

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Y.4473
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(08/2020)

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS,
NEXT-GENERATION NETWORKS, INTERNET OF
THINGS AND SMART CITIES

Internet of things and smart cities and communities –
Frameworks, architectures and protocols

SensorThings API – Sensing

Recommendation ITU-T Y.4473

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION

NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199

Services, applications and middleware Y.200–Y.299

Network aspects Y.300–Y.399

Interfaces and protocols Y.400–Y.499

Numbering, addressing and naming Y.500–Y.599

Operation, administration and maintenance Y.600–Y.699

Security Y.700–Y.799

Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS

General Y.1000–Y.1099

Services and applications Y.1100–Y.1199

Architecture, access, network capabilities and resource management Y.1200–Y.1299

Transport Y.1300–Y.1399

Interworking Y.1400–Y.1499

Quality of service and network performance Y.1500–Y.1599

Signalling Y.1600–Y.1699

Operation, administration and maintenance Y.1700–Y.1799

Charging Y.1800–Y.1899

IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS

Frameworks and functional architecture models Y.2000–Y.2099

Quality of Service and performance Y.2100–Y.2199

Service aspects: Service capabilities and service architecture Y.2200–Y.2249

Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299

Enhancements to NGN Y.2300–Y.2399

Network management Y.2400–Y.2499

Network control architectures and protocols Y.2500–Y.2599

Packet-based Networks Y.2600–Y.2699

Security Y.2700–Y.2799

Generalized mobility Y.2800–Y.2899

Carrier grade open environment Y.2900–Y.2999

FUTURE NETWORKS Y.3000–Y.3499

CLOUD COMPUTING Y.3500–Y.3599

BIG DATA Y.3600–Y.3799

QUANTUM KEY DISTRIBUTION NETWORKS Y.3800–Y.3999

INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES

General Y.4000–Y.4049

Definitions and terminologies Y.4050–Y.4099

Requirements and use cases Y.4100–Y.4249

Infrastructure, connectivity and networks Y.4250–Y.4399

Frameworks, architectures and protocols Y.4400–Y.4549

Services, applications, computation and data processing Y.4550–Y.4699

Management, control and performance Y.4700–Y.4799

Identification and security Y.4800–Y.4899

Evaluation and assessment Y.4900–Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.4473 (08/2020) i

Recommendation ITU-T Y.4473

SensorThings API – Sensing

Summary

Recommendation ITU-T Y.4473 specifies the SensorThings application programming interface (API)

which provides an open standard-based and geospatial-enabled framework to interconnect Internet of

things (IoT) devices, data and applications over the Web.

The SensorThings API is an open standard, and that means it is non-proprietary, platform-independent.

It builds on a rich set of proven-working and widely-adopted open standards, such as the web protocols

and the Open Geospatial Consortium (OGC) sensor web enablement (SWE) standards, including the

ISO/OGC observation and measurement data model. The SensorThings API is extensible and can be

applied to not only simple but also complex use cases.

This Recommendation provides a standard way to manage and retrieve observations and metadata

from heterogeneous IoT sensor systems. The SensorThings API uses representational state transfer

(REST) principles, an efficient JavaScript object notation (JSON) encoding, message queuing

telemetry transport (MQTT) protocol, flexible OASIS open data protocol (OData) and uniform

resource locator (URL) conventions.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Y.4473 2020-08-29 20 11.1002/1000/14375

Keywords

Internet of things, sensor web, smart cities, smart communities.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14375
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Y.4473 (08/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.4473 (08/2020) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 3

5 Conventions .. 3

6 The SensorThings API entities ... 3

6.1 Common control information ... 3

6.2 The sensing entities .. 4

7 SensorThings service interface ... 18

7.1 Common control information ... 18

7.2 Resource path ... 19

7.3 Requesting data .. 23

8 SensorThings sensing create-update-delete .. 31

8.1 Overview .. 31

8.2 Create an entity ... 31

8.3 Update an entity .. 33

8.4 Delete an entity ... 34

9 Batch requests ... 35

9.1 Introduction .. 35

9.2 Batch-processing request .. 35

9.3 Batch-processing response ... 38

9.4 Asynchronous batch requests ... 39

10 SensorThings MultiDatastream extension .. 40

11 SensorThings Data Array Extension .. 45

11.1 Retrieve a Datastream's Observation entities in dataArray 45

11.2 Create Observation entities with dataArray ... 48

12 SensorThings Sensing MQTT Extension ... 50

12.1 Create a SensorThings Observation with MQTT Publish 50

12.2 Receive updates with MQTT Subscribe ... 50

Bibliography... 53

 Rec. ITU-T Y.4473 (08/2020) 1

Recommendation ITU-T Y.4473

SensorThings API – Sensing

1 Scope

This Recommendation specifies a SensorThings application programming interface (API) which

provides an open standard-based and geospatial-enabled framework to interconnect Internet of things

devices, data, and applications over the Web.

The scope of this Recommendation includes:

− SensorThings API entities and relevant properties, including thing, location, datastream,

sensor, observations, etc.;

− SensorThings service interface for requesting data;

− SensorThings sensing operations, including reading, creating, updating and deleting;

− SensorThings batch processing requests and relevant responses, and extensions for

multidatastream, data array and Message Queuing Telemetry Transport (MQTT).

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.4000] Recommendation ITU-T Y.4000/Y.2060 (2012), Overview of Internet of

things.

[IETF RFC 2046] IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part

Two: Media Types.
https://www.ietf.org/rfc/rfc2046.txt

[IETF RFC 2616] IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1.
https://www.ietf.org/rfc/rfc2616.txt

[IETF RFC 5789] IETF RFC 5789, PATCH Method for HTTP,
https://www.ietf.org/rfc/rfc5789.txt

[IETF RFC 6902] IETF RFC 6902, JavaScript Object Notation (JSON) Patch.
https://www.ietf.org/rfc/rfc6902.txt

[IETF RFC 7946] IETF RFC 7946, The GeoJSON Format.
https://www.ietf.org/rfc/rfc7946.txt

[ISO 8601] ISO 8601:2004, Data elements and interchange formats – Information

interchange – Representation of dates and times.

[OASIS OData ABNF] OASIS OData Version 4.0 (2017), ABNF Construction Rules.
http://docs.oasis-open.org/odata/odata/v4.01/cs01/abnf/odata-abnf-construction-rules.txt

[OASIS OData JSON] OASIS OData Version 4.0 (2016), JSON Format Version 4.0 Plus Errata

03.
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html

[OASIS OData Part1] OASIS OData Version 4.0 (2016), Part 1: Protocol Plus Errata 03.
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

https://www.ietf.org/rfc/rfc2046.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc5789.txt
https://www.ietf.org/rfc/rfc6902.txt
https://www.ietf.org/rfc/rfc7946.txt
http://docs.oasis-open.org/odata/odata/v4.01/cs01/abnf/odata-abnf-construction-rules.txt
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

2 Rec. ITU-T Y.4473 (08/2020)

[OASIS OData Part2] OASIS OData Version 4.0 (2016), Part 2: URL Conventions Plus Errata

03.
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

[OGC/ISO 19156] OGC/ISO 19156 (2011), Abstract Specification Topic 20: Geographic

information – Observations and Measurements.
http://portal.opengeospatial.org/files/?artifact_id=41579

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 collection [b-IETF RFC 5023]: Sets of resources, which can be retrieved in whole or in part.

3.1.2 entity [OASIS OData Part1]: Instances of entity types.

3.1.3 entity sets [OASIS OData Part1]: Named collections of entities (e.g., Sensors is an entity set

containing Sensor entities). An entity's key uniquely identifies the entity within an entity set. Entity

sets provide entry points into an OGC SensorThings API service.

3.1.4 Internet of things (IoT) [ITU-T Y.4000]: A global infrastructure for the information society,

enabling advanced services by interconnecting (physical and virtual) things based on existing and

evolving interoperable information and communication technologies.

NOTE 1 – Through the exploitation of identification, data capture, processing and communication capabilities,

the IoT makes full use of things to offer services to all kinds of applications, whilst ensuring that security and

privacy requirements are fulfilled.

NOTE 2 – From a broader perspective, the IoT can be perceived as a vision with technological and societal

implications.

3.1.5 measurement [OGC/ISO 19156]: A set of operations having the object of determining the

value of a quantity.

3.1.6 observation [OGC/ISO 19156]: Act of measuring or otherwise determining the value of a

property.

3.1.7 observation result [OGC/ISO 19156]: Estimate of the value of a property determined

through a known observation procedure.

3.1.8 resource [IETF RFC 2616]: A network-accessible data object or service identified by an

URI.

3.1.9 sensor [b-OGC 12-000]: An entity capable of observing a phenomenon and returning an

observed value. Type of observation procedure that provides the estimated value of an observed

property at its output.

3.1.10 thing [ITU-T Y.4000]: With regard to the Internet of things, this is an object of the physical

world (physical things) or the information world (virtual things), which is capable of being identified

and integrated into communication networks.

3.2 Terms defined in this Recommendation

This Recommendation defines the following term:

3.2.1 representational state transfer (REST): An abstraction of the architectural elements within

a distributed hypermedia system that focuses on the roles of components, the constraints upon their

interaction with other components, and their interpretation of significant data elements.

NOTE 1 – REST encompasses the fundamental constraints upon components, connectors, and data that define

the basis of the web architecture, and thus the essence of its behaviour as a network-based application.

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://portal.opengeospatial.org/files/?artifact_id=41579

 Rec. ITU-T Y.4473 (08/2020) 3

NOTE 2 – An API that conforms to the REST architectural principles/constraints is called a RESTful API.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

CRUD Create, Read, Update, and Delete

GML Geography Markup Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

OData Open Data Protocol

O&M Observations and Measurements

REST Representational State Transfer

SensorML Sensor Model Language

SOS Sensor Observation Service

SWE Sensor Web Enablement

UCUM Unified Code for Units of Measure

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WiFi Wireless-Fidelity

WKT Well-Known Text

XML extensible Markup Language

5 Conventions

In this Recommendation:

The word "SHALL" is used to express mandatory requirements for conformance to the

Recomemndation. The word "MAY" is used to refer to behaviour that is allowed, but not necessarily

required. The word "SHOULD" is used to refer to behaviour that is encouraged to be followed, but

is not a mandatory requirement for conformance to this Recommendation.

6 The SensorThings API entities

6.1 Common control information

In SensorThings control information is represented as annotations whose names start with iot

followed by a dot (iot.). Annotations are name/value pairs that have a dot (.) as part of the name.

When annotating a name/value pair for which the value is represented as a JSON object, each

annotation is placed within the object and represented as a single name/value pair. In SensorThings

4 Rec. ITU-T Y.4473 (08/2020)

the name always starts with the "at" sign (@), followed by the namespace iot, followed by a dot (.),

followed by the name of the term (e.g., "@iot.id":1).

When annotating a name/value pair for which the value is represented as a JSON array or primitive

value, each annotation that applies to this name/value pair is placed next to the annotated name/value

pair and represented as a single name/value pair. The name is the same as the name of the name/value

pair being annotated, followed by the "at" sign (@), followed by the namespace iot, followed by a

dot (.), followed by the name of the term. (e.g.,

"Locations@iot.navigationLink":"http://example.org/v.1.0/Things(1)/Locations")

Table 1 presents common control information.

Table 1 – Common control information

Annotation Definition Data

type

Multiplicity

and use

id id is the system-generated identifier of an entity. id is

unique among the entities of the same entity type in a

SensorThings service.

Any One

(mandatory)

selfLink selfLink is the absolute URL of an entity that is unique

among all other entities.

URL One

(mandatory)

navigationLink navigationLink is the relative or absolute URL that

retrieves content of related entities.

