Super seded by a morerecent version

| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.100

TELECOMMUNICATION Annexes C and D
STANDARDIZATION SECTOR (03/93)
OF ITU

SERIES Z: PROGRAMMING LANGUAGES
Specification and Description Language (SDL)

Initial algebra model and SDL predefined data

ITU-T Recommendation Z.100 — Annexes C and D
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Super seded by a morerecent version

ITU-T Z-SERIES RECOMMENDATIONS
PROGRAMMING LANGUAGES

Specification and Description Language (SDL)
Criteriafor the use and applicability of formal Description Techniques
ITU-T High Level Language (CHILL)
MAN-MACHINE LANGUAGE
General principles
Basic syntax and dialogue procedures
Extended MML for visual display terminals
Specification of the man-machine interface
Miscellaneous

Z.100-Z.109
Z.110-7.199
Z2.200-Z.299
Z.300-2.499
Z.300-2.309
Z.310-Z.319
2.320-Z.329
Z.330-2.399
Z.400-Z2.499

For further details, please refer to ITU-T List of Recommendations.

Super seded by a morerecent version

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D Generad tariff principles

Series E Overall network operation, telephone service, service operation and human factors
Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series | Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals
Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside
plant

Series M Maintenance: international transmission systems, telephone circuits, telegraphy,
facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits
Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks
Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services termina equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V. Data communication over the telephone network

Series X Data networks and open system communication

Series Z Programming languages

Super seded by a morerecent version

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecommunica
tion Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on aworldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

Annexes C and D to ITU-T Recommendation Z.100 were prepared by ITU-T Study Group X (1988-1993) and were
approved by the WTSC (Helsinki, March 1-12, 1993).

NOTE

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

3 Due to the specialized nature of the subject matter contained herein, this annex is published in English only.

0 ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version i

Super seded by a morerecent version

CONTENTS

Page

ANNEX C — Initial AIgebra MOUEcoii i e e e e e e e e e e e e smmmmmmmmmns s e e e ennnes 1
C INFOPMAI DESCHIPLION. ittt e e e e e e e e e e e e e et e e aeeeeeeeseesaaaassssns s s s om— e e e e e

Cl1 [oo (8 ox 1T] o O 1

C.1l1 =T 0] =TT=T) - o] 1
Cc.2 S (o T= LU =R 3

C3 Terms and EXPIESSIONSciiiiiiiiiitit ettt ettt et e e e e e e e e e e e s e s e e aaabbbbee bt e e eeeeeaaaaaaaaaassessaammmmnnnnanaes 4

(O3 T R € 1= o 1= = Lo o e (=] 11 0 P UEPP PPN 4

C.4 RV LU LTS =Yg o B o = o] = LS 5

c41 Equations and qUaNtifiCAtiONoveeeiiiiiiiiiie e a s
C5 Algebraic specification and semantics (Meaning).........coouuiiiiiiiiuiiiiiie e 6...

C.6 Representation Of VAIUESuiiiiiiiiiiiiiiccc e e e e e e e e e e e s s eeeeeeenmennnnn

6
Appendix A — The formal model of non-parameterised data typesScceveeeeveiiieiicicciiiiieeeeee e
7
7

Al Many-SOrted AlgEDIaSueiiiiiiieiii e
A.2 Semantics of data type definitioNSoooo i
YN R € 1= 1= T | I oo (o7 =T o £ 7
A3 =T GV 0] TSV =1 3 I 8
A4 Semantics of algebraiC SPECIfiCAtIONS.eiii i s 9
A4l Axioms generated DY QUALIONS.iiiiiiiiiiaaee e
A.4.2 Inference rules generated by eqUALIONSccocciiiiiiiiiiii e
A.4.3 Generated derivation SYSIEMuuuiiiiiiiiiiieee e e e e e e e e e e s e e
A.4.4 Congruence relation generated by an algebraic specificationccccccovviiieiiiiiiiiennene
A4S CONGIUBNCE ClASSES. ... uuuiiiiiiiiieiieiet et e e ettt et e e e e e e e e e e e e s e e s e e ananbbbreeeaeeeeees 10
A.4.6 Quotient termM algebra.. ... 10
ANNEX D — SDL Predefined data............coiiiiiiiiiiiieiiiiieece ettt smmmmmeeeeeeme e e 11

ii Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version

©

Super seded by a morerecent version
ANNEX C

(to Recommendation Z.100)
Initial Algebra M odel

C Informal Description

C.1 Introduction

The definition of data in SDL is based ont he data kernel defined in § 5.2 of the Recommendation. Operators and values
need to be given some further meaning in addition to the former definition so interpretation can be given to expressions.

For example, expressions used in continuous signals, enabling conditions, procedure calls, remote procedure calls,
output actions, create requests, assignment statements, set and reset statements, export statements, import statemen
decisions, and viewing.

The necessary additional meaning is given to expressions by using the initial algebra formalism which is explained in
§ C.1to § C.6 below.

At any point in an SDL specification the last data type hierarchically defined will apply, but there is a set of sorts visible.
The set of sorts is the union of all sorts at levels hierarchically above the place in question as explained in § 5.2 of the
Recommendation.

(In this section the symbel is used as an equation equivalence symbol wheras in SDL symbslused for equation
equivalence so that the symbotan be used for the equality operator. The symtislused in this section as it is the
conventional symbol used in published work on initial algebras.)

The meaning and interpretation of data based on initial algebra is explained in three stages:
a) Signatures
b) Terms

c) Values

C.11 Representations

The idea that different notations can represent the same concept is commonplace. For instance, it is generally acceptec
that positive Arabic numbers (1, 2, 3,.4) and Roman numerals (I, II, Ill, I\/,.) represent the same set of numbers

with the same properties. As another example, it is quite usual to accept that prefix functional notation (plus(1,1)), infix
notation (#1) and reverse polish notation (#)JLcan all represent the same operator. Furthermore, different users may

use different names (perhaps because they are using different languages) for the same concepts so that the pairs {true
false}, {T, F}, {0,1}, {vrai, faux} could be different representations of the Boolean sort.

What is essential is the abstract relationship between identities and not the concrete representation. Thus for numerals
what is interesting is the relationship between 1 and 2 which is the same as the relationship between | and Il. Also for
operators what is of interest is the relationship between the operator identity and other operator identities and the list of
arguments. Concrete constructions such as brackets which allow us to distinguish bet)erala a(b*c) are only

of interest so that the underlying abstract concept can be determined.

