9')+);
 operators
 protected time (Duration) -> this Time;
 "<" (this Time, this Time) -> Boolean;
 "<=" (this Time, this Time) -> Boolean;
 ">" (this Time, this Time) -> Boolean;
 ">=" (this Time, this Time) -> Boolean;

 ITU-T Rec. Z.100 (11/2007) 193

 "+" (this Time, Duration) -> this Time;
 "+" (Duration, this Time) -> this Time;
 "-" (this Time, Duration) -> this Time;
 "-" (this Time, this Time) -> Duration;
axioms noequality
/* constructor is time */
 for all t, u in Time nameclass (
 for all a, b in Duration nameclass (
/* definition of ">", "equal" by applying it to all constructors */
 time(a) > time(b) == a > b;
 equal(time(a), time(b)) == a = b;
/* */
/* definition of "<", "<=", ">=" by other operations */
 t < u == u > t;
 t <= u == (t < u) or (t = u);
 t >= u == (t > u) or (t = u);
/* */
/* definition of "+" by applying it to all constructors */
 time(a) + b == time(a + b);
 a + t == t + a;
/* */
/* definition of "-" : Time, Duration by other operations */
 t - b == t + (-b);
/* */
/* definition of "-" : Time, Time by applying it to all constructors */
 time(a) - time(b) == a - b;
/* */
 spelling(a) == spelling(t) ==>
 a == time(t);
));
endvalue type Time;
/*

D.3.12.2 Usage
The now expression returns a value of the time sort. A time value may have a duration
added or subtracted from it to give another time. A time value subtracted from another
time value gives a duration. Time values are used to set the expiry time of timers.
The origin of time is system dependent. A unit of time is the amount of time represented
by adding one duration unit to a time. Unless otherwise specified, the time unit is 1
second.

D.3.13 Bag sort

D.3.13.1 Definition
*/
value type Bag < type Itemsort >;
 operators
 empty -> this Bag;
 "in" (Itemsort, this Bag) -> Boolean; /* is member of */
 incl (Itemsort, this Bag) -> this Bag; /* include item in set */
 del (Itemsort, this Bag) -> this Bag; /* delete item from set */
 "<" (this Bag, this Bag) -> Boolean; /* is proper subbag of */
 ">" (this Bag, this Bag) -> Boolean; /* is proper superbag of */
 "<=" (this Bag, this Bag) -> Boolean; /* is subbag of */
 ">=" (this Bag, this Bag) -> Boolean; /* is superbag of */
 "and" (this Bag, this Bag) -> this Bag; /* intersection of bags */
 "or" (this Bag, this Bag) -> this Bag; /* union of bags */
 length (this Bag) -> Integer;
 take (this Bag) -> Itemsort raise Empty;
axioms
 for all i,j in Itemsort (
 for all p,ps,a,b,c in Bag (
/* constructors are empty and incl */
/* equalities between constructor terms */
 incl(i,incl(j,p)) == incl(j,incl(i,p));
/* definition of "in" by applying it to all constructors */
 i in <<type Bag>>empty == false;
 i in incl(j,ps) == i=j or i in ps;

194 ITU-T Rec. Z.100 (11/2007)

/* definition of del by applying it to all constructors */
 <<type Bag>>del(i,empty) == empty;
 i = j ==> del(i,incl(j,ps)) == ps;
 i /= j ==> del(i,incl(j,ps)) == incl(j,del(i,ps));
/* definition of "<" by applying it to all constructors */
 a < <<type Bag>>empty == false;
 <<type Bag>>empty < incl(i,b) == true;
 incl(i,a) < b == i in b and del(i,a) < del(i,b);
/* definition of ">" by other operations */
 a > b == b < a;
/* definition of "=" by applying it to all constructors */
 empty = incl(i,ps) == false;
 incl(i,a) = b == i in b and del(i,a) = del(i,b);
/* definition of "<=" and ">=" by other operations */
 a <= b == a < b or a = b;
 a >= b == a > b or a = b;
/* definition of "and" by applying it to all constructors */
 empty and b == empty;
 i in b ==> incl(i,a) and b == incl(i,a and b);
 not(i in b) ==> incl(i,a) and b == a and b;
/* definition of "or" by applying it to all constructors */
 empty or b == b;
 incl(i,a) or b == incl(i,a or b);
/* definition of length */
 length(<<type Bag>>empty) == 0;
 i in ps ==> length(ps) == 1 + length(del(i, ps));
/* definition of take */
 take(empty) == raise Empty;
 i in ps ==> take(ps) == i;));
endvalue type Bag;
/*

D.3.13.2 Usage
Bags are used to represent multi-sets. For example:
 value type Boolset inherits Bag< Boolean > endvalue type Boolset;
can be used for a variable which can be empty or contain (true), (false), (true, false)
(true, true), (false, false),... .
Bags are used to represent the SET OF construction of ASN.1.