URL One-to-many

(mandatory)

6.2 The sensing entities

The SensorThings API Sensing part's entities are depicted in Figure 1. The sensing entities include

Things, Location, HistoricalLocation, Datastream, Sensor, ObservedProperty, Observations, and

FeatureOfInterest.

 Rec. ITU-T Y.4473 (08/2020) 5

Figure 1 – Sensing entities

In this clause, the properties in each entity type and the direct relationship to the other entity types

are described. In addition, for each entity type, an example of the associated JSON encoding is

presented.

6.2.1 Thing

The SensorThings API follows the ITU-T definition, i.e., with regard to the Internet of things, a thing

is an object of the physical world (physical things) or the information world (virtual things) that is

capable of being identified and integrated into communication networks [ITU-T Y.4000].

Table 2 shows properties of a Thing entity and Table 3 shows the direct relation between a Thing

entity and other entity types.

6 Rec. ITU-T Y.4473 (08/2020)

Table 2 – Properties of a Thing entity

Name Definition Data type Multiplicity and

use

name A property provides a label for Thing entity,

commonly a descriptive name.

CharacterString One (mandatory)

description This is a short description of the corresponding

Thing entity.

CharacterString One (mandatory)

properties A JSON Object containing user-annotated

properties as key-value pairs.

JSON Object Zero-to-one

Table 3 – Direct relation between a Thing entity and other entity types

Entity type Relation Description

Location Many

optional to

many

optional

The Location entity locates the Thing. Multiple Things MAY be

located at the same Location. A Thing MAY not have a Location.

A Thing SHOULD have only one Location.

However, in some complex use cases, a Thing MAY have more

than one Location representations. In such case, the Thing MAY

have more than one Locations. These Locations SHALL have

different encodingTypes and the encodingTypes SHOULD be in

different spaces (e.g., one encodingType in Geometrical space and

one encodingType in Topological space).

HistoricalLocation One

mandatory to

many

optional

A Thing has zero-to-many HistoricalLocations. A

HistoricalLocation has one-and-only-one Thing.

Datastream One

mandatory to

many

optional

A Thing MAY have zero-to-many Datastreams.

Example 1 – An example of a Thing entity:

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/Things(1)",

 "Locations@iot.navigationLink": "Things(1)/Locations",

 "Datastreams@iot.navigationLink": "Things(1)/Datastreams",

 "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations",

 "name": "Oven",

 "description": "This thing is an oven.",

 "properties": {

 "owner": "Noah Liang",

 "color": "Black"

 }

}

 Rec. ITU-T Y.4473 (08/2020) 7

6.2.2 Location

The Location entity locates the Thing or the Things it is associated with. A Thing's Location entity is

defined as the last known location of the Thing.

A Thing's Location may be identical to the Thing's Observations' FeatureOfInterest. In the context of

the IoT, the principle location of interest is usually associated with the location of the Thing,

especially for in-situ sensing applications. For example, the location of interest of a WiFi-connected

thermostat should be the building or the room in which the smart thermostat is located. The

FeatureOfInterest of the Observations made by the thermostat (e.g., room temperature readings)

should also be the building or the room. In this case, the content of the smart thermostat's location

should be the same as the content of the temperature readings' feature of interest.

However, the ultimate location of interest of a Thing is not always the location of the Thing (e.g., in

the case of remote sensing). In those use cases, the content of a Thing's Location is different from the

content of the FeatureOfInterest of the Thing's Observations. Section 7.1.4 of [OGC/ISO 19156]

provides a detailed explanation of observation location.

Table 4 lists properties of a Location entity, Table 5 lists the direct relations between a Location entity

and other entity types and Table 6 lists of some code values used for identifying types for the

encodingType of the Location and FeatureOfInterest entity.

Table 4 – Properties of a Location entity

Name Definition Data type Multiplicity

and use

name A property provides a label for

Location entity, commonly a

descriptive name.

CharacterString One

(mandatory)

description The description about the Location. CharacterString One

(mandatory)

encodingType The encoding type of the Location

property. Its value is one of the

ValueCode enumeration.

ValueCode One

(mandatory)

location The location type is defined by

encodingType.

Any (i.e., the type is

depending on the value of the

encodingType)

One

(mandatory)

8 Rec. ITU-T Y.4473 (08/2020)

Table 5 – Direct relations between a Location entity and other entity types

Entity type Relation Description

Thing Many optional to

many optional

Multiple Things MAY locate at the same Location. A Thing

MAY not have a Location.

HistoricalLocation Many mandatory to

many optional

A Location can have zero-to-many HistoricalLocations.

One HistoricalLocation SHALL have one or many

Locations.

Example 2 – An example of a Location entity:

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/Locations(1)",

 "Things@iot.navigationLink": "Locations(1)/Things",

 "HistoricalLocations@iot.navigationLink": "Locations(1)/HistoricalLocations",

 "encodingType": "application/vnd.geo+json",

 "name": "CCIT",

 "description": "Calgary\n Center for Innovative Technologies",

 "location": {

 "type": "Feature",

 "geometry": {

 "type": "Point",

 "coordinates": [

 -114.06,

 51.05

]

 }

 }

}

Table 6 – Code values used for identifying types for the encodingType of the

Location and FeatureOfInterest entity

Location encodingType ValueCode Value

GeoJSON1 application/vnd.geo+json

A thing can be geo-referenced in different spaces. For example, for some applications it is more

suitable to use a topological space model (e.g., IndoorGML) to describe an indoor things' location

rather than using a geometric space model (e.g., GeoJSON). Currently GeoJSON is the only Location

encodingType of the SensorThings API. In the future it is expected to extend SensorThings API's

1 GeoJSON: Geospatial data interchange format based on JavaScript Object Notation, defined in

[IETF RF 7946].

 Rec. ITU-T Y.4473 (08/2020) 9

capabilities by adding additional encodingType to the code values listed in the above table. For

example, one potential new Location encodingType can be a JSON encoding for IndoorGML.

6.2.3 HistoricalLocation

A Thing's HistoricalLocation entity set provides the times of the current (i.e., last known) and

previous locations of the Thing.

The HistoricalLocation can also be created, updated and deleted. One use case is to migrate historical

observation data from an existing observation data management system to a SensorThings API

system.

Table 7 lists properties of a HistoricalLocation entity and Table 8 lists direct relations between an

HistoricalLocation entity and other entity types.

Table 7 – Properties of a HistoricalLocation entity

Name Definition Data type Multiplicity and

use

time The time when the Thing is known at the

Location.

TM_Instant (ISO-8601 Time

String)

One (mandatory)

Table 8 – Direct relations between an HistoricalLocation entity and other entity types

Entity type Relation Description

Location Many optional to many

mandatory

A Location can have zero-to-many HistoricalLocations. One

HistoricalLocation SHALL have one or many Locations.

Thing Many optional to one

mandatory

A HistoricalLocation has one-and-only-one Thing. One Thing

MAY have zero-to-many HistoricalLocations.

Example 3 – An example of a HistoricalLocations entity set (e.g., Things(1)/HistoricalLocations):

{

 "value": [

 {

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/HistoricalLocations(1)",

 "Locations@iot.navigationLink": "HistoricalLocations(1)/Locations",

 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",

 "time": "2015-01-25T12:00:00-07:00"

 },

 {

 "@iot.id": 2,

 "@iot.selfLink": "http://example.org/v1.0/HistoricalLocations(2)",

 "Locations@iot.navigationLink": "HistoricalLocations(2)/Locations",

 "Thing@iot.navigationLink": "HistoricalLocations(2)/Thing",

 "time": "2015-01-25T13:00:00-07:00"

 }

],

 "@iot.nextLink": "http://example.org/v1.0/Things(1)/HistoricalLocations?$skip=2&$top=2"

}

10 Rec. ITU-T Y.4473 (08/2020)

6.2.4 Datastream

A Datastream groups a collection of Observations measuring the same ObservedProperty and

produced by the same Sensor.

Table 9 lists properties of a Datastream entity and Table 10 lists direct relations between a Datastream

entity and other entity types.

Table 9 – Properties of a Datastream entity

Name Definition Data type Multiplicity and use

name A property provides a label

for Datastream entity,

commonly a descriptive

name.

CharacterString One (mandatory)

description The description of the

Datastream entity.

CharacterString One (mandatory)

unitOfMeasurement A JSON Object containing

three key-value pairs. The

name property presents the

full name of the

unitOfMeasurement; the

symbol property shows the

textual form of the unit

symbol; and the definition

contains the URI defining the

unitOfMeasurement.

The values of these properties

SHOULD follow the Unified

Code for Unit of Measure

(UCUM).

JSON Object One (mandatory)

NOTE – When a Datastream

does not have a unit of

measurement (e.g., an

OM_TruthObservation type),

the corresponding

unitOfMeasurement

properties SHALL have null

values.

observationType The type of Observation

(with unique result type),

which is used by the service

to encode observations.

ValueCode

see Table 14.

One (mandatory)

observedArea The spatial bounding box of

the spatial extent of all

FeaturesOfInterest that

belong to the Observations

associated with this

Datastream.

GM_Envelope

(GeoJSON

Polygon)

Zero-to-one (optional)

phenomenonTime The temporal interval of the

phenomenon times of all

observations belonging to this

Datastream.

TM_Period

(ISO 8601 Time

Interval)

Zero-to-one (optional)

 Rec. ITU-T Y.4473 (08/2020) 11

Table 9 – Properties of a Datastream entity

Name Definition Data type Multiplicity and use

resultTime The temporal interval of the

result times of all

observations belonging to this

Datastream.

TM_Period

(ISO 8601 Time

Interval)

Zero-to-one (optional)

Table 10 – Direct relation between a Datastream entity and other entity types

Entity type Relation Description

Thing Many optional to

one mandatory

A Thing has zero-to-many Datastreams. A Datastream entity

SHALL only link to a Thing as a collection of Observations.

Sensor Many optional to

one mandatory

The Observations in a Datastream are performed by one-and-

only-one Sensor. One Sensor MAY produce zero-to-many

Observations in different Datastreams.

ObservedProperty Many optional to

one mandatory

The Observations of a Datastream SHALL observe the same

ObservedProperty. The Observations of different Datastreams

MAY observe the same ObservedProperty.

Observation One mandatory

to many optional

A Datastream has zero-to-many Observations. One

Observation SHALL occur in one-and-only-one Datastream.

Example 4 – A Datastream entity example:

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/Datastreams(1)",

 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",

 "Sensor@iot.navigationLink": "Datastreams(1)/Sensor",

 "ObservedProperty@iot.navigationLink": "Datastreams(1)/ObservedProperty",

 "Observations@iot.navigationLink": "Datastreams(1)/Observations",

 "name": "oven temperature",

 "description": "This is a datastream measuring the air temperature in an oven.",

 "unitOfMeasurement": {

 "name": "degree Celsius",

 "symbol": "°C",

 "definition": "http://unitsofmeasure.org/ucum.html#para-30"

 },

 "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

 "observedArea": {

 "type": "Polygon",

 "coordinates":

 [[[100,0],[101,0],[101,1],[100,1],[100,0]]]

 },

 "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",

 "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"

}

12 Rec. ITU-T Y.4473 (08/2020)

The observationType defines the result types for specialized observations [OGC/ISO 19156].

Table 11 shows some of the valueCodes that maps the Unified modelling language (UML) classes in

O&M v2.0 [OGC/ISO 19156] to observationType names and observation result types.