These abstract concepts are embodied in an abstract syntax of the concept which may be realised by more than one
concrete syntax. For example, the following two concrete examples both describe the same data type properties but in
different concrete syntax.

newtype bool
literalstrue, false;
operators "not" :bool ->bool;

axioms
not(true) == fasg
not(not(a)) == g
endnewtype bool;

Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version 1

Super seded by a morerecent version

newtypeint literals zero, one;

operatorsplus : intint -> int;
minus : intint -> int;
axioms
plus(zero,a) == g
plus(a,b) == plus(b,a);
plus(a,plus(b,c)) == plus(plus(a,b),c);
minus(a,a) == zero;
minus(a,zero) ==g
minus(a,minus(b,c)) == minus(plus(a,c),b);
minus(minus(a,b),c) == minus(a,plus(b,c));
plus(minus(a,b),c) == minus(plus(a,c),b);
endnewtypeint;
newtype tree literals nil;
operators
tip cint -> tree;
isnil . tree -> bool;
istip . tree -> bool;
node . treetree -> tree;
sum : tree -> int;
axioms
istip(nil) == fdsg
istip(tip(i)) == true;
istip(node(t1,t2)) == fase
isnil(nil) == true;
isnil(tip(i)) == fdsg
isnil(node(t1,t2)) == fase
sum(node(t1,t2)) == plus(sum(tl),sum(2));
sum(tip(i)) ==
sum(nil) == zero;
endnewtype tree;
EXAMPLE 1
type bool is
sorts bool
opns true -> bool
fase : -> bool

not : bool -> bool
egns ofsort bool forall abool

not(true) = false
not(not(a)) = &
endtype
typeint is bool
sortsint
opns zero -> int
one : -> int
plus :intint ->int
minus: intint ->int

egns ofsort int foral ab,c:int

plus(zero,a) = g
plus(a,b) = plus(b,a);
plus(a,plus(b,c)) = plus(plus(a,b),c);
minus(a,a) = zero;
minus(a,zero) = &
minus(a,minus(b,c)) = minus(plus(a,c),b);
minus(minus(a,b),c) = minus(a,plus(b,c));
plus(minus(a,b),c) = minus(plus(a,c),b)
endtype

Recommendation Z.100 — Annex C (03/93)

Superseded by a more recent version

Super seded by a morerecent version

typetreeisint

sorts tree

opns nil -> tree
tip :int -> tree
isnil : tree -> bool
istip : tree -> bool
node : tregtree -> tree
sum : tree -> int

eqgns ofsort bool forall i:int, t1,t2:tree
istip(nil) = fdse
istip(tip(i)) = true;
istip(node(t1,t2)) = false
isnil(nil) = true;
isnil(tip(i)) = fdse

isnil(node(t1,t2)) = false
ofsort int foral i:int, t1,t2:tree
sum(node(t1,t2)) = plus(sum(tl),sum(t2));
sum(tip(i)) =
sum(nil) = zero
endtype

EXAMPLE 2

This example is used for illustration. Initialy the definition of sorts and literals will be considered. It should be noted
that literals are considered to be a special case of operators, that is operators without parameters.

We can introduce some sorts and literalsin the first form by

newtype int literals zero, one; ...
newtype bool literals true, false; ...
newtype tree literals nil; ...

or in the second form by

sorts bool

opns true : -> bool
fdse : -> bool

sortsint

opns zero @ ->int
one : ->int

sorts tree

opns nil T > tree

In the following the second form only will be used as that is closest to the formulation used in many publications on
initial algebra. It should be noted that the form of terms is the same in both cases and the most significant difference is
the way in which literals are introduced. It should be remembered that it is necessary to adopt a concrete notation to
communicate the concepts, but the meaning of the algebras is independent of the notation so that systematic renaming of
names (retaining the same uniqueness) and a change from prefix to polish notation will not change the meaning defined
by the type definitions.

Cc.2 Signatures

Associated with each sort will be one or more operators. Each operator has an operator functionality; that is, it is defined
to relate one or more input sorts to a result sort.

Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version 3

Super seded by a morerecent version

For example, the following operators can be added to the sorts defined above:

sorts bool

opns true -> bool
fase : -> bool
not . bool -> bool

sortsint

opns zero -> int
one -> int
plus : intint -> int
minus : int,int -> int

sortstree

opns nil : -> tree
tip sint -> tree
isnil : tree -> bool
istip : tree -> bool
node : treetree -> tree
sum : tree -> int

The signature of the type which applies is the set of sorts, and the set of operators (both literals and operators with
parameters) which are visible.

A signature of atypeis called complete (closed) if for every operator in the signature, the sorts of the functionality of the
operator are included in the set of sorts of the type.

C3 Termsand expressions

The language of interest is one which allows expressions which are variables, literals or operators applied to expressions.
A variable is a data object which is associated with an expression. Interpretation of a variable can be replaced with
interpretation of the expression associated with the variable. In this way variables can be eliminated so that interpretation
of an expression can be reduced to the application of various operatorsto literals.

Thus, on interpretation an open expression (an expression involving variables) becomes a closed expression (an
expression without variables) by providing the open expression with actual arguments (that is, closed expressions).

A closed expression corresponds to a ground term.

The set of al possible ground terms of a sort is called the set of ground terms of the sort. For example, for bool as
defined above the set of ground terms will contain

{true, fase, not(true), not(false), not(not(true)), ...}

It can be seen that even for this very simple sort the set of ground termsisinfinite.

C.3.1 Generation of terms
Given asignature of atype, it is possible to generate the set of ground terms for that type.

The set of literals of the type are considered to be the basic set of ground terms. Each literal has a sort, therefore each
ground term as a sort. For the type being defined above, this basic set of ground terms will be

{zero, one, true, false, nil}

For each operator in the set of operators for the type, ground terms are generated by substituting for each argument all
previously generated ground terms of the correct sort for that argument. The result sort of each operator is the sort of the
ground term generated by that operator. The resulting set of ground terms is added to the existing set of ground terms to
generate a new set of ground terms. For the type above, thisis

{ zero, one, true, false, nil,
plus(zero,zero), plus(one,one), plus(zero,one), plus(one,zero),
minus(zero,zero), minus(one,one), minus(zero,one), minus(one,zero),
not(true), not(false), tip(zero), tip(one),
isnil(nil), istip(nil), node(nil, nil), sum(nil)}

4 Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version

Super seded by a morerecent version

This new set of ground terms is then taken as the previous set of ground terms for a further application of the last algo-
rithm to generate a further set of ground terms. This set of ground terms will include

{ zero, one, true, false, nil,
plus(zero,zero), plus(one,one), plus(zero,one), plus(one,zero), . . .
plus(zero,plus(zero,zero)), plus(zero,plus(one,one)),

plus(zero,sum(nil)),

isnil(node(nil,nil)), istip(node(nil,nil)), node(nil,node(nil,nil)),
. sum(node(nil,nil)) }

This algorithm is applied repeatedly to generate all possible ground terms for the type which is the set of ground terms
for the type. The set of ground terms for a sort is the set of ground terms of the type which have that sort.

