

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Y.4500.12
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2018)

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS,
NEXT-GENERATION NETWORKS, INTERNET OF
THINGS AND SMART CITIES

Internet of things and smart cities and communities –
Frameworks, architectures and protocols

 oneM2M base ontology

Recommendation ITU-T Y.4500.12

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION

NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199

Services, applications and middleware Y.200–Y.299

Network aspects Y.300–Y.399

Interfaces and protocols Y.400–Y.499

Numbering, addressing and naming Y.500–Y.599

Operation, administration and maintenance Y.600–Y.699

Security Y.700–Y.799

Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS

General Y.1000–Y.1099

Services and applications Y.1100–Y.1199

Architecture, access, network capabilities and resource management Y.1200–Y.1299

Transport Y.1300–Y.1399

Interworking Y.1400–Y.1499

Quality of service and network performance Y.1500–Y.1599

Signalling Y.1600–Y.1699

Operation, administration and maintenance Y.1700–Y.1799

Charging Y.1800–Y.1899

IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS

Frameworks and functional architecture models Y.2000–Y.2099

Quality of Service and performance Y.2100–Y.2199

Service aspects: Service capabilities and service architecture Y.2200–Y.2249

Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299

Enhancements to NGN Y.2300–Y.2399

Network management Y.2400–Y.2499

Network control architectures and protocols Y.2500–Y.2599

Packet-based Networks Y.2600–Y.2699

Security Y.2700–Y.2799

Generalized mobility Y.2800–Y.2899

Carrier grade open environment Y.2900–Y.2999

FUTURE NETWORKS Y.3000–Y.3499

CLOUD COMPUTING Y.3500–Y.3999

INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES

General Y.4000–Y.4049

Definitions and terminologies Y.4050–Y.4099

Requirements and use cases Y.4100–Y.4249

Infrastructure, connectivity and networks Y.4250–Y.4399

Frameworks, architectures and protocols Y.4400–Y.4549

Services, applications, computation and data processing Y.4550–Y.4699

Management, control and performance Y.4700–Y.4799

Identification and security Y.4800–Y.4899

Evaluation and assessment Y.4900–Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.4500.12 (03/2018) i

Recommendation ITU-T Y.4500.12

oneM2M base ontology

Summary

Recommendation ITU-T Y.4500.12 provides normative and informative specifications for the

oneM2M base ontology and its instantiation into oneM2M resources.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Y.4500.12 2018-03-01 20 11.1002/1000/13507

Keywords

Interworking, ontology, oneM2M, semantics.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13507
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Y.4500.12 (03/2018)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

NOTE – This Recommendation departs slightly from the usual editorial style of ITU-T Recommendations to

preserve existing cross-referencing from external documents.

 ITU 2018

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.4500.12 (03/2018) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 1

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 General information on the oneM2M base ontology .. 3

6.1 Motivation and intended use of the ontology ... 3

6.2 Insights into base ontology ... 8

7 Description of classes and properties ... 13

7.1 Classes .. 13

7.2 Object properties .. 38

7.3 Data Properties ... 42

7.4 Annotation properties ... 47

8 Instantiation of the base ontology and external ontologies to the oneM2M system 48

8.1 Instantiation rules for the base ontology .. 48

8.2 Common mapping principles between the base ontology and external

ontologies ... 55

9 Functional specification of communication with the generic interworking IPE 56

9.1 Usage of oneM2M resources for IPE communication 56

9.2 Specification of the IPE for generic interworking .. 58

9.3 Specification of the behaviour of a communicating entity in message

flows between IPE and the communicating entity ... 61

10 FlexContainer specializations for generic interworking ... 64

10.1 Introduction .. 64

10.2 Resource Type genericInterworkingService .. 64

10.3 Resource Type genericInterworkingOperationInstance 68

Annex A – oneM2M specification update and maintenance control procedure 74

Annex B – OWL representation of base ontology ... 75

Appendix I – Mappings of selected external ontologies to the base ontology 76

I.1 Mapping of SAREF .. 76

Bibliography... 86

 Rec. ITU-T Y.4500.12 (03/2018) 1

Recommendation ITU-T Y.4500.12

oneM2M base ontology

1 Scope

This Recommendation specifies the oneM2M base ontology.

This Recommendation also specifies an instantiation of the base ontology in oneM2M resources that

is required for generic interworking.

In addition this Recommendation contains the functional specification for an interworking proxy

entity (IPE), the oneM2M resources and their usage for generic interworking.

The Recommendation contains oneM2M Release 2 specification – oneM2M base ontology V2.0.0

and is equivalent to standards of oneM2M partners including ARIB, ATIS

[b-ATIS.oneM2M.TS0012], CCSA [b-CCSA M2M-TS-0012], ETSI [b-ETSI TS 118 112], TIA,

TSDSI [b-TSDSI STD T1.oneM2M TS-0012], TTA [b-TTAT.MM-TS.0012] and TTC [b-TTC TS-

M2M-0012].

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.4500.1] Recommendation ITU-T Y.4500.1 (2018), oneM2M – Functional

architecture.

[ITU-T Y.4500.11] Recommendation ITU-T Y.4500.11 (2018), oneM2M – Common

terminology.

3 Definitions

3.1 Terms defined elsewhere

For the purposes of this Recommendation, the terms and definitions given in oneM2M TS-0011

[ITU Y.4500.11] apply.

This Recommendation uses the following terms defined elsewhere:

3.1.1 application entity [ITU Y.4500.11]: Represents an instantiation of application logic for end-

to-end M2M solutions.

3.1.2 common services entity (CSE) [ITU Y.4500.11]: Represents an instantiation of a set of

common service functions of the M2M environments. Such service functions are exposed to other

entities through reference points.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 annotation property: Property that can be used to add information (metadata or data about

data) to classes, individuals and Object/Data properties.

2 Rec. ITU-T Y.4500.12 (03/2018)

3.2.2 concept: Entity of an ontology that has an agreed, well-defined, meaning within the domain

of interest of that ontology.

NOTE 1 – A concept conceptually groups a set of individuals.

NOTE 2 – Concepts are called "classes" as used in web ontology language (OWL) standard ontology language

from the World Wide Web Consortium (W3C) (see [b-OWL]).

3.2.3 data property: Property that relates an individual of a class to data of a specified type and

range.

3.2.4 generic interworking: Interworking with many types of non-oneM2M area networks and

devices that are described in the form of a oneM2M compliant ontology that is derived from the

oneM2M base ontology.

NOTE – Generic interworking supports the interworking variant "full mapping of the semantic of the non-

oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [ITU-T Y.4500.1].

3.2.5 interworked device: Non-oneM2M device (NoDN) for which communication with

oneM2M entities can be achieved via an interworking proxy entity (IPE).

3.2.6 object property: Property that relates an individual of a domain class to an individual of a

range class.

3.2.7 ontology: Formal specification of a conceptualization, i.e., defining concepts as objects with

their properties and relationships versus other concepts.

3.2.8 property: In web ontology language (OWL) standard ontology language, a property

represents relations among individuals.

NOTE – Properties can be subcategorized as object properties, data properties and annotation properties.

3.2.9 proxied device: Virtual device [i.e., a set of oneM2M resources together with an

interworking proxy entity (IPE)] that represents the interworked device in the oneM2M system.

3.2.10 relation; interrelation): Stating a relationship among individuals.

3.2.11 restriction: Describes a class of individuals based on the relationships that members of the

class participate in.

NOTE – Restrictions can be subcategorized as: existential restrictions, universal restrictions, cardinality

restrictions and has value restrictions.

4 Abbreviations and acronyms

For the purposes of this Recommendation, the abbreviations given in oneM2M TS-0011

[ITU-T Y.4500.11] and the following apply:

AE Application Entity

CRUD Create-Read-Update-Delete

CSE Common Services Entity

IPE Interworking Proxy Entity

IRI Internationalized Resource Identifier

MAC Media Access Control

NoDN Non-oneM2M Device

OWL Web Ontology Language

OWL-DL Web Ontology Language-Description Logic

RDF Resource Description Framework

 Rec. ITU-T Y.4500.12 (03/2018) 3

RPC Remote Procedure Call

SAREF Smart Appliances Reference

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

5 Conventions

The keywords "shall", "shall not", "may", "need not", "should", "should not" in this Recommendation

are to be interpreted as described:

Shall/shall not:

Requirements

1) effect on this Recommendation: This Recommendation needs to describe the required feature

(i.e., specify a technical solution for the requirement);

2) effect on products: every implementation (M2M solution that complies with this

Recommendation) must support it;

3) effect on deployments: every deployment (M2M service based on this Recommendation)

must use the standardized feature where applicable – otherwise, interoperability problems

with other services could arise, for example.

Should/should not:

Recommendation

1) effect on this Recommendation: This Recommendation needs to describe a solution that

allows the presence and the absence of the feature;

2) effect on products: an implementation may or may not support it; however, support is

recommended;

3) effect on deployments: a deployment may or may not use it; however, usage is recommended.

May/need not:

Permission/option

1) effect on this Recommendation: This Recommendation needs to describe a solution that

allows the presence and the absence of the required feature;

2) effect on products: an implementation may or may not support it;

3) effect on deployments: A deployment may or may not use it.

6 General information on the oneM2M base ontology

6.1 Motivation and intended use of the ontology

6.1.1 Why use ontologies in oneM2M?

6.1.1.1 Introduction to ontologies

In a nutshell, an ontology is a vocabulary with a structure. The vocabulary applies to a certain domain

of interest (e.g., metering, appliances, medicine) and it contains concepts that are used within that

domain of interest, similar to the terms defined in clause 3.

An ontology should:

• capture a shared understanding of a domain of interest;

• provide a formal and machine interpretable model of the domain.

4 Rec. ITU-T Y.4500.12 (03/2018)

The ontology lists and denominates those concepts that have agreed, well-defined, meanings within

the domain of interest {e.g., the concept of "device" has an agreed, well-defined, meaning within the

scope of the smart appliances reference (SAREF) ontology see [b-SAREFa]}.

Example 1 follows of how external ontologies can be mapped to the base ontology. Example 1 uses

the SAREF ontology [b-SAREFa].

Concepts do not identify individuals, but classes of individuals. Therefore, in the OWL standard

ontology language from the World Wide Web Consortium (W3C) (see [b-OWL]), concepts are called

"classes".

The structural part of the ontology is introduced through agreed, well-defined, relationships between

its concepts. Such a relationship – in OWL called "object property" – links a subject concept to an

object concept.

 subject concept  relationship  object concept

in OWL:

 domain class  object property  range class

Example 1: In SAREF, an object property "accomplishes" relates the "device" class to the "task"

class:

 Device  accomplishes  task

Also the relationships or object properties of an ontology have agreed, well-defined, meanings within

the domain of interest. In Example 1, the "accomplishes" part of the relationship is well documented

as part of SAREF (see [b-SAREFa]).

A second type of property in OWL is called "data properties". A data property links a subject class to

data. These data may be typed or untyped.

Example 2: In SAREF the data property "hasManufacturer" links the class "device” with data of the

type "literal":

 Device  hasManufacturer  literal

Again, the data properties of an ontology have agreed, well-defined, meanings within the domain of

interest. In Example 2, the data property "hasManufacturer" indicates that the Literal that is linked

via this data property will indicate the manufacturer of the device.

Data properties can be considered to be similar to attributes in oneM2M.

A third type of property in OWL is called "annotation properties". An annotation property is used to

provide additional information about ontology elements like classes and instances, which typically

are external to the ontology and not used for reasoning. Example usages for such additional

information are for providing a creator, a version or a comment. The object of an annotation property

is either a data literal, a uniform resource identifier (URI) reference or an individual.

In general, an individual of a certain class may or may not have a particular relation (object property,

data property or annotation property) that is defined by the ontology. However, if such a relation

exists for the individual, then that relation should be used with the meaning specified by the ontology.

One additional, crucial aspect differentiates an ontology from a vocabulary with a structure. An

ontology enables specified, allowed constructs (based on predicate logic) and can be represented in a

formal, machine interpretable form, e.g., by the OWL standard ontology language. This allows the

creation of queries [e.g., through the SPARQL (SPARQL Protocol and RDF query language)] that

search for individuals of specified classes, having specified relationships, etc.

The OWL flavour OWL-DL (where DL stands for "description logic") that is used in this

Recommendation and that is supported by the ontology-editing tool, Protégé (see [b-Protégé]), has

 Rec. ITU-T Y.4500.12 (03/2018) 5

the additional advantage that it is underpinned by a description logic. For ontologies that fall into the

scope of OWL-DL, a reasoner can be used to automatically check the consistency of classes, take

what is explicitly stated in the ontology and use it to infer new information. OWL-DL ensures that

queries are decidable.

Additionally, OWL-DL allows the creation of intersection, union and complement classes,

restrictions (e.g., on the required or allowed number of relationships for any individual of the class

along this property) and other useful constructs.

6.1.1.2 The purpose of the oneM2M base ontology

6.1.1.2.0 Introduction

Ontologies and their OWL representations are used in oneM2M to provide syntactic and semantic

interoperability of the oneM2M system with external systems. These external systems are expected

to be described by ontologies.

The only ontology that is specified by oneM2M is the oneM2M base ontology, as described in this

Recommendation. However, external organizations and companies are expected to contribute their

own ontologies that can be mapped (e.g., by subclassing, equivalence) to the oneM2M base ontology.

A formal OWL representation of the base ontology can be found at [b- oneM2M Ontologies used for

oneM2M].

Such external ontologies might describe specific types of devices (e.g., like the SAREF ontology) or,

more generally, they might describe real-world things (like buildings, rooms, cars, cities) that should

be represented in a oneM2M implementation. The value for external organizations and companies to

provide their ontologies to oneM2M consists in supplementing oneM2M data with information on

the meaning or purpose of these data. The OWL representation of that ontology provides a common

format across oneM2M.

The oneM2M base ontology is the minimal ontology (i.e., mandating the least number of conventions)

that is required such that other ontologies can be mapped into oneM2M.

6.1.1.2.1 Syntactic interoperability

Syntactic interoperability is mainly used for interworking with NoDNs in area networks. In this case,

an ontology – represented as an OWL file – that contains the area network-specific types of

communication parameters (names of operations, input/output parameter names, their types and

structures, etc.) is used to configure an interworking proxy entity (IPE).

With the help of this OWL file, the IPE is able to allocate oneM2M resources (AEs, containers) that

are structured along the area network-specific parameters and procedures. This enables oneM2M

entities to read/write from/into these resources, so that the IPE can serialize the data and send/receive

them from/to the devices in the area network.

The semantic meaning of these resources is implicitly given by the interworked area network

technology.

Each ontology that describes a specific type of interworked area network needs to be derived from

the oneM2M base ontology. In particular, the device types of an ontology of an interworked area

network need to be mapped (e.g., by sub-typing) into the concept "Interworked Device" of the

oneM2M base ontology.

6.1.1.2.2 Semantic interoperability

Semantic interoperability is mainly used to describe functions provided by oneM2M compliant

devices (M2M Devices).

Example: Different, oneM2M compliant types of washing machine may all perform a function like

"washing-function", "drying-function", "select wash temperature"; however, the oneM2M resources

6 Rec. ITU-T Y.4500.12 (03/2018)

(containers) through which these functions can be accessed can have different resourceNames, child-

structures and type of content.

In this case, an ontology – represented as an OWL file – contains the specific types of the M2M

application service or common service of the M2M device [e.g., Create-Read-Update-Delete (CRUD)

operation, resourceNames, child-structures and type of content] together with the function of that

service (e.g., "washing-function").

Each ontology that describes a specific type of M2M device needs to be derived from the oneM2M

base ontology. In particular, the device type needs to be mapped (e.g., by subtyping) into the concept

"Device" of the oneM2M base ontology.

6.1.2 How are the base ontology and external ontologies used?

6.1.2.1 Overview

This clause describes how an external ontology that is compatible with the base ontology can be used

in a joint fashion.

NOTE – Further use of external ontologies is left to subsequent releases.

6.1.2.2 Introduction to usage of classes, properties and restrictions

An ontology consists of properties and classes.

Properties represent relationships, and link individuals from the specified domain (a class) to

individuals from the specified range (another class). There are two main types of properties in the

base ontology: object properties and data properties. An object property describes a relationship

between two object individuals. A data property describes a relationship between an object individual

and a concrete data value that may be typed or untyped.

Classes are interpreted as sets of individuals and sometimes classes are also seen as a concrete

representation of concepts. In the base ontology, a class can be directly defined by the class name and

class hierarchy or defined by the property characteristics of the individuals in the class. The latter

method is known as restriction. The classes defined by restriction can be anonymous, which contains

all of the individuals that satisfy the restriction.

In the base ontology, the restrictions can be divided into existential restrictions, universal restrictions

and cardinality restrictions.

• Existential restrictions describe classes of individuals that participate in at least one (some)

relationship along a given property to individuals that are members of the class, e.g., since a

device (Class: Device) has at least one function (Object Property: hasFunction) (Class:

Function) that this device accomplishes, then (Class: Device) is a subclass of the anonymous

class of (Object Property: hasFunction) some (Class: Function).

• Universal restrictions describe classes of individuals that for a given property only have

relationships along this property to individuals that are members of the class. For example,

since a subclass "Watervalve" of (Class: Device) only has a function (Object Property:

hasFunction) subclass "Open_or_Close_Valve" of (Class: Function), then

(Class:Watervalve) is a superclass of the anonymous class of (Object Property: hasFunction)

only (Class: Open_or_Close_Valve).

• Cardinality restrictions describe classes of individuals that, for a given property, only have a

specified number of relationships along this property to individuals that are members of the

class.

 Rec. ITU-T Y.4500.12 (03/2018) 7

6.1.2.3 Methods for jointly using the base ontology and external ontologies

If the base ontology is available and the external ontologies are compatible with the base ontology,

the base ontology and the external ontologies can be jointly used in the following ways.

1) Classes and properties mapping:

– The names of the class and properties in different ontologies may be totally different, but

the meanings of the class and properties can be relevant. Class and property mapping is

used to link the relevant classes and properties in different ontologies.

– The descriptions for the class and property mapping relationship of the base ontology

and external ontologies can be given in an ontology or a semantic rule depending on the

frequency of the usage. For frequent cases, it is better to give the mapping description in

an ontology, even in the base ontology.

– Class and property mapping can be based on the properties defined in OWL and resource

description frameworks (RDFs), e.g., rdfs:subClassOf, owl:equivalentClass, for

classifying the hierarchy of the classes and properties in base ontology and external

ontologies. The inheritance from upper properties and classes will be implied according

to the mapped hierarchy. For example, when a class A in an external ontology is mapped

as a subclass of the class B in the base ontology, it implies that the properties of class B

in the base ontology will be inherited by the class A in the external ontology.

 Table 1 gives a simple example for class and property mapping between two ontologies.

Table 1 – An example of class and property mapping between two ontologies

Property mapping Class mapping

property I
mapping

relationship
property II class I mapping relationship Class II

OntologyB:
hasSwitch

rdfs:subPropert
yOf

OntologyA:
hasOperation

OntologyB:
appliance

rdfs:subClassOf OntologyA:device

OntologyA:
hasPower

owl:equivalent
Property

OntologyB:
hasPower

OntologyB:l
amp

owl:equivalentClass OntologyA:light

OntologyA:
hasVendor

owl:equivalent
Property

OntologyB:
hasManufacturer

OntologyB:
Switch

rdfs:subClassOf OntologyA:Operation

2) Individual annotation across multiple ontologies:

– Though the names of classes and properties in different ontologies may be totally

different, the semantic annotation for individuals can be done based on these different

ontologies, respectively and independently. In this way, knowledge from different

ontologies is used together to describe the individuals.