Table 11 – List of some code values used for identifying types defined

in the O&M conceptual model [OGC/ISO 19156]

O&M 2.0 Code value (observationType names) Content of

result

OM_CategoryObservation http://www.opengis.net/def/observationType/OGC-

OM/2.0/OM_CategoryObservation

URI

OM_CountObservation http://www.opengis.net/def/observationType/OGC-

OM/2.0/OM_CountObservation

integer

OM_Measurement http://www.opengis.net/def/observationType/OGC-

OM/2.0/OM_Measurement

double

OM_Observation http://www.opengis.net/def/observationType/OGC-

OM/2.0/OM_Observation

Any

OM_TruthObservation http://www.opengis.net/def/observationType/OGC-

OM/2.0/OM_TruthObservation

boolean

6.2.5 Sensor

A Sensor is an instrument that observes a property or phenomenon with the goal of producing an

estimate of the value of the property2.

Table 12 lists properties of a Sensor entity, Table 13 lists direct relations between a Sensor entity and

other entity types and Table 14 lists some code values used for identifying types for the encodingType

of the Sensor entity.

Table 12 – Properties of a Sensor entity

Name Definition Data type Multiplicity

and use

name A property provides a label for Sensor

entity, commonly a descriptive name.

CharacterString One

(mandatory)

description The description of the Sensor entity. CharacterString One

(mandatory)

2 In some cases, the Sensor in this data model can also be seen as the Procedure (method, algorithm, or

instrument) defined in [OGC/ISO 19156].

http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CountObservation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CountObservation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Observation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Observation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TruthObservation
http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TruthObservation

 Rec. ITU-T Y.4473 (08/2020) 13

Table 12 – Properties of a Sensor entity

Name Definition Data type Multiplicity

and use

encodingType The encoding type of the metadata

property. Its value is one of the ValueCode

enumeration (Table 14. for the available

ValueCode).

ValueCode One

(mandatory)

metadata The detailed description of the Sensor or

system. The metadata type is defined by

encodingType.

Any (depending on the

value of the

encodingType)

One

(mandatory)

Table 13 – Direct relations between a Sensor entity and other entity types

Entity type Relation Description

Datastream One mandatory to

many optional

The Observations of a Datastream are measured with the same

Sensor. One Sensor MAY produce zero-to-many Observations in

different Datastreams.

Table 14 – List of some code values used for identifying types for

the encodingType of the Sensor entity

Sensor encodingType ValueCode Value

PDF application/pdf

SensorML http://www.opengis.net/doc/IS/SensorML/2.0

The Sensor encodingType allows clients to know how to interpret metadata's value. Currently

SensorThings API defines two common Sensor metadata encodingTypes. Most sensor manufacturers

provide their sensor datasheets in a PDF format. As a result, PDF is a Sensor encodingType supported

by SensorThings API. The second Sensor encodingType is SensorML.

Example 5 – An example of a Sensor entity:

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/Sensors(1)",

 "Datastreams@iot.navigationLink": "Sensors(1)/Datastreams",

 "name": "TMP36",

 "description": "TMP36\n – Analog Temperature sensor",

 "encodingType": "application/pdf",

 "metadata": "http://example.org/TMP35_36_37.pdf"

}

14 Rec. ITU-T Y.4473 (08/2020)

6.2.6 ObservedProperty

An ObservedProperty specifies the phenomenon of an Observation. Table 15 lists properties of an

ObservedProperty entity and Table 16 lists direct relations between an ObservedProperty entity and

other entity types.

Table 15 – Properties of an ObservedProperty entity

Name Definition Data type Multiplicity

and use

name A property provides a label for ObservedProperty

entity, commonly a descriptive name.

CharacterString One

(mandatory)

definition The URI of the ObservedProperty. Dereferencing this

URI SHOULD result in a representation of the

definition of the ObservedProperty.

URI One

(mandatory)

description A description about the ObservedProperty. CharacterString One

(mandatory)

Table 16 – Direct relations between an ObservedProperty entity and other entity types

Entity type Relation Description

Datastream One mandatory to

many optional

The Observations of a Datastream observe the same

ObservedProperty. The Observations of different Datastreams MAY

observe the same ObservedProperty.

Example 6 – An example ObservedProperty entity:

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/ObservedProperties(1)",

 "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams",

 "description": "The dewpoint temperature is the temperature to which the air must be\n cooled, at constant pressure, for dew to form.

As the grass and other objects\n near the ground cool to the dewpoint, some of the water vapor in the\n atmosphere condenses into

liquid water on the objects.",

 "name": "DewPoint Temperature",

 "definition": "http://dbpedia.org/page/Dew_point"

}

6.2.7 Observations

An Observation is the act of measuring or otherwise determining the value of a property

[OGC/ISO 19156]. Table 17 lists properties of an Observation entity and Table 18 lists direct

relations between an Observation entity and other entity types.

 Rec. ITU-T Y.4473 (08/2020) 15

Table 17 – Properties of an Observation entity

Name Definition Data type Multiplicity

and use

phenomenonTime The time instant or period of when the

Observation happens.

NOTE – Many resource-constrained

sensing devices do not have a clock.

As a result, a client may omit

phenomenonTime when POST new

Observations, even though

phenomenonTime is a mandatory

property. When a SensorThings service

receives a POST Observations without

phenomenonTime, the service SHALL

assign the current server time to the

value of the phenomenonTime.

TM_Object (ISO 8601

Time string or Time

Interval string (e.g.,

2010-12-

23T10:20:00.00-07:00 or

2010-12-

23T10:20:00.00-

07:00/2010-12-

23T12:20:00.00-07:00))

One

(mandatory)

result The estimated value of an

ObservedProperty from the

Observation.

Any (depends on the

observationType defined

in the associated

Datastream)

One

(mandatory)

resultTime The time of the Observation's result

was generated.

NOTE – Many resource-constrained

sensing devices do not have a clock.

As a result, a client may omit

resultTime when POST new

Observations, even though resultTime

is a mandatory property. When a

SensorThings service receives a POST

Observations without resultTime, the

service SHALL assign a null value to

the resultTime.

TM_Instant (ISO 8601

Time string)

One

(mandatory)

resultQuality Describes the quality of the result. DQ_Element Zero-to-

many

validTime The time period during which the

result may be used.

TM_Period (ISO 8601

Time Interval string)

Zero-to-one

parameters Key-value pairs showing the

environmental conditions during

measurement.

NamedValues in a JSON

Array

Zero-to-one

16 Rec. ITU-T Y.4473 (08/2020)

Table 18 – Direct relations between an Observation entity and other entity types

Entity type Relation Description

Datastream Many optional to

one mandatory

A Datastream can have zero-to-many Observations. One

Observation SHALL occur in one-and-only-one Datastream.

FeatureOfInterest Many optional to

one mandatory

An Observation observes on one-and-only-one

FeatureOfInterest. One FeatureOfInterest could be observed

by zero-to-many Observations.

Example 7 – An Observation entity example. The following example shows an Observation whose

Datastream has an ObservationType of OM_Measurement. A result's data type is defined by the

observationType.

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/Observations(1)",

 "FeatureOfInterest@iot.navigationLink": "Observations(1)/FeatureOfInterest",

 "Datastream@iot.navigationLink": "Observations(1)/Datastream",

 "phenomenonTime": "2014-12-31T11:59:59.00+08:00",

 "resultTime": "2014-12-31T11:59:59.00+08:00",

 "result": 70.4

}

6.2.8 FeatureOfInterest

An Observation results in a value being assigned to a phenomenon. The phenomenon is a property of

a feature, the latter being the FeatureOfInterest of the Observation [OGC/ISO 19156]. In the context

of the Internet of things, many Observations' FeatureOfInterest can be the Location of the Thing. For

example, the FeatureOfInterest of a WiFi-connected thermostat can be the Location of the thermostat

(i.e., the living room where the thermostat is located). In the case of remote sensing, the

FeatureOfInterest can be the geographical area or volume that is being sensed. Table 19 lists

properties of a FeatureOfInterest entity and Table 20 lists direct relations between a FeatureOfInterest

entity and other entity types.

Table 19 – Properties of a FeatureOfInterest entity

Name Definition Data type Multiplicity

and use

name A property provides a label for FeatureOfInterest

entity, commonly a descriptive name.

CharacterString One

(mandatory)

description The description about the FeatureOfInterest. CharacterString One

(mandatory)

 Rec. ITU-T Y.4473 (08/2020) 17

Name Definition Data type Multiplicity

and use

encodingType The encoding type of the feature property.

Its value is one of the ValueCode enumeration

(for the available ValueCode).

ValueCode One

(mandatory)

feature The detailed description of the feature. The data

type is defined by encodingType.

Any One

(mandatory)

Table 20 – Direct relation between a FeatureOfInterest entity and other entity types

Entity type Relation Description

Observation One mandatory to

many optional

An Observation observes on one-and-only-one FeatureOfInterest.

One FeatureOfInterest could be observed by zero-to-many

Observations.

Example 8 – An example of a FeatureOfInterest entity

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/FeaturesOfInterest(1)",

 "Observations@iot.navigationLink": "FeaturesOfInterest(1)/Observations",

 "name": "Weather Station YYC.",

 "description": "This is a weather station located at the Calgary Airport.",

 "encodingType": "application/vnd.geo+json",

 "feature": {

 "type": "Feature",

 "geometry": {

 "type": "Point",

 "coordinates": [

 -114.06,

 51.05

]

 }

 }

}

7 SensorThings service interface

A SensorThings API service exposes service document resources that describe its data model. The

service document lists the entity sets that can be create, read, update and delete (CRUD).

SensorThings API clients can use the service document to navigate the available entities in a

hypermedia-driven fashion.

18 Rec. ITU-T Y.4473 (08/2020)

7.1 Common control information

The SensorThings API service groups the same types of entities into entity sets. Each entity has a

unique identifier and one-to-many properties. Also, in the case of an entity holding a relationship with

entities in other entity sets, this type of relationship is expressed with navigation properties (i.e.,

navigationLink and associationLink).

Therefore, in order to perform CRUD actions on the resources, the first step is to address to the target

resource(s) through URI. There are three major URI components used here, namely (1) the service

root URI, (2) the resource path, and (3) the query options. In addition, the service root URI consists

of two parts: (1) the location of the SensorThings service and (2) the version number. The version

number follows the format indicated below:

 "v"majorversionnumber + "." + minorversionnumber

Example 9 – Complete URI example

 http://example.org/v1.0/Observations?$orderby=ID&$top=10

 _______________________/___________/___________________/

 | | |

 service root URI resource path query options

By attaching the resource path after the service root URI, clients can address to different types of

resources such as an entity set, an entity, a property, or a navigation property. Finally, clients can

apply query options after the resource path to further process the addressed resources, such as sorting

by properties or filtering with criteria.

7.2 Resource path

The resource path comes right after the service root URI and can be used to address to different

resources. Clauses 7.2.1 to 7.2.8 list the usages of the resource path.

7.2.1 Usage 1: No resource path

URI Pattern: SERVICE_ROOT_URI

Response: A JSON object with a property named value. The value of the property SHALL be a JSON

array containing one element for each entity set of the SensorThings Service.

Each element SHALL be a JSON object with at least two name/value pairs, one with name name

containing the name of the entity set (e.g., Things, Locations, Datastreams, Observations,

ObservedProperties and Sensors) and one with name url containing the URL of the entity set, which

may be an absolute or a relative URL [OASIS OData JSON].

