

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Y.3531
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(09/2020)

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS,
NEXT-GENERATION NETWORKS, INTERNET OF
THINGS AND SMART CITIES

Cloud Computing

Cloud computing – Functional requirements for
machine learning as a service

Recommendation ITU-T Y.3531

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION

NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199

Services, applications and middleware Y.200–Y.299

Network aspects Y.300–Y.399

Interfaces and protocols Y.400–Y.499

Numbering, addressing and naming Y.500–Y.599

Operation, administration and maintenance Y.600–Y.699

Security Y.700–Y.799

Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS

General Y.1000–Y.1099

Services and applications Y.1100–Y.1199

Architecture, access, network capabilities and resource management Y.1200–Y.1299

Transport Y.1300–Y.1399

Interworking Y.1400–Y.1499

Quality of service and network performance Y.1500–Y.1599

Signalling Y.1600–Y.1699

Operation, administration and maintenance Y.1700–Y.1799

Charging Y.1800–Y.1899

IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS

Frameworks and functional architecture models Y.2000–Y.2099

Quality of Service and performance Y.2100–Y.2199

Service aspects: Service capabilities and service architecture Y.2200–Y.2249

Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299

Enhancements to NGN Y.2300–Y.2399

Network management Y.2400–Y.2499

Network control architectures and protocols Y.2500–Y.2599

Packet-based Networks Y.2600–Y.2699

Security Y.2700–Y.2799

Generalized mobility Y.2800–Y.2899

Carrier grade open environment Y.2900–Y.2999

FUTURE NETWORKS Y.3000–Y.3499

CLOUD COMPUTING Y.3500–Y.3599

BIG DATA Y.3600–Y.3799

QUANTUM KEY DISTRIBUTION NETWORKS Y.3800–Y.3999

INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES

General Y.4000–Y.4049

Definitions and terminologies Y.4050–Y.4099

Requirements and use cases Y.4100–Y.4249

Infrastructure, connectivity and networks Y.4250–Y.4399

Frameworks, architectures and protocols Y.4400–Y.4549

Services, applications, computation and data processing Y.4550–Y.4699

Management, control and performance Y.4700–Y.4799

Identification and security Y.4800–Y.4899

Evaluation and assessment Y.4900–Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.3531 (09/2020) i

Recommendation ITU-T Y.3531

Cloud computing – Functional requirements for machine learning as a service

Summary

Recommendation ITU-T Y.3531 provides cloud computing requirements for machine learning as a

service (MLaaS), which addresses requirements from use cases. MLaaS is a cloud service category in

which the capability provided to the cloud service customer is the provision and use of a machine

learning (ML) framework, which is a set of functionalities for provisioning ML data, as well as

training, deployment and management of an ML model.

From the perspective of cloud computing service provision, Recommendation ITU-T Y.3531 provides

the functional requirements for MLaaS to identify functionalities such as ML data pre-processing, ML

model training and ML model testing. Also, Recommendation ITU-T Y.3531 is aligned with the cloud

computing reference architecture specified in Recommendation ITU-T Y.3502.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Y.3531 2020-09-29 13 11.1002/1000/14405

Keywords

BdaaS, big data, big data as a service, cloud computing, MlaaS, machine learning, machine learning

as a service.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14405
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Y.3531 (09/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected

by patents, which may be required to implement this Recommendation. However, implementers are cautioned

that this may not represent the latest information and are therefore strongly urged to consult the TSB patent

database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.3531 (09/2020) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 Overview of machine learning.. 3

6.1 Introduction to machine learning .. 3

6.2 Generic process of machine learning ... 4

6.3 Machine learning ecosystem .. 5

7 Machine learning as a service ... 7

7.1 System context of MLaaS .. 7

7.2 CSN:machine learning data provider ... 8

7.3 CSN:machine learning model developer .. 9

7.4 CSP:machine learning service provider ... 9

7.5 CSC:machine learning service user .. 11

8 Functional requirements of MLaaS .. 11

8.1 ML data collection and storage requirements .. 11

8.2 ML data labelling requirements .. 12

8.3 ML data pre-processing requirements .. 12

8.4 ML data analysis and feature engineering requirements 12

8.5 ML model training requirements .. 13

8.6 ML model monitoring requirements .. 14

8.7 Trained ML model deployment and retraining requirements 14

9 Security considerations ... 15

Appendix I – Use case of MLaaS for operation perspectives .. 16

I.1 ML data annotation and labelling management ... 16

I.2 Model training with user configuration .. 17

I.3 Report learning result and re-training ML model ... 18

I.4 Distributed training with multiple worker nodes .. 19

I.5 Model testing and optimizing the model quality includes hyperparameter

tuning .. 21

I.6 Model monitoring to issue alerts of abnormal or unsuspected learning

process .. 22

I.7 Model deployment and monitoring .. 23

I.8 Automated machine learning in cloud computing .. 24

iv Rec. ITU-T Y.3531 (09/2020)

 Page

Appendix II – Use case of MLaaS for application perspectives .. 25

II.1 Object recognition model development in the cloud computing

environment .. 25

II.2 Traffic speed prediction and monitoring service .. 26

II.3 Image recognition ... 27

II.4 Face recognition ... 28

II.5 Image segmentation model development ... 29

II.6 Generative adversarial model development ... 30

Bibliography... 32

 Rec. ITU-T Y.3531 (09/2020) 1

Recommendation ITU-T Y.3531

Cloud computing – Functional requirements for machine learning as a service

1 Scope

This Recommendation provides system context, functional requirements and use cases for machine

learning as a service (MLaaS).

In particular, the scope of this Recommendation includes:

– an overview of machine learning (ML);

– an introduction to MLaaS;

– functional requirements of MLaaS.

The use cases of MLaaS are developed to derive its functional requirements.

NOTE – Development of ML algorithms and methodologies lie outside the scope of this Recommendation.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.2201] Recommendation ITU-T Y.2201 (2011), Requirements and capabilities for ITU-

T NGN.

[ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), Security requirements for NGN

release 1.

 [ITU-T Y.3502] Recommendation ITU-T Y.3502 (2014), Information technology – Cloud

computing – Reference architecture.

[ITU-T Y.3600] Recommendation ITU-T Y.3600 (2015), Big data – Cloud computing based

requirements and capabilities.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 activity [ITU-T Y.3502]: A specified pursuit or set of tasks.

3.1.2 cloud computing [b-ITU-T Y.3500]: Paradigm for enabling network access to a scalable and

elastic pool of shareable physical or virtual resources with self-service provisioning and

administration on-demand.

NOTE – Examples of resources include servers, operating systems, networks, software, applications, and

storage equipment.

3.1.3 cloud service [b-ITU-T Y.3500]: One or more capabilities offered via cloud computing

(3.1.2) invoked using a defined interface.

2 Rec. ITU-T Y.3531 (09/2020)

3.1.4 cloud service customer [b-ITU-T Y.3500]: Party which is in a business relationship for the

purpose of using cloud services.

NOTE – A business relationship does not necessarily imply financial agreements.

3.1.5 cloud service partner [b-ITU-T Y.3500]: Party which is engaged in support of, or auxiliary

to, activities of either the cloud service provider or the cloud service customer, or both.

3.1.6 cloud service provider [ITU-T Y.3500]: Party which makes cloud services available.

3.1.7 machine learning [b-ITU-T Y.3172]: Processes that enable computational systems to

understand data and gain knowledge from it without necessarily being explicitly programmed.

NOTE 1 – This definition is adapted from [b-ETSI GR ENI 004].

NOTE 2 – Supervised machine learning and unsupervised machine learning are two examples of machine

learning types.