D.3.14 ASN.1 Bit and Bitstring sorts

D.3.14.1 Definition
*/
value type Bit
 inherits Boolean (0 = false, 1 = true);
 adding;
 operators
 num (this Bit) -> Integer;
 bit (Integer) -> this Bit raise OutOfRange;
axioms
 <<type Bit>>num (0) == 0;
 <<type Bit>>num (1) == 1;
 <<type Bit>>bit (0) == 0;
 <<type Bit>>bit (1) == 1;
 for all i in Integer (
 i > 1 or i < 0 ==> bit (i) == raise OutOfRange;
)
endvalue type Bit;
/* */
value type Bitstring
 operators
 bs in nameclass
 '''' ((('0' or '1')*'''B') or ((('0':'9') or ('A':'F'))*'''H'))-> this Bitstring;
/*The following operators that are the same as String except Bitstring
 is indexed from zero*/
 mkstring (Bit) -> this Bitstring;
 Make (Bit) -> this Bitstring;
 length (this Bitstring) -> Integer;
 first (this Bitstring) -> Bit;
 last (this Bitstring) -> Bit;
 "//" (this Bitstring, this Bitstring) -> this Bitstring;

 ITU-T Rec. Z.100 (11/2007) 195

 Extract (this Bitstring, Integer) -> Bit raise InvalidIndex;
 Modify (this Bitstring, Integer, Bit) -> this Bitstring;
 substring (this Bitstring, Integer, Integer) -> this Bitstring raise InvalidIndex;
 /* substring (s,i,j) gives a string of length j starting from the ith element */
 remove (this Bitstring, Integer, Integer) -> this Bitstring;
 /* remove (s,i,j) gives a string with a substring of length j starting from
 the ith element removed */
/*The following operators are specific to Bitstrings*/
 "not" (this Bitstring) -> this Bitstring;
 "and" (this Bitstring, this Bitstring) -> this Bitstring;
 "or" (this Bitstring, this Bitstring) -> this Bitstring;
 "xor" (this Bitstring, this Bitstring) -> this Bitstring;
 "=>" (this Bitstring, this Bitstring) -> this Bitstring
 num (this Bitstring) -> Integer;
 bitstring (Integer) -> this Bitstring raise OutOfRange;
 octet (Integer) -> this Bitstring raise OutOfRange;
axioms
/* Bitstring starts at index 0 */
/* Definition of operators with the same names as String operators*/
 for all b in Bit (/*b is bit in string*/
 for all s,s1,s2,s3 in Bitstring (
 for all i,j in Integer (
/* constructors are ''B, mkstring, and "//" */
/* equalities between constructor terms */
 s // ''B == s;
 ''B// s == s;
 (s1 // s2) // s3 == s1 // (s2 // s3);
/* definition of length by applying it to all constructors */
 <<type Bitstring>>length(''B) == 0;
 <<type Bitstring >>length(mkstring(b)) == 1;
 <<type Bitstring >>length(s1 // s2) == length(s1) + length(s2);
 Make(s) == mkstring(s);
/* definition of Extract by applying it to all constructors,
 with error cases handled separately */
 Extract(mkstring(b),0) == b;
 i < length(s1) ==> Extract(s1 // s2,i) == Extract(s1,i);
 i >= length(s1) ==> Extract(s1 // s2,i) == Extract(s2,i-length(s1));
 i<0 or i=>length(s) ==> Extract(s,i) == raise InvalidIndex;
/* definition of first and last by other operations */
 first(s) == Extract(s,0);
 last(s) == Extract(s,length(s)-1);
/* definition of substring(s,i,j) by induction on j,
 error cases handled separately */
 i>=0 and i < length(s) ==>
 substring(s,i,0) == ''B;
/* */
 i>=0 and j>0 and i+j<=length(s) ==>
 substring(s,i,j) == substring(s,i,j-1) // mkstring(Extract(s,i+j));
/* */
 i<0 or j<0 or i+j>length(s) ==>
 substring(s,i,j) == raise InvalidIndex;
/* */
/* definition of Modify by other operations */
 Modify(s,i,b) == substring(s,0,i) // mkstring(b) // substring(s,i+1,length(s)-i);
/* definition of remove */
 remove(s,i,j) == substring(s,0,i) // substring(s,i+j,length(s)-i-j);
)));
/*end of definition of string operators indexed from zero*/
/* */
/* Definition of ''H and 'x'H in terms of ''B, 'xxxx'B for Bitstring*/
 <<type Bitstring>>''H == ''B;
 <<type Bitstring>>'0'H == '0000'B;
 <<type Bitstring>>'1'H == '0001'B;
 <<type Bitstring>>'2'H == '0010'B;
 <<type Bitstring>>'3'H == '0011'B;
 <<type Bitstring>>'4'H == '0100'B;
 <<type Bitstring>>'5'H == '0101'B;
 <<type Bitstring>>'6'H == '0110'B;
 <<type Bitstring>>'7'H == '0111'B;
 <<type Bitstring>>'8'H == '1000'B;
 <<type Bitstring>>'9'H == '1001'B;