Example 10 – A SensorThings request with no resource path

Example request:

http://example.org/v1.0/

Example response:

{

 "value": [

 {

 "name": "Things",

 "url": "http://example.org/v1.0/Things"

 },

 {

 Rec. ITU-T Y.4473 (08/2020) 19

 "name": "Locations",

 "url": " http://example.org/v1.0/Locations"

 },

 {

 "name": "Datastreams",

 "url": " http://example.org/v1.0/Datastreams"

 },

 {

 "name": "Sensors",

 "url": " http://example.org/v1.0/Sensors"

 },

 {

 "name": "Observations",

 "url": " http://example.org/v1.0/Observations"

 },

 {

 "name": "ObservedProperties",

 "url": "\n http://example.org/v1.0/ObservedProperties"

 },

 {

 "name": "FeaturesOfInterest",

 "url": "\n http://example.org/v1.0/FeaturesOfInterest"

 }

]

}

7.2.2 Usage 2: Address to a collection of entities

To address to an entity set, users can simply put the entity set name after the service root URI. The

service returns a JSON object with a property of value. The value of the property SHALL be a list of

the entities in the specified entity set.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME

Response: A list of all entities (with all the properties) in the specified entity set when there is no

service-driven pagination imposed. The response is represented as a JSON object containing a

name/value pair named value. The value of the value name/value pair is a JSON array where each

element is representation of an entity or a representation of an entity reference. An empty collection

is represented as an empty JSON array.

The count annotation represents the number of entities in the collection. If present, it comes before

the value name/value pair.

When there is service-driven pagination imposed, the nextLink annotation is included in a response

that represents a partial result [OASIS OData JSON].

Example 11 – An example to address an entity set

Example request:

20 Rec. ITU-T Y.4473 (08/2020)

http://example.org/v1.0/ObservedProperties

Example response:

{

 "@iot.count": 84,

 "value": [

 {

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/ObservedProperties(1)",

 "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams",

 "description": "The dew point is the temperature at\n which the water vapor in air at constant barometric pressure condenses into\n

liquid water at the same rate at which it evaporates.",

 "name": "DewPoint Temperature",

 "definition": "http://dbpedia.org/page/Dew_point"

 },

 {

 "@iot.id ": 2,

 "@iot.selfLink": "http://example.org/v1.0/ObservedProperties(2)",

 "Datastreams@iot.navigationLink": "ObservedProperties(2)/Datastreams",

 "description": "Relative humidity is the ratio of the\n partial pressure of water vapor in an air-water mixture to the saturated\n

vapor pressure of water at a prescribed temperature.",

 "name": "Relative Humidity",

 "definition": "http://dbpedia.org/page/Relative_humidity"

 }

],

 "@iot.nextLink": "http://example.org/v1.0/ObservedProperties?$top=5&$skip=5"

}

7.2.3 Usage 3: Address to an entity in a collection

Users can address a specific entity in an entity set by place the unique identifier of the entity between

brace symbol "()" and put after the entity set name. The service then returns the entity with all its

properties.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)

Response: A JSON object of the entity (with all its properties) that holds the specified id in the entity

set.

Example 12 – An example request that addresses to an entity in a collection

Example request:

http://example.org/v1.0/Things(1)

7.2.4 Usage 4: Address to a property of an entity

Users can address to a property of an entity by specifying the property name after the URI addressing

to the entity. The service then returns the value of the specified property. If the property has a complex

type value, properties of that value can be addressed by further property name composition.

If the property is single-valued and has the null value, the service SHALL respond with 204 No

Content. If the property is not available, for example due to permissions, the service SHALL respond

with 404 Not Found [OASIS OData Part1].

URI Pattern:

SERVICE_ROOT_URI/RESOURCE_PATH_TO_AN_ENTITY/PROPERTY_NAME

Response: The specified property of an entity that holds the id in the entity set.

Example 13 – An example to address to a property of an entity

 Rec. ITU-T Y.4473 (08/2020) 21

Example request:
http://example.org/v1.0/Observations(1)/resultTime

Example response:

{

 "resultTime":

 "2010-12-23T10:20:00-07:00"

}

7.2.5 Usage 5: Address to the value of an entity's property

To address the raw value of a primitive property, clients append a path segment containing the string

$value to the property URL.

The default format for TM_Object types is text/plain using the ISO 8601 format, such as 2014-03-

01T13:00:00Z/2015-05-11T15:30:00Z for TM_Period and 2014-03-01T13:00:00Z for TM_Instant.

URI Pattern:

SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/PROPERTY_NAME/$val

ue

Response: The raw value of the specified property of an entity that holds the id in the entity set.

Example 14 – An example of addressing to the value of an entity's property

Example:
http://example.org/v1.0/Observations(1)/resultTime/$value

Example response:
 2015-01-12T23:00:13-07:00

7.2.6 Usage 6: Address to a navigation property (navigationLink)

As the entities in different entity sets may hold some relationships, users can request the linked entities

by addressing to a navigation property of an entity. The service then returns one or many entities that

hold a certain relationship with the specified entity.

URI Pattern:

SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/LINK_NAME

Response: A JSON object of one entity or a JSON array of many entities that holds a certain

relationship with the specified entity.

Example 15 – An example request addressing to a navigational property

Example:
http://example.org/v1.0/Datastreams(1)/Observations

Returns all the Observations in the Datastream that holds the id 1.

7.2.7 Usage 7: Address to an associationLink

As the entities in different entity sets may hold some relationships, users can request the linked

entities' selfLinks by addressing to an association link of an entity. An associationLink can be used

to retrieve a reference to an entity or an entity set related to the current entity. Only the selfLinks of

related entities are returned when resolving associationLinks.

URI Pattern:

SERVICE_ROOT_URI/ENTITY_SET_NAME(KEY_OF_THE_ENTITY)/LINK_NAME/$ref

22 Rec. ITU-T Y.4473 (08/2020)

Response: A JSON object with a value property. The value of the value property is a JSON array

containing one element for each associationLink. Each element is a JSON object with a name/value

pair. The name is url and the value is the selfLinks of the related entities.

Example 16 – An example of addressing to an association link

Example request:
http://example.org/v1.0/Datastreams(1)/Observations/$ref

Returns all the selfLinks of the Observations of Datastream(1).

Example response:
 {

 "value": [

 {

 "@iot.selfLinks":

 "http://example.org/v1.0/Observations(1)"

 },

 {

 "@iot.selfLinks":

 "http://example.org/v1.0/Observations(2)"

 }

]

 }

7.2.8 Usage 8: Nested resource path

As users can use navigation properties to link from one entity set to another, users can further extend

the resource path with unique identifiers, properties, or links (i.e., Usage 3, 4 and 6).

Example 17 – Examples of nested resource path

Example request 1:
http://example.org/v1.0/Datastreams(1)/Observations(1)

Returns a specific Observation entity in the Datastream.

Example request 2:
http://example.org/v1.0/Datastreams(1)/Observations(1)/resultTime

Returns the resultTime property of the specified Observation in the Datastream.

Example Request 3:
http://example.org/v1.0/Datastreams(1)/Observations(1)/FeatureOfInterest

Returns the FeatureOfInterest entity of the specified Observation in the Datastream.

7.3 Requesting data

Clients issue HTTP GET requests to SensorThings API services for data. The resource path of the

URL specifies the target of the request. Additional query operators can be specified through query

options that are presented in the following way. The query operators are prefixed with a dollar ($)

character and specified as key-value pairs after the question symbol (?) in the request URI. Many of

the SensorThings API's query options are adapted from OData's query options. OData developers

should be able to pick up SensorThings API query options very quickly.

7.3.1 Evaluating system query options

The SensorThings API adapts many of OData's system query options and their usage. These query

options allow refining the request.

The result of the service request is as if the system query options were evaluated in the following

order.

Prior to applying any server-driven pagination:

 Rec. ITU-T Y.4473 (08/2020) 23

• $filter

• $count

• $orderby

• $skip

• $top

After applying any server-driven pagination:

• $expand

• $select

7.3.2 Specifying properties to return

The $select and $expand system query options enable the client to specify the set of properties to be

included in a response.

7.3.2.1 $expand

Example 18 – Examples of $expand query option

Example request 1:
http://example.org/v1.0/Things?$expand=Datastreams

Returns the entity set of Things as well as each of the Datastreams associated with each Thing entity.

Example request 1 response:
 {

 "values":[

 {

 "@iot.id": 1,

 "@iot.selfLink":"http://example.org/v1.0/Things(1)",

 "Locations@iot.navigationLink":"Things(1)/Locations",

 "Datastreams@iot.count":1,

 "Datastreams": [

 {

 "@iot.id":1,

 "@iot.selfLink":"http://example.org/v1.0/Datastreams(1)",

 "name": "oven temperature",

 "description": "This is a datastream measuring the air temperature in an oven.",

 "unitOfMeasurement": {

 "name": "degree Celsius",

 "symbol": "°C",

 "definition":"http://unitsofmeasure.org/ucum.html#para-30"

 },

 "observationType":"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

 "observedArea": {

 "type":"Polygon",

 "coordinates": [[[100,0],[101,0],[101,1],[100,1],[100,0]]]

 },

 "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",

 "resultTime":"2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"

 }

],

 "HistoricalLocations@iot.navigationLink":"Things(1)/HistoricalLocations",

 "description": "This thing is a convection oven.",

 "name": "Oven",

 "properties": {

 "owner": "John Doe",

 "color": "Silver"

 }

 }

]

 }

Example request 2:

24 Rec. ITU-T Y.4473 (08/2020)

http://example.org/v1.0/Things?$expand=Datastreams/ObservedProperty

Returns the collection of Things, the Datastreams associated with each Thing, and the

ObservedProperty associated with each Datastream.

Example request 3:
http://example.org/v1.0/Datastreams(1)?$expand=Observations,ObservedProperty

Returns the Datastream whose id is 1 as well as the Observations and ObservedProperty associated

with this Datastream.

Query options can be applied to the expanded navigation property by appending a semicolon-

separated list of query options, enclosed in parentheses, to the navigation property name. Allowed

system query options are $filter, $select, $orderby, $skip, $top, $count, and $expand [OASIS OData

Part2].

Example request 4:
http://example.org/v1.0/Datastreams(1)?$expand=Observations($filter=result eq 1)

Returns the Datastream whose id is 1 as well as its Observations with a result equal to 1.

7.3.2.2 $select

Example 19 – Examples of $select query option

Example request 1:
http://example.org/v1.0/Observations?$select=result,resultTime

Returns only the result and resultTime properties for each Observation entity.

Example request 2:
http://example.org/v1.0/Datastreams(1)?$select=id,Observations&$expand=Observations/FeatureOfInterest

Returns the id property of the Datastream entity, and all the properties of the entity identified by the

Observations and FeatureOfInterest navigation properties.

Example request 3:
http://example.org/v1.0/Datastreams(1)?$expand=Observations($select=result)

Returns the Datastream whose id is 1 as well as the result property of the entity identified by the

Observations navigation property.

7.3.3 Query entity sets

7.3.3.1 $orderby

Example 20 – Examples of $orderby query option

Example request 1:
http://example.org/v1.0/Observations?$orderby=result

Returns all Observations ordered by the result property in ascending order.

Example request 2:
http://example.org/v1.0/Observations?$expand=Datastream&$orderby=Datastreams/id desc, phenomenonTime

Returns all Observations ordered by the id property of the linked Datastream entry in descending

order, then by the phenomenonTime property of Observations in ascending order.

7.3.3.2 $top

Example 21 – Examples of $top query option

Example request 1:
http://example.org/v1.0/Things?$top=5

 Rec. ITU-T Y.4473 (08/2020) 25

Returns only the first five entities in the Things collection.

Example request 2:
http://example.org/v1.0/Observations?$top=5&$orderby=phenomenonTime%20desc

Returns the first five Observation entries after sorted by the phenomenonTime property in descending

order.

7.3.3.3 $skip

Example 22 – Examples of $skip query option

Example request 1:
http://example.org/v1.0/Things?$skip=5

Returns Thing entities starting with the sixth Thing entity in the Things collection.