3.1.8 machine learning model [b-ITU-T Y.3172]: Model created by applying machine learning

techniques to data to learn from.

NOTE 1 – A machine learning model is used to generate predictions (e.g., regression, classification, clustering)

on new (untrained) data.

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the form of a software

(e.g., virtual machine, container) or hardware component (e.g., IoT device).

NOTE 3 – Machine learning techniques include learning algorithms (e.g., learning the function that maps input

data attributes to output data).

3.1.9 metadata [b-ITU-T H.752]: Structured, encoded data that describe characteristics of

information-bearing entities to aid in the identification, discovery, assessment and management of

the described entities.

3.1.10 role [ITU-T Y.3502]: A set of activities that serves a common purpose.

3.1.11 sub-role [ITU-T Y.3502]: A subset of the activities of a given role.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 machine learning as a service (MLaaS): A cloud service category in which the capabilities

provided to a cloud service customer are the provision and use of a machine learning framework.

3.2.2 machine learning framework: A set of functionalities for provisioning machine learning

data, as well as training, deployment and management of a machine learning model.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

CPU Central Processing Unit

CSC Cloud Service Customer

CSN Cloud Service partner

CSP Cloud Service Provider

GAN Generative Adversarial Network

GPU Graphics Processing Unit

ML Machine Learning

MLaaS Machine Learning as a Service

MLDP Machine Learning Data Provider

 Rec. ITU-T Y.3531 (09/2020) 3

MLMD Machine Learning Model Developer

MLSP Machine Learning Service Provider

MLSU Machine Learning Service User

5 Conventions

The following conventions are used in this Recommendation:

– The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted, if conformance to this Recommendation is to be

claimed.

– The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus, this requirement need not be present to claim conformance.

– The keywords "can optionally" indicate an optional requirement which is permissible,

without implying any sense of being recommended. This term is not intended to imply that

the vendor's implementation must provide the option and the feature can be optionally

enabled by the network operator/service provider. Rather, it means the vendor may optionally

provide the feature and still claim conformance with this Recommendation.

6 Overview of machine learning

6.1 Introduction to machine learning

Machine learning (ML) is a technique in computer science to enable machines or computers to learn

how to perform tasks without being explicitly programmed. According to the definition, the

mechanism of ML is distinct from explicit programming, which applies if-then statements to make

decisions. The goal of ML is to improve their ability to solve tasks automatically through data.

The development of ML involves ML models, learning algorithms and training data. An ML model

consists of mathematical representations for performing tasks with input data. The learning algorithm

trains an ML model using training data for the task.

The ML developer configures the ML model and learning algorithm, and gathers training data based

on setting up tasks. The tasks are designed to solve problems by performance evaluation metrics

based on computational methods. An evaluation metric is a criterion for the measurement of the

performance of an ML model. Examples of general tasks for ML are prediction, classification,

clustering and sample generation.

ML tasks are classified according to the characteristics of the learning algorithm, such as the necessity

for training data or feedback. Categories of ML task include: supervised learning; unsupervised

learning; semi-supervised learning; and reinforcement learning.

– Supervised learning: a learning task with labelled data, which maps input data to desired

output data.

– Unsupervised learning: a learning task with unlabelled data, which finds structures or

patterns in the data.

– Semi-supervised learning: a task of learning with both labelled and unlabelled data, where

there is a small amount of labelled data.

– Reinforcement learning: a task of learning in which an agent uses environment data to

perform a task and then provides feedback.

4 Rec. ITU-T Y.3531 (09/2020)

6.2 Generic process of machine learning

The process is implemented by ML data acquisition, ML data processing, ML model development

and ML model deployment. Figure 6-1 shows the generic process of ML.

Figure 6-1 – Generic process of machine learning

– ML data acquisition collects data for training. The collected data are grouped into datasets

for training, validation and test before ML model development.

– Data collection gathers raw data, including that which is structured, unstructured and

semi-structured. Within all types, data can exist in formats such as text, spreadsheet,

video, audio, image and map. [ITU-T Y.3600].

– Data labelling optionally generates labelled data for supervised learning or semi-

supervised learning. Human resources and labelling tools are required to annotate data.

The tools use tagging units, e.g., image data use a tagging unit of a bounding box to

indicate a target object and video data use a tagging unit of 5 s videos for labelling.

– ML data processing handles data to improve learning performance or create meaningful

information from data.

– Data pre-processing transforms data to resolve inaccurate, incomplete or outlier data.

Noise and bias in raw data are removed or mitigated for training data.

– Feature engineering finds and determines the useful features for an ML model from the

data. Feature engineering algorithms to implement ML include: feature selection;

scaling; and extraction.

– Feature selection obtains a subset from the original features of those with the same

or similar analytical results. Examples of feature selection are: genetic algorithm;

greedy forward selection; and correlation feature selection.

– Feature scaling normalizes the range of data in the original features. Examples of

feature scaling are: mean normalization; and min-max normalization.

– Feature extraction derives new from original features by set reduction. Examples

of feature extraction are: principal component analysis; and dimensionality

reduction.

– ML model development trains and optimizes the ML model. Model training, model

validation, model testing and hyperparameter tuning are iteratively performed to meet the

purpose of the ML model.

– Model training fits the parameters of the ML model to the training dataset. Training

algorithms are implemented to update parameters such as backpropagation and gradient

descent. The parameters are adjusted or optimized automatically by feeding in a training

dataset.

– Model validation verifies the performance of the ML model with a validation dataset.

The model validation process gives the opportunity to optimize hyperparameters before

ML training is completed.

 Rec. ITU-T Y.3531 (09/2020) 5

– Model testing measures the performance of the final trained ML model with the test

dataset. Model testing gives the final performance report to deploy the trained ML model.

Model testing prevents re-learning when the ML model performs poorly after the ML

model is deployed.

– Hyperparameter tuning adjusts the hyperparameters of ML model training. The

hyperparameters are adjustable values for controlling ML model training. The

hyperparameters include: iteration time; batch size; and epoch.

– ML model deployment utilizes the model to perform tasks in applications. ML model

deployment involves deployment and management of the model, including retraining

performance monitoring and management.

– Model deployment loads the trained ML model into the application or hardware. The

ML developer uses the trained model to develop ML applications.

– Manage models updates or monitors the ML model. In addition, manage models

requests model retraining.

Figure 6-2 shows an example of trained ML model development that includes the life cycle following

the generic process of ML.

Figure 6-2 – Example of generic ML process

In Figure 6-2, the final output of a ML process is a trained ML model that has the ability to perform

tasks on devices. If a deployed trained ML model falls below acceptable performance, then the model

needs to be retrained or reengineered. The deployed model is retrained using a new dataset to meet

the performance required for a given purpose.

To achieve its goal, ML requires well-designed models and learning algorithms, as well as an amount

of data for training. Several learning algorithms and ML models have been developed to improve

task-solving performance.

6.3 Machine learning ecosystem

The ML ecosystem consists of stakeholders that provide ML data, the ML model and ML framework.

In this ecosystem, developers can effectively build their own ML or application.

This clause describes an ML ecosystem through stakeholder roles and sub-roles. It describes the

activities required for the ML roles to provide and consume ML, as well as the relationships among

the roles.

6 Rec. ITU-T Y.3531 (09/2020)

The ML ecosystem includes the following roles:

– data provider;

– ML model provider;

– ML framework provider;

– ML framework customer.

The ML ecosystem is shown in Figure 6-3.

Figure 6-3 – High-level machine learning ecosystem

6.3.1 Data provider

The data provider (DP) role consists of two sub-roles:

– data supplier;

– ML data provider.