Normally generation will continue indefinitely yielding an infinite number of terms.

C4 Values and algebras

Each term of a sort represents a value of that sort. It can be seen from above that even a simple sort such as bool has an
infinite number of terms and hence an infinite number of values, unless some definition is given of how terms are
equivalent (that is, represent the same value). This definition is given by equations defined on terms. In the absence of
istip and isnil the sort bool can be limited to two values by the equations

not(true) = false;

not(false) = true

Such equations define terms to be equivalent and it is then possible to obtain the two equivalent classes of terms

{true, not(false), not(not(true)), not(not(not(false))), ...}
{fase, not(true), not(not(false)), not(not(not(true))), ...}

Each equivalence class then represents one value and members of the class are different representations of the same
value.

Note that unless they are defined equivalent by equations, terms are non-equivalent (that is, they do not represent the
same value).

An algebra defines the set of terms which satisfies the signature of the algebra. The equations of the algebra relate terms
to one another.

In general there will be more than one representation for each value of asort in an algebra.
An agebrafor agiven signatureisan initial algebraif and only if any other algebra which gives the same properties for
the signature can be systematically transformed onto the initial algebra. (Formally such a transformation is known as a

homomorphism.)

Providing not, istip and isnil always produce values in the equivalence classes of true and false, then an initial algebra
for bool isthe pair of literals

{true, false}

and no equations.

C.4.1 Equations and quantification

For a sort such as bool, where there are only a limited number of values, all equations can be written using only ground
terms, that isterms which only contain literals and operators.

When a sort contains many values, writing all the equations using ground terms is not practical and for sorts with an

infinite number of values (such as integers), such explicit enumeration becomes impossible. The technique of writing
guantified equationsis used to represent a possibly infinite set of equations by one quantified equation.

Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version 5

Super seded by a morerecent version

A quantified equation contains value identifiers in terms. Such terms are called composite terms. The set of equations
with only ground terms can be derived from the quantified equation by systematically generating equations with each
value identifier substituted in the equation by one of the ground terms of the sort of the value identifier. For example:

foral b : bool not(not(b)) = b

represents
not(not(true)) = true;
not(not(false)) = fase

An aternative set of equations for bool can now be taken as

foral b : bool
not(not(b)) b;
not(true) = fase

When the sort of the quantified value identifier is obvious from context, it is usual practice to omit the clause defining
the value identifier so that the example becomes

not(not(b)) b;
not(true) = fase

C5 Algebraic specification and semantics (meaning)

An agebraic specification consists of a signature and sets of equations for each sort of that signature. These sets of
equations induce equivalence relations which define the meaning of the specification.

The symbol = denotes an equivalence relation that satisfies the reflexive, symmetric and transitive properties and the
substitution property.

The equations given with a type alow terms to be placed into equivalence classes. Any two terms in the same
equivalence class are interpreted as having the same value. This mechanism can be used to identify syntactically
different terms which have the same intended value.

Two terms of the same sort, TERM 1 and TERM?2, are in the same equivalence class if
a) thereisanequation TERM1=TERM2, or
b) one of the equations derived from the given set of quantified equationsis TERM1=TERM?2, or
¢) i) TERM1isinan equivalence class containing TERMA, and
ii) TERMZ2isin an equivaence class containing TERMB, and

iii) there is an equation or an equation derived from the given set quantified equations such that
TERMA =TERMB, or

d) by subgtituting a sub-term of TERM1 by a term of the same class as the sub-term producing a term
TERM1A it is possible to show that TERM1A isin the same class as TERM2.

By applying all equations the terms of each sort are partitioned into one or more equivalence classes. There are as many
values for the sort as there are equivalence classes. Each equivalence class represents one value and every member of a
class represents the same value.

C.6 Representation of values

Interpretation of an expression then means first deriving the ground term by determining the actual value of variables
used in the expression at the point of interpretation, then finding the equivalence class of this ground term. The
equivalence class of thisterm determines the value of the expression.

Meaning is thus given to operators used in expressions by determining the resultant value given a set of arguments.

It is usual to choose a literal in the equivalence class to represent the value of the class. For instance, bool would be
represented by true and false, and natural numbers by 0, 1, 2, 3, etc. When there is no literal then usualy a term of
the lowest possible complexity (least number of operators) is used. For instance, for negative integers the usual notation
is—1, -2, -3, etc.

6 Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version

Super seded by a morerecent version
Appendix A

Theformal model of non-parameterised data types?

A.l Many-sorted algebras

A many-sorted algebraA is a2-tuple <D,0> where

a) D isset of sets, and the elements of D are referred to as the data carriers (of A); the elements of a data-
carrier dc arereferred to as data-values and

b) Oisaset of total functions, where the domain of each function is a Cartesian product of data carriers of A
and the range of one of the data carriers.

A2 Semantics of data type definitions
A.2.1 General concepts

A.2.1.1 Signature

A signature SIG is atuple <S,0P> where
a) Sisaset of sort-identifiers (also referred to as sorts); and
b) OPisaset of operators.

An operator consists of an operation-identifier op, a list of (argument) sorts w with elements in S, and a (range)
sort s S. Thisis usually written as op:w - s. If w is equa to the empty list, the op:w - sis called anull-ary operator or
constant symbolof sort s.

A.2.1.2 Signature morphism
Let SIG1=<$;,0P1> and SIG,=<S,,0P,> be signatures. A signature morphismg:SIG4 - SIG, isapair of mappings
g =<0s:S1 - Sp,gop:OP71 — OP2>
such that for al e-opid; = <opidfy, <gs(e-sidf,), ..., gs(e-sidfy)>, gs(e-res), pos > [1 OP;
gop(e-opidq) = <opidfy, <(e-sidfy), ..., (e-sidk)>, (e-res), pos >
for some operation-identifier opidf».
A.213 Terms

Let V be any set of variables and let <S,OP> be a signature. The sets TERM(OP,V,s) of terms of sort sS with
operatorsin OP and variablesin V, are defined inductively by the following steps:

a) eachvariablex:sOV isin TERM(OP,V,s);

1) The text of this Appendix has been agreed between CCITT and |SO as a common formal description of the initial algebra model
for abstract data types. As well as appearing in this Recommendation, this text (with appropriate terminology, typographical and
numbering changes) also appears in ISO 1S8807. 8§ A.1, A.2.1.1, A.2.1.2, A.2.1.3, A.21.4, A.2.15 A2.1.6, A3, A4l A4d2,
A4.3, Ad4 A45, and A.4.6, of this Appendix appear in 8§ 5.2, 7.2.2.1, 7.3.2.8, 7.2.2.2,7.2.2.3, 7.2.2.4, 7.2.243.4,7, 7
7.4.2.2,7.4.3, 7.4.3 and 7.4.4 of 1IS8807 respectively. The terminokmgiesientifier, operator, variable-identifier, variable,
algebraic specification SPEC and operations of this Appendix are replaced kgprt-variable, operation-variable, value-
variable, value-variable, data presentation pres andfunctions respectively in 1IS8807.

Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version 7

Super seded by a morerecent version
b) each null-ary operator op O OP with res(op)= sisin TERM(OP,V,s);

c¢) if the terms t; of sort 5§ are in TERM(OP\V,s) for i=1,...,n, then for each opd OP with
arg(op) = <sq,...,Sy> and res(op)=s, op(ty,...,tn) isin TERM(OP,V,s).

If term t isan element of TERM(OP,V,s) then sis called the sort of t, denoted as sort(t). The set TERM(OP,s) of ground
terms of sort s 0 Sisdefined as the set TERM(OP{},s).

A.2.1.4 Equations

An equation of sort swith respect to a signature <S,OP> isatriple<V,L,R> where
a) Visasetof variable-identifiers; and
b) L,RO TERM(OP,V,s); and
¢ sOS

An equation €=<{},L’,R™> is a ground instanceof an equation e=<V,L,R>, if L’,R’ can be obtained from L,R for each
variablev:sin V, replacing all occurrences of that variable in L,R by the same ground term with sort s.

The notation L=R is used for the ground instance <{},L,R> of an equation.

NOTE — Also an equation <V,L,R> may be written L=R if no semantical complications are thus introduced.

A.2.1.5 Conditional equations
A conditional equation of sort s with respect to the signature <S, OP> isatriple <V,Eq,e>, where
a) Visaset of variable-identifiers; and
b) Eqisaset of equationswith respect to <S, OP>, with variablesin V; and
Cc) eisanequation of sort swith respect to <S, OP>, with variablesin V.
A.2.1.6 Algebraic specifications
An algebraic specification SPEC is atriple <S,OP,E> where
a) <S,0P>isasignature; and

b) Eisasetof conditional equations with respect to <S,0OP>.

A3 Derivation systems

A derivation system isa 3-tuple D=<A,Ax,I> with:
a) A aset, the elements of which are called assertions;
b) ALAX the set of axioms;

¢) |asetof interfacerules.

Each interference rule ROI has the following format

where Py,...,Pn,QUA.

8 Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version

Super seded by a morerecent version

A derivation of an assertion P in a derivation system D is a finite sequence s of assertions satisfying the following
conditions:

a) thelast element of sisP;

b) if Qisaneement of s, then either QUAX, or there existsarule ROI

with Py,...,P, elements of s preceding Q.

If there exists a derivation of P in a derivation system D, this is written D |-P. If D is uniquely determined by context this
may be abbreviated to |-P.

A4 Semantics of algebraic specifications

All occurrences of a set of sorts S, a set operations OP, and a set of equations E in A.4 refer to a given algebraic
specification SPEC=<S,0P,E> as defined in A.2.1.6.

In order to define the semantics of an algebraic specification SPEC, a derivation system associated with SPEC is used.
This derivation system is defined in A.4.1-A.4.3. Using this derivation system a relation on the set of ground terms with
respect to <S,OP,E> and congruence classes are defined in A.4.4 and A.4.5. This relation is used in A.4.6 to define an
algebra (see A.1) that represents the data type that is specified by <S,0OP,E>.

A.41 Axiomsgenerated by equations

Let ceq be a conditional equation. The set of axioms generated by ceq, notation Ax(ceq), is defined as follows:
a) if ceq=<V,Eq,e> with B¢(}, then Ax(ceq)={}; and
b) if ceq=<V.{},e> then Ax(ceq) is the set of all ground instances of e (see A.2.1.3).

A.42 Inferencerulesgenerated by equations

Let ceq be a conditional equation. The set of inference rules generated by ceq, notation Inf(ceq), is defined as follows:
a) if ceq=<V,{},e>, then Inf(ceq)={}; and

b) if ceq=<V,{ey...,& }, €> with n>0, then Inf(ceq) contains all rules of the form

where g',..., &/,e' are ground instances of,.e., g,e respectively, that are obtained by, for each
variable x occurring in V, replacing all occurrences of that variablg in,es,,e by the same ground term
with sortsort(x).

A.43 Generated derivation system

The derivation system D=<A,Ax,I> (see A.3) generated by an algebraic specification SPEC=<S,0P,E> is defined as
follows:

a) Ais the set of all ground instances of equations w.r.t. <S,OP>; and

b) Ax=[l{Ax(ceq) | cedlE} O ID,
with ID={t=t | tis a ground term}; and

Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version 9

Super seded by a morerecent version

c) 1=0{Inf(ceq) | ceqOE} O SI,
where Sl is given by the following schemata:

) 1=t
t2= tl

ii t1=to, tr=t
) % for all ground termsty, t,, t3; and
17 '3

for al ground termst, t,; and

iii) t1=ty,..., th=ty
op(ty,...,th) =op(ty,...,ty)

for all operators op:sy,...,5,— S0 OP with n>0 and all ground terms gfitof sort $for i=1,...,n.

A.44 Congruencerelation generated by an algebraic specification

Let D be the derivation system generated by an algebraic specification SPEC=<S,0P,E>. Two groupdnerierée
calledcongruent with respect to SPEC, notatiofEtpecty, if

D |- t=ty
A.45 Congruence classes

The SPEC-congruence class [t] of aground term t isthe set of all terms congruent to t with respect to SPEC, i.e.
[t] = {t'| t =spect}
A.46 Quotient term algebra

The semantical interpretation of an algebraic specification SPEC=<S,0P,E> is the following many-sorted algebra
Q=<Dq,0g>, caled the quotient term algebra, where

a) Dgqistheset {Q(s) |sOS} where
Q(s9)={[t] | tisground term of sort s} for each sJS; and

b) Oqisthe set of operations{op’ | opd OF}, wherethe op’ are defined by

10 Recommendation Z.100 — Annex C (03/93) Superseded by a more recent version

Super seded by a morerecent version
Annex D

(to Recommendation Z.100)

SDL Predefined data

This Annex defines data sorts and data generators defined in the implicit package Predefined.

NOTE — § 5.3.1.1 of the Recommendation defines the syntax and precedence of special operators (infix and monadic), but
the semantics of these operators are defined by the data definitions in this section.

