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Summary 

Recommendation ITU-T Y.3531 provides cloud computing requirements for machine learning as a 

service (MLaaS), which addresses requirements from use cases. MLaaS is a cloud service category in 

which the capability provided to the cloud service customer is the provision and use of a machine 

learning (ML) framework, which is a set of functionalities for provisioning ML data, as well as 

training, deployment and management of an ML model. 

From the perspective of cloud computing service provision, Recommendation ITU-T Y.3531 provides 

the functional requirements for MLaaS to identify functionalities such as ML data pre-processing, ML 

model training and ML model testing. Also, Recommendation ITU-T Y.3531 is aligned with the cloud 

computing reference architecture specified in Recommendation ITU-T Y.3502. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 
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Recommendation ITU-T Y.3531 

Cloud computing – Functional requirements for machine learning as a service 

1 Scope 

This Recommendation provides system context, functional requirements and use cases for machine 

learning as a service (MLaaS). 

In particular, the scope of this Recommendation includes: 

– an overview of machine learning (ML); 

– an introduction to MLaaS; 

– functional requirements of MLaaS. 

The use cases of MLaaS are developed to derive its functional requirements. 

NOTE – Development of ML algorithms and methodologies lie outside the scope of this Recommendation. 

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the currently 

valid ITU-T Recommendations is regularly published. The reference to a document within this 

Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.2201] Recommendation ITU-T Y.2201 (2011), Requirements and capabilities for ITU-

T NGN. 

[ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), Security requirements for NGN 

release 1. 

 [ITU-T Y.3502] Recommendation ITU-T Y.3502 (2014), Information technology – Cloud 

computing – Reference architecture. 

[ITU-T Y.3600] Recommendation ITU-T Y.3600 (2015), Big data – Cloud computing based 

requirements and capabilities. 

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

3.1.1 activity [ITU-T Y.3502]: A specified pursuit or set of tasks. 

3.1.2 cloud computing [b-ITU-T Y.3500]: Paradigm for enabling network access to a scalable and 

elastic pool of shareable physical or virtual resources with self-service provisioning and 

administration on-demand. 

NOTE – Examples of resources include servers, operating systems, networks, software, applications, and 

storage equipment. 

3.1.3 cloud service [b-ITU-T Y.3500]: One or more capabilities offered via cloud computing 

(3.1.2) invoked using a defined interface. 
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3.1.4 cloud service customer [b-ITU-T Y.3500]: Party which is in a business relationship for the 

purpose of using cloud services. 

NOTE – A business relationship does not necessarily imply financial agreements. 

3.1.5 cloud service partner [b-ITU-T Y.3500]: Party which is engaged in support of, or auxiliary 

to, activities of either the cloud service provider or the cloud service customer, or both. 

3.1.6 cloud service provider [ITU-T Y.3500]: Party which makes cloud services available. 

3.1.7 machine learning [b-ITU-T Y.3172]: Processes that enable computational systems to 

understand data and gain knowledge from it without necessarily being explicitly programmed. 

NOTE 1 – This definition is adapted from [b-ETSI GR ENI 004]. 

NOTE 2 – Supervised machine learning and unsupervised machine learning are two examples of machine 

learning types. 

3.1.8 machine learning model [b-ITU-T Y.3172]: Model created by applying machine learning 

techniques to data to learn from. 

NOTE 1 – A machine learning model is used to generate predictions (e.g., regression, classification, clustering) 

on new (untrained) data. 

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the form of a software 

(e.g., virtual machine, container) or hardware component (e.g., IoT device). 

NOTE 3 – Machine learning techniques include learning algorithms (e.g., learning the function that maps input 

data attributes to output data). 

3.1.9 metadata [b-ITU-T H.752]: Structured, encoded data that describe characteristics of 

information-bearing entities to aid in the identification, discovery, assessment and management of 

the described entities. 

3.1.10 role [ITU-T Y.3502]: A set of activities that serves a common purpose. 

3.1.11 sub-role [ITU-T Y.3502]: A subset of the activities of a given role. 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1 machine learning as a service (MLaaS): A cloud service category in which the capabilities 

provided to a cloud service customer are the provision and use of a machine learning framework. 

3.2.2 machine learning framework: A set of functionalities for provisioning machine learning 

data, as well as training, deployment and management of a machine learning model. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

CPU Central Processing Unit 

CSC Cloud Service Customer 

CSN Cloud Service partner 

CSP Cloud Service Provider 

GAN Generative Adversarial Network 

GPU Graphics Processing Unit 

ML Machine Learning 

MLaaS Machine Learning as a Service 

MLDP Machine Learning Data Provider 
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MLMD Machine Learning Model Developer 

MLSP Machine Learning Service Provider 

MLSU Machine Learning Service User 

5 Conventions 

The following conventions are used in this Recommendation: 

– The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted, if conformance to this Recommendation is to be 

claimed. 

– The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, this requirement need not be present to claim conformance. 

– The keywords "can optionally" indicate an optional requirement which is permissible, 

without implying any sense of being recommended. This term is not intended to imply that 

the vendor's implementation must provide the option and the feature can be optionally 

enabled by the network operator/service provider. Rather, it means the vendor may optionally 

provide the feature and still claim conformance with this Recommendation. 

6 Overview of machine learning 

6.1 Introduction to machine learning 

Machine learning (ML) is a technique in computer science to enable machines or computers to learn 

how to perform tasks without being explicitly programmed. According to the definition, the 

mechanism of ML is distinct from explicit programming, which applies if-then statements to make 

decisions. The goal of ML is to improve their ability to solve tasks automatically through data. 

The development of ML involves ML models, learning algorithms and training data. An ML model 

consists of mathematical representations for performing tasks with input data. The learning algorithm 

trains an ML model using training data for the task. 

The ML developer configures the ML model and learning algorithm, and gathers training data based 

on setting up tasks. The tasks are designed to solve problems by performance evaluation metrics 

based on computational methods. An evaluation metric is a criterion for the measurement of the 

performance of an ML model. Examples of general tasks for ML are prediction, classification, 

clustering and sample generation. 

ML tasks are classified according to the characteristics of the learning algorithm, such as the necessity 

for training data or feedback. Categories of ML task include: supervised learning; unsupervised 

learning; semi-supervised learning; and reinforcement learning. 

– Supervised learning: a learning task with labelled data, which maps input data to desired 

output data. 

– Unsupervised learning: a learning task with unlabelled data, which finds structures or 

patterns in the data. 

– Semi-supervised learning: a task of learning with both labelled and unlabelled data, where 

there is a small amount of labelled data. 

– Reinforcement learning: a task of learning in which an agent uses environment data to 

perform a task and then provides feedback. 
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6.2 Generic process of machine learning 

The process is implemented by ML data acquisition, ML data processing, ML model development 

and ML model deployment. Figure 6-1 shows the generic process of ML. 