196 ITU-T Rec. Z.100 (11/2007)

 <<type Bitstring>>'A'H == '1010'B;
 <<type Bitstring>>'B'H == '1011'B;
 <<type Bitstring>>'C'H == '1100'B;
 <<type Bitstring>>'D'H == '1101'B;
 <<type Bitstring>>'E'H == '1110'B;
 <<type Bitstring>>'F'H == '1111'B;
/* */
/* Definition of Bitstring specific operators*/
 <<type Bitstring>>mkstring(0) == '0'B;
 <<type Bitstring>>mkstring(1) == '1'B;
/* */
 for all s, s1, s2, s3 in Bitstring (
 s = s == true;
 s1 = s2 == s2 = s1;
 s1 /= s2 == not (s1 = s2);
 s1 = s2 == true ==> s1 == s2;
 ((s1 = s2) and (s2 = s3)) ==> s1 = s3 == true;
 ((s1 = s2) and (s2 /= s3)) ==> s1 = s3 == false;
/* */
 for all b, b1, b2 in Bit (
 not(''B) == ''B;
 not(mkstring(b) // s) == mkstring(not(b)) // not(s);
/* definition of or */
/* The length of or-ing two strings is the maximal length of both strings */
 ''B or ''B == ''B;
 length(s) > 0 ==> ''B or s == mkstring(0) or s;
 s1 or s2 == s2 or s1;
 (b1 or b2) // (s1 or s2) ==(mkstring(b1) // s1) or (mkstring(b2) // s2);
/* */
/* definition of remaining operators based on "or" and "not" */
 s1 and s2 == not (not s1 or not s2);
 s1 xor s2 == (s1 or s2) and not(s1 and s2);
 s1 => s2 == not (s1 and s2);
));
/* */
/*Definition of 'xxxxx'B literals */
 for all s in Bitstring (
 for all b in Bit (
 for all i in Integer (
 <<type Bitstring>>num (''B) == 0;
 <<type Bitstring>>bitstring (0) == '0'B;
 <<type Bitstring>>bitstring (1) == '1'B;
 num (s // mkstring (b)) == num (b) + 2 * num (s);
 i > 1 ==> bitstring (i) == bitstring (i / 2) // bitstring (i mod 2);
 i >= 0 and i <= 255 ==> octet (i) == bitstring (i) or '00000000'B;
 i < 0 ==> bitstring (i) == raise OutOfRange;
 i < 0 or i > 255 ==> octet (i) == raise OutOfRange;
)))
/*Definition of 'xxxxx'H literals */
 for all b1,b2,b3,h1,h2,h3 in bs nameclass (
 for all bs1, bs2, bs3, hs1, hs2, hs3 in Charstring (
 spelling(b1) = '''' // bs1 // '''B',
 spelling(b2) = '''' // bs2 // '''B',
 bs1 /= bs2 ==> b1 = b2 == false;
/* */
 spelling(h1) = '''' // hs1 // '''H',
 spelling(h2) = '''' // hs2 // '''H',
 hs1 /= hs2 ==> h1 = h2 == false;
 spelling(b1) = '''' // bs1 // '''B',
 spelling(b2) = '''' // bs2 // '''B',
 spelling(b3) = '''' // bs1 // bs2 // '''B',
 spelling(h1) = '''' // hs1 // '''H',
 spelling(h2) = '''' // hs2 // '''H',
 spelling(h3) = '''' // hs1 // hs2 // '''H',
 length(bs1) = 4,
 length(hs1) = 1,
 length(hs2) > 0,
 length(bs2) = 4 * length(hs2),
 h1 = b1 ==> h3 = b3 == h2 = b2;
/* */
/* connection to the String generator */