 Table 2 gives a simple example of individual annotation across two ontologies.

Table 2 – An example of individual annotation across two ontologies

Individuals
Semantic annotation based on ontology A Semantic annotation based on ontology B

Properties Classes Properties Classes

Light A

rdf:type Ontology A: Light rdf:type Ontology B:ledLight

OntologyA:
hasOperation

Ontology A:Open
OntologyB:
hasColor

rdf:datatype="&xsd;string">'red'<

OntologyA:
hasStatus

rdf:datatype="&xsd;boolean">true<
OntologyB:
hasSwitch

OntologyB:Switch

NOTE – The two methods can be used jointly or independently.

The compatibility of two ontologies depends on their class hierarchies. When the class hierarchy of

one ontology can be mapped as a part or an external part of the class hierarchy of the other ontology,

they are compatible. When multiple ontologies are pairwise compatible, they are compatible.

8 Rec. ITU-T Y.4500.12 (03/2018)

6.2 Insights into base ontology

6.2.1 General design principles of the base ontology

6.2.1.1 General principle

The base ontology has been designed to provide a minimal number of concepts, relations and

restrictions that are necessary for semantic discovery of entities in the oneM2M system. To make

such entities discoverable in the oneM2M system, they need to be semantically described as classes

(concepts) in a – technology/vendor/other-standard specific – ontology and these classes (concepts)

need to be related to some classes of the base ontology as subclasses.

Additionally, the base ontology enables non-oneM2M technologies to build derived ontologies that

describe the data model of the non-oneM2M technology for the purpose of interworking with the

oneM2M system.

The base ontology only contains classes and properties, but not instances, because the base ontology

and derived ontologies are used in oneM2M to only provide a semantic description of the entities

they contain.

Instantiation (i.e., data of individual entities represented in the oneM2M system – e.g., devices,

things) is done via oneM2M resources

The base ontology is available at [b-oneM2M-Ontologies], which contains the latest version of the

ontology and individual versions of the ontology (see Annex A).

6.2.1.2 Essential classes and properties of the base ontology

Figure 1 shows the essential classes and properties of the base ontology. The nodes (bubbles) denote

classes whereas edges (arrows) denote object properties.

 Rec. ITU-T Y.4500.12 (03/2018) 9

Figure 1 – The oneM2M base ontology

Figure 1 can be read as follows:

• A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M system.

A Thing may have properties (Object Property: hasthingproperty). A Thing can have

relations to other things (object Property: hasThingRelation). For example, a room that is

modelled in oneM2M would be a Thing that could have a room-temperature as a

ThingProperty (via hasThingProperty) and could have a hasThingRelation "isAdjacentTo"

another room. In general, it is assumed that a Thing is not able to communicate electronically

with its environment. However, the subclass of Thing that is able to interact electronically is

called a "Device".

• A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A Thing can be

described with (the values of) ThingProperties, but in general the Thing cannot influence that

value or being influenced by it. A human or a computer or a device could set the value of a

10 Rec. ITU-T Y.4500.12 (03/2018)

ThingProperty of a Thing and possibly read it. A ThingProperty can be retrieved or updated

by an entity of the oneM2M system. For example, the indoor temperature of a room could be

a value of a Thing "Room", or the manufacturer could be a ThingProperty of a Thing "Car".

A ThingProperty of a Thing can describe a certain aspect, e.g., the indoor temperature

describes the aspect "Temperature" that could be measured by a temperature sensor.

A ThingProperty of a Thing can have metadata.

• Variable (Class: Variable) constitutes a superclass to the following classes: ThingProperty,

OperationInput, OperationOutput, OperationState, InputDataPoint, OutputDataPoint. Its

members are entities that have some data (integers, text, etc. or structured data) that can

change over time. These data of the Variable usually describe some real-world aspects (e.g., a

temperature) and can have MetaData (e.g., units, precision). A Variable can be structured,

i.e., it can consist of (sub-)Variables.

• One subclass is defined in the base ontology:

– SimpleTypeVariable (Class: SimpleTypeVariable) is a subclass of Variable that only

consists of Variables of simple XML types like xsd:integer, xsd:string…, potentially

including restrictions.

– MetaData (Class: MetaData) contain data (units, precision-ranges, etc.) about the Values

of a Thing or about an Aspect, e.g., the indoor temperature could have MetaData:

"Degrees Celsius".

– A Device (Class: Device) is a Thing (a subclass of class:Thing) that is designed to

accomplish a particular task via the Functions the Device performs. A Device can be able

to interact electronically with its environment via a network. A Device contains some

logic and is a producer or consumer of data that are exchanged via its Services with other

entities (Devices, Things) in the network. A Device interacts through the DataPoints or

Operations of its Services. In the context of oneM2M, a Device is always assumed to be

capable of communicating electronically via a network (oneM2M or interworked non-

oneM2M network) as follows.

• In order to accomplish its task, the device performs one or more Functions (Object

Property: hasFunction) (Class: Function). These Functions are exposed in the

network as Services of the Device.

• A Device can be composed of several (sub-)Devices (Object Property: consistsOf)

(Class: Device). => consistsOf only Device.

• Each Device (including sub-Devices) needs to be individually addressable in the

network.

 For example, a light switch would be a Device, a combined fridge-freezer would be a

Device that consists of a sub-Device Fridge and a sub-Device Freezer.

– A Function (Class: Function) represents the Function necessary to accomplish the task

for which a Device is designed. A device can be designed to perform more than one

Function. The Class: Function exhibits the – humanly understandable – meaning of what

the Device "does":

– A Function refers to (e.g., observes or influences) a certain Aspect.

 For example, considering a light switch, then a related Function could be

"Controlling_ON_OFF". These Functions would refer to an Aspect "lighting" that is

influenced by the Device Light switch.

• Two subclasses of class Function are defined in the base ontology:

– ControllingFunction (Class: ControllingFunction) is a subclass of Function that only

controls or influences real world Aspects that the Function relates to.

 Rec. ITU-T Y.4500.12 (03/2018) 11

– MeasuringFunction (Class: MeasuringFunction) is a subclass of Function that only

measures or senses real world Aspects that the Function relates to.

• An Aspect (Class: Aspect) describes the real-world aspect that a Function relates to. Aspect

is also used to describe a quality or kind of OperationInput or OperationOutput variables.

The Aspect could be a (physical or non-physical) entity or it could be a quality.

• A Command (Class: Command) represents an action that can be performed to support the

Function. An Operation exposes a Command to the network. OperationInput and

OperationOutput of the related Operation can parameterize the command, for example, the

Function "Dimming-Function" could have a Command "setPercentage", with a parameter

that has values 0-100.

• A Service (Class: Service) is a representation of a Function to a network that makes the

Function discoverable, registerable, remotely controllable in the network. A Service can

represent one or more Functions. A Service is offered by a device that wants (a certain set

of) its Functions to be discoverable, registerable and remotely controllable by other devices

in the network:

– while a Function describes the meaning of the device's Function the Service

(Class: Service) is used to describe how such Function is represented in a communication

network and is therefore dependent on the technology of the network.

 For example., the Function: "turn_light_On_or_Off" could be exposed in the network by a

Service "Binary Value Actuator".

– A Service may be composed of smaller, independent (sub)Services, e.g., re-usable

service modules.

• An OutputDataPoint (Class: OutputDataPoint) is a Variable of a Service that is set by a

RESTful Device in its environment and that provides state information about the Service.

The Device updates the OutputDataPoint autonomously (e.g., at periodic times). To enable a

third party to retrieve the current value of an OutputDataPoint (out of schedule) devices often

also offer a SET_OutputDataPoint Operation to trigger the device to update the data of the

OutputDataPoint.

• An InputDataPoint (Class: InputDataPoint) is a Variable of a Service that is set by a

RESTful Device in its environment and that the Device reads out autonomously (e.g., at

periodic times). To enable a third party to instruct the device to retrieve (out of schedule) the

current value of an InputDataPoint. Devices often also offer a GET_InputDataPoint

Operation to trigger the device to retrieve the data from the InputDataPoint.

NOTE 1 – Input and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful

way, while Operations are the procedures that are used for remote procedure-based communication. Operations

are, however, also needed in RESTful systems to correlate output that is produced by a device, to the input

that triggered the production of that output.

• An Operation (Class: Operation) is the means of a Service to communicate in a procedure-

type manner over the network (i.e., transmit data to or from other devices). An Operation is

a representation of a Command to a network:

– An Operation can have OperationInput (data consumed by the Device) and

OperationOutput (Data produced by the Device), as well as a Method that describes how

the Operation is invoked over the network.

– An Operation shall have a Data Property "OperationState" that indicates how the

operation has progressed in the device.

– An Operation is transient, i.e., an Operation can be invoked, possibly produces output

and is finished.

12 Rec. ITU-T Y.4500.12 (03/2018)

– An Operation correlates the output data of the Operation to the input data that were used

at Operation invocation.

• Two subclasses of class Operation are defined in the base ontology:

– GET_InputDataPoint (Class: GET_InputDataPoint) is a subclass of Operation that may

be offered by a Device to trigger the device to retrieve the data of an InputDataPoint.

(e.g., outside the schedule when the device normally retrieves that DataPoint).

– SET_OutputDataPoint (Class: SET_OutputDataPoint) is a subclass of Operation that

may be offered by a Device to trigger the device to update the data of an OutputDataPoint

(e.g., outside the schedule when the device normally updates that DataPoint).

• OperationInput (Class: OperationInput) describes the type of input of an Operation to a

service of the device. The OperationInput class represents all possible values for that input

(data types and ranges or a list of enumerated individuals). An Operation can have multiple

OperationInputs or OperationOutputs. If an instance of an Operation is executed, then the

input value to that Operation is an instance of its OperationInput classes (e.g., enumerated

instances like "ON" or "OFF" for an OperationInput class that sets the state of a switch or a

real number within a certain range for a "Temperature" OperationInput class for a

thermostat).

• OperationOutput (Class: OperationOutput) describes the type of output of an Operation

from a service of the device. The OperationOutput class represents all possible values for that

OperationOutput (data types and ranges or a list of enumerated individuals). An Operation

can have multiple OperationInputs or OperationOutputs. If an instance of an Operation is

executed then the output values of that Operation are instances of its OperationOutput classes.

• OperationState (Class: OperationState) describes the current state during the lifetime of an

Operation. The OperationState class represents all possible values for that state (enumerated

individuals). The OperationState is set during the progress of the operation by the entity

invoking the operation, the entity that is the target of the operation, e.g., a device (or for

interworked devices by the IPE) and the CSE. It takes values like

"data_received_by_application", "operation_ended", "operation_failed",

"data_transmitted_to_interworked_device".

• Area network (Class: AreaNetwork):

– An area network (see oneM2M TS-0001 [ITU-T Y.4500.1]) is characterized by its

technology:

• physical properties (e.g., IEEE_802_15_4_2003_2_4GHz);

• communication protocol (e.g., ZigBee_1_0); and

• potentially a profile (e.g., ZigBee_HA).

• Interworked Device (Class: InterworkedDevice):

– Is part of an AreaNetwork.

NOTE 2 – An Interworked Device is not a oneM2M Device and can be only accessed from the oneM2M

system by communicating with a "proxied" (virtual) device that has been created by an IPE. The

InterworkedDevice class describes the "proxied" (virtual) device that is represented in the oneM2M system as

an individual <AE> resource or a child resource of the <AE> of its IPE.

6.2.2 Use of ontologies for generic interworking with area networks

6.2.2.1 General principle

Interworking with area networks is accomplished in oneM2M through a Function provided by IPEs.

The IPE creates "proxied" devices as oneM2M Resources (e.g., AEs) in the oneM2M Solution that

can be accessed by oneM2M Applications in the usual way.

 Rec. ITU-T Y.4500.12 (03/2018) 13

To accomplish the creation of "proxied" devices the IPE uses an ontology that describes the type of

interworked area network and its entities (device types, their operations, etc.). For example, in

Figure 2, an ontology that describes a KNX area network and its entities would be needed.

To achieve the flexibility for the IPE to create "proxied" Devices for many different types of area

networks each ontology that describes a specific type of interworked area network needs to be derived

from the base ontology that is specified in this Recommendation, e.g., the OWL representation of an

ontology that describes the entities of an area network of type KNX needs to:

a) contain an “include” statement which includes the base ontology;

b) the KNX Nodes class needs to be a subclass of the Device class of the oneM2M base

ontology;

c) the KNX Communication Objects class needs to be a subclass of the Service class of the base

ontology;

d) etc.

NOTE – For the purpose of generic interworking with area networks,, the base ontology is only used to describe

type information and not for describing instances of these types, e., the base ontology describes the type

"Device", but does not contain information about a specific device. The base ontology therefore only contains

classes and properties, but not instances.

Figure 2 – Interworking

7 Description of classes and properties

7.1 Classes

7.1.1 Class: Thing

See Figure 3.

14 Rec. ITU-T Y.4500.12 (03/2018)

Figure 3 – Thing

Description

• A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M system.

A Thing that is not a Device is not able to communicate electronically with its environment.

However, the subclass of Thing that is able to interact electronically is called a "Device".

A Thing may have ThingProperties (Object Property: hasThingProperty). A Thing can have

relations to other things (Object Property: hasThingRelation). Since a Thing that is not a

Device is not able to communicate electronically, it cannot influence the value of its

ThingProperties or being influenced by it. Similarly a Thing cannot document its – real-world

– relationships (via hasThingRelation) to other Things.

• For example, a room that is modelled in oneM2M would be a Thing that could have a room-

temperature as a ThingProperty and could have a relationship "isAdjacentTo" another room.

Object properties

This class is the domain Class of Object Property:

• hasThingProperty (range Class: ThingProperty)

• hasThingRelation (range Class: Thing)

This class is the range Class of Object Property:

• hasThingRelation (domain Class: Thing)

Data Properties

• hasThingAnnotation (range datatype: rdfs:Literal)

Superclass-subclass Relationships

This class is a subclass of:

• none

This class is a superclass of:

• device

 Rec. ITU-T Y.4500.12 (03/2018) 15

Restrictions

This class is an anonymous subclass of:

• hasThingRelation only Thing (Universal restriction: a Thing can only have a relationship

"hasThingRelation" to other Things)

• hasThingProperty only ThingProperty

7.1.2 Class: ThingProperty

See Figure 4.

Figure 4 – ThingProperty

Description

• A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A ThingProperty

can be observed or influenced by devices, or constitute static data about a Thing, for example,

the indoor temperature of the room could be a ThingProperty of a Thing "room".

A ThingProperty of a Thing can describe a certain Aspect, e.g., the indoor temperature

describes the Aspect "Temperature" that could be measured by a temperature sensor.

A ThingProperty of a Thing can have metadata.

• The class ThingProperty is a subclass of the Variable class.

Object Properties

This class is the domain Class of Object Property:

• describes (range Class: Aspect) (inherited from Class: Variable)

• hasMetaData (range Class: MetaData) (inherited from Class: Variable)

This class is the range Class of Object Property:

• hasThingProperty (domain Class: Thing)

Data Properties

This class is part of the domain Class of Data Property:

• Inherited from Class: Variable and possibly Class SimpleTypeVariable (see clauses 6.1.17

and 6.1.18)

16 Rec. ITU-T Y.4500.12 (03/2018)

Superclass-subclass Relationships

This class is a subclass of:

• Variable

This class is a superclass of:

• None

Restrictions

• None

7.1.3 Class: Aspect

See Figure 5.

Figure 5 – Aspect

Description

• An Aspect (Class: Aspect) describes the real-world aspect that a Function relates to. Aspect

is also used to describe the quality or kind of a Variable. The Aspect could be a (physical or

non-physical) entity or it could be a quality.

Object Properties

This class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)

This class is the range Class of Object Property:

• refersTo (domain Class: Function)

• describes (domain Class: Variable)

Data Properties

• None

Superclass-subclass relationships

This class is a subclass of:

• None

 Rec. ITU-T Y.4500.12 (03/2018) 17

This class is a superclass of:

• None

Restrictions

• None

7.1.4 Class: MetaData

See Figure 6.

Figure 6 – MetaData

Description

• MetaData (Class: MetaData) contain data (like units, precision-ranges …) about a Variable

or about an Aspect, for example, the indoor temperature could have as metadata an individual

"Celsius_Scale" specifying that the temperature needs to be understood as degrees Celsius.

Object properties

This class is the domain Class of Object Property:

• None

This class is the range Class of Object Property:

• hasMetaData (domain Class: Variable)

• hasMetaData (domain Class: Aspect)

Data properties

• None

Superclass-subclass relationships

This class is a subclass of:

• None

This class is a superclass of:

• None

Restrictions

• None

18 Rec. ITU-T Y.4500.12 (03/2018)

7.1.5 Class: Device

See Figure 7.

Figure 7 – Device

Description

• A Device (Class: Device) is a Thing (a subclass of class:Thing) that is designed to accomplish

a particular task via the Functions the Device performs. A Device can interact electronically

with its environment via a network. A Device contains some logic and is a producer or

consumer of data that are exchanged via its Services with other oneM2M entities (Devices,

Things) in the network. A Device may be a physical or non-physical entity. A Device

interacts through the DataPoints or Operations of its Services:

– in order to accomplish its task, the device performs one or more Functions;

– these Functions are exposed in the network as Services of the Device;

– a Device can be composed of several (sub-)Devices;

– each Device (including sub-Devices) needs to be individually addressable in the network.

Object properties

This class is the domain Class of Object Property:

• consistsOf (range Class: Device)

• hasService (range Class: Service)

• hasFunction (range Class: Function)

• hasThingProperty (range Class: ThingProperty) (inherited from Class:Thing)

This class is the range Class of Object Property:

• consistsOf (domain Class: Device)

Data properties

• None

 Rec. ITU-T Y.4500.12 (03/2018) 19

Superclass-subclass relationships

This class is a subclass of:

• Thing

This class is a superclass of:

• InterworkedDevice

Restrictions

This class is an anonymous subclass of:

• consistsOf only Device (Universal restriction: a Device can have a relationship "consistsOf"

only to other Devices).

• hasFunction min 1 Function (Universal restriction: a Device needs to have a relationship

"hasFunction" to at least 1 Function).

• hasService only Service (Universal restriction: a Device can have a relationship "hasService"

only to Services).

7.1.6 Class: InterworkedDevice

See Figure 8.

Figure 8 – InterworkedDevice

Description

• An InterworkedDevice (Class: InterworkedDevice) is a Device – e.g., in an area network –

that does not support oneM2M interfaces and can only be accessed from the oneM2M system

by communicating with a "proxied" (virtual) device that has been created by an IPE.

Object properties

This class is the domain Class of Object Property:

• isPartOf (range Class: AreaNetwork)

This class is the range Class of Object Property:

• None

Data properties

• None

20 Rec. ITU-T Y.4500.12 (03/2018)

Superclass-subclass relationships

This class is a subclass of:

• Device

This class is a superclass of:

• None

Restrictions

• None

7.1.7 Class: AreaNetwork

See Figure 9.

Figure 9 – AreaNetwork

Description

• An AreaNetwork (Class: AreaNetwork) is a Network that provides data transport services

between an Interworked Device and the oneM2M system. Different area Networks can use

heterogeneous network technologies that may or may not support IP access.

