
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.100
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Annex F.3
(03/93)

SERIES Z: PROGRAMMING LANGUAGES

Formal description techniques (FDT) – Specification and
Description Language (SDL)

Specification and Description
Language (SDL) – SDL formal
definition: Dynamic semantics

ITU-T Recommendation Z.100 – Annex F.3
(Previously CCITT Recommendation)

ITU-T Z-SERIES RECOMMENDATIONS

PROGRAMMING LANGUAGES

For further details, please refer to ITU-T List of Recommendations.

FORMAL DESCRIPTION TECHNIQUES (FDT)

Specification and Description Language (SDL) Z.100–Z.109

Application of Formal Description Techniques Z.110–Z.119

Message Sequence Chart Z.120–Z.129

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language Z.200–Z.209

MAN-MACHINE LANGUAGE

General principles Z.300–Z.309

Basic syntax and dialogue procedures Z.310–Z.319

Extended MML for visual display terminals Z.320–Z.329

Specification of the man-machine interface Z.330–Z.399

QUALITY OF TELECOMMUNICATION SOFTWARE Z.400–Z.499

METHODS FOR VALIDATION AND TESTING Z.500–Z.599

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Programming languages

������
Printed in Switzerland

Geneva, 1998

Recommendation Z.100 – Annex F.3 (03/93) i

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Z.100 – Annex F.3 was revised by the ITU-T Study Group X (1988-1993) and was approved
by the WTSC (Helsinki, March 1-12, 1993).

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

 ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation Z.100 – Annex F.3 (03/93) iii

CONTENTS
Recommendation Z.100 – Annex F.3 (03/93)

Page

1 SDL Abstract Syntax Summary.. 5
1.1 Basic SDL ... 5
1.2 Structural Decomposition Concepts in SDL ... 11
1.3 Data in SDL .. 12

2 Domains for the Meta-Process Communication... 16
2.1 SDL Process Creation and Stopping ... 16
2.2 SDL Signal Communication ... 18
2.3 SDL Service Handling .. 19
2.4 SDL Timer Handling... 19
2.5 Time Handling .. 20
2.6 Revealed Variable Handling ... 20
2.7 Common Domains .. 20

3 Domains for the Entity Information ... 22
3.1 The Type Descriptor ... 23
3.2 The Sort Descriptor ... 24
3.3 The Operator and Literal Descriptor ... 24
3.4 The Variable Descriptor .. 24
3.5 The View Descriptor ... 24
3.6 The Signal Descriptor ... 24
3.7 The Process Descriptor ... 25
3.8 The Service Descriptor.. 25
3.9 The Procedure Descriptor ... 25

4 The Underlying System .. 26
4.1 System Processor .. 26

4.1.1 The Processor .. 26
4.1.2 Auxiliary Functions... 33

4.2 View Processor ... 37
4.2.1 The Processor .. 37

4.3 Timer Processor .. 39
4.4 Informal Tick Processor.. 39
4.5 Path Processor ... 40

4.5.1 The Processor .. 40
4.6 Process Set Administrating Processor... 41
4.7 Input-Port Processor.. 45

4.7.1 The Processor .. 46
4.7.2 Input Port Queue Auxiliary Functions .. 53

5 The SDL-Process and SDL-Service ... 55
5.1 The sdl-process Processor ... 55
5.2 The sdl-service Processor.. 63
5.3 Interpretation of a Procedure... 65
5.4 Storage Handling... 68
5.5 Interpretation of a Process, Service or Procedure Graph .. 70
5.6 Expression Evaluation... 78

5.6.1 Ground Expression Evaluation.. 79
5.6.2 Active Expression Evaluation ... 81

5.7 Range Check and Range Condition Evaluation .. 85

iv Recommendation Z.100 – Annex F.3 (03/93)

Page

6 Construction of Entity-dict and Handling of Abstract Data Types... 88
6.1 Construction of Descriptors for Simple Objects ... 90
6.2 Handling of Abstract Data Types.. 101

6.2.1 Entry Functions ... 101
6.2.2 Equation Collection... 105
6.2.3 Equivalence Class Generation and Equation Evaluation .. 106
6.2.4 Term Reduction Map Generation.. 119
6.2.5 Wellformedness Checks .. 120

6.3 Selection of Consistent Subset .. 122
6.3.1 Removal of Non-Selected Substructures and Processes.. 124
6.3.2 Subsignal Propagation... 127

6.4 Construction of Communication Paths ... 135
6.4.1 Reachability Construction ... 135
6.4.2 Construction of Partial Reachabilities ... 145
6.4.3 Extraction of Input Signal Sets.. 153
6.4.4 Update of Descriptors with Reachabilities .. 156

6.5 Simple Information Extraction from Channels/Signal Routes.. 161
6.5.1 Information from All Channels/Signal Routes.. 161
6.5.2 Information from Non-Internal Channels/Signal Routes .. 164

7 General-Purpose Auxiliary Functions .. 168
7.1 Simple Identifier Handling.. 168
7.2 Selection of Definitions from Definition Sets... 171
7.3 Simple Decomposition of Behaviour Graphs.. 173

Recommendation Z.100 – Annex F.3 (03/93) 1

Recommendation Z.100 – Annex F.3
Recommendation Z.100 – Annex F.3 (03/93)

SPECIFICATION AND DESCRIPTION LANGUAGE (SDL) –
SDL FORMAL DEFINITION: DYNAMIC SEMANTICS

(Melbourne, 1988; revised at Helsinki, 1993)

T1007470-93/d01

Environment-admin,
Create-Pid,
Send-Signal

Pid-Created

system

Create-Instance-Request,
Create-Instance-Answer1,

Send-Signal

View-Answer

view

Queue-Signal
path

Signal-Delivered

Signal-Delivered

Create-Instance-Request1,
Create-Instance-Answer,

Signal-Delivered

Time-Request

Time-AnswerReveal,
View-Request,

Die

timer Time

sdl-
process-

set

FIGURE 1/Z.100

Overall Structure of Interpretation Model

FIGURE 1/Z.100 – Annex F.3...[D01]

Introduction

This part of the Formal Definition defines the dynamic properties of SDL. For a description of the overall structure of
the Formal Definition and for an explanation of the notation used, refer to Annex F.1: Introduction to the Formal
Definition.

An SDL system is interpreted by a number of concurrent meta-processes. The communication between these is
synchronous, CSP-like communication. The lines in figures 1 and 2 indicate communication by means of CSP-output.

Overall Interpretation Model

Figure 1 shows the overall structure of the interpretation model. The system-process is the “entry point” for
interpretation of an SDL system and takes care of creating instances of the other processes: one instance of the view- and
timer-process, one instance of the path-process for each distinct delaying path by which an SDL signal may be
transported, and one instance of the process-set-admin-process (shown in the next figure) for each process instance set in
the SDL system. The process-set-admin-process manages a couple of (meta-)processes which is shown as sdlprocessset
in figure 1 and detailed in figure 2.

The processes are:

system Which handles the signal routing between SDL process instance sets and the generation of unique
Pid values.

There is one living instance of system during the whole life time of the SDL system.

2 Recommendation Z.100 – Annex F.3 (03/93)

path Which handles the nondeterministic delay of channels. Note that all potential delays from the
channels traversed by one signal instance have been added into one delay in an instance of path.

There is one living instance of path for each (non-empty) sequence of delaying channel paths which
connects two leaf blocks (in the selected consistent subset) or one leaf block and the system
environment. The meta-process instances are living during the whole life time of the SDL system.

view Which keeps track of all revealed variables. Each time an SDL process updates a revealed variable, it
sends the new value to view. When a process is using the view expression, it will request the current
value from view.

There is one living instance of view during the whole life time of the SDL system.

timer Which keeps track of the current time. When an SDL process is using the now expression it will
request timer for the time value.

It is assumed that the environment in regular intervals sends a clock signal to the timer. This
mechanism is sketched as the tick-process. It must be noted that the informal model of the tick-
process does not form part of the dynamic semantics, it is only included for explanatory reasons.

There is one living instance of timer during the whole life time of the SDL system.

Interpretation Model for SDL Process Instance Set

Figure 2 shows the interpretation model for an SDL process instance set. The meta-process process-set-admin is the
“entry point” for interpretation of an SDL process instance set and takes of creating one instance of the input-port- and
sdl-process-processes whenever a new SDL process instance is to be created. If the SDL process is decomposed into
services, the sdl-process-process creates one sdl-service-process for each service.

The processes are:

process-set-admin Which handles all ingoing SDL signals and create requests and manages the other meta-processes
needed to interpret an SDL process instance set. A create request results in one instance of input-port
and one instance of sdl-process unless this would lead to violation of the maximum number of SDL
process instances. An ingoing signal is either directed to some input-port instance or discarded,
depending on the receiver information conveyed with the signal and the current set of living SDL
process instances.

There is one living instance of process-set-admin for each SDL process instance set. These meta-
process instances are living during the whole life time of the SDL system.

input-port Which handles the queueing of signals in an SDL-process. Signals are always received by an
sdl-process in its input-port. The input-port also takes care of timer handling.

At any point of time there is one living instance of input-port for each living SDL process instance.

sdl-process Which interprets the behaviour of an SDL process.

If the SDL process is not decomposed into services this implies interpretation of its process graph,
and in this case sdl-service and its associated arrows in the figure do not apply.

If the SDL process is decomposed into services, sdl-process creates one instance of sdl-service for
each SDL service. The sdl-process then coordinates the execution of the services such that all service
start transitions are executed before any input and spontaneous transitions of the services, and such

Recommendation Z.100 – Annex F.3 (03/93) 3

T1007480-93/d02

Create-Instance-Request1,
Signal-Delivered

Create-Instance-Answer1

process-
set-

admin

Instance-Created,
Stop-Instance

Create-Instance-Answer

Create-Instance-Request,
Send-Signal

Create-Instance-Answer

Create-Instance-Request,
Send-Signal

sdl-
service

sdl-
process

Instance-Created,
Stop-Instance,
Next-Signal,
Set-Timer,

Reset-Timer,
Active-Request

Execute-Start,
Input-Signal,

Spontaneous-Signal,
Active-Answer

Inport-Created

Next-Signal,
Set-Timer,

Reset-Timer,
Active-Request

Body-Created,
Stop-Input-Port,
Queue-Signal1 input-

port

Time-Request

Time-Answer

Input-Signal,
Spontaneous-Signal,

Active-Answer

Time-Request

Time-Answer

Reveal, View-Request, Die

View-Answer

Time-Request

Time-Answer

Reveal, View-Request, Die

View-Answer

FIGURE 2/Z.100

Structure of Interpretation Model for SDL Process Instance Set

FIGURE 2/Z.100 – Annex F.3...[D02]

4 Recommendation Z.100 – Annex F.3 (03/93)

that no two service transitions are executed at the same time. All communication between sdl-service
on one side and process-set-admin and input-port on the other goes through sdl-process which in
several cases simply acts as a relay for this communication. This scheme has been chosen in order to
make the interpretation functions for behaviour graph nodes as independent as possible of whether
they occur in a process or service graph.

At any point of time there is one living instance of sdl-process for each living SDL process instance.

sdl-service Which interprets the behaviour of an SDL service.

At any point of time there is one living instance of sdl-service for each living SDL service instance.

Recommendation Z.100 – Annex F.3 (03/93) 5

1 SDL Abstract Syntax Summary

This section contains a summary of the abstract syntax (AS1) domains for SDL as defined in Z.100. No further
comments are attached to these domain definitions here.

1.1 Basic SDL

Visibility rules, names and identifiers

1 Identifier1 :: Qualifier1 Name1
2 Qualifier1 = Path-item1+
3 Path-item1 = System-qualifier1 |

Block-qualifier1 |
Block-substructure-qualifier1 |
Process-qualifier1 |
Service-qualifier1 |
Procedure-qualifier1 |
Signal-qualifier1 |
Sort-qualifier1

4 System-qualifier1 :: System-name1
5 Block-qualifier1 :: Block-name1
6 Block-substructure-qualifier1 :: Block-substructure-name1
7 Process-qualifier1 :: Process-name1
8 Service-qualifier1 :: Service-name1
9 Procedure-qualifier1 :: Procedure-name1

10 Signal-qualifier1 :: Signal-name1
11 Sort-qualifier1 :: Sort-name1
12 Name1 :: Token

Informal text

13 Informal-text1 :: ...

System

14 System-definition1 :: System-name1
Block-definition1-set
Channel-definition1-set
Signal-definition1-set
Data-type-definition1
Syn-type-definition1-set

15 System-name1 = Name1

Block

16 Block-definition1 :: Block-name1
Process-definition1-set
Signal-definition1-set
Channel-to-route-connection1-set
Signal-route-definition1-set
Data-type-definition1
Syn-type-definition1-set
[Block-substructure-definition1]

17 Block-name1 = Name1

6 Recommendation Z.100 – Annex F.3 (03/93)

Process

18 Process-definition1 :: Process-name1
Number-of-instances1
Process-formal-parameter1*
Procedure-definition1-set
Signal-definition1-set
Data-type-definition1
Syn-type-definition1-set
Variable-definition1-set
View-definition1-set
Timer-definition1-set
(Process-graph1 | Service-decomposition1)

19 Number-of-instances1 :: Intg [Intg]
20 Process-name1 = Name1
21 Process-graph1 :: Process-start-node1

State-node1-set
22 Process-formal-parameter1 :: Variable-name1

Sort-reference-identifier1
23 Service-decomposition1 :: Service-definition1-set

Signal-route-definition1-set
Signal-route-to-route-connection1-set

Service

24 Service-definition1 :: Service-name1
Procedure-definition1-set
Data-type-definition1
Syn-type-definition1-set
Variable-definition1-set
View-definition1-set
Timer-definition1-set
Service-graph1

25 Service-name1 = Name1
26 Service-graph1 :: Service-start-node1

State-node1-set
27 Service-start-node1 :: Transition1

Procedure

28 Procedure-definition1 :: Procedure-name1
Procedure-formal-parameter1*
Procedure-definition1-set
Data-type-definition1
Syn-type-definition1-set
Variable-definition1-set
Procedure-graph1

29 Procedure-name1 = Name1
30 Procedure-formal-parameter1 = In-parameter1 |

Inout-parameter1
31 In-parameter1 :: Variable-name1

Sort-reference-identifier1
32 Inout-parameter1 :: Variable-name1

Sort-reference-identifier1
33 Procedure-graph1 :: Procedure-start-node1

State-node1-set

Recommendation Z.100 – Annex F.3 (03/93) 7

34 Procedure-start-node1 :: Transition1

Channel

35 Channel-definition1 :: Channel-name1
[NODELAY]
Channel-path1
[Channel-path1]

36 Channel-path1 :: Originating-block1
Destination-block1
Signal-identifier1-set

37 Originating-block1 = Block-identifier1 |
ENVIRONMENT

38 Destination-block1 = Block-identifier1 |
ENVIRONMENT

39 Block-identifier1 = Identifier1
40 Signal-identifier1 = Identifier1
41 Channel-name1 = Name1

Signal route

42 Signal-route-definition1 :: Signal-route-name1
Signal-route-path1
[Signal-route-path1]

43 Signal-route-path1 :: Origin1
Destination1
Signal-identifier1-set

44 Origin1 = Process-identifier1 |
Service-identifier1 |
ENVIRONMENT

45 Destination1 = Process-identifier1 |
Service-identifier1 |
ENVIRONMENT

46 Signal-route-name1 = Name1
47 Process-identifier1 = Identifier1
48 Service-identifier1 = Identifier1

Connection

49 Channel-to-route-connection1 :: Channel-identifier1-set
Signal-route-identifier1-set

50 Signal-route-identifier1 = Identifier1
51 Signal-route-to-route-connection1 :: External-signal-route-identifier1-set

Signal-route-identifier1-set
52 External-signal-route-identifier1 = Identifier1

Signal

53 Signal-definition1 :: Signal-name1
Sort-reference-identifier1*
[Signal-refinement1]

54 Signal-name1 = Name1

8 Recommendation Z.100 – Annex F.3 (03/93)

Variable definition

55 Variable-definition1 :: Variable-name1
Sort-reference-identifier1
[Ground-expression1]
[REVEALED]

56 Variable-name1 = Name1

View definition

57 View-definition1 :: View-name1
Sort-reference-identifier1

58 View-name1 = Name1

Start

59 Process-start-node1 :: Transition1

State

60 State-node1 :: State-name1
Save-signalset1
Input-node1-set
Spontaneous-transition1-set

61 State-name1 = Name1

Input

62 Input-node1 :: Signal-identifier1
[Variable-identifier1]*
Transition1

63 Variable-identifier1 = Identifier1

Save

64 Save-signalset1 :: Signal-identifier1-set

Spontaneous transition

65 Spontaneous-transition1 :: Transition1

Transition

66 Transition1 :: Graph-node1*
(Terminator1 | Decision-node1)

67 Graph-node1 = Task-node1 |
Output-node1 |
Create-request-node1 |
Call-node1 |
Set-node1 |

Recommendation Z.100 – Annex F.3 (03/93) 9

Reset-node1
68 Terminator1 = Nextstate-node1 |

Stop-node1 |
Return-node1

69 Nextstate-node1 :: State-name1
70 Stop-node1 :: ()
71 Return-node1 :: ()

Task

72 Task-node1 :: Assignment-statement1 |
Informal-text1

Create

73 Create-request-node1 :: Process-identifier1
[Expression1]*

Procedure call

74 Call-node1 :: Procedure-identifier1
[Expression1]*

75 Procedure-identifier1 = Identifier1

Output

76 Output-node1 :: Signal-identifier1
[Expression1]*
[Signal-destination1]
Direct-via1

77 Signal-destination1 = Expression1 | Process-identifier1
78 Direct-via1 = (Signal-route-identifier1 | Channel-identifier1)-set

Decision

79 Decision-node1 :: Decision-question1
Decision-answer1-set
[Else-answer1]

80 Decision-question1 = Expression1 |
Informal-text1

81 Decision-answer1 :: (Range-condition1 | Informal-text1)
Transition1

82 Else-answer1 :: Transition1

Timer

83 Timer-definition1 :: Timer-name1
Sort-reference-identifier1*

84 Timer-name1 = Name1
85 Set-node1 :: Time-expression1

Timer-identifier1
Expression1*

10 Recommendation Z.100 – Annex F.3 (03/93)

86 Reset-node1 :: Timer-identifier1
Expression1*

87 Timer-identifier1 = Identifier1
88 Time-expression1 = Expression1

Recommendation Z.100 – Annex F.3 (03/93) 11

1.2 Structural Decomposition Concepts in SDL

Block partitioning

1 Block-substructure-definition1 :: Block-substructure-name1
Sub-block-definition1-set
Channel-connection1-set
Channel-definition1-set
Signal-definition1-set
Data-type-definition1
Syn-type-definition1-set

2 Block-substructure-name1 = Name1
3 Sub-block-definition1 = Block-definition1
4 Channel-connection1 :: Channel-identifier1-set

Sub-channel-identifier1-set
5 Sub-channel-identifier1 = Channel-identifier1
6 Channel-identifier1 = Identifier1

Refinement

7 Signal-refinement1 :: Subsignal-definition1-set
8 Subsignal-definition1 :: [REVERSE] Signal-definition1

12 Recommendation Z.100 – Annex F.3 (03/93)

1.3 Data in SDL

Data type definitions

1 Data-type-definition1 :: Sorts1
Signature1-set
Equations1

2 Sorts1 = Sort-name1-set
3 Sort-name1 = Name1
4 Equations1 = Equation1-set

Literals and parameterised operators

5 Signature1 = Literal-signature1 |
Operator-signature1

6 Literal-signature1 :: Literal-operator-name1
Result1

7 Operator-signature1 :: Operator-name1
Argument-list1
Result1

8 Argument-list1 = Sort-reference-identifier1+
9 Result1 = Sort-reference-identifier1

10 Sort-reference-identifier1 = Sort-identifier1 |
Syntype-identifier1

11 Literal-operator-name1 = Name1
12 Operator-name1 = Name1
13 Sort-identifier1 = Identifier1

Axioms

14 Equation1 = Unquantified-equation1 |
Quantified-equations1 |
Conditional-equation1 |
Informal-text1

15 Unquantified-equation1 :: Term1
Term1

16 Quantified-equations1 :: Value-name1-set
Sort-identifier1
Equations1

17 Value-name1 = Name1
18 Term1 = Ground-term1 |

Composite-term1 |
Error-term1

19 Composite-term1 :: Value-identifier1 |
Operator-identifier1 Term1+ |
Conditional-composite-term1

20 Value-identifier1 = Identifier1
21 Operator-identifier1 = Identifier1
22 Ground-term1 :: Literal-operator-identifier1 |

Operator-identifier1 Ground-term1+ |
Conditional-ground-term1

23 Literal-operator-identifier1 = Identifier1

Recommendation Z.100 – Annex F.3 (03/93) 13

Conditional equations

24 Conditional-equation1 :: Restriction1-set
Restricted-equation1

25 Restriction1 = Unquantified-equation1
26 Restricted-equation1 = Unquantified-equation1

Conditional terms

27 Conditional-composite-term1 = Conditional-term1
28 Conditional-ground-term1 = Conditional-term1
29 Conditional- term1 :: Condition1

Consequence1
Alternative1

30 Condition1 = Term1
31 Consequence1 = Term1
32 Alternative1 = Term1

Errors

33 Error-term1 :: ()

Syntypes

34 Syntype-identifier1 = Identifier1
35 Syn-type-definition1 :: Syntype-name1

Parent-sort-identifier1
Range-condition1

36 Syntype-name1 = Name1
37 Parent-sort-identifier1 = Sort-identifier1
38 Range-condition1 :: Or-operator-identifier1

Condition-item1-set
39 Condition-item1 = Open-range1 |

Closed-range1
40 Open-range1 :: Operator-identifier1

Ground-expression1
41 Closed-range1 :: And-operator-identifier1

Open-range1
Open-range1

42 Or-operator-identifier1 = Identifier1
43 And-operator-identifier1 = Identifier1

Expressions

44 Expression1 = Ground-expression1 |
Active-expression1

Ground expressions

45 Ground-expression1 :: Ground-term1

14 Recommendation Z.100 – Annex F.3 (03/93)

Active expressions

46 Active-expression1 = Variable-access1 |
Conditional-expression1 |
Operator-application1 |
Imperative-operator1 |
Error-term1

Variable access

47 Variable-access1 = Variable-identifier1

Conditional expression

48 Conditional-expression1 :: Boolean-expression1
Consequence-expression1
Alternative-expression1

49 Boolean-expression1 = Expression1
50 Consequence-expression1 = Expression1
51 Alternative-expression1 = Expression1

Operator application

52 Operator-application1 :: Operator-identifier1
Expression1+

Assignment statement

53 Assignment-statement1 :: Variable-identifier1
Expression1

Imperative operators

54 Imperative-operator1 = Now-expression1 |
Pid-expression1 |
View-expression1 |
Timer-active-expression1 |
Anyvalue-expression1

Now expression

55 Now-expression1 :: ()

PId expression

56 Pid-expression1 = Self-expression1 |
Parent-expression1 |
Offspring-expression1 |
Sender-expression1

57 Self-expression1 :: ()

Recommendation Z.100 – Annex F.3 (03/93) 15

58 Parent-expression1 :: ()
59 Offspring-expression1 :: ()
60 Sender-expression1 :: ()

View expression

61 View-expression1 :: View-identifier1
[Expression1]

62 View-identifier1 = Identifier1

Timer active expression

63 Timer-active-expression1 :: Timer-identifier1
Expression1*

Anyvalue expression

64 Anyvalue-expression1 :: Sort-reference-identifier1

16 Recommendation Z.100 – Annex F.3 (03/93)

2 Domains for the Meta-Process Communication

2.1 SDL Process Creation and Stopping

This section defines the communication domains used when creating and stopping SDL process instances. This includes
the creation and stopping of instances in the environment of the SDL system.

1 Create-Instance-Request :: Process-identifier1 Value-List Parent-Value
2 Parent-Value = Pid-Value
3 Create-Instance-Request1 :: Value-List Parent-Value Offspring-Value
4 Offspring-Value = Pid-Value
5 Body-Created :: II(sdl-process)
6 Inport-Created :: II(input-port)
7 Instance-Created :: ()
8 Create-Instance-Answer1 :: Exceed
9 Exceed = Bool

10 Create-Instance-Answer :: Offspring-Value

The domains above are used when an SDL process or service instance executes a create request node. The interpreting
sdl-process or sdl-service outputs Create-Instance-Request to system which, when having performed the necessary
communication with other meta-processes, responds by outputting Create-Instance-Answer to the sdl-process/sdl-
service. The data carried by Create-Instance-Request are the identifier of the SDL process of which an instance is to be
started, the list of actual parameters, and the Pid value of the SDL process instance performing the create request. The
data carried by Create-Instance-Answer is the Pid value of the created SDL process instance (which is Null if a new
instance could not be created due to maximum number of instances).

When system receives a Create-Instance-Request, it outputs Create-Instance-Request1 to the process-set-admin
corresponding to the Process-identifier1. When having performed the necessary actions, the process-set-admin respond
by outputting Create-Instance-Answer1 to system. The data carried by Create-Instance-Request1 is the list of actual
parameters, the Pid value of the creating SDL process, and the Pid value of the new SDL process. The data carried by
Create-Instance-Answer1 is a Boolean value indicating whether or not a new SDL process could be created without
violating the maximum number of instances of the corresponding SDL process set.

When a process-set-admin receives a Create-Instance-Request1, it creates an input-port and an sdl-process (unless this
would lead to violation of the maximum number of instances). Immediately after creation of these two meta-processes,
the process-set-admin outputs Body-Created to the input-port, and Inport-Created to the sdl-process. The data carried
by Body-Created and Inport-Created are the meta-pid (II) values of the sdl-process instance resp. the input-port instance
such that these two meta-process instances can address communication to each other.

When the sdl-process has performed its necessary setup, it outputs Instance-Created to the process-set-admin.

If the created SDL process is decomposed into services, the interpreting sdl-process creates one sdl-service instance for
each SDL service. Each individual sdl-service outputs Instance-Created to the sdl-process when having performed the
necessary setup.

11 Stop-Instance :: ()
12 Stop-Input-Port :: ()

The domains above are used when an SDL process or service instance executes a stop node. If the SDL process is not
decomposed into services, the interpreting sdl-process outputs Stop-Instance to its managing process-set-admin when
interpreting a stop node. When having input Stop-Instance the process-set-admin outputs Stop-Input-Port to the

Recommendation Z.100 – Annex F.3 (03/93) 17

corresponding input-port.

If the SDL process is decomposed into services, then when an sdl-service interprets a stop node, it outputs Stop-Instance
to the managing sdl-process. When the last service instance has stopped, the sdl-process outputs Stop-Instance to its
process-set-admin.

13 Environment-admin :: II(process-set-admin)
14 Create-Pid :: ()
15 Pid-Created :: Pid-Value

Since as few assumptions as possible should be made about the environment, a special scheme for creation of instances
in the environment has been defined. It is considerably simpler than the scheme for creation of processes within the
system. It is assumed that all SDL process instances in the environment are managed by the same process-set-admin
instance in the environment, and that the meta-pid (II) value of this is communicated to system carried by Environment-
admin during system start up.

When an SDL process instance is to be created in the environment, the environment outputs Create-Pid to system. The
system responds by outputting a new, unique SDL Pid value to the environment carried by Pid-Created.

The main purpose of this scheme is to justify the administration within the system of Pid values in the environment.

18 Recommendation Z.100 – Annex F.3 (03/93)

2.2 SDL Signal Communication

This section defines the communication domains used for handling of SDL signal communication.

1 Send-Signal :: Signal-identifier1 Value-List Sender-Id
Sender-Value [Receiver] Direct-via1

2 Sender-Id = ENVIRONMENT | Process-identifier1 | Service-identifier1
3 Sender-Value = Pid-Value
4 Receiver = Receiver-Value | Process-identifier1
5 Receiver-Value = Pid-Value
6 Queue-Signal :: Signal-identifier1 Value-List

Sender-Value II (process-set-admin) [Receiver-Value]
7 Signal-Delivered :: Signal-identifier1 Value-List

Sender-Value [Receiver-Value]
8 Queue-Signal1 :: Signal-identifier1 Value-List Sender-Value

The domains above are used when communicating signals between SDL process instances. When an SDL process or
service interprets an output node, the interpreting sdl-process or sdl-service outputs Send-Signal to system. The data
carried are the identifier of the SDL signal being sent, the list of optional values carried by the signal, the SDL process
or service identifier of the sender (or ENVIRONMENT if it is the environment of the system which sends the signal),
the SDL Pid value of the sender, the optional SDL Pid value/process identifier of the receiver, and the optional via set of
channel/signal route identifiers.

When system receives a Send-Signal it chooses a communication path taking into consideration the destination and
routing information contained in Send-Signal. If the chosen path does not contain any delaying channels, system outputs
Signal-Delivered to the process-set-admin instance corresponding to the destination endpoint of the communication
path. If the chosen path contains delaying channels, system outputs Queue-Signal to the path instance corresponding to
(the delaying part) of the path. The data carried by both Signal-Delivered and Queue-Signal are the SDL signal
identifier, the list of optional values carried by the signal, the SDL sender Pid value, and the optional receiver Pid value.
In addition, Queue-Signal carries the meta-pid value of the process-set-admin instance at the destination endpoint of the
chosen communication path such that the path instance can deliver the signal to the correct process-set-admin instance.

In case a signal was sent via a delaying path, the corresponding path instance delivers after some delay the signal by
outputting Signal-Delivered to the receiving process-set-admin.

When a process-set-admin receives a Signal-Delivered, it will either deliver the signal to an input-port or discard it,
taking into consideration the destination information contained in Signal-Delivered and the current set of SDL process
instances alive. If the signal is equipped with an explicit destination Pid value which denotes a living instance in the
SDL process instance set, the signal is delivered to the input-port of this instance; if the signal is not equipped with an
explicit destination Pid value, and there is at least one living instance in the SDL process instance set, an input-port
belonging to one of the SDL process instances is chosen nondeterministically; in all other cases no input-port is chosen,
i.e. the signal is discarded. In case a possible receiver is found, the process-set-admin outputs Queue-Signal1 to its input-
port. The data values carried are the signal identifier, the value list and the sender.

9 Next-Signal :: Signal-identifier1-set Spontaneous-Present
10 Spontaneous-Present = Bool
11 Input-Signal :: Signal-identifier1 Value-List Sender-Value
12 Spontaneous-Signal :: ()

These domains are used for signal communication between the input port and body of an SDL process instance. When
the SDL process instance enters a state, the interpreting sdl-process outputs Next-Signal to its input-port. The data values
carried are the save signal set of the state, and a boolean value indicating whether or not the state contains spontaneous

Recommendation Z.100 – Annex F.3 (03/93) 19

transitions. The input-port responds by outputting Input-Signal or Spontaneous-Signal to the sdl-process.

If the SDL process is decomposed into services, the interpreting sdl-service instances communicate these domains with
the input-port via their managing sdl-process. When an SDL service instance enters a state, the interpreting sdl-service
outputs Next-Signal to its sdl-process which then passes on this output to input-port. When the input-port has responded
with Input-Signal or Spontaneous-Signal to the sdl-process, the sdl-process passes on this output to an sdl-service which
needs not be the one which most recently output Next-Signal. The sdl-service instance is chosen by having the
sdl-process maintain a table with information about which SDL services have which signals in their valid input signal
set.

2.3 SDL Service Handling

This section defines the communication domains used for SDL service handling.

1 Execute-Start :: ()

This domain is used by sdl-process for coordinating the execution of service start transitions when the interpreted SDL
process is decomposed into services. When the sdl-process has started all sdl-service instances, it outputs Execute-Start
to each sdl-service instance one by one and waits for each sdl-service to complete its start transition before outputting
Execute-Start to the next sdl-service.

No other special domains for service execution coordination are necessary as some of the other domains already defined
can easily be used for this purpose.

2.4 SDL Timer Handling

This section defines the communication domains used for SDL timer handling.

1 Set-Timer :: Timer-identifier1 Arglist Timeout-Value
2 Timeout-Value = Value
3 Reset-Timer :: Timer-identifier1 Arglist
4 Active-Request :: Timer-identifier1 Arglist
5 Active-Answer :: Bool

When an SDL process instance executes a set node, the interpreting sdl-process outputs Set-Timer to its input-port
which then starts a timer instance. The data carried are the SDL timer identifier, a list of timer argument values, and the
expiration time for this timer instance setting.

When an SDL process instance executes a reset node the interpreting sdl-process outputs Reset-Timer to its input-port
which then stops the timer instance. The data carried are the SDL timer identifier and a list of timer argument values.

When an SDL process evaluates a timer active expression, the interpreting sdl-process outputs Active-Request to its
input-port which then responds by outputting Active-Answer to the sdl-process. The boolean data value carried indicates
whether or not the timer instance is active.

If the SDL process is decomposed into services, the interpreting sdl-services communicate these domains with the
input-port via their managing sdl-process which in this case simply acts as a relay.

20 Recommendation Z.100 – Annex F.3 (03/93)

2.5 Time Handling

This section defines the communication domains used for time handling.

1 Time-Request :: ()
2 Time-Answer :: Value
3 Time :: ()

When an SDL process or service instance evaluates a now expression, the interpreting sdl-process or sdl-service outputs
Time-Request to timer. The timer responds by outputting Time-Answer which carries the value of the current time.

Each input-port instance continuously tests on the expiration time of its timer instances. For that purpose it needs the
current time from the timer. This communication is the same as between sdl-process/sdl-service and timer.

2.6 Revealed Variable Handling

This section defines the communication domains used for revealed variable handling.

1 Reveal :: Variable-identifier1 Sort-reference-identifier1
Pid-Value (Value | UNDEFINED)

2 View-Request :: View-identifier1 Sort-reference-identifier1
[Pid-Value]

3 View-Answer :: (Value | UNDEFINED)
4 Die :: Pid-Value

(Process-identifier1 | Service-identifier1)

When an SDL process or service instance updates a revealed variable, the interpreting sdl-process or sdl-service outputs
Reveal to view. The data carried are the identifier and sort/syntype of the revealed variable, the Pid value of the SDL
process instance directly or indirectly (i.e. from a service) revealing the variable, and the new value of the variable.

When an SDL process or service evaluates a view expression, the interpreting sdl-process or sdl-service outputs
View-Request to view which then responds with View-Answer. The data carried by View-Request is the identifier and
sort/syntype of the viewed variable, and the optional SDL Pid value of the intended revealer. The data carried by
View-Answer is the value of the viewed variable.

When an SDL process or service instance stops, the interpreting sdl-process or sdl-service outputs Die to view which
then removes from its internal map of revealed variables all revealed variables of the owning process or service instance.
The data carried are the SDL Pid value of the stopping process instance or the process instance owning the stopping
service, and the SDL identifier of the stopping process or service instance.

2.7 Common Domains

This section defines some common domains which are either used in the communication domains above or to address
the communication between meta-processes.

1 Value-List = (Value | UNDEFINED)*
2 Arglist = Value*
3 Pid-Value = Value
4 Value = Ground-term1

A Value-List is the result of evaluating a list of actual parameters to a create or output node. If a given actual parameter
is absent, the corresponding “value” is UNDEFINED.

An Arglist is the result of evaluating an argument list in a set node, reset node or active expression.

Recommendation Z.100 – Annex F.3 (03/93) 21

A Value is an SDL ground term. For each equivalence class of the data sorts in the SDL system, the same ground term
will always represent this equivalence class during interpretation of the SDL system. A Pid-Value is a Value.

5 Admin-processor = II (process-set-admin) | II (sdl-process)
6 Input-processor = II (input-port) | II (sdl-process)
7 Body-processor = II (sdl-process) | II (sdl-service)

The domains Admin-processor and Input-processor are used when interpreting the nodes of a behaviour graph. If the
graph is interpreted by an sdl-process, the administrating processor is a process-set-admin, and the SDL signal input is
obtained from an input-port. If the graph is interpreted by an sdl-service, the administrating processor is an sdl-process,
and the SDL signal input is also obtained from sdl-process.

A behaviour graph is interpreted by a Body-processor which is either an sdl-process or sdl-service instance.

22 Recommendation Z.100 – Annex F.3 (03/93)

3 Domains for the Entity Information
Recommendation Z.100 – Annex F.3 (03/93)

Entity-dict contains information of all SDL identifiers referred to in the SDL processes and services, i.e. whenever a
process or service needs information of an identifier Entity-dict is used. Initially, it is deduced from AS1. Each SDL
process and service has its own instance of Entity-dict.

1 Entity-dict = (Qualifier1 TYPE) m →TypeDD ∪
(Identifier1 SORT) m →(SortDD | SyntypeDD) ∪
(Identifier1 VALUE) m →(OperatorDD | VarDD | ViewDD) ∪
(Identifier1 SIGNAL) m →SignalDD ∪
(Identifier1 PROCESS) m →ProcessDD ∪
(Identifier1 SERVICE) m→ServiceDD ∪
(Identifier1 PROCEDURE) m →ProcedureDD ∪
ENVIRONMENT m →Reachabilities ∪
EXPIREDF m →Is-expiredF ∪
SYSTEMLEVEL m →Qualifier1 ∪
PIDSORT m →Sort-identifier1 ∪
NULLVALUE m →Value ∪
TRUEVALUE m →Value ∪
FALSEVALUE m →Value ∪
SCOPEUNIT m →Qualifier1 ∪
SELF m →Pid-Value ∪
PARENT m →Pid-Value ∪
OFFSPRING m →ref Pid-Value ∪
SENDER m →ref Pid-Value ∪
ADMIN m →Admin-processor ∪
PORT m →Input-processor

Entity-dict is a map from pairs of identifiers (Identifier1s) or qualifiers (Qualifier1s) and their associated entity kind into
descriptors. An entity kind is either TYPE, SORT, VALUE, SIGNAL, PROCESS, SERVICE or PROCEDURE. As
an AS1 data type definition (Data-type-definition1) has no identifier on its own, the Qualifer1 denoting the scope unit
where it is defined is used instead.

In addition, Entity-dict contains information of how signals from the environment of the system can be routed.
ENVIRONMENT is explained below.

A descriptor is either a descriptor of a type, a sort, a syntype, a literal or operator, a variable, a signal, a process, a
service, or a procedure. Note that some of the entities of SDL identifiers are excluded (e.g. channels and blocks).

Furthermore, Entity-dict contains some extra objects which have to be known by the underlying system and/or the sdl
processes or services. Those objects are accessed via some Quot values:

ENVIRONMENT When applied on Entity-dict the result is the routing information (for SDL signals)
(Reachabilities) originating from the environment.

EXPIREDF When applied on Entity-dict the result is a function used by input-port processor instances
for timer handling.

SYSTEMLEVEL When applied on Entity-dict the result is the AS1 qualifier denoting the system level.

PIDSORT When applied on Entity-dict the result is the AS1 identifier of the Pid sort.

NULLVALUE When applied on Entity-dict the result is an AS1 ground term representing the Pid value
Null.

TRUEVALUE When applied on Entity-dict the result is an AS1 ground term representing the Boolean value
True.

Recommendation Z.100 – Annex F.3 (03/93) 23

FALSEVALUE When applied on Entity-dict the result is an AS1 ground term representing the Boolean value
False.

SCOPEUNIT When applied on Entity-dict the result is the qualifier denoting the current scopeunit.

SELF When applied on Entity-dict the result is the SDL Pid value of either the SDL process using
the Entity-dict or the owning SDL process of the service using the Entity-dict.

PARENT When applied on Entity-dict the result is the SDL Pid value of either the parent of the SDL
process using the Entity-dict or the owning SDL process of the service using the Entity-dict.

OFFSPRING When applied on Entity-dict the result is a pointer to a Meta-IV variable holding the SDL
Pid value of the most recent offspring of either the SDL process using the Entity-dict or the
owning SDL process of the service using the Entity-dict.

SENDER When applied on Entity-dict the result is a pointer to a Meta-IV variable holding the SDL
Pid value of the most recent sender of either the SDL process using the Entity-dict or the
owning SDL process of the service using the Entity-dict.

ADMIN When applied on Entity-dict the result is the II value of the Meta-IV process (i.e. process-
set-admin) administrating the process set to which the SDL process belongs, or the sdl-
process which manages the SDL service.

PORT When applied on Entity-dict the result is the II value of the input-port of the SDL process, or
the sdl-process which “looks like” an input-port from the SDL service.

3.1 The Type Descriptor

1 TypeDD :: Term-reduce-map Sortmap Equations1
2 Term-reduce-map = Term-class m →Term
3 Term-class = Term-set
4 Term = Ground-term1 | Error-term1
5 Sortmap = Sort-identifier1 m →Term-class-set

The first field (Term-reduce-map) contains all equivalence classes (Term-class) of all sorts visible in the scopeunit
enclosing the data type definition. The Term-reduce-map maps each equivalence class to a canonical term (Term) which
has been chosen to represent that term. If an equivalence class contains the error term, Term-reduce-map always maps it
to the error term; else if the equivalence class represents a value which must be recognizable by the Meta-IV formulas
when interpreting an SDL system (e.g. the Boolean values True and False), Term-reduce-map maps it to the same value
as given by Entity-dict (entries TRUEVALUE and FALSEVALUE for the Boolean values); otherwise an arbitrary term
is chosen when building the Entity-dict, and thereafter the equivalence class will always be represented by that term.

The second field is a map (Sortmap) of all Sort-identifier1s visible in the scopeunit enclosing the data type definition into
the set of equivalence classes existing for the sort. The sort map is only used while building the Entity-dict for an SDL
system.

The third field is the equations (Equations1) from which the equivalence classes are derived.

24 Recommendation Z.100 – Annex F.3 (03/93)

3.2 The Sort Descriptor

1 SortDD :: ()
2 SyntypeDD :: Parent-sort-identifier1 Range-condition1

SortDD and SyntypeDD are descriptors of newtypes and syntypes respectively. A newtype descriptor contains no
information but is there any way in order to have all used sort identifiers in the Entity-dict.

A syntype descriptor also contains the identifier of the parent newtype and an AS1 range condition.

3.3 The Operator and Literal Descriptor

1 OperatorDD :: Argument-list Result
2 Argument-list = Sort-reference-identifier1*
3 Result = Sort-reference-identifier1

OperatorDD is a descriptor of an operator or a literal. It contains the list of sorts or syntypes of the arguments and the
sort or syntype of the result.

3.4 The Variable Descriptor

1 VarDD :: Variable-identifier1 Sort-reference-identifier1
[Ground-expression1] [REVEALED] ref Stg

VarDD is a descriptor of a variable. It contains the variable identifier, the sort or syntype identifier, the initialization
expression, if any, the REVEALED attribute and a reference to a process-, service- or procedure-local storage. Each
time a procedure is invoked, Entity-dict is overwritten with the descriptors representing the formal parameters and local
declarations. For an in/out formal parameter, the descriptor contains the Variable-identifier1 of the associated actual
parameter and a reference to the storage where the value of the actual parameter can be found, i.e. because SDL allows
recursive procedures, there may exist several storages containing variables with the same Variable-identifier1, one for
each recursive call.

3.5 The View Descriptor

1 ViewDD :: Sort-reference-identifier1

ViewDD is a descriptor of a view definition. It contains the sort or syntype identifier of the view.

3.6 The Signal Descriptor

1 SignalDD :: Sort-reference-identifier1* [REVERSE]

SignalDD is a descriptor of a signal. It contains the list of sort or syntype identifiers attached to the signal and, in case it
is a subsignal, whether or not it goes in the reverse direction of its parent signal.

Recommendation Z.100 – Annex F.3 (03/93) 25

3.7 The Process Descriptor

1 ProcessDD :: ParameterDD* Initial Maximum
[Process-graph1] Reachabilities

2 ParameterDD = Variable-identifier1
3 Initial = Intg
4 Maximum = [Intg]
5 Reachabilities = Reachability-set
6 Reachability = Reachability-endp Signal-identifier1-set Path
7 Reachability-endp = ENVIRONMENT | Process-identifier1 | Service-identifier1
8 Path = Path-element*
9 Path-element = Path-identifier Path-direction [NODELAY]

10 Path-identifier = Identifier1
11 Path-direction = FORWARD | REVERSE

ProcessDD is a descriptor of a process. It contains the parameter list (ParameterDD), the number of process instances
created at system start-up time (Initial), the maximum number of allowed processes (Maximum), the process graph, and
Reachabilities. A formal parameter descriptor is the Variable-identifier1 of the parameter. A Reachability defines a
destination Reachability-endp (Process-identifier1, Service-identifier1 or the ENVIRONMENT) which may be reached
from the process in the sending of a signal in Signal-identifier1-set using a certain Path. The Path is identified by a list
of path elements (Path-element) each of which contains a channel or signal route identifier (Path-identifier), a path
direction (Path-direction) which is used to identify each direction in a bidirectional channel/signal route, and an
indication of whether the path element has a delay or not (a channel may or may not have a delay, a signal route never
has a delay). Path is empty in the cases where Process-identifier1 (or Service-identifier1, see below under the description
of service descriptors) is both the sender and the receiver.