 

Figure 6-1 – Generic process of machine learning 

– ML data acquisition collects data for training. The collected data are grouped into datasets 

for training, validation and test before ML model development. 

– Data collection gathers raw data, including that which is structured, unstructured and 

semi-structured. Within all types, data can exist in formats such as text, spreadsheet, 

video, audio, image and map. [ITU-T Y.3600]. 

– Data labelling optionally generates labelled data for supervised learning or semi-

supervised learning. Human resources and labelling tools are required to annotate data. 

The tools use tagging units, e.g., image data use a tagging unit of a bounding box to 

indicate a target object and video data use a tagging unit of 5 s videos for labelling. 

– ML data processing handles data to improve learning performance or create meaningful 

information from data. 

– Data pre-processing transforms data to resolve inaccurate, incomplete or outlier data. 

Noise and bias in raw data are removed or mitigated for training data. 

– Feature engineering finds and determines the useful features for an ML model from the 

data. Feature engineering algorithms to implement ML include: feature selection; 

scaling; and extraction. 

– Feature selection obtains a subset from the original features of those with the same 

or similar analytical results. Examples of feature selection are: genetic algorithm; 

greedy forward selection; and correlation feature selection. 

– Feature scaling normalizes the range of data in the original features. Examples of 

feature scaling are: mean normalization; and min-max normalization. 

– Feature extraction derives new from original features by set reduction. Examples 

of feature extraction are: principal component analysis; and dimensionality 

reduction. 

– ML model development trains and optimizes the ML model. Model training, model 

validation, model testing and hyperparameter tuning are iteratively performed to meet the 

purpose of the ML model. 

– Model training fits the parameters of the ML model to the training dataset. Training 

algorithms are implemented to update parameters such as backpropagation and gradient 

descent. The parameters are adjusted or optimized automatically by feeding in a training 

dataset. 

– Model validation verifies the performance of the ML model with a validation dataset. 

The model validation process gives the opportunity to optimize hyperparameters before 

ML training is completed. 
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– Model testing measures the performance of the final trained ML model with the test 

dataset. Model testing gives the final performance report to deploy the trained ML model. 

Model testing prevents re-learning when the ML model performs poorly after the ML 

model is deployed. 

– Hyperparameter tuning adjusts the hyperparameters of ML model training. The 

hyperparameters are adjustable values for controlling ML model training. The 

hyperparameters include: iteration time; batch size; and epoch. 

– ML model deployment utilizes the model to perform tasks in applications. ML model 

deployment involves deployment and management of the model, including retraining 

performance monitoring and management. 

– Model deployment loads the trained ML model into the application or hardware. The 

ML developer uses the trained model to develop ML applications. 

– Manage models updates or monitors the ML model. In addition, manage models 

requests model retraining. 

Figure 6-2 shows an example of trained ML model development that includes the life cycle following 

the generic process of ML. 

 

Figure 6-2 – Example of generic ML process 

In Figure 6-2, the final output of a ML process is a trained ML model that has the ability to perform 

tasks on devices. If a deployed trained ML model falls below acceptable performance, then the model 

needs to be retrained or reengineered. The deployed model is retrained using a new dataset to meet 

the performance required for a given purpose. 

To achieve its goal, ML requires well-designed models and learning algorithms, as well as an amount 

of data for training. Several learning algorithms and ML models have been developed to improve 

task-solving performance. 

6.3 Machine learning ecosystem 

The ML ecosystem consists of stakeholders that provide ML data, the ML model and ML framework. 

In this ecosystem, developers can effectively build their own ML or application. 

This clause describes an ML ecosystem through stakeholder roles and sub-roles. It describes the 

activities required for the ML roles to provide and consume ML, as well as the relationships among 

the roles. 
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The ML ecosystem includes the following roles: 

– data provider; 

– ML model provider; 

– ML framework provider; 

– ML framework customer. 

The ML ecosystem is shown in Figure 6-3. 

 

Figure 6-3 – High-level machine learning ecosystem 

6.3.1 Data provider 

The data provider (DP) role consists of two sub-roles: 

– data supplier; 

– ML data provider. 

6.3.1.1 Data supplier 

A data supplier provides data from different sources and performs activities specified in [ITU-T 

Y.3600]. The data supplier's activities include: 

– data generation; 

– creation of metadata information describing data source(s) and relevant attributes; 

– publication of metadata information to access metadata. 

6.3.1.2 ML data provider 

An ML data provider acquires data and performs data processing for ML processing. It receives data 

from a data supplier [ITU-T Y.3600], then sends data for ML processing to an ML framework 

provider. The ML data provider supports various kinds of data, e.g., structured, unstructured and 

streaming. 

The ML data provider's activities include: 

– analysis of features of data; 

– dataset generation for ML. 

NOTE 1 – Activities such as analysing data and pre-processing are described in [ITU-T Y.3600]. 

NOTE 2 – Analysis of features from data includes labelling tasks by human resources. This activity is optional 

if the ML model requires labelled data for training. 
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6.3.2 ML model provider 

An ML model provider provides an ML model to an ML framework provider. Developing an ML 

model involves ML algorithms for handling data, learning models and evaluating models in the 

process, as well as designing the schema of the ML model. 

The ML model provider's activities include: 

– ML model development; 

– ML model provision. 

6.3.3 ML framework provider 

An ML framework provider provides ML functionalities to an ML framework customer. The ML 

framework includes an interface for using ML functionalities. The ML framework provider also 

manages and reports activities to an ML framework customer to develop an ML model. 

The ML framework provider's activities include: 

– training an ML model with ML data; 

– ML model management and reporting; 

– ML model deployment for an ML application; 

– ML functionality provision to an ML framework customer. 

6.3.4 ML framework customer 

An ML framework customer uses ML functionalities from an ML framework provider for business, 

e.g., decision making, business process automation and customer interaction. The ML framework can 

be an end-user or a system that performs ML-enabled applications. 

The ML framework customer's activities include: 

– ML framework access and utilization. 

7 Machine learning as a service 

7.1 System context of MLaaS 

MLaaS is a cloud service category in which the capabilities provided to a cloud service customer 

(CSC) are the provision and use of an ML framework. ML processing needs a large amount of 

computing power and resources for ML model training due to the large amount of training data and 

the highly complex computation involved in ML model training. MLaaS resolves the problem by 

providing elastic computing capabilities and resources in cloud environments based on CSC requests. 

The system context of MLaaS provides additional sub-roles and activities based on the architectural 

user viewpoint established in [ITU-T Y.3502]. This clause describes how cloud computing supports 

the four main roles in an ML ecosystem: ML data provider, ML model provider, ML framework 

provider and ML framework customer. 