Object properties

This class is the domain Class of Object Property:

• None

This class is the range Class of Object Property:

• isPartOf (domain Class: InterworkedDevice)

Data properties

• netTechnologyPhysicalStandard (range datatype: rdf:PlainLiteral) which serves for

Identification of the physical properties of an area network technology (e.g.,

IEEE_802_15_4_2003_2_4GHz)

• netTechnologyCommunicationProtocol (range datatype: rdf:PlainLiteral) which serves for

Identification of a communication protocol (e.g., ZigBee_1_0)

 Rec. ITU-T Y.4500.12 (03/2018) 21

• netTechnologyProfile (range datatype: rdf:PlainLiteral) which serves for Identification of a

profile (e.g., ZigBee_HA) of an area network technology

Superclass-subclass relationships

This class is a subclass of:

• None

This Class is super-class of:

• None

Restrictions

• None

7.1.8 Class: Service

See Figure 10.

Figure 10 – Service

Description

• A Service (Class: Service) is an electronic representation of a Function in a network. The

Service exposes the Function to the network and makes it discoverable, registerable and

remotely controllable in the network. A Service is offered by a device that wants (a certain

set of) its Functions to be discoverable, registerable or remotely controllable by other devices

in the network. A Service can expose one or more Functions and a Function can be exposed

by one or more Services.

• The Input and Output DataPoints and Operations of a Service may have the same names as

for a different Service; however, the Service to which they belong differentiates how they are

addressed in the Device (e.g., via a port specific to the Service).

NOTE – While a Function describes the – humanly understandable – meaning of a Service of the device, the

Service is used to describe how such Function is represented in a communication network and can be accessed

by electronic means. The Service and its Operations is therefore dependent on the technology of the network,

hard- and software of the device.

• For example., the Function: "turn_light_On_or_Off" could be exposed in the network by a

Service "UPDATE Binary Value".

22 Rec. ITU-T Y.4500.12 (03/2018)

– Object Property "hasSubService" expresses the fact that Services can be composed of

independent (sub)Services, for example, a Service could be composed out of multiple

(reusable) service modules. A Dimmer could contain a module "binaryActuator" to turn

on/off and additionally "setInteger0-255Actuator" to set the dimming level.

Object properties

This class is the domain Class of Object Property:

• exposesFunction (range Class: Service)

• hasOperation (range Class: Operation)

• hasInputDataPoint (range Class: InputDataPoint)

• hasOutputDataPoint (range Class: OutputDataPoint)

• hasSubService (range Class: Service)

If, for a Service, an Operation, Input-, OutputDataPoint or sub-Service is mandatory, then the related

Object Property (hasOperation, hasInputDataPoint, hasOutputDataPoint, hasSubService) shall have

a Property Restriction with cardinality "min 1".

This class is the range Class of Object Property:

• hasService (domain Class: Device)

• hasSubService (domain Class: Service)

Data properties

• None

Superclass-subclass relationships

This class is a subclass of:

• None

This class is a superclass of:

• None

Restrictions

• hasSubService only Service (Universal restriction: a Service can have a relationship

"hasSubService" only to other Service)

• hasOperation only Operation

• exposesFunction some Function (Universal restriction: at least one of the relationship

"exposesFunction"of a Service needs to point of a Function)

• hasInputDataPoint only InputDataPoint

• hasOutputDataPoint only OutputDataPoint

7.1.9 Class: Function

7.1.9.0 General description

See Figure 11.

 Rec. ITU-T Y.4500.12 (03/2018) 23

Figure 11 – Function

Description

• A Function (Class: Function) represents a particular function necessary to accomplish the

task for which a Device is designed. A device can be designed to perform more than one

Function. The Function exhibits the – humanly understandable – meaning of what the device

"does".

• A Function refers to (e.g., observes or influences) some real-world aspect(s) that can be

modelled as a Class: Aspect.

• For example, considering a "light switch", then a related Function could be

"Controlling_ON_OFF" or "Controlling Brightness". These Functions would refer to an

Aspect "light-control".

• A Function of a Device can be influenced or observed by a human user through the

Commands that this Function has and that are offered to the user.

Object properties

This class is the domain Class of Object Property:

• hasCommand (range Class: Command)

• refersTo (range Class: Aspect)

This class is the range Class of Object Property:

• exposesFunction (domain Class: Service)

• hasFunction (domain Class: Device)

Data properties

• None

Superclass-subclass relationships

This class is a subclass of:

• None

24 Rec. ITU-T Y.4500.12 (03/2018)

This class is a superclass of:

• ControllingFunction

• MeasuringFunction

Restrictions

• None

7.1.9.1 Class: ControllingFunction

Description

• A ControllingFunction (Class: ControllingFunction) represents a Function that has impacts

on the real world, but does not gather data. In general a ControllingFunction has Commands

(or Operations of its related Services) that receive input data.

• For example., a thermostat would have "temperature-adjustment" as a ControllingFunction.

Object properties

This class is the domain Class of Object Property:

• None

This class is the range Class of Object Property:

• None

Data properties

• None

Superclass-subclass relationships

This class is a subclass of:

• Function

This class is a superclass of:

• None

Restrictions

• None

7.1.9.2 Class: MeasuringFunction

Description

• A MeasuringFunction (Class: MeasuringFunction) represents a Function that has no

impacts on the real world, but only gathers data. In general, a MeasuringFunction has

Commands (or Operations of its related Services) that generate output data.

• For example., a temperature sensor would have "temperature-sensing" as a

MeasuringFunction.

Object properties

This class is the domain Class of Object Property:

• None

This class is the range Class of Object Property:

• None

Data properties

• None

 Rec. ITU-T Y.4500.12 (03/2018) 25

Superclass-subclass relationships

This class is a subclass of:

• Function

This class is a superclass of:

• None

Restrictions

• None

7.1.10 Class: Operation

7.1.10.0 General description

See Figure 12.

Figure 12 – Operation

Description

• An Operation (Class: Operation) is the means of a Service to communicate in a procedure-

type manner over the network (i.e., transmit data to/from other devices). It is the – machine

interpretable – exposure of a –humanly understandable – Command to a network. An

Operation is transient. I.e., an Operation can be invoked, possibly produces output and is

finished:

– An NoDN or a oneM2M entity [e.g., an application entity (AE)] can invoke an Operation

of the Device (oneM2M Device or InterworkedDevice) and that invocation can trigger

some action in the Device. If an Operation has input data it may receive input data from:

• InputDataPoints (persistent entities), or

• OperationInput (transient entities, that are deleted when the Operation finishes);

 and potentially produce output data into:

• OutputDataPoints (persistent entities), or

• OperationOutput (transient entities that are deleted when the Operation finishes);

26 Rec. ITU-T Y.4500.12 (03/2018)

– An Operation correlates the output data of the Operation to the input data that were used

at Operation invocation.

– An Operation has an OperationState that allows a oneM2M entity to be informed on the

progress of that operation.

NOTE – The OperationState – which provides information of an ongoing or finished operation – should not

be confused with state information about the Device or Service, which potentially could be obtained as output

data of some operation.

Object properties

This class is the domain Class of Object Property:

• exposesCommand (range Class: Command)

• hasInput (range Class: OperationInput)

• hasInputDataPoint (range Class: InputDataPoint)

• hasOutput (range Class: OperationOutput)

• hasOutputDataPoint (range Class: OutputDataPoint)

• hasOperationState (range Class: OperationState)

If for an Operation an OperationInput, OperationOutput, Input-, or OutputDataPoint is mandatory

then the related Object Property (hasInput, hasOutput, hasInputDataPoint, hasOutputDataPoint) shall

have a Property Restriction with cardinality "min 1".

If for an Operation the OperationState is mandatory then the related Object Property

(hasOperationState) shall have a Property Restriction with cardinality "exactly 1".

This class is the range Class of Object Property:

• hasOperation (range Class: Service)

Data properties

• oneM2MMethod (range data type: rdf:PlainLiteral)

• oneM2MTargetURI (range data type: rdfs: Literal)

Superclass-subclass relationships

This class is a subclass of:

• None

This class is a superclass of:

• GET_InputDataPoint

• SET_OutputDataPoint

Restrictions

• exposesCommand only Command

• hasInput only OperationInput

• hasOperationState only OperationState

• hasOutput only OperationOutput

7.1.10.1 Class: GET_InputDataPoint

Description

• GET_InputDataPoint (Class: GET_InputDataPoint) is an Operation that may be offered by

a Device to trigger the device to retrieve the data of an InputDataPoint (e.g., outside the

schedule when the device normally retrieves data from that DataPoint)

 Rec. ITU-T Y.4500.12 (03/2018) 27

Object properties

This class is the domain Class of Object Property:

• hasInputDataPoint (range Class: InputDataPoint)

This class is the range Class of Object Property:

• None

Data properties

• None

Superclass-subclass relationships

This class is a subclass of:

• Operation

This class is a superclass of:

• None

Restrictions

• None

7.1.10.2 Class: SET_OutputDataPoint

Description

• SET_OutputDataPoint (Class: SET_OutputDataPoint) is an Operation that may be offered

by a Device to trigger the device to update the data of an OutputDataPoint (e.g., outside the

schedule when the device normally updates that DataPoint)

Object properties

This class is the domain Class of Object Property:

• hasOutputDataPoint (range Class: OutputDataPoint)

This class is the range Class of Object Property:

• None

Data properties

• None

Superclass-subclass relationships

This class is a subclass of:

• Operation

This class is a superclass of:

• None

Restrictions

• None

7.1.11 Class: Command

See Figure 13.

28 Rec. ITU-T Y.4500.12 (03/2018)

Figure 13 – Command

Description

• A Command (Class: Command) represents an action that can be performed to support the

Function. A Command is the humanly understandable name of that action invoked in a device

or reported by the device. An Operation exposes a Command to the network. OperationInput

and OperationOutput of the related Operation can parameterize the command, for example,

the Function "dimming-Function" of a light switch that remotely controls a light could have

a Command "setLightIntensity", with a parameter that has values 0-100%.

 Also InputDataPoints and OutputDataPoints expose Commands to the network. When a

Device communicates in a RESTful way then changing (UPDATEing) an InputDataPoint

triggers an action in the Device once the Device has read out the data from the

InputDataPoint. Similarly, when a Device sets the data of an OutputDataPoint then it

provides state information about the Device.

NOTE – In RESTful systems, the names of Input and Output DataPoints are usually chosen in such a way that

they express the Command, i.e., the human-understandable meaning (e.g., a binary InputDataPoint of a light

switch could have a name "Set_Light_Status"). Updating a DataPoint can be interpreted as executing a

Command.

Object properties

This class is the domain Class of Object Property:

• isExposedByOperation (range Class: Operation)

• hasInput (range Class: OperationInput)

• hasOutput (range Class: OperationOutput)

This class is the range Class of Object Property:

• hasCommand (domain Class: Function)

• exposesCommand (domain Class: Operation OR InputDataPoint OR OutputDataPoint)

Data properties

• None

 Rec. ITU-T Y.4500.12 (03/2018) 29

Superclass-subclass relationships

This class is a subclass of:

• None

This class is a superclass of:

• None

Restrictions

• hasInput only OperationInput (Universal restriction: a Command can have a relationship

"hasInput" only to OperationInput)

• hasOutput only OperationOutput

• hasInputDataPoint only InputDataPoint

• hasOutputDataPoint only OutputDataPoint

7.1.12 Class: OperationInput

See Figure 14.

Figure 14 – OperationInput

Description

• OperationInput (Class: OperationInput) describes an input of an Operation of a Service.

OperationInput also describes the input of a Command:

– OperationInput is transient. An instance of OperationInput is deleted when the instance

of its Operation is deleted.

– An Operation/Command may have multiple OperationInputs or OperationOutputs. If an

instance of an Operation is invoked then the input value to that Operation shall be an

instance of its OperationInput class.

Object properties

This class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData) (inherited from class:Variable)

• describes (range Class: Aspect) (inherited from class:Variable)

30 Rec. ITU-T Y.4500.12 (03/2018)

This class is the range Class of Object Property:

• hasInput (domain Class: Operation)

• hasInput (domain Class: Command)

Data properties

This class is part of the domain Class of Data Property:

• Inherited from Class: Variable and possibly Class SimpleTypeVariable (see clauses 6.1.17

and 6.1.18)

Superclass-subclass relationships

This class is a subclass of:

• Variable

NOTE – Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OperationInput

may also be a SimpleTypeVariable.

This class is a superclass of:

• None

Restrictions

• None

7.1.13 Class: OperationOutput

See Figure 15.

Figure 15 – OperationOutput

Description

• OperationOutput (Class: OperationOutput) describes an output of an Operation.

OperationOutput also describes the output of a Command:

– OperationOutput is transient. An instance of OperationOutput is deleted when the

instance of its Operation is deleted

– An Operation/Command may have multiple OperationInputs or OperationOutputs

 Rec. ITU-T Y.4500.12 (03/2018) 31

Object properties

This class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData) (inherited from class:Variable)

• describes (range Class: Aspect) (inherited from class:Variable)

This class is the range Class of Object Property:

• hasOutput (domain Class: Operation)

• hasOutput (domain Class: Command)

Data properties

This class is part of the domain Class of Data Property:

• Inherited from Class: Variable and possibly Class SimpleTypeVariable (see clauses 6.1.17

and 6.1.18)

Superclass-subclass relationships

This class is a subclass of:

• Variable

NOTE – Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of

OperationOutput may also be a SimpleTypeVariable

This class is a superclass of:

• None

Restrictions

• None

7.1.14 Class: OperationState

See Figure 16.

Figure 16 – OperationState

32 Rec. ITU-T Y.4500.12 (03/2018)

Description

• OperationState (Class: OperationState) describes the current state of an Operation. The

OperationState class represents all possible values for that state (enumerated individuals).

The OperationState is set during the progress of the operation by the CSE and, optionally,

the entity that is the target of the operation, e.g., a device (or for interworked devices by the

IPE).

 This class contains a text string that is provided by the AE (e.g., an IPE). Values for that text

that are specified in oneM2M are:

– "data_received_by_application"

– "operation_ended"

– "operation_failed"

– "data_transmitted_to_interworked_device"

 Additional values for the text string of the operationState attribute are permissible.

Object properties

This class is the range Class of Object Property:

• hasOperationState (domain Class: Operation)

Data properties

This class is part of the domain Class of Data Property:

• inherited from Class: Variable (see clause 6.1.17)

• hasDataType (range data type: xsd:string) (inherited from Class: SimpleTypeVariable,

see clause 6.1.18)

• hasDataRestriction_Pattern (range data type: xsd:string{"data received by application",

"operation ended", "operation failed", "data transmitted to interworked device"}) (inherited

from Class: SimpleTypeVariable, see clause 6.1.18)

Superclass-subclass relationships

This class is a subclass of:

• SimpleTypeVariable

This class is a superclass of:

• None

Restrictions

• hasDataRestriction_pattern exactly 1 xsd:string

• (hasDataRestriction_pattern value "data_received_by_application"^^xsd:string) or

(hasDataRestriction_pattern value "data_transmitted_to_interworked_device"^^xsd:string)

or (hasDataRestriction_pattern value "operation_ended"^^xsd:string) or

(hasDataRestriction_pattern value "operation_failed"^^xsd:string)

NOTE – An OperationState has a Data Property "hasDataRestriction" with a pattern of exactly 1 xsd:string.

The value of that xsd:string can be: "data_received_by_application",

"data_transmitted_to_interworked_device", "operation_ended" or "operation_failed".

7.1.15 Class: InputDataPoint

See Figure 17.

 Rec. ITU-T Y.4500.12 (03/2018) 33

Figure 17 – InputDataPoint

Description

• InputDataPoint (Class: InputDataPoint) is a Variable of a Service that is accessed by a

RESTful Device in its environment, which the Device reads out autonomously (e.g., at

periodic times). To enable a third party to instruct the device to retrieve (out of schedule) the

current value of an InputputDataPoint. Devices often also offer a GET_InputDataPoint

Operation to trigger the device to retrieve the data from the InputDataPoint:

– An InputDataPoint is a persistent entity.

NOTE 1 – Input and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful

way, while Operations are the procedures that are used for remote procedure based communication. Operations

are, however, also needed in RESTful systems to correlate output that is produced by a device to the input that

triggered the production of that output.

Object properties

This class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData) (inherited from class:Variable)

• describes (range Class: Aspect) (inherited from class:Variable)

This class is the range Class of Object Property:

• hasInputDataPoint (domain Class: Operation)

• hasInputDataPoint (domain Class: Command)

Data properties

This class is part of the domain Class of Data Property:

• Inherited from Class: Variable and possibly Class SimpleTypeVariable (see clauses 6.1.17

and 6.1.18)

Superclass-subclass relationships

This class is a subclass of:

• Variable

34 Rec. ITU-T Y.4500.12 (03/2018)

NOTE 2 – Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of

InputDataPoint may also be a SimpleTypeVariable.

This class is a superclass of:

• None

Restrictions

• None

7.1.16 Class: OutputDataPoint

See Figure 18.

Figure 18 – OutputDataPoint

Description

• OutputDataPoint (Class: OutputDataPoint) is a Variable of a Service that is set by a

RESTful Device in its environment and that the Device updates autonomously (e.g., at

periodic times). To enable a third party to instruct the device to update (out of schedule) the

current value of an OutputputDataPoint. Devices often also offer a SET_OutputDataPoint

Operation to trigger the device to update the data of the OutputDataPoint:

– An OutputDataPoint is a persistent entity.

NOTE 1 – Input and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful

way, while Operations are the procedures that are used for remote procedure-based communication. Operations

are, however, also needed in RESTful systems to correlate output that is produced by a device to the input that

triggered the production of that output.

Object properties

This class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData) (inherited from class:Variable)

• describes (range Class: Aspect) (inherited from class:Variable)

This class is the range Class of Object Property:

• hasOutputDataPoint (domain Class: Operation)

 Rec. ITU-T Y.4500.12 (03/2018) 35

• hasOutputDataPoint (domain Class: Command)

Data properties

This class is part of the domain Class of Data Property:

• Inherited from Class: Variable and possibly Class SimpleTypeVariable (see clauses 6.1.17

and 6.1.18)

Superclass-subclass relationships

This class is a subclass of:

• Variable

NOTE 2 – Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of

OutputDataPoint may also be a SimpleTypeVariable.

This class is a superclass of:

• None

Restrictions

• None

7.1.17 Class: Variable

See Figure 19.

Figure 19 – Variable

Description

• A Variable (Class: Variable) constitutes a superclass to the following classes:

ThingProperty, OperationInput, OperationOutput, OperationState, InputDataPoint,

OutputDataPoint, SimpleTypeVariable. Its members are entities that store some data

(e.g., integers, text, etc., or structured data) that can change over time. These data of the

36 Rec. ITU-T Y.4500.12 (03/2018)

Variable usually describe some real-world Aspects (e.g., a temperature) and can have

MetaData (e.g., units, precision)

Object properties

This class is the domain Class of Object Property:

• hasMetaData (range Class: MetaData)

• describes (range Class: Aspect)

• hasSubStructure (range Class: Variable)

If a Variable has a substructure for which certain parts (i.e., Variables of the substructure) are

mandatory, then the related Object Property (hasSubStructure) shall have a Property Restriction with

cardinality "min 1".