 ITU-T Rec. Z.100 (11/2007) 197

 for all b in Bit literals (
 spelling(b1) = '''' // bs1 // bs2 // '''B',
 spelling(b2) = '''' // bs2 // '''B',
 spelling(b) = bs1 ==> b1 == mkstring(b) // b2;
)));
endvalue type Bitstring;
/*

D.3.15 ASN.1 Octet and Octetstring sorts

D.3.15.1 Definition
*/
syntype Octet = Bitstring size (8);
endsyntype Octet;
/* */
value type Octetstring
 inherits String < Octet > (''B = emptystring)
 adding
 operators
 os in nameclass
 '''' (((('0' or '1')8)*'''B') or (((('0':'9') or ('A':'F'))2)*'''H'))
 -> this Octetstring;
 bitstring (this Octetstring) -> Bitstring;
 octetstring (Bitstring) -> this Octetstring;
axioms
 for all b,b1,b2 in Bitstring (
 for all s in Octetstring (
 for all o in Octet(
 <<type Octetstring>> bitstring(''B) == ''B;
 <<type Octetstring>> octetstring(''B) == ''B;
 bitstring(mkstring(o) // s) == o // bitstring(s);
/* */
 length(b1) > 0,
 length(b1) < 8,
 b2 == b1 or '00000000'B ==> octetstring(b1) == mkstring(b2);
/* */
 b == b1 // b2,
 length(b1) == 8 ==> octetstring(b) == mkstring(b1) // octetstring(b2);
)));
/* */
 for all b1, b2 in Bitstring (
 for all o1, o2 in os nameclass (
 spelling(o1) = spelling(b1),
 spelling(o2) = spelling(b2) ==> o1 = o2 == b1 = b2
));
endvalue type Octetstring;
/*

D.3.16 Predefined Exceptions
*/
exception
 OutOfRange, /* A range check has failed. */
 InvalidReference, /* Null was used incorrectly. Wrong Pid for this signal. */
 NoMatchingAnswer, /* No answer matched in a decision without else part. */
 UndefinedVariable, /* A variable was used that is "undefined". */
 UndefinedField, /* An undefined field of a choice or struct was accessed. */
 InvalidIndex, /* A String or Array was accessed with an incorrect index. */
 DivisionByZero; /* An Integer or Real division by zero was attempted. */
 Empty; /* No element could be returned. */
/* */
endpackage Predefined;

198 ITU-T Rec. Z.100 (11/2007)

Annex E

Reserved for examples
(This annex forms an integral part of this Recommendation)

Annex F

SDL formal definition
(This annex forms an integral part of this Recommendation)

Published separately.

 ITU-T Rec. Z.100 (11/2007) 199

Appendix I

Status of Z.100, related documents and Recommendations
(This appendix does not form an integral part of this Recommendation)

This appendix contains a list of the status of SDL-related Recommendations issued by ITU-T. The list includes all parts
of this Recommendation and of ITU-T Recs Z.104, Z.105, Z.106, Z.107, Z.109 and any related methodology documents.
It also lists other relevant Recommendations such as ITU-T Rec. Z.110.

This list shall be updated by appropriate means (for example, a corrigendum) whenever changes to SDL are agreed and
new Recommendations approved.

SDL-2000 is defined by the following Recommendations approved by ITU-T Study Group 17 listed below.
– ITU-T Recommendation Z.100 (2007), Specification and Description Language (SDL).
– Annex A to ITU-T Recommendation Z.100 (2007), Index of non-terminals.
– Annex B to ITU-T Recommendation Z.100 (2007), Backwards compatibility.
– Annex C to ITU-T Recommendation Z.100 (2007), Compliance.
– Annex D to ITU-T Recommendation Z.100 (2007), SDL predefined data.
– Annex F to ITU-T Recommendation Z.100 (2000), SDL formal definition (approved by ITU-T Study Group 10

on 24 November 2000).
 Tools for the formal semantics reference model of SDL-2000 (ITU-T Specification and Description Language)

can be found at http://sourceforge.net/projects/sdlc (the files themselves are accessible either through CVS, or
through the CVS web front end, at http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/sdlc/SDLC/).