Cloud computing sub-roles can be mapped to ML roles as shown in Table 7-1. The sub-roles of a 

cloud service provider (CSP), cloud service partner (CSN) and CSC mapped to the roles and sub-

roles of an ML ecosystem.  
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Table 7-1 – Mapping of a machine learning ecosystem to an MLaaS system context 

Machine learning ecosystem MLaaS system context  

ML data provider CSN:MLDP (machine learning data provider) 

ML model provider CSN:MLMD (machine learning model developer) 

ML framework provider CSP:MLSP (machine learning service provider) 

ML framework customer CSC:MLSU (machine learning service user) 

Figure 7-1 illustrates the cloud computing sub-roles in MLaaS. Figure 7-1 also identifies activities 

specific to ML and assigns them to cloud computing sub-roles. MLaaS utilizes other sub-roles of CSP 

and CSN. 

 

Figure 7-1 – MLaaS system context 

7.2 CSN:machine learning data provider 

CSN:MLDP is a sub-role of the CSN, which provides data labelling and activities of CSN:DP as 

specified in [ITU-T Y.3600]. The activities of CSN:DP for data include generation, publication and 

brokerage. Additional activities of CSN:MLDP include: 

– data labelling provision. 

7.2.1 Data labelling provision 

Data labelling provision involves the generation of labelling information with the tools for this 

purpose. Human labellers manually annotate data in accordance with guidelines given by the tools. 

This activity involves: 

– labelling generation in accordance with guidelines from the CSP:MLSP; 
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– metadata provision for labelled data; 

– CSN:DP catalogue updating for a CSP:MLSP to search ML data. 

7.3 CSN:machine learning model developer 

CSN:MLMD is a sub-role of a CSN, which supports an ML model in the solution of various learning 

tasks. A CSN:MLMD generates an ML model catalogue for discovery and utilization of a ML model. 

An ML model catalogue includes ML model metadata, such as scheme, version, usage and evaluation 

metric. 

NOTE – ML model usage include the applicable learning task of an ML model. 

The activities of an CSN:MLMD for an ML model include: 

– development; 

– registration. 

7.3.1 ML model development 

ML model development involves developing and updating ML models, and publication of the ML 

model with its information. This activity involves: 

– ML model development by setting initial values of a parameter; 

– ML model updating with feedback and reporting information; 

– hyperparameter configuration provision for ML model training; 

– ML model metadata generation including its usage, input/output data format and expected 

performance. 

7.3.2 ML model registration 

ML model registration is the provision of an ML model catalogue to a CSP:MLSP. The ML model 

catalogue includes ML model information with metadata.  

NOTE – The ML model can be provided with a structured format established by ML frameworks. 

This activity involves: 

– ML model access information provision to the CSP:MLSP; 

– catalogue provision for the CSP:MLSP to search an appropriate ML model. 

7.4 CSP:machine learning service provider 

CSP:MLSP is a sub-role of the CSP, which provides MLaaS including infrastructures and tools for 

ML model training, deployment and management. In addition, a CSP:MLSP supports the collection 

and auditing of ML data. 

NOTE – CSP:MLSP can provide the activities of CSP:BDIP specified in [ITU-T Y.3600]. The related 

activities of CSP:BDIP are data collection, data storage, data pre-processing and data integration. 

The additional activities of CSP:MLSP include: 

– ML data audit; 

– data feature engineering; 

– ML model training; 

– ML model testing; 

– ML model training monitoring and reporting; 

– ML model deployment management; 

– retraining policy management. 
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7.4.1 ML data audit 

ML data audit supports labelling tasks by providing universalized and managed tools for them. This 

activity encourages improvement in labelling quality and reliability of the ML dataset. This activity 

involves: 

– providing labelling environments and tools for a CSN:MLDP; 

– auditing ML data for labelling quality; 

– reporting feedback to the CSN:MLDP. 

7.4.2 Data feature engineering 

Data feature engineering employs methods, such as selection, scaling and extraction from ML data, 

for features. Feature engineering supports expedition ofs the training process and manages the risk of 

an underperforming ML model. 

NOTE – The overfitting problem is an example of an underperforming ML model. Overfitting occurs when 

the model fits the data too closely, and fails to generalize for prediction. 

7.4.3 ML model training 

ML model training executes the training process for an ML model, including its validation. This 

activity involves: 

– creation of a virtual machine and storage for ML model training; 

– triggering and operation of ML model training with input for training relevant information, 

such as hyperparameter configuration; 

– provision of configurations for partitioning the ML data into datasets for training, validation 

and test; 

– ML model performance validation; 

– registration and storage of the results of ML model training. 

7.4.4 ML model testing 

ML model testing evaluates a trained ML model before it is deployed, ensuring that its performance 

and quality target the tasks. 

7.4.5 ML model training monitoring and reporting 

ML model training monitoring and reporting support the model training process by providing 

functionalities such as measuring resource utilization, alerting abnormalities and automatic stopping. 

The report history can be utilized to detect errors in the ML model scheme and determination of 

retraining policy. This activity involves: 

– measurement and monitoring resource utilizations during ML model training; 

– reporting a problem if ML model training cannot be maintained with the ML model provided; 

– reporting the performance of the ML model during ML model training; 

– automatic stoppage if the configured threshold is exceeded. 

NOTE – A CSC:MLSU configures threshold values for automatic stopping, such as resource utilization 

overloads. 

7.4.6 ML model deployment management 

ML model deployment management supports export of the trained ML model for deployment in the 

target computing environment. A CSP:MLSP supports transformation into multiple formats of an ML 

model for various computing environments. In addition, the exported models are registered for 

retraining and updating of the ML model catalogue. 
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NOTE 1 – The trained ML model can be updated in the catalogue and provided to service an ML model for 

transfer learning. 

NOTE 2 – Transfer learning is a technique of application of a pre-trained ML model to a related learning task. 

7.4.7 Retraining policy management 

Retraining policy management determines the process of retraining for a CSC:MLSU. Retraining 

ensures and maintains the performance of an ML model or improves its performance. Retraining 

policy considers the expected performance of a deployed model, monitoring time period, subsequent 

following actions, etc. 

7.5 CSC:machine learning service user 

CSC:MLSU is a sub-role of the CSC, which utilizes an ML framework and cloud services to develop 

ML applications according to the user's intention. 

CSC:MLSU activity includes: 

– ML service use. 

7.5.1 ML service use 

ML service use involves invoking and using a ML framework and cloud service to develop ML 

applications. 

8 Functional requirements of MLaaS 

8.1 ML data collection and storage requirements 

[ITU-T Y.3600] provides data collection and storage functional requirements in terms of big data. 

The functionalities of MLaaS also involve data collection and storage, and several functional 

requirements of these ML activities do not differ from those of big data specified in [ITU-T Y.3600]. 

The following functional requirements are inherited from those for big data specified in 

[ITU-T Y.3600] by changing the role from big data to ML, such as CSP:BDIP to CSP:MLSP and 

CSN:DP to CSN:MLDP. 