This class is the range Class of Object Property:

• hasSubStructure (domain Class: Variable)

Data properties

• oneM2MMethod (range datatype: rdf:PlainLiteral)

 This data property contains a oneM2M Method through which the oneM2M instantiation of

the value of the Variable can be manipulated by the communicating entity:

– It contains the string "RETRIEVE" for retrieving the variable when the oneM2M

resource is of type <container> or <flexContainer>. This applies to subclasses:

OperationOutput, OutputDatapoint, ThingProperty and OperationState.

– It contains the string "CREATE" for updating the variable when the oneM2M resource

is of type <container>. This applies to subclasses: OperationInput, InputDatapoint,

ThingProperty.

– It contains the string "UPDATE" for updating the variable when the oneM2M resource

is of type <flexContainer>. This applies to subclasses: OperationInput, InputDatapoint,

ThingProperty.

• oneM2MTargetURI (range data type: rdfs: Literal)

 This data property contains the URI of a oneM2M resource (<container> or <flexContainer>)

through which the oneM2M instantiation of the value of the Variable can be manipulated by

the communicating entity. It can contain an absolute address or an address relative to the

<semanticDescriptor> resource that holds the RDF description of the Variable. That address

could be, e.g., the value of the parentID for the <container> or <flexContainer> of a Input or

Output DataPoint that has a child resource of the type <semanticDescriptor> that holds the

RDF description of the DataPoint.

Superclass-subclass relationships

This class is a subclass of:

• None

This class is a superclass of:

• ThingProperty

• OperationInput, OperationOutput

• OperationState

• InputDataPoint

• OutputDataPoint

• SimpleTypeVariable

 Rec. ITU-T Y.4500.12 (03/2018) 37

Restrictions

• hasSubStructure only Variable

7.1.18 Class: SimpleTypeVariable

See Figure 20.

Figure 20 – SimpleTypeVariable

Description

• SimpleTypeVariable (Class: SimpleTypeVariable) is a subclass of class:Variable that only

consists of Variables of simple XML types like xsd:integer, xsd:string, etc., potentially

including restrictions

 The simple datatypes and -restrictions contained in [b-OWL] are supported.

Object properties

This class is the domain Class of Object Property:

• None

This class is the range Class of Object Property:

• None

Data properties

This class is part of the domain Class of Data Property:

• Inherited from Class: Variable. (See clause 6.1.17.)

• hasValue (range data type: rdfs: Literal)

 This data property contains the value of the Variable if that value is part of the semantic

description and is not contained in a different resource (identified by the oneM2MTargetURI

data property). Storing the value of a Variable in a semantic description (i.e., as part of the

RDF description in the semanticDescriptor resource) is useful for values that are relatively

static (e.g., the name of the manufacturer):

38 Rec. ITU-T Y.4500.12 (03/2018)

– Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one

of the two shall be instantiated.

• oneM2MAttribute (range data: rdf:PlainLiteral)

 This Data Property contains the name of the attribute of the oneM2M resource (of type

<container> or <flexContainer>) that is referenced with the oneM2MTargetURI and that

stores the value of the SimpleTypeVariable.

• hasDataType (range datatype: rdf:PlainLiteral)

 This Data Property contains the datatype of the SimpleTypeVariable as text string.

• hasDataRestriction (range datatype: rdf:PlainLiteral)

 This Data Property contains a restriction of value of the SimpleTypeVariable.

Superclass-subclass relationships

This class is a subclass of:

• Variable

This class is a superclass of:

• OperationState

Restrictions

• hasDataType exactly 1 rdf:PlainLiteral

• hasDataRestriction only rdf:PlainLiteral

• hasSubStructure exactly 0 Variable

NOTE – A Simple Type Variable has a data type but no other variables as substructure.

7.2 Object properties

7.2.1 Void

7.2.2 Void

7.2.3 Object Property: consistsOf

Description

• A Device can consist (i.e., be composed) of several (sub-)Devices

Domain Class

• Device

Range Class

• Device

7.2.4 Object Property: describes

Description

• A Variable describes an Aspect (a quality or kind)

Domain Class

• Variable

Range Class

• Aspect

 Rec. ITU-T Y.4500.12 (03/2018) 39

7.2.5 Object Property: exposesCommand

Description

• A – machine interpretable – Operation or an Input/OutputDataPoint of a Service exposes a –

humanly understandable – Command to a network.

Domain Class

• Operation

Range Class

• Command

7.2.6 Object Property: exposesFunction

Description

• A Service exposes a Function to the network and makes it discoverable, registerable and

remotely controllable in the network.

Domain Class

• Service

Range Class

• Function

7.2.7 Object Property: hasCommand

Description

• A Function of a Device can be influenced or observed by a human user through the

Commands that this Function has and which are offered to the user

Domain Class

• Function

Range Class

• Command

7.2.8 Object Property: hasFunction

Description

• In order to accomplish its task, a Device performs one or more Functions

Domain Class

• Device

Range Class

• Function

7.2.9 Object Property: hasInput

Description

• An Operation of a Service of the Device or a Command of a Function of the Device can have

OperationInput data.

Domain Class

• Operation

40 Rec. ITU-T Y.4500.12 (03/2018)

• Command

Range Class

• OperationInput

7.2.10 Object Property: hasInputDataPoint

Description

• A Service or an Operation of a Service of the Device can have InputDataPoints.

Communicating entities write data into InputDataPoints and the Device retrieves the data at

times according to an internal schedule. An InputDataPoint can also contain the data that are

used as input to an Operation.

Domain Class

• Operation

• Service

Range Class

• InputDataPoint

7.2.11 Object Property: hasMetaData

Description

• A Variable can have MetaData (units, precision ranges, etc.)

Domain Class

• Variable

Range Class

• MetaData

7.2.12 Void

7.2.13 Object Property: hasOperation

Description

• A Service communicates by means of Operations over the network to transmit data to/from

other devices

Domain Class

• Service

Range Class

• Operation

7.2.14 Object Property: hasOperationState

Description

• An Operation may have an OperationState that is exposed

Domain Class

• Operation

Range Class

• OperationState

 Rec. ITU-T Y.4500.12 (03/2018) 41

7.2.15 Void

7.2.16 Object Property: hasOutput

• An Operation of a Service of the Device or a Command of a Function of the Device can have

OperationOutput data

Domain Class

• Operation

• Command

Range Class

• OperationOutput

7.2.17 Object Property: hasOutputDataPoint

Description

• A Service or an Operation of a Service of the Device can have OutputDataPoints. The Device

writes data into OutputDataPoints at times according to an internal schedule and the

communicating entities retrieve the data. An OutputDataPoint can also contain the data that

are created as output of an Operation.

Domain Class

• Operation

• Service

Range Class

• OutputDataPoint

7.2.18 Object Property: hasService

Description

• The Functions of a Device are exposed in the network as Services of the Device

Domain Class

• Device

Range Class

• Service

7.2.19 Object Property: hasSubStructure

Description

• A structured Variable can be composed of (sub-)Variables

Domain Class

• Variable

Range Class

• Variable

7.2.20 Object Property: hasThingProperty

Description

• A Thing may have properties that can be described by Values

42 Rec. ITU-T Y.4500.12 (03/2018)

Domain Class

• Thing

Range Class

• Value

7.2.21 Object Property: hasThingRelation

Description

• A Thing may have relations to itself or to other Things

Domain Class

• Thing

Range Class

• Thing

7.2.22 Void

7.2.23 Void

7.2.24 Void

7.2.25 Object Property: isPartOf

Description

• An InterworkedDevice consist a part of an AreaNetwork

Domain Class

• InterworkedDevice

Range Class

• AreaNetwork

7.2.26 Object Property: refersTo

Description

• A Function of a Device can refer to a certain Aspect (a quality or kind) that is measured or

controlled by that Function. e.g., a temperature sensor would refer to the Aspect

"Temperature" that it measures

Domain Class

• Function

Range Class

• Aspect

7.3 Data Properties

7.3.1 Data Property: hasDataType

Note that in this Recommendation the name space identifier for:

• 'http://www.w3.org/2001/XMLSchema' shall be referred to using the prefix: xsd

• 'http://www.w3.org/2002/07/owl' shall be referred to using the prefix: owl

• 'http://www.w3.org/1999/02/22-rdf-syntax-ns' shall be referred to using the prefix: rdf

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns

 Rec. ITU-T Y.4500.12 (03/2018) 43

Description

• This Data Property specifies the data type of the SimpleTypeVariable as URI

Domain Class

• SimpleTypeVariable

Range Datatype

• xsd:anyURI

Permissible URIs are:

• for Numbers types (possible restrictions: xsd:minInclusive, xsd:maxInclusive,

xsd:minExclusive, xsd:maxExclusive):

– owl:real

– owl:rational

– xsd:decimal

– xsd:integer

– xsd:nonNegativeInteger

– xsd:nonPositiveInteger

– xsd:positiveInteger

– xsd:negativeInteger

– xsd:long

– xsd:int

– xsd:short

– xsd:byte

– xsd:unsignedLong

– xsd:unsignedInt

– xsd:unsignedShort

– xsd:unsignedByte

• for PlainLiteral – contains all String types (possible restrictions: xsd:length, xsd:minLength,

xsd:maxLength, xsd:pattern, rdf:langRange):

– rdf:PlainLiteral

• for String types (possible restrictions: xsd:length, xsd:minLength, xsd:maxLength,

xsd:pattern):

– xsd:string

– xsd:normalizedString

– xsd:token

– xsd:language

– xsd:Name

– xsd:NCName

– xsd:NMTOKEN

• for Boolean Values (no restrictions):

– xsd:boolean

• for Binary Data types (possible restrictions: xsd:minLength, xsd:maxLength, xsd:length):

– xsd:hexBinary

44 Rec. ITU-T Y.4500.12 (03/2018)

– xsd:base64Binary

• for internationalized resource identifiers (IRIs; possible restrictions: xsd:minLength,

xsd:maxLength, xsd:length, xsd:pattern):

– xsd:anyURI

• for Time Instants (possible restrictions: sd:minInclusive, xsd:maxInclusive,

xsd:minExclusive, xsd:maxExclusive):

– xsd:dateTime

– xsd:dateTimeStamp

• for Literals:

– rdf:XMLLiteral

7.3.2 Data Property: hasDataRestriction

7.3.2.0 General description

Description

• This Data Property specifies the restrictions on the data type of the SimpleTypeVariable.

Domain Class

• SimpleTypeVariable

Range Datatype

• rdf:PlainLiteral

The Data Property "hasDataRestriction" shall always be subclassed as one of the following

specializations.

The range of a sub-classed Data Property "hasDataRestriction" shall be instantiated as the value

restricting the data, for example, a value 100 in the range of Data Property:

hasDataRestriction_minInclusive specifies that the SimpleTypeVariable can only take values greater

or equal to 100.

7.3.2.1 Data Property: hasDataRestriction_minInclusive

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.2 Data Property: hasDataRestriction_maxInclusive

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.3 Data Property: hasDataRestriction_minExclusive

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.4 Data Property: hasDataRestriction_maxExclusive

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.5 Data Property: hasDataRestriction_length

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.6 Data Property: hasDataRestriction_minLength

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.7 Data Property: hasDataRestriction_maxLength

For applicability of this subclass see of data property: hasDataRestriction, see clause 6.3.1.

 Rec. ITU-T Y.4500.12 (03/2018) 45

7.3.2.8 Data Property: hasDataRestriction_pattern

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.2.9 Data Property: hasDataRestriction_langRange

For applicability of this subclass of data property: hasDataRestriction, see clause 6.3.1.

7.3.3 Data property: hasValue

Description

• This data property contains the value of the Variable if that value is part of the semantic

description and is not contained in a different resource (identified by the oneM2MTargetURI

data property). Storing the value of a Variable in a semantic description (i.e., as part of the

RDF description in the semanticDescriptor resource) is useful for values that are relatively

static (e.g., the name of the manufacturer):

– Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one

of the two shall be instantiated.

Domain Class

• SimpleTypeVariable

Range Datatype

• rdfs: Literal

7.3.4 Data Property: netTechnologyCommunicationProtocol

Description

• Identifies a communication protocol (e.g., ZigBee_1_0)

Domain Class

• AreaNetwork

Range Datatype

• netTechnologyCommunicationProtocol rdf:PlainLiteral

7.3.5 Data Property: netTechnologyPhysicalStandard

Description

• netTechnologyPhysicalStandardIdentification of the physical properties of an area network

technology (e.g., IEEE_802_15_4_2003_2_4GHz).

Domain Class

• AreaNetwork

Range Datatype

• rdf:PlainLiteral

7.3.6 Data Property: netTechnologyProfile

Description

• netTechnologyProfileIdentification of a profile (e.g., ZigBee_HA) of an area network

technology

Domain Class

• AreaNetwork

46 Rec. ITU-T Y.4500.12 (03/2018)

Range Datatype

• rdf:PlainLiteral

7.3.7 Data Property: oneM2MTargetURI

Description

• oneM2MTargetURI (range data type: rdfs: Literal)

 This data property contains the URI of a oneM2M resource (<container> or <flexContainer>)

through which the oneM2M instantiation of the value of the Variable can be manipulated by

the communicating entity. It can contain an absolute address or an address relative to the

<semanticDescriptor> resource that holds the RDF description of the Variable.

 That address could be e.g.:

– The value of the parentID for the <container> or <flexContainer> of an Input or Output

DataPoint which has child resource of type <semanticDescriptor> that holds the RDF

description of the DataPoint.

Domain Class

• Operation

• Variable

Range Datatype

• rdfs:Literal

7.3.8 Data Property: oneM2MAttribute

Description

• This Data Property contains the name of the attribute of the oneM2M resource of type

<flexContainer> or the child resource of the oneM2M resource of type <container> that is

referenced with the oneM2MTargetURI and that stores the value of the SimpleTypeVariable:

– if the resource-type of the oneM2M resource that is referenced with the

oneM2MTargetURI is <container> then this Data Property shall contain the text string

"#latest".

Domain Class

• SimpleTypeVariable

Range Datatype

• rdf:PlainLiteral

7.3.9 Data Property: oneM2MMethod

Description

• This data property contains a oneM2M CRUD Method through which the oneM2M

instantiation of the value of the Variable can be manipulated by the communicating entity:

– It contains the string "RETRIEVE" for retrieving the variable when the oneM2M

resource is of type <container> or <flexContainer>. This applies to subclasses:

OperationOutput, OutputDatapoint, ThingProperty and OperationState.

– It contains the string "CREATE" for updating the variable when the oneM2M resource

is of type <container>. This applies to subclasses: OperationInput, InputDatapoint,

ThingProperty.

 Rec. ITU-T Y.4500.12 (03/2018) 47

– It contains the string "UPDATE" for updating the variable when the oneM2M resource

is of type <flexContainer>. This applies to subclasses: OperationInput, InputDatapoint,

ThingProperty.

Domain Class

• Variable

• Operation

Range Datatype

• rdf:PlainLiteral

7.3.10 Data Property: hasThingAnnotation

Description

• This data property contains a description of a Thing.

• Note: Data Property: hasThingAnnotation should be used in cases where the annotation data

do not change very often or where they are usually not the subject of semantic operations

(e.g., semantic discovery). Otherwise Object Property: hasThingPropery should be used.

• For example., a certain type of Device could have the model (as a numeric description) or

the name of the manufacturer (as a textual annotation).

Domain Class

• Thing

Range Datatype

• rdfs: Literal

7.4 Annotation properties

7.4.1 Annotation Property: resourceDescriptorLink

Description

• The resourceDescriptorLink annotation property is used to refer to a semanticDescriptor

resource that contains more information about its subject. Its subject may be any individual

and the range shall be the data literal or URI reference that represents the address of the

semanticDescriptor:

– For a oneM2M instantiation of the base ontology the resourceDescriptorLink annotation

property is used to annotate instances that appear in the range of object properties. The

URI points to the semanticDescriptor that contains more information about the instance

of that class.

NOTE – In OWL DL the definition of property axioms based on annotation properties is not allowed, i.e., it is

not possible to define a domain and a range within the ontology itself.

Domain Class

• owl:Thing

Range Datatype

• xsd:anyURI

48 Rec. ITU-T Y.4500.12 (03/2018)

8 Instantiation of the base ontology and external ontologies to the oneM2M system

8.1 Instantiation rules for the base ontology

8.1.1 Instantiation of classes of the oneM2M base ontology and derived external ontologies

in the oneM2M system

8.1.1.1 General on instantiating classes of the base ontology in the oneM2M system

Clause 8.1.1 describes how the base ontology shall be instantiated in the oneM2M system.

NOTE 1 – Apart from semantically describing oneM2M Solutions, a standardized oneM2M instantiation of

the base ontology is also needed for the purpose of Interworking with full semantic mapping when the non-

oneM2M data model is described by a oneM2M compliant ontology as described in clause F.5 of oneM2M

TS-0001 [ITU-T Y.4500.1].

NOTE 2 – Other instantiations of the base ontology are permissible if interworking according to clause F.5 of

oneM2M TS-0001 [ITU-T Y.4500.1] is not required.

Every instantiation of a class of the base ontology (or a subclass thereof) shall be instantiated in a

descriptor attribute of a oneM2M resource of type <semanticDescriptor>. A <semanticDescriptor>

resource may instantiate multiple classes.

That <semanticDescriptor> resource shall:

a) Contain instantiations of classes in the RDF data [b-RDF] of its descriptor attribute:

– Every instance of a class shall be globally identified within the oneM2M Solution using

the rdf:about attribute that contains a URI [e.g., based on a media access control (MAC)

address of a Device] that is unique within the oneM2M Solution.

NOTE 3 – The choice of a suitable unique URI is outside the scope of oneM2M.

a) Contain an Ontology-Ref attribute that identifies the class whose instantiation is described in

the descriptor attribute. Depending on the instantiation, this is a class in the base ontology or

a class of another ontology that is a subclass of (includes equals to) a class in the base

ontology as defined in clause 6.1.2.2.

The <semanticDescriptor> shall also contain:

a) the instantiated Object Properties for which the instantiated class is the domain class;

b) the instantiated Data Properties for which the instantiated class is the domain class.

NOTE 4 – Instantiations of the domain class and the range class of an object property may be contained in

<semanticDescriptor>different <semanticDescriptor> resources.

If the range class of an object property is instantiated in a <semanticDescriptor> resource that is

different to the <semanticDescriptor> resource in which the domain class is instantiated, then the

<semanticDescriptor> of the instance of the domain class shall contain:

a) an instance of the resourceDescriptorLink annotation property that contains the URI of the

semanticDescriptor of the instance of the range class.

For specific classes that are indicated in clause 8.1.1.2 (in particular class:OperationState and classes

that are derived from class:Variable) the values of Data Properties may be stored in the parent

resource of that <semanticDescriptor> instead of the RDF data [b-RDF] of the descriptor attribute.

Any class of a derived external ontology shall be either:

• a subclass of a class of the base ontology; or

• the range class of some Object Property whose domain class is a class (e.g., class:Thing) or

subclass of the base ontology.

If a class of a derived external ontology is a subclass of a class of the base ontology, then it shall be

instantiated in the same way as the class of the base ontology.

 Rec. ITU-T Y.4500.12 (03/2018) 49

If a class of a derived external ontology is not a subclass of the base ontology, but is the range class

of some Object Property whose domain class is a class or subclass of the base ontology, then it shall

be instantiated in the data of the descriptor attribute of the <semanticDescriptor> child resource of

the oneM2M resource that instantiates the subclass of the base ontology.

8.1.1.2 Instantiation of individual classes of the base ontology

An overview of the oneM2M resources for instantiating the classes of the oneM2M base ontology is

shown in the Figure 21. Different colours indicate different resource types.