3.8 The Service Descriptor

1 ServiceDD :: Service-graph1 Input-signal-set Reachabilities
2 Input-signal-set = Signal-identifier1-set

ServiceDD is a descriptor of a service. It contains the service graph, the set of valid input signals Signal-identifier1-set of
the service, and the Reachabilities of the service.

3.9 The Procedure Descriptor

1 ProcedureDD :: FormparmDD* Procedure-graph1
2 FormparmDD = InparmDD | InoutparmDD
3 InparmDD :: Variable-identifier1
4 InoutparmDD :: Variable-identifier1

ProcedureDD is a descriptor of a procedure. It contains a list of formal parameter descriptors and the procedure graph. A
formal parameter is either an in parameter or an in/out parameter and it contains the Variable-identifier1.

26 Recommendation Z.100 – Annex F.3 (03/93)

4 The Underlying System

4.1 System Processor

This processor is the entry point for interpretation of an SDL system. All other processes are started (directly or
indirectly) from this process. It is started from definition-of-SDL, defined in Annex F.2: Static Semantics.

The processor internally uses the following domains:

1 Process-set-admin-map = (ENVIRONMENT | Process-identifier1) m →
II (process-set-admin)

2 Path-map = Path m →II (path)
3 Inst-map = Pid-Value m →

(ENVIRONMENT | Process-identifier1)

The domain Process-set-admin-map maps the identifier of each SDL process instance set to the II value of the process-
set-admin instance which interprets it. Furthermore, as all SDL process instances running in the environment are
assumed to be managed by the same process-set-admin instance running in the meta-environment, the map also contains
a map from ENVIRONMENT to this instance. The domain is used for routing of SDL signals and creating instance
requests.

The domain Path-map maps each delaying path to its corresponding instance of the path processor. A delaying path is a
list of (delaying) channel paths traversed by a signal instance when an output node has been interpreted. It is necessary
to distinguish possible delaying paths since preservation of signal order is only guaranteed when following the same
sequence of delaying channels.

The domain Inst-map maps each Pid value of an alive or dead SDL process instance to the identifier of the process set to
which it belongs (or to ENVIRONMENT for each SDL process instance alive or dead in the environment). That is,
entries are never removed from the map. The domain is used for routing of SDL signals and for keeping track of which
SDL Pid values have already been used such that new, unique Pid values can be generated whenever needed.

4.1.1 The Processor

system processor (as1tree, subset, auxinf) (4.1.1.1)

1 (dcl adminmap type Process-set-admin-map;
2 dcl pathmap type Path-map;
3 dcl instmap := [] type Inst-map;
4 (let (timeinf, terminf, expiredf, delayf) = auxinf in
5 let dict = extract-dict(as1tree, subset, expiredf, terminf) in
6 start view();
7 start timer(timeinf)(dict);
8 start-process-set-admins(delayf)(dict);
9 start-paths(delayf)(dict);

10 start-initial-processes(dict);
11 handle-inputs(dict)))

type: System-definition1 Block-identifier1-set Auxiliary-information ⇒

Objective Interpret the SDL system.

Parameters

as1tree The AS1 definition of the system.

subset The consistent subset selected.

Recommendation Z.100 – Annex F.3 (03/93) 27

auxinf Contains the following (see line 4):

timeinf Information required by the timer processor. It contains a function which updates the current
now on each tick in the timer processor and the start value of the system time. The domain is
defined in Annex F.2 and it is further described in the definition of the timer processor.

terminf A closure containing the AS1 identifier of the Pid sort and three AS1 ground terms chosen to
represent each of the following values: The Pid value Null and the Boolean values True and
False.

expiredf A function delivering true if a given timer has expired.
delayf A function delivering a Bool value at random. Used in the path processor for modelling delay

on channels, and in the input-port processor for modelling unstability of SDL states containing
spontaneous transitions.

Algorithm

Line 1-3 Declare the variables needed by the system processor. The purpose of the variables has already
been explained below the domain definitions above.

Line 5 Build the Entity-dict corresponding to the given SDL system, the selected subset and the necessary
parts of Auxiliary-information.

Line 6 Start one instance of the view processor.

Line 7 Start one instance of the timer processor with actual parameters for the handling of now (further
explained in the definition of timer).

Line 8 Start one instance of the process-set-admin processor for each process definition present in the
SDL system (or rather in the selected consistent subset). The actual parameter delayf will be used
for handling of spontaneous transitions.

Line 9 Start one instance of the path processor for each sequence of delaying channel paths which can be
traversed by at least one SDL signal type.

Line 10 Perform the system start up creation of SDL process instances.

Line 11 Handle all further meta-communication to and from the system.

start-process-set-admins(delayf)(dict) (4.1.1.2)

1 ((input mk-Environment-admin(envadmin) from …
2 ⇒ adminmap := [ENVIRONMENT a envadmin]);
3 (def adminmap-delta : [prid a start process-set-admin(prid, delayf)(dict) |
4 (prid, PROCESS) ∈ dom dict];
5 adminmap := c adminmap + adminmap-delta))

type: DelayF → Entity-dict ⇒

Objective Start one process-set-admin processor instance for each process definition present in (the selected
consistent subset of) the SDL system.
Enter information about the started processor instances in adminmap.

Parameters

delayf A function delivering a Bool value at random. Used to model the unstability of SDL states
containing spontaneous transitions.

28 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1-2 Obtain the II value of the process-set-admin instance which is assumed to run in the meta-
environment. Enter this instance in adminmap.

Line 3-5 Start one process-set-admin instance for each process definition in the SDL system and compute
the adminmap contribution from this (lines 3-4). Update adminmap with this contribution (line 5).

start-paths(delayf)(dict) (4.1.1.3)

1 (let reaches = dict(ENVIRONMENT) ∪
2 union {s-Reachabilities(dict((prid, PROCESS))) |
3 (prid, PROCESS) ∈ dom dict} ∪
4 union {s-Reachabilities(dict((servid, SERVICE))) |
5 (servid, SERVICE) ∈ dom dict} in
6 let delaypaths = {delaying-path(path) | (, , path) ∈ reaches} in
7 pathmap := [delaypath a start path(delayf) | delaypath ∈ delaypaths \ {〈 〉}])

type: DelayF → Entity-dict ⇒

Objective Start one path instance for each sequence of delaying channel paths which can be traversed by at least
one SDL signal type. Enter information about the started processor instances in pathmap.

Parameters

delayf A function delivering a Bool value at random. Used to model the delay on channels.

Algorithm

Line 1-5 Extract all existing Reachabilities in the SDL system. The total Reachability set consists of all
Reachabilities originating from the system environment (line 1), all Reachabilities originating from
SDL process instance sets not partitioned into services (line 2-3) and all Reachabilities originating
from services (line 4-5).

Line 6 For each Reachability in the SDL system, extract the sequence of delaying channel paths contained
in Path.

Line 7 Start one path instance for each (non-empty) sequence of delaying channel paths which connects
two leaf blocks (in the selected consistent subset) or one leaf block and the SDL system
environment. Enter these instances in pathmap.

start-initial-processes(dict) (4.1.1.4)

1 for all (prid, PROCESS) ∈ dom dict do
2 (let mk-ProcessDD(parmddl, initno, , ,) = dict((prid, PROCESS)) in
3 let vl = 〈UNDEFINED | 1 ≤ i ≤ len parmddl〉,
4 parent = dict(NULLVALUE) in
5 for i = 1 to initno do
6 handle-create-instance-request(prid, vl, parent, nil)(dict))

type: Entity-dict ⇒

Objective Perform the system start up creation of SDL process instances.

Recommendation Z.100 – Annex F.3 (03/93) 29

Algorithm

Line 1 For each process instance set in the SDL system do the following:

Line 2 Obtain information about the formal parameters and initial number of instances for the process
instance from the dict.

Line 3-4 All actual parameters to a process instance which is created at system start up are “undefined”
(line 3). The parent value for such an instance is Null (line 4).

Line 5-6 Create initno instances of the process instance set. The fourth actual parameter in line 6 is nil to
indicate that there is no SDL process or service instance waiting for response about the process
instance creation.

handle-inputs(dict) (4.1.1.5)

1 cycle {input mk-Create-Instance-Request(prid, vl, parent) from parbody
2 ⇒ handle-create-instance-request(prid, vl, parent, parbody)(dict),
3 input mk-Create-Pid() from se
4 ⇒ handle-create-in-env(se)(dict),
5 input mk-Send-Signal(sid, vl, seid, se, re, via) from ...
6 ⇒ handle-send-signal(sid, vl, seid, se, re, via)(dict)}

type: Entity-dict ⇒

Objective Handle all meta-communication of system after initializations.

Algorithm

Line 1 Start a loop forever. In each iteration of that loop one of the mentioned inputs will be elaborated
(on a non-deterministic basis). The handling of each input is described in a specific handling
function.

handle-create-instance-request(prid, vl, parent, parbody)(dict) (4.1.1.6)

1 (def offspring : getpid(dom c instmap)(dict);
2 def offspradmin : c adminmap(prid);
3 output mk-Create-Instance-Request1(vl, parent, offspring) to offspradmin;
4 input mk-Create-Instance-Answer1(exceed) from offspradmin
5 ⇒ (if ¬exceed then
6 instmap := c instmap + [offspring a prid]
7 else
8 I;
9 if parbody ≠ nil then

10 (let offspring′ = if ¬exceed then offspring else dict(NULLVALUE) in
11 output mk-Create-Instance-Answer(offspring′) to parbody)
12 else
13 I))

type: Process-identifier1 Value-List Pid-Value [Body-processor] → Entity-dict ⇒

Objective Handle creation of SDL process instances.

Parameters

prid The SDL process identifier of the process instance to be started.

vl The list of actual parameter values.

parent The SDL Pid value of the creating process instance.

30 Recommendation Z.100 – Annex F.3 (03/93)

parbody The II value of the processor which interprets the creating SDL process or service instance. This
parameter is nil if the function is called during system initialization.

Algorithm

Line 1 Create a unique SDL Pid value.

Line 2 Get the II value of the process-set-admin instance for the SDL process to be created.

Line 3 Output a create instance request to the process-set-admin.

Line 4 Wait for response from the process-set-admin. The input parameter exceed indicates whether or not
a new SDL process instance could be created due to the maximum number of instances.

Line 5-8 If a new SDL process instance was created, the instance map (instmap) is updated with the new
instance.

Line 9-13 If the create was caused by a create node, then send a response to the creating SDL process or
service instance as follows:

Line 10 If the create request succeeded, then the offspring value should be the one generated in line 1,
otherwise it should be the Pid value Null.

Line 11 Send this offspring value to the creator.

handle-create-in-env(se)(dict) (4.1.1.7)

1 (def offspring : getpid(dom c instmap)(dict);
2 instmap := c instmap + [offspring a ENVIRONMENT];
3 output mk-Pid-Created(offspring) to se)

type: II → Entity-dict ⇒

Objective Handle the creation of SDL Pid values in the environment. Update maps within the system and return
the Pid value to the environment. The communication is not exactly like the one in handling of create
nodes within the system. However, one cannot suppose the environment to contain create nodes (!).
The general idea is to make as few assumptions about the environment as possible while still having a
consistent model.

Parameters

se The II value of “the sender”.

Algorithm

Line 1 Create a unique Pid value.

Line 2 Update the map of living SDL process instances with the new instance.

Line 3 Return the Pid value to the environment.

Recommendation Z.100 – Annex F.3 (03/93) 31

handle-send-signal(sid, vl, seid, se, re, via)(dict) (4.1.1.8)

1 (let reaches =
2 (seid = ENVIRONMENT
3 → dict(ENVIRONMENT),
4 (seid, PROCESS) ∈ dom dict
5 → s-Reachabilities(dict((seid, PROCESS))),
6 (seid, SERVICE) ∈ dom dict
7 → s-Reachabilities(dict((seid, SERVICE)))) in
8 let reaches′ = restrict-to-signal(reaches, sid) in
9 let reaches′′ =

10 if via = {}
11 then reaches′
12 else restrict-to-via(reaches′, via) in
13 def (reaches′′′, re′) : (re = nil
14 → (reaches′′, nil),
15 (re, PROCESS) ∈ dom dict
16 → (restrict-to-destprcs-or-env(reaches′′, re)(dict), nil),
17 → (restrict-to-destpid(reaches′′, re, c instmap)(dict), re));
18 if reaches′′′ ≠ {} then
19 (let (reidorenv, , path) ∈ reaches′′′ in
20 let delaypath = delaying-path(path) in
21 def readmin : c adminmap(process-or-env(reidorenv)(dict));
22 if delaypath = 〈 〉 then
23 output mk-Signal-Delivered(sid, vl, se, re′) to readmin
24 else
25 (def path′ : c pathmap(delaypath);
26 output mk-Queue-Signal(sid, vl, se, readmin, re′) to path′))
27 else
28 I)

type: Signal-identifier1 Value-List Sender-Id Sender-Value [Receiver] Direct-via1 → Entity-dict ⇒

Objective Routing of SDL signals.

Parameters

sid Signal being sent.

vl List of values carried by the signal.

seid The SDL identifier of the process or service sending the signal (or ENVIRONMENT if the signal is
sent from the environment).

se The SDL Pid value of the sender.

re The optional SDL Pid value or process identifier of the (intended) receiver of the signal from the to
clause.

via Set of signal route and channel identifiers from the optional via clause. If the via clause was absent,
this set is empty.

Algorithm

Line 1-7 Obtain the set of Reachabilities originating from the sender. The sender can either be the
environment (line 1-3), an instance of a process which is not decomposed into services (line 4-5),
or a service instance (line 6-7). The remaining part of the function consecutively restricts the
Reachabilities of the sender (until line 17).

Line 8 Restrict to those Reachabilities which may convey the signal.

Line 9-12 Restrict to the signal routes and channels mentioned in the via clause, if any.

32 Recommendation Z.100 – Annex F.3 (03/93)

Line 13-17 Restrict to the Pid value or process identifier of the to clause, if any, and get a resulting optional
receiver Pid value as follows:

If the to clause was absent, no further restrictions are made on the Reachabilities, and the optional
receiver Pid value is nil (line 13-14).

If the to clause contained a process identifier, the Reachabilities are restricted to this process
identifier, and the optional receiver Pid value is nil (line 15-16).

If the to clause contained a Pid expression, the Reachabilities are restricted to the process set which
contains the destination process instance, and the receiver Pid value is this Pid value (line 17). Note
that if the Pid expression evaluated to Null, to a Pid value of a not yet existing process instance, or
to a Pid value of an instance which cannot be reached via the given Reachabilities, the remaining
Reachability set will be empty.

Line 18,28 If the remaining Reachability set is empty, the signal is discarded.

Line 19 Select an arbitrary Reachability from the remaining Reachability set and decompose it into a
destination endpoint and a communication path.

Line 20 Obtain the delaying part of the chosen communication path.

Line 21 Obtain the II value of the process-set-admin instance which should receive the signal. If the
destination endpoint of the Reachability is a service, then use the identifier of its enclosing process
definition as key to the adminmap.

Line 22-23 If the chosen communication path contains no delaying channel paths, the signal is sent directly to
the receiving process-set-admin instance.

Line 25-26 Obtain the II value of the path instance which should convey the signal, and output the signal to
this instance.

Recommendation Z.100 – Annex F.3 (03/93) 33

4.1.2 Auxiliary Functions

restrict-to-signal(reaches, sid) (4.1.2.1)

1 {(, sigset,) ∈ reaches | sid ∈ sigset}

type: Reachability-set Signal-identifier1 → Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which are able to convey a given signal.

Parameters

reaches The original set of Reachabilities.

sid The identifier of the signal.

Result The restricted set of Reachabilities.

Algorithm

Line 1 Select those Reachabilities whose signal set contain the given signal.

restrict-to-via(reaches, via) (4.1.2.2)

1 {(, , path) ∈ reaches | is-in-via(path, via)}

type: Reachability-set Direct-via1 → Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which are mentioned in a given via set.

Parameters

reaches The original set of Reachabilities.

via The via set.

Result The restricted set of Reachabilities.

Algorithm

Line 1 Select those Reachabilities which contain a signal route or channel mentioned in the via set.

is-in-via(path, via) (4.1.2.3)

1 (let srchids = {id | (id, ,) ∈ elems path} in
2 srchids ∩ via ≠ {})

type: Path Direct-via1 → Bool

Objective Test whether a given communication path contains a signal route or channel identifier mentioned in a
given via set.

Parameters

path The communication path.

via The via set.

Result true if the path is mentioned, false otherwise.

34 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1 Extract the set of signal route and channel identifiers in the communication path.

Line 2 The communication path is mentioned in the via clause if the intersection of the via set and the set
of signal routes/channels is non-empty.

restrict-to-destprcs-or-env(reaches, repridorenv)(dict) (4.1.2.4)

1 {(reachendp, ,) ∈ reaches | process-or-env(reachendp)(dict) = repridorenv}

type: Reachability-set (ENVIRONMENT | Process-identifier1) → Entity-dict → Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which lead to a given SDL process instance
set.

Parameters

reaches The original set of Reachabilities.

repridorenv The SDL identifier of the process instance set, or ENVIRONMENT if the desired destination
endpoint is the system environment.

Result The restricted set of Reachabilities.

Algorithm

Line 1 Select those Reachabilities which have repridorenv as destination endpoint. If a Reachability has a
service as destination endpoint, the identifier of the enclosing process definition is used as key for
the selection.

restrict-to-destpid(reaches, re, instmap)(dict) (4.1.2.5)

1 if re ∈ dom instmap then
2 (let repridorenv = instmap(re) in
3 restrict-to-destprcs-or-env(reaches, repridorenv)(dict))
4 else
5 {}

type: Reachability-set Receiver-Value Inst-map → Entity-dict → Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which lead to an SDL process instance with
a given Pid value.

Parameters

reaches The original set of Reachabilities.

re The Pid value of the desired receiver.

instmap The map of SDL Pid values of living process instances.

Result The restricted set of reachabilities.

Algorithm

Line 1,6 If the Pid value is Null or denotes a not yet created SDL process instance, the resulting set of
Reachabilities is empty.

Line 2 Obtain the identifier of the SDL process instance set to which the given process instance belongs
(or ENVIRONMENT if the process instance belongs to the environment).

Recommendation Z.100 – Annex F.3 (03/93) 35

Line 3 Restrict the set of Reachabilities to the obtained process instance set.

delaying-path(path) (4.1.2.6)

1 〈path[i] | 1 ≤ i ≤ len path ∧ (let(, , nodelay) = path[i] in
2 nodelay = nil)〉

type: Path → Path

Objective Extract the delaying part of a communication path.

Parameters

path The original communication path.

Result The delaying part of the communication path.

Algorithm

Line 1 Delete all signal route and channel paths which have no delay.

process-or-env(reachendp)(dict) (4.1.2.7)

1 (reachendp = ENVIRONMENT
2 → ENVIRONMENT,
3 (reachendp, PROCESS) ∈ dom dict
4 → reachendp,
5 (reachendp, SERVICE) ∈ dom dict
6 → enclosing-scopeunit(reachendp))

type: Reachability-endp → Entity-dict → (ENVIRONMENT | Process-identifier1)

Objective If a reachability endpoint denotes a service, then convert it to the identifier of the enclosing SDL
process.

Parameters

reachendp The reachability endpoint.

Result The converted reachability endpoint.

Algorithm

Line 1-4 If the reachability endpoint denotes the environment or an SDL process definition, then return it
unchanged.

Line 5-6 If the reachability endpoint denotes a service definition, then return the identifier of the enclosing
SDL process definition.

getpid(pidsinuse)(dict) (4.1.2.8)

1 (let newpid ∈ values-of-sort(dict(PIDSORT))(dict)
2 be s.t. newpid ≠ dict(NULLVALUE) ∧ newpid ∉ pidsinuse in
3 newpid)

type: Pid-Value-set → Entity-dict → Pid-Value

36 Recommendation Z.100 – Annex F.3 (03/93)

Objective Extract a Pid-Value not used yet. The Unique! operator defined for the Pid sort in Z.100 ensures that
there exists an infinite number of Pid-Values. I.e. the values for the Pid sort are Null, Unique!(Null),
Unique!(Unique!(Null)), etc. The set of Pid values is found in dict.

Parameters

pidsinuse The set of Pid values which are already in use.

Result An unused Pid-Value.

Algorithm

Line 1 Take a Pid value from the set of possible Pid values such that the Pid value is neither Null nor has
been used before.

Line 3 Return the Pid value.

Recommendation Z.100 – Annex F.3 (03/93) 37

4.2 View Processor

This processor uses the internal domain Reveal-map which maps triples of SDL Pid values, variable identifiers and
variable sorts/syntypes to revealed values. For variables revealed by service instances, the Pid value is that of the
enclosing process instance.

1 Reveal-map = Reveal-map-key m →(Value | UNDEFINED)
2 Reveal-map-key = Pid-Value Variable-identifier1

Sort-reference-identifier1

4.2.1 The Processor

view processor () (4.2.1.1)

1 (dcl revealmap := [] type Reveal-map;
2 trap exit() with error in
3 (cycle {input mk-Reveal(varid, sortid, pid, value) from . . .
4 ⇒ revealmap := c revealmap + [(pid, varid, sortid) a value],
5 input mk-View-Request(viewid, sortid, revealpid) from body
6 ⇒ (def revealvars : revealed-variables(viewid, sortid, revealpid, c revealmap);
7 if revealvars ≠ {} then
8 (let revealvar ∈ revealvars in
9 output mk-View-Answer(c revealmap(revealvar)) to body)

10 else
11 exit(“§5.4.4.4: No revealed variable access can be made”)),
12 input mk-Die(pid, ownerid) from ...
13 ⇒ (def deadvars : {(pid′, varid,); ∈ dom c revealmap |
14 pid′ = pid ∧ enclosing-scopeunit(varid) = ownerid};
15 revealmap := c revealmap \ deadvars)}))

type: () ⇒

Objective Interpret the concept of view and reveal.

Algorithm

Line 1 Declare a (meta-)variable holding all revealed variable instances in the SDL system at any time.

Line 3 Handle the Reveal input.

Line 4 Update the map with the new value.

Line 5 Handle a view from an SDL process or service instance.

Line 6 Obtain the set of revealed variables matching the view.

Line 7-9 If there are any matching revealed variables then respond with the value of one of these.

Line 11 Define the error that no revealed variable access can be made.

Line 12 Handle the notice of a stopped SDL process or service instance.

Line 13-14 Obtain all revealed variables of the stopped SDL process or service instance.

Line 15 Delete all revealed variables of the stopped SDL process or service instance from the map.

38 Recommendation Z.100 – Annex F.3 (03/93)

revealed-variables(viewid, sortid, revealpid, revealmap) (4.2.1.2)

1 {(pid, varid, sortid ′) ∈ dom revealmap |
2 (revealpid ≠ nil ⊃ pid = revealpid) ∧
3 enclosing-block(varid) = enclosing-block(viewid) ∧
4 s-Name1 (varid) = s-Name1 (viewid) ∧
5 sortid′ = sortid}

type: View-identifier1 Sort-reference-identifier1 [Pid-Value] Reveal-map
→ Reveal-map-key

Objective Obtain the set of revealed variables matching a specific view request.

Parameters

viewid The view identifier of the variable.

sortid The sort or syntype of the viewed variable.

revealpid The optional Pid value resulting from the optional Pid expression in the view expression.

revealmap The map of currently living revealed variables.

Result The set of revealed variables matching the view request.

Algorithm

Line 2 If a Pid expression was present in the view expression, the matching revealed variables are all
revealed by the process instance (or contained service instances) having the Pid value resulting
from the Pid expression. Otherwise any process instance revealing the variable can be used.

Line 3-5 The revealed variables must be in the same block as the view definition and have the same name
and sort/syntype.

Recommendation Z.100 – Annex F.3 (03/93) 39

4.3 Timer Processor

This processor has been introduced to interpret the concept of global time in SDL. It results in a very simple
communication with an external tick processor.

timer processor (timeinf)(dict) (4.3.1)

1 (let (timef, startt) = timeinf in
2 dcl time-now := startt type Value;
3 cycle {input mk-Time() from tick
4 ⇒ time-now := timef (c time-now),
5 input mk-Time-Request() from p
6 ⇒ (def time-now′ : reduce-term(c time-now, dict(SYSTEMLEVEL))(dict);
7 output mk-Time-Answer(time-now′) to p)})

type: Time-information → Entity-dict ⇒

Objective Interpret the timer-handling in underlying system.

Parameters The object timeinf contains two components (line 1) generated in Annex F.2:

timef A function being called on each “tick” from the environment. The timef function thus encapsulates
two problems: interpretation of “+” for the Time sort and the resolution of time values within the
system (i.e. what is the increment in now for each “tick”).

startt The initial value of now.

Algorithm

Line 2 Let time-now denote the (only one) global time of the system. By using a model which includes the
start time for interpretation (startt) and the updating (the function timef) it is hoped to give a correct
description of SDL’s time-concept.

Line 4 Update the time.

Line 6-7 Return now. In line 6 the ground term stored in time-now is reduced to the ground term which has
been chosen to represent this time value in the rest of the system.

4.4 Informal Tick Processor

tick processor () (4.4.1)

1 cycle {(output mk-Time() to timer;
2 /∗ models informally the interval between consecutive ticks ∗/)}

type: () ⇒

40 Recommendation Z.100 – Annex F.3 (03/93)

4.5 Path Processor

This processor uses the internal domain Path-queue to represent the internal queue of signals. Each Path-queue-item
contains the SDL identifier of the signal, the list of SDL data values carried by the signal, the sender Pid value, the
II value of the receiving process-set-admin instance, and an optional receiver Pid value.

1 Path-queue = Path-queue-item*
2 Path-queue-item = Signal-identifier1 Value-List Sender-Value

Receiver-Admin [Receiver-Value]
3 Receiver-Admin = II(process-set-admin)

4.5.1 The Processor

path processor (delayf) (4.5.1.1)

1 (dcl pqueue := 〈 〉 type Path-queue;
2 cycle {input mk-Queue-Signal(sid, vl, se, readmin, re) from system
3 ⇒ (pqueue := c pqueue 〈(sid, vl, se, readmin, re)〉),
4 (if c pqueue ≠ 〈 〉 ∧ delayf () then
5 (def (sid, vl, se, readmin, re) : hd c pqueue
6 output mk-Signal-Delivered(sid, vl, se, re) to readmin;
7 pqueue := tl c pqueue)
8 else
9 I)})

type: DelayF ⇒

Objective Interpret the potential delay in a communication path. An instance exists for each sequence of delaying
channel paths originating from some SDL process or service or from the system environment.

Parameters

delayf A function delivering a Bool value at random. Used for modelling delay on channels

Algorithm

Line 3 Insertion of a signal into the queue of the path.

Line 4 This clause models the non-deterministic delay on the path. The delivery of a signal may only take
place if pqueue is non-empty and delayf yields true. Otherwise a new iteration of the cycle is
initiated.

Line 5-6 Deliver the first signal in the queue to the process-set-admin instance.

Line 7 Remove the output signal from the queue.

Recommendation Z.100 – Annex F.3 (03/93) 41

4.6 Process Set Administrating Processor

This processor is the entry point for interpretation of an SDL process instance set and manages directly or indirectly all
other processor instances concerned with interpreting the given SDL process instance set.

process-set-admin processor (prid, delayf)(dict) (4.6.1)

1 (dcl pidno := 0 type N0;
2 dcl instancemap := [] type II(sdl-process) m →Pid-Value;
3 dcl queuemap := [] type Pid-Value m →II(input-port);
4 cycle {input mk-Create-Instance-Request1(vl, par, offspr) from system
5 ⇒ handle-create-instance-request1(prid, vl, par, offspr, delayf)(dict),
6 input mk-Stop-Instance() from body
7 ⇒ handle-stop-instance(body),
8 input mk-Signal-Delivered(sid, vl, se, re) from ...
9 ⇒ handle-signal-delivered(sid, vl, se, re)})

type: Process-identifier1 DelayF → Entity-dict ⇒

Objective Interpret an SDL process instance set.

Parameters

prid The identifier of the SDL process instance set.

delayf A function delivering a Bool value at random. The function is used to model the unstability of SDL
states containing spontaneous transitions.

Algorithm

Line 1 Declare a variable for keeping track of the number of living process instances in the SDL process
instance set. The variable is used for ensuring that the maximum number of instances is never
exceeded.

Line 2 Declare a variable mapping the II value of each sdl-process instance to the Pid value of the SDL
process instance that it interprets. The variable is only used when an SDL process instance stops.

Line 3 Declare a variable mapping the Pid value of each SDL process instance to the II value of the input-
port processor which models its input port queue.

Line 4-9 Handle all meta-communication of process-set-admin after initialisation. The handling of each
input is described in a specific handling function.

42 Recommendation Z.100 – Annex F.3 (03/93)

handle-create-instance-request1(prid, vl, parent, offspring, delayf)(dict) (4.6.2)

1 (let omax = s-Maximum(dict((prid, PROCESS))) in
2 def exceed : omax ≠ nil ∧ c pidno = omax;
3 if ¬exceed then
4 (def inport : start input-port(prid, offspring, delayf, self)(dict);
5 def body : start sdl-process(prid, vl, parent, offspring)(dict + [ADMIN a self]);
6 output mk-Body-Created(body) to inport;
7 output mk-Inport-Created(inport) to body;
8 input mk -Instance-Created() from body
9 ⇒ (pidno := c pidno + 1;

10 instancemap := c instancemap + [body a offspring];
11 queuemap := c queuemap + [offspring a inport]))
12 else
13 I ;
14 output mk-Create-Instance-Answer1(exceed) to system)

type: +Process-identifier1 Value-List Parent-Value Offspring-Value-set DelayF → Entity-dict ⇒

Objective Handle incoming create instance request.

Parameters

prid The identifier of the SDL process instance set.

vl The list of actual parameter values.

parent The Pid value of the creating process instance (Null for a system start up create request).

offspring The Pid value of the new process instance if it can be created.

delayf The function for modelling the unstability of SDL states containing spontaneous transitions.

Algorithm

Line 1-2 Obtain the optional maximum number of instances for this process instance set and check whether
creation of a new instance would violate this maximum. If omax is nil the number of instances is
unbounded.

Line 3-13 If the maximum number of instances already exists, then do not create a new instance.

Line 4-5 Start one input-port instance and one sdl-process instance. The dict is updated with the II value of
the process-set-admin before it is transferred to the sdl-process instance.

Line 6-7 Send the II value of the sdl-process to the input-port and vice versa such that they are able to
address each other when they want to communicate with each other.

Line 8 Wait for an initialization acknowledgement from the sdl-process.

Line 9-11 Update the process set administrating variables with the new SDL process instance.

Line 14 Tell the system whether or not a new SDL process instance could be created.

handle-stop-instance(body) (4.6.3)

1 (def pid : c instancemap(body);
2 pidno := c pidno – 1;
3 instancemap := c instancemap \ {body};
4 queuemap : = c queuemap \ {pid})

type: II (sdl-process) ⇒

Recommendation Z.100 – Annex F.3 (03/93) 43

Objective Handle the stopping of an SDL process instance belonging to the process instance set.

Parameters

body The II value of the sdl-process which interprets the body of the stopping SDL process instance.

Algorithm

Line 1 Get the SDL Pid value of the stopping process instance.

Line 2-4 Remove the process instance from the process set administrating variables.

handle-signal-delivered(sid, vl, se, re) (4.6.4)

1 (def re′ : get-receiver(re, dom c queuemap);
2 if re′ ≠ nil then
3 output mk-Queue-Signal1(sid, vl, se) to c queuemap(re′)
4 else
5 I)

type: Signal-identifier1 Value-List Sender-Value [Receiver-Value] ⇒

Objective Find a receiver of an incoming signal or discard it.

Parameters

sid The signal identifier.

vl The list of data values carried with the signal.

se The sender Pid value.

re The optional receiver Pid value.

Algorithm

Line 1 Obtain a possible receiver, if any, of the signal.

Line 2-3 If there is a possible receiver, then deliver the signal to the input port of the chosen receiver.

Line 5 Otherwise discard the signal.

get-receiver(re, pids) (4.6.5)

1 if re = nil then
2 (if pids ≠ {} then
3 (let re′ ∈ pids in
4 re′)
5 else
6 nil)
7 else
8 (if re ∈ pids then
9 re

10 else
11 nil)

type: [Receiver-Value] Pid-Value-set → [Pid-Value]

Objective Obtain the Pid value of a possible receiver, if any, of a signal which conveys an optional receiver Pid
value.

44 Recommendation Z.100 – Annex F.3 (03/93)

Parameters

re The optional receiver Pid value conveyed with the signal.

pids The set of Pid values of process instances currently alive.

Result If a possible receiver exists, then its Pid value, else nil .

Algorithm

Line 1 Two cases are distinguished: The case where the signal does not carry an explicit receiver Pid value
is handled by lines 2-6; the case where the signal carries an explicit receiver Pid value is handled by
lines 8-11.

Line 2-3 If the process instance set currently contains any living instances, then select an arbitrary one as
receiver.

Line 6 Otherwise indicate that no receiver can be found.

Line 8-9 If the intended receiver of the signal is alive, then return its Pid value.

Line 11 Otherwise indicate that the intended receiver is not alive.

Recommendation Z.100 – Annex F.3 (03/93) 45

4.7 Input-Port Processor
Recommendation Z.100 – Annex F.3 (03/93)

This processor implements the unbounded buffers of SDL process instances, and timers. Furthermore, for model-
technical reasons (the need to avoid deadlock between an input-port instance and an sdl-process instance belonging
together) the input-port processor also handles the concept of spontaneous transitions.

The input-port processor uses internally some auxiliary domains.

1 Inport-queue = Inport-queue-item*
2 Inport-queue-item = Signal-identifier1 Value-List Sender-Value

The domain Inport-queue is used to represent the internal queue of signals in the input port. Each Inport-queue-item
contains the SDL identifier of the signal, the list of SDL data values carried by the signal, and the sender Pid value.

The domain Inport-queue is handled by functions which have been defined separately from the input port processor
functions.

3 Timer-table = (Timer-identifier1 Arglist) m →[Timeout-Value]

The domain Timer-table is used to keep track of active timers. Each (Timer-identifier1, Arglist) pair represents one active
timer instance and is mapped to the expiration time value of the timer instance ([Timeout-Value]). The [Timeout-Value]
becomes nil, when the timer instance expires and the corresponding signal is placed in the input port queue. The timer
instance is removed from the timer table when the corresponding signal is consumed by the SDL process body.

46 Recommendation Z.100 – Annex F.3 (03/93)

4.7.1 The Processor

input-port processor (prid, selfpid, delayf, admin)(dict) (4.7.1.1)

1 (dcl queue := empty-inport-queue() type Inport-queue;
2 dcl timers := [] type Timer-table;
3 dcl waiting := false type Bool;
4 dcl saveset type Signal-identifier1 -set
5 dcl spont type Spontaneous-Present;
6 (input mk-Body-Created(body) from admin
7 ⇒ (let mk-Identifier1(qual, nm) = prid,
8 level = qual 〈mk-Process-qualifier1(nm)〉 in
9 let dict′ = dict + [SCOPEUNIT a level,

10 SELF a selfpid] in
11 cycle {input mk-Stop-Input-Port() from body
12 ⇒ stop,
13 input mk-Queue-Signal1(sid, vl, se) from admin
14 ⇒ handle-queue-signal1(sid, vl, se, delayf, body),
15 input mk-Next-Signal(saveset′, spont′) from body
16 ⇒ handle-next-signal(saveset′, spont′, delayf, body),
17 (handle-spontaneous-transition(delayf, body)),
18 input mk-Set-Timer(tid, al, tv) from body
19 ⇒ handle-set-timer(tid, al, tv, delayf, body)(dict′),
20 input mk-Reset-Timer(tid, al) from body
21 ⇒ handle-reset-timer(tid, al),
22 input mk-Active-Request(tid, al) from body
23 ⇒ handle-active-request(tid, al, body),
24 (output mk-Time-Request() to timer;
25 handle-time-request(delayf, body)(dict′))})))

type: Process-identifier1 Pid-Value DelayF II(process-set-admin) → Entity-dict ⇒

Objective Model the input port of an SDL process instance. One input-port instance exists for each SDL process
instance.

Parameters

prid The SDL identifier of the process instance set, to which the SDL process instance owning the input
port belongs.

selfpid The Pid value of the SDL process instance owning the input port.

delayf Bool function used to model the unstability of SDL states containing spontaneous transitions.

admin The II value of the process-set-admin instance administrating this input-port instance.

Algorithm

Line 1 Let queue denote the unbounded buffer of the SDL process instance and initialise it to the empty
queue.

Line 2 Let timers denote the table of active timer instances and initialise it to the empty table.

Line 3 Let waiting denote whether sdl-process is waiting for reply after a request for Next-Signal which
could not be answered immediately because queue was empty, or because all signals present in the
queue had to be saved. Initially the sdl-process does not wait for a reply.

Line 4 Let saveset denote the save signal set when the sdl-process is ready to receive the next signal. The
contents of this variable only makes sense when the variable waiting is true.

Recommendation Z.100 – Annex F.3 (03/93) 47

Line 5 Let spont denote whether the SDL state in which the sdl-process is waiting contains spontaneous
transitions. The contents of this variable only makes sense when the variable waiting is true.

Line 6 Obtain the II value of the sdl-process instance with which this input-port instance should
communicate.

Line 7-10 Construct the qualifier denoting the process instance set and insert this qualifier in the Entity-dict
together with the Pid value of the SDL process instance owning the input port.

Line 11 Is the entry of the main cycle of input-port.

Line 15 Note: this input cannot always be answered immediately. The reason for introducing the variables
waiting, saveset and spont is the save construct. If a pure queue structure, then an input guard could
be used to exclude communication of Next-Signal in case of an empty queue.

Line 17 This cycle branch models the unstability of SDL states containing spontaneous transitions. As this
branch is not guarded, it can be taken at any time independently of the other branches. See
handle-spontaneous-transition for further details on the handling of spontaneous transitions.

Line 24 Include one output in this scheme. It is the repeated request for the current time from the timer.

handle-queue-signal1(sid, vl, se, delayf, body) (4.7.1.2)

1 (queue := add-signal-inport-queue(c queue, (sid, vl, se));
2 if c waiting then
3 try-to-make-transition(delayf, body)
4 else
5 I)

type: Signal-identifier1 Value-List Pid-Value DelayF II(sdl-process) ⇒

Objective A signal has been received from some SDL process instance, or a timer instance has expired. Put the
signal in the input port queue. Thereafter, if the SDL process body is waiting in a state, then make it
perform a transition if possible.

Parameters

sid Signal to be inserted.

vl Its optional list of values.

se Sender Pid value of the signal.

delayf The Bool function modelling the unstability of SDL states containing spontaneous transitions. Used
if the SDL process body is waiting in a state and this state has spontaneous transitions.

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Concatenate the signal to queue.

Line 2-3 If the SDL process body is waiting in a state then make it perform a transition if possible.

48 Recommendation Z.100 – Annex F.3 (03/93)

handle-next-signal(saveset′, spont′, delayf, body) (4.7.1.3)

1 (waiting := true;
2 saveset := saveset′;
3 spont := spont′;
4 try-to-make-transition(delayf, body))

type: Signal-identifier1-set Spontaneous-Present DelayF II(sdl-process) ⇒

Objective The SDL process body has entered a new state. Make it perform a transition if possible.

Parameters

saveset’ The save set for the state.

spont’ An indication of whether the state contains spontaneous transitions.

delayf The Bool function modelling the unstability of SDL states containing spontaneous transitions.

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Set waiting to true to indicate that the SDL process body is waiting in a state.

Line 2-3 Keep track of the save set of the SDL state, and whether it has spontaneous transitions.

Line 4 Make the SDL process body perform a transition if possible.

handle-spontaneous-transition(delayf, body) (4.7.1.4)

1 if c waiting ∧ c spont ∧ delayf() then
2 deliver-spontaneous-signal(body)
3 else
4 I

type: DelayF II(sdl-process) ⇒

Objective Model the unstability of SDL states containing spontaneous transitions.

Parameters

delayf The Bool function modelling the unstability.

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1-2 If the SDL process body is waiting in a state, this state has spontaneous transitions, and the
“unstability” function delayf yields true, then make the SDL process body perform a spontaneous
transition.

Recommendation Z.100 – Annex F.3 (03/93) 49

try-to-make-transition(delayf, body) (4.7.1.5)

1 (def possible-actions : (if next-signal-inport-queue(c queue, c, saveset) ≠ nil then
2 {INPUTSIGNAL}
3 else
4 {}) ∪
5 (if c spont ∧ delayf () then {SPONTSIGNAL} else {});
6 if possible-actions ≠ {} then
7 (let action ∈ possible-actions in
8 cases action:
9 (INPUTSIGNAL → deliver-input-signal(body),

10 SPONTSIGNAL → deliver-spontaneous-signal(body)))
11 else
12 I)

type: DelayF II(sdl-process) ⇒

Objective The SDL process body is waiting in a state. Make it perform a transition if possible.

Parameters

delayf The Bool function modelling the unstability of SDL states containing spontaneous transitions.

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1-5 Based on the contents of the variables queue, saveset, spont and the result of calling the
“unstability” function delayf, compute a set of possible actions as follows:

Line 1 If the input port queue contains a signal which is not in the save set, the input port is able to deliver
a signal to the SDL process body.

Line 5 If the SDL state has spontaneous transitions, and delayf yields true, the input port is able to (make
the process body) initiate a spontaneous transition.

Line 6,12 If no actions are possible, the SDL process body keeps waiting.

Line 7 Select (one of) the possible action(s).

Line 9 If the chosen action is the delivery of a signal to the process body, then perform this action.

Line 10 If the chosen action is the initiation of a spontaneous transition, then perform this action.

deliver-input-signal(body) (4.7.1.6)

1 (def (sid, vl, se) : next-signal-inport-queue(c queue, c saveset);
2 output mk-Input-Signal(sid, vl, se) to body;
3 queue := remove-signal-inport-queue(c queue, c saveset);
4 if (sid, vl) ∈ dom c timers then
5 timers := c timers \ {(sid, vl)}
6 else
7 I;
8 waiting := false)

type: II(sdl-process) ⇒

50 Recommendation Z.100 – Annex F.3 (03/93)

Objective The SDL process body is waiting in a state, and the input port has decided to deliver a signal to the
body. Deliver the signal.

Parameters

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Get the signal to be delivered, taking into account the save set.

Line 2 Deliver the signal.

Line 3 Remove the signal from the input port queue.

Line 4-5 If the signal is a timer signal, then remove it from the table of active timer instances.

Line 8 Indicate that the SDL process body is no longer waiting in a state.

deliver-spontaneous-signal(body) (4.7.1.7)

1 (output mk-Spontaneous-Signal() to body;
2 waiting := false)

type: II(sdl-process) ⇒

Objective The SDL process body is waiting in a state containing spontaneous transitions, and the input port has
decided to initiate one of these. Do this.

Parameters

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Make the process body perform a spontaneous transition.

Line 2 Indicate that the SDL process body is no longer waiting in a state.

handle-set-timer(tid, al, tv, delayf, body)(dict) (4.7.1.8)

1 (handle-reset-timer(tid, al);
2 timers := c timers + [(tid, al) a tv];
3 output mk-Time-Request() to timer;
4 handle-time-request(delayf, body)(dict))

type: Timer-identifier1 Arglist Timeout-Value DelayF II(sdl-process) → Entity-dict ⇒

Objective Set a timer instance.

Parameters

tid Identifier of the timer.

al Argument value list of the timer.

tv Expiration time.

delayf The Bool function used to model the unstability of SDL states having spontaneous transitions.
Although a timer can only be set when a transition is being performed this argument is necessary
because other functions are called which really require this argument.

Recommendation Z.100 – Annex F.3 (03/93) 51

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Reset the timer instance if it is already active.

Line 2 Update the map of active timers.

Line 3-4 Query the current time and make the timer instance expire immediately if its expiration time is less
than or equal to now.

handle-reset-timer(tid, al) (4.7.1.9)

1 (timers := c timers \ {(tid, al)};
2 queue := remove-timer-signal(tid, al, c queue))

type: Timer-identifier1 Arglist ⇒

Objective Reset a timer instance.

Parameters

tid Identifier of the timer.

al Argument value list of the timer.

Algorithm

Line 1 Remove the timer instance from the table of active timers.

Line 2 Remove the corresponding timer signal from the input port queue if it has been placed there.

handle-active-request(tid, al, body) (4.7.1.10)

1 (def stat : (tid, al) ∈ dom c timers;
2 output mk-Active-Answer (stat) to body)

type: Timer-identifier1 Arglist II(sdl-process) ⇒

Objective Supply the answer to a timer active expression.

Parameters

tid Identifier of the timer.

al Argument value list of the timer.

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Let stat denote true if the specified timer is active, otherwise false.

Line 2 Use this value as parameter in the output to sdl-process.