The data collection and storage requirements include the following. 

1) It is required that a CSP:MLSP support the collection of data from multiple CSN:MLDPs in 

parallel. 

2) It is recommended that a CSN:MLDP expose data to the CSP:MLSP by publication of 

metadata. 

3) It is recommended that a CSP:MLSP support data collection from different CSN:MLDPs 

with different modes. 

NOTE 1 – Data can be collected in different modes, such as pull mode in which the data collection 

process is initiated by CSP:MLSP or push mode in which the data collection process is initiated by 

the CSN:MLDP. 

4) It is recommended that a CSN:MLDP provide a brokerage service to the CSP:MLSP for 

searching accessible data. 

NOTE 2 – Brokerage provides a data catalogue that has data information such as data specification, 

data instructions, electronic access methods, licence policy and data quality. 

5) It is required that a CSP:MLSP support different data types with sufficient storage space, 

elastic storage capacity and efficient control methods. 

6) It is required that a CSP:MLSP support storage for different data formats and data models. 
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NOTE 3 – Data formats include text, spreadsheet, video, audio, image and map. Data models include 

relational models, document models, key-value models and graph models (as described in 

clause 6.1 of [ITU-T Y.3600]). 

8.2 ML data labelling requirements 

The ML data labelling requirements include the following. 

1) It is required that a CSP:MLSP provide tools for labelling tasks for CSN:MLMD. 

NOTE 1 – The tools of labelling tasks provide different types of tagging unit for data formats such as 

image, video and text. 

2) It is required that a CSP:MLSP provide audit data for labelled ML data. 

NOTE 2 – The audit data for labelling are utilized to enhance data labelling quality such as accuracy 

of labelling and consistency of labelling. 

NOTE 3 – The audit data is reported to a CSN:MLDP as feedback when the request arrives or when 

the labelling quality is poor for developing ML model. 

3) It is required that a CSN:MLDP provide information about data labelling tasks. 

NOTE 4 – Information about data labelling tasks includes data type, unit of labelling and consensus 

majorities of labellers. 

8.3 ML data pre-processing requirements 

As in clause 8.1, the following requirements are partially inherited from big data functional 

requirements in [ITU-T Y.3600], derived by changing the role from big data to ML such as CSP:BDIP 

to CSP:MLSP. 

The ML data pre-processing requirements include the following. 

1) It is required that a CSP:MLSP support data aggregation. 

NOTE 1 – Data from different sources can be organized in the same model or data format, as 

described in clause 6.1 of [ITU-T Y.3600]. 

2) It is recommended that a CSP:MLSP support unification of data collected in different 

formats. 

NOTE 2 – Unification of data is used for example to unify data about persons, locations or dates 

extracted from web pages, pictures, videos, SNS data and calling logs to text format. 

3) It is recommended that a CSP:MLSP support extraction of data from unstructured data or 

semi-structured data into structured data. 

NOTE 3 – This requirement can be applied also to data storage. 

The additional requirements of ML data pre-processing not described in [ITU-T Y.3600] include the 

following. 

4) It is required that a CSP:MLSP provide a configuration for splitting ML data into datasets 

for training, validation and test. 

NOTE 4 – The training, validation and test datasets are divided completely independently. 

8.4 ML data analysis and feature engineering requirements 

As in clause 8.1, the following requirements are inherited from big data functional requirements in 

[ITU-T Y.3600], derived by changing the role from big data to ML such as CSP:BDIP to CSP:MLSP. 

The ML data analysis requirements include the following. 

1) It is required that a CSP:MLSP support analysis of various data types and formats. 

2) It is required that a CSP:MLSP support association analysis. 

NOTE 1 – Association analysis is the task of uncovering relationships among data. 



 

  Rec. ITU-T Y.3531 (09/2020) 13 

3) it is required that a CSP:MLSP support different data analysis algorithms. 

NOTE 2 – Data analysis algorithms include those for classification, clustering, regression, association 

and ranking. 

In addition, preferences for ML data feature engineering not described in [ITU-T Y.3600] include the 

following. 

4) It is recommended that aCSP:MLSP provide feature selection to determine a subset of 

relevant features of ML data. 

5) It is recommended that a CSP:MLSP provide feature scaling to normalize the range of 

features of ML data. 

6) It is recommended that a CSP:MLSP provide feature extraction to generate new improved 

features from the original features of ML data. 

8.5 ML model training requirements 

The ML model training requirements include the following. 

1) It is required that a CSN:MLMD provide a registry of the ML model and catalogue to 

CSP:MLSP. 

2) It is recommended that a CSP:MLSP provide feedback on ML model usage to CSP:MLMD. 

NOTE 1 – The feedback includes applied learning tasks with high performance experienced by a 

CSC:MLSU. The CSP:MLMD use the feedback to update the ML model. 

3) It is required that a CSP:MLSP configure hyperparameter values. 

4) It is recommended that a CSN:MLMD provide default configuration hyperparameter values. 

5) It is recommended that a CSN:MLMD provide a restricted range of values for 

hyperparameter adjustments. 

NOTE 2 – The values in a restricted range are the adoptable hyperparameter values for the ML model. 

6) It is recommended that a CSP:MLSP provide a visualization of learning results. 

NOTE 3 – Examples of visualization are a chart, table, distribution plo, and graph, which show 

analytic information about a learning result. 

7) It is required that a CSP:MLSP provide ML model training operations. 

NOTE 4 – ML model training operations include initiate, stop and resume ML model training. 

8) It is required that a CSP:MLSP provide an ML model validation process with a validation 

dataset. 

9) It is recommended that a CSP:MLSP provide learning status monitoring during ML model 

training. 

NOTE 5 – Learning status includes expected learning time, applied hyperparameter set and memory 

usage. 

10) It is required that a CSP:MLSP provide performance evaluation for a trained ML model. 

11) It is required that a CSP:MLSP store evaluation results of trained ML models with an applied 

hyperparameter set. 

12) It is recommended that a CSP:MLSP provide hyperparameter optimization methods. 

NOTE 6 – Hyperparameter optimization involves choosing a set of optimal hyperparameters for ML 

model training. Examples of hyperparameter optimization methods are grid search, Bayesian 

optimization and evolutionary optimization. 

13) It is recommended that a CSP:MLSP provide automated ML model search methods. 

NOTE 7 – Automated ML model search finds the design of an ML model so as to increase the 

performance for the target learning task. 
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14) It is recommended that a CSP:MLSP provide a transformation of ML models for use in other 

ML frameworks. 

15) It is recommended that a CSP:MLSP provide distributed ML model training. 

NOTE 8 – Distributed ML model training is the training of an ML model in multiple worker nodes 

to accelerate production of results. 

8.6 ML model monitoring requirements 

ML model monitoring requirements include the following. 

1) It is required that a CSP:MLSP provide monitoring of resource utilization during ML model 

training. 