Figure 21 – oneM2M instantiation of the base ontology

• The Device class of the oneM2M base ontology (or a subclass thereof that is not an

InterworkedDevice) shall be instantiated in the data of the descriptor attribute of a resource

of type <semanticDescriptor> that is a child resource of an <AE>.

50 Rec. ITU-T Y.4500.12 (03/2018)

 The Device instance is identified using the rdf:about attribute that contains a URI (e.g., the

MAC address) that is unique within the oneM2M Solution.

 The application logic (identified by its APP-ID of the Device instance is provided by the

Application Entity (AE) of that Device.

NOTE 1 – The resourceID of a <node> resource that stores the node specific information where this AE

resides is contained in the nodeLink attribute of the <AE> of the Device.

• The InterworkedDevice class of the oneM2M base ontology (or a subclass) shall be

instantiated in the data of the descriptor attribute of a resource of type <semanticDescriptor>

that is a child resource of:

– an <AE> resource of its IPE; or

– a <container> or <flexContainer> resource that is a child resource of the <AE> resource

of its IPE.

 The InterworkedDevice instance is identified using the rdf:about attribute that contains a URI

(e.g., the device identifier of the device in the interworked system) that is unique within the

oneM2M Solution.

 The APP-ID of the <AE> that is the parent (or grand-parent) of the <semanticDescriptor>

which contains an instance of an InterworkedDevice, shall be the APP-ID of the IPE of the

InterworkedDevice.

NOTE 2 – The reason for the different instantiation of Device and InterworkedDevice is the following:

 Case 1 – native oneM2M Device:

• A oneM2M Device (ASN, ADN – and potentially MN) always has an AE and an <AE>

resource. Therefore the Device class for a oneM2M Device needs to be instantiated in

the descriptor attribute of the <semanticDescriptor> child resource of that <AE>.

 Case 2 – interworked (non-oneM2M) device:

• In the case of an interworked (non-oneM2M) device the IPE may

– Instantiate the InterworkedDevice class for the interworked (non-oneM2M) devices

in the descriptor attribute of the <semanticDescriptor> child resource of the <AE>

of the IPE.

– The IPE can create multiple <AE> resources, one for each interworked device. In

this case, each interworked device needs to be instantiated in the descriptor attribute

of the <semanticDescriptor> child resource of that newly created <AE>.

– The IPE can create multiple <container> or <flexContainer> resources as child

resources of the <AE> resource of its IPE, one for each interworked device. In this

case, each interworked (non-oneM2M) device needs to be instantiated in the

descriptor attribute of the <semanticDescriptor> child resource of that <container>

or <flexContainer>.

• The AreaNetwork class (or a subclass) shall be instantiated in the data of the descriptor

attribute of the <semanticDescriptor> child resource of the oneM2M resource that

instantiates the InterworkedDevice class:

– The Data Properties "anTechnologyCommunicationProtocol",

"anTechnologyPhysicalStandard" and "anTechnologyProfile" are instantiated in the

descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource

that instantiates the InterworkedDevice class.

• The Service class (or a subclass) shall be instantiated in the data of the descriptor attribute

of the <semanticDescriptor> child resource of a genericInterworkingService (specialization

of <flexContainer>) resource.

 Rec. ITU-T Y.4500.12 (03/2018) 51

 The instance is identified using the rdf:about attribute that contains the URI of the Device

concatenated with an asterisk "*" and the class name of the Service

(e.g., 00:11:2F:74:2C:8F*MyService).

 The genericInterworkingService resource shall be a child resource of the (<AE>,

<container> or <flexContainer>) resource that contains the <semanticDescriptor> that

instantiates the Device class. It contains references to the <container> or <flexContainer>

resources that represent Input or Output Datapoints of the Service.

 The Function class (or subclass) shall be instantiated in the data of the descriptor attribute

of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the

Device class.

 The instance is identified using the rdf:about attribute that contains the URI of the Device

concatenated with an asterisk "*" and the class name of the Function

(e.g., 00:11:2F:74:2C:8F*MyFunction).

• The Command class (or subclass) shall be instantiated in the data of the descriptor attribute

of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the

Device class.

 The instance is identified using the rdf:about attribute that contains the URI of the Device

concatenated with an asterisk "*" and the class name of the Command

(e.g., 00:11:2F:74:2C:8F*MyCommand).

• The Operation class (or subclasses) shall be instantiated in the descriptor attribute of the

<semanticDescriptor> child resource of a genericInterworkingOperationInstance

(specialization of <flexContainer>) resource.

 The instance is identified using the rdf:about attribute that contains the URI of the Device

concatenated with an asterisk "*" and the class name of the Service, concatenated with an

asterisk "*" and a combination of the class name of the Operation with a number that makes

the instance unique within its Service instance during the operation's lifetime (e.g., at a certain

point in time a Service instance might have Operation instances with OperationInstances with

IDs:

– "00:11:2F:74:2C:8F*MyService*MyOperation1",

"00:11:2F:74:2C:8F*MyService*MyOperation5";

– "00:11:2F:74:2C:8F*MyService*MyOtherOperation1";

– "00:11:2F:74:2C:8F*MyService*MyThirdOperation8").

 The genericInterworkingOperationInstance resource shall be a child resource of the

genericInterworkingService resource that contains the <semanticDescriptor> that

instantiates the Service class:

– The range instance of Object Property "hasOperation" that links the instance of the

Service to the instance of the Operation shall be annotated with an Annotation Property:

resourceDescriptorLink <semanticDescriptor>, which shall contain a reference to the

resource of type <semanticDescriptor> that instantiates the Operation.

• The OperationInput and OperationOutput class (or subclass) shall be instantiated in the

data of the descriptor attribute of the <semanticDescriptor> child resource of a <container>

or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the

OperationInstance concatenated with an asterisk "*" and the class name of the

OperationInput and OperationOutput

(e.g., 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*MyOperationOutput).

52 Rec. ITU-T Y.4500.12 (03/2018)

 The <container> or <flexContainer>, whose <semanticDescriptor> child resource

contains the instance of the OperationInput or OperationOutput shall be a child resource

of the genericInterworkingOperationInstance resource:

– The range of an instantiation of Object Properties "hasInput" and "hasOutput" that

link the instance of the Operation to the instance of the OperationInput and

OperationOutput shall be annotated with an Annotation Property:

resourceDescriptorLink, which shall contain a reference to the resource of type

<semanticDescriptor> that instantiates the OperationInput and OperationOutput.

• The InputDataPoint and OutputDataPoint class (or subclass) shall be instantiated in the

data of the descriptor attribute of the <semanticDescriptor> child resource of a <container>

or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the Device

concatenated with an asterisk "*" and the class name of the InputDataPoint or

OutputDataPoint (e.g., 00:11:2F:74:2C:8F*MyInputDataPoint).

 The <container> or <flexContainer> resource shall be a child resource of the (<AE>,

<container> or <flexContainer>) resource, which contains the <semanticDescriptor>

that instantiates the Device class or InterworkedDevice class:

– The range of an instantiation of Object Properties "hasInputDataPoint" and

"hasOutputDataPoint" that link the instance of a Service or Operation to the instance

of the InputDataPoint and OutputDataPoint shall be annotated with an Annotation

Property: resourceDescriptorLink which shall contain a reference to the resource of

type <semanticDescriptor> that instantiates the InputDataPoint and

OutputDataPoint.

• <semanticDescriptor>The OperationState class (or subclass) shall be instantiated in the

data of the descriptor attribute of the <semanticDescriptor> child resource of the

genericInterworkingOperationInstance resource that is related via the "hasOperationState"

Object Property.

 The instance is identified using the rdf:about attribute that contains the URI of the

OperationInstance concatenated with an asterisk "*" and "OperationState" (i.e., the class

name of the OperationState)

(e.g., 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*OperationState):

– The data property "oneM2MTargetURI" shall contain the URI of the

genericInterworkingOperationInstance resource.

– The data property "oneM2MAttribute" shall obtain the value "OperationState" (i.e., the

name of the Attribute of the OperationState in the

genericInterworkingOperationInstance resource).

• <semanticDescriptor>The Aspect class (or subclasses) may be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> child resource of any resource type that

allows a <semanticDescriptor> child resource.

 The instance is identified using the using the rdf:about attribute that contains a URI that is

unique within the oneM2M Solution.

NOTE 3 – The choice of a suitable unique URI is outside the scope of oneM2M.

• The Thing class (or subclasses) may be instantiated in the data of the descriptor attribute of

the <semanticDescriptor> child resource of any resource type that allows a

<semanticDescriptor> child resource:

– The instance is identified using the rdf:about attribute that contains a URI that is unique

within the oneM2M Solution.

NOTE 4 – The choice of a suitable unique URI is outside the scope of oneM2M.

 Rec. ITU-T Y.4500.12 (03/2018) 53

– The range of an instantiation of Object Property "hasThingRelation" that links the

instance of the Thing to the instance of a second Thing shall be annotated with an

Annotation Property: resourceDescriptorLink, which shall contain a reference to the

resource of type <semanticDescriptor> that instantiates the second Thing.

NOTE 5 – This reference could refer to Thing, or a Device (as a subclass of Thing).

– The range of an instantiation of an Object Property "hasThingProperty" that links the

instance of the Thing to an instance of a ThingProperty shall be annotated with an

Annotation Property: resourceDescriptorLink, which shall contain a reference to the

resource of type <semanticDescriptor> that instantiates the

ThingProperty<semanticDescriptor>.

• The ThingProperty class (or subclass) shall be instantiated in the data of the descriptor

attribute of the <semanticDescriptor> of the Thing or of a separate <container> or

<flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the Thing

concatenated with an asterisk "*" and the class name of the ThingProperty (e.g., [some out

of scope Thing URI]*MyThingProperty):

– If the ThingProperty is a SimpleTypeVariable and contains in its data property

"hasValue", the value of the ThingProperty, then it can be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> of the Thing.

– Otherwise the ThingProperty shall be instantiated in the data of the descriptor attribute

of a separate <container> or <flexContainer>, which shall be a child resource of the

parent resource of <semanticDescriptor> that instantiates the Thing class. In this case,

the range of an Object Property "hasThingProperty" that links an instance of a Thing to

the instance of the ThingProperty shall be annotated with an Annotation Property:

resourceDescriptorLink, which shall contain a reference to the resource of type

<semanticDescriptor> that instantiates the ThingProperty.

• The subclasses of the Variable class shall be instantiated in the data of the descriptor

attribute of the <semanticDescriptor> child resource of resources of a <container> or

<flexContainer>. If the Variable has a structure (if it is composed of (sub-)Variables) – i.e.,

it is not a SimpleTypeVariable then:

– The <semanticDescriptor> shall have instances of Object Property "hasSubStructure"

and each instance contains in its range an instance of a (sub-)Variable. If that

(sub-)Variable is part of a different <semanticDescriptor> resource then the range of an

Object Property "hasSubStructure" shall be annotated with an annotation property:

"resourceDescriptorLink", which shall contain a reference to the resource of type

<semanticDescriptor> that instantiates the (sub-)Variable.

– The<semanticDescriptor> shall contain an instance of data property

"oneM2MTargetURI", which shall contain the URI of the parent <container> or

<flexContainer> resource.

– The<semanticDescriptor> shall have instances of the data property “oneM2MMethod”,

which indicates a oneM2M CRUD Method through which the oneM2M instance of the

value of the Variable can be manipulated by the communicating entity:

• It contains the string "RETRIEVE" for retrieving the variable when the oneM2M

resource is of type <container> or <flexContainer>. This applies to subclasses:

OperationOutput, OutputDatapoint, ThingProperty and OperationState.

• It contains the string "CREATE" for updating the variable when the oneM2M

resource is of type <container>. This applies to subclasses: OperationInput,

InputDatapoint, ThingProperty.

54 Rec. ITU-T Y.4500.12 (03/2018)

• It contains the string "UPDATE" for updating the variable when the oneM2M

resource is of type <flexContainer>. This applies to subclasses: OperationInput,

InputDatapoint, ThingProperty.

• The subclasses of the SimpleTypeVariable class shall be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> child resource of resources of a

<container> or <flexContainer>. The data properties are the same as for instances of the

Variable class.

 In addition:

– The data property "hasValue" contains the value of the Variable if that value is part of

the semantic description and is not contained in a different resource (identified by the

oneM2MTargetURI data property).

NOTE 6 – Storing the value of a Variable in a semantic description (i.e., as part of the RDF description in the

<semanticDescriptor> resource) is useful for values that are relatively static (e.g., the name of the

manufacturer).

• Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of

the two shall be instantiated for a SimpleTypeVariable.

• If data property "oneM2MTargetURI" is instantiated then the data property

"oneM2MAttribute" shall also be instantiated and contain:

– In the case of a <flexContainer> the name of the Attribute of the SimpleTypeVariable in

the <flexContainer> resource).

– In the case of a <container> the value "#latest".

• The MetaData class (or subclasses) may be instantiated in the data of the descriptor attribute

of the <semanticDescriptor> child resource of any resource type that allows a

<semanticDescriptor> child resource.

 The instance is identified using the using the rdf:about attribute that contains a URI that is

unique within the oneM2M Solution.

8.1.2 Instantiation of Object Properties

Object properties relate an instance of domain class to an instance of the range class.

They shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> resource

that instantiates the domain class of the object property.

If the range class of an Object Property is instantiated in a different resource than the instantiation of

the domain class then the range class of an Object Property shall be annotated with the Annotation

Property: resourceDescriptorLink which shall contain a reference to that resource.

8.1.3 Instantiation of Data Properties

Data properties shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> resource that instantiates the domain class of the data property.

8.1.4 Instantiation of Annotation Properties

Annotation properties may be instantiated in the data of the descriptor attribute of any

<semanticDescriptor> resource.

For a oneM2M instantiation of the base ontology the resourceDescriptorLink annotation property is

used to annotate the range of object properties with the URI of the <semanticDescriptor> that

contains the instance (that holds the RDF description of the instance) of the range class of the object

property.

The resourceDescriptorLink annotation property is not part of the semantic description but is used to

refer to a <semanticDescriptor> resource that contains more information about its subject. It is

 Rec. ITU-T Y.4500.12 (03/2018) 55

resolved by combining the content of the descriptor attributes of the <semanticDescriptor> resources

before a semantic operation (e.g., SPARQL query) is performed.

8.2 Common mapping principles between the base ontology and external ontologies

The base ontology can be mapped to other external ontologies (e.g., SAREF). The following

principles are applied for the mapping between ontologies:

• Principle 1 – Classes Mapping (owl:equivalentClass):

– Making the statement X owl:equivalentClass Y essentially means that two named classes

are synonymous, i.e., that all instances of class X are instances of class Y and vice versa.

– Using this principle, two classes specified in different ontologies are declared to be

equivalent.

• Principle 2 – Properties Mapping (owl:equivalentProperty):

– The owl:equivalentProperty construct can be used to state that two properties have the same

property extension. Syntactically, owl:equivalentProperty is a built-in OWL property with

rdf:Property as both its domain and range.

– Using this principle, if two properties are declared to be equivalent, two properties have

the same semantics or meaning.

• Principle 3 – Class Instances Mapping (owl:sameAs):

– The property owl:sameAs is used to state that two individuals (i.e., class instances) are the

same.

– Using this principle, two class instances specified in different ontologies are declared to

be equivalent.

• Principle 4 – SubClass Mapping (rdfs:subClassOf):

– The property rdfs:subClassOf is used to state that the class extension of a class description

is a subset of the class extension of another class description.

– Making the statement X rdfs:subClassOf Y essentially means that all instances of class X

are instances of class Y.

• Principle 5 – SubProperties Mapping (rdfs:subPropertyOf):

– The property rdfs:subPropertyOf is used to state that one property is the subproperty of

another property. Syntactically, the domain and range of rdfs:subPropertyOf are both

of type rdf:Property.

– Making the statement X rdfs:subPropertyOf Y essentially means that all resources related

by property X are also related by property Y.

When using the above principles for the mapping between the base ontology and an external ontology,

the hierarchy and relations of the classes and properties defined in these two ontologies should be

carefully considered, since some incompatible points may exist after mapping due to the inheritance

of the properties.

56 Rec. ITU-T Y.4500.12 (03/2018)

9 Functional specification of communication with the generic interworking IPE

9.1 Usage of oneM2M resources for IPE communication

9.1.1 General design principles (informative)

For generic interworking, the oneM2M resource types <AE>, <container>, <flexContainer>, and

specializations of <flexContainer>: genericInterworkingService and

genericInterworkingOperationInstance are intended to hold data that can be used for data exchange

with the IPE.

For generic interworking, a convention is needed on how the IPE uses these resources to communicate

with other oneM2M entities. This is described in clauses 9.2 and 9.3.

Resources for RESTful communication style versus remote procedure call style:

A generic interworking IPE needs to be able to communicate with non-oneM2M systems that

implement some form of RESTful communication style as well as other systems that communicate

in a remote procedure call (RPC) style.

For RESTful systems, the use of Input or Output DataPoints may be more appropriate.

On the other hand, procedure calls can be better modelled using Operations (and their

OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints or

write output into OutputDataPoints) is possible.

Persistent resources versus transient resources:

• Persistent resources are genericInterworkingService, <container>s and <flexContainer>s

that contain data of Services, Input or Output DataPoints. Services. Input and Output

DataPoints of an Interworked Device usually exist as long as the IPE enables communication

with the Interworked Device.

• Transient resources are genericInterworkingOperationInstances, <container>s and

<flexContainer>s that contain data of Operations, OperationInput or OperationOutput.

These resources are created and exist as long as the Interworked Device performs execution

of an Operation and receive the output data of the Operation. Once the output data have been

delivered to subscribed communicating entities, transient resources may be deleted by the

IPE.

NOTE – While in general this Recommendation assumes that semantic information can be made available

(using the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely

on the existence of semanticDescriptors. For example, this allows very simple devices to exchange their data

in "raw" form (e.g., as byte-fields that need to be interpreted by the communicating entity).

9.1.2 Parent-child and linking resource relationships

Figure 22 provides an overview of parent-child resource relationships that are used for

communication with AEs (in particular the IPE) in the context of generic interworking.

It involves the:

• Persistent resource types:

– <AE>, <container> or <flexContainer> – for a oneM2M Device or an Interworked

Device.

– <container> – for an Input or Output DataPoint.

– <flexContainer> - for an Input or Output DataPoint.

– genericInterworkingService specialization of <flexContainer> – for a Service of a

oneM2M Device or an Interworked Device.

 Rec. ITU-T Y.4500.12 (03/2018) 57

• Transient resource types:

– <container> – for OperationInput or OperationOutput data of an Operation.

– <flexContainer> – for OperationInput or OperationOutput data of an Operation.

– genericInterworkingOperationInstance specialization of <flexContainer> – for an

Operation of a Service.

Figure 22 – Parent-child and Link relationships in the context of generic interworking

58 Rec. ITU-T Y.4500.12 (03/2018)

Parent-child relationships:

• An <AE> resource, required for representing a Device, is created by its AE. Alternatively, in

the case of an Interworked Device, the AE that is the generic interworking IPE may create

resources of type <container> or <flexContainer> that represent the Interworked Device.

• Input and Output DataPoints (<containers> or <flexContainers>) are created by the AE as

child resources of its (<AE>, <containers>, <flexContainers>) resource that represents the

Device.

• Services (resources of specialization type genericInterworkingService of a <flexContainer>)

are created by the AE as child resources of its resource that represents the Device.