Example request 2:
http://example.org/v1.0/Observations?$skip=2&$top=2&$orderby=resultTime

Returns the third and fourth Observation entities from the collection of all Observation entities when

the collection is sorted by the resultTime property in ascending order.

7.3.3.4 $count

Example 23 – Examples of $count query option

Example request 1:
http://example.org/v1.0/Things?$count=true

Return, along with the results, the total number of Things in the collection.

Example response:
 {

 "@iot.count":2,

 "value": [

 {…},

 {…}

]

 }

7.3.3.5 $filter

Example 24 – Examples of $filter query option

Example request 1:
http://example.org/v1.0/Observations?$filter=result lt 10.00

Returns all Observations whose result is less than 10.00.

In addition, clients can choose to use the properties of linked entities in the $filter predicate. The

following are examples of the possible uses of the $filter in the data model of the SensorThings

service.

Example request 2:
http://example.org/v1.0/Observations?$filter=Datastream/id eq '1'

Returns all Observations whose Datastream's id is 1.

Example request 3:
http://example.org/v1.0/Things?$filter=geo.distance(Locations/location, geography'POINT(−122, 43)') gt 1

Returns Things that the distance between their last known locations and POINT(−122, 43) is greater

than 1.

Example request 4:

26 Rec. ITU-T Y.4473 (08/2020)

http://example.org/v1.0/Things?$expand=

Datastreams/Observations/FeatureOfInterest&$filter=Datastreams/Observations/FeatureOfInterest/id eq 'FOI_1' and

Datastreams/Observations/resultTime ge 2010-06-01T00:00:00Z and Datastreams/Observations/resultTime le 2010-07-01T00:00:00Z

Returns Things that have any observations of a feature of interest with a unique identifier equals to

'FOI_1' in June 2010.

7.3.3.5.1 Built-in filter operators

The SensorThings API supports a set of built-in filter operators, as described in Table 21. These built-

in filter operator usages and definitions follow the [OASIS OData Part1] and [OASIS OData ABNF].

Table 21 – Built-in filter operators

Operator Description Example

Comparison operators

eq Equal /ObservedProperties?$filter=unitOfMeasurement/name eq 'degree

Celsius'

ne Not equal /ObservedProperties?$filter=unitOfMeasurement/name ne 'degree

Celsius'

gt Greater than /Observations?$filter=result gt 20.0

ge Greater than or

equal

/Observations?$filter=result ge 20.0

lt Less than /Observations?$filter=result lt 100

le Less than or equal /Observations?$filter=result le 100

Logical operators

and Logical and /Observations?$filter=result le 3.5 and FeatureOfInterest/id eq '1'

or Logical or /Observations?$filter=result gt 20 or result le 3.5

not Logical negation /Things?$filter=not startswith(description,'test')

Arithmetic operators

add Addition /Observations?$filter=result add 5 gt 10

sub Subtraction /Observations?$filter=result sub 5 gt 10

mul Multiplication /Observations?$filter=result mul 2 gt 2000

div Division /Observations?$filter=result div 2 gt 4

 Rec. ITU-T Y.4473 (08/2020) 27

Table 21 – Built-in filter operators

Operator Description Example

mod Modulo /Observations?$filter=result mod 2 eq 0

Grouping operators

() Precedence

grouping

/Observations?$filter=(result sub 5) gt 10

7.3.3.5.2 Built-in query functions

The SensorThings API supports spatial relationship functions, the SensorThings API defines nine

additional geospatial functions based on the spatial relationship between two geometry objects. The

spatial relationship functions are defined in the OGC simple feature access specification

[OASIS oData Part1]. The names of these nine functions start with a prefix "st" following the OGC

simple feature access specification [OASIS oData Part1]. In addition, the well-known text (WKT)

format is the default input geometry for these nine functions. Table 22 lists built-in query functions

which include spatial relationship functions and other related functions.

Table 22 – Built-in query functions

Function Example

String functions

bool substringof(string p0,

string p1)

substringof('Sensor Things',description)

bool endswith(string p0, string

p1)

endswith(description,'Things')

bool startswith(string p0, string

p1)

startswith(description,'Sensor')

int length(string p0) length(description) eq 13

int indexof(string p0, string p1) indexof(description,'Sensor') eq 1

string substring(string p0, int

p1)

substring(description,1) eq 'sensor Things'

string tolower(string p0) tolower(description) eq 'sensor things'

string toupper(string p0) toupper(description) eq 'SENSOR THINGS'

28 Rec. ITU-T Y.4473 (08/2020)

Table 22 – Built-in query functions

Function Example

string trim(string p0) trim(description) eq 'Sensor Things'

string concat(string p0, string

p1)

concat(concat(unitOfMeasurement/symbol,', '),

unitOfMeasurement/name) eq 'degree, Celsius'

Date functions

int year year(resultTime) eq 2015

int month month(resultTime) eq 12

int day day(resultTime) eq 8

int hour hour(resultTime) eq 1

int minute minute(resultTime) eq 0

int second second(resultTime) eq 0

int fractionalseconds second(resultTime) eq 0

int date date(resultTime) ne date(validTime)

time time(resultTime) le validTime

int totaloffsetminutes totaloffsetminutes(resultTime) eq 60

now resultTime ge now()

mindatetime resultTime eq mindatetime()

maxdatetime resultTime eq maxdatetime()

Math functions

round round(result) eq 32

floor floor(result) eq 32

 Rec. ITU-T Y.4473 (08/2020) 29

Table 22 – Built-in query functions

Function Example

ceiling ceiling(result) eq 33

Geospatial functions

double geo.distance(Point p0,

Point p1)

geo.distance(location, geography'POINT (30 10) ')

double geo.length(LineString

p0)

geo.length(geography'LINESTRING (30 10, 10 30, 40 40) ')

bool geo.intersects(Point p0,

Polygon p1)

geo.intersects(location, geography'POLYGON ((30 10, 10 20, 20 40,

40 40, 30 10))')

Spatial relationship functions

bool st_equals st_equals(location, geography'POINT (30 10)')

bool st_disjoint st_disjoint(location, geography'POLYGON ((30 10, 10 20, 20 40, 40

40, 30 10))')

bool st_touches st_touches(location, geography'LINESTRING (30 10, 10 30, 40 40)')

bool st_within st_within(location, geography'POLYGON ((30 10, 10 20, 20 40, 40

40, 30 10))')

bool st_overlaps st_overlaps(location, geography'POLYGON ((30 10, 10 20, 20 40, 40

40, 30 10))')

bool st_crosses st_crosses(location, geography'LINESTRING (30 10, 10 30, 40 40)')

bool st_intersects st_intersects(location, geography'LINESTRING (30 10, 10 30, 40 40)')

bool st_contains st_contains(location, geography'POINT (30 10)')

bool st_relate st_relate(location, geography'POLYGON ((30 10, 10 20, 20 40, 40 40,

30 10))', 'T********')

7.3.3.6 Server-driven paging

Example 25:

30 Rec. ITU-T Y.4473 (08/2020)

http://example.org/v1.0/Things

Returns a subset of the Thing entities of requested collection of Things. The nextLink contains a link

allowing retrieving the next partial set of items.

Example response:
 {

 "value": [

 {…},

 {…}

],

 "@iot.nextLink":

 "http://examples.org/v1.0/Things?$top=100&$skip=100"

 }

8 SensorThings sensing create-update-delete

8.1 Overview

As many IoT devices are resource-constrained, the SensorThings API adopts the efficient REST web

service style. That means the create, update and delete actions can be performed on the SensorThings

entity types. Clauses 8.2 to 8.4 respectively explain the Create, Update and Delete protocol.

8.2 Create an entity

Table 23 lists integrity constraints when creating an entity.

Table 23 – Integrity constraints when creating an entity

Scenario Integrity constraints

Create a Thing entity –

Create a Location entity –

Create a Datastream entity SHALL link to a Thing entity.

SHALL link to a Sensor entity

SHALL link to an ObservedProperty entity.

Create a Sensor entity –

Create an ObservedProperty entity –

Create an Observation entity SHALL link to a Datastream entity.

SHALL link to a FeatureOfInterest entity. If no link specified,

the service SHALL create a FeatureOfInterest entity from the

content of the Location entities.

Create a FeatureOfInterest entity –

 Rec. ITU-T Y.4473 (08/2020) 31

8.2.1 Request

HTTP Method: POST

URI Pattern:SERVICE_ROOT_URI/COLLECTION_NAME

Header: Content-Type: application/json

Message Body: A single valid entity representation for the specified collection.

Example 26:

 POST /v1.0/Things HTTP/1.1

 Host: example.org/

 Content-Type: application/json

 {

 "name":

 "thermostat",

 "description":"This is a smart thermostat with WiFi communication capabilities."

 }

8.2.1.1 Link to existing entities when creating an entity

Example 27 – Create an Observation entity, which links to an existing Sensor entity (whose id is 1),

an existing FeatureOfInterest entity (whose id is 2).

POST /v1.0/Observations HTTP/1.1

Host: example.org

Content-Type: application/json

{

 "Datastream":

 {

 "@iot.id":1

 },

 "phenomenonTime": "2013-04-18T16:15:00-07:00",

 "result": 124,

 "FeatureOfInterest":

 {

 "@iot.id": 2

 }

}

8.2.1.2 Create related entities when creating an entity

Example 28 – Create a Thing while creating two related Sensors and one related Observation (which

links to an existing FeatureOfInterest entity and an existing ObservedProperty entity).

 POST /v1.0/Things HTTP1.1

 Host: example.org

 Content-Type: application/json

 {

 "description":

 "This an oven with a temperature datastream.",

 "name": "oven",

 "Locations": [

 {

 "name": "CCIT",

 "description":

 "Calgary Centre for Innovative Technologies",

 "encodingType": "application/vnd.geo+json",

 "location": {

 "type":

 "Feature",

 "geometry": {

 "type":

 "Point",

 "coordinates": [10,10]

32 Rec. ITU-T Y.4473 (08/2020)

 }

 }

 }

],

 "Datastreams": [

 {

 "name": "oven temperature",

 "description":

 "This is a datastream for an oven's internal temperature.",

 "unitOfMeasurement": {

 "name":"degree Celsius",

 "symbol":"°C",

 "definition":"http://unitsofmeasure.org/ucum.html#para-30"

 },

 "observationType":"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

 "observedArea":

 {

 "type":

 "Polygon",

 "coordinates": [[[100,0], [101,0], [101,1], [100,1], [100,0]]]

 },

 "phenomenonTime": "2009-01-11T16:22:25.00Z/2011-08-21T08:32:10.00Z",

 "Observations":

 [

 {

 "phenomenonTime": "2012-06-26T03:42:02-0600",

 "result":70.4,

 "FeatureOfInterest": {

 "name": "CCIT #361",

 "description": "This CCIT #361, Noah's dad's office",

 "encodingType": "application/vnd.geo+json",

 "feature":{

 "type":

 "Feature",

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [[100,50], [10,9], [23,4],

 [100,50]], [[30,20], [10,4], [4,22], [30,20]]

]

 }}}}

],

 "ObservedProperty": {

 "name":"DewPoint Temperature",

 "definition":"http://sweet.jpl.nasa.gov/ontology/property.owl#DewPointTemperature",

 "description":

 "The dewpoint temperature is the temperature to which the air must be

 cooled, at constant pressure, for dew to form. As the grass and other objects

 near the ground cool to the dewpoint, some of the water vapor in the

 atmosphere condenses into liquid water on the objects."