52 Recommendation Z.100 – Annex F.3 (03/93)

handle-time-request(delayf, body)(dict) (4.7.1.11)

1 (input mk-Time-Answer(t) from timer
2 ⇒ for all (tid, al) ∈ dom c timers do
3 (def expt : c timers((tid, al));
4 if expt ≠ nil ∧
5 reduce-term(dict(EXPIREDF)(expt, t), dict(SCOPEUNIT))(dict) = dict(TRUEVALUE) then
6 (timers := c timers + [(tid, al) a nil];
7 handle-queue-signal1(tid, al, dict(SELF), delayf, body))
8 else
9 I))

type: DelayF II(sdl-process) → Entity-dict ⇒

Objective Handle the comparison with the current time for all active, not yet expired timer instances. Place all
expired timer instances in the input port queue.

Parameters

delayf The function modelling the unstability of SDL states containing spontaneous transitions.

body The II value of the sdl-process instance interpreting the SDL process body.

Algorithm

Line 1 Obtain the current time from the timer processor instance.

Line 2 Start the examination of all active timer instances. For each active timer instance do the following:

Line 3 Obtain the optional expiration time of the timer instance.

Line 4-5 If the timer instance has not already expired but should do this now, then do the following:

Line 6 Clear the expiration time for the timer instance.

Line 7 Enqueue the timer signal in the input port queue.

Recommendation Z.100 – Annex F.3 (03/93) 53

4.7.2 Input Port Queue Auxiliary Functions

empty-inport-queue() (4.7.2.1)

1 〈 〉

type: → Inport-queue

Objective Return an empty input port queue.

Result The empty queue.

add-signal-inport-queue(q, qi) (4.7.2.2)

1 q 〈qi〉

type: Inport-queue Inport-queue-item → Inport-queue

Objective Enqueue a signal in an input port queue.

Parameters

q The old queue.

qi The new signal.

Result The queue including the new signal.

next-signal-inport-queue(q, saveset) (4.7.2.3)

1 (q = 〈 〉
2 → nil,

3 s-Signal-identifier1(hd q) ∉saveset

4 → hd q,
5 → next-signal-inport-queue(tl q, saveset))

type: Inport-queue Signal-identifier1-set → [Inport-queue-item]

Objective Obtain the next signal, which is not to be saved, from an input port queue.

Parameters

q The queue.

saveset The save set.

Result The next signal to be delivered from the queue, if any, otherwise nil .

Algorithm

Line 1-2 If the queue is empty, no signal can be obtained.

Line 3-4 If the first signal in the queue is not in the save set, then return this signal.

Line 5 Otherwise examine the rest of the queue.

54 Recommendation Z.100 – Annex F.3 (03/93)

remove-signal-inport-queue(q, saveset) (4.7.2.4)

1 (s-Signal-identifier1(hd q) ∉saveset
2 → tl q,
3 → 〈hd q〉 remove-signal-inport-queue(tl q, saveset))

type: Inport-queue Signal-identifier1-set → Inport-queue

Objective Remove the next signal from an input port queue, taking into consideration a save set. The function
assumes that the queue contains signals not to be saved.

Parameters

q The old queue.

saveset The save set.

Result The queue where the signal has been removed.

Algorithm

Line 1-2 If the first signal in the queue is not in the save set, then remove this signal.

Line 3 Otherwise keep the first signal and remove a signal from the rest of the queue.

remove-timer-signal(tid, al, q) (4.7.2.5)

1 〈q[i] | 1 ≤ i ≤ len q ∧
2 (let (sid, vl,) = q[i] in
3 ¬(sid = tid ∧ vl = al))〉

type: Timer-identifier1 Arglist Inport-queue → Inport-queue

Objective Remove a timer signal, if present, from an input port queue because the corresponding timer instance is
being reset.

Parameters

tid The identifier of the timer.

al The argument value list of the timer instance.

q The queue.

Result The queue where the timer signal has been removed.

Algorithm

Line 1 Select all queue signals which fulfil the condition in line 2-3. Note that the nature of SDL and the
formal model implies that at most one signal will be removed from the queue.

Line 2 Obtain the signal identifier and value list of each queue signal.

Line 3 Keep the queue signal if it does not denote the same timer instance as the one to be removed.

Recommendation Z.100 – Annex F.3 (03/93) 55

5 The SDL-Process and SDL-Service

This section describes how the META-IV processors sdl-process and sdl-service interpret (the body of) an SDL process
instance resp. an SDL service instance.

Each sdl-process and sdl-service instance has a local storage, the type of which is given by:

1 Stg = Identifier1 m→(Value | UNDEFINED)

5.1 The sdl-process Processor

An instance of the sdl-process processor is created by its managing process-set-admin instance each time an SDL
process instance is created. The sdl-process instance first performs the necessary initial setup and then interprets the
process graph or service decomposition. When the SDL process instance ceases to exist the necessary cleanup is
performed, and the sdl-process instance ceases to exist.

If the SDL process is not decomposed into services the interpreting sdl-process instance interprets its process graph.
Otherwise it creates one instance of the sdl-service processor for each contained service and manages these sdl-service
instances. In the latter case all meta-communication between process-set-admin and input-port on one side and sdl-
service on the other goes through the sdl-process instance.

sdl-process processor (prid, actparml, parentp, selfp)(dict) (5.1.1)

1 (dcl sender := dict(NULLVALUE) type Pid-Value;
2 dcl offspring := dict(NULLVALUE) type Pid-Value;
3 dcl stg := [] type Stg;
4 dcl servinstmap := [] type II(sdl-service) m →Service- identifier1;
5 dcl savemap := [] type Service- identifier1 m →Signal- identifier1-set;
6 dcl spontmap := [] type Service- identifier1 m →Spontaneous-Present;
7 (input mk-Inport-Created(inport) from dict(ADMIN)
8 ⇒ (let mk-identifier1(qual, nm) = prid,
9 level = qual 〈mk-Process-qualifier1(nm)〉 in

10 def dict′ : dict + [SCOPEUNITa level,
11 SELF a selfp,
12 PARENT a parentp,
13 OFFSPRINGa offspring,
14 SENDER a sender,
15 PORT a inport];
16 def dict′′ : modify-process-vardds(prid, stg)(dict′);
17 trap exit () with error in
18 (create-process-vars(prid, actparml)(dict′′);
19 int-process-graph-or-service-decomp(prid)(dict′′)))))

type: Process-identifier1 Value-List Pid-Value Pid-Value → Entity-dict ⇒

Objective Interprets the body of an SDL process instance.

Parameters

prid The SDL identifier of this process instance set.

actparml The list of actual parameter values.

parentp The SDL Pid value of the process instance that created this one.

selfp The SDL Pid value of this process.

56 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1-2 Declare the variables sender and offspring, both initialized to the Pid value Null.

Line 3 Declare a variable stg which is to be the local storage of this SDL process instance and initialize it
to be empty.

Line 4-6 These three variables are only used if the SDL process is decomposed into services. Their purpose
is:

Line 4 The variable servinstmap contains at any time the set of living service instances owned by this SDL
process instance. It maps each II value of an interpreting sdl-service instance to the SDL identifier
of the service which it interprets. The map is used to direct SDL signals from the input port to the
right service.

Line 5 The variable savemap contains a map from the SDL identifier of each living service instance to the
save set of the state in which it is currently waiting.

Line 6 The variable spontmap contains a map which for each SDL identifier of a living service instance
tells whether or not it is waiting in a state having spontaneous transitions.

Line 7 Obtain the II value of the input-port instance with which this sdl-process instance should
communicate.

Line 8-9 Construct the qualifier for the SDL process set.

Line 10-15 Enter the following information into the Entity-dict: The current scope unit, the Pid value of the
SDL process instance (self), the Pid value of its parent, a pointer to each of the meta-variables
holding the Pid values of its offspring and sender, and the II value of the input-port instance used.
The reason that the metavariables sender and offspring are accessed via pointers is that if the SDL
process is decomposed into services these meta-variables will be shared between several sdl-service
instances.

Line 16 For all variables declared in this SDL process (including process formal parameters), modify their
descriptors such that they can be used for interpreting the process graph/service decomposition.

Line 17 Trap any exit with error .

Line 18 Create all process local SDL variables in the local storage.

Line 19 Interpret the process graph/service decomposition of the SDL process.

modify-process-vardds(prid, stgref)(dict) (5.1.2)

1 (let allvars = {varid | (varid, VALUE) ∈ dom dict ∧ enclosing-scopeunit(varid) = prid ∧
2 is-VarDD(dict((varid, VALUE)))} in
3 dict + [(varid, VALUE) a mk-VarDD(varid, sort, oinit, rev, stgref) |
4 varid, ∈ allvars ∧ mk-VarDD(, sort, oinit, rev,) = dict((varid, VALUE))])

type: Process-identifier1 ref Stg → Entity-dict → Entity-dict

Objective Modify the Entity-dict descriptors for the variables (including process formal parameters) local to a
given SDL process such that they can be used for interpretation of its process graph/service
decomposition.

Parameters

prid The identifier of the SDL process.

stgref A pointer to the storage where the variables will be stored.

Result An Entity-dict where the descriptors have been updated.

Recommendation Z.100 – Annex F.3 (03/93) 57

Algorithm

Line 1-2 Obtain the set of all variables (including process formal parameters) which are declared in the SDL
process.

Line 3-4 For each variable in this set, update its descriptor such that it points to the storage where its value
will be stored, and the variable identifier itself will be used as “address” for its value in the storage.

create-process-vars(prid, actparml)(dict) (5.1.3)

1 (let mk-ProcessDD(parmddl, , , ,) = dict((prid, PROCESS)),

2 allvars = {varid | (varid, VALUE) ∈ dom dict ∧ enclosing-scopeunit(varid) = prid ∧
3 is-VarDD(dict((varid, VALUE)))} in
4 for i = 1 to len parmddl do
5 update-stg(parmddl[i], actparml[i])(dict);
6 create-local-vars(allvars \ elems parmddl)(dict))

type: Process-identifier1 Value-List → Entity-dict ⇒

Objective Create all process local variables (including process formal parameters) in their storage. Process formal
parameters are initialized with the corresponding actual parameter values.

Parameters

prid The identifier of the SDL process.

actparml The list of actual parameter values.

Algorithm

Line 1 Obtain the list of formal parameter descriptors for the process.

Line 2-3 Obtain the set of all variables declared in the SDL process.

Line 4-5 Create each formal parameter in the storage with the corresponding actual parameter value as initial
value.

Line 6 Create all “purely local” variables in the storage.

create-local-vars(vars)(dict) (5.1.4)

1 for all varid ∈ vars do
2 (let mk-varDD(, , oinit, ,) = dict((varid, VALUE)) in
3 let init = eval-ground-expression(oinit)(dict) in
4 update-stg-dcl(varid, init)(dict))

type: Variable-identifier1-set → Entity-dict ⇒

Objective Create all “purely process local” variables in their storage, possibly initialized with some value.

Parameters

vars The set of local variables.

Algorithm

Line 1 For each variable do the following:

Line 2-3 Evaluate the optional initialisation expression for the variable.

Line 4 Create the variable in the storage with the initialization value or “undefined” as initial value. If the
initial value is outside the range of the sort/syntype of the variable, its initial value becomes
“undefined” rather than giving rise to a range check error.

58 Recommendation Z.100 – Annex F.3 (03/93)

int-process-graph-or-service-decomp(prid)(dict) (5.1.5)

1 (output mk-Instance-Created() to dict(ADMIN);
2 (let-mk-ProcessDD(, , , ograph,) = dict((prid, PROCESS)) in
3 if ograph ≠ nil then
4 int-process-graph(ograph)(dict)
5 else
6 int-service-decomp(prid)(dict));
7 output mk-Stop-Instance() to dict(ADMIN);
8 output mk-Die(dict(SELF), prid) to view)

type: Process-identifier1 → Entity-dict ⇒

Objective Interpret the process graph/service decomposition of an SDL process.

Parameters

prid The SDL identifier of the process.

Algorithm

Line 1 Send an initialization acknowledgement to the process-set-admin instance managing the process.

Line 2 Obtain the (optional) process graph of the SDL process.

Line 3-6 If the process graph is present then interpret it (line 4). Otherwise the process is decomposed into
services and these are interpreted (line 6).

Line 7 Tell the managing process-set-admin instance that this SDL process instance is stopping.

Line 8 Tell the view processor that it should remove any variables revealed by the stopping SDL process
instance.

int-process-graph(graph)(dict) (5.1.6)

1 (trap-exit(STOP) with I in
2 int-graph(graph)(dict))

type: Process-graph1 → Entity-dict ⇒

Objective Interpret the body of an SDL process which is not decomposed into services.

Parameters

graph The process graph.

Algorithm

Line 1-2 Start interpretation of the graph nodes. A stop node in the graph will cause an exit(STOP) to be
performed which will be trapped in line 1.

int-service-decomp(prid)(dict) (5.1.7)

1 (start-services(prid)(dict);
2 exec-service-starts(dict);
3 exec-service-states(dict))

type: Process-identifier1 → Entity-dict ⇒

Recommendation Z.100 – Annex F.3 (03/93) 59

Objective Interpret the body of an SDL process which is decomposed into services. The function does not
perform the execution itself but creates and manages the sdl-service instances which are required for
interpreting the services.

Parameters

prid The SDL identifier of the process.

Algorithm

Line 1 Start one instance of each service and wait until they are all ready to execute their start transitions.

Line 2 Manage the execution of the start transitions of the services.

Line 3 Manage the execution of the state transitions of the services as long as there are still SDL services
alive.

start-services(prid)(dict) (5.1.8)

1 (let servset = {servid | (servid, SERVICE) ∈ dom dict ∧ enclosing-scopeunit(servid) = prid } in
2 for all servid ∈ servset do
3 (let dict′ = dict + [ADMIN a self,
4 PORT a self] in
5 def servbody : start sdl-service(servid)(dict′);
6 servinstmap := c servinstmap + [servbody a servid];
7 input mk-Instance-Created() from servbody
8 ⇒ I);
9 output mk-Instance-Created() to dict(ADMIN))

type: Process-identifier1 → Entity-dict ⇒

Objective Create SDL service instances for a new SDL process instance.

Parameters

prid The SDL identifier of the process.

Algorithm

Line 1 Obtain the set of identifiers for all services defined in the SDL process.

Line 2 For each service do the following (line 3-7):

Line 3-4 For use by the service both the ADMIN and PORT entries in Entity-dict should contain the II value
of the managing sdl-process. This is because the meta-communication which in case of
interpretation of a process graph is done directly with the associated process-set-admin and
input-port instances in case of interpretation of a service graph should go through the sdl-process
instance. Thus the interpretation functions for graph nodes do not need to distinguish between
process and service graph nodes.

Line 5 Start the sdl-service instance which will interpret the SDL service.

line 6 Update the service instance map to include the new service.

Line 7 Wait for an initialization acknowledgement from the service.

Line 9 When all service instances have been created and initialized, then send an initialization
acknowledgement for the whole process instance to its managing process-set-admin instance.

60 Recommendation Z.100 – Annex F.3 (03/93)

exec-service-starts(dict) (5.1.9)

1 for all servbody ∈ c dom servinstmap do
2 (output mk-Execute-Start() to servbody;
3 exec-service-transition(servbody)(dict))

type: Entity-dict ⇒

Objective Manage the initial execution of service transitions until each service has either entered its first state or
stopped. Note that the first state of a service may be inside a procedure. No two initial service
transitions may be executed at the same time, and all initial transitions must have been executed before
any signal input or spontaneous transition is made in any service.

Algorithm

Line 1 For each service instance do the following:

Line 2 Instruct the service instance to execute its initial transition.

Line 3 Wait until the service reaches a state (possibly in a procedure) or stops.

exec-service-states(dict) (5.1.10)

1 while c servinstmap ≠ [] do
2 ((def saveset′ : union rng c savemap,
3 sponrt′ : true ∈ rng c spontmap;
4 output mk-Next-Signal(saveset′, spont′) to dict(PORT));
5 {input mk-Input-Signal(sid, vl, se) from dict(PORT)
6 ⇒ if (∃servid ∈ rng c servinstmap)(sid ∈ s-Input-signal-set(dict((servid, SERVICE)))) then
7 (def servid ∈ rng c servinstmap s.t. sid ∈ s-Input-signal-set(dict((servid, SERVICE)));
8 def servbody ∈ dom c servinstmap s.t. c servinstmap(servbody) = servid;
9 output mk-Input-Signal(sid, vl, se) to servbody;

10 exec-service-transition(servbody)(dict))
11 else
12 I,
13 input mk-Spontaneous-Signal() from dict(PORT)
14 ⇒ (def-servid ∈ dom c spontmap s.t. c spontmap(servid);
15 def-servbody ∈ dom c servinstmap s.t. c servinstmap(servbody) = servid;
16 output mk-Spontaneous-Signal() to servbody;
17 exec-service-transition(servbody)(dict))})

type: Entity-dict ⇒

Objective Manage the execution of service state transitions. Note that the execution of a state transition may start
in a procedure and/or end in the same or another procedure. No two service state transitions (in two
different services) may be executed at the same time.

Algorithm

Line 1 One iteration of this loop is performed for each execution of a service transition. At the beginning
of each iteration of the loop all service instances still alive are waiting in a state, ie. each
interpreting sdl-service instance is waiting for input after outputting Next-Signal to this sdl-process.
The loop terminates when all service instances have stopped.

Line 2 From all save sets of service instances still alive, obtain the total save signal set to be sent to the
input-port instance.

Recommendation Z.100 – Annex F.3 (03/93) 61

Line 3 If at least one service is in a state containing spontaneous transitions the input-port instance should
be able to provoke this.

Line 4 Request the next signal from the input port, taking the saveset’ and spont’ into consideration.

Line 5 Covers the delivery of a signal to some service.

Line 6-12 If the service which should receive this signal is no longer alive the signal is discarded.

Line 7 Obtain the SDL identifier of the service instance which should receive the signal.

Line 8 Obtain the II value of the sdl-service instance interpreting this service instance.

Line 9 Deliver the signal to the service.

Line 10 Wait until the service has completed the execution of the transition.

Line 13 Covers the triggering of a spontaneous transition in some service.

Line 14 Obtain the SDL identifier of an arbitrary service instance which is currently able to perform a
spontaneous transition.

Line 15 Obtain the II value of the sdl-service instance interpreting this service instance.

Line 16 Instruct the chosen service to execute a spontaneous transition.

Line 17 Wait until the service has completed the execution of the transition.

exec-service-transition(servbody)(dict) (5.1.11)

1 (trap exit (ENDTRANS) with I in
2 cycle {input mk-Stop-Instance() from servbody
3 ⇒ (def servid : c servinstmap(servbody);
4 servinstmap : = c servinstmap \ {servbody};
5 savemap := c savemap \ {servid};
6 spontmap := c spontmap \ {servid};
7 exit (ENDTRANS)),
8 input mk-Next-Signal(saveset′, spont′) from servbody
9 ⇒ (def servid : c servinstmap)(servbody);

10 savemap := c savemap + [servid a saveset′];
11 spontmap := c spontmap + [servid a spont′];
12 exit (ENDTRANS)),
13 input mk-Set-Timer(tid, argl, expt) from servbody
14 ⇒ output mk-Set-Timer(tid, argl, expt) to dict(PORT),
15 input mk-Reset-Timer(tid, argl) from servbody
16 ⇒ output mk-Reset-Timer(tid, argl) to dict(PORT),
17 input mk-Active-Request(tid, argl) from servbody
18 ⇒ (output mk-Active-Request(tid, argl) to dict(PORT);
19 input mk-Active-Answer(stat) from dict(PORT)
20 ⇒ output mk-Active-Answer(stat) to servbody)})

type: II(sdl-service) → Entity-dict ⇒

Objective Manage the execution of a service transition and relay the timer communication between the
interpreting sdl-service and the input-port.

Parameters

servbody The II value of the sdl-service instance interpreting the transition.

Algorithm

Line 1-2 The function enters a cycle which exits with exit(ENDTRANS) when the execution of the service
transition has finished. This exit is trapped by line 1.

62 Recommendation Z.100 – Annex F.3 (03/93)

Line 2 Handle the case where the execution of the service transition is terminated by a stop node.

Line 3 Obtain the SDL identifier of the stopping service instance.

Line 4-6 Delete the stopping service from the service administration maps of the process instance.

Line 7 Exit the cycle.

Line 8 Handle the case where the execution of the service transition is terminated by a nextstate node.

line 9 Obtain the SDL identifier of the service instance.

Line 10-11 Insert the new save signal set and spontaneous-indication in the save set and spontaneous transition
maps.

Line 12 Exit the cycle.

Line 13-20 Relay the timer handling meta-communication between the service graph and the input port.

Recommendation Z.100 – Annex F.3 (03/93) 63

5.2 The sdl-service Processor

An instance of the sdl-service processor is created by its managing sdl-process instance for each service in the
interpreted SDL process. The sdl-service instance first performs the necessary initial setup and then interprets the service
graph. When the SDL service instance ceases to exist the necessary cleanup is performed, and the sdl-service instance
ceases to exist.

sdl-service processor (servid)(dict) (5.2.1)

1 (dcl servstg := [] type Stg;
2 (let mk-Identifier1(qual, nm) = servid,
3 level = qual 〈mk-Service-qualifier1(nm)〉 in
4 let dict′ = dict + [SCOPEUNIT a level] in
5 def dict′′ : modify-service-vardds(servid, servstg)(dict′);
6 trap exit () with error in
7 (create-service-vars(servid)(dict′′);
8 int-service-graph(servid)(dict′′))))

type: Service-identifier1 → Entity-dict ⇒

Objective Interprets (the body of) an SDL service.

Parameters

servid The SDL identifier of the service.

Algorithm

Line 1 Declare a variable servstg which is to be the local storage of this SDL service instance and initialize
it to be empty.

Line 2-3 Construct the qualifier for the service.

Line 4 Enter the current scope unit into the Entity-dict.

Line 5 For all variables declared in this service, modify their descriptors such that they can be used for
interpreting the service graph.

Line 6 Trap any exit with error .

Line 7 Create all service local variables in the storage.

Line 8 Interpret the service graph.

modify-service-vardds(servid, stgref)(dict) (5.2.2)

1 modify-process-vardds(servid, stgref)(dict)

type: Service-identifier1 ref Stg → Entity-dict → Entity-dict

Objective Modify the Entity-dict descriptors for the variables local to a given service such that they can be used
for interpretation of its service graph.

Parameters

servid The identifier of the service.

stgref A pointer to the storage where the variables will be stored.

Result An Entity-dict where the descriptors have been updated.

Algorithm

Line 1 Service variable descriptors are updated in the same way as process variable descriptors.

64 Recommendation Z.100 – Annex F.3 (03/93)

create-service-vars(servid)(dict) (5.2.3)

1 (let allvars = {varid | (varid, VALUE) ∈ dom dict ∧ enclosing-scopeunit(varid) = servid ∧
2 is-VarDD(dict((varid, VALUE)))} in
3 create-local-vars(allvars)(dict))

type: Service-identifier1 → Entity-dict ⇒

Objective Create all service local variables in their storage.

Parameters

servid The identifier of the service.

Algorithm

Line 1-2 Obtain the set of all variables declared in the service.

Line 3 Create the variables in the storage.

int-service-graph(servid)(dict) (5.2.4)

1 (output mk-Instance-Created() to dict(ADMIN);
2 (let mk-ServiceDD(graph, ,) = dict((servid, SERVICE)) in
3 trap-exit(STOP) with I in
4 int-graph(graph)(dict));
5 output mk-Stop-Instance() to dict(ADMIN);
6 output mk-Die(dict(SELF), servid) to view)

type: Service-identifier1 → Entity-dict ⇒

Objective Interpret a service graph.

Parameters

servid The identifier of the containing service.

Algorithm

Line 1 Send an initialization acknowledgement to the sdl-process instance managing the service.

Line 2 Obtain the service graph of the service.

Line 3-4 Start interpretation of the graph nodes. A stop node in the graph will cause an exit(STOP) to be
performed which will be trapped in line 3.

Line 5 Tell the managing sdl-process instance that the service instance is stopping.

Line 6 Tell the view processor that it should remove any variables revealed by the stopping service
instance.

Recommendation Z.100 – Annex F.3 (03/93) 65

5.3 Interpretation of a Procedure
Recommendation Z.100 – Annex F.3 (03/93)

Describes the interpretation of a procedure after its actual parameters have been evaluated.

int-procedure(prid, actparml)(dict) (5.3.1)

1 (dcl prcdstg := [] type Stg;

2 (let mk-Identifier1(qual, nm) = prid,

3 level = qual 〈mk-Procedure-qualifier1(nm)〉 in
4 let dict′ = dict + [SCOPEUNIT] a level] in

5 def dict′′ : modify-procedure-vardds(prid, actparml, prcdstg)(dict′);
6 create-procedure-vars(prid, actparml)(dict′′);
7 int-procedure-graph(prid)(dict′′)))

type: Procedure-identifier1 (Variable-identifier1 | Value | UNDEFINED)* → Entity-dict ⇒

Objective Interprets a procedure.

Parameters

prid The SDL identifier of the procedure.

actparml The list of actual parameter values. For an in/out parameter the parameter “value” is the identifier
of the actual parameter variable.

Algorithm

Line 1 Declare a variable prcdstg which is to be the local storage of this procedure instance and initialize it
to be empty.

Line 2-3 Construct the qualifier for the procedure.

Line 4 Enter the current scope unit into the Entity-dict.

Line 5 For all variable declared in this procedure (including in formal parameters), modify their
descriptors such that they can be used for interpreting the procedure graph.

Line 6 Create all procedure local variables in the storage.

Line 7 Interpret the procedure graph.

modify-procedure-vardds(prid, actparml, stgref)(dict) (5.3.2)

1 (let mk-ProcedureDD(parmddl,) = dict((prid, PROCEDURE)),

2 allvars′ = {varid | (varid, VALUE) ∈ dom dict ∧ enclosing-scopeunit(varid) = prid ∧
3 is-VarDD(dict((varid, VALUE)))} in

4 dict + [(fvarid, VALUE) a dict((actparml[i], VALUE)) |

5 i ∈ ind parmddl ∧ is-InoutparmDD(parmddl[i]) ∧
6 mk-InoutparmDD(fvarid) = parmddl[i]]

7 + [(varid, VALUE) a mk-VarDD(varid, sort, oinit, rev, stgref) |

8 varid ∈ allvars′ ∧ mk-VarDD(, sort, oinit, rev,) = dict((varid, VALUE))])

type: Procedure-identifier1 (Variable-identifier1 | Value | UNDEFINED)* ref Stg → Entity-dict → Entity-dict

Objective Modify the Entity-dict descriptors for the variables (including in formal parameters) local to a given
procedure such that they can be used for interpretation of its procedure graph.

Parameters

prid The identifier of the procedure.

actparml The list of actual parameter values/variables.

stgref A pointer to the storage where the variables will be stored.

66 Recommendation Z.100 – Annex F.3 (03/93)

Result An Entity-dict where the descriptors have been updated.

Algorithm

Line 1 Obtain the list of formal parameter descriptors for the procedure.

Line 2-3 Obtain the set of all variables (including in formal parameters) which are declared in the procedure.

Line 4-6 The variable descriptor for each in/out formal parameter becomes the same as that of the
corresponding actual parameter variable. This means that the descriptor of the formal parameter
will point to the same storage as that of the actual parameter variable, and that it will use the same
“address” as the actual parameter for accessing or changing its value in the storage.

Line 7-8 For each variable in the set allvars’, update its descriptor such that it points to the storage where its
value will is stored, and the variable identifier itself will be used as “address” for its value in the
storage.

create-procedure-vars(prid, actparml)(dict) (5.3.3)

1 (let mk-ProcedureDD(parmddl,) = dict((prid, PROCEDURE)),

2 allvars′ = {varid | (varid, VALUE) ∈ dom dict ∧ enclosing-scopeunit(varid) = prid ∧
3 is-VarDD(dict((varid, VALUE)))},

4 invars = {varid | mk- InparmDD(varid) ∈ elems parmddl} in

5 for i = 1 to len parmddl do

6 if is- InparmDD(parmddl[i]) then

7 update-stg(s- Variable-identifier1 (parmddl[i]), actparml[i])(dict)

8 else

9 I;

10 create-local-vars(allvars′ \ invars)(dict))

type: Procedure-identifier1 (Variable-identifier1 | Value | UNDEFINED* → Entity-dict ⇒

Objective Create all procedure local variables (including in formal parameters) in their storage. Procedure in
formal parameters are initialized with the corresponding actual parameter values.

Parameters

prid The identifier of the procedure.

actparml The list of actual parameter values/variables.

Algorithm

Line 1 Obtain the list of formal parameter descriptors for the procedure.

Line 2-3 Obtain the set of all variables (except of in/out formal parameters) declared in the procedure.

Line 4 Obtain the set of in formal parameter variables.

Line 5-9 Create each in formal parameter in the storage with the corresponding actual parameter value as
initial value.

Line 10 Create all “purely local” variables in the storage.

int-procedure-graph(prid)(dict) (5.3.4)

1 (let mk-ProdecureDD(, graph) = dict((prid, PROCEDURE)) in

2 trap exit (RETURN) with I in

3 int-graph(graph)(dict))

type: Procedure-identifier1 → Entity-dict ⇒

Recommendation Z.100 – Annex F.3 (03/93) 67

Objective Interpret a procedure graph.

Parameters

servid The identifier of the containing procedure.

Algorithm

Line 1 Obtain the procedure graph of the procedure.

Line 2-3 Start interpretation of the graph nodes. A return node in the graph will cause an exit(RETURN) to
be performed which will be trapped in line 2.

68 Recommendation Z.100 – Annex F.3 (03/93)

5.4 Storage Handling

update-stg-dcl(id, val)(dict) (5.4.1)

1 update-stg′(id, val, DCLASSIGN)(dict)

type: Variable-identifier1 (Value | UNDEFINED) → Entity-dict ⇒

Objective Assign an initial value to a variable declared by dcl. If the value is outside the range of the sort/syntype
of the variable its initial value becomes “undefined”. Reveal the initial value of the variable if it has the
revealed attribute.

Parameters

id The identifier of the variable.

val The initial value of the variable.

Algorithm

Line 1 Call a general-purpose function to update variables in their storages.

update-stg(id, val)(dict) (5.4.2)

1 update-stg′ (id, val, OTHERASSIGN)(dict)

type: Variable-identifier1 (Value | UNDEFINED) → Entity-dict ⇒

Objective Assign an initial value to a process formal parameter or procedure in formal parameter, or assign a new
value to any kind of variable. If the value is outside the range of the sort/syntype of the variable a
range check error occurs. Reveal the new value of the variable if it has the revealed attribute.

Parameters

id The identifier of the variable.

val The new value of the variable.

Algorithm

Line 1 Call a general-purpose function to update variables in their storages.

Recommendation Z.100 – Annex F.3 (03/93) 69

update-stg′ (id, val, asgnkind)(dict) (5.4.3)

1 (let mk-VarDD(vid, sid, , revealed, stg′) = dict((id, VALUE)) in
2 let val′ = (range-check(sid, val)(dict)
3 → val,
4 asgnkind = DCLASSIGN
5 → UNDEFINED,
6 asgnkind = OTHERASSIGN
7 → exit(“§5.3.1.9: Value is not within the range of the syntype”)) in
8 stg′ := c stg′ + [vid a val′];
9 if revealed = REVEALED then

10 output mk-Reveal(vid, sid, dict(SELF), val′) to view
11 else
12 I)

type: Identifier1 (Value | UNDEFINED) (DCLASSIGN | OTHERASSIGN) → Entity-dict ⇒

Objective Assign an initial or new value to any kind of variable. The parameter asngkind determines what happens
if the value is outside the range of the sort/syntype of the variable. Reveal the initial/new value of the
variable if it has the revealed attribute.

Parameters

id The identifier of the variable.

val The initial/new value.

asgnkind Determines what happens if the value is outside the range of the sort/syntype of the variable.

Algorithm

Line 1 Lookup the description of the variable identifier.

Line 2-7 Perform a range check on the value and obtain the value which will be assigned to the variable. If
the value is within the range of the sort/syntype of the variable it gets this value (line 2-3).
Otherwise, if the value is the result of the evaluation of an initializer expression in the declaration
of the variable, the variable becomes “undefined” (line 4-5). Otherwise, a range check error occurs
(line 6-7).

Line 8-9 The referenced storage is overwritten with the new variable – value pair.

Line 9-12 If the variable is revealed the initial/new value is sent to the view processor.

70 Recommendation Z.100 – Annex F.3 (03/93)

5.5 Interpretation of a Process, Service or Procedure Graph

Describes the interpretation of a behaviour graph divided into an interpretation function for each type of graph node.

int-graph(graph)(dict) (5.5.1)

1 (let (start, statenodes) = decomp-graph(graph) in
2 tixe [statenm a int-state-node(statenode)(dict) |
3 statenode ∈ statenodes ∧ s-State-name1(statenode) = statenm] in
4 int-start-node(start)(dict))

type: (Process-graph1 | Service-graph1 | Procedure-graph1) → Entity-dict ⇒

Objective Interprets a process, service or procedure graph.

Parameters

graph The process/service/procedure graph.

Algorithm

Line 1 Partition of the graph into a start node and a set of states.

Line 2 Traps all exit(statenm) from int-state-node and int-transition by interpreting the associated
State-node1. The tixe construct is a very convenient way to model the “goto”s used in the nextstate
nodes. The keyword tixe is followed by a map from state names into call of int-state-node with the
state-node associated to state name as actual parameter. If an exit(statenm) is encountered within
the dynamic scope of the tixe construct, that is either in the range of the tixe map (int-state-node)
or in int-start-node, the interpretation of the process continues with the State-node1 having the
name statenm.

Line 4 Interpretation of the start node.

int-start-node (start)(dict) (5.5.2)

1 (let trans = decomp-start-node(start) in
2 if is-Service-start-node1 (start) then
3 (input mk-Execute-Start() from dict(ADMIN)
4 ⇒ int-transition(trans)(dict))
5 else
6 int-transition(trans)(dict))

type: (Process-start-node1 | Service-start-node1 | Procedure-start-node1) → Entity-dict ⇒

Objective Interprets a process, procedure or service start node.

Parameters

start The start node.

Algorithm

Line 1 Extract the start transition from the start node.

Line 2-3 If the start node is a service start node then wait until the managing sdl-process instance instructs
this sdl-service instance to interpret the start node. This prevents the simultaneous execution of
several service start transitions belonging to the same SDL process instance.

Recommendation Z.100 – Annex F.3 (03/93) 71

Line 4 Interpret the start transition.

Line 6 If the start node is a process or procedure start node its interpretation starts immediately.

int-start-node(mk-State-node1(, mk-Save-signalset1(saveset), inputset, spontrset))(dict) (5.5.3)

1 (output mk-Next-Signal(saveset, spontrset ≠ {}) to dict(PORT);
2 {input mk-Input-Signal(sid ′, actparml, sender′) from dict(PORT)
3 ⇒ (dict(SENDER) := sender′;
4 (let mk-Input-node1(sid, formparml, trans) ∈ inputset be s.t. sid = sid ′ in
5 for i = 1 to len formparml do
6 if formparml[i] ≠ nil
7 then update-stg(formparml[i], actparml[i])(dict)
8 else I;
9 int-transition(trans)(dict))),

10 input mk-Spontaneous-Signal() from dict(PORT)
11 ⇒ (dict(SENDER) := dict(SELF);
12 (let mk-Spontaneous-transition1(trans) ∈ spontrset in
13 int-transition(trans)(dict)))})

type: State-node1 → Entity-dict ⇒

Objective Interprets a state node.

Parameters

state-node Composed of a saveset which is a set of signals to be saved by the input port, an inputset which is a
set of signals and associated transitions, and spontrset which is a (possibly empty) set of
spontaneous transitions.

Algorithm

Line 1 Request the input port to output a signal which is not in the saveset, and to save all signals
belonging to the saveset. If the state contains spontaneous transitions the input port may choose to
provoke a spontaneous transition instead.

Line 2 Receive a signal composed of a signal identifier, a list of data values and the SDL Pid value of the
sender.

Line 3 Update the sender value.

Line 4 Select the input node that has the same signal identifier as the received signal.

Line 5-8 For all the formal parameters: if the formal parameter is present (different from nil), then the
storage is updated with its associated variable and the value of the actual parameter.

Line 9 Interpret the selected transition.

Line 10 Initiate a spontaneous transition. The input port can only respond with this answer if the second
parameter of Next-Signal was true.

Line 11 The sender value becomes the same as self.

Line 12 Select an arbitrary spontaneous transition.

Line 13 Interpret the contained transition.

72 Recommendation Z.100 – Annex F.3 (03/93)

int-transition(mk-Transition1(nodel, termordec))(dict) (5.5.4)

1 (for i = 1 to len nodel do
2 int-graph-node(nodel[i])(dict);
3 cases termordec:
4 (mk-Nextstate-node1(nm) → exit(nm),
5 mk-Stop-node1() → exit(STOP),
6 mk-Return-node1() → exit(RETURN),
7 mk-Decision-node1(, ,) → int-decision-node(termordec)(dict)))

type: Transition1 → Entity-dict ⇒

Objective Interprets a transition.

Parameters

nodel The list of action nodes.

termordec A terminator node or a decision node.

Algorithm

Line 1-2 Interpret the action nodes sequentially.

Line 4 A nextstate node is interpreted by exit with the name of the next state.

Line 5 A stop node by exit with STOP.

Line 6 A return node by exit with RETURN.

Line 7 A decision node by calling the int-decision-node function.

int-graph-node(graphnode)(dict) (5.5.5)

1 cases graphnode:
2 (mk-Task-node1(asgnortxt) → int-task-node(asgnortxt)(dict),
3 mk-Output-node1(, , ,) → int-output-node(graphnode)(dict),
4 mk-Create-request-node1(,) → int-create-node(graphnode)(dict),
5 mk-Call-node1(,) → int-call-node(graphnode)(dict),
6 mk-Set-node1(, ,) → int-set-node(graphnode)(dict),
7 mk-Reset-node1(,) → int-reset-node(graphnode)(dict))

type: Graph-node1 → Entity-dict ⇒

Objective Interprets a graph node.

Parameters

graphnode The graph node to be interpreted.

int-task-node(asgnortxt)(dict) (5.5.6)

1 cases asgnortxt:
2 (mk-Assignment-statement1(,) → int-assign-stmt(asgnortxt)(dict),
3 mk-Informal-text1() → int-informal-text(asgnortxt))

type: (Assignment-statement1 | Informal-text1) → Entity-dict ⇒

Objective Interprets a task node.

Recommendation Z.100 – Annex F.3 (03/93) 73

Parameters

asgnortxt An assignment statement or informal text.

Algorithm

Line 1 The asgnortxt is interpreted as either an assignment or as informal text.

int-assign-stmt(mk-Assignment-statement1(vid, exp))(dict) (5.5.7)

1 (def val : eval-expression(exp)(dict);
2 update-stg(vid, val)(dict))

type: Assignment-statement1 → Entity-dict ⇒

Objective Interprets an assignment statement.

Parameters

vid The target variable.

exp The expression.

Algorithm

Line 1 Evaluate the value of the expression.

Line 2 Update the storage with vid and value of the expression.

int-informal-text(mk-Informal-text1()) (5.5.8)

1 (/* This informal Meta-IV text denotes the interpretation of informal text */)

type: Informal-text1 ⇒

int-output-node(mk-Output-node1(sid, exprl, dest, via))(dict) (5.5.9)

1 (let mk-SignalDD(sortl,) = dict((sid, SIGNAL)) in
2 def vall : 〈eval-expression(exprl[i])(dict) | 1 ≤ i ≤ len exprl〉;
3 def destval : (dest = nil
4 → nil,
5 (dest, PROCESS) ∈ dom dict
6 → dest,
7 → eval-expression(dest)(dict));
8 let senderid = process-or-service-scopeunit(dict(SCOPEUNIT)) in
9 if (∀ i ∈ ind vall)(range-check(sortl[i], vall[i](dict))

10 then output mk-Send-Signal(sid, vall, senderid, dict(SELF), destval, via) to system
11 else exit(“§5.3.1.9: Value is not within the range of the syntype”))

type: Output-node1 → Entity-dict ⇒

Objective Interprets an output node.

Parameters

sid The identifier of the signal to be sent.

exprl The actual parameters for the signal.

dest An optional Pid expression or process identifier denoting the process to which the signal should be
sent.

74 Recommendation Z.100 – Annex F.3 (03/93)

Via An optional set of signal route/channel identifiers at least one of which should be used to convey
the signal.

Algorithm

Line 2 Evaluate the list of actual parameters.

Line 3-7 Evaluate the optional signal destination. If it is absent or is a process identifier (line 3-6) it will be
handed on to the system processor unchanged. If it is a Pid expression (line 7) this expression is
evaluated.

Line 8 Obtain the SDL identifier of the process or service instance which sends the signal.

Line 9 Perform a range check on the actual parameter values.

Line 10 Send the signal.

int-create-node(mk-Create-request-node1(prid, exprl))(dict) (5.5.10)

1 (let mk-ProcessDD(formparms, , , ,) = dict((prid, PROCESS)) in

2 let sortl = 〈s-Sort-reference-identifier1(dict((formparms[i], VALUE))) | 1 ≤ i ≤ len formparms〉 in
3 def vall : 〈eval-expression(exprl[i])(dict) | 1 ≤ i ≤ len exprl〉;
4 if (∀i ∈ ind sortl)(range-check(sortl[i], vall[i])(dict)) then
5 (output mk-Create-Instance-Request(prid, vall, dict(SELF)) to system;

6 input mk-Create-Instance-Answer(offspring′) from system

7 ⇒ dict(OFFSPRING) := offspring′)
8 else
9 exit(“§5.3.1.9: Value is not within the range of the syntype”))

type: Create-request-node1 → Entity-dict ⇒

Objective Interprets a create node.

Parameters

prid The identifier of the process to be created.

exprl The list of actual parameters.

Algorithm

Line 1-2 Establish the list of sort reference identifiers of the formal parameters.

Line 3 Evaluate the list of actual parameters.

Line 4 Perform a range check on the actual parameters.

Line 5 Issue the create instance request.

Line 6 Wait for a response on the create request. The response carries the SDL Pid value of the new
process instance.

Line 7 Update the offspring value.

int-call-node(mk-Call-node1(prid, exprl))(dict) (5.5.11)

1 (let mk-ProcedureDD(parmddl,) = dict((prid, PROCEDURE)) in

2 def actparml : 〈(is-InparmDD(parmddl[i])

3 → eval-expression(exprl[i])(dict),

4 is-InoutparmDD(parmddl[i])

5 → exprl[i]) |

6 1 ≤ i ≤ len parmddl〉;
7 int-procedure(prid, actparml)(dict))

type: Call-node1 → Entity-dict ⇒

Recommendation Z.100 – Annex F.3 (03/93) 75

Objective Interpret a procedure call node.

Parameters

prid The identifier of the procedure to be called.

exprl The actual parameters for the procedure call.

Algorithm

Line 1 Obtain the list of formal parameter descriptors for the procedure.

Line 2-6 Evaluate the list of actual parameters. If an actual parameter is an in parameter it is an expression
which should be evaluated (line 2-3). If an actual parameter is an in/out parameter its “evaluation
result” is the SDL identifier of the actual parameter variable (line 4-5).

Line 7 Interpret the procedure.

int-set-node(mk-Set-node1(texp, tid, exprl))(dict) (5.5.12)

1 (let mk-SignalDD(sortl,) = dict((tid, SIGNAL)) in
2 def val : eval-expression(texp)(dict);
3 def vall : 〈eval-expression(exprl[i])(dict) | 1 ≤ i ≤ len exprl〉;
4 if (∀i ∈ ind vall)(range-check(sortl[i], vall[i])(dict))
5 then output mk-Set-Timer(tid, vall, val) to dict(PORT)
6 else exit(“§5.3.1.9: Value is not within the range of the syntype”))

type: Set-node1 → Entity-dict ⇒

Objective Interprets a set node.

Parameters

texp The expiration time expression.

tid The identifier of the timer to be set.

exprl The actual parameters for the timer.

Algorithm

Line 2 Evaluate the expiration time expression.

Line 3 Evaluate the list of actual parameters.

Line 4 Perform a range check on the actual parameter values.

Line 5 Instruct the input-port to set the timer.

int-reset-node(mk-Reset-node1(tid, exprl))(dict) (5.5.13)

1 (let mk-SignalDD(sortl,) = dict((tid, SIGNAL)) in
2 def vall : 〈eval-expression(exprl[i])(dict) | 1 ≤ i ≤ len exprl〉;
3 if (∀i ∈ ind vall)(range-check(sortl[i], vall[i](dict))
4 then output mk-Reset-Timer(tid, vall) to dict(PORT)
5 else exit(“§5.3.1.9: Value is not within the range of the syntype”))

type: Reset-node1 → Entity-dict ⇒

Objective Interprets a reset node.

Parameters

tid The identifier of the timer to be reset.

exprl The actual parameters for the timer.

76 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 2 Evaluate the list of actual parameters.