NOTE 1 – Resource utilization includes a processing unit (such as a central processing unit (CPU) or 

graphics processing unit (GPU)), memory, storage and network utilization. 

2) It is recommended that a CSP:MLSP issue resource utilization overload alerts during ML 

model training. 

3) It is required that a CSP:MLSP report the history of resource utilization with timestamps. 

4) It is required that a CSP:MLSP provide the automatic stoppage by detecting learning failure 

or measuring unpromising model performance. 

NOTE 2 – Detection of learning failure includes ML parameter update failures. 

5) It is recommended that a CSP:MLSP set threshold values for automatic stoppage. 

NOTE 3 – Automatic stoppage is executed with user-defined threshold values to avoid unwanted 

early results. Unwanted results include overtraining and decreasing performance. 

6) It is recommended that a CSN:MLMD provide the default threshold values for automatic 

stoppage. 

7) It is required that a CSP:MLSP store the history of learning failure during ML model training. 

NOTE 4 – The history includes a log of resource utilization, performance measurement and execution 

of automatic stoppage. 

8.7 Trained ML model deployment and retraining requirements 

The trained ML model deployment and retraining requirements include the following. 

1) It is required that a CSP:MLSP provide a registry of a trained ML model. 

NOTE 1 – A trained ML model is registered with a schema including applied input/output data and 

ML model structures of. 

2) It is required that a CSP:MLSP provide trained ML model metadata. 

NOTE 2 – Trained ML model metadata includes the evaluated performance and applied 

hyperparameter set. 

3) It is required that a CSP:MLSP export a trained ML model with a format applicable to target 

hardware deployment. 

4) A CSP:MLSP can optionally provide performance monitoring for the ML model deployed. 

5) It is required that a CSP:MLSP provide retraining policy to manage the performance of a 

trained ML model. 

NOTE 3 – The retraining policy includes reset learning parameter, add new data for learning to 

optimize the ML model. 

6) It is recommended that a CSP:MLSP provide ML model retraining according to measured 

ML model performance. 
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9 Security considerations 

It is recommended that the security framework for cloud computing described in [b-ITU-T X.1601] 

be considered for the MLaaS. [b-ITU-T X.1601] analyses security threats and challenges in the cloud 

computing environment and describes security capabilities that could mitigate these threats and meet 

security challenges. 

[b-ITU-T X.1631] provides guidelines supporting the implementation of information security 

controls for CSCs and CSPs. Many guidelines aid CSPs to assist CSCs in implementing the controls 

and guide them to implement such controls. Selection of appropriate information security controls 

and the application of the implementation guidance provided depends on a risk assessment, as well 

as any legal, contractual, regulatory or other cloud-sector specific information security requirements. 

Relevant security requirements of [ITU-T Y.2201], [ITU-T Y.2701] and applicable ITU-T X, 

ITU-T Y and ITU-T M series of Recommendations need to be taken into consideration, including 

access control, authentication, data confidentiality, data retention policy, network security, data 

integrity, availability and privacy. 
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Appendix I 

 

Use case of MLaaS for operation perspectives 

(This appendix does not form an integral part of this Recommendation.) 

The use cases in this appendix provide examples of operating MLaaS functionalities and related 

functional requirements of MLaaS. 

I.1 ML data annotation and labelling management 

Title ML data annotation and labelling management 

Description 

This use case describes the management procedure for ML data, which includes 

assigning data, generating annotation, reporting result and merging ML data. The 

following are specific steps for managing ML data with annotators. 

1) CSP:MLSP sets the ML data server and collects raw data from CSN:DP. 

2) CSP:MLSP requests annotation to be assigned to raw data. 

3) CSN:MLDP annotates raw data using the annotation method provided by 

CSP:MLSP. 

4) CSN:MLDP provides the annotated dataset to CSP:MLSP. 

5) CSP:MLSP applies the decision policy to the annotated data. 

A. CSP:MLSP decides 'accept' or 'reject' for annotated data from each annotator. 

B. CSP:MLSP saves or reports the results of quality of annotated data. 

C. CSP:MLSP merges the accepted data into the ML dataset 

Role or sub-role CSN:MLDP 

Figure (optional) 

 

Pre-conditions 

(optional) 

CSN:MLDP operates ML data server to schedule or assign data resources to 

annotators. 

CSN:MLDP searches and requests raw data for annotation from CSN:DP 

Post-conditions 

(optional) 

CSN:MLDP provides an interface for reporting ML results and learning progress to 

CSC:MLSU. 
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Title ML data annotation and labelling management 

CSN:MLSP stores the trained or optimized ML model for developing ML 

applications 

Derived 

requirements or 

recommendations 

– Clause 8.2 items 1), 2), 3) 

– Clause 8.1 items 1) ,3) ,5), 6) 

I.2 Model training with user configuration 

Title Model training with user configuration 

Description 

This use case describes the model training procedure in cloud computing. A single 

machine for training is considered as default training. The following are general steps 

for model training in this use case. 

1) CSP:MLSP installs a virtual machine with a machine learning engine that has an 

interface for model training with the user. 

2) CSN:MLMD provides an ML model for ML training to CSP:MLSP. 

3) CSN:MLMD provides appropriate ML data for ML model to CSP:MLSP. 

NOTE – For the preparation of an ML model and data pair, CSC:MLSU requests 

the ML model and appropriate ML data for the model, or CSP:MLSP provides 

pair of ML model an ML data for CSC:MLSU. This preparation scenario lies 

outside the scope of this use case. 

4) CSC:MLSU configures and sets the learning policy and parameters for machine 

learning training. 

5) CSP:MLSP trains the ML model and tracks the performance of the training 

result for reporting to CSC:MLSU. 

6) CSP:MLSP saves the trained model and training result in the designated source 

Role or sub-role 

CSN:MLMD 

CSN:MLDP 

CSP:MLSP 

CSC:MLSU 

Figure (optional) 
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Title Model training with user configuration 

Pre-conditions 

(optional) 

CSC:MLSU installs virtual machine with CSP to build an ML model. 

CSP provides an ML framework or platform tools to build an ML model. 

CSN:MLSU searches and requests ML data and model from CSN:MLDP and 

CSN:MLMD 

Post-conditions 

(optional) 

CSP:MLSP provides the interface for reporting ML results and learning progress to 

CSC:MLSU. 

CSP:MLSP stores the trained or optimized ML model for developing ML 

applications 

Derived 

requirements or 

recommendations 

– Clause 8.1 items 1), 2), 4) 

– Clause 8.3 items 1), 2), 3), 4) 

– Clause 8.5 items 1), 3), 6), 7), 9), 10) ,11) 

I.3 Report learning result and re-training ML model 

Title Report learning result and re-training ML model 

Description This use case describes the reporting of learning results from CSP:MLSP to 

CSC:MLSU, and re-training an ML model. The objective of reporting learning results 

is generally to give information about handling and managing an ML training 

configuration for CSC:MLSU. CSC:MLSU can optimize ML learning parameters and 

allow manual modification of ML learning policy; in addition, CSC:MLSU can 

request a re-training option. The following are general steps for this use case.  