The remaining part of the annex isgiven in SDL.
* C.1 Boolean sort */

/* C.1.1 Definition */

newtype Boolean
literals True, False;

operators
"not" Boolean > Boolean;
/*
= : Boolean, Boolean > Boolean; The "=" and "/=" operators
= Boolean, Boolean > Boolean; are implied. See § 5.3.1.4
*/
"and" Boolean, Boolean > Boolean;
"or" Boolean, Boolean > Boolean;
" xor" Boolean, Boolean > Boolean;
"=>" Boolean, Boolean > Boolean;
axioms
not (True) = = False;
not (False) ==True;
True and True ==True;
True and False = = False;
Falseand True = = False;
Falseand False = = False;
Trueor True == True;
Trueor False == True;
Falseor True == True;
Falseor False == False;
Truexor True = = False;
Truexor False ==True;
Falsexor True ==True,
Falsexor False = = False;
True => True = = False;
True => False = = False;
False => True = =True;
False => False = =True;

endnewtype Boolean;

Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version 11

Super seded by a morerecent version

[Cl1l2 Usage */

/*

The Boolean sort is used to represent true and false values. Often it is used as the result of a comparison.

The Boolean sort is used by many of the short-hand forms of datain SDL such as axioms without the "==" symbol, and
the implicit equality operators"=" and "/=".
*/
* C2 Character sort */
/¥ C21 Definition */
newtype Character
literals
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF VT, FF, CR, SO, 9,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, 14, 1S3, 182, 18],
L L 2P - R R S
(G I T T
o, "1 2", 3, '4' '5' '6', '7T]
"8, 9, ity sy = s ey
'@', 'A', 'B', 'C' 'D' 'E' 'F' 'G}
B T e e e I L N O I
P, 'QY 'RY 'S, T, UYL VL "W
XL, oz, \oooy, oy Y
ootal, ‘b, e, tdYy e, L gl
“hy, iy gy k', Iy 'm' 'n' ‘'o
', 'q', 'rf s', 't 'u', v, 'w’,
XL otyhotzh 1L). T DEL
I ++1vis an apostrophe, 'is a space, ~'i$ an overline or tilde */
operators
/*
=" : Character, Character- Boolean; The "=" and "/=" operators
=" Character, Character- Boolean; are implied. See § 5.3.1.4
*/
<" : Character, Character- Boolean;
=" Character, Character- Boolean;
" : Character, Character- Boolean;
>=" Character, Character- Boolean;
Num Character > Integer;
Chr Integer > Character;
axioms
Num (NUL) == 0; Num (SOH) == 1, Num (STX) == 2; Num (ETX) == 3;
Num (EOT) == 4; Num (ENQ) == 5; Num (ACK) == 6; Num (BEL) == 7;
Num (BS) == §; Num (HT) == 9; Num (LF) == 10; Num (VT) == 11;
Num (FF) == 12; Num (CR) == 13; Num (SO) == 14 Num (SI) == 15;
Num (DLE) == 16; Num (DC1) == 17; Num (DC2) == 18; Num (DC3) == 19;
Num (DC4) == 20; Num (NAK) == 21; Num (SYN) == 22; Num (ETB) == 23;
Num (CAN) == 24; Num (EM) == 25; Num (SUB) == 26; Num (ESC) == 27,
Num (1S4) == 28; Num (IS3) == 29; Num (1IS2) == 30; Num (IS1) == 31;
Num () == 32; Num (! == 33; Num (") == 34 Num (#") == 35;
Num (' &") == 36; Num (%" == 37; Num (' &") == 38; Num(''") == 39;
Num (' (") == 40; Num ((')") == 41, Num (" *) == 42 Num ("+") == 43;
Num (', ") == 44; Num (-7 == 45 Num (*. ") == 46; Num (' /") == 47,
Num (" 0") == 48; Num (1) == 49; Num (27 == 50; Num (3" == 51,
Num ("4") == 52; Num (5" == 53; Num (6" == 54 Num (7" == b55;
Num (" 8") == 56; Num (9" == 57; Num (' : ") == 58§; Num ('; ") == 59;
Num (' <) == 60; Num (=" == 61, Num ('>") == 62 Num ('?") == 63;
Num(@'") == 64 Num (A") == 65; Num(B') == 66; Num(C") == 67,
Num (D' == 68; Num(E") == 69; Num(F") == 70; Num(G") == 71,
Num(HY) == 72 Num (1) == 73; Num ('J") == 74 Num (‘K" == 75

12

Recommendation Z.100 — Annex D

(03/93)

Superseded by a more recent version

Super seded by a morerecent version

Num(L') == 76 Num(M") == 77, Num(N’) == 7§ Num(O’') == 79
Num (' P’) == 80; Num(' Q') == 81, Num(R") == 82 Num(S’) == 85
Num(T') == 84 Num(U’) == 85 Num(V’) == 86 Num(W’) == 87,
Num(X') == 8§; Num(Y’') == 89 Num(zZ') == 90 Num ('[") == 01,
Num (' \") == 92 Num(]’) == 093 Num(~") == 94 Num(_’) == 95
Num(") == 96; Num(a’') == 097, Num(b’) == 08§; Num (' c’) == 99;
Num (' d’) == 100; Num(e’) == 101; Num (') == 102 Num(g’) == 103
Num(h’") == 104; Num (' i’) == 105; Num(j’) == 106; Num(k') == 107,
Num (1) == 108; Num(m’) == 109 Num(n’) == 110 Num(o’) == 111,
Num (' p’) == 112 Num(q’) == 113 Num(r’) == 114 Num (' s’) == 115
Num (' t’) == 116; Num(u’) == 117, Num(v’) == 118 Num(w’) == 119
Num (' x") == 120; Num(y’) == 121; Num(z') == 122 Num({') == 123
Num (' ") == 124 Num(}’) == 125 Num (™) == 126; Num (DEL) == 127,

[* definition of = and /= is implied ¥

for all a,b in Character (
for all i in package Predefined Integer (
* definition of <, >, <=, and >=F
a<b == Num(a)< Num(b);
a>b == Num(a)> Num(b);
a<=b == Num(a) <= Num(b);
a>=b == Num(a) >= Num(b);
* definition of Chr ¥
Chr(Num(a)) == a;
Chr(i+128) == Chr(i),));
endnewtype Character;

I* c.22 Usage F
/*

The Character sort defines character strings of length 1, where the characters are those of the International Alphabet
No. 5. These are defined either as strings or as abbreviations according to the International Reference Version of the
alphabet. The printed representation may vary according to national usage of the alphabet.

There are 128 different literals and values defined for Character. The ordering of the values and equality and inequality
are defined.