Line 3 Perform a range check on the actual parameter values.

Line 4 Instruct the input-port to reset the timer.

int-decision-node(mk-Decision-node1(quest, answset, elseansw))(dict) (5.5.14)

1 (def questval : (is-Expression1(quest)
2 → eval-expression(quest)(dict),
3 is-Informal-text1(quest)
4 → quest);
5 let answset′ = matching-answer(questval, answset)(dict) in
6 (answset′ ≠ {}
7 →(let {mk-Decision-answer1(, trans)} = answset′ in
8 int-transition(trans)(dict)),
9 elseansw ≠ nil

10 → (let mk-Else-answer1(trans) = elseansw in
11 int-transition(trans)(dict)),
12 → exit(“§2.7.5: No matching answer”)))

type: Decision-node1 → Entity-dict ⇒

Objective Interprets a decision node.

Parameters

quest The question of the decision.

answset The set of answers and associated transitions.

Elseansw The optional else transition.

Algorithm

Line 1-3 Evaluate the decision question.

Line 5 Extract the set of answers which match the decision question value.

Line 6-8 If the extracted set of answers is not empty then it contains exactly one answer (it is checked during
the building of the Entity-dict that the answers do not overlap). The transition associated with the
selected answer is interpreted.

Line 9-11 If no matching answer was found, and an else transition is present, this transition is interpreted.

Line 12 If no matching answers is found and no else answer is present an error occurs.

matching-answer(questval, answset)(dict) (5.5.15)

1 {mk-Decision-answer1(valsetortext,) ∈ answset |
2 (is-Range-condition1(valsetortext) ∧ is-Value(questval)
3 → (let branchcond = eval-range-condition(questval, valsetortext)(dict) in
4 branchcond = dict(TRUEVALUE)),
5 → text-equality (questval, valsetortext))}

type: (Value | Informal-text1) Decision-answer1-set → Entity-dict → Decision-answer1-set

Objective Find the set of answers in the supplied set of answers which match the supplied question value.

Recommendation Z.100 – Annex F.3 (03/93) 77

Parameters

quest The question value of the decision.

answset The set of answers and associated transitions.

Result The matching answer and its associated transition.

Algorithm

Line 2-4 If neither the question nor the answer is informal then the range condition is evaluated w.r.t. the
question value.

Line 5 If the question or the answer is informal the equality is tested by the informal function text-equality.

text-equality(value-text, valueset-text) (5.5.16)

1 (/* This informal Meta-IV text denotes the equality test */;
2 /* between informal question and/or informal answer */)

type: (Informal-text1 | Value) (Informal-text1 | Range-condition1) → Bool

78 Recommendation Z.100 – Annex F.3 (03/93)

5.6 Expression Evaluation

This section defines the functions for expression evaluation.

eval-expression(exp)(dict) (5.6.1)

1 if exp = nil then
2 UNDEFINED
3 else
4 cases exp:
5 (mk-Ground-expression1()
6 → eval-ground-expression(exp)(dict),
7 mk-Identifier1(,)
8 → eval-variable-identifier(exp)(dict),
9 mk-Operator-application1(,)

10 → eval-operator-application(exp)(dict),
11 mk-Conditional-expression1(, ,)
12 → eval-conditional-expression(exp)(dict),
13 mk-View-expression1(,)
14 → eval-view-expression(exp)(dict),
15 mk-Timer-active-expression1(,)
16 → eval-timer-active-expression(exp)(dict),
17 mk-Anyvalue-expression1()
18 → eval-anyvalue-expression(exp)(dict),
19 mk-Now-expression1()
20 → eval-now-expression(),
21 mk-Self-expression1()
22 → dict(SELF),
23 mk-Parent-expression1()
24 → dict(PARENT),
25 mk-Offspring-expression1()
26 → c dict(OFFSPRING),
27 mk-Sender-expression1()
28 → c dict(SENDER),
29 mk-Error-term1()
30 → exit(“§5.4.2.1: Attempt to evaluate error expression”))

type: [Expression1] → Entity-dict ⇒ (Value | UNDEFINED)

Objective Evaluate an expression.

Parameters

exp The expression.

Result The value of the expression.

Algorithm

Line 1-2 If the expression is absent (typically an omitted actual parameter) its value is “undefined” .

Line 21-24 If the expression is self or parent its value is looked up in the Entity-dict.

Line 25-28 If the expression is offspring or sender a META-IV variable holding its current value is accessed
via a pointer which is looked up in the Entity-dict.

Line 29-30 If the expression is error an error occurs.

Recommendation Z.100 – Annex F.3 (03/93) 79

5.6.1 Ground Expression Evaluation

eval-ground-expression(gexpr)(dict) (5.6.1.1)

1 if gexpr = nil then
2 UNDEFINED
3 else
4 (let mk-Ground-expression1(gterm) = gexpr in
5 eval-ground-term(gterm)(dict))

type: [Ground-expression1] → Entity-dict → (Value | UNDEFINED)

Objective Evaluate a ground expression.

Parameters

gexpr The ground term.

Result The value of the ground expression.

Algorithm

Line 1-2 If the ground expression is absent its value is “undefined”.

Line 4-5 Obtain the contained ground term (line 4) and evaluate it (line 5).

eval-ground-term(mk-Ground-term1(contents))(dict) (5.6.1.2)

1 (is-Identifier1(contents)
2 → (let resterm = mk-Ground-term1(contents) in
3 reduce-term(resterm, dict(SCOPEUNIT))(dict)),
4 is-Conditional-term1(contents)
5 → (let mk-Conditional-term1)(cond, cons, alt) = contents in
6 let condval = eval-ground-term(cond)(dict) in
7 (condval = dict(TRUEVALUE)
8 → eval-ground-term(cons)(dict),
9 condval = dict(FALSEVALUE)

10 → eval-ground-term(alt)(dict))),
11 → (let (opid, arglist) = contents in
12 let vallist = 〈eval-ground-term(arglist[i])(dict) | 1 ≤ i ≤ len arglist〉 in
13 eval-ground-term-opapp(opid, vallist)(dict)))

type: Ground-term1 → Entity-dict → Value

Objective Evaluate a ground term.

Parameters

contents The “contents” of the ground term (a literal identifier, conditional ground expression or operator
application on a list of ground terms).

Result The value of the ground term.

Algorithm

Line 1 Handle the case where the ground term is a literal identifier.

Line 2 Build a ground term representing the resulting value.

Line 3 Obtain the ground term which has been chosen to represent the value in the rest of the system.

Line 4 Handle the case where the ground term is a conditional term.

Line 5 Decompose the conditional term into its components.

Line 6 Evaluate the condition.

80 Recommendation Z.100 – Annex F.3 (03/93)

Line 7-10 If the condition is True (line 7) then evaluate the consequence (line 8). If the condition is False
(line 9) then evaluate the alternative (line 9). No other possibilities exist as the wellformedness of
the Boolean data sort has been checked during the building of the Entity-dict.

Line 11 Handle the case where the ground term is an operator application. Decompose the operator
application into an operator identifier and an argument list.

Line 12 Evaluate the argument list.

Line 13 Perform the operator application on the list of argument values.

eval-ground-term-opapp(opid, vallist)(dict) (5.6.1.3)

1 (let mk-OperatorDD)(sortlist, sort) = dict((opid, VALUE)) in
2 if (∀i ∈ ind sortlist)(range-check(sortlist[i], vallist[i])(dict)) then
3 (let resterm = mk-Ground-term1((opid, vallist)) in
4 let resval = reduct-term(resterm, dict(SCOPEUNIT))(dict) in
5 if range-check(sort, resval)(dict) then
6 resval
7 else
8 exit(“§5.3.1.9: Value is not within the range of the syntype”))
9 else

10 exit(“§5.3.1.9: Value is not within the range of the syntype”))

type: Operator-identifier1 Value+ → Entity-dict → Value

Objective Apply an SDL operator to a list of argument values.

Parameters

opid The SDL operator identifier.

vallist The list of argument values.

Result The resulting value of the operator application.

Algorithm

Line 1 Obtain the argument sort list and the result sort of the operator.

Line 2 Perform a range check on the list of argument values.

Line 3 Build a ground term representing the resulting value.

Line 4 Obtain the ground term which has been chosen to represent the value in the rest of the system.

Line 5 Perform a range check on the resulting value.

Line 6 Return the resulting value.

Recommendation Z.100 – Annex F.3 (03/93) 81

5.6.2 Active Expression Evaluation

eval-variable-identifier(id)(dict) (5.6.2.1)

1 (let mk-VarDD(vid, , , , stg) = dict((id, VALUE)) in
2 if c stg(vid) ≠ UNDEFINED
3 then c stg(vid)
4 else exit(“§5.4.2.2: Value of accessed variable is undefined”))

type: Identifier1 → Entity-dict ⇒ Value

Objective Evaluate a variable identifier.

Parameters

id The variable identifier.

Result The contents, if any, of that variable.

Algorithm

Line 1 Gets the referenced variable identifier and a pointer to its storage (the variable id could be a
procedure in/out formal parameter).

Line 4 If the contents of storage for the referenced identifier is undefined an error occurs.

Line 3 The contents of storage for the referenced identifier is returned.

eval-operator-application(mk-Operator-application1(opid, expl))(dict) (5.6.2.2)

1 (def vall : 〈eval-expression(expl[i])(dict) | 1 ≤ i ≤ len expl〉;
2 eval-ground-term-opapp(opid, vall)(dict))

type: Operator-application1 → Entity-dict ⇒ Value

Objective Evaluate an operator application.

Parameters

opid Identifier of the operator.

expl Argument list for the application.

Result The value of the operator application.

Algorithm

Line 1 Evaluate the list of arguments.

Line 2 Perform the operator application on the list of argument values.

eval-view-expression(mk-View-expression1(id, exp))(dict) (5.6.2.3)

1 (let mk-ViewDD(sortid) = dict((id, VALUE)) in
2 def pid : if exp = nil then nil else eval-expression(exp)(dict);
3 output mk-View-Request(id, sortid, pid) to view;
4 input mk-View-Answer(val) from view
5 ⇒ if val ≠ UNDEFINED
6 then val
7 else exit(“§5.4.2.2: The viewed value is undefined”))

type: View-expression1 → Entity-dict ⇒ Value

82 Recommendation Z.100 – Annex F.3 (03/93)

Objective Evaluate a view expression.

Parameters

id The identifier of the viewed variable.

exp An optional Pid expression.

Result The value of the view expression.

Algorithm

Line 1 Get the sort or syntype of the viewed variable.

Line 2 Evaluate the Pid expression if present.

Line 3 Request the view processor to obtain the value of one of the possible revealed variable instances.

Line 4 Wait for a response from the view processor.

Line 5 Check that the contents of the viewed variable instance is not “undefined”.

Line 6 Return the viewed value.

eval-conditional-expression(mk-Conditional-expression1(cond, cons, alt))(dict) (5.6.2.4)

1 (def condval : eval-expression(cond)(dict);
2 (condval = dict(TRUEVALUE)
3 → eval-expression(cons)(dict),
4 condval = dict(FALSEVALUE)
5 → eval-expression(alt)(dict)))

type: Conditional-expression1 → Entity-dict ⇒ Value

Objective Evaluate a conditional expression.

Parameters

cond The condition expression.

cons The consequence expression.

alt The alternative expression.

Result The value of either the consequence or the alternative expression depending on the condition.

Algorithm

Line 1 Evaluate the condition.

Line 2-5 If the condition is True (line 2) then evaluate the consequence expression (line 3). If the condition
is False (line 4) then evaluate the alternative expression (line 5). No other possibilities exist as the
wellformedness of the Boolean data sort has been checked during the building of the Entity-dict.

eval-timer-active-expression(mk-Timer-active-expression1(timer, exprl))(dict) (5.6.2.5)

1 (let mk-SignalDD(sortl,) = dict((timer, SIGNAL)) in
2 def vall : 〈eval-expression(exprl[i])(dict) | 1 ≤ i ≤ len exprl〉;
3 if (∀i ∈ ind vall)(range-check(sortl[i], vall[i])(dict)) then
4 (output mk-Active-Request(timer, vall) to dict(PORT);
5 input mk-Active-Answer(b) from dict(PORT)
6 ⇒ if b then dict(TRUEVALUE) else dict(FALSEVALUE))
7 else
8 exit(“§5.3.1.9: Value is not within the range of the syntype”))

type: Timer-active-expression1 → Entity-dict ⇒ Value

Recommendation Z.100 – Annex F.3 (03/93) 83

Objective Evaluate a timer active expression.

Parameters

timer The identifier of the timer.

exprl The arguments of the timer.

Result The SDL Boolean value of the timer active expression.

Algorithm

Line 1 Establish the sort list of the timer.

Line 2 Evaluate the timer arguments.

Line 3 Perform a range check on the list of argument values.

Line 4 Request the input port to examine if the timer instance is active.

Line 5 Receive a response from the input port with a parameter b denoting the “activeness” of the timer
instance.

Line 6 Return the SDL value True or False depending on the answer from the input port.

eval-anyvalue-expression(mk-Anyvalue-expression1(sortref))(dict) (5.6.2.6)

1 (let sortid = sort-or-parent-sort(sortref)(dict) in
2 let values = {val ∈ values-of-sort(sortid)(dict) | range-check(sortref, val)(dict)} in
3 if values ≠ {} then
4 (let val ∈ values in
5 val)
6 else
7 exit(“§5.4.4.6: Attempt to evaluate an anyvalue expression for an empty sort or syntype”))

type: Anyvalue-expression1 → Entity-dict → Value

Objective Evaluate an anyvalue expression.

Parameters

sortref The contained sort/syntype identifier of the anyvalue expression.

Result The (arbitrary) value of the anyvalue expression.

Algorithm

Line 1 If the sort/syntype identifier is a syntype identifier then obtain its parent sort.

Line 2 Obtain the set of all values belonging to the sort/syntype.

Line 3-7 It is an error to apply any to a sort or syntype containing no values.

Line 4-5 Select an arbitrary value from the value set and return it.

eval-now-expression() (5.6.2.7)

1 (output mk-Time-Request() to timer;
2 input mk-Time-Answer(val) from timer
3 ⇒ val)

type: () ⇒ Value

Objective Evaluate the now expression.

Result The current value of now.

84 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1 Request the timer processor to get the current time.

Line 2 Wait for a response from timer.

Line 3 Return the result.

Recommendation Z.100 – Annex F.3 (03/93) 85

5.7 Range Check and Range Condition Evaluation
Recommendation Z.100 – Annex F.3 (03/93)

This section defines functions for range checks and for evaluation of range conditions w.r.t. given SDL data values.

Range-check(sortref, value)(dict) (5.7.1)

1 if value = UNDEFINED then
2 true
3 else
4 cases dict((sortref, SORT)):
5 (mk-SyntypeDD(, rangecond)
6 → (let testval = eval-range-condition(value, rangecond)(dict) in
7 testval = dict(TRUEVALUE)),
8 mk-SortDD()
9 → true

type: Sort-reference-identifier1 (Value | UNDEFINED) → Entity-dict → Bool

Objective Test whether a value is within the range of a sort/syntype.

Parameters

sortref The sort/syntype identifier.

value The value.

Result true if the value is within the range, else false.

Algorithm

Line 1-2 If the value is “undefined” (typically an omitted actual parameter) it is considered to be in the range
of any sort/syntype.

Line 4 Look up the sort/syntype in the Entity-dict.

Line 5-7 Handle the case where the sort/syntype is a syntype. The associated range condition is retrieved
(line 5) and evaluated w.r.t. the value to be checked (line 6). The range check is true if the range
condition evaluation result is the SDL value True (line 7).

Line 8-9 If the sort/syntype is a sort the range check is always true.

eval-range-condition(value, mk-Range-condition1(orid, cset))(dict) (5.7.2)

1 eval-condition-item-set(value, orid, cset)(dict)

type: Value Range-condition1 → Entity-dict → Value

Objective Evaluate a range condition w.r.t. a given value.

Parameters

value The value.

orid The Or-operator-identifier1 of the range condition.

cset The condition items of the range condition.

Result The SDL Boolean evaluation result.

Algorithm

Line 1 Call a function which evaluates each condition item w.r.t. the value and takes the SDL Boolean or
of the results.

86 Recommendation Z.100 – Annex F.3 (03/93)

eval-condition-item-set(value, orid, cset)(dict) (5.7.3)

1 (let cond ∈ cset in
2 let condval = eval-condition-item(value, cond)(dict) in
3 if card cset = 1 then
4 condval
5 else
6 (let restval = eval-condition-item-set(value, orid, cset \ {cond})(dict) in
7 eval-ground-term-opapp(orid, 〈condval, restval〉)(dict)))

type: Value Or-operator-identifier1 Condition-item1-set → Entity-dict → Value

Objective Evaluate a set of range condition items w.r.t. a given value and take the SDL Boolean or of the results.

Parameters

value The value.

orid The AS1 identifier for the SDL predefined Boolean or operator.

cset The (non-empty) set of range condition items.

Result The SDL Boolean evaluation result.

Algorithm

Line 1 Pick a condition item from the condition items set.

Line 2 Evaluate this condition item w.r.t. the value.

Line 3-4 If the picked condition item is the only one in the condition item set then return the evaluation
result obtained in line 2.

Line 6 Evaluate the remaining set of condition items w.r.t. the value and take the SDL Boolean or of the
results.

Line 7 Apply the SDL Boolean or operator to the two sub-evaluation results.

eval-condition-item(value, cond)(dict) (5.7.4)

1 cases cond:
2 (mk-Open-range1(relopid, gexpr)
3 → (let gval = eval-ground-expression(gexpr)(dict) in
4 eval-ground-term-opapp(relopid, 〈value, gval〉)(dict)),
5 mk-Closed-range1(andid, orng1, orng2)
6 → (let mk-Open-range1(relopid1, gexpr1) = orng1,
7 mk-Open-range1(relopid2, gexpr2) = orng2 in
8 let gval1 = eval-ground-expression(gexpr1)(dict),
9 gval2 = eval-ground-expression(gexpr2)(dict) in

10 let condval1 = eval-ground-term-opapp(relopid1, 〈gval1, value〉)(dict),
11 condval2 = eval-ground-term-opapp(relopid2, 〈value, gval2〉)(dict) in
12 eval-ground-term-opapp(andid, 〈condval1, condval2〉)(dict)))

type: Value Condition-item1 → Entity-dict → Value

Objective Evaluate a range condition item w.r.t. a given value.

Parameters

value The value.

cond The condition item.

Result The SDL Boolean evaluation result.

Recommendation Z.100 – Annex F.3 (03/93) 87

Algorithm

Line 2 Handle the case where the condition item is an open range. Decompose the open range into its
contained (relational) operator identifier and ground expression.

Line 3 Evaluate the ground expression.

Line 4 Apply the relational operator to the value and the ground expression value.

Line 5 Handle the case where the condition item is a closed range. Decompose it into the AS1identifier for
the SDL predefined Boolean and operator and the two contained open ranges.

Line 6-7 Decompose the two open ranges.

Line 8-9 Evaluate the ground expressions contained in the two open ranges.

Line 10-11 Apply each of the two relational operators to the value and its corresponding ground expression
value.

Line 12 Apply the SDL predefined Boolean and operator to the evaluation results of the two open ranges.

88 Recommendation Z.100 – Annex F.3 (03/93)

6 Construction of Entity-dict and Handling of Abstract Data Types

This section contains the functions which build the Entity-dict (see the domain definition of Entity-dict). The Entity-dict
is used by almost all processors. The system processor builds it by calling extract-dict below.

The section is divided into five subsections:

1. The creation of simple self-contained descriptors such as descriptors for variables, signals etc. Also the
descriptors for processes and services (i.e. ProcessDDs resp. ServiceDDs) are created but with empty
Reachability sets.

Descriptors are created for entities regardless of whether or not they are defined in a scopeunit included in
the consistent subset. The reason for this is that the consistency checks on the data types applies for all
scopeunits.

2. Creation of the descriptors for the data type definitions (TypeDD). For each scopeunit, this descriptor is
created after the descriptors for the sorts (SortDD) and syntypes (SyntypeDD) are created.

3. Selection of the consistent subset.

4. Creation of the Reachabilities for the processes (i.e. creation of all possible communication paths for the
processes.)

5. Auxiliary functions for simple information extraction from SDL channel and signal route definitions.

The selection of the consistent subset is made after descriptors for all the entities are constructed, by removing the SDL
parts which will not be interpreted. With the modified SDL system as basis, descriptors are constructed again, and
Reachabilities are constructed. The construction of the Entity-dict can be regarded as some intermediate level between
the static semantics and the dynamic semantics. The error conditions in this section (checks on the consistent subset and
on consistency of the abstract data types) can be regarded as some additional static conditions which are placed in the
Dynamic Semantics because:

• Consistency checks on equivalence classes and on mutual exclusion of decision answers cannot easily be
expressed in terms of AS1, i.e. these (static) checks are placed in the Dynamic Semantics because
construction of the equivalence classes is required.

• The check on selection of a consistent refinement subset requires that selection of a consistent block
subset has already been done.

To be strict, the selection of the consistent (refinement) subset is not an error condition, since it is not part
of an SDL specification, but in order to check its properties, consistency checks are made on the set of
block identifiers reflecting the consistent subset.

extract-dict(as1tree, blockset, expiredf, terminf) (6.1)

1 (let (as1pid, as1null, as1true, as1false) = terminf in
2 let dict = [EXPIREDF a expiredf,
3 PIDSORT a as1pid,
4 NULLVALUE a mk-Ground-term1(as1null),
5 TRUEVALUE a mk-Ground-term1(as1true),

5HFRPPHQGDWLRQ�=�����±�$QQH[�)�������������� ��

�)$/6(9$/8(a�PN�*URXQG�WHUP��DV�IDOVH�@�LQ
� OHW�G
�=�PDNH�V\VWHP�GLFW�DV�WUHH��GLFW��LQ
� OHW�DV�WUHH
�=�VHOHFW�FRQVLVWHQW�VXEVHW�DV�WUHH��EORFNVHW��G
��LQ
� OHW�GLFW
�=�PDNH�V\VWHP�GLFW�DV�WUHH
��GLFW��LQ
�� OHW�GLFW

�=�PDNH�UHDFKDELOLWLHV�DV�WUHH
��GLFW
��LQ
�� GLFW

�

W\SH� 6\VWHP�GHILQLWLRQ��%ORFN�LGHQWLILHU��VHW�,V�H[SLUHG)�7HUP�LQIRUPDWLRQ�→�(QWLW\�GLFW

2EMHFWLYH &RQVWUXFW�WKH�(QWLW\�GLFW�IRU�D�JLYHQ�6'/�V\VWHP�

3DUDPHWHUV

DV�WUHH 7KH� DEVWUDFW� V\QWD[� UHSUHVHQWDWLRQ� RI� DQ� 6'/� V\VWHP�� L�H�� DQ� REMHFW� RI� WKH� GRPDLQ
6\VWHP�GHILQLWLRQ��

EORFNVHW 7KH� �DVVXPHG�� FRQVLVWHQW� VXEVHW� UHSUHVHQWHG� E\� D� VHW� RI� EORFN� LGHQWLILHUV� DQG� EORFN� VXEVWUXFWXUH
LGHQWLILHUV�� $OWKRXJK� WKH� V\VWHP� VFRSHXQLW� LV� DOVR� LQ� WKH� FRQVLVWHQW� VXEVHW� LW� LV� QRW� LQFOXGHG� LQ
EORFNVHW�

H[SLUHGI $�IXQFWLRQ�IRU�FRPSDULQJ�6'/�WLPH�YDOXHV�

WHUPLQI 6RPH�$6��LGHQWLILHUV�XVHG�E\�WKH�XQGHUO\LQJ�V\VWHP�

5HVXOW 7KH�(QWLW\�GLFW�IRU�WKH�SDUW��FRQVLVWHQW�VXEVHW��RI�WKH�6'/�V\VWHP�ZKLFK�ZLOO�EH�LQWHUSUHWHG�

$OJRULWKP

/LQH�� 'HFRPSRVH� WKH�7HUP�LQIRUPDWLRQ� �GHILQHG� LQ�$QQH[�)����ZKLFK� FRQWDLQV� WKH� ,GHQWLILHUV�V�RI� WKH
3LG�VRUW��WKH�1XOO�OLWHUDO��WKH�7UXH�OLWHUDO�DQG�WKH�)DOVH�OLWHUDO�

/LQH���� &UHDWH� WKH� LQLWLDO�(QWLW\�GLFW�ZKHUHLQ� WKH� WLPH� FRPSDULVRQ� IXQFWLRQ� DQG� WKH� WHUP� LQIRUPDWLRQ� DUH
SODFHG�

/LQH�� &RQVWUXFW�WKH�(QWLW\�GLFW�IRU�WKH�HQWLUH�6'/�V\VWHP�

/LQH�� 5HPRYH�WKH�SDUWV�RI�WKH�6'/�V\VWHP�ZKLFK�ZLOO�QRW�EH�LQWHUSUHWHG�

/LQH�� &RQVWUXFW�WKH�(QWLW\�GLFW�IRU�WKH�PRGLILHG�6'/�V\VWHP�

/LQH��� &RQVWUXFW�LQIRUPDWLRQ�DERXW�DOO�SRVVLEOH�FRPPXQLFDWLRQ�SDWKV��WKH�5HDFKDELOLWLHV��LQ�WKH�PRGLILHG
6'/� V\VWHP� DQG� LQVHUW� WKLV� LQIRUPDWLRQ� LQ� WKH� SURFHVV� DQG� VHUYLFH� GHVFULSWRUV� DQG� WKH
(19,5210(17�HQWU\�RI�WKH�(QWLW\�GLFW�

/LQH��� 5HWXUQ�WKH�(QWLW\�GLFW�

�� 5HFRPPHQGDWLRQ�=�����±�$QQH[�)��������������

��� &RQVWUXFWLRQ�RI�'HVFULSWRUV�IRU�6LPSOH�2EMHFWV

PDNH�V\VWHP�GLFW�PN�6\VWHP�GHILQLWLRQ��VQP��EVHW����VLJVHW��WS��V\QVHW���GLFW�� �������

� �OHW�OHYHO�= 〈PN�6\VWHP�TXDOLILHU��VQP�〉�LQ
� OHW�GLFW
�= GLFW�+�>(19,5210(17 a^`�
� 6<67(0/(9(/ a�OHYHO@�LQ
� OHW�GLFW

�= H[WUDFW�VRUWGLFW��WS��V\QVHW��OHYHO��GLFW
��LQ
� PDNH�HQWLWLHV�VLJVHW�∪�EVHW��OHYHO��GLFW

��

W\SH� 6\VWHP�GHILQLWLRQ��→�(QWLW\�GLFW�→�(QWLW\�GLFW

2EMHFWLYH &RQVWUXFW�WKH�(QWLW\�GLFW�IRU�D�ZKROH�6'/�V\VWHP��1RWH�WKDW�HQFORVHG�VLJQDO�URXWH�GHILQLWLRQV��FKDQQHO
GHILQLWLRQV�DQG�FRQQHFWLRQV�DUH�QRW�GHDOW�ZLWK�KHUH�

3DUDPHWHUV

VQP 7KH�V\VWHP�QDPH�

EVHW 7KH�FRQWDLQHG�EORFN�GHILQLWLRQV�

VLJVHW 7KH�V\VWHP�OHYHO�VLJQDO�GHILQLWLRQV�

WS 7KH�V\VWHP�OHYHO�GDWD�W\SH�GHILQLWLRQ�

V\QVHW 7KH�V\VWHP�OHYHO�V\QW\SH�GHILQLWLRQV�

5HVXOW 7KH�(QWLW\�GLFW�IRU�WKH�V\VWHP�

$OJRULWKP

/LQH�� &RQVWUXFW�WKH�TXDOLILHU�GHQRWLQJ�WKH�V\VWHP�OHYHO�

/LQH�� ,QLWLDOL]H�WKH�(19,5210(17�HQWU\�RI�WKH�(QWLW\�GLFW�WR�DQ�HPSW\�5HDFKDELOLW\�VHW��DQG�LQVHUW�WKH
V\VWHP�OHYHO�TXDOLILHU�

/LQH�� ,QVHUW�WKH�V\VWHP�OHYHO�GDWD�LQIRUPDWLRQ�LQ�WKH�(QWLW\�GLFW�

/LQH�� ,QVHUW�LQIRUPDWLRQ�DERXW�WKH�RWKHU�V\VWHP�OHYHO�GHILQLWLRQV�LQ�WKH�(QWLW\�GLFW�

PDNH�HQWLWLHV�HQWLWLHV��OHYHO��GLFW�� �������

� LI HQWLWLHV�=�^`�WKHQ
� GLFW
� HOVH
� �OHW�HQWLW\�∈�HQWLWLHV�LQ
� OHW�GLFW
�=�PDNH�HQWLW\�HQWLW\��OHYHO��GLFW��LQ
� PDNH�HQWLWLHV�HQWLWLHV�?�^HQWLW\`��OHYHO��GLFW
��

W\SH� 'HFO��VHW�4XDOLILHU��→�(QWLW\�GLFW�→�(QWLW\�GLFW

2EMHFWLYH ,QVHUW�LQIRUPDWLRQ�DERXW�GHILQLWLRQV�LQWR�DQ�(QWLW\�GLFW�

3DUDPHWHUV

HQWLWLHV 7KH�GHILQLWLRQV�

OHYHO 7KH�TXDOLILHU�GHQRWLQJ�WKH�VFRSH�XQLW�OHYHO�FRQWDLQLQJ�WKH�GHILQLWLRQV�

$OJRULWKP

/LQH���� ,I�WKH�VHW�RI�GHILQLWLRQV�LV�HPSW\�WKHQ�GR�QRW�PRGLI\�WKH�(QWLW\�GLFW�

/LQH�� 3LFN�D�GHILQLWLRQ�IURP�WKH�GHILQLWLRQ�VHW�

/LQH�� ,QVHUW�LQIRUPDWLRQ�DERXW�WKH�GHILQLWLRQ�LQ�WKH�(QWLW\�GLFW�

Recommendation Z.100 – Annex F.3 (03/93) 91

Line 6 Insert information about remaining definitions in the Entity-dict.

make-entity(entity, level)(dict) (6.1.3)

1 cases entity:
2 (mk-Signal-definition1(, ,)
3 → dict + make-signal-dict(entity, nil, level),
4 mk-Timer-definition1(nm, sortlist)
5 → dict + [(mk-Identifier1(level, nm), SIGNAL) a mk-SignalDD(sortlist, nil)],
6 mk-Variable-definition1(nm, sort, init, rev)
7 → dict + [(mk-Identifier1(level, nm), VALUE) a mk-VarDD(, sort, init, rev,)],
8 mk-View-definition1(nm, sort)
9 → dict + [(mk-Identifier1(level, nm), VALUE) a mk-ViewDD(sort)],

10 mk-Block-definition1(, , , , , , ,)
11 → make-block-dict(entity, level)(dict),
12 mk-Process-definition1(, , , , , , , , , ,)
13 → make-process-dict(entity, level)(dict),
14 mk-Service-definition1(, , , , , , ,)
15 → make-service-dict(entity, level)(dict),
16 mk-Procedure-definition1(, , , , , ,)
17 → make-procedure-dict(entity, level)(dict),
18 → dict)

type: Decl1 Qualifier1 → Entity-dict → Entity-dict

Objective Insert information about a definition into an Entity-dict.

Parameters

entity The definition.

level A qualifier denoting the scopeunit containing the definition.

Algorithm Construct the contribution for the entity in hand. Note that a timer is treated as a normal signal.

make-signal-dict(mk-Signal-definition1(nm, sortlist, refinement), orev, level) (6.1.4)

1 (let d = [(mk-Identifier1(level, nm), SIGNAL) a mk-SignalDD(sortlist, orev)] in
2 if refinement = nil then
3 d
4 else
5 (let mk-Signal-refinement1(subsigset) = refinement in
6 let level’ = level 〈mk-Signal-qualifier1(nm)〉 in
7 d + merge {make-signal-dict(subsigdef, subsigorev, level’) |
8 mk-Subsignal-definition1(subsigorev, subsigdef) ∈ subsigset}))

type: Signal-definition1 [REVERSE] Qualifier1 → Entity-dict

Objective Make the Entity-dict contribution for a signal and for its subsignals if any. Note that a signal descriptor
does not tell whether a signal is a subsignal or not. This is due to the fact that this information can be
derived from the qualifier of the signal.

Parameters

Signal-definition1 The AS1 signal definition consisting of

nm The name of the signal.

sortlist The sorts of the values conveyed by the signal.

92 Recommendation Z.100 – Annex F.3 (03/93)

refinement The signal refinement part.

level A qualifier denoting the scopeunit where the signal is defined.

Algorithm

Line 1 Make the contribution for the signal and

Line 5-7 Make the contributions for the sub-signals with the qualifier denoting the scopeunit which is the
signal definition.

make-block-dict(bdef, level)(dict) (6.1.5)

1 (let mk-Block-definition1(bnm, pdefs, sigdefs, , , datatype, syntype, sub) = bdef in
2 let level’ = level 〈mk-Block-qualifier1(bnm)〉 in
3 let sortd = extract-sortdict(datatype, syntype, level’)(dict) in
4 let dict’ = make-entities(sigdefs ∪ pdefs, level’)(sortd) in
5 if sub = nil then
6 dict’
7 else
8 (let mk-Block-substructure-definition1(snm, bdefs, , , sdefs, tp, syndefs) = sub in
9 let level’’ = level’ 〈mk-Block-substructure-qualifier1(snm)〉 in

10 let sortd’ = extract-sortdict(tp, syndefs, level’’)(dict’) in
11 make-entities(bdefs ∪ sdefs, level’’)(sortd’)))

type: Block-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Insert information about a block definition and its contained definitions into an Entity-dict. Note that
enclosed signal route definitions, channel definitions and connections are not dealt with here.

Parameters

bdef The block definition.

level The qualifier denoting the level where the block is defined.

Algorithm

Line 1 Decompose the block definition.

Line 2 Construct the qualifier which denotes the level of the block.

Line 3 Update the Entity-dict to include the data defined in the block.

Line 4 Update the Entity-dict to include the signals (sigdefs) and processes (pdefs) defined in the block

Line 5 If no block substructure is specified then the updated Entity-dict is returned.

Line 8 Decompose the block substructure.

Line 9 Construct the qualifier which denotes the level of the block substructure.

Line 10 Update the Entity-dict to include the data definitions defined in the block substructure.

Line 11 Update the Entity-dict to include the blocks (bdefs) and signals (sdefs) defined in the block
substructure.

Recommendation Z.100 – Annex F.3 (03/93) 93

make-process-dict(pdef, level)(dict) (6.1.6)

1 (let mk-Process-definition1(nm, inst, f, pset, sigset, tp, synset, vset, , tset, grordec) = pdef in
2 let mk-Number-of-instances1(init, maxi) = inst in
3 let pid = mk-Identifier1(level, nm),
4 level’ = level 〈mk-Process-qualifier1(nm)〉 in
5 let (parmdds, parmd) = make-process-formal-parameters(f, level’) in
6 let dict’ = extract-sortdict(tp, synset, level’)(dict + parmd) in
7 let dict’’ = make-entities(pset ∪ sigset ∪ vset ∪ tset, level’)(dict’) in
8 (is-Process-graph1(grordec)
9 → (let grordec’ = check-graph(grordec, level’)(dict’’) in

10 dict’’ + [(pid, PROCESS) a mk-Process-DD(parmdds, init, maxi, grordec’, {})]),
11 is-Service-decomposition1(grordec)
12 → (let mk-Service-decomposition1(servset, ,) = grordec in
13 let dict’’’ = make-entities(servset, level’)(dict’’) in
14 dict’’’ + [(pid, PROCESS) a mk-Process-DD(parmdds, init, maxi, nil, {})])))

type: Process-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Insert information about a process definition and its contained definitions into an Entity-dict. Note that
enclosed signal route definitions and connections are not dealt with here.

Parameters

pdef The process definition.

level A qualifier denoting the scopeunit where the process is defined.

Algorithm

Line 1 Decompose the process definition.

Line 2 Extract the initial number of instances (init) and the maximum number of instances (maxi).

Line 3 Construct the identifier for the process definition.

Line 4 Construct the qualifier denoting the scopeunit which is the process definition.

Line 5 Construct the formal parameter descriptors and Entity-dict contributions for the process formal
parameters.

Line6 Make the Entity-dict which is updated with information about the data definitions in the process.

Line 7 Make the contributions for the contained procedure definitions (pset), signal definitions (sigset),
variable definitions (vset) and timer definitions (tset)

Line 8 Handle the case where the process is not decomposed into services.

Line 9 Check the wellformedness of the process graph. The function either returns the process graph
unchanged or performs an exit.

Line 10 Update the constructed Entity-dict with the descriptor for the process itself. Note that, at this stage,
the Reachability set for the process is empty.

Line 11 Handle the case where the process is decomposed into services.

Line 12 Decompose the service decomposition.

Line 13 Update the Entity-dict with information about the services.

Line 14 Update the constructed Entity-dict with the descriptor for the process itself. The process graph field
in the process descriptor is set to nil to indicate that the process is decomposed into services. Note
that, at this stage, the Reachability set for the process is empty.

94 Recommendation Z.100 – Annex F.3 (03/93)

make-process-formal-parameters(parml, level) (6.1.7)

1 (〈mk-Identifier1(level, varnm) |
2 1 ≤ i ≤ len parml ∧ mk-Process-formal-parameter1(varnm,) = parml[i]〉,
3 [(mk-Identifier1(level, varnm), VALUE) a mk-VarDD(, sortref, nil, nil,) |
4 1 ≤ i ≤ len parml ∧ mk-Process-formal-parameter1(varnm, sortref) = parml[i]])

type: Process-formal-parameter1* Qualifier1 → ParameterDD* Entity-dict

Objective Construct the formal parameter descriptors and Entity-dict contribution for a list of process formal
parameters.

Parameters

parml The list of process formal parameters.

level The qualifier denoting the process level.

Algorithm

Line 1-2 Construct the list of formal parameter descriptors. Each formal parameter descriptor is simply the
identifier of the formal parameter variable.

Line 3-4 Construct the Entity-dict contribution for the formal parameters. Note that they are treated as
normal variables.

make-service-dict(servdef, level)(dict) (6.1.8)

1 (let mk-Service-definition1(nm, pset, tp, synset, vset, , tset, graph) = servdef in
2 let servid = mk-Identifier1(level, nm),
3 level’ = level 〈mk-Service-qualifier1(nm)〉 in
4 let dict’ = extract-sortdict(tp, synset, level’)(dict) in
5 let dict’’ = make-entities(pset ∪ vset ∪ tset, level’)(dict’) in
6 let graph’ = check-graph(graph, level’)(dict) in
7 dict’’ + [(servid, SERVICE) a mk-ServiceDD(graph’, , {})])

type: Service-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Insert information about a service and its contained definitions into an Entity-dict.

Parameters

servdef The service definition.

level The qualifier denoting the level at which the service is defined.

Algorithm

Line 1 Decompose the service definition.

Line 2 Construct the identifier of the service.

Line 3 Construct the qualifier denoting the service level.

Line 4 Update the Entity-dict to include information about the data defined in the service.

Line 5 Update the Entity-dict to include information about the procedures (pset), variables (vset) and
timers (tset) defined in the service.

Line 6 Check the wellformedness of the graph. The function check-graph either returns the service graph
unchanged or performs an exit.

Line 7 Update the constructed Entity-dict with the descriptor for the service itself. Note that, at this stage,
the Reachability set for the service is empty.

Recommendation Z.100 – Annex F.3 (03/93) 95

make-procedure-dict(procdef, level)(dict) (6.1.9)

1 (let mk-Procedure-definition1(nm, fp, pset, tp, sset, vset, graph) = procdef in
2 let pid = mk-Identifier1(level, nm),
3 level’ = level 〈mk Procedure-qualifier1(nm)〉 in
4 let (parmddl, fdict) = make-procedure-formal-parameters(fp, level’) in
5 let dict’ = extract-sortdict(tp, sset, level’)(dict + fdict) in
6 let dict’’ = make-entities(pset ∪ vset, level’)(dict’) in
7 let graph’ = check-graph(graph, level’)(dict’’) in
8 dict’’ + [(pid, PROCEDURE) a mk-ProcedureDD(parmddl, graph’)])

type: Procedure-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Insert information about a procedure and its contained definitions into an Entity-dict.

Parameters

procdef The procedure definition.

level The qualifier denoting the scopeunit where the procedure is defined.

Algorithm

Line 1 Decompose the procedure definition.

Line 2 Construct the identifier for the procedure.

Line 3 Construct the qualifier denoting the procedure scopeunit.

Line 4 Construct the procedure formal parameter descriptors for the procedure and the Entity-dict
contribution for the formal parameters.

Line 5 Update the Entity-dict with information about the data definitions in the procedure.

Line 6 Update the Entity-dict with information about the contained procedure definitions (pset) and
variable definitions (vset).

Line 7 Check the wellformedness of the procedure graph. The function check-graph either returns the
procedure graph unchanged or performs an exit.

Line 8 Update the constructed Entity-dict with the descriptor for the procedure itself.

make-procedure-formal-parameters(parml, level) (6.1.10)

1 (〈cases parml[i]:
2 (mk-In-parameter1(varnm,)
3 → mk-InparmDD(mk-Identifier1(level, varnm)),
4 mk-Inout-parameter1(varnm,)
5 → mk-InoutparmDD(mk-Identifier1(level, varnm))) |
6 1 ≤ i ≤ len parml〉,
7 [(mk-Identifier1(level, varnm), VALUE) a mk-VarDD(, sortref, nil, nil,) |
8 mk-In-parameter1(varnm, sortref) ∈ elems parml])

type: Procedure-formal-parameter1* Qualifier1 → FormparmDD* Entity-dict

Objective Construct the formal parameter descriptors and Entity-dict contribution for a list of procedure formal
parameters.

Parameters

parml The list of procedure formal parameters.

level The qualifier denoting the procedure level.

96 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1-6 Construct the list of formal parameter descriptors.

Line 7-8 Construct the Entity-dict contribution for the (in) formal parameters. Note that they are treated as
normal variables. No entries in Entity-dict are made for the in/out formal parameters.

check-graph(graph, level)(dict) (6.1.11)

1 (¬is-wf-assignments(graph, level)(dict)
2 → exit(“§5.4.3: Ground expression in assignment statement is out of range”),
3 ¬is-wf-decision-answers(graph, level)(dict)
4 → exit(“§2.7.5: Answers in decision actions are not mutually exclusive”),
5 → graph)

type: (Process-graph1 | Service-graph1 | Procedure-graph1) Qualifier1 → Entity-dict
→ (Process-graph1 | Service-graph1 | Procedure-graph1)

Objective Check the wellformedness of a process, service or procedure graph, i.e. perform a range check on each
ground expression constituting the right hand side of an assignment statement, and check that no
decision node contains overlapping answers.

Parameters

graph The process, service or procedure graph to be checked.

level The qualifier denoting the process/service/procedure level.

Result If the graph is wellformed, it is returned unchanged, otherwise the function performs an exit.

Algorithm

Line 1-2 Perform a range check on each ground expression constituting the right hand side of an assignment
statement.

Line 3-4 Check that no decision node contains overlapping answers.

Line 5 Return the graph unchanged.

is-wf-assignments(graph, level)(dict) (6.1.12)

1 (let (startnode, stateset) = decomp-graph(graph) in
2 (let trans = decomp-start-node(startnode) in
3 is-wf-transition-assignments(trans, level)(dict)) ∧
4 (∀mk-State-node1(, , inputs, spontrs) ∈ stateset)
5 ((∀mk-Input-node1(, , trans) ∈ inputs)(is-wf-transition-assignments(trans, level)(dict)) ∧
6 (∀mk-Spontaneous-transition1(trans) ∈ spontrs)(is-wf-transition-assignment(trans, level)(dict))))

type: (Process-graph1 | Service-graph1 | Procedure-graph1) Qualifier1 → Entity-dict
→ Bool

Objective Perform a range check on each ground expression which constitutes the right hand side of some
assignment statement in a process, service or procedure graph.

Parameters

graph The process, service or procedure graph.

level The qualifier denoting the process/service/procedure level.

Recommendation Z.100 – Annex F.3 (03/93) 97

Result true if success, else false.

Algorithm

Line 1 Decompose the graph into its start node and state node set.

Line 2 Obtain the transition contained in the start node.

Line 3 No ground expression constituting the right hand side in an assignment statement in the start
transition may be out of range.

Line 4 For each state it must hold that

Line 5 for each input transition no assignment statement may have an out-of-range ground expression as
its right hand side,

Line 6 and for each spontaneous transition no assignment statement may have an out-of-range ground
expression as its right hand side.

is-wf-transition-assignments(mk-Transition1(actl, termordec), level)(dict) (6.1.13)

1 (∀act ∈ elems actl)
2 (is-Task-node1(act) ⊃ is-wf-task-node(act, level)(dict)) ∧
3 (is-Decision-node1(termordec) ⊃
4 (let mk-Decision-node1(, answerset, elsetrans) = termordec in
5 (∀mk-Decision-answer1(, trans) ∈ answerset)
6 (is-wf-transition-assignments(trans, level)(dict)) ∧
7 (elsetrans ≠ nil ⊃ is-wf-transition-assignments(s-Transition1(elsetrans), level)(dict))))

type: Transition1 Qualifier1 → Entity-dict → Bool

Objective Check that no assignment in a transition has an out-of-range ground expression as its right hand side.