1) CSC:MLSU requests a learning report from CSP:MLSP. 

2) CSP:MLSP transforms and visualizes the learning report on appropriate interfaces. 

NOTE 1 – Visualization options can be provided to CSC:MLSU from CSP:MLSP. The 

raw data of the training result is the default option. 

3) CSP:MLSP reports the learning result to CSC:MLSU 

4) CSC:MLSU analyses the learning report and manages and optimizes the learning 

policies. 

NOTE 2 – The reset and re-training steps are the same as those in 'model training with user 

configuration' use case (clause I.2) 

Role or sub-role 
CSP:MLSP 

CSC:MLSU 

Figure (optional) 

 
 

Pre-conditions 

(optional) 

CSN:MLSP already performs ML learning and stores backup result data for ML 

model 

Post-conditions  
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Title Report learning result and re-training ML model 

(optional) 

Derived 

requirements or 

recommendations 

– Clause 8.6 items 1), 2), 3), 7) 

– Clause 8.7 item 5) 

I.4 Distributed training with multiple worker nodes 

Title Distributed training with multiple worker nodes 

Description 

This use case describes model training with multiple worker nodes to support parallel 

and distributed learning. CSC:MLSU can organize multiple worker nodes for ML 

training. This option has many advantages such as reductions in data size for each 

worker node and division of data into private and public. The following are general 

steps for distributed training. 

1) CSC:MLSU designs or organizes the architecture of ML worker nodes. 

2) CSP:MLSP provides ML management for distributed training to CSC:MLSU. 

3) CSC:MLSU sets the distribution policy for an ML model or data and schedules 

policy for assigning resources and ML parameters. 

4) CSP:MLSP assigns resources and parameters using the configured policy from 

CSC:MLSU. 

5) CSP:MLSP requests ML training from each virtual or local worker node and 

collects the training results. 

6) CSP:MLSP iterates steps 4) and 5) until training is completed 

Role or sub-role 
CSP:MLSP 

CSC:MLSU 
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Title Distributed training with multiple worker nodes 

Figure (optional) 

 

Pre-conditions 

(optional) 

CSP provides virtual server to manage ML parameters and control distributed 

learning policy. 

CSP provides network connection with multiple worker nodes on other cloud and 

local environment 

Post-conditions 

(optional) 
 

Derived 

requirements or 

recommendations 

– Clause 8.5 items 3), 6), 7), 8), 9), 10), 15) 
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I.5 Model testing and optimizing the model quality includes hyperparameter tuning 

Title Model testing and optimizing the model quality includes hyperparameter tuning 

Description 

This use case describes the model testing procedure in cloud computing. The model 

testing or validation process is usually performed to optimize or generalize a model's 

performance and quality. The testing may require an iterative process to tune some 

model perspective resources and hyperparameters. Generally, the poor performance 

of an ML model results from: 1) lack of feature prediction; 2) non-optimal 

hyperparameters; and 3) abnormal learning data. The purpose of model testing is 

usually related to the resolution of problems 1) and 2). In that context, this use case 

mainly targets resolution of problems 1) and 2) experimentally. 

The following are general steps for model testing in this use case. 

1) CSN:MLMD requests learning result from CSP:MLSP. 

2) CSP:MLSP reports the initial or previous learning result to CSN:MLMD. 

NOTE – The model testing process can be performed iteratively. 

3) CSN:MLMD optimizes the ML model with a given dataset. 

a) CSN:MLMD tunes the hyperparameters of an ML model. 

b) CSN:MLMD adds features for ML data. 

4) CSN:MLMD tests the ML model until the performance of ML model is qualified 

Role or sub-role 

CSN:MLMD 

CSP:MLSP 

CSC:MLSU 

CSN:MLDP 

Figure (optional) 

 

Pre-conditions 

(optional) 

CSP:MLSP installs a virtual machine and builds an ML model for testing. 

CSP provides an ML framework or /platform tools for testing the ML model 

Post-conditions 

(optional) 

CSN:MLDP provides the ML dataset for learning and testing. 

CSP:MLSP stores the testing history of ML model for debugging ML. 

If CSN:MLMD fails to optimize the ML model, then CSN:MLMD requests testing 

ML data from CSN:MLDP 

Derived 

requirements or 

recommendations 

– Clause 8.5 items 2), 3), 4), 5), 6), 12) 



 

22 Rec. ITU-T Y.3531 (09/2020) 

I.6 Model monitoring to issue alerts of abnormal or unsuspected learning process 

Title Model monitoring to issue alerts of abnormal or unsuspected learning process 

Description This use case describes the function of monitoring services in MLaaS. Abnormalities 

during learning may be caused by many aspects that can result in failure to learn, so 

the CSC:MLSU or CSN:MLMD should be able to recognize an abnormal state of 

learning by monitoring its systems. Abnormalities during the learning process can be 

detected through resource overload in the hardware, such as CPU and GPU, 

excessively abnormal prediction results and synchronization errors of parameters. 

The following are general steps for model testing in this use case. 

1) CSC:MLSU or CSN:MLMD requests job details for learning process. 

2) CSP:MLSP reports the job details which shows current job statuses. 

NOTE – Job statuses include CPU or GPU utilization, memory usage and parameter 

update or synchronization status. 

3) CSC:MLSU sends a request to stop the learning procedure to CSP:MLSP. 

CSN:MLMD can also set an automatic stop when a learning abnormality is clearly 

detected. In that case, CSN:MLMD can set the values that are served by CSP:MLSP 

or customized by CSN:MLMD 

Role or sub-role 

CSN:MLMD 

CSP:MLSP 

CSC:MLSU 

CSN:MLDP 

Figure (optional) 

 

Pre-conditions 

(optional) 
CSP:MLSP installs virtual machine and builds ML model for testing 

Post-conditions 

(optional) 

CSP:MLSP provides the interface for reporting the testing result to CSN:MLMD. 

CSN:MLDP provides the ML dataset for learning and testing. 

CSP:MLSP stores the testing history of ML model for debugging ML. 

If CSN:MLMD fails to optimize the ML model, then CSN:MLMD requests testing 

ML data to CSN:MLDP 

Derived 

requirements or 

recommendations 

– Clause 8.5 item 10) 

– Clause 8.6 items 1), 2), 3), 4), 5), 6), 7) 
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I.7 Model deployment and monitoring 

Title Model deployment and monitoring 

Description 

This use case describes model deployment and monitoring procedures in the cloud 

computing environment. Once a model has been trained, then it is deployed in 

production. A model-monitoring process is also needed to maintain the performance 

of a deployed model. In a broad sense, model deployment and monitoring in this use 

case includes registering, managing and monitoring stages in the cloud computing 

environment. 

