| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.100

TELECOMMUNICATION Annex F.3
STANDARDIZATION SECTOR
OF ITU (03/93)

SERIES Z: PROGRAMMING LANGUAGES

Formal description techniques (FDT) — Specification and
Description Language (SDL)

Specification and Description
Language (SDL) — SDL formal
definition: Dynamic semantics

ITU-T Recommendation Z.100 — Annex F.3

(Previously CCITT Recommendation)

ITU-T Z-SERIES RECOMMENDATIONS
PROGRAMMING LANGUAGES

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of Formal Description Techniques
Message Sequence Chart

PROGRAMMING LANGUAGES
CHILL: The ITU-T high level language

MAN-MACHINE LANGUAGE
General principles
Basic syntax and dialogue procedures
Extended MML for visual display terminals
Specification of the man-machine interface

QUALITY OF TELECOMMUNICATION SOFTWARE

METHODS FOR VALIDATION AND TESTING

Z.100-Z.109
Z.110-7.119
Z2.120-72.129

Z.200-Z.209

Z.300-2.309
Z.310-Z.319
2.320-Z.329
Z.330-2.399
Z.400-Z2.499
Z.500-Z.599

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

SeriesB Means of expression: definitions, symbols, classification

SeriesC Genera telecommunication statistics

SeriesD General tariff principles

SeriesE Overall network operation, telephone service, service operation and human factors
SeriesF Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

SeriesH Audiovisua and multimedia systems

Series| Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

SeriesK Protection against interference

SeriesL Construction, installation and protection of cables and other elements of outside plant

SeriesM TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

SeriesN Maintenance: international sound programme and television transmission circuits
SeriesO Specifications of measuring equipment

SeriesP Telephone transmission quality, telephone installations, local line networks
SeriesQ Switching and signalling

SeriesR Telegraph transmission

Series S Telegraph services termina equipment

Series T Terminals for telematic services

SeriesU Telegraph switching

SeriesV Data communication over the tel ephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

SeriesZ Programming languages

* 4 37 5 %

Printed in Switzerland
Geneva, 1998

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on aworldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Z.100 — Annex F.3 was revised by the ITU-T Study Group X (1988-1993) and was approved
by the WTSC (Helsinki, March 1-12, 1993).

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

0 ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation Z.100 — Annex F.3 (03/93) i

CONTENTS

Page

SDL ADSIFaCt SYNEAX SUMIMEIYc.couereeiertirieiirtineeiesseeese st ssee st seesesseseesessessesessesesesaessesessesessessensenesnensenes 5
11 2 S oD SRS 5
12 Structural Decomposition CoNCEPLS IN SDLc.ccueiiiiieciceceeeeeeee et sae s 11
13 D= = N1 10 OSSP 12
Domains for the Meta-Process COMMUNICAEION...........coeiieieiereeese e e e see e steseesresre e eseeneenees 16
21 SDL Process Creation and SLOPPING -....ccceeereeruereereerierestesesesesseeseseessessessessessessessesssessessessesssssssees 16
2.2 SDL Signal COmMMUNICALIONc.ceiveiiietiiiesiesteseeteeeeseestestes e see s e sresseeses e esaessessessesaestesaessessesnseseesannees 18
23 S IS Yo o =T 1 g S 19
24 SDL Timer HaNAING. ...c.e ittt sttt st bbbt bbb 19
25 LTS o =g To [T oo SRR 20
2.6 Revealed Variable HandliNgcoeoieeieiice et st 20
2.7 COMIMON DOMEINS ...ttt sttt sttt sttt sttt et st s e e st bese e bt s be e e besbe e e besbe e sbesee e ebesbeneees 20
Domains for the ENntity INFOMMELIONcoiirieiiieiie bbb 22
31 THE TYPE DESCIIPLON ...ttt ettt sttt ae et e e be e e besbesaesae e st ese e e e s eeeseeebeeneeneeneaneees 23
3.2 THE SO DESCIIPION ...ttt sttt sttt sttt sttt e st e st e seeseebeseesesbeseesesaeneebeseeneebesbeseesestesennens 24
33 The Operator and Literal DESCIIPLONccvieeeeeereeesese s se e e sr et sne st ne e eseeseeneenes 24
34 THE VariahDl @ DESCIIPLONc.eivieeteieeeete sttt sttt bt ettt s be b e ebe st neenea 24
35 THE VIOW DESCITDEON ...ttt ettt sttt ae e e e e e e besbesaesaeeaeese e e e e eeeseeebeeneeneensaneenen 24
3.6 THE SIGNEl DESCIIPLOLeueeviiteeetesieeete ettt sttt et e sbe e ebesae st ebeseesesbeseebesbeneeseseeseesestesensens 24
37 I LS 01 =SS TS o] oo S 25
38 THE SEIVICE DESCIIION ... ettt ettt ettt b bbb se st b e et b e e b e e seenesbeneenens 25
39 The ProCedUre DESCIIILONcoueeieeeieseestesie sttt ettt st st eae e et e e e se e besaesbesaeeaeene e e aneees 25
THEUNAENTYING SYSIEM ...ttt sttt ettt e s e e st e s besbesbeeaeeae e s esenbesrestesbesaessesneenseneens 26
41 SYSLEM PrOCESSONveueeieeieeieeieseeseeesteeseeeeesseesseeteessesseesseesseensesssesseesaeesseenssaneesseesseensesnsesssessenssens 26
41.1 LI 1S (011X 26

412 AUXITArY FUNCHIONS. ... ettt ettt e b eneene e e e e ee 33

4.2 RV L= T A 0o TR 37
421 LIS 10 00=SS o RSSO 37

4.3 IS 0005 39
4.4 INFOrMEl TICK PrOCESSON ... eiteeeiee ettt sttt ettt e e e e e e b e sbesaeeneeneeneeneens 39
45 e T 0 10=. o) LSS 40
451 QLI 10 00=SS o OSSR 40

4.6 Process Set AdMINiStrating PrOCESSOc.ciuirieiriiiririeisierie ettt 41
4.7 [NPUL-POIT PrOCESSON ...ttt st r e st nnea 45
4.7.1 QLI (0 0T= ST TSR 46

4.7.2 Input Port Queue AUXiliary FUNCLIONS ..ot 53

The SDL-Process anNd SDL-SEIVICEcccveeeierieesesise sttt see e e seesee e saestessesseeseee e eeseeseeseseesseeneenseneens 55
51 THE SUI-PrOCESS PIOCESSOevcuiitiieiieteiete sttt sttt et b e eie b se bt b e b sb e eb e b et e b e seenesbeseesesrennenen 55
5.2 THE SUI-SENVICE PrOCESSONueiieiiiteieeieste et ste et sttt st sttt st s te st ebesbe st ebesaeseebeseenesteseesestesensens 63
53 Interpretation Of @ PrOCEAUIE.cccoiieereces ettt e e e stestesresne e e enaennens 65
54 SLOFAE HANAIING. ...ttt b e ettt sttt b e 68
55 Interpretation of a Process, Service or Procedure Graphcoeveeeereiniinieeseeeseseeeseeseseeeeas 70
5.6 EXPreSSioN EVAIUBLION.civeiiiieiiiiiieii sttt ettt sttt seneees 78
56.1 Ground EXpression EVAIUGLION...........cccoeiirene e seee et neens 79

56.2 ACtiVe EXPression EVAIUBLIONccociiiniiienine ettt 81

57 Range Check and Range Condition EVAIUBLIONccrireerinieerieinesieesieseeee e 85

Recommendation Z.100 — Annex F.3 (03/93) iii

6 Construction of Entity-dict and Handling of Abstract Data TYPES......cccevveeereerereresiesesesesesreseee e seeee s 88
6.1 Construction of Descriptors for SImple ODJECEScoevirireirirere e 90
6.2 Handling Of ADSLraCt Data TYPES......ccoueruererierierierieeteseee ettt sae st e e et b sbesbesaeebeeseeneas 101

6.2.1 1Y U 1o S 101
6.2.2 o 0 (o T @0 <ot (') o 105
6.2.3 Equivalence Class Generation and Equation Evaluationcccceeveveinieneeneicneneenens 106
6.24 Term Reduction Map GENEIatiON..........ccverierierieriere et e e e s 119
6.2.5 WeElIFOrmedness ChECKS........coirieiiieisiee e 120
6.3 Selection Of CONSISLENt SUDSELooueiiieee e e 122
6.3.1 Removal of Non-Selected Substructures and ProCESSES.........cooeererererieenieneee s 124
6.3.2 SUDSIGNEl PrOPagation..........coueiiieeieeeie ettt ettt eeae e 127
6.4 Construction of COMMUNICALION PatNScccoiiiiiiieie ettt saeas 135
6.4.1 Reachability CONSEIUCLIONccveceeeeeieeces et enes 135
6.4.2 Construction of Partial ReaChabiliti€S..........ccocveerereniieeeeee e 145
6.4.3 Extraction of INPUL SIgNal SELS........coeiiiiieiieieeseeet e 153
6.4.4 Update of Descriptors with Reachabiliti€s..........ccooveiiirniiieeeee e 156
6.5 Simple Information Extraction from Channel§/Signal ROULES...........ccoovveveeeveneneneceee e 161
6.5.1 Information from All Channelg/Signal ROULES............ccccerririnieinene e 161
6.5.2 Information from Non-Internal ChannelS/Signal ROULESccvireerieiinenccneeseseeens 164

7 General-Purpose AUXiliary FUNCHIONSoirieiiiieisiecsise sttt se st neens 168
7.1 Simple ldentifier HAaNGIiNG........coooeiiiieiicecseceseese s st e e naeneas 168
7.2 Selection of Definitions from Definition SELS.........coov i 171
7.3 Simple Decomposition of BEhaviour Graphis..........c.ccoeeireininereeesie et 173

iv Recommendation Z.100 — Annex F.3 (03/93)

Recommendation Z.100 — Annex F.3

SPECIFICATION AND DESCRIPTION LANGUAGE (SDL) —
SDL FORMAL DEFINITION: DYNAMIC SEMANTICS

(Melbourne, 1988; revised at Helsinki, 1993)

Environment-admin,

Create-Pid,

Send-Signal)
> Queue-Signal
(system

Pid-Created

Signal-Delivered

A

Create-Instance-Requestl,
Create-Instance-Answer,
Signal-Delivered

Create-Instance-Request, Signal-Delivered

Create-Instance-Answer1,
Send-Signal

sdl-
process-
set

View-Answer Time-Request

Reveal, Time-Answer
View-Request,

Die

Time

T1007470-93/d01

FIGURE 1/7.100
Overall Structure of Interpretation Model

| ntroduction

This part of the Forma Definition defines the dynamic properties of SDL. For a description of the overall structure of
the Formal Definition and for an explanation of the notation used, refer to Annex F.1: Introduction to the Formal
Definition.

An SDL system is interpreted by a number of concurrent meta-processes. The communication between these is
synchronous, CSP-like communication. The linesin figures 1 and 2 indicate communication by means of CSP-output.

Overall Interpretation Model

Figure 1 shows the overal structure of the interpretation model. The system-process is the “entry point” for
interpretation of an SDL system and takes care of creating instances of the other processes: one instaieee ahthe
timer-process, one instance of tipath-process for each distinct delaying path by which an SDL signal may be
transported, and one instance of phecess-set-admin-process (shown in the next figure) for each process instance set in
the SDL system. Thprocess-set-admin-process manages a couple of (meta-)processes which is shetprasessset

in figure 1 and detailed in figure 2.

The processes are:

system Which handles the signal routing between SDL process instance sets and the generation of unique
Pid values.

There is one living instance gfstem during the whole life time of the SDL system.

Recommendation Z.100 — Annex F.3 (03/93) 1

path Which handles the nondeterministic delay of channels. Note that all potentia delays from the
channels traversed by one signal instance have been added into one delay in an instance of path.

There is one living instance of path for each (non-empty) sequence of delaying channel paths which
connects two leaf blocks (in the selected consistent subset) or one leaf block and the system
environment. The meta-process instances are living during the whole life time of the SDL system.

view Which keepstrack of all revealed variables. Each time an SDL process updates a revealed variable, it
sends the new value to view. When a process is using the view expression, it will request the current
value from view.

There isone living instance of view during the whole life time of the SDL system.

timer Which keeps track of the current time. When an SDL process is using the now expression it will
request timer for the time value.

It is assumed that the environment in regular intervals sends a clock signal to the timer. This
mechanism is sketched as the tick-process. It must be noted that the informa model of the tick-
process does not form part of the dynamic semantics, it is only included for explanatory reasons.

There isone living instance of timer during the whole life time of the SDL system.

Interpretation Model for SDL Process I nstance Set

Figure 2 shows the interpretation model for an SDL process instance set. The meta-process process-set-admin is the

“entry point” for interpretation of an SDL process instance set and takes of creating one instanéepat-guoet- and
sdl-process-processes whenever a new SDL process instance is to be created. If the SDL process is decomposed into
services, thadl-process-process creates osd-service-process for each service.

The processes are:

process-set-admin Which handles all ingoing SDL signals and create requests and manages the other meta-processes
needed to interpret an SDL process instance set. A create request results in one insiaurtegoof
and one instance afll-process unless this would lead to violation of the maximum number of SDL
process instances. An ingoing signal is either directed to $ampoéport instance or discarded,
depending on the receiver information conveyed with the signal and the current set of living SDL
process instances.

There is one living instance @focess-set-admin for each SDL process instance set. These meta-
process instances are living during the whole life time of the SDL system.

input-port Which handles the queueing of signals in an SDL-process. Signals are always received by an
sdl-process in its input-port. Theinput-port also takes care of timer handling.

At any point of time there is one living instancamgut-port for each living SDL process instance.
sdl-process Which interprets the behaviour of an SDL process.

If the SDL process isot decomposed into services this implies interpretation of its process graph,
and in this casedl-service and its associated arrows in the figure do not apply.

If the SDL processs decomposed into servicesll-process creates one instance sfl-service for
each SDL service. Thall-process then coordinates the execution of the services such that all service
start transitions are executed before any input and spontaneous transitions of the services, and such

2 Recommendation Z.100 — Annex F.3 (03/93)

Create-Instance-Request1, Body-Created,
Signal-Delivered Stop-Input-Port,

»

Time-Request

> procetSS- Queue-Signall
set-

admin

Y

<

Create-Instance-Answerl

Time-Answer
Next-Signal,
Set-Timer,

Reset-Timer,
Inport-Created Active-Request

Instance-Created,

Input-Signal,
Stop-Instance P 9

Spontaneous-Signal,
Active-Answer

Create-Instance-Answer

Time-Request

sdl-

{
process Time-Answer

A

Create-Instance-Request,
Send-Signal

A
Reveal, View-Request, Die
Instance-Created,
Stop-Instance, View-Answer
Next-Signal, Execute-Start,
Set-Timer, Input-Signal,
Reset-Timer, Spontaneous-Signal,
Active-Request Active-Answer
l Y
Create-Instance-Answer .
>(sdl- Time-Request
< service | Time-Answer

Create-Instance-Request,
Send-Signal

Reveal, View-Request, Die

View-Answer

T1007480-93/d02

FIGURE 2/7.100
Structure of Interpretation Mode for SDL Process|nstance Set

Recommendation Z.100 — Annex F.3 (03/93)

that no two service transitions are executed at the same time. All communication between sdl-service
on one side and process-set-admin and input-port on the other goes through sdl-process which in
several cases simply acts as arelay for this communication. This scheme has been chosen in order to
make the interpretation functions for behaviour graph nodes as independent as possible of whether
they occur in aprocess or service graph.

At any point of time there isone living instance of sdl-process for each living SDL process instance.
sdl-service Which interprets the behaviour of an SDL service.

At any point of time there isone living instance of sdl-service for each living SDL service instance.

4 Recommendation Z.100 — Annex F.3 (03/93)

1 SDL Abstract Syntax Summary

This section contains a summary of the abstract syntax (AS;) domains for SDL as defined in Z.100. No further
comments are attached to these domain definitions here.

11 Basic SDL

Visibility rules, names and identifiers

1 Identifier,
2 Qualifiery
3 Path-iter

System-qualifier
Block-qualifier;
Block-substructure-qualifier |
Process-qualifier
Service-qualifier
Procedure-qualifier,

10 Sgnal-qualifier,

11 Sort-qualifiery

12 Name;

©oo~NO U b

Informal text

13 Informal-text,
System

14 System-definition,

15 System-name;
Block
16 Block-definitiony

17 Block-name;

: Qualifier; Name;
Path-itemy +
System-qualifierq |
Block-qualifier |
Block-substructure-qualifier; |
Process-qualifierq |
Service-qualifierq |
Procedure-qualifier |
Sgnal-qualifierq |
Sort-qualifiery

1 System-name;

. Block-name;

1 Block-substructure-name;
:: Process-name;

1 Service-name;

: Procedure-name;

. Sgnal-name;

: Sort-name;

. Token

;1 System-name;
Block-definition,-set
Channel-definition,-set
Sgnal-definition,-set
Data-type-definitiony
Syn-type-definition,-set

= Name;

. Block-name;
Process-definition,-set
Sgnal-definition,-set
Channel-to-route-connection,-set
Sgnal-route-definition,-set
Data-type-definitiony
Syn-type-definition,-set
[Block-substructure-definition,]

= Name;

Recommendation Z.100 — Annex F.3

(03/93)

5

Process

18 Process-definitiony

19 Number-of-instances;

20 Process-name;

21 Process-graph;

22 Process-formal-parameter

23 Service-decomposition,

Service
24 Service-definition

25 Service-name;
26 Service-graph;

27 Service-start-node;

Procedure
28 Procedure-definition;

29 Procedure-name;
30 Procedure-formal-parameter

31 In-parameter
32 I nout-parameter

33 Procedure-graph;

6 Recommendation Z.100 — Annex F.3

: Process-name;

Number -of-instances;

Process-formal -parameter *
Procedure-definition,-set
Sgnal-definition,-set
Data-type-definitiony
Syn-type-definition,-set
Variable-definition,-set
View-definitions-set

Timer-definition;-set

(Process-graph; | Service-decomposition;)

. Intg[Intg]

N ame,

: Process-start-node;

Sate-node;-set

. Variable-name;

Sort-reference-identifiery

1 Service-definition,-set

Sgnal-route-definition;-set
Sgnal-route-to-route-connection,-set

1 Service-name;

Procedure-definition,-set
Data-type-definition,
Syn-type-definition,-set
Variable-definition;-set
View-definition,-set
Timer-definition;-set
Service-graphy

Name;

1 Service-start-node;

Sate-node;-set

. Transitiong

;. Procedure-name;

Procedure-formal -parameter 1*
Procedure-definition,-set
Data-type-definitiony
Syn-type-definition,-set
Variable-definition;-set
Procedure-graph;

Nalml

In-parameter |
Inout-parameter

: Variable-name;

Sort-reference-identifier

1 Variable-name;

Sort-reference-identifier |

:: Procedure-start-node;

Sate-node;-set

(03/93)

34 Procedure-start-node;
Channel

35 Channel-definition,

36 Channel-path,

37 Originating-block,

38 Destination-block;

39 Block-identifier

40 Sgnal-identifier

41 Channel-name;

Signal route

42 Sgnal-route-definition;

43 Sgnal-route-path,

44 Origing

45 Destination,

46 Sgnal-route-name;

47 Process-identifier;

48 Service-identifier
Connection

49 Channel-to-route-connection;
50 Sgnal-route-identifier |

51 Sgnal-route-to-route-connection,
52 External-signal-route-identifier ;
Signal

53 Sgnal-definitiong

54 Sgnal-name;

. Transitiong

. Channel-name;

[NODELAY]
Channel-path,
[Channel-path]

;1 Originating-blocky

Destination-block,
Sgnal-identifier ;-set
Block-identifier |
ENVIRONMENT
Block-identifierq |
ENVIRONMENT
Identifier,
Identifier,

Name;

;. Signal-route-name;

Sgnal-route-pathy
[Sgnal-route-path4]

;o Origing

. Channel-identifier 1-set
Sgnal-route-identifier ;-set

;. External-signal-route-identifier 1-set
Sgnal-route-identifier ;-set

Destination;
Sgnal-identifier 1-set
Process-identifierq |
Service-identifierq |
ENVIRONMENT
Process-identifierq |
Service-identifierq |
ENVIRONMENT
Namel

Identifiery
Identifier,

Identifier,

Identifier,

. Sgnal-name;

Sort-reference-identifier 1*

[Signal-refinement,]
Namel

Recommendation Z.100 — Annex F.3

(03/93)

7

Variable definition
55 Variable-definition,

56 Variable-name;
View definition

57 View-definitiony

58 View-name;

Start

59 Process-start-node;
State

60 Sate-node;

61 State-name;
Input
62 Input-node;

63 Variable-identifier |
Save

64 Save-signalsety
Spontaneous transition

65 Soontaneous-transition
Transition

66 Transition;

67 Graph-node;

i1 Variable-name;

Sort-reference-identifier
[Ground-expression;]
[REVEALED]

Namel

: View-namey

Sort-reference-identifiery
Name;

o Transitiong

1 Sate-name;

Save-signal sety
Input-node; -set
Spontaneous-transition;-set
Nalml

- Sgnal-identifier,

[Variable-identifier1]*
Transitiong
Identifier,

. Sgnal-identifier ;-set

. Transitiong

= Graph-node;*

(Terminator, | Decision-node;)
Task-nodey |

Output-node |
Create-request-node |
Call-node, |

Set-nodey |

8 Recommendation Z.100 — Annex F.3 (03/93)

68 Terminator |

69 Nextstate-node;
70 Sop-node;
71 Return-node;

Task
72 Task-node;

Create

73 Create-request-node;

Procedure call
74 Call-node;

75 Procedure-identifier

Output
76 Output-node;

77 Sgnal-destination,

78 Direct-via;
Decision

79 Decision-node;

80 Decision-question;

81 Decision-answer

82 Else-answer
Timer
83 Timer-definitiony

84 Timer-name;
85 Set-node;

Reset-node;
Nextstate-node |
Sop-nodey |
Return-node;

1 State-name;
= 0)
=0

;. Assignment-statement |

Informal-text,

;. Process-identifier,

[Expression,]*

;. Procedure-identifier,

[Expression,]*
Identifier,

. Sgnal-identifier,

[Expression,]*

[Sgnal-destination,]

Direct-via;

Expression; | Process-identifier
(Sgnal-route-identifier; | Channel-identifier ;)-set

:: Decision-questiony

Decision-answer ;-set
[Else-answer]
Expression, |
Informal-text,

:» (Range-condition; | Informal-text,)

Transition,

o Transitiong

o Timer-name;

Sort-reference-identifier 1*
Name;

;. Time-expression;

Timer-identifier,
Expression;*

Recommendation Z.100 — Annex F.3

(03/93)

9

86 Reset-node; 0 Timer-identifier,

Expression;*
87 Timer-identifier, = ldentifier,
88 Time-expression; = Expression;

10 Recommendation Z.100 — Annex F.3 (03/93)

12

Structural Decomposition Conceptsin SDL

Block partitioning

1 Block-substructure-definitiony

2 Block-substructure-name;

3 Sub-block-definition

4 Channel-connection;

5 Sub-channel-identifier |

6 Channel-identifier,
Refinement

7 Sgnal-refinement;

8 Subsignal-definitiony

:: Block-substructure-name;

Sub-block-definition,-set
Channel-connection;-set
Channel-definition,-set
Sgnal-definition,-set
Data-type-definitiony
Syn-type-definition,-set
Nalml

Block-definition,

. Channel-identifier ;-set

Sub-channel-identifier ;-set
Channel-identifier
Identifier,

;. Subsignal-definition,-set
:: [REVERSE] Sgnal-definitiony

Recommendation Z.100 — Annex F.3

(03/93)

11

13

Datain SDL

Data type definitions

1

2
3
4

Literals and parameterised operators

5 Sgnature;
6 Literal-signature;
7 Operator-signature;
8 Argument-list;
9 Reg.lltl
10 Sort-reference-identifier |
11 Literal-operator-name;
12 Operator-name;
13 Sort-identifier,
Axioms
14 Equationy
15 Unquantified-equationy
16 Quantified-equations;
17 Value-name;
18 Term
19 Composite-termy
20 Value-identifiery
21 Operator-identifier,
22 Ground-ternmy
23 Literal-operator-identifier
12 Recommendation Z.100 — Annex F.3

Data-type-definition,

Sorts;
Sort-name;
Equations;

o Sortsg

Sgnature;-set
Equations;
Sort-name; -set
Namel
Equation;-set

Literal-signaturey |
Operator-signature;

. Literal-operator-name;

Res.lltl

1 Operator-name;

Argument-list;

ReSUltl
Sort-reference-identifier .+
Sort-reference-identifier
Sort-identifierq |
Syntype-identifier

Nalml

Namel

Identifiery

Unguantified-equation, |
Quantified-equations; |
Conditional-equation, |
Informal-text,

o Termy

Term

:» Value-name;-set

Sort-identifier
Equations;
Name;
Ground-termy |
Composite-termy |
Error-termy

: Value-identifierq |

Operator-identifier; Term+ |
Conditional-composite-term,
Identifier,
Identifier,

:: Literal-operator-identifierq |

Operator-identifier; Ground-termy+ |
Conditional-ground-termy
Identifiery

(03/93)

Conditional equations

24 Conditional-equationy

25 Restriction;
26 Restricted-eguationy

Conditional terms

27 Conditional-composite-term;
28 Conditional-ground-termy
29 Conditional- term;

30 Condition,
31 Consequence;
32 Alternative;

Errors
33 Error-termy
Syntypes

34 Syntype-identifier
35 Syn-type-definition,

36 Syntype-name;
37 Parent-sort-identifier
38 Range-condition,

39 Condition-item;

40 Open-range;

411 Closed-range;

42 Or-operator-identifier,
43 And-operator-identifier ;
Expressions

44 Expression;

Ground expressions

45 Ground-expression;

1 Restrictions-set

Restricted-equation,
Unquantified-equation,
Unguantified-equation,

Conditional-termy
Conditional-termy

- Conditiony

Consequence;
Alternative;
Ter my

Term

Term

S0

Identifier,

1 Syntype-name;

Parent-sort-identifier;
Range-condition,
Nalml

Sort-identifier

. Or-operator-identifier;

Condition-item;-set
Open-range, |
Closed-range,

. Operator-identifier,

Ground-expression;

:: And-operator-identifier |

Open-range;
Open-range;
Identifier,
Identifier,

Ground-expression, |
Active-expression;

= Ground-termy

Recommendation Z.100 — Annex F.3

(03/93)

13

Active expressions

46 Active-expressiony

Variable access
47 Variable-access;
Conditional expression

48 Conditional-expression;

49 Boolean-expression;
50 Conseguence-expression;
51 Alter native-expression,

Operator application

52 Operator-application;

Assignment statement

53 Assignment-statement;

Imperative operators

54 I mper ative-operator |

Now expression
55 Now-expression;
Pld expression

56 Pid-expression,

Variable-access |
Conditional-expression, |
Operator-application, |
Imperative-operator |
Error-termy

Variable-identifier,

Boolean-expression;

Conseguence-expression;

Alternative-expression;
Expression;
Expression;
Expression;

. Operator-identifier,

Expression;+

:» Variable-identifier;

Expression;

Now-expression, |
Pid-expression, |
View-expression, |
Timer-active-expression; |
Anyvalue-expression;

S0

Self-expression |
Parent-expression, |
Offspring-expression, |
Sender-expression

57 Self-expression; = 0)
14 Recommendation Z.100 — Annex F.3 (03/93)

58 Parent-expression,
59 Offspring-expression;
60 Sender-expression;
View expression

61 View-expression

62 View-identifier
Timer active expression

63 Timer-active-expression,

Anyvalue expression

64 Anyval ue-expression,

—~ e~~~
~— — —

: View-identifier,

[Expression]
Identifier,

. Timer-identifier

Expressiony*

1 Sort-reference-identifier |

Recommendation Z.100 — Annex F.3

(03/93)

15

2 Domainsfor the M eta-Process Communication

21 SDL Process Creation and Stopping

This section defines the communication domains used when creating and stopping SDL process instances. This includes
the creation and stopping of instances in the environment of the SDL system.

1 Create-Instance-Reguest . Process-identifier, Value-List Parent-Value
2 Parent-Value = Pid-Value
3 Create-Instance-Request1 :» Value-List Parent-Value Offspring-Value
4 Offspring-Value = Pid-Value
5 Body-Created o 1l(sdl-process)
6 Inport-Created = 1 (input-port)
7 Instance-Created (0
8 Create-Instance-Answer 1 . Exceed
9 Exceed = Bool
10 Create-Instance-Answer . Offspring-Value

The domains above are used when an SDL process or service instance executes a create request node. The interpreting
sdl-process or sdl-service outputs Create-lnstance-Request to system which, when having performed the necessary
communication with other meta-processes, responds by outputting Create-Instance-Answer to the sdl-process/sdl-
service. The data carried by Create-Instance-Request are the identifier of the SDL process of which an instance is to be
started, the list of actual parameters, and the Pid value of the SDL process instance performing the create request. The
data carried by Create-Instance-Answer is the Pid value of the created SDL process instance (which is Null if a new
instance could not be created due to maximum number of instances).

When system receives a Create-lnstance-Request, it outputs Create-Instance-Request; to the process-set-admin
corresponding to the Process-identifier;. When having performed the necessary actions, the process-set-admin respond
by outputting Create-Instance-Answer, to system. The data carried by Create-Instance-Request; is the list of actua
parameters, the Pid value of the creating SDL process, and the Pid value of the new SDL process. The data carried by
Create-Instance-Answer 1 is a Boolean value indicating whether or not a new SDL process could be created without
violating the maximum number of instances of the corresponding SDL process set.

When a process-set-admin receives a Create-Instance-Request;, it creates an input-port and an sdl-process (unless this
would lead to violation of the maximum number of instances). Immediately after creation of these two meta-processes,
the process-set-admin outputs Body-Created to the input-port, and Inport-Created to the sdl-process. The data carried
by Body-Created and Inport-Created are the meta-pid (1) values of the sdl-process instance resp. the input-port instance
such that these two meta-process instances can address communication to each other.

When the sdl-process has performed its hecessary setup, it outputs Instance-Created to the process-set-admin.

If the created SDL process is decomposed into services, the interpreting sdl-process creates one sdl-service instance for
each SDL service. Each individual sdl-service outputs Instance-Created to the sdl-process when having performed the
necessary setup.

11 Sop-Instance ()
12 Sop-Input-Port (0

The domains above are used when an SDL process or service instance executes a stop node. If the SDL process is not
decomposed into services, the interpreting sdl-process outputs Sop-Instance to its managing process-set-admin when
interpreting a stop node. When having input Stop-Instance the process-set-admin outputs Sop-Input-Port to the

16 Recommendation Z.100 — Annex F.3 (03/93)

corresponding input-port.

If the SDL process is decomposed into services, then when an sdl-service interprets a stop node, it outputs Sop-Instance
to the managing sdl-process. When the last service instance has stopped, the sdl-process outputs Stop-Instance to its
process-set-admin.

13 Environment-admin i I1(process-set-admin)
14 Create-Pid Q)
15 Pid-Created . Pid-Value

Since as few assumptions as possible should be made about the environment, a special scheme for creation of instances
in the environment has been defined. It is considerably simpler than the scheme for creation of processes within the
system. It is assumed that all SDL process instances in the environment are managed by the same process-set-admin
instance in the environment, and that the meta-pid (I1) value of this is communicated to system carried by Environment-
admin during system start up.

When an SDL process instance is to be created in the environment, the environment outputs Create-Pid to system. The
system responds by outputting a new, unique SDL Pid value to the environment carried by Pid-Created.

The main purpose of this scheme isto justify the administration within the system of Pid values in the environment.

Recommendation Z.100 — Annex F.3 (03/93) 17

2.2 SDL Signal Communication

This section defines the communication domains used for handling of SDL signal communication.

1 Send-Signal :: Sgnal-identifier, Value-List Sender-1d
Sender-Value [Receiver] Direct-via;

2 Sender-1d = ENVIRONMENT | Process-identifier; | Service-identifier,
3 Sender-Value = Pid-Value
4 Receiver = Receiver-Value | Process-identifier |
5 Receiver-Value = Pid-Value
6 Queue-Signal . Sgnal-identifier; Value-List
Sender-Value Il (process-set-admin) [Receiver-Valug]
7 Sgnal-Delivered :» Sgnal-identifier, Value-List
Sender-Value [Receiver-Valug]
8 Queue-Signall . Sgnal-identifier; Value-List Sender-Value

The domains above are used when communicating signals between SDL process instances. When an SDL process or
service interprets an output node, the interpreting sdl-process or sdl-service outputs Send-Signal to system. The data
carried are the identifier of the SDL signal being sent, the list of optional values carried by the signal, the SDL process
or service identifier of the sender (or ENVIRONMENT if it is the environment of the system which sends the signa),
the SDL Pid value of the sender, the optional SDL Pid value/process identifier of the receiver, and the optional via set of
channel/signal route identifiers.

When system receives a Send-Signal it chooses a communication path taking into consideration the destination and
routing information contained in Send-Sgnal. If the chosen path does not contain any delaying channels, system outputs
Sgnal-Delivered to the process-set-admin instance corresponding to the destination endpoint of the communication
path. If the chosen path contains delaying channels, system outputs Queue-Signal to the path instance corresponding to
(the delaying part) of the path. The data carried by both Sgnal-Delivered and Queue-Signal are the SDL signal
identifier, the list of optiona values carried by the signal, the SDL sender Pid value, and the optional receiver Pid value.
In addition, Queue-Signal carries the meta-pid value of the process-set-admin instance at the destination endpoint of the
chosen communication path such that the path instance can deliver the signal to the correct process-set-admin instance.

In case a signal was sent via a delaying path, the corresponding path instance delivers after some delay the signal by
outputting Signal-Delivered to the receiving process-set-admin.

When a process-set-admin receives a Sgnal-Delivered, it will either deliver the signal to an input-port or discard it,
taking into consideration the destination information contained in Sgnal-Delivered and the current set of SDL process
instances alive. If the signal is equipped with an explicit destination Pid value which denotes a living instance in the
SDL process instance set, the signal is delivered to the input-port of this instance; if the signal is not equipped with an
explicit destination Pid value, and there is at least one living instance in the SDL process instance set, an input-port
belonging to one of the SDL process instances is chosen nondeterministically; in al other cases no input-port is chosen,
i.e. the signal is discarded. In case a possible receiver is found, the process-set-admin outputs Queue-Sgnal, to its input-
port. The data values carried are the signal identifier, the value list and the sender.

9 Next-Signal . Sgnal-identifier ;-set Spontaneous-Present
10 Spontaneous-Present = Bool
11 Input-Sgnal . Sgnal-identifier; Value-List Sender-Value
12 Soontaneous-Sgnal (0

These domains are used for signal communication between the input port and body of an SDL process instance. When
the SDL process instance enters a state, the interpreting sdl-process outputs Next-Signal to its input-port. The data values
carried are the save signal set of the state, and a boolean value indicating whether or not the state contains spontaneous

18 Recommendation Z.100 — Annex F.3 (03/93)

transitions. The input-port responds by outputting Input-Signal or Spontaneous-Signal to the sdl-process.

If the SDL process is decomposed into services, the interpreting sdl-service instances communicate these domains with
the input-port via their managing sdl-process. When an SDL service instance enters a state, the interpreting sdl-service
outputs Next-Signal to its sdl-process which then passes on this output to input-port. When the input-port has responded
with Input-Signal or Spontaneous-Signal to the sdl-process, the sdl-process passes on this output to an sdl-service which
needs not be the one which most recently output Next-Sgnal. The sdl-service instance is chosen by having the
sdl-process maintain a table with information about which SDL services have which signals in their valid input signal
Set.

2.3 SDL Service Handling

This section defines the communication domains used for SDL service handling.
1 Execute-Sart 0

This domain is used by sdl-process for coordinating the execution of service start transitions when the interpreted SDL
process is decomposed into services. When the sdl-process has started all sdl-service instances, it outputs Execute-Start
to each sdl-service instance one by one and waits for each sdl-service to complete its start transition before outputting
Execute-Start to the next sdl-service.

No other special domains for service execution coordination are necessary as some of the other domains already defined
can easily be used for this purpose.
24 SDL Timer Handling

This section defines the communication domains used for SDL timer handling.

1 Set-Timer . Timer-identifier; Arglist Timeout-Value
2 Timeout-Value = Value

3 Reset-Timer . Timer-identifier; Arglist

4 Active-Request . Timer-identifier; Arglist

5 Active-Answer :: Bool

When an SDL process instance executes a set node, the interpreting sdl-process outputs Set-Timer to its input-port
which then starts a timer instance. The data carried are the SDL timer identifier, alist of timer argument values, and the
expiration time for this timer instance setting.

When an SDL process instance executes a reset node the interpreting sdl-process outputs Reset-Timer to its input-port
which then stops the timer instance. The data carried are the SDL timer identifier and alist of timer argument values.

When an SDL process evaluates a timer active expression, the interpreting sdl-process outputs Active-Request to its
input-port which then responds by outputting Active-Answer to the sdi-process. The boolean data value carried indicates
whether or not the timer instance is active.

If the SDL process is decomposed into services, the interpreting sdl-services communicate these domains with the
input-port via their managing sdl-process which in this case simply acts asarelay.

Recommendation Z.100 — Annex F.3 (03/93) 19

25 Time Handling

This section defines the communication domains used for time handling.

1 Time-Request (0
2 Time-Answer ;. Value
3 Time 20

When an SDL process or service instance evaluates a now expression, the interpreting sdl-process or sdl-service outputs
Time-Request to timer. The timer responds by outputting Time-Answer which carries the value of the current time.

Each input-port instance continuously tests on the expiration time of its timer instances. For that purpose it needs the
current time from the timer. This communication is the same as between sdl-process/sdl-service and timer.
2.6 Revealed Variable Handling

This section defines the communication domains used for revealed variable handling.

1 Reveal : Variable-identifier; Sort-reference-identifier
Pid-Value (Value | UNDEFINED)

2 View-Request 1 View-identifier, Sort-reference-identifier
[Pid-Valug]

3 View-Answer . (\Value | UNDEFINED)

4 Die :: Pid-Value

(Process-identifier, | Service-identifier ;)

When an SDL process or service instance updates a reveaed variable, the interpreting sdl-process or sdl-service outputs
Reveal to view. The data carried are the identifier and sort/syntype of the revealed variable, the Pid value of the SDL
process instance directly or indirectly (i.e. from a service) revealing the variable, and the new value of the variable.

When an SDL process or service evaluates a view expression, the interpreting sdl-process or sdl-service outputs
View-Request to view which then responds with View-Answer. The data carried by View-Request is the identifier and
sort/syntype of the viewed variable, and the optional SDL Pid value of the intended revealer. The data carried by
View-Answer isthe value of the viewed variable.

When an SDL process or service instance stops, the interpreting sdl-process or sdl-service outputs Die to view which
then removes from its internal map of revealed variables all revealed variables of the owning process or service instance.
The data carried are the SDL Pid value of the stopping process instance or the process instance owning the stopping
service, and the SDL identifier of the stopping process or service instance.

2.7 Common Domains

This section defines some common domains which are either used in the communication domains above or to address
the communication between meta-processes.

1 Value-List = (Value| UNDEFINED)*
2 Arglist = Value*

3 Pid-Value = Value

4 Value = Ground-term,

A Value-List isthe result of evaluating alist of actual parameters to a create or output node. If a given actual parameter
is absent, the corresponding “value’USIDEFINED.

An Arglist is the result of evaluating an argument list issenode,reset node oractive expression.

20 Recommendation Z.100 — Annex F.3 (03/93)

A Value is an SDL ground term. For each equivalence class of the data sorts in the SDL system, the same ground term
will always represent this equivalence class during interpretation of the SDL system. A Pid-ValueisaValue.

5 Admin-processor
6 I nput-processor
7 Body-processor

Il (process-set-admin) | 11 (sdl-process)
Il (input-port) | 11 (sdl-process)
Il (sdl-process) | Il (sdl-service)

The domains Admin-processor and Input-processor are used when interpreting the nodes of a behaviour graph. If the
graph is interpreted by an sdl-process, the administrating processor is a process-set-admin, and the SDL signal input is
obtained from an input-port. If the graph is interpreted by an sdl-service, the administrating processor is an sdl-process,
and the SDL signal input is also obtained from sdl-process.

A behaviour graph isinterpreted by a Body-processor which is either an sdl-process or sdl-service instance.

Recommendation Z.100 — Annex F.3 (03/93) 21

3 Domainsfor the Entity Information

Entity-dict contains information of all SDL identifiers referred to in the SDL processes and services, i.e. whenever a
process or service needs information of an identifier Entity-dict is used. Initially, it is deduced from AS;. Each SDL
process and service has its own instance of Entity-dict.

1 Entity-dict = (Qualifier; TYPE) 7 TypeDD O
(Identifier; SORT) & (SortDD | SyntypeDD) O
(Identifier; VALUE) & (OperatorDD | VarDD | ViewDD) 0
(Identifier; SIGNAL) 7 SgnalDD O
(Identifier; PROCESS) - ProcessDD [
(Identifier; SERVICE) # ServiceDD O
(Identifier; PROCEDURE) + ProcedureDD [
ENVIRONMENT 5 Reachabilities O
EXPIREDF s Is-expiredF O
SYSTEMLEVEL z Qualifier; O
PIDSORT Sort-identifier; O
NULLVALUE & Value O
TRUEVALUE 5 Value O
FALSEVALUE # Value O
SCOPEUNIT # Qualifier; O
SELF & Pid-Value O
PARENT 5 Pid-Value O
OFFSPRING g ref Pid-Value O
SENDER g ref Pid-Value O
ADMIN & Admin-processor [
PORT s Input-processor

Entity-dict is a map from pairs of identifiers (Identifier1s) or qualifiers (Qualifier1s) and their associated entity kind into
descriptors. An entity kind is either TYPE, SORT, VALUE, SIGNAL, PROCESS, SERVICE or PROCEDURE. As

an AS; data type definition (Data-type-definition) has no identifier on its own, the Qualifer; denoting the scope unit
whereit isdefined is used instead.

In addition, Entity-dict contains information of how signals from the environment of the system can be routed.
ENVIRONMENT is explained below.

A descriptor is either a descriptor of a type, a sort, a syntype, a literal or operator, a variable, a signal, a process, a
service, or aprocedure. Note that some of the entities of SDL identifiers are excluded (e.g. channels and blocks).

Furthermore, Entity-dict contains some extra objects which have to be known by the underlying system and/or the sdl
processes or services. Those objects are accessed via some Quot values:

ENVIRONMENT When applied on Entity-dict the result is the routing information (for SDL signals)
(Reachabilities) originating from the environment.

EXPIREDF When applied on Entity-dict the result is a function used by input-port processor instances
for timer handling.

SYSTEMLEVEL When applied on Entity-dict the result isthe AS; qualifier denoting the system level.

PIDSORT When applied on Entity-dict the result isthe AS; identifier of the Pid sort.

NULLVALUE erli-:-n applied on Entity-dict the result is an AS; ground term representing the Pid value
Null.

TRUEVALUE When applied on Entity-dict the result isan AS; ground term representing the Boolean value
True.