Parameters

actl,termordec The action list and the terminator/(outermost) decision node in the transition.

level The qualifier denoting the surrounding scope unit.

Result true if success, else false.

Algorithm

Line 1-2 Check all task nodes in the action list of the transition.

Line 3 If the terminating action of the transition is a decision node, the checks in the lines below should be
performed.

Line 4 Decompose the decision node.

Line 5-6 Check the transition contained in each decision answer.

Line 7 If the else answer is present, then check its contained transition.

is-wf-task-node(mk-Task-node1(asgnortxt), level)(dict) (6.1.14)

1 cases asgnortxt:
2 (mk-Assignment-statement1(varid, expr)
3 → is-Ground-expression1(expr) ⊃
4 (let dict’ = dict + [SCOPEUNIT a level] in
5 let mk-VarDD(, sortref, , ,) = dict’((varid, VALUE)),
6 exprval = eval-expression(expr)(dict’) in
7 range-check(sortref, exprval)(dict)),
8 mk-Informal-text1()
9 → true)

type: Task-node1 Qualifier1 → Entity-dict → Bool

98 Recommendation Z.100 – Annex F.3 (03/93)

Objective If a task node contains an assignment statement, then check that its right hand side is not a ground
expression which is out of range.

Parameters

asgnortxt The assignment statement or informal text in the task node.

level The qualifier denoting the surrounding scope unit.

Result true if success, else false.

Algorithm

Line 2 Consider the case where the contents of the task node is an assignment statement.

Line 3 If the right hand side of the assignment statement is not a ground expression, the assignment
statement is wellformed.

Line 4-6 Insert the scopeunit in the Entity-dict, look up the sort or syntype of the left hand side variable, and
evaluate the right hand side.

Line 7 Perform the range check.

Line 8-9 If the contents of the task node is an informal text, the task node is wellformed.

is-wf-decision-answers(graph, level)(dict) (6.1.15)

1 (let (startnode, stateset) = decomp-graph(graph) in
2 (let trans = decomp-start-node(startnode) in
3 is-wf-transition-answers(trans, level)(dict)) ∧
4 (∀mk-State-node1(, , inputs, spontrs) ∈ stateset)
5 ((∀mk-Input-node1(, , trans) ∈ inputs)(is-wf-transition-answers(trans, level)(dict)) ∧
6 (∀mk-Spontaneous-transition1(trans) ∈ spontrs)(is-wf-transition-answers(trans, level)(dict))))

type: (Process-graph1 | Service-graph1 | Procedure-graph1) Qualifier1 → Entity-dict
→ Bool

Objective Check that the answers in a decision action of a process, service or procedure graph are mutually
exclusive.

Parameters

graph The process, service or procedure graph.

level The qualifier denoting the process/service/procedure level.

Result true if success, else false.

Algorithm

Line 1 Decompose the graph into its start node and state node set.

Line 2 Obtain the transition contained in the start node.

Line 3 No decision node in the start transition may contain overlapping answers.

Line 4 For each state it must hold that

Line 5 for each input transition no decision node contains overlapping answers,

Line 6 and for each spontaneous transition no decision node contains overlapping answers.

Recommendation Z.100 – Annex F.3 (03/93) 99

is-wf-transition-answers(mk-Transition1(, termordec), level)(dict) (6.1.16)

1 is-Decision-node1(termordec) ⊃
2 (let mk-Decision-node1(, answerset, elsetrans) = termordec in
3 (∀mk-Decision-answer1(, trans) ∈ answerset)
4 (is-wf-transition-answers(trans, level)(dict)) ∧
5 (elsetrans ≠ nil ⊃ is-wf-transition-answers(s-Transition1(elsetrans), level)(dict)) ∧
6 (∀answer1 ∈ answerset)
7 ((∀answer2 ∈ answerset \ {answer1})
8 ((let mk-Decision-answer1(rngortxt1,) = answer1,
9 mk-Decision-answer1(rngortxt2,) = answer2,

10 dict’ = dict + [SCOPEUNIT a level] in
11 is-Range-condition1(rngortxt1) ∧ is-Range-condition1(rngortxt2) ⊃
12 ranges-not-overlapping(rngortxt1, rngortxt2) (dict’)))))

type: Transition1 Qualifier1 → Entity-dict → Bool

Objective Check that no decision action in a transition contains overlapping answers.

Parameters

termordec The terminator or (outermost) decision node in the transition.

level The qualifier denoting the surrounding scopeunit.

Result true if success, else false.

Algorithm

Line 1 The condition is true if the terminating action of the transition is not a decision node.

Line 2 Decompose the decision node into a set of answers and an optional else answer.

Line 3-4 Check that no decision node in the answers contains overlapping answers.

Line 5 If the else answer is present then check that no contained decision node contains overlapping
answers.

Line 6-7 For any two different decision answers in the decision node lines 8-12 must hold.

Line 8-9 Obtain the answer range conditions from the two decision answers.

Line 10 Insert the scope unit level of the decision node into the Entity-dict in order to enable “static
evaluation” of the range conditions.

Line 11-12 If both answer range conditions are really range conditions (i.e. none of them is an informal text)
they are not allowed to overlap.

ranges-not-overlapping(rngcond1, rngcond2)(dict) (6.1.17)

1 (let-sort = sort-of-range-condition(rngcond1)(dict) in
2 (∀value ∈ values-of-sort(sort)(dict))
3 ((trap exit() with true in
4 let answerval1 = eval-range-condition(value, rngcond1)(dict),
5 answerval2 = eval-range-condition(value, rngcond2)(dict) in
6 answerval1 = dict(FALSEVALUE) ∨ answerval2 = dict(FALSEVALUE))))

type: Range-condition1 Range-condition1 → Entity-dict → Bool

Objective Check that two given range conditions do not overlap.

100 Recommendation Z.100 – Annex F.3 (03/93)

Parameters

rngcond1 The first range condition.

ragcond2 The second range condition.

Result true if success, else false.

Algorithm

Line 1 Obtain the sort of the values expected by the range conditions. If (some of) the contained condition
items expect a syntype the parent sort of this is obtained.

Line 2-6 The range conditions are disjoint exactly if there exists no value for which both range conditions
are True. For each value the two range conditions are “statically” evaluated (line 4-5) and it is
tested that at least one of the evaluation results is False (line 6). Any exit caused by range checks
for syntypes during evaluation of the range conditions is trapped (line 3) since range checks for
syntypes should not be applied until the decision is interpreted.

Recommendation Z.100 – Annex F.3 (03/93) 101

6.2 Handling of Abstract Data Types

This section contains the functions for handling of abstract data types. The entry functions are:

extract-sortdict which is applied during the construction of Entity-dict and which creates the type descriptors, sort
descriptors, syntype descriptors, literal descriptors and operator descriptors.

values-of-sort which is used to obtain all values of a given sort.

reduce-term which is used to obtain the ground term which has been chosen (during the creation of the
Entity-dict) to represent the equivalence class to which a given ground term belongs.

sort-of-range-condition which is used to obtain the sort of values which is expected by a range condition. If (some of)
the condition items of the range condition expect a syntype the corresponding parent sort is
returned.

sort-or-parent-sort which obtains the parent sort of a syntype. If a sort identifier is given to the function this sort
identifier is returned.

6.2.1 Entry Functions

extract-sortdict(typedef, syndefs, level)(dict) (6.2.1.1)

1 (let mk-Data-type-definition1(sorts, signatureset, eqs) = typedef in
2 let literald = [(id, VALUE) a mk-OperatorDD(〈 〉, result) |
3 mk-Literal-signature1(nm, result) ∈ signatureset ∧
4 id = mk-Identifier1(level, nm)],
5 operatord = [(id, VALUE) a mk-OperatorDD(arglist, result) |
6 mk-Operator-signature1(nm, arglist, result) ∈ signatureset ∧
7 id = mk-Identifier1(level, nm)],
8 sortd = [(id, SORT) a mk-SortDD() |
9 nm ∈ sorts ∧ id = mk-Identifier1(level, nm)],

10 syntyped = [(id, SORT) a mk-SyntypeDD(parsort, rngcond) |
11 mk-Syn-type-definition1(nm, parsort, rngcond) ∈ syndefs ∧
12 id = mk-Identifier1(level, nm)],
13 dict’ = dict + literald + operatord + sortd + syntyped in
14 let equations = collect-all-equations(eqs, level)(dict’),
15 sortmap = make-sortmap(sorts, equations, level)(dict’),
16 trmap = make-term-reduce-map(sortmap, level)(dict’),
17 dict’’ = dict’ + [(level, TYPE) a mk-TypeDD(trmap, sormap, equations)] in
18 (¬is-wf-literals(level)(dict’’)
19 → exit(“§5.3.1.7: Literal is equivalent to the error term”),
20 ¬is-wf-values(level)(dict’’)
21 → exit(“§5.2.1: Generation or reduction of equivalence classes of the enclosing scope unit”),
22 → dict’’))

type: Data-type-definition1 Syn-type-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Update Entity-dict to contain the descriptors for the data definitions (i.e. data type, sorts, syntypes,
literals and operators) at a given scope unit level.

Parameters

typedef The data type definition.

syndefs The syntype definitions.

level The level on which they are defined.

Result The updated Entity-dict.

102 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1 Decompose the data type definition into its contained sorts, literal and operator signatures, and
equations.

Line 2-3 Construct the descriptors for all the literals in the data type definition. They are considered as
operators without any arguments.

Line 5-7 Construct the descriptors for all the operators defined in the data type definition.

Line 8-9 Construct the descriptors for all the sorts defined in the data type definition.

Line 10-12 Construct the descriptors for the syntype definitions.

Line 13 Add the above constructed descriptors to the Entity-dict.

Line 14 Obtain the set of all equations which apply at this scope unit level.

Line 15 Use the equations to construct the Sortmap which applies at this scope unit level.

Line 16 Use the Sortmap to construct the Term-reduce-map which maps each equivalence class of this
scope unit level to a canonical ground term. The choice of these canonical ground terms is made by
the function make-term-reduce-map according to some criteria which will be explained in the
section where make-term-reduce-map.

Line 17 Insert a descriptor for the data type definition into the Entity-dict. The qualifier of the enclosing
scope unit is used as key for looking up this descriptor because a data type definition has no name.

Line 18-19 Check that no literal is equal to the error ! term.

Line 20-21 Check that no equivalence classes of the scope unit enclosing this one are unified, and that no new
equivalence classes are added to sorts visible in the scope unit enclosing this one.

Line 22 Return the updated Entity-dict.

values-of-sort(sortid)(dict) (6.2.1.2)

1 (let sortlevel = s-Qualifier1(sortid) in
2 let mk-TypeDD(trmap, ,) = dict((sortlevel, TYPE)) in
3 {val ∈ rng trmap \ {mk-Error-term1()} | is-of-this-sort(sortid, val)(dict)})

type: Sort-identifier1 → Entity-dict → Value-set

Objective Obtain the set of all values belonging to a given sort.

Parameters

sortid The identifier of the sort.

Result The set of values of the sort.

Algorithm

Line 1 Obtain the qualifier of the sort.

Line 2 Use this qualifier to look up the type descriptor for the scope unit where the sort is defined.

Line 3 The range of the Term-reduce-map of the scope unit contains all values of all sorts visible in that
scope unit, and the error term. Exclude the error term and select those values which belong to the
given sort.

Recommendation Z.100 – Annex F.3 (03/93) 103

reduce-term(term, level)(dict) (6.2.1.3)

1 (let mk-TypeDD(trmap, ,) = dict((level, TYPE)) in
2 let class ∈ dom trmap be s.t. term ∈ class in
3 let term’ = trmap(class) in
4 if is-Error-term1(term’) then
5 exit(“§5.3.1.7: Expression, term or value is equivalent to the error term”)
6 else
7 term’)

type: Ground-term1 Qualifier1 → Entity-dict → Value

Objective Given a ground term, obtain the canonical ground term which has been chosen to represent its
equivalence class in the rest of the system.

Parameters

term The ground term.

level The scope unit level at which the ground term has been built.

Result The canonical ground term.

Algorithm

Line 1 Obtain the Term-reduce-map for the scope unit level.

Line 2 Select the equivalence class which contains the ground term.

Line 3 Obtain the canonical ground term from the Term-reduce-map.

Line 4-5 It is an error if the ground term is equivalent to the error term.

Line 7 Return the canonical ground term.

sort-of-range-conditiont(mk-Range-condition1(, cset))(dict) (6.2.1.4)

1 (let condit ∈ cset in
2 let relopid = cases condit:
3 (mk-Open-range1(op,)
4 → op,
5 mk-Closed-range1(, , mk-Open-range1(op,))
6 → op) in
7 let mk-OperatorDD(sortlist,) = dict((relopid, VALUE)) in
8 sort-or-parent-sort(sortlist[1])(dict))

type: Range-condition1 → Entity-dict → Sort-identifier1

Objective Obtain the sort of the values which are expected by a range condition. If (some of) the condition items
in the range condition expect a syntype the parent sort of this is returned.

Parameters

cset The condition items of the range condition.

Result The sort expected by the range condition.

Algorithm

Line 1 Select an arbitrary condition item from the range condition. The static conditions on a range
condition ensure that all its condition items expect the same sort/parent sort.

Line 2-6 If the chosen condition item is an open range its relational operator is extracted (line 3-4). If it is a
closed range the relational operator of its second open range is extracted (line 5-6).

104 Recommendation Z.100 – Annex F.3 (03/93)

Line 7 Look up the argument sort list of the operator.

Line 8 The first argument sort/syntype of the operator is the one expected by the condition item. If the
argument sort/syntype is a syntype its parent sort is returned.

sort-or-parent-sort(sortref)(dict) (6.2.1.5)

1 cases dict((sortref, SORT)):
2 (mk-SortDD() → sortref,
3 mk-SyntypeDD(parsort,) → parsort)

type: Sort-reference-identifier1 → Entity-dict → Sort-identifier1

Objective If a given sort/syntype is a syntype then obtain its parent sort.

Parameters

sortref The sort/syntype identifier.

Result The sort/parent sort identifier.

Algorithm

Line 1 Look up the sort/syntype in the Entity-dict.

Line 2 If the sort/syntype is a sort it is returned.

Line 3 If the sort/syntype is a syntype its parent sort is returned.

Recommendation Z.100 – Annex F.3 (03/93) 105

6.2.2 Equation Collection
Recommendation Z.100 – Annex F.3 (03/93)

collect-all-equations(eqs, level)(dict) (6.2.2.1)

1 (let sureqs =
2 if len level = 1 then

3 {}

4 else

5 (let surlevel = 〈level[i] | 1 ≤ i < len level〉 in
6 s-Equations1(dict((surlevel, TYPE)))) in
7 eqs ∪ sureqs

type: Equations1 Qualifier1 → Entity-dict → Equations1

Objective Obtain the set of all equations which apply at a given scope unit level.

Parameters

eqs The equations defined in this scope unit.

level This scope unit level.

Result All equations which apply at this scope unit level.

Algorithm

Line 1-6 Obtain the equations visible in the enclosing scope unit. If the current scope unit is the system level
the “enclosing” equation set is empty.

Line 7 The equations applying at this scope unit levels are the ones defined at this level together with the
“enclosing” ones.

106 Recommendation Z.100 – Annex F.3 (03/93)

6.2.3 Equivalence Class Generation and Equation Evaluation

make-sortmap(sorts, equations, level)(dict) (6.2.3.1)

1 (let sursmap =
2 if len level = 1 then
3 []
4 else

5 (let surlevel = 〈level[i] | 1 ≤ i < len level〉 in
6 s-Sortmap(dict((surlevel, TYPE)))) in
7 let sortset = {mk-Identifier1(level, nm) | nm ∈ sorts} ∪ dom sursmap in
8 let initial-sortmap = [sort a make-equivalence-classes(sort)(dict) | sort ∈ sortset] in
9 eval-equations(initial-sortmap, equations)(dict))

type: Sorts1 Equations1 Qualifier1 → Entity-dict → Sortmap

Objective Construct the Sortmap which applies at a given scope unit level.

Parameters

sorts The sorts defined in this scope unit.

equations The equations visible in this scope unit.

level The qualifier for this scope unit.

Result The Sortmap.

Algorithm

Line 1-6 Obtain the sort map which applies at the enclosing scope unit level. If the current scope unit is the
system level the “enclosing” sort map is empty.

Line 7 Obtain the set of all sorts visible in this scope unit.

Line 8 Construct the initial sort map where each possible ground term is in its own equivalence class.

Line 9 Construct equivalence classes according to the equations.

make-equivalence-classes(sort)(dict) (6.2.3.2)

1 {{term} | term ∈ Ground-term1 ∧ is-of-this-sort(sort, term)(dict)} ∪ {{mk-Error-term1 ()}}

type: Sort-identifier1 → Entity-dict → Term-class-set

Objective For a given sort, construct the initial set of equivalence classes where each ground term is contained in
its own equivalence class.

Parameters

sort The identifier of the sort.

Result The initial set of equivalence classes.

Algorithm Select all ground terms which belong to the given sort and put each one in its own equivalence
class. An equivalence class containing the error term only is also included.

Recommendation Z.100 – Annex F.3 (03/93) 107

is-of-this-sort(sortref, t)(dict) (6.2.3.3)

 1 (let sortid = sort-or-parent-sort(sortref)(dict),

 2 mk-Ground-term1(term) = t in
 3 (is-Identifier1(term)

 4 → (let entry = (term, VALUE) in
 5 entry ∈ dom dict ∧ is-OperatorDD(dict(entry)) ∧
 6 (let mk-OperatorDD(sortlist, result) = dict(entry) in
 7 sortlist = 〈 〉 ∧ result = sortid)),
 8 is-Conditional-term1(term)
 9 → false,
10 → (let (opid, arglist) = term in
11 let entry = (opid, VALUE) in
12 entry ∈ dom dict ∧ is-OperatorDD(dict(entry)) ∧
13 (let mk-OperatorDD(sortlist, result) = dict(entry) in
14 len arglist = len sortlist ∧
15 (∀i ∈ ind arglist)(is-of-this-sort(sortlist[i], arglist[i])(dict)) ∧
16 sort-or-parent-sort(result)(dict) = sortid))))

type: Sort-reference-identifier1 Ground-term1 → Entity-dict → Bool

Objective Test whether a given ground term belongs to a given sort. If the sort given is actually a syntype its
parent sort is used.

Parameters

sortref The identifier of the sort/syntype.

t The ground term.

Result true if the ground term belongs to the given sort, else false.

Algorithm

Line 1 Obtain the sort/parent sort of the sort/syntype.

Line 2 Get the “contents” of the ground term.

Line 3 If the term is an identifier then

Line 5 the identifier must be found in Entity-dict as a (literal) operator,

Line 7 the argument list of which is empty in the descriptor, and the result sort must be appropriate
according to the result sort found in the descriptor.

Line 8-9 If the term is a conditional term then it does not represent a value (but the consequence and
alternative in the conditional term may do).

Line 10 If the term is an operator term then

Line 12 the operator must be found in Entity-dict,

Line 14 the number of arguments in the descriptor must be equal to the number of arguments present in the
term,

Line 15 each argument term must be of the appropriate sort according to the argument list found in the
descriptor,

Line 16 and the result sort must be appropriate according to the result sort found in the descriptor.

108 Recommendation Z.100 – Annex F.3 (03/93)

eval-equations(sortmap, equations)(dict) (6.2.3.4)

 1 (let trueterm = dict(TRUEVALUE),

 2 falseterm = dict(FALSEVALUE) in
 3 let quanteq = {eq ∈ equations | is-Quantified-equations1(eq)},

 4 rest = equations \ quanteq in
 5 let unquant = union {eval-quantified-equation(sortmap, eq) | eq ∈ quanteq} in
 6 let rest′ = expand-conditional-term-in-equations(rest ∪ unquant, trueterm, falseterm) in
 7 let rest′′ =
 8 union {if is-Conditional-equation1(eq)
 9 then expand-conditional-term-in-conditions({eq}, trueterm, falseterm)
10 else {eq} | eq ∈ rest′} in
11 let unquanteqs = {eq ∈ rest′′ | is-Unquantified-equation1(eq)},
12 condeqs = {eq ∈ rest′′ | is-Conditional-equation1(eq)} in
13 let sortmap′ = eval-unquantified-equations(sortmap, unquanteqs) in
14 eval-conditional-equations(sortmap′, condeqs))

type: Sortmap Equations1 → Entity-dict → Sortmap

Objective Reduce the number of equivalence classes for the sorts visible in a given scopeunit according to a set
of equations.

Parameters

sortmap A Sortmap containing the equivalence classes which are to be reduced

equations A set of equations.

Result The modified Sortmap.

Algorithm

Line 1-2 Extract the AS1 representations for the Boolean literals True and False from Entity-dict.

Line 3 Extract the equations which are quantified.

Line 5 Turn the set of quantified equations into a set of unquantified equations

Line 6 Turn all the conditional terms occurring in the modified set of equations (except for those occurring
in the conditions of conditional equations) into a set of conditional equations.

Line 7-10 Turn all the conditional equations which contain conditional terms in the condition set, into a set of
conditional equations without any conditional terms in the conditions (see example in the text
following the function expand-conditional-term-in-conditions).

Line 11-12 Split the resulting set of equations (rest") into a set of unquantified equations and a set of
conditional equations.

Line 13 Modify sortmap in accordance with the set of unquantified equations.

Line 14 Return the Sortmap which is sortmap modified in accordance with the set of conditional equations.

Recommendation Z.100 – Annex F.3 (03/93) 109

eval-quantified-equation(sortmap, quanteqs) (6.2.3.5)

 1 (let mk-Quantified-equations1(nmset, sortid, equations) = quanteqs in
 2 let nm ∈ nmset in
 3 let mk-Identifier1(level, snm) = sortid in

 4 let valueid = mk-Identifier1(level 〈mk-Sort-qualifier1(snm)〉, nm) in

 5 let allterms = union sortmap(sortid) \ {mk-Error-term1()} in
 6 let equations′ = union{union {insert-term(sortmap, eq, valueid, term) | term ∈ allterms} |

 7 eq ∈ equations} in
 8 if nmset = {nm} then
 9 equations′
10 else
11 (let quanteq = mk-Quantified-equations1(nmset \ {nm}, sortid, equations′) in
12 eval-quantified-equation(sortmap, quanteq)))

type: Sortmap Quantified-equations1 → Equations1

Objective Expand a quantified equation into a set of unquantified equations.

Parameters

sortmap The Sortmap of the enclosing data type definition, wherein the terms (still) are in different
equivalence classes

quanteqs The quantified equations.

Result The resulting set of unquantified equations.

Algorithm

Line 2 Take one of the value names in the quantified equation.

Line 4 Make the value identifier corresponding to the value name

Line 5 Make a set (allterms) consisting of all possible terms (except the Error-term1) for the quantifying
sort.

Line 6-7 Construct a set of unquantified equations from the set of equations contained in the quantified
equation by replacing the value identifier in the set of equations by every term in allterms.

Line 8 If every value name has been replaced in the equations then return the equations (equations′) else

Line 11-12 Do the same for the rest of the value names in the quantified equation.

insert-term(sortmap, equation, vid, term) (6.2.3.6)

 1 cases equation:

 2 (mk-Unquantified-equation1(term1, term2)

 3 → {mk-Unquantified-equation1(insert-term-in-term(term1, vid, term),

 4 insert-term-in-term(term2, vid, term))},

 5 mk-Quantified-equations1(, ,)

 6 → (let equations = eval-quantified-equation(sortmap, equation) in

 7 union {insert-term(sortmap, eq, vid, term) | eq ∈ equations}),

 8 mk-Conditional-equation1(eqs, eq)

 9 → (let mk-Unquantified-equation1(term1, term2) = eq,

10 eqs′ = union {insert-term(sortmap, e, vid, term) | e ∈ eqs} in
11 let eq′ = mk-Unquantified-equation1(insert-term-in-term(term1, vid, term),

12 insert-term-in-term(term2, vid, term)) in

13 {mk-Conditional-equation1(eqs′, eq′)}),

14 → {equation})

type: Sortmap Equation1 Value-identifier1 Ground-term1 → Equations1

110 Recommendation Z.100 – Annex F.3 (03/93)

Objective Replace a value name by a Ground-term1 in an equation enclosed by a quantified equation.

Parameters

sortmap A Sortmap which is used if the equation (in turn) contains quantified equations

equation The equation to be modified

vid The value identifier which should be replaced

term The Term1 by which vid should be replaced.

Result A set of equations containing the modified equation. If the equation is quantified equation, the set
might contain more that one equation.

Algorithm

Line 2-4 If it is an unquantified equation then replace vid by term in the two contained terms (term1, term2).

Line 5-7 If it is a quantified equation then first expand it into a set of unquantified equations and then replace
the value identifier in every equation in the set.

Line 8-13 If it is a conditional equation then replace the value identifier by the term in every equation in the
restriction and in the restricted equation and construct and return a set containing the modified
conditional equation.

Line 14 If it is informal text then do not touch it.

insert-term-in-term(term, vid, vterm) (6.2.3.7)

 1 if is-Ground-term1(term) ∨ is-Error-term1(term) then

 2 term

 3 else

 4 (let mk-Composite-term1(term′) = term in

 5 (is-Identifier1(term′)

 6 → if term′ = vid then vterm else term,

 7 is-Conditional-term1(term′)

 8 → (let mk-Conditional-term1(cond, t1, t2) = term′ in
 9 let cond′ = insert-term-in-term(cond, vid, vterm),

10 t1′ = insert-term-in-term(t1, vid, vterm),

11 t2′ = insert-term-in-term(t2, vid, vterm) in

12 let term′′ = mk-Conditional-term1(cond′, t1′, t2′) in
13 if is-Ground-term1(cond′) ∧ is-Ground-term1(t1′) ∧ is-Ground-term1(t2′) then

14 mk-Ground-term1(term′′)
15 else

16 mk-Composite-term1(term′′)),
17 → (let (opid, arglist) = term′ in
18 let arglist′) = 〈insert-term-in-term(arglist[i], vid, vterm) | 1 ≤ i ≤ len arglist〉 in
19 if (∃ arg ∈ elems arglist)(is-Composite-term1(arg)) then

20 mk-Composite-term1((opid, arglist′))
21 else

22 mk-Ground-term1((opid, arglist′)))))

type: Term1 Value-identifier1 Ground-term1 → Term1

Objective Replace a value identifier (vid) by a (ground) term (vterm) in a term (term).

Parameters

term The Term1 which should have its value identifier replaced.

Recommendation Z.100 – Annex F.3 (03/93) 111

vid The value identifier to be replaced

vterm The Term1 which should be inserted instead of the value identifier.

Result The modified term.

Algorithm

Line 1 If it is a ground term or an error term then do not modify it.

Line 5-6 If it is an identifier and it is equal to vid then return the new term else do not modify it.

Line 7-12 If it is a conditional term then construct the conditional term wherein occurrences of vid in the three
contained terms has been replaced by vterm.

Line 13-16 If all the three contained terms have become ground terms then return the new conditional term as a
ground term else return it as a composite term.

Line 17-22 Else term must be an operator term in which case vid in the argument terms is replaced by vterm
and if all the modified argument terms have become ground terms then return the new operator
term as a ground term else return it as a composite term.

expand-conditional-term-in-equations(equations, trueterm, falseterm) (6.2.3.8)

 1 if equations = {} then

 2 {}

 3 else

 4 (let eq ∈ equations in

 5 let (condset, eq′) =
 6 cases eq:

 7 (mk-Unquantified-equation1(,)

 8 → ({}, eq),

 9 mk-Conditional-equation1(condeq, eq)

10 → (condeq, eq)) in

11 let mk-Unquantified-equation1(t1, t2) = eq′ in

12 let (t1′, t1′′, cond1) = expand-conditional-in-terms(t1),

13 (t2′, t2′′, cond2) = expand-conditional-in-terms(t2) in

14 if cond1 = nil ∧ cond2 = nil then

15 {eq} ∪ expand-conditional-term-in-equations(equations \ {eq}, trueterm, falseterm)

16 else

17 (let (cond, term, nterm1, nterm2) be s.t. (cond, term, nterm1, nterm2) ∈
18 {(cond2, t1, t2′, t2′′), (cond1, t2, t1′, t1′′)} ∧ cond ≠ nil in

19 let eq1 = mk-Unquantified-equation1(cond, trueterm),

20 eq2 = mk-Unquantified-equation1(cond, falseterm) in

21 let condeq1 =
22 mk-Conditional-equation1(condset ∪ {eq1}, mk-Unquantified-equation1(term, nterm1)),

23 condeq2 =
24 mk-Conditional-equation1(condset ∪ {eq2}, mk-Unquantified-equation1(term, nterm2)) in

25 let equations′ = equations ∪ {condeq1, condeq2} \ {eq} in

26 expand-conditional-term-in-equations(equations′, trueterm, falseterm)))

type: Equations1 Ground-term1 Ground-term1 → Equations1

Objective Replace every Conditional-term1 by two Conditional-equation1s.

Example: The equation

if a then b else c fi == d;

is expanded into

��� 5HFRPPHQGDWLRQ�=�����±�$QQH[�)��������������

a == True ==> b == d;

a == False ==> c == d;

3DUDPHWHUV

HTXDWLRQV 7KH�VHW�RI�HTXDWLRQV�WR�EH�UHSODFHG

WUXHWHUP�IDOVHWHUP 7KH�WZR�JURXQG�WHUPV�GHQRWLQJ�WKH�ERROHDQ�7UXH�DQG�)DOVH

5HVXOW 7KH�PRGLILHG�VHW�RI�HTXDWLRQV�FRQWDLQLQJ�QR�&RQGLWLRQDO�WHUP�V

$OJRULWKP

/LQH�� :KHQ�WKH�VHW�RI�HTXDWLRQV�LV�HPSW\��UHWXUQ�QRWKLQJ

/LQH���� 7DNH�D�HTXDWLRQ�IURP�WKH�VHW�DQG�H[WUDFW�WKH�VHW�RI�UHVWULFWLRQ��FRQGVHW��DQG�WKH�UHVWULFWHG�HTXDWLRQ
�HT
���,I�LW�LV�DQ�XQTXDQWLILHG�HTXDWLRQ��WKH�UHVWULFWLRQ�VHW�LV�HPSW\�

/LQH������ 0RGLI\�WKH�WHUPV�LQ�WKH�UHVWULFWHG�HTXDWLRQ��FRQG��DQG�FRQG��DUH�WKH�FRQGLWLRQV�WR�EH�WHVWHG�XSRQ�
$�FRQGLWLRQ� LV�QLO� LI� WKH� WHUP�GR�QRW�FRQWDLQ�DQ\�FRQGLWLRQDO� WHUPV�� W�
�� W�
�DUH� WKH�RULJLQDO� WHUPV
�W���W���ZKHUHLQ�D�FRQGLWLRQDO�WHUP�KDV�EHHQ�UHSODFHG�E\�WKH�WKHQ�SDUW�RI�WKH�FRQGLWLRQDO�WHUP�DQG
WO��W���DUH� WKH�RULJLQDO� WHUPV�ZKHUHLQ� D� FRQGLWLRQDO� WHUP�KDV�EHHQ� UHSODFH�E\� WKH�HOVH� SDUW� RI� WKH
FRQGLWLRQDO�WHUP�

/LQH������ ,I� QRQH� RI� WKH� WZR� WHUPV� FRQWDLQHG� DQ\� FRQGLWLRQDO� WHUPV� WKHQ� GR� QRW� FKDQJH� WKH� HTXDWLRQ� DQG
FRQWLQXH�ZLWK�DQRWKHU�HTXDWLRQ�LQ�HTXDWLRQV

/LQH��� &KRRVH�RQH�RI�WKH�WZR�WHUPV�WR�GHDO�ZLWK��7KH�RWKHU�RQH�ZLOO�QRW�EH�FKDQJHG�LQ�WKLV�FDOO�

/LQH������ &RQVWUXFW�WKH�WZR�XQTXDQWLILHG�HTXDWLRQV��ZKLFK�PXVW�KROG�IRU�WKH�WZR�PRGLILHG�HTXDWLRQV�

/LQH������ &RQVWUXFW� WZR� FRQGLWLRQDO� HTXDWLRQV� ZKHUHLQ� HT�� UHVSHFWLYH� HT�� KDV� EHHQ� DGGHG� DV� DQ� H[WUD
FRQGLWLRQ�� �FRQGHT��� FRQWDLQV� DQ� HTXDWLRQ�ZKHUHLQ� RQH� RI� WKH� RULJLQDO� WHUPV� �W��RU� W���KDV� EHHQ
UHSODFHG�E\�D�WHUP�FRQWDLQLQJ�WKH�WKHQ�SDUW�DQG��FRQGHT���FRQWDLQV�DQ�HTXDWLRQ�ZKHUHLQ�RQH�RI�WKH
RULJLQDO�WHUPV�KDV�EHHQ�UHSODFHG�E\�D�WHUP�FRQWDLQLQJ�WKH�HOVH�SDUW�

/LQH��� ,QFOXGH� WKH� WZR� QHZ� FRQGLWLRQDO� HTXDWLRQV� LQ� WKH� VHW� RI� UHPDLQLQJ� HTXDWLRQV� WR� EH� FRQVLGHUHG
�EHFDXVH�RQH�RI�WKH�WHUPV�LQ�HT�KDV�QRW�EHHQ�H[SDQGHG�DQG�EHFDXVH�WKH�H[SDQGHG�WHUP�PD\�FRQWDLQ
IXUWKHU�FRQGLWLRQDO�WHUPV��

5HFRPPHQGDWLRQ�=�����±�$QQH[�)�������������� ���

H[SDQG�FRQGLWLRQDO�WHUP�LQ�FRQGLWLRQV�HTXDWLRQV��WUXHWHUP��IDOVHWHUP�� ���������

��� LI�HTXDWLRQV�=�^`�WKHQ
��� ^`
��� HOVH
��� �OHW�HT�∈�HTXDWLRQV�LQ
��� OHW�PN�&RQGLWLRQDO�HTXDWLRQ��FRQGVHW��HT′��=�HT�LQ
��� LI��$FRQG�∈�FRQGVHW�
��� ��OHW�PN�8QTXDQWLILHG�HTXDWLRQ��W���W���=�FRQG�LQ
��� OHW������FRQG���=
��� H[SDQG�FRQGLWLRQDO�LQ�WHUPV�W���
�� �����FRQG���=
�� H[SDQG�FRQGLWLRQDO�LQ�WHUPV�W���LQ
�� FRQG��≠�QLO�∨�FRQG��≠�QLO���WKHQ
�� �OHW��FRQGHT��FRQG��WHUP��QWHUP���QWHUP���EH�V�W��FRQGHT�∈�FRQGVHW�∧
�� �OHW�PN�8QTXDQWLILHG�HTXDWLRQ��W���W���=
�� FRQGHT�LQ
�� OHW��W�′��W�′′��FRQG���=
�� H[SDQG�FRQGLWLRQDO�LQ�WHUPV�W���
�� �W�′��W�′′,�FRQG���=
�� H[SDQG�FRQGLWLRQDO�LQ�WHUPV�W���LQ
�� �FRQG��WHUP��QWHUP���QWHUP���=��LI�FRQG��=�QLO
�� WKHQ��FRQG���W���W�′�W�′′�
�� HOVH��FRQG���W���W�′�W�′′����LQ
�� OHW�HT��=�PN�8QTXDQWLILHG�HTXDWLRQ��FRQG��WUXHWHUP��

�� HT��=�PN�8QTXDQWLILHG�HTXDWLRQ��FRQG��IDOVHWHUP��LQ
�� OHW�FRQGVHW′�=�FRQGVHW�?�^FRQGHT`�∪�^HT���PN�8QTXDQWLILHG�HTXDWLRQ��WHUP��QWHUP��`�
�� FRQGVHW′′�=�FRQGVHW�?�^FRQGHT`�∪�^HT���PN�8QTXDQWLILHG�HTXDWLRQ��WHUP��QWHUP��`�LQ
�� OHW�HTXDWLRQV′�=�HTXDWLRQV�?�^HT`�∪�^PN�&RQGLWLRQDO�HTXDWLRQ��FRQGVHW′��HT′��
�� PN�&RQGLWLRQDO�HTXDWLRQ��FRQGVHW′′��HT′�`�LQ
�� H[SDQG�FRQGLWLRQDO�WHUP�LQ�FRQGLWLRQV�HTXDWLRQV′��WUXHWHUP��IDOVHWHUP��
�� HOVH
�� ^HT`�∪�H[SDQG�FRQGLWLRQDO�WHUP�LQ�FRQGLWLRQV�HTXDWLRQV�?�^HT`��WUXHWHUP��IDOVHWHUP��

W\SH� &RQGLWLRQDO�HTXDWLRQ��VHW�*URXQG�WHUP��*URXQG�WHUP��→�(TXDWLRQV�

2EMHFWLYH 6SOLW� WKH� FRQGLWLRQDO� HTXDWLRQV� LQ� HTXDWLRQV� LQWR� WZR� FRQGLWLRQDO� HTXDWLRQV� LI� WKH\� FRQWDLQ� DQ\
FRQGLWLRQDO�WHUPV�LQ�WKH�5HVWULFWLRQ��

([DPSOH��7KH�HTXDWLRQ

if b then c else d fi == e ==> f == g;

LV�H[SDQGHG�LQWR

b == True, c == e == > f == g;

b == False, d == e == > f == g;

3DUDPHWHUV

HTXDWLRQV 7KH�VHW�RI�FRQGLWLRQDO�HTXDWLRQV

WUXHWHUP��IDOVHWHUP 7KH�WZR�JURXQG�WHUPV�GHQRWLQJ�ERROHDQ�7UXH�DQG�)DOVH�

5HVXOW 7KH�H[SDQGHG�VHW�RI�HTXDWLRQV�

$OJRULWKP

/LQH�� :KHQ�WKURXJK��UHWXUQ�WKH�HPSW\�VHW

/LQH����� 7DNH� D� FRQGLWLRQDO� HTXDWLRQ� IURP� WKH� VHW� DQG� LI� LW� GRHV� QRW� FRQWDLQ� D� FRQGLWLRQDO� WHUP� LQ� WKH
UHVWULFWLRQ�SDUW�WKHQ�FRQWLQXH�ZLWK�WKH�UHVW�RI�HTXDWLRQV�LQ�WKH�VHW��OLQH����

114 Recommendation Z.100 – Annex F.3 (03/93)

Line 13-21 Extract the unquantified equation from the set of restrictions which contains the conditional term
(condeq), the condition in the conditional term (cond), the then version of the term in the
unquantified equation containing the conditional term (nterml), the else version of the term in the
unquantified equation containing the conditional term (nterm2) and the other term of the
unquantified equation (term).

Line 23-24 Construct the two additional restrictions to be included in the respective restriction sets.

Line 25-26 Construct the two modified restriction sets.

Line 27 Replace the old conditional equation by the two new conditional equations in the equation set.

Line 29 Repeat the operation with the modified equation set.

expand-conditional-in-terms(t) (6.2.3.10)

 1 if is-Error-term1(t) then
 2 (t, t, nil)
 3 else
 4 (let mk-Ground-term1(term) = t in
 5 cases term:
 6 (mk-Identifier1(,)

 7 → (t, t, nil),
 8 mk-Conditional-term1(cond, t1, t2)

 9 → (t1, t2, cond),

10 (id, arglist)
11 → if (∃ arg ∈ elems arglist)
12 ((let (, , cond) =
13 expand-conditional-in-terms(arg) in
14 cond ≠ nil)) then
15 (let (i, t1, t2, cond) be s.t. i ∈ ind arglist ∧
16 cond ≠ nil ∧
17 expand-conditional-in-terms(arglist [i]) = (t1, t2, cond) in
18 let arglist′ =
19 〈arglist [n] | 1 ≤ n < i〉 〈t1〉 〈arglist[n] | i < n ≤ len arglist〉,
20 arglist′′ =
21 〈arglist[n] | 1 ≤ n < i〉 〈t2〉 〈arglist[n] | i < n ≤ len arglist〉 in
22 (mk-Ground-term1((id, arglist′)), mk-Ground-term1((id, arglist′′)), cond))
23 else
24 (t, t nil)))

type: Term1 → Term1 Term1 [Ground-term1]

Objective Split a term (t) into three terms. If t does not contain a conditional term then the two first terms are not
relevant and the third one is nil . Otherwise the result is t modified to contain the then part, t modified
to contain the else part and the boolean condition term.

Result The three new terms.

Algorithm

Line 1-6 If it is an error term then do not modify it and indicate that it does not contain a conditional term by
returning nil as the condition term.

Line 8 If it is a conditional term then return its three parts.

Line 10-14 If it is an operator term and one of its arguments contain a conditional term then

Recommendation Z.100 – Annex F.3 (03/93) 115

Line 15-17 Take an argument term which contains a conditional term and split it. i is the position in the
argument list.

Line 18-20 Construct the argument lists for the then part (arglist’) and for the else part (arglist’’) and

Line 22 Return the two operator terms corresponding to the then part, to the else part and the boolean
condition in the conditional term in the argument.

eval-unquantified-equations(sortmap, equations) (6.2.3.11)

 1 (if equations = {} then
 2 sortmap
 3 else
 4 (let eq ∈ equations in
 5 let mk-Unquantified-equation1(lterm, rterm) = eq in
 6 let sort ∈ dom sortmap be s.t. (∃termset ∈ sortmap(sort))(lterm ∈ termset) in
 7 let termset1 be s.t. termset1 ∈ sortmap(sort) ∧ lterm ∈ termset1 in
 8 let termset2 be s.t. termset2 ∈ sortmap(sort) ∧ rterm ∈ termset2 in
 9 if termset1 = termset2 then
10 eval-unquantified-equations(sortmap, equations \ {eq})
11 else
12 (let newset = sortmap(sort) \ {termset1, termset2} ∪ {termset1 ∪ termset2} in
13 let sortmap′ = sortmap + [sort a newset] in
14 let sortmap′′ = eval-deduced-equivalence(sortmap′) in
15 eval-unquantified-equations(sortmap′′, equations \ {eq}))))

type: Sortmap Equations1 → Sortmap

Objective Modify sortmap (the equivalence classes) in accordance with equations.

Parameters

Sortmap A Sortmap to be modified.

equations A set of unquantified equations.

Algorithm

Line 1 When through, return the modified Sortmap

Line 4-5 Extract the two Term1s from one of the (remaining) equations.

Line 6 Extract the sort of lterm (which is the same as the sort of rterm).

Line 7 Extract the equivalence class which contains lterm.

Line 8 Extract the equivalence class which contains rterm.

Line 9 If the terms denote the same equivalence class then do not update sortmap else

Line 12 Define a new set of equivalence classes wherein the two equivalence classes has been unified.

Line 13 Modify sortmap to contain the new set of equivalence classes

Line 14 Reduce the number of equivalence classes by using the information obtained by the equation

Line 15 Repeat the operation for the rest of the equations.

116 Recommendation Z.100 – Annex F.3 (03/93)

eval-deduced-equivalence(sortmap) (6.2.3.12)

 1 if (∃class1, class2, class3 ∈ union rng sortmap)
 2 (class1 ≠ class2 ∧
 3 (∃term1, term2 ∈ class3)((∃term ∈ class1)(replace-term(term, term1, term2) ∈ class2))) then
 4 (let (class1, class2, class3) be s.t. {class1, class2, class3} ⊂ union rng sortmap ∧
 5 class1 ≠ class2 ∧
 6 (∃term1, term2 ∈ class3)((∃term ∈ class1)(replace-term(term, term1, term2) ∈ class2)) in
 7 let sort be s.t. {class1, class2} ⊂ rng sortmap(sort) in
 8 let classes = sortmap(sort) in
 9 let classes′ = classes \ {class1, class2} ∪ {class1 ∪ class2} in
10 let sortmap′ = sortmap + [sort a classes′] in
11 eval-deduced-equivalence(sortmap′))
12 else
13 sortmap

type: Sortmap → Sortmap

Objective Reduce the number of the equivalence classes for sorts by using the information that two terms of a
sort are in the same equivalence class.