 },

 "Sensor": {

 "name": "DS18B20",

 "description":"DS18B20 is an air temperature sensor…",

 "encodingType":"application/pdf",

 "metadata":"http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf"

 }

 }

]

 }

8.2.2 Response

Upon successfully creating an entity, the service response SHALL contain a Location header that

contains the URL of the created entity. Upon successful completion the service SHALL respond with

201 Created. Regarding all the HTTP status code, refer to the HTTP Status Codes (section 10 of

[IETF RFC 2616]).

 Rec. ITU-T Y.4473 (08/2020) 33

8.3 Update an entity

8.3.1 Request

In SensorThings PATCH is the preferred means of updating an entity. PATCH provides more

resiliency between clients and services by directly modifying only those values specified by the client.

The semantics of PATCH, as defined in [IETF RFC 5789], are to merge the content in the request

payload with the entity's current state, applying the update only to those components specified in the

request body. The properties provided in the payload corresponding to updatable properties SHALL

replace the value of the corresponding property in the entity. Missing properties of the containing

entity or complex property SHALL NOT be directly altered.

Services MAY additionally support PUT, but should be aware of the potential for data-loss in round-

tripping properties that the client may not know about in advance, such as open or added properties,

or properties not specified in metadata. Services that support PUT SHALL replace all values of

structural properties with those specified in the request body. Omitting a non-nullable property with

no service-generated or default value from a PUT request results in a 400 Bad Request error.

Key and other non-updatable properties that are not tied to key properties of the principal entity, can

be omitted from the request. If the request contains a value for one of these properties, the service

SHALL ignore that value when applying the update.

The service ignores entity id in the payload when applying the update.

The entity SHALL NOT contain related entities as inline content. It MAY contain binding

information for navigation properties. For single-valued navigation properties this replaces the

relationship. For collection-valued navigation properties this adds to the relationship.

On success, the response SHALL be a valid success response.

Services MAY additionally support JSON PATCH format [IETF RFC 6902] to express a sequence

of operations to apply to a SensorThings entity. [OASIS OData Part1]

HTTP Method: PATCH or PUT

URI Pattern: An URI addressing to a single entity.

Header: Content-Type: application/json

Message Body: A single entity representation including a subset of properties for the specified

collection.

Example 29 – Update the Thing whose id is 1.

 PATCH /v1.0/Things(1) HTTP1.1

 Host: example.org

 Content-Type: application/json

 {

 "description":"This thing is an oven."

 }

8.3.2 Response

On success, the response SHALL be a valid success response. In addition, when the client sends an

update request to a valid URL where an entity does not exist, the service SHALL fail the request.

Upon successful completion, the service must respond with 200 OK or 204 No Content. Regarding

all the HTTP status code, please refer to the HTTP Status Code section.

34 Rec. ITU-T Y.4473 (08/2020)

8.4 Delete an entity

8.4.1 Request

A successful DELETE request to an entity's edit URL deletes the entity. The request body SHOULD

be empty.

Services SHALL implicitly remove relations to and from an entity when deleting it; clients need not

delete the relations explicitly.

Services MAY implicitly delete or modify related entities if required by integrity constraints.

Table 24 lists SensorThings API's integrity constraints when deleting an entity.

HTTP Method: DELETE

URI Pattern: An URI addressing to a single entity.

Example 30 – Delete the Thing with unique identifier equals to 1

 DELETE http://example.org/v1.0/Things(1)

Table 24 – Integrity constraints when deleting an entity

Scenario Integrity constraints

Delete a Thing entity Delete all the Datastream entities linked to the Thing entity.

Delete a Location entity Delete all the HistoricalLocation entities linked to the Location entity

Delete a Datastream entity Delete all the Observation entities linked to the Datastream entity.

Delete a Sensor entity Delete all the Datastream entities linked to the Sensor entity.

Delete

an ObservedProperty entity

Delete all the Datastream entities linked to the ObservedProperty

entity.

Delete an Observation entity –

Delete

a FeatureOfInterest entity

Delete all the Observation entities linked to the FeatureOfInterest

entity.

Delete a HistoricalLocation

entity entity.

–

9 Batch requests

9.1 Introduction

The SensorThings service interface provides interfaces for users to perform CRUD actions on

resources through different HTTP methods. However, as many IoT devices are resource-constrained,

handling a large number of communications may not be practical. This clause describes how a

SensorThings service can support executing multiple operations sent in a single HTTP request

through the use of batch processing. This section covers both how batch operations are represented

and processed. SensorThings batch request extension is adapted from [OGC OData Part1] and all

 Rec. ITU-T Y.4473 (08/2020) 35

subsections. The only difference is that the OData-Version header SHOULD be omitted in

SensorThings. Readers are encouraged to read the OData specification section 11.7 before reading

the examples below.

9.2 Batch-processing request

A batch request is represented as a Multipart MIME v1.0 message [IETF RFC 2046], a standard

format allowing the representation of multiple parts, each of which may have a different content type,

within a single request.

The example below shows a GUID as a boundary and example.org/v1.0/ for the URI of the service.

Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service,

located at the URL $batch relative to the service root (e.g., example.org/v1.0/$batch).

NOTE – In the example, request bodies are excluded in favour of English descriptions inside '<>' brackets to

simplify the example.

Example 31-1 – A Batch Request header example
 POST /v1.0/$batch HTTP/1.1

 Host: example.org

 Content-Type:

 multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

 <BATCH_REQUEST_BODY>

NOTE – The batch request boundary must be quoted if it contains any of the following special characters:
 () < > @

 , ; : / " [] ? =

9.2.1 Batch Request body example

The following example shows a Batch Request that contains the following operations in the order

listed

• A query request

• Change Set that contains the following requests:

− Insert entity (with Content-ID = 1)

− Update request (with Content-ID = 2)

• A second query request

NOTE – For brevity, in the example, request bodies are excluded in favour of English descriptions

inside <> brackets.

Note also that the two empty lines after the Host header of the GET request are necessary: the first is

part of the GET request header; the second is the empty body of the GET request, followed by a

CRLF ('\r\n') according to [IETF RFC 2046].

Example 31-2 – A Batch Request body example

 POST /v1.0/$batch HTTP/1.1

 Host: host

 Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

 Content-Length: ###

 --batch_36522ad7-fc75-4b56-8c71-56071383e77b

 Content-Type: application/http

 Content-Transfer-Encoding:binary

 GET /v1.0/Things(1)

 Host: host

 --batch_36522ad7-fc75-4b56-8c71-56071383e77b

 Content-Type:

 multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

36 Rec. ITU-T Y.4473 (08/2020)

 --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

 Content-ID: 1

 POST /v1.0/Things HTTP/1.1

 Host: host

 Content-Type: application/json

 Content-Length: ###

 <JSON representation of a

 new Thing>

 --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

 Content-Type: application/http

 Content-Transfer-Encoding:binary

 Content-ID: 2

 PATCH /v1.0/Things(1) HTTP/1.1

 Host: host

 Content-Type: application/json

 If-Match: xxxxx

 Content-Length: ###

 <JSON representation of

 Things(1)>

 --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

 --batch_36522ad7-fc75-4b56-8c71-56071383e77b

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

 GET /v1.0/Things(3) HTTP/1.1

 Host: host

 --batch_36522ad7-fc75-4b56-8c71-56071383e77b--

9.2.2 Referencing new entities in a change set example

Example 31-3: A Batch Request that contains the following operations in the order listed:

A change set that contains the following requests:

1) Insert a new Datastream entity (with Content-ID = 1)

2) Insert a second new entity, a Sensor entity in this example (reference request with Content-

ID = 1)
 POST

 /v1.0/$batch HTTP/1.1

 Host: host

 Content-Type:

 multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

 --batch_36522ad7-fc75-4b56-8c71-56071383e77b

 Content-Type:

 multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

 --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

 Content-Type:

 Rec. ITU-T Y.4473 (08/2020) 37

 application/http

 Content-Transfer-Encoding:

 binary

 Content-ID:

 1

 POST

 /v1.0/Datastreams HTTP/1.1

 Host:

 host

 Content-Type:

 application/json

 Content-Length:

 ###

 <JSON

 representation of a new Datastream>

 --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

 Content-Type:

 application/http

 Content-Transfer-Encoding:

 binary

 Content-ID:

 2

 POST

 /v1.0/Sensor HTTP/1.1

 Host:

 host

 Content-Type:

 application/json

 Content-Length:

 ###

 <JSON

 representation of a new Sensor>

 --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

 --batch_36522ad7-fc75-4b56-8c71-56071383e77b--

9.3 Batch-processing response

Example 31-4 – Referencing the batch request example 31-2 above, assume all the requests except

the final query request succeed. In this case the response would be:
 HTTP/1.1

 200 Ok

 Content-Length:

 ####

 Content-Type:

 multipart/mixed;boundary=b_243234_25424_ef_892u748

 --b_243234_25424_ef_892u748

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

 HTTP/1.1

 200 Ok

 Content-Type:

 application/json

 Content-Length:

 ###

 <JSON

 representation of the Thing entity with id = 1>

 --b_243234_25424_ef_892u748

 Content-Type:

 multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

 --cs_12u7hdkin252452345eknd_383673037

38 Rec. ITU-T Y.4473 (08/2020)

 Content-Type:

 application/http

 Content-Transfer-Encoding:

 binary

 Content-ID:

 1

 HTTP/1.1

 201 Created

 Content-Type:

 application/json

 Location: http://host/v1.0/Things(99)

 Content-Length:

 ###

 <JSON

 representation of a new Thing entity>

 --cs_12u7hdkin252452345eknd_383673037

 Content-Type:

 application/http

 Content-Transfer-Encoding:

 binary

 Content-ID:

 2

 HTTP/1.1

 204 No Content

 Host:

 host

 --cs_12u7hdkin252452345eknd_383673037--

 --b_243234_25424_ef_892u748

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

 HTTP/1.1

 404 Not Found

 Content-Type:

 application/json

 Content-Length:

 ###

 <Error

 message>

 --b_243234_25424_ef_892u748--

9.4 Asynchronous batch requests

Example 31-5 – Referencing the example 31-2 above again, assume that when interrogating the

monitor URL for the first time only the first request in the batch finished processing and all the

remaining requests except the final query request succeed. In this case the response would be:

 HTTP/1.1

 200 Ok

 Content-Length:

 ####

 Content-Type:

 multipart/mixed;boundary=b_243234_25424_ef_892u748

 --b_243234_25424_ef_892u748

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

 HTTP/1.1

 Rec. ITU-T Y.4473 (08/2020) 39

 200 Ok

 Content-Type:

 application/json

 Content-Length:

 ###

 <JSON

 representation of the Thing entity with id = 1>

 --b_243234_25424_ef_892u748

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

 HTTP/1.1

 202 Accepted

 Location: http://service-root/async-monitor

 Retry-After:

 ###

 --b_243234_25424_ef_892u748--

Client makes a second request using the returned monitor URL:
 HTTP/1.1

 200 Ok

 Content-Length:

 ####

 Content-Type:

 multipart/mixed;boundary=b_243234_25424_ef_892u748

 --b_243234_25424_ef_892u748

 Content-Type:

 multipart/mixed;boundary=cs_12u7hdkin252452345eknd_383673037

 --cs_12u7hdkin252452345eknd_383673037

 Content-Type:

 application/http

 Content-Transfer-Encoding:

 binary

 Content-ID:

 1

 HTTP/1.1

 201 Created

 Content-Type:

 application/json

 Location: http://host/v1.0/Things(99)

 Content-Length:

 ###

 <JSON

 representation of a new Thing entity>

 --cs_12u7hdkin252452345eknd_383673037

 Content-Type:

 application/http

 Content-Transfer-Encoding:

 binary

 Content-ID:

 2

 HTTP/1.1

 204 No Content

 Host:

 host

 --cs_12u7hdkin252452345eknd_383673037--

 --b_243234_25424_ef_892u748

 Content-Type: application/http

 Content-Transfer-Encoding:

 binary

40 Rec. ITU-T Y.4473 (08/2020)

 HTTP/1.1

 404 Not Found

 Content-Type:

 application/json

 Content-Length:

 ###

 <Error

 message>

 --b_243234_25424_ef_892u748—

10 SensorThings MultiDatastream extension

Observation results may have many data types, including primitive types like category or measure,

but also more complex types such as time, location and geometry [OGC/ISO 19156]. SensorThings'

MultiDatastream entity is an extension to handle complex observations when the result is an array.