• OperationInstances (resources of specialization type genericInterworkingOperationInstance

of a <flexContainer>) are created by the AE or by the communicating entity as child

resources of the genericInterworkingService of the Service.

• OperationInput (<containers> or <flexContainers>) are created by the communicating entity

as child resources of the genericInterworkingOperationInstance of the Operation instance.

• OperationOutput (<containers> or <flexContainers>) are created by the AE as child

resources of the genericInterworkingOperationInstance of the Operation instance.

All of the above can contain a <semanticDescriptor> as child resource.

Link relationships:

• Services can contain links to:

– InputDataPoints (contained in the InputDataPointsLinks attribute).

– OutputDataPoints (contained in the OutputDataPointsLinks attribute).

• OperationInstances can contain links to:

– InputDataPoints (contained in the InputDataPointsLinks attribute).

– OutputDataPoints (contained in the OutputDataPointsLinks attribute).

– OperationInputs (contained in the inputLinks attribute).

– OperationOutputs (contained in the outputLinks attribute).

9.2 Specification of the IPE for generic interworking

9.2.1 General functionality of a generic interworking IPE

Generic interworking supports the interworking variant with full mapping of the semantic of the non-

oneM2M data model to Mca as indicated in clause F.2 of oneM2M TS-0001 [ITU-T Y.4500.1].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology that is

derived (as subclasses and subproperties) from the oneM2M base ontology and may be available in

a formal description language (e.g., OWL).

A oneM2M compliant ontology can describe an external technology (e.g., ZigBee) for which a

standardized interworking with oneM2M is required or it could describe a model of consensus that is

shared by a large industry sector (like SAREF, referenced in [b-SAREFa]) that facilitates the

matching of existing assets (standards/protocols/datamodels/etc.). An IPE that provides generic

interworking with a M2M area network shall instantiate the classes, as well as the object and data

properties of the ontology describing the non-oneM2M data model of the M2M area network as

oneM2M resources, according to the instantiation rules of clause 8.1:

• Depending on the capabilities of the IPE and when the ontology describing the non-oneM2M

data model is made available as a formal description, the IPE may access and parse the OWL

file of the ontology to support creation of the required oneM2M resources.

 Rec. ITU-T Y.4500.12 (03/2018) 59

9.2.2 Interworked Device discovery

The IPE shall discover the devices in the non-oneM2M solution or, alternatively, they may be

manually configured in the IPE:

1) For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

– either create a <container> or <flexContainer> child resource of the IPE's <AE> resource

for a Proxied Device that represents the non-oneM2M Interworked Device in the

oneM2M system; or

– in the case the IPE provides interworking with a single Interworked Device, the IPE may

use its own <AE> resource for the Proxied Device that represents the non-oneM2M

Interworked Device in the oneM2M system.

2) For each discovered device in the non-oneM2M solution, the IPE shall create the Input and

Output DataPoints (resource types <container> or <flexContainer>) and Services (resource

type <flexContainer> specialization: <genericInterworkingService>) as child resources of

the resource of the Proxied Device.

3) The IPE shall create <semanticDescriptor>s as child resources of the Input and Output

DataPoints and Services.

4) The IPE shall subscribe to all created resources.

NOTE – Whether <AE>, <container> or <flexContainer> resource types are used to represent

InterworkedDevices and whether <container> or <flexContainer> resource types are used for Input and Output

DataPoints and operationInputs/operationOutputs is not specified and depends on configuration.

9.2.3 Handling of DataPoints by the IPE

• When the IPE receives a request by the interworked NoDN via the non-oneM2M reference

point to write an OutputDataPoint belonging to a Service of the device the IPE shall:

– de-serialize the received data

 and, depending on the resource type of the OutputDataPoint (<flexContainer> or

<container>)

– UPDATE/(CREATE contentInstance) the OutputDataPoint resources of the related

genericInterworkingService with the output data.

• When the IPE receives a request by the interworked NoDN via the non-oneM2M reference

point to read an InputDataPoint belonging to a Service of the device, the IPE shall:

– RETRIEVE data from the InputDataPoint resource of the related

genericInterworkingService;

– serialize the data; and

– return them to the NoDN.

• When the IPE is notified by the CSE that a <flexContainer> or <container> child resource

of the Proxied Device has been changed, the IPE shall:

– check to which Service the <flexContainer> or <container> resource belongs by

checking whether one of the inputDataPointLinks references the resource as

InputDataPoint;

– read the data of the changed resource; and

– invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M

reference point in the interworked NoDN.

60 Rec. ITU-T Y.4500.12 (03/2018)

9.2.4 Handling of Operations by the IPE

When the IPE receives notification from the CSE about creation of an OperationInstance resource

(resource type genericInterworkingOperationInstance) as child resource of a

genericInterworkingService resource the IPE shall perform the following actions:

1) The IPE shall RETRIEVE the input data of the operation (contained in the resources to which

the attributes inputLinks and InputDataPoint Links of

genericInterworkingOperationInstance provide links).

2) the IPE shall UPDATE the operationState attribute of the OperationInstance with the value

"data received by application".

3) the IPE shall invoke the related operation together with their input data in the NoDN via the

non-oneM2M reference point.

4) the IPE shall handle the result of the operation, received from the Interworked Device via the

non-oneM2M reference point:

– If the NoDN is capable of processing the operation (i.e., no error is reported over the

non-oneM2M reference point) then:

a) The IPE shall UPDATE the operationState attribute of the OperationInstance with

the value "data transmitted to interworked device".

b) The IPE shall UPDATE the expirationTime attribute to an appropriate value that

allows the Interworked Device to execute the operation and allows the subscribed

communicating entities to get notified and potentially retrieve the results.

c) When the IPE receives output data from the operation in the NoDN via the non-

oneM2M reference point, the IPE shall de-serialize these data and update, depending

on the operation specification, the operationOutput resources or the OutputDataPoint

resources with the output data:

– When the received output data from the operation contain a state indication

(according to the OperationState class of the ontology) then the IPE may

UPDATE the operationState attribute with the value received in the state

indication.

– When the received output data from the operation contains no state indication

(according to the OperationState class of the ontology) then the IPE shall

UPDATE the operationState attribute with the value "operation ended".

– If the operation contains no output data and the non-oneM2M reference point

does not contain a state indication, then the IPE shall UPDATE the

operationState attribute of the OperationInstance with the value "operation

ended".

 When an error occurs during communication over the non-oneM2M reference point

then the IPE shall UPDATE the operationState attribute with the value "operation

failed".

– If the NoDN is not capable of processing the operation (i.e., an error is reported over the

non-oneM2M reference point) then the IPE shall DELETE the OperationInstance

resource.

When the IPE receives unsolicited data through an operation in the NoDN via the non-oneM2M

reference point (e.g., when the device reacts on some external event and publishes related output data)

the IPE shall de-serialize these data and perform the following actions:

1) Creation of OperationOutputs and OutputDataPoints of the Operation by the IPE:

 Rec. ITU-T Y.4500.12 (03/2018) 61

– For all Operation parameters that are (transient) OperationOutputs, the IPE shall

CREATE <container>s or <flexContainer>s that contain the data for the

OperationOutputs of the Operation.

– For all Operation parameters that are (persistent) OutputDataPoints the IPE shall

CREATE <contentInstance>s of <container>s or UPDATE <flexContainer>s that

contain data for the OutputDataPoints of the Operation. outputDataPointLinks.

2) The IPE shall CREATE a genericInterworkingOperationInstance resource as child resource

of the genericInterworkingService resource that represents the Service of the Operation.

The IPE shall:

a) make the <container>s or <flexContainer>s that contain the data for the OperationOutput

child resources of the genericInterworkingOperationInstance resource;

b) set the outputDataPointLinks attribute (with the OutputDataPoint names, links to

<container>s or <flexContainer>s for the OutputDataPoints and, if needed,

attributeNames);

c) set the outputLinks attribute (with the OperationOutput names, links to <container>s or

<flexContainer>s for the OperationOutput, and if needed attributeNames).

3) The IPE shall CREATE <semanticDescriptor> resources to all created resources and fill the

descriptor attribute with RDF data.

4) The IPE shall set the expirationTime attribute of the genericInterworkingOperationInstance

to an appropriate value that allows communicating entities (that had subscribed to the

genericInterworkingService resource and were notified about the creation of the

genericInterworkingOperationInstance resource) to retrieve the

genericInterworkingOperationInstance and its OperationOutput child resources.

5) The IPE shall set the operationState attribute of the genericInterworkingOperationInstance

resource:

– When the received output data from the NoDN operation contains a state indication

(according to the OperationState class of the ontology) then the IPE may UPDATE the

operationState attribute with the value received in the state indication.

– When the received output data from the NoDN operation contain no state indication

(according to the OperationState class of the ontology) then the IPE shall UPDATE the

operationState attribute with the value "operation ended".

At periodic, implementation specific, times the IPE shall check the expirationTime attribute of all

Operation resources of all Proxied Devices and DELETE expired Operations and their

OperationInputs and -Outputs.

9.2.5 Removing Devices

When an Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete

the resource for its Proxied Device and all its related DataPoint, Service and Operation resources.

9.3 Specification of the behaviour of a communicating entity in message flows between

IPE and the communicating entity

9.3.1 Preconditions on the communicating entity

1) Any communicating entity, that wants to communicate with:

a) An interworked NoDN via the IPE needs to be subscribed to the <AE> resource of the

IPE to get notified about resources for Proxied Device that are created by the IPE to

represent interworked NoDNs that were discovered by the IPE.

62 Rec. ITU-T Y.4500.12 (03/2018)

b) A specific interworked NoDN via the IPE needs to be subscribed to the <container> or

<flexContainer> or <AE> resource that had been created by the IPE as a related Proxied

Device to represent the interworked NoDN.

2) The communicating entity needs also be subscribed to:

a) The genericInterworkingService resources that have been created by the IPE as child

resources of the resource of the Proxied Device.

b) <container> or <flexContainer> resources that have been created by the IPE as child

resources of the Proxied Device to represent (persistent) Input or Output DataPoints of

the genericInterworkingService resources.

9.3.2 Flow from the communicating entity to the IPE using InputDataPoints of a Service

9.3.2.1 Flow from the communicating entity to the IPE using a <container> type

InputDataPoint

1) When the communicating entity wants to invoke a Service in the interworked NoDN it shall

determine the genericInterworkingService resource that is related to the Service by checking

the serviceName attribute, which contains the class name of the Service in the related

compliant ontology.

2) The communicating entity determines the <container> or <flexContainer> that is related to

the InputDataPoint from the InputDataPoint Links attribute of the

genericInterworkingService resource, which contains references to the InputDataPoints of

the Service as a list of triples. The first field of the triple identifies the InputDataPoint in the

related compliant ontology, the second field contains the URI of the resource (container or

flexContainer) that holds the data of the InputDataPoint. The third field indicates whether the

InputDataPoint contains simple data or the InputDataPoint contains complex data:

– If the InputDataPoint is of type <container> and contains simple data, the third field

contains the text string "latest".

– If the InputDataPoint is of type <container> and contains complex data the third field is

empty.

3) The communicating entity shall update the InputDataPoint:

– If the InputDataPoint contains simple data, then the communicating entity CREATEs a

new <contentInstance> of the InputDataPoint.

– If the InputDataPoint contains complex data (contained in child resources: <container>

or <flexContainer>), then the communicating entity UPDATEs the child-

<flexContainer>s or CREATEs new <contentInstance>s of child-<container>s as

needed.

– If the InputDataPoint contains complex data, the communicating entity may also

CREATE or DELETE child resources of the InputDataPoint <container> as needed. In

this case, the communicating entity shall create <subscription>s to all created resources

that notify the IPE. When a new child resource of the InputDataPoint resource is created,

then the communicating entity may optionally also create a <semanticDescriptor> child

resource of the newly created resource:

a) The descriptor attribute of the <semanticDescriptor> shall be updated with the RDF

description of the created instance of class:Variable.

b) The descriptor attribute of the parent <semanticDescriptor> shall be updated with

an instance of the "hasSubStructure" object property.

c) The descriptor attribute of the parent <semanticDescriptor> shall be updated with

an instance of the resourceDescriptorLink annotation property with the URI of the

new <semanticDescriptor> resource.

 Rec. ITU-T Y.4500.12 (03/2018) 63

– If only child resources of an InputDataPoint have changed, the communicating entity

shall issue a null UPDATE (i.e., containing no attributes) on the InputDataPoint in order

to make sure the IPE gets notified by the CSE that the InputDataPoint or its child

resources have been changed.

9.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type

InputDataPoint

1) The communicating entity determines the genericInterworkingService resource as in

clause 9.2.

2) The communicating entity determines the <container> or <flexContainer> that is related to

the InputDataPoint. In the case of a <flexContainer> type InputDataPoint, the third field

indicates whether the InputDataPoint contains simple data – in this case, the third field

contains a text string with the name of the name of the [customAttribute] (which is identical

to the name of the InputDataPoint) – or the InputDataPoint contains complex data – in this

case, the third field is empty.

3) The communicating entity updating the InputDataPoint:

a) If the InputDataPoint contains simple data, then the communicating entity UPDATEs the

InputDataPoint with a new value for the [customAttribute].

b) If the InputDataPoint contains complex data, then the communicating entity shall behave

as in clause 9.3.2.1 step 3).

9.3.3 Flow from the IPE to the communicating entity using OutputDataPoints of a Service

When the communicating entity is notified by the CSE that a child resource of the Proxied Device

has been changed the IPE shall:

a) Identify the Service to which the <flexContainer> or <container> resource belongs by

checking which one of the genericInterworkingService resources contains an

outputDataPointLinks attribute that references the resource as OutputDataPoint.

b) read the data of the <flexContainer> or <container> resource (and possibly its child

resources) and use them in the context of the service to which they belong.

9.3.4 Flow from the communicating entity to the IPE using Operations of a Service

1) If the Operation is parameterized by input parameters that are (transient) OperationInputs,

the communicating entity shall CREATE <container>s or <flexContainer>s that contain the

data for the OperationInputs of the Operation.

2) If the Operation is parameterized by input parameters that are (persistent) InputDataPoints,

the communicating entity may CREATE <contentInstance>s of <container>s or UPDATE

<flexContainer>s that contain data for the InputDataPoints of the Operation.

3) The communicating entity shall CREATE a genericInterworkingOperationInstance resource

as child resource of the genericInterworkingService resource that represents the Service of

the Operation.

 The communicating entity shall:

– make the <container>s or <flexContainer>s that contain the data for the OperationInput

child resources of the genericInterworkingOperationInstance resource;

– set the inputDataPointLinks attribute (with the InputDataPoint names, links to <container>s

or <flexContainer>s for the InputDataPoints, and if needed Attributenames);

– set the inputLinks attribute (with the OperationInput names, links to <container>s or

<flexContainer>s for the OperationInput, and if needed Attributenames).

4) The communicating entity may CREATE <semanticDescriptor> resources to all created

resources and fill the descriptor attribute with RDF data.

64 Rec. ITU-T Y.4500.12 (03/2018)

5) The communicating entity shall CREATE a subscription to the

genericInterworkingOperationInstance resource in order to get notified about changes of the

OperationState and potential creation of OperationOutput <container> or <flexContainer>

child resources of the genericInterworkingOperationInstance.

6) Since the IPE has subscribed to the genericInterworkingService resource, it gets notified

about the creation of a genericInterworkingOperationInstance child resource and retrieves

the resource and its OperationInputs and InputDataPoints.

9.3.5 Flow from the IPE to the communicating entity using Operations of a Service

Since the communicating entity is subscribed to the genericInterworkingService resources of the

Proxied Device, it gets notified by the CSE when the IPE creates a

genericInterworkingOperationInstance as child resource of the genericInterworkingService:

1) The communicating entity needs to retrieve the genericInterworkingOperationInstance.

2) As the genericInterworkingOperationInstance contains outputDataPointLinks and

outputLinks attributes the communicating entity receives information about output data of

the operation and can retrieve the referenced <container> or <flexContainer> resources.

10 FlexContainer specializations for generic interworking

10.1 Introduction

For ontology-based interworking, two specialization types of <flexContainer> are needed:

genericInterworkingService and genericInterworkingOperationInstance.

10.2 Resource Type genericInterworkingService

Resource type genericInterworkingService is used for grouping Input or Output Datapoints or

OperationInstances of a Service. For ontology-based interworking, Input or Output Datapoints or

OperationInstances can be grouped as a Service with respect to their usage within a single Device. A

resource of type genericInterworkingService contains references to the <container> or

<flexContainer> resources that represent Input or Output Datapoints of the Service in the

inputDataPointLinks and outputDataPointLinks attributes.

A resource of type genericInterworkingService is also the parent resource of

genericInterworkingOperationInstances for that Service.

A resource of type genericInterworkingService can be a child resource of:

a) AE, container, flexContainer since ontology-based interworking allows these three resource types

to represent Devices and InterworkeDevices.

b) genericInterworkingService since ontology-based interworking allows Services to contain

(sub-)Services.

See Figure 23.

 Rec. ITU-T Y.4500.12 (03/2018) 65

Figure 23 – Structure of [genericInterworkingService] resource

The [genericInterworkingService] resource shall contain the child resource specified in Table 3.

Table 3 – Child resources of [genericInterworkingService] resource

Child

Resources of

[genericInterworking

Service]

Child Resource

Type

Multi-

plicity
Description

[genericInterworkingServiceAnnc]

Child Resource Type

semanticDescriptor <semanticDescriptor> 0..n See clause

9.6.30 of

oneM2M

TS-0001

[ITU-T

Y.4500.1]

<semanticDescriptor>,

<semanticDescriptorAnnc>

[variable] <subscription> 0..n See clause

9.6.8

of oneM2M

TS-0001

[ITU-T

Y.4500.1]

<subscription>

[variable] <flexContainer>

specialization:

[genericInterworking

Service]

0..n A Service may

be composed

of (sub)-

Services that

are contained

[genericInterworkingService]

[genericInterworkingServiceAnnc]

66 Rec. ITU-T Y.4500.12 (03/2018)

Table 3 – Child resources of [genericInterworkingService] resource

Child

Resources of

[genericInterworking

Service]

Child Resource

Type

Multi-

plicity
Description

[genericInterworkingServiceAnnc]

Child Resource Type

as child

resources

[variable] <flexContainer>

specialization:

[genericInterworking

OperationInstance]

0..n See clause

10.3

For each

invocation of

an operation

of a Service, a

child resource

of type

[genericInterw

orkingOperati

onInstance] is

created. When

the operation

is finished,

this child

resource is

deleted by the

IPE

[genericInterworkingOperationInst

ance]

[genericInterworkingOperationInst

anceAnnc]

The [genericInterworkingService] resource shall contain the attributes specified in Table 4.

Table 4 – Attributes of [genericInterworkingService] resource

Attributes of

[genericInterworking

Service]

Multiplicity

RW/

RO/

WO

Description

[genericInterwor

kingService

Annc]

Attributes

resourceType 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

resourceID 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

resourceName 1 WO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

parentID 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

MA

labels 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

MA

stateTag 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

OA

announceTo 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

announcedAttribute 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

 Rec. ITU-T Y.4500.12 (03/2018) 67

Table 4 – Attributes of [genericInterworkingService] resource

Attributes of

[genericInterworking

Service]

Multiplicity

RW/

RO/

WO

Description

[genericInterwor

kingService

Annc]

Attributes

dynamicAuthorizationC

onsultationIDs

0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

OA

containerDefinition 1 WO See clause 9.6.1.2.2 of

oneM2M TS-0001 [ITU-T

Y.4500.1]

The value shall be

"org.onem2m.

genericInterworkingService"

MA

creator 0..1 RO See clause 9.6.35 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

ontologyRef 0..1 RW See clause 9.6.35 of oneM2M

TS-0001 [ITU-T Y.4500.1]

OA

serviceName 1 RW The attribute contains the

name of the Service. The name

of the Service is given by the

class name of that Service in

the ontology used (which

needs to be derived from the

base ontology)

MA

inputDataPointLinks 0..1 RW This attribute contains a list of

triples, each triple containing

the following fields:

1. a text string with the name

of an inputDatapoint of the

Service;

2. a URI of the resource

(container or flexContainer)

that holds the data of the

inputDataPoint;

3. a field for identifying

simple-type data.