22 Recommendation Z.100 — Annex F.3 (03/93)

FALSEVALUE When applied on Entity-dict the result isan AS; ground term representing the Boolean value

False.

SCOPEUNIT When applied on Entity-dict the result is the qualifier denoting the current scopeunit.

SELF When applied on Entity-dict the result is the SDL Pid value of either the SDL process using
the Entity-dict or the owning SDL process of the service using the Entity-dict.

PARENT When applied on Entity-dict the result is the SDL Pid value of either the parent of the SDL
process using the Entity-dict or the owning SDL process of the service using the Entity-dict.

OFFSPRING When applied on Entity-dict the result is a pointer to a Meta-1V variable holding the SDL

Pid value of the most recent offspring of either the SDL process using the Entity-dict or the
owning SDL process of the service using the Entity-dict.

SENDER When applied on Entity-dict the result is a pointer to a Meta-1V variable holding the SDL
Pid value of the most recent sender of either the SDL process using the Entity-dict or the
owning SDL process of the service using the Entity-dict.

ADMIN When applied on Entity-dict the result is the Il value of the Meta-IV process (i.e. process-
set-admin) administrating the process set to which the SDL process belongs, or the sdi-
process which manages the SDL service.

PORT When applied on Entity-dict the result isthe |1 value of the input-port of the SDL process, or
the sdl-process which “looks like” aninput-port from the SDL service.

31 The Type Descriptor

1 TypeDD . Termrreduce-map Sortmap Equations;
2 Term-reduce-map = Termclass 7 Term

3 Term-class = Term-set

4 Term = Ground-termy | Error-termy

5 Sortmap = Sort-identifier; 7 Term-class-set

The first field Termreduce-map) contains all equivalence class@®rfn-class) of all sorts visible in the scopeunit
enclosing the data type definition. Therm-reduce-map maps each equivalence class to a canonical tBermj which

has been chosen to represent that term. If an equivalence class contains the efferntereduce-map always maps it

to the error term; else if the equivalence class represents a value which must be recognizable by the Meta-IV formulas
when interpreting an SDL system (e.g. the Boolean values True and Fatsejeduce-map maps it to the same value

as given byEntity-dict (entriesTRUEVALUE andFALSEVALUE for the Boolean values); otherwise an arbitrary term

is chosen when building thHentity-dict, and thereafter the equivalence class will always be represented by that term.

The second field is a magdrtmap) of all Sort-identifier;svisible in the scopeunit enclosing the data type definition into
the set of equivalence classes existing for the sort. The sort map is only used while buil&intitytuict for an SDL
system.

The third field is the equationEquations;) from which the equivalence classes are derived.

Recommendation Z.100 — Annex F.3 (03/93) 23

3.2 The Sort Descriptor

1 SortDD (0
2 SyntypeDD ;. Parent-sort-identifier; Range-condition,

SortDD and SyntypeDD are descriptors of newtypes and syntypes respectively. A newtype descriptor contains no
information but is there any way in order to have all used sort identifiersin the Entity-dict.

A syntype descriptor also contains the identifier of the parent newtype and an AS; range condition.

33 The Operator and Literal Descriptor

1 OperatorDD : Argument-list Result
2 Argument-list Sort-reference-identifier *
3 Result Sort-reference-identifier

OperatorDD is a descriptor of an operator or aliteral. It contains the list of sorts or syntypes of the arguments and the
sort or syntype of the result.

34 TheVariable Descriptor

1 VarDD 1 Variable-identifier; Sort-reference-identifier |
[Ground-expression;] [REVEALED] ref Sig

VarDD is a descriptor of a variable. It contains the variable identifier, the sort or syntype identifier, the initialization
expression, if any, the REVEALED attribute and a reference to a process-, service- or procedure-local storage. Each
time a procedure is invoked, Entity-dict is overwritten with the descriptors representing the formal parameters and local
declarations. For an in/out formal parameter, the descriptor contains the Variable-identifier, of the associated actual
parameter and a reference to the storage where the value of the actual parameter can be found, i.e. because SDL alows
recursive procedures, there may exist several storages containing variables with the same Variable-identifier,, one for
each recursive call.

35 The View Descriptor
1 ViewDD 1 Sort-reference-identifier |

ViewDD is adescriptor of aview definition. It contains the sort or syntype identifier of the view.

3.6 The Signal Descriptor
1 SgnalDD . Sort-reference-identifier ;* [REVERSE]

SgnalDD is adescriptor of asignal. It contains the list of sort or syntype identifiers attached to the signal and, in case it
is asubsignal, whether or not it goesin the reverse direction of its parent signal.

24 Recommendation Z.100 — Annex F.3 (03/93)

37 The Process Descriptor

10 Path-identifier
11 Path-direction

Identifier,
FORWARD | REVERSE

1 ProcessDD . ParameterDD* Initial Maximum
[Process-graph,] Reachabilities
2 ParameterDD = Variable-identifier,
3 Initial = Intg
4 Maximum = [Intg]
5 Reachabilities = Reachability-set
6 Reachability = Reachability-endp Signal-identifier ;-set Path
7 Reachability-endp = ENVIRONMENT | Process-identifier, | Service-identifier,
8 Path = Path-element*
9 Path-element = Path-identifier Path-direction [NODELAY]

ProcessDD is a descriptor of a process. It contains the parameter list (ParameterDD), the number of process instances
created at system start-up time (Initial), the maximum number of allowed processes (Maximum), the process graph, and
Reachabilities. A formal parameter descriptor is the Variable-identifier; of the parameter. A Reachability defines a
destination Reachability-endp (Process-identifier;, Service-identifier, or the ENVIRONMENT) which may be reached
from the process in the sending of asignal in Signal-identifier -setusing a certain Path. The Path is identified by alist
of path elements (Path-element) each of which contains a channel or signal route identifier (Path-identifier), a path
direction (Path-direction) which is used to identify each direction in a bidirectional channel/signal route, and an
indication of whether the path element has a delay or not (a channel may or may not have a delay, a signal route never
has a delay). Path is empty in the cases where Process-identifier, (or Service-identifier,, see below under the description
of service descriptors) is both the sender and the receiver.

3.8 The Service Descriptor

1 ServiceDD i1 Service-graph; Input-signal-set Reachabilities
2 Input-signal-set = Sgnal-identifier ,-set

ServiceDD is adescriptor of aservice. It contains the service graph, the set of valid input signals Signal-identifier ;-setof
the service, and the Reachabilities of the service.

3.9 The Procedur e Descriptor

1 ProcedureDD :: FormparmDD* Procedure-graphy
2 FormparmDD = InparmDD | InoutparmDD

3 InparmDD : Variable-identifier;

4 InoutparmDD :» Variable-identifier;

ProcedureDD is adescriptor of a procedure. It contains alist of formal parameter descriptors and the procedure graph. A
formal parameter is either an in parameter or an in/out parameter and it contains the Variable-identifier ;.

Recommendation Z.100 — Annex F.3 (03/93) 25

4 The Underlying System

4.1 System Processor

This processor is the entry point for interpretation of an SDL system. All other processes are started (directly or
indirectly) from this process. It is started from definition-of-SDL, defined in Annex F.2: Static Semantics.

The processor internally uses the following domains:

1 Process-set-admin-map (ENVIRONMENT | Process-identifier;) =
Il (process-set-admin)

Path = Il (path)

Pid-Value &

(ENVIRONMENT | Process-identifier)

2 Path-map
3 Inst-map

The domain Process-set-admin-map maps the identifier of each SDL process instance set to the |1 value of the process-
set-admin instance which interprets it. Furthermore, as all SDL process instances running in the environment are
assumed to be managed by the same process-set-admin instance running in the meta-environment, the map also contains
a map from ENVIRONMENT to this instance. The domain is used for routing of SDL signals and creating instance
regquests.

The domain Path-map maps each delaying path to its corresponding instance of the path processor. A delaying path is a
list of (delaying) channel paths traversed by a signal instance when an output node has been interpreted. It is necessary
to distinguish possible delaying paths since preservation of signal order is only guaranteed when following the same
seguence of delaying channels.

The domain Inst-map maps each Pid value of an alive or dead SDL process instance to the identifier of the process set to
which it belongs (or to ENVIRONMENT for each SDL process instance alive or dead in the environment). That is,
entries are never removed from the map. The domain is used for routing of SDL signals and for keeping track of which
SDL Pid values have already been used such that new, unique Pid values can be generated whenever needed.

411 The Processor
system processor (as;tree, subset, auxinf) £ (4.1.1.1)

(dcl adminmap type Process-set-admin-map;

dcl pathmap type Path-map;

dcl instmap :=[] type Inst-map;

(let (timeinf, terminf, expiredf, delayf) = auxinf in
let dict = extract-dict(as, tree, subset, expiredf, terminf) in
start view();
start timer (timeinf)(dict);
start-process-set-admins(del ayf) (dict);
start-paths(delayf)(dict);
start-initial-processes(dict);
handle-inputs(dict)))

POOWOO~NOOTAWNE

B

type: System-definition; Block-identifier-set Auxiliary-information [

Objective Interpret the SDL system.
Parameters
astree The AS; definition of the system.
subset The consistent subset selected.

26 Recommendation Z.100 — Annex F.3 (03/93)

auxinf Contains the following (see line 4);

timeinf Information required by the timer processor. It contains a function which updates the current
now on each tick in the timer processor and the start value of the system time. The domain is
defined in Annex F.2 and it is further described in the definition of the timer processor.

terminf A closure containing the AS; identifier of the Pid sort and three AS; ground terms chosen to
represent each of the following values: The Pid value Null and the Boolean values True and
False.

expiredf A function delivering true if agiven timer has expired.

delayf A function delivering a Bool value at random. Used in the path processor for modelling delay
on channels, and in the input-port processor for modelling unstability of SDL states containing
spontaneous transitions.

Algorithm

Line 1-3 Declare the variables needed by the system processor. The purpose of the variables has already
been explained below the domain definitions above.

Line5 Build the Entity-dict corresponding to the given SDL system, the selected subset and the necessary
parts of Auxiliary-information.

Line 6 Start one instance of the view processor.

Line7 Start one instance of the timer processor with actual parameters for the handling of now (further
explained in the definition of timer).

Line8 Start one instance of the process-set-admin processor for each process definition present in the
SDL system (or rather in the selected consistent subset). The actual parameter delayf will be used
for handling of spontaneous transitions.

Line 9 Start one instance of the path processor for each sequence of delaying channel paths which can be
traversed by at least one SDL signal type.

Line 10 Perform the system start up creation of SDL process instances.

Line 11 Handle all further meta-communication to and from the system.

start-process-set-admins(del ayf)(dict) = (4.1.1.2)

1 ((input mk-Environment-admin(envadmin) from ...
2 0 adminmap= [ENVIRONMENT + envadmin]);
3 (def adminmap-delta : [prid +— start process-set-admin(prid, delayf)(dict) |

(prid, PROCESS) I dom dict];

5 adminmap= ¢ adminmapt+ adminmap-delta))

type: DelayF - Entity-dict O

Objective

Parameters
delayf

Start one process-set-admin processor instance for each process definition present in (the selected
consistent subset of) the SDL system.
Enter information about the started processor instances in adminmap.

A function delivering a Bool value at random. Used to model the unstability of SDL states
containing spontaneous transitions.

Recommendation Z.100 — Annex F.3 (03/93) 27

Algorithm

Line1-2 Obtain the Il value of the process-set-admin instance which is assumed to run in the meta
environment. Enter this instance in adminmap.
Line 3-5 Start one process-set-admin instance for each process definition in the SDL system and compute
the adminmap contribution from this (lines 3-4). Update adminmap with this contribution (line 5).
start-paths(delayf)(dict) £ (4.1.1.3)

(et reaches = dict(ENVIRONMENT) O
union {s-Reachabilities(dict((prid, PROCESS))) |
(prid, PROCESS) LI dom dict} O
union {s-Reachabilities(dict((servid, SERVICE))) |
(servid, SERVICE) LI dom dict} in
let delaypaths = { delaying-path(path) | (, , path) [reaches} in
pathmap := [delaypath — start path(delayf) | delaypath [delaypaths\ { T}])

~N~Nooah~hwNE

type: DelayF - Entity-dict O

Objective Start one path instance for each sequence of delaying channel paths which can be traversed by at least
one SDL signal type. Enter information about the started processor instances in pathmap.
Parameters
delayf A function delivering a Bool value at random. Used to model the delay on channels.
Algorithm

Line 1-5 Extract all existing Reachabilities in the SDL system. The total Reachability set consists of all
Reachabilities originating from the system environment (line 1), all Reachabilities originating from
SDL process instance sets not partitioned into services (line 2-3) and all Reachabilities originating
from services (line 4-5).

Line 6 For each Reachability in the SDL system, extract the sequence of delaying channel paths contained
in Path.

Line7 Start one path instance for each (non-empty) sequence of delaying channel paths which connects
two leaf blocks (in the selected consistent subset) or one leaf block and the SDL system
environment. Enter these instances in pathmap.

start-initial-processes(dict) £ (41.1.4

for all (prid, PROCESS) L] dom dict do
(let mk-ProcessDD(parmddl, initno, , ,) = dict((prid, PROCESS)) in
let vi = lUNDEFINED | 1< < len parmddI[)
parent = dict(NULLVALUE) in
for i =1toinitnodo
handle-create-instance-request(prid, vl, parent, nil)(dict))

Ok~ wWNBE

type: Entity-dict O

Objective Perform the system start up creation of SDL process instances.

28 Recommendation Z.100 — Annex F.3 (03/93)

Algorithm
Line1 For each process instance set in the SDL system do the following:

Line 2 Obtain information about the formal parameters and initial humber of instances for the process
instance from the dict.

Line3-4 All actual parameters to a process instance which is created at system start up are “undefined”
(line 3). Theparent value for such an instance is Null (line 4).

Line 5-6 Createinitno instances othe process instance set. The fourth actual parameter in lingil6tis
indicate that there is no SDL process or service instance waiting for response about the process
instance creation.

handle-inputs(dict) £ (4.1.1.5)

1 cycle {input mk-Create-Instance-Request(prid, vI, parent) from parbody

O handle-create-instance-request(prid, vl, parent, parbody)(dict),
input mk-Create-Pid() from se

O handle-create-in-env(se)(dict),
input mk-Send-Sgnal(sid, v, seid, se, re, via) from ...

O handle-send-signal(sid, vl, seid, se, re, via)(dict)}

ok wWN

type: Entity-dict O

Objective Handle all meta-communication gfstem after initializations.
Algorithm
Linel Start a loop forever. In each iteration of that loop one of the mentioned inputs will be elaborated
(on a non-deterministic basis). The handling of each input is described in a specific handling
function.
handle-create-instance-request(prid, vi, parent, parbody)(dict) (4.1.1.6)
1 (def offspring : getpid(dom c instmap)(dict);
2 def offspradmin : ¢ adminmap(prid);
3 output mk-Create-Instance-Request1(vl, parent, offspring) to offspradmin;
4 input mk-Create-nstance-Answer 1(exceed) from offspradmin
5 0 (if ~exceed then
6 instmap := c instmap + [offspring — prid]
7 ese
8 l;
9 if parbody # nil then
10 (let offspring’ = if - exceed then offspring else dict(NULLVALUE) in
11 output mk-Create-Instance-Answer (offspring’) to parbody)
12 else
13 1))

type: Process-identifier; Value-List Pid-Value [Body-processor] — Entity-dict O

Objective Handle creation of SDL process instances.

Parameters
prid The SDL process identifier of the process instance to be started.
vi The list of actual parameter values.
parent The SDL Pid value of the creating process instance.

Recommendation Z.100 — Annex F.3 (03/93) 29

parbody The |1 value of the processor which interprets the creating SDL process or service instance. This
parameter isnil if the function is called during system initialization.
Algorithm
Linel Create aunique SDL Pid value.
Line2 Get the Il value of the process-set-admin instance for the SDL process to be created.
Line3 Output a create instance request to the process-set-admin.
Line4 Wait for response from the process-set-admin. The input parameter exceed indicates whether or not
anew SDL process instance could be created due to the maximum number of instances.
Line 5-8 If anew SDL process instance was created, the instance map (instmap) is updated with the new
instance.
Line 9-13 If the create was caused by a create node, then send a response to the creating SDL process or
service instance as follows:
Line 10 If the create request succeeded, then the offspring value should be the one generated in line 1,
otherwise it should be the Pid value Null.
Line11 Send this offspring value to the creator.
handle-create-in-env(se)(dict) £ (41.1.7)
1 (def offspring : getpid(dom c instmap)(dict);
2 instmap := c instmap + [offspring —» ENVIRONMENT];
3 output mk-Pid-Created(offspring) to se)
type: Il - Entity-dict O
Objective Handle the creation of SDL Pid values in the environment. Update maps within the system and return
the Pid value to the environment. The communication is not exactly like the one in handling of create
nodes within the system. However, one cannot suppose the environment to contain create nodes (!).
The general ideais to make as few assumptions about the environment as possible while still having a
consistent model.
Parameters
se The Il value of “the sender”.
Algorithm
Linel Create a unique Pid value.
Line2 Update the map of living SDL process instances with the new instance.
Line3 Return the Pid value to the environment.
30 Recommendation Z.100 — Annex F.3 (03/93)

handle-send-signal(sid, vi, seid, se, re, via)(dict) £ (4.1.1.8)

1 (let reaches =
2 (seid = ENVIRONMENT
3 — dict(ENVIRONMENT),
4 (seid, PROCESS) L] dom dict
5 — s-Reachabilities(dict((seid, PROCESS))),
6 (seid, SERVICE)] dom dict
7 - s-Reachabilities(dict((seid, SERVICE)))) in
8 let reaches’ = restrict-to-signal (reaches, sid) in
9 let reaches’ =
10 if via={}
11 then reaches
12 eserestrict-to-via(reaches, via) in
13 def (reaches"’, r€) : (re=nil
14 - (reaches’, nil),
15 (re, PROCESS) LI dom dict
16 - (restrict-to-destprcs-or-env(reaches’, re)(dict), nil),
17 T _ (restrict-to-destpid(reaches’, re, cinstmap)(dict), re));
18 if reaches" # {} then
19 (let (reidorenv, , path) [reaches in
20 let delaypath = delaying-path(path) in
21 def readmin : ¢ adminmap(process-or-env(reidorenv)(dict));
22 if delaypath = [Tthen
23 output mk-Sgnal-Delivered(sid, VI, se, re/) to readmin
24 else
25 (def path’ : ¢ pathmap(delaypath);
26 output mk-Queue-Signal(sid, v, se, readmin, re’) to path'))
27 else
28 1)
type: Signal-identifier,; Value-List Sender-1d Sender-Value [Receiver] Direct-via; — Entity-dict O
Objective Routing of SDL signals.
Parameters
sid Signal being sent.
vi List of values carried by the signal.
seid The SDL identifier of the process or service sending the signal (or ENVIRONMENT if the signdl is
sent from the environment).
se The SDL Pid value of the sender.
re The optional SDL Pid value or process identifier of the (intended) receiver of the signal from the to
clause.
via Set of signal route and channel identifiers from the optional via clause. If the via clause was absent,
this set is empty.
Algorithm
Line1-7 Obtain the set of Reachabilities originating from the sender. The sender can either be the
environment (line 1-3), an instance of a process which is not decomposed into services (line 4-5),
or a service instance (line 6-7). The remaining part of the function consecutively restricts the
Reachabilities of the sender (until line 17).
Line8 Restrict to those Reachabilities which may convey the signal.
Line 9-12 Restrict to the signal routes and channels mentioned in the via clause, if any.

Recommendation Z.100 — Annex F.3 (03/93) 31

32

Line 13-17

Line 18,28
Line 19

Line 20

Line21

Line 22-23

Line 25-26

Restrict to the Pid value or process identifier of the to clause, if any, and get a resulting optional
receiver Pid value asfollows:

If the to clause was absent, no further restrictions are made on the Reachabilities, and the optional
receiver Pid valueisnil (line 13-14).

If the to clause contained a process identifier, the Reachabilities are restricted to this process
identifier, and the optional receiver Pid valueis nil (line 15-16).

If the to clause contained a Pid expression, the Reachabilities are restricted to the process set which
contains the destination process instance, and the receiver Pid value is this Pid value (line 17). Note
that if the Pid expression evaluated to Null, to a Pid value of a not yet existing process instance, or
to a Pid value of an instance which cannot be reached via the given Reachabilities, the remaining
Reachability set will be empty.

If the remaining Reachability set is empty, the signal is discarded.

Select an arbitrary Reachability from the remaining Reachability set and decompose it into a
destination endpoint and a communication path.

Obtain the delaying part of the chosen communication path.

Obtain the Il value of the process-set-admin instance which should receive the signal. If the
destination endpoint of the Reachability is a service, then use the identifier of its enclosing process
definition as key to the adminmap.

If the chosen communication path contains no delaying channel paths, the signal is sent directly to
the receiving process-set-admin instance.

Obtain the Il value of the path instance which should convey the signal, and output the signal to
thisinstance.

Recommendation Z.100 — Annex F.3 (03/93)

4.1.2 Auxiliary Functions
restrict-to-signal (reaches, sid) £ (4.1.2.2)
1 {(,sigset,) U reaches|sid [sigset}

type: Reachability-set Sgnal-identifier; - Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which are able to convey agiven signal.
Parameters
reaches The original set of Reachabilities.
sid Theidentifier of the signal.
Result The restricted set of Reachabilities.
Algorithm
Linel Select those Reachabilities whose signal set contain the given signal.
restrict-to-via(reaches, via) = (4.1.2.2

1 {(,, path) [reaches | is-in-via(path, via)}

type: Reachability-set Direct-via; — Reachability-set

Objective Restrict a set of Reachabilitiesto the set of Reachabilities which are mentioned in agiven via set.
Parameters

reaches The original set of Reachabilities.

via Thevia set.
Result The restricted set of Reachabilities.
Algorithm

Line1 Select those Reachabilities which contain asignal route or channel mentioned in the via set.
is-in-via(path, via) £ (4.1.2.3)

1 (let srchids={id | (id,,) [] dlems path} in
2 srchids n via#{})

type: Path Direct-via; — Bool

Objective Test whether a given communication path contains a signal route or channel identifier mentioned in a
given via set.
Parameters
path The communication path.
via The via set.
Result true if the path is mentioned, false otherwise.

Recommendation Z.100 — Annex F.3 (03/93) 33

Algorithm
Line1 Extract the set of signal route and channel identifiersin the communication path.

Line2 The communication path is mentioned in the via clause if the intersection of the via set and the set
of signal routes/channelsis non-empty.

restrict-to-destprcs-or-env(reaches, repridorenv)(dict) £ (4.12.2.9)
1 {(reachendp, ,) L] reaches | process-or-env(reachendp)(dict) = repridorenv}

type: Reachability-set (ENVIRONMENT | Process-identifier;) — Entity-dict — Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which lead to a given SDL process instance
Set.
Parameters
reaches The original set of Reachabilities.

repridorenv The SDL identifier of the process instance set, or ENVIRONMENT if the desired destination
endpoint is the system environment.

Result The restricted set of Reachabilities.
Algorithm
Linel Select those Reachabilities which have repridorenv as destination endpoint. If a Reachability has a
service as destination endpoint, the identifier of the enclosing process definition is used as key for
the selection.
restrict-to-destpid(reaches, re, instmap)(dict) £ (4.12.2.5)
1 if red dom instmap then
2 (let repridorenv = instmap(re) in
3 restrict-to-destprcs-or-env(reaches, repridorenv)(dict))
4 ese
5 {}

type: Reachability-set Receiver-Value Inst-map — Entity-dict — Reachability-set

Objective Restrict a set of Reachabilities to the set of Reachabilities which lead to an SDL process instance with
agiven Pid value.
Parameters
reaches The original set of Reachabilities.
re The Pid value of the desired receiver.
instmap The map of SDL Pid values of living process instances.
Result The restricted set of reachabilities.
Algorithm
Line 1,6 If the Pid value is Null or denotes a not yet created SDL process instance, the resulting set of
Reachabilities is empty.
Line 2 Obtain the identifier of the SDL process instance set to which the given process instance belongs

(or ENVIRONMENT if the process instance belongs to the environment).

34 Recommendation Z.100 — Annex F.3 (03/93)

Line3 Restrict the set of Reachabilities to the obtained process instance set.
delaying-path(path) £ (4.1.2.6)

1 path[i] |1<i < len path O (let(,, nodelay) = path[i] in
2 nodelay = nil)O

type: Path — Path
Objective Extract the delaying part of a communication path.
Parameters
path The original communication path.
Result The delaying part of the communication path.
Algorithm
Linel Delete al signal route and channel paths which have no delay.

process-or-env(reachendp) (dict) £ (4.2.2.7)

(reachendp = ENVIRONMENT
- ENVIRONMENT,

(reachendp, PROCESS) [] dom dict
- reachendp,

(reachendp, SERVICE) L] dom dict
- enclosing-scopeunit(reachendp))

oA~ wWNE

type: Reachability-endp — Entity-dict -~ (ENVIRONMENT | Process-identifier)

Objective If a reachability endpoint denotes a service, then convert it to the identifier of the enclosing SDL
process.
Parameters
reachendp The reachability endpoaint.
Result The converted reachability endpoint.
Algorithm
Line1-4 If the reachability endpoint denotes the environment or an SDL process definition, then return it
unchanged.
Line 5-6 If the reachability endpoint denotes a service definition, then return the identifier of the enclosing
SDL process definition.
getpid(pidsinuse)(dict) £ (4.1.2.8)
1 (let newpid [values-of-sort(dict(PIDSORT))(dict
2 bes.t. newpid # dict(NULLVALUE) O newpid LI pidsinusein
3 newpid)

type: Pid-Value-set — Entity-dict — Pid-Value

Recommendation Z.100 — Annex F.3 (03/93) 35

Objective Extract a Pid-Value not used yet. The Unique! operator defined for the Pid sort in Z.100 ensures that
there exists an infinite number of Pid-Values. |.e. the values for the Pid sort are Null, Unique! (Null),
Unique! (Unique! (Null)), etc. The set of Pid valuesisfound in dict.

Parameters
pidsinuse The set of Pid valueswhich are already in use.
Result An unused Pid-Value.
Algorithm
Linel Take a Pid value from the set of possible Pid values such that the Pid value is neither Null nor has
been used before.
Line 3 Return the Pid value.

36 Recommendation Z.100 — Annex F.3 (03/93)

4.2 View Processor

This processor uses the internal domain Reveal-map which maps triples of SDL Pid values, variable identifiers and
variable sorts/syntypes to revealed values. For variables revealed by service instances, the Pid value is that of the

enclosing process instance.

1 Reveal-map
2 Reveal -map-key

Reveal-map-key - (Value | UNDEFINED)
Pid-Value Variable-identifier ;
Sort-reference-identifier

4.2.1 The Processor

view processor () £ (4.2.1.2)
1 (dcl revealmap :=[] type Reveal-map;
2 trap exit() with error in
3 (cycle{input mk-Reveal (varid, sortid, pid, value) from ...
4 O reveamap :=creveadmap + [(pid, varid, sortid) ~— value],
5 input mk-View-Request(viewid, sortid, reveal pid) from body
6 O (def revealvars: revealed-variables(viewid, sortid, revealpid, c revealmap);
7 if revealvars# {} then
8 (let revealvar [revealvarsin
9 output mk-View-Answer (c revealmap(revealvar)) to body)
10 ese
11 exit(“85.4.4.4: No revealed variable access can be made”)),
12 input mk-Die(pid, ownerid) from ...
13 O (def deadvars: {(pid, varid,); [J dom c revealmap |
14 pid' = pid Oenclosing-scopeunit(varid) = ownerid};
15 revealmap= c revealmap teadvars)}))
type: OO
Objective Interpret the concept of view and reveal.
Algorithm
Linel Declare a (meta-)variable holding all revealed variable instances in the SDL system at any time.
Line3 Handle the Reveal input.
Line4 Update the map with the new value.
Line5 Handle aview from an SDL process or service instance.
Line 6 Obtain the set of revealed variables matching the view.
Line 7-9 If there are any matching reveal ed variables then respond with the value of one of these.
Line11 Define the error that no revealed variable access can be made.
Line 12 Handle the notice of a stopped SDL process or service instance.
Line 13-14 Obtain al revealed variables of the stopped SDL process or service instance.
Line 15 Delete all revealed variables of the stopped SDL process or service instance from the map.

Recommendation Z.100 — Annex F.3 (03/93)

37

revealed-variables(viewid, sortid, revealpid, revealmap) £ (4.2.1.2)

1 {(pid, varid, sortid") [dom revealmap |

2 (revealpid # nil O pid = revealpid) []

3 enclosing-block(varid) = enclosing-block(viewid) [
4 s-Name; (varid) = s-Name; (viewid) []

5 sortid' = sortid}

type: View-identifier, Sort-reference-identifier; [Pid-Value] Reveal-map
- Reveal-map-key

Objective Obtain the set of revealed variables matching a specific view request.
Parameters
viewid The view identifier of the variable.
sortid The sort or syntype of the viewed variable.
revealpid The optional Pid value resulting from the optional Pid expression in the view expression.

revealmap The map of currently living revealed variables.

Result The set of revealed variables matching the view request.
Algorithm
Line2 If a Pid expression was present in the view expression, the matching revealed variables are al

revealed by the process instance (or contained service instances) having the Pid value resulting
from the Pid expression. Otherwise any process instance revealing the variable can be used.

Line 3-5 The revealed variables must be in the same block as the view definition and have the same name
and sort/syntype.

38 Recommendation Z.100 — Annex F.3 (03/93)

4.3 Timer Processor

This processor has been introduced to interpret the concept of global time in SDL. It results in a very smple
communication with an external tick processor.

timer processor (timeinf)(dict) £ (4.3.2)

1 (let (timef, startt) = timeinf in

2 dcl time-now := startt type Value;

3 cycle {input mk-Time() from tick

4 O time-now :=timef (ctime-now),

5 input mk-Time-Request() from p

6 O (def time-now : reduce-term(c time-now, dict(SYSTEMLEVEL))(dict);
7 output mk-Time-Answer (time-now') to p)})

type: Time-information — Entity-dict O
Objective Interpret the timer-handling in underlying system.
Parameters The object timeinf contains two components (line 1) generated in Annex F.2;

timef A function being called on each “tick” from the environment. Tihef function thus encapsulates
two problems: interpretation of “+” for the Time sort and the resolution of time values within the
system (i.e. what is the incrementiow for each “tick”).

startt The initial value ohow.
Algorithm
Line 2 Let time-now denote the (only one) global time of the system. By using a model which includes the

start time for interpretatiorstartt) and the updating (the functidimef) it is hoped to give a correct
description of SDL'’s time-concept.

Line4d Update the time.

Line 6-7 Returnnow. In line 6 the ground term stored in time-now is reduced to the ground term which has
been chosen to represent this time value in the rest of the system.

4.4 Informal Tick Processor

tick processor () £ (4.4.1)
1 cycle { (output mk-Time() to timer;
2 /Omodels informally the interval between consecutive ticks 1)}

type: 00

Recommendation Z.100 — Annex F.3 (03/93) 39

45 Path Processor

This processor uses the internal domain Path-queue to represent the internal queue of signals. Each Path-queue-item
contains the SDL identifier of the signal, the list of SDL data values carried by the signal, the sender Pid value, the
Il value of the receiving process-set-admin instance, and an optional receiver Pid value.

1 Path-queue = Path-queue-item*

2 Path-queue-item = Sgnal-identifier; Value-List Sender-Value
Receiver-Admin [Receiver-Value]

3 Receiver-Admin = |1(process-set-admin)

45.1 The Processor

path processor (delayf) £ (45.11)
1 (dcl pqueue := [Ttype Path-queus;
2 cycle{input mk-Queue-Signal(sid, vl, se, readmin, re) from system
3 O (pgueue:=c pqueue ~* [{sid, v, se, readmin, re)0),
4 (if ¢ paqueue # (] delayf () then
5 (def (sid, v, se, readmin, re) : hd ¢ pgueue
6 output mk-Sgnal-Delivered(sid, v, se, re) to readmin;
7 pqueue :=tl ¢ pqueue)
8 else
9 N}h

type: DelayF O

Objective Interpret the potential delay in a communication path. An instance exists for each sequence of delaying
channel paths originating from some SDL process or service or from the system environment.
Parameters
delayf A function delivering a Bool value at random. Used for modelling delay on channels
Algorithm

Line3 Insertion of asignal into the queue of the path.

Line4 This clause models the non-deterministic delay on the path. The delivery of a signal may only take
place if pgueue is non-empty and delayf yields true. Otherwise a new iteration of the cycle is
initiated.

Line 5-6 Deliver thefirst signal in the queue to the process-set-admin instance.

Line7 Remove the output signal from the queue.

40 Recommendation Z.100 — Annex F.3 (03/93)

4.6 Process Set Administrating Processor

This processor is the entry point for interpretation of an SDL process instance set and manages directly or indirectly all
other processor instances concerned with interpreting the given SDL process instance set.

process-set-admin processor (prid, delayf)(dict) £ (4.6.1)

(dcl pidno := 0 type Ng;
dcl instancemap :=[] type |1(sdl-process) 7 Pid-Value;
dcl queuemap :=[] type Pid-Value 7 Il(input-port);
cycle {input mk-Create-Instance-Request1(vl, par, offspr) from system
O bhandle-create-instance-request1(prid, v, par, offspr, delayf)(dict),
input mk-Sop-Instance() from body
0O bhandle-stop-instance(body),
input mk-Sgnal-Delivered(sid, v, se, re) from ...
O bhandle-signal-delivered(sid, vl, se, re)})

©CoOo~NOUDWNE

type: Process-identifier; DelayF — Entity-dict O

Objective Interpret an SDL process instance set.
Parameters
prid Theidentifier of the SDL process instance set.
delayf A function delivering a Bool value at random. The function is used to model the unstability of SDL
states containing spontaneous transitions.
Algorithm
Linel Declare a variable for keeping track of the number of living process instances in the SDL process
instance set. The variable is used for ensuring that the maximum number of instances is never
exceeded.
Line2 Declare a variable mapping the Il value of each sdl-process instance to the Pid value of the SDL
process instance that it interprets. The variable is only used when an SDL process instance stops.
Line 3 Declare a variable mapping the Pid value of each SDL process instance to the |1 value of the input-
port processor which modelsits input port queue.
Line4-9 Handle al meta-communication of process-set-admin after initialisation. The handling of each

input is described in a specific handling function.

Recommendation Z.100 — Annex F.3 (03/93) 41

handle-create-instance-request1(prid, Vi, parent, offspring, delayf)(dict) £ (4.6.2)

1 (let omax = s-Maximum(dict((prid, PROCESS))) in
2 def exceed : omax # nil Dcpidnozomax;
3 if —exceed then
4 (definport : start input-port(prid, offspring, delayf, self)(dict);
5 def body : start sdl-process(prid, v, parent, offspring)(dict + [ADMIN > self});
6 output mk-Body-Created(body) to inport;
7 output mk-Inport-Created(inport) to body;
8 input mk -Instance-Created() from body
9 (pidno :=cpidno + 1;
10 instancemap := c instancemap + [body > offspring];
11 gueuemap := ¢ queuemap + [offspring > inport]))
12 else
13 l;
14 output mk-Create-Instance-Answer 1(exceed) to system)
type: +Process-identifier; Value-List Parent-Value Offspring-Value-setDelayF — Entity-dict O
Objective Handle incoming create instance request.
Parameters
prid Theidentifier of the SDL process instance set.
vi Thelist of actual parameter values.
parent The Pid value of the creating process instance (Null for a system start up create request).
offspring The Pid value of the new process instance if it can be created.
delayf The function for modelling the unstahbility of SDL states containing spontaneous transitions.
Algorithm
Line1-2 Obtain the optional maximum number of instances for this process instance set and check whether
creation of a new instance would violate this maximum. If omax is nil the number of instances is
unbounded.
Line 3-13 If the maximum number of instances aready exists, then do not create a new instance.
Line4-5 Start one input-port instance and one sdl-process instance. The dict is updated with the |1 value of
the process-set-admin before it is transferred to the sdl-process instance.
Line 6-7 Send the Il value of the sdi-process to the input-port and vice versa such that they are able to
address each other when they want to communicate with each other.
Line8 Wait for an initialization acknowledgement from the sdi-process.
Line 9-11 Update the process set administrating variables with the new SDL process instance.
Line 14 Tell the system whether or not anew SDL process instance could be created.
handle-stop-instance(body) £ (4.6.3)
1 (def pid : c instancemap(body);
2 pidno :=cpidno—1;
3 instancemap := c instancemap \ { body} ;
4 queuemap : = ¢ queuemap \ { pid})
type: Il (sdl-process]
42 Recommendation Z.100 — Annex F.3 (03/93)

Objective Handle the stopping of an SDL process instance belonging to the process instance set.

Parameters

body The Il value of the sdl-process which interprets the body of the stopping SDL process instance.
Algorithm

Line1 Get the SDL Pid value of the stopping process instance.

Line 2-4 Remove the process instance from the process set administrating variables.
handle-signal-delivered(sid, v, se, re) & (4.6.9)

1 (def re’ : get-receiver(re, dom ¢ queuemap);
2 if re # nil then

3 output mk-Queue-Signal1(sid, VI, se) to c queuemap(re’)
4 else
5 1

type: Sgnal-identifier; Value-List Sender-Value [Receiver-Value] [

Objective Find areceiver of an incoming signal or discard it.
Parameters
sid The signal identifier.
vi Thelist of data values carried with the signal.
se The sender Pid value.
re The optional receiver Pid value.
Algorithm
Linel Obtain apossible receiver, if any, of the signal.
Line 2-3 If thereis a possible receiver, then deliver the signal to the input port of the chosen receiver.
Line5 Otherwise discard the signal.
get-receiver (re, pids) = (4.6.5)

1 if re=nil then

2 (if pids# {} then
3 (let re LI pidsin
4 re)
5 else
6 nil)
7 ese
8 (if re O pidsthen
9 re
10 else
11 nil)

type: [Receiver-Value] Pid-Value-set — [Pid-Value]

Objective Obtain the Pid value of a possible receiver, if any, of a signal which conveys an optiona receiver Pid
value.

Recommendation Z.100 — Annex F.3 (03/93) 43

Parameters

re The optional receiver Pid value conveyed with the signal.
pids The set of Pid values of process instances currently alive.
Result If apossible receiver exists, then its Pid value, else nil.
Algorithm
Linel Two cases are distinguished: The case where the signal does not carry an explicit receiver Pid value
is handled by lines 2-6; the case where the signal carries an explicit receiver Pid value is handled by
lines 8-11.
Line 2-3 If the process instance set currently contains any living instances, then select an arbitrary one as
receiver.
Line 6 Otherwise indicate that no receiver can be found.
Line 8-9 If the intended receiver of the signal is alive, then return its Pid value.
Line11 Otherwise indicate that the intended receiver is not alive.

44 Recommendation Z.100 — Annex F.3 (03/93)

4.7 I nput-Port Processor

This processor implements the unbounded buffers of SDL process instances, and timers. Furthermore, for model-
technical reasons (the need to avoid deadlock between an input-port instance and an sdl-process instance belonging
together) the input-port processor also handles the concept of spontaneous transitions.

The input-port processor uses internally some auxiliary domains.

1 Inport-queue
2 Inport-queue-item

Inport-queue-item*
Sgnal-identifier; Value-List Sender-Value

The domain Inport-queue is used to represent the internal queue of signals in the input port. Each Inport-queue-item
containsthe SDL identifier of the signal, the list of SDL data values carried by the signal, and the sender Pid value.

The domain Inport-queue is handled by functions which have been defined separately from the input port processor
functions.

3 Timer-table = (Timer-identifier, Arglist) 7 [Timeout-Value]

The domain Timer-table is used to keep track of active timers. Each (Timer-identifier,, Arglist) pair represents one active
timer instance and is mapped to the expiration time value of the timer instance ([Timeout-Value]). The [Timeout-Val ue]
becomes nil, when the timer instance expires and the corresponding signal is placed in the input port queue. The timer
instance is removed from the timer table when the corresponding signal is consumed by the SDL process body.

Recommendation Z.100 — Annex F.3 (03/93) 45

4.7.1 The Processor

input-port processor (prid, selfpid, delayf, admin)(dict) = (4.7.1.2)
1 (dcl queue := empty-inport-queue() type Inport-queue;
2 dcl timers:= [] type Timer-table;

3 dcl waiting := false type Bool;
4 dcl saveset type Sgnal-identifier | -set
5 dcl spont type Spontaneous-Present;
6 (input mk-Body-Created(body) from admin
7 O (let mk-ldentifier;(qual, nm) = prid,
8 level =qual — Onk-Process-qualifier(nm)Cin
9 let dict’ =dict + [SCOPEUNIT level,
10 SELF > selfpid] in
11 cycle {input mk-Stop-Input-Port() from body
12 0 stop,
13 input mk-Queue-Sgnal1(sid, v, se) from admin
14 0 handle-queue-signall(sid, vl, se, delayf, body),
15 input mk-Next-Sgnal (saveset', spont’) from body
16 O handle-next-signal (saveset', spont’, delayf, body),
17 (handle-spontaneous-transition(del ayf, body)),
18 input mk-Set-Timer(tid, al, tv) from body
19 O handle-set-timer(tid, al, tv, delayf, body)(dict'),
20 input mk-Reset-Timer(tid, al) from body
21 O handlereset-timer(tid, al),
22 input mk-Active-Request(tid, al) from body
23 O handle-active-request(tid, al, body),
24 (output mk-Time-Request() to timer;
25 handle-time-request(delayf, body)(dict'))})))

type: Process-identifier; Pid-Value DelayF |1 (process-set-admin) — Entity-dict O

Objective Model the input port of an SDL process instance. One input-port instance exists for each SDL process
instance.
Parameters
prid The SDL identifier of the process instance set, to which the SDL process instance owning the input
port belongs.
selfpid The Pid value of the SDL process instance owning the input port.
delayf Bool function used to model the unstability of SDL states containing spontaneous transitions.
admin The Il value of the process-set-admin instance administrating thisinput-port instance.
Algorithm
Line1 Let queue denote the unbounded buffer of the SDL process instance and initialise it to the empty
queue.
Line2 Let timers denote the table of active timer instances and initialise it to the empty table.
Line3 Let waiting denote whether sdl-process is waiting for reply after a request for Next-Signal which

could not be answered immediately because queue was empty, or because all signals present in the
queue had to be saved. Initially the sdl-process does not wait for areply.

Line4 Let saveset denote the savesignal set when the sdl-process is ready to receive the next signal. The
contents of this variable only makes sense when the variable waiting is true.

46 Recommendation Z.100 — Annex F.3 (03/93)

Line5 Let spont denote whether the SDL state in which the sdl-process is waiting contains spontaneous
transitions. The contents of this variable only makes sense when the variable waiting is true.

Line 6 Obtain the Il vaue of the sdl-process instance with which this input-port instance should
communicate.

Line 7-10 Construct the qualifier denoting the process instance set and insert this qualifier in the Entity-dict
together with the Pid value of the SDL process instance owning the input port.

Line11 Isthe entry of the main cycle of input-port.