A MultiDatastream groups a collection of Observations and the Observations in a MultiDatastream

have a complex result type.

The MultiDatastream extension entities are depicted in Figure 2 while Table 25 lists properties of a

MultiDatastream entity.

Figure 2 – MultiDatastream extension entities

 Rec. ITU-T Y.4473 (08/2020) 41

Table 25 – Properties of a MultiDatastream entity

Name Definition Data type Multiplicity and

use

name A property provides a

label for Datastream

entity, commonly a

descriptive name.

CharacterString One (mandatory)

description The description of the

Datastream entity.

CharacterString One (mandatory)

unitOfMeasurements A JSON array of JSON

objects that containing

three key-value pairs.

The name property

presents the full name of

the unitOfMeasurement;

the symbol property

shows the textual form of

the unit symbol; and the

definition contains the

URI defining the

unitOfMeasurement. (see

Req 42 for the

constraints between

unitOfMeasurement,

multiObservationDataTy

pe and result)

A JSON array One (mandatory)

NOTE – It is

possible an

observation does

not have a unit of

measurement. For

example, a count

observation does

not have a unit of

measurement.

observationType The type of Observation

(with unique result type),

which is used by the

service to encode

observations.

ValueCode and its

value SHALL be

OM_ComplexObser

vation.

One (mandatory)

multiObservationDataTypes This property defines the

observationType of each

element of the result of a

complex Observation.

A JSON array of

ValueCode. See

Table 14 for the

available

ValueCodes.

One

(mandatory)

observedArea The spatial bounding box

of the spatial extent of all

FeatureOfInterests that

belong to the

Observations associated

with this

MultiDatastream.

GM_Envelope

(GeoJSON Polygon)

Zero-to-one

42 Rec. ITU-T Y.4473 (08/2020)

Table 25 – Properties of a MultiDatastream entity

Name Definition Data type Multiplicity and

use

phenomenonTime The temporal interval of

the phenomenon times of

all observations

belonging to this

MultiDatastream.

TM_Period (ISO

8601 Time Interval)

Zero-to-one

resultTime The temporal interval of

the result times of all

observations belonging

to this MultiDatastream.

TM_Period (ISO

8601 Time Interval)

Zero-to-one

Table 26 lists direct relations between a MultiDatastream entity and other entity types and Table 27

list direct relations between a MultiDatastream's Observation entity and other entity types.

Table 26 – Direct relation between a MultiDatastream entity and other entity types

Entity type Relation Description

Thing Many optional to

one mandatory

A Thing has zero-to-many MultiDatastream. A

MultiDatastream entity SHALL only link to a Thing as a

collection of Observations.

Sensor Many optional to

one mandatory

The Observations in a MultiDatastream are performed by one-

and-only-one Sensor. One Sensor MAY produce zero-to-many

Observations in different MultiDatastreams.

ObservedProperty Many optional to

many mandatory

The Observations of a MultiDatastream SHALL observe the

same ObservedProperties entity set.

Observation One mandatory

to many optional

A MultiDatastream has zero-to-many Observations. One

Observation SHALL occur in one-and-only-one

MultiDatastream.

 Rec. ITU-T Y.4473 (08/2020) 43

Table 27 – Direct relation between an MultiDatastream's Observation

 entity and other entity types

Entity type Relation Description

MultiDatastream Many optional to

one mandatory

A MultiDatastream can have zero-to-many Observations. One

Observation SHALL occur in one-and-only-one

MultiDatastream.

FeatureOfInterest Many optional to

one mandatory

An Observation observes on one-and-only-one

FeatureOfInterest. One FeatureOfInterest could be observed

by one-to-many Observations.

Example 32 – MultiDatastream entity example 1

 {

 "@iot.id":1,

 "@iot.selfLink":"http://example.org/v1.0/MultiDatastreams(1)",

 "Thing@iot.navigationLink":"MultiDatastreams(1)/Thing",

 "Sensor@iot.navigationLink":"MultiDatastreams(1)/Sensor",

 "ObservedProperty@iot.navigationLink":"MultiDatastreams(1)/ObservedProperties",

 "Observations@iot.navigationLink":"MultiDatastreams/Observations",

 "name": "temperature, RH, visibility",

 "description": "This is a MultiDatastream from a simple weather station measuring air temperature, relative humidity and visibility",

 "observationType":

 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_ComplexObservation",

 "multiObservationDataTypes": [

 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

 "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation"

],

 "unitOfMeasurements": [

 {

 "name": "degree Celsius",

 "symbol": "°C",

 "definition": " http://unitsofmeasure.org/ucum.html#para-30"

 },

 {

 "name": "percent",

 "symbol": "%",

 "definition": " http://unitsofmeasure.org/ucum.html#para-29"

 },

 {

 "name": "null",

 "symbol": "null",

 "definition": "null"

 }

],

 "observedArea": {

 "type": "Polygon",

 "coordinates": [

 [

 [100,0],[101,0],[101,1],[100,1],[100,0]

]

]

 },

 "phenomenonTime":"2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",

 "resultTime":"2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"

}

Example 33 – An example ObservedProperties collection of the above MultiDatastream: Note

that the order of the elements in the value array match the order of the related Observations/result

array as well as the order of the related unitOfMeasurements array.

44 Rec. ITU-T Y.4473 (08/2020)

 {

 "value": [

 {

 "@iot.id": 1,

 "@iot.selfLink":"http://example.org/v1.0/ObservedProperties(1)",

 "Datastreams@iot.navigationLink":

 "ObservedProperties(1)/Datastreams",

 "MultiDatastreams@iot.navigationLink":

 "ObservedProperties(1)/ MultiDatastreams",

 "description":

 "The dew point is the temperature at which the water vapor in a sample

 of air at constant barometric pressure condenses into liquid water at the

 same rate at which it evaporates. At temperatures below the dew point, water

 will leave the air.",

 "name":"Dew point temperature"

 },

 {

 "@iot.id ": 2,

 "@iot.selfLink":"http://example.org/v1.0/ObservedProperties(2)",

 "Datastreams@iot.navigationLink":"ObservedProperties(2)/Datastreams",

 "MultiDatastreams@iot.navigationLink":"ObservedProperties(2)/ MultiDatastreams",

 "description":

 "Relative humidity (abbreviated RH) is the ratio of the partial pressure

 of water vapor to the equilibrium vapor pressure of water at the same

 temperature.",

 "name": "Relative Humidity"

 },

 {

 "@iot.id": 3,

 "@iot.selfLink":"http://example.org/v1.0/ObservedProperties(3)",

 "Datastreams@iot.navigationLink": "ObservedProperties(3)/Datastreams",

 "MultiDatastreams@iot.navigationLink": "ObservedProperties(3)/MultiDatastreams",

 "description":

 "Visibility is a measure of the distance at which an object or light can

 be clearly discerned. ",

 "name":"Visibility (Weather)"

 }

]

 }

Example 34 – An example Observation of the above MultiDatastream

Note that the order of the elements in the result array match

1) the order of the related ObservedProperties (i.e.,

Observation(id)/MultiDatastreams(id)/ObservedProperties),

2) the order of the related unitOfMeasurements array (i.e., Observation(id)/

MultiDatastream(id)/unitOfMeasurements) and

3) the order of the related multiObservationDataTypes (i.e.,

Observation(id)/MultiDatastream(id)/multiObservationDataTypes).

 {

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/v1.0/Observations(1)",

 "FeatureOfInterest@iot.navigationLink":

 "Observations(1)/FeatureOfInterest",

 "MultiDatastream@iot.navigationLink":

 "Observations(1)/MultiDatastream",

 "phenomenonTime": "2014-12-31T11:59:59.00+08:00",

 "resultTime": "2014-12-31T11:59:59.00+08:00",

 "result": [

 25,

 65,

 "clear"

]

 }

 Rec. ITU-T Y.4473 (08/2020) 45

11 SensorThings Data Array Extension

Similar to the SWE DataArray in the OGC SOS, SensorThings API also provides the support of

dataArray (in addition to formatting every observation entity as a JSON object) to aggregate multiple

Observation entities and reduce the request (e.g., POST) and response (e.g., GET) size. SensorThings

mainly use dataArray in two scenarios: (1) get Observation entities in dataArray, and (2) create

Observation entities with dataArray.

11.1 Retrieve a Datastream's Observation entities in dataArray

In SensorThings services, users are able to request for multiple Observation entities and format the

entities in the dataArray format. When a SensorThings service returns a dataArray response, the

service groups Observation entities by Datastream or MultiDatastream, which means the Observation

entities that link to the same Datastream or the same MultiDatastream are aggregated in one

dataArray.

11.1.1 Request

In order to request for dataArray, users must include the query option "$resultFormat=dataArray"

when requesting Observation entities. For example,

http://example.org/v1.0/Observations?$resultFormat=dataArray .

11.1.2 Response

The response Observations in dataArray format contains the properties listed in Table 28.

Table 28 – Properties of getting Observation entities in dataArray

Name Definition Data type Multiplicity and

use

Datastream or MultiDatastream The navigationLink of

the Datastream or the

MultiDatastream entity

used to group

Observation entities in

the dataArray.

navigationLink One (mandatory)

components An ordered array of

Observation property

names whose matched

values are included in

the dataArray.

An ordered

array of

Observation

property names

One (mandatory)

dataArray A JSON Array

containing Observation

entities. Each

Observation entity is

represented by the

ordered property values,

which match with the

ordered property names

in components.

JSON Array One (mandatory)

http://example.org/v1.0/Observations?$resultFormat=dataArray

46 Rec. ITU-T Y.4473 (08/2020)

Example 35 – An example of getting Observation entities from a Datastream in dataArray

result format

 GET /v1.0/Datastreams(1)/Observations?$resultFormat=dataArray

 HTTP/1.1 200 OK

 Host: www.example.org

 Content-Type: application/json

 {

 "value": [

 {

 "Datastream@iot.navigationLink": "Datastreams(1)",

 "components": [

 "id",

 "phenomenonTime",

 "resultTime",

 "result"

],

 "dataArray@iot.count":3,

 "dataArray": [

 [

 1,

 "2005-08-05T12:21:13Z",

 "2005-08-05T12:21:13Z",

 20

],

 [

 2,

 "2005-08-05T12:22:08Z",

 "2005-08-05T12:21:13Z",

 30

],

 [

 3,

 "2005-08-05T12:22:54Z",

 "2005-08-05T12:21:13Z",

 0

]

]

 }

]

 }

Example 36 – An example of getting Observation entities from a MultiDatastream in

dataArray result format

 GET /v1.0/MultiDatastreams(1)/Observations?$resultFormat=dataArray

 HTTP/1.1 200 OK

 Host: www.example.org

 Content-Type: application/json

 {

 "value": [

 {

 "MultiDatastream@iot.navigationLink":

 "MultiDatastreams(1)",

 "components": [

 "id",

 "phenomenonTime",

 "resultTime",

 "result"

],

 "dataArray@iot.count":3,

 "dataArray": [

 [

 1,

 Rec. ITU-T Y.4473 (08/2020) 47

 "2010-12-23T11:20:00-0700",

 "2010-12-23T11:20:00-0700",

 [

 10.2,

 65,

 "clear"

]

],

 [

 2,

 "2010-12-23T11:22:08-0700",

 "2010-12-23T11:20:00-0700",

 [

 11.3,

 63,

 "clear"

]

],

 [

 3,

 "2010-12-23T11:22:54-0700",

 "2010-12-23T11:20:00-0700",

 [

 9.8,

 67,

 "clear"

]

]

]

 }

]

 }

11.2 Create Observation entities with dataArray

Besides creating Observation entities one by one with multiple HTTP POST requests, there is a need

to create multiple Observation entities with a lighter message body in a single HTTP request. In this

case, a sensing system can buffer multiple Observations and send them to a SensorThings service in

one HTTP request. Herein an Action operation CreateObservations is used.