 There were no specific plans at the time of approval for Annex E.
– Supplement 1 to ITU-T Recommendation Z.100 (1997), SDL+ methodology: use of MSC and SDL (with

ASN.1).
– ITU-T Recommendation Z.104 (2004), Encoding of SDL data.
– ITU-T Recommendation Z.105 (2003), SDL combined with ASN.1 modules (SDL/ASN.1).
– ITU-T Recommendation Z.106 (2002), Common interchange format for SDL.
– ITU-T Recommendation Z.107 (1999), SDL with embedded ASN.1.
– ITU-T Recommendation Z.109 (2007), SDL-2000 combined with UML.
– ITU-T Recommendation Z.110 (2000), Criteria for the use of formal description techniques by ITU-T

(approved by ITU-T Study Group 10 on 24 November 2000).

Further information on SDL including information on books and other publications is available via: http://www.sdl-
forum.org/.

http://sourceforge.net/projects/sdlc
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/sdlc/SDLC/
http://www.sdl-forum.org/
http://www.sdl-forum.org/

200 ITU-T Rec. Z.100 (11/2007)

Appendix II

Guidelines for the maintenance of SDL
(This appendix does not form an integral part of this Recommendation)

II.1 Maintenance of SDL
This appendix describes the terminology and rules for maintenance of SDL agreed at the Study Group 10 meeting in
November 1993, and the associated "change request procedure".

II.1.1 Terminology
a) An error is an internal inconsistency within ITU-T Rec. Z.100.
b) A textual correction is a change to text or diagrams of ITU-T Rec. Z.100 that corrects clerical or typographical

errors.
c) An open item is a concern identified but not resolved. An open item may be identified either by a change

request, or by agreement of the Study Group or Working Party.
d) A deficiency is an issue identified where the semantics of SDL is not (clearly) defined by ITU-T Rec. Z.100.
e) A clarification is a change to the text or diagrams of ITU-T Rec. Z.100 that clarifies previous text or diagrams

that could be ambiguously understood without the clarification. The clarification should attempt to make
ITU-T Rec. Z.100 correspond to the semantics of SDL as understood by the Study Group or Working Party.

f) A modification is a change to the text or diagrams of ITU-T Rec. Z.100 that changes the semantics of SDL.
g) A decommitted feature is a feature of SDL that is to be removed from SDL in the next revision of ITU-T Rec.

Z.100.
h) An extension is a new feature, which must not change the semantics of features defined in ITU-T Rec. Z.100.

II.1.2 Rules for maintenance
In the following text, references to ITU-T Rec. Z.100 shall be considered to include Annexes, Appendices, and
Supplements, as well as any Addendum, or Amendment or Corrigendum or Implementors' Guides, and the same texts for
ITU-T Recs Z.104, Z.105, Z.106, Z.107 and Z.109.
a) When an error or deficiency is detected in ITU-T Rec. Z.100, it must be corrected or clarified. The correction

of an error should imply as small a change as possible. Error corrections and clarifications will be put into the
Master list of changes for ITU-T Rec. Z.100 and come into effect immediately.

b) Except for error corrections and resolution of open items from the previous study period, modifications and
extensions should only be considered as the result of a request for change that is supported by a substantial
user community. A request for change should be followed by investigation by the Study Group or Working
Party in collaboration with representatives of the user group, so that the need and benefit are clearly
established and it is certain that an existing feature of SDL is unsuitable.

c) Modifications and extensions not resulting from error correction shall be widely publicized and the views of
users and toolmakers canvassed before the change is adopted. Unless there are special circumstances requiring
such changes to be implemented as soon as possible, such changes will not be recommended until ITU-T Rec.
Z.100 is revised.

d) Until a revised ITU-T Rec. Z.100 is published, a Master list of Changes to ITU-T Rec. Z.100 will be
maintained covering ITU-T Rec. Z.100 and all annexes except the formal definition. Appendices, Addenda,
Corrigenda, Implementor's guides or Supplements will be issued as decided by the Study Group. To ensure
effective distribution of the Master list of changes to ITU-T Rec. Z.100, it will be published as COM Reports
and by appropriate electronic means.

e) For deficiencies in ITU-T Rec. Z.100, the formal definition should be consulted. This may lead to either a
clarification or correction that is recorded in the Master list of changes to ITU-T Rec. Z.100.