If the inputDataPoint contains

simple-type data then:

i. if the resource type of the

inputDataPoint is

<container>, then this field

shall contain the text string

"latest";

ii. if the resource type of the

inputDataPoint is

<flexContainer>, then this

field shall contain the name

of the [customAttribute]

(which is identical to the

name of the

inputDataPoint).

MA

68 Rec. ITU-T Y.4500.12 (03/2018)

Table 4 – Attributes of [genericInterworkingService] resource

Attributes of

[genericInterworking

Service]

Multiplicity

RW/

RO/

WO

Description

[genericInterwor

kingService

Annc]

Attributes

If the inputDataPoint contains

complex-type data, then this

field shall remain empty.

outputDataPointLinks 0..1 RW This attribute contains a list of

triples, each triple containing

the following fields:

1. a text string with the name

of an outputDatapoint of

the Service;

2. a URI of the resource

(container or flexContainer)

that holds the data of the

outputDataPoint;

3. a field for identifying

simple-type data.

If the outputData:Point

contains simple-type data then

i. if the resource type of the

outputDataPoint is

<container>, then this field

shall contain the text string

"latest";

ii. if the resource type of the

outputDataPoint is

<flexContainer>, then this

field shall contain the name

of the [customAttribute]

(which is identical to the

name of the

outputDataPoint).

Otherwise, if the

outputDataPoint contains

complex-type data, then this

field shall remain empty.

MA

10.3 Resource Type genericInterworkingOperationInstance

In the context of ontology-based interworking, resources of resource type

genericInterworkingOperationInstance are created as child resources of a Service by the CSE. The

originator of a request can be:

• the AE (for AE-initiated communication for notifying communicating entities);

• a communicating entity (to notify the AE about an operation that needs to be performed by

the AE and to receive output back from the AE).

After the expirationTime, the AE may delete the operationInstance and all linked operationInput and

operationOutput resources (contained in the references in attributes: inputLinks and outputLinks).

 Rec. ITU-T Y.4500.12 (03/2018) 69

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references

to resources of type <container> and <flexContainer> from which the AE should retrieve input of the

operation. Similarly the AE attributes outputDataPointLinks and outputLinks references to resources

of type <container> and <flexContainer> to which the AE should write its output of the operation.

See Figure 24.

Figure 24 – Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in

Table 5.

Table 5 – Child resources of [genericInterworkingOperationInstance] resource

Child Resources of

[genericInterworking

OperationInstance]

Child Resource

Type
Multiplicity Description

[genericInterworkingOperationInst

anceAnnc]

Child Resource Type

semanticDescriptor <semanticDescri

ptor>

0..n See clause

9.6.30 of
oneM2M

TS-0001 [2]

<semanticDescriptor>,

<semanticDescriptorAnnc>

[variable] <subscription> 0..n See clause

9.6.8

of oneM2M

TS-0001 [2]

<subscription>

The [genericInterworkingOperationInstance] resource shall contain the attributes specified in

Table 6.

70 Rec. ITU-T Y.4500.12 (03/2018)

Table 6 – Attributes of [genericInterworkingOperationInstance] resource

Attributes of

[genericInterworking

OperationInstance]

Multiplicity

RW/

RO/

WO

Description

[genericInterwo

rkingOperation

InstanceAnnc]

Attributes

resourceType 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

resourceID 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

resourceName 1 WO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

parentID 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

expirationTime 1 RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

This attribute shall contain the

time after which the

operationInstance and its

operationInput and

operationOutput resources may

be deleted by the AE.

If an AE got notified about

creation of the operationInstance

and if the AE accepts to process

the operation (i.e., does not

immediately delete the

operationInstance), the

expirationTime is set by the AE.

MA

accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

MA

labels 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

MA

creationTime 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

lastModifiedTime 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

stateTag 1 RO See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

OA

announceTo 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

announcedAttribute 0..1 (L) RW See clause 9.6.1.3 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

dynamicAuthorizationC

onsultationIDs

0..1 (L) RW See clause 9.6.1.3. of oneM2M

TS-0001 [ITU-T Y.4500.1]

OA

containerDefinition 1 WO See clause 9.6.1.2.2 of oneM2M

TS-0001 [ITU-T Y.4500.1]

The value shall be "org.onem2m.

genericInterworkingOperationIns

tance"

MA

 Rec. ITU-T Y.4500.12 (03/2018) 71

Table 6 – Attributes of [genericInterworkingOperationInstance] resource

Attributes of

[genericInterworking

OperationInstance]

Multiplicity

RW/

RO/

WO

Description

[genericInterwo

rkingOperation

InstanceAnnc]

Attributes

creator 0..1 RO See clause 9.6.35 of oneM2M

TS-0001 [ITU-T Y.4500.1]

NA

ontologyRef 0..1 RW See clause 9.6.35 of oneM2M

TS-0001 [ITU-T Y.4500.1]

OA

operationName 1 RW The attribute contains the name

of the Operation. The name of the

Operation is given by the class

name of that Operation in the

ontology used (which needs to be

derived from the base ontology)

MA

operationState 1 RW This attribute contains a text

string that indicates how far the

operation has progressed.

specified values are:

• "data_received_by_

application"

• "operation_ended"

• "operation_failed"

• "data_transmitted_to_

interworked_device"

Additional, application specific

values for the text string of the

operationState attribute are

permissible.

MA

inputDataPointLinks 0..1 RW This attribute contains a list of

triples, each triple containing the

following fields:

1. a text string with the name of

an inputDatapoint of the

operationInstance;

2. a URI of the resource

(container or flexContainer)

that holds the data of the

inputDataPoint;

3. a field for identifying simple-

type data.

If the inputDataPoint contains

simple-type data then:

i. if the resource type of the

inputDataPoint is

<container>, then this field

shall contain the text string

"latest";

ii. if the resource type of the

inputDataPoint is

<flexContainer>, then this

MA

72 Rec. ITU-T Y.4500.12 (03/2018)

Table 6 – Attributes of [genericInterworkingOperationInstance] resource

Attributes of

[genericInterworking

OperationInstance]

Multiplicity

RW/

RO/

WO

Description

[genericInterwo

rkingOperation

InstanceAnnc]

Attributes

field shall contain the name of

the [customAttribute] (which

is identical to the name of the

inputDataPoint).

If the inputDataPoint contains

complex-type data, then this field

shall remain empty.

outputDataPointLinks 0..1 RW This attribute contains a list of

triples, each triple containing the

following fields:

1. a text string with the name of

an outputDatapoint of the

OperationInstance;

2. a URI of the resource

(container or flexContainer)

that holds the data of the

outputDataPoint;

3. a field for identifying simple-

type data.

If the outputDataPoint contains

simple-type data then:

i. if the resource type of the

outputDataPoint is

<container>, then this field

shall contain the text string

"latest";

ii. if the resource type of the

outputDataPoint is

<flexContainer>, then this

field shall contain the name of

the [customAttribute] (which

is identical to the name of the

outputDataPoint).

If the outputDataPoint contains

complex-type data, then this field

shall remain empty.

MA

inputLinks 0..1 RW This attribute contains a list of

triples, each triple containing the

following fields:

1. a text string with the name of

an operationInput of the

operationInstance;

2. a URI of the resource

(container or flexContainer)

that holds the data of the

operationInput;

MA

 Rec. ITU-T Y.4500.12 (03/2018) 73

Table 6 – Attributes of [genericInterworkingOperationInstance] resource

Attributes of

[genericInterworking

OperationInstance]

Multiplicity

RW/

RO/

WO

Description

[genericInterwo

rkingOperation

InstanceAnnc]

Attributes

3. a field for identifying simple-

type data.

If the operationInput contains

simple-type data then:

i. if the resource type of the

operationInput is <container>,

then this field shall contain the

text string "latest"

ii. if the resource type of the

operationInput is

<flexContainer>, then this

field shall contain the name of

the [customAttribute] (which

is identical to the name of the

operationInput).

If the Input contains complex-

type data, then this field shall

remain empty.

outputLinks 0..1 RW This attribute contains a list of

triples, each triple containing the

following fields:

1. a text string with the name of

an operationOutput of the

operationInstance;

2. a URI of the resource

(container or flexContainer)

that holds the data of the

outputDataPoint;

3. a field for identifying simple-

type data.

If the operationOutput contains

simple-type data then:

i. if the resource type of the

operationOutput is

<container>, then this field

shall contain the text string

"latest";

ii. if the resource type of the

operationOutput is

<flexContainer>, then this

field shall contain the name of

the [customAttribute] (which

is identical to the name of the

operationOutput).

If the operationOutput contains

complex-type data, then this field

shall remain empty.

MA

74 Rec. ITU-T Y.4500.12 (03/2018)

Annex A

oneM2M specification update and maintenance control procedure

(This Annex forms an integral part of this Recommendation.)

The provisions of Annex L of [ITU-T Y.4500.1] regarding the oneM2M specification update and

maintenance control procedure shall apply to this Recommendation.

 Rec. ITU-T Y.4500.12 (03/2018) 75

Annex B

OWL representation of base ontology

(This annex forms an integral part of this Recommendation.)

The OWL representation of the base ontology is provided in a separate document.

The base ontology is available at the web page [b-oneM2M Ontology]:

• https://git.onem2m.org/MAS/BaseOntology.

which contains the latest version of the (RDF/XML) OWL representation of the ontology under the

URL:

• https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl

and individual versions of the (RDF/XML) OWL representation of the ontology under the URL:

• https://git.onem2m.org/MAS/BaseOntology/raw/x_y_z/base_ontology.owl

(where x,y,z signify the version numbering for major, minor and editorial changes of the base

ontology). e.g., https://git.onem2m.org/MAS/BaseOntology/raw/2_2_0/base_ontology.owl.

https://git.onem2m.org/MAS/BaseOntology
https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl
https://git.onem2m.org/MAS/BaseOntology/raw/x_y_z/base_ontology.owl
https://git.onem2m.org/MAS/BaseOntology/raw/2_2_0/base_ontology.owl

76 Rec. ITU-T Y.4500.12 (03/2018)

Appendix I

Mappings of selected external ontologies to the base ontology

(This appendix does not form an integral part of this Recommendation.)

I.1 Mapping of SAREF

I.1.1 Introduction to SAREF

The following description of the SAREF ontology is reproduced from [b-SAREFa].

It provides an introduction to the scope and objectives of SAREF ontology.

"The Smart Appliances REFerence (SAREF) ontology is a shared model of consensus that

facilitates the matching of existing assets (standards/protocols/datamodels/etc.) in the smart

appliances domain. The SAREF ontology provides building blocks that allow separation and

recombination of different parts of the ontology depending on specific needs.

The starting point of SAREF is the concept of Device (e.g., a switch). Devices are tangible

objects designed to accomplish one or more functions in households, common public buildings

or offices. The SAREF ontology offers a lists of basic functions that can be eventually combined

in order to have more complex functions in a single device. For example, a switch offers an

actuating function of type "switching on/off". Each function has some associated commands,

which can also be picked up as building blocks from a list. For example, the "switching on/off"

is associated with the commands "switch on", "switch off" and "toggle". Depending on the

function(s) it accomplishes, a device can be found in some corresponding states that are also

listed as building blocks.

A Device offers a Service, which is a representation of a Function to a network that makes the

function discoverable, registerable and remotely controllable by other devices in the network.

A Service can represent one or more functions. A Service is offered by a device that wants (a

certain set of) its function(s) to be discoverable, registerable, remotely controllable by other

devices in the network. A Service must specify the device that is offering the service, the

function(s) to be represented, and the (input and output) parameters necessary to operate the

service.

A Device in the SAREF ontology is also characterized by an (Energy/Power) Profile that can

be used to optimize the energy efficiency in a home or office that are part of a building."

A formal description of the ontology is provided at [b-SAREFb].

Table I.1 provides a list of SAREF concepts – source:

http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4 - SMART 2013-0077 -

Smart Appliances - Final Study Report_v1.0.pdf.

http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf
http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf

 Rec. ITU-T Y.4500.12 (03/2018) 77

Table I.1 – List of SAREF concepts

Concept Definition

Building
Object

A Building Object is an object in the building that can be controlled by devices, such as a door or a window
that can be automatically opened or closed by an actuator

Building
Space

According to FEIMSER, a Building Space in SAREF defines the physical spaces of the building. A building
space contains devices or building objects.

Command A Command is a directive that a device should support to perform a certain function. A command may act
upon a state, but does not necessarily act upon a state. For example, the ON command acts upon the
ON/OFF state, but the GET command does not act upon any state, since it gives a directive to retrieve a
certain value with no consequences on states.

Commodity A Commodity is a marketable item for which there is demand, but which is supplied without qualitative
differentiation across a market. SAREF refers to energy commodities such as electricity, gas, coal and oil.

Device A Device in the context of the Smart Appliances study is a tangible object designed to accomplish a
particular task in households, common public buildings or offices. In order to accomplish this task, the
device performs one or more functions. For example, a washing machine is designed to wash (task) and
to accomplish this task it performs the start and stop function.

Device
Category

A Device Category provides a way to classify devices according to a certain point of view, for example, the
point of view of the user of the device vs. the device's manufacturer, or the domain in which the device is
used (e.g., smart appliances vs. building domain vs. smart grid domain), etc.

Function A Function represents the particular use for which a Device is designed. A device can be designed to
perform more than one function.

Function
Category

A Function Category provides a way to classify functions according to a certain point of view, for example,
considering the specific application area for which a function can be used (e.g., light, temperature, motion,
heat, power, etc.), or the capability that a function can support (e.g., receive, reply, notify, etc.), and so
forth.

Profile A Profile characterizes a device for the purpose to optimize the energy efficiency in the home or office in
which the device is located. The saref:Profile class allows to describe the energy (or power) production
and consumption of a certain device using the saref: hasProduction and saref:hasConsumption properties.
This production and consumption can be calculated over a time span (the saref:hasTime property) and,
eventually, associated to some costs (the saref:hasPrice property).

Property A Property is anything that can be sensed, measured or controlled in households, common public buildings
or offices.

Service A Service is a representation of a function to a network that makes the function discoverable, registerable,
remotely controllable by other devices in the network. A service can represent one or more functions. A
Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable,
remotely controllable by other devices in the network. A Service should specify the device that is offering
the service, the function(s) to be represented, and the (input and output) parameters 144 necessary to
operate the service.

State A State represents the state in which a device can be found, e.g., ON/OFF/STANDBY, or
ONLINE/OFFLINE, etc.

Task A Task represents the goal for which a device is designed (from a user perspective). For example, a
washing machine is designed for the task of cleaning

Unit of
Measure

The Unit of Measure is a standard for measurement of a quantity, such as a Property. For example, Power
is a property and Watt is a unit of power that represents a definite predetermined power: when 10 Watt is
mentioned, it actually means 10 times the definite predetermined power called "watt". Our definition is
based on the definition of unit of measure in the Ontology of units of Measure (OM). A list of some units of
measure that are relevant for the purpose of the Smart Appliances ontology is proposed here, but this list
can be extended.

I.1.2 Class mapping relationship between SAREF and the base ontology

This clause provides an example on how the principle specified in clause 8.2 can be applied to the

mapping between the base ontology and SAREF.

Using two different ontologies (i.e., Base_Ontology.owl and SAREF.owl), a new ontology can be

created using the mapping principles, i.e., adding mapping relationships into the union of these two

ontologies as a new mapped ontology.

As a simple case, the following illustrates the subClass mapping between oneM2M:Device and

saref:Device. The following shows that saref:Device is a subclass of oneM2M:Device.

There are two popular OWL syntax: OWL/XML or RFD/XML.

OWL/XML syntax for subclass mapping is:
 <Import>http://www.onem2m.org/ontology/Base_Ontology</Import>

 <Import>http://ontology.tno.nl/saref</Import>

 <SubClassOf>

78 Rec. ITU-T Y.4500.12 (03/2018)

 <Class IRI="http://ontology.tno.nl/saref#Device"/>

 <Class IRI="http://www.onem2m.org/ontology/Base_Ontology#Device"/>

 </SubClassOf>

RFD/XML syntax for subclass mapping is:

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#Device">

 <rdfs:subClassOf rdf:resource="http://www.onem2m.org/ontology/Base_Ontology#Device"/>

 </rdf:Description>

Then, all instances of saref:Device are instances of oneM2M:Device.

Figure I.1 shows the class hierarchy of the new mapped ontology with mapping saref:Device as

subClass of oneM2M:Device.

Figure I.1 – Class hierarchy of a mapped ontology with mapping

saref:Device as subClass of oneM2M:Device

Considering both the definition and the relations of the classes in SAREF and the base ontology,

Table I.2 gives the possible subclass mapping between SAREF and the base ontology.

Table I.2 – Subclass mapping between SAREF and the base ontology

Class in SAREF Mapping relationship Class in base ontology

saref:BulidingObject rdfs:subClassOf oneM2M:Thing

saref: BulidingSpace rdfs:subClassOf oneM2M:Thing

saref :Commodity rdfs:subClassOf oneM2M:Thing

saref :Property rdfs:subClassOf oneM2M:InputDataPoint OR
oneM2M:OutputDataPoint

saref :UnitOfMeasure rdfs:subClassOf oneM2M:MetaData

saref :MeteringFunction rdfs:subClassOf oneM2M:MesuringFunction

saref :State rdfs:subClassOf oneM2M:InputDataPoint OR
oneM2M:OutputDataPoint

saref:Profile, rdfs:subClassOf oneM2M:Thing

saref:Task rdfs:subClassOf oneM2M:ThingProperty

saref:DeviceCategory rdfs:subClassOf oneM2M:ThingProperty

saref:FunctionCategory rdfs:subClassOf oneM2M:Aspect

NOTE – Mapping SAREF classes into subclasses of the base ontology is only relevant for the oneM2M system as this
subclass relationship enables a standardized instantiation of these SAREF classes as oneM2M resources.

For the purpose of semantic discovery, subclassing some base ontology classes to SAREF classes can

also be done. Thus oneM2M Devices, Functions, Services … for which instances (oneM2M

 Rec. ITU-T Y.4500.12 (03/2018) 79

resources) exist in a oneM2M Solution can be discovered as SAREF instances, if these resources are

annotated with their semantic description in the appropriate <semanticDescriptor> child resources

and if the semantic description is made available to SAREF.

Mutual subclass relationships (rdfs:subClassOf) result in equivalent classes (owl:equivalentClass),

i.e., any instance of one class is also an instance of the equivalent class. See Table I.3.