6.3.1.1 Data supplier

A data supplier provides data from different sources and performs activities specified in [ITU-T

Y.3600]. The data supplier's activities include:

– data generation;

– creation of metadata information describing data source(s) and relevant attributes;

– publication of metadata information to access metadata.

6.3.1.2 ML data provider

An ML data provider acquires data and performs data processing for ML processing. It receives data

from a data supplier [ITU-T Y.3600], then sends data for ML processing to an ML framework

provider. The ML data provider supports various kinds of data, e.g., structured, unstructured and

streaming.

The ML data provider's activities include:

– analysis of features of data;

– dataset generation for ML.

NOTE 1 – Activities such as analysing data and pre-processing are described in [ITU-T Y.3600].

NOTE 2 – Analysis of features from data includes labelling tasks by human resources. This activity is optional

if the ML model requires labelled data for training.

 Rec. ITU-T Y.3531 (09/2020) 7

6.3.2 ML model provider

An ML model provider provides an ML model to an ML framework provider. Developing an ML

model involves ML algorithms for handling data, learning models and evaluating models in the

process, as well as designing the schema of the ML model.

The ML model provider's activities include:

– ML model development;

– ML model provision.

6.3.3 ML framework provider

An ML framework provider provides ML functionalities to an ML framework customer. The ML

framework includes an interface for using ML functionalities. The ML framework provider also

manages and reports activities to an ML framework customer to develop an ML model.

The ML framework provider's activities include:

– training an ML model with ML data;

– ML model management and reporting;

– ML model deployment for an ML application;

– ML functionality provision to an ML framework customer.

6.3.4 ML framework customer

An ML framework customer uses ML functionalities from an ML framework provider for business,

e.g., decision making, business process automation and customer interaction. The ML framework can

be an end-user or a system that performs ML-enabled applications.

The ML framework customer's activities include:

– ML framework access and utilization.

7 Machine learning as a service

7.1 System context of MLaaS

MLaaS is a cloud service category in which the capabilities provided to a cloud service customer

(CSC) are the provision and use of an ML framework. ML processing needs a large amount of

computing power and resources for ML model training due to the large amount of training data and

the highly complex computation involved in ML model training. MLaaS resolves the problem by

providing elastic computing capabilities and resources in cloud environments based on CSC requests.

The system context of MLaaS provides additional sub-roles and activities based on the architectural

user viewpoint established in [ITU-T Y.3502]. This clause describes how cloud computing supports

the four main roles in an ML ecosystem: ML data provider, ML model provider, ML framework

provider and ML framework customer.

Cloud computing sub-roles can be mapped to ML roles as shown in Table 7-1. The sub-roles of a

cloud service provider (CSP), cloud service partner (CSN) and CSC mapped to the roles and sub-

roles of an ML ecosystem.

8 Rec. ITU-T Y.3531 (09/2020)

Table 7-1 – Mapping of a machine learning ecosystem to an MLaaS system context

Machine learning ecosystem MLaaS system context

ML data provider CSN:MLDP (machine learning data provider)

ML model provider CSN:MLMD (machine learning model developer)

ML framework provider CSP:MLSP (machine learning service provider)

ML framework customer CSC:MLSU (machine learning service user)

Figure 7-1 illustrates the cloud computing sub-roles in MLaaS. Figure 7-1 also identifies activities

specific to ML and assigns them to cloud computing sub-roles. MLaaS utilizes other sub-roles of CSP

and CSN.

Figure 7-1 – MLaaS system context

7.2 CSN:machine learning data provider

CSN:MLDP is a sub-role of the CSN, which provides data labelling and activities of CSN:DP as

specified in [ITU-T Y.3600]. The activities of CSN:DP for data include generation, publication and

brokerage. Additional activities of CSN:MLDP include:

– data labelling provision.

7.2.1 Data labelling provision

Data labelling provision involves the generation of labelling information with the tools for this

purpose. Human labellers manually annotate data in accordance with guidelines given by the tools.

This activity involves:

– labelling generation in accordance with guidelines from the CSP:MLSP;

 Rec. ITU-T Y.3531 (09/2020) 9

– metadata provision for labelled data;

– CSN:DP catalogue updating for a CSP:MLSP to search ML data.

7.3 CSN:machine learning model developer

CSN:MLMD is a sub-role of a CSN, which supports an ML model in the solution of various learning

tasks. A CSN:MLMD generates an ML model catalogue for discovery and utilization of a ML model.

An ML model catalogue includes ML model metadata, such as scheme, version, usage and evaluation

metric.

NOTE – ML model usage include the applicable learning task of an ML model.

The activities of an CSN:MLMD for an ML model include:

– development;

– registration.

7.3.1 ML model development

ML model development involves developing and updating ML models, and publication of the ML

model with its information. This activity involves:

– ML model development by setting initial values of a parameter;

– ML model updating with feedback and reporting information;

– hyperparameter configuration provision for ML model training;

– ML model metadata generation including its usage, input/output data format and expected

performance.

7.3.2 ML model registration

ML model registration is the provision of an ML model catalogue to a CSP:MLSP. The ML model

catalogue includes ML model information with metadata.

NOTE – The ML model can be provided with a structured format established by ML frameworks.

This activity involves:

– ML model access information provision to the CSP:MLSP;

– catalogue provision for the CSP:MLSP to search an appropriate ML model.

7.4 CSP:machine learning service provider

CSP:MLSP is a sub-role of the CSP, which provides MLaaS including infrastructures and tools for

ML model training, deployment and management. In addition, a CSP:MLSP supports the collection

and auditing of ML data.

NOTE – CSP:MLSP can provide the activities of CSP:BDIP specified in [ITU-T Y.3600]. The related

activities of CSP:BDIP are data collection, data storage, data pre-processing and data integration.

The additional activities of CSP:MLSP include:

– ML data audit;

– data feature engineering;

– ML model training;

– ML model testing;

– ML model training monitoring and reporting;

– ML model deployment management;

– retraining policy management.

10 Rec. ITU-T Y.3531 (09/2020)

7.4.1 ML data audit

ML data audit supports labelling tasks by providing universalized and managed tools for them. This

activity encourages improvement in labelling quality and reliability of the ML dataset. This activity

involves:

– providing labelling environments and tools for a CSN:MLDP;

– auditing ML data for labelling quality;

– reporting feedback to the CSN:MLDP.

7.4.2 Data feature engineering

Data feature engineering employs methods, such as selection, scaling and extraction from ML data,

for features. Feature engineering supports expedition ofs the training process and manages the risk of

an underperforming ML model.

NOTE – The overfitting problem is an example of an underperforming ML model. Overfitting occurs when

the model fits the data too closely, and fails to generalize for prediction.

7.4.3 ML model training

ML model training executes the training process for an ML model, including its validation. This

activity involves:

– creation of a virtual machine and storage for ML model training;

– triggering and operation of ML model training with input for training relevant information,

such as hyperparameter configuration;

– provision of configurations for partitioning the ML data into datasets for training, validation

and test;

– ML model performance validation;

– registration and storage of the results of ML model training.

7.4.4 ML model testing

ML model testing evaluates a trained ML model before it is deployed, ensuring that its performance

and quality target the tasks.

7.4.5 ML model training monitoring and reporting

ML model training monitoring and reporting support the model training process by providing

functionalities such as measuring resource utilization, alerting abnormalities and automatic stopping.

The report history can be utilized to detect errors in the ML model scheme and determination of

retraining policy. This activity involves:

– measurement and monitoring resource utilizations during ML model training;

– reporting a problem if ML model training cannot be maintained with the ML model provided;

– reporting the performance of the ML model during ML model training;

– automatic stoppage if the configured threshold is exceeded.

NOTE – A CSC:MLSU configures threshold values for automatic stopping, such as resource utilization

overloads.