Line 15 Note: this input cannot always be answered immediately. The reason for introducing the variables
waiting, saveset and spont is the saveconstruct. If a pure queue structure, then an input guard could
be used to exclude communication of Next-Sgnal in case of an empty queue.

Line17 This cycle branch models the unstability of SDL states containing spontaneous transitions. As this
branch is not guarded, it can be taken at any time independently of the other branches. See
handle-spontaneous-transition for further details on the handling of spontaneous transitions.

Line 24 Include one output in this scheme. It is the repeated request for the current time from the timer.

handle-queue-signal 1(sid, Vi, se, delayf, body) £ 4.7.1.2)
1 (queue := add-signal-inport-queue(c queue, (sid, Vi, se));
2 if c waiting then
3 try-to-make-transition(delayf, body)
4 else
5 1)

type: Sgnal-identifier; Value-List Pid-Value DelayF |1 (sdl-process) O

Objective

Parameters
sid
vi
se

delayf

body
Algorithm

Linel

Line2-3

A signal has been received from some SDL process instance, or a timer instance has expired. Put the
signal in the input port queue. Thereafter, if the SDL process body is waiting in a state, then make it
perform atransition if possible.

Signal to beinserted.
Its optional list of values.
Sender Pid value of the signal.

The Bool function modelling the unstability of SDL states containing spontaneous transitions. Used
if the SDL process body iswaiting in a state and this state has spontaneous transitions.

Thell value of the sdl-process instance interpreting the SDL process body.

Concatenate the signal to queue.

If the SDL process body iswaiting in a state then make it perform atransition if possible.

Recommendation Z.100 — Annex F.3 (03/93) 47

handle-next-signal (saveset', spont’, delayf, body) = (4.7.1.3)

1 (waiting := true;

2 saveset ;= saveset';

3 spont := spont’;

4 try-to-make-transition(delayf, body))

type: Sgnal-identifier ;-set Spontaneous-Present DelayF 11 (sdl-process) O

Objective The SDL process body has entered a new state. Make it perform atransition if possible.
Parameters
saveset’ The saveset for the state.
spont’ An indication of whether the state contains spontaneous transitions.
delayf The Bool function modelling the unstability of SDL states containing spontaneous transitions.
body The Il value of the sdl-process instance interpreting the SDL process body.
Algorithm
Linel Set waiting to true to indicate that the SDL process body iswaiting in a state.
Line2-3 Keep track of the saveset of the SDL state, and whether it has spontaneous transitions.
Line4 Make the SDL process body perform atransition if possible.
handl e-spontaneous-transition(del ayf, body) £ (4.7.12.9)
1 if cwaiting Oc spont [delayf() then
2 deliver-spontaneous-signal (body)
i

type: DelayF 11 (sdl-process) O

Objective Model the unstability of SDL states containing spontaneous transitions.
Parameters
delayf The Bool function modelling the unstability.
body The Il value of the sdl-process instance interpreting the SDL process body.
Algorithm
Line1-2 If the SDL process body is waiting in a state, this state has spontaneous transitions, and the
“unstability” functiondelayf yieldstrue, then make the SDL process body perform a spontaneous
transition.

48 Recommendation Z.100 — Annex F.3 (03/93)

try-to-make-transition(delayf, body) £ (4.7.1.5)

1 (def possible-actions : (if next-signal-inport-queue(c queue, ¢, saveset) Z nil then
2 {INPUTSIGNAL}
3 else
4 {Ho
5 (if c spont L1 delayf () then { SPONTSIGNAL} ese{});
6 if possible-actions # {} then
7 (let action [possible-actionsin
8 cases action:
9 (INPUTSIGNAL - déliver-input-signal (body),
10 SPONTSIGNAL - deliver-spontaneous-signal (body)))
11 else
12)
type: DelayF I1(sdl-process) O
Objective The SDL process body iswaiting in astate. Make it perform atransition if possible.
Parameters
delayf The Bool function modelling the unstability of SDL states containing spontaneous transitions.
body The Il value of the sdl-process instance interpreting the SDL process body.
Algorithm
Line 1-5 Based on the contents of the variables queue, saveset, spont and the result of calling the
“unstability” functiondelayf, compute aet of possible actions as follows:
Linel If the input portqueue contains a signal which is not in shee set, the input port is able to deliver
a signal to the SDL process body.
Line5 If the SDL state haspontaneous transitions, adelayf yieldstrue, the input port isble to(make
theprocess body) initiate a spontaneous transition.
Line 6,12 If no actions are possible, tIDL process body keeps waiting.
Line7 Select (one of)he possible action(s)
Line9 If the chosen action is the delivery of a sigtathe process body, then perform this action.
Line 10 If the chosen action is theitiation of a spontaneous transition, then perform this action.
deliver-input-signal (body) = (4.7.1.6)
1 (def (sid, v, se) : next-signal-inport-queue(c queue, ¢ saveset);
2 output mk-Input-Signal(sid, vl, se) to body;
3 gueue := remove-signal-inport-queue(c queue, ¢ saveset);
4 if (sid, vI) L] dom c timersthen
5 timers:=ctimers\{(sid, vI)}
6 else
7 l;
8 waiting := false)
type: I1(sdl-process) O

Recommendation Z.100 — Annex F.3 (03/93) 49

Objective The SDL process body is waiting in a state, and the input port has decided to deliver a signal to the
body. Deliver the signal.

Parameters
body Thell value of the sdl-process instance interpreting the SDL process body.
Algorithm
Linel Get the signal to be delivered, taking into account the saveset.
Line2 Deliver the signal.
Line3 Remove the signal from the input port queue.
Line 4-5 If the signal isatimer signal, then remove it from the table of active timer instances.
Line 8 Indicate that the SDL process body is no longer waiting in a state.
deliver-spontaneous-signal (body) £ (4.7.1.7)

1 (output mk-Spontaneous-Signal () to body;
2 waiting := false)

type: I1(sdl-process) O
Objective The SDL process body is waiting in a state containing spontaneous transitions, and the input port has
decided to initiate one of these. Do this.
Parameters
body The Il value of the sdl-process instance interpreting the SDL process body.
Algorithm
Linel Make the process body perform a spontaneous transition.
Line2 Indicate that the SDL process body is no longer waiting in a state.
handle-set-timer (tid, al, tv, delayf, body)(dict) £ (4.7.1.8)

1 (handle-reset-timer (tid, al);

2 timers:=ctimers+ [(tid, al) — tv];

3 output mk-Time-Request() to timer;

4 handle-time-request(delayf, body)(dict))

type: Timer-identifier; Arglist Timeout-Value DelayF I1(sdl-process) — Entity-dict O

Objective Set atimer instance.
Parameters
tid Identifier of the timer.
al Argument value list of the timer.
tv Expiration time.
delayf The Bool function used to model the unstability of SDL states having spontaneous transitions.

Although a timer can only be set when a transition is being performed this argument is necessary
because other functions are called which really require this argument.

50 Recommendation Z.100 — Annex F.3 (03/93)

body Thell value of the sdl-process instance interpreting the SDL process body.

Algorithm
Line1 Reset the timer instance if it is already active.
Line 2 Update the map of active timers.
Line 3-4 Query the current time and make the timer instance expire immediately if its expiration timeis less
than or equal to now.
handle-reset-timer (tid, al) £ (4.7.1.9)
1 (timers:= ctimers\ {(tid, al)};
2 gueue := remove-timer-signal (tid, al, c queue))

type: Timer-identifier; Arglist O

Objective Reset atimer instance.
Parameters
tid Identifier of the timer.
al Argument value list of the timer.
Algorithm
Linel Remove the timer instance from the table of active timers.
Line2 Remove the corresponding timer signal from the input port queue if it has been placed there.
handle-active-request(tid, al, body) = (4.7.1.10)

1 (def stat : (tid, al) L] dom ctimers;
2 output mk-Active-Answer (stat) to body)

type: Timer-identifier, Arglist I1(sdl-process) O

Objective Supply the answer to atimer active expression.
Parameters

tid Identifier of the timer.

al Argument value list of the timer.

body Thell value of the sdl-process instance interpreting the SDL process body.
Algorithm

Linel Let stat denote true if the specified timer is active, otherwise false

Line2 Use this value as parameter in the output to sdl-process.

Recommendation Z.100 — Annex F.3 (03/93) 51

handle-time-request(delayf, body)(dict) = (4.7.1.11)

(input mKk-Time-Answer (t) from timer
O for all (tid, al) LI dom ctimersdo
(def expt : c timers((tid, al));
if expt # nil O
reduce-term(dict(EXPIREDF)(expt, t), dict(SCOPEUNIT))(dict) = dict(TRUEVALUE) then
(timers:=ctimers + [(tid, al) > nil];
handle-queue-signal 1(tid, al, dict(SELF), delayf, body))
else

1)
type: DelayF |1 (sdl-process) — Entity-dict O

©CoOoO~NOUDhWNE

Objective Handle the comparison with the current time for all active, not yet expired timer instances. Place all
expired timer instances in the input port queue.
Parameters
delayf The function modelling the unstability of SDL states containing spontaneous transitions.
body The Il value of the sdl-process instance interpreting the SDL process body.
Algorithm
Line1 Obtain the current time from the timer processor instance.
Line 2 Start the examination of all active timer instances. For each active timer instance do the following:
Line 3 Obtain the optional expiration time of the timer instance.
Line 4-5 If the timer instance has not already expired but should do this now, then do the following:
Line 6 Clear the expiration time for the timer instance.
Line7 Enqueue the timer signal in the input port queue.

52 Recommendation Z.100 — Annex F.3 (03/93)

4.7.2 Input Port Queue Auxiliary Functions

empty-inport-queue() £

1 N
type: - Inport-queue
Objective Return an empty input port queue.
Result The empty queue.

add-signal-inport-queue(q, gi) £

1 q ‘@O
type: Inport-queue Inport-queue-item - Inport-queue
Objective Enqueue asignal in an input port queue.
Parameters
q The old queue.
qi The new signal.
Result The queue including the new signal.

next-signal -inport-queue(q, saveset) =

1 (q=0
2 - nil,
3 s-Signal-identifier;(hd) [saveset
4 - hdq,
5 T - next-signal-inport-queue(t! g, saveset))
type: Inport-queue Sgnal-identifier;-set — [Inport-queue-item)
Objective Obtain the next signal, which is not to be saved, from an input port queue.
Parameters
q The queue.
saveset The saveset.
Result The next signal to be delivered from the queue, if any, otherwise nil.
Algorithm
Line1-2 If the queue is empty, no signal can be obtained.
Line3-4 If thefirst signal in the queue is not in the saveset, then return this signal.
Line5 Otherwise examine the rest of the queue.

Recommendation Z.100 — Annex F.3

(03/93)

(4.7.2.1)

(4.7.2.2)

(4.7.2.3)

53

remove-signal-inport-queue(q, saveset) = (4.7.2.9)

1 (s-Sgnal-identifier;(hd q) [Jsaveset
2 - tlq,
3 T _ [hd g0 remove-signal-inport-queue(t! g, saveset))

type: Inport-queue Sgnal-identifier;-set - Inport-queue
Objective Remove the next signal from an input port queue, taking into consideration a saveset. The function
assumes that the queue contains signals not to be saved.
Parameters
q The old queue.
saveset The saveset.
Result The queue where the signal has been removed.
Algorithm
Line1-2 If the first signal in the queue is not in the saveset, then remove this signal.
Line3 Otherwise keep the first signal and remove asignal from the rest of the queue.
remove-timer-signal (tid, al, g) £ (4.7.2.5)
1 m@i]|l<is<len qO
2 (let (sid, vI,) = qfi] in
3 - (sid=tid Ovl =al))0
type: Timer-identifier, Arglist Inport-queue — Inport-queue
Objective Remove atimer signd, if present, from an input port queue because the corresponding timer instance is
being reset.
Parameters
tid The identifier of the timer.
al The argument value list of the timer instance.
q The queue.
Result The queue where the timer signal has been removed.
Algorithm
Linel Select all queue signals which fulfil the condition in line 2-3. Note that the nature of SDL and the
formal model implies that at most one signal will be removed from the queue.
Line2 Obtain the signal identifier and value list of each queue signal.
Line3 Keep the queue signal if it does not denote the same timer instance as the one to be removed.

54 Recommendation Z.100 — Annex F.3 (03/93)

5 The SDL-Process and SDL-Service

This section describes how the META-IV processors sdl-process and sdl-service interpret (the body of) an SDL process
instance resp. an SDL service instance.

Each sdl-process and sdl-service instance has alocal storage, the type of which is given by:
1 Sg = Identifier; = (Value| UNDEFINED)

51 The sdl-pr ocess Pr ocessor

An instance of the sdl-process processor is created by its managing process-set-admin instance each time an SDL
process instance is created. The sdl-process instance first performs the necessary initial setup and then interprets the
process graph or service decomposition. When the SDL process instance ceases to exist the necessary cleanup is
performed, and the sdl-process instance ceases to exist.

If the SDL process is not decomposed into services the interpreting sdl-process instance interprets its process graph.
Otherwise it creates one instance of the sdl-service processor for each contained service and manages these sdl-service
instances. In the latter case all meta-communication between process-set-admin and input-port on one side and sdl-
service on the other goes through the sdl-process instance.

sdl-process processor (prid, actparml, parentp, selfp)(dict) £ (5.1.1

1 (dcl sender := dict(NULLVALUE) type Pid-Valug;

2 dcl offspring := dict(NULLVALUE) type Pid-Value;

3 dcl stg :=[] type Sg;

4 dcl servinstmap :=[] type Il(sdl-service) 7 Service- identifier;

5 dcl savemap :=[] type Service- identifier; - Sgnal- identifier -set;
6 dcl spontmap :=[] type Service- identifier; 7 Spontaneous-Present;
7 (input mk-Inport-Created(inport) from dict(ADMIN)

8 O (let mk-identifier,(qual, nm) = prid,

9 level =qual — Oink-Process-qualifier;(nm)Cin

10 def dict’ : dict + [SCOPEUNITH level,

11 SELF — selfp,

12 PARENT > parentp,

13 OFFSPRING+ offspring,

14 SENDER > sender,

15 PORT — inport];

16 def dict"" : modify-process-vardds(prid, stg)(dict');
17 trap exit () with error in

18 (create-process-vars(prid, actparml)(dict");

19 int-process-graph-or-service-decomp(prid)(dict’)))))

type: Process-identifier; Value-List Pid-Value Pid-Value — Entity-dict O

Objective Interprets the body of an SDL process instance.
Parameters
prid The SDL identifier of this process instance set.
actparml Thelist of actual parameter values.
parentp The SDL Pid value of the process instance that created this one.
selfp The SDL Pid value of this process.

Recommendation Z.100 — Annex F.3 (03/93) 55

Algorithm

Line1-2 Declare the variables sender and offspring, both initialized to the Pid value Null.

Line 3 Declare a variable stg which is to be the local storage of this SDL process instance and initialize it
to be empty.

Line 4-6 These three variables are only used if the SDL process is decomposed into services. Their purpose
is:

Line4 The variable servinstmap contains at any time the set of living service instances owned by this SDL
process instance. It maps each 11 value of an interpreting sdl-service instance to the SDL identifier
of the service which it interprets. The map is used to direct SDL signals from the input port to the
right service.

Line5 The variable savemap contains a map from the SDL identifier of each living service instance to the
save set of the statein which it is currently waiting.

Line 6 The variable spontmap contains a map which for each SDL identifier of a living service instance
tellswhether or not it is waiting in a state having spontaneous transitions.

Line7 Obtain the Il vaue of the input-port instance with which this sdl-process instance should
communicate.

Line 8-9 Construct the qualifier for the SDL process set.

Line 10-15 Enter the following information into the Entity-dict: The current scope unit, the Pid value of the
SDL process instance (self), the Pid value of its parent, a pointer to each of the meta-variables
holding the Pid values of its offspring and sendet, and the Il value of the input-port instance used.
The reason that the metavariables sender and offspring are accessed via pointers is that if the SDL
process is decomposed into services these meta-variables will be shared between several sdl-service
instances.

Line 16 For al variables declared in this SDL process (including process formal parameters), modify their
descriptors such that they can be used for interpreting the process graph/service decomposition.

Line 17 Trap any exit with error .

Line 18 Create al processloca SDL variablesin thelocal storage.

Line 19 Interpret the process graph/service decomposition of the SDL process.

modify-process-vardds(prid, stgref)(dict) £ (5.1.2

1 (let allvars = {varid | (varid, VALUE) [] dom dict [enclosing-scopeunit(varid) = prid O

2

is-VarDD(dict((varid, VALUE)))} in

3 dict + [(varid, VALUE) — mk-VarDD(varid, sort, oinit, rev, stgref) |
4 varid, L] allvars 0 mk-VarDD(, sort, cinit, rev,) = dict((varid, VALUE))])

type: Process-identifier; ref g — Entity-dict — Entity-dict

Objective

Parameters
prid
stgref

Result

Modify the Entity-dict descriptors for the variables (including process formal parameters) local to a
given SDL process such that they can be used for interpretation of its process graph/service
decomposition.

Theidentifier of the SDL process.
A pointer to the storage where the variables will be stored.

An Entity-dict where the descriptors have been updated.

56 Recommendation Z.100 — Annex F.3 (03/93)

Algorithm

Line1-2 Obtain the set of all variables (including process forma parameters) which are declared in the SDL
process.
Line3-4 For each variable in this set, update its descriptor such that it points to the storage where its value

will be stored, and the variable identifier itself will be used as “address” for its value in the storage.

create-process-vars(prid, actparml)(dict) £ (5.1.3)

(let mk-ProcessDD(parmddl, ,,,) = dict((prid, PROCESS)),

1
2 allvars = {varid | (varid, VALUE) [] dom dict 0 enclosing-scopeunit(varid) = prid O
3 is-VarDD(dict((varid, VALUE)))} in
4 for i =1tolen parmddl do

5 update-stg(parmddl[i], actparmi[i])(dict);

create-local-vars(allvars\ elems parmddl)(dict))

()]

type: Process-identifier; Value-List — Entity-dict O

Objective Create all process local variables (including process formal parameters) in their storage. Process formal
parameters are initialized with the corresponding actual parameter values.
Parameters
prid The identifier of the SDL process.
actparml The list of actual parameter values.
Algorithm
Line1 Obtain the list of formal parameter descriptors for the process.
Line 2-3 Obtain the set of all variables declared in the SDL process.
Line 4-5 Create each formal parameter in the storage with the corresponding actual parameter value as initial
value.
Line 6 Create all “purely local” variables in the storage.
create-local-vars(vars)(dict) £ (5.1.4)

1 for all varid [varsdo

2 (let mk-varDD(,, oinit,,) = dict((varid, VALUE)) in
3 let init = eval-ground-expression(oinit)(dict) in

4 update-stg-dcl (varid, init)(dict))

type: Variable-identifier,-set — Entity-dict O

Objective Create all “purely process local” variables in their storage, possibly initialized with some value.
Parameters

vars The set of local variables.
Algorithm

Linel For each variable do the following:

Line 2-3 Evaluate the optional initialisation expression for the variable.

Line4 Create the variable in the storage with the initialization value or “undefined” as initial value. If the

initial value is outside the range of the sort/syntype of the variable, its initial value becomes
“undefined” rather than giving rise to a range check error.

Recommendation Z.100 — Annex F.3 (03/93) 57

int-process-graph-or-service-decomp(prid)(dict) £ (5.1.5)

1 (output mk-Instance-Created() to dict(ADMIN);
2 (let-mk-ProcessDD(,, , ograph,) = dict((prid, PROCESS)) in
3 if ograph # nil then
4 int-process-graph(ograph)(dict)
5 else
6 int-service-decomp(prid)(dict));
7 output mk-Sop-Instance() to dict(ADMIN);
8 output mk-Die(dict(SELF), prid) to view)
type: Process-identifier; — Entity-dict O
Objective Interpret the process graph/service decomposition of an SDL process.
Parameters
prid The SDL identifier of the process.
Algorithm
Linel Send an initialization acknowledgement to the process-set-admin instance managing the process.
Line2 Obtain the (optional) process graph of the SDL process.
Line 3-6 If the process graph is present then interpret it (line 4). Otherwise the process is decomposed into
services and these are interpreted (line 6).
Line7 Tell the managing process-set-admin instance that this SDL process instance is stopping.
Line 8 Tell the view processor that it should remove any variables revealed by the stopping SDL process
instance.
int-process-graph(graph)(dict) £ (5.1.6)

1 (trap-exit(STOP) with | in
2 int-graph(graph)(dict))

type: Process-graph; — Entity-dict O

Objective Interpret the body of an SDL process which is not decomposed into services.
Parameters
graph The process graph.
Algorithm
Line1-2 Start interpretation of the graph nodes. A stop node in the graph will cause an exit(STOP) to be
performed which will be trapped in line 1.
int-service-decomp(prid)(dict) £ (5.1.7)
1 (start-services(prid)(dict);
2 exec-service-starts(dict);

3 exec-service-states(dict))

type: Process-identifier; — Entity-dict O

58 Recommendation Z.100 — Annex F.3 (03/93)

Objective Interpret the body of an SDL process which is decomposed into services. The function does not
perform the execution itself but creates and manages the sdl-service instances which are required for
interpreting the services.

Parameters
prid The SDL identifier of the process.
Algorithm
Linel Start one instance of each service and wait until they are all ready to execute their start transitions.
Line2 Manage the execution of the start transitions of the services.
Line3 Manage the execution of the state transitions of the services as long as there are still SDL services
dive.
start-services(prid)(dict) £ (5.1.8)

(let servset = { servid | (servid, SERVICE) [dom dict O enclosing-scopeunit(servid) = prid } in
for all servid [] servset do

(let dict' =dict + [ADMIN > self,

PORT > sdf]in

def servbody : start sdl-service(servid)(dict');

servinstmap := ¢ servinstmap + [servbody +— servid];

input mk-Instance-Created() from servbody

o
output mk-Instance-Created() to dict(ADMIN))

©Coo~NOOO~ WNRE

type: Process-identifier; — Entity-dict O

Objective Create SDL service instances for anew SDL process instance.
Parameters
prid The SDL identifier of the process.
Algorithm
Linel Obtain the set of identifiersfor all services defined in the SDL process.
Line2 For each service do the following (line 3-7):
Line3-4 For use by the service both the ADMIN and PORT entries in Entity-dict should contain the Il value

of the managing sdl-process. This is because the meta-communication which in case of
interpretation of a process graph is done directly with the associated process-set-admin and
input-port instances in case of interpretation of a service graph should go through the sdi-process
instance. Thus the interpretation functions for graph nodes do not need to distinguish between
process and service graph nodes.

Line5 Start the sdl-service instance which will interpret the SDL service.

line 6 Update the service instance map to include the new service.

Line7 Wait for an initialization acknowledgement from the service.

Line9 When al service instances have been created and initialized, then send an initialization

acknowledgement for the whole process instance to its managing process-set-admin instance.

Recommendation Z.100 — Annex F.3 (03/93) 59

exec-service-starts(dict) = (5.1.9)

1 for all servbody [] ¢ dom servinstmap do
2 (output mk-Execute-Sart() to servbody;
3 exec-service-transition(servbody)(dict))

type: Entity-dict O

Objective Manage the initial execution of service transitions until each service has either entered its first state or
stopped. Note that the first state of a service may be inside a procedure. No two initial service
transitions may be executed at the same time, and all initial transitions must have been executed before
any signal input or spontaneous transition is made in any service.

Algorithm
Linel For each service instance do the following:
Line2 Instruct the service instance to execute itsinitial transition.
Line3 Wait until the service reaches a state (possibly in a procedure) or stops.
exec-service-states(dict) £ (5.1.10)
1 while ¢ servinstmap # [] do
2 ((def saveset’ : union rng ¢ savemap,
3 sponrt’ : true [rng ¢ spontmap;
4 output mk-Next-Sgnal (saveset’, spont’) to dict(PORT));
5 {input mk-Input-Sgnal(sid, VI, se) from dict(PORT)
6 O if (Ceervid L rng c servinstmap)(sid [s-Input-signal-set(dict((servid, SERVICE)))) then
7 (def servid L rng ¢ servinstmap stt. sid [s-Input-signal-set(dict((servid, SERVICE)));
8 def servbody [dom ¢ servinstmap stt. ¢ servinstmap(servbody) = servid;
9 output mk-Input-Signal(sid, v, se) to servbody;
10 exec-service-transition(servbody)(dict))
11 else
12 I,
13 input mk-Spontaneous-Signal () from dict(PORT)
14 O (def-servid [J dom c spontmap stt. ¢ spontmap(servid);
15 def-servbody [dom c servinstmap stt. ¢ servinstmap(servbody) = servid;
16 output mk-Spontaneous-Signal () to servbody;
17 exec-service-transition(servbody)(dict))})

type: Entity-dict O

Objective Manage the execution of service state transitions. Note that the execution of a state transition may start
in a procedure and/or end in the same or another procedure. No two service state transitions (in two
different services) may be executed at the same time.

Algorithm
Linel One iteration of this loop is performed for each execution of a service transition. At the beginning
of each iteration of the loop al service instances till alive are waiting in a state, ie. each
interpreting sdl-service instance is waiting for input after outputting Next-Signal to this sdl-process.
The loop terminates when al service instances have stopped.
Line2 From all savesets of service instances still alive, obtain the total save signal set to be sent to the

input-port instance.

60 Recommendation Z.100 — Annex F.3 (03/93)

Line3 If at least one service is in a state containing spontaneous transitions the input-port instance should

be able to provoke this.
Line4d Request the next signal from the input port, taking the saveset’ and spont’ into consideration.
Line5 Coversthe delivery of asignal to some service.
Line 6-12 If the service which should receive this signal is no longer alive the signal is discarded.
Line7 Obtain the SDL identifier of the service instance which should receive the signal.
Line 8 Obtain the |1 value of the sdl-service instance interpreting this service instance.
Line9 Deliver the signal to the service.
Line 10 Wait until the service has completed the execution of the transition.
Line 13 Coversthe triggering of a spontaneous transition in some service.
Line 14 Obtain the SDL identifier of an arbitrary service instance which is currently able to perform a
spontaneous transition.
Line 15 Obtain the |1 value of the sdl-service instance interpreting this service instance.
Line 16 Instruct the chosen service to execute a spontaneous transition.
Line 17 Wait until the service has completed the execution of the transition.
exec-service-transition(servbody)(dict) £ (5.1.11)
1 (trap exit (ENDTRANS) with | in
2 cycle {input mk-Sop-Instance() from servbody
3 O (def servid: c servinstmap(servbody);
4 servinstmap : = ¢ servinstmap \ { servbody} ;
5 savemap := ¢ savemap \ { servid};
6 spontmap := ¢ spontmap \ { servid};
7 exit (ENDTRANS)),
8 input mk-Next-Sgnal (saveset’, spont’) from servbody
9 O (def servid: c servinstmap)(servbody);
10 savemap := ¢ savemap + [servid - saveset'];
11 spontmap := ¢ spontmap + [servid — spont'];
12 exit (ENDTRANS)),
13 input mk-Set-Timer (tid, argl, expt) from servbody
14 O output mk-Set-Timer(tid, argl, expt) to dict(PORT),
15 input mk-Reset-Timer (tid, argl) from servbody
16 O output mk-Reset-Timer(tid, argl) to dict(PORT),
17 input mk-Active-Request(tid, argl) from servbody
18 O (output mk-Active-Request(tid, argl) to dict(PORT);
19 input mk-Active-Answer (stat) from dict(PORT)
20 O output mk-Active-Answer (stat) to servbody)})
type: I1(sdl-service) — Entity-dict O
Objective Manage the execution of a service transition and relay the timer communication between the
interpreting sdl-service and the input-port.
Parameters
servbody Thell value of the sdl-service instance interpreting the transition.
Algorithm
Line1-2 The function enters a cycle which exits with exittENDTRANS) when the execution of the service

transition has finished. This exit istrapped by line 1.

Recommendation Z.100 — Annex F.3 (03/93) 61

62

Line2
Line3
Line4-6
Line7
Line8
line9

Line 10-11

Line 12
Line 13-20

Handle the case where the execution of the service transition is terminated by a stop node.
Obtain the SDL identifier of the stopping service instance.

Delete the stopping service from the service administration maps of the process instance.

Exit the cycle

Handle the case where the execution of the service transition is terminated by a nextstatenode.
Obtain the SDL identifier of the service instance.

Insert the new savesignal set and spontaneous-indication in the save set and spontaneous transition
maps.

Exit the cycle

Relay the timer handling meta-communication between the service graph and the input port.

Recommendation Z.100 — Annex F.3 (03/93)

52 The sdl-service Processor

An instance of the sdl-service processor is created by its managing sdl-process instance for each service in the
interpreted SDL process. The sdl-service instance first performs the necessary initial setup and then interprets the service
graph. When the SDL service instance ceases to exist the necessary cleanup is performed, and the sdl-service instance
ceases to exist.

sdl-service processor (servid)(dict) £ (5.2.1)

(dcl servstg :=[] type Sg;
(let mk-Identifier,(qual, nm) = servid,
level =qual — [nk-Service-qualifier{(nm)dn

let dict’ = dict + [SCOPEUNIT > level] in
def dict"" : modify-service-vardds(servid, servstg)(dict');
trap exit () with error in
(create-service-vars(servid)(dict");
int-service-graph(servid)(dict'))))

CO~NO U WN P

type: Service-identifier; — Entity-dict O

Objective Interprets (the body of) an SDL service.
Parameters
servid The SDL identifier of the service.
Algorithm
Linel Declare avariable servstg which is to be the local storage of this SDL service instance and initialize
it to be empty.
Line 2-3 Construct the qualifier for the service.
Line4 Enter the current scope unit into the Entity-dict.
Line5 For al variables declared in this service, modify their descriptors such that they can be used for
interpreting the service graph.
Line 6 Trap any exit with error.
Line7 Create all service local variables in the storage.
Line 8 Interpret the service graph.
modify-service-vardds(servid, stgref)(dict) £ (5.2.2)

1 modify-process-vardds(servid, stgref)(dict)
type: Service-identifier ref g — Entity-dict — Entity-dict

Objective Modify the Entity-dict descriptors for the variables local to a given service such that they can be used
for interpretation of its service graph.
Parameters

servid The identifier of the service.
stgref A pointer to the storage where the variables will be stored.

Result An Entity-dict where the descriptors have been updated.

Algorithm
Line1 Service variable descriptors are updated in the same way as process variable descriptors.

Recommendation Z.100 — Annex F.3 (03/93) 63

create-service-vars(servid)(dict) £

1 (let allvars = {varid | (varid, VALUE) [] dom dict [J enclosing-scopeunit(varid) = servid 0

2 is-VarDD(dict((varid, VALUE)))} in
3 create-local-vars(allvars)(dict))

type: Service-identifier; — Entity-dict O
Objective Create all servicelocal variablesin their storage.
Parameters
servid The identifier of the service.
Algorithm
Line 1-2 Obtain the set of all variables declared in the service.
Line 3 Create the variables in the storage.
int-service-graph(servid)(dict) £

(output mk-Instance-Created() to dict(ADMIN);

(let mk-ServiceDD(graph, ,) = dict((servid, SERVICE)) in
trap-exit(STOP) with | in
int-graph(graph)(dict));

output mk-Stop-Instance() to dict(ADMIN);

output mk-Die(dict(SELF), servid) to view)

OO WNPE

type: Service-identifier; — Entity-dict O
Objective Interpret a service graph.
Parameters
servid Theidentifier of the containing service.

Algorithm

Linel Send an initialization acknowledgement to the sdl-process instance managing the service.

Line 2 Obtain the service graph of the service.

(5.2.3)

(5.2.4)

Line 3-4 Start interpretation of the graph nodes. A stop node in the graph will cause an exit(STOP) to be

performed which will be trapped in line 3.

Line5 Tell the managing sdl-process instance that the service instance is stopping.

Line 6 Tell the view processor that it should remove any variables revealed by the stopping service

instance.

64 Recommendation Z.100 — Annex F.3 (03/93)

53 I nter pretation of a Procedure

Describes the interpretation of a procedure after its actual parameters have been evaluated.
int-procedure(prid, actparml)(dict) £ (5.3.1)

1 (dcl predstg :=[] type Sg;

2 (let mk-Identifier(qual, nm) = prid,

3 level = qual —* [ink-Procedure-qualifier(nm)Cin

4 let dict’ = dict + [SCOPEUNIT] level] in

5 def dict" : modify-procedure-vardds(prid, actparml, prcdstg)(dict’);
6 create-procedure-vars(prid, actparml)(dict');

7 int-procedure-graph(prid)(dict™)))

type: Procedure-identifier, (Variable-identifier, | Value | UNDEFINED)* - Entity-dict O

Objective Interprets a procedure.
Parameters
prid The SDL identifier of the procedure.
actparml The list of actual parameter values. For an in/out parameter the parameter “value” is the identifier

of the actual parameter variable.

Algorithm
Linel Declare a variable prcdstg which is to be the local storage of this procedure instance and initialize it
to be empty.
Line 2-3 Construct the qualifier for the procedure.
Line4 Enter the current scope unit into tBetity-dict.
Line5 For all variable declared in this procedure (includimg formal parameters), modify their
descriptors such that they can be used for interpreting the procedure graph.
Line6 Create all procedure local variables in the storage.
Line7 Interpret the procedure graph.
modify-procedure-vardds(prid, actparml, stgref)(dict) = (5.3.2)
1 (let mk-ProcedureDD(parmddl,) = dict((prid, PROCEDURE)),
2 allvars ={varid | (varid, VALUE) [J dom dict []enclosing-scopeunit(varid) = prid []
3 is-VarDD(dict((varid, VALUE)))} in
4 dict +[(fvarid, VALUE) > dict((actparmi[i], VALUE)) |
5 i 1 ind parmdd! Lis-InoutparmDD(parmddi[i]) []
6 mKk-InoutparmDD(fvarid) = parmddl[i]]
7 +[(varid, VALUE) > mk-VarDD(varid, sort, oinit, rev, stgref) |
8 varid [allvars [Imk-VarDD(, sort, oinit, rev,) = dict((varid, VALUE))])

type: Procedure-identifier, (Variable-identifier, | Value | UNDEFINED)* ref Sg — Entity-dict — Entity-dict

Objective Modify the Entity-dict descriptors for the variables (includiing formal parameters) local to a given
procedure such that they can be used for interpretation of its procedure graph.

Parameters
prid The identifier of the procedure.
actparml The list of actual parameter values/variables.
stgref A pointer to the storage where the variables will be stored.

Recommendation Z.100 — Annex F.3 (03/93) 65

Result An Entity-dict where the descriptors have been updated.
Algorithm

Linel Obtain the list of formal parameter descriptors for the procedure.

Line 2-3 Obtain the set of all variables (including in formal parameters) which are declared in the procedure.

Line 4-6 The variable descriptor for each in/out formal parameter becomes the same as that of the
corresponding actual parameter variable. This means that the descriptor of the forma parameter
will point to the same storage as that of the actual parameter variable, and that it will use the same
“address” as the actual parameter for accessing or changing its value in the storage.

Line 7-8 For each variable in the saltvars, updateits descriptor such that it points to the storage where its
value will is stored, and the variable identifier itself will be used as “address” for its value in the
storage.

create-procedure-vars(prid, actparmi)(dict) £ (5.3.3)

(let mk-ProcedureDD(parmddl,) = dict((prid, PROCEDURE)),
allvars ={varid | (varid, VALUE) [] dom dict []enclosing-scopeunit(varid) = prid [

is-VarDD(dict((varid, VALUE)))},

invars = {varid | mk- InparmDD(varid) [] elems parmddl} in

if is- InparmDD(parmddI[i]) then
update-stg(s- Variable-identifier; (parmddi[i]), actparmi[i])(dict)

else

1
2
3
4
5 for i =1 tolen parmddl do
6
7
8
9

10 create-local-vars(allvars' \ invars)(dict))

type: Procedure-identifier, (Variable-identifier, | Value | UNDEFINED* - Entity-dict O

Objective Create all procedure local variables (includingformal parameters) in their storage. Procedure in
formal parameters are initialized with the corresponding actual parameter values.
Parameters
prid The identifier of the procedure.
actparml The list of actual parameter values/variables.
Algorithm
Linel Obtain the list of formal parameter descriptors for the procedure.
Line 2-3 Obtain the set of all variables (exceptimfout formal parameters) declared in the procedure.
Line4 Obtain the set aih formal parameter variables.
Line 5-9 Create eaclin formal parameter in the storage with the corresponding actual parameter value as
initial value.
Line 10 Create all “purely local” variables in the storage.
int-procedure-graph(prid)(dict) £ (5.3.4)

1 (let mk-ProdecureDD(, graph) = dict((prid, PROCEDURE)) in
2 trap exit (RETURN) with | in
3 int-graph(graph)(dict))

type: Procedure-identifier; - Entity-dict O

66 Recommendation Z.100 — Annex F.3 (03/93)

Objective Interpret a procedure graph.

Parameters
servid Theidentifier of the containing procedure.
Algorithm
Line1 Obtain the procedure graph of the procedure.
Line 2-3 Start interpretation of the graph nodes. A return node in the graph will cause an exit(RETURN) to

be performed which will be trapped in line 2.

Recommendation Z.100 — Annex F.3 (03/93) 67

54 Storage Handling

update-stg-dcl(id, val)(dict) £ (5.4.1)
1 update-stg'(id, val, DCLASSIGN)(dict)

type: Variable-identifier; (Value | UNDEFINED) - Entity-dict O

Objective Assign aninitia value to a variable declared by dcl. If the value is outside the range of the sort/syntype
of the variable its initial value becomes “undefined”. Reveal the initial value of the variable if it has the
revealed attribute.

Parameters
id The identifier of the variable.
val The initial value of the variable.
Algorithm
Linel Call a general-purpose function to update variables in their storages.
update-stg(id, val)(dict) = (5.4.2)

1 update-stg' (id, val, OTHERASSIGN)(dict)
type: Variable-identifier; (Value | UNDEFINED) — Entity-dict O

Objective Assign an initiabalue to a process formal parameter or proceduf®rmal parameter, or assign a new
value to any kind of variable. If the value is outside the range of the sort/syntype of the variable a
range check error occurs. Reveal the new value of the variable if it heevéaked attribute.

Parameters
id The identifier of the variable.
val The new value of the variable.
Algorithm
Linel Call a general-purpose function to update variables in their storages.

68 Recommendation Z.100 — Annex F.3 (03/93)

update-stg’ (id, val, asgnkind)(dict) £ (5.4.3)
1 (let mk-VarDD(vid, sid, , revealed, stg') = dict((id, VALUE)) in

2 let val' = (range-check(sid, val)(dict)
3 - val,
4 asgnkind = DCLASSIGN
5 - UNDEFINED,
6 asgnkind = OTHERASSIGN
7 - exit(“8§5.3.1.9: Value is not within the range of the syntype”)) in
8 stg' :=cstg + [vid — val'l;
9 if revealed = REVEALED then
10 output mk-Reveal (vid, sid, dict(SELF), val') to view
11 else
12 1
type: Identifier; (Value | UNDEFINED) (DCLASSIGN | OTHERASSIGN) - Entity-dict O

Objective Assign an initial or new value to any kind of variable. The parameter asngkind determines what happens
if the value is outside the range of the sort/syntype of the variable. Reveal the initia/new value of the
variable if it hasthe revealed attribute.

Parameters
id Theidentifier of the variable.
val Theinitial/new value.
asgnkind Determines what happens if the value is outside the range of the sort/syntype of the variable.
Algorithm
Linel L ookup the description of the variable identifier.
Line 2-7 Perform a range check on the value and obtain the value which will be assigned to the variable. If
the value is within the range of the sort/syntype of the variable it gets this value (line 2-3).
Otherwise, if the value is the result of the evaluation of an initializer expression in the declaration
of the variable, the variable becomes “undefined” (line 4-5). Otherwise, a range check error occurs
(line 6-7).
Line 8-9 The referenced storage is overwritten with the new variable — value pair.
Line 9-12 If the variable igevealed the initial/new value is sent to thieew processor.

Recommendation Z.100 — Annex F.3 (03/93) 69

55 I nter pretation of a Process, Service or Procedure Graph
Describes the interpretation of a behaviour graph divided into an interpretation function for each type of graph node.
int-graph(graph)(dict) £ (5.5.1)
1 (let (start, statenodes) = decomp-graph(graph) in
2 tixe [statenm +— int-state-node(statenode)(dict) |

3 statenode [] statenodes []s-State-name; (statenode) = statenm] in
4 int-start-node(start)(dict))

type: (Process-graph; | Service-graph, | Procedure-graph;) — Entity-dict O

Objective Interprets a process, service or procedure graph.
Parameters
graph The process/service/procedure graph.
Algorithm
Linel Partition of the graph into a start node and a set of states.
Line 2 Traps al exit(statenm) from int-state-node and int-transition by interpreting the associated

Sate-node;. The tixe construct is a very convenient way to model the “goto”s used in the nextstate
nodes. The keywortixe is followed by a map from state names into call of int-state-node with the
state-node associated to state name as actual parameteexif(satenm) is encountered within

the dynamic scope of théxe construct, that is either in the range of the map (nt-state-node)

or in int-start-node, the interpretation of the process continues with State-node; having the

namestatenm.
Line4 Interpretation of the start node.
int-start-node (start)(dict) £ (5.5.2)
1 (let trans = decomp-start-node(start) in
2 if is-Service-start-node; (start) then
3 (input mk-Execute-Sart() from dict(ADMIN)
4 O int-transition(trans)(dict))
5 ese
6 int-transition(trans)(dict))
type: (Process-start-node; | Service-start-node; | Procedure-start-node;) — Entity-dict O
Objective Interprets a process, procedure or service start node.
Parameters
start The start node.
Algorithm
Linel Extract the start transition from the start node.
Line 2-3 If the start node is a service start node then wait until the mansdjipgocess instance instructs

this sdl-service instance to interpret the start node. This prevents the simultaneous execution of
several service start transitions belonging to the same SDL process instance.

70 Recommendation Z.100 — Annex F.3 (03/93)

Line4d Interpret the start transition.
Line 6 If the start node is a process or procedure start node its interpretation startsimmediately.
int-start-node(mk-State-node; (, mk-Save-signal set; (saveset), inputset, spontrset))(dict) = (5.5.3)
1 (output mk-Next-Signal (saveset, spontrset # {}) to dict(PORT);
2 {input mk-Input-Sgnal(sid’, actparml, sender’) from dict(PORT)
3 O (dict(SENDER) := sender’;
4 (let mk-Input-node; (sid, formparml, trans) Llinputset be st. sid = sid’ in
5 for i =1 tolen formparml do
6 if formparmi[i] # nil
7 then update-stg(formparmi[i], actparmi[i])(dict)
8 elsel;
9 int-transition(trans)(dict))),
10 input mk-Spontaneous-Sgnal () from dict(PORT)
11 O (dict(SENDER) := dict(SELF);
12 (let mk-Spontaneous-transition; (trans) [spontrset in

13

int-transition(trans)(dict)))})

type: State-node; — Entity-dict O

Objective
Parameters

state-node

Algorithm
Linel

Line2

Line3
Line4
Line 5-8

Line9
Line 10

Line11
Line 12
Line 13

Interprets a state node.