The following are general steps for model deployment and monitoring described in 

this use case. 

1) CSP:MLSP registers a trained model after a training stage. 

2) CSP:MLSP provides information about the trained model used by CSP:MLSP to 

develop an application service. 

3) CSP:MLSP provides an application service using the deployed model, and 

monitors its performance continuously. 

4) CSP:MLSP requests model retraining or reengineering according to the measured 

performance of the model and predefined policy. 

5) CSP:MLSP retrains or reengineers a model when asked. 

6) CSP:MLSP notifies CSP:MLSP using the model for an application service when it 

is retrained or reengineered. 

7) CSC:MLSU uses the application service using the deployed model 

Role or sub-role 
CSP:MLSP 

CSC:MLSU 

Figure (optional) 

 

Pre-conditions 

(optional) 
CSP:MLSP provides a trained model to be deployed to develop an application service 

Post-conditions 

(optional) 
CSC:MLSU uses an ML application service provided by CSP:MLSP 

Derived 

requirements and 

recommendations 

– Clause 8.7 items 1), 2), 3), 4), 5), 6) 
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I.8 Automated machine learning in cloud computing 

Title Automated machine learning in cloud computing 

Description This use case describes automated machine learning procedures in the cloud 

computing environment. Automated machine learning supports three main 

functionalities of algorithms, namely automated feature engineering, ML model 

search and hyperparameter optimization. To execute automated machine learning, 

CSC:MLSU just configures the learning task and input data. Then, automated feature 

engineering algorithms construct features of ML data for automatic ML model 

training. After feature construction, ML model search algorithms are implemented to 

find an ML model design by exploring the ML model catalogue. Finally, 

hyperparameter optimization algorithms tune hyperparameter values to maximize ML 

model performance. 

The following are general steps for the model deployment in this use case. 

1) CSC:MLSU sets the learning task and input data. 

2) CSP:MLSP executes feature engineering algorithms with input data. 

3) CSP:MLSP executes ML model search and hyperparameter optimization 

algorithms iteratively. 

NOTE 1 – ML model search and hyperparameter optimization algorithms can be combined. 

NOTE 2 – Validation of an ML model is performed during step 3). 

4) CSP:MLSP tests the ML model output from step 3). 

a) If test performance is evaluated under target performance, then repeat step 3). 

b) Otherwise, export the trained ml model. 

Role or sub-role 
CSP:MLSP 

CSC:MLSU 

Figure (optional) 

  

Pre-conditions 

(optional) 
 

Post-conditions 

(optional) 
 

Derived 

requirements or 

recommendations 

– Clause 8.5 items 12), 13), 14) 

– Clause 8.6 items 4), 5), 6) 
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Appendix II 

 

Use case of MLaaS for application perspectives 

(This appendix does not form an integral part of this Recommendation.) 

The use cases in this appendix provide scenarios for operating ML applications using MLaaS and 

related functional requirements of MLaaS. 

II.1 Object recognition model development in  the cloud computing environment 

Title Object recognition model development in the cloud computing environment 

Description 

An AI software engineer wants to concentrate on developing and testing ML models 

for object recognition. However, the size of the labelled dataset is not sufficient to 

develop and test the model. In the cloud computing environment, the engineer can 

access a validated ML dataset for object recognition from other engineers or 

companies. With the data from the cloud, engineers can build, train and manage their 

own recognition model by testing the performance of the model. 

In this use case, the engineer who is represented as CSN:MLMD can develop an ML 

model in cloud computing systems with validated data from the CSN:MLDP. The 

following steps show the process of developing an ML model. 

1) CSN:MLMD registers the ML model with CSP:MLSP. 

2) CSN:MLDP prepares an ML dataset with data labelling. 

2-1) CSN:MLDP requests raw data from CSN:DP. 

2-2) CSN:MLDP labels the data with an object detection algorithm. 

NOTE 1 – A different detection algorithm can be adopted. An example of a detection algorithm 

is rectangle detection and face detection with a facial landmark. 

3) CSP:MLSP requests ML data with the information from the detection algorithm 

adopted. 

4) CSP:MLSP iteratively trains the ML model with the ML dataset until it is 

optimized. 

a) 4-1) CSP:MLSP trains the ML model with the ML dataset with default 

parameter. 

b) 4-2) CSP:MLSP evaluates the trained ML model with a validation dataset. 

c) 4-3) CSP:MLSP changes the model parameter and repeats a) and b) until the 

model is optimized. 

NOTE 2 – The ML model parameter can be different among ML models. An example of an ML 

model parameter is the Euclidean distance between the labelled data and validation data. 

5) CSP:MLSP reports the performance evaluation to CSN:MLMD 

Role or sub-role 

CSN:MLMD 

CSN:DP 

CSN:MLDP 

CSP:MLSP 
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Title Object recognition model development in the cloud computing environment 

Figure (optional) 

 

Pre-conditions 

(optional) 
CSN:MLDP searches data and requests data from CSN:DP 

Post-conditions 

(optional) 
CSP:MLSP stores the trained or optimized ML model to develop ML applications 

Derived 

requirements and 

recommendations 

– Clause 8.2 items 1), 3), 4) 

– Clause 8.4 items 1), 3), 4) 

– Clause 8.5 items 1), 2) 

II.2 Traffic speed prediction and monitoring service 

Title Traffic speed prediction and monitoring service 

Description 

Traffic speed information on city roads are gathered from sensors. Traffic speed on 

each road after a given period, e.g., 15 min, is predicted, and the predictions used to 

solve traffic congestion in the city. The following is a procedure of this use case. 

1) Raw data such as traffic speed on city roads are gathered by CSN:DP. 

2) The gathered raw data are featured and pre-processed by CSP:MLSP, and the data 

used for training and validating a model. 

3) Some machine learning models developed by CSN:MLMD are provided, and those 

models are used to train models by CSP:MLSP. 

4) A prediction model is trained and validated using a training dataset. 

5) The trained model is deployed and used to develop an application. 

6) Data for prediction are fed into the trained model or application, and predictions are 

returned to the service user. The service user can use the predictions, e.g., predicted 

traffic speed on each road, to solve traffic congestion by controlling traffic signals 

Role or sub-role 

CSN:DP 

CSN:MLMD 

CSP:MLSP 

CSU:MLSU 
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Title Traffic speed prediction and monitoring service 

Figure 

(optional) 

 

Pre-conditions 

(optional) 

CSN:MLSP can transform raw data used for predicting traffic speed. The transformed 

data are fed into a trained prediction model. 