7.4.6 ML model deployment management

ML model deployment management supports export of the trained ML model for deployment in the

target computing environment. A CSP:MLSP supports transformation into multiple formats of an ML

model for various computing environments. In addition, the exported models are registered for

retraining and updating of the ML model catalogue.

 Rec. ITU-T Y.3531 (09/2020) 11

NOTE 1 – The trained ML model can be updated in the catalogue and provided to service an ML model for

transfer learning.

NOTE 2 – Transfer learning is a technique of application of a pre-trained ML model to a related learning task.

7.4.7 Retraining policy management

Retraining policy management determines the process of retraining for a CSC:MLSU. Retraining

ensures and maintains the performance of an ML model or improves its performance. Retraining

policy considers the expected performance of a deployed model, monitoring time period, subsequent

following actions, etc.

7.5 CSC:machine learning service user

CSC:MLSU is a sub-role of the CSC, which utilizes an ML framework and cloud services to develop

ML applications according to the user's intention.

CSC:MLSU activity includes:

– ML service use.

7.5.1 ML service use

ML service use involves invoking and using a ML framework and cloud service to develop ML

applications.

8 Functional requirements of MLaaS

8.1 ML data collection and storage requirements

[ITU-T Y.3600] provides data collection and storage functional requirements in terms of big data.

The functionalities of MLaaS also involve data collection and storage, and several functional

requirements of these ML activities do not differ from those of big data specified in [ITU-T Y.3600].

The following functional requirements are inherited from those for big data specified in

[ITU-T Y.3600] by changing the role from big data to ML, such as CSP:BDIP to CSP:MLSP and

CSN:DP to CSN:MLDP.

The data collection and storage requirements include the following.

1) It is required that a CSP:MLSP support the collection of data from multiple CSN:MLDPs in

parallel.

2) It is recommended that a CSN:MLDP expose data to the CSP:MLSP by publication of

metadata.

3) It is recommended that a CSP:MLSP support data collection from different CSN:MLDPs

with different modes.

NOTE 1 – Data can be collected in different modes, such as pull mode in which the data collection

process is initiated by CSP:MLSP or push mode in which the data collection process is initiated by

the CSN:MLDP.

4) It is recommended that a CSN:MLDP provide a brokerage service to the CSP:MLSP for

searching accessible data.

NOTE 2 – Brokerage provides a data catalogue that has data information such as data specification,

data instructions, electronic access methods, licence policy and data quality.

5) It is required that a CSP:MLSP support different data types with sufficient storage space,

elastic storage capacity and efficient control methods.

6) It is required that a CSP:MLSP support storage for different data formats and data models.

12 Rec. ITU-T Y.3531 (09/2020)

NOTE 3 – Data formats include text, spreadsheet, video, audio, image and map. Data models include

relational models, document models, key-value models and graph models (as described in

clause 6.1 of [ITU-T Y.3600]).

8.2 ML data labelling requirements

The ML data labelling requirements include the following.

1) It is required that a CSP:MLSP provide tools for labelling tasks for CSN:MLMD.

NOTE 1 – The tools of labelling tasks provide different types of tagging unit for data formats such as

image, video and text.

2) It is required that a CSP:MLSP provide audit data for labelled ML data.

NOTE 2 – The audit data for labelling are utilized to enhance data labelling quality such as accuracy

of labelling and consistency of labelling.

NOTE 3 – The audit data is reported to a CSN:MLDP as feedback when the request arrives or when

the labelling quality is poor for developing ML model.

3) It is required that a CSN:MLDP provide information about data labelling tasks.

NOTE 4 – Information about data labelling tasks includes data type, unit of labelling and consensus

majorities of labellers.

8.3 ML data pre-processing requirements

As in clause 8.1, the following requirements are partially inherited from big data functional

requirements in [ITU-T Y.3600], derived by changing the role from big data to ML such as CSP:BDIP

to CSP:MLSP.

The ML data pre-processing requirements include the following.

1) It is required that a CSP:MLSP support data aggregation.

NOTE 1 – Data from different sources can be organized in the same model or data format, as

described in clause 6.1 of [ITU-T Y.3600].

2) It is recommended that a CSP:MLSP support unification of data collected in different

formats.

NOTE 2 – Unification of data is used for example to unify data about persons, locations or dates

extracted from web pages, pictures, videos, SNS data and calling logs to text format.

3) It is recommended that a CSP:MLSP support extraction of data from unstructured data or

semi-structured data into structured data.

NOTE 3 – This requirement can be applied also to data storage.

The additional requirements of ML data pre-processing not described in [ITU-T Y.3600] include the

following.

4) It is required that a CSP:MLSP provide a configuration for splitting ML data into datasets

for training, validation and test.

NOTE 4 – The training, validation and test datasets are divided completely independently.

8.4 ML data analysis and feature engineering requirements

As in clause 8.1, the following requirements are inherited from big data functional requirements in

[ITU-T Y.3600], derived by changing the role from big data to ML such as CSP:BDIP to CSP:MLSP.

The ML data analysis requirements include the following.

1) It is required that a CSP:MLSP support analysis of various data types and formats.

2) It is required that a CSP:MLSP support association analysis.

NOTE 1 – Association analysis is the task of uncovering relationships among data.

 Rec. ITU-T Y.3531 (09/2020) 13

3) it is required that a CSP:MLSP support different data analysis algorithms.

NOTE 2 – Data analysis algorithms include those for classification, clustering, regression, association

and ranking.

In addition, preferences for ML data feature engineering not described in [ITU-T Y.3600] include the

following.

4) It is recommended that aCSP:MLSP provide feature selection to determine a subset of

relevant features of ML data.

5) It is recommended that a CSP:MLSP provide feature scaling to normalize the range of

features of ML data.

6) It is recommended that a CSP:MLSP provide feature extraction to generate new improved

features from the original features of ML data.

8.5 ML model training requirements

The ML model training requirements include the following.

1) It is required that a CSN:MLMD provide a registry of the ML model and catalogue to

CSP:MLSP.

2) It is recommended that a CSP:MLSP provide feedback on ML model usage to CSP:MLMD.

NOTE 1 – The feedback includes applied learning tasks with high performance experienced by a

CSC:MLSU. The CSP:MLMD use the feedback to update the ML model.

3) It is required that a CSP:MLSP configure hyperparameter values.

4) It is recommended that a CSN:MLMD provide default configuration hyperparameter values.

5) It is recommended that a CSN:MLMD provide a restricted range of values for

hyperparameter adjustments.

NOTE 2 – The values in a restricted range are the adoptable hyperparameter values for the ML model.

6) It is recommended that a CSP:MLSP provide a visualization of learning results.

NOTE 3 – Examples of visualization are a chart, table, distribution plo, and graph, which show

analytic information about a learning result.

7) It is required that a CSP:MLSP provide ML model training operations.

NOTE 4 – ML model training operations include initiate, stop and resume ML model training.

8) It is required that a CSP:MLSP provide an ML model validation process with a validation

dataset.

9) It is recommended that a CSP:MLSP provide learning status monitoring during ML model

training.

NOTE 5 – Learning status includes expected learning time, applied hyperparameter set and memory

usage.

10) It is required that a CSP:MLSP provide performance evaluation for a trained ML model.

11) It is required that a CSP:MLSP store evaluation results of trained ML models with an applied

hyperparameter set.

12) It is recommended that a CSP:MLSP provide hyperparameter optimization methods.

NOTE 6 – Hyperparameter optimization involves choosing a set of optimal hyperparameters for ML

model training. Examples of hyperparameter optimization methods are grid search, Bayesian

optimization and evolutionary optimization.