Parameters

sortmap A Sortmap containing the equivalence classes which are to be modified

Result The Sortmap where the number of equivalence classes for some of the sorts has been reduced

Algorithm

Line 1 If there exists three equivalence classes class1, class2, class3 in the Sortmap such that class1 and
class2 are disjoint (class3 may be equal to class1 or class2 or it may denote another equivalence
class, even of another sort) and there exists two terms (term1 and term2) in class3 such that when
replacing term1 by term2 in a term (term) taken from class1, a term in class2 is obtained then

Line 4-13 class1 and class2 are merged into one equivalence class

Line 4-6 Let classl, class2, class3 denote three such equivalence classes

Line 7 Let sort denote the sort of class1 and class2. class1 and class2 cannot be of different sort as
line 1-3 in that case would not be satisfied

Line 8-10 Form a new Sortmap where the two equivalence classes for the sort have been merged

Line 11 Repeat the operation (with the modified Sortmap) until no more equivalence classes can be merged

Recommendation Z.100 – Annex F.3 (03/93) 117

replace-term(term, oldterm, newterm) (6.2.3.13)

 1 if term = oldterm) then
 2 newterm
 3 else
 4 (let mk-Ground-term1(contents) = term in
 5 (is-Identifier1(contents)

 6 → term,
 7 → (let (opid, arglist) = term in
 8 if (∃i ∈ ind arglist)(replace-term(arglist[i], oldterm, newterm) ≠ arglist[i]) then
 9 (let i ∈ ind arglist be s.t. replace-term(arglist[i], oldterm, newterm) ≠ arglist[i] in
10 let arglist′ = 〈arglist[n] | 1 ≤ n < i〉
11 〈replace-term(arglist[i], oldterm, newterm)〉
12 〈arglist[n] | i < n ≤ len arglist〉 in
13 mk-Ground-term1((opid, arglist′)))
14 else
15 term)))

type: Ground-term1 Ground-term1 Ground-term1 → Ground-term1

Objective Replace an occurrence of oldterm in term by newterm and return the modified term

Algorithm

Line 1 If the entire term is equal to oldterm then return the new term

Line 5 If the term is an identifier (and it is different from oldterm) then no replacement is made else

Line 7 The term is an operator term (conditional terms cannot occur since term is taken from an equivalence
class). Let op denote the operator identifier and let arglist denote the argument list

Line 8 If there exists an argument which contains oldterm then

Line 9 Let i denote the index to the argument which contains oldterm

Line 10-12 Construct the argument list where an occurrence of oldterm in element i has been replaced by newterm

Line 13 Return the modified term

Line 15 If oldterm do not occur in the argument list then the term is not changed

eval-conditional-equations(sortmap, condequations) (6.2.3.14)

 1 if (∃condeq ∈ condequations)(restriction-holds(condeq, sortmap)) then
 2 (let condeq ∈ condequations be s.t. restriction-holds(condeq, sortmap) in
 3 let mk-Conditional-equation1(, eq) = condeq in
 4 let sortmap′ = eval-unquantified-equations(sortmap, {eq}) in
 5 eval-conditional-equations(sortmap′, condequations \ {condeq}))
 6 else
 7 sortmap

type: Sortmap Conditional-equation1-set → Sortmap

Objective Reduce the number of equivalence classes in a Sortmap in accordance with the conditional equations
for a scopeunit.

Parameters

sortmap A Sortmap

condequations A set of conditional equations

118 Recommendation Z.100 – Annex F.3 (03/93)

Result The modified Sortmap

Algorithm

Line 1 If there exists a conditional equation which holds then

Line 2 Let condeq denote the conditional equation which holds

Line 3-4 Update Sortmap with the properties reflected by the restricted equation (eq)

Line 5 Repeat the operation until there are no more conditional equations in the remaining set which hold.

restriction-holds(mk-Conditional-equation1(eqs,), sortmap) (6.2.3.15)

1 (let termpairs = {{term1, term2} | mk-Unquantified-equation1(term1, term2) ∈ eqs} in

2 (∀pair ∈ termpairs)((∃class ∈ union rng sortmap)(pair ⊆ class)))

type: Conditional-equation1 Sortmap → Bool

Objective Test whether the set of restrictions for a conditional equation holds

Parameters

eqs The set of restrictions

sortmap The Sortmap used for checking whether the restrictions hold

Result True if success

Algorithm

Line 1 Construct a set of pairs of terms each containing the left-hand side term and the right-hand side
term of a restriction in the set of restrictions

Line 2 The restrictions hold if it for each restriction holds that the right-hand side term is in the same
equivalence class as the left-hand side term.

Recommendation Z.100 – Annex F.3 (03/93) 119

6.2.4 Term Reduction Map Generation

make-term-reduce-map(sortmap, level)(dict) (6.2.4.1)

 1 (let surtrmap =
 2 if len level = 1 then

 3 (let recogterms = {dict(TRUEVALUE), dict(FALSEVALUE), dict(NULLVALUE)} in
 4 [{t} a t | t ∈ recogterms])
 5 else

 6 (let surlevel = 〈level[i] | 1 ≤ i < len level〉 in
 7 s-Term-reduce-map(dict((surlevel, TYPE)))) in
 8 let classes = union rng sortmap in
 9 [class → (mk-Error-term1() ∈ class
10 → mk-Error-term1(),
11 (∃class′ ∈ dom surtrmap)(class′ ⊆ class)
12 → (let class′ ∈ dom surtrmap) be s.t. class′ ⊆ class in
13 surtrmap(class′)),
14 → (let term ∈ class in
15 term)) |
16 class ∈ classes])

type: Sortmap Qualifier1 → Entity-dict → Term-reduce-map

Objective Construct the Term-reduce-map which applies at a given scope unit level.

Parameters

sortmap The sortmap which applies at the given scope unit level.

sortmap The qualifier for the scope unit level.

Result A Term-reduce-map mapping all equivalence classes visible at the given scope unit level to their
chosen canonical ground term.

Algorithm

Line 1-7 Obtain the Term-reduce-map which applies at the enclosing scope unit level. If the current scope
unit is the system level the “enclosing” Term-reduce-map is a dummy one (line 3-4) ensuring that
the three SDL values which must be recognizable by the interpretation functions (SDL Pid value
Null and Boolean values True and False) are always represented by the ground terms found in the
Entity-dict entries TRUEVALUE, FALSEVALUE and NULLVALUE.

Line 8 Get the set of all equivalence classes visible at the current scope unit level.

Line 9-16 Each canonical ground term is selected according to the following criteria:

Line 9-10 If the equivalence class contains the error term the error term is chosen as canonical term.

Line 11-13 If the value represented by the equivalence class is also visible at the enclosing scope unit level
(i.e. there exists an “enclosing” equivalence class such that this class is a subset of the treated
equivalence class, line 11), then the canonical term chosen in the enclosing scope unit is also
chosen in the current scope unit.

Line 14-15 If the value represented by the equivalence class belongs to a sort local to the current scope unit an
arbitrary ground term is chosen as canonical ground term.

120 Recommendation Z.100 – Annex F.3 (03/93)

6.2.5 Wellformedness Checks

is-wf-literals(level)(dict) (6.2.5.1)

 1 (let sortmap = s-Sortmap(dict((level, TYPE))) in
 2 let classes = union rng sortmap in
 3 ¬(∃class ∈ classes)
 4 ((∃{mk-Ground-term1(t), mk-Error-term1 ()} ⊆ class)
 5 (is-Identifier1(t))))

type: Qualifier1 → Entity-dict → Bool

Objective Check that no literal is equal to the error term.

Parameters

level The qualifier denoting the current scope unit level.

Result true if the check succeed, else false.

Algorithm

Line 1 Obtain the sort map for the scope unit.

Line 2 Get all equivalence classes visible in the scope unit.

Line 3-5 There must not exist an equivalence class which both contains a literal ground term and the error
term.

is-wf-values(level)(dict) (6.2.5.2)

 1 if len level = 1 then
 2 (let sortmap = s-Sortmap(dict((level, TYPE))) in
 3 is-wf-boolean(sortmap, dict(TRUEVALUE), dict(FALSEVALUE)) ∧
 4 is-wf-pid(sortmap(dict(PIDSORT))))
 5 else
 6 (let surlevel = 〈level[i] | 1 ≤ i < len level〉 in
 7 let sursortmap = s-Sortmap(dict((surlevel, TYPE))),
 8 sortmap = s-Sortmap(dict((level, TYPE))) in
 9 (∀sortid ∈ dom sursortmap)
10 ((let survset = sursortmap(sortid),
11 vset = sortmap(sortid) in
12 (∀class ∈ vset)((∃!class′ ∈ survset)(class′ ⊆ class)))))

type: Qualifier1 → Entity-dict → Bool

Objective Check that no unification or generation of equivalence classes is done for sorts which are visible in the
enclosing scope unit.

Parameters

level The qualifier for the current scope unit level.

Result true if the check succeeds, else false.

Algorithm

Line 1 Distinguish between the system level and other levels.

Line 2 Obtain the sort map of the system level.

Line 3-4 Check the wellformedness conditions on the SDL Boolean and Pid sorts.

Line 6 Obtain the qualifier of the enclosing scope unit level.

Recommendation Z.100 – Annex F.3 (03/93) 121

Line 7-8 Obtain the sort maps for the enclosing and the current scope unit levels.

Line 9 For all sorts visible in the enclosing scope unit the wellformedness condition in line 10-12 must
hold.

Line 10-11 For the sort considered, obtain the equivalence class sets for the enclosing and the current scope
unit levels.

Line 12 For each equivalence class in the current scope unit it must hold that it includes all the terms of
exactly one equivalence class in the enclosing scope unit.

is-wf-boolean(sortmap-trueterm, falseterm) (6.2.5.3)

 1 (let boolsort ∈ dom sortmap be s.t. (∃class ∈ sortmap(boolsort))(trueterm ∈ class) in
 2 (∀class ∈ sortmap(boolsort))
 3 (mk-Error-term1() ∉ class ⊃ card ({trueterm, falseterm}∩ class) = 1))

type: Sortmap Ground-term1 Ground-term1 → Bool

Objective Check the wellformedness of the Boolean sort.

Parameters

sortmap The (system level) sort map.

trueterm The canonical ground term for True.

falseterm The canonical ground term for False.

Algorithm

Line 1 Obtain the AS1 identifier of the boolean sort.

Line 2-3 Each equivalence classe of the Boolean sort which does not contain the error term must contain
exactly one of the Boolean literals True and False.

is-wf-pid(pidvset) (6.2.5.4)

 1 (let pidvset′ = {class ∈ pidvset | mk-Error-term1() ∉ class} in
 2 (∀n ∈ N1)((∃s ⊂ pidvset′)(card s > n)))

type: Term-class-set → Bool

Objective Check the wellformedness of the Pid sort.

Parameters

pidvset The set of equivalence classes for the Pid sort.

Algorithm

Line 1 Obtain the set of Pid equivalence classes not containing the error term.

Line 2 The number of equivalence classes (not containing the error term) for the Pid sort must be infinite,
i.e. for each natural number n there must exist a (finite) subset s of the equivalence class set such
that the number of elements in s is greater than n.

122 Recommendation Z.100 – Annex F.3 (03/93)

6.3 Selection of Consistent Subset

This section defines the functions for checking and selecting a consistent subset according to a given consistent subset
selection (the entry function is select-consistent-subset). This consists of two steps: First, for each (selected)
block/subblock in the whole system either the contained block substructure or the contained process definitions, signal
routes and channel to route connections are removed. Second, subsignals used in subchannels in some substructure are
propagated to channels connected to this substructure, i.e. if a channel carries a parent signal of some subsignal carried
by a connected subchannel, the parent signal is replaced by the subsignals on the channel. Note that this transformation
may transform a unidirectional channel to a bidirectional one.

Example: Let an SDL system contain the signal and channel definitions

signal s
refinement
signal s1, s2;
reverse signal s3;
endrefinement;

signal t;

channel c from b1 to b2 with s, t; endchannel;

and let the origin block b1 contain a (selected) substructure which contains the subchannel definitions and connection

channel c1 from subb1 to env with s1, s2; endchannel;

channel c2 from env to subb2 with s3; endchannel;

channel c3 from subb3 to env with t; endchannel;

connect c and c1, c2, c3;

After subsignal propagation the channel c will be defined as

channel c from b1 to b2 with s1, s2, t;
 from b2 to b1 with s3;
endchannel;

select-consistent-subset(sysdef, subset)(dict) (6.3.1)

 1 (let sysdef ′ = select-consistent-subset-sys(sysdef, subset) in

 2 let sysdef ′′ = propagate-refinement-sys(sysdef ′)(dict) in

 3 sysdef ′′)

type: System-definition1 Block-identifier1-set → Entity-dict → System-definition1

Objective Transform a system definition according to a consistent subset selection.

Parameters

sysdef The system definition to be transformed.

subset The (assumed) consistent subset represented by a set of block identifiers and block substructure
identifiers.

Result The transformed system definition.

Recommendation Z.100 – Annex F.3 (03/93) 123

Algorithm

Line 1 Remove the parts which will not be used (either block substructures or processes, signal routes and
channel to route connections).

Line 2 Propagate the use of subsignals on subchannels to channels to which the subchannels are
connected.

Line 3 Return the transformed system definition.

124 Recommendation Z.100 – Annex F.3 (03/93)

6.3.1 Removal of Non-Selected Substructures and Processes

select-consistent-subset-sys(sysdef, subset) (6.3.1.1)

 1 (let mk-System-definition1 (snm, bset, cset, sigset, dt, sset) = sysdef in

 2 let level = 〈mk-System-qualifier1(snm)〉 in
 3 let bset′ = {select-consistent-subset-block(block, subset, level) | block ∈ bset} in
 4 mk-System-definition1(snm, bset′, cset, sigset, dt, sset))

type: System-definition1 Block-identifier1-set → System-definition1

Objective Select consistent subset in a system definition.

Parameters

sysdef The system definition.

subset The (assumed) consistent subset.

Result The transformed system definition.

Algorithm

Line 1 Decompose the system definition.

Line 2 Construct the qualifier denoting the system level.

Line 3 Transform the system-level blocks.

Line 4 The transformed blocks replace the original ones in the system.

select-consistent-subset-block(block, subset, level) (6.3.1.2)

 1 (let mk-Block-definition1 (bnm, pset, sigset, connects, srset, dt, sset, osub) = block in
 2 if mk-Identifier1(level, bnm) ∈ subset then
 3 (let level′ = level 〈mk-Block-qualifier1(bnm)〉 in
 4 let osub′ = select-consistent-subset-osub(osub, subset, level′) in
 5 (osub′ ≠ nil

 6 → mk-Block-definition1〈bnm, {}, sigset, {}, {}, dt, sset, osub′),
 7 pset ≠ {}

 8 → mk-Block-definition1(bnm, pset, sigset, connects, srset, dt, sset, nil),
 9 → exit(“§3.2.1: Leaf block contains no processes”)))

10 else
11 exit(“§3.2.1: Block or subblock is not in consistent subset”))

type: Block-definition1 Block-identifier1-set Qualifier1 → Block-definition1

Objective Select consistent subset in a block definition.

Parameters

block The block definition.

subset The (assumed) consistent subset.

level The qualifier for the system or block substructure containing the block.

Result The transformed block.

Algorithm

Line 1 Decompose the block definition.

Line 2,11 The block or subblock must be in the consistent subset.

Line 3 Construct the qualifier for the block level.

Line 4 Transform the substructure of the block if present and selected.

Recommendation Z.100 – Annex F.3 (03/93) 125

Line 5-6 If the block substructure is present and selected, it replaces the original substructure. As the
processes, signal routes and channel to route connections in the block will not be interpreted, they
are removed.

Line 7-9 Otherwise, the block is a leaf block and must contain at least one process definition.

select-consistent-subset-osub(osub, subset, level) (6.3.1.3)

 1 if osub = nil then
 2 nil
 3 else
 4 select-consistent-subset-sub(osub, subset, level)

type: [Block-substructure-definition1] Block-identifier1-set Qualifier1
→ [Block-substructure-definition1]

Objective Select consistent subset in a block substructure if present and selected.

Parameters

osub The optional block substructure.

subset The (assumed) consistent subset.

level The qualifier denoting the enclosing block.

Result If the block substructure is present and selected, then the transformed block substructure, otherwise nil .

Algorithm

Line 1-2 If the block substructure is absent then indicate this.

Line 4 Otherwise, transform the block substructure if selected.

select-consistent-subset-sub(sub, subset, level) (6.3.1.4)

 1 (let mk Block-substructure-definition1 (bsnm, bset, connects, cset, sigset, dt, sset) = sub in
 2 if mk-Identifier1(level, bsnm) ∈ subset then
 3 (let level′ = level 〈mk-Block-substructure-qualifier1(bsnm)〉 in
 4 let bset′ = {select-consistent-subset-block(block, subset, level′) | block ∈ bset} in
 5 mk-Block-subtructure-definition1(bsnm, bset′, connects, cset, sigset, dt, sset))
 6 else
 7 nil)

type: Block-substructure-definition1 Block-identifier1-set Qualifier1
→ [Block-substructure-definition1]

Objective Select consistent subset in a block substructure if selected.

Parameters

sub The block substructure.

subset The (assumed) consistent subset.

level The qualifier denoting the enclosing block.

Result If the block substructure is selected, then the transformed block substructure, otherwise nil .

126 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1 Decompose the block substructure.

Line 2 If the block substructure is selected, then

Line 3 construct the qualifier denoting the block substructure level,

Line 4 transform the contained subblock definitions,

Line 5 and replace the original subblocks with the transformed ones.

Line 7 If the block substructure is not selected, then return nil to indicate this.

5HFRPPHQGDWLRQ�=�����±�$QQH[�)�������������� ���

����� 6XEVLJQDO�3URSDJDWLRQ
5HFRPPHQGDWLRQ�=�����±�$QQH[�)��������������

SURSDJDWH�UHILQHPHQW�V\V�V\VGHI��GLFW�� ���������

��� �OHW�PN�6\VWHP�GHILQLWLRQ��VQP��EVHW��FVHW��VLJVHW��GW��VVHW��=�V\VGHI�LQ
�� � OHW�OHYHO�=�〈PN�6\VWHP�TXDOLILHU��VQP�〉�LQ
��� OHW�EVHW′�=�^SURSDJDWH�UHILQHPHQW�EORFN�EORFN��OHYHO��GLFW��_�EORFN�∈�EVHW`�LQ
��� OHW�FVHW′�=�^�SURSDJDWH�UHILQHPHQW�FKDQ�FKDQ��EVHW′��OHYHO��GLFW��_�FKDQ�∈�FVHW`�LQ
��5 PN�6\VWHP�GHILQLWLRQ��VQP��EVHW′,�FVHW′��VLJVHW��GW��VVHW))

W\SH� 6\VWHP�GHILQLWLRQ��→�(QWLW\�GLFW�→�6\VWHP�GHILQLWLRQ�

2EMHFWLYH 3URSDJDWH�VXEVLJQDOV�LQ�D�V\VWHP�ZKHUH�WKH�FRQVLVWHQW�VXEVHW�KDV�DOUHDG\�EHHQ�VHOHFWHG�

3DUDPHWHUV

V\VGHI 7KH�V\VWHP�GHILQLWLRQ�

5HVXOW 7KH�V\VWHP�ZKHUH�VXEVLJQDOV�KDYH�EHHQ�SURSDJDWHG�

$OJRULWKP

/LQH�� 'HFRPSRVH�WKH�V\VWHP�GHILQLWLRQ�

/LQH�� &RQVWUXFW�WKH�V\VWHP�OHYHO�TXDOLILHU�

/LQH�� 3URSDJDWH�VXEVLJQDOV�LQ�HDFK�EORFN�GHILQHG�DW�V\VWHP�OHYHO�

/LQH�� 3URSDJDWH�VXEVLJQDOV�RQ�HDFK�FKDQQHO�GHILQHG�DW�V\VWHP�OHYHO�

/LQH�� 7KH�WUDQVIRUPHG�EORFNV�DQG�FKDQQHOV�UHSODFH�WKH�RULJLQDO�RQHV�LQ�WKH�V\VWHP�

SURSDJDWH�UHILQHPHQW�EORFN�EORFN��OHYHO��GLFW�� ���������

��� �OHW�PN�%ORFN�GHILQLWLRQ��EQP��SVHW��VLJVHW��FRQQHFWV��VUVHW��GW��VVHW��RVXE��=�EORFN�LQ
�� � OHW�OHYHO′�=�OHYHO� �〈PN�%ORFN�TXDOLILHU��EQP�〉�LQ
��� OHW�RVXE′�=�LI�RVXE�≠�QLO�WKHQ�SURSDJDWH�UHILQHPHQW�VXE�RVXE��OHYHO′��GLFW��HOVH�QLO�LQ
�� � PN�%ORFN�GHILQLWLRQ��EQP��SVHW��VLJVHW��FRQQHFWV��VUVHW��GW��VVHW��RVXE′��

W\SH� %ORFN�GHILQLWLRQ��4XDOLILHU��→�(QWLW\�GLFW�→�%ORFN�GHILQLWLRQ�

2EMHFWLYH 3URSDJDWH�VXEVLJQDOV�LQ�D�EORFN�

3DUDPHWHUV

EORFN 7KH�EORFN�GHILQLWLRQ�

OHYHO 7KH�TXDOLILHU�RI�WKH�HQFORVLQJ�V\VWHP�RU�VXEVWUXFWXUH�

5HVXOW 7KH�WUDQVIRUPHG�EORFN�

$OJRULWKP

/LQH�� 'HFRPSRVH�WKH�EORFN�GHILQLWLRQ�

/LQH�� &RQVWUXFW�WKH�EORFN�OHYHO�TXDOLILHU�

/LQH�� 3URSDJDWH�VXEVLJQDOV�LQ�WKH�EORFN�VXEVWUXFWXUH�LI�LW�LV�SUHVHQW�

/LQH�� 7KH�WUDQVIRUPHG�EORFN�VXEVWUXFWXUH�UHSODFHV�WKH�RULJLQDO�RQH�

��� 5HFRPPHQGDWLRQ�=�����±�$QQH[�)��������������

SURSDJDWH�UHILQHPHQW�VXE�VXE��OHYHO��GLFW�� ���������

��� �OHW�PN�%ORFN�VXEVWUXFWXUH�GHILQLWLRQ��EVQP��EVHW��FRQQHFWV��FVHW��VLJVHW��GW��VVHW��=�VXE�LQ
�� � OHW�OHYHO′�=�OHYHO� �〈PN�%ORFN�VXEVWUXFWXUH�TXDOLILHU��EVQP�〉�LQ
��� OHW�EVHW′�=�^SURSDJDWH�UHILQHPHQW�EORFN�EORFN��OHYHO′��GLFW��_�EORFN�∈�EVHW`�LQ
��� OHW�FVHW′�=�^SURSDJDWH�UHILQHPHQW�FKDQ�FKDQ��EVHW′��OHYHO′��GLFW��_�FKDQ�∈�FVHW`�LQ
��� LI��∀FRQQHFW�∈�FRQQHFWV��LV�FRQVLVWHQW�FKDQFRQ�FRQQHFW��FVHW′���WKHQ
��6 PN�%ORFN�VXEWUXFWXUH�GHILQLWLRQ��EVQP��EVHW�′FRQQHFWV��FVHW′��VLJVHW��GW��VVHW)
�� � HOVH
�� � H[LW�³������,OOHJDO�UHILQHPHQW�RI�FKDQQHO´��

W\SH� %ORFN�VXEVWUXFWXUH�GHILQLWLRQ��4XDOLILHU���→�(QWLW\�GLFW
→�%ORFN�VXEVWUXFWXUH�GHILQLWLRQ�

2EMHFWLYH 3URSDJDWH�VXEVLJQDOV�LQ�D�EORFN�VXEVWUXFWXUH�

3DUDPHWHUV

VXE 7KH�EORFN�VXEVWUXFWXUH�

OHYHO 7KH�TXDOLILHU�RI�WKH�HQFORVLQJ�EORFN�

5HVXOW 7KH�WUDQVIRUPHG�EORFN�VXEVWUXFWXUH�

$OJRULWKP

/LQH�� 'HFRPSRVH�WKH�EORFN�VXEVWUXFWXUH�

/LQH�� &RQVWUXFW�WKH�EORFN�VXEVWUXFWXUH�OHYHO�TXDOLILHU�

/LQH�� 3URSDJDWH�VXEVLJQDOV�LQ�HDFK�EORFN�

/LQH�� 3URSDJDWH�VXEVLJQDOV�RQ�HDFK�FKDQQHO�

/LQH����)RU� HDFK� FKDQQHO� FRQQHFWLRQ� DW� WKH� ERXQGDU\� RI� WKH� VXEVWUXFWXUH�� FKHFN� WKDW� QR� WZR� VLJQDOV� RQ
GLIIHUHQW�UHILQHPHQW�OHYHOV�FDQ�JR�WKURXJK�WKLV�FRQQHFWLRQ�

/LQH�� 7KH�WUDQVIRUPHG�EORFNV�DQG�FKDQQHOV�UHSODFH�WKH�RULJLQDO�RQHV�

SURSDJDWH�UHILQHPHQW�FKDQ�FKDQ��EVHW��OHYHO��GLFW�� ���������

��� �OHW�PN�&KDQQHO�GHILQLWLRQ��FKQP��QRGHOD\��IRUZSDWK��RUHYSDWK��=�FKDQ�LQ
��� OHW�FKLG�=�PN�,GHQWLILHU��OHYHO��FKQP��LQ
�� � OHW�PN�&KDQQHO�SDWK��HQGS���HQGS���IRUZVLJV��=�IRUZSDWK�LQ
��� OHW�UHYSDWK�=�LI�RUHYSDWK�≠�QLO�WKHQ�RUHYSDWK�HOVH�PN�&KDQQHO�SDWK��HQGS���HQGS���^`��LQ
��� OHW�PN�&KDQQHO�SDWK������UHYVLJV��=�UHYSDWK�LQ
��� OHW�IRUZSDWK′�=�SURSDJDWH�UHILQHPHQW�FSDWK�FKLG��IRUZSDWK��UHYVLJV��EVHW��GLFW��
��� UHYSDWK′�=�SURSDJDWH�UHILQHPHQW�FSDWK�FKLG��UHYSDWK��IRUZVLJV��EVHW��GLFW��LQ
��� OHW�RUHYSDWK′�=
��� �OHW�PN�&KDQQHO�SDWK������VV��=�UHYSDWK′�LQ
�� LI�VV�=�^`�WKHQ�QLO�HOVH�UHYSDWK′��LQ
�� PN�&KDQQHO�GHILQLWLRQ��FKQP��QRGHOD\��IRUZSDWK′��RUHYSDWK′��

W\SH� &KDQQHO�GHILQLWLRQ��%ORFN�GHILQLWLRQ��VHW��4XDOLILHU���→�(QWLW\�GLFW
→�&KDQQHO�GHILQLWLRQ�

2EMHFWLYH 3URSDJDWH�VXEVLJQDOV�WR�D�FKDQQHO�

3DUDPHWHUV

FKDQ 7KH�FKDQQHO�GHILQLWLRQV�

EVHW 7KH�VHW�RI�EORFNV��ZKHUH�VXEVLJQDOV�KDYH�DOUHDG\�EHHQ�SURSDJDWHG��GHILQHG�LQ�WKH�VDPH�V\VWHP�RU
VXEVWUXFWXUH�DV�WKH�FKDQQHO�

OHYHO 7KH�TXDOLILHU�RI�WKH�HQFORVLQJ�V\VWHP�RU�VXEVWUXFWXUH�

Recommendation Z.100 – Annex F.3 (03/93) 129

Result The transformed channel.

Algorithm

Line 1 Decompose the channel definition.

Line 2 Construct the identifier of the channel.

Line 3 Decompose the forward channel path into its endpoints and conveyed signal set.

Line 4 If the channel is unidirectional then construct a “dummy” reverse channel path conveying no
signals.

Line 5 Obtain the (possibly empty) set of signals conveyed in the reverse direction.

Line 6-7 Propagate subsignals to each of the channel paths. Signals conveyed in a given direction may
contribute with reverse subsignals in the opposite direction (which is the reason for the third
parameter of propagate-refinement-cpath).

Line 8-7 If the set of signals conveyed on the transformed reverse channel path is empty the reverse channel
path is removed.

Line 11 The transformed channel paths replace the original ones.

propagate-refinement-cpath(chid, cpath, revsigs, bset)(dict) (6.3.2.5)

 1 (let mk-Channel-path1(endp1, endp2, forwsigs) = cpath in
 2 let foutsigs = inout-going-signals(OUT, chid, endp1, bset),
 3 finsigs = inout-going-signals(IN, chid, endp2, bset),
 4 routsigs = inout-going-signals(OUT, chid, endp2, bset),
 5 rinsigs = inout-going-signals(IN, chid, endp1, bset) in
 6 if (∃sig1 ∈ foutsigs ∪ rinsigs, sig2 ∈ finsigs ∪ routsigs, sig ∈ forwsigs ∪ revsigs)
 7 (is-sig-or-subsig(sig1, sig) ∧ is-sig-or-subsig(sig2, sig) ⊃
 8 is-proper-or-subsig(sig1, sig2) ∨ is-proper-subsig(sig2, sig1)) then
 9 exit(“§3.3: Illegal refinement of channel”)
10 else
11 (let forwsig′ =
12 extract-direction-subsignals(forwsigs, foutsigs ∪ finsigs, nil)(dict) ∪
13 extract-direction-subsignals(revsigs, foutsigs ∪ finsigs, REVERSE)(dict) in
14 mk-Channel-path1(endp1, endp2, forwsigs′)))

type: Channel-identifier1 Channel-path1 Signal-identifier1-set Block-definition1-set
→ Entity-dict → Channel-path1

Objective Propagate subsignals to a channel path.

Parameters

chid The identifier of the channel.

cpath The channel path.

revsigs The signals conveyed in the opposite direction on the channel.

bset The set of blocks (where subsignals have already been propagated) defined in the same system or
substructure as the channel.

Result The transformed channel path.

Algorithm

Line 1 Decompose the channel path.

Line 2-5 Obtain the set of (sub)signals going out through the origin end point (line 2), in through the
destination end point (line 3), out through the destination end point (line 4), and in through the
origin end point (line 5).

130 Recommendation Z.100 – Annex F.3 (03/93)

Line 6-9 If there exists a signal sig1 going through the origin connection point and a signal sig2 going
through the destination connection point of the channel which are both (direct or indirect)
(sub)signals of the same signal sig conveyed by the channel path, sig1 and sig2 are not allowed to
be on different refinement levels of each other.

Line 11-13 Extract from the set of (sub)signals going out through the origin connection point or in through the
destination end point the (sub)signals which can be conveyed by the channel path. Signals going in
the opposite direction on the channel may also contribute to the (sub)signal set because they can
have reverse subsignals (line 13).

is-consistent-chancon(connect, cset) (6.3.2.6)

 1 (let mk-Channel-connection1(, subchidset) = connect in
 2 let cset′ = {select-channel(subchid, cset) | subchid ∈ subchidset} in
 3 let connectsigs = union {direction-signals-chan(chan, FORWARD) ∪
 4 direction-signals-chan(chan, REVERSE) | chan ∈ cset′} in
 5 ¬(∃sig1, sig2 ∈ connectsigs)(is-proper-subsig(sig1, sig2)))

type: Channel-connection1 Channel-definition1-set → Bool

Objective Check that no two signals on different refinement levels can go through a given connection point at the
boundary of a block substructure, including the case where one signal goes out and the other goes in.

Parameters

connect The channel connection.

cset The set of (transformed) channel definitions in the same block substructure as the connect.

Result true if the condition holds, otherwise false.

Algorithm

Line 1 Get the set of identifiers of subchannels connected to the connect.

Line 2 Select the connected subchannels.

Line 3-4 Extract all signals (from both directions) conveyed on the connected subchannels.

Line 5 No two signals on the connected subchannels are allowed to be on different refinement levels.

inout-going-signals(inout, chid, endp, bset) (6.3.2.7)

 1 if endp = ENVIRONMENT then
 2 {}
 3 else
 4 (let block = select-block(endp, bset) in
 5 inout-going-signals-block(inout, chid, block))

type: (IN | OUT Channel-identifier1 (Block-identifier1 | ENVIRONMENT)
Block-definition1-set → Signal-identifier1-set

Objective Extract the signals going in or out (indicated by the first function argument) through a connection point
of a channel.

Recommendation Z.100 – Annex F.3 (03/93) 131

Parameters

inout Indicates whether the in- or outgoing signals are wanted.

chid The identifier of the channel the connection point signals of which are wanted.

endp The channel end point where connection point signals are wanted.

bset The set of blocks defined at the same scope unit level as the channel.

Result The set of in- or outgoing signals.

Algorithm

Line 1 If the channel end point is the system environment the set of in/outgoing signals is considered to be
empty.

Line 4 Extract the block to which the channel is connected.

Line 5 Extract from the block the set of in-/outgoing signals at the connection point for the channel.

inout-going-signals-block(inout, chid, mk-Block-definition1 (, , , connects, srset, , , osub)) (6.3.2.8)

 1 if osub ≠ nil then
 2 inout-going-signals-sub(inout, chid, osub)
 3 else
 4 (let mk-Channel-to-route-connection1(chidset, sridset) ∈ connects
 5 be s.t. chid ∈ chidset in
 6 let srset′ = {select-signalroute(srid, srset) | srid ∈ sridset} in
 7 union {inout-going-signals-sigroute(inout, sr) | sr ∈ srset′})

type: (IN | OUT) Channel-identifier1 Block-definition1 → Signal-identifier1-set

Objective Extract from a block the signals going in or out (indicated by the first function argument) through the
connection point of a given channel.

Parameters

inout Indicates whether the in- or outgoing signals are wanted.

chid The identifier of the channel for which the connection point signals are wanted.

connects,srset,osub The channel to route connections, signal routes and substructure of the block.

Result The set of in- or outgoing signals.

Algorithm

Line 1-2 If the block is substructured the in-/outgoing signals are extracted from the substructure.

Line 4 Obtain the set of identifiers of signal routes connected to the channel.

Line 6 Obtain the set of signal routes connected to the channel.

Line 7 Extract from the connected signal routes the set of in-/outgoing signals.

132 Recommendation Z.100 – Annex F.3 (03/93)

inout-going-signals-sub(inout, chid, mk-Block-substructure-definition1 (, , connects, subchset, , ,)) (6.3.2.9)

 1 (let mk-Channel-connection1(chidset, subchidset) ∈ connects be s.t. chid ∈ chidset in
 2 let subchset′ = {select-channel(subchid, subchset) | subchid ∈ subchidset} in
 3 union {inout-going-signals-chan(inout, subch) | subch ∈ subchset′})

type: (IN | OUT) Channel-identifier1 Block-substructure-definition1
→ Signal-identifier1-set

Objective Extract from a block substructure the signals going in or out (indicated by the first function argument)
through the connection point of a given channel.

Parameters

inout Indicates whether the in- or outgoing signals are wanted.

chid The identifier of the channel the connection point signals of which are wanted.

connects,subchset The channel connections and subchannels of the substructure.

Result The set of in- or outgoing signals.

Algorithm

Line 1 Obtain the set of identifiers of subchannels connected to the channel.

Line 2 Obtain the set of subchannels connected to the channel.

Line 3 Extract from the connected subchannels the set of in-/outgoing signals.

extract-direction-subsignals(sigs, subsigs, subsigdir)(dict) (6.3.2.10)

 1 {subsig ∈ subsigs |
 2 (∃ sig ∈ sigs)
 3 (is-sig-or-subsig(subsig, sig) ∧ subsig-direction(subsig, sig)(dict) = subsigdir)}

type: Signal-identifier1-set Signal-identifier1-set [REVERSE] → Entity-dict
→ Signal-identifier1-set

Objective Extract from a given set of (sub)signals the ones which are direct or indirect (sub)signals of signals in
another set of signals. The third parameter of the function indicates whether the (sub)signals going in
the same or in the opposite direction of its direct or indirect (parent) signal are wanted.

Parameters

sigs The set of (parent) signals.

subsigs The set of (sub)signals.

subsigdir Indicates whether “forward” or “reverse” (sub)signals are wanted.

Result The extracted set of (sub)signals.

Algorithm

Line 1-3 Select each (sub)signal for which a direct or indirect (parent) signal exists and which has the
same/opposite direction as the direct or indirect (parent) signal.

Recommendation Z.100 – Annex F.3 (03/93) 133

subsig-direction(subsig, sig)(dict) (6.3.2.11)

 1 if subsig = sig then
 2 nil
 3 else
 4 (let mk-SignalDD(, dir) = dict(subsig) in
 5 let restdir = subsig-direction(parent-signal(subsig), sig)(dict) in
 6 cases (dir, restdir):
 7 ((nil, nil), (REVERSE, REVERSE)
 8 → nil,
 9 (nil, REVERSE), (REVERSE, nil)
10 → REVERSE))

type: Signal-identifier1 Signal-identifier1 → Entity-dict → [REVERSE]

Objective For two signals of which one is on the same or a different refinement level of the other, indicate
whether the two signals go in the same or the opposite direction.

Parameters

subsig The (sub)signal.

sig The (parent) signal.

Result An indication of the relative direction.

Algorithm

Line 1-2 If the two signals are the same they go in the same direction.

Line 4 Find the direction of the subsignal relative to its parent signal.

Line 5 Find the direction of the parent signal of the subsignal relative to the signal sig.

Line 7 If the subsignal and sig have the same direction relative to the parent signal, they go in the same
direction.

Line 9 If the subsignal and sig have opposite directions relative to the parent signal, they go in the opposite
direction of each other.

is-sig-or-subsig(subsig, sig) (6.3.2.12)

1 subsig = sig ∨ is-proper-subsig(subsig, sig)

type: Signal-identifier1 Signal-identifier1 → Bool

Objective Test whether two signals are on the same or different refinement levels or not.

Parameters

subsig The “subsignal”.

sig The “parent signal”.

Result true if the two signals are the same or the former is on a finer refinement level of the latter, otherwise
false.

Algorithm

Line 1 The condition holds if the signal subsig is either the same as sig, or subsig is a direct or indirect
(proper) subsignal of sig.

134 Recommendation Z.100 – Annex F.3 (03/93)

is-proper-subsig(subsig, sig) (6.3.2.13)

 1 (let mk-Identifier1(qual, nm) = sig,
 2 siglevel = qual 〈mk-Signal-qualifier1(nm)〉 in
 3 (∃qrest ∈ Path-item1*)(siglevel qrest = s-Qualifier1(subsig)))

type: Signal-identifier1 Signal-identifier1 → Bool

Objective Test whether one signal is on another refinement level than another signal.

Parameters

subsig The “subsignal”.

sig The “parent signal”.

Result true if the former signal is on a finer refinement level than another.

Algorithm

Line 1-2 Get the qualifier denoting the “parent signal” level.

Line 3 The signal subsig is on a finer refinement level than sig if the qualifier denoting the scope unit level
of sig is a prefix of the qualifier contained in subsig.

parent-signal(sig) (6.3.2.14)

 1 (let mk-Identifier1(qual,) = sig in
 2 let qual′ = 〈qual[i] | 1 ≤ i < len qual〉,
 3 mk-Signal-qualifier1(nm′) = qual[len qual] in
 4 mk-Identifier1(qual′, nm′))

type: Signal-identifier1 → Signal-identifier1

Objective Get the parent signal of a signal.

Parameters

sig The signal.

Result The parent signal.

Algorithm

Line 1 Extract the qualifier of the signal.

Line 2-3 Get the qualifier and name of the parent signal.

Line 4 Construct the identifier of the parent signal.

Recommendation Z.100 – Annex F.3 (03/93) 135

6.4 Construction of Communication Paths

The functions in this section constructs the set of communication paths (Reachability sets) for all process instance sets
and services in the SDL system which is going to be interpreted.

The way this construction is done is as follows:

1. For each internal channel/signal route path in a scope unit an outgoing and an ingoing partial Reachability
set are constructed. Each member of the outgoing partial Reachability set is a partial Reachability
containing an origin process or service, a sequence of signal route/channel paths leading to the given
channel/signal route path, and the set of signals conveyed by this partial path. Analogously, each member
of the ingoing partial Reachability set is a partial Reachability containing a destination process or service,
a sequence of channel/signal route paths leading from the given channel/signal route path, and the set of
signals conveyed by this partial path.

2. For each outgoing and ingoing partial Reachability, the outgoing partial path, the considered
channel/signal route path and the ingoing partial path are concatenated, the intersection of the three
corresponding signal sets is taken, and if this signal set is non-empty a (total) Reachability is constructed
and inserted in the descriptor for the origin process or service.

For simplification of the Reachability construction, unidirectional channels and signal routes are treated as if they were
bidirectional with an empty signal set in the reverse direction. Step 2 above ensures that this does not lead to extra
Reachabilities in the final Entity-dict.

At system level, channels leading to or from the environment are treated like internal channels; however, in this case
either the outgoing or ingoing partial Reachability set will not contain any “real” Reachabilities but instead be a
singleton set containing the quotation (Quot) value ENVIRONMENT. At all lower scope unit levels the set of channels
or signal routes leading to or from the scope unit boundary are not treated because they become part of the partial paths
for internal channels/signal routes at higher scope unit levels.

For block internal signal route paths each of the two partial Reachability sets will contain “real” Reachabilities only if
the corresponding process is decomposed into services. If the process is not decomposed into services and thus does not
contain process internal service signal routes, the corresponding Reachability set will be a singleton set containing the
identifier of the process.

In the comments attached to the functions below, the term bridging channel/signal route, or simply bridge, will be used.
A bridging channel/signal route in a Reachability is the one which is defined at the highest scope unit level.

The entry function for construction of Reachabilities is make-reachabilities.

6.4.1 Reachability Construction

make-reachabilities(mk-System-definition1(snm, bset, cset, , ,))(dict) (6.4.1.1)

 1 (let level = 〈mk-System-qualifier1(snm)〉 in
 2 let dict′ = make-internal-reaches-chans(cset, bset, level)(dict) in
 3 let dict′′ = make-internal-reaches-blocks(bset, level)(dict′) in
 4 dict′′)

type: System-definition1 → Entity-dict → Entity-dict

Objective Construct the Reachabilities for an SDL system to be interpreted.

Parameters

snm,bset,cset The system name, block definitions and channel definitions in the system.

Result The Entity-dict where all Reachabilities have been inserted.

136 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1 Construct the system level qualifier.

Line 2 Construct the Reachabilities having the system level channels as bridges. Also channels leading
from/to the system environment are treated here.

Line 3 Construct the internal Reachabilities of the system level blocks.

Line 4 Return the updated Entity-dict.

make-internal-reaches-blocks(bset, level)(dict) (6.4.1.2)

 1 if bset = {} then
 2 dict
 3 else
 4 (let block ∈ bset in
 5 let dict′ = make-internal-reaches-block(block, level)(dict) in
 6 make-internal-reaches-blocks(bset \ {block}, level)(dict′))

type: Block-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a set of blocks.

Parameters

bset The set of block definitions.

level The qualifier of the enclosing system or substructure.

Result The Entity-dict where the block internal Reachabilities have been inserted.

Algorithm

Line 1-2 If the block set is empty the Entity-dict is not changed.

Line 4-5 Select a block and construct its internal Reachabilities.

Line 6 Construct the internal Reachabilities of the remaining blocks.

make-internal-reaches-block(mk-Block-definition1(bnm, pset, , , srset, , , osub), level)(dict) (6.4.1.3)

 1 (let level′ = level 〈mk-Block-qualifier1(bnm)〉 in
 2 if osub ≠ nil then
 3 make-internal-reaches-sub(osub, level′)(dict)
 4 else
 5 (let srset′ = {sr ∈ srset | is-internal-sigroute(sr)} in
 6 let dict′ = make-internal-reaches-sigroutes(srset′, pset, level′)(dict) in
 7 let dict′′ = make-internal-reaches-prcss(pset, level)(dict′) in
 8 dict′′))

type: Block-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a block.

Parameters

bnm,pset,srset,osub The block name, process definitions, signal routes and optional block substructure in the
block.

level The qualifier of the enclosing system or substructure.

Result The Entity-dict where the block internal Reachabilities have been inserted.

Recommendation Z.100 – Annex F.3 (03/93) 137

Algorithm

Line 1 Construct the block level qualifier.

Line 2-3 If the block is substructured then the internal Reachabilities of the substructure is constructed.

Line 5 Select those signal routes which are internal to the block.

Line 6 Construct the Reachabilities having the block internal signal routes as bridges.

Line 7 Construct the internal Reachabilities of the block local processes.

Line 8 Return the updated Entity-dict.

make-internal-reaches-sub(mk-Block-substructure-definition1(bsnm, bset, , cset, , ,), level)(dict) (6.4.1.4)

 1 (let level′ = level 〈mk-Block-substructure-qualifier1(bsnm)〉 in
 2 let cset′ = {chan ∈ cset | is-internal-chan(chan)} in
 3 let dict′ = make-internal-reaches-chans(cset′, bset, level′)(dict) in
 4 let dict′′ = make-internal-reaches-blocks(bset, level′)(dict′) in
 5 dict′′)

type: Block-substructure-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a block substructure.

Parameters

bsnm,bset,cset The block substructure name, subblock definitions and subchannels in the block substructure.

level The qualifier of the enclosing block.

Result The Entity-dict where the block substructure internal Reachabilities have been inserted.

Algorithm

Line 1 Construct the substructure level qualifier.

Line 2 Select those subchannels which are internal to the substructure.