Composed of a saveset which is a set of signals to be saved by the input port, an inputset which isa
set of signals and associated transitions, and spontrset which is a (possibly empty) set of
spontaneous transitions.

Reguest the input port to output a signal which is not in the saveset, and to save all signals
belonging to the saveset. If the state contains spontaneous transitions the input port may choose to
provoke a spontaneous transition instead.

Receive a signal composed of asignal identifier, alist of data values and the SDL Pid value of the
sender.

Update the sendervalue.
Select the input node that has the same signal identifier as the received signal.

For al the formal parameters: if the formal parameter is present (different from nil), then the
storage is updated with its associated variable and the value of the actual parameter.

Interpret the selected transition.

Initiate a spontaneous transition. The input port can only respond with this answer if the second
parameter of Next-Sgnal wastrue.

The sendervaue becomes the same as self.
Select an arbitrary spontaneous transition.

Interpret the contained transition.

Recommendation Z.100 — Annex F.3 (03/93) 71

int-transition(mk-Transition, (nodel, termordec))(dict) =

1 (for i =1 tolen nodel do

2 int-graph-node(nodel[i])(dict);

3 cases termordec:

4 (mk-Nextstate-node;(nm) — exit(nm),

5 mk-Stop-node; () - exit(STOP),

6 mk-Return-node; () - exit(RETURN),

7 mk-Decision-nodey(,,) - int-decision-node(termordec)(dict)))

type: Transition; - Entity-dict O

Objective Interprets a transition.
Parameters
nodel Thelist of action nodes.
termordec A terminator node or a decision node.
Algorithm
Line1-2 Interpret the action nodes sequentially.
Line4 A nextstate node isinterpreted by exit with the name of the next state.
Line5 A stop node by exit with STOP.
Line 6 A return node by exit with RETURN.
Line7 A decision node by calling the int-decision-node function.

int-graph-node(graphnode)(dict) £

1 cases graphnode:

2 (mk-Task-nodej(asgnortxt) - int-task-node(asgnortxt)(dict),

3 mk-Output-node,(, , ,) - int-output-node(graphnode)(dict),
4 mk-Create-request-node;(,) — int-create-node(graphnode)(dict),
5 mk-Call-nodey(,) - int-call-node(graphnode)(dict),

6 mk-Set-node(, ,) ~ int-set-node(graphnode)(dict),

7 mk-Reset-node (,) - int-reset-node(graphnode)(dict))

type: Graph-node; — Entity-dict O

Objective

Interprets a graph node.

Parameters

graphnode The graph node to be interpreted.

int-task-node(asgnortxt)(dict) =

1 cases asgnortxt:
2 (mk-Assignment-statement(,) — int-assign-stmt(asgnortxt)(dict),
3 mk-Informal-text;() — int-informal-text(asgnortxt))

type: (Assignment-statement, | Informal-text;) - Entity-dict O

Objective

72

Interprets a task node.

Recommendation Z.100 — Annex F.3 (03/93)

(5.5.4)

(5.5.5)

(5.5.6)

Parameters

asgnortxt An assignment statement or informal text.
Algorithm

Linel The asgnortxt isinterpreted as either an assignment or asinformal text.
int-assign-stmt(mk-Assignment-statement, (vid, exp))(dict) £ (5.5.7)

1 (def val : eval-expression(exp)(dict);
2 update-stg(vid, val)(dict))

type: Assignment-statement; — Entity-dict O

Objective Interprets an assignment statement.

Parameters
vid Thetarget variable.
exp The expression.
Algorithm
Linel Evaluate the value of the expression.
Line 2 Update the storage with vid and value of the expression.
int-infor mal-text(mk-Informal-text;()) £ (5.5.8)

1 (/ Thisinformal Meta-1V text denotes the inter pretation of informal text */)

type: Informal-text; O
int-output-node(mk-Output-node; (sid, exprl, dest, via))(dict) = (5.5.9
1 (let mk-SgnalDD(sortl,) = dict((sid, SIGNAL)) in
2 def vall : [éval-expression(exprl[i])(dict) | 1 <i < len exprl[]
3 def destval : (dest = nil
4 - nil,
5 (dest, PROCESS) [dom dict
6 - dest,
7 T _ eval-expression(dest)(dict)):
8 let senderid = process-or-service-scopeunit(dict(SCOPEUNIT)) in
9 if (Oi U ind vall)(range-check(sortl[i], vall[i](dict))
10 then output mk-Send-Signal(sid, vall, senderid, dict(SELF), destval, via) to system
11 edseexit(“85.3.1.9: Value is not within the range of the syntype”))

type: Output-node; — Entity-dict O

Objective Interprets an output node.
Parameters
sid Theidentifier of the signal to be sent.
exprl The actual parameters for the signal.
dest An optional Pid expression or process identifier denoting the process to which the signal should be
sent.

Recommendation Z.100 — Annex F.3 (03/93) 73

Via An optional set of signal route/channel identifiers at least one of which should be used to convey

the signal.
Algorithm

Line 2 Evaluate thelist of actual parameters.

Line 3-7 Evaluate the optional signal destination. If it is absent or is a process identifier (line 3-6) it will be
handed on to the system processor unchanged. If it is a Pid expression (line 7) this expression is
evaluated.

Line 8 Obtain the SDL identifier of the process or service instance which sends the signal .

Line9 Perform arange check on the actual parameter values.

Line 10 Send the signal.

int-create-node(mk-Create-request-node; (prid, exprl))(dict) £ (5.5.10)

1 (let mk-ProcessDD(formparms, , ,,) = dict((prid, PROCESS)) in

2 let sortl = [3-Sort-reference-identifier 1(dict((formparmg|i], VALUE))) | 1 < i < len formparmsCin
3 def vall : [éval-expression(exprl[i])(dict) | 1<i < len exprl[]

4 if (Oi O ind sortl)(range-check(sortl[i], vall[i])(dict)) then

5 (output mk-Create-Instance-Request(prid, vall, dict(SELF)) to system;

6 input mk-Create-nstance-Answer (offspring’) from system

7 O dict(OFFSPRING) := offspring’)

8 else

9 exit(“85.3.1.9: Value is not within the range of the syntype”))

type: Create-request-node; — Entity-dict O

Objective Interprets a create node.
Parameters
prid Theidentifier of the process to be created.
exprl Thelist of actual parameters.
Algorithm
Line1-2 Establish the list of sort reference identifiers of the formal parameters.
Line 3 Evaluate thelist of actual parameters.
Line4 Perform arange check on the actual parameters.
Line5 Issue the create instance request.
Line6 Wait for a response on the create request. The response carries the SDL Pid value of the new
process instance.
Line7 Update the offspring value.
int-call-node(mk-Call-node; (prid, exprl))(dict) £ (5.5.11)
1 (Iet mk-ProcedureDD(parmddl,) = dict((prid, PROCEDURE)) in
2 def actparml : {is-InparmDD(parmddi[i])
3 - eval-expression(exprl[i])(dict),
4 is-InoutparmDD(parmddI[i])
5 - exprl[i]) |
6 1<i<len parmddi(]
7 int-procedure(prid, actparml)(dict))

type: Call-node; — Entity-dict O

74 Recommendation Z.100 — Annex F.3 (03/93)

Objective

Interpret a procedure call node.

Parameters
prid The identifier of the procedure to be called.
exprl The actual parameters for the procedure call.
Algorithm
Linel Obtain the list of formal parameter descriptors for the procedure.
Line 2-6 Evaluate the list of actual parameters. If an actual parameter is an in parameter it is an expression
which should be evaluated (line 2-3). If an actual parameter is an in/out parameter its “evaluation
result” is the SDL identifier of the actual parameter variable (line 4-5).
Line7 Interpret the procedure.
int-set-node(mk-Set-nodey (texp, tid, exprl))(dict) £ (5.5.12)
1 (let mk-SgnalDD(sortl,) = dict((tid, SIGNAL)) in

OO WN

def val : eval-expression(texp)(dict);

def vall : [éval-expression(exprl[i])(dict) | 1 <i < len exprl[]

if (0i [ind vall)(range-check(sortl[i], vall[i])(dict))
then output mk-Set-Timer(tid, vall, val) to dict(PORT)
elseexit(*85.3.1.9: Value is not within the range of the syntype”))

type: Set-node; - Entity-dict O

Objective Interprets a set node.
Parameters
texp The expiration time expression.
tid The identifier of the timer to be set.
exprl The actual parameters for the timer.
Algorithm
Line 2 Evaluate the expiration time expression.
Line3 Evaluate the list of actual parameters.
Line4d Perform arange check on the actual parameter values.
Line5 Instruct the input-port to set the timer.
int-reset-node(mk-Reset-node; (tid, expr!))(dict) £ (5.5.13)

1 (let mk-SgnalDD(sortl,) = dict((tid, SIGNAL)) in

akrwnN

def vall : [éval-expression(expri[i])(dict) | 1<i < len exprl[]

if (i 1 ind vall)(range-check(sortl[i], vall[i](dict))
then output mk-Reset-Timer (tid, vall) to dict(PORT)
elseexit(*85.3.1.9: Value is not within the range of the syntype”))

type: Reset-node; — Entity-dict O

Objective
Parameters
tid

exprl

Interprets areset node.

The identifier of the timer to be reset.

The actual parameters for the timer.

Recommendation Z.100 — Annex F.3 (03/93) 75

Algorithm

Line2 Evaluate the list of actual parameters.
Line 3 Perform arange check on the actual parameter values.
Line4d Instruct the input-port to reset the timer.
int-decision-node(mk-Decision-node; (quest, answset, elseansw))(dict) £ (5.5.149)

1 (def questval : (is-Expression;(quest)

2 - eval-expression(quest)(dict),
3 is-Informal-text; (quest)
4 - quest);
5 let answset’ = matching-answer (questval, answset)(dict) in
6 (answset’ £ {}
7 - (let { mk-Decision-answer {(, trans)} = answset' in
8 int-transition(trans)(dict)),
9 elseansw # nil
10 - (let mk-Else-answer {(trans) = elseansw in
11 int-transition(trans)(dict)),

12 T . exit(“§2.7.5: No matching answer”)))

type: Decision-node; — Entity-dict O

Objective Interprets a decision node.
Parameters
quest The question of the decision.
answset The set of answers and associated transitions.
Elseansw The optional elsetransition.
Algorithm
Line 1-3 Evaluate the decision question.
Line5 Extract the set of answers which match the decision question value.
Line 6-8 If the extracted set of answersis not empty then it contains exactly one answer (it is checked during

the building of the Entity-dict that the answers do not overlap). The transition associated with the
selected answer is interpreted.

Line 9-11 If no matching answer was found, and an else transition is present, thistransition isinterpreted.
Line 12 If no matching answers is found and no else answer is present an error occurs.
matching-answer (questval, answset)(dict) £ (5.5.15)

1 {mk-Decision-answer 1(valsetortext&D answset |

2 (is-Range-conditionq(val setortext) L!is-Value(questval)

3 — (let branchcond = eval-range-condition(questval, valsetortext)(dict) in
4 branchcond = dict(TRUEVALUE)),

5 T _ text-equality (questval, valsetortext))}

type: (Value | Informal-text;) Decision-answer{-set — Entity-dict — Decision-answer 1-set

Objective Find the set of answersin the supplied set of answers which match the supplied question value.

76 Recommendation Z.100 — Annex F.3 (03/93)

Parameters

quest The question value of the decision.

answset The set of answers and associated transitions.
Result The matching answer and its associated transition.
Algorithm

Line 2-4 If neither the question nor the answer is informal then the range condition is evaluated w.r.t. the

question value.

Line5 If the question or the answer is informal the equality istested by the informal function text-equality.

text-equality(value-text, valueset-text) £ (5.5.16)

1 (/* Thisinformal Meta-1V text denotes the equality test */;
2 [+ between informal question and/or informal answer /)

type: (Informal-text; | Value) (Informal-text, | Range-condition;) — Bool

Recommendation Z.100 — Annex F.3 (03/93) 77

5.6 Expression Evaluation

This section defines the functions for expression evaluation.

eval-expression(exp)(dict) £ (5.6.1)
1 if exp =nil then
2 UNDEFINED
3 else
4 cases exp:
5 (mk-Ground-expression;()
6 - eval-ground-expression(exp)(dict),
7 mk-Identifier4(,)
8 - eval-variable-identifier (exp)(dict),
9 mKk-Operator-application;(,)
10 - eval-operator-application(exp)(dict),
11 mk-Conditional-expression,(, ,)
12 - eval-conditional-expression(exp)(dict),
13 mKk-View-expression,(,)
14 - eval-view-expression(exp)(dict),
15 mk-Timer-active-expression;(,)
16 - eval-timer-active-expression(exp)(dict),
17 mKk-Anyval ue-expression; ()
18 - eval-anyvalue-expression(exp)(dict),
19 mk-Now-expression; ()
20 - eval-now-expression(),
21 mKk-Self-expression; ()
22 - dict(SELF),
23 mk-Parent-expressiony()
24 - dict(PARENT),
25 mKk-Offspring-expression;()
26 - cdict(OFFSPRING),
27 mk-Sender-expression; ()
28 - Cdict(SENDER),
29 mKk-Error-termy()
30 - exit("8§5.4.2.1: Attempt to evaluate error expression”))

type: [Expression;] — Entity-dict O (Value | UNDEFINED)

Objective Evaluate an expression.
Parameters
exp The expression.
Result The value of the expression.
Algorithm
Line1-2 If the expression is absent (typically an omitted actual parameter) its value is “undefined” .
Line 21-24 If the expression iself or parent its value is looked up in thentity-dict.
Line 25-28 If the expression isffspring or sender a META-IV variable holding its current value is accessed

via a pointer which is looked up in timtity-dict.

Line 29-30 If the expression isrror an error occurs.

78 Recommendation Z.100 — Annex F.3 (03/93)

56.1

eval-ground-expression(gexpr)(dict) =

1 if gexpr = nil then
2 UNDEFINED
3 ese
4 (let mk-Ground-expression;(gterm) = gexpr in
5 eval-ground-term(gterm)(dict))
type: [Ground-expression;] — Entity-dict - (Value | UNDEFINED)
Objective Evaluate a ground expression.
Parameters
gexpr The ground term.
Result The value of the ground expression.
Algorithm
Line1-2 If the ground expression is absent its value is “undefined”.
Line 4-5 Obtain the contained ground term (line 4) and evaluate it (line 5).

Ground Expression Evaluation

AN

eval-ground-term(mk-Ground-termy (contents))(dict) =

(5.6.1.1)

(5.6.1.2)

1 (is-Identifier 1(contents)
2 - (let resterm = mk-Ground-termy(contents) in
3 reduce-term(resterm, dict(SCOPEUNIT))(dict)),
4 is-Conditional-term, (contents)
5 - (let mk-Conditional-term,)(cond, cons, alt) = contentsin
6 let condval = eval-ground-term(cond)(dict) in
7 (condval = dict(TRUEVALUE)
8 - eval-ground-term(cons)(dict),
9 condval = dict(FALSEVALUE)
10 - eval-ground-term(alt)(dict))),
11 T (let (opid, arglist) = contentsin
12 let vallist = [@val-ground-term(arglist[i])(dict) | 1< i < len arglistCin
13 eval-ground-term-opapp(opid, vallist)(dict)))
type: Ground-term; — Entity-dict - Value
Objective Evaluate a ground term.
Parameters
contents The “contents” of the ground term (a literal identifier, conditional ground expression or operator
application on a list of ground terms).
Result The value of the ground term.
Algorithm
Line1 Handle the case where the ground term is a literal identifier.
Line2 Build a ground term representing the resulting value.
Line3 Obtain the ground term which has been chosen to represent the value in the rest of the system.
Line4 Handle the case where the ground term is a conditional term.
Line5 Decompose the conditional term into its components.
Line6 Evaluate the condition.

Recommendation Z.100 — Annex F.3

(03/93) 79

Line 7-10 If the condition is True (line 7) then evaluate the consegquence (line 8). If the condition is False

Linel

(line 9) then evaluate the aternative (line 9). No other possibilities exist as the wellformedness of
the Boolean data sort has been checked during the building of the Entity-dict.

1 Handle the case where the ground term is an operator application. Decompose the operator
application into an operator identifier and an argument list.

Line 12 Evaluate the argument list.

Line 13 Perform the operator application on the list of argument values.

eval-ground-term-opapp(opid, vallist)(dict) £ (5.6.1.3)

©oo~NoOUDwWN B

10

(let mk-OperatorDD)(sortlist, sort) = dict((opid, VALUE)) in
if (Oi 1 ind sortlist)(range-check(sortlist[i], vallist[i])(dict)) then

e

(et resterm = mk-Ground-termy((opid, vallist)) in
let resval = reduct-term(resterm, dict(SCOPEUNIT))(dict) in
if range-check(sort, resval)(dict) then
resval
else
exit(“§5.3.1.9: Value is not within the range of the syntype”))
se

exit(“85.3.1.9: Value is not within the range of the syntype”))

type:
Objective Apply an SDL operator to alist of argument values.

Operator-identifier; Valuet - Entity-dict - Value

Parameters

opid

vallist

Result

The SDL operator identifier.
Thelist of argument values.

The resulting value of the operator application.

Algorithm

80

Linel
Line2
Line3
Line4
Line5
Line 6

Obtain the argument sort list and the result sort of the operator.

Perform arange check on the list of argument values.

Build a ground term representing the resulting value.

Obtain the ground term which has been chosen to represent the value in the rest of the system.
Perform arange check on the resulting value.

Return the resulting value.

Recommendation Z.100 — Annex F.3 (03/93)

5.6.2 Active Expression Evaluation
eval-variable-identifier (id)(dict) £ (5.6.2.1)

1 (let mk-VarDD(vid, ,,, stg) = dict((id, VALUE)) in
2 if cstg(vid) # UNDEFINED

3 then c stg(vid)
4 elseexit(“85.4.2.2: Value of accessed variable is undefined”))
type: Identifier; — Entity-dict 0 Value
Objective Evaluate avariable identifier.
Parameters
id The variable identifier.
Result The contents, if any, of that variable.
Algorithm
Line1 Gets the referenced variable identifier and a pointer to its storage (the variable id could be a
procedure infout formal parameter).
Line4d If the contents of storage for the referenced identifier is undefined an error occurs.
Line 3 The contents of storage for the referenced identifier is returned.
eval-oper ator-application(mk-Oper ator-application; (opid, expl))(dict) £ (5.6.2.2)

1 (def vall : [eval-expression(expl[i])(dict) | 1<i < len expl[]
2 eval-ground-term-opapp(opid, vall)(dict))

type: Operator-application; — Entity-dict 0 Value

Objective Evaluate an operator application.
Parameters
opid Identifier of the operator.
expl Argument list for the application.
Result The value of the operator application.
Algorithm
Linel Evaluate the list of arguments.
Line 2 Perform the operator application on the list of argument values.
eval-view-expression(mk-View-expression; (id, exp))(dict) £ (5.6.2.3)
1 (let mk-ViewDD(sortid) = dict((id, VALUE)) in
2 def pid : if exp = nil then nil else eval-expression(exp)(dict);
3 output mk-View-Request(id, sortid, pid) to view;
4 input mk-View-Answer (val) from view
5 g if val # UNDEFINED
6 then val
7 else exit(“85.4.2.2: The viewed value is undefined”))

type: View-expression; — Entity-dict O Value

Recommendation Z.100 — Annex F.3 (03/93) 81

Objective Evaluate a view expression.
Parameters
id The identifier of the viewed variable.
exp An optional Pid expression.
Result The value of the view expression.
Algorithm
Linel Get the sort or syntype of the viewed variable.
Line2 Evaluate the Pid expression if present.
Line3 Request the view processor to obtain the value of one of the possible revealed variable instances.
Line4d Wait for aresponse from the view processor.
Line5 Check that the contents of the viewed variable instance is not “undefined”.
Line 6 Return the viewed value.
eval-conditional-expression(mk-Conditi onal-expression; (cond, cons, alt))(dict) = (5.6.2.4)
1 (def condval : eval-expression(cond)(dict);
2 (condval = dict(TRUEVALUE)
3 - eval-expression(cons)(dict),
4 condval = dict(FALSEVALUE)
5 - eval-expression(alt)(dict)))

type: Conditional-expression; — Entity-dict O Value

Objective Evaluate a conditional expression.
Parameters
cond The condition expression.

cons The consequence expression.

alt The alternative expression.

Result The value of either the consequence or the alternative expression depending on the condition.
Algorithm

Line1 Evaluate the condition.

Line 2-5 If the condition is True (line 2) then evaluate the consequence expression (line 3). If the condition
is False (line 4) then evaluate the alternative expression (line 5). No other possibilities exist as the
wellformedness of the Boolean data sort has been checked during the buildingrifthdict.

eval-timer-active-expressi on(mk-Timer-active-expression; (timer, exprl))(dict) £ (5.6.2.5)
1 (let mk-SgnalDD(sortl,) = dict((timer, SIGNAL)) in
2 def vall : [éval-expression(exprl[i])(dict) | L <i < len exprl[]
3 if (@i O ind vall)(range-check(sortl[i], vall[i])(dict)) then
4 (output mk-Active-Request(timer, vall) to dict(PORT);
5 input mk-Active-Answer (b) from dict(PORT)
6 O if bthen dict(TRUEVALUE) else dict(FALSEVALUE))
7 else
8 exit(“85.3.1.9: Value is not within the range of the syntype”))

type:

82

Timer-active-expression; — Entity-dict O Value

Recommendation Z.100 — Annex F.3 (03/93)

Objective Evaluate atimer active expression.

Parameters
timer The identifier of the timer.
exprl The arguments of the timer.
Result The SDL Boolean value of the timer active expression.
Algorithm
Linel Establish the sort list of the timer.
Line2 Evaluate the timer arguments.
Line3 Perform arange check on the list of argument values.
Line4 Request the input port to examine if the timer instance is active.
Line5 Receive a response from the input port with a parameter b denoting the “activeness” of the timer
instance.
Line 6 Return the SDL value True or False depending on the answer from the input port.
eval-anyval ue-expression(mk-Anyval ue-expression, (sortref))(dict) = (5.6.2.6)
1 (let sortid = sort-or-parent-sort(sortref)(dict) in
2 let values = {val [J values-of-sort(sortid)(dict) | range-check(sortref, val)(dict)} in
3 if values #{} then
4 (let val L] valuesin
5 val)
6 else
7 exit(“§5.4.4.6: Attempt to evaluate an anyvalue expression for an empty sort or syntype”))

type: Anyvalue-expression; — Entity-dict - Value

Objective Evaluate an anyvalue expression.
Parameters
sortref The contained sort/syntype identifier of the anyvalue expression.
Result The (arbitrary) value of the anyvalue expression.
Algorithm
Line1 If the sort/syntype identifier is a syntype identifier then obtain its parent sort.
Line2 Obtain the set of al values belonging to the sort/syntype.
Line 3-7 It isan error to apply any to a sort or syntype containing no values.
Line 4-5 Select an arbitrary value from the value set and return it.
eval-now-expression() £ (5.6.2.7)

1 (output mk-Time-Request() to timer;
2 input mk-Time-Answer (val) from timer
3 O val)

type: () O Value

Objective Evaluate the now expression.
Result The current value of now.

Recommendation Z.100 — Annex F.3 (03/93) 83

Algorithm
Request the timer processor to get the current time.

Linel
Line2 Wait for aresponse from timer.
Line3 Return the resuilt.

84 Recommendation Z.100 — Annex F.3 (03/93)

5.7 Range Check and Range Condition Evaluation

This section defines functions for range checks and for evaluation of range conditions w.r.t. given SDL data values.
Range-check(sortref, value)(dict) £ (5.7.1)

if value = UNDEFINED then
true
ese
cases dict((sortref, SORT)):
(mk-SyntypeDD(, rangecond)
- (let testval = eval-range-condition(value, rangecond)(dict) in
testval = dict(TRUEVALUE)),
mk-SortDD()
- true

type: Sort-reference-identifier, (Value | UNDEFINED) - Entity-dict — Bool

©CoO~NOOOADWNPF

Objective Test whether avalueis within the range of a sort/syntype.
Parameters
sortref The sort/syntype identifier.
value Thevalue.
Result trueif the value is within the range, else false.
Algorithm
Line1-2 If the value is “undefined” (typically an omitted actual parameter) it is considered to be in the range
of any sort/syntype.
Line4d Look up the sort/syntype in thntity-dict.
Line5-7 Handle the case where the sort/syntype is a syntype. The associated range condition is retrieved

(line 5) and evaluated w.r.t. the value to be checked (line 6). The range cheaokifsthe range
condition evaluation result is the SDL value True (line 7).

Line 8-9 If the sort/syntype is a sort the range check is always
eval-range-condition(value, mk-Range-condition;(orid, cset))(dict) £ (5.7.2)
1 eval-condition-item-set(value, orid, cset)(dict)

type: Value Range-condition; — Entity-dict - Value

Objective Evaluate a range condition w.r.t. a given value.
Parameters
value The value.
orid The Or-operator-identifier; of the range condition.
cset The condition items of the range condition.
Result The SDL Boolean evaluation result.
Algorithm
Linel Call a function which evaluates each condition item w.r.t. the value and takes the SDL Boolean

of the results.

Recommendation Z.100 — Annex F.3 (03/93) 85

eval-condition-item-set(value, orid, cset)(dict) = (5.7.3)

(let cond L] csetin
let condval = eval-condition-item(value, cond)(dict) in
if card cset =1 then
condval
else
(let restval = eval-condition-item-set(value, orid, cset \ { cond})(dict) in
eval-ground-term-opapp(orid, [@ondval, restval (dict)))

~N~NoohwN

type: Value Or-operator-identifier; Condition-itemy-set — Entity-dict — Value

Objective Evaluate a set of range condition items w.r.t. a given value and take the SDL Boolean or of the results.
Parameters
value Thevalue.
orid The AS; identifier for the SDL predefined Boolean or operator.
cset The (non-empty) set of range condition items.
Result The SDL Boolean evaluation resullt.
Algorithm
Linel Pick a condition item from the condition items set.
Line2 Evaluate this condition item w.r.t. the value.
Line3-4 If the picked condition item is the only one in the condition item set then return the evaluation
result obtained in line 2.
Line6 Evaluate the remaining set of condition items w.r.t. the value and take the SDL Boolean or of the
results.
Line7 Apply the SDL Boolean or operator to the two sub-evaluation results.
eval-condition-item(value, cond)(dict) = (5.7.9)
1 cases cond:
2 (mk-Open-range; (relopid, gexpr)
3 - (let gval = eval-ground-expression(gexpr)(dict) in
4 eval-ground-term-opapp(relopid, alue, gval (dict)),
5 mk-Closed-range; (andid, orngl, orng2)
6 — (let mk-Open-range;(relopidl, gexprl) = orngl,
7 mk-Open-range; (relopid2, gexpr2) = orng2in
8 let gval 1 = eval-ground-expression(gexpr1)(dict),
9 gval 2 = eval-ground-expression(gexpr2)(dict) in
10 let condval 1 = eval-ground-term-opapp(relopidl, [gvall, valuelj(dict),
11 condval 2 = eval-ground-ter m-opapp(relopid2, alue, gval20)(dict) in
12 eval-ground-term-opapp(andid, [¢ondval1, condval 20j(dict)))

type: Value Condition-item; — Entity-dict — Value

Objective Evaluate arange condition item w.r.t. agiven value.
Parameters

value The value.

cond The condition item.
Result The SDL Boolean evaluation resullt.

86 Recommendation Z.100 — Annex F.3 (03/93)

Algorithm
Line2

Line3
Line4
Line5

Line 6-7
Line 8-9
Line 10-11

Line 12

Handle the case where the condition item is an open range. Decompose the open range into its
contained (relational) operator identifier and ground expression.

Evaluate the ground expression.
Apply the relational operator to the value and the ground expression value.

Handle the case where the condition item is a closed range. Decompose it into the AS;identifier for
the SDL predefined Boolean and operator and the two contained open ranges.

Decompose the two open ranges.
Evaluate the ground expressions contained in the two open ranges.

Apply each of the two relational operators to the value and its corresponding ground expression
value.

Apply the SDL predefined Boolean and operator to the evaluation results of the two open ranges.

Recommendation Z.100 — Annex F.3 (03/93) 87

6 Construction of Entity-dict and Handling of Abstract Data Types

This section contains the functions which build the Entity-dict (see the domain definition of Entity-dict). The Entity-dict
isused by almost all processors. The system processor builds it by calling extract-dict below.

The section is divided into five subsections:

1

4.

5.

The creation of simple self-contained descriptors such as descriptors for variables, signals etc. Also the
descriptors for processes and services (i.e. ProcessDDs resp. ServiceDDs) are created but with empty
Reachability sets.

Descriptors are created for entities regardless of whether or not they are defined in a scopeunit included in
the consistent subset. The reason for this is that the consistency checks on the data types applies for all
scopeunits.

Creation of the descriptors for the data type definitions (TypeDD). For each scopeunit, this descriptor is
created after the descriptors for the sorts (SortDD) and syntypes (SyntypeDD) are created.

Selection of the consistent subset.

Creation of the Reachabilities for the processes (i.e. creation of al possible communication paths for the
processes.)

Auxiliary functions for simple information extraction from SDL channel and signal route definitions.

The selection of the consistent subset is made after descriptors for all the entities are constructed, by removing the SDL
parts which will not be interpreted. With the modified SDL system as basis, descriptors are constructed again, and
Reachabilities are constructed. The construction of the Entity-dict can be regarded as some intermediate level between
the static semantics and the dynamic semantics. The error conditions in this section (checks on the consistent subset and
on consistency of the abstract data types) can be regarded as some additional static conditions which are placed in the
Dynamic Semantics because:

Consistency checks on equivalence classes and on mutual exclusion of decision answers cannot easily be
expressed in terms of ASy, i.e. these (static) checks are placed in the Dynamic Semantics because
construction of the equivalence classesis required.

The check on selection of a consistent refinement subset requires that selection of a consistent block
subset has aready been done.

To be strict, the selection of the consistent (refinement) subset is nhot an error condition, since it is not part
of an SDL specification, but in order to check its properties, consistency checks are made on the set of
block identifiers reflecting the consistent subset.

extract-dict(as;tree, blockset, expiredf, terminf) £ (6.1
1 (let (asypid, as null, as;true, as;false) = terminf in
2 let dict = [EXPIREDF > expiredf,
3 PIDSORT > asypid,
4 NULLVALUE +— mk-Ground-termy(as;null),
5 TRUEVALUE mk-Ground-termy(as;true),

88

Recommendation Z.100 — Annex F.3 (03/93)

6 FALSEVALUE 1+ mKk-Ground-term(asfalse)] in
7 let d' = make-system-dict(as,tree)(dict) in
8 let as tree’ = select-consistent-subset(as,tree, blockset)(d") in
9 let dict' = make-system-dict(astree")(dict) in
10 let dict" = make-reachabilities(as tree')(dict") in
11 dict")
type: System-definition| Block-identifier,-set Is-expiredF Term-information — Entity-dict
Objective Construct the Entity-dict for a given SDL system.
Parameters
as|tree The abstract syntax representation of an SDL system, i.e. an object of the domain
System-definition;.
blockset The (assumed) consistent subset represented by a set of block identifiers and block substructure
identifiers. Although the system scopeunit is also in the consistent subset it is not included in
blockset.
expiredf A function for comparing SDL time values.
terminf Some AS; identifiers used by the underlying system.
Result The Entity-dict for the part (consistent subset) of the SDL system which will be interpreted.
Algorithm
Line 1 Decompose the Term-information (defined in Annex F.2) which contains the Identifiers|s of the
Pid sort, the Null literal, the True literal and the False literal.
Line 2-6 Create the initial Entity-dict wherein the time comparison function and the term information are
placed.
Line 7 Construct the Entity-dict for the entire SDL system.
Line 8 Remove the parts of the SDL system which will not be interpreted.
Line 9 Construct the Entity-dict for the modified SDL system.
Line 10 Construct information about all possible communication paths (the Reachabilities) in the modified
SDL system and insert this information in the process and service descriptors and the
ENVIRONMENT entry of the Entity-dict.
Line 11 Return the Entity-dict.

Recommendation Z.100 — Annex F.3 (03/93) 89

6.1 Construction of Descriptors for Simple Objects
make-system-dict(mk-System-definition|(snm, bset, , sigset, tp, synset))(dict) = (6.1.1)

1 (let level = [ink-System-qualifier|(snm)Uin

2 let dict' = dict + [ENVIRONMENT > {},

3 SYSTEMLEVEL > level] in

4 let dict" = extract-sortdict (tp, synset, level)(dict') in
5 make-entities(sigset U bset, level)(dict'))

type: System-definition|, — Entity-dict — Entity-dict

Objective Construct the Entity-dict for a whole SDL system. Note that enclosed signal route definitions, channel
definitions and connections are not dealt with here.
Parameters
snm The system name.
bset The contained block definitions.
sigset The system level signal definitions.
tp The system level data type definition.
synset The system level syntype definitions.
Result The Entity-dict for the system.
Algorithm
Line 1 Construct the qualifier denoting the system level.
Line 2 Initialize the ENVIRONMENT entry of the Entity-dict to an empty Reachability set, and insert the
system level qualifier.
Line 4 Insert the system level data information in the Entity-dict.
Line 5 Insert information about the other system level definitions in the Entity-dict.
make-entities(entities, level)(dict) = (6.1.2)
1 if entities = {} then
2 dict
3 else
4 (let entity O entities in
5 let dict' = make-entity(entity, level)(dict) in
6 make-entities(entities \ {entity}, level)(dict"))

type: Decly-set Qualifier; — Entity-dict — Entity-dict

Objective Insert information about definitions into an Entity-dict.
Parameters
entities The definitions.
level The qualifier denoting the scope unit level containing the definitions.
Algorithm
Line 1-2 If the set of definitions is empty then do not modify the Entity-dict.
Line 4 Pick a definition from the definition set.
Line 5 Insert information about the definition in the Entity-dict.

90 Recommendation Z.100 — Annex F.3 (03/93)

Line 6 Insert information about remaining definitions in the Entity-dict.

make-entity(entity, level)(dict) £ (6.1.3)
1 cases entity:
2 (mk-Sgnal-definition,(, ,)
3 - dict + make-signal-dict(entity, nil, level),
4 mKk-Timer-definition,(nm, sortlist)
5 - dict + [(mKk-Identifier;(level, nm), SIGNAL) — mk-SgnalDD(sortlist, nil)],
6 mk-Variable-definition;(nm, sort, init, rev)
7 - dict + [(mk-Identifier,(level, nm), VALUE) > mk-VarDD(, sort, init, rev,)],
8 mKk-View-definition, (nm, sort)
9 - dict + [(mKk-Identifier;(level, nm), VALUE) - mKk-ViewDD(sort)],
10 mKk-Block-definitions(, , , , , ,)
11 — make-block-dict(entity, level)(dict),
12 mk-Process-definitions(, ,,, 4, ,,5)
13 — make-process-dict(entity, level)(dict),
14 mk-Service-definition,(, , , , , ,)
15 — make-service-dict(entity, level)(dict),
16 mk-Procedure-definition,(, , , , , ,)
17 — make-procedure-dict(entity, level)(dict),
18 T - dict)
type: Decl; Qualifier; — Entity-dict - Entity-dict
Objective Insert information about a definition into an Entity-dict.
Parameters
entity The definition.
level A qualifier denoting the scopeunit containing the definition.
Algorithm Construct the contribution for the entity in hand. Note that atimer istreated asanormal signal.
make-signal-dict(mk-Signal-definition; (nm, sortlist, refinement), orev, level) £ (6.1.4)
1 (let d = [(mk-Identifier;(level, nm), SIGNAL) — mk-SgnalDD(sortlist, orev)] in
2 if refinement = nil then
3 d
4 ese
5 (let mk-Signal-refinement, (subsigset) = refinement in
6 let level’ = level — [ink-Sgnal-qualifier{(nm)Cin
7 d + mer ge { make-signal-dict(subsigdef, subsigorev, level’) |
8 mk-Subsignal-definition; (subsigorev, subsigdef) [] subsigset}))
type: Sgnal-definition; [REVERSE] Qualifier; —» Entity-dict
Objective Make the Entity-dict contribution for asignal and for its subsignals if any. Note that a signal descriptor

does not tell whether a signal is a subsignal or not. This is due to the fact that this information can be

derived from the qualifier of the signal.
Parameters
Sgnal-definition; The AS; signal definition consisting of
nm The name of the signal.

sortlist The sorts of the values conveyed by the signal.

Recommendation Z.100 — Annex F.3

(03/93)

91

refinement The signal refinement part.
level A qualifier denoting the scopeunit where the signal is defined.
Algorithm
Line1 Make the contribution for the signal and
Line 5-7 Make the contributions for the sub-signals with the qualifier denoting the scopeunit which is the
signal definition.
make-block-dict(bdef, level)(dict) £ (6.1.5)

(let mk-Block-definitions (bnm, pdefs, sigdefs, , , datatype, syntype, sub) = bdef in
let level’ = level —= [nk-Block-qualifier(bnm)Cin

let sortd = extract-sortdict(datatype, syntype, level’)(dict) in

let dict’ = make-entities(sigdefs O pdefs, level)(sortd) in

dict’
else

(let mk-Block-substructure-definition, (snm, bdefs, , , sdefs, tp, syndefs) = sub in
let level’’ = level” = [nk-Block-substructure-qualifier ;(snm)dn

1
1

1
2
3
4
5 if sub = nil then
6
7
8
9

0 let sortd’ = extract-sortdict(tp, syndefs, level’)(dict’) in
1 make-entities(bdefs [sdefs, level’’)(sortd’)))

type: Block-definition; Qualifier; - Entity-dict —» Entity-dict

Objective

Insert information about a block definition and its contained definitions into an Entity-dict. Note that

enclosed signal route definitions, channel definitions and connections are not dealt with here.

Parameters
bdef
level

Algorithm
Linel
Line2
Line3
Line4
Line5
Line8
Line9
Line 10
Line11

The block definition.
The qualifier denoting the level where the block is defined.

Decompose the block definition.

Construct the qualifier which denotes the level of the block.

Update the Entity-dict to include the data defined in the block.

Update the Entity-dict to include the signals (sigdefs) and processes (pdefs) defined in the block
If no block substructure is specified then the updated Entity-dict is returned.

Decompose the block substructure.

Construct the qualifier which denotes the level of the block substructure.

Update the Entity-dict to include the data definitions defined in the block substructure.

Update the Entity-dict to include the blocks (bdefs) and signals (sdefs) defined in the block
substructure.

92 Recommendation Z.100 — Annex F.3 (03/93)

make-process-dict(pdef, level)(dict) = (6.1.6)

(let mk-Process-definition,(nm, inst, f, pset, sigset, tp, synset, vset, , tset, grordec) = pdef in
let mk-Number-of-instances, (init, maxi) = inst in
let pid = mk-ldentifier(level, nm),
level’ = level ~ nk-Process-qualifier{(nm)Cin
let (parmdds, parmd) = make-process-formal-parameters(f, level’) in
let dict’ = extract-sortdict(tp, synset, level’)(dict + parmd) in
let dict’’ = make-entities(pset 0 sigset [vset O tset, level’)(dict’) in
(is-Process-graph, (grordec)
— (let grordec’ = check-graph(grordec, level’)(dict’) in
10 dict”’ + [(pid, PROCESS) — mk-Process-DD(parmdds, init, maxi, grordec’, {})]),
11 is-Service-decomposition; (grordec)
12 - (let mk-Service-decomposition(servset, ,) = grordecin
13 let dict’’’= make-entities(servset, level’)(dict’) in
14 dict’’’+ [(pid, PROCESS) - mk-Process-DD(parmdds, init, maxi, nil, {})])))

©Co~NOOP~WNPRF

type: Process-definition; Qualifier; — Entity-dict — Entity-dict

Objective Insert information about a process definition and its contained definitions into an Entity-dict. Note that
enclosed signal route definitions and connections are not dealt with here.
Parameters
pdef The process definition.
level A qualifier denoting the scopeunit where the process is defined.
Algorithm
Line1 Decompose the process definition.
Line 2 Extract the initial number of instances (init) and the maximum number of instances (maxi).
Line 3 Construct the identifier for the process definition.
Line4 Construct the qualifier denoting the scopeunit which is the process definition.
Line5 Construct the formal parameter descriptors and Entity-dict contributions for the process formal
parameters.
Line6 Make the Entity-dict which is updated with information about the data definitions in the process.
Line7 Make the contributions for the contained procedure definitions (pset), signal definitions (sigset),
variable definitions (vset) and timer definitions (tset)
Line8 Handle the case where the process is not decomposed into services.
Line9 Check the wellformedness of the process graph. The function either returns the process graph
unchanged or performs an exit.
Line 10 Update the constructed Entity-dict with the descriptor for the process itself. Note that, at this stage,
the Reachability set for the process is empty.
Line11 Handle the case where the process is decomposed into services.
Line 12 Decompose the service decomposition.
Line13 Update the Entity-dict with information about the services.
Line 14 Update the constructed Entity-dict with the descriptor for the process itself. The process graph field

in the process descriptor is set to nil to indicate that the process is decomposed into services. Note
that, at this stage, the Reachability set for the processis empty.

Recommendation Z.100 — Annex F.3 (03/93) 93

make-process-formal-parameters(parml, level) £ (6.1.7)
1 ([Mk-Identifier,(level, varnm) |

2 1<i < len parm [mk-Process-formal-parameter,(varnm,) = parmi[i]]
3 [(mk-Identifier,(level, varnm), VALUE) - mk-VarDD(, sortref, nil, nil,) |
4 1<i < len parm [mk-Process-formal-parameter;(varnm, sortref) = parmi[i]])

type: Process-formal-parameter* Qualifier; — ParameterDD* Entity-dict

Objective Construct the formal parameter descriptors and Entity-dict contribution for a list of process formal
parameters.
Parameters
parml Thelist of process formal parameters.
level The qualifier denoting the process level.
Algorithm
Line1-2 Construct the list of formal parameter descriptors. Each formal parameter descriptor is simply the

identifier of the formal parameter variable.

Line 3-4 Construct the Entity-dict contribution for the formal parameters. Note that they are treated as
normal variables.

make-service-dict(servdef, level)(dict) £ (6.1.8)

1 (let mk-Service-definition,(nm, pset, tp, synset, vset, , tset, graph) = servdef in
2 let servid = mk-Identifier,(level, nm),

3 level’ = level ~ nk-Service-qualifier ;(nm)Cin

4 let dict’ = extract-sortdict(tp, synset, level’)(dict) in

5 let dict’’ = make-entities(pset O vset O tset, level’)(dict’) in

6 let graph’ = check-graph(graph, level’)(dict) in

7 dict’’ + [(servid, SERVICE) — mk-ServiceDD(graph’, , {})])

type: Service-definition, Qualifier; — Entity-dict — Entity-dict

Objective Insert information about a service and its contained definitions into an Entity-dict.
Parameters
servdef The service definition.
level The qualifier denoting the level at which the service is defined.
Algorithm
Linel Decompose the service definition.
Line2 Construct the identifier of the service.
Line3 Construct the qualifier dencting the service level.
Line4 Update the Entity-dict to include information about the data defined in the service.
Line5 Update the Entity-dict to include information about the procedures (pset), variables (vset) and

timers (tset) defined in the service.