13) It is recommended that a CSP:MLSP provide automated ML model search methods.

NOTE 7 – Automated ML model search finds the design of an ML model so as to increase the

performance for the target learning task.

14 Rec. ITU-T Y.3531 (09/2020)

14) It is recommended that a CSP:MLSP provide a transformation of ML models for use in other

ML frameworks.

15) It is recommended that a CSP:MLSP provide distributed ML model training.

NOTE 8 – Distributed ML model training is the training of an ML model in multiple worker nodes

to accelerate production of results.

8.6 ML model monitoring requirements

ML model monitoring requirements include the following.

1) It is required that a CSP:MLSP provide monitoring of resource utilization during ML model

training.

NOTE 1 – Resource utilization includes a processing unit (such as a central processing unit (CPU) or

graphics processing unit (GPU)), memory, storage and network utilization.

2) It is recommended that a CSP:MLSP issue resource utilization overload alerts during ML

model training.

3) It is required that a CSP:MLSP report the history of resource utilization with timestamps.

4) It is required that a CSP:MLSP provide the automatic stoppage by detecting learning failure

or measuring unpromising model performance.

NOTE 2 – Detection of learning failure includes ML parameter update failures.

5) It is recommended that a CSP:MLSP set threshold values for automatic stoppage.

NOTE 3 – Automatic stoppage is executed with user-defined threshold values to avoid unwanted

early results. Unwanted results include overtraining and decreasing performance.

6) It is recommended that a CSN:MLMD provide the default threshold values for automatic

stoppage.

7) It is required that a CSP:MLSP store the history of learning failure during ML model training.

NOTE 4 – The history includes a log of resource utilization, performance measurement and execution

of automatic stoppage.

8.7 Trained ML model deployment and retraining requirements

The trained ML model deployment and retraining requirements include the following.

1) It is required that a CSP:MLSP provide a registry of a trained ML model.

NOTE 1 – A trained ML model is registered with a schema including applied input/output data and

ML model structures of.

2) It is required that a CSP:MLSP provide trained ML model metadata.

NOTE 2 – Trained ML model metadata includes the evaluated performance and applied

hyperparameter set.

3) It is required that a CSP:MLSP export a trained ML model with a format applicable to target

hardware deployment.

4) A CSP:MLSP can optionally provide performance monitoring for the ML model deployed.

5) It is required that a CSP:MLSP provide retraining policy to manage the performance of a

trained ML model.

NOTE 3 – The retraining policy includes reset learning parameter, add new data for learning to

optimize the ML model.

6) It is recommended that a CSP:MLSP provide ML model retraining according to measured

ML model performance.

 Rec. ITU-T Y.3531 (09/2020) 15

9 Security considerations

It is recommended that the security framework for cloud computing described in [b-ITU-T X.1601]

be considered for the MLaaS. [b-ITU-T X.1601] analyses security threats and challenges in the cloud

computing environment and describes security capabilities that could mitigate these threats and meet

security challenges.

[b-ITU-T X.1631] provides guidelines supporting the implementation of information security

controls for CSCs and CSPs. Many guidelines aid CSPs to assist CSCs in implementing the controls

and guide them to implement such controls. Selection of appropriate information security controls

and the application of the implementation guidance provided depends on a risk assessment, as well

as any legal, contractual, regulatory or other cloud-sector specific information security requirements.

Relevant security requirements of [ITU-T Y.2201], [ITU-T Y.2701] and applicable ITU-T X,

ITU-T Y and ITU-T M series of Recommendations need to be taken into consideration, including

access control, authentication, data confidentiality, data retention policy, network security, data

integrity, availability and privacy.

16 Rec. ITU-T Y.3531 (09/2020)

Appendix I

Use case of MLaaS for operation perspectives

(This appendix does not form an integral part of this Recommendation.)

The use cases in this appendix provide examples of operating MLaaS functionalities and related

functional requirements of MLaaS.

I.1 ML data annotation and labelling management

Title ML data annotation and labelling management

Description

This use case describes the management procedure for ML data, which includes

assigning data, generating annotation, reporting result and merging ML data. The

following are specific steps for managing ML data with annotators.

1) CSP:MLSP sets the ML data server and collects raw data from CSN:DP.

2) CSP:MLSP requests annotation to be assigned to raw data.

3) CSN:MLDP annotates raw data using the annotation method provided by

CSP:MLSP.

4) CSN:MLDP provides the annotated dataset to CSP:MLSP.

5) CSP:MLSP applies the decision policy to the annotated data.

A. CSP:MLSP decides 'accept' or 'reject' for annotated data from each annotator.

B. CSP:MLSP saves or reports the results of quality of annotated data.

C. CSP:MLSP merges the accepted data into the ML dataset

Role or sub-role CSN:MLDP

Figure (optional)

Pre-conditions

(optional)

CSN:MLDP operates ML data server to schedule or assign data resources to

annotators.

CSN:MLDP searches and requests raw data for annotation from CSN:DP

Post-conditions

(optional)

CSN:MLDP provides an interface for reporting ML results and learning progress to

CSC:MLSU.

 Rec. ITU-T Y.3531 (09/2020) 17

Title ML data annotation and labelling management

CSN:MLSP stores the trained or optimized ML model for developing ML

applications

Derived

requirements or

recommendations

– Clause 8.2 items 1), 2), 3)

– Clause 8.1 items 1) ,3) ,5), 6)

I.2 Model training with user configuration

Title Model training with user configuration

Description

This use case describes the model training procedure in cloud computing. A single

machine for training is considered as default training. The following are general steps

for model training in this use case.

1) CSP:MLSP installs a virtual machine with a machine learning engine that has an

interface for model training with the user.

2) CSN:MLMD provides an ML model for ML training to CSP:MLSP.

3) CSN:MLMD provides appropriate ML data for ML model to CSP:MLSP.

NOTE – For the preparation of an ML model and data pair, CSC:MLSU requests

the ML model and appropriate ML data for the model, or CSP:MLSP provides

pair of ML model an ML data for CSC:MLSU. This preparation scenario lies

outside the scope of this use case.

4) CSC:MLSU configures and sets the learning policy and parameters for machine

learning training.

5) CSP:MLSP trains the ML model and tracks the performance of the training

result for reporting to CSC:MLSU.

6) CSP:MLSP saves the trained model and training result in the designated source

Role or sub-role

CSN:MLMD

CSN:MLDP

CSP:MLSP

CSC:MLSU

Figure (optional)

18 Rec. ITU-T Y.3531 (09/2020)

Title Model training with user configuration

Pre-conditions

(optional)

CSC:MLSU installs virtual machine with CSP to build an ML model.

CSP provides an ML framework or platform tools to build an ML model.

CSN:MLSU searches and requests ML data and model from CSN:MLDP and

CSN:MLMD

Post-conditions

(optional)

CSP:MLSP provides the interface for reporting ML results and learning progress to

CSC:MLSU.

CSP:MLSP stores the trained or optimized ML model for developing ML

applications

Derived

requirements or

recommendations

– Clause 8.1 items 1), 2), 4)

– Clause 8.3 items 1), 2), 3), 4)

– Clause 8.5 items 1), 3), 6), 7), 9), 10) ,11)

I.3 Report learning result and re-training ML model

Title Report learning result and re-training ML model

Description This use case describes the reporting of learning results from CSP:MLSP to

CSC:MLSU, and re-training an ML model. The objective of reporting learning results

is generally to give information about handling and managing an ML training

configuration for CSC:MLSU. CSC:MLSU can optimize ML learning parameters and

allow manual modification of ML learning policy; in addition, CSC:MLSU can

request a re-training option. The following are general steps for this use case.