II.1.3 Change request procedure
The change request procedure is designed to enable SDL users from within and outside ITU-T to ask questions about the
precise meaning of ITU-T Rec. Z.100, make suggestions for changes to SDL or ITU-T Rec. Z.100, and to provide
feedback on proposed changes to SDL. The SDL experts' group shall publish proposed changes to SDL before they are
implemented.

 ITU-T Rec. Z.100 (11/2007) 201

Requests for changes should either use the Change Request Form (see below) or provide the information listed by the
form. The kind of request should be clearly indicated (error correction, clarification (or question), simplification,
extension, modification or decommitted feature). It is also important that, for any change other than an error correction,
the amount of user support for the request is indicated.

Meetings of the ITU-T Study Group responsible for ITU-T Rec. Z.100 should treat all change requests. For corrections
or clarifications, the changes may be put on the list of corrections without consulting users. Otherwise, a list of open
items is compiled. The information should be distributed to users:

• as ITU-T white contribution reports;

• by electronic mail to SDL mailing lists (such as ITU-T informal list, and sdlnews@sdl-forum.org);

• other means as agreed by the experts in the Study Group responsible for SDL.

Study group experts should determine the level of support and opposition for each change and evaluate reactions from
users. A change will only be put on the accepted list of changes if there is substantial user support and no serious
objections to the proposal from more than just a few users. Finally, all accepted changes will be incorporated into a
revised ITU-T Rec. Z.100. Users should be aware that until changes have been incorporated and approved by the Study
Group responsible for ITU-T Rec. Z.100 they are not recommended by ITU-T.

202 ITU-T Rec. Z.100 (11/2007)

 Change Request Form

Please supply the following details.
Type of change: error correction clarification (or question)
 simplification extension

 modification decommission

Short summary of change request

Short justification of the change request

Is this view shared in your organization? yes no

Have you consulted other users? yes no

 1-5 6-10 How many users do you represent?

 11-100 over 100

Your name and address

Please attach further sheets with details if necessary.

SDL (Z.100) Rapporteur, c/o ITU-T, Place des Nations, CH-1211 Geneva 20, Switzerland. Fax: +41 22 730 5853,
e-mail: SDL.rapporteur@itu.int

 ITU-T Rec. Z.100 (11/2007) 203

Appendix III

Systematic conversion of SDL-92 to SDL-2000
(This appendix does not form an integral part of this Recommendation)

Although not all SDL-92 specifications can be automatically converted into SDL-2000, a simple transformation should
be sufficient in many cases.
1. Correct spelling with regard to case and new keywords:

a) Replace all keywords with the corresponding lowercase <keyword> (or uppercase <keyword>);
b) Replace all <word>s containing national characters as defined in Z.100 (03/93) with a unique <word>;
c) Replace all <name>s with their lowercase equivalent;
d) If <name>s conflict with lowercase <keyword>s, replace the first character with an uppercase character.

In many cases, a more relaxed procedure is possible, for example by always using the spelling of the <name>
defining occurrence of its corresponding <identifier>. This results in a semantic change only if the name of a state
is changed, and that name is used in a <state expression>, as introduced in Addendum 1 of SDL-92.

2. Replace all <qualifier>s with the corresponding <qualifier> of SDL-2000 (that is, the list of path items is always
enclosed in the <composite special>s <qualifier begin sign> and <qualifier end sign>).

3. Transform all usage of the keywords fpar and returns in <agent formal parameters>,
<procedure formal parameters>, <procedure result>, <macro formal parameter>, <formal operation parameters>,
and <procedure signature> to the corresponding SDL-2000 syntax.

4. Replace all signal routes with nodelay <channel definition area>s.
5. In each block with no signal routes or channels, add gates to each process listing all signals that are sent or received

by this process. Alternatively, add explicit channels according to the model for implicit signal routes of SDL-92.
Specifications relying on implicit channels as introduced by Addendum 1 to SDL-92 (1996) must also add gates to
the respective blocks.