Line 6 Check the wellformedness of the graph. The function check-graph either returns the service graph
unchanged or performs an exit.

Line7 Update the constructed Entity-dict with the descriptor for the service itself. Note that, at this stage,
the Reachability set for the service is empty.

94 Recommendation Z.100 — Annex F.3 (03/93)

make-procedure-dict(procdef, level)(dict) £ (6.1.9

(let mk-Procedure-definition, (nm, fp, pset, tp, sset, vset, graph) = procdef in
let pid = mk-ldentifier(level, nm),
level’ = level ~ ink Procedure-qualifier {(nm)Cin
let (parmddl, fdict) = make-procedure-formal-parameters(fp, level’) in
let dict’ = extract-sortdict(tp, sset, level’)(dict + fdict) in
let dict’’ = make-entities(pset O vset, level’)(dict’) in
let graph’ = check-graph(graph, level’)(dict’’) in
dict’’ + [(pid, PROCEDURE) —» mk-ProcedureDD(parmddl, graph’)])

O~NO O WN P

type: Procedure-definition; Qualifier; — Entity-dict — Entity-dict

Objective Insert information about a procedure and its contained definitions into an Entity-dict.
Parameters
procdef The procedure definition.
level The qualifier denoting the scopeunit where the procedure is defined.
Algorithm
Linel Decompose the procedure definition.
Line2 Construct the identifier for the procedure.
Line3 Construct the qualifier denoting the procedure scopeunit.
Line4d Construct the procedure formal parameter descriptors for the procedure and the Entity-dict
contribution for the formal parameters.
Line5 Update the Entity-dict with information about the data definitions in the procedure.
Line6 Update the Entity-dict with information about the contained procedure definitions (pset) and
variable definitions (vset).
Line7 Check the wellformedness of the procedure graph. The function check-graph either returns the
procedure graph unchanged or performs an exit.
Line 8 Update the constructed Entity-dict with the descriptor for the procedure itself.
make-procedure-formal-parameters(parml, level) £ (6.1.10)
([eases parmi[i]:

(mk-In-parameter ;(varnm,)
- mk-InparmDD(mkK-Identifier (level, varnmy)),
mKk-Inout-parameter ; (varnm,)
- mk-InoutparmDD(mk-Identifier ;(level, varnm))) |
1<ic<lenparmi[]
[(mk-ldentifier,(level, varnm), VALUE) - mk-VarDD(, sortref, nil, nil,) |
mk-In-parameter ; (varnm, sortref) [elems parmi])

O~NO U WNPE

type: Procedure-formal-parameter ;* Qualifier; -» FormparmDD* Entity-dict

Objective Construct the formal parameter descriptors and Entity-dict contribution for a list of procedure formal
parameters.
Parameters
parml Thelist of procedure formal parameters.
level The qualifier denoting the procedure level.

Recommendation Z.100 — Annex F.3 (03/93) 95

Algorithm

Line 1-6 Construct the list of formal parameter descriptors.
Line 7-8 Construct the Entity-dict contribution for the (in) formal parameters. Note that they are treated as
normal variables. No entriesin Entity-dict are made for the in/out formal parameters.
check-graph(graph, level)(dict) £ (6.1.11)
1 (- is-wf-assignments(graph, level)(dict)
2 - exit(“8§5.4.3: Ground expression in assignment statement is out of range”),
3 - is-wf-decision-answers(graph, level)(dict)
4 - exit("82.7.5: Answers in decision actions are not mutually exclusive”),
5 T - graph)

type: (Process-graph; | Service-graph, | Procedure-graph,) Qualifier; —» Entity-dict
— (Process-graph, | Service-graph; | Procedure-graph;)

Objective Check the wellformedness of a process, service or procedure graph, i.e. perform a range check on each
ground expression constituting the right hand side of an assignment statement, and check that no
decision node contains overlapping answers.

Parameters
graph The process, service or procedure graph to be checked.
level The qualifier denoting the process/service/procedure level.
Result If the graph iswellformed, it is returned unchanged, otherwise the function performs an exit.
Algorithm
Line1-2 Perform a range check on each ground expression constituting the right hand side of an assignment
Statement.
Line 3-4 Check that no decision node contains overlapping answers.
Line5 Return the graph unchanged.
is-wf-assignments(graph, level)(dict) = (6.1.12)
1 (let (startnode, stateset) = decomp-graph(graph) in
2 (let trans = decomp-start-node(startnode) in
3 is-wf-transition-assignments(trans, level)(dict)) [
4 (Omk-Sate-node; (, , inputs, spontrs) L] stateset)
5 ((Omk-Input-node; (, , trans) L inputs)(is-wf-transition-assignments(trans, level)(dict)) [
6 (Omk-Spontaneous-transition (trans) LI spontrs)(is-wf-transition-assignment(trans, level)(dict))))
type: (Process-graph; | Service-graph, | Procedure-graph,) Qualifier; — Entity-dict
- Bool
Objective Perform a range check on each ground expression which constitutes the right hand side of some
assignment statement in a process, service or procedure graph.
Parameters
graph The process, service or procedure graph.
level The qualifier denoting the process/service/procedure level.

96 Recommendation Z.100 — Annex F.3 (03/93)

Result true if success, else false

Algorithm
Linel Decompose the graph into its start node and state node set.
Line2 Obtain the transition contained in the start node.
Line3 No ground expression constituting the right hand side in an assignment statement in the start
transition may be out of range.
Line4 For each state it must hold that
Line5 for each input transition no assignment statement may have an out-of-range ground expression as
itsright hand side,
Line 6 and for each spontaneous transition no assignment statement may have an out-of-range ground
expression asitsright hand side.
is-wf-transition-assignments(mk-Transition; (actl, termordec), level)(dict) = (6.1.13)
1 (Dact L] elemsactl)
2 (is-Task-node; (act) O is-wf-task-node(act, level)(dict)) L]
3 (is-Decision-node; (termordec) O
4 (let mk-Decision-node; (, answer set, elsetrans) = termordec in
5 (Omk-Decision-answer(, trans) L] answerset)
6 (is'wf-transition-assignments(trans, level)(dict)) []
7 (elsetrans # nil O is-wf-transition-assignments(s-Transition, (el setrans), level)(dict))))

type: Transition;, Qualifier; — Entity-dict — Bool
Objective Check that no assignment in atransition has an out-of-range ground expression as its right hand side.
Parameters

actltermordec The action list and the terminator/(outermost) decision node in the transition.

level The qualifier denoting the surrounding scope unit.
Result true if success, else false
Algorithm
Line1-2 Check all task nodesin the action list of the transition.
Line3 If the terminating action of the transition is a decision node, the checks in the lines below should be
performed.
Line4 Decompose the decision node.
Line5-6 Check the transition contained in each decision answer.
Line7 If the elseanswer is present, then check its contained transition.
is-wi-task-node(mk-Task-node; (asgnortxt), level)(dict) = (6.1.14)
cases asgnortxt:

(mk-Assignment-statement, (varid, expr)
- is-Ground-expression, (expr) O
(let dict’ = dict + [SCOPEUNIT - level] in
let mk-VarDD(, sortref, , ,) = dict'((varid, VALUE)),
exprval = eval-expression(expr)(dict’) in
range-check(sortref, exprval)(dict)),
mKk-Informal-text;()
- true)

©Coo~NOOWNE

type: Task-node; Qualifier; — Entity-dict — Bool

Recommendation Z.100 — Annex F.3 (03/93) 97

Objective If atask node contains an assignment statement, then check that its right hand side is not a ground
expression which is out of range.
Parameters
asgnortxt The assignment statement or informal text in the task node.
level The qualifier denoting the surrounding scope unit.
Result true if success, else false
Algorithm
Line2 Consider the case where the contents of the task node is an assignment statement.
Line3 If the right hand side of the assignment statement is not a ground expression, the assignment
statement is wellformed.
Line 4-6 Insert the scopeunit in the Entity-dict, look up the sort or syntype of the left hand side variable, and
evaluate the right hand side.
Line7 Perform the range check.
Line 8-9 If the contents of the task node is an informal text, the task node is wellformed.
is-wf-decision-answers(graph, level)(dict) £ (6.1.15)
1 (let (startnode, stateset) = decomp-graph(graph) in
2 (let trans = decomp-start-node(startnode) in
3 is-wi-transition-answer s(trans, Ie\/el)ﬁjict)) O
4 (Omk-Sate-nodey (, , inputs, spontrs) L stateset)
5 ((Omk-Input-nodey(, , trans) [inputs)(is-wi-transition-answers(trans, level)(dict)) []
6 (Omk-Spontaneous-transition, (trans) LI spontrs)(is-wi-transition-answer s(trans, level)(dict))))
type: (Process-graph; | Service-graph, | Procedure-graph,) Qualifier; — Entity-dict
- Bool
Objective Check that the answers in a decision action of a process, service or procedure graph are mutually
exclusive.
Parameters
graph The process, service or procedure graph.
level The qualifier dencting the process/service/procedure level.
Result true if success, else false
Algorithm
Linel Decompose the graph into its start node and state node set.
Line2 Obtain the transition contained in the start node.
Line3 No decision node in the start transition may contain overlapping answers.
Line4 For each state it must hold that
Line5 for each input transition no decision node contains overlapping answers,
Line 6 and for each spontaneous transition no decision node contains overlapping answers.

98 Recommendation Z.100 — Annex F.3 (03/93)

is-wf-transition-answers(mk-Transition; , termordec), level)(dict) = (6.1.16)

©CoOoO~NOUDhWNEF

10

is-Decision-node; (termordec) [
(let mk-Decision-node; (, answer set, elsetrans) = termordec in
(Omk-Decision-answer(, trans) [] answerset
(is-wf-transition-answers(trans, level)(dict))
(elsetrans # nil O is-wf-transition-answers(s-Transition; (el setrans), level)(dict)) [
(Danswer1 [
((Danswer2 [] answerset \ {answer1})
((let mk-Decision-answer (rngortxt1,) = answer1,
mk-Decision-answer {(rngortxt2,) = answer2,
dict’ = dict + [SCOPEUNIT > level] in

answer set)

11 is-Range-condition; (rngortxt1) [is-Range-condition,(rngortxt2) O
12 ranges-not-overlapping(rngortxt1, rngortxt2) (dict’)))))

type: Transition; Qualifier; — Entity-dict — Bool

Objective Check that no decision action in atransition contains overlapping answers.
Parameters
termordec The terminator or (outermost) decision node in the transition.
level The qualifier denoting the surrounding scopeunit.
Result true if success, elsefalse
Algorithm
Line1 The condition istrue if the terminating action of the transition is not a decision node.
Line2 Decompose the decision node into a set of answers and an optional elseanswer.
Line3-4 Check that no decision node in the answers contains overlapping answers.
Line5 If the else answer is present then check that no contained decision node contains overlapping
answers.
Line 6-7 For any two different decision answers in the decision node lines 8-12 must hold.
Line 8-9 Obtain the answer range conditions from the two decision answers.
Line 10 Insert the scope unit level of the decision node into the Entity-dict in order to enable “static
evaluation” of the range conditions.
Line 11-12 If both answer range conditions are really range conditions (i.e. none of them is an informal text)
they are not allowed to overlap.
ranges-not-overlapping(rngcondd, rngcond2)(dict) £ (6.1.17)
1 (let-sort = sort-of-range-condition(rngcondl)(dict) in
2 (Ovalue [values-of-sort(sort)(dict))
3 ((trap exit() with truein
4 let answerval1 = eval-range-condition(value, rngcondl)(dict),
5 answerval 2 = eval-range-condition(value, rngcond2)(dict) in
6 answerval1 = dict(FALSEVALUE) [answerval2 = dict(FALSEVALUE))))
type: Range-condition, Range-condition; — Entity-dict — Bool
Objective Check that two given range conditions do not overlap.

Recommendation Z.100 — Annex F.3 (03/93) 99

Parameters

rngcondl The first range condition.
ragcond?2 The second range condition.
Result true if success, else false
Algorithm
Line1 Obtain the sort of the values expected by the range conditions. If (some of) the contained condition

items expect a syntype the parent sort of thisis obtained.

Line 2-6 The range conditions are digjoint exactly if there exists no value for which both range conditions
are True. For each value the two range conditions are “statically” evaluated (line 4-5) and it is
tested that at least one of the evaluation results is False (line 6). Any exit caused by range checks
for syntypes during evaluation of the range conditions is trapped (line 3) since range checks for
syntypes should not be applied until the decision is interpreted.

100 Recommendation Z.100 — Annex F.3 (03/93)

6.2 Handling of Abstract Data Types
This section contains the functions for handling of abstract data types. The entry functions are:

extract-sortdict which is applied during the construction of Entity-dict and which creates the type descriptors, sort
descriptors, syntype descriptors, literal descriptors and operator descriptors.

values-of-sort which is used to obtain all values of a given sort.

reduce-term which is used to obtain the ground term which has been chosen (during the creation of the
Entity-dict) to represent the eguival ence class to which a given ground term belongs.

sort-of-range-condition which is used to obtain the sort of values which is expected by arange condition. If (some of)
the condition items of the range condition expect a syntype the corresponding parent sort is
returned.

sort-or-parent-sort which obtains the parent sort of a syntype. If a sort identifier is given to the function this sort
identifier is returned.

6.2.1 Entry Functions
extract-sortdict(typedef, syndefs, level)(dict) £ (6.2.1.2)

1 (let mk-Data-type-definition,(sorts, signatureset, eqs) = typedef in
2 let literald = [(id, VALUE) — mk-Operator DD([T,) result) |
3 mk-Literal-signature;(nm, result) [] signatureset []
4 id = mk-ldentifier(level, nm)],
5 operatord = [(id, VALUE) > mk-OperatorDD(arglist, result) |
6 mk-Operator-signature;(nm, arglist, result) [signatureset []
7 id = mk-ldentifier(level, nm)],
8 sortd = [(id, SORT) = mk-SortDD() |
9 nm [sorts [Jid = mk-Identifiery(level, nm)],
10 syntyped = [(id, SORT) - mk-SyntypeDD(parsort, rngcond) |
11 mk-Syn-type-definition;(nm, parsort, rngcond) [syndefs []
12 id = mk-ldentifier(level, nm)],
13 dict’ = dict + literald + operatord + sortd + syntyped in
14 let equations = collect-all-equations(eqgs, level)(dict’),
15 sortmap = make-sortmap(sorts, equations, level)(dict’),
16 trmap = make-term-reduce-map(sortmap, level)(dict’),
17 dict’’=dict’ +[(level, TYPE) > mk-TypeDD(trmap, sormap, equations)] in
18 (—is-wf-literals(level)(dict")
19 - exit(“85.3.1.7: Literal is equivalent to the error term”),
20 -is-wf-values(level)(dict™)
21 - exit(“85.2.1: Generation or reduction of equivalence classes of the enclosing scope unit’),
22 T 2 dict))

type: Data-type-definition; Syn-type-definition,-set Qualifier; — Entity-dict — Entity-dict

Objective Update Entity-dict to contain the descriptors for the data definitions (i.e. data type, sorts, syntypes,
literals and operators) at a given scope unit level.
Parameters
typedef The data type definition.
syndefs The syntype definitions.
level The level on which they are defined.
Result The updated Entity-dict.

Recommendation Z.100 — Annex F.3 (03/93) 101

Algorithm

Line1 Decompose the data type definition into its contained sorts, literal and operator signatures, and
equations.

Line 2-3 Construct the descriptors for all the literals in the data type definition. They are considered as
operators without any arguments.

Line5-7 Construct the descriptors for al the operators defined in the data type definition.

Line 8-9 Construct the descriptors for al the sorts defined in the data type definition.

Line 10-12 Construct the descriptors for the syntype definitions.

Line 13 Add the above constructed descriptors to the Entity-dict.

Line 14 Obtain the set of all equations which apply at this scope unit level.

Line 15 Use the equations to construct the Sortmap which applies at this scope unit level.

Line 16 Use the Sortmap to construct the Term-reduce-map which maps each equivalence class of this

scope unit level to a canonical ground term. The choice of these canonical ground terms is made by
the function make-term-reduce-map according to some criteria which will be explained in the
section where make-ter m-reduce-map.

Line17 Insert a descriptor for the data type definition into the Entity-dict. The qualifier of the enclosing
scope unit is used as key for looking up this descriptor because a data type definition has no name.

Line 18-19 Check that no literal is equal to the error ! term.

Line 20-21 Check that no equivalence classes of the scope unit enclosing this one are unified, and that no new
equivalence classes are added to sorts visible in the scope unit enclosing this one.
Line 22 Return the updated Entity-dict.
values-of-sort(sortid)(dict) £ (6.2.1.2)

1 (let sortlevel = s-Qualifier(sortid) in
2 let mk-TypeDD(trmap, ,) = dict((sortlevel, TYPE)) in
3 {val L rng trmap\ { mk-Error-termy()} | is-of-this-sort(sortid, val)(dict)})

type: Sort-identifier; — Entity-dict » Value-set

Objective Obtain the set of all values belonging to a given sort.
Parameters
sortid The identifier of the sort.
Result The set of values of the sort.
Algorithm
Linel Obtain the qualifier of the sort.
Line2 Use this qualifier to look up the type descriptor for the scope unit where the sort is defined.
Line3 The range of the Term-reduce-map of the scope unit contains all values of all sorts visible in that
scope unit, and the error term. Exclude the error term and select those values which belong to the
given sort.

102 Recommendation Z.100 — Annex F.3 (03/93)

reduce-term(term, level)(dict) £ (6.2.1.3)

(let mk-TypeDD(trmap, ,) = dict((level, TYPE)) in

let class L] dom trmap be st. term [classin

let term’ = trmap(class) in

if is-Error-termy(term’) then
exit(“85.3.1.7: Expression, term or value is equivalent to the error term”)
else
term’)

~NoubhwWNRE

type: Ground-termy Qualifier; —» Entity-dict » Value

Objective Given a ground term, obtain the canonical ground term which has been chosen to represent its
equivalence class in the rest of the system.
Parameters
term The ground term.
level The scope unit level at which the ground term has been built.
Result The canonical ground term.
Algorithm
Linel Obtain the Term-reduce-map for the scope unit level.
Line2 Select the equivalence class which contains the ground term.
Line3 Obtain the canonical ground term from the Term-reduce-map.
Line 4-5 Itisan error if the ground term is equivaent to the error term.
Line7 Return the canonical ground term.
sort-of-range-conditiont(mk-Range-condition, (, cset))(dict) £ (6.2.1.4)
1 (et condit [J csetin
2 let relopid = cases condit:
3 (mk-Open-range;(op,)
4 - op,
5 mk-Closed-range;(, , mk-Open-range;(op,))
6 - op)in
7 let mk-OperatorDD(sortlist,) = dict((relopid, VALUE)) in
8 sort-or-parent-sort(sortlist[1])(dict))

type: Range-condition; — Entity-dict — Sort-identifier

Objective Obtain the sort of the values which are expected by arange condition. If (some of) the condition items
in the range condition expect a syntype the parent sort of thisis returned.
Parameters
cset The condition items of the range condition.
Result The sort expected by the range condition.
Algorithm
Linel Select an arbitrary condition item from the range condition. The static conditions on a range
condition ensure that al its condition items expect the same sort/parent sort.
Line 2-6 If the chosen condition item is an open range its relational operator is extracted (line 3-4). If itisa

closed range the relational operator of its second open rangeis extracted (line 5-6).

Recommendation Z.100 — Annex F.3 (03/93) 103

Line7 Look up the argument sort list of the operator.
Line 8 The first argument sort/syntype of the operator is the one expected by the condition item. If the
argument sort/syntype is a syntype its parent sort is returned.

sort-or-parent-sort(sortref)(dict) = (6.2.1.5)

1 cases dict((sortref, SORT)):
2 (mk-SortDD() - sortref,
3 mk-SyntypeDD(parsort,) - parsort)

type: Sort-reference-identifier; —» Entity-dict —» Sort-identifier

Objective If agiven sort/syntype is a syntype then obtain its parent sort.
Parameters
sortref The sort/syntype identifier.
Result The sort/parent sort identifier.
Algorithm
Linel Look up the sort/syntype in the Entity-dict.
Line 2 If the sort/syntypeisasort it is returned.
Line3 If the sort/syntype is a syntype its parent sort is returned.

104 Recommendation Z.100 — Annex F.3 (03/93)

6.2.2 Equation Collection

collect-all-equations(egs, level)(dict) £ (6.2.2.1)
1 (let suregs =
2 if len level =1 then
3 {}
4 else
5 (let surlevel =evel[i] 1< i<lenlevelln
6 s-Equations;(dict((surlevel, TYPE)))) in
7 egs O suregs

type: Equations; Qualifier; — Entity-dict — Equations;

Objective Obtain the set of al equations which apply at a given scope unit level.
Parameters
egs The equations defined in this scope unit.
level This scope unit level.
Result All equations which apply at this scope unit level.
Algorithm
Line 1-6 Obtain the equations visible in the enclosing scope unit. If the current scope unit is the system level

the “enclosing” equation set is empty.

Line7 The equations applying at this scope unit levels are the ones defined at this level together with the
“enclosing” ones.

Recommendation Z.100 — Annex F.3 (03/93) 105

6.2.3 Equivalence Class Generation and Equation Evaluation

make-sortmap(sorts, equations, level)(dict) £ (6.2.3.1)
1 (let sursmap =
2 if len level = 1then
3 (]
4 ese
5 (let surlevel = Mevel[i] |1<i <len levellin
6 s-Sortmap(dict((surlevel, TYPE)))) in
7 let sortset = { mk-Identifier;(level, nm) | nm [sorts} O dom sursmapin
8 let initial-sortmap = [sort — make-equival ence-classes(sort)(dict) | sort O sortset] in
9 eval-equations(initial -sortmap, equations)(dict))

type: Sorts, Equations; Qualifier; — Entity-dict — Sortmap

Objective Construct the Sortmap which applies at a given scope unit level.
Parameters
sorts The sorts defined in this scope unit.
equations The equations visible in this scope unit.
level The qualifier for this scope unit.
Result The Sortmap.
Algorithm
Line 1-6 Obtain the sort map which applies at the enclosing scope unit level. If the current scope unit is the
system level the “enclosing” sort map is empty.
Line7 Obtain the set of all sorts visible in this scope unit.
Line8 Construct the initial sort map where each possible ground term is in its own equivalence class.
Line 9 Construct equivalence classes according to the equations.
make-equival ence-classes(sort)(dict) £ (6.2.3.2)

1 {{term} | term [Ground-term, [is-of-this-sort(sort, term)(dict)} O {{mk-Error-termy ()}}
type: Sort-identifier; — Entity-dict - Term-class-set

Objective For a given sort, construct the initial set of equivalence classes where each ground term is contained in
its own equivalence class.

Parameters
sort The identifier of the sort.
Result The initial set of equivalence classes.
Algorithm Select all ground terms which belong to the given sort and put each one in its own equivalence

class. An equivalence class containing the error term only is also included.

106 Recommendation Z.100 — Annex F.3 (03/93)

is-of-this-sort(sortref, t)(dict) £ (6.2.3.3)

1 (let sortid = sort-or-parent-sort(sortref)(dict),
2 mKk-Ground-term(term) = tin
3 (is-|dentifier (term)
4 - (let entry = (term, VALUE) in
5 entry L] dom dict [Jis-OperatorDD(dict(entry)) []
6 (let mk-OperatorDD(sortlist, result) = dict(entry) in
7 sortlist = ([result = sortid)),
8 is-Conditional -term, (term)
9 - false,
10 T - (let (opid, arglist) =termin
11 let entry = (opid, VALUE) in
12 entry [] dom dict []is-OperatorDD(dict(entry)) []
13 (let mk-OperatorDD(sortlist, result) = dict(entry) in
14 len arglist = len sortlist [
15 (0i O ind arglist)(is-of-this-sort(sortlist[i], arglist[i])(dict)) [J
16 sort-or-parent-sort(result)(dict) = sortid))))

type: Sort-reference-identifier ; Ground-term, — Entity-dict — Bool

Objective Test whether a given ground term belongs to a given sort. If the sort given is actually a syntype its
parent sort is used.
Parameters
sortref Theidentifier of the sort/syntype.
t The ground term.
Result true if the ground term belongs to the given sort, else false
Algorithm
Linel Obtain the sort/parent sort of the sort/syntype.
Line2 Get the “contents” of the ground term.
Line3 If the term is an identifier then
Line5 the identifier must be found intity-dict as a (literal) operator,
Line7 the argument list of which is empty in the descriptor, and the result sort must be appropriate
according to the result sort found in the descriptor.
Line 8-9 If the term is a conditional term then it does not represent a value (but the consequence and
alternative in the conditional term may do).
Line 10 If the term is an operator term then
Line 12 the operator must be found Emtity-dict,
Line 14 the number of arguments in the descriptor must be equal to the number of arguments present in the
term,
Line 15 each argument term must be of the appropriate sort according to the argument list found in the
descriptor,
Line 16 and the result sort must be appropriate according to the result sort found in the descriptor.

Recommendation Z.100 — Annex F.3 (03/93) 107

eval-equations(sortmap, equations)(dict) = (6.2.3.4)

1 (let trueterm = dict(TRUEVALUE),
2 falseterm = dict(FALSEVALUE) in
3 let quanteq = { eq [] equations | is-Quantified-equations;(eq)}
4 rest = equations\ quanteq in
5 let unquant = union { eval-quantified-equation(sortmap, eq) | eq [quanteq} in
6 let rest’ = expand-conditional -term-in-equations(rest [0 unquant, trueterm, falseterm) in
7 let rest” =
8 union {if is-Conditional -equation,(eq)
9 then expand-conditional -term-in-conditions({ eq}, trueterm, falseterm)
10 else{eq} | eq [rest'} in
11 let unquantegs = { eq [rest” | is-Unquantified-equation, (eq)},
12 condegs = { eq [rest” | is-Conditional-equation; (eq)} in
13 let sortmap’ = eval-unquantified-equations(sortmap, ungquanteqs) in
14 eval-conditional-equations(sortmap’, condegs))
type: Sortmap Equations; — Entity-dict — Sortmap
Objective Reduce the number of equivalence classes for the sorts visible in a given scopeunit according to a set
of equations.
Parameters

sortmap A Sortmap containing the equivalence classes which are to be reduced

equations A set of equations.
Result The modified Sortmap.
Algorithm

Line 1-2 Extract the AS; representations for the Boolean literals True and False from Entity-dict.

Line3 Extract the equations which are quantified.

Line5 Turn the set of quantified equations into a set of unquantified equations

Line 6 Turn al the conditional terms occurring in the modified set of equations (except for those occurring
in the conditions of conditional equations) into a set of conditional equations.

Line7-10 Turn al the conditional equations which contain conditional terms in the condition set, into a set of
conditional equations without any conditional terms in the conditions (see example in the text
following the function expand-conditional -term-in-conditions).

Line11-12 Split the resulting set of equations (rest") into a set of unquantified equations and a set of
conditional equations.

Line 13 Modify sortmap in accordance with the set of unquantified equations.

Line 14 Return the Sortmap which is sortmap modified in accordance with the set of conditional equations.

108 Recommendation Z.100 — Annex F.3 (03/93)

eval-quantified-equation(sortmap, quanteqs) =

1
2
3
4
5
6
7
8
9

10
11
12

type:

(let mk-Quantified-equations; (nmset, sortid, equations) = quantegsin

let nm [nmeet in

let mk-ldentifier(level, snm) = sortid in

let valueid = mk-Identifier;(level — [nk-Sort-qualifier;(snm)Clnm) in

let allterms = union sortmap(sortid) \ { mk-Error-termy()} in

let equations’ = union{union {insert-term(sortmap, eq, valueid, term) | term [allterms} |

eq [equations} in

if nmset ={nm} then

equations’
else
(let quanteq = mk-Quantified-equations; (nmset \ { nm}, sortid, equations’) in
eval-quantified-equation(sortmap, quanteq)))

Sortmap Quantified-equations; — Equations;

Objective Expand a quantified equation into a set of unquantified equations.

Parameters

sortmap The Sortmap of the enclosing data type definition, wherein the terms (still) are in

equivaence classes

gquantegs The quantified equations.

Result

The resulting set of unquantified equations.

Algorithm

Line2 Take one of the value names in the quantified equation.

Line4 Make the value identifier corresponding to the value name

Line5

Line 6-7

Line8

sort.

equation by replacing the value identifier in the set of equations by every termin allterms.

Line 11-12 Do the same for the rest of the value names in the quantified equation.

insert-term(sortmap, equation, vid, term) =

© 00 N O O~ W NP

e o
AW N PRFRO

type:

cases eguation:
(mk-Unquantified-equation, (terml, term2)
- {mk-Unquantified-equation, (insert-term-in-term(termd, vid, term),
insert-term-in-term(term2, vid, term))},
mk-Quantified-equations, (, ,)
- (let equations = eval-quantified-eguation(sortmap, equation) in
union {insert-term(sortmap, g, vid, term) | eq L] equations}),
mk-Conditional-equation; (egs, eq)
- (let mk-Unquantified-equation, (terml, term2) = eq,
egs = union {insert-term(sortmap, e, vid, term) | e [J egs} in
let eq’ = mk-Unquantified-equation, (insert-term-in-term(termd, vid, term),
insert-termrin-term(term2, vid, term)) in
{mk-Conditional-equation,(egs, eq)}),
T - {equation})

Sortmap Equation; Value-identifier; Ground-term; — Equations;

Recommendation Z.100 — Annex F.3 (03/93)

(6.2.3.5)

different

Make a set (allterms) consisting of all possible terms (except the Error-termy) for the quantifying

Construct a set of unquantified egquations from the set of eguations contained in the quantified

If every value name has been replaced in the equations then return the equations (equations’) else

(6.2.3.6)

109

Objective Replace avalue name by a Ground-termy in an equation enclosed by a quantified equation.

Parameters

sortmap A Sortmap which is used if the equation (in turn) contains quantified equations

equation The equation to be modified

vid The value identifier which should be replaced

term The Termy by which vid should be replaced.

Result A set of equations containing the modified equation. If the equation is quantified equation, the set
might contain more that one equation.
Algorithm

Line 2-4 If it isan ungquantified equation then replace vid by termin the two contained terms (termi, term2).

Line 5-7 If it isa quantified equation then first expand it into a set of unquantified equations and then replace
the value identifier in every equation in the set.

Line 8-13 If it is a conditional equation then replace the value identifier by the term in every equation in the
restriction and in the restricted equation and construct and return a set containing the modified
conditional equation.

Line 14 If itisinformal text then do not touch it.

insert-term-in-term(term, vid, vterm) £ (6.2.3.7)

1 if is-Ground-termy (term) [is-Error-termy(term) then

2 term

3 ese

4 (let mk-Composite-termy(term’) =termin

5 (is-Identifier(term’)

6 - if term =vid then vterm else term,

7 is-Conditional-term (ter)

8 - (let mk-Conditional-termy(cond, t1, t2) = term in
9 let cond' = insert-term-in-term(cond, vid, vterm),

10 t1' = insert-term-in-term(t1, vid, vterm),

11 t2' = insert-term-in-term(t2, vid, vterm) in

12 let term” = mk-Conditional-term;(cond’, t1', t2') in

13 if is-Ground-termy(cond') [Jis-Ground-termy(t1') is-Ground-termy(t2') then
14 mKk-Ground-term (term'’)

15 else

16 mk-Composite-termy (term’’)),

17 T - (let (opid, arglist) = ternt in

18 let arglist’) = [insert-term-in-term(arglist[i], vid, vterm) | 1 < i < len arglistCin
19 if (Darg] elems arglist)(is-Composite-termy (arg)) then

20 mk-Composite-termy((opid, arglist’))

21 else

22 mKk-Ground-term ((opid, arglist’)))))

type: Termy Value-identifier; Ground-term; — Termy

Objective Replace avalue identifier (vid) by a (ground) term (vterm) in aterm (term).
Parameters
term The Termy which should have its value identifier replaced.

110 Recommendation Z.100 — Annex F.3 (03/93)

vid The value identifier to be replaced

vterm The Termy which should be inserted instead of the value identifier.
Result The modified term.
Algorithm
Linel If it isaground term or an error term then do not modify it.
Line 5-6 If itisanidentifier and it isequal to vid then return the new term else do not modify it.
Line 7-12 If it isaconditional term then construct the conditional term wherein occurrences of vid in the three

contained terms has been replaced by vterm.

Line 13-16 If al the three contained terms have become ground terms then return the new conditional term as a
ground term else return it as a composite term.

Line 17-22 Else term must be an operator term in which case vid in the argument terms is replaced by vterm
and if al the modified argument terms have become ground terms then return the new operator
term as aground term else return it as a composite term.

expand-conditional-term-in-equations(equations, trueterm, falseterm) = (6.2.3.8)
1 if equations ={} then
2 {}
3 dse
4 (let eq [equationsin
5 let (condset, eq') =
6 cases eqg:
7 (mk-Unquantified-equation;(,)
8 - ({}, eq),
9 mk-Conditional -equation, (condeq, eq)
10 - (condeq, eqg)) in
11 let mk-Unquantified-equation,(t1, t2) = eq' in
12 let (t1', t1", condl) = expand-conditional -in-terms(t1),
13 (t2', t2", cond2) = expand-conditional-in-terms(t2) in
14 if condl = nil [Jcond2 = nil then
15 {eqg} O expand-conditional-term-in-equations(equations\ { eq}, trueterm, falseterm)
16 else
17 (et (cond, term, nterml, nterm2) be sit. (cond, term, ntermd, nterm2) []
18 {(cond2, t1, t2’, t2"), (condy, t2, t1', t1")} [Icond # nil in
19 let eql = mk-Unquantified-eguation,(cond, trueterm),
20 eg2 = mk-Unquantified-equation,(cond, falseterm) in
21 let condeql =
22 mk-Conditional-equationy(condset O { eql}, mk-Unguantified-equation, (term, nterml)),
23 condeg2 =
24 mk-Conditional-equation;(condset [{ g2}, mk-Unquantified-equation, (term, nterm2)) in
25 let equations = equations O { condeqd, condeg2} \ {eq} in
26 expand-conditional -ter m-in-equations(equations, trueterm, falseterm)))
type: Equations; Ground-term, Ground-term; — Equations;
Objective Replace every Conditional-term; by two Conditional-equation;s.

Example: The equation
if athen b else c fi == d;

is expanded into

Recommendation Z.100 — Annex F.3 (03/93) 111

Parameters

equations

a == True ==> b == d;

a == False ==> ¢ == d;

The set of equations to be replaced

trueterm,falseterm The two ground terms denoting the boolean True and False

Result
Algorithm
Line 1

Line 4-9

Line 12-13

Line 14-15

Line 17
Line 19-20

Line 21-23

Line 26

The modified set of equations containing no Conditional-terms

When the set of equations is empty, return nothing

Take a equation from the set and extract the set of restriction (condsef) and the restricted equation
(eq"). If it is an unquantified equation, the restriction set is empty.

Modify the terms in the restricted equation. condl and cond? are the conditions to be tested upon.
A condition is nil if the term do not contain any conditional terms. ¢1’, 2’ are the original terms
(t1, £2) wherein a conditional term has been replaced by the then part of the conditional term and
1" 2" are the original terms wherein a conditional term has been replace by the else part of the
conditional term.

If none of the two terms contained any conditional terms then do not change the equation and
continue with another equation in equations

Choose one of the two terms to deal with. The other one will not be changed in this call.
Construct the two unquantified equations, which must hold for the two modified equations.

Construct two conditional equations wherein egl respective eq2 has been added as an extra
condition. (condeql) contains an equation wherein one of the original terms (¢1 or #2) has been
replaced by a term containing the then part and (condeg?) contains an equation wherein one of the
original terms has been replaced by a term containing the else part.

Include the two new conditional equations in the set of remaining equations to be considered
(because one of the terms in eq has not been expanded and because the expanded term may contain
further conditional terms).

112 Recommendation Z.100 — Annex F.3 (03/93)

expand-conditional-term-in-conditions(equations, trueterm, falseterm) = (6.2.3.9)

1 if equations = {} then
2 &
3 else
4 (let eq O equations in
5 let mk-Conditional-equation,(condset, eq') = eq in
6 if (3cond U condset)
7 ((let mk-Unquantified-equation;(t1, t2) = cond in
8 let (,, condl) =
9 expand-conditional-in-terms(t1),
10 G, ,cond2) =
11 expand-conditional-in-terms(2) in
12 condl # nil U cond2 # nil)) then
13 (let (condeq, cond, term, nterm1, nterm2) be s.t. condeq U condser [
14 (let mk-Unquantified-equation;(t1, 12) =
15 condeq in
16 let (¢1', t1", condl) =
17 expand-conditional-in-terms(t1),
18 2", 2", cond2) =
19 expand-conditional-in-terms(#2) in
20 (cond, term, nterm1, nterm2) = (if cond1 = nil
21 then (cond2, t1, 2" £2'")
22 else (condl, 12, t1' t1'))) in
23 let eq1 = mk-Unquantified-equation;(cond, trueterm),
24 eq2 = mk-Unquantified-equation (cond, falseterm) in
25 let condset' = condset \ {condeq} U {eql, mk-Unquantified-equation,(term, nterml)},
26 condset'" = condset \ {condeq} O {eq2, mKk-Unquantified-equation,(term, nterm2)} in
27 let equations' = equations \ {eq} O {mk-Conditional-equation,(condset', eq'),
28 mk-Conditional-equation|(condset", eq')} in
29 expand-conditional-term-in-conditions(equations', trueterm, falseterm))
30 else
31 {eq} U expand-conditional-term-in-conditions(equations \ {eq}, trueterm, falseterm))

type: Conditional-equation-set Ground-term; Ground-term; — Equations;

Objective Split the conditional equations in equations into two conditional equations if they contain any
conditional terms in the Restriction;.

Example: The equation
if bthencelsedfi ==¢e ==>1f == g;

is expanded into

b == True, ¢ ==e ==>f == g;
b == Fal se, ==e == >1f == g;
Parameters
equations The set of conditional equations

trueterm, falseterm The two ground terms denoting boolean True and False.

Result The expanded set of equations.
Algorithm
Line 1 When through, return the empty set
Line 4-12 Take a conditional equation from the set and if it does not contain a conditional term in the

restriction part then continue with the rest of equations in the set (line 31)

Recommendation Z.100 — Annex F.3 (03/93) 113

Line 13-21 Extract the unquantified equation from the set of restrictions which contains the conditional term
(condeq), the condition in the conditional term (cond), the then version of the term in the
unquantified equation containing the conditional term (nterml), the elseversion of the term in the
unquantified equation containing the conditional term (nterm2) and the other term of the
unquantified equation (term).

Line 23-24 Construct the two additional restrictionsto be included in the respective restriction sets.

Line 25-26 Construct the two modified restriction sets.

Line 27 Replace the old conditional equation by the two new conditional equations in the equation set.

Line29 Repeat the operation with the modified equation set.

expand-conditional-in-terms(t) £ (6.2.3.10)

1 if is-Error-term(t) then

2 (t, t, nil)

3 ese

4 (let mk-Ground-termy(term) =tin

5 cases term:

6 (mk-Identifier;(,)

7 = (t, t, nil),

8 mKk-Conditional-term;(cond, t1, t2)
9 - (t1, t2, cond),

10 (id, arglist)

11 - if (Darg [demsarglist)

12 ((let (,, cond) =

13 expand-conditional-in-terms(arg) in

14 cond # nil)) then

15 (let (i, t1, t2, cond) best. i [ind arglist [

16 cond # nil [

17 expand-conditional-in-terms(arglist [i]) = (t1, t2, cond) in

18 let arglist’ =

19 (arglist[n] | 1<n<i = 10O Grglist[n] |i <n<len arglistl)

20 argligt’’ =

21 farglist[n] | 1< n<iO = @202 arglist[n] |i <n<len arglistCin

22 (mk-Ground-term((id, arglist")), mk-Ground-termy((id, arglist’")), cond))

23 ese

24 (t, tnil)))

type: Termy — Termy Termy [Ground-termy]

Objective Split aterm (t) into three terms. If t does not contain a conditional term then the two first terms are not
relevant and the third one is nil. Otherwise the result ist modified to contain the then part, t modified
to contain the elsepart and the boolean condition term.

Result The three new terms.

Algorithm

Line 1-6 If it isan error term then do not modify it and indicate that it does not contain a conditional term by
returning nil asthe condition term.

Line 8 If it isaconditional term then return its three parts.

Line 10-14 If it isan operator term and one of its arguments contain a conditional term then

114 Recommendation Z.100 — Annex F.3 (03/93)

Line 15-17 Take an argument term which contains a conditional term and split it. i is the position in the
argument list.
Line 18-20 Construct the argument lists for the then part (arglist’) and for the elsepart (arglist’’) and
Line 22 Return the two operator terms corresponding to the then part, to the else part and the boolean
condition in the conditional term in the argument.
eval-unquantified-equations(sortmap, equations) = (6.2.3.11)
1 (if equations={} then
2 sortmap
3 ese
4 (let eq L equationsin
5 let mk-Unquantified-equation (Iterm, rterm) = eqin
6 let sort [] dom sortmap be s.t. (Ctermset [sortmap(sort))(Iterm [termset) in
7 let termset1 be st. termsetl [sortmap(sort) [lterm [] termset in
8 let termset2 be sit. termset2 [sortmap(sort) L rterm [termset2 in
9 if termsetl = termset2 then
10 eval-unquantified-equations(sortmap, equations\ {eq})
11 else
12 (let newset = sortmap(sort) \ {termsetl, termset2} O {termsetl O termset2} in
13 let sortmap’ = sortmap + [sort > newset] in
14 let sortmap' = eval-deduced-equivalence(sortmap’) in
15 eval-unquantified-equations(sortmap'’, equations\ { eq}))))

type: Sortmap Equations, —» Sortmap

Objective

Parameters
Sortmap
eguations

Algorithm
Linel
Line4-5
Line 6
Line7
Line8
Line9
Line 12
Line13
Line 14
Line 15

Modify sortmap (the equivalence classes) in accordance with equations.

A Sortmap to be modified.

A set of unquantified equations.

When through, return the modified Sortmap

Extract the two Terms from one of the (remaining) equations.

Extract the sort of Iterm (which is the same as the sort of rterm).

Extract the equivalence class which contains lterm.

Extract the equivalence class which contains rterm.

If the terms denote the same equivalence class then do not update sortmap else

Define anew set of equivalence classes wherein the two eguivalence classes has been unified.
Modify sortmap to contain the new set of equivalence classes

Reduce the number of equivalence classes by using the information obtained by the equation

Repeat the operation for the rest of the equations.