1) CSC:MLSU requests a learning report from CSP:MLSP.

2) CSP:MLSP transforms and visualizes the learning report on appropriate interfaces.

NOTE 1 – Visualization options can be provided to CSC:MLSU from CSP:MLSP. The

raw data of the training result is the default option.

3) CSP:MLSP reports the learning result to CSC:MLSU

4) CSC:MLSU analyses the learning report and manages and optimizes the learning

policies.

NOTE 2 – The reset and re-training steps are the same as those in 'model training with user

configuration' use case (clause I.2)

Role or sub-role
CSP:MLSP

CSC:MLSU

Figure (optional)

Pre-conditions

(optional)

CSN:MLSP already performs ML learning and stores backup result data for ML

model

Post-conditions

 Rec. ITU-T Y.3531 (09/2020) 19

Title Report learning result and re-training ML model

(optional)

Derived

requirements or

recommendations

– Clause 8.6 items 1), 2), 3), 7)

– Clause 8.7 item 5)

I.4 Distributed training with multiple worker nodes

Title Distributed training with multiple worker nodes

Description

This use case describes model training with multiple worker nodes to support parallel

and distributed learning. CSC:MLSU can organize multiple worker nodes for ML

training. This option has many advantages such as reductions in data size for each

worker node and division of data into private and public. The following are general

steps for distributed training.

1) CSC:MLSU designs or organizes the architecture of ML worker nodes.

2) CSP:MLSP provides ML management for distributed training to CSC:MLSU.

3) CSC:MLSU sets the distribution policy for an ML model or data and schedules

policy for assigning resources and ML parameters.

4) CSP:MLSP assigns resources and parameters using the configured policy from

CSC:MLSU.

5) CSP:MLSP requests ML training from each virtual or local worker node and

collects the training results.

6) CSP:MLSP iterates steps 4) and 5) until training is completed

Role or sub-role
CSP:MLSP

CSC:MLSU

20 Rec. ITU-T Y.3531 (09/2020)

Title Distributed training with multiple worker nodes

Figure (optional)

Pre-conditions

(optional)

CSP provides virtual server to manage ML parameters and control distributed

learning policy.

CSP provides network connection with multiple worker nodes on other cloud and

local environment

Post-conditions

(optional)

Derived

requirements or

recommendations

– Clause 8.5 items 3), 6), 7), 8), 9), 10), 15)

 Rec. ITU-T Y.3531 (09/2020) 21

I.5 Model testing and optimizing the model quality includes hyperparameter tuning

Title Model testing and optimizing the model quality includes hyperparameter tuning

Description

This use case describes the model testing procedure in cloud computing. The model

testing or validation process is usually performed to optimize or generalize a model's

performance and quality. The testing may require an iterative process to tune some

model perspective resources and hyperparameters. Generally, the poor performance

of an ML model results from: 1) lack of feature prediction; 2) non-optimal

hyperparameters; and 3) abnormal learning data. The purpose of model testing is

usually related to the resolution of problems 1) and 2). In that context, this use case

mainly targets resolution of problems 1) and 2) experimentally.

The following are general steps for model testing in this use case.

1) CSN:MLMD requests learning result from CSP:MLSP.

2) CSP:MLSP reports the initial or previous learning result to CSN:MLMD.

NOTE – The model testing process can be performed iteratively.

3) CSN:MLMD optimizes the ML model with a given dataset.

a) CSN:MLMD tunes the hyperparameters of an ML model.

b) CSN:MLMD adds features for ML data.

4) CSN:MLMD tests the ML model until the performance of ML model is qualified

Role or sub-role

CSN:MLMD

CSP:MLSP

CSC:MLSU

CSN:MLDP

Figure (optional)

Pre-conditions

(optional)

CSP:MLSP installs a virtual machine and builds an ML model for testing.

CSP provides an ML framework or /platform tools for testing the ML model

Post-conditions

(optional)

CSN:MLDP provides the ML dataset for learning and testing.

CSP:MLSP stores the testing history of ML model for debugging ML.

If CSN:MLMD fails to optimize the ML model, then CSN:MLMD requests testing

ML data from CSN:MLDP

Derived

requirements or

recommendations

– Clause 8.5 items 2), 3), 4), 5), 6), 12)

22 Rec. ITU-T Y.3531 (09/2020)

I.6 Model monitoring to issue alerts of abnormal or unsuspected learning process

Title Model monitoring to issue alerts of abnormal or unsuspected learning process

Description This use case describes the function of monitoring services in MLaaS. Abnormalities

during learning may be caused by many aspects that can result in failure to learn, so

the CSC:MLSU or CSN:MLMD should be able to recognize an abnormal state of

learning by monitoring its systems. Abnormalities during the learning process can be

detected through resource overload in the hardware, such as CPU and GPU,

excessively abnormal prediction results and synchronization errors of parameters.

The following are general steps for model testing in this use case.

1) CSC:MLSU or CSN:MLMD requests job details for learning process.

2) CSP:MLSP reports the job details which shows current job statuses.

NOTE – Job statuses include CPU or GPU utilization, memory usage and parameter

update or synchronization status.

3) CSC:MLSU sends a request to stop the learning procedure to CSP:MLSP.

CSN:MLMD can also set an automatic stop when a learning abnormality is clearly

detected. In that case, CSN:MLMD can set the values that are served by CSP:MLSP

or customized by CSN:MLMD

Role or sub-role

CSN:MLMD

CSP:MLSP

CSC:MLSU

CSN:MLDP

Figure (optional)

Pre-conditions

(optional)
CSP:MLSP installs virtual machine and builds ML model for testing

Post-conditions

(optional)

CSP:MLSP provides the interface for reporting the testing result to CSN:MLMD.

CSN:MLDP provides the ML dataset for learning and testing.

CSP:MLSP stores the testing history of ML model for debugging ML.

If CSN:MLMD fails to optimize the ML model, then CSN:MLMD requests testing

ML data to CSN:MLDP

Derived

requirements or

recommendations

– Clause 8.5 item 10)

– Clause 8.6 items 1), 2), 3), 4), 5), 6), 7)

 Rec. ITU-T Y.3531 (09/2020) 23

I.7 Model deployment and monitoring

Title Model deployment and monitoring

Description

This use case describes model deployment and monitoring procedures in the cloud

computing environment. Once a model has been trained, then it is deployed in

production. A model-monitoring process is also needed to maintain the performance

of a deployed model. In a broad sense, model deployment and monitoring in this use

case includes registering, managing and monitoring stages in the cloud computing

environment.

The following are general steps for model deployment and monitoring described in

this use case.

1) CSP:MLSP registers a trained model after a training stage.

2) CSP:MLSP provides information about the trained model used by CSP:MLSP to

develop an application service.

3) CSP:MLSP provides an application service using the deployed model, and

monitors its performance continuously.

4) CSP:MLSP requests model retraining or reengineering according to the measured

performance of the model and predefined policy.

5) CSP:MLSP retrains or reengineers a model when asked.

6) CSP:MLSP notifies CSP:MLSP using the model for an application service when it

is retrained or reengineered.

7) CSC:MLSU uses the application service using the deployed model

Role or sub-role
CSP:MLSP

CSC:MLSU

Figure (optional)

Pre-conditions

(optional)
CSP:MLSP provides a trained model to be deployed to develop an application service

Post-conditions

(optional)
CSC:MLSU uses an ML application service provided by CSP:MLSP

Derived

requirements and

recommendations

– Clause 8.7 items 1), 2), 3), 4), 5), 6)

24 Rec. ITU-T Y.3531 (09/2020)

I.8 Automated machine learning in cloud computing

Title Automated machine learning in cloud computing

Description This use case describes automated machine learning procedures in the cloud

computing environment. Automated machine learning supports three main

functionalities of algorithms, namely automated feature engineering, ML model

search and hyperparameter optimization. To execute automated machine learning,

CSC:MLSU just configures the learning task and input data. Then, automated feature

engineering algorithms construct features of ML data for automatic ML model

training. After feature construction, ML model search algorithms are implemented to

find an ML model design by exploring the ML model catalogue. Finally,

hyperparameter optimization algorithms tune hyperparameter values to maximize ML

model performance.