Table I.3 – Equivalence-class mapping between SAREF and the base ontology

Class in SAREF Mapping relationship Class in base ontology

saref:Device owl:equivalentClass oneM2M:Device

saref:Command owl:equivalentClass oneM2M:Command

saref:Function owl:equivalentClass oneM2M:Function

saref:Service owl:equivalentClass oneM2M:Service

saref:ActuatingFunction owl:equivalentClass oneM2M:ControllingFunction

saref:SensingFunction owl:equivalentClass oneM2M:MesuringFunction

Object Properties of the base ontology, for which domain and range classes have equivalent classes

in the SAREF ontology, can have equivalent Object Properties in SAREF. See Table I.4.

Table I.4 – Equivalent Property mapping between SAREF and the base ontology

Object property in SAREF Mapping relationship Object property in base ontology

saref:offers owl:equivalentProperty oneM2M:hasService

saref:consistsOf owl:equivalentProperty oneM2M:consistsOf

saref:represents owl:equivalentProperty oneM2M:exposesFunction

saref:hasCommand owl:equivalentProperty oneM2M:hasCommand

I.1.3 Mapping SAREF to oneM2M resource structure

I.1.3.1 Introduction

Mapping an ontology to oneM2M describes how an instance of that ontology may be represented

under oneM2M resource structure. This clause proposes a recommended way to map SAREF to

oneM2M.

I.1.3.2 Mapping rules

Mapping ontologies to the oneM2M resource structure may be provided through a list of mapping

rules. The oneM2M base ontology instantiation rules in clause 8.1 apply. Currently no additional

mapping rules apply.

I.1.3.3 Example showing the uses of the semanticDescriptor resource and instantiation in

the oneM2M resource structure

This clause gives an example of how oneM2M resources and their semantic annotations based on the

SAREF [b-SAREFa] can be used to describe a device representing a smart appliance. It assumes that

the Instantiation rules in clause 8 and the subclass mapping relationship between SAREF and the base

ontology (clause I.1.2) apply.

The example taken from SAREF is a (simplified) washing machine as follows.

• The washing machine has been manufactured by manufacturer XYZ.

• XYZ describes this type of washing machine as "Very cool Washing Machine".

• the model of the type of washing machine is XYZ_Cool.

• The washing machine has an actuating function: WashingFunction, which has three

commands:

– ON_Command;

– OFF_Command;

80 Rec. ITU-T Y.4500.12 (03/2018)

– Toggle_Command.

• The related service of the washing machine that represents that actuating function is of Class:

SwitchOnService from SAREF. It has:

– InputDataPoint: BinaryInput (to expose command ON_Command and

OFF_Command); and

– an Operation: ToggleBinary (to expose command Toggle_Command).

• The washing machine has also a function: MonitoringFunction that informs the user about

the current state of the washing machine.

• The state of the washing machine: WashingMachineStatus can take the values

"WASHING" or "STOPPED" or "ERROR".

• This state WashingMachineStatus is updated as an OutputDataPoint of a service

MonitorService of the washing machine that monitors the washing machine's behaviour.

• The washing machine is located at My_Bathroom.

NOTE – "InputDataPoint", "OutputDataPoint" and "Operation" are not specified in SAREF, they are classes

of the oneM2M base ontology.

This example identifies the specific washing machine by the URI: "WASH_XYZ_123" that is an

instance of Class: XYZ_Cool, which is contained in XYZ's ontology:

http://www.XYZ.com/WashingMachines. The ontology "http://www.XYZ.com/WashingMachines"

that contains the model type "XYZ_Cool" is compliant with SAREF, which is turn is compliant with

the oneM2M base ontology (see clause I.1.2).

Figure I.2 shows some subclassing relationships between XYZ_Cool, SAREF and the oneM2M base

ontology.

http://www.xyz.com/WashingMachines
http://www.xyz.com/WashingMachines

 Rec. ITU-T Y.4500.12 (03/2018) 81

Figure I.2 – Subclassing relationships between XYZ_Cool, SAREF and

the oneM2M base ontology

According to clause 8.1.1.2, the washing machine – as a subclass of the oneM2M:Device class –

needs to be instantiated in the data of the descriptor attribute of a resource of type

<semanticDescriptor> that is a child resource of an <AE>.

Example: That <AE> resource could have resourceID = "00000001" and have a resourceName "My-

WashingMachine".

Its CSE-relative address would be:

Non-Hierarchical:

• "00000001"

Hierarchical:

• "./My-WashingMachine"

Figure I.3 shows the resource structure of a <AE> resource representing the smart washing machine.

It consists of an ontologyRef attribute, which contains the URI of the ontology concept of the smart

washing machine, e.g., "http://www.XYZ.com/WashingMachines#XYZ_Cool" (not shown in the

figure: the ontologyRef attributes in the semanticDescriptors of the child resources, e.g.,

http://www.XYZ.com/WashingMachines#WashingMachineStatus). The ontology

http://www.XYZ.com/WashingMachines needs to include – and creates subclassing relationships

with – SAREF and the oneM2M base ontology.

http://www.xyz.com/WashingMachines#XYZ_Cool
http://www.xyz.com/WashingMachines#WashingMachineStatus
http://www.xyz.com/WashingMachines

82 Rec. ITU-T Y.4500.12 (03/2018)

Figure I.3 – Resource structure of smart washing machine <AE> and its child resources

The <AE> resource representing the smart washing machine contains as child resources:

• a <semanticDescriptor> resource that contains the rdf description of the washing machine

WASH_XYZ_123 in its descriptor attribute;

• two <genericInterworkingService> child resources and their <semanticDescriptor>s are used

for modelling the services SwitchOnService and MonitorService;

• the SwitchOnService in turn has a child resource of type

<genericInterworkingOperationInstance>, which is created whenever a ToggleBinary

Operation is invoked;

• two <container> child resources and their <semanticDescriptor>s are used for holding the

values for InputDataPoint BinaryInput and OutputDataPoint WashingMachineStatus for

their respective services.

The RDF in Tables I.5 to I.10 shows the semantic annotation stored in the semanticDescriptor

resources related to the washing machine.

 Rec. ITU-T Y.4500.12 (03/2018) 83

Table I.5 – RDF annotation contained in the descriptor attribute

of the <semanticDescriptor> resource of a SAREF washing machine <AE> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123">

 <rdf:type rdf:resource="http://www.XYZ.com/WashingMachines#XYZ_Cool"/>

 <saref:hasManufacturer>XYZ</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasState rdf:resource="WASH_XYZ_123*WashingMachineStatus"/>

 <saref:hasFunction rdf:resource="WASH_XYZ_123*WashingFunction"/>

 <saref:hasService rdf:resource="WASH_XYZ_123*SwitchOnService"/>

 <saref:hasService rdf:resource="WASH_XYZ_123*MonitorService"/>

 <saref:isLocatedIn rdf:resource="My_Bathroom"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/WashingMachineStatus/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction">

 <rdf:type rdf:resource="https://w3id.org/saref#ActuatingFunction"/>

 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*ON_Command"/>

 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*OFF_Command"/>

 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*Toggle_Command"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*ON_Command">

 <rdf:type rdf:resource="https://w3id.org/saref#OnCommand"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*OFF_Command">

 <rdf:type rdf:resource="https://w3id.org/saref#OffCommand"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*Toggle_Command">

 <rdf:type rdf:resource="https://w3id.org/saref#ToggleCommand"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService">

 <oneM2M: resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/SwitchOnService/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*MonitorService">

 <oneM2M: resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/MonitorService/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="My_Bathroom">

 <rdf:type rdf:resource="https://w3id.org/saref#BuildingSpace"/>

 <oneM2M: resourceDescriptorLink rdf:resource=
 "//m2m.service.com/SomeIN-CSE/ResourceName_of_My_Bathroom/semanticDescriptor "/>

 </rdf:Description>

</rdf:RDF>

84 Rec. ITU-T Y.4500.12 (03/2018)

Table I.6 – RDF annotation contained in the descriptor attribute

of the <semanticDescriptor> resource of the WashingMachineStatus <container> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">

 <rdf:type rdf:resource="https://w3id.org/saref#State"/>

 <oneM2M:oneM2MTargetURI rdf:resource=

 "./My-WashingMachine/WashingMachineStatus"/>

 <oneM2M:oneM2MAttribute>#latest</oneM2M:oneM2MAttribute>

 <oneM2M:hasDataType>xsd:string</oneM2M:hasDataType>

 <oneM2M:oneM2MMethod>RETRIEVE</oneM2M:oneM2MMethod>

 </rdf:Description>

</rdf:RDF>

Table I.7 – RDF annotation contained in the descriptor attribute

of the <semanticDescriptor> resource of the BinaryInput <container> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*BinaryInput">

 <rdf:type rdf:resource="https://w3id.org/saref#Property"/>

 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*ON_Command"/>

 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*OFF_Command"/>

 <oneM2M:oneM2MTargetURI rdf:resource=

 "./My-WashingMachine/BinaryInput"/>

 <oneM2M:oneM2MAttribute>#latest</oneM2M:oneM2MAttribute>

 <oneM2M:hasDataType> xsd:hexBinary</oneM2M:hasDataType>

 <oneM2M:oneM2MMethod> CREATE</oneM2M:oneM2MMethod>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*ON_Command">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*OFF_Command">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

Table I.8 – RDF annotation contained in the descriptor attribute of the <semanticDescriptor>

resource of the MonitorService <genericInterworkingService> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*MonitorService">

 <rdf:type rdf:resource="https://w3id.org/saref#Service"/>

 <saref:represents rdf:resource="WASH_XYZ_123*MonitoringFunction"/>

 <oneM2M:hasOutputDataPoint rdf:resource="WASH_XYZ_123*WashingMachineStatus"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/WashingMachineStatus/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*MonitoringFunction">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

 Rec. ITU-T Y.4500.12 (03/2018) 85

Table I.9 – RDF annotation contained in the descriptor attribute

of the <semanticDescriptor> resource of the SwitchOnService

<genericInterworkingService> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService">

 <rdf:type rdf:resource="https://w3id.org/saref#SwitchOnService"/>

 <saref:represents rdf:resource="WASH_XYZ_123*WashingFunction"/>

 <oneM2M:hasOutDataPoint rdf:resource="WASH_XYZ_123*SwitchOnService*BinaryInput"/>

 <oneM2M:hasOperation rdf:resource="WASH_XYZ_123*SwitchOnService*ToggleBinary"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*BinaryInput">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/BinaryInput/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*ToggleBinary">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/SwitchOnService/ToggleBinary/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

Table I.10 – RDF annotation contained in the descriptor attribute of the <semanticDescriptor>

resource of the ToggleBinary <genericInterworkingOperationInstance> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*ToggleBinary">

 <rdf:type

rdf:resource="http://www.onem2m.org/ontology/Base_Ontology/base_ontology#Operation"/>

 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*Toggle_Command"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*Toggle_Command">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

86 Rec. ITU-T Y.4500.12 (03/2018)

Bibliography

[b-ATIS.oneM2M.TS0012] ATIS.oneM2M.TS0012V200 (2016), Base ontology.

[b-CCSA M2M-TS-0012] CCSA M2M-TS-0012-V2.0.0, Base ontology.

[b-ETSI TS 118 112] ETSI TS 118 112 V2.0.0 (2016), oneM2M; Base

ontology – (oneM2M TS-0012 version 2.0.0 Release 2).

[b-oneM2M Base Ont. and OWL] oneM2M Base Ontology and OWL representation.
http://www.onem2m.org/ontology/Base_Ontology

[b-oneM2M Ontologies] oneM2M Partners (2017). Ontologies used for oneM2M.

http://www.onem2m.org/technical/onem2m-ontologies.

[b-OWL] W3C Recommendation (2012), OWL 2 web ontology

language document overview (second edition).
http://www.w3.org/TR/owl2-overview/

[b-Protégé] Stanford Center for Biomedical Informatics Research

(2016).

Protégé: A free, open-source ontology editor and

framework for building intelligent systems.
http://protege.stanford.edu/

[b-RDF] W3C Recommendation (2014), RDF 1.1 concepts and

abstract syntax.
https://www.w3.org/TR/rdf11-concepts/

[b-SAREFa] Smart Appliances REFerence (SAREF) ontology.
https://sites.google.com/site/smartappliancesproject/ontologies/reference-
ontology;

[b-SAREFb] Ontology https://w3id.org/saref.
http://ontology.tno.nl/saref/

[b-TSDSI STD T1.oneM2M TS-0012] TSDSI STD T1.oneM2M TS-0012-2.0.0 V1.0.0 (2017),

Base ontology.

[b-TTAT.MM-TS.0012] TTAT.MM-TS.0012 v2.0.0 (2017), oneM2M – Base

ontology v2.0.0.

[b-TTC TS-M2M-0012] TTC TS-M2M-0012v2.0.0 (2016), oneM2M Technical

Specification – Base ontology.

http://www.onem2m.org/ontology/Base_Ontology
http://www.onem2m.org/technical/onem2m-ontologies
http://www.w3.org/TR/owl2-overview/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://protege.stanford.edu/
https://www.w3.org/TR/rdf11-concepts/
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
http://ontology.tno.nl/saref/

Printed in Switzerland
Geneva, 2018

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 General information on the oneM2M base ontology
	6.1 Motivation and intended use of the ontology
	6.1.1 Why use ontologies in oneM2M?
	6.1.1.1 Introduction to ontologies
	6.1.1.2 The purpose of the oneM2M base ontology
	6.1.1.2.0 Introduction
	6.1.1.2.1 Syntactic interoperability
	6.1.1.2.2 Semantic interoperability

	6.1.2 How are the base ontology and external ontologies used?
	6.1.2.1 Overview
	6.1.2.2 Introduction to usage of classes, properties and restrictions
	6.1.2.3 Methods for jointly using the base ontology and external ontologies

	6.2 Insights into base ontology
	6.2.1 General design principles of the base ontology
	6.2.1.1 General principle
	6.2.1.2 Essential classes and properties of the base ontology

	6.2.2 Use of ontologies for generic interworking with area networks
	6.2.2.1 General principle

	7 Description of classes and properties
	7.1 Classes
	7.1.1 Class: Thing
	7.1.2 Class: ThingProperty
	7.1.3 Class: Aspect
	7.1.4 Class: MetaData
	7.1.5 Class: Device
	7.1.6 Class: InterworkedDevice
	7.1.7 Class: AreaNetwork
	7.1.8 Class: Service
	7.1.9 Class: Function
	7.1.9.0 General description
	7.1.9.1 Class: ControllingFunction
	7.1.9.2 Class: MeasuringFunction

	7.1.10 Class: Operation
	7.1.10.0 General description
	7.1.10.1 Class: GET_InputDataPoint
	7.1.10.2 Class: SET_OutputDataPoint

	7.1.11 Class: Command
	7.1.12 Class: OperationInput
	7.1.13 Class: OperationOutput
	7.1.14 Class: OperationState
	7.1.15 Class: InputDataPoint
	7.1.16 Class: OutputDataPoint
	7.1.17 Class: Variable
	7.1.18 Class: SimpleTypeVariable

	7.2 Object properties
	7.2.1 Void
	7.2.2 Void
	7.2.3 Object Property: consistsOf
	7.2.4 Object Property: describes
	7.2.5 Object Property: exposesCommand
	7.2.6 Object Property: exposesFunction
	7.2.7 Object Property: hasCommand
	7.2.8 Object Property: hasFunction
	7.2.9 Object Property: hasInput
	7.2.10 Object Property: hasInputDataPoint
	7.2.11 Object Property: hasMetaData
	7.2.12 Void
	7.2.13 Object Property: hasOperation
	7.2.14 Object Property: hasOperationState
	7.2.15 Void
	7.2.16 Object Property: hasOutput
	7.2.17 Object Property: hasOutputDataPoint
	7.2.18 Object Property: hasService
	7.2.19 Object Property: hasSubStructure
	7.2.20 Object Property: hasThingProperty
	7.2.21 Object Property: hasThingRelation
	7.2.22 Void
	7.2.23 Void
	7.2.24 Void
	7.2.25 Object Property: isPartOf
	7.2.26 Object Property: refersTo

	7.3 Data Properties
	7.3.1 Data Property: hasDataType
	7.3.2 Data Property: hasDataRestriction
	7.3.2.0 General description
	7.3.2.1 Data Property: hasDataRestriction_minInclusive
	7.3.2.2 Data Property: hasDataRestriction_maxInclusive
	7.3.2.3 Data Property: hasDataRestriction_minExclusive
	7.3.2.4 Data Property: hasDataRestriction_maxExclusive
	7.3.2.5 Data Property: hasDataRestriction_length
	7.3.2.6 Data Property: hasDataRestriction_minLength
	7.3.2.7 Data Property: hasDataRestriction_maxLength
	7.3.2.8 Data Property: hasDataRestriction_pattern
	7.3.2.9 Data Property: hasDataRestriction_langRange

	7.3.3 Data property: hasValue
	7.3.4 Data Property: netTechnologyCommunicationProtocol
	7.3.5 Data Property: netTechnologyPhysicalStandard
	7.3.6 Data Property: netTechnologyProfile
	7.3.7 Data Property: oneM2MTargetURI
	7.3.8 Data Property: oneM2MAttribute
	7.3.9 Data Property: oneM2MMethod
	7.3.10 Data Property: hasThingAnnotation

	7.4 Annotation properties
	7.4.1 Annotation Property: resourceDescriptorLink

	8 Instantiation of the base ontology and external ontologies to the oneM2M system
	8.1 Instantiation rules for the base ontology
	8.1.1 Instantiation of classes of the oneM2M base ontology and derived external ontologies in the oneM2M system
	8.1.1.1 General on instantiating classes of the base ontology in the oneM2M system
	8.1.1.2 Instantiation of individual classes of the base ontology

	8.1.2 Instantiation of Object Properties
	8.1.3 Instantiation of Data Properties
	8.1.4 Instantiation of Annotation Properties

	8.2 Common mapping principles between the base ontology and external ontologies

	9 Functional specification of communication with the generic interworking IPE
	9.1 Usage of oneM2M resources for IPE communication
	9.1.1 General design principles (informative)
	9.1.2 Parent-child and linking resource relationships

	9.2 Specification of the IPE for generic interworking
	9.2.1 General functionality of a generic interworking IPE
	9.2.2 Interworked Device discovery
	9.2.3 Handling of DataPoints by the IPE
	9.2.4 Handling of Operations by the IPE
	9.2.5 Removing Devices

	9.3 Specification of the behaviour of a communicating entity in message flows between IPE and the communicating entity
	9.3.1 Preconditions on the communicating entity
	9.3.2 Flow from the communicating entity to the IPE using InputDataPoints of a Service
	9.3.2.1 Flow from the communicating entity to the IPE using a <container> type InputDataPoint
	9.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint

	9.3.3 Flow from the IPE to the communicating entity using OutputDataPoints of a Service
	9.3.4 Flow from the communicating entity to the IPE using Operations of a Service
	9.3.5 Flow from the IPE to the communicating entity using Operations of a Service

	10 FlexContainer specializations for generic interworking
	10.1 Introduction
	10.2 Resource Type genericInterworkingService
	10.3 Resource Type genericInterworkingOperationInstance

	Annex A oneM2M specification update and maintenance control procedure
	Annex B OWL representation of base ontology
	Appendix I Mappings of selected external ontologies to the base ontology
	I.1 Mapping of SAREF
	I.1.1 Introduction to SAREF
	I.1.2 Class mapping relationship between SAREF and the base ontology
	I.1.3 Mapping SAREF to oneM2M resource structure
	I.1.3.1 Introduction
	I.1.3.2 Mapping rules
	I.1.3.3 Example showing the uses of the semanticDescriptor resource and instantiation in the oneM2M resource structure

	Bibliography