The sensors for traffic observation are installed on city roads or in each vehicle to 

gather speed and location data from traffic using the roads 

Derived 

requirements 

and 

recommendation

s 

– Clause 8.1 items 1), 3), 5) 

– Clause 8.3 items 1), 3), 4) 

– Clause 8.4 items 2), 6) 

– Clause 8.5 items 1), 3), 6), 7), 8), 9), 10), 11) 

– Clause 8.7 items 1), 2), 3), 4) 

II.3 Image recognition 

Title Image recognition 

Description 

CSC:MLSU who is an application developer wants to provide image recognition in 

applications, e.g., animal recognition. In order to improve development efficiency, 

CSC:MLSU can just focus on user interface interactions, and use MLaaS to 

implement the image recognition function. The process would include the following 

steps. 

1) CSP:MLSP collects animal images with different formats from different 

CSP:MLDPs and stores those images. 

2) CSP:MLSP does some pre-process work on the images like: image classification 

by species (e.g., cats, dogs, pigs); image conversion into the same format (e.g., 

convert jpg, jpeg or bmp to png); image ranking by resolution. 

3) CSP:MLSP sends pre-processed images to CSN:MLMD to develop an ML model 

and uses multiple worker nodes to get training acceleration. 

4) After training, CSN:MLMD registers an image recognition model with the 

CSP:MLSP. 

5) CSP:MLSP recognizes images from those submitted using the model registered by 

the CSN:MLMD. 

6) CSP:MLSP displays the results of image recognition to the CSC:MLSU. 

7) CSC:MLSP provides accuracy, CPU usage and time cost of image recognition as 

feedback to CSP:MLMD 

Role or sub-role 

CSC:MLSU 

CSP:MLSP 

CSN:MLMD 

CSN:MLDP 



 

28 Rec. ITU-T Y.3531 (09/2020) 

Title Image recognition 

Figure (optional) 

 

Pre-conditions 

(optional) 
 

Post-conditions 

(optional) 
 

Derived 

requirements and 

recommendations 

– Clause 8.1 items 1), 3), 5), 6) 

– Clause 8.3 items 1), 2), 4) 

– Clause 8.4 items 4), 5) 

– Clause 8.5 items 1), 2) 

– Clause 8.7 item 1) 

II.4 Face recognition 

Title Face recognition  

Description CSC:MLSU who is a door control system developer for a company needs to use face 

recognition for employee and visitor authentication. The most convenient way for the 

developer is to implement a face recognition function using MLaaS. The process 

would include the following steps. 

1) CSP:MLSU uses a camera to collect videos taken from different angles of 

employees. In order to detect live, videos with spoofed faces on a screen are also 

collected. 

2) CSP:MLSU uploads those videos to CSP:MLSP and splits them into a real face 

training set, a fake face training set and testing set through the configuration 

reference point of CSP:MLSP. 

3) CSP:MLSP marks the position of face and eyes in the training sets. 

4) CSP:MLSP sends training sets to CSN:MLMD and configures hyperparameter 

values to start developing an ML model. During development, CSP:MLSP can 

obtain the learning status from CSN:MLMD. 

5) After the learning process, CSN:MLSP validates the trained ML models with the 

testing set. If the validation results meet expectations, ML models will be 

registered and deployed. 

6) When a visitor comes to the company, CSP:MLSU captures a video of the visitor. 

Then CSP:MLSP performs face recognition for the captured video using the 

model deployed. 

7) The CSP:MLSP displays the result of face recognition to the CSC:MLSU and the 

visitor is authenticated based on the result 
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Title Face recognition  

Role or sub-role 
CSC: MLSU 

CSP: MLSP 

Figure (optional) 

 

Pre-conditions 

(optional) 
 

Post-conditions 

(optional) 
 

Derived 

requirements and 

recommendations 

– Clause 8.2 items 1) 

– Clause 8.3 items 1), 4) 

– Clause 8.4 items 2), 6) 

– Clause 8.5 items 1), 2), 3), 4), 5), 7), 8), 11) 

– Clause 8.6 item 1) 

– Clause 8.7 item 1) 

II.5 Image segmentation model development 

Title Image segmentation model development 

Description 

Image segmentation is a fundamental task for high level vision tasks such as driving a 

vehicle and robot navigation. Recently developed deep neural networks can perform 

with a large amount of training data and powerful computation resources. Thus, it is a 

good choice for CSN:MLMD to train and deploy a model in cloud computing 

environments. This use case includes the following key steps. 

1) CSN:MLMD designs specific model parameters, such as network architecture and 

training loss function. 

2) CSP:MLSP establishes the training data format and requests training data from 

CSN:MLDP. 

3) CSN:MLMD requests CSP:MLSP to prepare resources with the necessary library 

installed (such as an ML library) for model training. 

4) CSP:MLSP runs a training process for the model committed by CSN:MLMD and 

reports training status including training and validation errors. 

5) After convergence, the trained model is registered and deployed in the cloud 
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Title Image segmentation model development 

Role or sub-role 

CSN:MLMD 

CSN:MLDP 

CSP:MLSP 

Figure (optional) 

 

Pre-conditions 

(optional) 
 

Derived 

requirements and 

recommendations 

– Clause 8.1 items 1), 3), 4) 

– Clause 8.5 items 1), 2), 3), 4), 6), 9), 11), 12) 

– Clause 8.6 items 1), 3), 4) 

– Clause 8.7 item 1) 

II.6 Generative adversarial model development 

Title Generative adversarial model development 

Description 

Generative adversarial models can generate new images whose appearance is 

consistent with those in the training dataset, e.g., generate the image of an animal or a 

building. A simple generative model can be trained in an unsupervised manner, i.e., 

no labels are required. Neural network-based generative adversarial network (GAN) 

models are one effective method for image generation. However, training a GAN is 

usually tedious and requires lots of tuning skills. It would be convenient if the CSP 

can provide a training and deployment service for a CSN:MLMD. Such a use case 

can be fulfilled with the following steps. 

1) CSN:MLMD requests specific training data from CSN:MLDP according to the 

task. For instance, if the model is to generate animals, then the training data 

should only contain a large number of various animals. 

2) CSN:MLMD establishes the network architectures of generative and 

discriminative modules with corresponding loss functions. 

3) CSN:MLSP prepares computation resources and starts model training. A training 

process will stop if the convergence condition is satisfied or the maximum number 

of iterations has been reached. Retraining can be executed if necessary. 

4) After convergence, the model access method is returned to CSN:MLMD 

Role or sub-role 

CSN:MLDP 

CSN:MLMD 

CSP:MLSP 



 

  Rec. ITU-T Y.3531 (09/2020) 31 

Title Generative adversarial model development 

Figure (optional) 

 

Pre-conditions 

(optional) 
 

Derived 

requirements and 

recommendations 

– Clause 8.1 items 1), 3), 4) 

– Clause 8.5 items 1), 4), 5), 6), 7), 9) 

– Clause 8.6 items 5), 6) 

– Clause 8.7 items 1), 5) 
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