The following are general steps for the model deployment in this use case.

1) CSC:MLSU sets the learning task and input data.

2) CSP:MLSP executes feature engineering algorithms with input data.

3) CSP:MLSP executes ML model search and hyperparameter optimization

algorithms iteratively.

NOTE 1 – ML model search and hyperparameter optimization algorithms can be combined.

NOTE 2 – Validation of an ML model is performed during step 3).

4) CSP:MLSP tests the ML model output from step 3).

a) If test performance is evaluated under target performance, then repeat step 3).

b) Otherwise, export the trained ml model.

Role or sub-role
CSP:MLSP

CSC:MLSU

Figure (optional)

Pre-conditions

(optional)

Post-conditions

(optional)

Derived

requirements or

recommendations

– Clause 8.5 items 12), 13), 14)

– Clause 8.6 items 4), 5), 6)

 Rec. ITU-T Y.3531 (09/2020) 25

Appendix II

Use case of MLaaS for application perspectives

(This appendix does not form an integral part of this Recommendation.)

The use cases in this appendix provide scenarios for operating ML applications using MLaaS and

related functional requirements of MLaaS.

II.1 Object recognition model development in the cloud computing environment

Title Object recognition model development in the cloud computing environment

Description

An AI software engineer wants to concentrate on developing and testing ML models

for object recognition. However, the size of the labelled dataset is not sufficient to

develop and test the model. In the cloud computing environment, the engineer can

access a validated ML dataset for object recognition from other engineers or

companies. With the data from the cloud, engineers can build, train and manage their

own recognition model by testing the performance of the model.

In this use case, the engineer who is represented as CSN:MLMD can develop an ML

model in cloud computing systems with validated data from the CSN:MLDP. The

following steps show the process of developing an ML model.

1) CSN:MLMD registers the ML model with CSP:MLSP.

2) CSN:MLDP prepares an ML dataset with data labelling.

2-1) CSN:MLDP requests raw data from CSN:DP.

2-2) CSN:MLDP labels the data with an object detection algorithm.

NOTE 1 – A different detection algorithm can be adopted. An example of a detection algorithm

is rectangle detection and face detection with a facial landmark.

3) CSP:MLSP requests ML data with the information from the detection algorithm

adopted.

4) CSP:MLSP iteratively trains the ML model with the ML dataset until it is

optimized.

a) 4-1) CSP:MLSP trains the ML model with the ML dataset with default

parameter.

b) 4-2) CSP:MLSP evaluates the trained ML model with a validation dataset.

c) 4-3) CSP:MLSP changes the model parameter and repeats a) and b) until the

model is optimized.

NOTE 2 – The ML model parameter can be different among ML models. An example of an ML

model parameter is the Euclidean distance between the labelled data and validation data.

5) CSP:MLSP reports the performance evaluation to CSN:MLMD

Role or sub-role

CSN:MLMD

CSN:DP

CSN:MLDP

CSP:MLSP

26 Rec. ITU-T Y.3531 (09/2020)

Title Object recognition model development in the cloud computing environment

Figure (optional)

Pre-conditions

(optional)
CSN:MLDP searches data and requests data from CSN:DP

Post-conditions

(optional)
CSP:MLSP stores the trained or optimized ML model to develop ML applications

Derived

requirements and

recommendations

– Clause 8.2 items 1), 3), 4)

– Clause 8.4 items 1), 3), 4)

– Clause 8.5 items 1), 2)

II.2 Traffic speed prediction and monitoring service

Title Traffic speed prediction and monitoring service

Description

Traffic speed information on city roads are gathered from sensors. Traffic speed on

each road after a given period, e.g., 15 min, is predicted, and the predictions used to

solve traffic congestion in the city. The following is a procedure of this use case.

1) Raw data such as traffic speed on city roads are gathered by CSN:DP.

2) The gathered raw data are featured and pre-processed by CSP:MLSP, and the data

used for training and validating a model.

3) Some machine learning models developed by CSN:MLMD are provided, and those

models are used to train models by CSP:MLSP.

4) A prediction model is trained and validated using a training dataset.

5) The trained model is deployed and used to develop an application.

6) Data for prediction are fed into the trained model or application, and predictions are

returned to the service user. The service user can use the predictions, e.g., predicted

traffic speed on each road, to solve traffic congestion by controlling traffic signals

Role or sub-role

CSN:DP

CSN:MLMD

CSP:MLSP

CSU:MLSU

 Rec. ITU-T Y.3531 (09/2020) 27

Title Traffic speed prediction and monitoring service

Figure

(optional)

Pre-conditions

(optional)

CSN:MLSP can transform raw data used for predicting traffic speed. The transformed

data are fed into a trained prediction model.

The sensors for traffic observation are installed on city roads or in each vehicle to

gather speed and location data from traffic using the roads

Derived

requirements

and

recommendation

s

– Clause 8.1 items 1), 3), 5)

– Clause 8.3 items 1), 3), 4)

– Clause 8.4 items 2), 6)

– Clause 8.5 items 1), 3), 6), 7), 8), 9), 10), 11)

– Clause 8.7 items 1), 2), 3), 4)

II.3 Image recognition

Title Image recognition

Description

CSC:MLSU who is an application developer wants to provide image recognition in

applications, e.g., animal recognition. In order to improve development efficiency,

CSC:MLSU can just focus on user interface interactions, and use MLaaS to

implement the image recognition function. The process would include the following

steps.

1) CSP:MLSP collects animal images with different formats from different

CSP:MLDPs and stores those images.

2) CSP:MLSP does some pre-process work on the images like: image classification

by species (e.g., cats, dogs, pigs); image conversion into the same format (e.g.,

convert jpg, jpeg or bmp to png); image ranking by resolution.

3) CSP:MLSP sends pre-processed images to CSN:MLMD to develop an ML model

and uses multiple worker nodes to get training acceleration.

4) After training, CSN:MLMD registers an image recognition model with the

CSP:MLSP.

5) CSP:MLSP recognizes images from those submitted using the model registered by

the CSN:MLMD.

6) CSP:MLSP displays the results of image recognition to the CSC:MLSU.

7) CSC:MLSP provides accuracy, CPU usage and time cost of image recognition as

feedback to CSP:MLMD

Role or sub-role

CSC:MLSU

CSP:MLSP

CSN:MLMD

CSN:MLDP

28 Rec. ITU-T Y.3531 (09/2020)

Title Image recognition

Figure (optional)

Pre-conditions

(optional)

Post-conditions

(optional)

Derived

requirements and

recommendations

– Clause 8.1 items 1), 3), 5), 6)

– Clause 8.3 items 1), 2), 4)

– Clause 8.4 items 4), 5)

– Clause 8.5 items 1), 2)

– Clause 8.7 item 1)

II.4 Face recognition

Title Face recognition

Description CSC:MLSU who is a door control system developer for a company needs to use face

recognition for employee and visitor authentication. The most convenient way for the

developer is to implement a face recognition function using MLaaS. The process

would include the following steps.

1) CSP:MLSU uses a camera to collect videos taken from different angles of

employees. In order to detect live, videos with spoofed faces on a screen are also

collected.