*/

[* C.3 String generator *

I* C.3.1 Definition *

generator String type Itemsort,literal Emptystring)
[* Strings are "indexed" from ond *

literals Emptystring;
operators
MkString : Itemsort > String; /* make a string from an iteny *
Length . String > package Predefined Integer;
/* length of string 7
First . String > [temsort; /* first item in string ki
Last : String > [temsort; /* last item in string t
"I ;. String, String > String; /* concatenation I
Extract! . String,package Predefined Integer
-> |temsort; /* get item from string t
Modify! : String, package Predefined Integer, Itemsort
-> String; /* modify value of string f
Substring : Stringpackage Predefined Integepackage Predefined Integer
-> String; /* get substring from string /*

[* substring (s, i, j) gives a string of length j starting from the ith eleméent *

Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version 13

Super seded by a morerecent version

axioms
for all item, itemi, item;j, item1, item2, in Itemsort (
for all, s, s1, s2, s3in String (
for all i, j, in package Predefined Integer (
[* constructors are Emptystring, MkString, and "/ / " */
[* equalities between constructor terms */

s// Emptystring ==s5;
Emptystring//s ==s5;
(s1// s2)//1s3 ==sl//(s2//s3);

[* definition of Length by applying it to all constructors*/
type String Length (Emptystring) ==0;
type String Length (MkString (item))
type String Length (s1 // s2)

1
1

1
Length (s1) + Length (s2);

/* definition of Extract! by applying it to al constructors,
Error! cases handled separately */

Extract! (MkString (item), 1) == item;

i <= Length (s1) = => Extract! (s1//2,i) == Extract! (s1, i);

i > Length (s1) = => Extract! (s1//s2,i) = = Extract! (s2, i-Length (s1));
i <=0 or i>Length(s) = => Extract! (s, i) == Error!;

* definition of First and Last by other operations */
First (s) == Extract! (s, 1);
Last (s) == Extract! (s, Length (s));

[* definition of Substring (s, i, j) by induction onj,

Error! cases handled separately */
i>0 and i-1 <=Length (s) => Substring (s, i, 0) = = Emptystring;
i>0 and j>0 and i+j—1 <=Length (s) =>

Substring (s, i, j) = = Substring (s, i, j-1) / / MkString (Extract! (s, i+j—1));
i<=0 or j<0 or i+j—1>Length (s) = => Substring (s, i, j) = = Error!;

[* definition of Modify! by other operations */
Modify! (s, i, item) = = Substring (s, 1, i-1) / / MkString (item) / /
Substring (s, i+1), Length (s)-i);)));
endgenerator String;

I* C.3.2 Usage */

/*
A string generator can be used to define a sort which allows strings of any item sort to be constructed. The most
common use will be for the Charstring defined below.

The Extract! and Modify! operators will typically be used with the shorthands defined in § 5.3.3.4 and § 5.4.3.1 for
accessing the values of strings and assigning values to strings.
*/

I* c4 Charstring sort ~ */
I* C4.1 Definition */

newtype Charstring String (Character, ')
adding literals nameclass
0 T &)ortor (T))+
[* character strings of any length of any characters from a space '
to an overline™ ' */
[* equations of the form
'‘ABC'=="AB'// 'C},
are implied — see § 5.3.1.2 */
map for all cin Charactetiterals (
for all charstrin Charstringiterals (
Spelling (charstr) = = Spelling (c) = =>
charstr = = Mkstring (c) ;));
/* string 'A' is formed from character 'A’ etc. */
endnewtype Charstring;

14 Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version

Super seded by a morerecent version
I C42 Usage */

/*

The Charstring sort defines strings of characters. A Charstring literal can contain printing characters and spaces. A non
printing character can be used as a string by using Mkstring, for example Mkstring(DEL).

Example:

synonym newline_prompt Charstring = Mkstring(CR) / / Mkstring(LF) / /' $>';
*/

1* C5 Integer sort */

I* C5.1 Definition */

newtype I nteger

literalsnameclass(" 0’ :*9')* (0’ :"9");
[* optional number sequence before one of the numbers0to 9*/

operators
e : Integer > Integer;
" . Integer, Integer > Integer;
= : Integer, Integer > Integer;
R . Integer, Integer > Integer;
A : Integer, Integer > Integer;
"mod" : Integer, Integer > Integer;
"rem" : Integer, Integer > Integer;

[* The "=" and =" operator signatures are implied see § 5.3.1.4
= . Integer, Integer > Boolean;

=" : Integer, Integer > Boolean;
*/

"< . Integer, Integer > Boolean;
>t . Integer, Integer > Boolean;
=" : Integer, Integer > Boolean;
">=" . Integer, Integer > Boolean;
Float : Integer > Real;

[* axioms innewtype Real definition ¥
Fix . Real > Integer;

[* axioms innewtype Real definition ¥
noequality;

axioms

for all a,b,cin Integer (
[* constructors are 0, 1, +, and unary/— *
[* equalities between constructor ternis *

(a+b)+c ==a+ (b +c);
a+b ==b+a;
0O+a ==

a+(-a) ==0;
—a)+(=b) ==—(a+bh);
type Integer — 0 ==0;

-(-2a) ==gq

[* definition of binary "—" by other operationg *

a-b ==a+(-h);

[* definition of "*" by applying it to all constructors/*
0O*a ==0:

l*a ==a;

(-a)*b ==-(a*b);

(a+b)*c ==a*c+b*c;

Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version 15

Super seded by a morerecent version

[* definition of "<" by applying it to al constructors*/

a<b ==0<(b-a);

type Integer 0 <0 == False;

typelinteger0 <1 ==True;

O<a ==True==>0 < (— aF= False;
O<aandO<b ==True==>0< (a+ bF= True;
[* definition of ">", "=", "/=", "<=", and ">=" by other operationd *
a>b ==b<ag;

a=bhb == not (a < bor a > b);

al=b == not (a =b);

a<=b == a<hora=b;

a>=b == a>bora=bh;

/ definition of "/ by other operations/*

al/ 0== Error!;

a>=0andb>a== True==>al/b == 0;
a>=0andb<=aandb>0== True==>al/b == 1+ (a-by b;
a>=0andb<0== True ==> a/b == (a/ (- b));
a<O0andb<0 == True==>al/b == (—a)/ (- b);
a<Oandb>0 == True==>al/b == —((—a) b);

[* definition of "rem" by other operationd *
aremb == a-b*(a/b);

[* definition of "mod" by other operationd *

a>=0andb>0 ==> amod b== arem b;

b <0==>amod b == amod (-b);
a<O0andb>0andaremb=0 ==>amod b== 0;
a<O0andb>0andaremb<0 ==>amod b== b +arem b;
amod 0 == errorl;