Line 3 Construct the Reachabilities having the substructure internal channels as bridges.

Line 4 Construct the Reachabilities of the substructure local blocks.

Line 5 Return the updated Entity-dict.

make-internal-reaches-prcss(pset, level)(dict) (6.4.1.5)

 1 if pset = {} then
 2 dict
 3 else
 4 (let prcs ∈ pset in
 5 let dict′ = make-internal-reaches-prcs(prcs, level)(dict) in
 6 make-internal-reaches-prcss(pset \ {prcs}, level)(dict′))

type: Process-definition1-set Qualifier1 → Entity dict → Entity dict

Objective Construct the internal Reachabilities of a set of process definitions.

Parameters

pset The set of process definitions.

level The qualifier of the enclosing block.

138 Recommendation Z.100 – Annex F.3 (03/93)

Result The Entity-dict where the process internal Reachabilities have been inserted.

Algorithm

Line 1-2 If the set of process definitions is empty the Entity-dict is not changed.

Line 4-5 Select a process definition and construct its internal Reachabilities.

Line 6 Construct the internal Reachabilities of the remaining process definitions.

make-internal-reaches-prcs(prcs, level)(dict) (6.4.1.6)

 1 (let mk-Process-definition1(prnm, , , , , , , , , , grordec) = prcs in
 2 (is-Process-graph1(grordec)
 3 → (let prid = mk-Identifier1(level, prnm),
 4 sigs = extract-inputsigs-prcs(prcs) in
 5 update-endpd-self(prid, sigs)(dict)),
 6 is-Service-decomposition1(grordec)
 7 → (let level′ = level 〈mk-Process-qualifier1(prnm)〉 in
 8 make-internal-reaches-decomp(grordec, level′)(dict))))

type: Process-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a process definition.

Parameters

prcs The process definition.

level The qualifier of the enclosing block.

Result The Entity-dict where the process internal Reachabilities have been inserted.

Algorithm

Line 1 Get the name and process graph/service decomposition of the process.

Line 2 Handle the case where the process is not decomposed into services.

Line 3 Construct the identifier of the process.

Line 4 Extract the input signal set of the process.

Line 5 Construct a Reachability from the process to itself and insert it in the Entity-dict.

Line 6 Handle the case where the process is decomposed into services.

Line 7 Construct the process level qualifier.

Line 8 Construct the internal Reachabilities of the service decomposition.

make-internal-reaches-decomp(mk-Service-decomposition1(servset, srset,), level)(dict) (6.4.1.7)

1 (let srset′ = {sr ∈ srset | is-internal-sigroute(sr)} in
2 let dict′ = make-internal-reaches-servsigroutes(srset′, level)(dict) in
3 let dict′′ = make-internal-reaches-servs(servset, level)(dict′) in
4 dict′′)

type: Service-decomposition1 Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a service decomposition.

Recommendation Z.100 – Annex F.3 (03/93) 139

Parameters

servset,srset The service definitions and signal routes in the decomposition.

level The qualifier of the enclosing process.

Result The Entity-dict where the decomposition internal Reachabilities have been inserted.

Algorithm

Line 1 Select those signal routes which are internal to the decomposition.

Line 2 Construct the Reachabilities having the decomposition internal signal routes as bridges.

Line 3 Construct the internal Reachabilities of the (decomposition local) service definitions.

Line 4 Return the updated Entity-dict.

make-internal-reaches-servs(servset, level)(dict) (6.4.1.8)

 1 if servset = {} then
 2 dict
 3 else
 4 (let serv ∈ servset in
 5 let dict′ = make-internal-reaches-serv(serv, level)(dict) in
 6 make-internal-reaches-servs(servset \ {serv}, level)(dict′))

type: Service-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a set of service definitions.

Parameters

servset The set of service definitions.

level The qualifier of the enclosing process definition.

Result The Entity-dict where the service internal Reachabilities have been inserted.

Algorithm

Line 1-2 If the service set is empty the Entity-dict is not changed.

Line 4-5 Select a service and construct its internal Reachabilities.

Line 6 Construct the internal Reachabilities of the remaining services.

make-internal-reaches-serv (serv, level)(dict) (6.4.1.9)

 1 (let servid = mk-Identifier1(level, s-Service-name1(serv)),
 2 sigs = extract-inputsigs-serv(serv) in
 3 update-endpd-self(servid, sigs)(dict))

type: Service-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Construct the internal Reachabilities of a service definition.

Parameters

serv The service definition.

level The qualifier of the enclosing process definition.

140 Recommendation Z.100 – Annex F.3 (03/93)

Result The Entity-dict where the service internal Reachabilities have been inserted.

Algorithm

Line 1 Construct the identifier of the service.

Line 2 Extract the input signal set of the service.

Line 3 Construct a Reachability from the service to itself and insert it in the Entity-dict. The input signal
set will also be inserted in the service descriptor.

make-internal-reaches-chans(cset, bset, level)(dict) (6.4.1.10)

 1 if cset = {} then
 2 dict
 3 else
 4 (let chan ∈ cset in
 5 let dict′ = make-internal-reaches-chan(chan, bset, level)(dict) in
 6 make-internal-reaches-chans(cset \ {chan}, bset, level)(dict′))

type: Channel-definition1-set Block-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Construct the set of Reachabilities having a given set of channels as bridges.

Parameters

cset The set of channel definitions.

bset The set of blocks at the same scope unit level as the channels.

level The qualifier of the enclosing system or substructure.

Result The Entity-dict where the Reachabilities having the given channels as bridges have been inserted.

Algorithm

Line 1-2 If the channel set is empty the Entity-dict is not modified.

Line 4-5 Select a channel and construct the Reachabilities having this channel as bridge.

Line 6 Construct the Reachabilities having the remaining channels as bridges.

make-internal-reaches-chan(chan, bset, level)(dict) (6.4.1.11)

 1 (let mk-Channel-definition1(chnm, nodelay, mk-Channel-path1(endp1, endp2,),) = chan in
 2 let chid = mk-Identifier1(level, chnm) in
 3 let foutreaches = inout-going-reaches(OUT, chid, endp1, bset, level),
 4 fpathelem = (chid, FORWARD, nodelay),
 5 fsigs = direction-signals-chan(chan, FORWARD),
 6 finreaches = inout-going-reaches(IN, chid, endp2, bset, level) in
 7 let routreaches = inout-going-reaches(OUT, chid, endp2, bset, level),
 8 rpathelem = (chid, REVERSE, nodelay),
 9 rsigs = direction-signals-chan(chan, REVERSE),
10 rinreaches = inout-going-reaches(IN chid, endp1, bset, level) in
11 let dict′ = update-endpd(foutreaches, fpathelem, fsigs, finreaches)(dict) in
12 let dict′′ = update-endpd(routreaches, rpathelem, rsigs, rinreaches)(dict′) in
13 dict′′)

type: Channel-definition1 Block-definition1-set Qualifier1 → Entity-dict → Entity-dict

Recommendation Z.100 – Annex F.3 (03/93) 141

Objective Construct the set of Reachabilities having a given channel as bridge.

Parameters

chan The channel definition.

bset The set of blocks at the same scope unit level as the channel.

level The qualifier of the enclosing system or substructure.

Result The Entity-dict where the Reachabilities having the given channel as bridge have been inserted.

Algorithm

Line 1 Obtain the name, optional nodelay attribute and origin and destination end point of the channel.

Line 2 Construct the identifier of the channel.

Line 3-6 Obtain the outgoing partial Reachability set leading to the origin end point of the channel (line 3),
the Path-element denoting the forward channel path (line 4), the set of signals carried in the
forward direction by the channel (line 5), and the ingoing partial Reachability set leading from the
destination end point of the channel (line 6).

Line 7-10 Analogously to line 3-6, obtain the outgoing partial Reachability set leading to the destination end
point of the channel (line 7), the Path-element denoting the reverse channel path (line 8), the set of
signals carried in the reverse direction by the channel (empty if the channel is unidirectional)
(line 9), and the ingoing partial Reachability set leading from the origin end point of the channel
(line 10).

Line 11 Construct the total Reachabilities having the forward channel path as bridge.

Line 12 Analogously to line 11, construct the total Reachabilities having the reverse channel path as bridge.

Line 13 Return the updated Entity-dict.

make-internal-reaches-sigroutes(srset, pset, level)(dict) (6.4.1.12)

 1 if srset = {} then
 2 dict
 3 else
 4 (let sr ∈ srset in
 5 let dict′ = make-internal-reaches-sigroute(sr, pset, level)(dict) in
 6 make-internal-reaches-sigroutes(srset \ {sr}, pset, level)(dict′))

type: Signal-route-definition1-set Process-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Construct the set of Reachabilities having a given set of signal routes as bridges. The function is
analogous to make-internal-reaches-chans.

Parameters

srset The set of signal route definitions.

pset The set of process definitions at the same scope unit level as the signal routes.

level The qualifier of the enclosing block.

Result The Entity-dict where the Reachabilities having the given signal routes as bridges have been inserted.

142 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1-2 If the signal route set is empty the Entity-dict is not modified.

Line 4-5 Select a signal route and construct the Reachabilities having this signal route as bridge.

Line 6 Construct the Reachabilities having the remaining signal routes as bridges.

make-internal-reaches-sigroute(sr, pset, level)(dict) (6.4.1.13)

 1 (let mk-Signal-route-definition1(srnm, mk-Signal-route-path1(endp1, endp2,),) = sr in
 2 let srid = mk-Identifier1(level, srnm) in
 3 let foutreaches = inout-going-reaches′(OUT, srid, endp1, pset, level),
 4 fpathelem = (srid, FORWARD, NODELAY),
 5 fsigs = direction-signals-sigroute(sr, FORWARD),
 6 finreaches = inout-going-reaches′(IN, srid, endp2, pset, level) in
 7 let routreaches = inout-going-reaches′(OUT, srid, endp2, pset, level),
 8 rpathelem = (srid, REVERSE, NODELAY),
 9 rsigs = direction-signals-sigroute(sr, REVERSE),
10 rinreaches = inout-going-reaches′(IN, srid, endp1, pset, level) in
11 let dict′ = update-endpd(foutreaches, fpathelem, fsigs, finreaches)(dict) in
12 let dict′′ = update-endpd(routreaches, rpathelem, rsigs, rinreaches)(dict′) in
13 dict′′)

type: Signal-route-definition1 Process-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Construct the set of Reachabilities having a given signal route as bridge. The function is analogous to
make-internal-reaches-chan.

Parameters

sr The signal route definition.

pset The set of process definitions at the same scope unit level as the signal route.

level The qualifier of the enclosing block.

Result The Entity-dict where the Reachabilities having the given signal route as bridge have been inserted.

Algorithm

Line 1 Obtain the name and origin and destination end point of the signal route.

Line 2 Construct the identifier of the signal route.

Line 3-6 Obtain the outgoing partial Reachability set leading to the origin end point of the signal route
(line 3), the Path-element denoting the forward signal route path (line 4), the set of signals carried
in the forward direction by the signal route (line 5), and the ingoing partial Reachability set leading
from the destination end point of the signal route (line 6). The Path-element for the signal route
path always contains NODELAY because a signal route never has a delay.

Line 7-10 Analogously to line 3-6, obtain the outgoing partial Reachability set leading to the destination end
point of the signal route (line 7), the Path-element denoting the reverse signal route path (line 8),
the set of signals carried in the reverse direction by the signal route (empty if the signal route is
unidirectional) (line 9), and the ingoing partial Reachability set leading from the origin end point of
the signal route (line 10).

Recommendation Z.100 – Annex F.3 (03/93) 143

Line 11 Construct the total Reachabilities having the forward signal route path as bridge.

Line 12 Analogously to line 11, construct the total Reachabilities having the reverse signal route path as
bridge.

Line 13 Return the updated Entity-dict.

make-internal-reaches-servsigroutes(srset, level)(dict) (6.4.1.14)

 1 if srset = {} then
 2 dict
 3 else
 4 (let sr ∈ srset in
 5 let dict′ = make-internal-reaches-servsigroute(sr, level)(dict) in
 6 make-internal-reaches-servsigroutes(srset \ {sr}, level)(dict′))

type: Signal-route-definition1-set Qualifier1 → Entity-dict → Entity-dict

Objective Construct the set of Reachabilities having a given set of (service decomposition internal) signal routes
as bridges. The function is analogous to make-internal-reaches-chans and make-internal-reaches-
sigroutes.

Parameters

srset The set of signal route definitions.

level The qualifier of the enclosing process definition.

Result The Entity-dict where the Reachabilities having the given signal routes as bridges have been inserted.

Algorithm

Line 1-2 If the signal route set is empty the Entity-dict is not modified.

Line 4-5 Select a signal route and construct the Reachabilities having this signal route as bridge.

Line 6 Construct the Reachabilities having the remaining signal routes as bridges.

make-internal-reaches-servsigroute(sr, level)(dict) (6.4.1.15)

 1 (let mk-Signal-route-definition1(srnm, mk-Signal-route-path1(endp1, endp2,),) = sr in
 2 let srid = mk-Identifier1(level, srnm) in
 3 let foutreaches = {endp1},
 4 fpathelem = (srid, FORWARD, NODELAY),
 5 fsigs = direction-signals-sigroute(sr, FORWARD),
 6 finreaches = {endp2} in
 7 let routreaches = {endp2} ,
 8 rpathelem = (srid, REVERSE, NODELAY),
 9 rsigs = direction-signals-sigroute(sr, REVERSE),
10 rinreaches = {endp1} in
11 let dict′ = update-endpd(foutreaches, fpathelem, fsigs, finreaches)(dict) in
12 let dict′′ = update-endpd(routreaches, rpathelem, rsigs, rinreaches)(dict′) in
13 dict′′)

type: Signal-route-definition1 Qualifier1 → Entity-dict → Entity-dict

Objective Construct the set of Reachabilities having a given (service decomposition internal) signal route as
bridge. The function is analogous to make-internal-reaches-chan and make-internal-reaches-sigroute.

144 Recommendation Z.100 – Annex F.3 (03/93)

Parameters

sr The signal route definition.

level The qualifier of the enclosing process definition.

Result The Entity-dict where the Reachabilities, having the given signal route as bridge have been inserted.

Algorithm

Line 1 Obtain the name and origin and destination end point of the signal route.

Line 2 Construct the identifier of the signal route.

Line 3-6 Obtain the outgoing partial Reachability set leading to the origin end point of the signal route
(line 3), the Path-element, denoting the forward signal route path (line 4), the set of signals carried
in the forward direction by the signal route (line 5), and the ingoing partial Reachability set leading
from the destination end point of the signal route (line 6). As services do not contain signal routes
both partial Reachability sets are singleton sets containing the respective end point (service)
identifier. The Path-element for the signal route path always contains NODELAY because a signal
route never has a delay.

Line 7-10 Analogously to line 3-6, obtain the outgoing partial Reachability set leading to the destination end
point of the signal route (line 7), the Path-element denoting the reverse signal route path (line 8),
the set of signals carried in the reverse direction by the signal route (empty if the signal route is
unidirectional) (line 9), and the ingoing partial Reachability set leading from the origin end point of
the signal route (line 10).

Line 11 Construct the total Reachabilities having the forward signal route path as bridge.

Line 12 Analogously to line 11, construct the total Reachabilities having the reverse signal route path as
bridge.

Line 13 Return the updated Entity-dict.

Recommendation Z.100 – Annex F.3 (03/93) 145

6.4.2 Construction of Partial Reachabilities

inout-going-reaches(inout, chid, endp, bset, level) (6.4.2.1)

 1 if endp = ENVIRONMENT then
 2 {ENVIRONMENT}
 3 else
 4 (let block = select-block(endp, bset) in
 5 inout-going-reaches-block(inout, chid, block, level))

type: (IN | OUT) Channel-identifier1 (Block-identifier1 | ENVIRONMENT) Block-definition1-set
Qualifier1 → (ENVIRONMENT | Reachability)-set

Objective Obtain the in- or outgoing partial Reachability set (direction indicated by the first function argument)
leading from/to a given channel end point.

Parameters

inout Indicates whether the in- or outgoing partial Reachability set is wanted.

chid The identifier of the bridging channel.

endp The channel end point (may be the env in case of a system level channel) at which the partial
Reachabilities are wanted.

bset The set of blocks defined at the same scope unit level as the channel.

level The qualifier of the enclosing system or substructure.

Result The partial Reachability set, or a singleton set containing the Quot value ENVIRONMENT if the
channel end point is env.

Algorithm

Line 1-2 If the channel end point is env the singleton Reachability set containing ENVIRONMENT is
returned.

Line 4 Get the end point block definition from the block set.

Line 5 Extract from the block the in-/outgoing partial Reachability set.

inout-going-reaches′(inout, srid, endp, pset, level) (6.4.2.2)

 1 (let prcs = select-process(endp, pset) in
 2 inout-going-reaches-prcs(inout, srid, prcs, level))

type: (IN | OUT) Signal-route-identifier1 Process-identifier1Process-definition1-set
Qualifier1 → (Process-identifier1 | Reachability)-set

Objective Obtain the in- or outgoing partial Reachability set (direction indicated by the first function argument)
leading from/to a given signal route end point. The function is analogous to inout-going-reaches.

Parameters

inout Indicates whether the in-or outgoing partial Reachability set is wanted.

srid The identifier of the bridging signal route.

endp The signal route end point at which the partial Reachabilities are wanted.

pset The set of process definitions at the same scope unit level as the signal route.

146 Recommendation Z.100 – Annex F.3 (03/93)

level The qualifier of the enclosing block.

Result The partial Reachability set, or a singleton set containing a process identifier if the denoted process
instance set is not decomposed into services.

Algorithm

Line 1 Get the end point process definition from the set of process definitions.

Line 2 Extract the in-/outgoing partial Reachability set.

inout-going-reaches-block(inout, chid, block, level) (6.4.2.3)

 1 (let mk-Block-definition1(bnm, pset, , connects, srset, , , osub) = block in
 2 let level′ = level 〈mk-Block-qualifier1(bnm)〉 in
 3 if osub ≠ nil then
 4 inout-going-reaches-sub(inout, chid, osub, level′)
 5 else
 6 (let mk-Channel-to-route-connection1(chidset, sridset) ∈ connects
 7 be s.t. chid ∈ chidset in
 8 let srset′ = {select-signalroute(srid, srset) | srid ∈ sridset} in
 9 union {inout-going-reaches-sigroute(inout, sr, pset, level′) | sr ∈ srset′}))

type: (IN | OUT) Channel-identifier1 Block-definition1 Qualifier1 → Reachability-set

Objective Obtain from a block the in-/outgoing partial Reachability set leading from/to a given channel.

Parameters

inout Indicates whether the in- or outgoing Reachabilities are wanted.

chid The identifier of the channel.

block The block definition.

level The qualifier of the enclosing system or substructure.

Result The in-/outgoing partial Reachabilities.

Algorithm

Line 1-2 Decompose the block and construct the qualifier denoting its level.

Line 3-4 If the block is substructured the in-/outgoing partial Reachabilities are extracted from the
substructure.

Line 6 Obtain the set of identifiers of signal routes connected to the channel.

Line 8 Obtain the set of signal routes connected to the channel.

Line 9 Construct all in-/outgoing partial Reachabilities leading from/to and including one of the signal
routes.

inout-going-reaches-sub(inout, chid, sub, level) (6.4.2.4)

 1 (let mk-Block-substructure-definition1 (bsnm, bset, connects, subchset, , ,) = sub in
 2 let level′ = level 〈mk-Block-substructure-qualifier1(bsnm)〉 in
 3 let mk-Channel-connection1(chidset, subchidset) ∈ connects be s.t. chid ∈ chidset in
 4 let subchset′ = {select-channel(subchid, subchset) | subchid ∈ subchidset} in
 5 union {inout-going-reaches-chan(inout, subchan, bset, level′) | subchan ∈ subchset′})

type: (IN | OUT) Channel-identifier1 Block-substructure-definition1 Qualifier1
→ Reachability-set

Recommendation Z.100 – Annex F.3 (03/93) 147

Objective Obtain from a block substructure the in-/outgoing partial Reachability set leading from/to a given
channel.

Parameters

inout Indicates whether the in- or outgoing Reachabilities are wanted.

chid The identifier of the channel.

sub The block substructure definition.

level The qualifier of the enclosing block.

Result The in-/outgoing partial Reachabilities.

Algorithm

Line 1-2 Decompose the block substructure and construct the qualifier denoting its level.

Line 3 Obtain the set of identifiers of subchannels connected to the channel.

Line 4 Obtain the set of subchannels connected to the channel.

Line 5 Construct all in-/outgoing partial Reachabilities leading from/to and including one of the
subchannels.

inout-going-reaches-prcs(inout, srid, prcs, level) (6.4.2.5)

 1 (let mk-Process-definition1(prnm, , , , , , , , , , grordec) = prcs in
 2 (is-Process-graph1(grordec)
 3 → {mk-Identifier1(level, prnm)},
 4 is-Service-decomposition1(grordec)
 5 → (let level′ = level 〈mk-Process-qualifier1(prnm)〉 in
 6 inout-going-reaches-decomp(inout, srid, grordec, level′))))

type: (IN | OUT) Signal-route-identifier1 Process-definition1-set Qualifier1
→ (Process-identifier1 | Reachability)-set

Objective Obtain from a process definition the in-/outgoing partial Reachability set leading from/to a given signal
route.

Parameters

inout Indicates whether the in- or outgoing Reachabilities are wanted.

srid The identifier of the signal route.

prcs The process definition.

level The qualifier of the enclosing block.

Result The in-/outgoing partial Reachabilities.

Algorithm

Line 1 Decompose the process definition.

Line 2-3 If the process is not decomposed into service instances then the singleton Reachability set
containing its identifier is returned.

Line 4-6 Otherwise the in-/outgoing Reachabilities are extracted from the service decomposition.

148 Recommendation Z.100 – Annex F.3 (03/93)

inout-going-reaches-decomp(inout, srid, decomp, level) (6.4.2.6)

 1 (let mk-Service-decomposition1(, servsrset, connects) = decomp in
 2 let mk-Signal-route-to-route-connection1(sridset, servsridset) ∈ connects
 3 be s.t. srid ∈ sridset in
 4 let servsrset′ = {select-signalroute(servsrid, servsrset) | servsrid ∈ servsridset} in
 5 {inout-going-reaches-sigroute(inout, servsr, level) | servsr ∈ servsrset′})

type: (IN | OUT) Signal-route-identifier1 Service-decomposition1 Qualifier1
→ Reachability-set

Objective Obtain from a service definition the partial Reachability set leading from/to a given (block level) signal
route.

Parameters

inout Indicates whether the in- or outgoing Reachabilities are wanted.

srid The identifier of the signal route.

decomp The service decomposition.

level The qualifier of the enclosing process.

Result The in-/outgoing partial Reachabilities.

Algorithm

Line 1 Decompose the service decomposition.

Line 2 Obtain the set of identifiers of service signal routes connected to the signal route.

Line 4 Obtain the set of service signal routes connected to the signal route.

Line 5 Construct all in-/outgoing partial Reachabilities leading from/to and including one of the service
signal routes.

inout-going-reaches-chan(inout, chan, bset, level) (6.4.2.7)

 1 (let chid = mk-Identifier1(level, s-Channel-name1(chan)),
 2 block = select-block(connected-block(chan), bset) in
 3 let inoutreaches = inout-going-reaches-block(inout, chid, block, level) in
 4 {append-chan-to-reach(inout, inoutreach, chan, level) | inoutreach ∈ inoutreaches})

type: (IN | OUT) Channel-definition1 Block- definition1-set Qualifier1 → Reachability-set

Objective Obtain the in-/outgoing partial Reachability set leading from/to and including a given non-local
channel.

Parameters

inout Indicates whether the in- or outgoing partial Reachabilities are wanted.

chan The channel definition.

bset The set of blocks defined at the same scope unit level as the channel.

level The qualifier of the enclosing block substructure (system level non-local channels are treated like
local channels).

Result The in-/outgoing partial Reachabilities.

Algorithm

Line 1 Construct the identifier of the channel.

Line 2 Get the block connected to the channel.

Recommendation Z.100 – Annex F.3 (03/93) 149

Line 3 Obtain the in-/outgoing partial Reachabilities leading to the channel.

Line 4 Append the channel to each of the partial Reachabilities.

append-chan-to-reach(inout, inoutreach, chan, level) (6.4.2.8)

 1 (let chansigs = inout-going-signals-chan(inout, chan),
 2 chanpathelem = inout-going-path-elem-chan(inout, chan, level) in
 3 let (reachendp, sigset, path) = inoutreach in
 4 (reachendp, sigset ∩ chansigs,
 5 cases inout:
 6 (IN → 〈chanpathelem) path,
 7 OUT → path 〈chanpathelem〉)))

type: (IN | OUT) Reachability Channel-definition1 Qualifier1 → Reachability

Objective Append a non-local channel to an in-/outgoing partial Reachability.

Parameters

inout Indicates whether the partial Reachability is in- or outgoing.

inoutreach The partial Reachability.

chan The definition of the channel.

level The qualifier of the enclosing block substructure.

Result The partial Reachability where the channel has been appended.

Algorithm

Line 1 Extract the signals carried by the channel in the direction indicated by inout. Note that if the
channel is unidirectional in the opposite direction the extracted signal set is empty.

Line 2 Construct the Path-element for the channel path which goes in the direction indicated by inout.

Line 3 Decompose the partial Reachability into its destination/origin end point, the set of signals which
can be carried along the partial Reachability, and its sequence of Path-elements.

Line 4-7 The new partial Reachability is constructed as follows: Its destination/origin end point is that
obtained before (line 4), the set of signal it can carry is the intersection of the signal set obtained
before and the signal set from the channel (line 4), and its sequence of Path-elements is the
sequence obtained before with the channel Path-element added at its “outer” end point (line 5-7).

inout-going-path-elem-chan(inout, chan, level) (6.4.2.9)

 1 (let mk-Channel-definition1(chnm, nodelay, ,) = chan in
 2 (mk-Identifier1(level, chnm),
 3 inout-going-path-direction-chan(inout, chan),
 4 nodelay))

type: (IN | OUT) Channel-definition1 Qualifier1 → Path-element

Objective Obtain the in- or outgoing Path-element for a non-local channel.

Parameters

inout Indicates whether the in- or outgoing Path-element is wanted.

150 Recommendation Z.100 – Annex F.3 (03/93)

chan The definition of the channel.

level The qualifier of the enclosing block substructure.

Result The Path-element.

Algorithm

Line 1 Get the name and nodelay attribute of the channel.

Line 2-4 Return the Path-element consisting of the identifier of the channel (line 2), the direction (forward
or reverse) of the in-/outgoing channel direction indicated by inout (line 3), and the nodelay
attribute (line 4).

inout-going-reaches-sigroute(inout, sr, pset, level) (6.4.2.10)

 1 (let srid = mk Identifier1(level, s-Signal-route-name1(sr)),
 2 prcs = select-process(connected-process-or-service(sr), pset) in
 3 let inoutreaches = inout-going-reaches-prcs(inout, srid, prcs, level) in
 4 {append-sigroute-to-reach(inout, inoutreach, sr, level) | inoutreach ∈ inoutreaches})

type: (IN | OUT) Signal-route-definition1 Process-definition1-set Qualifier1 → Reachability-set

Objective Obtain the in-/outgoing partial Reachability set leading from/to and including a given non-local (block
level) signal route. The function is analogous to inout-going-reaches-chan.

Parameters

inout Indicates whether the in- or outgoing partial Reachabilities are wanted.

sr The signal route definition.

pset The set of processes defined at the same scope unit level as the signal route.

level The qualifier of the enclosing block.

Result The in-/outgoing partial Reachabilities.

Algorithm

Line 1 Construct the identifier of the signal route.

Line 2 Get the process connected to the signal route.

Line 3 Obtain the in-/outgoing partial Reachabilities leading to the signal route.

Line 4 Append the signal route to each of the partial Reachabilities.

append-sigroute-to-reach(inout, inoutreach, sr, level) (6.4.2.11)

 1 (let srsigs = inout-going-signals-sigroute(inout, sr),
 2 srpathelem = inout-going-path-elem-sigroute(inout, sr, level) in
 3 (is-Identifier1(inoutreach)
 4 → (inoutreach, srsigs, 〈srpathelem〉),
 5 is-Reachability(inoutreach)
 6 → (let (reachendp, sigset, path = inoutreach in
 7 (reachendp, sigset ∩ srsigs,
 8 cases inout:
 9 (IN → 〈srpathelem〉 path,
10 OUT → path 〈srpathelem〉)))))

type: (IN | OUT) (Process-Identifier1 | Reachability) Signal-route-definition1 Qualifier1 → Reachability

Recommendation Z.100 – Annex F.3 (03/93) 151

Objective Append a non-local (block level) signal route to an in-/outgoing partial Reachability. The function is
analogous to append-chan-to-reach.

Parameters

inout Indicates whether the partial Reachability is in- or outgoing.

inoutreach A partial Reachability or a process identifier.

sr The definition of the signal route.

level The qualifier of the enclosing block.

Result The partial Reachability where the signal route has been appended.

Algorithm

Line 1 Extract the signals carried by the signal route in the direction indicated by inout. Note that if the
signal route is unidirectional in the opposite direction the extracted signal set is empty.

Line 2 Construct the Path-element for the signal route path which goes in the direction indicated by inout.

Line 3-4 If the partial Reachability is a (process) identifier the resulting partial Reachability has this process
as destination/origin (depending on inout) end point, the signals carried by the signal route path as
signal set, and a Path consisting of the signal route path only.

Line 5 Handle the case where the partial Reachability is a “real” one.

Line 6 Decompose the partial Reachability into its destination/origin end point, the set of signals which
can be carried along the partial Reachability, and its sequence of Path-elements.

Line 7-10 The new partial Reachability is constructed as follows: Its destination/origin end point is that
obtained before (line 7), the set of signal it can carry is the intersection of the signal set obtained
before and the signal set from the signal route (line 7), and its sequence of Path-elements is the
sequence obtained before with the signal route Path-element added at its “outer” end point
(line 8-10).

inout-going-reach-sigroute(inout, sr, level) (6.4.2.12)

 1 (connected-process-or-service(sr),
 2 inout-going-signals-sigroute(inout, sr),
 3 〈inout-going-path-elem-sigroute(inout, sr, level)〉)

type: (IN | OUT) Signal-route-definition1 Qualifier1 → Reachability

Objective Obtain the in-/outgoing partial Reachability consisting of a non-local (process level) signal route.

Parameters

inout Indicates whether the in- or outgoing partial Reachability is wanted.

sr The definition of the signal route.

level The qualifier of the enclosing process.

Result The partial Reachability.

Algorithm

Line 1-3 Construct and return the partial Reachability as follows: Its destination/origin (depending on inout)
end point is the service connected to the signal route (line 1), its signal set is the set of signals
carried by the signal route in the given direction (line 2), and its Path consists of the in-/outgoing
path of the signal route (line 3).

152 Recommendation Z.100 – Annex F.3 (03/93)

inout-going-path-sigroute(inout, sr, level) (6.4.2.13)

 1 (mk-Identifier1(level, s-Signal-route-name1(sr)),
 2 inout-going-path-direction-sigroute(inout, sr),
 3 NODELAY)

type: (IN | OUT) Signal-route-definition1 Qualifier1 → Path-element

Objective Obtain the in- or outgoing Path-element for a non-local signal route. The function is analogous to
inout-going-path-elem-chan.

Parameters

inout Indicates whether the in- or outgoing Path-element is wanted.

chan The definition of the signal route.

level The qualifier of the enclosing block or process.

Result The Path-element.

Algorithm

Line 1-3 Return the Path-element consisting of the identifier of the signal route (line 1), the direction
(forward or reverse) of the in-/outgoing signal route direction indicated by inout (line 2), and the
quotation (Quot) value NODELAY because a signal route never has a delay (line 3).

Recommendation Z.100 – Annex F.3 (03/93) 153

6.4.3 Extraction of Input Signal Sets
Recommendation Z.100 – Annex F.3 (03/93)

extract-inputsigs-prcs(mk-Process-definition1(, , , prcdset, , , , , , , grordec)) (6.4.3.1)

 1 union {extract-inputsigs-prcd(prcd) | prcd ∈ prcdset} ∪
 2 extract-inputsigs-grordec(grordec)

type: Process-definition1 → Signal-identifier1-set

Objective Obtain the input signal set of a process.

Parameters

prcdset,grordec The set of procedures and the process graph/service decomposition in the process.

Result The set of signals which the process is able to receive.

Algorithm

Line 1-2 The set of signals which the process can receive is the union of the sets of signals which each
contained procedure can receive and the set of signals which can be received by the process
graph/services. Note that if the process is decomposed into services no procedures are defined at
process level.

extract-inputsigs-grordec(grordec) (6.4.3.2)

 1 (is-Process-graph1(grordec)
 2 → extract-inputsigs-graph(grordec),
 3 is-Service-decomposition1(grordec)
 4 → extract-inputsigs-decomp(grordec))

type: (Process-graph1 | Service-decomposition1) → Signal-identifier1-set

Objective Obtain the set of signals which can be received (directly) by a process graph or service decomposition.

Parameters

grordec The process graph/service decomposition.

Result The set of signals which can be received.

extract-inputsigs-decomp(mk-Service-decomposition1(servset, ,)) (6.4.3.3)

 1 union{extract-inputsigs-serv(serv) | serv ∈ servset}

type: Service-decomposition1 → Signal-identifier1-set

Objective Obtain the set of signals which can be received by a service decomposition.

Parameters

servset The service definitions contained in the decomposition.

Result The set of signals which can be received.

154 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1 The set of signals which the decomposition can receive is the union of the input signals sets for
each service.

extract-inputsigs-serv(mk-Service-definition1(, prcdset, , , , , , graph)) (6.4.3.4)

 1 union {extract-inputsigs-prcd(prcd) | prcd ∈ prcdset} ∪
 2 extract-inputsigs-graph(graph)

type: Service-definition1 → Signal-identifier1-set

Objective Obtain the input signal set of a service.

Parameters

prcdset,graph The set of procedures and the service graph in the service.

Result The set of signals which the service is able to receive.

Algorithm

Line 1-2 The set of signals which the service can receive is the union of the sets of signals which each
contained procedure can receive and the set of signals which can be received by the service graph.

extract-inputsigs-prcd(mk-Procedure-definition1(, , prcdset, , , , graph)) (6.4.3.5)

 1 union {extract-inputsigs-prcd(prcd) | prcd ∈ prcdset} ∪
 2 extract-inputsigs-graph(graph)

type: Procedure-definition1 → Signal-identifier1-set

Objective Obtain the set of signals which can be received by a procedure.

Parameters

prcdset,graph The set of procedures and the procedure graph in the procedure.

Result The set of signals which can be received by the procedure.

Algorithm

Line 1-2 The set of signals which the procedure can receive is the union of the sets of signals which each
contained procedure can receive and the set of signals which can be received by the procedure
graph.

extract-inputsigs-graph(graph) (6.4.3.6)

 1 (let (, statenodes) = decomp-graph(graph) in
 2 let savenodes = {svnd | mk-State-node1(, svnd, ,) ∈ statenodes},
 3 inputnodes = union {inpnds | mk-State-node1(, , inpnds,) ∈ statenodes} in
 4 union{sigset | mk-Save-signalset1(sigset) ∈ savenodes} ∪
 5 {sigid | mk-Input-node1(sigid, ,) ∈ inputnodes})

type: (Process-graph1 | Service-graph1 | Procedure-graph1) → Signal-identifier1-set

Objective Obtain the set of signals which can be received by a process, service or procedure graph.

Recommendation Z.100 – Annex F.3 (03/93) 155

Parameters

graph The process/service/procedure graph.

Result The set of signals which can be received by the graph.

Algorithm

Line 1 Extract all state nodes from the graph.

Line 2-3 Extract all save nodes and input nodes from the state nodes.

Line 4-5 Extract all input signals from the save nodes and input nodes and return this signal set. Note that if
the graph contains more than one state node, all input signals could be obtained from just one of the
state nodes. However, the expression in line 4-5 also works when the graph contains no state nodes.

156 Recommendation Z.100 – Annex F.3 (03/93)

6.4.4 Update of Descriptors with Reachabilities

The following auxiliary domain is used in this section.

 1 Reachability-or-endp = Reachability-endp | Reachability

This domain covers the possible kinds of members in partial Reachability sets which as mentioned earlier can either
contain “real” Reachabilities or be singleton sets containing a Reachability-endpoint.

update-endpd(outreaches, pathelem, sigset, inreaches)(dict) (6.4.4.1)

 1 (let totalreaches = {total-reach(outreach, pathelem, sigset, inreach) |
 2 outreach ∈ outreaches ∧ inreach ∈ inreaches} in
 3 update-endpd’(totalreaches)(dict))

type: Reachability-or-endp-set Path-element Signal-identifier1-set Reachability-or-endp-set
→ Entity-dict → Entity-dict

Objective Construct total Reachabilities from an outgoing partial Reachability set, a bridging Path-element, the
set of signals carried by this bridge, and an ingoing partial Reachability set, and insert the total
Reachabilities in the Entity-dict.

Parameters

outreaches The outgoing Reachability set.
It is either a “real” partial Reachability set or a singleton set containing a Reachability-endpoint.

pathelem The bridging Path-element.

sigset The signals carried by the bridge.

inreaches The incoming Reachability set.
It is either a “real” partial Reachability set or a singleton set containing a Reachability-endpoint.

Result The Entity-dict where the total Reachabilities have been inserted.

Algorithm

Line 1-2 Construct a set of (origin end point, total Reachability) pairs. The set contains one element for each
outgoing and each ingoing partial Reachability.

Line 3 Use this set to insert total Reachabilities in the Entity-dict.

Recommendation Z.100 – Annex F.3 (03/93) 157

total-reach(outreach, pathelem, sigset, inreach) (6.4.4.2)

 1 (is-Reachability-endp(outreach) ∧ is-Reachability-endp(inreach)
 2 → (let orgp = outreach
 3 destp = inreach in
 4 (orgp, (destp, sigset, 〈pathelem〉))),
 5 is-Reachability-endp(outreach)
 6 → (let orgp = outreach,
 7 (destp, insigs, inpath) = inreach in
 8 (orgp, (destp, sigset ∩ insigs, 〈pathelem〉 inpath))),
 9 is-Reachability-endp(inreach)
10 → (let (orgp, outsigs, outpath) = outreach,
11 destp = inreach in
12 (orgp, (destp, outsigs ∩ sigset, outpath 〈pathelem〉))),
13 → (let (orgp, outsigs, outpath) = outreach,
14 (destp, insigs, inpath) = inreach in
15 (orgp, (destp, outsigs ∩ sigset ∩ insigs, outpath 〈pathelem〉 inpath))))

type: Reachability-or-endp Path-element Signal-identifier1-set Reachability-or-endp
→ Reachability-endp Reachability

Objective Construct a total Reachability from an outgoing partial Reachability, a bridging Path-element, the
signals carried by the bridge, and an ingoing partial Reachability.

Parameters

outreach The outgoing partial Reachability.

pathelem The bridging Path-element.

sigset The signals carried by the bridge.

inreach The ingoing partial Reachability.

Result A pair consisting of an origin end point and a total Reachability.

Algorithm

Line 1-4 If both partial Reachabilities are end points the origin of the total Reachability is the “outgoing”
end point, the destination is the “ingoing” end point, the Path consists of the bridge, and the signal
set is that of the bridge.

Line 5-8 If the outgoing partial Reachability is an end point and the ingoing partial Reachability is a “real”
one, the origin of the total Reachability is the “outgoing” end point, the destination is that of the
ingoing partial Reachability, the Path is the bridge appended in front of the ingoing partial Path,
and the signals carried are those carried by both the bridge and the ingoing partial Path.

Line 9-12 This case is analogous to the case covered in line 5-8. Here the outgoing partial Reachability is a
“real” one and the ingoing partial Reachability is an end point.

Line 13-15 If both partial Reachabilities are “real” Reachabilities the origin is that of the outgoing partial one,
the destination is that of the ingoing partial one, the Path is the bridge connecting the two partial
Paths, and the signals carried are those carried by the bridge and both partial Paths.

158 Recommendation Z.100 – Annex F.3 (03/93)

update-endpd’(totalreaches)(dict) (6.4.4.3)

 1 if totalreaches = {} then
 2 dict
 3 else
 4 (let totalreach ∈ totalreaches in
 5 let (orgp, reach) = totalreach in
 6 let dict’ = add-reachability(orgp, reach)(dict) in
 7 update-endpd’(totalreaches \ {totalreach})(dict’))

type: (Reachability-endp Reachability)-set → Entity-dict → Entity-dict

Objective Insert a set of total Reachabilities in the Entity-dict.

Parameters

totalreaches A set of (origin end point, total Reachability) pairs.

Result The Entity-dict where the set of total Reachabilities has been inserted.

Algorithm

Line 1-2 If the set of total Reachabilities is empty the Entity-dict is unchanged.

Line 4-5 Select a pair from the set and decompose it.

Line 6 Insert the selected total Reachability in the Entity-dict.

Line 7 Insert the remaining total Reachabilities in the Entity-dict.

update-endpd-self(endp, sigset)(dict) (6.4.4.4)

 1 (let reach = (endp, sigset, 〈 〉) in
 2 let dict’ = add-reachability(endp, reach)(dict) in
 3 let dict’’ = insert-input-signals(endp, sigset)(dict’) in
 4 dict’’)

type: (Process-identifier1 | Service-identifier1) Signal-identifier1-set → Entity-dict
→ Entity-dict

Objective Construct a total “self” Reachability for a process or service and insert it in the Entity-dict.

Parameters

endp The identifier of the process or service.

sigset The complete input signal set of the process or service.

Result The Entity-dict where the “self” Reachability has been inserted. If appropriate (i.e. if the entity is a
service) the input signals are also inserted in the Entity-dict.

Algorithm

Line 1 The destination of the “self” Reachability is the process/service, the Path is empty, and it carries
the input signals of the process/service.

Line 2 Insert the Reachability in the Entity-dict.

Line 3 Insert the input signals in the Entity-dict if appropriate.

Line 4 Return the updated Entity-dict.

Recommendation Z.100 – Annex F.3 (03/93) 159

add-reachability(orgp, reach)(dict) (6.4.4.5)

 1 (let (, sigset,) = reach in
 2 if sigset = {} then
 3 dict
 4 else
 5 (orgp = ENVIRONMENT
 6 → (let oldreaches = dict(ENVIRONMENT) in
 7 dict + [ENVIRONMENT a oldreaches ∪ {reach}]),
 8 (orgp, PROCESS) ∈ dom dict
 9 → (let mk-ProcessDD(parmdl, init, maxi, ograph, oldreaches) = dict((orgp, PROCESS)) in
10 dict + [(orgp, PROCESS) a mk-ProcessDD(parmdl, init, maxi, ograph, oldreaches ∪ {reach})]),
11 (orgp, SERVICE) ∈ dom dict
12 → (let mk-ServiceDD(graph, insigs, oldreaches) = dict((orgp, SERVICE)) in
13 dict + [(orgp, SERVICE) a mk-ServiceDD(graph, insigs, oldreaches ∪ {reach})])))

type: Reachability-endp Reachability → Entity-dict → Entity-dict

Objective Add a total Reachability to the Entity-dict.

Parameters

orgp The origin of the Reachability.

reach The Reachability.

Result The Entity-dict where the Reachability has been inserted (unless it carries no signals).

Algorithm

Line 1-3 If the Reachability is empty then is not inserted in the Entity-dict.

Line 5-7 If the origin of the Reachability is the system environment, the Reachability is included in the
ENVIRONMENT entry.

Line 8-10 If the origin of the Reachability is a process, the Reachability is added to its descriptor in the
Entity-dict.

Line 11-13 If the origin of the Reachability is a service, the Reachability is added to its descriptor in the Entity-
dict.

insert-input-signals(endp, sigset)(dict) (6.4.4.6)

 1 ((endp, PROCESS) ∈ dom dict
 2 → dict,
 3 (endp, SERVICE) ∈ dom dict
 4 → (let mk-ServiceDD(graph, , reaches) = dict((endp, SERVICE)) in
 5 dict + [(endp, SERVICE) a mk-ServiceDD(graph, sigset, reaches)]))

type: (Process-identifier1 | Service-identifier1) Reachability → Entity-dict → Entity-dict

Objective Insert the set of input signals for a process or service in the Entity-dict. (Actually the Entity-dict is only
changed for services but it makes the definition of other functions easier.)

Parameters

endp The identifier of the process or service.

sigset The set of input signals.

Result The Entity-dict where the input signals have been inserted.

160 Recommendation Z.100 – Annex F.3 (03/93)

Algorithm

Line 1-2 If the entity is a process, the Entity-dict is not changed because process descriptors do not contain
an input signal field.

Line 3-5 If the entity is a service, the input signal field of its descriptor is updated with the input signal set.