6. Replace all occurrences of block partitioning. SDL-92 did not specify how a consistent subset was selected, so this
step might require external knowledge. A conversion assuming that the substructure should be always selected
would probably reflect the typical use of SDL-92.
a) Move all blocks in the substructure directly into the container block.
b) If there are conflicts in entities of the block and entities in the substructure, rename one of the entities to a

unique name.
c) Adjust all identifiers for entities in nested blocks to use the new qualifier.

7. Replace all output actions using via all with a list of output actions. If the <via path> was a channel between block
instance sets, no automatic transformation is possible.

8. Replace service and service types with composite state and composite state types, respectively. If the services have
overlapping input actions (even though their valid input sets were disjoint), one of the duplicate transitions must be
removed. Remove all signal routes between services; output referring to these signal routes should refer to gates of
the process type. Replace <stop symbol> with <return area>. Timers, exported procedures and exported variables
of a service must be defined in agent.

9. Replace all data type definitions involving generator transformations by the equivalent definitions using
parameterized types.

10. Transformation of data axioms is not possible automatically, but there have been only a few users that have defined
their own data types axiomatically. However, the following cases can be transformed easily:
a) Expressions of predefined data remain valid including the use String, Array and PowerSet, after case

adjustments in the spelling of their types.
b) A newtype definition with literals (and no axiomatically defined operators) can be converted into a

<value data type definition> with <literal list>.
c) A newtype definition with structure property can be converted into a <value data type definition> with

<structure definition>.

If an SDL-92 specification uses constructs that cannot be automatically converted into equivalent SDL-2000 constructs,
a careful inspection of this specification will be necessary if it needs to conform to this Recommendation.

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Z.100 (11/2007) Specification and Description Language (SDL)
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Objective
	1.2 Application
	1.3 System specification
	1.4 Differences between SDL-88 and SDL-92
	1.5 Differences between SDL-92 and SDL-2000

	2 References
	3 Definitions
	4 Abbreviations
	5 Conventions
	5.1 SDL grammars
	5.2 Basic definitions
	5.3 Presentation style
	5.4 Metalanguages

	6 General rules
	6.1 Lexical rules
	6.2 Macro
	6.3 Visibility rules, names and identifiers
	6.4 Informal text
	6.5 Drawing rules
	6.6 Partitioning of drawings
	6.7 Comment
	6.8 Text extension
	6.9 Text symbol

	7 Organization of SDL specifications
	7.1 Framework
	7.2 Package
	7.3 Referenced definition

	8 Structural concepts
	8.1 Types, instances and gates
	8.2 Context parameters
	8.3 Specialization
	8.4 Type references
	8.5 Associations

	9 Agents
	9.1 System
	9.2 Block
	9.3 Process
	9.4 Agent and composite state reference
	9.5 Procedure

	10 Communication
	10.1 Channel
	10.2 Connection
	10.3 Signal
	10.4 Signal list definition
	10.5 Remote procedures
	10.6 Remote variables

	11 Behaviour
	11.1 Start
	11.2 State
	11.3 Input
	11.4 Priority Input
	11.5 Continuous signal
	11.6 Enabling condition
	11.7 Save
	11.8 Implicit transition
	11.9 Spontaneous transition
	11.10 Label
	11.11 State machine and Composite state
	11.12 Transition
	11.13 Action
	11.14 Statement list
	11.15 Timer
	11.16 Exception

	12 Data
	12.1 Data definitions
	12.2 Passive use of data
	12.3 Active use of data

	13 Generic system definition
	13.1 Optional definition
	13.2 Optional transition string

	Annex A – Index of non-terminals
	Annex B – Backwards compatibility
	B.1 Background
	B.2 Lexical rules
	B.3 Macro
	B.4 Context parameters
	B.5 Agents
	B.6 Procedure
	B.7 Remote variables
	B.8 Specialization of data types
	B.9 Behaviour of operations
	B.10 Optional definition
	B.11 Data definition
	B.12 Data type definition
	B.13 Syntypes
	B.14 Task
	Annex C – Compliance to this Recommendation
	C.1 Definitions of valid tools
	C.2 Conformance
	Annex D – SDL Predefined data
	D.1 Introduction
	D.3 Notation
	D.3 Package Predefined
	Annex E – Reserved for examples
	Annex F – SDL formal definition
	Appendix I – Status of Z.100, related documents and Recommendations
	Appendix II – Guidelines for the maintenance of SDL
	II.1 Maintenance of SDL
	Appendix III – Systematic conversion of SDL-92 to SDL-2000