/* definition of literals ¥

typelinteger2 ==1+1; typeinteger 3 == 2+ 1;
typeInteger4 ==3+1; typeinteger5 == 4+ 1;
typelinteger6 ==5+1; typeinteger 7 == 6 + 1;
typelinteger8 ==7+1; typelnteger 9 == 8+1;);

map /* literals other than O to 9/*
for all a,b,cin Integerliterals (
Spelling(a)== Spelling(b)/ / Spelling(c), Length (Spelling(cy=1
==>a==b*(9+1)+c);
endnewtype Integer;

I* C.5.2 Usage F

/*
The Integer sort is used for mathematical integers with decimal notation.
*
/
I* C.6 Natural syntype I
I* c6.1 Definition *

syntype Natural = Integeconstants >= 0 endsyntype Natural;

I* C.6.2 Usage i

J*

The natural syntype is used when positive integers only are required. All operators will be the integer operators but when

avalueis used as a parameter or assigned the value is checked. A negative value will be an error.
*/

16 Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version

Super seded by a morerecent version

I* (o Real sort */
I* C71 Definition */
newtype Real
literalsnameclass((C 0’ :"9")*(CO0':"9'Ph ((C 0" :"9")*"." (0" :"9")+);
operators
o Real > Real;
" Real, Real > Real;
o Real, Real > Real;
" . Real, Real > Real;
e : Real, Real > Real;
/* The "="and "/=" operator signature are implied
—see §5.3.14
= Real, Real > Boolean;
=" Real, Real > Boolean;
*/
"<" : Real, Real >Boolean;
St Real, Real > Boolean;
R Real, Real > Boolean;
>=" Real, Real > Boolean;
noequality;

axioms
for all r,sin Real (
for all a,b,c,din Integer (
[* constructors are Float and'*/
/* equalities between constructor terms allow to reach always a form
Float (a)/ Float (b) where b > 0/*
r / Float (0) == Error!;
r / Float (1) ==r;
c/=0 ==>Float (a)/ Float (b) ==Float (a*c)/ Float (b*c);
b/=0andd /= 0 ==>
(Float (a)/ Float (b))/ Float (c) / Float (d))==
Float (a*d) / Float (b*c);

[* definition of unary "-" by applying it to all constructors *
— (Float (a) Float (b)) == Float (— a) Float (b);

[* definition of "+" by applying it to all constructorg *
(Float (a)/ Float (b)) + (Float (c) Float (d))==
Float (a*d + c*b)/ Float (b*d);

[* definition of binary "—" by other operationg *
r—s==r+(-5s);

[* definition of "*" by applying it to all constructors/*
(Float (a)/ Float (b)) * (Float (c) Float (d))== Float (a*c)/ Float (b*d);

* definition of "<" by applying it to all constructord *
b > 0and d > 0==> (Float (a)/ Float (b)) < (Float (c}j Float (d))==a*d <c * b;

[* definition of ">", "=","/=", "<=", and ">=" by other operationd *
r>s==s<r;

r=s== not (r<sorr>s),

r/=s== not (r=s);

r<=s==r<sorr=s;

r>=s==r>sorr=s;

/* definition of Fix by applying it to all constructorg *
a>=band b >0==>

Fix (Float (a)/ Float (b))== Fix (Float (a-bY Float (b)) + 1;
b >aand a >= 0==>

Fix (Float (a)/ Float (b))==0;

Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version

17

Super seded by a morerecent version

a<0andb>0==>
Fix (Float (a) / Float (b)) == — Fix (Float (— aJ Float (b)) — 1,));

map
for all r, sin Realliterals (
for all i, j in Integerliterals (

Spelling (r) == Spelling (i) ==>r == Float (i);
Spelling (r) == Spelling (i) ==>i == Fix (r);
Spelling (r) == Spelling (i)// Spelling (s),
Spelling (s) == ""J/ Spelling (j)==>r==Float (i) + s;
Spelling (r) == ""// Spelling (i), Length (Spelling (iy=1
==>r==Float (i)/ 10;
Spelling (r) ==""// Spelling (i)// Spelling (j),

Length (Spelling (i)) == 1, Spelling (sF="."// Spelling (j)
==>r==(Float (i) + s)/10;));
endnewtype Real;

I* C.7.2 Usage F

/*

The real sort is used to represent real numbers. The real sort can represent all numbers which can be represented as one

integer divided by another. Numbers which cannot be represented in this way (irrational numbers — for¥Xaanple

not part of the real sort. However, for practical engineering a sufficiently accurate approximation can usually be used.
Defining a set of numbers which includes all irrationals is not possible without using additional techniques.

*/

I* C.8 Array generator */
[* C.8.1 Definition */

generator Array (type Index, type Itemsort)

operators
Make! : Itemsort -> Array;
Modify! : Array, Index, Itemsort -> Array;
Extract! : Array, Index -> |[temsort;
axioms

for all item, iteml, item2, itemi, itemj in Itemsort (
for all i, j, iposin Index (
for all a sin Array (

type Array Extract! (Make! (item), i) == item;
izj==>

Modify! (Modify! (s, i, iteml), j, item2) == Modify! (s, i, item2);
izj==>

Extract! (Modify! (a, i, item), j) == item;
i=j==Fase==>

Extract! (Modify! (a, i, item), j) == Extract! (aj);
i=j==Fase==>

Modify! (Modify! (s, i, itemi), j, item;j) == Modify! (Modify! (s, j, itemj), i, itemi);
[* equality */
type Array Make! (iteml) = Make! (item2) == iteml =item2;
a=s==True, i =j ==True, itemi = itemj ==>

Modify! (a, i, itemi) = Modify! (s, j, itemj) ==True;
Extract! (a, i) = Extract! (s, i) == False==>a=s==Falsg)));
endgenerator Array;
I C.82 Usage */
/*

The array generator can be used to define one sort which is indexed by another. For example:

newtype indexbychar Array (Character, Integer)
endnewtype indexbychar;

18 Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version

Super seded by a morerecent version

defines an array containing integers and indexed by characters.