Recommendation Z.100 – Annex F.3 (03/93) 161

6.5 Simple Information Extraction from Channels/Signal Routes

This section defines some simple auxiliary functions for information extraction from channels and signal routes, such as
whether a channel/signal route is internal to its enclosing scope unit, which signals are carried in a given direction (in or
out) by a non-internal channel/signal route, which block/process/service is connected to a non-internal channel/signal
route.

6.5.1 Information from All Channels/Signal Routes

is-internal-chan(mk-Channel-definition1)(, , forwpath,)) (6.5.1.1)

 1 (let mk-Channel-path1(endp1, endp2,) = forwpath in
 2 endp1 ≠ ENVIRONMENT ∧ endp2 ≠ ENVIRONMENT)

type: Channel-definition1 → Bool

Objective Test whether a channel is internal to its enclosing scope unit.

Parameters

forwpath The forward channel path in the definition of the channel.

Result true if the channel is internal, false if the channel leads from or to the boundary of its enclosing scope
unit.

Algorithm

Line 1 Get the origin and destination end point of the channel.

Line 2 The channel is internal if none of its end points is the env of its enclosing scope unit.

is-internal-sigroute(mk-Signal-route-definition1)(, forwpath,)) (6.5.1.2)

 1 (let mk-Signal-route-path1(endp1, endp2) = forwpath in
 2 endp1 ≠ ENVIRONMENT ∧ endp2 ≠ ENVIRONMENT)

type: Signal-route-definition1 → Bool

Objective Test whether a signal route is internal to its enclosing scope unit.

Parameters

forwpath The forward signal route path in the definition of the signal route.

Result true if the signal route is internal, false if the signal route leads from or to the boundary of its
enclosing scope unit.

Algorithm

Line 1 Get the origin and destination end point of the signal route.

Line 2 The signal route is internal if none of its end points is the env of its enclosing scope unit.

162 Recommendation Z.100 – Annex F.3 (03/93)

direction-signals-chan(mk-Channel-definition1(, , forwpath, orevpath), pathdir) (6.5.1.3)

 1 cases pathdir:
 2 (FORWARD
 3 → (let mk-Channel-path1(, , forwsigs) = forwpath in
 4 forwsigs),
 5 REVERSE
 6 → if orevpath = nil then
 7 {}
 8 else
 9 (let mk-Channel-path1(, , revsigs) = orevpath in
10 revsigs))

type: Channel-definition1 Path-direction → Signal-identifier1-set

Objective Extract from a channel the signals carried in a given direction (forward or reverse).

Parameters

forwpath,orevpath The forward and optional reverse channel path in the definition of the channel.

pathdir The direction (forward or reverse) of which the signals are wanted.

Result The set of signals carried in the given direction.

Algorithm

line 2-4 If the forward signals are wanted then extract the signals from the forward channel path.

Line 5-10 If the reverse signals are wanted there are two possibilities: Either the channel is unidirectional so
no signals are carried in the reverse direction (line 6), or the channel is bidirectional and then the
signals are extracted from the reverse channel path (line 9-10).

direction-signals-sigroute(mk-Signal-route-definition1(, forwpath, orevpath), pathdir) (6.5.1.4)

 1 cases pathdir:
 2 (FORWARD
 3 → (let mk-Signal-route-path1(, , forwsigs) = forwpath in
 4 forwsigs),
 5 REVERSE
 6 → if orevpath = nil then
 7 {}
 8 else
 9 (let mk-Signal-route-path1(, , revsigs) = orevpath in
10 revsigs))

type: Signal-route-definition1 Path-direction → Signal-identifier1-set

Objective Extract from a signal route the signals carried in a given direction (forward or reverse).

Parameters

forwpath,orevpath The forward and optional reverse signal route path in the definition of the signal route.

pathdir The direction (forward or reverse) of which the signals are wanted.

Result The set of signals carried in the given direction.

Recommendation Z.100 – Annex F.3 (03/93) 163

Algorithm

Line 2-4 If the forward signals are wanted then extract the signals from the forward signal route path.

Line 5-10 If the reverse signals are wanted there are two possibilities: Either the signal route is unidirectional
so no signals are carried in the reverse direction (line 6), or the signal route is bidirectional and then
the signals are extracted from the reverse signal route path (line 9-10).

164 Recommendation Z.100 – Annex F.3 (03/93)

6.5.2 Information from Non-Internal Channels/Signal Routes

inout-going-signals-chan(inout, mk-Channel-definition1(, , forwpath, orevpath)) (6.5.2.1)

 1 (let mk-Channel-path1(endp1, endp2, forwsigs) = forwpath in
 2 cases inout:
 3 (IN
 4 → (endp1 = ENVIRONMENT
 5 → forwsigs,
 6 orevpath = nil
 7 → {},
 8 → (let mk-Channel-path1(, , revsigs) = orevpath in
 9 revsigs)),
10 OUT
11 → (endp2 = ENVIRONMENT
12 → forwsigs,
13 orevpath = nil
14 → {},
15 → (let mk-Channel- path1(, , revsigs) = orevpath in
16 revsigs))))

type: (IN | OUT) Channel-definition1 → Signal-identifier1-set

Objective Extract from a non-internal channel the signals carried in a given direction (in or out).

Parameters

inout Indicates whether the in- or outgoing signals are wanted.

forwpath, orevpath The forward and optional reverse channel path in the definition of the channel.

Result The set of signals carried in the given direction.

Algorithm

Line 1 Get the two channel end points and the forward signals.

Line 3-9 Handle the case where the ingoing signals are wanted. If the origin end point of the channel is the
scope unit boundary the ingoing signals are the forward signals of the channel (line 4-5); else if the
channel is unidirectional (in the outgoing direction) the ingoing signal set is empty (line 6); else the
ingoing signals are the reverse signals of the channel (line 8-9).

Line 10-16 Handle the case where the outgoing signals are wanted. The case is handled analogously to the one
in line 3-9.

Recommendation Z.100 – Annex F.3 (03/93) 165

inout-going-signals-sigroute(inout-mk-Signal-route-definition1 (, forwpath, orevpath)) (6.5.2.2)

 1 (let mk-Signal-route-path1(endp1, endp2, forwsigs) = forwpath in
 2 cases inout:
 3 (IN
 4 → (endp1 = ENVIRONMENT
 5 → forwsigs,
 6 orevpath = nil
 7 → {},
 8 → (let mk-Signal-route-path1(, , revsigs) = orevpath in
 9 revsigs)),
10 OUT
11 → (endp2 = ENVIRONMENT
12 → forwsigs,
13 orevpath = nil
14 → {},
15 → (let mk-Signal-route-path1(, , revsigs) = orevpath in
16 revsigs))))

type: (IN | OUT) Signal-route-definition1 → Signal-identifier1-set

Objective Extract from a non-internal signal route the signals carried in a given direction (in or out).

Parameters

inout Indicates whether the in- or outgoing signals are wanted.

forwpath,orevpath The forward and optional reverse signal route path in the definition of the signal route.

Result The set of signals carried in the given direction.

Algorithm

Line 1 Get the two signal route end points and the forward signals.

Line 3-9 Handle the case where the ingoing signals are wanted. If the origin end point of the signal route is
the scope unit boundary the ingoing signals are the forward signals of the signal route (line 4-5);
else if the signal route is unidirectional (in the outgoing direction) the ingoing signal set is empty
(line 6); else the ingoing signals are the reverse signals of the signal route (line 8-9).

Line 10-16 Handle the case where the outgoing signals are wanted. The case is handled analogously to the one
in line 3-9.

inout-going-path-direction-chan(inout, mk-Channel-definition1(, , forwpath,)) (6.5.2.3)

 1 (let mk-Channel-path1(endp1, endp2,) = forwpath in
 2 cases inout:
 3 (IN → if endp1 = ENVIRONMENT then FORWARD else REVERSE,
 4 OUT → if endp2 = ENVIRONMENT then FORWARD else REVERSE))

type: (IN | OUT) Channe-definition1 → Path-direction

Objective Get for a non-internal channel the direction (forward or reverse) of a given direction (in or out).

Parameters

inout Indicates whether the in- or outgoing direction is wanted.

forwpath The forward channel path in the definition of the channel.

166 Recommendation Z.100 – Annex F.3 (03/93)

Result A forward/reverse channel direction indication.

Algorithm

Line 1 Get the two end points of the channel.

Line 3 Handle the case where the ingoing direction is wanted. If the channel origin is the scope unit
boundary, the ingoing direction is forward, otherwise it is reverse.

Line 4 Handle the case where the outgoing direction is wanted. The case is analogous to that of line 3.

inout-going-path-direction-sigroute(inout, mk-Signal-route-definition1(, forwpath,)) (6.5.2.4)

 1 (let mk-Signal-route-path1(endp1, endp2,) = forwpath in
 2 cases inout:
 3 (IN → if endp1 = ENVIRONMENT then FORWARD else REVERSE,
 4 OUT → if endp2 = ENVIRONMENT then FORWARD else REVERSE))

type: (IN | OUT) Signal-route-definition1 → Path-direction

Objective Get for a non-internal signal route the direction (forward or reverse) of a given direction (in or out).

Parameters

inout Indicates whether the in- or outgoing direction is wanted.

forwpath The forward signal route path in the definition of the signal route.

Result A forward/reverse signal route direction indication.

Algorithm

Line 1 Get the two end points of the signal route.

Line 3 Handle the case where the ingoing direction is wanted. If the signal route origin is the scope unit
boundary, the ingoing direction is forward, otherwise it is reverse.

Line 4 Handle the case where the outgoing direction is wanted. The case is analogous to that of line 3.

connected-block(mk-Channel-definition1(, , forwpath,)) (6.5.2.5)

1 (let mk-Channel-path1(endp1, endp2,) = forwpath in
2 if endp2 = ENVIRONMENT then endp1 else endp2)

type: Channel-definition1 → Block-definition1

Objective Get for a non-internal channel the identifier of the block to which it is connected.

Parameters

forwpath The forward channel path in the definition of the channel.

Result The block identifier.

Algorithm

Line 1 Get the two end points of the channel.

Line 2 If the destination end point of the channel is the scope unit boundary, the connected block is the
origin end point, else it is the destination end point.

Recommendation Z.100 – Annex F.3 (03/93) 167

connected-process-or-service(mk-Signal-route-definition1(, forwpath,)) (6.5.2.6)

1 (let mk-Signal-route-path1(endp1, endp2,) = forwpath in
2 if endp2 = ENVIRONMENT then endp1 else endp2)

type: Signal-route-definition1 → (Process-identifier1 | Service-identifier1)

Objective Get for a non-internal signal route the identifier of the process or service to which it is connected.

Parameters

forwpath The forward signal route path in the definition of the signal route.

Result The block identifier.

Algorithm

Line 1 Get the two end points of the signal route.

Line 2 If the destination end point of the signal route is the scope unit boundary, the connected
process/service is the origin end point, else it is the destination end point.

168 Recommendation Z.100 – Annex F.3 (03/93)

7 General-Purpose Auxiliary Functions

This section defines some simple general-purpose functions for handling of SDL abstract syntax (AS1) domains.

7.1 Simple Identifier Handling

enclosing-scopeunit(mk-Identifier1(qual,)) (7.1.1)

 1 convert-to-identifier(qual)

type: Identifier1 → Identifier1

Objective Get the identifier of the enclosing scope unit of an entity.

Parameters

qual The qualifier in the identifier of the entity.

Result The identifier of the enclosing scope unit.

Algorithm

Line 1 Convert the qualifier to an identifier denoting the same entity.

enclosing-block(mk-Identifier1(qual,)) (7.1.2)

1 convert-to-identifier(bloc-scopeunit (qual))

type: Identifier1 → Identifier1

Objective Get the identifier of the enclosing block of an entity.

Parameters

qual The qualifier in the identifier of the entity.

Result The identifier of the enclosing block.

Algorithm

Line 1 Find the qualifier denoting the enclosing block and convert it to an identifier denoting the same
entity.

block-scopeunit(qual) (7.1.3)

1 (let pathitem = qual[len qual] in
2 if is-Block-qualifier1(pathitem) then
3 convert-to-identifier(qual)
4 else
5 (let restqual = 〈qual[i] | 1 ≤ i < len qual〉 in
6 block-scopeunit(restqual)))

type: Qualifier1 → Identifier1

Objective Get the identifier of the block which encloses (or is) a given entity.

Parameters

qual The qualifier denoting the entity.

Recommendation Z.100 – Annex F.3 (03/93) 169

Result The identifier of the enclosing block (or the entity itself if it is a block).

Algorithm

Line 1 Get the rightmost path item in the qualifier.

Line 2-3 If the path item denotes a block the whole qualifier is converted to an identifier.

Line 5-6 Remove the rightmost path item from the qualifier and call the function recursively on the rest of
the qualifier.

process-or-service-scopeunit(qual) (7.1.4)

 1 (let pathitem = qual[len qual] in
 2 if is-Process-qualifier1(pathitem) ∨ is-Service-qualifier1(pathitem) then
 3 convert-to-identifier(qual)
 4 else
 5 (let restqual = 〈qual[i] | 1 ≤ i < len qual〉 in
 6 process-or-service-scopeunit(restqual)))

type: Qualifier1 → Identifier1

Objective Get the identifier of the process or service which encloses (or is) a given entity.

Parameters

qual The qualifier denoting the entity.

Result The identifier of the enclosing process or service (or the entity itself if it is a process or service).

Algorithm

Line 1 Get the rightmost path item in the qualifier.

Line 2-3 If the path item denotes a process or service the whole qualifier is converted to an identifier.

Line 5-6 Remove the rightmost path item from the qualifier and call the function recursively on the rest of
the qualifier.

convert-to-identifier(qual) (7.1.5)

 1 (let qual’ = 〈qual[i] | 1 ≤ i < len qual〉,
 2 nm’ = cases qual[len qual]:
 3 (mk-Block-qualifier1(nm) → nm,
 4 mk-Block-substructure-qualifier1(nm) → nm,
 5 mk-Process-qualifier1(nm) → nm,
 6 mk-Service-qualifier1(nm) → nm,
 7 mk-Procedure-qualifier1(nm) → nm,
 8 mk-Signal-qualifier1(nm) → nm,
 9 mk-Sort-qualifier1(nm) → nm) in
10 mk-Identifier1(qual’, nm’))

type: Qualifier1 → Identifier1

Objective Convert a qualifier to an identifier denoting the same scope unit.

Parameters

qual The qualifier.

170 Recommendation Z.100 – Annex F.3 (03/93)

Result The corresponding identifier.

Algorithm

Line 1 Obtain the qualifier denoting the enclosing scope unit.

Line 2-9 Extract the scope unit name from the rightmost path item.

Line 10 Construct the identifier.

Recommendation Z.100 – Annex F.3 (03/93) 171

7.2 Selection of Definitions from Definition Sets

select-block(blid, bset) (7.2.1)

 1 (let block ∈ bset be s.t. s-Block-name1(block) = s-Name1(blid) in
 2 block)

type: Block-identifier1 Block-definition1-set → Block-definition1

Objective Get from a set of block definitions the one denoted by a given identifier.

Parameters

blid The block identifier.

bset The set of block definitions.

Result The block definition.

Algorithm

Line 1 The block definition wanted is that with the same name as the name part of the identifier.

Line 2 Return the block definition.

select-process(prid, pset) (7.2.2)

 1 (let prcs ∈ pset be s.t. s-Process-name1(prcs) = s-Name1(prid) in
 2 prcs)

type: Process-identifier1 Process-definition1-set → Process-definition1

Objective Get from a set of process definitions the one denoted by a given identifier.

Parameters

prid The process identifier.

pset The set of process definitions.

Result The process definition.

Algorithm

Line 1 The process definition wanted is that with the same name as the name part of the identifier.

Line 2 Return the process definition.

select-channel(chid, cset) (7.2.3)

 1 (let chan ∈ cset be s.t. s-Channel-name1(chan) = s-Name1(chid) in
 2 chan)

type: Channel-identifier1 Channel-definition1-set → Channel-definition1

Objective Get from a set of channel definitions the one denoted by a given identifier.

172 Recommendation Z.100 – Annex F.3 (03/93)

Parameters

chid The channel identifier.

cset The set of channel definitions.

Result The channel definition.

Algorithm

Line 1 The channel definition wanted is that with the same name as the name part of the identifier.

Line 2 Return the channel definition.

select-signalroute(srid, srset) (7.2.4)

 1 (let sr ∈ srset be s.t. s-Signal-route-name1(sr) = s-Name1(srid) in
 2 sr)

type: Signal-route-identifier1 Signal-route-definition1-set → Signal-route-definition1

Objective Get from a set of signal route definitions the one denoted by a given identifier.

Parameters

srid The signal route identifier.

srset The set of signal route definitions.

Result The signal route definition.

Algorithm

Line 1 The signal route definition wanted is that with the same name as the name part of the identifier.

Line 2 Return the signal route definition.

Recommendation Z.100 – Annex F.3 (03/93) 173

7.3 Simple Decomposition of Behaviour Graphs

decomp-graph(graph) (7.3.1)

 1 cases graph:
 2 (mk-Process-graph1(strt, stnds) → (strt, stnds),
 3 mk-Service-graph1(strt, stnds) → (strt, stnds),
 4 mk-Procedure-graph1(strt, stnds) → (strt, stnds))

type: (Process-graph1 | Service-graph1 | Procedure-graph1) →
(Process-start-node1 | Service-start-node1 | Procedure-start-node1) State-node1-set

Objective Decompose a process/service/procedure graph into its start node and state node set.

Parameters

graph The behaviour graph.

Result A pair consisting of the start node and the state node set.

decomp-start-node(start) (7.3.2)

 1 cases start:
 2 (mk-Process-start-node1(trans) → trans,
 3 mk-Service-start-node1(trans) → trans,
 4 mk-Procedure-start-node1(trans) → trans)

type: (Process-start-node1 | Service-start-node1 | Procedure-start-node1) → Transition1

Objective Extract from a process/service/procedure start node its contained transition.

Parameters

start The start node.

Result The contained transition.

174 Recommendation Z.100 – Annex F.3 (03/93)

Domain Index
Recommendation Z.100 – Annex F.3 (03/93)

Active-Answer 19, 51, 61, 82

Active-Request 19, 46, 61, 82

Active-expressionl 13, 14
ADMIN 22, 23, 42, 55, 58, 59, 64, 70

Admin-processor 21, 22

Alternative-expressionl 14
Alternativel 13
And-operator-identifierl 13
Anyvalue-expressionl 14, 15, 78, 83

Arglist 19, 20, 45, 50, 51, 54

Argument-list 24
Argument-listl 12
Assignment-statementl 9, 14, 72, 73, 97

Auxiliary-information Annex F.2, 26, 27

Block-definitionl 5, 11, 91, 92, 124, 127, 128, 129,
130, 131, 136, 140, 145, 146, 148, 171

Block-identifierl 7, 26, 89, 122, 124, 125, 130, 145,
166, 171

Block -namel 5, 171

Block-qualifierl 5, 92, 124, 127, 136, 146, 168, 169

Block-substructure-definitionl 5, 11, 92, 125, 128,
132, 137, 146

Block-substructure-namel 5, 11
Block-substructure-qualifierl 5, 92, 125, 128, 137,

146, 169

Body-Created 16, 42, 46

Body-processor 21, 29
Bool 16, 18, 19, 27, 28, 33, 40, 41, 46, 47, 48, 49,

50, 77, 85, 96, 97, 98, 99, 107, 118, 120,
121, 130, 133, 134, 161

Boolean-expressionl 14

Call-nodel 8, 9, 72, 74
Channel-connectionl 11, 130, 132, 146
Channel-definitionl 5, 7, 11, 128, 130, 140, 148,

149, 161, 162, 164, 165, 166, 171
Channel-identifierl 7, 9, 11, 129, 130, 131, 132,

145, 146, 171
Channel-namel 7, 148, 171
Channel-pathl 7, 128, 129, 140, 161, 162, 164, 165,

166
Channel-to-route-connectionl 5, 7, 131, 146
Closed-rangel 13, 86, 103
Composite-terml 12, 110
Condition-iteml 13, 86
Conditionl 13
Conditional-composite-terml 12, 13
Conditional-equationl 12, 13, 108, 109, 111, 113,

117, 118
Conditional-expressionl 14, 78, 82
Conditional-ground-terml 12, 13

Conditional-terml 13, 79, 107, 110, 111, 112, 114
Consequence-expressionl 14
Consequencel 13
Create-Instance-Answer 16, 29, 74
Create-Instance-Answerl l6, 29, 42
Create-Instance-Request l6, 29, 74
Create-Instance-Requestl l6, 29, 41
Create-Pid 17, 29
Create-request-nodel 8, 9, 72, 74 .

Data-type-definitionl 5, 6, 11, 12, 22, 101
DCLASSIGN 68, 69
Decision-answerl 9, 76, 97, 99
Decision-nodel 8, 9, 72, 76, 97, 99
Decision- questionl 9
Decll Annex F.2, 90, 91
DelayF Annex F.2, 27, 28, 40, 41, 42 46, 47, 48,

49, 50, 52
Destination- blockl 7
Destinationl 7
Die 20, 37, 58, 64
Direct-vial 9, 18, 31, 33

Else-answerl 9, 76
ENDTRANS 61
ENVIRONMENT 7, 18, 22, 25, 26, 27, 28, 30, 31,

34, 35, 89, 90, 130, 135, 145, 159, 161, 164,
165, 166, 167

Entity-dict 22, 23, 24, 27, 28, 29, 30, 31, 34, 35, 39,
41, 42, 46, 47, 50, 52, 55, 56, 57, 58, 59, 60,
61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74,
75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101,
102, 103, 104, 105, 106, 107, 108, 119, 120,
122, 127, 128, 129, 132, 133, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 156, 158,
159, 160

Environment-admin 17, 27
Equationl 12, 109
Equationsl 12, 23, 105, 106, 108, 109, 111, 113,

115
Error-terml 12, 13, 14, 23, 78, 102, 103, 106, 109,

110, 114, 119, 120, 121
EXPIREDF 22, 52, 88
Exceed 16
Execute-Start 19, 60, 70
Expressionl 9, 10, 13, 14, 15, 76, 78
External-signal-route-identifierl 7

FALSEVALUE 22, 23, 79, 82, 89, 99, 108, 119,
120

FORWARD 25, 130, 140, 142, 143, 162, 165, 166
FormparmDD 25, 95

Recommendation Z.100 – Annex F.3 (03/93) 175

Graph-nodel 8, 72
Ground-expressionl 8, 13, 24, 78, 79, 97
Ground-terml 12, 13, 20, 23, 79, 80, 88, 89, 103,

106, 107, 109, 110, 111, 113, 114, 117, 120,
121

Identifierl 5, 7, 8, 9, 10, 11, 12, 13, 15, 22, 25, 46,
55, 63, 65, 69, 78, 79, 81, 89, 91, 93, 94, 95,
101, 106, 107, 109, 110, 114, 117, 120, 124,
125, 128, 134, 138, 139, 140, 142, 143, 147,
148, 149, 150, 152, 168, 169

Imperative-operatorl 14
IN 129, 130, 131, 132, 140, 142, 145, 146, 147,

148, 149, 150, 151, 152, 164, 165, 166
INPUTSIGNAL 49
In-parameterl 6, 95
Informal-text1 5, 9, 12, 72, 73, 76, 77, 97
Initial 25
Inout-parameterl 6, 95
InoutparmDD 25, 65, 74, 95
InparmDD 25, 66, 74, 95
Inport-Created 16, 42, 55
Inport-queue 45, 46, 53, 54
Inport-queue-item 45, 53
Input-Signal 18, 19, 49, 60, 71
Input-nodel 8, 71, 96, 98, 154
Input-processor 21, 22
Input-signal-set 25, 60
Inst-map 26, 34
Instance-Created 16, 42, 58, 59, 64
Intg 6, 25
Is-expiredF Annex F.2, 22, 89

Literal-operator-identifierl 12
Literal-operator-namel 12
Literal-signaturel 12, 101

Maximum 25, 42

Namel 5, 6, 7, 8, 9, 11, 12, 13, 38, 171, 172
Next-Signal 18, 19, 46, 47, 60, 61, 71
Nextstate-nodel 9, 72
NODELAY 7, 25, 142, 143, 144, 152
Now-expressionl 14, 78
NULLVALUE 22, 28, 29, 35, 55, 88, 119
Number-of-instancesl 6, 93
N0 41
Nl 121

OFFSPRING 22, 23, 55, 74, 78
Offspring-Value 16, 42
Offspring-expressionl 14, 15, 78
Open-rangel 13, 86, 103
OperatorDD 22, 24, 80, 101, 103, 107
Operator-applicationl 14, 78, 81 .
Operator-identifierl 12, 13, 14, 80
Operator -namel 12

Operator-signaturel 12, 101

Or-operator-identifierl 13, 85, 86

Originl 7
Originating-blockl 7
OTHERASSIGN 68, 69

OUT 129, 130, 131, 132, 140, 142, 145, 146, 147,
148, 149, 150, 151, 152, 164, 165, 166

Output-nodel 8, 9, 72, 73

PARENT 22, 23, 55, 78

ParameterDD 25, 94

Parent-Value 16, 42

Parent-expressionl 14, 15, 78

Parent-sort-identifierl 13, 24

Path 25, 26, 28, 33, 35, 151, 157, 158

Path-direction 25, 162, 165, 166

Path-element 25, 141, 142, 144, 149, 150, 151, 152,
156, 157

Path-identifier 25
Path-iteml 5, 134

Path-map 26
Path-queue 40
Path-queue-item 40
PIDSORT 22, 35, 88, 120

Pid-Created 17, 30

Pid-Value 16, 17, 18, 20, 21, 22, 26, 29, 35, 36, 37,
38, 41, 43, 46, 47, 55

Pid-expressionl 14
PORT 22, 23, 55, 59, 60, 61, 71, 75, 82

PROCEDURE 22, 65, 66, 74, 95

PROCESS 22, 27, 28, 31, 35, 42, 57, 58, 73, 74,
93, 159

ProcedureDD 22, 25, 65, 66, 74, 95

Procedure-definitionl 6, 91, 95, 154

Procedure-formal-parameterl 6, 95

Procedure-graphl 6, 25, 70, 96, 98, 154, 173

Procedure-identifierl 9, 65, 66

Procedure-namel 5, 6
Procedure-qualifierl 5, 65, 95, 169

Procedure-start-nodel 6, 7, 70, 173

ProcessDD 22, 25, 28, 57, 58, 74, 88, 93, 159

Process-definitionl 5, 6, 91, 93, 137, 138, 141, 142,
145, 147, 150, 153, 171

Process-formal-parameterl 6, 94

Process-graphl 6, 25, 58, 70, 93, 96, 98, 138, 147,
153, 154, 173

Process-identifierl 7, 9, 16, 18, 20, 25, 26, 29, 34,
35, 41, 42, 46, 55, 56, 57, 58, 59, 145, 147,
150, 158, 159, 167, 171

Process-namel 5, 6, 171

Process-qualifierl 5, 46, 55, 93, 138, 147, 169

Process-set-admin-map 26
Process-start-nodel 6, 8, 70, 173

176 Recommendation Z.100 – Annex F.3 (03/93)

Qualifierl 5, 22, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 101, 102, 103, 105, 106, 119, 120, 124,
125, 127, 128, 134, 136, 137, 138, 139, 140,
141, 142, 143, 145, 146, 147, 148, 149, 150,
151, 152, 168, 169

Quantified-equationsl 12, 108, 109

Queue-Signal 18, 31, 40

Queue-Signall 18, 43, 46

Quot 22, 135, 145, 152

Range-conditionl 9, 13, 24, 76, 77, 85, 99, 103

RETURN 66, 67, 72

REVEALED 8, 24, 69

REVERSE 11, 24, 25, 91, 129, 130, 132, 133, 140,
142, 143, 162, 165, 166

Reachabilities 22, 25, 28, 31, 32, 33, 34, 35, 88, 89,
135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 156, 157,
158

Reachability 25, 28, 32, 33, 34, 88, 90, 93, 94, 135,
138, 140, 141, 142, 144, 145, 146, 147, 148,
149, 150, 151, 156, 157, 158, 159

Reachability-endp 25, 35, 156, 157, 158, 159

Reachability-or-endp 156, 157

Receiver 18, 31

Receiver-Admin 40

Receiver-Value 18, 34, 40, 43

Reset-Timer 19, 46, 61, 75

Reset-node1 9, 10, 72, 75

Restricted-equationl 13

Restrictionl 13, 113

Result 24

Resultl 12

Return-nodel 9, 72

Reveal 20, 37, 69

Reveal-map 37, 38

Reveal-map-key 37, 38

Save-signalsetl 8, 71, 154

SCOPEUNIT 22, 23, 46, 52, 55, 63, 65, 73, 79, 80,
97, 99

SELF 22, 23, 46, 52, 55, 58, 64, 69, 71, 73, 74, 78

SENDER 22, 23, 55, 71, 78

SERVICE 22, 28, 31, 35, 59, 60, 64, 94, 159

Self-expressionl 14, 78

Send-Signal 18, 29, 73

Sender-Id 18, 31

Sender-Value 18, 31, 40, 43, 45

Sender-expressionl 14, 15, 78

ServiceDD 22, 25, 64, 88, 94, 159

Service-decompositionl 6, 93, 138, 147, 148, 153

Service-definitionl 6, 91, 94, 139, 154

Service-graphl 6, 25, 70, 96, 98, 154, 173
Service-identifierl 7, 18, 20, 25, 55, 63, 64, 158,

159, 167
Service-name1 5, 6, 139
Service-qualifierl 5, 63, 94, 169
Service-start-nodel 6, 70, 173
Set-Timer 19, 46, 61, 75
Set-nodel 8, 9, 72, 75
SIGNAL 22, 73, 75, 82, 91
SignalDD 22, 24, 73, 75, 82, 91, 133
Signal-Delivered 18, 31, 40, 41
Signal-definitionl 5, 6, 7, 11, 91
Signal-destinationl 9
Signal-identifierl 7, 8, 9, 18, 25, 31, 33, 40, 43, 45,

46, 47, 48, 53, 54, 55, 129, 130, 131, 132,
133, 134, 153, 154, 156, 157, 158, 162, 164,
165

Signal-namel 5, 7
Signal-qualifierl 5, 91, 134, 169
Signal-refinementl 7, 11, 91
Signal-route-definitionl 5, 6, 7, 141, 142, 143, 150,

151, 152, 161, 162, 165, 166, 167, 172
Signal-route-identifierl 7, 9, 145, 147, 148, 172
Signal-route-namel 7, 150, 152, 172
Signal-route-pathl 7, 142, 143, 161, 162, 165, 166,

167
Signal-route-to-route-connectionl 6, 7, 148
Signaturel 12
SORT 22, 85, 101, 104
SortDD 22, 24, 85, 88, 101, 104
Sort-identifierl 12, 13, 22, 23, 102, 103, 104, 106
Sort-namel 5, 12
Sort-qualifierl 5, 109, 169
Sort-reference-identifierl 6, 7, 8, 9 , 12, 15, 20, 24,

37, 38, 74, 85, 104, 107
Sortmap 23, 102, 106, 108, 109, 110, 115, 116, 117,

118, 119, 120, 121
Sortsl 12, 106
SPONTSIGNAL 49
Spontaneous-Present 18, 46, 48, 55
Spontaneous-Signal 18, 19, 50, 60, 71
Spontaneous-transitionl 8, 71, 96, 98
STOP 58, 64, 72
State-namel 8, 9, 70
State-nodel 6, 8, 70, 71, 96, 98, 154, 173
Stg 24, 55, 56, 63, 65
Stop-Input-Port 16, 46
Stop-Instance 16, 17, 41, 58, 61, 64
Stop-node1 9, 72
Sub-block-definitionl 11
Sub-channel-identifierl 11
Subsignal-definitionl 11, 91
SYSTEMLEVEL 22, 39, 90
Syn-type-definitionl 5, 6, 11, 13, 101
SyntypeDD 22, 24, 85, 88, 101, 104

Recommendation Z.100 – Annex F.3 (03/93) 177

Syntype-identifierl 12, 13
Syntype-name1 13
System-definitionl 5, 26, 89, 90, 122, 124, 127, 135
System-namel 5
System-qualifierl 5, 90, 124, 127, 135

Task-nodel 8, 9, 72, 97
Term 23
Term-class 23, 106, 121
Term-information Annex F.2, 89
Term-reduce-map 23, 102, 103, 119
Terml 12, 13, 110, 111, 114, 115
Terminatorl 8, 9
Time 20, 39
Time-Answer 20, 39, 52, 83
Time-Request 20, 39, 46, 50, 83
Time-expressionl 9, 10
Time-information Annex F.2, 39
Timeout-Value 19, 45, 50
Timer-active-expressionl 14, 15, 78, 82
Timer-definitionl 6, 9, 91
Timer-identifierl 9, 10, 15, 19, 45, 50, 51, 54
Timer-namel 9
Timer-table 45, 46
Token 5
TRUEVALUE 22, 23, 52, 76, 79, 82, 85, 88, 108,

119, 120
Transitions1 6, 7, 8, 9, 72, 97, 99, 173
TYPE 22, 101, 102, 103, 105, 106, 119, 120
TypeDD 22, 23, 88, 101, 102, 103

UNDEFINED 20, 28, 37, 55, 65, 66, 68, 69, 78, 79,
81, 85

Unquantified-equationl 12, 13, 108, 109, 111, 113,
115, 118

VALUE 22, 56, 57, 64, 65, 66, 69, 74, 80, 81, 91,
94, 95, 97, 101, 103, 107

Value 19, 20, 21, 22, 37, 39, 55, 65, 66, 68, 69, 76,
77, 78, 79, 80, 81, 82, 83, 85, 86, 102, 103

Value-list 16, 18, 20, 29, 31, 40, 42, 43, 45, 47, 55,
57

Value-identifierl 12, 109, 110
Value-namel 12
VarDD 22, 24, 56, 57, 64, 65, 66, 69, 81, 91, 94,

95, 97
Variable-accessl 14
Variable-definition

l
 6, 8, 91

Variable-identifierl 8, 14, 20, 24, 25, 37, 57, 65, 66,
68

Variable-namel 6, 8
ViewDD 22, 24, 81, 91
View-Answer 20, 37, 81
View-Request 20, 37, 81
View-definitionl 6, 8, 91
view-expressionl 14, 15, 78, 81
View-identifier1 15, 20, 38
View-namel 8

178 Recommendation Z.100 – Annex F.3 (03/93)

Function Index

add-reachability 158, 159
add -signal-inport-queue 47, 53
append-chan-to-reach 148, 149, 151
append-sigroute-to-reach 150

block-scopeunit 168

check-graph 93, 94, 95, 96
collect-all-equations 101, 105
connected-block 148, 166
connected-process-or-service 150, 151, 167
convert-to-identifier 168, 169
create-local-vars 57, 64, 66
create-procedure-vars 65, 66
create-process-vars 55, 57
create-service-vars 63, 64

decomp-graph 70, 96, 98, 154, 173
decomp-start-node 70, 96, 98, 173
definition-of-SDL Annex F.2, 26
delaying-path 28, 31, 35
deliver-input-signal 49
deliver-spontaneous-signal 48, 49, 50
direction-signals-chan 130, 140, 162
direction-signals-sigroute 142, 143, 162

empty-inport-queue 46, 53
enclosing-block 38, 168
enclosing-scopeunit 35, 37, 56, 57, 59, 64, 65, 66,

168
eval-anyvalue-expression 78, 83
eval-condition-item 86
eval-condition-item-set 85, 86
eval-conditional-equations 108, 117
eval-conditional-expression 78, 82
eval-deduced-equivalence 115, 116
eval-equations 106, 108
eval-expression 73, 74, 75, 76, 78, 81, 82, 97
eval-ground-expression 57, 78, 79, 86
eval-ground-term 79
eval-ground-term-opapp 79, 80, 81, 86
eval-new-expression 78, 83
eval-operator-application 78, 81
eval-quantified-equation 108, 109
eval-range-condition 76, 85, 99
eval-timer-active-expression 78, 82
eval-unquantified-equations 108, 115, 117
eval-variable-identifier 78, 81
eval-view-expression 78, 81
exec-service-starts 58, 60
exec-service-states 58, 60
exec-service-transition 60, 61
expand-conditional-in-terms 111, 113, 114
expand-conditional-term-in-conditions 108, 113

expand-conditional-term-in-equations 108, 111
extract-dict 26, 88
extract-direction-subsignals 129, 132
extract-inputsigs-decomp 153
extract-inputsigs-graph 153, 154
extract-inputsigs-grordec 153
extract-inputsigs-prcd 153, 154
extract-inputsigs-prcs 138, 153
extract-inputsigs-serv 139, 153, 154
extract-sortdict 90, 92, 93, 94, 95, 101

get-receiver 43
getpid 29, 30, 35

handle-active-request 46, 51
handle-create-in-env 29, 30
handle-create-instance-request 28, 29
handle-create-instance-request1 41, 42
handle-inputs 26, 29
handle-next-signal 46, 48
handle-queue-signal1 46, 47, 52
handle-reset-timer 46, 50, 51
handle-send-signal 29, 31
handle-set-timer 46, 50
handle-signal-delivered 41, 43
handle-spontaneous-transition 46, 47, 48
handle-stop-instance 41, 42
handle-time-request 46, 50, 52

inout-going-path-direction-chan 149, 165
inout-going-path-direction-sigroute 152, 166
inout-going -path-elem-chan 149, 152
inout-going-path-elem-sigroute 150, 151, 152
inout-going-reach-sigroute 148, 151
inout-going-reaches 140, 145
inout-going-reaches′ 142, 145
inout-going-reaches-block 145, 146, 148
inout-going-reaches-chan 146, 148, 150
inout-going-reaches-decomp 147, 148
inout-going-reaches-prcs 145, 147, 150
inout-going-reaches-sigroute 146, 150
inout-going-reaches-sub 146
inout-going-signals 129, 130
inout-going-signals-block 130, 131
inout-going-signals-chan 132, 149, 164
inout-going-signals-sigroute 131, 150, 151, 165
inout-going-signals-sub 131, 132
insert-input-signals 158, 159
insert-term 109
insert-term-in-term 109, 110
int-assign-stmt 72, 73
ins-call-node 72, 74
int-create-node 72, 74
int-decision-node 72, 76

Recommendation Z.100 – Annex F.3 (03/93) 179

int-graph 58, 64, 66, 70
int-graph-node 72
int-informal-text 72, 73
int-output-node 72, 73
ins-procedure 65, 74
int-procedure-graph 65, 66
int-process-graph 58
int-process-graph-or-service-decomp 55, 58
int-reset-node 72, 75
int-service-decomp 58
int-service-graph 63, 64
int-set-node 72, 75
int-start-node 70
int-state-node 70, 71
int-task-node 72
int-transition 70, 71, 72, 76
is-consistent-chancon 128, 130
is-in-via 33
is-internal-chan 137, 161
is-internal-sigroute 136, 138, 161
is-of-this-sort 102, 106, 107
is-proper-subsig 129, 130, 133, 134
is-sig-or-subsig 129, 132, 133
is-wf-assignments 96
is-wf-boolean 120, 121
is-wf-decision-answers 96, 98
is-wf-literals 101, 120
is-wf-pid 120, 121
is-wf-task-node 97
is-wf-transition-answers 98, 99
is-wf-transition-assignments 96, 97
is-wf-values 101, 120

make-block-dict 91, 92
make-entities 90, 92, 93, 94, 95
make-entity 90, 91
make-equivalence-classes 106
make-internal-reaches-block 136
make-internal-reaches-blocks 135, 136, 137
make-internal-reaches-chan 140, 142, 143
make-internal-reaches-chans 135, 137, 140, 141,

143
make-internal-reaches-decomp 138
make-internal-reaches-prcs 137, 138
make-internal-reaches-prcss 136, 137
make-internal-reaches-serv 139
make-internal-reaches-servs 138, 139
make-internal-reaches-servsigroute 143
make-internal-reaches-servsigroutes 138, 143
make-internal-reaches-sigroute 141, 142, 143
make-internal-reaches-sigroutes 136, 141, 143
make-internal-reaches-sub 136, 137
make-procedure-dict 91, 95
make-procedure-formal-parameters 95
make-process-dict 91, 93
make-process-formal-parameters 93, 94
make-reachabilities 89, 135

make-service-dict 91, 94
make-signal-dict 91
make-sortmap 101, 106
make-system-dict 89, 90
make-term-reduce-map 101, 102, 119
matching-answer 76
modify-procedure-vardds 65
modify-process-vardds 55, 56, 63
modify-service-vardds 63

next-signal-inport-queue 49, 53

parent-signal 133, 134
process-or-env 31, 34, 35
process-or-service-scopeunit 73, 169
propagate-refinement-block 127, 128
propagate-refinement-chan 127, 128
propagate-refinement-cpath 128, 129
propagate-refinement-sub 127, 128
propagate-refinement-sys 122, 127

range-check 69, 73, 74, 75, 80, 82, 83, 85, 97
ranges-not-overlapping 99
reduce-term 39, 52, 79, 80, 101, 103
remove-signal-inport-queue 49, 54
remove-timer-signal 51, 54
replace-term 116, 117
restrict-to-destpid 31, 34
restrict-to-destprcs-or-env 31, 34
restrict-to-signal 31, 33
restrict-to-via 31, 33
restriction-holds 117, 118
revealed-variables 37, 38

select-block 130, 145, 148, 171
select-channel 130, 132, 146, 171
select-consistent-subset 89, 122
select-consistent-subset-block 124, 125
select-consistent-subset-osub 124, 125
select -consistent-subset-sub 125
select-consistent-subset-sys 122, 124
select-process 145, 150, 171
select-signalroute 131, 146, 148, 172
sort-of-range-condition 99, 101, 103
sort-or-parent-sort 83, 101, 103, 104, 107
start-initial-processes 26, 28
start-paths 26, 28
start-process-set-admins 26, 27
start-services 58, 59
subsig-direction 132, 133

text-equality 76, 77
total-reach 156, 157
try-to-make-transition 47, 48, 49

update-endpd 140, 142, 143, 156
update-endpd ′ 156, 158
update-endpd-self 138, 139, 158
update-stg 57, 66, 68, 71, 73

180 Recommendation Z.100 – Annex F.3 (03/93)

update-stg′ 68, 69
update-stg-dcl 57, 68

values-of-sort 35, 83, 99, 101, 102

Recommendation Z.100 – Annex F.3 (03/93) 181

Processor Index

processor input-port 2, 4, 16, 17, 18, 19, 20, 21, 22,
23, 27, 41, 42, 45, 46, 47, 55, 56, 59, 60, 61,
75, 76

processor path 1, 2, 18, 26, 27, 28, 32, 33, 40
processor process-set-admin 1, 2, 4, 16, 17, 18, 21,

23, 26, 27, 28, 30, 32, 40, 41, 42, 46, 55, 58,
59

processor sdl-process 2, 4, 16, 17, 18, 19, 20, 21,
23, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52,
55, 56, 59, 60, 63, 64, 70

processor sdl-service 2, 4, 16, 17, 18, 19, 20, 21, 55,
56, 59, 60, 61, 63, 70

processor system 1, 16, 17, 18, 26, 27, 29, 40, 41,
42, 73, 74, 88

processor tick 39
processor timer 1, 2, 20, 26, 27, 39, 46, 47, 50, 52,

83, 84
processor view 1, 2, 20, 26, 27, 37, 58, 64, 69, 81,

82

182 Recommendation Z.100 – Annex F.3 (03/93)

Variable Index

adminmap 26, 27, 28, 29, 31, 32

instancemap 41, 42
instmap 26, 29, 30, 31

offspring 55, 56

pathmap 26, 28, 31
pidno 41, 42
pqueue 40
prcdstg 65

queue 46, 47, 49, 51
queuemap 41, 42, 43

revealmap 37

savemap 55, 56, 60, 61
saveset 46, 47, 48, 49
sender 55, 56
servinstmap 55, 56, 59, 60, 61
servstg 63
spont 46, 47, 48, 49
spontmap 55, 56, 60, 61
stg 55, 56

time-now 39
timers 46, 49, 50, 51, 52

waiting 46, 47, 48, 49, 50

Recommendation Z.100 – Annex F.3 (03/93) 183

Error Messages

§2.7.5: Answers in decision actions are not mutually exclusive 96
§2.7.5: No matching answer 76

§3.2.1: Block or subblock is not in consistent subset 124
§3.2.1: Leaf block contains no processes 124
§3.3: Illegal refinement of channel 128, 129

§5.2.1: Generation or reduction of equivalence classes of the enclosing scope unit 101
§5.3.1.7: Expression, term or value is equivalent to the error term 103
§5.3.1.7: Literal is equivalent to the error term 101
§5.3.1.9: Value is not within the range of the syntype 69, 73, 74, 75, 80, 82
§5.4.2.1: Attempt to evaluate error expression 78
§5.4.2.2: The viewed value is undefined 81
§5.4.2.2: Value of accessed variable is undefined 81
§5.4.3: Ground expression in assignment statement is out of range 96
§5.4.4.4: No revealed variable access can be made 37
§5.4.4.6: Attempt to evaluate an anyvalue expression for an empty sort or syntype 83