11.2.1 Request

Users can invoke the CreateObservations action by sending a HTTP POST request to the

SERVICE_ROOT_URL/CreateObservations.

For example, http://example.org/v1.0/CreateObservations.

The message body aggregates Observations by Datastreams, which means all the Observations linked

to one Datastream SHALL be aggregated in one JSON object. The parameters of each JSON object

are shown in the following table.

As an Observation links to one FeatureOfInterest, to establish the link between an Observation and a

FeatureOfInterest, users should include the FeatureOfInterest ids in the dataArray. If no

FeatureOfInterest id presented, the FeatureOfInterest will be created based on the Location entities

of the linked Thing entity by default.

Table 29 lists properties of creating Observation entities with dataArray.

48 Rec. ITU-T Y.4473 (08/2020)

Table 29 – Properties of creating Observation entities with dataArray

Name Definition Data type Multiplicity

and use

Datastream The unique identifier of the Datastream linking to the

group of Observation entities in the dataArray.

The unique

identifier of a

Datastream

One

(mandatory)

components An ordered array of Observation property names whose

matched values are included in the dataArray. At least

the phenomenonTime and result properties SHALL be

included. To establish the link between an Observation

and a FeatureOfInterest, the component name is

"FeatureOfInterest/id" and the FeatureOfInterest ids

should be included in the dataArray array. If no

FeatureOfInterest id is presented, the FeatureOfInterest

will be created based on the Location entities of the

linked Thing entity by default.

An ordered

array of

Observation

property names

One

(mandatory)

dataArray A JSON Array containing Observations. Each

Observation is represented by the ordered property

values. The ordered property values match with the

ordered property names in components.

JSON Array One

(mandatory)

Example 37 – Example of a request for creating Observation entities in dataArray

 POST /v1.0/CreateObservations HTTP/1.1

 Host: example.org/

 Content-Type: application/json

 [

 {

 "Datastream": {

 "@iot.id": 1

 },

 "components": [

 "phenomenonTime",

 "result",

 "FeatureOfInterest/id"

],

 "dataArray@iot.count":2,

 "dataArray": [

 [

 "2010-12-23T10:20:00-0700",

 20,

 1

],

 [

 "2010-12-23T10:21:00-0700",

 30,

 1

]

]

 },

 {

 "Datastream": {

 "@iot.id": 2

 },

 "components": [

 Rec. ITU-T Y.4473 (08/2020) 49

 "phenomenonTime",

 "result",

 "FeatureOfInterest/id"

],

 "dataArray@iot.count":2,

 "dataArray": [

 [

 "2010-12-23T10:20:00-0700",

 65,

 1

],

 [

 "2010-12-23T10:21:00-0700",

 60,

 1

]

]

 }

]

11.2.2 Response

Upon successful completion the service SHALL respond with 201 Created. The response message

body SHALL contain the URLs of the created Observation entities, where the order of URLs must

match with the order of Observations in the dataArray from the request. In the case of the service

having exceptions when creating individual observation entities, instead of responding with URLs,

the service must specify "error" in the corresponding array element.

Example 38 – An example of a response of creating Observation entities with dataArray

 POST /v1.0/CreateObservations HTTP/1.1

 201 Created

 Host: example.org

 Content-Type: application/json

 [

 "http://examples.org/v1.0/Observations(1)",

 "error",

 "http://examples.org/v1.0/Observations(2)"

]

12 SensorThings Sensing MQTT Extension

In addition to support HTTP protocol, a SensorThings service MAY support MQTT protocol to

enhance the SensorThings service publish and subscribe capabilities. This clause describes the

SensorThings MQTT extension.

12.1 Create a SensorThings Observation with MQTT Publish

SensorThings MQTT extension provides the capability of creating Observation entity using MQTT

protocol. To create an Observation entity in MQTT, the client sends a MQTT Publish request to the

SensorThings service and the MQTT topic is the Observations resource path. The MQTT

application message contains a single valid Observation entity representation.

Figure 3 shows the sequence diagram for creating Observation using MQTT publish as well as

MQTT sending notifications for Observation creation.

50 Rec. ITU-T Y.4473 (08/2020)

Figure 3 – Creating Observations using MQTT publish, and receive

notifications for Observations with MQTT

If the MQTT topic for the Observation is a navigationLink from Datastream or FeatureOfInterest, the

new Observation entity is automatically linked to that Datastream or FeatureOfInterest respectively.

Similar to creating Observations with HTTP POST, creating Observations with MQTT Publish follow

the integrity constraints for creating Observations listed in Table 23.

12.2 Receive updates with MQTT Subscribe

To receive notifications from a SensorThings service when some entities updated, a client can send a

MQTT Subscribe request to the SensorThings service. SensorThings API defined the following four

MQTT subscription use cases. Figure 4 shows the sequence diagram of receiving updates using

MQTT Subscribe.

Figure 4 – Sequence diagram for receiving updates using MQTT subscribe

12.2.1 Receive updates of a SensorThings entity set with MQTT Subscribe

MQTT Control Packet: Subscribe

Topic Pattern: RESOURCE_PATH/COLLECTION_NAME

 Rec. ITU-T Y.4473 (08/2020) 51

Example Topic: Datastreams(1)/Observations

Response: When a new entity is added to the entity set (e.g., a new Observation created) or an existing

entity of the entity set is updated, the service returns a complete JSON representation of the newly

created or updated entity.

12.2.2 Receive updates of a SensorThings entity with MQTT Subscribe

MQTT Control Packet: Subscribe

Topic Pattern: RESOURCE_PATH_TO_AN_ENTITY

Example Topic: Datastreams(1)

Response: When a property of the subscribed entity is updated, the service returns a complete JSON

representation of the updated entity.

12.2.3 Receive updates of a SensorThings entity's property with MQTT Subscribe

MQTT Control Packet: Subscribe

Topic Pattern: RESOURCE_PATH_TO_AN_ENTITY/PROPERTY_NAME

Example Topic: Datastreams(1)/observedArea

Response: When the value of the subscribed property is changed, the service returns a JSON object.

The returned JSON object follows as defined in Section 7.2.4 – Usage 4: address to a property of an

entity.

Example 39 – An example response of receiving updates of an entity's property with MQTT

Subscribe. – The example shows a sample response of the following MQTT topic subscription –

Datastreams(1)/description

 {

 "description": "This is an updated description of a thing"

 }

12.2.4 Receive updates of the selected properties of the newly created entities or updated

entities of a SensorThings entity set with MQTT Subscribe

MQTT Control Packet: Subscribe

Topic Pattern:

RESOURCE_PATH/COLLECTION_NAME?$select=PROPERTY_1,PROPERTY_2, etc.

Response: When a new entity is added to an entity set or an existing entity is updated (e.g., a new

Observation created or an existing Observation is updated), the service returns a JSON representation

of the selected properties of the newly created or updated entity.

NOTE – In the case of an entity's property is updated, it is possible that the selected properties are not the

updated property, so that the returned JSON does not reflect the update.

Example 40 – An example response of receiving updates of the selected property of an entity set with

MQTT Subscribe. The example shows a sample response of the following MQTT topic subscription –

Datastreams(1)/Observations?$select=phenomenonTime,result

 {

 "result": 45,

 "phenonmenonTime": "2015-02-05T17:00:00Z"

 }

52 Rec. ITU-T Y.4473 (08/2020)

Bibliography

[b-IETF RFC 5023] IETF RFC 5023 (2007), The Atom Publishing Protocol.
https://www.ietf.org/rfc/rfc5023.txt

[b-OGC 12-000] OGC 12-000 (2020), SensorML: Model and XML Encoding Standard.
http://www.opengeospatial.org/standards/sensorml

[b-UCUM] UCUM (2017), Unified Code for Units of Measure, Version 2.1
http://unitsofmeasure.org/trac

https://www.ietf.org/rfc/rfc5023.txt
http://www.opengeospatial.org/standards/sensorml
http://unitsofmeasure.org/trac

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T Y.4473 (08/2020) SensorThings API – Sensing
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 The SensorThings API entities
	6.1 Common control information
	6.2 The sensing entities
	6.2.1 Thing
	6.2.2 Location
	6.2.3 HistoricalLocation
	6.2.4 Datastream
	6.2.5 Sensor
	6.2.6 ObservedProperty
	6.2.7 Observations
	6.2.8 FeatureOfInterest

	7 SensorThings service interface
	7.1 Common control information
	7.2 Resource path
	7.2.1 Usage 1: No resource path
	7.2.2 Usage 2: Address to a collection of entities
	7.2.3 Usage 3: Address to an entity in a collection
	7.2.4 Usage 4: Address to a property of an entity
	7.2.5 Usage 5: Address to the value of an entity's property
	7.2.6 Usage 6: Address to a navigation property (navigationLink)
	7.2.7 Usage 7: Address to an associationLink
	7.2.8 Usage 8: Nested resource path

	7.3 Requesting data
	7.3.1 Evaluating system query options
	7.3.2 Specifying properties to return
	7.3.2.1 $expand
	7.3.2.2 $select

	7.3.3 Query entity sets
	7.3.3.1 $orderby
	7.3.3.2 $top
	7.3.3.3 $skip
	7.3.3.4 $count
	7.3.3.5 $filter
	7.3.3.5.1 Built-in filter operators
	7.3.3.5.2 Built-in query functions

	7.3.3.6 Server-driven paging

	8 SensorThings sensing create-update-delete
	8.1 Overview
	8.2 Create an entity
	8.2.1 Request
	8.2.1.1 Link to existing entities when creating an entity
	8.2.1.2 Create related entities when creating an entity

	8.2.2 Response

	8.3 Update an entity
	8.3.1 Request
	8.3.2 Response

	8.4 Delete an entity
	8.4.1 Request

	9 Batch requests
	9.1 Introduction
	9.2 Batch-processing request
	9.2.1 Batch Request body example
	9.2.2 Referencing new entities in a change set example

	9.3 Batch-processing response
	9.4 Asynchronous batch requests

	10 SensorThings MultiDatastream extension
	11 SensorThings Data Array Extension
	11.1 Retrieve a Datastream's Observation entities in dataArray
	11.1.1 Request
	11.1.2 Response

	11.2 Create Observation entities with dataArray
	11.2.1 Request
	11.2.2 Response

	12 SensorThings Sensing MQTT Extension
	12.1 Create a SensorThings Observation with MQTT Publish
	12.2 Receive updates with MQTT Subscribe
	12.2.1 Receive updates of a SensorThings entity set with MQTT Subscribe
	12.2.2 Receive updates of a SensorThings entity with MQTT Subscribe
	12.2.3 Receive updates of a SensorThings entity's property with MQTT Subscribe
	12.2.4 Receive updates of the selected properties of the newly created entities or updated entities of a SensorThings entity set with MQTT Subscribe

	Bibliography