Recommendation Z.100 — Annex F.3 (03/93) 115

eval-deduced-equival ence(sortmap) = (6.2.3.12)

if ((classl, class2, class3 L] union rng sortmap)
(classl # class2 []
(Cermd, term2 [class3)((Cterm L class1)(replace-term(term, termil, term2) [class2))) then
(let (classl, class2, class3) best. {classl, class2, class3} O union rng sortmap [
classl # class2 []
(Cermi, term2 [class3)((Cterm L class1)(replace-term(term, terml, term2) [class2)) in
let sort be st. {classl, class2} O rng sortmap(sort) in
let classes = sortmap(sort) in
let classes = classes\ {classl, class2} O {classl O class?} in
let sortmap’ = sortmap + [sort + classes] in
eval-deduced-equival ence(sortmap'))
else

sortmap

©oO~NO O~ WNPRP

el el
W N RO

type: Sortmap — Sortmap

Objective Reduce the number of the equivalence classes for sorts by using the information that two terms of a
sort are in the same equivalence class.
Parameters
sortmap A Sortmap containing the equivalence classes which are to be modified
Result The Sortmap where the number of equivalence classes for some of the sorts has been reduced
Algorithm
Linel If there exists three equivalence classes classl, class2, class3 in the Sortmap such that classl and
class? are digoint (class3 may be equal to classl or class? or it may denote another equivalence
class, even of another sort) and there exists two terms (terml and term2) in class3 such that when
replacing terml by term2 in aterm (term) taken from classl, atermin class2 is obtained then
Line4-13 classl and class2 are merged into one equivalence class
Line 4-6 Let clasd, class2, class3 denote three such equivalence classes
Line7 Let sort denote the sort of classl and class2. classl and class?2 cannot be of different sort as
line 1-3in that case would not be satisfied
Line 8-10 Form anew Sortmap where the two equivalence classes for the sort have been merged
Line11 Repeat the operation (with the modified Sortmap) until no more equivalence classes can be merged

116 Recommendation Z.100 — Annex F.3 (03/93)

replace-term(term, oldterm, newterm) = (6.2.3.13)

1 if term = oldterm) then
2 newterm
3 else
4 (let mk-Ground-term;(contents) = termin
5 (is-Identifier 1 (contents)
6 - term,
7 T - (let (opid, arglist) =termin
8 if (0 L ind arglist)(replace-term(arglist[i], oldterm, newterm) # arglist[i]) then
9 (let i O ind arglist be sit. replace-term(arglist[i], oldterm, newterm) # arglistfi] in
10 let arglist’ = [Grdlist[n] |[1<n<iO =
11 (eplace-term(arglist[i], oldterm, newterm)(J—=
12 Lrglist[n] |i < n<len arglistfin
13 mKk-Ground-term,((opid, arglist’)))
14 else
15 term)))
type: Ground-term, Ground-term, Ground-term; — Ground-term,
Objective Replace an occurrence of oldtermin term by newterm and return the modified term
Algorithm
Linel If the entire term is equal to oldterm then return the new term
Line5 If the term isan identifier (and it is different from oldterm) then no replacement is made else
Line7 The term is an operator term (conditional terms cannot occur since term is taken from an equivaence
class). Let op denote the operator identifier and let arglist denote the argument list
Line 8 If there exists an argument which contains ol dterm then
Line9 Let i denote the index to the argument which contains oldterm

Line10-12 Construct the argument list where an occurrence of oldtermin element i has been replaced by newterm

Line13 Return the modified term
Line 15 If oldterm do not occur in the argument list then the term is not changed
eval-conditional-equations(sortmap, condequations) £ (6.2.3.14)

if (Ccondeq L] condequations)(restriction-holds(condeq, sortmap)) then
(let condeq [] condequations be sit. restriction-holds(condeq, sortmap) in
let mk-Conditional-equation;(, eq) = condeg in
let sortmap’ = eval-unquantified-equations(sortmap, {eg}) in
eval-conditional -equations(sortmap’, condequations\ { condeq}))
else

sortmap

~NOoO b~ WNBR

type: Sortmap Conditional-equations-set — Sortmap

Objective Reduce the number of equivalence classes in a Sortmap in accordance with the conditional equations
for a scopeunit.
Parameters
sortmap A Sortmap

condequations A set of conditional equations

Recommendation Z.100 — Annex F.3 (03/93) 117

Result The modified Sortmap

Algorithm

Linel If there exists a conditional equation which holds then

Line 2 L et condeq denote the conditional equation which holds

Line3-4 Update Sortmap with the properties reflected by the restricted equation (eq)

Line5 Repeat the operation until there are no more conditional equationsin the remaining set which hold.
restriction-holds(mk-Conditional-equation; (egs,), sortmap) £ (6.2.3.15)

1 (let termpairs = {{term1, term2} | mk-Unquantified-equation,(term1, term2) [] eqs} in
2 (Opair [termpairs)((Cclass L1 union rng sortmap)(pair O class)))

type: Conditional-equation; Sortmap — Bool

Objective Test whether the set of restrictions for a conditional equation holds
Parameters
egs The set of restrictions
sortmap The Sortmap used for checking whether the restrictions hold
Result Trueif success
Algorithm
Linel Construct a set of pairs of terms each containing the left-hand side term and the right-hand side

term of arestriction in the set of restrictions

Line2 The restrictions hold if it for each restriction holds that the right-hand side term is in the same
equivalence class as the left-hand side term.

118 Recommendation Z.100 — Annex F.3 (03/93)

6.2.4 Term Reduction Map Generation
make-ter m-reduce-map(sortmap, level)(dict) £ (6.2.4.1)
1 (let surtrmap =
2 if len level =1 then
3 (et recogterms = { dict(TRUEVALUE), dict(FALSEVALUE), dict(NULLVALUE)} in
4 [{t} — t|t [recogterms])
5 else
6 (let surlevel = evel[i] | 1< i <lenlevellin
7 s-Term-reduce-map(dict((surlevel, TYPE)))) in
8 let classes = union rng sortmap in
9 [class » (mk-Error-termy() L class
10 - mk-Error-term(),
1 (Ctlass [dom surtrmap)(class O class)
12 — (let class [] dom surtrmap) best. class O classin
13 surtrmap(class)),
14 T - (let terem U classin
15 term)) |
16 class [classed])
type: Sortmap Qualifier; — Entity-dict -~ Term-reduce-map

Objective Construct the Term-reduce-map which applies at a given scope unit level.

Parameters
sortmap The sortmap which applies at the given scope unit level.
sortmap The qualifier for the scope unit level.
Result A Termreduce-map mapping al equivalence classes visible at the given scope unit level to their
chosen canonical ground term.
Algorithm
Line1-7 Obtain the Term-reduce-map which applies at the enclosing scope unit level. If the current scope
unit is the system level the “enclosingiérm-reduce-map is a dummy one (line 3-4) ensuring that
the three SDL values which must bbecognizable by the interpretation functions (SDL Pid value
Null and Boolean values Trwnd False) are always represented by the ground fetmd in the
Entity-dict entriesTRUEVALUE, FALSEVALUE andNULLVALUE.
Line 8 Get the setf all equivalence classes visible at therent scope unit level.
Line 9-16 Each canonical ground termdslected according to tlielowing criteria:
Line 9-10 If the equivalence class contains the error term the error term is chosen as canonical term
Line11-13 If the valuerepresented by thequivalence class is also visible at #eclosing scope unlevel
(i.e. there exists an “enclosing” equivalence class such that this class is a subset of the treated
equivalence class, line 11), then the canonical term chosen in the enclosing scope unit is also
chosen in theurrent scope unit.
Line 14-15 If the valuerepresented by thequivalence class belongsaaortlocal to thecurrent scope unit an

arbitrary ground term is chosess canonical ground term.

Recommendation Z.100 — Annex F.3 (03/93) 119

6.2.5 Wellformedness Checks

is-wi-literals(level)(dict) £ (6.2.5.1)

(let
let

(

a b~ wWNPF

sortmap = s-Sortmap(dict((level, TYPE))) in
classes = union rng sortmap in

- (Cklass [classes)

(O mk-Ground-termy(t), mk-Error-termy ()} O class)
(is-Identifier1(t))))

type: Qualifier; —» Entity-dict —» Bool

Objective

Check that no literal is equal to the error term.

Parameters

level
Result
Algorithm
Line1
Line2
Line 3-

The qualifier denoting the current scope unit level.

true if the check succeed, else false

Obtain the sort map for the scope unit.
Get all equivalence classes visible in the scope unit.

5 There must not exist an equivalence class which both contains a literal ground term and the error
term.

is-wf-values(level)(dict) = (6.2.5.2)

(

© 0O ~NO O WN P

PR
N R O

if len level =1 then

et sortmap = s-Sortmap(dict((level, TYPE))) in
is-wf-boolean(sortmap, dict(TRUEVALUE), dict(FALSEVALUE)) [
iswf-pid(sortmap(dict(PIDSORT))))

else
(let surlevel = Mevel[i] | 1< i <lenlevellin

let sursortmap = s-Sortmap(dict((surlevel, TYPE))),
sortmap = s-Sortmap(dict((level, TYPE))) in
(Osortid [1 dom sursortmap)
((let survset = sursortmap(sortid),
vset = sortmap(sortid) in
(Oclass 1 vset)((class U survset)(class O class)))))

type: Qualifier; - Entity-dict - Bool

Objective Check that no unification or generation of equivalence classes is done for sorts which are visible in the
enclosing scope unit.
Parameters
level The qualifier for the current scope unit level.
Result true if the check succeeds, else false
Algorithm
Linel Distinguish between the system level and other levels.
Line 2 Obtain the sort map of the system level.
Line 3-4 Check the wellformedness conditions on the SDL Boolean and Pid sorts.
Line 6 Obtain the qualifier of the enclosing scope unit level.
120 Recommendation Z.100 — Annex F.3 (03/93)

Line 7-8 Obtain the sort maps for the enclosing and the current scope unit levels.

Line9 For all sorts visible in the enclosing scope unit the wellformedness condition in line 10-12 must
hold.

Line 10-11 For the sort considered, obtain the equivalence class sets for the enclosing and the current scope
unit levels.

Line 12 For each equivalence class in the current scope unit it must hold that it includes al the terms of

exactly one equivalence class in the enclosing scope unit.

is-wf-boolean(sortmap-trueterm, falseterm) £ (6.2.5.3)

1 (let boolsort [dom sortmap be s.t. (Ctlass [sortmap(boolsort))(trueterm [class) in
2 (Oclass L sortmap(boolsort))
3 (mk-Error-termy() [class O card ({ trueterm, falseterm} n class) = 1))

type: Sortmap Ground-termy Ground-term, — Bool

Objective Check the wellformedness of the Boolean sort.

Parameters
sortmap The (system level) sort map.
trueterm The canonical ground term for True.
falsaterm The canonical ground term for False.
Algorithm
Linel Obtain the AS; identifier of the boolean sort.
Line 2-3 Each equivalence classe of the Boolean sort which does not contain the error term must contain
exactly one of the Boolean literals True and False.
is-wf-pid(pidvset) £ (6.2.5.4)

1 (let pidvset’ = {class] pidvset | mk-Error-termy() [class} in
2 (On L Np)((Os O pidvset’)(card s > n)))

type: Term-class-set —» Bool

Objective Check the wellformedness of the Pid sort.

Parameters
pidvset The set of equivalence classes for the Pid sort.
Algorithm
Linel Obtain the set of Pid equivalence classes not containing the error term.
Line 2 The number of equivalence classes (not containing the error term) for the Pid sort must be infinite,

i.e. for each natural number n there must exist a (finite) subset s of the equivalence class set such
that the number of elementsin sisgreater than n.

Recommendation Z.100 — Annex F.3 (03/93) 121

6.3 Selection of Consistent Subset

This section defines the functions for checking and selecting a consistent subset according to a given consistent subset
selection (the entry function is select-consistent-subset). This consists of two steps: First, for each (selected)
block/subblock in the whole system either the contained block substructure or the contained process definitions, signal
routes and channel to route connections are removed. Second, subsignals used in subchannels in some substructure are
propagated to channels connected to this substructure, i.e. if a channel carries a parent signal of some subsignal carried
by a connected subchannel, the parent signal is replaced by the subsignals on the channel. Note that this transformation
may transform a unidirectional channel to a bidirectional one.

Example: Let an SDL system contain the signal and channel definitions

signal s
refi nement
signal sl1, s2;
reverse signal s3;
endr ef i nenent ;

signal t;
channel ¢ frombl to b2 with s, t; endchannel;
and let the origin block bl contain a (selected) substructure which contains the subchannel definitions and connection
channel c1 fromsubbl to env with s1, s2; endchannel;
channel c2 fromenv to subb2 with s3; endchannel;
channel ¢3 fromsubb3 to env with t; endchannel;
connect ¢ and cl1, c2, c3;
After subsignal propagation the channel ¢ will be defined as

channel ¢ frombl to b2 with sl1, s2, t;
fromb2 to bl with s3;
endchannel ;

sel ect-consistent-subset(sysdef, subset)(dict) £ (6.3.1)

1 (let sysdef' = select-consi stent-subset-sys(sysdef, subset) in
2 let sysdef'" = propagate-refinement-sys(sysdef ') (dict) in
3 sysdef ')

type: System-definition, Block-identifier-set — Entity-dict — System-definition,

Objective Transform a system definition according to a consistent subset selection.
Parameters
sysdef The system definition to be transformed.
subset The (assumed) consistent subset represented by a set of block identifiers and block substructure
identifiers.
Result The transformed system definition.

122 Recommendation Z.100 — Annex F.3 (03/93)

Algorithm
Linel

Line2

Line3

Remove the parts which will not be used (either block substructures or processes, signal routes and

channel to route connections).

Propagate the use of subsignals on subchannels to channels to which the subchannels are

connected.

Return the transformed system definition.

Recommendation Z.100 — Annex F.3

(03/93)

123

6.3.1 Removal of Non-Selected Substructures and Processes

sel ect-consistent-subset-sys(sysdef, subset) = (6.3.1.1)
1 (let mk-System-definition, (snm, bset, cset, sigset, dt, sset) = sysdef in
2 let level = [ink-System-qualifier;(snm)Cin
3 let bset’ = { select-consi stent-subset-block(block, subset, level) | block L] bset} in
4 mk-System-definitions (snm, bset’, cset, sigset, dt, sset))

type: System-definition, Block-identifier;-set - System-definition,

Objective Select consistent subset in a system definition.
Parameters
sysdef The system definition.
subset The (assumed) consistent subset.
Result The transformed system definition.
Algorithm
Linel Decompose the system definition.
Line 2 Construct the qualifier denoting the system level.
Line 3 Transform the system-level blocks.
Line4 The transformed blocks replace the original onesin the system.
sel ect-consistent-subset-block(block, subset, level) £ (6.3.1.2)

(let mk-Block-definition; (bnm, pset, sigset, connects, srset, dt, sset, osub) = block in
if mk-ldentifier,(level, bnm) [subset then

(

et level’ =level —* [nk-Block-qualifier(bnm)Cin

let osub' = select-consi stent-subset-osub(osub, subset, level’) in

1
2
3
4
5 (osub' # nil
6
7
8
9

- mk-Block-definition,bnm, {}, sigset, {}, {}, dt, sset, osub'),
pset # {}

— mk-Block-definition, (bnm, pset, sigset, connects, srset, dt, sset, nil),
T . exit(*§3.2.1: Leaf block contains no processes”)))

10 ese
11 exit(“83.2.1: Block or subblock is not in consistent subset”))

type: Block-definition, Block-identifier ;-set Qualifier; — Block-definitiony

Objective Select consistent subset in a block definition.
Parameters

block The block definition.

subset The (assumed) consistent subset.

level The qualifier for the system or block substructure containing the block.
Result The transformed block.
Algorithm

Line1 Decompose the block definition.

Line2,11 The block or subblock must be in the consistent subset.

Line3 Construct the qualifier for the block level.

Line4 Transform the substructure of the block if present and selected.
124 Recommendation Z.100 — Annex F.3 (03/93)

Line 5-6 If the block substructure is present and selected, it replaces the original substructure. As the

processes, signal routes and channel to route connections in the block will not be interpreted, they
are removed.

Line 7-9 Otherwise, the block isaleaf block and must contain at least one process definition.

select-co
1
2
3
4

type:

nsistent-subset-osub(osub, subset, level) £ (6.3.1.3)

if osub = nil then

nil
ese
sel ect-consi stent-subset-sub(osub, subset, level)

[Block-substructure-definition,] Block-identifier 1-set Qualifier
- [Block-substructure-definition,]

Objective Select consistent subset in a block substructure if present and selected.

Parameters

osub The optional block substructure.

subset The (assumed) consistent subset.

level

Result

The qualifier denoting the enclosing block.

If the block substructure is present and selected, then the transformed block substructure, otherwise nil.

Algorithm

Line 1-2 If the block substructure is absent then indicate this.

Line4 Otherwise, transform the block substructure if selected.

sel ect-consistent-subset-sub(sub, subset, level) £ (6.3.1.4)

~NOoO O b~ WNPR

type:

(let mk Block-substructure-definition, (bsnm, bset, connects, cset, sigset, dt, sset) = subin

if mk-ldentifier(level, bsnm) [] subset then

(let level’ =level —= [ink-Block-substructure-qualifier ;(bsnm)Cin
let bset' = { select-consistent-subset-bl ock(block, subset, level’) | block [bset} in
mk-Block-subtructure-definition, (bsnm, bset’, connects, cset, sigset, dt, sset))

else

nil)

Bl ock-substructure-definition, Block-identifier ;-set Qualifier

- [Block-substructure-definition,]

Objective Select consistent subset in a block substructure if selected.

Parameters
sub The block substructure.
subset The (assumed) consistent subset.
level The qualifier denoting the enclosing block.
Result If the block substructure is selected, then the transformed block substructure, otherwise nil .

Recommendation Z.100 — Annex F.3 (03/93) 125

Algorithm

Linel Decompose the block substructure.

Line 2 If the block substructure is selected, then

Line3 construct the qualifier denoting the block substructure level,

Line4 transform the contained subblock definitions,

Line5 and replace the original subblocks with the transformed ones.

Line7 If the block substructure is not selected, then return nil to indicate this.

126 Recommendation Z.100 — Annex F.3 (03/93)

6.3.2 Subsignal Propagation

propagate-refinement-sys(sysdef)(dict) =

1 (let mk-System-definition;(snm, bset, cset, sigset, dt, sset) = sysdef in

2 let level = [nk-System-qualifier (snm)lin

3 let bset' = {propagate-refinement-block(block, level)(dict) | block [bset} in

4 let cset’ = { propagate-refinement-chan(chan, bset', level)(dict) | chan [cset} in
5 mKk-System-definition;(snm, bset', cset', sigset, dt, sset))

type: System-definition| — Entity-dict — System-definition,
Objective Propagate subsignals in a system where the consistent subset has already been selected.
Parameters
sysdef The system definition.
Result The system where subsignals have been propagated.
Algorithm
Line 1 Decompose the system definition.
Line 2 Construct the system level qualifier.
Line 3 Propagate subsignals in each block defined at system level.
Line 4 Propagate subsignals on each channel defined at system level.
Line 5 The transformed blocks and channels replace the original ones in the system.

propagate-refinement-block(block, level)(dict) =

1 (let mk-Block-definition,(bnm, pset, sigset, connects, srset, dt, sset, osub) = block in
2 let level' = level ~ [nk-Block-qualifier;(bnm)Cin

3 let osub' = if osub # nil then propagate-refinement-sub(osub, level')(dict) else nil in
4 mKk-Block-definition|(bnm, pset, sigset, connects, srset, dt, sset, osub"))

type: Block-definition| Qualifier; — Entity-dict — Block-definition,

Objective Propagate subsignals in a block.
Parameters
block The block definition.
level The qualifier of the enclosing system or substructure.
Result The transformed block.
Algorithm
Line 1 Decompose the block definition.
Line 2 Construct the block level qualifier.
Line 3 Propagate subsignals in the block substructure if it is present.
Line 4 The transformed block substructure replaces the original one.

Recommendation Z.100 — Annex F.3 (03/93)

(6.3.2.1)

(6.3.2.2)

127

propagate-refinement-sub(sub, level)(dict) 2 (6.3.2.3)

0N O Wb Wi~

type:

(let mk-Block-substructure-definition;(bsnm, bset, connects, cset, sigset, dt, sset) = sub in
let level' = level ~—* [k-Block-substructure-qualifier(bsnm)Lin
let bset' = {propagate-refinement-block(block, level')(dict) | block] bset} in
let cset' = {propagate-refinement-chan(chan, bset', level')(dict) | chan [cset} in
if (Lconnect Dpconnects)(is—consistent—chancon(connect, cset')) then
mKk-Block-subtructure-definition|(bsnm, bset,'connects, cset', sigset, dt, ssef)
else
exit(“§3.3: lllegal refinement of channel”))

Block-substructure-definition| Qualifier; — Entity-dict
— Block-substructure-definition,

Objective Propagate subsignals in a block substructure.

Parameters

sub

The block substructure.

level The qualifier of the enclosing block.

Result

The transformed block substructure.

Algorithm

Line 1 Decompose the block substructure.

Line 2 Construct the block substructure level qualifier.

Line 3 Propagate subsignals in each block.

Line 4 Propagate subsignals on each channel.

Line 5-8 For each channel connection at the boundary of the substructure, check that no two signals on

different refinement levels can go through this connection.

Line 6 The transformed blocks and channels replace the original ones.

propagate-refinement-chan(chan, bset, level)(dict) £ (6.3.2.4)

1
2
3
4
5
6
7
8
9
0
1

1
1

type:

(let mk-Channel-definition|(chnm, nodelay, forwpath, orevpath) = chan in
let chid = mk-Identifier|(level, chnm) in
let mk-Channel-path(endpl, endp2, forwsigs) = forwpath in
let revpath = if orevpath # nil then orevpath else mk-Channel-path,(endp2, endp1, {}) in
let mk-Channel-path(, , revsigs) = revpath in
let forwpath' = propagate-refinement-cpath(chid, forwpath, revsigs, bset)(dict),
revpath' = propagate-refinement-cpath(chid, revpath, forwsigs, bset)(dict) in
let orevpath' =
(let mk-Channel-path,(, , ss) = revpath' in
if ss = {} then nil else revpath') in

mk-Channel-definition,(chnm, nodelay, forwpath', orevpath'))

Channel-definition| Block-definition;-set Qualifiery — Entity-dict
— Channel-definition;

Objective Propagate subsignals to a channel.

Parameters

chan The channel definitions.

bset The set of blocks (where subsignals have already been propagated) defined in the same system or

substructure as the channel.

level The qualifier of the enclosing system or substructure.

128

Recommendation Z.100 — Annex F.3 (03/93)

Result The transformed channel.

Algorithm

Linel Decompose the channel definition.

Line2 Construct the identifier of the channel.

Line3 Decompose the forward channel path into its endpoints and conveyed signal set.

Line4 If the channel is unidirectional then construct a “dummy” reverse channel path conveying no
signals.

Line5 Obtain the (possibly empty) set of signals conveyed in the reverse direction.

Line 6-7 Propagate subsignals to each of the channel paths. Signals conveyed in a given direction may
contribute with reverse subsignals in the opposite direction (which is the reason for the third
parameter opropagate-refinement-cpath).

Line 8-7 If the set of signals conveyed on the transformed reverse channel path is empty the reverse channel
path is removed.

Line11 The transformed channel paths replace the original ones.

propagate-refinement-cpath(chid, cpath, revsigs, bset)(dict) £ (6.3.2.5)
1 (let mk-Channel-path,(endpl, endp2, forwsigs) = cpath in
2 let foutsigs = inout-going-signals(OUT, chid, endpl, bset),
3 finsigs = inout-going-signal s(IN, chid, endp2, bset),
4 routsigs = inout-going-signals(OUT, chid, endp2, bset),
5 rinsigs = inout-going-signals(IN, chid, endpl, bset) in
6 if (Csigl U foutsigs O rinsigs, sig2 [finsigs O routsigs, sig L] forwsigs O revsigs)
7 (is-sig-or-subsig(sigl, sig) [lis-sig-or-subsig(sig2, sig) O
8 is-proper-or-subsig(sigl, sig2) Llis-proper-subsig(sig2, sigl)) then
9 exit(“83.3: lllegal refinement of channel”)
10 ese
11 (et forwsig' =
12 extract-direction-subsignal s(forwsigs, foutsigs [finsigs, nil)(dict) O
13 extract-direction-subsignal s(revsigs, foutsigs [finsigs, REVERSE)(dict) in
14 mk-Channel-path;(endpl, endp2, forwsigs)))

type: Channel-identifier | Channel-path; Sgnal-identifier;-set Block-definition,-set
- Entity-dict — Channel-path;

Objective Propagate subsignals to a channel path.
Parameters
chid The identifier of the channel.
cpath The channd path.
revsigs The signals conveyed in the opposite direction on the channel.
bset The set of blocks (where subsignals have aready been propagated) defined in the same system or
substructure as the channel.
Result The transformed channel path.
Algorithm
Linel Decompose the channel path.
Line 2-5 Obtain the set of (sub)signals going out through the origin end point (line 2), in through the

destination end point (line 3), out through the destination end point (line 4), and in through the
origin end point (line 5).

Recommendation Z.100 — Annex F.3 (03/93) 129

Line 6-9 If there exists a signal sigl going through the origin connection point and a signal sig2 going
through the destination connection point of the channel which are both (direct or indirect)
(sub)signals of the same signal sig conveyed by the channel path, sigl and sig2 are not alowed to
be on different refinement levels of each other.

Line 11-13 Extract from the set of (sub)signals going out through the origin connection point or in through the
destination end point the (sub)signals which can be conveyed by the channel path. Signals going in
the opposite direction on the channel may also contribute to the (sub)signal set because they can
have reverse subsignals (line 13).

is-consi stent-chancon(connect, cset) £ (6.3.2.6)

1 (let mk-Channel-connection,(, subchidset) = connect in

2 let cset' = { select-channel (subchid, cset) | subchid] subchidset} in

3 let connectsigs = union { direction-signals-chan(chan, FORWARD) O

4 direction-signals-chan(chan, REVERSE) | chan [cset'} in
5 - (Csigl, sig2 L] connectsigs)(is-proper-subsig(sigl, sig2)))

type: Channel-connection; Channel-definition,-set — Bool

Objective Check that no two signals on different refinement levels can go through a given connection point at the
boundary of a block substructure, including the case where one signal goes out and the other goesin.
Parameters
connect The channel connection.
cset The set of (transformed) channel definitions in the same block substructure as the connect.
Result true if the condition holds, otherwise false
Algorithm
Linel Get the set of identifiers of subchannels connected to the connect.
Line2 Select the connected subchannels.
Line 3-4 Extract al signals (from both directions) conveyed on the connected subchannels.
Line5 No two signals on the connected subchannels are allowed to be on different refinement levels.
inout-going-signals(inout, chid, endp, bset) £ (6.3.2.7)
1 if endp = ENVIRONMENT then
2 {}
3 else
4 (let block = select-block(endp, bset) in
5 inout-going-signal s-block(inout, chid, block))

type: (IN | OUT Channel-identifier, (Block-identifier; | ENVIRONMENT)
Block-definition,-set — Signal-identifier ;-set

Objective Extract the signals going in or out (indicated by the first function argument) through a connection point
of achannel.

130 Recommendation Z.100 — Annex F.3 (03/93)

Parameters

inout Indicates whether the in- or outgoing signals are wanted.
chid Theidentifier of the channel the connection point signals of which are wanted.
endp The channel end point where connection point signals are wanted.
bset The set of blocks defined at the same scope unit level as the channel.
Result The set of in- or outgoing signals.
Algorithm
Line1 If the channel end point is the system environment the set of infoutgoing signals is considered to be
empty.
Line4 Extract the block to which the channel is connected.
Line5 Extract from the block the set of in-/outgoing signals at the connection point for the channel.
inout-going-signals-block(inout, chid, mk-Block-definition; (,,, connects, srset, , , osub)) £ (6.3.2.8)
1 if osub # nil then
2 inout-going-signal s-sub(inout, chid, osub)
3 else
4 (let mk-Channel-to-route-connection; (chidset, sridset) [connects
5 be st. chid [chidset in
6 let srset’ = { select-signalroute(srid, srset) | srid [sridset} in
7 union {inout-going-signals-sigroute(inout, sr) | sr [srset'})

type: (IN | OUT) Channel-identifier; Block-definition; — Signal-identifier,-set

Objective Extract from a block the signals going in or out (indicated by the first function argument) through the
connection point of a given channel.

Parameters
inout Indicates whether the in- or outgoing signals are wanted.
chid Theidentifier of the channel for which the connection point signals are wanted.

connects,srset,osub The channel to route connections, signal routes and substructure of the block.

Result The set of in- or outgoing signals.
Algorithm
Line1-2 If the block is substructured the in-/outgoing signals are extracted from the substructure.
Line4 Obtain the set of identifiers of signal routes connected to the channel.
Line 6 Obtain the set of signal routes connected to the channel.
Line7 Extract from the connected signal routes the set of in-/outgoing signals.

Recommendation Z.100 — Annex F.3 (03/93) 131

inout-going-signals-sub(inout, chid, mk-Block-substructure-definition; (, , connects, subchset, , ,)) £ (6.3.2.9)

1 (let mk-Channel-connection;(chidset, subchidset) [connects be s.t. chid [chidset in
2 let subchset’ = { select-channel (subchid, subchset) | subchid [subchidset} in
3 union {inout-going-signals-chan(inout, subch) | subch [] subchset'})

type: (IN | OUT) Channel-identifier; Block-substructure-definition;
— Sgnal-identifier ;-set

Objective Extract from a block substructure the signals going in or out (indicated by the first function argument)
through the connection point of a given channel.
Parameters
inout Indicates whether the in- or outgoing signals are wanted.
chid Theidentifier of the channel the connection point signals of which are wanted.

connects,subchset The channel connections and subchannels of the substructure.

Result The set of in- or outgoing signals.
Algorithm

Linel Obtain the set of identifiers of subchannels connected to the channel.

Line2 Obtain the set of subchannels connected to the channel.

Line 3 Extract from the connected subchannels the set of in-/outgoing signals.
extract-direction-subsignals(sigs, subsigs, subsigdir)(dict) £ (6.3.2.10)

1 {subsig [] subsigs|
2 (Osig [sigs)
3 (is-sig-or-subsig(subsig, sig) [subsig-direction(subsig, sig)(dict) = subsigdir)}

type: Sgnal-identifier ;-set Sgnal-identifier;-set [REVERSE] — Entity-dict
— Sgnal-identifier,-set
Objective Extract from a given set of (sub)signals the ones which are direct or indirect (sub)signals of signalsin

another set of signals. The third parameter of the function indicates whether the (sub)signals going in
the same or in the opposite direction of its direct or indirect (parent) signal are wanted.

Parameters
sigs The set of (parent) signals.
subsigs The set of (sub)signals.
subsigdir Indicates whether “forward” or “reverse” (sub)signals are wanted.
Result The extracted set of (sub)signals.
Algorithm
Line 1-3 Select each (sub)signal for which a direct or indirect (parent) signal exists and which has the

same/opposite direction as the direct or indirect (parent) signal.

132 Recommendation Z.100 — Annex F.3 (03/93)

subsig-direction(subsig, sig)(dict) £ (6.3.2.11)

if subsig =sig then
nil
else
(let mk-SgnalDD(, dir) = dict(subsig) in
let restdir = subsig-direction(parent-signal (subsig), sig)(dict) in
cases (dir, restdir):
((nil, nil), (REVERSE, REVERSE)
- nil,
(nil, REVERSE), (REVERSE, nil)
10 - REVERSE))

OCO~NOUAWNPE

type: Sgnal-identifier; Sgnal-identifier; — Entity-dict — [REVERSE]

Objective For two signals of which one is on the same or a different refinement level of the other, indicate
whether the two signals go in the same or the opposite direction.
Parameters
subsig The (sub)signal.
sig The (parent) signal.
Result An indication of the relative direction.
Algorithm
Line1-2 If the two signals are the same they go in the same direction.
Line4d Find the direction of the subsignal relative to its parent signal.
Line5 Find the direction of the parent signal of the subsignal relative to the signal sig.
Line7 If the subsignal and sig have the same direction relative to the parent signal, they go in the same
direction.
Line9 If the subsignal and sig have opposite directions relative to the parent signal, they go in the opposite
direction of each other.
is-sig-or-subsig(subsig, sig) £ (6.3.2.12)

1 subsig = sig [is-proper-subsig(subsig, sig)
type: Sgnal-identifier; Sgnal-identifier; — Bool

Objective Test whether two signals are on the same or different refinement levels or not.
Parameters
subsig The “subsignal”.
sig The*“parent signal”.
Result true if the twosignals are the same or the formeorisafiner refinement level of the lattentherwise
false.
Algorithm
Linel The condition holds if the signalbsig is either the same a8, or subsig is a direct or indirect

(proper) subsignal ddig.

Recommendation Z.100 — Annex F.3 (03/93) 133

is-proper-subsig(subsig, sig) £ (6.3.2.13)
1 (let mk-ldentifier;(qual, nm) = sig,
2 siglevel =qual ™ Onk-Sgnal-qualifier ;(nm)Cn
3 (Cgrest L Path-item;*)(siglevel = grest = s-Qualifier;(subsig)))

type: Sgnal-identifier; Sgnal-identifier; — Bool

Objective Test whether one signa is on another refinement level than another signal.
Parameters
subsig The “subsignal”.
sig The “parent signal”.
Result trueif the former signal is on a finer refinement level than another.
Algorithm
Line1-2 Get the qualifier denoting the “parent signal” level.
Line3 The signabkubsig is on a finer refinement level thaig if the qualifier denoting the scope unit level

of sig is a prefix of the qualifier contained inlsig.
parent-signal (sig) £ (6.3.2.14)
1 (let mk-ldentifier,(qual,) =sigin
2 let qual' = [qual[i] | 1<i <len quall]
3 mk-Sgnal-qualifier ;(nm’) = qual[len qual] in
4 mKk-Identifier(qual’, nn))

type: Sgnal-identifier; — Sgnal-identifier

Objective Get the parent signal of a signal.
Parameters
sig The signal.
Result The parent signal.
Algorithm
Linel Extract the qualifier of the signal.
Line 2-3 Get the qualifier and name of the parent signal.
Line4 Construct the identifier of the parent signal.

134 Recommendation Z.100 — Annex F.3 (03/93)

6.4 Construction of Communication Paths

The functions in this section constructs the set of communication paths (Reachability sets) for all process instance sets
and servicesin the SDL system which is going to be interpreted.

The way this construction is doneis as follows:

1. For eachinterna channel/signal route path in a scope unit an outgoing and an ingoing partial Reachability
set are constructed. Each member of the outgoing partial Reachability set is a partial Reachability
containing an origin process or service, a sequence of signal route/channel paths leading to the given
channel/signal route path, and the set of signals conveyed by this partial path. Analogously, each member
of the ingoing partial Reachability set is a partial Reachability containing a destination process or service,
a sequence of channel/signal route paths leading from the given channel/signal route path, and the set of
signals conveyed by this partial path.

2. For each outgoing and ingoing partial Reachability, the outgoing partiad path, the considered
channel/signal route path and the ingoing partial path are concatenated, the intersection of the three
corresponding signal sets is taken, and if this signal set is non-empty a (total) Reachability is constructed
and inserted in the descriptor for the origin process or service.

For simplification of the Reachability construction, unidirectional channels and signal routes are treated as if they were
bidirectional with an empty signal set in the reverse direction. Step 2 above ensures that this does not lead to extra
Reachabilitiesin the final Entity-dict.

At system level, channels leading to or from the environment are treated like internal channels; however, in this case

either the outgoing or ingoing partial Reachability set will not contain any “real’Reachabilities but instead be a

singleton set containing the quotatidpuft) value ENVIRONMENT. At all lower scope unit levels the set of channels

or signal routes leading to or from the scope unit boundary are not treated because they become part of the partial paths
for internal channels/signal routes at higher scope unit levels.

For block internal signal route paths each of the two pdrgathability sets will contain “real'Reachabilities only if

the corresponding process is decomposed into services. If the proeaissdsomposed into services and thus does not
contain process internal service signal routes, the correspoReliebability set will be a singleton set containing the
identifier of the process.

In the comments attached to the functions below, the beiaiging channel/signal route, or simplyidge, will be used.
A bridging channel/signal route inReachability is the one which is defined at the highest scope unit level.

The entry function for construction 8eachabilitiesis make-reachabilities.

6.4.1 Reachability Construction

make-reachabilities(mk-System-definition, (snm, bset, cset, , ,))(dict) £ (6.4.1.1)
1 (let level = [nk-System-qualifier(snm)Cin
2 let dict’ = make-internal-reaches-chans(cset, bset, level)(dict) in
3 let dict’” = make-internal-reaches-blocks(bset, level)(dict') in
4 dict’)

type: System-definition; — Entity-dict - Entity-dict

Objective Construct thdReachabilities for an SDL system to be interpreted.

Parameters

snm,bset,cset The system name, block definitions and channel definitions in the system.
Result The Entity-dict where allReachabilities have been inserted.

Recommendation Z.100 — Annex F.3 (03/93) 135

Algorithm

Line1 Construct the system level qualifier.
Line 2 Construct the Reachabilities having the system level channels as bridges. Also channels leading
from/to the system environment are treated here.
Line3 Construct the internal Reachabilities of the system level blocks.
Line4d Return the updated Entity-dict.
make-inter nal-reaches-blocks(bset, level)(dict) = (6.4.1.2)
if bset ={} then
dict
else

(let block [bset in
let dict' = make-internal-reaches-block(block, level)(dict) in
make-internal-reaches-blocks(bset \ { block}, level)(dict))

OO WNPE

type: Block-definition-set Qualifier; — Entity-dict — Entity-dict

Objective Construct the internal Reachabilities of a set of blocks.
Parameters
bset The set of block definitions.
level The qualifier of the enclosing system or substructure.
Result The Entity-dict where the block internal Reachabilities have been inserted.
Algorithm
Line1-2 If the block set is empty the Entity-dict is not changed.
Line4-5 Select ablock and construct its internal Reachabilities.
Line 6 Construct the internal Reachabilities of the remaining blocks.
make-inter nal-reaches-bl ock(mk-Block-definition; (bnm, pset, , , srset, , , osub), level)(dict) £ (6.4.1.3)
1 (let level' =level —= ink-Block-qualifier(bnm)Cin
2 if osub # nil then
3 make-internal-reaches-sub(osub, level')(dict)
4 else
5 (let srset’ = {sr [] srset | is-internal-sigroute(sr)} in
6 let dict' = make-internal-reaches-sigroutes(srset’, pset, level’)(dict) in
7 let dict'” = make-internal-reaches-prcss(pset, level)(dict') in
8 dict))
type: Block-definition; Qualifier; — Entity-dict — Entity-dict
Objective Construct the internal Reachabilities of a block.
Parameters
bnm,pset,srset,osub The block name, process definitions, signa routes and optional block substructure in the
block.
level The qualifier of the enclosing system or substructure.
Result The Entity-dict where the block internal Reachabilities have been inserted.

136 Recommendation Z.100 — Annex F.3 (03/93)

Algorithm

Line1 Construct the block level qualifier.
Line2-3 If the block is substructured then the internal Reachabilities of the substructure is constructed.
Line5 Select those signal routes which are internal to the block.
Line 6 Construct the Reachabilities having the block internal signal routes as bridges.
Line7 Construct the internal Reachabilities of the block local processes.
Line 8 Return the updated Entity-dict.
make-inter nal -reaches-sub(mk-Block-substructur e-definition (bsnm, bset, , cset, , ,), level)(dict) & (6.4.1.4)

(let level’ = level = [ink-Block-substructure-qualifier ;(bsnm)Cin
let cset’ = {chan [cset | is-internal-chan(chan)} in

let dict’ = make-internal-reaches-blocks(bset, level')(dict') in

dict”)

1
2
3 let dict’ = make-internal-reaches-chans(cset’, bset, level")(dict) in
4
5

type: Block-substructure-definition, Qualifier; —» Entity-dict — Entity-dict

Objective

Parameters

Construct the internal Reachabilities of ablock substructure.

bsnm,bset,cset The block substructure name, subblock definitions and subchannels in the block substructure.

level The qualifier of the enclosing block.
Result The Entity-dict where the block substructure internal Reachabilities have been inserted.
Algorithm
Line1 Construct the substructure level qualifier.
Line2 Select those subchannels which are internal to the substructure.
Line 3 Construct the Reachabilities having the substructure internal channels as bridges.
Line4 Construct the Reachabilities of the substructure local blocks.
Line5 Return the updated Entity-dict.
make-inter nal-reaches-prcss(pset, level)(dict) = (6.4.1.5)
if pset = {} then
dict
else

OO WNPEF

(let pres U pset in
let dict' = make-internal-reaches-prcs(prcs, level)(dict) in
make-internal-reaches-prcss(pset \ { prest, level)(dict'))

type: Process-definition-set Qualifier; — Entity dict — Entity dict

Objective

Parameters

pset

level

Construct the internal Reachabilities of a set of process definitions.

The set of process definitions.

The qualifier of the enclosing block.

Recommendation Z.100 — Annex F.3 (03/93) 137

Result The Entity-dict where the process internal Reachabilities have been inserted.

Algorithm
Line1-2 If the set of process definitions is empty the Entity-dict is not changed.
Line4-5 Select a process definition and construct itsinternal Reachabilities.
Line 6 Construct the internal Reachabilities of the remaining process definitions.
make-internal-reaches-pres(prcs, level)(dict) £ (6.4.1.6)
1 (let mk-Process-definition,(prnm,, ,,,,,,,, grordec) = prcsin
2 (is-Process-graph; (grordec)
3 - (let prid = mk-ldentifier(level, prnm),
4 Sigs = extract-inputsigs-prcs(pres) in
5 update-endpd-self(prid, sigs)(dict)),
6 is-Service-decomposition, (grordec)
7 - (let level' = level ~ [Mk-Process-qualifier ;(prnm)Cin
8 make-internal-reaches-decomp(grordec, level")(dict))))

type: Process-definition, Qualifier; » Entity-dict — Entity-dict

Objective Construct the internal Reachabilities of a process definition.
Parameters
prcs The process definition.
level The qualifier of the enclosing block.
Result The Entity-dict where the process internal Reachabilities have been inserted.
Algorithm
Line1 Get the name and process graph/service decomposition of the process.
Line 2 Handle the case where the process is not decomposed into services.
Line3 Construct the identifier of the process.
Line4 Extract the input signal set of the process.
Line5 Construct a Reachability from the processto itself and insert it in the Entity-dict.
Line 6 Handle the case where the process is decomposed into services.
Line7 Construct the process level qualifier.
Line 8 Construct the internal Reachabilities of the service decomposition.
make-inter nal-reaches-decomp(mk-Service-decomposition, (servset, srset,), level)(dict) £ (6.4.1.7)

1 (let srset’ = {sr [srset | is-internal-sigroute(sr)} in

2 let dict' = make-internal-reaches-servsigroutes(srset', level)(dict) in
3 let dict’” = make-internal-reaches-servs(servset, level)(dict') in

4 dict”)

type: Service-decomposition; Qualifier, — Entity-dict — Entity-dict

Objective Construct the internal Reachabilities of a service decomposition.