Arrays are usually used in combination with the shorthand forms of Modify! and Extract! defined in § 5.4.3.1 and
§ 5.3.3.4 for indexing, and Make! defined in § 5.3.3.6. For example:

dcl charvalue indexbychar;

task charvalue (‘A") := charvalue ('B") —1;

*/
I* C.9 Powerset generator /*
[* C.9.1 Definition */

generator Powersettf/pe itemsort)

literals Empty;
operators
"in" : Itemsort, Powerset >package Predefined Boolean;
/* is member of b
Incl . ltemsort, Powerset >-Powerset; /* include item in set F
Del : Itemsort, Powerset >-Powerset; /* delete item from set /*
< : Powerset, Powerset >{package Predefined Boolean;
/* is proper subset of /*
" : Powerset, Powerset >{package Predefined Boolean;
[* is proper superset of /*
"<=" : Powerset, Powerset >package Predefined Boolean;
[* is subset of f
">=" : Powerset, Powerset >package Predefined Boolean;
[* is superset of Id
"and" : Powerset, Powerset >Powerset; /* intersection of sets /*
"or" : Powerset, Powerset >Powerset; /* union of sets f
axioms
for all i, j in Itemsort (
for all p,ps,a,b,én Powerset (
[* constructors are Empty and Inal *
[* equalities between constructor ternis *
Incl (i, Incl (j,p)) ==1Incl (j, Incl (i, p));
i=j==>Incl (i, Incl (, p)) ==Incl (i, p);
[* definition of "in" by applying it to all constructors/*
i intype Powerset Empty == False;
i inIncl (j, ps) ==i=j or iin ps;

[* definition of Del by applying it to all constructorg *
type Powerset Del (i, Empty) == Empty;

i=j==>Del(i, Incl (j ps)) == Del (i, ps);

i /=j==>Del (i, Incl (j, ps)) == Incl (j, Del (i, ps));

[* definition of "<" by applying it to all constructors *

a <type Powerset Empty == False;

type Powerset Empty < Incl (i, b)== True;

Incl (i,a) <b == i inband Del (i, a) < Del (i, b);

[* definition of ">" by other operations/*
a>b==b<a;

* definition of "=" by applying it to all constructorg *
Empty = Incl (i, ps) == False;

Incl (i,a)=b == iin band Del (i, a) = Del (i, b);
[* definition of "<=" and ">=" by other operationg *
a<=b == a<bor a=b;

a>=b == a>bor a=b;

Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version 19

Super seded by a morerecent version

[* definition of "and" by applying it to al constructors*/

Empty and b == Empty
iinb ==>Incl (i,@ andb == Incl (i, aand b);
not (iinb)==>Incl (i,a andb == aandb;

[* definition of "or" by applying it to all constructors*/
Emptyorb ==b;
Incl (i,a or b == Incl (i, aor b);));

endgenerator Powerset;

/¥ C92 Usage J
/*

Powersets are used to represent mathematical sets. For example:

newtype Boolset Powerset (Boolean) endnewtype Boolset;

can be used for a variable which can be empty or contain (True), (False) or (True, False).
*/

[* C.10 Pidsort */
1* C.10.1 Déefinition */

newtype PId
literals Null;
operators
unique! : Pid -> Pid;
[* The"="and "/=" operator signatures are implied — see § 5.3.1.4

"= pId, Pld > Boolean;
/=" PId, PId > Boolean;
*/
axioms
for all p, p1, p2n Pld (
unique! (p) = Null == False;
unique! (p1) = unique! (p2) == pl=p2);
default Null;

endnewtype PId;
I* C.10.2 Usage ¥

/*

The PId sort is used for process identities. Note that there are no other literals than the value Null. When a process is
created the underlying system uses the unique! operator to generate a new unique value.

*/
1* Cc.11 Duration sort F
1* Cc.11.1 Definition *

newtype Duration
literalsnameclass('0"':'9) +or ((O':'9)*"."(0"':'9") +);

operators

duration! : Real > Duration;
et : Duration, Duration > Duration;
" : Duration > Duration;
"—" : Duration, Duration > Duration;
"> : Duration, Duration > Boolean;
"t : Duration, Duration > Boolean;
">=" : Duration, Duration > Boolean;

20 Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version

Super seded by a morerecent version

=" : Duration, Duration -> Boolean;
e : Duration, Real -> Duration;
e . Real, Duration -> Duration;
" : Duration, Real -> Duration;
noequality

axioms

[* constructor is duration */

for all &, bin Real (

for all d, ein Duration (

[* definition of "+" by applying it to all constructors* /
duration! (a) + duration! (b) == duration! (a+ b);

[* definition of unary "-" by applying it to all constructors *
— duration! (a)== duration! (—a);

[* definition of binary "-" by other operationg *

d—e==d+ (-e);

[* definition of "=", "/=", ">", "<", ">="] and "<=" by applying it to all constructorg *
duration! (a) = duration! (b) == a=b;

duration! (ay= duration! (b) == al=b;

duration! (a) > duration! (b) == a>b;

duration! (a) < duration! (b) == a<hb;

duration! (a) >= duration! (b) == a>=b;

duration! (a) <= duration! (b) == a<=b;

[* definition of "*" by applying it to all constructors/*
duration! (&) * b == duration! (a * b);
a*d ==d*a;

[* definition of "/" by applying it to all constructors/*

duration! (ay b == duration! (a b),));

map

for all din Durationliterals (

for all rin Realliterals (

Spelling (d)== Spelling (r)==>d = duration! (r);));
endnewtype Duration;

I* C.11.2 Usage ¥
/*

The duration sort is used for the value to be added to the current time to set timers. The literals of the sort duration are
the same as the literals for the real sort. The meaning of one unit of duration will depend on the system being defined.

Durations can be multipled and divided by reals.

*/
/* C.12 Time sort 7
1* C.121 Definition ¥
newtype Time
literalsnameclass('0': "9 ") +or ((0':'9)*'."(D"':'9") +);
operators
time! : Duration > Time;
"t : Time, Time > Boolean;
"<=" :Time, Time > Boolean;
" : Time, Time > Boolean;
">=" :Time, Time > Boolean;

Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version 21

Super seded by a morerecent version

"4 : Time, Duration ->Time;

"4 : Duration, Time ->Time;

" : Time, Duration > Time;
i : Time, Time > Duration;
noequality

axioms

/* constructor is time! ¥
for all t, uin Time (
for all a, bin Duration (

[* definition of ">", "=" by applying it to all constructors/*
time! (a) > time! (b) == a>b;
time! (a) = time! (b) == a=b;

[* definition of "/=", "<", "<=", ">=" by other operations/*

t/=u == not (t = u);
t<u == u>t;

t<=u == (t<u)or (t=u);
t>=u == (t>u)or (t=u);

[* definition of "+" by applying it to all constructord *

time! (@) +b == time! (a + b);

a+t == t+a;

[* definition of "-" : Time, Duration by other operationé *
t—b == t+ (-b);

/* definition of "—
" Time, Time by applying it to all constructors *
time! (a) —time! (b) == a-by));

map
for all din Durationliterals (
for all tin Timeliterals (

Spelling (d)== Spelling (t)==>t== time! (d);));
endnewtype Time;
I* C.12.2 Usage ¥
I

The now expression returns a value of the time sort. A time value may have a duration added or subtracted from it to
give another time. A time value subtracted from another time value gives a duration. Time values are used to set the
expiry time of timers.

The origin of timeis system dependent. A unit of time is the amount of time represented by adding one duration unit to a
time.
*/

22 Recommendation Z.100 — Annex D (03/93) Superseded by a more recent version