2) CSP:MLSU uploads those videos to CSP:MLSP and splits them into a real face

training set, a fake face training set and testing set through the configuration

reference point of CSP:MLSP.

3) CSP:MLSP marks the position of face and eyes in the training sets.

4) CSP:MLSP sends training sets to CSN:MLMD and configures hyperparameter

values to start developing an ML model. During development, CSP:MLSP can

obtain the learning status from CSN:MLMD.

5) After the learning process, CSN:MLSP validates the trained ML models with the

testing set. If the validation results meet expectations, ML models will be

registered and deployed.

6) When a visitor comes to the company, CSP:MLSU captures a video of the visitor.

Then CSP:MLSP performs face recognition for the captured video using the

model deployed.

7) The CSP:MLSP displays the result of face recognition to the CSC:MLSU and the

visitor is authenticated based on the result

 Rec. ITU-T Y.3531 (09/2020) 29

Title Face recognition

Role or sub-role
CSC: MLSU

CSP: MLSP

Figure (optional)

Pre-conditions

(optional)

Post-conditions

(optional)

Derived

requirements and

recommendations

– Clause 8.2 items 1)

– Clause 8.3 items 1), 4)

– Clause 8.4 items 2), 6)

– Clause 8.5 items 1), 2), 3), 4), 5), 7), 8), 11)

– Clause 8.6 item 1)

– Clause 8.7 item 1)

II.5 Image segmentation model development

Title Image segmentation model development

Description

Image segmentation is a fundamental task for high level vision tasks such as driving a

vehicle and robot navigation. Recently developed deep neural networks can perform

with a large amount of training data and powerful computation resources. Thus, it is a

good choice for CSN:MLMD to train and deploy a model in cloud computing

environments. This use case includes the following key steps.

1) CSN:MLMD designs specific model parameters, such as network architecture and

training loss function.

2) CSP:MLSP establishes the training data format and requests training data from

CSN:MLDP.

3) CSN:MLMD requests CSP:MLSP to prepare resources with the necessary library

installed (such as an ML library) for model training.

4) CSP:MLSP runs a training process for the model committed by CSN:MLMD and

reports training status including training and validation errors.

5) After convergence, the trained model is registered and deployed in the cloud

30 Rec. ITU-T Y.3531 (09/2020)

Title Image segmentation model development

Role or sub-role

CSN:MLMD

CSN:MLDP

CSP:MLSP

Figure (optional)

Pre-conditions

(optional)

Derived

requirements and

recommendations

– Clause 8.1 items 1), 3), 4)

– Clause 8.5 items 1), 2), 3), 4), 6), 9), 11), 12)

– Clause 8.6 items 1), 3), 4)

– Clause 8.7 item 1)

II.6 Generative adversarial model development

Title Generative adversarial model development

Description

Generative adversarial models can generate new images whose appearance is

consistent with those in the training dataset, e.g., generate the image of an animal or a

building. A simple generative model can be trained in an unsupervised manner, i.e.,

no labels are required. Neural network-based generative adversarial network (GAN)

models are one effective method for image generation. However, training a GAN is

usually tedious and requires lots of tuning skills. It would be convenient if the CSP

can provide a training and deployment service for a CSN:MLMD. Such a use case

can be fulfilled with the following steps.

1) CSN:MLMD requests specific training data from CSN:MLDP according to the

task. For instance, if the model is to generate animals, then the training data

should only contain a large number of various animals.

2) CSN:MLMD establishes the network architectures of generative and

discriminative modules with corresponding loss functions.

3) CSN:MLSP prepares computation resources and starts model training. A training

process will stop if the convergence condition is satisfied or the maximum number

of iterations has been reached. Retraining can be executed if necessary.

4) After convergence, the model access method is returned to CSN:MLMD

Role or sub-role

CSN:MLDP

CSN:MLMD

CSP:MLSP

 Rec. ITU-T Y.3531 (09/2020) 31

Title Generative adversarial model development

Figure (optional)

Pre-conditions

(optional)

Derived

requirements and

recommendations

– Clause 8.1 items 1), 3), 4)

– Clause 8.5 items 1), 4), 5), 6), 7), 9)

– Clause 8.6 items 5), 6)

– Clause 8.7 items 1), 5)

32 Rec. ITU-T Y.3531 (09/2020)

Bibliography

[b-ITU-T H.752] Recommendation ITU-T H.752 (2015), Multimedia content provisioning

interface for IPTV services.

[b-ITU-T X.1601] Recommendation ITU-T X.1601 (2015), Security framework for cloud

computing.

[b-ITU-T X.1631] Recommendation ITU-T X.1631 (2015), Information technology – Security

techniques – Code of practice for information security controls based on

ISO/IEC 27002 for cloud services.

[b-ITU-T Y.3172] Recommendation ITU-T Y.3172 (2019), Architectural framework for

machine learning in future networks including IMT-2020.

[b-ITU-T Y.3500] Recommendation ITU-T Y.3500 (2014), Information technology – Cloud

computing – Overview and vocabulary.

[b-ETSI GR ENI 004] ETSI GR ENI 004 V2.1.1 (2019), Experiential networked intelligence

(ENI); Terminology for main concepts in ENI.

[b-Han] Han, J., Kamber, M.., Pei, J.. (2012), Data mining: Concepts and

techniques, third edition., Burlington. MA: Morgan Kaufmann. 703 pp.

[b-He] He, X., Zhao, K., Chu, X. (2019), AutoML: A Survey of the state-of-the-

art, arXiv preprint arXiv:1908.00709v5.

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T Y.3531 (09/2020) Cloud computing – Functional requirements for machine learning as a service
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of machine learning
	6.1 Introduction to machine learning
	6.2 Generic process of machine learning
	6.3 Machine learning ecosystem
	6.3.1 Data provider
	6.3.1.1 Data supplier
	6.3.1.2 ML data provider

	6.3.2 ML model provider
	6.3.3 ML framework provider
	6.3.4 ML framework customer

	7 Machine learning as a service
	7.1 System context of MLaaS
	7.2 CSN:machine learning data provider
	7.2.1 Data labelling provision

	7.3 CSN:machine learning model developer
	7.3.1 ML model development
	7.3.2 ML model registration

	7.4 CSP:machine learning service provider
	7.4.1 ML data audit
	7.4.2 Data feature engineering
	7.4.3 ML model training
	7.4.4 ML model testing
	7.4.5 ML model training monitoring and reporting
	7.4.6 ML model deployment management
	7.4.7 Retraining policy management

	7.5 CSC:machine learning service user
	7.5.1 ML service use

	8 Functional requirements of MLaaS
	8.1 ML data collection and storage requirements
	8.2 ML data labelling requirements
	8.3 ML data pre-processing requirements
	8.4 ML data analysis and feature engineering requirements
	8.5 ML model training requirements
	8.6 ML model monitoring requirements
	8.7 Trained ML model deployment and retraining requirements

	9 Security considerations
	Appendix I Use case of MLaaS for operation perspectives
	I.1 ML data annotation and labelling management
	I.2 Model training with user configuration
	I.3 Report learning result and re-training ML model
	I.4 Distributed training with multiple worker nodes
	I.5 Model testing and optimizing the model quality includes hyperparameter tuning
	I.6 Model monitoring to issue alerts of abnormal or unsuspected learning process
	I.7 Model deployment and monitoring
	I.8 Automated machine learning in cloud computing

	Appendix II Use case of MLaaS for application perspectives
	II.1 Object recognition model development in the cloud computing environment
	II.2 Traffic speed prediction and monitoring service
	II.3 Image recognition
	II.4 Face recognition
	II.5 Image segmentation model development
	II.6 Generative adversarial model development

	Bibliography