138 Recommendation Z.100 — Annex F.3 (03/93)

Parameters

servset,srset The service definitions and signal routes in the decomposition.

level The qualifier of the enclosing process.
Result The Entity-dict where the decomposition internal Reachabilities have been inserted.
Algorithm
Line1 Select those signal routes which are internal to the decomposition.
Line 2 Construct the Reachabilities having the decomposition internal signal routes as bridges.
Line 3 Construct the internal Reachabilities of the (decomposition local) service definitions.
Line4 Return the updated Entity-dict.

make-internal-reaches-servs(servset, level)(dict) =

if servset ={} then
dict
else
(let serv [servset in
let dict’ = make-internal-reaches-serv(serv, level)(dict) in
make-internal-reaches-servs(servset \ { serv}, level)(dict'))

OO WNPE

type: Service-definitions-set Qualifier; —» Entity-dict - Entity-dict

Objective Construct the internal Reachabilities of a set of service definitions.
Parameters

servset The set of service definitions.

level The qualifier of the enclosing process definition.
Result The Entity-dict where the service internal Reachabilities have been inserted.
Algorithm

Line1-2 If the service set is empty the Entity-dict is not changed.

Line4-5 Select a service and construct itsinternal Reachabilities.

Line 6 Construct the internal Reachabilities of the remaining services.

make-internal-reaches-serv (serv, level)(dict) =
1 (let servid = mk-ldentifiery(level, s-Service-name; (serv)),
2 sigs = extract-inputsigs-serv(serv) in
3 update-endpd-self(servid, sigs)(dict))
type: Service-definition, Qualifier; — Entity-dict — Entity-dict

Objective Construct the internal Reachabilities of a service definition.

Parameters
serv The service definition.
level The qualifier of the enclosing process definition.

Recommendation Z.100 — Annex F.3

(03/93)

(6.4.1.8)

(6.4.1.9)

139

Result The Entity-dict where the service internal Reachabilities have been inserted.

Algorithm
Linel Construct the identifier of the service.
Line2 Extract the input signal set of the service.
Line3 Construct a Reachability from the service to itself and insert it in the Entity-dict. The input signal
set will also beinserted in the service descriptor.
make-inter nal-reaches-chans(cset, bset, level)(dict) £ (6.4.1.10)
1 if cset ={} then
2 dict
3 else
4 (let chan [csetin
5 let dict’ = make-internal-reaches-chan(chan, bset, level)(dict) in
6 make-internal-reaches-chans(cset \ { chan}, bset, level)(dict'))

type: Channel-definition;-set Block-definitions-set Qualifier; — Entity-dict — Entity-dict
Objective Construct the set of Reachabilities having a given set of channels as bridges.
Parameters
Ccset The set of channel definitions.
bset The set of blocks at the same scope unit level as the channels.
level The qualifier of the enclosing system or substructure.
Result The Entity-dict where the Reachabilities having the given channels as bridges have been inserted.
Algorithm
Line1-2 If the channel set is empty the Entity-dict is not modified.
Line 4-5 Select achannel and construct the Reachabilities having this channel as bridge.
Line 6 Construct the Reachabilities having the remaining channels as bridges.

make-inter nal-reaches-chan(chan, bset, level)(dict) £ (6.4.1.11)

(let mk-Channel-definition;(chnm, nodelay, mk-Channel-path;(endpl, endp2,),) = chanin
let chid = mk-Identifier(level, chnm) in
let foutreaches = inout-going-reaches(OUT, chid, endpl, bset, level),
fpathelem = (chid, FORWARD, nodelay),
fsigs = direction-signals-chan(chan, FORWARD),
finreaches = inout-going-reaches(IN, chid, endp2, bset, level) in
let routreaches = inout-going-reaches(OUT, chid, endp2, bset, level),
rpathelem = (chid, REVERSE, nodelay),
rsigs = direction-signals-chan(chan, REVERSE),
10 rinreaches = inout-going-reaches(IN chid, endpl, bset, level) in
11 let dict’ = update-endpd(foutreaches, fpathelem, fsigs, finreaches)(dict) in
12 let dict'" = update-endpd(routreaches, rpathelem, rsigs, rinreaches)(dict’) in
13 dict’)

O©CoO~NOUA,WNE

type: Channel-definition, Block-definition,-set Qualifier; — Entity-dict — Entity-dict

140 Recommendation Z.100 — Annex F.3 (03/93)

Objective Construct the set of Reachabilities having a given channel as bridge.
Parameters

chan The channel definition.

bset The set of blocks at the same scope unit level as the channel.

level The qualifier of the enclosing system or substructure.

Result The Entity-dict where the Reachabilities having the given channel as bridge have been inserted.
Algorithm

Linel Obtain the name, optional nodelay attribute and origin and destination end point of the channel.

Line 2 Construct the identifier of the channel.

Line 3-6 Obtain the outgoing partial Reachability set leading to the origin end point of the channel (line 3),
the Path-element denoting the forward channel path (line 4), the set of signals carried in the
forward direction by the channel (line 5), and the ingoing partial Reachability set leading from the
destination end point of the channel (line 6).

Line 7-10 Analogously to line 3-6, obtain the outgoing partial Reachability set leading to the destination end
point of the channel (line 7), the Path-element denoting the reverse channel path (line 8), the set of
signals carried in the reverse direction by the channel (empty if the channel is unidirectional)
(line 9), and the ingoing partial Reachability set leading from the origin end point of the channel
(line 10).

Line11 Construct the total Reachabilities having the forward channel path as bridge.

Line12 Analogously to line 11, construct the total Reachabilities having the reverse channel path as bridge.

Line 13 Return the updated Entity-dict.

make-inter nal-reaches-sigroutes(sr set, pset, level)(dict) £ (6.4.1.12)
1 if srset ={} then
2 dict
3 else
4 (let st L srsetin
5 let dict’ = make-internal-reaches-sigroute(sr, pset, level)(dict) in
6 make-internal-reaches-sigroutes(srset \ { sr}, pset, level)(dict'))

type: Sgnal-route-definition,-set Process-definition,-set Qualifier; — Entity-dict - Entity-dict

Objective

Parameters
srset
pset
level

Result

Construct the set of Reachabilities having a given set of signa routes as bridges. The function is
anal ogous to make-internal-reaches-chans.

The set of signal route definitions.
The set of process definitions at the same scope unit level asthe signal routes.

The qualifier of the enclosing block.

The Entity-dict where the Reachabilities having the given signal routes as bridges have been inserted.

Recommendation Z.100 — Annex F.3 (03/93) 141

Algorithm
Line1-2 If the signal route set is empty the Entity-dict is not modified.
Line 4-5 Select asignal route and construct the Reachabilities having this signal route as bridge.
Line 6 Construct the Reachabilities having the remaining signal routes as bridges.

make-inter nal-reaches-sigroute(sr, pset, level)(dict) £ (6.4.1.13)

(let mk-Signal-route-definition, (srnm, mk-Sgnal-route-path,(endpl, endp2,),) =sr in
let srid = mk-Identifier,(level, srnm) in
let foutreaches = inout-going-reaches (OUT, srid, endpl, pset, level),
fpathelem = (srid, FORWARD, NODELAY),
fsigs = direction-signals-sigroute(sr, FORWARD),
finreaches = inout-going-reaches (IN, srid, endp2, pset, level) in
let routreaches = inout-going-reaches (OUT, srid, endp2, pset, level),
rpathelem = (srid, REVERSE, NODELAY),
rsigs = direction-signals-sigroute(sr, REVERSE),
10 rinreaches = inout-going-reaches (IN, srid, endpl, pset, level) in
11 let dict’ = update-endpd(foutreaches, fpathelem, fsigs, finreaches)(dict) in
12 let dict’” = update-endpd(routreaches, rpathelem, rsigs, rinreaches)(dict’) in
13 dict")

O©CoOoO~NOOURWNEF

type: Sgnal-route-definition, Process-definition;-set Qualifier; — Entity-dict — Entity-dict

Objective Construct the set of Reachabilities having a given signal route as bridge. The function is analogous to
make-inter nal-reaches-chan.
Parameters

s The signal route definition.

pset The set of process definitions at the same scope unit level asthe signal route.

level The qualifier of the enclosing block.

Result The Entity-dict where the Reachabilities having the given signal route as bridge have been inserted.
Algorithm

Line1 Obtain the name and origin and destination end point of the signal route.

Line 2 Construct the identifier of the signal route.

Line 3-6 Obtain the outgoing partial Reachability set leading to the origin end point of the signa route
(line 3), the Path-element denoting the forward signal route path (line 4), the set of signals carried
in the forward direction by the signal route (line 5), and the ingoing partial Reachability set leading
from the destination end point of the signa route (line 6). The Path-element for the signal route
path always contains NODELAY because asignal route never has a delay.

Line 7-10 Analogously to line 3-6, obtain the outgoing partial Reachability set leading to the destination end

point of the signal route (line 7), the Path-element denoting the reverse signal route path (line 8),
the set of signals carried in the reverse direction by the signal route (empty if the signal route is
unidirectiona) (line 9), and the ingoing partial Reachability set leading from the origin end point of
the signal route (line 10).

142 Recommendation Z.100 — Annex F.3 (03/93)

Line11 Construct the total Reachabilities having the forward signal route path as bridge.

Line 12 Analogously to line 11, construct the total Reachabilities having the reverse signal route path as
bridge.
Line 13 Return the updated Entity-dict.
make-inter nal-reaches-servsigroutes(srset, level)(dict) £ (6.4.1.14)
if srset ={} then
dict
else

(let sr [srsetin
let dict’ = make-internal-reaches-servsigroute(sr, level)(dict) in
make-internal-reaches-servsigroutes(srset \ { sr}, level)(dict"))

OO WNRE

type: Sgnal-route-definitions-set Qualifier; —» Entity-dict —» Entity-dict

Objective Construct the set of Reachabilities having a given set of (service decomposition internal) signal routes
as bridges. The function is analogous to make-internal-reaches-chans and make-internal-reaches-
sigroutes.

Parameters

srset The set of signal route definitions.
level The qualifier of the enclosing process definition.
Result The Entity-dict where the Reachabilities having the given signal routes as bridges have been inserted.
Algorithm
Line 1-2 If the signal route set is empty the Entity-dict is not modified.
Line 4-5 Select asignal route and construct the Reachabilities having this signal route as bridge.
Line 6 Construct the Reachabilities having the remaining signal routes as bridges.
make-inter nal-reaches-servsigroute(sr, level)(dict) £ (6.4.1.15)
1 (let mk-Sgnal-route-definition, (srnm, mk-Sgnal-route-path,(endpl, endp2,),) =sr in
2 let srid = mk-Identifier,(level, srnm) in
3 let foutreaches = {endp1},
4 fpathelem = (srid, FORWARD, NODELAY),
5 fsigs = direction-signals-sigroute(sr, FORWARD),
6 finreaches = {endp2} in
7 let routreaches = {endp2} ,
8 rpathelem = (srid, REVERSE, NODELAY),
9 rsigs = direction-signals-sigroute(sr, REVERSE),

10 rinreaches = {endpl} in

11 let dict’" = update-endpd(foutreaches, fpathelem, fsigs, finreaches)(dict) in

12 let dict’” = update-endpd(routreaches, rpathelem, rsigs, rinreaches)(dict’) in

13 dict'")

type: Sgnal-route-definition; Qualifier; — Entity-dict — Entity-dict

Objective Construct the set of Reachabilities having a given (service decomposition internal) signal route as
bridge. The function is analogous to make-inter nal-reaches-chan and make-internal-reaches-sigroute.

Recommendation Z.100 — Annex F.3 (03/93) 143

Parameters
s
level
Result
Algorithm
Line1
Line 2
Line 3-6

Line 7-10

Line11
Line 12

Line 13

The signal route definition.

The qualifier of the enclosing process definition.

The Entity-dict where the Reachabilities, having the given signal route as bridge have been inserted.

Obtain the name and origin and destination end point of the signal route.
Construct the identifier of the signal route.

Obtain the outgoing partial Reachability set leading to the origin end point of the signa route
(line 3), the Path-element, denoting the forward signal route path (line 4), the set of signals carried
in the forward direction by the signal route (line 5), and the ingoing partial Reachability set leading
from the destination end point of the signal route (line 6). As services do not contain signal routes
both partial Reachability sets are singleton sets containing the respective end point (service)
identifier. The Path-element for the signal route path always contains NODELAY because a signal
route never has adelay.

Analogously to line 3-6, obtain the outgoing partial Reachability set leading to the destination end
point of the signal route (line 7), the Path-element denoting the reverse signal route path (line 8),
the set of signals carried in the reverse direction by the signal route (empty if the signal route is
unidirectiona) (line 9), and the ingoing partial Reachability set leading from the origin end point of
the signal route (line 10).

Construct the total Reachabilities having the forward signal route path as bridge.

Analogously to line 11, construct the total Reachabilities having the reverse signal route path as
bridge.

Return the updated Entity-dict.

144 Recommendation Z.100 — Annex F.3 (03/93)

6.4.2 Construction of Partial Reachabilities

inout-going-reaches(inout, chid, endp, bset, level) £ (6.4.2.2)
1 if endp = ENVIRONMENT then
2 {ENVIRONMENT}
3 else
4 (let block = select-block(endp, bset) in
5 inout-going-reaches-block(inout, chid, block, level))

type: (IN | OUT) Channel-identifier, (Block-identifier; | ENVIRONMENT) Block-definition;-set
Qualifier; - (ENVIRONMENT | Reachability)-set

Objective Obtain the in- or outgoing partial Reachability set (direction indicated by the first function argument)
|eading from/to a given channel end point.
Parameters
inout Indicates whether the in- or outgoing partial Reachability set is wanted.
chid The identifier of the bridging channel.
endp The channel end point (may be the env in case of a system level channel) at which the partial
Reachabilities are wanted.
bset The set of blocks defined at the same scope unit level asthe channel.
level The qualifier of the enclosing system or substructure.
Result The partial Reachability set, or a singleton set containing the Quot value ENVIRONMENT if the
channel end point is env.
Algorithm
Line1-2 If the channel end point is env the singleton Reachability set containing ENVIRONMENT is
returned.
Line4 Get the end point block definition from the block set.
Line5 Extract from the block the in-/outgoing partial Reachability set.
inout-going-reaches (inout, srid, endp, pset, level) £ (6.4.2.2)
1 (let precs = select-process(endp, pset) in
2 inout-going-reaches-prcs(inout, srid, pres, level))
type: (IN | OUT) Sgnal-route-identifier ; Process-identifier ; Process-definition,-set
Qualifier; — (Process-identifier; | Reachability)-set
Objective Obtain the in- or outgoing partial Reachability set (direction indicated by the first function argument)
leading from/to a given signal route end point. The function is analogous to inout-going-reaches.
Parameters
inout Indicates whether the in-or outgoing partial Reachability set is wanted.
srid Theidentifier of the bridging signal route.
endp The signal route end point at which the partial Reachabilities are wanted.
pset The set of process definitions at the same scope unit level asthe signal route.

Recommendation Z.100 — Annex F.3 (03/93) 145

level The qualifier of the enclosing block.

Result The partial Reachability set, or a singleton set containing a process identifier if the denoted process
instance set is not decomposed into services.
Algorithm
Linel Get the end point process definition from the set of process definitions.
Line2 Extract the in-/outgoing partial Reachability set.
inout-going-reaches-block(inout, chid, block, level) £ (6.4.2.3)

(let mk-Block-definition,(bnm, pset, , connects, srset, , , osub) = block in
let level’ = level —= [ink-Block-qualifier;(bnm)Cin
if osub # nil then
inout-going-reaches-sub(inout, chid, osub, level")
ese
(let mk-Channel-to-route-connection; (chidset, sridset) [connects
best. chid [chidset in
let srset’ = { select-signalroute(srid, srset) | srid L sridset} in
union {inout-going-reaches-sigroute(inout, sr, pset, level’) | sr [srset'}))

O©CO~NOUAWNE

type: (IN | OUT) Channel-identifier, Block-definition; Qualifier; — Reachability-set

Objective Obtain from a block the in-/outgoing partial Reachability set leading from/to a given channel.
Parameters
inout Indicates whether the in- or outgoing Reachabilities are wanted.
chid The identifier of the channel.
block The block definition.
level The qualifier of the enclosing system or substructure.
Result The in-/outgoing partial Reachabilities.
Algorithm
Line1-2 Decompose the block and construct the qualifier denoting its level.
Line3-4 If the block is substructured the in-/outgoing partial Reachabilities are extracted from the
substructure.
Line 6 Obtain the set of identifiers of signal routes connected to the channel.
Line 8 Obtain the set of signal routes connected to the channel.
Line9 Construct al in-/outgoing partial Reachabilities leading from/to and including one of the signal
routes.
inout-going-reaches-sub(inout, chid, sub, level) £ (6.4.2.4)
1 (let mk-Block-substructure-definition; (bsnm, bset, connects, subchset, ,,) =subin
2 let level’ = level ~= [nk-Block-substructure-qualifier ;(bsnm)Cin
3 let mk-Channel-connection, (chidset, subchidset) [connects be st. chid L] chidset in
4 let subchset’ = { select-channel (subchid, subchset) | subchid [subchidset} in
5 union {inout-going-reaches-chan(inout, subchan, bset, level’) | subchan LI subchset'})

type: (IN | OUT) Channel-identifier, Block-substructure-definition; Qualifiery
— Reachability-set

146 Recommendation Z.100 — Annex F.3 (03/93)

Objective Obtain from a block substructure the in-/outgoing partial Reachability set leading from/to a given

channel.
Parameters
inout Indicates whether the in- or outgoing Reachabilities are wanted.
chid Theidentifier of the channel.
sub The block substructure definition.
level The qualifier of the enclosing block.
Result The in-/outgoing partial Reachabilities.
Algorithm
Line1-2 Decompose the block substructure and construct the qualifier denoting itslevel.
Line3 Obtain the set of identifiers of subchannels connected to the channel.
Line4d Obtain the set of subchannels connected to the channel.
Line5 Construct al in-/outgoing partia Reachabilities leading from/to and including one of the
subchannels.
inout-going-reaches-pres(inout, srid, pres, level) £ (6.4.2.5)
1 (let mk-Process-definition,(prnm,, ,,,,,,,, grordec) = prcsin
2 (is-Process-graph, (grordec)
3 — {mk-Identifier(level, prnm)},
4 is-Service-decomposition; (grordec)
5 - (let level' = level ~ [ink-Process-qualifier,(prnm)Cin
6 inout-going-reaches-decomp(inout, srid, grordec, level'))))

type: (IN | OUT) Signal-route-identifier, Process-definition,-set Qualifiery
- (Process-identifier; | Reachability)-set

Objective Obtain from a process definition the in-/outgoing partial Reachability set leading from/to a given signal
route.
Parameters
inout Indicates whether the in- or outgoing Reachabilities are wanted.
srid Theidentifier of the signal route.
prcs The process definition.
level The qualifier of the enclosing block.
Result The in-/outgoing partial Reachabilities.
Algorithm
Linel Decompose the process definition.
Line 2-3 If the process is not decomposed into service instances then the singleton Reachability set

containing itsidentifier is returned.

Line 4-6 Otherwise the in-/outgoing Reachabilities are extracted from the service decomposition.

Recommendation Z.100 — Annex F.3 (03/93) 147

inout-going-reaches-decomp(inout, srid, decomp, level) £ (6.4.2.6)

1 (let mk-Service-decomposition; (, servsrset, connects) = decomp in

2 let mk-Signal-route-to-route-connection; (sridset, servsridset) [1 connects

3 best. srid [sridset in

4 let servsrset’ = { select-signalroute(servsrid, servsrset) | servsrid [servsridset} in
5 {inout-going-reaches-sigroute(inout, servsr, level) | servsr [servsrset'})

type: (IN | OUT) Sgnal-route-identifier, Service-decomposition, Qualifiery
- Reachability-set

Objective Obtain from a service definition the partial Reachability set leading from/to a given (block level) signal
route.
Parameters
inout Indicates whether the in- or outgoing Reachabilities are wanted.
srid Theidentifier of the signa route.
decomp The service decomposition.
level The qualifier of the enclosing process.
Result The in-/outgoing partial Reachabilities.
Algorithm
Linel Decompose the service decomposition.
Line2 Obtain the set of identifiers of service signal routes connected to the signal route.
Line4d Obtain the set of service signal routes connected to the signal route.
Line5 Construct al in-/outgoing partial Reachabilities leading from/to and including one of the service
signal routes.
inout-going-reaches-chan(inout, chan, bset, level) £ (6.4.2.7)
1 (let chid = mk-Identifier(level, s-Channel-name;(chan)),
2 block = select-block(connected-block(chan), bset) in
3 let inoutreaches = inout-going-reaches-block(inout, chid, block, level) in
4 { append-chan-to-reach(inout, inoutreach, chan, level) | inoutreach L| inoutreaches})

type: (IN | OUT) Channel-definition, Block- definitions-set Qualifier; — Reachability-set

Objective Obtain the in-/outgoing partial Reachability set leading from/to and including a given non-local
channel.
Parameters
inout Indicates whether the in- or outgoing partial Reachabilities are wanted.
chan The channel definition.
bset The set of blocks defined at the same scope unit level as the channel.
level The qudlifier of the enclosing block substructure (system level non-local channels are treated like
local channels).
Result The in-/outgoing partia Reachabilities.
Algorithm
Linel Construct the identifier of the channel.
Line2 Get the block connected to the channel.

148 Recommendation Z.100 — Annex F.3 (03/93)

Line3 Obtain the in-/outgoing partial Reachabilities |eading to the channel.
Line4d Append the channel to each of the partial Reachabilities.

append-chan-to-reach(inout, inoutreach, chan, level) £ (6.4.2.8)

(let chansigs = inout-going-signal s-chan(inout, chan),
chanpathelem = inout-going-path-elem-chan(inout, chan, level) in
let (reachendp, sigset, path) = inoutreach in
(reachendp, sigset n chansigs,
casesinout:
(IN - [@hanpathelem) = path,
OUT - path = [thanpathelem0)))

~NOoO O~ WNPRE

type: (IN | OUT) Reachability Channel-definition; Qualifier; — Reachability

Objective Append a non-local channel to an in-/outgoing partial Reachability.
Parameters
inout Indicates whether the partial Reachability isin- or outgoing.

inoutreach The partial Reachability.

chan The definition of the channel.
level The qualifier of the enclosing block substructure.
Result The partial Reachability where the channel has been appended.
Algorithm
Linel Extract the signals carried by the channel in the direction indicated by inout. Note that if the
channel is unidirectional in the opposite direction the extracted signal set is empty.
Line2 Construct the Path-element for the channel path which goes in the direction indicated by inout.
Line 3 Decompose the partial Reachability into its destination/origin end point, the set of signals which

can be carried aong the partial Reachability, and its sequence of Path-elements.

Line 4-7 The new partial Reachability is constructed as follows: Its destination/origin end point is that
obtained before (line 4), the set of signal it can carry is the intersection of the signal set obtained
before and the signal set from the channel (line 4), and its sequence of Path-elements is the
sequence obtained before with the channel Path-element added at its “outer” end point (line 5-7).

inout-going-path-elem-chan(inout, chan, level) £ (6.4.2.9)
1 (let mk-Channel-definition,(chnm, nodelay, ,) = chanin
2 (mk-Identifier(level, chnm),
3 inout-going-path-direction-chan(inout, chan),
4 nodelay))

type: (IN | OUT) Channel-definition, Qualifier; — Path-element

Objective Obtainthe in- or outgoindgPath-element for a non-local channel.
Parameters
inout Indicates whether the in- or outgoiRgth-element is wanted.

Recommendation Z.100 — Annex F.3 (03/93) 149

chan The definition of the channel.

level The qualifier of the enclosing block substructure.
Result The Path-element.
Algorithm
Linel Get the name and nodelay attribute of the channel.
Line 2-4 Return the Path-element consisting of the identifier of the channel (line 2), the direction (forward

or reverse) of the in-/outgoing channel direction indicated by inout (line 3), and the nodelay
attribute (line 4).

inout-going-reaches-sigroute(inout, sr, pset, level) £ (6.4.2.10)
1 (let srid = mk Identifier,(level, s-Sgnal-route-name;(sr)),
2 prcs = sel ect-process(connected-process-or-service(sr), pset) in
3 let inoutreaches = inout-going-reaches-prcs(inout, srid, pres, level) in
4 { append-sigroute-to-reach(inout, inoutreach, sr, level) | inoutreach [inoutreaches})

type: (IN | OUT) Sgnal-route-definition; Process-definition;-set Qualifier; — Reachability-set

Objective Obtain the in-/outgoing partial Reachability set leading from/to and including a given non-local (block
level) signal route. The function is analogous to inout-going-reaches-chan.
Parameters
inout Indicates whether the in- or outgoing partial Reachabilities are wanted.
s The signal route definition.
pset The set of processes defined at the same scope unit level asthe signal route.
level The qualifier of the enclosing block.
Result The in-/outgoing partial Reachabilities.
Algorithm
Line1 Construct the identifier of the signal route.
Line 2 Get the process connected to the signal route.
Line 3 Obtain the in-/outgoing partial Reachabilities |eading to the signal route.
Line4d Append the signal route to each of the partial Reachabilities.
append-sigroute-to-reach(inout, inoutreach, sr, level) £ (6.4.2.11)
1 (let srsigs = inout-going-signal s-sigroute(inout, sr),
2 srpathelem = inout-going-path-elem-sigroute(inout, sr, level) in
3 (is-Identifier (inoutreach)
4 - (inoutreach, srsigs, [&rpathelem(},
5 is-Reachability(inoutreach)
6 - (let (reachendp, sigset, path = inoutreach in
7 (reachendp, sigset n srsigs,
8 cases inout:
9 (IN - Brpathelemd = path,
10 OUT - path = [SrpathelemD)))))

type: (IN | OUT) (Process-ldentifier, | Reachability) Sgnal-route-definition; Qualifier; — Reachability

150 Recommendation Z.100 — Annex F.3 (03/93)

Objective Append a non-local (block level) signal route to an in-/outgoing partial Reachability. The function is
anal ogous to append-chan-to-reach.
Parameters

inout Indicates whether the partial Reachability isin- or outgoing.

inoutreach A partial Reachability or a processidentifier.

s The definition of the signal route.

level The qualifier of the enclosing block.

Result The partial Reachability where the signal route has been appended.
Algorithm

Linel Extract the signals carried by the signal route in the direction indicated by inout. Note that if the
signal route is unidirectiona in the opposite direction the extracted signal set is empty.

Line2 Construct the Path-element for the signal route path which goesin the direction indicated by inout.

Line3-4 If the partial Reachability is a (process) identifier the resulting partial Reachability has this process
as destination/origin (depending on inout) end point, the signals carried by the signal route path as
signal set, and a Path consisting of the signal route path only.

Line5 Handle the case where the partial Reachability isa “real” one.

Line 6 Decompose the parti®teachability into its destination/origin end point, the set of signals which
can be carried along the partiRdachability, and its sequence &ath-elements.

Line 7-10 The new partialReachability is constructed as follows: Its destination/origin end point is that
obtained before (line 7), the set of signal it can carry is the intersection of the signal set obtained
before and the signal set from the signal route (line 7), and its sequeRath-afements is the
sequence obtained before with the signal rdeaéth-element added at its “outer” end point
(line 8-10).

inout-going-reach-sigroute(inout, sr, level) £ (6.4.2.12)
1 (connected-process-or-service(sr),
2 inout-going-signal s-sigroute(inout, sr),
3 [Inout-going-path-elem-sigroute(inout, sr, level)[)

type: (IN | OUT) Signal-route-definition, Qualifier; — Reachability

Objective
Parameters
inout

s

level
Result
Algorithm

Line 1-3

Obtain the in-/outgoing partiéeachability consisting of a non-local (process level) signal route.

Indicates whether the in- or outgoing parfehchability is wanted.
The definition of the signal route.
The qualifier of the enclosing process.

The partialReachability.

Construct and return the partRéachability as follows: Its destination/origin (dependingionut)

end point is the service connected to the signal route (line 1), its signal set is the set of signals
carried by the signal route in the given direction (linea2y itsPath consists of the in-/outgoing

path of the signal route (line 3).

Recommendation Z.100 — Annex F.3 (03/93) 151

inout-going-path-sigroute(inout, sr, level) £ (6.4.2.13)

1 (mKk-Identifier,(level, s-Sgnal-route-name; (sr)),
2 inout-going-path-direction-sigroute(inout, sr),
3 NODELAY)

type: (IN | OUT) Sgnal-route-definition; Qualifier; —» Path-element

Objective Obtain the in- or outgoing Path-element for a non-local signal route. The function is analogous to
inout-going-path-elem-chan.
Parameters
inout Indicates whether the in- or outgoing Path-element is wanted.
chan The definition of the signal route.
level The qualifier of the enclosing block or process.
Result The Path-element.
Algorithm
Line1-3 Return the Path-element consisting of the identifier of the signal route (line 1), the direction

(forward or reverse) of the in-/outgoing signal route direction indicated by inout (line 2), and the
quotation (Quot) value NODELAY because asignal route never has adelay (line 3).

152 Recommendation Z.100 — Annex F.3 (03/93)

6.4.3 Extraction of Input Signal Sets

extract-inputsigs-prcs(mk-Process-definition; (, , , predset, , | , , , , grordec)) £ (6.4.3.1)

1 union { extract-inputsigs-pred(pred) | pred O predset} O
2 extract-inputsigs-grordec(grordec)

type: Process-definition; —» Sgnal-identifier ,-set
Objective Obtain the input signal set of a process.
Parameters

prcdset,grordec The set of procedures and the process graph/service decomposition in the process.

Result The set of signals which the processis able to receive.
Algorithm
Line1-2 The set of signals which the process can receive is the union of the sets of signals which each

contained procedure can receive and the set of signals which can be received by the process
graph/services. Note that if the process is decomposed into services no procedures are defined at

process level.
extract-inputsigs-grordec(grordec) = (6.4.3.2)
1 (is-Process-graph; (grordec)
2 - extract-inputsigs-graph(grordec),
3 is-Service-decomposition, (grordec)
4 - extract-inputsigs-decomp(grordec))

type: (Process-graph; | Service-decomposition;) — Signal-identifier ;-set

Objective Obtain the set of signalswhich can be received (directly) by a process graph or service decomposition.
Parameters
grordec The process graph/service decomposition.
Result The set of signals which can be received.
extract-inputsigs-decomp(mk-Service-decomposition; (servset, ,)) £ (6.4.3.3)

1 union{ extract-inputsigs-serv(serv) | serv [] servset}

type: Service-decomposition; — Signal-identifier ;-set

Objective Obtain the set of signalswhich can be received by a service decomposition.
Parameters

servset The service definitions contained in the decomposition.
Result The set of signals which can be received.

Recommendation Z.100 — Annex F.3 (03/93) 153

Algorithm

Line1 The set of signals which the decomposition can receive is the union of the input signals sets for
each service.
extract-inputsigs-serv(mk-Service-definition, (, predset, , , , , , graph)) £ (6.4.3.4)

1 union { extract-inputsigs-pred(pred) | pred [predset} O
2 extract-inputsigs-graph(graph)

type: Service-definition; — Sgnal-identifier 1-set
Objective Obtain the input signal set of aservice.
Parameters

prcdset,graph The set of procedures and the service graph in the service.

Result The set of signals which the serviceis able to receive.
Algorithm
Line1-2 The set of signals which the service can receive is the union of the sets of signals which each

contained procedure can receive and the set of signals which can be received by the service graph.
extract-inputsigs-prcd(mk-Procedure-definition,(, , predset, , , , graph)) £ (6.4.3.5)

1 union { extract-inputsigs-pred(pred) | pred [predset} O
2 extract-inputsigs-graph(graph)

type: Procedure-definition; — Signal-identifier 1-set
Objective Obtain the set of signals which can be received by a procedure.
Parameters

prcdset,graph The set of procedures and the procedure graph in the procedure.

Result The set of signals which can be received by the procedure.
Algorithm
Line1-2 The set of signals which the procedure can receive is the union of the sets of signals which each
contained procedure can receive and the set of signals which can be received by the procedure
graph.
extract-inputsigs-graph(graph) £ (6.4.3.6)

1 (let (, statenodes) = decomp-graph(graph) in

2 let savenodes = { svnd | mk-State-node;(, svnd, ,) [statenodeés},

3 inputnodes = union {inpnds | mk-State-node, (, , inpnds,) LI statenodes} in
4 union{ sigset | mk-Save-signal sety(sigset) [] savenodes} O

{sigid | mk-Input-node;(sigid, ,) LI inputnodes})

(&)

type: (Process-graph; | Service-graph, | Procedure-graph;) — Sgnal-identifier ;-set

Objective Obtain the set of signals which can be received by a process, service or procedure graph.

154 Recommendation Z.100 — Annex F.3 (03/93)

Parameters

graph The process/service/procedure graph.
Result The set of signals which can be received by the graph.
Algorithm
Line1 Extract all state nodes from the graph.
Line 2-3 Extract all save nodes and input nodes from the state nodes.
Line 4-5 Extract all input signals from the save nodes and input nodes and return this signal set. Note that if

the graph contains more than one state node, all input signals could be obtained from just one of the
state nodes. However, the expression in line 4-5 also works when the graph contains no state nodes.

Recommendation Z.100 — Annex F.3 (03/93) 155

6.4.4 Update of Descriptors with Reachabilities
The following auxiliary domain is used in this section.
1 Reachability-or-endp = Reachability-endp | Reachability

This domain covers the possible kinds of members in partial Reachability sets which as mentioned earlier can either
contain “real’Reachabilities or be singleton sets containindreachability-endpoint.

update-endpd(outreaches, pathelem, sigset, inreaches)(dict) £ (6.4.4.1)

1 (let totalreaches = { total-reach(outreach, pathelem, sjgﬁet, inreach) |
2 outreach [outreaches [linreach L inreaches} in
3 update-endpd’(totalreaches)(dict))

type: Reachability-or-endp-set Path-element Sgnal-identifier -set Reachability-or-endp-set
- Entity-dict - Entity-dict

Objective Construct totaReachabilities from an outgoing partidReachability set, a bridgingPath-element, the
set of signals carried by this bridge, and an ingoing paRegathability set, and insert the total
Reachabilities in the Entity-dict.

Parameters
outreaches The outgoingReachability set.
It is either a “real” partiaReachability set or a singleton set containingReachability-endpoint.
pathelem The bridgingPath-element.
sigset The signals carried by the bridge.
inreaches The incomingReachability set.
It is either a “real” partiaReachability set or a singleton set containingreachability-endpoint.
Result TheEntity-dict where the totalReachabilities have been inserted.
Algorithm
Line1-2 Construct a set of (origin end point, toRaachability) pairs. The set contains one element for each
outgoing and each ingoing partRéachability.
Line 3 Use this set to insert totReachabilities in the Entity-dict.

156 Recommendation Z.100 — Annex F.3 (03/93)

total-reach(outreach, pathelem, sigset, inreach) = (6.4.4.2)

1 (is-Reachability-endp(outreach) [is-Reachability-endp(inreach)
2 — (let orgp = outreach
3 destp=inreachin
4 (orgp, (destp, sigset, (pathelemD))),
5 is-Reachability-endp(outreach)
6 — (let orgp = outreach,
7 (destp, insigs, inpath) = inreach in
8 (orgp, (destp, sigset n insigs, [pathelem1 inpath))),
9 is-Reachability-endp(inreach)
10 — (let (orgp, outsigs, outpath) = outreach,
11 destp=inreachin
12 (orgp, (destp, outsigs n sigset, outpath = [pathelem())),

13 T _ (let (orgp, outsigs, outpath) = outreach,

14

(destp, insigs, inpath) = inreach in

15 (orgp, (destp, outsigs n sigset n insigs, outpath = [pathelemd = inpath))))

type: Reachability-or-endp Path-element Sgnal-identifier ;-set Reachability-or-endp
- Reachability-endp Reachability

Objective

Parameters
outreach
pathelem
sigset
inreach

Result

Algorithm
Line1-4

Line 5-8

Line 9-12

Line 13-15

Construct a total Reachability from an outgoing partial Reachability, a bridging Path-element, the
signals carried by the bridge, and an ingoing partial Reachability.

The outgoing partial Reachability.
The bridging Path-element.

The signals carried by the bridge.
Theingoing partial Reachability.

A pair consisting of an origin end point and a total Reachability.

If both partial Reachabilities are end points the origin of the total Reachability is the “outgoing”
end point, the destination is the “ingoing” end point, Bath consists of the bridge, and the signal
set is that of the bridge.

If the outgoing partiaReachability is an end point and the ingoing partgachability is a “real”
one, the origin of the totaReachability is the“outgoing” end point, thelestination is thatf the
ingoing partialReachability, the Path is thebridge appended in front of the ingoing partakh,
and thesignals carried are those carried by both the bridge and the ingoing patttial

This case is analogous to the case covered in line 5-8. Heoaitth@ing partiaReachability is a
“real” one andhe ingoing partiaReachability is anend point.

If both partialReachabilities are “real”Reachabilities the origin is thatof the outgoing partiabne,
the destination is thadf the ingoing partialone, thePath is thebridge connecting the twpartial
Paths, and thesignals carried are those carried by lthielge and both partidtaths.

Recommendation Z.100 — Annex F.3 (03/93) 157

update-endpd’(totalreaches)(dict) £ (6.4.4.3)

if totalreaches = {} then
dict
else
(let totalreach [totalreachesin
let (orgp, reach) =totalreach in
let dict’ = add-reachability(orgp, reach)(dict) in
update-endpd’(totalreaches \ { totalreach})(dict’))

~NO O~ WNPRE

type: (Reachability-endp Reachability)-set — Entity-dict — Entity-dict
Objective Insert a set of total Reachabilitiesin the Entity-dict.
Parameters

totalreaches A set of (origin end point, total Reachability) pairs.

Result The Entity-dict where the set of total Reachabilities has been inserted.
Algorithm
Line1-2 If the set of total Reachabilitiesis empty the Entity-dict is unchanged.
Line 4-5 Select a pair from the set and decomposeit.
Line 6 Insert the selected total Reachability in the Entity-dict.
Line7 Insert the remaining total Reachabilitiesin the Entity-dict.
update-endpd-self(endp, sigset)(dict) £ (6.4.4.4)

1 (let reach = (endp, sigset, (M) in
2 let dict’ = add-reachability(endp, reach)(dict) in
3 let dict’’ = insert-input-signal s(endp, sigset)(dict’) in

4 dict’)
type: (Process-identifier, | Service-identifier;) Sgnal-identifier,-set - Entity-dict
— Entity-dict
Objective Construct atotal “self” Reachability for a process or servi@nd insert it in thé&ntity-dict.
Parameters
endp The identifier of the process or service.
Sigset The complete input signal set of the process or service.
Result The Entity-dict where the “self’"Reachability has been inserted. If appropriate (i.e. if the entity is a
service) the input signals are also inserted irEftey-dict.
Algorithm
Linel The destination of the “selfReachability is the process/service, thrath is empty, and it carries
the input signals of the process/service.
Line2 Insert theReachability in the Entity-dict.
Line3 Insert the input signals in thentity-dict if appropriate.
Line4 Return the updatefntity-dict.

158 Recommendation Z.100 — Annex F.3 (03/93)

add-reachability(orgp, reach)(dict) = (6.4.4.5)

1 (let (, sigset,) =reachin

2 if sigset ={} then

3 dict

4 else

5 (orgp = ENVIRONMENT

6 — (let oldreaches = dict(ENVIRONMENT) in

7 dict + [ENVIRONMENT + oldreaches [0 {reach}]),

8 (orgp, PROCESS) [dom dict

9 - (let mk-ProcessDD(parmdl, init, maxi, ograph, oldreaches) = dict((orgp, PROCESS)) in
10 dict + [(orgp, PROCESS) — mk-ProcessDD(parmdl, init, maxi, ograph, oldreaches O {reach})]),
11 (orgp, SERVICE) [dom dict

12 - (let mk-ServiceDD(graph, insigs, oldreaches) = dict((orgp, SERVICE)) in

13 dict + [(orgp, SERVICE) — mk-ServiceDD(graph, insigs, oldreaches [0 { reach})])))

type: Reachability-endp Reachability — Entity-dict — Entity-dict

Objective Add atotal Reachability to the Entity-dict.
Parameters
orgp The origin of the Reachability.
reach The Reachability.
Result The Entity-dict where the Reachability has been inserted (unless it carries no signals).
Algorithm
Line 1-3 If the Reachability is empty then is not inserted in the Entity-dict.
Line5-7 If the origin of the Reachability is the system environment, the Reachability is included in the
ENVIRONMENT entry.
Line 8-10 If the origin of the Reachability is a process, the Reachability is added to its descriptor in the
Entity-dict.
Line 11-13 If the origin of the Reachability is a service, the Reachability is added to its descriptor in the Entity-
dict.
insert-input-signals(endp, sigset)(dict) £ (6.4.4.6)
1 ((endp, PROCESS) [] dom dict
2 - dict,
3 (endp, SERVICE) [] dom dict
4 — (let mk-ServiceDD(graph, , reaches) = dict((endp, SERVICE)) in
5 dict + [(endp, SERVICE) — mk-ServiceDD(graph, sigset, reaches)]))

type: (Process-identifier, | Service-identifier ;) Reachability — Entity-dict — Entity-dict

Objective Insert the set of input signals for a process or service in the Entity-dict. (Actually the Entity-dict is only
changed for services but it makes the definition of other functions easier.)
Parameters
endp Theidentifier of the process or service.
Sigset The set of input signals.
Result The Entity-dict where the input signals have been inserted.

Recommendation Z.100 — Annex F.3 (03/93) 159

Algorithm

Line1-2 If the entity is a process, the Entity-dict is not changed because process descriptors do not contain
an input signal field.

Line 3-5 If the entity isa service, the input signal field of its descriptor is updated with the input signal set.

160 Recommendation Z.100 — Annex F.3 (03/93)

6.5 Simple Information Extraction from Channels/Signal Routes

This section defines some simple auxiliary functions for information extraction from channels and signal routes, such as
whether a channel/signal route is internal to its enclosing scope unit, which signals are carried in a given direction (in or
out) by a non-internal channel/signal route, which block/process/service is connected to a non-internal channel/signal
route.

6.5.1 Information from All Channels/Signal Routes
is-internal-chan(mk-Channel-definition,)(, , forwpath,)) £ (6.5.1.1)

1 (let mk-Channel-path,(endpl, endp2,) = forwpath in
2 endpl # ENVIRONMENT [lendp2 # ENVIRONMENT)

type: Channel-definition; — Bool

Objective Test whether achannel isinternal to its enclosing scope unit.
Parameters
forwpath The forward channel path in the definition of the channel.
Result true if the channdl isinternal, falseif the channel leads from or to the boundary of its enclosing scope
unit.
Algorithm
Linel Get the origin and destination end point of the channel.
Line2 The channdl isinternal if none of its end pointsisthe env of its enclosing scope unit.
is-inter nal-sigroute(mk-Signal-route-definition;)(, forwpath,)) £ (6.5.1.2)

1 (let mk-Signal-route-path,(endpl, endp2) = forwpath in
2 endpl #Z ENVIRONMENT Dende # ENVIRONMENT)

type: Sgnal-route-definition; — Bool

Objective Test whether asignal routeisinternal to its enclosing scope unit.
Parameters
forwpath The forward signal route path in the definition of the signal route.
Result true if the signal route is internal, false if the signal route leads from or to the boundary of its
enclosing scope unit.
Algorithm
Line1 Get the origin and destination end point of the signal route.
Line2 Thesignal routeisinternal if none of its end pointsisthe env of its enclosing scope unit.

Recommendation Z.100 — Annex F.3 (03/93) 161

direction-signals-chan(mk-Channel-definitiony(, , forwpath, orevpath), pathdir) £ (6.5.1.3)

cases pathdir:
(FORWARD
- (let mk-Channel-path,(, , forwsigs) = forwpath in
forwsigs),
REVERSE
- if orevpath = nil then
{}
else
(let mk-Channel-path,(, , revsigs) = orevpath in
10 revsigs))

OCO~NOUAWNPE

type: Channel-definition; Path-direction — Sgnal-identifier,-set
Objective Extract from a channel the signals carried in a given direction (forward or reverse).
Parameters

forwpath,orevpath The forward and optional reverse channel path in the definition of the channel.

pathdir Thedirection (forward or reverse) of which the signals are wanted.
Result The set of signals carried in the given direction.
Algorithm
line 2-4 If the forward signals are wanted then extract the signals from the forward channel path.
Line5-10 If the reverse signals are wanted there are two possihilities: Either the channel is unidirectional so

no signals are carried in the reverse direction (line 6), or the channel is bidirectional and then the
signals are extracted from the reverse channel path (line 9-10).

direction-signals-sigroute{mk-Signal -route-definition,(, forwpath, orevpath), pathdir) £ (6.5.1.4)

cases pathdir:
(FORWARD
- (let mk-Sgnal-route-path,(, , forwsigs) = forwpath in
forwsigs),
REVERSE
- if orevpath = nil then
{}
else
(let mk-Signal-route-path,(, , revsigs) = orevpath in
10 revsigs))

©CoO~NOUOTRA,WNE

type: Sgnal-route-definition; Path-direction — Sgnal-identifier;-set
Objective Extract from a signal route the signals carried in a given direction (forward or reverse).
Parameters
forwpath,orevpath The forward and optional reverse signal route path in the definition of the signal route.
pathdir The direction (forward or reverse) of which the signals are wanted.

Result The set of signals carried in the given direction.

162 Recommendation Z.100 — Annex F.3 (03/93)

Algorithm
Line 2-4 If the forward signals are wanted then extract the signals from the forward signal route path.

Line 5-10 If the reverse signals are wanted there are two possibilities: Either the signal route is unidirectional
so no signals are carried in the reverse direction (line 6), or the signal route is bidirectional and then
the signals are extracted from the reverse signal route path (line 9-10).

Recommendation Z.100 — Annex F.3 (03/93) 163

6.5.2 Information from Non-Internal Channels/Signal Routes

inout-going-signals-chan(inout, mk-Channel-definition (, , forwpath, orevpath)) £ (6.5.2.1)
1 (let mk-Channel-path;(endpl, endp2, forwsigs) = forwpath in
2 casesinout:
3 (IN
4 - (endpl = ENVIRONMENT
5 - forwsigs,
6 orevpath = nil
7 -1
8 T2 (let mk-Channel-path,(, , revsigs) = orevpath in
9 revsigs)),
10 ouT
11 - (endp2 = ENVIRONMENT
12 - forwsigs,
13 orevpath = nil
14 - {}
15 T. (let mk-Channel- path(, , revsigs) = orevpath in
16 revsigs))))

type: (IN | OUT) Channel-definition; — Signal-identifier,-set

Objective Extract from anon-internal channel the signals carried in a given direction (in or out).
Parameters
inout Indicates whether the in- or outgoing signals are wanted.

forwpath, orevpath The forward and optional reverse channel path in the definition of the channel.

Result The set of signals carried in the given direction.
Algorithm
Linel Get the two channel end points and the forward signals.
Line 3-9 Handle the case where the ingoing signals are wanted. If the origin end point of the channel is the

scope unit boundary the ingoing signals are the forward signals of the channel (line 4-5); elseif the
channel is unidirectiona (in the outgoing direction) the ingoing signal set is empty (line 6); else the
ingoing signals are the reverse signals of the channdl (line 8-9).

Line 10-16 Handle the case where the outgoing signals are wanted. The case is handled analogously to the one
inline 3-9.

164 Recommendation Z.100 — Annex F.3 (03/93)

inout-going-signals-sigroute(inout-mk-Signal -route-definition; (, forwpath, orevpath)) = (6.5.2.2)

1 (let mk-Sgnal-route-path,(endpl, endp2, forwsigs) = forwpath in
2 cases inout:
3 (IN
4 - (endpl = ENVIRONMENT
5 - forwsigs,
6 orevpath = nil
7 -{}
8 T2 (let mk-Signal-route-path,(, , revsigs) = orevpath in
9 revsigs)),
10 ouT
11 - (endp2 = ENVIRONMENT
12 - forwsigs,
13 orevpath = nil
14 -{},
15 T2 (let mk-Signal-route-path,(, , revsigs) = orevpath in
16 revsigs))))

type: (IN | OUT) Sgnal-route-definition; — Sgnal-identifier;-set

Objective Extract from a non-internal signal route the signals carried in a given direction (in or out).
Parameters
inout Indicates whether the in- or outgoing signals are wanted.

forwpath,orevpath The forward and optional reverse signal route path in the definition of the signal route.

Result The set of signals carried in the given direction.
Algorithm
Linel Get the two signal route end points and the forward signals.
Line 3-9 Handle the case where the ingoing signals are wanted. If the origin end point of the signa route is

the scope unit boundary the ingoing signals are the forward signals of the signal route (line 4-5);
else if the signal route is unidirectional (in the outgoing direction) the ingoing signal set is empty
(line 6); else the ingoing signals are the reverse signals of the signal route (line 8-9).

Line 10-16 Handle the case where the outgoing signals are wanted. The case is handled analogously to the one
inline 3-9.
inout-going-path-direction-chan(inout, mk-Channel-definition,(, , forwpath,)) £ (6.5.2.3)
1 (let mk-Channel-path,(endpl, endp2,) = forwpath in
2 casesinout:
3 (IN - if endpl = ENVIRONMENT then FORWARD else REVERSE,
4 OUT - if endp2 = ENVIRONMENT then FORWARD else REVERSE))

type: (IN | OUT) Channe-definition; — Path-direction

Objective Get for anon-internal channel the direction (forward or reverse) of agiven direction (in or out).
Parameters

inout Indicates whether the in- or outgoing direction is wanted.

forwpath The forward channel path in the definition of the channel.

Recommendation Z.100 — Annex F.3 (03/93) 165

Result A forward/reverse channel direction indication.

Algorithm
Linel Get the two end points of the channel.
Line3 Handle the case where the ingoing direction is wanted. If the channel origin is the scope unit
boundary, the ingoing direction is forward, otherwise it isreverse.
Line4d Handle the case where the outgoing direction is wanted. The case is analogous to that of line 3.
inout-going-path-direction-sigroute(inout, mk-Signal -route-definition,(, forwpath,)) = (6.5.2.4)
1 (let mk-Sgnal-route-path,(endpl, endp2,) = forwpath in
2 cases inout:
3 (IN - if endpl = ENVIRONMENT then FORWARD else REVERSE,
4 OUT - if endp2 = ENVIRONMENT then FORWARD else REVERSE))

type: (IN | OUT) Sgnal-route-definition; — Path-direction

Objective Get for anon-internal signal route the direction (forward or reverse) of agiven direction (in or out).
Parameters

inout Indicates whether the in- or outgoing direction is wanted.

forwpath The forward signal route path in the definition of the signal route.
Result A forward/reverse signal route direction indication.
Algorithm

Line1 Get the two end points of the signal route.

Line3 Handle the case where the ingoing direction is wanted. If the signal route origin is the scope unit

boundary, the ingoing direction is forward, otherwise it isreverse.

Line4 Handle the case where the outgoing direction is wanted. The caseis analogous to that of line 3.

connected-bl ock(mk-Channel-definition, (, , forwpath,)) £ (6.5.2.5)

1 (let mk-Channel-path,(endpl, endp2,) = forwpath in
2 if endp2 = ENVIRONMENT then endpl else endp2)

type: Channel-definition; — Block-definitiony

Objective Get for anon-internal channel the identifier of the block to which it is connected.
Parameters
forwpath The forward channel path in the definition of the channel.
Result The block identifier.
Algorithm
Linel Get the two end points of the channel.
Line2 If the destination end point of the channel is the scope unit boundary, the connected block is the

origin end point, elseit is the destination end point.

166 Recommendation Z.100 — Annex F.3 (03/93)

connected-process-or-service(mk-Signal -route-definition, (, forwpath,)) £ (6.5.2.6)

1 (let mk-Sgnal-route-path(endpl, endp2,) = forwpath in
2 if endp2 = ENVIRONMENT then endpl else endp2)

type: Sgnal-route-definition; — (Process-identifier, | Service-identifier)
Objective Get for anon-internal signal route the identifier of the process or service to which it is connected.
Parameters
forwpath The forward signal route path in the definition of the signal route.
Result The block identifier.
Algorithm
Linel Get the two end points of the signal route.
Line2 If the destination end point of the signal route is the scope unit boundary, the connected

process/service is the origin end point, elseit is the destination end point.

Recommendation Z.100 — Annex F.3 (03/93) 167

7 General-Purpose Auxiliary Functions

This section defines some simple general -purpose functions for handling of SDL abstract syntax (AS4) domains.

7.1 Simple Identifier Handling
enclosing-scopeunit(mk-Identifier;(qual,)) £ (7.1.0

1 convert-to-identifier (qual)

type: Identifier; — ldentifiery
Objective Get the identifier of the enclosing scope unit of an entity.
Parameters
qual The qualifier in the identifier of the entity.
Result Theidentifier of the enclosing scope unit.
Algorithm
Linel Convert the qualifier to an identifier denoting the same entity.
enclosing-block(mk-Identifier;(qual,)) £ (7.1.2)

1 convert-to-identifier (bloc-scopeunit (qual))
type: Identifier; — ldentifierq
Objective Get the identifier of the enclosing block of an entity.
Parameters
qual The qualifier in the identifier of the entity.
Result Theidentifier of the enclosing block.
Algorithm

Line1 Find the qualifier denoting the enclosing block and convert it to an identifier denoting the same
entity.

bl ock-scopeunit(qual) £ (7.1.3)

(let pathitem = qual[len qual] in
if is-Block-qualifier 1(pathitem) then
convert-to-identifier (qual)
else
(let restqual = [qual[i] | 1<i<len qualCin
block-scopeunit(restqual)))

oA~ wWNE

type: Qualifier; — Identifier

Objective Get the identifier of the block which encloses (or is) agiven entity.
Parameters
qual The qualifier denoting the entity.

168 Recommendation Z.100 — Annex F.3 (03/93)

Result Theidentifier of the enclosing block (or the entity itself if it isablock).
Algorithm
Linel Get the rightmost path item in the qualifier.
Line 2-3 If the path item denotes a block the whole qualifier is converted to an identifier.

Line 5-6 Remove the rightmost path item from the qualifier and call the function recursively on the rest of
the qualifier.

process-0r-service-scopeunit(qual) £ (7.1.9)

(let pathitem = qual[len qual] in
if is-Process-qualifier ;(pathitem) [is-Service-qualifier;(pathitem) then
convert-to-identifier (qual)
ese
(let restqual = [qual[i] | 1<i<len qualCin
process-or-service-scopeunit(restqual)))

OO, WNRE

type: Qualifier; — ldentifiery

Objective Get the identifier of the process or service which encloses (or is) agiven entity.
Parameters
qual The qualifier denoting the entity.
Result Theidentifier of the enclosing process or service (or the entity itself if it isaprocess or service).
Algorithm
Linel Get the rightmost path item in the qualifier.
Line 2-3 If the path item denotes a process or service the whole qualifier is converted to an identifier.
Line 5-6 Remove the rightmost path item from the qualifier and call the function recursively on the rest of
the qualifier.
convert-to-identifier (qual) £ (7.15)
1 (let qual’ = Mual[i] | 1<i <len quall])
2 nm' = cases qual[len quall]:
3 (mk-Block-qualifier ;(nm) - nm,
4 mKk-Block-substructure-qualifier (nm) — nm,
5 mk-Process-qualifier {(nm) - nm,
6 mKk-Service-qualifier ;(nm) - nm,
7 mk-Procedure-qualifier (nm) - nm,
8 mk-Sgnal-qualifier ;(nm) - nm,
9 mk-Sort-qualifier 1(nm) - nm)in
10 mk-Identifier(qual’, nm’))
type: Qualifier; — Identifier;
Objective Convert aqualifier to an identifier denoting the same scope unit.
Parameters
qual The qudlifier.

Recommendation Z.100 — Annex F.3 (03/93) 169

Result The corresponding identifier.

Algorithm
Linel Obtain the qualifier denoting the enclosing scope unit.
Line 2-9 Extract the scope unit name from the rightmost path item.
Line 10 Construct the identifier.

170 Recommendation Z.100 — Annex F.3 (03/93)

7.2 Selection of Definitions from Definition Sets

select-block(blid, bset) £ (7.2.1)
1 (let block L] bset be st. s-Block-name; (block) = s-Name; (blid) in
2 block)

type: Block-identifier; Block-definition;-set — Block-definitiony

Objective Get from a set of block definitions the one denoted by a given identifier.

Parameters
blid The block identifier.
bset The set of block definitions.

Result The block definition.

Algorithm
Linel The block definition wanted is that with the same name as the name part of the identifier.
Line2 Return the block definition.

select-process(prid, pset) £ (7.2.2)

1 (let pres L pset be st. s-Process-name; (pres) = s-Namey (prid) in
2 prcs)

type: Process-identifier, Process-definition,-set — Process-definition,

Objective Get from a set of process definitions the one denoted by a given identifier.

Parameters
prid The process identifier.
pset The set of process definitions.

Result The process definition.

Algorithm
Linel The process definition wanted is that with the same name as the name part of the identifier.
Line2 Return the process definition.

select-channel (chid, cset) £ (7.2.3)

1 (let chan [cset be s.t. s-=Channel-name; (chan) = s-Name; (chid) in
2 chan)

type: Channel-identifier; Channel-definition;-set — Channel-definition;

Objective Get from a set of channel definitions the one denoted by a given identifier.

Recommendation Z.100 — Annex F.3 (03/93) 171

Parameters

chid The channel identifier.
cset The set of channel definitions.
Result The channel definition.
Algorithm
Line1 The channel definition wanted is that with the same name as the name part of the identifier.
Line2 Return the channel definition.
select-signalroute(srid, srset) £ (7.2.4)

1 (let sr [] srset be s.t. s-Signal-route-name; (sr) = s-Namey(srid) in
2 sr)

type: Sgnal-route-identifier; Sgnal-route-definition;-set - Sgnal-route-definition,

Objective Get from a set of signal route definitions the one denoted by a given identifier.
Parameters
srid The signal route identifier.
srset The set of signal route definitions.
Result The signal route definition.
Algorithm
Line1 The signal route definition wanted is that with the same name as the name part of the identifier.
Line 2 Return the signal route definition.

172 Recommendation Z.100 — Annex F.3 (03/93)

7.3 Simple Decomposition of Behaviour Graphs

decomp-graph(graph) £

1 cases graph:

2 (mk-Process-graphy(strt, stnds) - (strt, stnds),
3 mk-Service-graphy(strt, stnds) - (strt, stnds),
4 mk-Procedure-graph,(strt, stnds) — (strt, stnds))

type: (Process-graph; | Service-graph; | Procedure-graph;) —
(Process-start-node; | Service-start-node; | Procedure-start-node;) State-node;-set

Objective Decompose a process/service/procedure graph into its start node and state node set.
Parameters

graph The behaviour graph.
Result A pair consisting of the start node and the state node set.

decomp-start-node(start) £

1 cases start:

2 (mk-Process-start-node; (trans) - trans,
3 mk-Service-start-node; (trans) - trans,
4 mk-Procedure-start-node; (trans) - trans)

type: (Process-start-node; | Service-start-node; | Procedure-start-node;) — Transition;
Objective Extract from a process/service/procedure start node its contained transition.
Parameters

start The start node.

Result The contained transition.

Recommendation Z.100 — Annex F.3

(03/93)

(7.3.2)

(7.3.2)

173

Domain I ndex

Active-Answer 19, 51, 61, 82
Active-Request 19, 46, 61, 82
Active-expression; 13, 14

ADMIN 22, 23, 42, 55, 58, 59, 64, 70
Admin-processor 21, 22
Alternative-expression, 14

Alternativeg 13
And-operator-identifier; 13
Anyvalue-expression, 14, 15, 78, 83
Arglist 19, 20, 45, 50, 51, 54
Argument-list 24

Argument-list; 12
Assignment-statement, 9, 14, 72, 73, 97
Auxiliary-information Annex F.2, 26, 27

Block-definition; 5, 11, 91, 92, 124, 127, 128, 129,
130, 131, 136, 140, 145, 146, 148, 171
Block-identifier| 7, 26, 89, 122, 124, 125, 130, 145,

166, 171
Block -nameg 5, 171
Block-qualifier| 5, 92, 124, 127, 136, 146, 168, 169
Block-substructure-definition; 5, 11, 92, 125, 128,
132, 137, 146
Block-substructure-name; 5, 11

Block-substructure-qualifier; 5, 92, 125, 128, 137,
146, 169

Body-Created 16, 42, 46

Body-processor 21, 29

Bool 16, 18, 19, 27, 28, 33, 40, 41, 46, 47, 48, 49,
50, 77, 85, 96, 97, 98, 99, 107, 118, 120,
121, 130, 133, 134, 161

Boolean-expression; 14

Call-node 8, 9, 72, 74

Channel-connection; 11, 130, 132, 146

Channel-definition; 5, 7, 11, 128, 130, 140, 148,
149, 161, 162, 164, 165, 166, 171

Channel-identifier| 7, 9, 11, 129, 130, 131, 132,
145, 146, 171

Channel-nameg 7, 148, 171

Channel-path, 7, 128, 129, 140, 161, 162, 164, 165,
166

Channel-to-route-connection; 5, 7, 131, 146

Closed-range 13, 86, 103

Composite-term; 12, 110

Condition-itemy 13, 86

Condition; 13

Conditional-composite-term; 12, 13

Conditional-equation; 12, 13, 108, 109, 111, 113,
117,118

Conditional-expression, 14, 78, 82

Conditional-ground-term 12, 13

174 Recommendation Z.100 — Annex F.3

Conditional-term; 13, 79, 107, 110, 111, 112, 114
Conseguence-expression; 14

Consequence 13

Create-Instance-Answer 16, 29, 74
Create-Instance-Answer| 16, 29, 42
Create-Instance-Request 16, 29, 74
Create-Instance-Request! 16, 29, 41

Create-Pid 17, 29

Create-request-node 8, 9, 72, 74 .

Data-type-definition; 5, 6, 11, 12, 22, 101

DCLASSIGN 68, 69

Decision-answer| 9, 76, 97, 99

Decision-nodg 8, 9, 72, 76, 97, 99

Decision- question; 9

Decl; Annex F.2, 90, 91

DelayF Annex F.2, 27, 28, 40, 41, 42 46, 47, 48,
49, 50, 52

Destination- block; 7

Destination, 7

Die 20, 37, 58, 64

Direct-vig 9, 18, 31, 33

Else-answer| 9, 76

ENDTRANS 61

ENVIRONMENT 7, 18, 22, 25, 26, 27, 28, 30, 31,
34, 35, 89, 90, 130, 135, 145, 159, 161, 164,
165, 166, 167

Entity-dict 22, 23, 24, 27, 28, 29, 30, 31, 34, 35, 39,
41, 42, 46, 47, 50, 52, 55, 56, 57, 58, 59, 60,
61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74,
75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101,
102, 103, 104, 105, 106, 107, 108, 119, 120,
122, 127, 128, 129, 132, 133, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 156, 158,
159, 160

Environment-admin 17, 27

Equation| 12, 109

Equations 12, 23, 105, 106, 108, 109, 111, 113,
115

Error-term 12, 13, 14, 23, 78, 102, 103, 106, 109,
110, 114, 119, 120, 121

EXPIREDF 22, 52, 88

Exceed 16

Execute-Sart 19, 60, 70

Expression; 9, 10, 13, 14, 15, 76, 78

External-signal-route-identifier; 7

FALSEVALUE 22, 23, 79, 82, 89, 99, 108, 119,
120

FORWARD 25, 130, 140, 142, 143, 162, 165, 166
FormparmDD 25, 95

Graph-node 8, 72

Ground-expression; 8, 13, 24, 78, 79, 97

Ground-termy 12, 13, 20, 23, 79, 80, 88, 89, 103,
106, 107, 109, 110, 111, 113, 114, 117, 120,
121

Identifier; 5, 7, 8, 9, 10, 11, 12, 13, 15, 22, 25, 46,
55, 63, 65, 69, 78, 79, 81, 89, 91, 93, 94, 95,
101, 106, 107, 109, 110, 114, 117, 120, 124,
125, 128, 134, 138, 139, 140, 142, 143, 147,
148, 149, 150, 152, 168, 169

I mperative-operator| 14

IN 129, 130, 131, 132, 140, 142, 145, 146, 147,
148, 149, 150, 151, 152, 164, 165, 166

INPUTSIGNAL 49

In-parameter| 6, 95

Informal-text; 5, 9, 12, 72, 73, 76, 77, 97

Initial 25

Inout-parameter| 6, 95

InoutparmDD 25, 65, 74, 95

InparmDD 25, 66, 74, 95

Inport-Created 16, 42, 55

Inport-queue 45, 46, 53, 54

Inport-queue-item 45, 53

Input-Signal 18, 19, 49, 60, 71

Input-node 8, 71, 96, 98, 154

Input-processor 21, 22

Input-signal-set 25, 60

Inst-map 26, 34

Instance-Created 16, 42, 58, 59, 64

Intg 6, 25

Is-expiredF Annex F.2, 22, 89

Literal-operator-identifier; 12
Literal-operator-name 12
Literal-signaturg 12, 101

Maximum 25, 42

Name 5, 6,7, 8,9, 11, 12, 13, 38, 171, 172
Next-Signal 18, 19, 46, 47, 60, 61, 71
Nextstate-node 9, 72

NODELAY 7, 25, 142, 143, 144, 152
Now-expression; 14, 78

NULLVALUE 22, 28, 29, 35, 55, 88, 119
Number -of-instances; 6, 93

Np 41

Ny 121

OFFSPRING 22, 23, 55, 74, 78
Offspring-Value 16, 42
Offspring-expression, 14, 15, 78
Open-rangg 13, 86, 103

OperatorDD 22, 24, 80, 101, 103, 107
Operator-application; 14, 78, 81 .
Operator-identifier; 12, 13, 14, 80
Operator -name 12

Recommendation Z.100 — Annex F.3

Operator-signature 12, 101
Or-operator-identifier; 13, 85, 86
Origin 7

Originating-block; 7
OTHERASSIGN 68, 69

OUT 129, 130, 131, 132, 140, 142, 145, 146, 147,

148, 149, 150, 151, 152, 164, 165, 166

Output-node 8, 9, 72, 73

PARENT 22, 23, 55, 78
ParameterDD 25, 94
Parent-Value 16, 42
Parent-expression, 14, 15, 78
Parent-sort-identifier| 13, 24

Path 25, 26, 28, 33, 35, 151, 157, 158

Path-direction 25, 162, 165, 166

Path-element 25, 141, 142, 144, 149, 150, 151, 152,

156, 157
Path-identifier 25
Path-item 5, 134
Path-map 26
Path-queue 40
Path-queue-item 40
PIDSORT 22, 35, 88, 120
Pid-Created 17, 30

Pid-Value 16, 17, 18, 20, 21, 22, 26, 29, 35, 36, 37,

38, 41, 43, 46, 47, 55
Pid-expression; 14

PORT 22, 23, 55, 59, 60, 61, 71, 75, 82

PROCEDURE 22, 65, 66, 74, 95

PROCESS 22, 27, 28, 31, 35, 42, 57, 58, 73, 74,

93, 159
ProcedureDD 22, 25, 65, 66, 74, 95
Procedure-definition, 6, 91, 95, 154
Procedure-formal-parameter| 6, 95

Procedure-graph, 6, 25, 70, 96, 98, 154, 173

Procedure-identifier; 9, 65, 66
Procedure-name; 5, 6
Procedure-qualifier| 5, 65, 95, 169
Procedure-start-node 6, 7, 70, 173

ProcessDD 22, 25, 28, 57, 58, 74, 88, 93, 159

Process-definition, 5, 6, 91, 93, 137, 138, 141, 142,

145, 147, 150, 153, 171
Process-formal -parameter; 6, 94

Process-graph; 6, 25, 58, 70, 93, 96, 98, 138, 147,

153, 154, 173

Process-identifier; 7, 9, 16, 18, 20, 25, 26, 29, 34,
35, 41, 42, 46, 55, 56, 57, 58, 59, 145, 147,

150, 158, 159, 167, 171
Process-namg 5, 6, 171

Process-qualifier| 5, 46, 55, 93, 138, 147, 169

Process-set-admin-map 26
Process-start-node 6, 8, 70, 173

(03/93)

175

Qualifier| 5, 22, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 101, 102, 103, 105, 106, 119, 120, 124,
125, 127, 128, 134, 136, 137, 138, 139, 140,
141, 142, 143, 145, 146, 147, 148, 149, 150,
151, 152, 168, 169

Quantified-equations; 12, 108, 109
Queue-Sgnal 18, 31, 40
Queue-Signall 18, 43, 46

Quot 22, 135, 145, 152

Range-condition; 9, 13, 24, 76, 77, 85, 99, 103
RETURN 66, 67, 72
REVEALED 8, 24, 69

REVERSE 11, 24, 25, 91, 129, 130, 132, 133, 140,
142, 143, 162, 165, 166

Reachabilities 22, 25, 28, 31, 32, 33, 34, 35, 88, 89,
135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 156, 157,
158

Reachability 25, 28, 32, 33, 34, 88, 90, 93, 94, 135,
138, 140, 141, 142, 144, 145, 146, 147, 148,
149, 150, 151, 156, 157, 158, 159

Reachability-endp 25, 35, 156, 157, 158, 159
Reachability-or-endp 156, 157
Receiver 18, 31
Receiver-Admin 40
Receiver-Value 18, 34, 40, 43
Reset-Timer 19, 46, 61, 75
Reset-node; 9, 10, 72, 75
Restricted-equation; 13
Restriction 13, 113

Result 24

Result; 12

Return-nodg 9, 72

Reveal 20, 37, 69

Reveal-map 37, 38
Reveal-map-key 37, 38

Save-signalset; 8, 71, 154

SCOPEUNIT 22, 23, 46, 52, 55, 63, 65, 73, 79, 80,
97,99

SELF 22, 23, 46, 52, 55, 58, 64, 69, 71, 73, 74, 78
SENDER 22, 23, 55, 71, 78

SERVICE 22, 28, 31, 35, 59, 60, 64, 94, 159
Sdlf-expression; 14, 78

Send-Sgnal 18, 29, 73

Sender-1d 18, 31

Sender-Value 18, 31, 40, 43, 45
Sender-expression; 14, 15, 78

ServiceDD 22, 25, 64, 88, 94, 159
Service-decomposition; 6, 93, 138, 147, 148, 153
Service-definition; 6, 91, 94, 139, 154

176 Recommendation Z.100 — Annex F.3 (03/93)

Service-graph; 6, 25, 70, 96, 98, 154, 173

Service-identifier; 7, 18, 20, 25, 55, 63, 64, 158,
159, 167

Service-name; 5, 6, 139

Service-qualifier| 5, 63, 94, 169

Service-start-node 6, 70, 173

Set-Timer 19, 46, 61, 75

Set-nodg 8, 9, 72, 75

SIGNAL 22, 73, 75, 82, 91

SgnalDD 22, 24, 73, 75, 82, 91, 133

Sgnal-Delivered 18, 31, 40, 41

Sgnal-definition 5, 6, 7, 11, 91

Sgnal-destination; 9

Sgnal-identifier; 7, 8, 9, 18, 25, 31, 33, 40, 43, 45,
46, 47, 48, 53, 54, 55, 129, 130, 131, 132,
133, 134, 153, 154, 156, 157, 158, 162, 164,
165

Sgnal-namg 5, 7

Sgnal-qualifier| 5, 91, 134, 169

Sgnal-refinement; 7, 11, 91

Sgnal-route-definition 5, 6, 7, 141, 142, 143, 150,
151, 152, 161, 162, 165, 166, 167, 172

Sgnal-route-identifier; 7, 9, 145, 147, 148, 172

Sgnal-route-name 7, 150, 152, 172

Sgnal-route-path; 7, 142, 143, 161, 162, 165, 166,
167

Sgnal-route-to-route-connection; 6, 7, 148

Sgnaturg 12

SORT 22, 85, 101, 104

SortDD 22, 24, 85, 88, 101, 104

Sort-identifier; 12, 13, 22, 23, 102, 103, 104, 106

Sort-name 5, 12

Sort-qualifier) 5, 109, 169

Sort-reference-identifier; 6, 7, 8, 9, 12, 15, 20, 24,
37, 38, 74, 85, 104, 107

Sortmap 23, 102, 106, 108, 109, 110, 115, 116, 117,
118, 119, 120, 121

Sortg 12, 106

SPONTSIGNAL 49

Spontaneous-Present 18, 46, 48, 55

Soontaneous-Signal 18, 19, 50, 60, 71

Soontaneous-transition; 8, 71, 96, 98

STOP 58, 64, 72

Sate-name 8, 9, 70

Sate-node 6, 8, 70, 71, 96, 98, 154, 173

Sg 24, 55, 56, 63, 65

Sop-Input-Port 16, 46

Sop-Instance 16, 17, 41, 58, 61, 64

Sop-node; 9, 72

Sub-block-definition; 11

Sub-channel-identifier; 11

Subsignal-definition; 11, 91

SYSTEMLEVEL 22, 39, 90

Syn-type-definition; 5, 6, 11, 13, 101

SyntypeDD 22, 24, 85, 88, 101, 104

Syntype-identifier 12, 13

Syntype-name; 13

System-definition; 5, 26, 89, 90, 122, 124, 127, 135
System-namg 5

System-qualifier| 5, 90, 124, 127, 135

Task-node 8, 9, 72, 97

Term 23

Term-class 23, 106, 121

Termrinformation Annex F.2 89

Termrreduce-map 23, 102, 103, 119

Term 12, 13, 110, 111, 114, 115

Terminator; 8, 9

Time 20, 39

Time-Answer 20, 39, 52, 83

Time-Request 20, 39, 46, 50, 83

Time-expression; 9, 10

Time-information Annex F.2, 39

Timeout-Value 19, 45, 50

Timer-active-expression; 14, 15, 78, 82

Timer-definition, 6, 9, 91

Timer-identifier; 9, 10, 15, 19, 45, 50, 51, 54

Timer-namg 9

Timer-table 45, 46

Token 5

TRUEVALUE 22, 23, 52, 76, 79, 82, 85, 88, 108,
119, 120

Transitions; 6, 7, 8, 9, 72, 97, 99, 173

TYPE 22, 101, 102, 103, 105, 106, 119, 120

TypeDD 22, 23, 88, 101, 102, 103

UNDEFINED 20, 28, 37, 55, 65, 66, 68, 69, 78, 79,
81, 85

Unquantified-equation; 12, 13, 108, 109, 111, 113,
115, 118

VALUE 22, 56, 57, 64, 65, 66, 69, 74, 80, 81, 91,
94, 95, 97, 101, 103, 107

Value 19, 20, 21, 22, 37, 39, 55, 65, 66, 68, 69, 76,
77,78, 79, 80, 81, 82, 83, 85, 86, 102, 103

Value-list 16, 18, 20, 29, 31, 40, 42, 43, 45, 47, 55,
57

Value-identifier; 12, 109, 110

Value-name 12

VarDD 22, 24, 56, 57, 64, 65, 66, 69, 81, 91, 94,
95, 97

Variable-access 14

Variable-definition, 6, 8, 91

Variable-identifier| 8, 14, 20, 24, 25, 37, 57, 65, 66,
68

Variable-name, 6, 8

ViewDD 22, 24, 81, 91

View-Answer 20, 37, 81

View-Request 20, 37, 81

View-definition, 6, 8, 91

view-expression; 14, 15, 78, 81

View-identifier; 15, 20, 38

View-name 8

Recommendation Z.100 — Annex F.3 (03/93) 177

Function Index

add-reachability 158, 159

add -signal-inport-queue 47, 53
append-chan-to-reach 148, 149, 151
append-sigroute-to-reach 150

block-scopeunit 168

check-graph 93, 94, 95, 96
collect-all-equations 101, 105
connected-block 148, 166
connected-process-or-service 150, 151, 167
convert-to-identifier 168, 169
create-local-vars 57, 64, 66
create-procedure-vars 65, 66
create-process-vars 55, 57
create-service-vars 63, 64

decomp-graph 70, 96, 98, 154, 173
decomp-start-node 70, 96, 98, 173
definition-of-SDL Annex F.2, 26
delaying-path 28, 31, 35
deliver-input-signal 49
deliver-spontaneous-signal 48, 49, 50
direction-signals-chan 130, 140, 162
direction-signals-sigroute 142, 143, 162

empty-inport-queue 46, 53
enclosing-block 38, 168
enclosing-scopeunit 35, 37, 56, 57, 59, 64, 65, 66,
168
eval-anyvalue-expression 78, 83
eval-condition-item 86
eval-condition-item-set 85, 86
eval-conditional-equations 108, 117
eval-conditional-expression 78, 82
eval-deduced-equivalence 115, 116
eval-equations 106, 108
eval-expression 73, 74, 75, 76, 78, 81, 82, 97
eval-ground-expression 57, 78, 79, 86
eval-ground-term 79
eval-ground-term-opapp 79, 80, 81, 86
eval-new-expression 78, 83
eval-operator-application 78, 81
eval-quantified-equation 108, 109
eval-range-condition 76, 85, 99
eval-timer-active-expression 78, 82
eval-unquantified-equations 108, 115, 117
eval-variable-identifier 78, 81
eval-view-expression 78, 81
exec-service-starts 58, 60
exec-service-states 58, 60
exec-service-transition 60, 61
expand-conditional-in-terms 111, 113, 114
expand-conditional -term+-in-conditions 108, 113

178 Recommendation Z.100 — Annex F.3

(03/93)

expand-conditional -term-in-equations 108, 111
extract-dict 26, 88

extract-direction-subsignals 129, 132
extract-inputsigs-decomp 153
extract-inputsigs-graph 153, 154
extract-inputsigs-grordec 153
extract-inputsigs-prcd 153, 154
extract-inputsigs-prcs 138, 153
extract-inputsigs-serv 139, 153, 154
extract-sortdict 90, 92, 93, 94, 95, 101

get-receiver 43
getpid 29, 30, 35

handle-active-request 46, 51
handle-create-in-env 29, 30
handle-create-instance-request 28, 29
handle-create-instance-request1 41, 42
handle-inputs 26, 29
handle-next-signal 46, 48
handle-queue-signal1 46, 47, 52
handle-reset-timer 46, 50, 51
handle-send-signal 29, 31
handle-set-timer 46, 50
handle-signal-delivered 41, 43
handle-spontaneous-transition 46, 47, 48
handle-stop-instance 41, 42
handle-time-request 46, 50, 52

inout-going-path-direction-chan 149, 165
inout-going-path-direction-sigroute 152, 166
inout-going -path-elem-chan 149, 152
inout-going-path-elem-sigroute 150, 151, 152
inout-going-reach-sigroute 148, 151
inout-going-reaches 140, 145
inout-going-reaches 142, 145
inout-going-reaches-block 145, 146, 148
inout-going-reaches-chan 146, 148, 150
inout-going-reaches-decomp 147, 148
inout-going-reaches-prcs 145, 147, 150
inout-going-reaches-sigroute 146, 150
inout-going-reaches-sub 146
inout-going-signals 129, 130
inout-going-signals-block 130, 131
inout-going-signals-chan 132, 149, 164
inout-going-signals-sigroute 131, 150, 151, 165
inout-going-signals-sub 131, 132
insert-input-signals 158, 159

insert-term 109

insert-term-in-term 109, 110

int-assign-stmt 72, 73

ins-call-node 72, 74

int-create-node 72, 74

int-decision-node 72, 76

int-graph 58, 64, 66, 70
int-graph-node 72
int-informal-text 72, 73
int-output-node 72, 73
ins-procedure 65, 74
int-procedure-graph 65, 66
int-process-graph 58
int-process-graph-or -service-decomp 55, 58
int-reset-node 72, 75
int-service-decomp 58
int-service-graph 63, 64
int-set-node 72, 75

int-start-node 70

int-state-node 70, 71
int-task-node 72

int-transition 70, 71, 72, 76
is-consistent-chancon 128, 130
isin-via 33

is-internal-chan 137, 161
is-internal-sigroute 136, 138, 161
is-of-this-sort 102, 106, 107
is-proper-subsig 129, 130, 133, 134
is-sig-or-subsig 129, 132, 133
is-wf-assignments 96
is-wf-boolean 120, 121
is-wf-decision-answers 96, 98
iswf-literals 101, 120

iswf-pid 120, 121
is-wf-task-node 97
is-wf-transition-answers 98, 99
is-wf-transition-assignments 96, 97
iswf-values 101, 120

make-block-dict 91, 92

make-entities 90, 92, 93, 94, 95

make-entity 90, 91
make-equivalence-classes 106

make-inter nal-reaches-block 136
make-inter nal-reaches-blocks 135, 136, 137
make-inter nal-reaches-chan 140, 142, 143

make-internal-reaches-chans 135, 137, 140, 141,
143

make-internal-reaches-decomp 138
make-inter nal-reaches-prcs 137, 138
make-internal-reaches-prcss 136, 137
make-internal-reaches-serv 139
make-internal-reaches-servs 138, 139
make-inter nal-reaches-servsigroute 143
make-inter nal-reaches-servsigroutes 138, 143
make-internal-reaches-sigroute 141, 142, 143
make-internal-reaches-sigroutes 136, 141, 143
make-internal-reaches-sub 136, 137
make-procedure-dict 91, 95
make-procedure-formal-parameters 95
make-process-dict 91, 93
make-process-formal -parameters 93, 94
make-reachabilities 89, 135

make-service-dict 91, 94
make-signal-dict 91

make-sortmap 101, 106
make-system-dict 89, 90
make-term-reduce-map 101, 102, 119
matching-answer 76
modify-procedure-vardds 65
modify-process-vardds 55, 56, 63
modify-service-vardds 63

next-signal -inport-queue 49, 53

parent-signal 133, 134
process-or-env 31, 34, 35

ppr ocess-or -ser vice-scopeunit 73, 169
propagate-refinement-block 127, 128
propagate-refinement-chan 127, 128
propagate-refinement-cpath 128, 129
propagate-refinement-sub 127, 128
propagate-refinement-sys 122, 127

range-check 69, 73, 74, 75, 80, 82, 83, 85, 97
ranges-not-overlapping 99
reduce-term 39, 52, 79, 80, 101, 103
remove-signal-inport-queue 49, 54
remove-timer-signal 51, 54
replace-term 116, 117
restrict-to-destpid 31, 34
restrict-to-destprcs-or-env 31, 34
restrict-to-signal 31, 33
restrict-to-via 31, 33
restriction-holds 117, 118
revealed-variables 37, 38

select-block 130, 145, 148, 171
select-channel 130, 132, 146, 171
select-consistent-subset 89, 122
select-consistent-subset-block 124, 125
select-consistent-subset-osub 124, 125
select -consistent-subset-sub 125
select-consistent-subset-sys 122, 124
select-process 145, 150, 171
select-signalroute 131, 146, 148, 172
sort-of-range-condition 99, 101, 103
sort-or-parent-sort 83, 101, 103, 104, 107
start-initial-processes 26, 28
start-paths 26, 28
start-process-set-admins 26, 27
start-services 58, 59

subsig-direction 132, 133

text-equality 76, 77
total-reach 156, 157
try-to-make-transition 47, 48, 49

update-endpd 140, 142, 143, 156
update-endpd’ 156, 158
update-endpd-self 138, 139, 158
update-stg 57, 66, 68, 71, 73

Recommendation Z.100 — Annex F.3 (03/93)

179

update-stg’ 68, 69
update-stg-dcl 57, 68

values-of-sort 35, 83, 99, 101, 102

180 Recommendation Z.100 — Annex F.3 (03/93)

Pr ocessor | ndex

processor input-port 2, 4, 16, 17, 18, 19, 20, 21, 22,
23,27, 41, 42, 45, 46, 47, 55, 56, 59, 60, 61,

75, 76
processor path 1, 2, 18, 26, 27, 28, 32, 33, 40

processor process-set-admin 1, 2, 4, 16, 17, 18, 21,
23, 26, 27, 28, 30, 32, 40, 41, 42, 46, 55, 58,

59

processor sdl-process 2, 4, 16, 17, 18, 19, 20, 21,
23, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52,

55, 56, 59, 60, 63, 64, 70

processor sdl-service 2, 4, 16, 17, 18, 19, 20, 21, 55,

56, 59, 60, 61, 63, 70

processor system 1, 16, 17, 18, 26, 27, 29, 40, 41,

42,73,74,88
processor tick 39

processor timer 1, 2, 20, 26, 27, 39, 46, 47, 50, 52,

83,84

processor view 1, 2, 20, 26, 27, 37, 58, 64, 69, 81,

82

Recommendation Z.100 — Annex F.3

(03/93)

181

Variable | ndex

adminmap 26, 27, 28, 29, 31, 32

instancemap 41, 42
instmap 26, 29, 30, 31

offspring 55, 56

pathmap 26, 28, 31
pidno 41, 42
pqueue 40

prcdstg 65

queue 46, 47, 49, 51
queuemap 41, 42, 43

revealmap 37

savemap 55, 56, 60, 61
saveset 46, 47, 48, 49

sender 55, 56

servinstmap 55, 56, 59, 60, 61
servstg 63

spont 46, 47, 48, 49
spontmap 55, 56, 60, 61

stg 55, 56

time-now 39
timers 46, 49, 50, 51, 52

waiting 46, 47, 48, 49, 50

182 Recommendation Z.100 — Annex F.3 (03/93)

Error Messages

§2.7.5:
§2.7.5:

§3.2.1:
§3.2.1:
83.3:

§5.2.1:

85.3.1.7:
85.3.1.7:
85.3.1.9:
§5.4.2.1:
§5.4.2.2:
85.4.2.2:

§5.4.3:

85.4.4.4.
§5.4.4.6:

Answers in decision actions are not mutually exclusive 96
No matching answer 76

Block or subblock is not in consistent subset 124
Leaf block contains no processes 124
lllegal refinement of channel 128, 129

Generation or reduction of equivalence classes of the enclosing scope unit 101
Expression, term or value is equivalent to the error term 103

Literal is equivalent to the error term 101

Value is not within the range of the syntype 69, 73, 74, 75, 80, 82

Attempt to evaluate error expression 78

The viewed value is undefined 81

Value of accessed variable is undefined 81

Ground expression in assignment statement is out of range 96

No revealed variable access can be made 37

Attempt to evaluate an anyvalue expression for an empty sort or syntype 83

Recommendation Z.100 — Annex F.3 (03/93)

183

